
Program Product

o

SC26-3989-0
File No. S370-25

VS FORTRAN
Application Programming:
Library Reference

Program Numbers 5748·F03 (Compiler
and Library)

5748·LM3 (Library Only)

Release 1

--..- ----- --------- -.. ---- ------~----~-.-

Page of SC26-3989 a5 updated 03 June 1981 by TNl SN26-0852

First Edition (February 1981)

This edition, as amended by technical neWsletter SN26-0852,applies to Release 1 of
VS FORTRAN, Program Products 5748·F03 {Compiler and Library) and 5748·LM3
(Library only), and to any subsequent releases until otherwise indicated in new editions
or technical newsletters. Information concerning the IBM 3375 and 3380 direct access
devices is for planning purposes only until the availability of the devices.

The changes for this edition are summarized under "Summary of Amendments"
following the preface. Specific changes are indicated by a vertical bar to the left of the
change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are periodically made to the information herein; before using this publica­
tion in connection with· the operation of IBM systems, consult the latest IBM
Systeml370 and 4300 Processors Bibliography, GC20-000 1, for the editions that are
applicable and current.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or ser­
vices in your country.
Publications are not stocked at the address given below; requests for IBM publica­
tions should be made to your IBM representative or to the IBM branch office serv­
ing your locality.
A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, P.O.
Box 50020, Programming Publishing, San Jose, California U.S.A. 95150. IBM may
use or distribute any of the information you supply in any way it believes appropri­
ate without incurring any obligation whatever. You may, of course, continue to use
the, information you supply.
@ Copyright International Business Machines Corporation 1981

fO

Preface

This publication describes the mathematical and service subprograms in the vs
FORTRAN libraries supplied with vs FORTRAN. To aid the programmer in the use of
this publication, a brief description of each chapter follows:

1. "Introduction" describes the four types of subprograms in the VS FORTAN
library (VSFORTL) and defines their use in either a VS FORTRAN or an
assembler language program.

2. "Mathematical and Character Subprograms" describes the subprograms
which perform computations and conversions frequently needed by the
programmer. A mathematical or character subprogram is invoked explicitly
whenever one of its entry names appears in a source statement, or implicitly
through use of certain notations in the source statements.

3. "Service Subprograms" contains information about those subprograms
which perform utility functions.

4. "Algorithms" contains information about the method used in the library to
compute a mathematical function and describes the effect of an argument
error upon the accuracy of the answer returned.

5. " Accuracy Statistics" gives accuracy statistics for the explicitly called
mathematical subprograms.

6. "Appendixes" provides a list of diagnostic messages, a list of module names,
a sample storage printout, storage estimates, and information for the
assembler language programmer.

Standard and mathematical notation is used in this manual. The reader should be
familiar with this notation and with common mathematical terminology.

Industry Standards

The vs FORTRAN Compiler and Library program product is designed according to
the specifications of the following industry standards, as understood and
interpreted by IBM as of June, 1980:

American National Standard Programming Language FORTRAN, ANSI X3.9-
1978 (also known as FORTRAN 77)

International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

These two standards are technically equivalent. In this manual, references to the
current standard are references to the above two standards.

American Standard FORTRAN, X3.9-1966

International Organization for Standardization ISO R 1539-1972 Program­
ming Languages-FORTRAN

These two standards are technically equivalent. In this manual, references to the
old standard are references to these two standards.

Both the FORTRAN 77 and the FORTRAN 66 standard languages include IBM exten­
sions. In this book, references to current FORTRAN are references to the FORTRAN

77 standard plus the IBM extensions valid with it; references to old FOR TRAN are
references to the FORTRAN 66 standard plus the IBM extensions valid with it.

Preface iii

Page of SC26-3989 as updated 03 June 1981 by TNl SN26-0852

VS Fortran Publications

The VS FORTRAN publications are designed to help you develop your programs with
a minimum of wasted effort. This book, the VS FORTRAN Application Program­
ming: Library Reference, gives you detailed information about the execution-time
library subroutines.

A series of related publications give you detailed reference documentation you can
use when you are actually performing the tasks this manual describes:

VS FORTRAN Application Programming:

Application Programming Guide, SC26-3985, contains guidance information
on designing, coding, debugging, testing, and executing VS FORTRAN
programs written at the current language level.

Language Reference, GC26-3986, gives you the semantic rules for coding vs
FORTRAN programs when you're using current FORTRAN.

System Services Reference Supplement, SC26-3988, gives you FORTRAN­
specific reference documentation for the system your programs will operate
under.

Source-Time Reference Summary, SX26-3731, is a pocket-sized reference card
containing current FORTRAN syntax and brief descriptions of the compiler
options.

Systeml360 and Systeml370 FORTRAN IV Language manual, GC28-65 15, gives you
the rules for writing vs FORTRAN programs when you're using old FORTRAN.

Application programming and operation Publications

I

Design
Code

Debug

FORTRAN IV
Language
Reference

iv VS FORTRAN Library Reference

VS FORTRAN
APplication Programming:

VS FORTRAN
Language
Reference

Guide

I

I
VS FORTRAN

System Services
Reference
supplement

VS FORTRAN
Reference

Summary

compile
Link
Executa
Debug

I
VS FORTRAN

Library
Reference

i--'-\. ;

~;

(0

{c' . I

c

Related Publications

The FORTRAN programmer using the vs FORTRAN compiler and library should be
familiar with the information in the following publications:

• VS FORTRAN Language Reference, GC26-3986

• VS FORTRAN Application Programming Guide, SC26-3985

• VS FORTRAN System Services Reference Supplement, SC26-3988

• VSFORTRAN Compiler and Library Diagnosis, SC26-3990

Information about IBM-supplied utility programs can be found in the following
publications:

• OS/VSl Utilities, GC26-3901

• OS/VS2 Utilities Manual, GC26-3902

• DOS/VSE Utilities Manual, GC33-5381

Information about the linkage editor and loader programs can be found in the
following publications:

• OS/VS Linkage Editor and Loader, GC26-3813

• Guide to the DOS/VSE Assember, GC33-6077

Information about data management can be found in the following publications:

• OS/VSl Supervisor Services and Macro Instructions, GC28-6670

• DOS/VSE Data Management Concepts, GC24-5138

• DOS/VSE Macro User's Guide, GC24-S139

Information about assembler language programming can be found in the following
publications:

• OS/VS and DOS/VS, VM/370 Assembler Language, GC33-4010

• OS/VS, VM/370 Assembler Programmer's Guide, GC33-4021

Information about System/370 machine characteristics can be found in the follow­
ing publication:

• IBM Systeml370 Principles of Operation, GA22-7000

Preface v

Page of SC26-3989 as updated 03 Juna 1981 by TNL SN26-0852

SUMMARY OF AMENDMENTS

3 JUNE 1981

MISCELLANEOUS CHANGES

I ·
I •

I •
I

"Compara of complex numbers" has been added to tha chart
Implicitly Called Mathematical Subprogams.

Storage estimates have been updated.

VSAM execution error messages have bean included; other
messages have been changes.

I. A list of figures has been added.

vi VS FORTRAN Application Programming: Library Reference

i4~,
\l"w'~'/

o

c

Page of SC26-3989 added 03 June 1981 by TNL SN26-0852

Contents

Introduction. 7
Mathematical and Character Functions. 7
Service Subroutine Subprograms. 8
Input/Output and Error Routines. 8

Mathematical and Character Subprograms. 9
Explicitly Called Subprograms. 12
Implicitly Called Subprograms. 23

Service Subroutine Subprograms. 27
Mathematical Exception Test Subprograms. 27

Overflow Indicator Subprogram - Entry Name: OVERFL 27
Divide Check Subprogram-Entry Name: DVCHK.................................. 27

Utility Subprograms. 28
End Execution Subprogram-Entry Name: EXIT .. " 28
Storage Dump Subprogram-Entry Names: DUMP/PDUMP and CDUMP/CPDUMP . . 28
Programming Considerations . 29

Algorithms. 31
Control of Program Exceptions in Mathematical Functions. 32
Explicitly Called Subprograms. 34

Absolute Value Subprograms. 34
Arcsine and Arccosine Subprograms. 35
Arctangent Subprograms. 38
Error Function Subprograms. 41
Exponential Subprograms . 45
Gamma and Log Gamma Subprograms. 47
Hyperbolic Sine and Cosine Subprograms. 49
Hyperbolic Tangent Subprograms. .. 51
Logarithmic Subprograms (Common and Natural) . 52
Sine and Cosine Subprograms. 56
Square Root Subprograms. 60
Tangent and Cotangent Subprograms. 63

Implicitly Called Subprograms '. 66
Complex Multiply and Divide Subprograms. 66
Complex Exponentiation Subprograms. 67
Exponentiation of a Complex Base to an Integer Power. 67
Exponentiation of a Complex Base to a Complex Power. 67
Exponentiation of a Real Base to a Real Power Subprogram. 68
Exponentiation of a Real Base to an Integer Power Subprogram. 68
Exponentiation of an Integer Base to an Integer Power Subprogram. 69
Exponentiation of a Base 2 to a Real Power Subprogram. " 70
Exponentiation of a Real Base to an Integer Power Subprogram .. 70
Exponentiation of a Real Base to a Real Power Subprogram. 71

Accuracy Statistics . 72
Appendix A: Assembler Language Information . 79

Appendix B: Storage Estimates. 86

Appendix c: Library Interruption Procedures, Error Procedures, and Messages. 89
Interruption Procedures. 89
Error Procedures. 89
Library Messages. 90

Program Interrupt Messages. 90
Execution Error Messages. 95
Operator Messages. 131

Appendix D: Module Names. .. 132
Appendix E: Sample Storage Printouts... 134

Index... . •••. . •••. ••. •. . •. ••. .•• ••. .•• •••••••••.••••••••••••••••••.••••• 135

Contents vi. I

Page of SC26-3989 added 03 June 1981 by TNL SN26-0852

FIGURES

1. Explicitly Called Mathematical
and Character Subprograms • • • • • • • 10

2. Logarithmic and Exponential Subprograms. 14
3. Trigonometric Subprograms. • • • • • • 16
4. Hyperbolic Function Subprograms. • • • • 18
5. Miscellaneous Mathematical Subprograms • • •• 19
6. Character Manipulation Routines. • • • • 22
7. Implicitly Called Mathematical Subprograms 24
8. Implicitly Called Character Subprograms. • •• 25
9. Exponentiation with Integer Base and Exponent. 26

10. Exponentiation with Real Bas.
and Integer Exponent ••••••• • • • • 26

lu.l. Exponentiation with Real Base and Exponent 26
10.2. Exponentiation with Complex Base

and Integer Exponent • • • • • • • • • • • 26
11. DUMP/PDUMP Format Specifications • • • • • 28
12. Accuracy Figures • • • • • • • • • • • • • 73
13. Assembler Information for the Explicitly

Called Mathematical Subprograms • • . • • • 81
14. Assembler Information for the Implicitly

Called Mathematical Subprograms. • • • • 81
15. Assembler Information for the Implicitly

Called Character Subprograms • • • • • • 81
16. Assembler Information for the Service

17.
18.
19.
20.
21.

22.
23.
24.
25.

Subprograms • • • • • • • • • • • • • • • •
General Assembler Language Calling Sequence
Mathematical Subprogram Storage Estimates.
Service Subprogram Storage Estimates
Character Subprogram Storage Estimates • • • •
Library Execution-Time Routines

81
83
86
87
88

Storage Estimates • • • • • • • • • •
Character Subprogram Modules Names
Reentrant Library Module Names
Mathematical Subprogram Modules Names.
Sample Storage Printouts

88
132

• 132
133

• • 134

vi.2 VS Fortran Library Refernce

4--\':
~";c;,,.:;i';

o

•

I

o

Introduction

The VS FORTRAN library contains the following types of subprograms: (1)
mathematical and character functions, (2) service subprograms, (3) input/output
subprograms, and, (4) error handling subprograms. The mathematical and service
subprograms handle single, double and extended-precision arguments. Character
subprograms handle conversation between character and integer data.

The library subprograms may be used in either a FORTRAN or an assembler
language program. (Appendix B contains calling information for the assembler
language programmer.) In vs FORTRAN, calls to the library subprograms are either
at the programmer's request or in response to the program requirements.
Subprograms required by the program being compiled are provided by the linkage
editor or loader, which takes the subprograms from the library.

Mathematical and
Character Functions

These routines provide commonly used mathematical and character functions.
When VS FORTRAN requests a function, the routine is either:

Inlin. Inserted into the program during compilation, or

Out-of-Un. Included in the load module as a called subprogram during link
editing.

This publication discusses both out-of-line and inline routines. The American
National Standard Institute (ANSI) defines several arithmetic functions, such as
absolute value (ABS), positive difference (DIM), and transfer of sign (SIGN) as
intrinsic junctions. For the most part, code for these functions is inserted inline by
the FORTRAN compiler at the point in the source module where the function's
name is used. However, the following ANSI-defined intrinsic junctions have been
implemented as part of the vs FORTRAN library and are provided out-of-line for all
systems:

• INDEX

• LGE/LGT

• LLE/LLT

• MAX/MIN

• MAXO/MINO

• AMAXO/ AMINO

• MAXI/MINI

• AMAXI/AMINI

• DMAXlIDMINI

• QMAXlIQMINI

• MOD/ AMOD/ AINT

• IFIX/INT IIDINT

Introduction 7

8 VS FORTRAN Library Reference

Service Subroutine
Subprograms

Each of the service subprograms corresponds to a subroutine form as defined by a
SUBROUTINE statement in a FORTRAN source module. These subprograms perform
mathematical exception test and utility functions. They mayor may not return a
value to the calling module.

Input/Output and Error
Processing Routines

The library contains certain input/output and error processing routines that act as
interfaces with the compiled program and operating system. Frequently, the
mathematical and service functions require assistance from these routines for
input/output, interruption, and error processing. Storage estimates for these
routines are included in Appendix B.

f\
1 1

\cy'

1' ... ,\ C
·
")

;'C" \ ,I

o

Mathematical and Character Subprograms

The mathematical and character subprograms supplied in the vs FORTRAN library
perform computations and conversions needed by the programmer. Mathematical
and character subprograms are called in two ways: explicitly, when the programmer
includes the appropriate entry name in a source language statement (see Figure 1);
and implicitly, when certain notation (for example, raising a number to a power)
appears within a source language statement (see Figure 1).

The following text describes the individual mathematical and character
subprograms and explains their use in a vs FORTRAN program. Detailed informa­
tion about the actual method of computations used in each subprogram, error
messages, and storage estimates are discussed later in this publication.

Mathematical and Character Subprograms 9

General Function Specific Function Entry Name (s)

Logarithmic and exponential subprograms Exponential EXP
(described in Figure 2) DEXP

CEXP
CDEXP
QEXP
CQEXP

Logarithmic, common and natural ALOG, ALOG 10
DLOG,DLOGIO
CLOG
CDLOG
QLOG, QLOGIO
CQLOG

Square root SQRT
DSQRT
CSORT
CDSQRT
QSQRT
CQSQRT

Trigonometric subprograms Arcsine and arccosine ARSIN, ARCOS
(described in Figure 3) DARSIN,DARCOS

ASIN, ACOS
DASIN, DACOS
QARSIN, QARCOS

Arctangent ATAN, ATAN2
DATAN,DATAN2
QATAN
QATAN2

Sine and cosine SIN, COS
DSIN,DCOS
CSIN, CCOS
CDSIN, COCOS
QSIN, QCOS
CQSIN, CQCOS

Tangent and cotangent TAN,COTAN
DTAN,DCOTAN
QTAN,QCOTAN

Hyperbolic function subprograms Hyperbolic sine and cosine SINH, COSH
(described in Figure 4) DSINH, DCOSH

QSINH, QCOSH

Hyperbolic tangent TANH .-

DTANH
QTANH

-- -._-

Character Convert integer to character CHAR
Manipulation
Routines Convert character to integer (CHAR
(see Figure 6)

Length of character item LEN

Index of character item INDEX

Alphamerically greater than or equal LGE

Alphamerically greate~ than LGT

Alphamerically less than or equal LLE

Alphamerically less than LLT
.- -- - -

Figure 1. (Part 1 of 2) Explicitly Called Mathematical and Character Subprograms

10 VS FORTRAN Library Reference

General Function Specific Function Entry Name(s)

Miscellaneous subprograms Absolute value CABS
(described in Figure 7) CDABS

CQABS
lABS
ABS
DABS
QABS

Error function ERF, ERFC
DERF,DERFC
QERF,QERFC

Gamma and log-gamma GAMMA, ALGAMA
DGAMMA, DLGAMA
LGAMMA

~1axim\lm and minimum value AMAXO, AMINO, MAXO, MINO
AMAXI, AMINI, MAXI, MINI
DMAXl, DMINI
MAX,MIN

Modular arithmeti~ MOD
AMOD,DMOD
QMOD

Truncation AINT
INT,IDINT

Imaginary Part of Complex IMAG,AIMAG
Argument DIMAG

QIMAG

Conjugate of a Complex Number CONJG
DCONJG, QCONJG

Obtain ANINT
Nearest Whole Number DNINT

Obtain NINT
Nearest Integer IDNINT

Obtain Positive Difference DIM,IDIM
DDIM,QDIM

Transfer of Sign SIGN,ISIGN
DSIGN
QSIGN

Obtain Double Precision Product DPROD

Piaure 1. (Part 2 0/2i Explicity Called Mathematical and Character Subproarams

o
Mathematical and Character Subprograms 11

Explicitly Calleel Subprograms

Each explicitly called subprogram performs one or more mathematical or character
functions. Each mathematical and character function is identified by a unique entry
name.

A subprogram is called whenever the appropriate entry name is included in a VS
FORTRAN arithmetic or character expression. The programmer must supply one or
more arguments. These arguments are separated by commas, the list of arguments
is enclosed in parentheses, following the entry name.

For example, the source statement:

RESULT = SIN (RADIAN)

causes the sine subprogram to be called. The sine of the value in R AD IAN is com­
puted and the function value is stored in RESULT.

In the following example, the square root subprogram is called to compute the
square root of the value in AMNT. The function value is then added to the value in
STOCK and the result is stored in ANS.

ANS = STOCK + SQRT (AMNT)

The explicitly called subprograms are described in Figures 2 through 5. The follow­
ing information is provided:

General Function: This column states the nature of the computation performed
by the subprogram.

Entry Name: This column gives the entry name that the programmer must use to
call the subprogram. A subprogram may have more than one entry name; the par- /~"\

ticular entry name used depends on the computation to be performed. For exam- \~)

pIe, the sine and cosine subprogram has two entry names: SIN and COS. If the sine
is to be computed, entry name SIN is used; if the cosine is to be computed, entry
name COS is used.

Definition: This column gives a mathematical equation that represents the com­
putation. An alternate equation is given in those cases where there is another way
of representing the computation in mathematical notation. For example, the
square root can be represented either as: y = hor y = X l/2 •

Argument Numbers: This column gives the number of arguments that the
programmer must supply.

Argument Type: This column describes the type and length of each of the argu­
ment (s). INTEGER, REAL, COMPLEX, and Character represent the type; the notations
*4, *8, *16, *32, and *n represent the size of the argument in number of storage
locations. (The notation *n describes character data.)

r-----------IBM EXTENSION---------.......

Argument Range: This column gives the valid range for arguments. If an argu­
ment is not within this range, an error message is issued. For a description of the
error messages see Appendix C of this publication.

12 VS FORTRAN Library Reference

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

Function Value Type and Range: This column describes the type and range of
the function value returned by the subprogram. Type notation used is the same as
that used for the argument type. The range symbol 'Y = 1663 (I - 16-6) for regular
precision routines, 1663 (l - 16-14) for double-precision and 'Y = 1663 (l - 16-28)

for extended-precision.

I END OF IBM EXTENSION----------'

Error Code: This column gives the number of the message issued when an error
occurs. Appendix C contains descriptions of the error messages.

Throughout this publication, the following approximate values are represented by
218

• 'IT and 250
• 'IT:

218 • 'IT = .8235496645826428D + 06
250 • 'IT = .3537118876014220D + 16

Detailed information for the assembler language programmer is given in
Appendix A.

Mathematical and Character Subprograms 13

General Entry
Argl.1ment(s)

Function Name Definition No. Type 1 Range

Common ALOG y=log.x or 1 REAL ·4 ,,>0
and natural y=lnx
logarithm

ALOGI0 y=Ioglux 1 REAL ·4 x>O

DLOG y = log.x or 1 REAL ·8 ,,>0
y=ln lC

DLOGI0 y=}og .. .x 1 REAL ·8 ,,>0

CLOG .,=pv 1/,,,, I.,' 1 (:OMPLEX *8 7o?,-O+Oi ~ a""e·· , •• /

See Note 2

CDLOG y = PV log.. (7.) 1 COMPLEX ·16 7.#O+Oi
See N()te 2

QLOG y=logexor 1 REAL *16 x>O
y=lnx

QLOGI0 y=loglo x 1 REAL *16 x>O

CQLOG y = PV loSe (z) 1 COMPLEX *32 z¢O+Oi
See Note 2

Exponential EXP y=ex 1 REAL ·4 x ~ 174.673

DEXP y=ex 1 REAL *8 x ~ 174.673

CEXP y=ez 1 COMPLEX *8 XI ~ 174.673
See Note 3 Ix!!1 < (218 ...)

CDEXP y=ell 1 COMPLEX *16 Xl ~ 174.673
See Note 3 IX21 < (250

...)

QEXP y=ex 1 REAL *16 x iii: -180.218
x :iii 174.673

CQEXP
S:eeNote 3

1 COMPLEX *32 x1 :iii 174.673
xl:iii 2100

NOTES: (See end of figure.)

Figure 2. (Part 1 of 2) Logarithmic and Exponential Subprograms

14 VS FORTRAN Library Reference

Function Value
Typet and

Range·

REAL ·4
y~ -180.218
y~ 174.673

REAL ·4
y~ -78.268
y~75.859

REAL·8
y ~ -180.218 I
y~ 174.673

REAL ·8
y~ -78.268
y ~ 75.859

COMP!..E.."!: *8
YI ~ -180.218
YI ~ 175.021
-"~Y2~"

COMPLEX *16
YI ~ -180.218
Yl ~ 175.021
-"~Y2~ 11'

REAL *16
y iii: -180.218
y :iii 174.673

REAL *16
y iii: - 78.268
y :iii 175.859

COMPLEX *32
Yl iii: -180.218
Yl :iii 175.021
-'IT :iii Y2 :iii 'IT

REAL *4
O~y~"Y

REAL *8
O~y~"Y

COMPLEX *8
-"Y~Yl,Y2~"Y

COMPLEX ·16
-"Y~Yl,Y2~"Y

REAL *16
O:iiy:iiiy

COMPLEX *32
-y :iii Ylt Y2 :iii y

_.-

Error
Code

253

253

263

263

273

283

293

293

278

252

262

271,
272

281,
282

292

276,
277

r~.,\
~IJ

e; ,

0.""\' .. \ _ . i

(0
Argument (s) Function Value

General Entry Type1 and Error
Function Name Definition No. Typel Range Range" Code

Square root SQRT y= Vxor 1 REAL *4 ~~O REAL·4 251
y=x.'/1 o ~ Y ~-y'1S

DSQRT y= Vxor 1 REAL *8 x~O REAL *8 261
y=X'/:1 O~y~~

CSQRT y= Vzor 1 COMPLEX ·8 any COMPLEX COMPLEX ·8
y=Z'/2 arJ..'ument o ~ y, ~ 1.0987 (",1/1) -
See Note 3 IY21 ~ 1.0987 (",1/1)

• CDSQRT y= Vz or 1 COMPLEX *16 any COMPLEX COMPLEX·16
y=Z1/:I argument o ~ y, ~ l.0987 (",1/1) --
See Note 3 IY21 ~ l.0987 (",1/1)

QSQRT y = .J x or 1 REAL·16 x-=O REAL ·16 289
y = Xl/2 o =- Y =- ,,/1/2

CQSQRT y = .J z or 1 COMPLEX ·32 any COMPLEX COMPLEX·32
y = Zl/2 argument o =- Yl =- 1.0987 (,,/1/2)
See Note3

Y2 =- 1.0987 (yl/2)

NOTES:
1 REAL ·4, REAL ·8, and REAL ·16 arguments correspond to REAL DOUBLE PRECISION and EXTENDED PRECISION arguments,

respectively, in vs FORTRAN.
2 PV = principal value. The answer given (Yl + Y2i) is that one whose imaginary part <>2) lies between - 1r and + 1r • More

specifically: - 1r < Y2 =- 1r, unless Xl < 0 and Xz = - 0, in which case, Y2 = - 1r.

3 zis a complex number of the form Xl + Xz i.
4 "/ = 1663 (1 - 16-6) for regular precision routines, 1663 (I - 16-14) for double precision routines, and 1663 (I - 16-28)

for extended precision. ,.

Figure 2 (Part 2 of 2) Logarithmic and Exponential Subprograms

o
Mathematical and Character Subprograms 15

Argument(s) Function Value
General Entry Definition Type1 and Error
Function Name No. Type1 Range Range* Code 0,

Arcsine and ASIN See ARSIN, DARSIN or QARSIN
arccosine

ACOS See ARCOS, DARCOS or QARCOS

ARSIN y=arcsin (x) 1 REAL *4 Ixl ;a 1 REAL *4 (in radians) 257
11" 11"

--<yS-2 = -2

ARCOS y=arccos (x) 1 REAL *4 Ixl ;a 1 REAL *4 (in radians) 257
O;ay:li1l"

DASIN See DARSIN

DACOS See DARCOS

DARSIN y= arcsin (x) 1 REAL *8 Ixl ~ 1 REAL *8 (in radians) 267
11" 11"

- T:li y:liT

DARCOS y=arccos (x) 1 REAL *8 Ixl ~ 1 REAL *8 (in radians) 2JJ7
O~y:li1l"

QARSIN y=arcsin(x) 1 REAL·16 I x l:iii 1 REAL ·16 297

-fSi y:iif

QARCOS y==arcos(x) 1 REAL ·16 IxlSi 1 REAL·16 297
O:iiy:ii'7l'

Arctangent ATAN y=arctan (x) 1 REAL *4 any REAL argument REAL *4 (in radians) -
11" 11"

--<y<-2 = =2

ATAN2
y=arctan (::)

2 REAL *4 any REAL arguments REAL *4 (in radians) 255
(except 0, 0) -'1I"<y~1I"

DATAN y=arctan (x) 1 REAL *8 any REAL argument REAL *8 (in radians) --
_..!.s y s..!..

2 - - 2

DATAN2 (::) 2 REAL *8 any REAL arguments REAL *8 (in radians) 265
y=arctan (except 0, °) -1I"<y:li1l"

QATAN y ==arctan (x) 1 REAL ·16 any REAL REAL ·16 (in radians)
argument '71' 1T

--r:ii y SiT

t--

QATAN2 y=arctan(i;) 2 REAL·16 .anyREAL REAL ·16 (in radians) 295
arguments -'7I'<y:ii'7l'
(except 0,0)

NOTES: (See end of table.)

Figure 3. (Part 1 0/2) Trigonometric Subprograms.

q
16 VS FORTRAN Library Reference

Argument (s) Function Value
General Entry Definition Type1 and Error
Function Name No. Type 1 Range Range' Code

Sine and SIN y=sin (x) 1 REAL ·4 Ixl < (218
• .,...) REAL ·4 254

cosine (in radians) -1 ~ y ~ 1

COS y=cos (x) 1 REAL ·4 Ixl < (218
• .,...) REAL ·4 254

(in radians) -1 ~ y~ 1

DSIN y=sin (x) 1 REAL ·8 Ixl < (250
• .,...) REAL ·8 264

(in radians) -1 ~ y ~ 1

DeOS y=cos (x) 1 REAL *8 Ixl < (25
(1 • .,...) REAL ·8 264

(in radians) -1 &y& 1

eSIN y=sin (z) 1 COMPLEX ·8 IXli < (21R
• .,...) COMPLEX ·8 274,

See Note 2 (in radians) Ix~1 ~ 174.673 - "I ~ Yl, y, ~ "I 275

eeos y=cos (z) 1 COMPLEX • 8 Ix.\«2 IR .'II") COMPLEX ·8 274,
See Note 2 (in radians) lx~1 ~ 174.673 - "I ~ Yl, Y2 ~ "I 275

eDSIN y=sin (z) 1 COMPLEX ·16 Ix.J < (2,,0 • .,...) COMPLEX ·16 284,
See Note 2 (in radians) Ix~1 ~ 174.67.'3 -"I ~ Yl, Y2 ~ "I 285

eDeOS y=cos (z) 1 COMPLEX ·16 IXI! < (2:;0 • .,...) COMPLEX ·16 284,
See Note 2 (in radians) Ix~1 ~ 174.673 - "I ~ Yl, y, ~ "I 285

QSIN y=sin(x) 1 REAL *16 Ixl < 2100 REAL*16 294
On radians) -1 ;:;i y ;:;i 1

QCOS y=cos(x) 1 REAL*16 Ixl < 2100 REAL*16 294
(in radians) -1 ;:;i y ;:;i 1

CQSIN y=sin(z) 1 COMPLEX *32 I x 1< 2
100 COMPLEX *32 279,

See Note 2 On radians) x~ :it 174.673 -'Y =- YI' Y2 =- 'Y 280

CQCOS y=cos(z) 1 COMPLEX *32 I XII < 2100 COMPLEX *32 279,
See Note 2 (in radians) X2 ::a 174.673 -'Y ;:;i YI' Y2 =- 'Y 280

Tangent TAN y=tan (x) 1 REAL ·4 Ixl < (21~ • .,...) nEAL ·4 258,
and (in radians) See Note 4 -"I ~ Y ~ "I 259
cotangent

COTAN y=cotan (x) 1 REAL *4 \xl«2 Ik
• .,...) REAL ·4 258,

(in radians) See Note 4 -"I ~ Y ~ "I 259

DTAN y=tan (x) 1 REAL ·8 Ixl < (250
• .,...) REAL *8 268,

(in radians) See Note 4 -"I ~ Y ~ "I 269

DeOTA~ y=cotan (x) 1 REAL ·8 Ixl < (250 • .,...) REAL ·8 268,
(in radians) See Note 4 -"I ~ Y ~ "I 269

QTAN y=tan(x) 1 REAL *16 Ixl < 2100 REAL *16 298,
On radians) See Note 3 -y :iii y ;:;i y 299

QCOTAN y =cotan (x) 1 REAL*16 Ixl< 2
100 REAL*16 298,

On radians) X iii: 16 - 63 -'Y ;:;i Y ;:;i y 299
See Note 3

NOTES:
I REAL *4, REAL *8, and REAL *16 correspond to REAL. DOUBLE and EXTENDED PRECISION arguments, respectively, in vs FORTRAN.
2 zis a complex number ofthe form Xl + Xl
3 X may not be such that one can find a singularity within 8 units of the last digit value of the noating-point representation of x.

Singularities are ± (2n + 1)f, n = 0, 1, 2, ... for tangent, and ± n 11', n = 0, 1, 2, ... for cotangent.
4 The argument for the cotangent functions may not approach a multiple of 11'; the argument for the tangent functions may not

approach an odd multiple of 7T12.
5 'Y = 1663 (I - 16-6) for regular precision routines, 1663 (I - 16- 14) for double-precision routines and 1663 (1 - 16- 28

) for
extended precision.

o Figure 3. (Part 2 oj 2) Trigonometric Subprograms.

Mathematical and Character Subprograms 17

Argument (s) Function Value
General Entry De6nition Type1 and Error

Function Name No. Typel Range Ran.,- Code

Hyperbolic SINH eX - e-X 1 REAL *4 lxl < 175.366 REAL -4 256
sine and y= 2 -~ ~ y ~ 'Y
cosine

COSH y=
eX + e-X 1 REAL *4 Ixl < 175.366 REAL-4 256

2 l~y~'Y

DSINH eX _ e-x 1 REAL *8 Ixl < 175.366 REAL-8 266
y=

2 -'Y ~ Y ~ 'Y

DCOSH eX + e-X 1 REAL *8 Ixl < 175.366 REAL-8 266 y=
2 l~y~'Y

QSINH y ~x - ~-x 1 REAL *16 Ixl=-175.366 REAL *16 296
~ -7·'·'1

QCOSH y ~x + e-X 1 REAL *16 Ix l:iii 175.366 REAL *16 296
~ l=-y=-y

Hyperbolic eX - e-X 1 REAL *4 any REAL argument REAL *4 --
tangp.nt TANH y= eX + e-X -1 ~ y ~ 1

DTANH eX - e-X 1 REAL *8 any REAL argument REAL *8 --
y= eX + e-X -1 ~ y ~ 1

QTANH y ~x - C-x 1 REAL *16 any REAL REAL *16 -ex =F e-x argument -1=-y=-1

NOTES:
I REAL *4, REAL *8, and REAL *16 arguments correspond to REAL, DOUBLE and EXTENDED PRECISION arguments, respectively,

in VS FORTRAN.

2 Y = 1668 (t - 16-6) for regular precision routines, 1668 (t - 16-16) for double-precision routines, and 1668 (t - 16-28
)

for extended precision.

Figure 4. Hyperbolic Function Subprograms

..

()
,)

18 VS FORTRAN Library Reference

General Argument (s) Function Valae
Enor Entry ~and

Function Name Definition No. Type! Range Bange- Code

Absolute CABS y=lzl= (X12 + Xt2)111 1 COMPLEX -8 any COMPLEX REAL -4
value argument O~Y1~'Y

See Note 2 y. = 0 -

CDABS y=lzl= (X12 + x,2)1f.! 1 COMPLEX -16 any COMPLEX REAL ·8
argument O~Y1~'Y
See Note 2 y. = 0 -

CQABS Y = /zl = (XII + XII)1/2 1 COMPLEX *32 any COMPLEX REAL *16
argument o :51 Yl :51 ."
See Note 1 Y2 = 0 --

lABS Y=lxl 1 INTEGER *4 any INTEGER INTEGER *4
argument O:5ly:5I." --

ASS Y = Ixl 1 REAL *4 any REAL REAL *4
argument O:5ly:5I." -

DABS Y =Ixi 1 REAL *8 any REAL REAL *8
argument 0:51 Yl :51 ." --

QABS y =Ixl 1 REAL *16 any REAL REAL *16
argument o :51 Yl :51 ." --

Error ERF 2 is II 1 REAL -" any REAL REAL *4
function y= "'-; 0

e-udu argument -1 ~y ~ 1 -

ERFC 2 i~ 2
1 REAL-" any REAL REAL *4

y=--= e-udu argument O~y~2
'" 11' It

-
y=1 -erf (x)

DERF 2 [S 2 1 REAL -8 any REAL REAL *8
y=-= e-udu argument -1~y~l

'" 11' 0
-

DERFC 2 f~ 2
1 REAL -8 any REAL REAL *8

y=-= e-U du argument O~y~2
"'." It -

y=l -erf (x)

QERF
2jX

1 REAL *16 any REAL REAL *16
y = 1r e- u2 du argument -1=-y=-1

0 --

QERFC
2Jx 1 REAL *16 any REAL REAL *16

y = 1r e-u2 du argument 0=-y=-2
X --Y = 1 - erf (x)

NOTES: (See end of figure.)

Figure S. (Part 1 oj 3) Miscellaneous Mathematical Subprograms

c
Mathematical and Character Subprograms 19

General Entry Argument (s) Function Value
Error Type'and

Function Name Definition No. Type1 Range Range' Code

Gamma and GAMMA
y= Loo u·-1 e-U du

I REAL *4 x> 2-2112 and REAL·"
log-gamma x < 57.5744 0.88560 ~ y ;;a ~ 290

ALGAMA y = log. r (x) or I REAL *4 X> 0 and REAL·"
y=log. f.oo U X

- 1 e-U du
x < 4.2913 • 1073 -0.12149 ~ y ~ "'I 291

DGAMMA
y= f.oo uX

-
1 e-U du

] REAL *8 x> 2-252 and REAL ·8
x < 57.5744 0.88560 ~ y ~ "'I 300

DLGAMA y=log. r (x) or I REAL *8 x> o and REAL ·8
"00 x < 4.2913 • lOIS -0.12149 ~ y ~ 'Y

y=loge Jo u·- 1 e-U du 301

LGAMMA y=log. r (x) or I REAL *4 x> 2-252 and REAL·"

y=)oge f.00 u·- 1 e-u du
x < 57.5744 0.88560 ~ y ;;a "'I 290

Maximum MAXO y=max (Xl,. ", Xn) ~2 INTEGER *4 any INTEGER INTEGER *4
and arguments -
minimum
values

~HNO y = min (Xl , •.. , xn) ~2 INTEGER *4 any INTEGER INTEGER *4
arguments -

AMAXO y=max (Xl, ... , Xa) ~2 INTEGER *4 any INTEGER REAL *4
arguments -

AMINO y=minO(xI, .. " Xa) ~2 INTEGER *4 any INTEGER REAL ·4
arguments --

MAXI y=max (Xl, ... , Xn) ~2 REAL *4 any REAL INTEGER *4
arguments -

MINI y = min (Xl , ... , Xn) ~2 REAL *4 any REAL INTEGER *4
arguments -

AMAXI y=max (Xl, ... , Xn) ~2 REAL *4 any REAL REAL ·4
arguments --

AMINI y=min (Xl, .. " Xn) ~2 REAL *4 any REAL REAL ·4
arguments -

DMAXI y=max (Xl, ... , Xn) ~2 REAL *8 any REAL REAL *8
arguments -

DMINI y=min (Xl, ... , Xn) E:;2 REAL *8 any REAL REAL *8
arguments -

NOTES: (See end of figure.)

Figure 5. (Part 2 0/3) Miscellaneous Mathematical Subprograms ()
o)

20 VS FORTRAN Library Reference

General Entry Argument (s) Function Value
Error Type1and

Function Name Definition No. Typel Range Range' Code

Maximum MAX y=max (Xl, ... , Xa) ~2 INTEGER *4 any INTEGER INTEGER *4

and arguments --
minimum
values

MiN y=min (Xl, ... , x,,) ~2 (continued) INTEGER *4 any INTEGER INTEGER *4
arguments --

QMAX1 y=max (x1o ••• , Xn) ii:2 REAL*16 any REAL REAL *16
argument -

QMINI y=min (Xl> ••• , xn) ii:2 REAL *16 any REAL REAL*16
argument -

Modular MOD y=Xl (modulo X2) 2 INTEGER X2 oF 0 INTEGER *4
arithmetic See Note 3 See Note 4 -

AMOD y=Xl (modulo x~) 2 REAL *4 X2 oF 0 IlEAL *4
See Note 3 See Note 4 -

DMOD y=Xl (modulo X2) 2 REAL *8 X2 oF 0 REAL *8
See Note 3 See Note 4 --

QMOD y=XI (modulo x) 2 REAL *16 x2 ¢0 REAL *16
See Note 3 See Note 4 --

Truncation AINT y = (sign of x)-n 1 REAL *4 any IlEAL REAL *4
where n = L I x I J argument -
See Note 6

INT y = (sign of x)-n 1 REAL *4 any IlEAL INTEGER *4
where n = II x I J argument -
See Note 6

~

IDINf y = (sign of x) en 1 REAL *8 any REAL INTEGER *4
where n = L I x I J argument -
See Note 6

NOTES:
1 REAL *4, REAL *8, and REAL *16 arguments correspond to REAL. DOUBLE and EXTENDED PRECISION arguments, respectively, in

VSFORTRAN.
2 Floating-point overflow can occur.

3 The expression Xl (modulo x2) is defined as Xl - [~~] - x2, where the brackets indicate that an integer is used. The

largest integer whose magnitude does not exceed the magnitude of ~1 is used. The sign ofthe integer is the same as the sign
of ~~ . 2

4 IfX2 = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an
interruption occurs. (A detailed description of the interruption procedure is given in Appendix C.)

& " = 1683 (1 - 16-8) for regular precision routines, 1663 (1 - 16-14) for double-precision routines and 1683 (t - 16-28) for
extended precision routines.
For example, n = I m I where m is the greatest integer satisfying the relationship 1 mi=-l x I·

Figure S. (Part 3 0/3) Miscellaneous Mathematical Subprograms

'C' "'\

V

Mathematical and Character Subprograms 21

General Entry Defmition
Function Name

Convert ICHAR Conversion to
character integer
to integer

Convert CHAR Conversion
integer to to character
character

Length of LEN Length of
character character
item entity

Index of INDEX Location of
characte' substring a2
item in string al

Alphamerically LOE a1 ;a!= a2
greater
than or equal

Alphamerically LOT a1 >a2
greater
than

Alphamerically LLE a1 ~a2
less than
or equal

Alphamerically LLT a1 <a2
less than

Figure 6. Character Manipulation Routines

22 VS FORTRAN Library Reference

Argument(s)

No. Type Function

1 Character Integer

1 Integer Character

1 Character Integer

2 Character Integer

2 Character Logical

2 Character Logical

2 Character Logical

2 Character Logical

Function Value
Type and

Range

INTEGER *4

INTEGER *4

INTEGER *4

INTEGER *4

LOGICAL *4

LOGICAL *4

LOGICAL *4

LOGICAL *4

Error
Code

-

188

-

189,
190

191,
192

191,
192

191,
192

191,
192

~"
\~"~jJ ,

\.0

o

Impl!citly Called Subprograms

The implicitly called subprograms are executed' as a result of certain notations
appearing in a VS FORTRAN source statement. When a number is raised to a power
or when a multiplication or division of complex numbers is to be performed, the vs
FORTRAN compiler generates the instructions necessary to call the appropriate
subprogram. For example, if the following source statement appears in a source
module,

ANS = BASE**EXPON

where BASE and EXPON are REAL *4 variables, the vs FORTRAN compiler generates a
reference to FRXPR#, the entry name for a subprogram that raises a real number
to a real power.

The implicitly called subprograms in the vs FORTRAN library are described in
Figure 6. The column headed "Implicit Function Reference" gives a representa­
tion of a source statement that might appear in a VS FORTRAN source module and
cause the subprogram to be called. The rest of the column headings in Figure 6
have the same meaning as those used with the explicitly called subprograms.
Algorithms for implicitly called subprograms are given· in the chapter
"Algorithms." Additional information for assembler language programmers is
given in Appendix A.

For subprograms that involve exponentiation, the action taken within a
subprogram depends upon the types of the base and exponent used. Figures 7
through 11 show the result of an exponentiation performed with the different com­
binations and values of base and exponent. In these figures, I and J are integers; A
and B are real numbers; C is a complex number.

Mathematical and Character Subprograms 23

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-08S2

General Entryl Implicit Argument(s) Function Error Function Value
Function Name References No. Type 3

Type 3 Code

Multiply and CDMPY# y = Zl* z. 2 COMPLEX *16 COMPLEX *16
divide complex -
numbers

CDDVD# y = Zl/Z. 2 COMPLEX *16 COMPLEX *16
--

CMPY# y = Zl* Z2 2 COMPLEX *S COMPLEX *S
-

CDVD# y = zdZl 2 COMPLEX *S COMPLEX *S
-

CQMPY# Y = Zt* Z2 2 COMPLEX *32 COMPLEX *32
--

CQDVD# Y = Z/Z2 2 COMPLEX *32 COMPLEX *32
--

Compare of CXMPR# Y = z~ compop z2 2 COMPLEX LOGICAL*4
Complex (See (See ote 5) (of all --
numbers Note 4) lengths)

Raise an integer FIXPI# y = i * * j 2 i = INTEGER *4 INTEGER *4
to an integer j = INTEGER *4 241
power

Raise a real FRXPI# y = a* *j 2 a = REAL *4 REAL *4
number to an j = INTEGER *4 242
integer power

FDXPI# y = a* *j 2 a = REAL *S REAL *S
j = INTEGER *4 243

FQXPI# y = a**j 2 a = REAL *16 REAL*16 248 j = INTEGER *4

Raise a real FRXPR# y = a**b 2 a = REAL *4 REAL *4
number to a b = REAL *4 244
real power

FDXPD# y = a··b 2 a = REAL *S REAL*S
b = REALS* 245

FQXPQ# y = a**b 2 a = REAL *16 REAL *16 249,
b = REAL *16 250

·Raise 2 to a FQXP2# y = 2**b 1 b = REAL *16 REAL *16
real power 260

Raise a complex FCDXI# y = z*·j 2 Z = COMPLEX *16 COMPLEX *16
number to an j = INTEGER *4 247
integer power

FCXPI# y = z·*j 2 Z = COMPLEX *S COMPLEX *S
j = INTEGER *4 246

FCQXI# y = z**j 2 Z = COMPLEX *32 COMPLEX *32
270 j = INTEGER *4

Figure 7. Implicitly Called Mathematical Subprograms (part 1 of 2)

24 VS FORTRAN Library Reference

~'"
1'LJl)

o

o

o

Page of 5C26-3989 as updated 03 June 1981 by TNl 5N26-0852

NOTES:
1. This name must be used in an assembler language program to call the subprogram; the character # is a part ofthe name

and must be included.
2. This is only a representation of a FORTRAN statement; it is not the only way the subprogram may be called.
3. REAL *4, REAL *8, and REAL *16 arguments correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments,

respectively, in vs FORTRAN.
4. CXMPR, is an entry name in the library module IFYCCMPR. which is also used for a compare of character arguments.
S. compop is one of the following relational operators: equal or not equal.

Figure 7. Implicitly Called Mathematical Subprograms (part 2 of 2)

Entry Implicit Argument (s) Function Error
Function Value. Code Name

Reference No. Type Type

CCMPR# y = Xl compop X2 6 Character Any character 193
(See Note) argument 194

CMOVE# y=X 4 Character Any character 195
argument 196

197

CNCAT# y = Xl II X2 ... II xn -=2 Character Any character 198
argument 199

NOTE: Where compop is one of the following relational operators:
equal
not equal
greater than
less than
greater than or equal
less than or equal

Figure 8. Implicitly Called Character Subprograms

Mathematical and Character Subprograms 25

'Ba~e (I)
Exponent (J)

~~---

, J ..> 0 J=O J<O

1>1 Compute the Function Function
function value value = 1 value = 0

1 = 1 Compute the Function Function
function value value = 1 value = 1

1=0 Function Error message Error message
value = 0 241 241

1 = -1 Compute the Function If J is an odd
function value value = 1 number, function

value = -1.
If J is an even
number, function
value = 1.

1<-1 Compute the Function Function
function value value = 1 value = 0

Figure 9. Exponentiation with Integer Base and Exponent

Base (A)
Exponent (J)

J>O J=O J<O

A>O Compute the Function Compute the
function value value = 1 function value

A=O Function Error message Error message
value = 0 242 or 242 or

243 243

A<O Compute the Function Compute the
function value value = 1 function value

Figure 10. Exponentiation with Real Base and Integer Exponent

26 VS FORTRAN Library Reference

Base (A)
Exponent (B)

B>O B=O B<O

A>O Compute the Function Compute the
function value value = 1 function value

A=O Function Error message Error message
value = 0 244 or 244 or

245 245

A<O Error message Function Error message
253 or value = 1 253 or
263 263

Figure 10.1. Exponentiation with Real Base and Exponent

Base (C) Exponent (J)
C=P+Qi J>O J=O J<O

P > o and Compute the Function Compute the
Q>O function value value=l + Oi function value

P > o and Compute the Function Compute the
Q=O function value value=l + Oi function value

P > o and Compute the Function Compute the
Q<O function value value=l + Oi function value

P = o and Compute the Function Compute the
Q>O function value value=1 + Oi function value

P = o and Function value Error message Error message
Q =0 0+ Oi 246 or 246 or

247 247

P = Oand Compute the Function Compute the
Q<O function value value=l + Oi function value

P < o and Compute the Function Compute the
Q>O function value value=l + Oi function value

P < Oand Compute the Function Compute the
Q=O function value value=l + Oi function value

P <Oand Compute the Function Compute the
Q<O function value value=l + Oi function value

Figure 10.2. Exponentiation with Complex Base and Integer
Exponent

o

0)

o

Service Subroutine Subprograms

The service subprograms supplied in the vs FORTRAN library are divided into two
groups: One group tests for mathematical exceptions and the other groups perform
utility functions. Service subprograms are called by the appropriate entry name in a
VS FORTRAN language CALL statement.

Mathem~tical Exception Test Subprograms

These subprograms test the status of indicators and may return a value to the call­
ing program. In the following descriptions of the subprograms, j represents an
integer value.

Overflow Indicator Subprogram
Entry Name: OVERFL

This subprogram tests for an exponent overflow or underflow exception and
returns a value that indicates the existing condition. After testing, the overflow
indicator is turned ofT. This subprogram is called by using the entry name OVERFL in
a CALL statement. The source language statement is:

CALL OVERFL (j)

The value of j is returned by the subprogram to indicate the following:

1 = floating-point overflow condition has occurred last.
2 = no overflow or underflow condition has occurred.
3 = a floating-point underflow condition has occurred last.

Note: A value for j of 1 or 3 indicates that condition was the last one to occur. An
overflow followed by an underflow in the same statement would be recorded as
condition 3 - "underflow occurred last."

Divide Check Subprogram
Entry Name: DVCHK

This subprogram tests for a divide-check exception and returns a value that indi­
cates the existing condition. After testing, the divide-check indicator is turned ofT.
This subprogram is called by using entry name DVCHK in a CALL statement. The
source language statement is:

CALL DVCHK (j)

where:
j is set to one if the divide-check indicator was on~ or to 2 if the indicator was ofT.

Service Subroutine Subprograms 27

Uti'ity Subprograms
The utility subprograms perform two operations for the FORTRAN programmer:
they either terminate execution (EXIT) or dump a specified area of storage (DUMPI
PDUMP).
End Execution Subprogram
Entry Name: EXIT

The end execution subprogram terminates execution of the load module and
returns control to the operating system. (Except that no operator message is pro­
duced, EXIT performs a function similar to that performed by the STOP statement.)
This subprogram is called by using the entry name EXIT in a CALL statement. The
source language statement is:

CALL EXIT

5iorage Dump Subprogram
Entry Names: DUMP /PDUMP, CDUMP /CPDUMP

These subprograms dump character data.
Entry names DUMP/PDUMP dump a specified area of storage. Either of two entry

names (DUMP or PDUMP) can be used to call the subprogram. The entry name is
followed by the limits of the area to be dumped and the format specification. The
entry name used in the CALL statement depends upon the nature of the dump to be
taken.

If execution of the load module is to be terminated after the dump is taken, entry
name DUMP is used. The source language statement is:
where:

CALL DUMP (01, bhJi.·.·. an' bn./n>

Q and b are variables that indicate the limits of storage to be dumped (either Q or b
may represent the upper or lower limits of storage).

f indicates the dump format and may be one of the integers given in Figure 11.
A sample printout for each format is given in Appendix E.

VS FORTRAN

o specifies hexadecimal
1 specifies LOGICAL *1
2 specifies LOGICAL *4
3 specifies INTEGER *2
4 specifies INTEGER *4
5 specifies REAL *4
6 specifies REAL *8
7 specifies COMPLEX *8
8 specifies COMPLEX *16
9 specifies literal

10 specifies REAL *16
11 specifies COMPLEX *32

Figure 11. DUMP/PDUMP Format Specifications

If execution is to be resumed after the dump is taken, entry name PDUMP is
used. The source language statement is:

CALL PDUMP (010 ht. Ji, ... , On. bn./n>

where Q. b, and! have the same meaning as for DUMP.

28 VS FORTRAN Library Reference

o

'\

o
.)

o

Programming Considerations

A load module or phase may occupy a different area of storage each time it is
executed. To ensure that the appropriate areas of storage are dumped, the follow­
ing conventions should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in COMMON, B is a REAL number, and
T ABLE is an array of 20 elements. The following call to the storate dump
subprogram could be used to dump TABLE and B in the hexadecimal format and
terminate execution after the dump is taken:

CALL DUMP (TABLE(l), TABLE(20),O,B,B,O)

If an area of storage in COMMON is to be dumped at the same time as an area of
storage not in COMMON, the arguments for the area in COMMON should be given
separately. For example, the following call to the storage dump subprogram could
be used to dump the variables A and B in REAL *8 format without terminating

. execution:

CALL PDUMP (A,A,6,B,B,6)

If variables not in COMMON are to be dumped, each variable must be listed
separately in the argument list. For example, if R, P, and Q are defined implicitly in
the program, the statement

CALL PDUMP (R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables in REAL *4 format. If the statement

CALL PDUMP (R,Q,5)

is used, all main storage between Rand Q is dumped, which mayor may not
include P, and may include other variables.

If an array and a variable are passed to a subroutine as arguments, the arguments
in the call to the storage dump subprogram in the subroutine should specify the
parameters used in the definition of the subroutine. For example, if the subroutine
SUBI is defined as:

SUBROUTINE SUBI (C, Y)
DIMENSION X (0)

and to call to SUBI within the source module is:

DIMENSION A (IO)

CALL SUBI (A, B)

then the following statement should be used in SUBI to dump the variables in hex­
adecimal format without terminating execution:

CALL PDUMP (XO), X(lO), 0, Y, Y, 0)

If the statement

CALL PDUMP (XO), Y, 0)

-~-Service Subroutine Subprograms 29

30 VS FORTRAN Library -Reference

is used, all storage between (1) and y is dumped because of the method of transmit-
ting arguments. ,~,

When hexadecimal (0) or literal (9) is specified, the programmer should realize \"J
I

that the upper limit is assumed to be of length 4.

Sto ... Dump Subpl'OfllClm
Entty Names: CDUMP/CPDUMP

This subprogram dumps a specified area of storage, which contains character data
only. Either of two entry names (CDUMP or CPDUMP) can be used to call the
subprogram. The entry name is followed by the limits of the area to be dumped.
The entry name used in the CALL statement depends upon the nature of the dump
to be taken.

If execution of the load module is to be terminated after the dump is taken; entry
name CDUMP is used. The source language statement is:

CALLCDUMP (01' bt, .. ·, an, bn)

where:
a and b are variables that indicate the limits of storage to be dumped.

A sample printout for each format is given in Appendix E.

If execution is to be resumed after the dump is taken, entry name CPDUMP is used.
The source language statement is:

CALL CPDUMP (01) bIt ... , an, bn)

. where a, and b, have the same meaning as for CDUMP.

If C1 is a character variable of length 8 and ~ is a character array of dimension 10
and length 15 then the statement:

CALL CPDUMP (CI , '2 (1), '2 (10)

will dump the variable C1 and all the array elements of array ~ in character format
and continue execution.

PrOflrammingConsiderafions

A load module may occupy a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped, the following conventions
should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in COMMON, B is a REAL number, and
TABLE is an array of 20 elements. The following call to the storate dump
subprogram could be used to dump TABLE and B in the hexadecimal format and
terminate execution after the dump is taken:

CALL CDUMP (01' bt •... , an' bn)

If an area of storage in COMMON is to be dumped at the same time as an area of
storage not in COMMON, the arguments for the area in COMMON should be given
separately. For example, the following call to the storage dump subprogram could
be used to dump the variables A and B in REAL·8 format without terminating
execution:

CALL PDUMP (A,A,6,B,B,6)

o

;0

o

Algorithms

This chapter contains information about the method by which each mathematical
function is computed. The information for explicitly called subprograms is arranged
alphabetically according to the specific function of each subprogram (i.e., absolute
value, exponentiation, logarithmic, etc.). The individual entry names associated
with each subprogram are arranged logically from simple to complex within each
function. For example, the heading "Square Root Subprograms" will have algo­
rithms arranged in the following order by entry name: SQRT, DSQRT, CSQRT, CDSQRT.

Information for the implicity called subprograms is arranged alphabetically
according to function, and alphabetically by entry name within that function. For
example, the heading "Complex Multiply and Divide Subprograms" will have
algorithms arranged in the following order: CDDVD# I CDMPY #, CDVD# I CMPY #.

The information for each subprogram is divided into two parts. The first part
describes the algorithm used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its m~or computational steps;
the formulas necessary for each step are supplied. For the sake of brevity, the
needed constants are normally given only symbolically. (The actual values can be
found in the assembly listing of the subprograms.) Some of the formulas are widely
known; those that are not so widely known are derived from more common for­
mulas. The process leading from the common formula to the computational for­
.mula is sketched in enough detail so that the derivation can be reconstructed by
anyone who has an understanding of college mathematics and access to the com­
mon texts on numerical analysis. Many approximations were derived by the so­
called "minimax" methods. The approximation sought by these methods can be
characterized as follows. Given a function j(x), an interval I, the form of the
approximation (such as the rational form with specified degrees), and the type of
error to be minimized (such as the relative error), there is normally a unique
approximation to j(x) whose maximum error over I is the smallest among all
possible approximations of the given form. Details of the theory and the various
methods of deriving such approximation are provided in standard reference. The
accuracy figures cited in the algorithm sections are theoretical, and they do not
take round-ofT errors into account. Minor programming techniques used to
minimize round-ofT errors are not necessarily described here.

The accuracy of an answer provided by these algorithms is influenced by two fac­
tors: the performance of the subprogram (see the chapter, H Accuracy Statistics")
and the accuracy of the argument. The effect of an argument error upon the
accuracy' of an answer depends solely upon the mathematical function involved
and not upon the particular coding used in the subprogram.

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted
data. This guide (expressed as a simple formula where possible) is intended to
assist users in assessing the effect of an argument error.

Algorithms 31

The following symbols are used in this chapter to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL

g(x)
f(x)

8
E

A

EXPLANATION

The result given by the subprogram.
The correct result.

The relative error of the result If(X) - g(X)1
t(x) given by the subprogram.

The relative error of the argument.
I f(x) - g(x) I The absolute error of the result

given by the subprogram.
The absolute error of the argument.

The notation used for the continued fractions complies with the specifications
set by the National Bureau of Standards. l

Although it is not specifically stated below for each subroutine, the algorithms is
the chapter were programmed to conform to the following standards governing
floating-point overflow/underflow.

• Intermediate underflow and overflows are not permitted to occur. This pre­
vents the printing of irrelevant messages.

• Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to CDABS and CABS.

• When the magnitude of the answer is less than 16 -6\ zero is given as the
answer. If the floating-point underflow exception mask is on at the time, the
u,nderflow message will be printed.

Control of Program Exceptions in Mathematical Fu~dions

The VS FORTRAN mathematical functions have been coded with careful control of
error situations. A result is provided whenever the answer is within the range
representable in the floating-point form. In order to be consistent with vs
FORTRAN control of exponent overflow/underflow exceptions, the following types
of conditions are recognized and handled separately.

When the magnitude of the function value is too large to be represented in the
floating-point form, the condition is called a terminal overflow; when the mag­
nitude is too small to be represented, a terminal underflow. On the other hand, if
the function value is representable, but if execution of the chosen algorithm causes
an overflow or underflow in the process, this condition is called an intermediate
overflow or underflow.

Function subroutines in the vs FORTRAN library have been coded to observe the
!ollowing rules for these conditions:

1. Algorithms which can cause an intermediate overflow have been avoided.
Therefore an intermediate overflow should occur only rarely during the execu­
tion of a function subroutine of the library.

2. Intermediate underflows are generally detected and not allowed to cause an
interrupt. In other words, spurious underflow signals are not allowed to be
given. Computation of the function value is successfully carried out.

3. Terminal overflow conditions are screened out by the subroutine. The argu­
ment is considered out of range for computation and an error diagnostic is
given.

1 For more information, see Milton Abramowitz and Irene A. Stegun (editors), Handbook 0/ Mathematical Functions. Applied

Mathematics Series-55 (National Bureau of Standards, Washington, D.C., 1965).

32 VS FORTRAN Library Reference

o

q

o

o

4. Terminal underflow conditions are handled by forcing a floating-point under­
flow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC, and DERFC.

For implicit arithmetic subroutines, these rules do not apply. In this case, both
terminal overflows and terminal under(lows will cause respective floating-point
exceptions. In addition, in the case of complex arithmetic (implicit multiply and
divide), premature overflow/underflow is possible when the result of arithmetic is
very close to an overflow or underflow condition.

Algorithms 33

•

34 VS FORTRAN Library Reference

Explicitly Called Subprograms

Absolute Value Subprograms

ABS/IABS

Algorit"m

If x < 0, I xl = -x. Otherwise I xl = x.

CABS/CDABS

Algorit"m

1. Write Ix + iyl = a + ib.
2. Let VI = max (lxi, lui)' and V2 = min (Ixl. lui).
3. If characteristic~ ~{~~ ~nd V2 differ by 7 I (l:rf~; CDABS) or more, or if V2 = 0,

then a = VI, b = O.
4. Otherwise,

a = 2 • V,· ~ '1d '14 G: r. and b = O.

If the answer is greater than 1663, the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram (SQRT or DSQRT) •

CQABS

Algorithm

1. Write I x + {y I = a + ib.
2. Let VI = max (I x I , I y I), and V2 = min (I x I , I y I).

Let 16P - 1 :;; VI < 16P•

3. If characteristics of VI and V2 differ by 15 or more, or if V2 = 0, then a = Vh

b = O.
4. Otherwise, let WI = 161- P • Vh and W2 = 161

- P • V2'

5. Compute W = .J W1
2 + W22. Then a = 16P - 1 W and b = 0.

6. The scaling factor 16P -1 is easy to construct. Scaling is carried out by short pre­
cision divisions, and the restoration is carried out by extended precision
multiplication.

ERect of an Argument Error

E - ~ 8(x) + ~ 8(y) where 8(x) and 8(y) are relative erros inherent in

the real part and the imaginary part of the argument, respectively.

a~.
~

fO"'·! ' I,,'

o

Arcsine and Arccosine Subprograms

ARSINI ARCOS

Algorithm

1. If 0 <x< ¥l, then compute arcsin (x) by a continued fraction of the form:
arcsin (x) ~ x + x3• F where

d1 d2
F = ~~-~- -~--~

(X2 + cd + (X2 + C2) •

The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 < X2 < 1/4) for
arcsin (x) I x of the following form:

arcsin(x) [al + a2x2]
x ~ ao + x2

• bo + blx2 + r' .

Minimax was taken under the constraint that ao = 1 exactly. The relative error
of this approximation is less than 2-2H.3 •

If 0 < x < ¥l, arccos (x) is computed as:

arccos(x) = ; - arcsin(x).

2. If 1,2 < x< 1, then compute arccos (x) essentially as:

arccos (x) = 2 • arcsin (~ 1 ; x).

This case is now reduced to the first case because within these limits,

0< ~l; x <'h.

This computation uses the real square root subprogram (SQRT).

If 1,2 < x < 1, arcsin(x) is computed as:

arcsin(x) = ; - arccos(x).

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round ofT errors.

3. If - 1 < x < 0, then arcsin (x) = - arcsin Ixl

and arccos{x) = 'If' - arccos Ixl.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

tJ,.
E ~ V 1 _ x2' For small values of x, E ~ A. Toward the limits (± 1) of the

range, a small A causes a substantial error in the answer. For the arcsine, f - 3
if the value of x is small.

ASlN/ACOS

Algorithm

If X is R*4, then ASIN(x) = ARSIN(x) and ACOS(x) = ARCOS(x)
If x is R*S, then DASIN(x) = DARSIN(x) and DACOS(x) = DARCOS(x)
If x is R*16, then QASIN(x) = QARSIN(x) and QACOS(x) = QARCOS(x)

Algorithms 3S

DARSIN/DARCOS

Algorithm

1. If 0 < x < 112, then compute arcsin (x) by a continued fraction of the form:

arcsin (x) ::::: x + x3 • F where
~ d2 ~ d4

F = Cl + (.) ()) X2 + C2 + x2 + Ca + (X2 + C4 + (x2 + CIS)'

The relative error of this approximation is less than 2-57,2.

The' coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 <x2 < 1/4) for
arcsin (x) / x of the following form:

arcsin (x) __ :! r at + a2x2 + aax4 + a4x6 + a5x81
x = au + x L bo + blX~ + b2x4 + b3x6 + x8 J'

Minimax was taken under the constraint that ao = 1 exactly.
If 0 <x< 112, arccos (x) is computed as:

arccos (x) = ; - arcsin (x).

2. If 112 < x < 1, then compute arccos (x) essentially as:

. arccos(x) = 2' arcsin (~l ; x).
This case is now reduced to the first case because within these limits,

0< }1-X<lL = ~ 2 = 7Z.

This computation uses the real square ront subprogram (DSQRT).

If 112 < x < 1, arcsin(x) is computed as:

arcsin(x) = ; - arccos(x).

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round-off errors.

3. If - 1 <x < 0, then arcsin(x) = - arcsin lxi, and arccos(x) = '7f' - arccos Ixl.
This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A
E I"-' VI _ x:! . For small values of x, E I"-' A. Toward the limits (± 1) of the

range a small A causes a substantial error in the answer. For the arcsine, (I"-' 8 if
the value of x is small.

DASIN/DACOS

These names are aliases for DARSIN and DARCOS.

36 VS FORTRAN Library Reference

o

q

o

,.0

QARSIN/QARCOS

Algorithm

1. If 0 :a X s; 1, then compute arcsin (x) by a minimax rational approximation of

the following form:
w = 2x 2, and .]

. f.) + [ao + w[at + ~ w + ... + -!1 WI]
arcsm \x == x x· w bo + hI W • • • + h8 + iifo

Coefficients { ai' bi } were determined by a minimax technique and the relative
error of this approximation is less than 16-28 • The order of evaluating this
rational form was so chosen as to reduce round-off errors.

1 f. .
If 0:;; x:iii T, arccos {x) is computed as:

arccos (x) = ; - arcsin (x).

2. If 1 < x:iii 1, then compute arccos (x) essentially as:

arccos (x) = 2 • arcsin (J. 1 ;- x)

Or more specifically, W = 1 - x, Z = V 2 (1 - x), and
arccos (x) == Z + Z W [ao + the above rational form)'

This case is now reduced to the first case because, within these limits,

0:;; Jl ;- x :;;. ~ .
This computation uses the square root subroutine (QSQRT).

If 1 < x ~ 1, arcsin (x) is computed as:

arcsin (x) = ; - arccos (x).

3. If - 1 s; x < 0, then arcsin (x) = -arcsin I x I
and arccos (x) = '1T - arccos I x I .

This reduces these cases to one of the two positive cases.

ERect of an Argument Error

4
E - "1 _ Xl . For a small value of x, E -·4. Towards the limits (± 1) of the

range, a small 4 causes a substantial error in the answer. For arcsin, E - 8 if the
value of x is small.

Algorithms 37

Arctangent Suhprograms

ATAN

A',orltltm
1. Reduce the computation of arctan (x) to the case 0 < x < 1, by using

arctan (- x) = - arctan (x), or

arctan (I!I) = ; - arctan Ixl·
2. If necessary, reduce the computation further to the case Ixl < tan 15° by using

arctan (xl = 30° + arctan ("I:~ x,,-; 1)-

r30X -l The value of x + y 3 < tan 15° if the value of x is within the range,

tan 15° < x < 1. The value of (y 3 - x-I) is computed as
(y3 - 1) x-I + x to avoid the loss of significant digits.

3. For Ixl < tan 15°, use the approximation form~la:

arctan (x) 0.55913709
x ::::: 0.60310579 - 0.05160454x2 + x2 + 1.4087812 .

This formula has a relative error less than 2-27.1 and can be obtained by
transforming the continued fraction

x2

arctan (x) x2 5 = 1 - - ~------
x 3 + (~ + x-2) _ w

. (75 3375) where w has an apprmomate value of - 77 x- 2 +---r;- 10-4, but the true

4-5

value of w is 7 - 7 - 9
(7 ~1 + x-2) +

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Ar,ument Error

E I"eJ 1: x2 ' For small values of x, E I"eJ 8; as the value of x increases, the effect

of 8 upon E diminishes.

ATAN/ATAN2

Al,orltltm

38 VS FORTRAN Library Reference

1. For arctan (Xh X2) :

If Xl < 0, use the identity arctan (Xl, X2) = - arctan (- Xl, X:l) •

Hence we may assume that Xl > O. Then:

~1 11'
If either X2 = 0 or > 224, the answer = -2 .

. X2

~1
If X2 < 0 and < 2-24, the answer = 11'.

X2

(~
I

, .

10

o

For the genera~ case, if X2 > 0, the answer = arctan (f;.-J), and

if x. < 0, the answer = .. - arctan (~) .
2. The computation of arctan (fi;j) above, or of arctan (x) for the single argu­

ment case, follows the algorithm given for the subprogram ATAN with a
single argument.

Effect of an Argument Error

E -' 1: x2 ' For small values of x, E ,..." 8, and as the value of x increases, the effect

of (upon 8 diminishes.

DATAN

Algorithm

1. Reduce the computation of arctan (x) to the case 0 < x < 1 by using
arctan (- x) = - arctan (x) and

arctan I!I = ~ - arctan Ixl·

•

2. If necessary, reduce the computation further to the case Ixl < tan 150 by using

arctan(x) = 30° + arctan (\";: x';3 1).

0-x-l
The value of x + y3 < tan 150

, if the value of x is within the range tan

150 < x < 1. The value of (y3 - x-I) is computed as (y3 - 1) x-I + x
to avoid the loss of significant digits.

3. For Ixl < tan 150
, use a continued fraction of the form:

arctan (x) <) [al a2 a3]
x ~ 1 + x- bo - (b1 + X2) - (b!! + X2) - (ba + X2) •

The relative error of this approximation is less than 2-60.7•

The coefficients of this formula were derived by transforming a minimax
rational approximation (in relative error, over the range 0 < x2 < 0.071797)
for arctan (x) / x of the following form:

arctan(x) __ 2 [CO +CIX!! + c:,!x4 + C:IX
6

]

= ao + x d + d .) + d x4 + 6 ' X 0 lX- 2 x

Minimax was taken under the constraint'that ao = 1 exactly.

Effect of an Argument Error

E -' 1 : X2' For small values of x, E ,..." 8, and as the value of x increases, the effect

of (upon 8 diminishes.

DATANI DATAN2

Algorithm

1. For arctan (Xh x:!):
If Xl < 0, use the identity arctan(xl, x:,!) = -arctan (-Xl, X2)'

Hence we may assume that Xl > 0, Then:

'~I 1r If either X:! = 0 or rx;l > 256
, the answer = T'

Alaorithms 39

~1
If X2 < 0 and < 2-36, the answer = 'Ir.

X2

For the general case, if "'" > 0, the answer = arctan (~), and

if x. < 0, the answer = " - arctan (~).
2. The computation of arctan (~)above, or of arctan(x) for the single argu.

ment case, follows the algorithm given for the subprogram DATAN with -a single
argument.

Elleet of a,. Argume,.t Error

1':' A T.' ______ 11 ___ 1. ___ _ I' __ ... 'I .1 1 ,. .~,.. •

£."'" 1 + x2' r 01- ~UlcUl VCl.IU~~ or x) E I"W 0, ana as me value or x mcreases, me eneCt

of E upon 8 diminishes.

QATAN/QATA~2

Algori,hm

1. For arctan(x), if x < 0, then arctan(x) = -arctan(Ixl). So assume x > O.

2. Define break points p" i = 0, 1, 2, ... , 8 as p, = tan (2,; 1 ..).

Define origins 6, to be approximately 1
i
6 'Ir, i = 0, 1, 2, . . . , 8 in such a way

that tan 6i are exact short fonn numbers. 68 = ; exactly.

3. (Ji < X < PH 1 for i = 0, 1, 2, ... , 7, then use the following reduction:

arctan(x) = 6, + arctan(t.; x~~,)
If (J8 < X < 00, use the reduction:

arctan(x) = ; + arctan (":1) .
Note the quantity within the parentheses on the right is in either case within

the basic range ({jo, {jl), that is, is less than ~2 in magnitude.

4. Within the basic range - ;2 < x < ;2' a minimax approximation of the fol­

lowing fonn is used to compute arctan .(x) :

40 VS FORTRAN Library Reference

arctan (x) ~ x + al rB + a2 x3 + ... + a12 X25

The relative error of this approximation is less than 2- 11:!.

It is sufficient to compute the last three terms in double precision.

5. For arctan (Xl, X2) :

If Xl < 0, use the identity arctan(xh X2) = -arctan(lXII, X2).

Hence we may assume that Xl > O. Then:

if either x. = ° orl : 1 >2112
, the answer "" ; ·

If x. < ° and I : I < 2-112
, the answer"" ...

For the general case, ifx. > 0, the answer = arctan (I ~: I) , and

if x. < 0, the answer = .. -arctan (I : I) ·

"

(0

:0

o

Here arctan (I :: I) is computed as described in steps 1 through 4 above,

except for the following simplification for the case P. < I ~: I < co:

arctan(1 ~: I) = ; + arctan (I~:II).
This combines two needed extended precision divisions into one for this case.

Effect of an Argument Error

E.-.,; 1 ~ X2 • For a small value of x, £ .-.,; 8, and as the value of x increases, the

effect of B upon £ diminishes.

Error Functions Subprograms

ERF/ERFC

Algorithm

1. If 0 < X < 1, then compute the error function by the following approximation:
erf(x) ~ x(ao + a}x2 + a~x4 + ... + a5x10).

The coefficients were obtained by the minimax approximation (in relative
error) of erf (x) / x as a function of x2 over the range 0 < x2 < 1. The relative
error of this approximation is less than 2- 24 .6• The value of the complemented
error function is computed as erfc(x) = 1 - erf(x).

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) ~9o + bIZ + b2z2 + ... + b9z9

where z = x - To and To ::::: 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z +
To) over the range - 0.709472 < z < 0.33098. The absolute error of this
approximation is less than 2- 31.5. The limits of this range and the value of the
origin To were chosen to minimize the hexadecimal round-off errors. The value

1
of the complemented error function within this range is between 256 and 0.1573.

The value of the error function is computed as erf(x) = 1 - erfc(x).
3. If 2.040452 < x < 13.306, then compute the complemented error function by

the following approximation:

erfc(x) ~ e- Z
t F/xwherez = x:! and

. CI + C2Z + C3Z2

F = Co + d + d ., + 3' IZ 2Z- z

The coefficients for F were obtained by transforming a mmnnax rational
approximation (in absolute errors, over the range 13.306-2 < W < 2.040452- 2)

of the function f(w) = edc(x) • x • e:l·2
, w = x- 2, of the following form:

ao + alW + a2w2 + aaW3

f(w) ~ b + b + 2 • o . 1W W

The absolute error of this approximation is less than 2-26. 1• This computation
uses the real exponential subprogram (EXP).

If 2.040452 < x < 3.919206, then the error function is computed as
erf (x) = 1 - edc (x) .
If 3.919206 < x, then the error function is ~ 1.

Algorithms 41

4. If 13.306 < x, then the error function is ==== 1, and the complemented error func-
tion is =:::: 0 (underflow). 0

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(- x) = - erf(x), anderfc (- x) = 2 - erfc(x).

Effect of an Argument Error

E ~ e _Z2. A. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ('-' 8. For the complemented error function, if the value of x is

greater than 1, erfc(x) f'OoJ e;; . Therefore, t: '-' 2 r · 8. If the value of x is negative

or less than 1, then ('-' e-zll
• A.

DERF/DERFC

Algorithm

1. If 0 < x < 1, then compute the error function by the following approximation:

erf(x) =:::: x(ao + alx2 + a2x4 + ... + aux22).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of X2 over the range 0 <x2 < 1. The relative
error of this approximation is less than 2-56.9 • The value of the complemented
error function is computed as erfc (x) = 1 - erf (x) .

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc(x) =:::: bo + biZ + b2z2 + ... blSZ 18

where Z = x - To and To =:::: 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(Z + To)
over the range - 0.709472 < Z < 0.33098. The absolute error of this approxi­
mation is less than 2- 60.3• The limits of this range and the value of the origin
To were chosen to minimize the hexadecimal round-off errors. The valtte of the

complemented error function within this range is between ~ and 0.1573. The

value of the error function is computed as erf(x) = 1 - erfc(x).
3. If 2.040452 < x < 13.306, then compute the complemented error function by

the following approximation:

42 VS FORTRAN Library Reference

erfc(x) =:::: e-Z
• FIx where z = x2 and
d1 d2 d6 d7

F = Co + (z + cd + (z + C2) + ... (z + C6) + (z + C7)'

The coefficients for F were derived by transforming a minimax rational approxi­
mation (in absolute errors, over the range 13.306-2 < W < 2.040452-2) of the
function f(w) = erfc(x) • x • e &2, w = x-2, of the following form:

ao + alW + ~W2 + ... + a7W"
f(tV) =:::: bo + b1w + b2w2 + ... + b6w6 +w7 '

The absolute error of this approximation is less than 2-57.9• This computation
uses the real exponential subprogram (DEXP). If 2.040452 < x < 6.092368, then
the error function is computed as erf(x) = 1 - erfc(x).
If 6.092368 < x, then the error function is E!: 1.

4. If 13.306 < x, then the error function is E!: 1, and the complemented error
function =:::: 0 (underHow).

o

.0

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf (- x) = - erf (x), and erfc (- x) = 2 - erfc (x).

Effect of an Argument Error

E -' e-.r2. ~. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, (-' 8. For the complemented error function, if the value of

e-.r2
x is greater than 1, erfc (x) -' ~. Therefore, (-' 2%2 • 8. If the value of x

is negative or less than 1, then E -' e- ol
'
2 • ~.

QERF/QERFC

Algorithm

1. If 0 < x< 1, then:

Write a(z) = t erf(x) where z = X2

Then

that is
Then
so that

x.2%a'+ a = ~1t' :x (erf(x» where a' = ~ = e-x2

2za' + a = e-Z

2m" + 3a' = -e-: = - (2m' + a)
2za" + (2z + 3) a' + a = 0

Now integrate twice
z

2m' + 2za + a - f adz - A where A is a constant
o

But if z = 0 then x = 0 and a = 1 so that A = 1

Hence J adz
2a' + 2a + a-I __ 0 __ = 0

z z
and

{
Z} z adz

2a+f a-I I dz=B=2 2a+-----
o z z

m
Now write a = 1 + 1 ajzi as an approximation to a and solve

{

~l Z}
_ Z _ _ J adz _ *

2ii+f 2ii+~-_o __ d.-{j+TT ,
o z Z m+l

m
Where T* = l T*, i X Xi is the Chebyshev polynomial over the appropriate

m i=O 11/

range.

Equating coefficients of powers of z and multiplying the coefficient f of Zl by iJ

we have:

3a1 + 1 = T T*
m+l.l

1042 + 3a1 = 4 T*
m+l.2

m(2m + l)a + (2m - 1) am - 1 = m2 ,.T*
m _+1._

(2m + 1) am = (m + 1)2,. T*
_+I,m+l

Alaorithms 43

44 VS FORTRAN Library Reference

and we can solve these equations to obtain

2 ah 2 a2,. .. 2 'am and T.
V1r V1r V1r

Thenerf(x) = X +(2 -1) X + X i (2 al)(r)'
V1r i=1 V1r

=x+x{(2 -I) + ~ (2 a,)(x2)'}
V1r .=1 V1r

2. If 1 < X < 2.84375, then:

Writeb(z) = erfc(x) wherez = X - til

Then b' = - 2 e-x2
V1r

and b' = 2 2 x e-x2
V1r

so that b" + 2(z + to) b' = 0
Now integrate twice

b' + 2(z + to) b - 2 J bdz, = A
b + 2(z + to) J bdz -4JJbdzdz = Az + B

_ m

Let b = 1 bi z' be an approximation to b and solve the equations:
i==O

_ z_ z z_

b + 2 (z + to) f bdz - 4 f J bdzdz = Az + B + T T* + u T*
o 0 0 m+S _+1

Now z = 0 > A = b'(O) + 2 tob(O) = erfc'(to) + 2 to erfc(fo)
and B = b(O) = erfc (to)

Hence the equations solved are:
bo = TT*

m,O

hi + 2 tobn = TT*
m,l

b2 + tobl = TT*
m,2

ba
1 + 2

+ -bi "3 tob2 3

+ uT*
m+1,O

+ uT*
m+1,l

+ uT*
m+1,S

= TT*
m,3

+ erfc{to}

+ erfc' (to) + 2 to erfc (to)

+ O'T*
m+1,3

2m - 4 2
bm + (1) bm - 2 + - tobm - l = T T* + 0' T* m m - m m, m m+1. m

2m - 2 2
(+1) bm-l+~+ltobm=TT* +uT* m m m m, m+1 mm. r .. ~l

2m
(m + 2) (m + 1) bm = TT*

m+l,m+!
Finally

erfc{x) - b{z) . where z = x - to

3. If 2.84375 < x < 13.306, then:
Write

Then

i.e.

Let'

c(z) = x ex2 erfc{x) where z = l/x2

c'= -+2xc---=x --{
c 2 } x3
x V1r - 2

2
2z2C' + (z + 2) c =-=

V1r
m+l

C = l c(z' be an approximation to c and solve the equations:
i==O

2 z,2C + (z + 2) c = 2 + T T*
VT m+S

q

(0

I • , I ':C,,'~'

o

Then use the approximation

T* m+l:iii!E 0

to approximate C m + 1 Z m + 1 by a polynomial of degree m.
The equations solved in (A) are:

2
2c o = ~+ T* m +2,0

Co + 2 C 1 = T T* m + 2,1

(2m + l)c m+ 2c m + 1 = T T* m+2,m+l

(2m+3)c m +1 =TT*m+2.m+l

Finally:

erfc (x) = c(z) • ~~2 where z = 11 X2

4. If 13.306 :iii x, then erf(x) = 1 and erfc (x) = o.
5. If 0> x, then erf(x) = -erf(-x), and erfc(x) = 2 - erfc(-x).

Effect 01 an Argument Error

E - - x2 • fl. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly.
For small values of X, E - 8. For the complicated error function, if the value of

e- x2
Xis greater than 1, erfc (x)-U.

Therefore, E - 2X 2 • 8. If the value of x is negative or less than 1, then
E - e- x2 • ~.

Exponential Subprograms

EXP

Algorithm

1. If X < - 180.218, then 0 is given as the answer via floating-point underflow.
2. Otherwise, divide x by lo~.2 and write

x
y = loge2 = 4a - b - d

where a and b are integers, 0 <b< 3 andO < d < 1.
3. Compute 2 - d by the following fractional approximation:

2d
2-

d ~ 1 - 617.97227 •
0.034657359 d2 + d + 9.9545948 - d2 + 87.417497

This formula can be obtained by transforming the Gaussian continued fraction
z z z z z z z z

e-
Z = 1 - 1+ 2- 3+ 2- 5+ 2- 7+ 2'

The maximum relative error of this approximation is 2-29•

Multiply 2-d by 2- b•

Finally, add the hexadecimal exponent a to the characteristic of the answer.

Algorithms 4S

E"eet of an Argument Error

(- 4. If the magnitude of x is large, even the roundoff error' of the argument
causes a substantial relative error in the answer because 4 = 8 • x.

DEXP
Algoritllm

1. If x < - 180.2187, then 0 is given as the answer via floating-point underflow.
2. Divide x by lo~ and write

x= (4a-b- :6)·1og.2-r
where a, b, and c are integers, 0 <: b < 3, 0 <c< 15, and the remainder, is

1
u,t.1-.tn +1-..0 .~nIT.o n -< ... /' - • lnlT 9. Thh: 1"prtllf'tinn ieo: f'~1Tipl'1 nnt in an extra
....... "-'A """ ... '" 0'" V' =. '" 16 ."~,. _ - ---------- -- ------ --- --- ---- -

precision to ensure accuracy. Then e.1l = 16a • 2- b • 2-c/ 16 • e-r •

3. Compute e- r by using a minimax polynomial approximation of degree 6 over
1

the range 0 -< r < 16 • lo~. In obtaining coefficients of this approximation,

the minimax of relative errors was taken under the constraint that the constant
term ao shall be exactly 1. The relative error is less than 2-56.87•

4. Multiply e- r by 2,-c/16. The 16 values of 2-c/ 16 for 0 -< c < 15 are included in
the subprogram. Then halve the result b times.

5. Finally, add the hexadecimal exponent of a to the characteristic of the answer.

E"ect of an Argument Error

E - 4. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because 4 = 8 • x.

CEXP/CDEXP

Algoritllm

The value of e.G+iy is computed as e.l" • cos (Y) + i • e.G • sin (y). The algorithms for
both complex exponential subprograms are identical. Each subprogram uses the
appropriate real exponential subprogram (EXP or DEXP) and the appropriate real
sine/ cosine subprogram (COS/SIN or DCOS/DSIN).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If eJ'+iy = R· eiH, then H = y and E(R) ""'" tt.. (x).

QEXP

Algoritllm

1. Basic computation is that of2x. For QEXP entry, multiply xby logle in a 31 hex­
adecimal digit arithmetic, and raise the result to the power of 2.

2. Decompose xas x = 4p - q - ,where pis an integer, q = 0, 1,2, or 3, and O:a
, < 1.

3. Find two indices i,j, O:a i :iii8,0:iiij:iii3 such that 4; + jis the integer nearest to
32,.

46 VS FORTRAN Library Reference

Using these indices, select two encoded constants ai, I3Jwhere
al = [2- V8], I3J = [2-)132].

Here the bracket indicates rounding to the nearest 17 binary digit number. (; ...•.)
Obtain the product 'I' u = a il3J. J

(0

o

4. Obtain the reduced argument s == - r -log2 ('I' Q) accurately by subtracting log2'
('I'Q) == log2 a/ + log2 ~j + in an extra precision. Constants log2 a/and log2 ~J
are encoded in 31 hexadecimal digits of accuracy. Then s is approximately

1
bounded by ± 64'

S. Compute 2" by a minimax approximation of the form:

" ~SP(S2~ 2 iii111 + Q(S2 _ sp S2}

where Pand Q are polynomials of degree 2.
6. Then 2x == 16' • (2-9 '1' Q) • 28 • In assembling this product a virtual rounding

is applied.
7. The limited use of extra precision arithmetic in the above computation

enhances accuracy of both QEXP and A·· B application (see note below}.

'ffect 01 an Argument 'rror

E - fl.. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because fl. = 8 • x.

CQEXP

Algorithm

The value of ex + iy is computed as ex • cos (y) + i • ex • sin (y). The algorithms
for both complex exponential subprograms are identical. Each subprogram uses
the appropriate real exponential subprogram (QEXP) and the appropriate real sine/
cosine subprogram (QCOS/QSIN).

Elfect 01 an Argument Error

The effect of the argument error depends upon the accuracy of the individual parts
of the agreement. If ex + iy = R • e IH, then H = yand E (R) - Il. (x).

Gamma and Log Gamma Subprograms

GAMMA/ ALGAMA/LGAMMA

Algorithm

1. If 0 < X <2-252, then compute log-gamma as lo~r(x) ~ - lo~(x).
This computation uses the real logarithm subprogram (ALOG).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument fans.

r(x + 1)
3. If 2 - 252 < X < 1, then use r (x) = to reduce to the next case.

x

4. If 1 < x < 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

Z [ao + alZ + a2z2 + asz3]
r (x) ::::: Co + bo + bIZ + b2z2 + Z3

where Z = x - 1.5. The absolute error of this apprOximation is less than 2- 25•9•

5. If 2 < x < 8, then use r (x) = (x - 1) r (x - 1) to reduce step by step to the
preceding case.

6. If 8 <x, then compute log-gamma by the use of Stirling's formula:

Algorithms 47

4K VS FORTRAN Library Reference

loger (X) ~ x (lo~ (x) - 1) - 1h lo~ (x) + 1h loge (2?r) + G (x) .

The modifier term G(x) is computed as
G(x) === doX- 1 + d1x- 2•

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less
than x • 2- 26.2• Remembering the fact that x < log"r(x) in this range, the
contribution of this error to the relative error of the. value for log-gamma is less
than 2-26.2• This computation uses the real logarithm subprogram (ALOG).

For gamma, compute r(x) = e", where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (EXP).

Effect of an Argument Error

€ """" '" (x) • ~ for gamma, and E """" '" (x) • ~ for log-gamma, where '" is the
digamma function.

1
If 2 < x < 3, then - 2 < '" (x) < 1. Therefore, E """" ~ for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial E in this range.

If the value of x is large, then t/J (x) -- loge (x). Therefore, for gamma, E -- a
x • loge (x). In this case, even the roundoff error of the argument contributes
greatly to the relative error of the answer. For log-gamma with large values of x,
E -- a.

DGAMMA/DLGAMA/LGAMMA

Algorithm

1. If 0 < x < 2- 252, then compute log-gamma as loger(x) ~ - lo~(x).
This computation uses the real logarithm subprogram (DLOG).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(x + 1)
3. If 2-252 < X < 1, then use r(x) = to reduce to the next case. x

4. If 1 < x < 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

z [ao + alZ + ... + QaZ6]
r (x) ~ Co + b + b + + b 6 + T o l Z ... 6Z Z

where Z = x - 1.5. The absolute error of this approximation is less than 2-59.3•

5. If 2 < x < 8, then use r (x) = (x - 1) r (x - 1) to reduce to the preceding
case.

6. If 8 <x, then compute log-gamma by the use of Stirling's formula:
lo~r (x) ~ x (lo~ (x) - 1) - 1h lo~ (x) + 1h lo~ (2.".) + G (x) .

The modifier term G(x) is computed as
G(x) ~doX-l + d1x-3 + d2x- 5 + dax-7 + d4x-9•

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less
than x • 2-56.1• Remembering the fact that x < lo~r(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2-56.1• This computation uses the real logarithm subprogram (DU)G). For
gamma, compute r(x) = e", where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (DEXP).

0:

I ;·"0',

o

Effect of an Argument Error

(/"OJ "'(x) • D. for gamma, and E ,....; "'(x) • D. for log-gamma, where '" is the
digamma function.

1
If 2 < x < 3, then -2 < ",(x) < 1. Therefore, E /"OJ D. for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial (in this range.

If the value of x is large, then '" (x) ,....; log.. (x) . Therefore, for gamma,
(/"OJ 8 • x • logt' (X). In this case, even the round-off error of the argument con­
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, (/"OJ 8.

LGAMMA

Algorithm

If X is R*4, then LGAMMA (x) = ALGAMA (x).
If x is R*8. then LGAMMA (x) = DLGAMA (x).

Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm

1. If Ixl < 1.0, then compute sinh (x) as:
sinh (x) ::::::: x + CIXlJ + C2X5 + C:iX7.

The coefficient cj were obtained by the minimax approximation (in relative

) sinh (x) .
error of x as a functIOn of x 2. The maximum relative error of this

approximation is 2- 25 .6 •

2. If x > 1.0, then sinh(x) is computed as:
sinh(x) = (1 + 8) [eJ'+lllgel) - v2/e-r+lllgev].

1
Here, 1 + 8 = 2v ' so that this expression is theoretically equivalent to

fec - e-.1']/2. The value of v (and consequently those of logev and 8) was so
chosen as to satisfy the following conditions:

a) v is slightly less than 1/2, so that 8 > ° and small.
b) logev is an exact multiple of 2- 16•

The condition b) ensures that the addition x + loge vis carried out exactly. This
maneuver was designed to reduce the roundoff errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential
su bprogram (EXP).

3. If x < - 1.0, use sinh(x) = - sinh (Ixl) to reduce to case 2 above.
4. If cosh (x) is desired, then for all valid values of arguments use the identity:

cosh(x) = (1 + 8) [e,r.+lllgeV + v2 /eJ'+lllge1
'}. Here the notation and the consid­

eration are identical to case 2 above. This computation uses the real exponential
subprogram (EXP).

Effect of an Argument Error

For the hyperbolic sine, E ,....; D. • cosh (x) and (,....; A • coth (x) .

Algorithms 49

so VS FORTRAN Library Reference

For the hyperbolic cosine, E -- 4 • sinh (x) and E -- 8 • tanh (x).
Specifically, for the cosine, E -- .:1' over the entire range; for the sine, E -- 8 for 0 "

small values of x.

DSINH/DCOSH

Algor/fhm

1. If /xl < 0.881374, then compute sinh (x) as:
sinh (x) ;:;; CoX + c1x3 + c2x' + ... + C6%13.

The coefficients C1 were obtained by the minimax approximation (in relative
sinh (x)

error) of as the function of x2• Minimax was taken under the constraint x
that Co = 1 exactly. The maximum relative error of this approximation is 2-55.1•

2. If x >0.881374, then sinh(x) is c-omputed as:
sinh(x) = (1 + 8) [e.c+log

e1) - v2/e.r+log.v].

1
Here,1 + 8 = 2v' so that this expression is theoretically equivalent to

[ee - e-.rl!2. The value of v (and consequently those of lo~v and 8) was so
chosen as to satisfy the following conditions:

a) v is slightly l~ss than lh, so that 8 > 0 and small.
b) lo~v is an exact multiple of 2-16•

The condition b) insures that the addition x + lo~v is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub­
program (DEXP).

3. If x < -0.881374, then use sinh(x) = -sinh(Ix/) to reduce to case 2 above.
4. If cosh(x)is desired, then, for all valid arguments use the identity:

cosh (x) = (1 + 8) [e'v + log.v + v2 / e.r+ logev]. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).

Effect of an Argument Error

For the hyperbolic sine, E - .:1 • cosh (x) and E -- 4 • coth (x).
For the hyperbolic cosine, E -- .:1- sinh(x) and E -- 4· tanh(x).

SpecincaIIy, for the cosine, E -- 4 over the entire range; for the sine, fi -- 8 for
the small values of x.

QSINH/QCOSH

Algorithm

1. If Ixl < 1 then compute sinh(x) as:
sinh (x) ~ CoX + CtX' + c2r> + ... + C12X25.

The coefficients Ci were obtained by the minimax approximation (in relative

error) of sinh (x) as the function of x'. Minimax was taken under the constraint
x

that CII = 1 exactly. The maximum relative error of this approximation is less
than 2-112•

2. If x > 1 then sinh (x) is computed as:
sinh(x) = (1 + 8) [ez+IOg.v - v2/ee+ IO •• tI].

Here, 1 + 8 = 21
v

, so that this expression is theoretically equivalent to

[ez
- e-z] /2. The value of v (and consequently those of lo~v and 8) was so . 0

chosen as to satisfy the following conditions. .')

fe'" \ !

o

a) v is slightly less than ~ , so that 8 > 0 and small.

b) lo&.v is an exact multiple of 2-16•

The condition b) insures that the addition x + lo~v is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable- arguments. This computation uses the exponential subpro­
gram. Accuracy of the quotient V2 /e-r+ 10fl .. " is not critical if x is large. For x >
21.85, a double precision division yields a sufficiently accurate result.

3. If x < -1 then use sinh(x) = -sinh(Ix!) to reduce the case to 2 above.
4. If cosh(x) is desired, for all allowable arguments use the identity: cosh(x)

= (1 + 8) [er+lofletl + v2/e.r+lo, .. t·]. Here the notation and the consideration
are identical to the case 2 above.

Ellect 01 an Argument Error

For hyperbolic sine, E -- ~. cosh(x) and ~ -- ~ • coth(x). For hyperbolic cosine,
E ,..." ~ • sinh (x) and ~ -- 8 • tanh (x). In other words, for cosine, E -- A over the
the entire range; for sine E -- 8 for small values of x.

Hyperbolic Tangent Subprograms

TANH

Algorithm

1. If Ixl< 2-12, then tanh(x) ~ x.
2. If 2-- 12 < Ixl < 0.7, use the following fractional approximation:

tanh(x) .)[0.8145651]
x ~ 1 - x- 0.0037828 + x2 + 2.471749 .

The coefficients of this apprOximation were obtained by taking the minimax
of relative error, over the range x:! < 0.49, of approximations of this form under
the constraint that the first term shall be exactly 1.0. The maximum relative
error of this approximation is 2- 28.4.

2
3. If 0.7 <x< 9.011, then use the identity tanh(x) = 1- (e¥)2 + r

The computation for this case uses the real exponential subprogram (EXP).
4. If x >9.011, than tanh(x) ~ 1.
5. If x < -0.7, then use the identity tanh(x) = -tanh(-x).

Ellect of an Argument Error

2A
E ,..." (1 - tanh2 x) ~, and E""" sinh (2x) . For small values of x, E ,..." 8, and as the

value of x increases, the effect of 8 uponE diminishes.

DTANH

Algorithm

1. If Ixl < 2-2K, then tanh(x) :::: x.
2. If 2-2K < Ixl < 0.54931, use the following fractional approximation:

tanh (x) d1x2 d2 da
-- ::::co+ 2+ + + 2+ + .)+ . x x Cl X C2 x- Ca

This approximation was obtained by rewriting a minimax approximation of the
following form:

tanh (x) ao + alx2 + 62x4
--- :::: Co + x2

• ~--:--~--:~-~
X bo + b1x2 + b,.x4 + XS •

Alaorithms 51

52 VS FORTRAN Library Reference

Here the minimax of relative error, over the range x2 < 0.30174, was taken
under the constraint that Co shall be exactly 1.0. The maximum relative error of C
the above is 2-63•

2
3. If 0.54931 < x < 20.101, then use the identity tanh (x) = 1 - e2z + l'

This computation uses the double precision exponential subprogram (DEXP).
4. If x > 20.101, then tanh (x) === 1.
5. If x < - 0.54931, then use the identity tanh (x) = - tanh (- x).

Elfect 0' an Argument Error

2~
. E """" (1 - tanh2 x) ~, and ("""" . For small values of x, f: """" 8. As the

sinh (2%)
value of x increases, the effect of 8 upon l diminishes.

QTANH

Algorithm

1. If Ixl < 0.54931, use a minimax fractional approximation of the following form:
~ ri (ao + alx:! + fl:!X" + aax6 + a4r)

tanh (x) = x + b + b 2 + b x4 + b 6 + b H + 10 o IX 2 :iX .. x X

Approximation of this form attains accuracy better than 2-112 for x in the above
range.

2. If 0.54931 < x < 39.1628,. compute tanh (x) with the aid of the exponential
subroutines as follows:

2
tanh(x) = 1 - --:;---+1 . e-.r

Here if x > 2l.14, the division is carried out in double precision to save execu­
tion time. The quotient term is so small relative to 1 that double precision is
accurate enough.

3. If X > 39.1628, then tanh (x) :::::::: l.
4. If x < - 0.54931, then use the identity tanh (x) = - tanh (- x) to reduce the

case to either 3. or 4. above.

Effect of an Argument Error
2.:l

E """" (1 - tanh2 x) A, and ("""" sinh(2x)' For small values of x, E """" 8. As the value

of X increases, the effect of 8 upon E diminishes.

Logarithmic Subprograms (Common and Natural)

ALOGf ALOG 10

Algorithm

l. Write x = 161' • 2- q • m where p is the exponent, q is an integer, 0 < q < 3,
and m is within the range, 1h < m < l.

2. Define two constants, a and b (where a = base point and 2 - b = a), as follows:
1

If 1h < m < v' 2' then a = 1h and b = 1.

1
If v' 2 <m < 1, then a = 1 and b = O.

m-a l+z
3. Write z = -+-. Then, m = a • -1-- and Izl < 0.1716. m a - z

4. Now, x = 2'p- q-'. ~ ~ ;, and log, (x) = (4p - q - b)Iog,2 + 10g.0 ~;).
c

)

(iO \I~- ,I

o

5. To obtain 10g,(~ ~ ~). first compute w = 2z = 0.5: ~ ~.5a (which is repre­

sented with slightly more significant digits than z itself), and apply an approx­
imation of the following form:

log. G ~ :) ~ w [co + C2C~W:2J.
These coefficients were obtained by the minimax rational approximation of

1 (1 + Z) 2z lo~ 1 _ Z over the range Z2 ((0, 0.02944) under the constraint that Co

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2- 25.33•

6. If the common logarithm is desired, then logloX = logloe • logeX.

Effect of an Argument Error

E - 8. Specifically, if 8 is the roundoff error of the argument, for example,
8 - 6 • 10-8 , then E- 0 6 • 10-s. Therefore, if the argument is close to 1, the
relative error can be very large because the value of the function is very small.

DLOG/DLOG10

Algorithm

1. Write x = 1& • 2-q
• m where p is the exponent, q is an integer, 0 < q < 3,

and m is within the range 1h < m < 1.
2. Denne two constants, a and b (where a = base point and 2- b = a), as follows:

1
If 1h < m < V 2' then a = 1h and b = 1.

I
If V 2 <m < 1, then a = 1 and b = O.

m-a 1+z
3. Write z = -+-. Then, m = a· -1-- and Izl < 0.1716. m a -z

l+z (1+Z). 4. Now, x = 24P -
q

- b • 1 _ z' and lo~ = (4p - q - b) loge2 + lo~ 1 _ Z

5. To obtain 10g,(: ~ ~ l' first compute w = 2z = 0.5: ~ ~.5a (which is repre­

sented with slightly more significant digits than z itself), and apply an approx­
imation of the following form:

log. G ~ ~) ~ w [co + CIW
2

(W2 + C2 +.2 Ca C5)J.
W +C4 + 2 +

W C6

These coefficients were obtained by the minimax rational approximation of

1 (1 + Z) 2z lo~ 1 _ Z over the range Z2 ((0, 0.02944) under the constraint that Co

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2-60.55•

6. If the common logarithm is desired, then loglOx = logloe ·lo~.

Effect of an Argument Error

E ""'" 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

Algorithms S3

CLOG/CDLOG

Algorltltm

1. Write loge (x + iy) = a + ib.
2. Then, a = lo~ Ix + iyl and b = the principal value of arctan (y, x).
3. lo~ Ix + iy I is computed as follows:

Let Vi = max (lxi, luj), and V2 = min (lxi, luI).
1

Let t be the exponent of Vh i.e., Vi = m - 16t
, 16 < m < 1.

{
tift < 0 }

Finally, let tl = . t - 1 if t > 0 '

ands = 16t
l.

Then, log. Ix + iyl = 4t. olog.(2) + 'h log, [(:'). + (:. r J
Computation of v/sand v2!s are carried out by manipulation of the characteristics
of VI and v2 • In particular, if v2! s is very small, it is taken to be O. The algorithms for
both complex logarithm subprograms are identical. Each subprogram uses the
appropriate real natural logarithm subprogram (ALoe or DLoe) and the appropriate
arctangent subprogram (AT AN2 or DA T AN2).

Effect of an Argument Error

The eHect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r - etk and lo~ (x + iy) = a + ib, then h = b
and E(a) = 8(r).

QLOG/QLOG10
Algorltltm

1
I. Decompose x as x = 16P - 2-q - m, where2":iii m < I.
2. Make an estimate of log2m and define three indices 0 :iii i:iii 8, 0 :iii i :iii 3,

o :iii k:ii 4 so that 20i + 5i + k is the nearest integer to - 160 -log2m. Using
these indices, select three constants ll:i, f3,;, 'Y k where

a, = [2-'18], PJ = [2- JI32], ¥k = [2- kI160].

Here the bracket indicates rounding to the nearest 17 digit binary number.
Obtain the exact product rpiJk = a! f3J¥k by use of ME and MXD instructions.
The 18 short constants ah pj, and ¥k are encoded in the subroutine.

3. Denote z = (m - fI';jd/(m + fl'ijk).
Computew = 2z/10~(2) = (m - fl'ijl ..)/[O.5· 10~(2)' (m + fl'ijk»).

The computed w is bounded approximately by ± 3~ , and it has 112 bit

accuracy.

4. Compute log,. (! ~ ~) = log,. (m) - log,. ("I)') as follows:

log,. (! ~ ~) "'" w + a,w" + /I:IU)' + ... + a.w"

where coefficients {an} have been obtained by the minimax technique.

log. (! ~ ~) is approximately bounded by ± ix,. This value is compured

with full 28 hexadecimal digit accuracy, and the absolute error is at most 16-80•

5. Now log,. (x) = 4p - q + 1og,.1Z1 + IOg..8J + log,.y. + log,. G ~ ~) .
log2ai' Iog2,sJ, and log2¥k are encoded with 31 hexadecimal digits of accuracy.
Combine these components in su~~_ a way that ~~ maximum absolute error is

54 VS FORTRAN Library Reference

o

still 16-30 approximately. This is done to improve accuracy of A**B applica­
tion (see Note below).

6. Truncate log2(x) at the 28th hexadecimal digit, and multiply by 10~(2) or by
logto(2) to obtain log .. (x) or loglo(x) as desired.

Eff.ct of an Argument Error

E ,...., 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large, because the value of the function is very small.

LOG/LOG 10

Algorithm

If X is R*4, then LOG (x) = ALOG(x) and LOGIO(x) = ALOGIO(x).
If xis R*8, then LOG(x) = DLOG(x) and LOGIO(x) = DLOGIO(x).
If xis R*16, then LOG(x) = QLOG(x) and LOGIO(x) = QLOGIO(x).

CQLOG

AlgorIthm

1. Write log('(x + iy) = a + ib
2. Then, a = log(' Ix + iy! and b = the principal value of arctan(y,x).
3. log,. f x + iy I is computed as follows:

Let Vl = max(lxi, Iyl), and V2 = min(lxi, Iyl)·
Let t be the exponent of VI, i.e., Vt = m· 16t

, 116 <: m < 1.

F· II 1 { t if t <: 0
ma y, et tt = 1t - 1 if t-> 0,

ands = 16t
l.

1 [(V)2 Then, loge Ix + iyj = 4tl ·log(,(2) + 210~ -;- + e:YJ
Computation of v/ sand v2/ s are carried out by manipulation of the charac­
teristics of VI and v2 • In particular, if v2/ s is very small, it is given the exponent of
- 16 to avoid characteristic wrap-around.

Effect of an Argument E,ror

E -- 8. Therefore, if the argument is close to 1, the relative error can be very large
because the value of the function is very sman.

Algorithms 55

Sine and Cosine Subprograms

SIN/COS

Algorithm
4

1. Define z = - · /x/ and separate z into its integer part (q) and its fraction part
'7l'

(r). Then z = q + r, and Ixl = (: ." q) + (: "r)-

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to q. This adjustment of q reduces the general case to the computation

. of sin (x) for x > 0 because

cos (± x) = sin (~ + x), and

sin (- x) = sin ('7l' + x).

3. Let qo == q mod 8.

Then, for q. = 0, sin (x) = sin (: "r),
q" = 1, sin (x) = cos (: (1 - r)).

q" = 2, sin (x) = cos (: "r).

q. = 3, sin (x) = sin (: (1 - r)).

q. = 4, sin (x) = - sin (: "r),
q. = 5, sin (x) = - cos (: (1 - r».
q. = 6, sin (x) = - cos (: "r).

q. = 7, sin (x) = - sin (: (1- r».
These formulas reduce each case to the computation of either sin (: "'1)
or cos (: "rl) where r, is either r or (1 - r) and is within the range,

0<r1 <1.

4. If sin (: "rl)is needed, it is computed by a polynomial of the following

form:

sin (: "rl):::=: r, (a. + a,r,2 + a2rl' + a.r,").

The coefficients were obtained by interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 2 -28.1 for the range.

5. If cos (: "rl) is needed, it is computed by a polynomial of the following

form:

56 VS FORTRAN Library Reference

o.

O .. ~·
~

)

o

o

Coefficients were obtained by a variation of the minimax approximation which
provides a partial rounding for the short precision computation. The absolute
error of this approximation is less than 2-24 .57 •

Effect of an Argument Error

E ,...., tA. As the value of x increases, t1 increases. Because the function value dimin­
ishes periodically, no consistent relative error control can be maintained outside

7r 7r

the principal range, - 2 < x < + 2""'

DSIN/DCOS

Algorithm
7r

1. Divide Ixl by 4 and separate the quotient (z) into its integer part (q) and

4
its fraction part (r). Then, z = Ixl • - = q + r, where q is an integer and r

7r

is within the range, 0 < r < 1.
2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,

add 4 to q. This adjustment of q reduces the general case to the computation of
sin (x) for x > 0, because

cos (± x) = sin (Ixl + ;), and

sin (- x) = sin (Ixl + 7r).

3. Let qo~ q mod 8.

Then, forqo = 0, sin (x) = sin (: .,),

qo = 1, sin (x) = cos (: (1 - r»),
qo = 2, sin (x) = cos (: .,),

qo = 3, sin (x) = sin (: (1 - ,)),

qo = 4, sin (x) = - sin (: .,),

q 0 = 5, sin (x) = - cos (: (1 - ,»),
q 0 = 6, sin (x) = - cos (: .,),

qo = 7, sin (x) = - sin (: (1 - ,»).
These formulas reduce each case to the computation of either sin (: .,,)

or cos (: .,,), where " is either, or (1 - ,), and is within the range,

o <r1 < 1.

4. Finally, either sin (: .',)or cos (: .,,)is computed, using the polynomial

interpolations of degree 6 in f12 for the sine, and of degree 7 in r12 for the cosine.
In either case, the interpolation points were the roots of the Chebyshev poly-

Algorithms 57

nomial of one higher degree. The maximum relative error of the sine polynomial
. is 2-58 and that of the cosine polynomial is 2-84•8• 0

'''ect 01 an Argument 'rror

E ,-ow A. As the value of the argument increases, A increases. Because the function
value diminishes periodically, no consistent relative error control can be main-

.". .".

tained outside of the principal range, - 2< x < +2'

CSIN/CCOS

Algorithm

1. If the sine is desired, then

sin (x + iy) = sin (x) • cosh (y) + i • cos (x) • sinh (y).

If the c-osine is desired, then

cos (x + iy) = cos (x) • cosh (y) - i • sin (x) • sinh (y).

2. The value of sinh (x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x).

3. If x > 0.346574, then use sinh (x) = * (e" - ~).
4. If 0 < x < 0.346574, then compute sinh (x) by use of a polynomial:

sinh(x)
-- ::::: ao + alx2 + a2x'. x

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 < x2 < 0.12011 under the constraint that
ao shall be exactly 1.0. The relative error of this approximation is less than
2-26.18•

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + el~I'

This computation uses the real exponential subprogram (EXP) and the real sinel
cosine subprogram (SIN/COS).

'fleet of an Argument 'rror

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the SIN/cos, EXP, and
SINHI COSH subprograms.

CDSIN/CDCOS

Algorithm

1. If the sine is desired, then

sin (x + iy) = sin (x) • cosh (y) + i • cos (x) • sinh (y).

If the cosine is desired, then
cos(x + iy) = cos(x) • cosh(y) - i· sin(x) • sinh(y).

2. The value of sinh (x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x).

S8 VS FOR.TRAN Library R.eference

3. If x >0.481212, then u,s;, sinh(x) = * (e" - ~).

4. If 0 < x < 0.481212, then compute sinh (x) by use of a polynomial:
sinh(x)
--- 5:!!!: ao + aIr + a~ + as%' + a.,xS + a5X10• x

G

o

o

The coefficients were obtained by the minimax approximation (in relative
error) of sinh (x) I x over the range 0 < X2 < 0.23156 under the constraint
that ao shall be exactly 1.0. The relative error of this approximation is less
than 2-56.07•

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + e l.2ll'

This computation uses the real exponential subprogram (DEXP) and the real
sine/ cosine subprogram (DSIN/OCOS).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the DSIN/DCOS,

DEXP, and DSINH/ DCOSH subprograms.

QSIN/QCOS

Algorithm

1. Separate the argument into an integral multiple of ~ and the remainder part:

Ixl = ; . q + r where q is an integer, and - ~ < r < ~ .
In this decomposition, after q is estimated in the working precision, r is accu­

rately computed as r = Ixl - ; . q with the aid of approximately 10 hexa­

decimal guard digits.

2. Add 1 to q if cosine is desired, since cos (± x) = sin (; + x) •

Add 2 to q if sine is desired and x is negative, since sin (- x) = sin (11" + x).
These adjustments reduce the general case to computation of sin (.t) for x > O.

3. Let qo== q mod 4. Then,

if qo = 0, sin(Ixl) = sin (r)
q 0 = 1, sin (I x I) = cos (r)
qo = 2, sin(Ixl) = -sin(r)
qo = 3, sin(Ixl) = -cos(r)

4. Compute sin(,) or cos (r) as follows:
sin (r) ::::::: , + alri + a2r + ... + all,!!:i

cos (,) ::::::: 1 + b1r + b2,4 + ... + b1!!r24

Coefficients raj}, {b j } are determined by the minimax technique as applied to

the range 0 < , < ~ . The relative errors of these approximations are less

than 2,-112.

Effect of an Argument Error

E ,...., ~. As the value of x increases, ~ increases. Because the function value dimin­
ishes periodically, no consistent relative error control can be normally maintained

outside the principal range - ; <x< + ; .

CQSIN/CQCOS

Algorithm

1. If the sine is desired, then

sin (x + iy) = sin (x) • cosh (y) + i · cos (x) • sinh (y) .
If the cosine is desired, then

cos (x + iy) = cos (x) • cosh (y) - i' sin (x) • sinh (y) .

Algorithms 59

60 VS FORTRAN Library Reference

2. The value of sinh(x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x). 0

3. If:r > 0.481212, then use sinh (:r) = ! (e" - !) .
4. If 0 <x < 0.481212, then compute sinh(x) by the use of the polynomial:

sinh (x) + 2 + ...4 + + 20 === ao atX a2A.· • • • au)X x
The coefficients were obtained by the minimax approximation (in relative
error) of sinh (x) / x over the range 0 < X2 < 0.23156 under the constraint that
ao shall be exactly 1.0. The relative error of this approximation is less than 2- 112•

The highest three terms of this polynomial need only be evaluated in double
precision.

5. The value of cosh(x) is computed as cosh(x) = sinh Ixl + --h-.
el"1

ERect of an Argument Error

Combine such effects on sine/ cosine/hyperbolic-sine/hyperbolic-cosine functions
according to the formula in step 1 of the algorithm.

Square Root Subprograms

SQRT

Algorithm

1. If x = 0, then the answer is O.
2. Write x = 162p

-
q

• m, where 2p - q is the exponent and q equals either 0 or 1;
1

m is the mantissa and is within the range 16 < m < 1.

3. Then, 'Ix = 1&· 4-q y'm.

4. For the first approximation of y'x, compute the following:

(
1.288973)

Yo = 1& • 4-
q

• 1.681595 - 0.8408065 + m .

This approximation attains the minimax relative error for hyperbolic fits of 'Ix.
The maximum relative error is 2-.5.748•

5. Apply the Newton-Raphson iteration

y.+l = ¥.. (Yo + :J
twice. The second iteration is performed as

Y2 = 1;2 (Yt - ~) +~,
Yt Yl

with a partial rounding. The maximum relative error of Y2 is theoretically
2-25.9•

Effect 01 an Argument Error

1
(-2"8.

DSQRT

Algorithm

1. If x = 0, then the answer is O.
2. Write x = 162p

- Q
• m, where 2p - q is the exponent and q equals either 0 or 1;

1
m is the mantissa and is within the range 16 < m < 1.

Q
i

'0

'c·"·" , I ,

o

3. Then, v' x = 1& • 4-q v'm.
4. For the first approximation of v'x, compute the following:

Yo = 1&· 41-
q

• 0.2202 (m + 0.2587).

The extrema of relative errors of this approximation for q = 0 are 2-3•202 at

1
m = 1, 2-a.265 at m = 0.2587, and 2- 2.925 at m = 16' This approximation, rather

x
than the minimax approximation, was chosen so that the quantity - - Ya be-

Ya
low becomes less than 1&-R in magnitude. This arrangement allows us to
substitute short form counterparts for some of the long form instructions in the
final iteration.

5. Apply the Newton Raphson iteration

Y"+1 = 'h (Yn + :J
four times to Yo, twice in the short form and twice in the long form. The final
step is performed as

Y4 = Ya + 112 (-=- - ya)
Ya

with an appropriate truncation maneuver to obtain a virtual rounding. The
maximum relative error of the final result is theoretically 2- 63.

23
•

Effect of an Argument Error

1
£---8

2

CSQRT /CDSQRT

Algorithm

1. Write y x + iy = a + ib.

Jlxl + Ix + iYI
2. Compute the value z = '\j 2 as k • v' Wl + W:l .where k, Wl and W2

are defined in 3 or 4, below. In any case let v) = max (lxi, Iyl) and

v:! = min (lxi, IY!).
3. In the special case when either V 2 = 0 or VI greatly exceeds V 2 , let CUI = V 2 and

CU 2 = VI so that WI + W 2 is effectively equal to VI'

Also let k = 1 if Vl = Ixl and

k = 1/\1'2 if VI = lyl.

4. In the general case, compute F = ~ ¥4 + ¥4 (::)" .

If Ixl is near the underflow threshold, then take

Wl = lxi, w:! = VI • 2F, and k = 11 v'2.
If VI • F is near the overflow threshold, then take

WI = Ix1/4, W:! = Vt ·F/2, and k = v'2.
In all other cases, take WI = Ix1/2, tc:! = VI • F, and k = 1.

5. If z = 0, then a = 0 and b = O.
If z =/= 0 and x > 0, then a = z, and

y
b = 2z'

If z "'" 0 and x < 0, then a = ftl, and

b = (sign y) • z.

Algorithms 61

62 VS FORTRAN Library Reference

The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (SQRT or
DSQRT).

'lfect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r • ei7r and V x + iy = R • eiH

,

1
then (R) lOW ""2 8 (r), and (H) lOW 8 (h) .
QSQRT

Algorithm

1. Let x = 162p+q • m, where p is an integer, q = 0 or 1, and

116 < m < 1. Let Xl = 16:i2 - q
• m

This scaling by 16:i2 is made to avoid intermediate underflows.
2. Compute the first approximation Yo to vX'; as follows:

- 1616 • 4- q { 1807018 1.576942} Yo - . - 0.9540356 + m

These coefficients were determined to minimize the relative error of the approxi­
mation while being exact at m = l. The maximum relative error is 2- 5•48•

3. Apply Newton Raphson iteration three times - twice in short form and once in
long form.

Yi = 21 (Yi-l +~) i = 1, 2, 3.
Yi-l

At the end of the third iteration, the relative error (a of Ya is at most 2-41 •

4. Apply to Ya the following cubic refinement in extended precision:
2

Ys - Xl
Y4 = Ya - 2Ya • 2 •

3Ya + Xl

The relative error E4 of y. is ! (Ea)a or 2-125•

Since the right hand term is only a correctional tenn, a simplified extended
division suffices. In the process of assembling Y4, a virtual rounding is given.

5. Replace the exponent of Y4 with the correct exponent p + q.

Elfect of an Argument Error

1
(~28

CQSQRT

Algorithm

1. Write V x + iy = a + ib
2. Let 162p+q - 1 < max(lxi, Iyl) < 162p+q, q = 0, or 1

Let Xl = X • 16-2P, and YI = Y' 16-2P•

This scaling operation is carried out by manipulation of the characteristic fields
of x and y. In doing this necessary precaution is exercised to avoid the anomaly
of characteristic wrap-around.

3. Compute z, = J1x,I + I~, + iy,l

Restore scaling: z = 1&· z I
4 .. If z = 0, then a = 0 and b = O.

1fz::l= 0, and x > 0, then a = z, and

o

b=~.

Ifz#Oandx < 0, then a = I ~ I, and

b = (sign y) • z. .

Effect 0' an Arlumen' Error
Using polar coordinate, write x + iy = r· ef1l and yx + iy = R· eiH•

1
Then ~(R) - 2" 8(r), and ~(H) ,....., 8(h).

Tangent and Cotangent Subprograms

TAN/COTAN

AI,orithm

1. Divide I x I by ; and separate the result into the integer part (q) and the

fraction part (r). Then I x I = ; (q + r).

2. Obtain the reduced argument (tc) as follows:
if q is even, then tC = ,.
if q is odd, then 1C = 1 - r.

The range of the reduced argument is 0 < tf < 1.
3. Let qo == q mod 4.

Then for qo = 0, tan !x: = tan (~ • Ie) and cot :.<: = cot (~ • It),
q" = 1, tan :x: = cot (~ • Ie) and cot ;xl = tan (~ • Ie).

qo = 2, tan ;x i = - cot (: • Ie) and cot Ix: = - tan (~ • ".).

qo = 3, tan :x; = - tan (~ • Ie) and cot Ixl = - cot (~ • Ie).

4. The value of tan (~ • Ie) and cot (~ • IV) are computed as the ratio of tW(

polynomials :

(
'1t') weP(u) ('1t') Q(u)

tan ""4 e IC ~ Q (u) ,cot ""4. u: ~ tC e P (u)

where u = 1h1C:? and

P(u) = - 8.460901 + tl
Q(tl) = - 10.772754 + 5.703366 • II - 0.159321 • u:!.

These coefficients were obtained by the minimax rational approximation (in
relative error) of the indicated form. The maximum relative error of this
approximation is 2-26• Choice of urather than w2 as the variable for Pand Qis to
improve the roundoff quali~y of. the coefficients.

5. If x < 0, then tan (x) = - tan :x:, and cot (x) = - cot Ixl.
6. This program is provided with two kinds of errOr controls. One is for arguments

whose magnitude is greater than 211' e '1t'. The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. ~fore specifically,
the second control screens out the following arguments:
a) lxl < 16-63 for COTAN (the result would overflow).
b) x is such that one can find a singularity within eight units of the last digit

Algorithms 63

value of the floating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and w = o.

ERed of an Argument Error

~ 2
E ,- and (,- . () for tan (x). Therefore, near the singularities cos2 (x) , sm 2x

x = (k + !) 7r, where k is an integer, no error control can be maintained. This

is also true for cotan (x) for x near k7l', where k is an integer.

DTAN/DCOTAN

Algoritbm

71'
1. Divide Ixl bY-if-and separate the result into integer part·(q) and the rr:lction

"%

71'
part (r). Then Ixl =-:r(q + r).

2. Obtain the reduced argument (w) as follows:
if q is even, then w = r
if q is odd, then w = 1 - r.

The range of the reduced argument is 0 < w < 1.
3. Let qo == q mod 4.

Then for q. = 0, tan Ixl = tan (: • w)and cot Ixl = cot (~ • w).

q. = 1, tan Ixl = cot (~ • w) and cot Ixl = tan (~ .. w),

qo = 2, tan Ixl = - cot (~ • w) and cot Ixl = - tan (: • w),

q. = 3, tan Ixl = - tan (~ • w)and cot Ixl = - cot (~ • w).

4. The value of tan (~ • w) and cot (~ • w) are computed as the ratio of

two polynomials:

(

71') W • P (w2
) (71') Q (w2

)
tan 4". w :::::: Q(w2) ,and cot ""4 • w ~ w. P(w)'

where both P and Q are polynomials of degree 3 in w2• The coefficients of P
and Q were obtained by the minimax rational approximation (in relative error)

of ! tan (~ w) of the indicated form. The maximum relative error of this

approximation is 2- 55 .6 •

5. If x < 0, then tan (x) = - tan lxi, and cot(x) = - cot Ixl.
6. This program is provided with two kinds of error controls. One is for argu­

ments whose magnitude is greater than 250 • 71'. The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
specifically, the second control screens out the following arguments:
a) Ixl < 16-63 for COTAN (the result would overflow).

o

b) x is such that one can find a singularity within eight units of the last digit
value of the floating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and w = o. Q

.I

64 VS FORTRAN Library Reference

o

Effect of an Argument Error

f1. 2
E -.I 2 ()' and £ -.I • (2x) for tan (x). Therefore, near the singularities of cos x sIn

" = (k + !) ", where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near k1T, where k is an integer.
QTAN/QCOTAN

Algorithm

1. Separate argument into an integral multiple of ; and the remainder part:

Ixl = ; . q + r where q is an integer, and - ~ < r < ~ .
In this decomposition, after q is estimated in the working precision, r is accu­

rately computed as r = Ix! - ; • q with the aid of approximately 10 hexa-

decimal guard digits.
2. If cot (x) is desired, add 1 to q, and remember to change the sign of the answer.

Since cot (,,) = - tan (x + ;), this reduces the case to computation of

tangent.
3. If q is even, tan(lxl) = tan(r), and the latter is obtained by a minimax approxi­

mation of the form:
__ rP(r!!)

tan(r) = Q(r2)

where P and Q are polynomials of degree 6 and 5 respectively.

If q is odd, tan(Ixl) = -cot(r), and the latter is computed as
.2i!2 cot (r)::::: rP(r2)

using the same polynomials as the former case.
The relative errors of these approximations are less than 2 - 111. In evaluating
these rational approximations, an exponent scaling is used to avoid intennediate
partial underflows, which can result in a loss of accuracy.

4. If x < 0, then tan(x) = -tan(Ix!), and cot(x) = -cot(Ixl).

Effect of an Argument Error

E ~ ~() , and £ ~ • ~~) for tan (x). Therefore near the singularities (:os- X SID X

" = (k + !) .. , where k stands for integers, no error control can be maintained.

This is also true for (.'ot(x) for x near k1T, where k is an integer.

Algorithms 65

Implicitly Called Subprograms
The entry point names of the following implicitly called subprograms are gener­
ated by the compiler.

Complex Multiply and Divide Subprograms

CDVD#/CMPY# (Divide/Multiply for COMPLEX*8 Arguments)

CDDVD#/CDMPY# (Divide/Multiply for COMPLEX*16 Arguments)

Algorithm

Multiply: (A + Bi) (C + Di) = (AC - BD) + (AD + Be)i
Divide: (A + Bi) / (C + Di)

1. If ICI < IDI, set
A = B, B = - A, C = D, D = - C, since
A + Bi B - Ai --- = before step 2.
C + Di D - Ci

A B D
2. SetA' = c; B' = C,D' = c;

then compute
A + Bi A' + B'i A' + B'D B' - A'D'
C-+-D-i = -1-+-D-'-i = 1 + D'D' + 1 + D'D' i.

Error Conditions

Partial underflows can occur in preparing the answer.

CQMPY# /CQDVD# (Multiply/Divide for COMPLEX*32 Arguments)

Algorithm

Multiply: (a+bi) (c+di) = (ac-bd) + (ad+bc)i

Divide: (a+bi)/ (c+di)

1. Let a + bi and c + di be the first and the second operands respectively.
2. Find exponents Ph P2 wWch satisfy the following:

16"1-1 < max(lal, Ibl) < 1&\ 1&2-1 < max (Icl, Idl) < 1&,.
Choose q = -3 if PI > 0

q = 31 if PI < 0
3. Scale c and d by 1&2- q and change sign of d if CQDVD#:

CI = c . 16q - P2

_ ~d' 16q
- P2 if CQMPY#

dl
- 1-d . 16q - P2 if CQDVD#.

Here if the exponent adjusbnent results in underflow, replace the dected
quantity with O.

4. Compute UI + VIi = (acI - bd1) + (ad l + bet) i
5. If CQMPY#, restore the scaling to obtain the answer u + vi:

U = Ul • 16"2-q and V = VI • 1&2-Q
•

6. If CQDVD#, compute the denominator as follows:
WI = (CI2 + d1

2) • 16-2q

Note that 16-2 < WI < 2.
Then divide: U2 = Ut/WI and V2 = VI/WI

Finally, restore the scaling to obtain the answeru + vi:
U = 1.12' 16- q - P2 and V = V2 • 16-Q -

p,.

Effect of an Argument Error

In terms of complex vector relative errors, f ,..., 8x + 8y where 8x is the relative
error of the first operand and By is the relative error of the second operand.

66 VS FORTRAN Library Reference

o

o ,
r

o Complex Exponentiation Subprograms

(Exponentiation of a Complex Sase to an Integer Power)

FCDXI# (COMPLEX* 16 Arguments)

FCXPI# (COMPLEX*8 Arguments)

Algorithm

The value of Yl + Y:d = (Zl + z;!i)j is computed as follows.
K

Let Iii = ~ r~,· 2~' where r~. = 0 or 1 for k = 0, 1, ... , K.
k=O

Then zl.i 1= n z 2\ and the factors Z21., can be obtained by successive squaring.

More specifically:
1. Initially: k = 0, ntH) = Iii, Yl (til + Y:J(Clli = 1 + Oi,

Zl (0) + z~ (O)i = Zt + Z:Ji.

2. Raise the index k by I, and let n U .. - ll = 2q + r, where q is the integer
quotient and r = 0 or 1.

3. Let n(1 ..) = q.
4. If r = 0, then Yl lid + 1!:JCkli = Yl (1.'-1) + Y2(/ .. -l)i.

Ifr = 1,thenYl 0') + y:!(~')i = (Yl(1"-l) + Y2(1.·-1li) (Zt(k-l) + Z2(~·-1)i).
5. If n(1.·) =F 0, then Zl P"l + z;!(k)i = (Zl (1.'-1) + Z2(k-l))2, and steps 2

through 5 are repeated until n(~') = o.
6. When n(T.·) = 0, and i > 0, then Yl + y:!.i = Yl (k) +Y2(1;)i.

Ifi < 0, thenYl + y:!i = (1+ Oi) I (Yl(~') + y:!Udi).

(Exponentiation of a Complex 8ase to a Complex Power)

FCQXQ# (COMPLEX *32 Arguments)
FCDXD# (COMPLEX *16 Arguments)
FCXPC# (COMPLEX *8 Arguments)

Algorithm

z. ** z:! = exp (Z2 * log z.), where the functions 4exp' and 4log' are CEXP and
CLOG, CDEXP and COLOG, or CQEXP and CQLOG respectively as the argu­
ments are C*8, C*16, or C*32.

Ellect of an Argument Error

Ifz. = x. + iy, and Zl = x:! + iY2, then
z. ** Zl = exp (0) * (cos(b) + i sin(b», where
0= X'l * log I x. + iy. 1- Y'l * arctan (y/x.) and
b = Y'l * log I X2 + iy,! 1+ X'l * arctan (y/x.).

The function z·· ~ is calculated using the FORTRAN routines for sin, cos, exp, log,
and arctan.

Therefore the effect of an argument error upon the accuracy of the result depends
upon its effect in the functions SIN, COS, EXP, LOG, and AT AN.

Algorithms 67

68 .VS FORTRAN Library Reference

Exponentiation of a Real Base to a Real Power Subprograms

FDXPD# (REAL *8 Arguments)

FRXPR# (REAL *4 Arguments)

Algorithm

Assume the desired answer is a6 •

1. If a = 0 and b :iii 0, error return.
If a = 0 and b > 0, the answer is O.

2. If a -;;t: 0 and b =0, the answer is 1.

3. All other cases, compute air as e h • log (/. In this computation the exponential
subroutine and the natural logarithm subroutine are used. If a is negative or if
b • log a is too large, an error return is given by one of these subroutines.

Error a.limii; ..

The relative error of the answer can be expressed as (E) + E~) b • log (a) + Ea

where EJ, E;!, and E:~ are relative errors of the logarithmic routine, machine multi­
plication, and the exponential routine, respectively.

For FDXPD#, £) < 3.5x10- H', fi~ < 2.2x10- 16, and £:\ < 2.0x10-1fl. Hence the
relative error < 5.7x10-1flx lb. log a I + 2.Ox10-16. Note that b • log a is the
natural logarithm of the answer.

For FRXPR#, Et < 8.3x10-7, fi~ < 9.5x10-7, and Ea < 4.7x10-7. Hence the relative
error < 1.8x10-6 x lb. log a I + 4.7x10-7.

Elfed of an Argument Error

[a(1 + 8))] b(1 + 8:!) :::::: a"(1 + 8:!b • log a + b8 t). Note that if the answer does
not overflow, Ib • log al < 175. On the other hand b can be very large without
causing an overflow of ah if log a is very small. Thus, if a :::::::: 1 and if b is very
large, then the effect of the perturbation 8t of a shows very heavily in the relative
error of th(· answer.

Exponentiation of a Rea/8ase to an Integer Power Subprograms

FDXPI# (REAL*8 Arguments)

FRXPI# (REAL *4 Arguments)

Algorithm

1. If a = 0 and b s 0, error return.
If a = 0 and b > 0, the answer is O.

2. If a -;;t: 0 and b =0, the answer is 1.

3. The value of y = aj is computed as follows: Let Iii
K

= L 1',,2" wlu're T:, = 0
1."=0

or 1 for k = 0, 1, ... , K. Then aliI = n a:!k and th(~ factors a:!1: can be ohtained
rk =F 0

by successive squaring.

More specifically:
1. Initially: k = 0, n(O) = Iii, y(O) = 1, and z(O) = a.

2. Raise the index k by 1, and decompose n I'" - II = 2q + r, wherl~ q is til<.'
integer quotient and r = 0 or 1.

o

3. Let n(kl = q. C'"
4. If r = 0, then y(k) = y(7.'- J). 1_"':

If r = 1, then y("') = y(1."-1)Z(~·-l).)

0 ,
.. v

:c·\ . ,

C·, , I

5. If n(1.·) =F 0, then z(1O) = Z(1·-1)Z(U-l, and steps 2 through 5 are rt'p('aten
until n a·) = O.

1
6 When nIl,') = 0 and l' > 0 then y = y(/.") If l' < 0 then II = -. ,= , ',.1 y(1o')'

Note: The negative exponent is computed by taking the reciprocal of the posi­
tive power. Thus it is not possible to compute 16.0**-64 because there is a lack of
symmetry for real floating-point numbers - i.e., 16.0**-64 can be represented,
but 16.0**64 cannot. The result is obtained by successive multiplications and is
exact only if the answer contains at most 14 significant hexadecimal digits.

Exponentiation of an Integer Base to an Integer Power Subprogram

FIXPI# (lNTEGER*4 Arguments)

Algorithm

1. If a = 0 and b s; 0, error return.
If a = 0 and b > 0, the answer is O.

2. If a ~ 0 and b =0, the answer is 1.
3. The value of L = / i is computed as follows: Let j =

KI

I: f" • 2" where
" = 0

f" = 0 or 1 for k = 0,1, ... , K. Then /i = n /2\ and the factors /2" can be
obtained by successive squaring. r~ ;00 II

More specifically:
1. Initially: k = 0, n WI = ;, yltH = 1, and m 1ill = 1.
2. Raise the index k by 1, and decompose n l 1.·-11 = 2q + f, where q is the

integer quotient and l' = 0 or 1.
3. Let n/lo') = q.
4. If l' = 0, then y/l.' = yl/,-ll.

If l' = 1, then y (/,' = Y (/, - 1 I • 111 1/, - 1 I •

5. If n lk) =f= 0, then mIl,') = m l l.'-l) • mll.'-ll, and steps 2 through 5 are repeated
until n (10') = 0.

6. When nIl;, = 0, L = IJ1/,'.

Note: The result is obtained by successive multiplications. The result is exact
only if it is less than (2**31) - 1. Results are meaningless when this limit is
exceeded and may even be of changed sign. No tests for overflow are made.

Algorithms 69

Complex Exponentiation Suhprogram

FCQXI# (COMPLEX*32 Arguments)

AIgor"hm
1. Write (x + yi)J = a + hi.
2. If x + yi = 0 + Oi and] > 0, then a + hi = 0 + 0;

3. If] = 0, a + hi = 1.0 + 0;. Assume now] =F o.
" 4. Let 1]1 = 1 gl 2"-1 where gl = 0 or 1, go = 1.

1-0

Initialize ao + hoi = x + yi. If 1]1 = 1, skip the following.
Do the following for; = 1, 2, ... , n:

+ b' - ~(aj-l + h'_li)2 . ifgj = 0
a, ,,- 1 (aj-l +.bl _ 1t)2(x +yi) ifgj =!

At the end of iteration an + brai = (x + yi) 1"1.

5 If] 0 (+ ')J _ 1.0 + OJ
. <, X . Y' - (x + yi) 1.11

Elfect 0' an Argument Error
IE/ ,...,] 181 where 8 is the complex relative error of the base and E is the complex
relative error of the result due to this.

Exponentiation of a Base 2 Argument to a Real Power Subprogram

FQXP2# (REAL * 16 Arguments)

Algor'thm
This subprogram uses the same algorithm as the QEXP explicit subprogram.

Exponentiation of a Real Base to an Integer Power Subprogram

FQXP.# (REAL*16 Arguments)

AIgor'thm .
1. Writer = y
2. If x = 0 and] > 0, then y = 0

3. If x =F 0, and] = 0, then y = 1.0. Assume now] =F O.

" 4. Let 1]/ = l g,2"-1 where gj = 0 or 1, go = 1.
1==0

Initialize Yo = x. If 111 = 1, ~kip the following.
Do the following for; = 1,2, ... ,n:

= ~y2j_l if gl = 0
YI 1y2/- 1 • x if g, = 1

At the end of iteration y,. = xlJI.

1
5. If] < 0, r = xlJI

Note: The negative power is computed by taking the reciprocal of the positive
power. Thus it is not possible to compute 16.0** - 64 because there is a laclc of
symmetry in real Boating point numbers; i.e., 16.0**-64 can be represented, but
16.0**64 cannot.

Ellect 0' an Argument Error
(-]8

70 VS FORTRAN Library Reference

o

o

o

Exponentiation of a Real lase to a Real Power Subprogram

FQXPQ# (REAL * 16 Arguments)

Algorithm
1. Basically, x" = 2"· 101(1(41) •

2. More specifically, log2(x) is computed with aimed accuracy of 16-30 in abso­
lute error, or 16-28 in relative error, whichever is smaller, by the algorithm of
QLOG/QLOGI0. The result is kept as two components; the high order part
is represented by a single precision number; and the low order part, which is
less than 16-2 in absolute value, is represented by an extended precision
number.

3. The product y. log2 (x) is obtained by a simulated multiplication to obtain up
to 31 hexadecimal digits of accuracy.

4. Raise the result to the power of 2 by the algorithm of QEXP. As stated there,
this includes a virtual final rounding with the result that one obtains the full
28 hexadecimal digit accuracy unless x is very close to 1.0.

Iffect 0' an Argument Error
E ~ Y • 8z + y • log (x) • 8". The factor y • log(x) is limited by 180 in magnitude.
If beyond this, the result will overflow. However, the other factor y can be very
large if x is close to 1. This is so because log (x) will then be very small.

Algorithms 71

72 VS FORTRAN Library Reference

Accuracy Statistics

This chapter contains accuracy statistics for explicitly and implicitly called
mathematical subprograms. These statistics are presented in Figure 12. They are
arranged in alphabetic order, according to the entry names. The following informa­
tion is given in the two figures:

Entry Name: This column gives you the entry name that is used to call the
subprogram.

Argument Range: This column gives the argument range used to obtain the
accuracy figures. For each function, accuracy figures are giv~n for one or more
representative segments within the valid range. In each case, the figures given are
the most meaningful to the function and range under consideration.

The maximum relative error and standard deviation of the relative error are
generally useful and revealing statistics; however, they are useless for the range of
a function where its value becomes O. This is because the slightest error in the
argument can cause an unpredictable fluctuation in the magnitude of the answer.
When a small argument error would have this effect, the maximum absolute error
and standard deviation of the absolute error are given for the range.

Sample: This column indicates the type of sample used for the accuracy figures.
The type of sample depends on the function and range under consideration. The
statistics may be based either upon an exponentially distributed (E) argument
sample or a uniformally distributed (U) argument sample.

Accuracy Figures: This column gives accuracy figures for one or more represen­
tative segments within the valid argument range. The accuracy figures supplied are
based on the assumption that the arguments are perfect, that is, without error and,
therefore, have no error propagation effect upon the answers. The only errors in
the answer are those introduced by the subprograms. The chapter "Algorithms"
contains a description of some of the symbols used in the chapter; the following
additional symbols are used in the presentation of accuracy figures:

M () - M I f(x) - g(x) I
(- ax f(x)

The maximum
relative error
produced
during testing.

,-----r-------= The standard

~ 1 f (xd - g (xd 2 deviation (root-
= N L: i f() mean-square)of

Xi the relative error.

M(E) = Max I f(x) - g(x) I
The maximum
absolute error
produced
during testing.

r-----r-----~2 The standard

~ 1 I I deviation (root-
(J' (E) = N L: i f (Xi) - g (Xl) mean-square) of

the absolute error.

0, I
. ,II

In' case of complex functions, the absolute value signs employed in the above
definitions are to mean the complex absolute values. In the formulas for standard Ci
deviation, N represents the total number of arguments in the sample; i is a \.
subscript that varies from 1 to N.)

Entry Argument Sample
Accuracy Figures

~ Name Range E/U Relative Abs(lute
M(f) cr (E) M (E) cr(E)

0." "

ALGAMA 0< X < 0.5 U 1.16 X 10-6 3.54 X 10-7

0.5 ~X < 3.0 U 9.43 X 10-7 3.42 X 10-7

3.0~X < 8.0 U 1.25 X 10-6 3.04 X 10-7

8.0 ~ X < 16.0 U 1.18 X 10-R. 3.80 X 10-7

16.0 ~ X < 500.0 U 9.85 X 10-7 1.90 X 10-7

ALOG 0.5 ~ X ~ 1.5 U 6.85 X 10-8 2.33 X 10-8

X < 0.5, X > 1.5 E 8.32 X 10-7 1.19 X 10-7

ALOG 10 0.5 ~ X ~ 1.5 U 7.13 X 10-8 2.26 X 10-8

X < 0.5, X > 1.5 E 1.05 X 10-6 2.17 X 10-7

ARCOS -l~X~+l U 8.85 x 10-7 3.l9 X 10-7

ARSIN -l~X~+l U 9.34 X 10-7 2.06 X 10-7

ATAN The full range Note 7 1.01 X 10-6 4.68 X 10-7

ATAN2 The full range Note 7 1.01 X 10-6 4.68 X 10-7

CABS The full range Note 1 9.15 X 10-7 2.00 X 10-7

CCOS IXl! ~ lO,IX21 ~ 1 U 2.50 X 10-6 7.66 X 10-7

See Note 2

CDABS The full range Note 1 2.03 X 10-11; 4.83 X 10-17

CDCOS IXl! ~ 10, !X:! -~ 1 U 3.98 X 10-15 2.50 X 10-16

See Note 3

CDEXP IXll ~ l,IX21 ~ 7r/2 U 3.76 X 10- lfi 1.10 X 10-16

10 IXll ~ 20, IX:I ~ 20 U 2.74 X 10-u; 9.64 X 10-16

CDLOG The full range Note 1 2.72 X 10-16 5.38 X 10-17

except (1 + Oi)

CDSIN IXll ~ 10, IX2 1 ~ 1 U 2.35 X 10-15 2.25 X 10-16

See Note 4

CDSQRT The full range Note 1 1.76 X 10- HI 4.06, X 10-17

CEXP IXll ~ 170, IX21 ~ 7r/2 U 9.93 X 10-7 2.67 X 10-7

IXll ~ 170, U 1.07 X 10-1; 2.73 X 10-7

7r/2 < IX2! ~ 20

CLOG The full range Note 1 7.15 X 10-1 1.36 X 10-7

except (1 + Oi)

COS O~X~7r U 1.19 X 10-7 4.60 X 10-8

-10~X < 0, U 1.28 X 10-7 4.55 X 10-8

1f' < X~ 10

10 < IXI ~ 100 U 1.14 X 10-7 4.60 X 10-8

COSH -5~X~ + 5 U 1.27 X 10-1i 2.63 X 10-1

COTAN IXI ~1f'/4 U 1.07 X 10-1; 3.58 X 10-7

7r/4 < IXI ~ 7r/2 U 1.40 X 10-6 (Note 5) 2.56 X 10-1

7r/2 < IXI ~ 10 U 1.30 X 10-11 (Note 5) 3.11 X 10-7

10< IXI ~ 100 U 1.49 X 10-0 (Note 5) 3.15 X 10-7

NOTES: (See end of figure.) o Figure 12. (Part 1 0/6) Accuracy Figures

Accuracy Statistics 73

Entry Argument
Name Range

CQABS Full range

CQCOS -10 < x < 10
-1 < y < 1

CQDVD# •
CQEXP -170 < x < 170

_2:..<v<~
2 . 2

CQLOG Ful1 range

CQMPY# •
eQSIN -10<:.:<10

-1 < y < 1

CQSQRT Full range

CSIN IXII ~ 10, IX21 ~ 1

CSQRT The full range

DAR COS IXI~1

DARSIN IXI ~ 1

DATAN 'The full range

DATAN2 'The full range

DCOS O~X~'/I"

-10~X<0,

'/I" < X~ 10

10 < X ~ 100

DCOSH IXI~5

DCOTAN IXI ~'/I"/4

'/1"/4 < IXI ~ '/1"/2

'/1"/2 < IXI ~ 10

10< IXI ~ 100

DERF IXI ~ 1.0

1.0 < IXI ~ 2.04

2.04 < IXI < 6.092

DERFC -6 <X < 0

O~X~1

1< X ~ 2.04

2.04 < X < 4

4 ~ X < 13.3

NOTES:· (See end of figure,)

Figure 12. (Part 2 of 6) Accuracy Figures

74 VS FORTRAN Library Reference

Sample
E/U

Note 9

U

Note 8

U

Note 9

Note 8

U

Note 9

U

Note 1

U

U

Note 7

Note 7

U

U

U

U

u
U

U

U

U

U

U

u
U

U

U

U

Accuracy Figures

Relative Abs.olute
M (e) cr (e) M (E) cr(E)

2.77 X 10-111 5.45 X 10-84

6.87 X 10-33 2.44 X 10-111

5.32 X 10-aa 1.42 X 10-38

3.82 X 10-111 8.30 X 10-84

4.53 X 10-33 9.72 X 10-84

4.52x 10-311 1.27 X 10-&1

7.26 X 10:::: 2.37 X 10-3:1

3.37 X 10-83 7.27 X 10-84

1.92 X 10-6 7.38 X 10-7

See Note 6

7.00 X 10-7 1.71 X 10-7

2.07 X 10-16 7.05 X 10-11

2.04 X 10-16 5.15 X 10-17

2.18 X 10-16 7.04 X 10-17

2.18 X 10-16 7.04 X 10-11

1.79 X 10-16 6.53 X 10-11

1.75 X 10-16 5.93 X 10-11

2.64 X 10-15 1.01 X 10-16

3.63 X 10-16 9.05 X 10-11

2.46 X 10-16 (Note 5) 8.79 X 10-17

2.78 X 10-13 (Note 5) 8.61 X 10-15

5.40 X 10-13 (Note 5) 1.13 X 10-14

8.61 X 10-13 (Note 5) 4.61 X 10-14

1.89 X 10-16 2.60 X 10-11

2.87 X 10-17 9.84 X 10-18

1.39 X 10-11 8.02 X 10-18

2.08 X 10-16 6.52 X 10-11

1.40 X 10-16 2.59 X 10-11

4.11 X 10-16 8.86 X 10-11

3.26 X 10-16 8.65 X 10-17

3.51 X 10-15 1.96 X 10-15

C~ J
)

10
Argument Sample

Accuracy Figures
Entry

Re:ative AM.lute Name Range ElU
M(e) ., (e) M (E) ,.(E)

DEXP IXI;a 1 U 2.04 X 10-16 5.43 X 10:"11

1 < IXI;a20 U 2.03 X 10-16 4.87 X 10-11

20 < IXI ;a 170 U 1.97 X 10-16 4.98 X 10-11

DGAMMA O<X<l U 2.14 X 10-16 7.84 X 10-11

1;aX;a2 U 2.52 X 10-11 6.07 X 10-18

2<X<4 .U 2.21 X 10-16 8.49 X 10-17

4;aX<8 U 5.05 X 10-16 1.90 X 10-16

8;a X < 16 U 6.02 X 10-15 1.78 X 10-15

16;a X < S7 U 1.16 X 10-14 4.11 X 10-15

DLGAMA 0< X;a 0.5 U 2.77 X 10-16 9.75 X 10-11

0.5 < X < 3 U 2.24 X 10-16 7.77 X 10-11

3;aX<8 U 2.89 X 10-16 8.80 X 10-17

8;a X < 16 U 2.86 X 10-16 8.92 X 10-17

16;a X < 500 U 1.99 X 10-16 3.93 X 10-17

DLOG 0.5 ;a X ;a 1.5 U 4.60 X 10-17 2.09 X 10-11

X < 0.5, X > 1.5 E 3.32 X 10-16 5.52 X 10-17

DLOG10 0.5 ;a X ;a 1.5 U 2.73 X 10-17 1.07 X 10-11

X < 0.5, X > 1.5 E 3.02 X 10-16 6.65 X 10-11

DSIN IXI ~ ,,/2 U 3.60 X 10-16 4.82 X 10-11 7.74 X 10-11 1.98 X 10-11

,,/2 < IX! ;a 10 U 1.64 X 10-16 6.49 X 10-17

10 < IX! ~ 100 U 2.68 X 10-15 1.03 X 10-111

DSINH IXI ;a 0.88137 U 2.06 X 10-16 3.74 X 10-17

0.88137 < IXI ~ 5 U 3.80 X 10-16 9.21 X 10-11

DSQRT The full range E 1.06 X 10-16 2.16 X 10-11

DTAN !X! ~ ,,/4 U 3.41 X 10-16 6.27 X 10-17

,,/4 < IXI ;? ,,/2 U 1.43 X 10-12 (Note 5) 2.95 X 10-14 .

,,/2 < !X! ~ 10 U 2.78 X 1O-1lJ (Note 5) 7.23 X 10-15

10< IXI ~ 100 U 3.79 X 10-12 (Note 5) 9.50 X 10-14

DTANH IXI ~ 0.54931 U 1.91 X 10-16 3.86 X 10-17

0.54931 < IX! ~ 5 U 1.54 X 10-16 1.87 X 10-11

ERF !XI ;a 1.0 U 8.16 X 10-1 1.10 X 10-7

1.0 < !X! ~ 2.04 U 1.13 X 10-7 3.70 X 10-8

2.04 < !XI ;a 3.9192 U 5.95 X 10-8 3.41 X 10-8

NOTES: (See end of figure.)

Figure 12. (Part 3 oj 6) Accuracy Figures

o
Accuracy Statistics 75

Entry Argument Sample
Accuracy Figures

Name Range E/U
Relative Absolute

M (E) cd E) M(E) IJ'(E) o
ERFC -3.8 < X < 0 U 9.10 X 10-7 2.96 X 10-7

o ~ X ~ 1.0 U 7.42 X 10-7 1.27 X 10-7

1.0 < X ~ 2.04 U 1.54 x 10-6 3.78 X 10-7

2.04 < X ~ 4.0 U 2.28 X 10-6 3.70 X 10-7

4.0 < X ~ 13.3 U 1.55 x 10-5 8.57 X 10-6

EXP IXI ~ 1 U 4.65 X 10-7 1.28 X 10-7

1<IX!~170 U 4.42 x 10- 1 1.15 X 10-1

FCQXI# 2~J ~ 160, .'3.7 x 10-:13 X J 10-33 X (J - 1)
10-.0

,,1 < Ix + iYi < 10';'''.1

FQXPI# 2~.J;£ 160. 2.5 x 10-3:1 x (J - 1) 6.1 x 10-31 x (J - 1)
1O-'.-"J < X < 10'" .I

FQXPQ# 0.99 < A < 1.01 U 5.68 x 10-31 5.16 X 1O-3!!
-75 log" 10 < 8
< 751og.\ 10

(A**B) 0.5 < A ~ 0.99, U 5.65 x 10-32 2.16 x 10-3.1

or 1.01 ~ A < 2
-75Iog,\ 10 < B
< 75 Ing.t 10

0< A ~ 0.5, E 1.60 x 10-3.1 3.87 X lO-u

or 2 ;£ A < 1 o·~

-7Slog.\ 10 < B U 1.60 X 10-;1.1 3.87 X lO-M

< 75Iog.\ 10

FQXP2# -260 < x < 252 U 1.52 x 10-3.1 3.78 X 10-84

GAMMA 0< X < 1.0 U 9.86 X 10-7 3.66 X 10-7

1.0 ~ X ~ 2.0 U 1.13 X 10- 7 3.22 X 10-8

2.0 < X ~ 4.0 U 9.47 X 10-1 3.79 X 10-7

4.0 < X < 8.0 U 2.26 X 10-6 8.32 X 10-1

8.0 ~ X ~ 16.0 U 2.20 x 10-5 7.61 X 10-6

16.0 < X ~ 57.0 U 4.62 X 10-5 1.51 X 10-5

QARCOS -1 ~ x ~ 1 U 3.18 X 10-33 9.81 X 10-81

QARSIN -l;£x~l U 3.l4 x 10-33 7.89 X 10-3•

QATAN _1O,r. < x < 107r. Note 10 2.92 X 10-38 7.32 X lO-u

QATAN2 Full range Note 9 3.53 X 10-83 7.83 X 10-8
•

QCOS O~X~7r U 4.41 x 10-:1.'1 6.58 X 10-3-1 3.23 X 10-3-1 1.48 X 10""

-10 < x < 0, or U 3.43 X 10-" 1.57 X 10-"

7r ~ X < 10

-200 < x ~ -10, or U 3.48 X 10-" 1.57 X 10""
10 ~ x < 200

QCOSH -10 < x < 10 U . 5.83 X 10-38 1.57 X 10-33

NOTES: (See end of figure.)

Figure 12. (Part 4 of 6) Accuracy Figures ()
;

76 VS FORTRAN Library Reference

'0
Argument Sample

Accuracy Figures
Entry Relative Absolute
Name Range E/U

M (f) cr (f) ~l (E) cr(E)

QCOTAN
." ." U 3.02 X 10-113 9.09 X 10-14

--:r<x<-:r

L< <_L U 3.98 X 10-33 1.09 X 10-33

-2 x= 4,or

...!..<x<L
4 = 2

'If 'If '

-10 < x ~ -"2' or T ~ x < 10
U 4.55 X 10-113 1.13 X 10-33

- 200 < x ~ - 10, or 1 0 ~ x < 200 U 3.98 X 10-11 1.11 X 10-113

QERF Ix! < 1 U .'3.0 X 10-113 5.3 X 10-34

1 ~ Ixl < 2.84375 U 9.2 X 10-34 2.3 X 10-14

2.84375 ~ Ixl < 5 U 1.9 X 10-34 1.3 X 10-14

QERFC -5 < x < 0 u 3.1 X 10-113 1.2 X 10-11

O~x<1 U 3.3 X 10-11 5.8 X 1O-1t

1 ~ x < 2.84375 U 7.7 X 10-113 2.8 X 10-113

2.84375 ~ x < 5 U 4.88 X lO-a 1.83 X lO-a

QEXP -1<x<1 U 1.51 X 10-33 4.27 X 10-34

-1O<x<1O U 1.53 X 10-113 3.96 X 1O-1t

-180 < x < 174 U 1.54 X 10-113 3.82 X 1O-1t

QLOG 0.99 < x < 1.01 U 4.27 X 10-113 1.51 X 10-31 1.92 X 1O-a.~ 8.36 X 10--

0.5 < x < 2 U 4.06 X 10-:\3 8.24 X 10-3• 3.17 X 10-34 1.63 X 10-1t

10-1
• < X < 10'5 E 4.45 X 10-31 8.77 X 1O-1t

QLOG10 10-1
• < x < 10'5 E 3.59 X 10-113 1.16 X 10-11

QSIN
'If' ."

-T<x<'2
U 2.48 X 10-113 3.12 X 1O-1t 2.95 X 10-34 1.17 X 10-1t

." ."

-10 < x ~ - '2' or T ~ x < 10
U 3.48 X 10-14 1.60 X 10-14

-200 < x ~ -10, or 10 ~ x < 200 U 3.50 X 1O-1t 1.56 X 10-14

QSINH -1 < x < 1 U 2.91 X 10-113 6.86 X 1O-1t

-10 < x ~ -1, or 1 ;a x < 10 U 6.71 X 10-11 1.37 X 10-11

QSQRT 1O-!IO < x < 1()80 E 1.49 X 10-11 2.95 X 1O-1t

10-'" < x < lOTI E 1.39 X 10-11 2.76 X 10-14

QTAN
." ."

-7<x<-:r
U 3.75 X 10-- 9.16 X 10-14

,." ."

- T <x ~T,or
U 2.77 X 10-11 8.78 X 10-:14

." ."

-:r~x<T

." ."
-10 < x ;a - "2' or T ~ x < 10

U 4.52 X 10-11 9.16 X 10-11

- 200 < x ~ -10, or 10 ~ x < 200 U 4.47 X 10-11 9.12 X 10-11

QTANH -0.54931 < x < 0.54931 U 2.41 X 10-11 5.12 X 10-14

-5 < x ~ -0.54931, or U 2.09 X 10-11 2.46 X 10-14 1.04 X 10-- 1.68 X 10
0.54931 ~ x < 5

NOTES: (See end of figure.)

Figure 12. (Part 5 of 6) Accuracy Figures

o
Accuracy Statistics 77

Argument Sample
Accuracy Figures

Entry Relative / Absolute
Name Range E/U

M (e) CJ (e) M (E) CJ(E) o.
SIN IXI ~ r/2 U 1.32 X 10-6 1.82 X 10-7 1.18 X 10-7 4.55 X 10-8

.,,/2 < IXI ~ 10 U 1.15 X 10-7 4.64 X 10-11

10< IXI ~ 100 U 1.28 X 10-7 4.52 X 10-11

SINH -5~X~ +5 U 1.26 X 10-11 2.17 X 10-7

SQRT The full range E 4.45 X 10-7 8.43 X 10-8

TAN IXI ~ r/4 U 1.71 X 10-6 2.64 X 10-7

1f'/4 < IXI ~ .,,/2 U 1.05 X 10-6 (Note 5) 3.59 X 10-1

.,,/2 < IXI ~ 10 U 6.49 X 10-6 (Note 5) 3.38 X 10-7

iO< iXi ~ iOO U 1.57 X 10-6 (Note 5) 3.07 X 10-7

TANH IXI~0.7 U 8.48 X 10-7 1.48 X 10-1

0.7< IXI ~5 u 2.44 x 10-7 4.23 X 10-8

NOTES:
1 The distribution of sample arguments upon which these statistics are based is exponential radially and is uniform around the

origin.
2 The maximum relative error cited for the ccos function is based upon a set of 2000 random arguments within the range. In

the immediate proximity of the points (n + -}) .. + Oi (where n = 0, ± 1, ± 2, ..• ,) the relative error can be quite

high, although the absolute error is small.
3 The maximum relative error cited for the CDCOS function is based upon a set of 1500 random arguments within tile· range.

In tbe immediately proximity of the points (n + -}) .. + Oi (where n = 0, ± 1, ± 2, ... ,) the relative error can be quite

high, although the absolute error is small.
• The maximum relative error cited for the CDSIN function is based upon a set of 1500 random arguments within the range.

In the immediate proximity of the points n." + Oi (where n = ± 1, ± 2, ... ,) the relative error can be quite high, although
the absolute error is small.

6 The figures cited as the maximum relative errors are those encountered in a sample of 2500 random arguments within the
respective ranges. See the appropriate section in the chapter "Algorithms" for a description of the behavior of errors when
the argument is near a singularity or a zero of the function.

6 The maximum relative error cited for the CSIN function is based upon a set of 2000 random arguments within the range. In
the immediate proximity of the points mr + Oi (where n = ± 1, ± 2, ... ,) the relative error can be quite high, although
the absolute error is small.

." ."
7 The sample arguments were tangents of numbers uniformly distributed between - T and + T'
8 X + iy = 3 e'8, where 8 is exponentially distributed in (0, 1()36), and 8 is uniformly distributed in (- 1r, 1r).

9 x + iy = 3 e'8, where 3 is exponentially distributed in (0, 1076), and 8 is uniformly distributed in (- 1r, 1r).

10 Tangents of linearly scaled random angles between - i and i.
Figure 12. (Part 6 0{6) Accuracy Figures

o
78 VS FORTRAN Library Reference

'0

o

Appendix A: Assembler language Information

The mathematical and service subprograms in the vs FORTRAN library can be used'
by\the assembler language programmer. Successful use depends on three things:
(1) making the library available to the linkage editor; (2) setting up proper calling
sequences, based on either a call macro instruction or a branch; and (3) supply cor­
rect parameters.

U8RARY AYAILABIUTY

The assembler language programmer must arrange for the desired subprograms
(modules) to be taken from the vs FORTRAN library and brought into main storage,
usually as a part of the programmer's load module. This can be done by employing
the techniques described in the OS/VS Linkage Editor and Loader, and Guide to the
DOS/VSE Assembler, publications.

For example, the vs FORTRAN library could be made part of the automatic call
library by using these job control statements:

Iljobname JOB desired operands
Ilstepname EXEC ASMFCLG,PARM.LKEO='XREF,LIST,MAP'
II ASM.SYSIN 00·

(assembler language program source deck)

I·
IILKED.SYSLIB 00 OSNAME=data set name,OISP=SHR
I·

Subprograms requested in the source program would then be available to the
linkage editor for inclusion in the load module.

CAWNG SEQUENCES

Two general methods of calling are possible: (1) coding an appropriate macro
instruction (for OS/VS and VM/370 CMS, see OS/VS Supervisor Services and macro
Instructions, and for OOS/VSE see DOS/VSE Data Management Concepts, and DOS/
VSE Macro User's Guide), such as CALL; or (2) coding assembler language branch
instructions.

In all cases, a save area must be provided that:

• is aligned on a fullword boundary

• is at least as large as the size specified in Figures 13, 14, and 15, (but preferably
the standard 18 words to ensure future compatibility)

• All extended precision mathematical subprograms (both explicit and implicit)
use a1116 registers, and require their callers to supply a full 18 word save area.

• has its address in general register 13 at the time of the CALL macro instruction
or branch

Notes:

1. For performance reasons, VS FORTRAN subprograms use certain floating-point
registers (see Figure 14), but do not save and restore original register con­
tents. If you wish floating-point information retained, you must save it before
calling the subprogram and restore it on return.

2. From the OOS/VSE control program register 1 is not used but the execution
parameters are passed as bit settings in the communications area.

Appendix A: Assembler Language Information 79

80 VS FORTRAN Library Reference

If the called subprogram uses VS FORTRAN input/output, error processing, or inter-
ruption routines (see Figure 17), the calling program must initialize the execution 0
environment by executing the following two instructions before the branch is
made:

L 15,=V(VSCOM#)
BAL 14,64(15)

These instructions cause a branch into the VSCOM# subprogram, which initial­
izes return coding and prepares routines to handle interruptions. If this initializa­
tion is omitted, an interruption or error may cause abnormal termination. (After
initialization, VSCOM# returns to the instruction following the BAL.)

Note:

An initialization entry to VSCOM# is not required if the main program is written
in FORTRAN, and the assembier ianguage routine is an intermediate.

o

o

o

o

Save Area Registers U se<P
Entry Name (s) . (Ful1words) Result Intermediate

AINT 9 0 2,4,6
ALGAMA, GAMMA 9 0 2,4,6
ALOG, ALOGI0 7 0 2,4,6
AMAXO, AMINO 6 0
MAXO, MINO 9 O·
AMAXI, AMINI 6 0
MAXI, MINI 9 O·
AMOD,DMOD 9 0 2,4,6
ARCOS, ARSIN 10 0 2,4
ATAN 5 0 2,4,6
ATAN,ATAN2 7 0 2,4,6
CABS 7 0,2 4,6
CCOS, CSIN 9 0,2 4
CDABS 7 0,2 4,6
CDCOS, CDSIN 9 0,2 4
CDEXP 8 0,2 4,6
CDLOG 8 0,2 4,6
CDSQRT 9 0,2 4,6
CEXP 8 0,2 4,6
CLOG 8 0,2 4,6
COS, SIN 7 0 2,4
COSH, SINH 8 0 2,4
COTAN,TAN 7 0 2,4
CSQRT 9 0,2 4,6
DARCOS, DARSIN 13 0 2,4
DATAN 5 0 2,4,6
DATAN,DATAN2 7 0 2,4,6
DCOS, DSIN 7 0 2,4
DCOSH, DSINH 8 0 2,4
DCOTAN,DTAN 7 0 2,4,6
DERF,DERFC 11 0 2,4,6
DEXP 7 0 2
DGAMMA, DLGAMA 11 0 2,4,6
DLOG, DLOGIO 9 0 2,4,6
DMAXI, DMINI 9 0
DSQRT 7 0 2,4
DTANH 5 0 2,4,6
EXP 11 0
ERF,ERFC 11 0 2,4,6
IDINT, INT, IFIX 9 0*
MOD 9 O·
SQRT 7 0 2
TANH 5 0 2,4,6

1Floating-point; asterisk indicates general.

Figure 13. Assembler Information for the Explicitly Called
Mathematical Subprograms

Save Area Registers Used1

Entry Name(s} (Fullwords) Result Intarmediate

CDMPY#, CDDVD# 5 0,2 4,6
CDVD#, CMPY# 5 0,2 ,/ 4,6
FIXPI# 18 0*
FRXPI# 18 0
FDXPI# 18 0
FRXPR# 18 0
FDXPD# 18 0
FCDXI# 18 0,2
FCXPI# 18 0,2

IFloating-point; asterisk indicates general.

Figure 14. Assembler Information for the Implicitly Called
Mathematical Subprograms

Entry Name(s) Save Area (Fullwords)

CCMPR# 18
CMOVE# 18
CNCAT# 18
LGE, LGT, LLE, LLT 18

Figure 15. Assembler Information for the Implicitly Called
Character Subprograms.

Entry Name(s) Save Area (Full words)

DUMP, PDUMP
DVCHK
EXIT
OVERFL

Figure 16. Assembler Information for the
Service Subprograms

18
10
5

10

Appendix A: Assembler Language Information 81

82 VS FORTRAN Library Reference

When a branch instruction rather than a call macro instruction is used to invoke a
subprogram, several additional conventions must be observed:

• An argument (parameter) address list must be assembled on a fullword bound­
ary. It consists of one 4-byte address constant for each argument, with the last
address constant containing a 1 in its high order bit.

• The address of the first item in this argument address list must be in general
register 1.

• From the DOS/VSE control program register 1 is not used but the execution
parameters are passed as bit settings in the communications area.

• The address of the entry point of the called subprogram must be in general
register 15.

• The address of the point of return to the calling program must be in generai
. register 14.

The total requirements for an assembler language calling sequence are illustrated
in Figure 14.

0'"
(.... \

)

(0;

'C·~I , I

o

L 15. = V(IBCOM#)
BAL 14.64(15)
• • • •
LA 13.nren

LA l,arglist

L 15,entry

BALR 14,15

NOP X'id"

• • • •
entry DC V (entry name)

or
entry DC A (entry name)

• • • •
area DS uF

• • • •
For one argument

CNOP DSOF

arglist DC X'BO'

DC AL3 (arg)

For more than one argument

arglist DC A (argl)

DC A (arg.)

DC

DC

•

•
X'80'

AL3 (arg ..)

Figure 17. General Assembler Language Calling Sequence

These two statements are necessary only if the called subprogram uses
FORTRAN input/output. error, or interrupt routines (see Appendix B), and if
the main program is not a FORTRAN routine .

General register 13 contain~ the address of the save aren.

General register 1 contains the address of the argument list.

General regi.<;ter 15 contains the address of the subprogram.

General register 14 contains the address of the point of return to the calling
program.

This statement is optional. The id represents an identification number.
This number is supplied by the programmer and may be any hexadecimal
inte$(er less than 21ft -1.

NOTE: In this case, dle entry name must be defined by an EXTRN instruc-
tion to obtain proper linkage.

This statement defines the save area needed by the subprogram. The xx repre­
sents the minimum size of the save area required; however, the programmer is
advised to use a save area of 18 fullwords for all subprograms. (The minimum
save area requirements are given in Figures 13 and 14 for the mathematical
subprograms and in Figure 16 for the service subprograms.)

Aligns the .ugumeut list at a fullword boundary.

Places a 1 in the high order bit of the only argument.

Contains the address of the argument.

Contains the address of the first argument.

Contains the address of the second argument.

Places a 1 in the higb order bit of the last argument.

Contains the address of the last argument.

Appendix A: Assembler Language Information 83

Supplying Correct Parameters

Arguments must be of the proper type, length, quantity, and in certain cases, with­
in a specified range, for the subprogram called.

For mathematical and character subprograms, this information can be found in
Figures 2 through 6. INTEGER *4 denotes a signed binary number four bytes long.
REAL *4 and REAL *8 are normalized floating point numbers, 4 and 8 bytes long,
respectively. COMPLEX *8 and COMPLEX *16 are complex numbers, 8 and 16 bytes
long, respectively, whose first half contains the real part, and whose second half
contains the imaginary part. Each part is a normalized floating-point number.
Four-byte argument types must be aligned on fullword boundaries, and 8-byte and
16-byte types must be aligned on doubleword boundaries.

Argument information for nonmathematical subprograms can be found in "Ser­
vice Subprograms."

84 VS FORTRAN Library Reference

Error messages resulting from incorrect arguments are explained in "Appendix C.
Library Interruption Procedures, Error Procedures, and Messages."

Results .

Each mathematical subprogram returns a single answer of a type listed in Figures 2
through 6 (see "Function Value Type"). The INTEGER answers are returned in
general register 0, REAL answers are returned in floating-point register 0, and COM-

PLEX answers are returned in floating-point register ° and 2. Result registers are
listed by subprogram entry name in Figure 12.

For extended precision mathematical subprograms, results are always returned in
the floating-point registers: ° and 2 for REAL * 16 results, and 0,2,4, and 6 for COM-

PLEX *32 results.

The location and form of the service subroutine results can be determined from
the discussion in "Service Subprograms."

Example
To find the square root of the value in AMNT, the library square root subprogram
(entry name SQRT) could be invoked, using the following statements (for
assembler language MAIN programs only):

SAVE

AMNT
ANSWER

L 15, = V (VSCOM#)
BAL 14,64(15)

LA
CALL
STE

DS

DC
DC

13,SAVE
SQRT, (AMNT), VL
O,ANSWER

18F

E'144'
E'O'

iC" , ,

o

(The VL operand in CALL indicates that the macro expansion should flag the end
of the parameter list.)

Employing only assembler language instructions, the sequence would be:

ENTRY
ANSWER

SAVE

ARG

AMNT

L
BAL

LA
LA
L
BALR
STE

DC
DC

DS

DS
DC

DC

15, = V (VSCOM#)
14,64(15)

13,SAVE
I,ARG
15,ENTRY
14,15
O,ANSWER

V (SQRT)
E'O'

18F

OF,
X'80' ,AL3 (AMNT)

E'144'

Note that, in both cases, a branch to VSCOM# is provided, a save area is set up,
and AMNT meets argument specifications by being a four-byte non-negative nor­
malized floating-point number, aligned on a fullword boundary.

In both cases, the answer is returned in floating-point register 0 as a four-byte
floating-point number.

SPACE CONSIDERATIONS

Many of the mathematical subprograms require other nlathematical subprograms
for their calculations. In addition, ,most of the subprograms use the input/output,
error processing, and inte.rruption library subroutines. (This interdependence is
outlined in "Appendix B. Storage Estimates."). Thus, although the programmer
may request just one VS FORTRAN subprogram, the requirements of that
subprogram may make the resultant load module quite large. The SQR T routine,
for example, takes only 344 bytes of storage itself, but requires other subroutines
that increase the load module size by approximately 20,000 bytes.

Appendix A: Assembler Language Information 85

Entry Name(s)

AINT
ALGAMA, GAMMA
ALOG, ALOG 10
AMAXO, AMINO, MAXO, MINO
AMAXI, AMINI, MAXI, MINI
AMOD,DMOD
ARCOS, ARSIN
ATAN
ATAN,ATAN2
CABS
CCOS, CSIN
CDABS
CDCOS, CDSIN
CDDVD#, CDMPY#
CDEXP
CDLOG
CDSQRT
CDVD#, CMPY#
CEXP
CLOG
COS, SIN
COSH,SINH
COTAN, TAN
QCABS
CQCOS, CQSIN
CQDVD#, CQMPY#
CQEXP
CQLOG
CQSQRT
CSQRT
CXMPR# (see Figure 20.)
DARCOS, DARSIN
DATAN
DATAN, DATAN2
DCOS, DSIN
DCOSH, DSINH
DCOTAN, DTAN
DERF,DERFC
DEXP
DGAMMA. DLGAMMA
DLOG, DLOG1O

• (See notes at end of figure.)

Page of SC26-3989 as updated 03 June 1981 by TNt SN26-0852

Appendix B: Storage Estimates

This Appendix contains decimal storage estimates (in bytes) for the library
subprograms. The estimate given does not include any additional mathematical
subprograms for vs FORTRAN routines that the subprograms may use during
execution. The entry-names of any additional mathematical library subprograms
used are given in Figure 18. Figures 18, 19, and 20 also indicate which mathematical
and service subprograms require VS FORtRAN routines for input/output, interruption,
and error procedures.

The programmer must add the estimates for all subprograms and routines needed
to determine the amount of storage required. If the programmer has not made
allowances for the storage required by any of these additional routines (see Figure
21), the amount of available storage may be exceeded and execution cannot begin,
or may terminate abnormally.

110, Error
Additional Mathematical & Interrupt

Decimal Estimates in Bytes Subprograms Used Routines

80 No
848 ALOG,EXP Yes
464 Yes
224 No
224 No
120 No
496 SQRT Yes
200 No
488 Yes
192 SQRT Yes
760 EXP. SIN/COS Yes
200 DSQRT Yes
832 DEXP, DSIN/DCOS Yes
240 No
624 DEXP, DSIN/DCOS Yes
488 DLOG,ATAN2 Yes
328 DSQRT Yes
216 No
592 EXP, SIN/COS Yes
464 ALOG,ATAN2 Yes
504 Yes
504 EXP Yes
648 Yes
344 QSQRT No·

1,100 QEXP, QSIN, QCOS Yes
576 No
624 QEXP, QSIN, QCOS Yes
584 QLOG, QATAN2 Yes
504 QSQRT No·
312 SQRT Yes

648 DSQRT Yes
312 No
648 Yes
696 Yes
592 DEXP Yes
760 Yes
808 DEXP Yes
704 Yes

1056 DLOG,DEXP Yes
538 Yes

Figure 18. Mathematical Subprogram Storage Estimates (Part lof2)

86 VS FORTRAN Library Reference

o

Page of 5C26-3989 as updated 03 June 1981 by TNl 5N26-0852

:0 1/0, Error,
Additional Mathematical & Interrupt

Entry Name(s) Decimal Estimates in Bytes Subprograms Used Routines

DMAXl, DMINI 120 No
DSQRT 352 Yes
DTANH 304 DEXP Yes
EXP 424 Yes
ERF,ERFC 520 EXP Yes
FCDXPI# 560 CDMPY#/CDDVD# Yes
FCXPI# 536 CDVD#/CMPY# Yes
FCQXI# 608 CQMPY#, CQDVD# Yes
FDXPD# 464 DEXP, DLOG Yes
FDXPI# 368 Yes
FQXPI# 384 Yes
FQXPQ#, FQXP2#t 2.880 Yes
FRXPR# 432 EXP,ALOG Yes
FIXPI# 368 Yes
FRXPI# 360 Yes
IDINT,INT 136 No
MOD 56 No
QARCOS, QARSIN 1,104 QSQRT Yes
QATAN, QATAN2 1,160 Yes
QCOS,QSIN 976 Yes
QCOSH, QSINH 896 QEXP Yes
QCOTAN, QTAN 1,112 Yes
QERF,QERFC 1,200 QEXPf Yes
QEXP, QLOG, QLOGl0t 2,880 Yes
QSQRT 520 Yes
QTANH 664 QEXP No·
SQRT 344 Yes
TANH 256 EXP Yes

(c • Note that although these mathematical subprograms do not themselves require the input/output, error or interruption routines,
they use other mathematical subprograms which do.

t All share the same subroutine.
f When the argument falls between 2.84375 and 13.306, the module IFYQERF2 (size 1,300 bytes) is also used. IFYQERF2 in

turn uses routine FQXPQ#.

Figure 18. Mathematical Subprogram Storage Estimates (Part 20f2)

Decimal 110, Error
Estimates & Interrupt

Entry Name (in bytes) Routines

DUMP/PDUMP 870 Yes
DVCHK 60 Yes
EXIT 32 Yes
OVERFL 72 Yes

Figure 19. Service Subprogram Storage Estimates

o
Appendix B: Storage Estimates 87

Page of 5C26-3989 as updated 03 June 1981 by TNL 5N26-0852

Entry Name(s) 1 Decimal I/O, Error,
Estimates and Interrupt
(in bytes) Routines

CCMPR #, CXMPR# 2 604 Yes3

CMovF# 456 Yes

CNCA1# 480 Yes

LGE, LGT, LLE, LLT 1728 Yes

Notes to Figure:
1. No additional character subprograms are used.
2. The entry point CXMPR# is used for complex operands.
~ Th~?A io '1"\" "n AP.,.... ... "' ... "'+4_ + ... _ _ _ .. _1,a C-._ ... 1..._ ,.,v nn.M __ ... __ .. _____ _.a._ ... _ &&_ £1'"' "'&.V.I. "'4 uI,"'t''' .Lv ,,'" .ulYVa.",U lV.1 "lie '\,...AJ. • .1~ n,.,. cau . .lY l1C111lC.

Fi~ure 20. Character Subprogram Storage "Estimates

Routine Name

IFYUATBL4

IFYUOPT

IFYDIOCS
IFYIBCOM
IFYLDFIO
IFYNAMEL
IFYOPSYSs
IFYVASU
IFYVASYN3
IFYVCLOS
IFYVCOMD
IFYVCOMH
IFYVCOM2
IFYVCONI
IFYVCOND
IFYVCVTH
IFYVDIOS2
IFYVERRE
IFYVERRM
IFYVFNTH
IFYVIIOS
IFYVINQR
IFYVMOPT
IFYVOPEN
IFYVSCOM
IFYVSERH
IFYVSIOSI
IFYVSTAE
IFYVTEN
IFYVTRCH
IFYVVIOSI

NOTES TO FIGURE:

Decimal Estimates
(in bytes)

Installation dependant
Installation dependent

360
2452
4372
3356
672

2526
1696
596

8799
4640

736
740

1316
4216
2500
430

1124
1414
632

1792
735

1693
2252

203
5724
1671
680
746

2304

1 This module also requires dynamic storage. For each 110 unit used, the amount (in bytes) is 184
+ buffer size(s).

2 This module also acquires dynamic storage. For each 110 unit used, the amount (in bytes) is 224
+ buffer size(s).

3 This module also acquires dynamic storage. For each 110 unit used, the amount (in bytes) is 256
+ buffer size (s) .

4 The number of bytes in table IFYUATBL may be computed by the formula 16n + 8, where n is
the number of data set reference numbers requested at installation time.

S This routine is for DOS/VSE only.

Figure 21. Library Execution-Time Routines Storage Estimates

88 VS FORTRAN Library Reference

o

0 1. I,,::

o

Page of SC26-3989 as updated 03 June 1981 by THL SH26-0852

APPENDIX C. LIBRARY INTERRUPTION PROCEDURES, ERROR PROCEDURES, AND MESSAGES

This appendix contains brief explanations of the program
interruption and error procedures used by the FORTRAH library.
The messages generated by the VS FORTRAH library are also given.
A full description of program interrupts is given in the
publication IBM System/370 Pr;nciples of Operation. For detailed
information about error processing and message formats, see ~
FORTRAN Application Programming: Guide.

LIBRARY INTERRUPTION PROCEDURES

The VS FORTRAN library processes those interrupts that are
described below; all others are handled directly by the system
Supervisor:

1. When an interrupt occurs, indicators are set to record
exponent overflow, underflow, fixed-point, floating-point or
decimal divide exceptions. These indicators can be
interrogated dynamically by the subprograms described in the
chapter, "Service Subroutine Subprograms."

2. A message is printed on the object program error unit when
each interrupt occurs. The old program status word (PSW)
printed in the message indicates the cause of each
interrupt.

3. Result registers are changed when exponent overflow or
exponent underflow (codes C and D) occur. Result registers
are also set when a floating-point instruction is referenced
by an assembler language execute (EXEC) instruction.

4. Condition codes set by floating-point addition or
substraction instructions are altered for exponent underflow
(code D).

5. After the foregoing services are performed, execution of the
program continues from the instruction following the one
that caused the interrupt.

LIBRARY ERROR PROCEDURES

During execution, the mathematical subprograms assume that the
argument(s) is the correct type. However, some checking is done
for erroneous arguments (for example, the wrong type, invalid
characters, the wrong length, etc.); therefore, a computation
performed with an erroneous argument has an unpredictable
result. However, the nature of some mathematical functions
requires that the input be within a certain range. For example,
the square root of a negative number is not permitted. If the
argument is not within the valid range given in Figures 2
through 6, an error messgae is written on the object program
error unit data set defined by the installation during system
generation. The execution of this load module or phase is
terminated and control is returned to the operating system.
However, execution can continue~ with extended error handling
for this program. This facility provides for standard corrective
action by the user. For a full description of extended error
handling, see ys FORTRAN Application Programming: Guide.

Library Interruption and Error Procedures and Messages 89

LIBRARY MESSAGES

The VS FORTRAN library generates three types of messages:

• Program interrupt messages

• Execution error messages

• Operator messages

All library messages are numbered. Program interrupt messages
are written when an exception to a system restriction occurs,
such as when an invalid storage address or an authorized access
to protected storage is requested. Execution error messages are
written when a FORTRAN library function or subroutine is misused
or an I/O error occurs. Operator messages are written when a
STOP n or PAUSE statement is executed.

Refer to "Section 1. Guide" of VS FORTRAN Diagnosis when a
problem recurs after you have performed the specified programmer
response for the message received.

PROGRAM INTERRUPT MESSAGES

Program interrupt messages are written with the old Program
Status Word (PSW), which aids the programmer in determining the
nature of the error.

Program interrupt messages consist of messages IFY207I, IFY208I,
IFY209I, and IFY210I.

IFY207I VFNTH - PROGRAM INTERRUPT (P) - OVERFLOW PSW
XXXXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: The message indicates that an exponent-overflow
exception, identified by the character C in the eighth position
of the PSW, has occurred. This exception occurs when the result
of a floating-point arithmetic operation is greater than or
equal to 16 63 (approximately 7.2xl07S).

supplemental Data Provided: The floating point number (nnnnnnnn)
before alteration.

Standard Corrective Action: Execution continues at the point of
the interrupt with the result register set to the largest
possible correctly-signed floating-point number that can be
represented in short precision (16 63 *(1-16- 6 », in long
precision (16 63 *(1-16- 14), or in extended precision
(16 63 *(1-16- 28 ».
Programmer Response: Make sure that a variable or variable
expression does not exceed the allowable magnitude. Verify that
all variables have been initialized correctly in previous source
statements and have not been inadvertently modified.

IFY208I VFNTH - PROGRAM INTERRUPT (P) - UNDERFLOW PSW
XXXXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: The message indicates that an exponent-underflow
exception, identified by a D in the eighth position of the PSW,
has occurred. This exception occurs when the result of a
floating-point arithmetic operation is less than 16-65

(approximately 5.4 x 10-79).

Supplemental Data Provided: The floating point number ennnnnnnn)
before alteration.

Standard corrective Action: Execution continues at the point of
the interrupt with the result register set to a true zero of
correct precision.

90 VS FORTRAN Application Programming: library Reference

o

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

Programmer Response: Make sure that a variable or variable
expression is not smaller than the allowable magnitude. Verify
that all variables have been initialized correctly in previous
source statements and have not been inadvertently modified.

IFY209I VFNTH - PROGRAM INTERRUPT (P) - DIVIDE CHECK PSW
XXXXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: This message indicates that an attempt to divide
by zero has occurred. A fixed-point-divide exception is
identified by a 9 in the eighth position of the PSW; a
floating-point-divide exception by an F.

Supplemental Data Provided: Floating-point number (nnnnnnnn)
before alteration, for a floating-point interrupt.

Standard Corrective Action: For floating-point-divide,
execution continues at the point of the interrupt with the
result registers set to:

1. True zero of correct precision for case of n/O where n=O.

2. Largest possible floating-point number of correct precision
for case of n/O where n*O. For fixed-point-divide, leave
registers unmodified and continue execution.

Programmer Response: Either correct the source where division
by zero is occurring, or modify previous source statements to
test for the possibilities, or bypass the invalid division.

IFY210I VFNTH - PROGRAM INTERRUPT (P/O) - CCCCCCCCCCCCCC PSW
xxxxxxxxxxxxxxxx

Explanation: The operating system has detected a condition that
causes a program interruption.

The letter P enclosed in parentheses indicates that the
interruption was precise. This will always be the case for
non-specification interrupt messages in FORTRAN except when
using machines with special hardware on which imprecise
interruptions may occur. The letter 0 enclosed in parentheses
indicates that extended precision floating point simulation has
taken place and a secondary interrupt occurred.

The eighth character position in the PSW (1, 4, 5, 6, 7, 9, C,
D, or F) represents the hexadecimal code number associated with
the type of interrupt. The following text describes those
interrupts.

CODE l--Operation Exception:

An operation exception is recognized when the processor
encounters an instruction with an invalid operation code. The
operation code may not be assigned, or the instruction with that
operation code may not be available on the processor. (For the
purpose of recognizing an operation exception, the first eight
bits of an instruction, or, when the first eight bits have the
hexadecimal value B2, the first 16 bits form the operation
code.)

Supplemental Data Provided: The instruction-length code is 1, 2,
or 3.

Standard Corrective Action: The operation is suppressed.

Programmer Response: Correct the operation code.

CODE 4--Protection Exception:

The protection exception (code 4) is recognized when the kay of
an operand in storage does not match the protection key in the
PSW. A message is issued only if a specification exception (coda

Library Interruption and Error Procedures and Messages 91

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

6) has alreadY been recognized in the same instruction.
Otherwise, the job terminates abnormally.

Supplemental Data Provided: None.

standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

I

Programmer Response: If the job has been terminated with a
completion code of SYSTEM=OC6 (Specification Interrupt), correct
the source statements that ara causing boundary misalignment.

CODE S--Addressing Exception:

The addressing exception (code 5) is recognized when the address
of the data is outside of the addressable storage for the
particular system configuration or installation. A message is
issued only if QxcQPticn codes 5 or 6 have already been
recognized in the same instruction. Otherwise, the job
terminates abnormally. .

Supplemental Data provided: None.

Standard corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: If the job has been terminated with a
completion code of SYSTEM=OC6 (Specification Interrupt), correct
the source statements that are causing boundary misalignment.

CODE 6--Specification Exception:

The specification exception (code 6) is recognized when a data
address does not specify an integral boundary for that unit of
information as required by the instruction, or an improper
register is used in an instruction. For example, a specification
error would occur during execution of the following
instructions:

DOUBLE PRECISION D, E
COMMON A, B, C
EQUIVALENCE (B, D)
D = 3.0D02

Nate: If an instruction causes a boundary violation, a
specification interrupt will occur and the message will be
i.ssued with code 6. The boundary-adjustment routine will then ba
invoked if the BOUNDARY=ALIGN option was specified in the
FORTLIB macro instruction during program installation. If an
instruction that has been processed for boundary misalignment
also contains a protection, addressing, or data error, the
interrupt message will be reissued with the appropriate code (4,
5, or 7). The job will then terminate because both a
specification error and a protection, addressing, or data error
have been detected. The completion code will specify that the
job terminated because of the specification error.

Supplemental Data Provided: None.

Standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: Make sure that proper alignment of
variables is guaranteed. Arrange variables in fixed descending
order according to length, or force proper alignment with dummy
variables. Construct COMMON blocks so that the displacement of
each variable can be evenly divided by the element length
associated with the variable. Use the MAP option for information
on the relative address of each variable in the block. Make sure
that EQUIVALENCE statements do not cause misalignment.

CODE 7--Data Exception:

92 VS FORTRAN Appl i cati on Programmi ng: Library Reference

r,\
~~~I 



o 

o 

Page of SC26-3989 as updated 03 June 1981 by TNl SN26-0852 

The data exception (code 7) is recognized when the sign or digit 
codes for a CONVERT TO BINARY instruction are incorrect. 

Supplemental Data provided: None. 

Standard Corrective Action: The interrupted instruction is 
ignored and execution continues at the point of interrupt. 

Programmer Response: If the job has been terminated with a 
completion code of SYSTEM=OC6 (specification interrupt), correct 
the source statements that are causing boundary misalignment. 

CODE 9--Fixed-Point-Divide Exception: 

The fixed-point-divide exception (code 9) is recognized when 
division of a fixed-point number by zero is attempted. For 
example, a divide exception would occur during execution of the 
following statement: 

K=I/J 

where 

J=O and 1=7 

Supplemental Data Provided: None. 

Standard Corrective Action: The interrupted instruction is 
ignored and execution continues at point of interrupt. 

Programmer Response: Either correct the source where division 
by zero is occurring. or modify previous source statements to 
test for the possibil,ity of, or to bypass. the invalid division. 

CODE C--Exponent-overflow Exception: 

The exponent-overflow exception (code C) is recognized when the 
result of a floating-point addition, subtraction. 
multiplication, or division is greater than or equal to 16 63 

(approximately 7.2x10 7S ). For example, an exponent-overflow 
would occur during execution of the statement: 

A=1.0E + 75 + 7.2E + 75 

When the interrupt occurs, the result register contains a 
floating-point number whose fraction is normalized and whose 
sign is correct. However, the number is not usable for further 
computation since its characteristic field no longer reflects 
the true exponent. The content of the result register as it 
existed when the interrupt occurred is printed following the 
program interrupt message with the format: 

REGISTER CONTAINED hhhhhhhhhhhhhhhh 

where hhhhhhhhhhhhhhhh is the floating-point number in 
hexadecimal notation. (An additional 16 hexadecimal characters 
are printed for extended-precision numbers.) 

Exponent overflow causes "exponent wraparound" - i.e., the 
characteristic field represents an exponent that is 128 smaller 
than the correct one. Treating bits 1 to 7 (the exponent 
characteristic field) of the of the floating-point number as a 
binary integer, the true exponent may be computed as follows: 

TE = (Bits 1 to 7) + 128 - 64 

Standard Corrective Action: The result register is set to the 
largest possible floating-point number that can be represented 
in short precision (16 63 *(1-16- 6 » in long precision 
(16 63 *(1-16- 14 ), or in extended precision (16 63 *(1-16- 28 », but 
the sign of the result is not changed. The condition code is not 
altered. 

Library Interruption and Error Procedures and Messages 93 



Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852 

programmer Response: Make sura that a variable expression does 
not exceed the allowable magnitude. Verify that all variables 
have been initialized correctly in previous source statements 
and have not been inadvertently modified in intermediate source. 

CODE D--Exponent-UnderfloN Exception: 

The exponent-underflow exception (code D) is recognized when the 
result of a floating-point addition, subtraction, 
multiplication, or division is less than 16-65 (approximately 
5.4x10- 7 .). For example, an exponent-underflow exception would 
occur during execution of the statement: 

A=-1.0E - 50 * 1.0E - 50 

Although exponent underflows are maskable, FORTRAN jobs are 
executed with the mask enabled so that the library will handle 
such interrupts. 

When the interrupt occurs, the result register contains a 
floating-point number whose fraction is normalized and whose 
sign is correct. However, the number is not usable for further 
computation since its characteristic field no longer reflects 
the true exponent. The content of the result register as it 
existed when the interrupt occurred is printed following the 
program interrupt message with the format: 

REGISTER CONTAINS hhhhhhhhhhhhhhhh 

where hhhhhhhhhhhhhhhh is the floating-point number in 
hexadecimal notation. (An additional 16 hexadecimal characters 
are printed for extended-precision numbers.> Exponent overflow 
causes "exponent wraparound" - i.e., the characteristic field 
represents an exponent that is 128 larger than the correct one. 
Treating bits 1 to 7 (the exponent characteristic field) of the 
floating-point ~umber as a binary integer, the true exponent may 
be computed as'follows: 

TE = (Bits 1 to 7) - 128 - 64 

standard corrective Action: The result register is set to a true 
zero of correct precision. If the interrupt resulted from a 
floating-point addition or subtraction operation, the condition 
code is set to zero to reflect the setting of the result 
register. 

Programmer Response: Make sure that a variable or variable 
expression is not smaller than the allowable magnitude. Verify 
that all variables have been initialized correctly in previous 
source statements and have not been inadvertently modified in 
intermediate source. To take advantage of the 'exponent 
wraparound' feature and override the FORTRAN interruption 
routine, a programmer may handle the interrupt in his own 
program, but must call an assembly language subroutine to issue 
a SPIE macro instruction. 

CODE F--Floating-point-Divide Exception: 

The floating-point-divide exception (code number F) is 
recognized when division of a floating-point number by zero is 
attempted. For example, a floating-point divide exception would 
occur during execution of the statement: 

C=A/8 

where 

8=0.0 and A=1.0 or B=O.O and A=O.O 

Supplemental Data Provided: Registers before alteration. 

94 VS FORTRAN Application Programming: Library Reference 

o· 

0) 



o 

Page of SC26-3989 as updated 03 June 1981 by TNL SH26-0852 

standard Corrective Action: Tha interruptad instruction is 
ignored and execution continues at point of interrupt with 
result registars set to: 

1. True zero of the correct precision for the case of n/O where 
n=O. 

2. Largest possible floating point number of correct sign and 
precision for case of n/O where n*O. 

Programmer Response: Either correct the source statement(s) 
where division by zero is occurring, or modify previous source 
statements to test for the possibility of, or to bypass, the 
invalid division. 

Library Interruption and Error Procedures and Messages 95 



Page of SC26-3989 as updated 03 June 1981 by TNl SN26-0852 

EXECUTION ERROR MESSAGES 

Execution error messages have the form: 

IFYxxxI VFNTH [message text] 

TRACEBACK FOllOWS-ROUTINE ISN REG. 14,REG. 15,REG. O,REG. 1 

The description of each diagnostic message contains the error 
number, the abbreviated module name for the origin of the error, 
and an explanation describing the type of error. In addition, 
supplemental data is provided and standard corrective action to 
be taken to correct the error is described. 

Variable information in the message is shown in lower case 
letters, and, in the corrective action descriptions, • denotes 
the largest possible number that can be represented for a 
floating-polnt value. 

The abbreviated module name for the origin of the error is: 

VASYN 

VOIOS 

VCVTH 

VSIOS 

VCOMH 

VSERH 

lOFIO 

NAMEl 

other 

IFYVASYN routine (performs asynchronous I/O 
processing). 

IFYVDIOS routine (performs direct access I/O 
operations for FORTRAN load module execution). 

IFYVCVTH routine (performs conversions). 

IFYVSIOS routine (performs I/O operations for FORTRAN 
load module execution). 

IFYVCOMH routine (performs interruption and error 
procedures). 

IFYVSERH routine (performs the processing of errors 
detected during compilation of the load modules). 

IFYlDFIO routine (performs list-directed I/O 
processing). 

IFYNAMEl routine (performs namelist processing). 

Mathematical routine implicit or explicit entry points 
(perform mathematical calculations). 

Note: Messages issued by the error handler contain no module or 
entry point name. For information on the error handling 
subroutines, refer to VS FORTRAN Application Programming 
Language Reference. 

IFY160I VCOMH - FORMAT NESTED PARENTHESES TABLE OVERFLOW. 
REDUCE NUMBER OF NESTED PARENTHESES IN PROGRAM AND 
RERUN 

Explanation: The format contains more nested parentheses than 
the library table can hold. 

Supplemental Data Provided: None. 

Standard Corrective Action: Parenthesis group is ignored. 
Processing continues. Results are unpredictable. 

Programmer Response: Reduce the number of parenthesis groups to 
50 or less. 

IFYl61I VASYN - ASYNCHRONOUS I/O NOT SUPPORTED ON THIS 
OPERATING SYSTEM (DOS OR CMS) 

96 VS FORTRAN Appl i cati on Programmi ng: l i brarv Reference 

0., 



C,~l 
" 

o 

Page of SC26-3989 added 03 June 1981 by TNL SN26-0852 

Explanation: A program called the asynchronous I/O scheduling 
routine while running in a DOS or CMS environment. 

supplemental Data Provided: TRACEBACK PATH is provided. If 
GOSTMT is used as a compiler option, then TRACEBACK provides the 
ISN of the I/O statement making the asynchronous I/O request. 

standard Corrective Action: The asynchronous I/O request 1S 
ignored and the ARRAY expected to be modified, if a READ (INI) 
request, is unchanged. The ARRAY isn't saved or written if a 
WRITE (OUTI) request. 

Programmer Response: Run the program on an OS system (MVS or 
VS1) or rewrite the program to use synchronous I/O 
(unformatted). 

IFY162I VVIOS (CVIOS. DVIOS) - WRITE STATEMENT CANNOT BE 
ISSUED TO SEQUENTIALLY ACCESSED VSAM RRDS FILE 
filename 

Explanation: An attempt was made to add a record to a 
sequentially accessed VSAM relative record file that was not 
empty when the file was opened. 

Supplemental Data Provided: Name of the file upon which the 
request was made. 

standard Corrective Action: The execution is terminated. 

Programmer Response: If a record must be added to a nonempty 
VSAM relative record file, use the access mode of DIRECT. 

IFY163I VVIOS (CVIOS. DVIOS) - FILE POSITIONING INPUT/OUTPUT 
STATEMENT IS NOT ALLOWED IN THE DIRECT ACCESS METHOD 

Explanation: A file positioning input/output statement (REWIND, 
BACKSPACE, or EHDFILE) was issued to a VSAM direct file. 

Supplemental Data Provided: None. 

Standard Corrective Action: The execution is terminated. 

Programmer Response: Correct the program so that no file 
positioning input/output statements are issued for VSAM direct 
files. 

IFY1641 VVIOS (CVIOS. DVIOSl - RECORD LENGTH OF FILE filename 
IS LONGER THAN THE ONE DEFINED IN VSAM CATALOG 

Explanation: The maximum record length for the file found in 
VSAM catalog (that is, the value specified in the RECORDSIZE 
parameter when the VSAM cluster is defined using Access Method 
Services) is less than the length of the record to be written. 

Supplemental Data Provided: Name of the file upon which the 
request was made. 

standard Corrective Action: The execution is terminated. 

Programmer Response: Either correct the program so that the 
length of the record to be written is not greater than the one 
in the VSAM catalog, or change the record length in the VSAM 
catalog by redefining the cluster. 

IFY16SI VVIOS (CVIOS. DVIOSl - FILE filename IS CONNECTED TO 
A KEY SEQUENCED DATA SET 

Explanation: VS FORTRAN supports VSAM entry sequenced data sets 
(ESDS) and relative record data sets (RRDS). The file used was 
connected to VSAM key sequenced data sets (KSDS). 

Library Interruption and Error Procedures and Messages 96.1 



Page of SC26-3989 added 03 June 1981 by TNL SN26-0852 

supplemental Data Provided: Name of the file upon which the 
request was made. 

standard Corrective Action: The execution is terminated. 

Programmer Response: Change the JCL so that the file is 
connected to ESDS or RRDS. 

IFY166I VVIOS (CVIOS, DYIOS) - ENDFILE STATEHENT IS TREATED 
AS DOCUMENTATION FOR YSAH FILE filename 

Explanation: A request was made to write an end-of-file mark on 
a VSAM file. 

Supplemental Data Provided: Name of the file upon which the 
request was made. 

standard Corrective Action: ine request is ignored. 

Programmer Response: Remove the statement after carefully 
checking the effect of removing the statement. 

IFYl67I VVIOS (CVIOS, DVIOS) - ERROR ON VSAH FILE: WHEN 
ATTEMPTING TO PROCESS A(N) xxxxxxxxxx RC=yy ERROR 
CODE=zzZ 

Explanation: An error was detected by VSAM while an input or 
output statement indicated by xxxxxxxxxx was being processed. 
The return code and the error code returned by VSAM were yy and 
zzz, respectively. 

Supplemental Data provided: Name of the operation that caused 
the error and the return and error codes from VSAM. 

Standard Corrective Action: The execution is terminated. 

Programmer Response: Determine the cause for the error by 
examining the VSAM return and error codes. 

IFYl68I VVIOS (eVIOS, DVIOS) - xxxxxxxxxx OPERATION IS ISSUED 
TO UNOPENED VSAM FILE ON UNIT uuu 

Explanation: An input or output request was made to an unopened 
VSAM file. 

Supplemental Data Provided: Name of the operation issued to an 
unopened file. 

standard Corrective Action: The execution is terminated. 

Programmer Response: Make sure that the OPEN statement for the 
file was successfully executed. 

IFY169I DFNTH - EXTENDED PRECISION OPERATION NOT SUPPORTED IN 
DOS ENVIRONMENT, PSW, xxxxxxxxxx 

Explanation: An extended precision machine operation was 
attempted in the DOS/VSE environment that is not supported by 
the machine instruction set. This is generally a divide 
operation. 

Supplemental Data Provided: The program status word (PSW) at the 
point of interrupt. An IFY2101 message with TRACEBACK or a dump 
of storage follows. 

Standard Corrective Action: None. 

Programmer Response: Change program to exclude the unsupported 
instruction. 

96.2 VS FORTRAN Application Programming: Library Reference 

o 



10 

c 

Page of SC26-3989 added 03 June 1981 by TNl SN26-0852 

IFY170I VSIOS - OPEN OR CLOSE STATEMENT NOT ALLOWED ON OBJECT 
PROGRAM ERROR UNIT, REQUEST FOR FILE filename 

Explanation: An OPEN or CLOSE statement was directed to the 
unit upon which execution time error messages are being 
di rected. . 

supplemental Data provided: Name of the file connected to the 
error message unit. 

standard Corrective Action: The request is ignored and the job 
terminated if an ERR= or IOSTAT parameter was not specified in 
the OPEN or CLOSE. 

Programmer Response: Change the program to request I/O to a 
unit not being used for error messages. 

IFY171I VSIOS - CLOSE STATUS OF KEEP IS NOT ALLOWED ON FILE 
OPENED WITH STATUS OF SCRATCH, FILE filename 

Explanation: The file connected to the unit specified in the 
CLOSE statement was opened as a SCRATCH file and cannot be kept 
at close time. 

Supplemental Data Provided: Name of the file connected to the 
unit specified in the CLOSE statement. 

Standard corrective Action: The CLOSE status is changed to 
DELETE and execution proceeds. 

Programmer Response: Change either the OPEN or CLOSE STATUS 
parameter to agree with the file usage. 

IFY172I VSIOS - FILE filename ALREADY CONNECTED TO A UNIT, 
OPEN REQUEST CANCELLED. 

Explanation: The file whose name appears in the message already 
is connected to a unit which is different than the unit 
specified in the OPEN statement. 

Supplemental Data Provided: Name of the file specified in the 
OPEN statement. 

standard Corrective Action: The OPEN request is ignored. 

programmer Response: Change the program to specify a different 
unit in the OPEN request or change the logic to use the current 
unit to which the file is connected. 

IFY173I VSIOS - OPEN SPECIFYING UNFORMATTED I/O ATTEMPTED ON 
FORMATTED FILE filename 

Explanation: FORMATTED and UNFORMATTED I/O request on the same 
file is not allowed. 

Supplemental Data provided: Name of the file upon which the 
request was made. 

standard Corrective Action: The I/O operation is ignored. 

Programmer Response: Correct the program to direct FORMATTED 
and UNFORMATTED I/O to different files. 

IFY17~I VSIOS - OPEN SPECIFYING FORMATTED I/O ATTEMPTED ON 
UNFORMATTED FILE filename 

Explanation: FORMATTED and UNFORMATTED I/O request on the same 
file is not allowed. 

library Interruption and Error Procedures and Messages 96.3 



Page of SC26-3989 added 03 June 1981 by TNL SN26-0852 

Supplemental Data Provided: Name of the file upon which the 
request was made. 

standard Corrective Action: The I/O operation is ignored. 

Programmer Response: Correct the program to direct FORMATTED 
and UNFORMATTED I/O to different files. 

IFY17SI OPSYS - AN INVALID LITERAL PARAMETER WAS DETECTED ON 
THE CALL OPSYS STATEMENT 

Explanation: The first parameter in the call to OPSYS did not 
specify a literal of FILEOPT or LOAD. 

Supplemental Data Provided: None. 

Standard corrective Action: The request is ignored. 

Programmer Response: Correct the program to specify the correct 
parameter value. 

96.4 VS FORTRAN Application Programming: Library Reference 



(0 

o 

c 

IFVl76I OPSVS - THE FORTRAN LOGICAL UNIT NUMBER IS ASSIGNED 
TO SYSTEM USE, UNIT unit 

Explanatton: The unit specified in the call to OPSYS currently 
has a file connected and cannot be modified. 

Supplemental Data provided: Unit number specified in the call to 
OPSYS. 

standard corrective Action: The request is ignored. 

programmer Response: Correct the program to process the I/O on 
a different unit. 

IFV177I OPSYS - INVALID BLOCK SIZE SPECIFIED; ASCII (18-2048) 
OR EBCDIC (18-32767), UNIT unit 

Explanation: An invalid block size was specified for the unit 
set up for ASCII or EBCDIC processing. 

Supplemental Data provided: Unit number specified in the call to 
OPSys. 

standard corrective Action: The request is ignored. 

Programmer Response: Correct the program to specify a block 
size consistent with the file usage. 

IFV178I OPSYS - INVALID BUFFER OFFSET SPECIFIED; GREATER THAN 
99, EXCEEDS BLOCK SIZE OR IS NEGATIVE, UNIT unit 

Explanation: The buffer offset specified was larger than the 
blocksize for the file, or was a negative value, or a value 
greater than 99. 

supplemental Data provided: Unit number specified in the call to 
OPSYS. 

Standard Corrective Action: The request is ignored. 

programmer Response: Correct the program to specify an offset 
consistent to the restrictions. 

IFYl79I OPSYS - AN I/O OPERATION HAS ALREADY BEEN PERFORMED 
ON THE UNIT, REQUEST IGNORED FOR UNIT unit 

Explanation: An attempt was made to modify the parameters for a 
fila which was already being used for I/O operations. 

Supplemental Data provided: Unit number specified in the call to 
OPSys. 

Standard corrective Action: The request is ignored. 

Programmer Response: Correct the program to process the I/O on 
a different unit. 

IFY180I VOPEN - FILE PARAHETER IS NOT VALID FOR AN OPEN 
STATEMENT, UNIT unit 

Explanation: The FILE= parameter on the OPEN statement did not 
specify a 7 character or less name and/or specified a name that 
did not start with an alphabetic character. 

Supplemental Data provided: Unit number for which the command 
was issued. 

standard Correcttve Action: The OPEN statement is ignored. 

Library Interruption and Error Procedures and Messages 97 



Programmer Response: Correct the program to specify a correct 
filename. 

IFY181! VOPEN - STATUS PARAMETER IS NOT VALID FOR AN OPEN 
STATEMENT, UNIT unit 

Explanation: The STATUS= parameter did not specify NEW, OLD, 
SCRATCH, or UNKNOWN as the status of the file being opened on 
the unit. 

Supplemental Data p'rovided: Uni t number for whi ch the command 
was issued. 

Standard corrective Action: STATUS is set to UNKNOWN and 
processi~g continues. 

Programmer Response: Correct the program to specify a correct 
STATUS parameter. 

IFY182I VOPEN - ACCESS PARAMETER IS NOT VALID FOR AN OPEN 
STATEMENT, UNIT unit 

Explanation: The ACCESS= parameter did not specify SEQUENTIAL 
or DIRECT for the type of file access to ba employed on the 
unit. 

Supplemental Data Provided: Unit number for which the command 
was issued. 

standard Corrective Action: The OPEN request is ignored. 

Programmer ResPo.nse: Correct the program to speci fy a correct 
ACCESS parameter. 

IFYl83I VOPEN - BLANK PARAMETER IS NOT VALID FOR AN OPEN 
STATEMENT, UNIT unit 

Explanation: The BLANK= parameter did not specify ZERO or NULL 
for the treatment of blanks on a FORMATTED I/O request. 

Supplemental Data provided: Unit number for which the command 
was issued. 

Standard corrective Action: The BLANK parameter is assigned the 
value NULL. 

Programmer Response: Correct the program to specify a correct 
BLANK parameter. 

IFYl84I VOPEN - FORM PARAMETER IS NOT VALID FOR AN OPEN 
STATEMENT, UNIT unit 

Explanation: The FORM= parameter did not specify FORMATTED or 
UNFORMATTED for the file. 

Supplemental Data provided: Unit number for which the command 
was issued. 

Standard corrective Action: The OPEN request is ignored. 

Programmer Response: Correct the program to specify the correct 
formatting technique. 

IFY185I VOPEN - STATUS OF SCRATCH NOT ALLOWED FOR A NAMED 
FILE OPEN STATEMENT, UNIT unit 

Explanation: An OPEN requested FILE= and STATUS='SCRATCH' at 
the same time. The STATUS value is not allowed. 

98 VS FORTRAN Appl i cati on Programmi ng: Library Reference 



o 

o 

o 

Supplemental Data Provided: Unit number for which the command 
was issued. 

Standard Corrective Action: The STATUS value is set to UHKHOWH 
and processing continues. 

Programmer Response: Correct the program to make the two 
parameters consistent with each other. 

IFY186I VCLOS - STATUS PARAMETER IS NOT VALID FOR A CLOSE 
STATEMENT, UNIT unit 

Explanation: The STATUS= parameter did not specify KEEP or 
DELETE, or a STATUS of KEEP was specified on the CLOSE statement 
for a file that was opened with a STATUS of SCRATCH. 

Supplemental Data Provided: Unit number for which the command 
was issued. 

Standard corrective Action: The STATUS value is set to DELETE if 
the file was opened as SCRATCH; otherwise, the status is set to 
KEEP. 

Programmer Response: Correct the program to specify the correct 
status values or make the status of the OPEN and CLOSE 
consistent with each other. 

IFYl87I DSPAN - LOWER BOUND OF ARRAY DIMN. GREATER THAN 
UPPER. 

Explanation: For an array with adjustable dimensions the lower 
bound of an array dimension has been specified greater than the 
upper bound. 

Supplemental Data Provided: Hone. 

standard corrective Action: Span calculations are not completed 
for this array. Invalid results will probably generated from 
references to this array. 

Programmer Response: Correct the calculation or specification 
of the dimensions. 

IFY188I CITFN - ARGUMENT TO CHAR FUNCTION GREATER THAN 255 

Explanation: A value greater than 255 (hi~hest EBCDIC 
representation) has been specified for the CHAR function. 

Supplemental Data provided: Hona. 

Standard Corrective Action: The function is not evaluated and 
execution continues. 

Programmer Response: Specify correct value. 

IFY189I INDEX - INVALID LENGTH FOR INDEX - OP TWO. 

Explanation: The length specified for the second operand of the 
IHDEX function is less than or equal to zero or greater than 
500. 

Supplemental Data Provided:· ~ona. 

Standard corrective Action: The function is not evaluated and 
execution continues. 

Programmer Rasponse: Specify the correct length. 

Library Interruption and Error Procedures and Messagas 99 



IFY190I INDEX - INVALID LENGTH FOR INDEX - OP ONE. 

Explanation: The length specified for the first operand of the 
INDEX function is less than or equal to zero or greater than 
500. 

Supplemental Data provided: None. 

standard corrective Action: The function is not evaluated and 
executti on cont i nues. 

programmer Response: Specify the correct length. 

IFYl91I LXCMP - INVALID LENGTH FOR LEXICAL COMPARE - OPERAND 
TWO. 

Explanation: The length specified for the second operand of the 
LGE, LGT llE, or llT function is less than or equal to zero or 
graat~r th~n 500. 

supplemental Data provided: None. 

Standard Corrective Action: The function is not evaluated and 
execution continues. 

progra~mer Response: Specify the correct length. 

IFY192I LXCHP - INVALID LENGTH FOR LEXICAL COMPARE - OPERAND 
Ot~E. 

Explanation: The length specified for the first operand of the 
lGE, LGT llE, or llT function is less than or equal to zero or 
greater than 500. 

Supplemental Data provided: None. 

Standard corrective Action: The function is not evaluated and 
execution continues. 

programmer Response: Specify the correct length. 

IFY193I CCMPR - INVALID LENGTH FOR CHARACTER COMPARE - OP 
TWO. 

Explanation: The length of the second operand of a Character 
relational compare (.eq., .It., ..• ) is less than or equal to 
zero or greater than 500. 

supplemental Data provided: None. 

standard Corrective Action: The function is not performed and 
execution continues. 

Programmer Response: Specify the correct length. 

IFY19ftI CCHPR - INVALID LENGTH FOR CHARACTER COMPARE - OP 
ONE. 

Explanation: The length of the first operand of a Character 
relational compare (.eq., .It., •.• ) is less than or equal to 
zero or greater than 500. 

Supplemental Data provided: None. 

Standard Corrective Action: The function is not performed and 
execution continues. 

Programmer Response: Specify the correct length. 

100 VS FORTRAN Application Programming: library Reference 

C".~·~ . " 

q 



o 

o 

Page of SC26-3989 as updated 03 June 1981 by TNL SN26~0852 

IFY19SI CMOVE - CHARACTER MOVE INVALID - TARGET AND SOURCE 
OVERLAP DESTRUCTIVELY. 

Explanation: The storage locations assigned to the target and 
source are such that source data will be destroyed by the 
requested assignment. 

Supplemental Data provided: None. 

Standard Corrective Action: The assignment is not performed and 
execution continues. 

Programmer Response: Check storage MAP for storage assignments. 
Also check EQUIVALENCE statements. 

IFY196I CMOVE - INVALID TARGET LENGTH FOR CHARACTER MOVE. 

Explanation: The length of the target (left of equal variable) 
is less than or equal to zero or greater than 500. 

Supplemental Data Provided: Hone. 

Standard Corrective Action: The assignment is not performed and 
execution continues. 

Programmer Response: Specify the correct length. 

IFY197I CMOVE - INVALID SOURCE LENGTH FOR CHARACTER MOVE. 

Explanation: The length of the source (right of equal 
expression) is less than or equal to zero or greater than 500. 

Supplemental Data Provided: Hone. 

Standard Corrective Action: The assignment is not performed and 
execution continues. 

Programmer Response: Specify the correct length. 

IFY198I CNCAT - CONCATENATED STRING LENGTH GREATER THAN 
TARGET 

Explanation: The concatenation of the specified character 
strings will produce a string whose length is greater than 500 
or greater than the length of the target (left of equal 
variable). 

Supplemental Data Provided: None. 

Standard corrective Action: The concatenated string is truncated 
on the right. 

PrOgrammer Response: Specify the correct length. 

IFY199I CNCAT - INVALID LENGTH FOR CONCATENATION OPERAND 

Explanation: The length of one of the operands of a 
concatenation operation is less than or equal to zero or greater 
than 500. 

Supplemental Data Provided: Hone. 

Standard corrective Action: The concatenation operation is not 
performed. 

Programmer Response: Specify the correct length. 

library Interruption and Error Procedures and Messages 101 



Page of SC26-3989 as updated 03 June 1981 by TNl SN26-0852 

IFY200I VIlaS - END OF INTERNAL FILE, I/O PROCESSING ENDS 

Explanation: The end of an internal file was reached before the 
completion of an internal I/O request. 

Supplemental Data Provided: None. 

Standard Corrective Action: Return to END= label if the request 
is a READ; otherwise, the job is terminated. 

Programmer Response: Either keep a counter to avoid exceeding 
the end of record or file, or insert an END=n parameter on the 
READ statement for appropriate transfer of control on end of 
data set. Check all job control statements. 

IFY201I VIlaS - REQUEST FOR INTERNAL FILE CONTROL, CLOSE OR 
LIST DIRECTED IS NOT ALLOWED 

Explanation: A request for OPEN, CLOSE, list directed fila 
input/output, or control operation has been requested for an 
internal file. Such operations are not supported for internal 
files. 

Supplemental Data provided: None. 

standard corrective Action: The function is not performed, and 
execution continues. 

Programmer Response: Change the source program, and rerun the 
job. 

IFY203I IBCO" - INVALID COMBINATION OF INITIAL, TEST, AND 
INCREMENT VALUE FOR READ/WRITE IMPLIED DO, FILE 
filename 

Explanation: A READ/WRITE statement with an implied DO had an 
invalid combination of initial, test, and increment values (11, 
12, and 13, respectively) for one of its levels of nesting: 

1. 13=0, or 

2. 12<11 and 13S12-11, or 

3. 11<12 and 13<0. 

Supplemental Data Provided: Filename. 

standard Corrective Action: Processing is terminated. 

Programmer Response: Check the statements which set the 
initial, test, and increment variables. 

IFY204I LDFIO - ITE" SIZE EXCEEDS BUFFER LENGTH, FILE 
filename 

Explanation: For a non-complex number, the number is longer 
than the buffer. For a complex number, half the length of the 
number plus one (for the comma) is longer than the buffer. 

Supplemental Data Provided: Filename. 

standard Corrective Action: The remainder of the I/O list is 
ignored. 

Programmer Response: Make sure that the record length specified 
is large enough to contain the longest item in the I/O list. 

102 VS FORTRAN Application Programming: library Reference 



o 

o 

o 

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852 

IFY20SI VASYN - 1'0 SUBTASK ABENDED 

Explanation: An asynchronous I/O subtask resulted in an 
abnormal termination. 

Supplemental Data Provided: None. 

Standard corrective Action: Processing is terminated. 

Programmer Response: Verify that all DD statements are coded 
correctly and refer to the appropriate data sets. Check all READ 
and WRITE statements and any END FILE, REWIND, and BACKSPACE 
statements. Check the system completion code for assistance in 
determining the type of error that caused abnormal termination. 

IFY206I VCVTH - INTEGER VALUE OUT OF RANGE nnnnnnnn 

Explanation: An integer was too large to be processed by the 
load module. (The largest integer that can be processed is 
2**15-1 for INTEGER*2 and 2**31-1 for INTEGER*4.) 

Supplemental Data Provided: Integer input for processing. 

Standard Corrective Action: Specify as much of the lower order 
part of the given integer as will fit for the integer size 
(IHTEGER*2 or INTEGER*4) specified. 

Programmer Response: Make sure that all integer input data used 
is within the required range for the integer variable size. 

IFY207I 

Explanation: Refer to "Program Interrupt Messages" for 
information on this message. 

IFY2081 

Explanation: Refer to "Program Interrupt Messages" for 
information on this message. 

IFY209I 

Explanation: Refer to "Program Interrupt Messages" for 
information on this message. 

IFY2101 

Explanation: Refer to "Program Interrupt Messages" for 
information on this message. 

IFY211I VCOMH - ILLEGAL field FORMAT CHARACTER SPECIFIED char 
FILE filename 

Explanation: An invalid character has been detected in a FO~MAT 
statement. 

Supplemental Data Provided: The field containing the character 
in error, the character specified, and the filename. 

Standard Corrective Action: Format field treated as an end of 
format. 

Programmer Response: Make sure that all format specifications 
read in at object time are valid. 

Library Interruption and Error Procedures and Messages 103 



Page of SC26-3989 as updated 01 June 1981 by TNl SN26-0852 

IFY212I VCOMH - FORMATTED I/O, END OF RECORD, FILE filename 

Explanation: An attempt has been made to read or write a 
record, under FORMAT control, that exceeds the buffer length. 

Supplemental Data Provided: Filename. 

Standard corrective Action: For a read, the remainder of the I/O 
list is ignored; for a write, a new record is started with no 
control character. 

Programmer Response: If the error occurs on input, verify that 
a FORMAT statement does not define a FORTRAN record longer than 
the record supplied by the data set. No record to be punched 
should be specified as longer than 80 characters. For printed 
output, make sure than no specification is longer than the 
printer's line length. 

r VCOMH 1-
IFY213I I LDFIO - READ, END OF RECORD, FILE filename 

VASYN 1 .. ... 

Explanation: 

FOR VCOMH AND VASYN: The input list in an I/O statement without 
a FORMAT specification is larger than the logical record. 

Supplemental Data Provided: Filename. 

Standard corrective Action: The remainder of the I/O list is 
ignored. 

Programmer Response: Make sure the number of elements in the 
I/O list matches the number of items in the record. 

FOR LDFIO: A FORTRAN list-directed READ statement attempted to 
read more items from a variable spanned logical record than were 
present in the record. (This message can be issued only when the 
record format is variable spanned.) 

Supplemental Data provided: Filename. 

Standard corrective Action: The remainder of the I/O list is 
ignored. 

Programmer Response: Make sure that the records and the input 
data agree in number. Either delete extra variable names or 
supply additional logical records. 

IFY214I r VSIOS 1 ... 1 - UNFORMATTED I/O, RECORD FORMAT NOT L VASYN SPECIFIED AS VS OR VBS, FILE filename 

Explanation: 

FOR VSIOS: For unformatted records read or written in EBCDIC 
sequentially organized data sets, the record format 
specification must be variable spanned and can be blocked or 
unblocked. This message appears if the programmer has not 
specified variable spanned, or if an ASCII tape was specified. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: For non-ASCII data sets, the read 
request is ignored; for a write request, the record form is 
changed to variable spanned. 

Programmer Response: Correct the record format to variable 
spanned. 

104 VS FORTRAN Appl i cat ion Programmi ng: library Reference 

o 



c' 

C'·',· " IL'~, 

. ) 

o 

Page of SC26-3989 8S updated 03 June 1981 by THL SH26-0852 

For YASYN: For unformatted records in an asynchronous I/O 
operation, the record format specification (RECFM) did not 
include the characters VS. 

Supplemental Data Provided: Filename. 

standard corrective Action: For an input operation, the read 
request is ignored; for an output operation, VS is assumed. 

Programmer Response: Change the record format specification to 
VS. 

IFY2lS1 YCVTH - ILLEGAL DECIMAL CHARACTER char 

Explanation: An invalid character was found in the decimal 
input corresponding to an I, E, F, or D format code. 

Supplemental Data Provided: The record in which the character 
appeared. 

Standard corrective Action: 0 replaces the character 
encountered. 

Programmer Response: If an IFY214I message has occurred 
previously, correct the source causing the error. Otherwise, 
make sure that all decimal input is valid. Correct any FORMAT 
statements specifying decimal input where character input should 
be indicated. 

IFY2161 VSIOS - INVALID USE OF I/O CONTROL COMMAND AT LOAD 
POINT filename 

Explanation: The use of a BACKSPACE control command was 
recognized when the file was at the start of the first record. 

supplemental Data Provided: Filename for which command was 
issued. 

Standard Corrective Action: The control command is ignored. 

Programmer Response: Correct program to ~nsure that a BACKSPACE 
will not occur at the first command for a file. 

IFY2171 VSIOS - END OF DATA SET, FILE filename. 

IFY2171 VASYN - END OF DATA SET, FILE filename. 

Explanation: An end of data set was sensed during a READ 
operation; that is, a program attempted to read beyond the data. 

Supplemental Data Provided: filename. 

Standard Corrective Action: The next file is read, that is, the 
data set sequence number is incremented by 1 in the OS 
environment. A permanent I/O error is set for the DOS 
environment. 

Programmer Response: Either keep a counter to avoid exceeding 
the end of record or file, or insert an END=n parameter on the 
READ statement for appropriate transfer of control on end of 
data set. Check all job control statements. 

IFY2181 name - I/O ERROR, FILE filename, xxx ••• xxx 

Explanation: VASYH, VSIOS or VDIOS - One of the following 
occurred: 

• A permanent I/O error has been encountered. 

Library Interruption and Error Procedures and Messages 105 



Page of SC26-3989 as updated 03 June 1981 by TNt SN26-08S2 

• For sequential I/O, the length of a physical record is 
inconsistent with the default block size or the block size 
specified on the job control statement. 

• An attempt has been made to read or write a record that is 
less than 18 bytes long on magnetic tape. 

xxx ••• xxx is the character string specifying the type of I/O 
error. 

Note: If a permanent I/O error has been detected while writing 
in the object error unit data set, the error message is written 
to the programmer either at the terminal or the OS SYSOUT data 
set, and job execution is terminated. 

Supplemental Data Provided: Abbreviated module name and 
filename. 

Standard Corrective Action: The interrupted instruction and the 
I/O request are ignored. After the traceback is completed, 
control is returned to the call routine statement designated in 
the ERR parameter of an I/O statement if that parameter was 
specified. 

Note: ERR=parameter is honored. 

Programmer Response: For sequential I/O, make sure that the 
length of the physical record is consistent with the default or 
specified block size. Check all job control statements. Make 
sure that no attempt has been made to read or write a magnetic 
tape record that is fewer than 18 bytes in length. 

IFY219I 
lor 

VSIOS J1 VDIOS 
VASYN 

Explanation: 

- OPEN FAILED, MISSING OR INVALID CONTROL 
STATEMENT, FILE filename 

FOR EBCDIC DATA SETS: 

Either a data set is referred to in the load module and no job 
control statement is supplied for it, or a job control statement 
has an erroneous filename. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: The interrupted instruction is 
ignored, and execution continues and the I/O request is ignored. 

Note: If no job control statement has been supplied for the 
object error unit data set, the message is written either to the 
programmer at the terminal or console or to the OS SYSOUT data 
set, and the job is terminated. 

Programmer Response: Either provide the missing job control 
statement, or correct any erroneous job control statement. Refer 
to VS FORTRAN Application Programming: Guide for more 
information. 

FOR ASCII DATA SETS: 

A data set may have been referred to in the load module but had 
no corresponding job control statement, or the job control 
statement may have had an erroneous filename. 

Supplemental Data Provided: Filename. 

StandardCorrecttve Action: The I/O request is ignored and 
execution continues. 

106 VS FORTRAN Appl i cati on Programmi ng: Library Reference 



o 

o 

o 

Pag~ of SC26-3989 as updated 03 June 1981 by THL SH26-0852 

Programmer Response: Either provide the missing job control 
statement, or correct any erroneous filename. Also, for OS 
files, be sure that the LABEL parameter on the DD statement 
specifies AL (or NL provided that the DCB subparameter OPTCD=Q 
is also specified). Also be sure that the operating system 
permits the use of ASCII data sets. f 

IFY220I name - UNIT NUMBER OUT OF RANGE, UNIT unit 

Explanation: VSIOS or VASYN - A unit number exceeds the limit 
specified for unit numbers when the library was installed. 

Supplemental Data Provided: Abbreviated module name and unit 
number. 

standard Corrective Action: The interrupted instruction is 
ignored, and execution continues. 

Programmer Response: Correct the invalid unit number. 

IFY221I NAMEL - NAME LARGER THAN EIGHT CHARACTERS. NAME=name 

Explanation: An input variable name is longer than eight 
characters. 

Supplemental Data Provided: First eight characters of the name 
specified. 

Standard Corrective Action: The remainder of the NAMELIST 
request is ignored. 

Programmer Response: Correct the invalid HAMELIST input 
variable, or provide any missing delimiters. 

IFY222I NAMEL - NAME NOT IN NAMELIST DICTIONARY NAME=na .. 

Explanation: An input variable name is not in the NAMELIST 
dictionary, or an array is specified with an insufficient amount 
of data. 

Supplemental Data Provided: The name specified. 

Standard corrective Action: The remainder of the HAMELIST 
request is ignored. 

Programmer Response: Make sure that a correct HAMELIST 
statement is included in the source module for all variable and 
array names read in using NAMELIST. 

IFY22lI NAMEL - END OF RECORD ENCOUNTERED BEFORE EQUAL SIGN. 
NAHE=name 

Explanation: An input variable name or a subscript has no 
delimiter. 

Supplemental Data Provided: Hame of item. 

Standard Corrective Action: The remainder of the HAMELIST 
request is ignored. 

Programmer Response: Make sure that all HAMELIST input data is 
correctly specified and all delimiters are correctly positioned. 
Check all delimiters. Make sure that sequence numbers are not 
present in columns 73 through 80. 

Library Interruption and Error Procedures and Messages 107 



Page of SC26-3989 as updated 03 June 1981 by TNL SN26-08S2 

IFY224I NAMEL - SUBSCRIPT FOR NON-DIMEMSIONED VARIABLE OR 
SUBSCRIPT OUT OF RANGE. NAME=nama 

Explanation: A subscript is encountered after an undimensioned 
input name, or the subscript is too large. 

Supplemental Data Provided: Name of item. 

Standard corrective Action: The remainder of the NAMELIST 
request is ignored. 

Programmer Response: Insert any missing DIMENSION statements. 
or correct the invalid array reference. 

IFY225I VCVTH - ILLEGAL HEXADECIMAL CHARACTER char 

Explanation: An invalid character is encountered on input for 
the Z format code. 

Supplemental Data Provided: Display the record in which the 
character appeared. 

standard Corrective Action: 0 replaces the encountered 
character. 

Programmer Response: Either correct the invalid character, or 
correct or delete the Z format code. 

IFY226I VCVTH - REAL VALUE OUT OF RANGE chars 

Explanation: A real number was too large or too small to be 
processed by the load module. (The largest number that can be 
processed is 166~-1; the smallest number that can be processed 
is 16- 65 ,) 

Supplemental Data Provided: The field of input characters. 

Standard Corrective Action: If the number was too large, the 
result is set to 166~-1. If the number was too small, the result 
is set to zero. 

Programmer Response: Make sure that all real input is within 
the required range for the number specified. 

IFY227I LDFIO - ERROR IN REPEAT COUNT, FILE filename 

Explanation: A repeat count (k*---) was not followed by a 
blank, comma, or integer. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: The remainder of the I/O list is 
ignored. 

Programmer Response: Make sure that all repeat counts are 
followed by a valid character: a blank, a comma, or an integer. 

IFY228I VASYN - LAST ELEMENT IN THE I/O LIST HAS A LOWER 
ADDRESS THAN THE FIRST ELEMENT. FILE filename 

Explanation: An I/O list contained an element having a lower 
storage address than the first element in the list. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: The interrupted instruction is 
ignored, and execution continues. 

Programmer Response: Make sure that all elements in the I/O 
list are specified in the correct order. 

108 VS FORTRAN Application Programming: Library Reference 

C'

:"_I,'\ 
, ) 



o 

o 

o 

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852 

IFY230I VSERH - SOURCE ERROR AT ISN' 'EXECUTION 
TERMINATED. THE PROGRAM NAME IS 'program'. 

Explanat;on: An attempt to run a program containing compile 
errors has been intercepted at the execution of the statement in 
error. 

Supplemental Data provided: ISN of statement in compiled program 
that is in error, and the name of the routine or subroutine in 
which the ISH is located. 

Standard Correct;ve Action: Execution terminates with a return 
code of 16. 

Programmer Response: Correct the source program statement, and 
rerun the job. 

IFY231I 

IFY231I 

VSIOS - SEQUENTIAL I/O ATTEMPTED ON A DIRECT ACCESS 
DATA SET, UNIT unit 

VOIDS - DIRECT ACCESS I/O ATTEMPTED BEFORE AN OPEN OR 
DEFINE FILE, UNIT unit 

Explanat;on: (1) Direct access I/O statements are used for a 
sequential file, or I/O statements for a sequential file are 
used for a direct access file. (2) The same file cannot be 
opened in the same programming unit for both sequential and 
direct access processing. 

Supplemental Data Provided: Unit number. 

Standard Corrective Act;on: The I/O request is ignored. 

Programmer Response: 

For Cause 1: Either include the necessary DEFINE FILE statement 
for direct access or delete the DEFINE FILE for a sequential 
file. Make sure that all job control statements are correct. 
Verify that all data sets are referenced with valid FORTRAN 
statements for the file type. 

For Cause 2: Make sure the same filename is not used twice 
within the same program unit for different types of access. 

For Cause 3: For a file opened for direct access, the READ or 
WRITE statement must contain a record specification (REC= or 
u'r). 

For a file opened for sequential access, the READ or WRITE 
statement must n21 contain a record specification (REC= or 
u'r). . 

IFY2321 VDIOS - RECORD NUMBER nnnn OUT OF RANGE, FILE 
f;lename 

Explanation: The relative position of a record is not a 
positive integer, or the relative position exceeds the number of 
records in the data set. 

Supplemental Data Prov;ded: Record number and filename. 

Standard Corrective Action: The I/O request is ignored. 

Programmer Response: Make sure that the relative position of 
the record on the data set has been specified correctly. Check 
all job control statements. 

IFY2331 VDIOS - RECORD LENGTH GREATER THAN 32767 SPECIFIED, 
FILE filename 

Library Interruption and Error Procedures and Messages 109 



Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852 

Explanation: The record length specified in the DEFINE FILE or 
OPEN statement exceeds the capabilities of the system and the 
physical limitation of the volume assigned to the data set in 
the job control statement. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: Record length is set to 32,000. 

Programmer Response: Make sure that appropriate parameters of 
the job control statement conform to specifications in the 
DEFINE FILE or OPEN statement; the record length in both must be 
equivalent and within the capabilities of the system and the 
physical limitations of the assigned volume. 

VOIDS - ATTEMPT TO USE THE OBJECT ERROR UNIT AS A 
DIRECT ACCESS DATA SET. UNIT unit 

Explanation: The data set assigned to print execution error 
messages cannot be a direct access data set. 

Supplemental Data provided: Unit number. 

Standard Corrective Action: The request for direct I/O is 
ignored. 

PrOgrammer Response: Make sure that the object error unit 
specified is not direct access. 

IFY23SI VDIOS - ATTEMPT TO USE A UNIT FOR DIRECT ACCESS I/O 
WHICH IS CURRECTLY OPEN FOR SEQUENTIAL I/O, UNIT unit 

Explanation: A unit number assigned to a direct access data set 
is used for a sequential data set. 

Supplemental Data Provided: Unit number. 

Standard corrective Action: The request for direct I/O is 
ignored. 

Programmer Response: Make sure that use of and/or reference to 
sequential data sets does not conflict with FORTRAN direct 
access data sets. Verify that device classes assigned by the 
installation do not conflict with the specification on the UNIT 
parameter of the job control statement. Make sure that the unit 
specified in a DEFINE FILE or OPEN statement defines a direct 
access data set. Check all job control statements. 

IFY2361 VDIOS - DIRECT ACCESS READ REQUESTED BEFORE DATASET 
WAS CREATED. FILE filename 

Explanation: A READ is executed for a direct access data set 
that has not been created. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: The I/O request i5 ignored. 

Programmer Response: Make sure that either a data set utility 
program has been used, or appropriate parameters have been 
specified on the associated job control statement. For further 
information, refer to VS FORTRAN Application Programming: Guide. 

IFY2371 VDIOS - INCORRECT RECORD LENGTH SPECIFIED. FILE 
filename 

Explanation: The length of the record did not correspond to the 
length of the record specified in the DEFINE FILE or the OPEN 
statement. 

110 VS FORTRAN Appli~ation Programming: Library Reference 

o 

0) 



o 

o 

o 

Page of SC26-3989 as updated 03 June 1981 by THL SN26-0852 

Supplemental Data Provided: Filename. 

Standard corrective Action: The I/O request is ignored. 

Programmer Response: Make sure that the length of the records 
supplied matches the length specified in the DEFINE FILE or the 
OPEN statement. If necessary, change the statement to specify 
the correct record length. 

IFV238I LDFIO - INCORRECT DELIMITER IN COMPLEX OR LITERAL 
INPUT, FILE ftlename 

Explanation: A literal string in the input record(s) was not 
closed with a quotation mark (or was longer than 256 
characters); alternatively, a complex number in the input 
record(s) contained embedded blanks, no internal comma, or no 
closing right parenthesis. 

Supplemental Data provided: Filename. 

Standard Corrective Action: The remainder of the I/O list is 
ignored. 

Programmer Response: Supply the missing quotation mark or amend 
the literal data to keep within the 256-character limit if the 
error was in the literal input. Check complex input numbers to 
see that they contain no embedded blanks, and that they contain 
an internal comma and a closing right parenthesis. 

IFV239I VASVN - ILKSIZE IS NOT SPECIFIED FOR AN INPUT FILE, 
FILE filename 

Explanation: The block size for an input file was not specified 
in the JCL or was specified as zero. 

Supplemental Data provided: Filename for which error occurred. 

Standard Corrective Action: The I/O request is ignored. 

Programmer Response: Make sure the block size is specified on 
the JCL for a new file. 

IFV240I 

IFV240I 

IFV240I 

IFV240I 

IFV240I 

IFV240I 

VSTAE - AIEND CODE IS: SYSTEM SSSS, USER UUUU, 
SCI/SDWA: HHHHHHHH. 

VSTAE - 10 - NOT RESTORED. PSW IS XXXXXXXXXXXXXXXX. 

VSTAE - REGS 0-3 XXX XXX XX XXXXXXXX XXXXXXXX 
XXXXXXXX 

VSTAE - REGS 4-7' XXXXXXXX XXXXXXXX XXXXXXXX 
XXXXXXXX 

VSTAE - REGS 8-11 XXXXXXXX XXXXXXXX XXXXXXXX 
XXXXXXXX 

VSTAE - REGS 12-15 XXXXXXXX XXXXXXXX XXXXXXXX 
XXXXXXXX 

Explanation: An abnormal termination occurred. In some 
instances, pointers to subroutine entry points may have been 
destroyed, causing the traceback map to be incomplete. If an 
incomplete subroutine traceback map is printed, the following 
additional text appears between message IFY2401 and the 
traceback map: 

Library Interruption and Error Procedures and Messages 111 



Page of SC26-3989 as updated 03 June 1981 by TNl SN26-0852 

TRACEBACK MAY NOT BEGIN WITH ABENDING ROUTINE. 

Supplemental Data Provided: SSSS represents the completion code 
if a system code caused termination; UUUU represents the 
completion code if a program code caused termination. 

For specific explanations of the completion codes, see the 
messages and codes manual that. applies to your operating system. 

The SCB field (HHHHHHHH) gives the address of the STAE Control 
Block, which contains the old PSW and the contents of general 
registers at the time of abnormal termination. The PSW field 
gives the contents of the last FORTRAN program status word when 
abnormal termination occurred. 

Input/output operations associated with the error are defined as 
NOT RESTORED, RESTORED, or NONE, as follows: 

NOT RESTORED--input;output has been halted and cannot be 
restored. 

RESTORED--Input/output has been halted. FORTRAN will attempt 
to restart I/O and then close data sets. 

NONE--No active I/O operations were present at abnormal 
termination time. Fortran will close data sets. 

Standard corrective Action: None. 

Programmer Response: Use the abend code, the contents of the 
sen and PSW, and any accompanying system messages, to determine 
the nature of the error. 

IFY2~lI FIXPI INTEGER BASE=O, INTEGER EXPONENT=exp LE ZERO 

Explanation: For an exponentiation operation (I**J) in the 
subprogram IFYFIXPI (FIXPII) where I and J represent integer 
variables or integer constants, I is equal to zero and J is less 
than or equal to zero. 

Supplemental Data Provided: Exponent specified. 

Standard Corrective Action: Result = o. 
Programmer Response: Make sure that integer variables and/or 
interger constants for an exponentiation operation are within 
the allowable range. If the base and exponent mayor will fall 
outside that range during program execution, then either modify 
the operands or insert source coda to test for the situation and 
make the appropriate compensation. Bypass the exponentiation 
operation if necessary. 

IFY2421 FRXPI - REALM4 BASE=O.O, INTEGER EXPONENT=exp LE ZERO 

Explanation: For an exponentiation operation (R**J) \n the 
subprogram IFYFRXPI (FRXPII), where R represents a REAL*4 
variable or REAL*4 constant and J represents an integer variable 
or integer constant, R is equal to zero and J is less than or 
equal to zero. 

Supplemental Data Provided: Exponent specified. 

Standard corrective Action: 

If BASE=O,EXP<O,RESULT=.; 
If BASE=O.O,EXP=O,RESULT=l. 

112 VS FORTRAN Application Programming: library Reference 

o 

) 

' I, O.·~" 



o 

o 

o 

Page of SC26-3989 added 03 June 1981 by TNL 5"26-0852 

programmer Response: Make sure that both the real variable or 
constant base and the integer variable or constant exponent for 
an exponentiation operation are within the allowable range. If 
the base and exponent mayor will fall outside that range during 
program execution, then either modify the operand(s), or insert 
source code to test for the situation and make the appropriate 
compensation. Bypass the exponentiation operation if necessary. 

Library Interruption and Error Procedures and Messages 112.1 



.~. v 



o 

o 

o 

IFY2431 FDXPI - REAL.a, BASE=O.O, INTEGER EXPONENT=exp LE 
ZERO 

Explanation: For an exponentiation operation (D**J) in the 
subprogram IFYFDXPI (FDXPII), where 0 representa a REAl*8 
variable or REAl*8 constant and J represents an integer variable 
or integer constant, D is equal to zero and J is less than or 
equal to zero. 

Supplemental Data Provided: Exponent specified. 

Standard Corrective Action: 

If BASE=O,EXP<O,RESUlT=.; 
If BASE=O.O,EXP=O,RESUlT=l. 

Programmer Response: Make sure that both the real variable or 
constant base and the integer variable or constant exponent for 
an exponentiation operation are within the allowable range. If 
the base and exponent mayor will fall outside that range during 
execution, then either modify the operand(s), or insert source 
code to test for the situation and make the appropriate 
compensation. Bypass the exponentiation operation if necessary. 

IFY2441 FRXPR - REAL.4, BASE=O.O, REAL*4 EXPONENT=exp LE ZERO 

Explanation: For an exponentiation operation (R**S) in the 
subprogram IFYFRXPR (FRXPR#), where Rand S represent REAl*4 
variables or REAl*4 constants, R is equal to zero and S is less 
than or equal to zero. 

Supplemental Data Provided: Exponent specified. 

Standard Corrective Action: 

If BASE=O,EXP<O,RESULT=.; 
If BASE=O.O,EXP=O,RESUlT=l. 

Programmer Response: Make sure that both the real variable or 
constant base and exponent for an exponentiation bperation are 
within the allowable range. If the base and exponent mayor will 
fall outside that range during program execution, then either 
modify the operand(s), or insert source code to test for the 
situation and make appropriate compensation. Bypass the 
exponentiation operation if necessary. 

IFY24S1 FDXPD REAL.a BASE=O.O, REAL*a EXPONENT=eXp, LE ZERO 

Explanation: For an exponentiation operation (D**P) in the 
subprogram IFYFDXPD (FDXPD#), where D and P represent REAL*8 
variables or REAL*8 constants, 0 is equal to zero and P is less 
than or equal to zero. 

Supplemental Data Provided: Exponent specified. 

Standard Corrective Action: Result=O. 

Programmer Response: Make sure that both the real variable or 
constant base and exponent for an exponentiation operation are 
within the allowable range. If the base and exponent mayor will 
fall outside that range during program execution, then either 
modify the operand(s), or insert source code to test for the 
situation and make appropriate compensation. Bypass the 
exponentiation operation if necessary. 

IFY246l 

IFY2461 

FCXPC COMPLEX.a BASE=O.O+O.OI, EXPONENT=exp LE ZERO 

FCXPI COMPLEX.8 BASE=O.O+O.OI, INTEGER EXPONENT=exp~ 
LE ZERO 

library Interruption and Error Procedures and Messages 113 



Explanatton: For an exponentiation operation CZ**J) in the 
subprograms IFYFCXPI CFCXPII) and IFYFCXPC CFCXPCI), where Z 
represents a COMPlEX*8 variable or COMPlEX*8 constant and J 
represents an integer variable or integer constant, Z is equal 
to zero and J is less than or equal to zero. 

Supplemental Data provided: Exponent specified. 

Standard corrective Action: 

If BASE=O,EXP<O,RESUlT=e; 
If BASE=O.O,EXP=O,RESUlT=l 

Programmer Response: Make sure that both the complex variable 
or constant base and the integer variable or constant exponent 
for an exponentiation operation are within the allowable range. 
If the base and exponent mayor will fall outside that range 
during program execution, then either modify the operand(s), or 
insert source coda to test for the situation and make the 
appropriate compensation. Bypass the exponentiation operation if 
fH!!CeSS!U'''Y. 

IFY247I 

IFY247I 

FCDXI COMPLEX-16 BASE=O.O+O.OI, INTEGER EXPONENT=eXp, 
LE ZERO 

FCDCD COMPLEX_16 BASE=O.O+O.OI, EXPONENT=eXp, LE ZERO 

Explanation: For an exponentiation operation CZ**J) in the 
subprograms IFYFCDXI (FCDXI.) and IFYFCOCO CFCOCOI), where Z 
represents a COMPLEX*16 variable or COMPlEX*16 constant and J 
represents an integer variable or integer.constant, Z is equal 
to zero and J is less than or equal to zero. 

Supplemental Data provided: Exponent specified. 

Standard corrective Action: 

If BASE=O,EXP<O,RESULT=e; 
If BASE=O.O,EXP=O,RESULT=l 

Programmer Response: Make sure that both the complex variable 
or constant base and the integer variable or constant exponent 
for an exponentiation operation are within the allowable range. 
If the base and exponent mayor will fall outside that range 
during program execution, then either modify the operandCs), or 
insert source code to test for the situation and make the 
appropriate compensation. Bypass the exponentiation operation if 
necessary. 

IFY2481 FQXPI' REAL-16 BASE=O.O, INTEGER EXPONENT=exp, LE 
ZERO 

Explanation: For an exponentiation operation CQ**J) in the 
subprogram IFYFQXPI (FQXPII), where Q represents a REALM16 
variable or constant and J represents an integer variable or 
constant, Q is equal to zero and J is less than or equal to 
zero. 

Supplemental Data provided: Exponent specified. 

Standard corrective Action: 

If BASE=O,EXP<O,RESULT=.; 
If BASE=O.O,EXP=O,RESULT=l 

Programmer Response: Make sure that both the real variable or 
constant base and the integer variable or constant exponent for 
an exponentiation operation are within the allowable range. If 
the base and exponent mayor will fall outside that range during 
execution, then either modify the operandCs), or insert source 
code to test for the situation and make the appropriate 

114 VS FORTRAN Application Programming: library Reference 

(:! 
•... \ 

l 



o 

o 

o 

compensation. Bypass the exponentiation operation if necessarv. 

IFY2491 FQXPQI REAL.16 BASE=base,REAL.16 EXP=exp, BASE=O.O, 
AND EXP LE ZERO OR lASE LT ZERO AND EXP HE ZERO 

Explanation: For an exponentiation operation CX**Y) in the 
subprogram IFYFQXPQCFQXPQ,), where X and Y represent REAL*16 
variables or constants, if X equals zero, Y must be greater than 
zero; if X is less than zero, Y must equal zero. One of these 
conditions is violated. 

Supplemental Data Provided: Base and exponent specified. 

Standard Corrective Action: 

If BASE=O and EXP<O,RESULT=.; 
If BASE=O.O and EXP=O,RESULT=l; 
If BASE=<O.O and EXP¢O,RESUlT=IXI**Y. 

Programmer Response: Make sure that both the real variable or 
constant base and exponent for an exponentiation operation are 
within the allowable range. If the base and exponent mayor will 
fall outside that range during program execution, then either 
modify the operandCs), or insert source code to test for the 
situation and make appropriate compensation. Bypass the 
exponentiation operation if necessary. 

IFY2S0I FQXPQI REAL.16 BASE=base, REAL.16 EXP=exp, ARGUMENT 
COMBINATION EXP •• LOG2 (BASE) GE 252 

Explanation: For an exponentiation operation in the subprogram 
IFYFQXPQ, the argument combination of y*log2Cx) generates a 
number greater than or equal to 252. 

Supplemental Data Provided: The arguments specified. 

Standard corrective Action: Result= •• 

Programmer Response: Make sure that the base and exponent are 
within the allowable range. If necessary, restructure arithmetic 
operations. 

IFY251I SQRT ARGUHENT=arg LT ZERO 

Explanation: In the subprogram IFYSSQRT (SQRT), the argument is 
less than o. 
Supplemental Data Provided: Argument specified. 

standard cor~ectlve Action: Result=IXI1,Z. 

Programmer Response: Make sure that the argument is within 
allowable range.· Either modify the argument, or insert source 
code to test for a negative argument and make the necessary 
compensation. Bypass the function reference if necessary. 

IFY2521 EXP ARG=arg, GT 174.673 

Explanation: In the subprogram IFYSEXPCEXP), the argument ;s 
greater than 174.673. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: Result=-. 

Programmer Response: Make sura that the argument to the 
exponentiation function is within allowable range. If the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, If necessary, 
modifY the argument or bypass the source referencing the 

library Interruption and Error Procedures and Messages 115 



function subprogram. 

IFY2SJI ALOG-ALOGlO ARG=arg, LE ZERO 

Explanation: In the subprogram IFYSLOG (AlOG and AlOGI0), the 
argument is less than or equal to zero. Because this subprogram 
is called by an exponential subprogram, this message may also 
indicate that an attempt has been made to raise a negative base 
to a real power. 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: 

If X=O, RESUlT=-.; 
If X<O, RESUlT=logIXI or log IXI. 

10 

Programmer Response: Make sure that the argument to th~ 
logarithmic function js within the allowable range. If the 
argument mayor will be outside that range during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY2541 SIN-COS ABS(ARG1=arg GE PI*(2**18J 

Explanation: In the subprogram IFYSSCH (SIH and COS), the 
absolute value of an argument is greater than or equal to 2 18 * 
pi (2 18 * pi=.82354966406249996D + 06). 

Supplemental Data Provided: None. 

Standard Corrective Action: Result=SQRT(2)/2. 

Program~er Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 
program execution, then provide code to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY25SI ATAN2 ARGUMENTS=O.O 

Explanation: In the subprogram IFYSATH2, when entry name ATAN2 
is used, both arguments are equal to zero. 

Supplemental Data Provided: Hone. 

Standard corrective Action: Result=O. 

programmer Response: Make sure that both arguments do not 
become 0 during program execution, or are not inadvertently 
initialized or modified to O. Provide code to test for the 
situation and, if necessary, modify the arguments or bypass the 
source referencing the function subprogram. 

IFY2561 

Explanation: In the subprogram IFYSSCHH (SINH or COSH), the 
argument is greater tnan or equal to 175.366. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: SINH(X)=±.; COSHCX)=. 

programmer Response: Make sure that the argument to the 
hyperbolic sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 

116 VS FORTRAN Appl i cat ion Programmi ng: library Reference 



C\ 
" 

o 

program execution. then provide code to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY257I ARSIN-ARCOS /ARG/:/arg/ GT 1 

Explanation: In the" subprogram IFYSASCN (ARSIN or ARCOS), the 
absolute value of the argument ;s greater than 1. 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: 

If x>1.0,ARCOS(x)=O; 
If <-1.0,ARCOS(x)=pi; 
If x>1.0,ARSIN=pi/2; 
If x<-1.0,ARSIN=-pi/2. 

Programmer Response: Make sure that the argument to the arcsine 
or arccosine function is between -1 and +1, inclusive. If the 
argument mayor will fall outside that range during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY258I 

Explanation: In the subprogram IFYSTNCT (TAN or COTAN), the 
absolute value of the argument is greater than or equal to 
218*pi (2 18 *pi=.82354966406249996D+06). 

Supplemental Data Provided: Argument specified. 

standard corrective Action: Resu1t=1. 

Programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotangent function is within the 
allowable range. If the argument mayor will exceed that range 
during program execution, then provide code to test for the 
situation and, if necessary, modify the argument or bypass the 
source referencing the function subprogram. 

IFY259I TAN-COT AN /ARG/:/arg(HEX:hex)/, APPROACHES 
SINGULARITY 

Explanation: In the subprogram IFYSTHCT (TAN or COTAN), the 
argument value is too close to one of the singularities (tpi/2, 
t3pi/2, ••• for the tangent or tpi, t2pi, ••• for the 
cotangent). 

Supplemental Data Provided: Argument specified. 

standard Corrective Action: Result=-. 

Programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotangQnt f~nction is within the 
allowable range. If the argument mayor will approach the 
corresponding singularities for the function during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY260I FQXP21 REAL*16 EXPONENT:exp, GE 252 

Explanation: In the subprogram IFYFQXPRCFQXP21), the exponent 
is beyond the range of 2252. 

Library Interruption and Error Procedures and Messages 117 



supplemental Data Provided: Exponent specified. 

Standard Corrective Action: Result=-. 

programmer Response: Make sure that the exponent 15 within the 
allowable range. 

IFY26lI DSQRT ARGU"ENT=arg LT ZERO 

Explanation: In the subprogram IFYLSQRTCDSQRT), the argument is 
less than o. 
Supplemental Data Provided: Argument specified. 

Standard corrective Action: Rasult=IXll~2. 

Programmer Response: Make sure that the argument is within the 
allowable range. Either modify the argument, or insert source 
code to test for a negative argument and make the necessary 
compensation. Bypass thQ function rQtQrence if neee5~ery. 

IFY262I DEXP ARG=arg, GT 174.673 

Explanation: In the subprogram IFYlEXPCDEXP), the argument is 
greater than 174.673. 

Supplemental Data Provided: Argument specified. 

Standard Correctlv. Action: Result=-. 

Programmer Response: Make sure that the argument to the 
exponential function is within allowable range. If the argument 
mayor will exceed that range during program execution, then 
provide code to test for the situation and, if necessary, modify 
the argument or bypass the source referencing the function 
subprogram. 

IFY263I DLOG-DLOGIO ARG=arg, LE ZERO 

Explanation: In the subprogram IFYllOG COLOG and DlOG10), the 
argument ;s less than or equal to zero. Because the subprogram 
is called by an exponential subprogram, this message may also 
indicate that an attempt has been made to raise a negative base 
to a real power. 

Supplemental Data Provided: Argument specified. 

standard Corrective Action: 

If X=O,RESULT=--; 
If X<O,RESUlT=logIXI or log Ixi. 

10 

Programmer Response: Make sure that the argument to the 
logarithmic function is within the allowable range. If the 
argument mayor will be outside that range dUring program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY2641 

Explanation: In the subprogram IFYlSCN (OSIN and DCOS), the 
absolute value of the argument is greater than or equal to 
250 *pi (2 50 *pi=.35371188737802239D+16). 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: Result=SQRT(2)/2. 

118 VS FORTRAN Application Programming: Library Reference 

ir~ 

~ 



o 

-0 

o 

Programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.29577951310) to the 
trigonometric sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 
program execution, then provide code to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY2651 DATAN2 ARGUHENTS=O.O 

Explanation: In subprogram IFYLATN2, when entry name DATAN2 is 
used, both arguments are equal to zero. 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: Result=O. 

Programmer Response: Make sure that both arguments do not 
become zero during program execution, or are not inadvertently 
initialized or modified to zero. Provide code to test for the 
situation and, if necessary, modify the arguments or bypass the 
source referencing the function subprogram. 

IFY2661 DSINH-DCOSH /ARG/=arg/, GE 175.366 

Explanation: In the subprogram IFYSCNH (DSINH or DCOSH), the 
absolute value of the argument is greater than or equal to 
175.366. 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: DSINHeX)=t.; DCOSH(X)=. 

Programmer Response: Make sure that the argument to the 
hyperbolic sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 
program execution, then provide code to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY2671 DARSIN-DARCOS /ARG/=/arg/ GT 1 

Explanation: In the subprogram IFYlASCH eDARSIN or DARCOS), the 
absolute value of the argument is greater than 1. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: 

If x > 1.0 DARCOS(x) = 0; 
If x < -1.0 DARCOSeX) = pi; 
If x > 1.0 DARSIH = pi/2; 
If x < -1.0 DARSIN = -pi/2. 

programmer Response: Make sure that the argument to the arcsine 
or arccosine function is between -1 and +1, inclusive. If the 
argument mayor will fall outside that range during execution, 
then provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY2681 

Explanation: In the subprogram IFYLTHCT (DTAH or DCOTAH), the 
absolute value of the argument is greater than or equal to 
2so*p~ (250 *pi=.35371188760142201D+16). 

Supplemental Data Provided: Argument specified. 

Library Interruption and Error Procedures and Messages 119 



standard corrective Action: Result=l. 

Programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotangent function is within the 
allowable range. If the argument mayor will exceed that range 
during program execution, then provide code to test for the 
situation and, if necessary, modify the argument or bypass the 
source referencing the function subprogram. 

IFY269I DTAN-DCOTAN /ARG/=/arg(HEX=hex)/, APPROACHES 
SINGULARITY 

Explanation: In the subprogram IFYLTNCT (DTAN or DCOTAN), the 
argument value is too close to one of the singularities (tpi/2, 
±3pi/2, ..• for the tangent; ±pi, ±2pi, ... for the cotangent). 

Supplemental Data provided: Argument specified. 

Standard corrective Aetion: Result=~. 

Programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotangent function is within the 
allowable range. If the argument mayor will approach the 
corresponding singularities for the function during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY2701 

IFY270I 

FCQXI COHPLEX*32 BASE=O.O+O.OI, INTEGER EXPONENT=exp, 
LE ZERO 

FCQCG COHPLEX*32 BASE=O.O*O.OI, EXPONENT=exp, LE ZERO 

Explanation: In the subprograms IFYFCQXI (FCQXI#) and IFYFCQCG 
(FCQCGI), a base 0 number has been raised to a power less than 
or equal to zero. 

supplemental Data Provided: Argument specified. 

Standard corre~tive Action: 

If X=O+Oi and J=O, RESULT=1+0i; 
If X=O+Oi and J<O, RESULT=.+Oi. 

(where J=exponent) 

Programmsr Response: Make sure the base is a non-zero number or 
raise the exponent to a non-zero value. 

IFY2711 CEXP REAL ARG=arg(HEX=hex), GT 174.673 

Explanation: In the subprogram IFYCSEXP (CEXP), the value of 
the real part of the argument is greater than 174.673. 

Supplemental Data provided: Argument specified. 

Standard corrective Action: Result=.(COS X + iSIN X) where X is 
the imaginary portion of the argument. 

Programmer Response: Make sure that the argument to the 
exponential function is within the allowable range. If the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

120 VS FORTRAN Application Programming: Library Reference 

o 

a 
f 

o 



o 

o 

o 

IFY272I 

Explanation: In the subprogram IFYCSEXP (CEXP), the absolute 
value of the imaginary part of the argument is greater than or 
equal to 218*pi (2 18 *pi=.82354966406249996D+06). 

Supplemental Data provtded: Argument specified. 

Standard Corrective Action: Result=eX1+0*i. 

Programmer Response: Make sure that the argument to the 
exponential function ;s within the allowable range. If the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation, and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY2731 CLOG ARGUMENT=O.O+O.OI 

Explanation: In the subprogram IFYCSLOG (CLOG), the real and 
imaginary parts of the argument are equal to zero. 

Supplemental Data Provided: Hona. 

standard Corrective Action: Result=-e+Oi. 

Programmer Response: Make sure that both the real and imaginary 
parts of the argument do not become zero during program 
execution, or are not inadvertently initialized or modified to 
zero. Provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY27'I 

Explanation: In the subprogram IFYCSSCN (CSIN or CCOS), the 
absolute value of the real part of the argument is greater than 
or equal to 211*pi (2 11*pi=.82354966406249996D+06). 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: 

Result=COSH(x )+O*i; CSIN=O+SIHHex )Mi. 
2 2 

Programmer Response: Make sure that the real part of the 
argument (in radians where 1 radian is equivalent to 
57.2957795131°) to the trigonometric sine or cosine function is 
within the allowable range. If the real part of the argument may 
or will exceed the range during program execution, then provide 
code to test for the situation and, if necessary, modify the 
real part of the argum~nt or bypass the source referencing the 
function subprogram. 

IFY27S1 

Explanation: In the subprogram IFYCSSCN (CSI" or CCOS), the 
absolute value of the imaginary part of the argu.ent ;s greater 
than 174.673. 

Supplemental Data provided: Argument specified. 

Standard Corrective Action: If imaginary part> 0, (X is real 
portion of argument): 

For sine, result=e/2(SIH X + iCOS X). 
For cosine, result=e/2(COS X - iSIH X). 

If imaginary part < 0, (X is real portion of argument): 

Library Interruption and Error Procedures and Messages 121 



For sine. result=e/2(SIH X - iCOS X). 
For cosine. result=e/2(COS X + iSIH X). 

ProgramMer Respons.: Make sure that the imaginary part of. the 
argument (in radians where 1 radian is equivalent to 
57.2957795131°) to the trigonometri~ sine or cosine function is 
within the allowable range. If the imaginary part of the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, if necessary. 
modify the imaginary part of the argument or bypass the source 
referencing the function subprogram. 

IFY276I CQEXP REAL ARG=arg, GT 174.673 

Explanation: In the subprogram IFYCQEXP (CQEXP). the value of 
the real part of the argument is greater than 174.673. 

Supplemental Data provldad: A,rgument specified. 

standard Corrective Action: Re:u!t ·~~(COS X + iSIH Xi where X 1S 
the imaginary portion of the argument. 

Programmer Response: Make sure that the real part of the 
argument to the exponential function is within the allowable 
range. If the real part of the argument mayor will exceed the 
range during program execution, then provide code to test for 
the situation, and. if necessary, modify the real part of the 
argument or bypass the source referencing the function 
subprogram. 

IFY277I CQEXP IMAG ARG=arg, ABS VALUE GT PI_2 __ 100 

Explanat Ion .. : In the subprogram I FYCQEXP (CQEXP), the absolute 
value of the imaginary part of the argument is greater than 
2100 *pi C2 1oo *pi=.39824418129956973D + 31) 

Supplemental Data provided: Argument specified. 

standard Corrective Action: Result=e x1+0*i. 

Programmer Response: Make sure that the imaginary part of the 
argument to the exponential function is within the allowable 
range. If the imaginary part of the argument mayor will exceed 
that range during program execution, then provide code to test 
for the situation and, if necessary. modify the imaginary part 
of the argument or bypass the source referencing the function 
subprogram. 

IFY278I CQLOG ARGUMENT = 0.0+0.01 

Explanation:' In the subprogram IFYCQLOG CCQLOG), the real and 
imaginary parts of the argument are equal to zero. 

Supplemental Data provided: Hone. 

standard Corrective Action: Result=-e+Oi. 

Programmer Responsa: Make sure that both the real and imaginary 
parts of the argument do not become zero during program 
execution, or are not inadvertently initialized or modified to 
zero. Provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY279I 

Explanation: In the subprogram IFYCQSCN CCQSIN or CQCOS), the 
absolute value of the real part of the argument is greater than 
or equal to 2100. . 

122 VS FORTRAN Application Programming: Library Reference 

o 



o 

o 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: If the argument is X + iY, for 
CQSIN, result=O + DSINH (Y)Mi and, for CQCOS, result = DCOSH 
(Y)+OMi. 

programmer Response: Make sure that the real part of the 
argument (in radi~ns where 1 radian is equivalent to 
57.2957795131°) to the trigonometric sine or cosine function is 
within the allowable range. If the part of the argument mayor 
will exceed the range during program execution, then provide 
code to test for the situation and, if necessary, modify the 
real part of the argument or bypass the source referencing the 
function subprogram.' . 

1FY2801 CQSIN-CQCOS /IMAG ARG/:/arg/, GT 174.673 

Explanation: In the subprogram IFYCQSCN(CQSIN or CQCOS), the 
absolute value of the imaginary part of the argument is greater 
than 174.673. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: If imaginary part> 0, (X is real 
portion of argument): 

For sine, result=e/2(SIN X + iCOS X). 
For cosine, result=e/2(COS X - ,SIN X). 

If imaginary part <0, (X is real portion of argument): 

For sine, result=e/2(SIH X - iCOS X). 
For cosine, result=e/2(COS X + iSIH X). 

Programmer Response: Make sure that the imaginary part of the 
argument (in radians where 1 radian is equivalent to 
57.2957795131°) to the trigonometric sine Or cosine function is 
within the allowable range. If the imaginary part of the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, if necessary, 
modify the imaginary part of the argument ~r bypass the source 
referencing the function subprogram. 

IFY2811 CDEXP REAL ARG=arg(HEX=hexl,' GT 174.673 

Explanation: In the subprogram IFYClEXP CCDEXP), the value of 
the real part of the argument is greater than 174.673. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: Result=e(COS X + iSIN X) where X is 
the imaginary portion of the argument. 

Programmer Response: Make sure that the real part of the 
argument to the exponential function is within the allowable 
range. If the real part of the argument mayor will exceed that 
range during program execution, then provide code to test for 
the situation and, if necessary, modify the real part of the 
argument or bypass the source referencing the function 
subprogram. 

1FY2821 CDEXP I"AG ARG=arg(HEX=hex),ABS VALUE GE P1*2*.50 

Explanation: In the subprogram IFYClEXPCCDEXP), the absolute 
value of the imaginary part of the argument is greater than or 
equal to 250 Mpi (2 s0 Mpi=.35371188760142201D+16). 

Supplemental Data provided: Argument specified. 

standard Correcttve Action: Result=e 1+0Mi. 

library Interruption and Error Procedures and Messages 123 



Programmer Response: Make sure that the imaginary part of the 
argument to the exponential function is within the allowable 
range. If the imaginary part of the argument mayor will exceed 
that range during program execution, then provido code to test 
for the situation, and, if necessary, modify the imaginary part 
of the argument or bypass the source referencing the function 
subprogram. 

IFY2831 CDLOG ARGUMENT=O.DO+O.DOI 

Explanation: In the subprogram IFYCLLOG (COLOG), the real and 
imaginary parts of the argument are equal to zero. 

Supplemental Data provided: None. 

standard Corrective Action: Result=-e+Oi. 

Programmer Response: Make sure that both the real and imaginary 
parts of the argument do not become zero during program 
execution, or are not inadvertently initialized or modified tu 
zero. Provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY2841 

Explanation: In the subprogram IFYCLSCN (CDSIN or COCOS), the 
absolute value of the real part of the argument is greater than 
or equal to 2so *pi (2 so *pi = .353711887601422010+16). 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: If the argument is X + iY, for 
CDSIN, the result=O + OSINH (Y) +i; for COCOS, the result=DCOSH 
(Y)+O*i. 

Programmer Response: Make sura that the real part of the 
argument (in radians where 1 radian is equivalent to 
57.2957795131°) to the trigonometric sine or cosine function is 
within the allowable range. If the part of the argument mayor 
will exceed the range during program execution, then provide 
code to test for the situation, and, if necessary, modify the 
real part of the argument or bypass the source referencing the 
function subprogram. 

IFY28SI CDSIN-CDCOS /IHAG ARG/=/arg(HEX=hex)/, G1 174.673 

Explanation: In the subprogram IFYCLSCN (COSIN or COCOS), the 
absolute value of the imaginary part of the argument is greater 
than 174.673. 

Supplemental Data provided: Argument specified. 

Standard Corrective Action: If imaginary part >0, (X is real 
portion of argument): 

For sine, result=e/2(SIH X + iCOS X). 
For cosine, result=e/2(COS X - iSIN X). 

If imaginary part <0, (X is real portion of argument): 

For sine, result=e/2(SIH X - iCOS X). 
For cosine, result=e/2(COS X + iSIH X). 

PrOgrammer Response: ·Make sure that the imaginary part of the 
argument (in radians where 1 radian is equivalent to 
57.29577951310) to the trigonometric sine or cosine function is 
within the allowable range. If the imaginary part of the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, if necessary, 
modify the imaginary· part of the argument or bypass the source 

124 VS FORTRAN Application Programming: Library Reference 

o 
j 



,/0 

o 

referencing the function subprogram. 

I FY286! VSIOS - ATTEMPT TO ISSUE SYNCHRONOUS AND ASYNHRONOUS 
I/O REQUESTS WITHOUT AN INTERVENING REWIND. FILE 
filename . 

Explanation: A data. set that has been using one mode of I/O 
operations (that is, either synchronous or asynchronous) must be 
rewound before changing modes. An attempt was made to change the 
mode without rewinding the data set. 

Supplemental Data Provided: Filename. 

Standard Corrective Action: The I/O request 1S ignored and 
execution continues. 

Programmer Response: . Insert a REWIND statement at an 
appropriate point in the program. 

IFY287I VASYN - A WAIT ISSUED WITH NO OUTSTANDING I/O 
REQUEST, FILE filename 

Explanation: A WAIT statement was issued with no corresponding 
READ or WRITE request. 

Supplemental Data Provided: Filename. 

Standard corrective Action: The WAIT statement is ignored and 
execution continues. 

Programmer Response: Remove the WAIT statement or include a 
corresponding READ or WRITE statement. 

IFY288I VASYN - NO WAIT ISSUED FOR AN OUTSTANDING I/O REQUEST 
FILE filename 

Explanation: No WAIT statement was issued for an outstanding 
READ or WRITE request. 

Supplemental Data provided: Filename. 

Standard Corrective Action: Execution continues with an implied 
WAIT. 

Programmer Response: Include the WAIT statement or remove the 
READ or WRITE statement. 

IFY289I QSQRT ARGUMENT=arg LT ZERO 

Explanation: In the subprogram IFYQSQRT (QSQRTI), the argument 
is lass than zero. 

Supplemental Data Provided: Argument specified. 

standard Corrective Action: Result = Ix1 1 ,2 

Programmer Response: Make sure that the argument is within the 
allowable range. Either modify the argument, or insert source 
code to test for a negative argument and make the necessary 
compensation. Bypass the function reference if necessary. 

IFY2901 GAHHA ARG=arg(HEX=hexl,LE 2**-252 OR GE 57.5744 

Explanation: In the subprogram IFYSGAMA (GAMMA), the value of 
the argument is outside the valid range (2- 252<x<57.5744). 

Supplemental lata Provided: Argument specified. 

Library Interruption and Error Procedures and Massages 125 



standard correctlv. Action: Result=-. 

programmer Respon •• : Make sure that the argument to the gamma 
functi on is wi thi n the allowable range. If the argument mayor (,.-", 
will be outs'ide that range during program execution, then "l",),i 
provide code to test for the situation and, if necessary, modify 
the argument or bypass the source referencing the function 
subprogram. 

IFY2911 

Explanation: In the subprogram IFYSGAMA (ALGAMA), the value of 
the argument is outside the valid range (0<x<4.2937xl0 73 ). 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: Result=-. 

Programmer Response: Make sure that the argument to the ALGAMA 
function is within the ~l!~web!e reng=. If thQ a,~iumei1t mayor 
will be outside that range during program execution, then 
provide code to test for the situation and, if necessary, modify 
the argument or bypass the source referencing the function 
subprogram. 

IFY292I QEXP ARG:arg, GT 174.673 

Explanation: In the subprogram IFYFQXPR (QEXP), the argument is 
greater than 174.673. 

Supplemental Data provided: Argument specified. 

standard corrective Action: Result=-. 

Programmer Response: Make sure that the argument to the 
exponential function is within the allowable range. If the 
argument mayor will exceed that range during program execution, 
then provide code to test for the situation and, if necessary, 
modify the argument or bypass the source referencing the 
function subprogram. 

IFY29lI QLOG-QLOGI0 ARG=arg, LE ZERO 

Explanation: In the subprogram IFYQlOG (QLOG and QlOGI0), the 
argument is less than or equal to zero. Because the subprogram 
is called by an exponential subprogram, this message may also 
indicate that an attempt has been made to raise a negative base 
to a real power. 

Supplemental Data Provided: Argument specified. 

standard corrective Action: If X=O, result=--; if X<O, 
result=loglXI or log IXI. 

10 

Programmar Response: Make sure that the argument to the 
logarithmic function is within the allowable range. If the 
argument mayor will be outside that range during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY294I 

Explanation: In the subprogram IFYQSCH (QSIH and QCOS), the 
absolute value of the argument is greater than or equal to 2100. 

Supplemental Data Provided: Argument specified. 

126 VS FORTRAH Application Programming: Library Reference 



f01 , ' 

o 

o 

standard corrective Action: Result=SQRT(2)/2 

Programmer Response: Make sura that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 
program execution, then provide coda to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY2951 QATAN2 ARGUMENTS: 0.0 

Explanation: In subprogram IFYQATH2, when entry name QATAH2 is 
used, both arguments are equal to zero. 

Supplemental Data Provided: Hone. 

standard Corrective Action: Result=O. 

Programmer Response: Make sura that both arguments do not 
become zero during program execution, or are not inadvertently 
initialized or modified to zero. Provide code to test for the 
situation and, if necessary, modify the arguments or bypass the 
source referencing the function subprogram. 

IFY2961 QSINH-QCOSH /ARG/:/arg/, GE 175.366 

Explanation: In the subprogram IFYQSCHH (QSIHH or QCOSH), the 
absolute value of the argument is greater than (or equal to) 
175.366. 

Supplemental Data Provided: Argument specified. 

Standard Corrective Actton: QSIHHeX)=t.; QCOSHeX)= •• 

Programmer Response: Make sure that the argument to the 
hyperbolic sine or cosine function is within the allowable 
range. If the argument mayor will exceed that range during 
program execution, then provide code to test for the situation 
and, if necessary, modify the argument or bypass the source 
referencing the function subprogram. 

IFY2971 QARSIN-QARCOS /ARG/:/arg/, GT 1 

Explanation: In the subprogram IFYQASCH (QARSIH or QARCOS), the 
absolute value of the argument is greater than 1. 

Supplemental Data Provided: Argument specified. 

Standard corrective Action: 

If X > 1.0 QARCOSeX) = 0; 
If X < -1.0 QARCOSeX) = pi; 
If X > 1.0 QARSIH = pi/2; 
If X < -1.0 DARSIH = -pi/2. 

Programmer Response: Make sure that the argument to the arcsine 
or arccosine function is between -1 and +1, inclusive. If the 
argument mayor will fall outside that range during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY2981 

Explanation: In the subprogram IFYQTNCT (QTAN or QCOTAN), the 
absolute value of the argument i. greater than or equal to 2100. 

Supplemental Data Provided: Argument .pecified. 

library Interruption and Error Procedure. and Messages 127 



standard Corrective Action: Result=!. 

programmer Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotangent function is within the 
allowable range. If the argument mayor will exceed that range 
during program execution, then provide code to test for the 
situation and, if necessary, modify the argument or bypass the 
source referencing the function subprogram. 

IFY299I QTAN-QCOTAN /ARG/=/arg/~ APPROACHES SINGULARITY 

Explanation: In the subprogram IFYQTHCT (QTAH or QCOTAN), the 
argument value is too close to one of the singularities (±pi/2, 
±3pi/2, ... for the tangent; ±pi, ±2pi, ... for the cotangent). 

Supplemantal Data provided: Argument specified. 

standard Corrective Action: Result=-. 

Program~er Response: Make sure that the argument (in radians 
where 1 radian is equivalent to 57.2957795131°) to the 
trigonometric tangent or cotengent function is within the 
allowable range. If the argument mayor will approach the 
corresponding singularities for the function during program 
execution, then provide code to test for the situation and, if 
necessary, modify the argument or bypass the source referencing 
the function subprogram. 

IFY300I DGAMMA ARG=arg(HEX=hex),LE 2**-252 OR GE 57.5744 

Explanation: In the subprogram IFYlGAMA (DGAMMA), the value of 
the argument is outside the valid range (2_ 2S2 <X<57.5744). 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: Result=-. 

Programmer Response: Make sure that the argument to the DGAMMA 
function is within the allowable range. If the argument mayor 
will be outside the range during program execution, then provide 
code to test for the situation and, if necessary, modify the 
argument or bypass the source referencing the function 
subprogram. 

IFY30lI DLGAHA ARG=arg(HEX=hex), LE ZERO. OR GE 4.2937.10**73 

Explanation: In the subprogram IFYlGAMA (DlGAMA), the value of 
the argument is outside the valid range (O<x<4.2937xl0 73 ). 

Supplemental Data Provided: Argument specified. 

Standard Corrective Action: Result=-. 

Programmer Response: Make sure that the argument to the DlGAMA 
function is within the allowable range. If the argument mayor 
will be outside that range during program execution, then 
provide code to test for the situation and, if necessary, modify 
the argument or bypass the source referencing the function 
subprogram. 

IFY900I EXECUTION TERMINATING DUE TO ERROR COUNT FOR ERROR 
NUMBER nnnn 

Explanation: This error has occurred frequently enough to reach 
the count specified as the number at which execution should be 
terminated. 

Supplemental Data provided: Error number. 

128 VS FORTRAN Appl i cat ion Programmi ng: library Reference 

o 

o 
) 



,0'1 \ ' ,! 

C' 
, I 

o 

standard corrective Action: No corrective action is 
implemented. 

ayste. Action: The job step is terminated with a completion 
code of 16. 

PrOgrammer Response: Make sure ,that occurrences of the error 
number indicated are eliminated. 

IFY9011 EXECUTION TERMINATING DUE TO SECONDARY ENTRY TO ERROR 
MONITOR FOR ERROR NUMBER nnnn WHILE PROCESSING ERROR 
NUMBER nnnn 

Explanation: In a user's corrective action routine, an error 
has occurred that has called the error monitor before it has 
returned from processing a previously diagnosed error. 

Supplemental Data Provided: Error numbers. 

Standard Corrective Action: No corrective action is attempted. 

system Action: The job step is terminated with a completion 
code of 16. 

Note: If a traceback follows this message, it may be unreliable. 

PrOgrammer Response: Make sura that the error monitor is not 
called p~ior to processing the diagnosed error. 

Example: A statement such as R=A**B (where A and Bare REAL*4) 
cannot be used in the exit routine for error 252, because FRXPRI 
uses EXP, which detects error 252. 

Refer to VS FORTRAN Application Programming Language Reference 
for information on the error handling subroutines. 

IFY902I ERROR NUMBER nnnn OUT OF RANGE OF ERROR TABLE 

Explanation: A request has been made to reference a 
non-existent Option Table entry. 

Supplemental Data Provided: Error number. 

System Action: The request is ignored and execution continues. 
IRETCD is set to O. 

Programmer Response: Make sure that the value assigned to an 
error condition is within the range of entries in the option 
table. 

IFY90lI VMOPT - ATTEMPT TO CHANGE UNMODIFIABLE TABLE ENTRY. 
MESSAGE NUMBER:nnnn 

Explanation: The Option Tabla specifies that no changes may be 
made in this entry, but a change request has been made by use of 
CALL ERRSET or CALL ERRSTR. 

Refer to VS FORTRAN Appljcation Proaramming Language Reference 
for information on the error handling subroutines. 

Supplemental Data Provided: Massage number. 

system Action: The request is ignored and execution continues. 

programmer Response: Make sure that no attempt has been made to 
alter dynamically an unmodifiable entry in the Option Table. 

Library Interruption and Error Procedures and M~ssages 129 



%FY904% ATTEMPT TO DO I/O DURING FIXUP ROUTINE FOR AN I/O 
TYPE ERROR. FILE filename 

Explanation: When attempting to correct an I/O error, the user ~; 
may not issue a READ, WRITE, BACKSPACE, ENDFIlE, REWIND, CAll 
PDUMP, CAll DUMP, DEBUG, or CAll ERRTRA. 

Refer to VS FORTRAN Application Proaramming languaga Refarence 
for information on the error handling subroutines. 

Supplemental Data Provtded: Filename. 

System Action: The job step is terminated with a completion 
code of 16. 

Programmer Response: Make sure that, if an I/O error is ' 
detected, the user exit routine does not attempt to execute any 
FORTRAN I/O statement. 

130 VS FORTRAN Application Programming: library Reference 

o 
t 
~ 

o 
) 



to! \ .. 

o 

c 

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-08S2 

OPERATOR MESSAGES 

Operator messages for PAUSE and STOP statements may be generated 
during load module execution as follows: 

yy IFVOOIA PAUSE X 

Explanation: A FORTRAN PAUSE statement has been executed. The 
yy is an identification number assigned to the message by the 
operating system. The x can be: 

• An unsigned 1- to S-digit integer constant specified in the 
PAUSE statement. 

• A literal constant specified in the PAUSE statement. 

• A zero to indicate that the PAUSE statement contained no 
constant. 

System Action: The program enters the wait state. 

Operator Response: Follow the instructions given by the 
programmer when the program was submitted for execution; these 
instructions should indicate the action to be taken for any 
constant printed in the message text or for a PAUSE statement 
without a constant. 

To resume execution~ reply to the outstanding console message 
after performing the operations requested. 

IFV002A STOP X 

Explanation: A FORTRAN STOP statement has been executed. The x 
can be an unsigned 1- to S-digit nonzero integer constant 
specified in the STOP statement. 

System Action: The STOP statement caused the program to 
terminate. 

Operator Response: None. 

Library Interruption and Error Procedures and Messages 131 



Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852 

APPENDIX D. MODULE NAMES 

Entry Name f10dule Name 

CHAR IFYCITFN 

ICHAR IFYCITFN 
INDEX IFYINDEX 

LEN IFYCITFN 
LGE IFYLXCMP 
LGT IFYLXCMP 
LLE IFYLXCMP 
LLT IFYLXCMP 

Figure 22. Character Subprogram Module Names 

OS Cf1S DOS 

IFYVCOMH I FYVCOMH IFYVCOMH 
IFYVSIOS IFYVSIOS IFYDSIOS 
IFYVDIOS IFYVDIOS IFYDDIOS 
IFYVIIOS IFYVIIOS IFYVIIOS 
IFYVVIOS IFYCVIOS IFYDVIOS r\ IFYVCVTH IFYVCVTH IFYVCVTH ~} IFYVCONI IFYVCONI IFYVCONI 
IFYVCONO IFYVCONO IFYVCONO 
IFYVTEN IFYVTEN IFYVTEN 
IFYVERRM IFYVERRM IFYVERRM 
IFYVERRE IFYVERRE IFYVERRE 
IFYVTRCH IFYVTRCH IFYVTRCH 

Figure 23. Reentrant Library Module Names 

132 VS FORTRAN Application Programming: library Reference 



(0 Entry Name Module Name Entry Name Module Name 

ACOS IFYSASEN DSIN IFYLSIH 
AINT IFYFAINT DSINH IFYLSCHH 
ALGAMA IFYSGAMA DSQRT IFYLSQRT 
ALOG IFYSLGC DTAN IFYLTNCT 
ALOG10 IFYSLGC DTANH IFYLTANH 
AMAXO IFYFMAXI 
AMAX1 IFYFMAXR EXP IFYSEXP 
AMINO IFYFMAXI ERF IFYSERF 
AMIN1 IFYFMAXR ERFC IFYSERF 
AMOD IFYFMODR 
ARCOS IFYSASCN FCDXII IFYFCDXI 
ARSIN IFYSASCN FCQXII IFYFCQXI 
ASIN IFYSASCN FCXPII IFYFCXPI 
ATAN IFYSATN2 FDXPDI IFYFDXPD 
ATAN2 IFYSATN2 FDXPII IFYFDXPI 

FIXPII IFYFIXPI 
CABS IFYCSABS FQXPII IFYFQXPI 
CCOS IFYCSSCN FQXPQI IFYFQXPQ 
CDABS IFYCLABS FQXP21 IFYFQXPQ 
CDCOS IFYClSCN FRXPII IFYFRXPI 
CDDVDI IFYCLAD FRXPRI IFYFRXPR 
CDEXP IFYCLEXP 
CDLOG IFYCLLOG GAMMA IFYSGAMA 
CDMPYI IFYCLAM 
CDSIN IFYCLSCN IDINT IFYFIFIX 
CDSQRT IFYCLSQT IFIX IFYFIFIX 
CDVD# IFYCSAD INT IFYFIFIX 
CEXP IFYCSEXP 
CLOG IFYCSLOG LGAMMA IFYSGAMA 
CMPYI IFYCSAM LOG IFYSLGN 
COS IFYSCOS LOG10 IFYSLGN 

i.C) COSH IFYSSCNH 
COTAN IFYSTNCT MAXO IFYFMAXI 
CQABS IFYCQABS MAXI IFYFMAXR 
CQCOS IFYCQSCN MINO IFYFMAXI 
CQDVDI IFYCQRIT MIN1 IFYFMAXR 
CQEXP IFYCQEXP MOD IFYFMODI 
CQLOG IFYCQLOG 
CQMPYI IFYCQRIT QARCOS IFYQASCN 
CQSIN. IFYCQSCN QARSIN .IFYQASCN 
CQSQRT IFYCQSQT QAT AN IFYQATN2 
CSIN IFYCSSCN QATAN2 IFYQATN2 
CSQRT IFYCSSQT QCOS IFYQSCN 

QCOSH IFYQSCNH 
DAR COS IFYLASCN QCOTAN IFYQTNCT 
DARSIN IFYLASCN QERF IFYQERF 
DATAN IFYLATN2 QERFC IFYQERF 
DATAN2 IFYLATN2 QEXP IFYFQXPQ 
DCOS IFYLCOS QLOG IFYFQXPQ 
DCOSH IFYLSCNH QLOG10 IFYFQXPQ 
DCOTAN IFYLTNCT QSIN IFYQSCN 
DERF IFYLERF QSINH IFYQSCNH 
DERFC IFYLERF QSQRT IFYQSQRT 
DEXP IFYLEXP QTAN IFYQTNCT 
DGAMMA IFYLGAMA QTANH IFYQTANH 
DLGAMA IFYLGAMA 
DLOG IFYLLGN SIN IFYSSIN 
DLOG10 IFYLLGC SINH IFYSSCNH 
DMAXl IFYFMAXD SQRT IFYSSQRT 
DMIN1 IFYFMAXD 
DMOD IFYFMODR TAN IFYSTNCT 

TANH IFYSTANH 

Figure 24. Mathematical Subprogram Module Names 

:C; 

Appendix D. Module Names 133 



TNl 5H26-0852 (03 June 1981) to 5C26-3989 

Appendix E: Sample Storage Printouts 

A sample printout is given below for each dump format that can be specified for the 
storage dump subprogram. The printouts are given in the following order: hex­
adecimal, LOGICAL *1, LOGICAL *4. INTEGER *2, INTEGER *4, REAL *4, REAL *8, COM­
PLEX *8, COMPLEX *16, and literal "(see Figure 25). Note that the he:lrlings on the print­
outs are not generated by the system;but were obtained by using FORMAT statements. 
The number printed at the left of each Qutput line is the storage location (in hexadecimal) 
of the first data item tahulated. 

The output of the storage dump subprogram (for entry names DUMP, CPDUMP, 

and PDUMP) is placed on the object error unit data set defined by the installation 
during system generation. 

CALL 'DUM' lIlTH HEXADECIMAL fORMAT SPECIfIED 

OOAJEO ... SFSElO 00000000 .. asfSE10 10000000 .. 2100000 

006DC' .. 21100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
006Df, COOOOOOO 00000000 .. 1200000 "IS66666 OOOOOOOC "UOOOOO 

CALL 'DUMP WITH LOGICAL-! fORMAT SPECIFIED 

006ElE T F 

CALL 'DUM' lIlTH LOGICAL-" fORMAT SPECIFIED 

006EIO f T 

CALL PDUMP lIlTH INTEGER-2 FORMAT SPECIfIED 

006ElI 10 

006ElA -100 

006ElC 10 

CALL PDUMP lIlTH INTEGER-" FORMAT SPECifIED 

006UO 1 2 3 It S 6 7 • 9 10 
006E ... 11 12 

CALL PO,,"P lIlTH REAL-.. FORMAT SPECIfIED 

006EOO 0.20000000E 01 O. S J999996E 0 I 

CALL PDUMP lIlTH REAL-' fORMAT SPECIFIED 

006oe. 0.17599999999999990 03 

CALL PDUMP lIlTH COMPLEX-' FORMAT SPECIFIED 

006000 (J. 0000000,".0000000) (".0000000,8.0000000) 

CALL PDUMP lIlTH COMPLEX-16 fORMAT SPECIFIED 

006DEO (0.9999999999999990, 0.999999999'.1999990) (-0.9999999999999990, -0. 9999999999999990) 

CALL PD,,"P lIlTH LITERAL FORMAT SPECIFIED 

OOliESC THIS ARRAY CONTAINS ALPHAMERIC DATA 

CALLCPDUMP 

008990 FILE READ ARGUMENT 

Figure 25. Sample Storage Printouts 

134 VS FORTRAN Library Reference 

o 



ABS/IAB 34 
error message 116 

absolute value subprograms 34,19 
accuracy figures 72 
AINT subprogram 

size 86 
AlGAMA/GAMMA 

accuracy 73 
algorithm 47-48 
effect of argument error 48 
error massage 126 
size 86 

algorithms 31-71 
AlOG/AlOGIO 

accuracy 73 
algorithm 52-53 
effect of argument error 53 
error message 116 
size 86 

AMAXO/AMINO subprograms 
list of 11 

AMOD/DMOD subprogram 
list of 11 
arguments 21 

arcosine subprograms 35-37,16 
ARCOS/ARSIN subprogram 

accuracy 73 
algorithm 35 
effect of an argument 35 
error message 117 
size 86 . 

arcsine subprograms 35-37,16 
arctangent subprograms 38-41,16 
arguments 

assembler language 82 
explicitly called 12-22 
implicitly called 23-26 

ARSIN/ARCOS 
(see ARCOS/ARSIN) 

ASIN/ACOS 
algorithm 35 
(see ARSIN/ARCOS) 

assembler language 
calling sequence 79 
requirements 81 

ATAN 
accuracy 73 
algorithm 38 
effect of an argument error 38 
size 86 

ATAN/ATAN2 subprogram 
accuracy 73 
algorithm 38-39 
effect of an argument error 39 
error message 116 
size 86 

CABS subprogram 
accuracy 73 
algorithm 34 
effect of argument .rror 34 

size 86 
calling VS FORTRAN subprogramS 

explicitly 12,34 
implicitly 23 
in assembler language 81 

calling sequence 
in assembler language 79 

CAll macro instruction 79 
CCOS/CSIH subprogram 

accuracy 73 
algorithm 58 
effect of an argument error 58 
error message 121-122 
size 86 

CDABS subprogram 
accuracy 73 
algorithm 34 
size 86 

CDCOS/CDSIN subprogram 
accuracy 73 
algorithm 58 
effect of an argument error 59 
error message 124-125 
siza 86 

CDDVDI/CDMPYI subprogram 
algorithm 66 
size 86 

CDEXP subprogram 
accuracy 73 
algorithm 46 
effect of an argument error 46 
error message 123-124 
size 86 

CDlOG subprogram 
accurac'y 73 
algorithm 54 
effect of an argument error 54 
error message 124 

CDMPYI/CDDVDI 
(see CDDVDI/CDMPYI) 

CDSIN/CDCOS 
(see CDCOS/CDSIN) 

CDSQRT subprogram 
accuracy 73 
algorithm 61 
effect of an argument error 62 
size 86 

CDUMP/CPDUMP 30 
CDUMP/CPDUMP subprogram 30 

algorithm 66 
effect of an argument error 66 
size 86 

CEXP subprogram 
accuracy 73 
algorithm 46 
effect of an argument error 46 
error message 120-121 
size 86 

CHAR subprogram 22 
Character subprograms 

CHAR 22,10 
ICHAR 22,10 
INDEX 22,10 
lEN 22,10 
lGE 22,10 
lGT 22,1-0 
llE 22,10 
llT 22,10 
manipulation routines 22 
storaga estimates 87 

Index 135 



CLOG subprogram 
accuracy 73 
algorithm 54 
effect of an argument error 54 
error message 121 
size 86 

CMPYI/CDVD# 
(see CDVDI/CMPYI) 

common logarithm subprograms 52-55,14 
complemented error function 

subprogram 41-45,19 
complex exponentiation 

subprograms 67-71 
complex multiply and divide 

subprograms 66 
corrective action 

program interrupt 
COS/SIN subprogram 

accuracy 73 
aigorithm 56-57 
effect of an argument error 57 
error message 116 
size 86 

COSH/SINH subprogram 
accuracy 73 
algorithm 49 
effect of an argument error 49 
error message 116 
size 86 

cosine subprograms 17 
COTAN/TAN subprogram 

accuracy 73,78 
algorithm 63-64 
effect of an argument error 64 
error message 117 
size 86 

cotangent subprograms 63-65,17 
CQABS subprogram 

accuracy 74 
algorithm 35 
effect of an argument error 34 
size 86 

CQCOS 
(see CQSIN/CQCOS) 

CQDVD#/CQMPYI subprograms 
accuracy 74 
algorithm 66 
effect of an argument error 66 
size 86 

CQEXP subprogram 
accuracy 74 
algorithm 47 
effect of an argument erro~ 47 
error message 122 
size 86 

CQLOG subprogram 
accuracy 74 
algorithm 55 
effect of an argument error 55 
error message 122 
size 86 

CQMPY#/CQDVD 
(see CQDVDI/CQMPY') 

CQSIN/CQCOS subprogram 
accuracy 74 
algorithm 59-60 
effect of an argument error 60 
error message 123 
size 86 

CQSQRT subprogram 
accuracy 74 
algorithm 62-63 
effect of an argument error 63 
size 86 

CSIN/CCOS 
(see CCOS/CSIN) 

CSQRT subprogram 
accuracy 74 
algorithm 61-62 
effect of an argument error 62 
size 86 

DARSIN/DACOS 
algorithm 36 
effect of an argument error 36 
error message 119 

DASIN/DACOS 
(see DARSIN/DARCOS) 

DATAN 
accuracy 74 
algorithm 39 
effect of an argument error 39 

DATAN/DATAN2 subprogram 
accuracy 74 
algorithm 39 
effect of an argument error 39 
error message 119 
size 86 

DCOS/DSIN subprogram 
accuracy 74 
algorithm 57-58 
effect of an argument error 58 
error message 118 
size 86 

DCOSH/DSINH subprogram 
accuracy 74 
algorithm 50 
effect of an argument error 50 
error message 119 
size 86 

DCOTAN/DTAN subprogram 
accuracy 74-75 
algorithm 64-65 
effect of an argument error 65 
error message 120 
size 86 
accuracy 74 
algorithm 42-43 
effect of an argument error 43 
size 86 

DEXP subprogram 
accuracy 75 
algorithm 46 
effect of an argument error 46 
error message 118 
size 86 

DGAMMA/DLGAMA subprogram 
accuracy 75 
algorithm 48-49 
effect of an argument error 49 
error message 128 
size 86 

divide-check service subprogram 27 
(see also DVCHK) 

DLGAMMA/DGAMMA 
(see DGAMMA/DLGAMA) 

DLOG/DLOGI0 subprogram 
accuracy 75 
algorithm 53 
effect of an argument error S3 
error message 118 
size 86 

(see DCOSH/DSINH) 

136 VS FORTRAN Application Programming: library Reference 



10 
\ 

o 

DMAXI/DMIHI subprogram 20 
DMOD/AMOD 21 

(see also AMOD/DMOD) 
DSIH/DCOS 17 

(see also DCOS/DSIH) 
DSIHH/DCOSH 18 

(see also DCOSH/DSIHH) 
DSQRT subprogram 

accuracy 75 
algorithm 60-61 
effect of an argument error 61 
error message 118 
size 86 

DTAH/DCOTAH 
(see DCOTAN/DTAN) 

DTANH subprogram 
accuracy 75 
algorithm 51-52 
effect of an argument error 52 
s1ze 86 

DUMP/PDUMP subprogram 
assembler language 

requirements 28-29 
format specifications 28 
output 29 
programming consideration 29 
sample printouts 29 
size 87 

DVCHK service subprogram 
assembler language 

requirements 27,81 
size 87 

end of execution service 
subprogram 28 

(see also EXIT) 
entry name 
ERF/ERFC subprogram 

accuracy 75 
algorithm 41-42 
effect of an argument error 42 
size 86 

error 
messages 90-131 
procedures 90 

error function subprograms 19 
execution error messages 95-130 
execution-time routines 

messages 95 
EXIT service subprogram 

assembler language requirements 28 
size 87 

EXP subprogram 
accuracy 76 
algorithm 45-46 
effect of an argument error 46 
error message 115 
size 86 

explicitly called subprograms 
accuracy statistics 72 
list 10-11 
size 86-87 
use in assembler language 79 
use in VS FORTRAN 12 

exponential subprograms 
explicit 45 
implicit 67-71 
list 14 

exponentiation 
explicit 

(see EXPi QEXPi CQEXP) 
implicit 

with complex base and complex 
exponent 67 

with complex base and integer 
exponent 67 

with integer base and exponent 69 
with real base and exponent 68 
with real base and integer 

exponent 68 
exponent overflow exception 27 

(see also OVERFL) 
FCDXII subprogram 

algorithm 67 
error message 114 
size 86 

FCDXDI/FCQXQI/FCXPCI 
algorithm 67 
effect of argument 67 

FCQXI subprogram 
accuracy 76 
algorithm 70 
effect of an argument error 70 
error message 120 
size 87 

FCXPII subprogram 
algorithm 67 
error message 114 
size 86 

FDXPDI subprogram 
algorithm 68 
effect of an argument error 68 
error message 113 
size 87 

FDXPI# subprogram 
algorithm 68 
error message 113 
size 87 

FIXPI# subprogram 
algorithm 69 
error message 112 
size 87 

FQXP2# subprogram 
accuracy 76 
algorithm 70 
error message 118 
size 87 

FQXPI# subprogram 
accuracy 76 
algorithm 70 
effect of an argument error 70 
error message 114 
size 87 

FQXPQ# subprogram 
accuracy 76 
algorithm 71 
effect of an argument error 71 
error messages 155 
size 87 

FRXPI# subprogram 
algorithm 68 
error message 112 
size 87 

FRXPRI subprogram 
algorithm 68 
effect of an argument error 68 
error message 113 
size 87 

Index 137 



GAMMA/ALGAMA 
(see ALGAMMA/GAMMA) 

GAMMA subprograms 47-49,20 

hyperbolic cosine 
subprograms 49-51,18 

hyperbolic sine subprograms 49-51,18 
hyperbolic tangent 

subprograms 51-52,18 

ICHAR 
INDEX 

module name 132 
IDINT/IFIX/INT subprogram 21 
implicitly called subprograms 66-71 

list 24-26 
input/out routines 8 

in-line code 7 
INT (see IDINT/IFIX/INT) 
interruption procedures 
intrinsic functions 7 

(see also implicitly called 
subprograms) 

introduction 7 

LEN subprogram 
LGAMMA 49 

(see also ALGAMA/GAMMA) 
library messages 90-131 
library execution routines 88 
LLE subprogram 
LLT subprogram 
LOG (see ALOG/DlOG) 
logarithmic subprograms 52-55,14 
log-gamma subprograms 47-49 

mathematical exception tests 
mathematical function subprograms 

accuracy figures 
algorithms 
definition 
explicitly called 
implicitly called 
lists 19-21 
performance statistics 
sizes 
use in VS FORTRAN 
use in assembler language 

maximum value subprograms 20 
MAXO/MINO subprograms 20 

mlnlmum value subprograms 20 
MOD subprogram 20-21 
modular arithmetic subprograms 21 
module name. 

character 132 
mathematical 133 

natural logarithm 
subprograms 52-55,14 

oparator messages 131 
out-of-line code 7 
OVERFL service subprogram 

assembler requiraments 27,18 
size 87 

overflow indicator service 
subprogram 27 

PDUMP/DUMP (sae DUMP/PDUMP) 28-29 
performance statistic. 72 
program interrupt messagas 90-94 
progammlng considerations 

CDUMP CPDUMP 30 
DUMP/PDUMP 29 

QARCOS (see QARSIN/QARCOS subprogram) 
QARSIN/QARCOS subprogram 

accuracy 76 
algorithm 37 
effect of an argument error 
arror message 127-128 
size 87 

QATAN/QATAN2 
accuracy 76 
algorithm 40-41 
effect of an argument error 41 
error massaga 127 
size 87 

QCOS (see QSIN/QCOS) 
QCOSH (sae QSINH/QCOSH) 
QCOTAN (sea QTAN/QCOTAN) 
QERF/QERFC subprogram 

accuracy 77 
algorithm 43-45 
affect of an argument error 45 
size 87 

QEXP subprogram 
accuracy 77 
algorithm 46-47 
effect of an argument error 47 
error message 126 
size 87 

QlOG/QLOGI0 subprogram 
accuracy 77 

138 VS FORTRAN Application Programming: Library Reference 

o 



o 

o 

algorithm 54-55 
effect of an argument error 55 
error message 126-127 
size 87 

QSIN/QCOS subprogram 
accuracy 77 
algorithm 59 
effect of an argument error 59 
error message 127 
size 87 

QSINH/QCOSH subprogram 
accuracy 76-77 
algorithm 50-51 
effect of an argument error 51 
error message 127 
size 87 

QSQRT subprogram 
accuracy 77 
algorithm 62 
effect of an argument error 62 
size 87 

QTAH/QCOTAH subprogram 
accuracy 77 
algorithm 65 
effect of an argument error 65 
error message 128 
size 87 

QTANH subprogram 
accuracy 77 
algorithm 52 
effect of an argument error 52 
size 87 

relative error 

sample dump printout 134 
save areas 81 

service subprograms 
mathematical exception test 27 
sizes 86-87 
use in assembler language 
use in VS FORTRAN 27 
utility 28 

SIN/COS (see COS/SIN) 
sine subprograms 56-65,17 
SINH/COSH (see COSH/SINH) 
square root subprograms· 60-63,15 
SQRT subprogram 

accuracy 78 
algorithm 60 
effect of an argument error 60 
error message 115 
size 87 

storage estimates 
character subprograms 87 
execution-time routines 88 
extended precision routines 86-87 
mathematical function 

subprograms 86-87 
service subprograms 87 

storage dump service 
subprograms 28-30 

TAN/COTAN (see COTAN/TAH) 
tangent subprograms 63-65,17 
TANH subprogram 

accuracy 78 
algorithm 51 
effect of an argument error 51 
size 87 

trigonometric subprograms 35-41,16,10 
truncation subprograms 21 

utility service ~ubprograms 28 

Index 139 



SC26-3989-0 

c. 

< en 
"T1 
0 
:::D 
-I 
:::u » z 
» 
'C 
'2. 
~ . ... o· 
::l 
-0 
a 

CQ ... 
C» 
3 
3 
:i' 

CQ 

r-
eT ... 
C» 

;;'~ 
\, ) 
~. 

::» 
(') 
CD -:n 
;-
z 
p 
en w ..., 
0 
N 
~ 

-0 ... 
:r ... 
!. 
:r 
c: en 
~ 

~ 
PIJ 

J cp 

--- ----- i cp - ----- --- 0 - ----- - - ----------_.-• 
o 

) 



to 

o 

VS FORTRAN Application 
Programming Library Reference 
SC26-3989-0 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the 
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in 
your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 
Note: (''opies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications. or for assistance in using your IBM system. to your IBM representative 
or to the IBM branch office serving your locality. 

Ust TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL __________________ _ 

Previous TNL ________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 



SC26-3989-0 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

III " I NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

· ...................................................................................................................... 
Fold and tape 

--- ------ ----- ---- - ---- - - ----------_.-
® 

Please do not staple Fold and tape 
· · · 

c 

J 



o 

VS FORTRAN Application 
Programming Library Reference 
SC26·3989·0 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the 
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in 
your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative 
or to the IBM branch of lice serving your locality. 

Ust TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL ________________ __ 

Previous TNL ________ _ 

PreviousTNL ________________ _ 

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 



SC26-3989-0 

Reader's Comment Form 

Fold and tape Please do not staple FOld and tape 

1< •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIII NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

a •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

FOld and tape Pie .. do not staple Fold and tape 

--- ------ ----- ---- ----- - - -----------.,-
® 

C"\ 
. I,' 

~ 
~ 

:r 
r+ 

3. 
:r 
c en » 
en 

" 0 ( 
"l 
0) 

W 
CO 
CD 
CO 
6 

q 
~. 



0, 
• ~ I I'" 

o 





-~- ------ ---.--~--... = =-:.::':: ------~- .-; 

·c·'· '\ ' ,,' 

Technical Newsletter 
This Newsletter No. SN26-0852 

Date 3 June 1981 

Base Publication No. 

File No. 

SC26-3989-0 
S370-25 

Prerequisite Newsletters None 

VS FORTRAN Application Programlning: Library Reference 

©Copyright IBM Corp. 1981 

This technical newsletter, a part of Release 1 of VS FORTRAN, Program Products 5748-F03 
(Compiler and Library) and 5748-LM3 (Library only), provides new and replacement pages 
for the subject publication. These replacement pages remain in effect for subsequent 
releases unless specifically altered. Pages to be inserted and removed are: 

cover-vi.2 (vi. 1 , vi.2 added) 
13,14 
23-26 
85-96.4 (96.1-96.4 added) 
101-112.1 (112.1 added) 
131-134 

Each technical change is marked by a vertical line to the left of the change. 

Summary of Amendments 

Changes included in this newsletter are summarized under "Summary of Amendments" 
following the preface. 

Note: Please file this cover letter at the back of the publication to provide a record of 
changes. 

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150 

Prillwd in U.S.A. 




