Program Product

SC26-3989-0
File No. S370-25

VS FORTRAN

Application Programming:
Library Reference

Program Numbers 5748-FO3 (Compiler

and Library)
5748-LM3 (Library Only)

Release 1

Pagae of 5026—398? as updated 03 Junae 1981 by TNL SN26-0852

First Edition (February 1981)

This edition, as amended by technical newstetter SN26-0852,applies to Release 1 of
VS FORTRAN, Program Products 5748-FO3 (Compiler and Library) and 5748-LM3
(Library only), and to any subsequent releases until otherwise indicated in new editions
or technical newsletters. Information concerning the TBM 3375 and 3380 direct access
devices is for planning purposes only until the availability of the devices.

The changes for this edition are summarized under “Summary of Amendments”
following the preface. Specific changes are indicated by a vertical bar to the left of the
change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are periodically made to the information herein; before using this publica-
tion in connection with the operation of IBM systems, consult the latest IBM
System/370 and 4300 Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or ser-
vices in your country.

Publications are not stocked at the address given below; requests for IBM publica-
tions should be made to your IBM representatxve or to the IBM branch office serv-
ing your locality.

A form for reader’s comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, P.O.
Box 50020, Programming Publishing, San Jose, California U.S.A. 95150. IBM may
use or distribute any of the information you supply in any way it believes appropri-
ate without incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Corporation 1981

Preface

This publication describes the mathematical and service subprograms in the Vs
FORTRAN libraries supplied with VS FORTRAN. To aid the programmer in the use of
this publication, a brief description of each chapter follows:

1. “Introduction” describes the four types of subprograms in the VS FORTAN
library (VSFORTL) and defines their use in either a VS FORTRAN or an
assembler language program.

2. ““Mathematical and Character Subprograms’’ describes the subprograms
which perform computations and conversions frequently needed by the
programmer. A mathematical or character subprogram is invoked explicitly
whenever one of its entry names appears in a source statement, or implicitly
through use of certain notations in the source statements.

3. “Service Subprograms’’ contains information about those subprograms
which perform utility functions.

4. “Algorithms” contains information about the method used in the library to
compute a mathematical function and describes the effect of an argument
error upon the accuracy of the answer returned.

5. ““Accuracy Statistics’ gives accuracy statistics for the explicitly called
mathematical subprograms.

6. <Appendixes” provides a list of diagnostic messages, a list of module names,
a sample storage printout, storage estimates, and information for the
assembler language programmer.

Standard and mathematical notation is used in this manual. The reader should be
familiar with this notation and with common mathematical terminology.

Industry Standards

The vS FORTRAN Compiler and Library program product is designed according to
the specifications of the following industry standards, as understood and
interpreted by IBM as of June, 1980:

American National Standard Programming Language FORTRAN, ANSI X3.9-
1978 (also known as FORTRAN 77)

International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

These two standards are technically equivalent. In this manual, references to the
current standard are references to the above two standards.

American Standard FORTRAN, X3.9-1966

International Organization for Standardization ISO R 1539-1972 Program-
ming Languages-FORTRAN

These two standards are technically equivalent. In this manual, references to the
old standard are references to these two standards.

Both the FORTRAN 77 and the FORTRAN 66 standard languages include IBM exten-
sions. In this book, references to current FORTRAN are references to the FORTRAN
77 standard plus the IBM extensions valid with it; references to old FORTRAN are
references to the FORTRAN 66 standard plus the IBM extensions valid with it.

Preface iii

Page of 5C26-3989 as updatad 03 Junae 1981 by TNL SN26-0852

VS Fortran Publications

The VS FORTRAN publications are designed to help you develop your programs with
a minimum of wasted effort. This book, the VS FORTRAN Application Program-
ming: Library Reference, gives you detailed information about the execution-time
library subroutines.

A series of related publications give you detailed reference documentation you can
use when you are actually performing the tasks this manual describes:

VS FORTRAN Application Programming:

Application Programming Guide, SC26-3985, contains guidance information
on designing, coding, debugging, testing, and executing VS FORTRAN
programs written at the current language level.

Language Reference, GC26-3986, gives you the semantic rules for coding Vs
FORTRAN programs when you’re using current FORTRAN.

System Services Reference Supplement, SC26-3988, gives you FORTRAN-
specific reference documentation for the system your programs will operate
under.

Source-Time Reference Summary, SX26-3731, is a pocket-sized reference card
containing current FORTRAN syntax and brief descriptions of the compiler
options.

System/360 and System/370 FORTRAN IV Language manual, GC28-6515, gives you
the rules for writing VS FORTRAN programs when you’re using old FORTRAN.

i r m nd O atio a
. VS FORTRAN
Application Programmings:
. Guide compile
Design Link
code Execute
Debug Dehug
FORTRAN 1V VS FORTRAN VS FORTRAN VS FORTRAN
Language Language system Services Library
Reference Reference Reference Reference
Supplenent
VS FORTRAN
Reference
summary

iv

VS FORTRAN Library Reference

BN

et

Related Publications

The FORTRAN programmer using the VS FORTRAN compiler and library should be
familiar with the information in the following publications:

® VS FORTRAN Language Reference, GC26-3986

® VS FORTRAN Application Programming Guide, SC26-3985

® VS FORTRAN System Services Reference Supplement, SC26-3988
® VS FORTRAN Compiler and Library Diagnosis, SC26-3990

Information about IBM-supplied utility programs can be found in the following
publications:

® OS/VS1 Utilities, GC26-3901
® OS/VS2 Utilities Manual, GC26-3902
® DOS/VSE Utilities Manual, GC33-5381

Information about the linkage editor and loader programs can be found in the
following publications:

® (OS/VS Linkage Editor and Loader, GC26-3813

® Guide to the DOS/VSE Assember, GC33-6077

Information about data management can be found in the following publications:
® OS/VS1 Supervisor Services and Macro Instructions, GC28-6670

® DOS/VSE Data Management Concepts, GC24-5138

® DOS/VSE Macro User’s Guide, GC24-5139

Information about assembler language programming can be found in the following
publications: .

® OS/VS and DOS/VS, VM/370 Assembler Language, GC33-4010
® OS/VS, VM/370 Assembler Programmer’s Guide, GC33-4021

Information about System/370 machine characteristics can be found in the follow-
ing publication:

® |BM System/370 Principles of Operation, GA22-7000

Preface v

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

| SUMMARY OF AMENDMENTS

!‘ﬂ(\m\ ’
Wy
| 3_JUNE 1981
| MISCELLANEOUS CHANGES ;
. "Compare of complex numbers™ has been added to the chart
Implicitly Called Mathematical Subprogams.
| o Storage estimates have been updated.
I . VSAM execution error messages have been included; other
messages have been changes.
| o A reentrant library moduls list has bean added.
| o A list of figures has been added.
7N i
ey
o \‘)
"‘\.bz}

vi VS FORTRAN Application Programming: Library Reference

IS

o

Page of 5C26-3989 added 03 June 1981 by TNL SN26-0852

Contents
Introduction. i 7
Mathematical and Character Functions.otiinii i, 7
Service Subroutine SUDPIOBIaAMSottt 8
Input/Output and Error RoUtINeS. e et 8
Mathematical and Character Subprograms 9
Explicitly Called SUDPrOBrams.ouuttitttt e ettt i ittt 12
Implicitly Called SUbpPrograms. ...ttt e e 23
Service Subroutine Subprograms 27
Mathematical Exception Test Subprograms...........vootiiiinoiiiiiriinenanninn... 27
Overflow Indicator Subprogram—Entry Name: OVERFL 27
Divide Check Subprogram—Entry Name: DVCHK. 27
L N o o3 073 1 V-7 28
End Execution Subprogram—Entry Name: EXIT............ 28

Storage Dump Subprogram —Entry Names: DUMP/PDUMP and CDUMP/CPDUMP .. 28

Programming Considerationsiitiitiirioniieiiiei e 29
Algorithms 31
Control of Program Exceptions in Mathematical Functions.c.covuieoo... 32
Explicitly Called Subprograms. iitoniiii et 34

Absolute Value SUDPTOBIaAMSttt e et e e 34

Arcsine and Arccosine SUbPrograms.oiiiiiii i i 35

ATCIANEENt SUDPIOBIAIMS\ttt ittt ettt ettt e et eiae e ranaeneananns 38

Error Function Subprograms.ri ittt ittt e et 41

Exponential Subprograms it e 45

Gamma and Log Gamma Subprogramsottt 47

Hyperbolic Sine and Cosine SUbpProgramsuviiiiitiiiineeneennenennnnnnnn 49

Hyperbolic Tangent Subprograms ... 51

Logarithmic Subprograms (Common and Natural)c...coouis 52

Sine and Cosine SUDPIOgIamS. it i e e et 56

Square Root SUbPIOBramSo ittt et e e 60

Tangent and Cotangent SUDPrOGIaMSttt ettt taniieeeeeannnnneenns 63
Implicitly Called Subprograms. B 66

Complex Multiply and Divide SUBPIOZFAMSttt enens 66

Complex Exponentiation Subprograms. i i i 67

Exponentiation of a Complex Base 10 an Integer Power........................, 67

Exponentiation of a Complex Base to a Complex Power, 67

Exponentiation of a Real Base to a Real Power Subprogram. 68

Exponentiation of a Real Base to an Integer Power Subprogram. 68

Exponentiation of an Integer Base to an Integer Power Subprogram................... 69

Exponentiation of a Base 2 to a Real Power Subprogram. 70

Exponentiation of a Real Base to an Integer Power Subprogram 70

Exponentiation of a Real Base to a Real Power Subprogram. 7
Accuracy Statistics i e 72
Appendix A: Assembler Language Informationo 79
Appendix B: Storage Estimates............ ...l 86
Appendix C: Library Interruption Procedures, Error Procedures, and Messages 89
INtErruUPtion PrOCEAUIESo\ttt ettt e e i e 89
Error Procedurest e 89
LDrary MeESSaBeS . . .ottt t it e et e e 90

Program Interrupt MesSageso ottt 90

EXecution Error MesSageso vtvn ettt e ittt ettt e 95

OPErator MESSaES.ottt ittt et e e et e e 131
Appendix D: Module Names 132
Appendix E: Sample Storage Prinfouts 134

Contents vi.l

Page of S5C26-3989 added 03 June 1981 by TNL SN26-0852

FIGURES

QOO NOVNPUN

[
L . . . L] . L] L] .

..
N =
. *

Y
- oo
M

e
N N
. . o

—
w

16.

17.
18.
19.
20.
21.

22.

24.
25.

vi.2 VS Fortran Library Refernce

Explicitly Called Mathematical

and Character Subprograms
Logarithmic and Exponantial Subprograms .
Trigonometric Subprograms
Hyperbolic Function Subprograms
Miscallaneous Mathematical Subprograms .
Charactaer Manipulation Routines . . .
Implicitly Called Mathematical Subprograms
Implicitly Called Character Subprograms .

Exponentiation with Integer Basae and Exponaen

Exponentiation with Real Base
and Integer Exponent . .

Exponentiation with Real Base and Exponent
Exponentiation with Complex Base

and Integer Exponent . e e o
DUMP/PDUMP Format Spactf!cattons e e e .
Accuracy Figures . .

Assembler Informatton for the EXPI‘Cltly
Called Mathematical Subprograms . .
Assembler Information for the Impltcutly
Called Mathematical Subprograms . . .
Assaembler Information for the Impltcltly
Called Character Subprograms
Assemblaer Information for the Service
Subprograms

e o o o ¢ o

General Assembler Language Calllng chuence

Mathematical Subprogram Storage Estimates
Service Subprogram Storage Estimates . .
Character Subprogram Storage Estimates .
Library Execution—Tima Routines
Storage Estimates . . .« .
Character Subprogram Modules Names .
Reentrant Library Modulae Names . .
Mathematical Subprogram Modules Names
Samplae Storage Printouts

¢ o ¢ o o
e o o o 0

¢ o o o 0

.
.
.
.
.
.
.
.

t

¢ o o o &

e 6 6 6 o s s e o

-

&>
t‘x i

;
e
i

N

>

Introduction

The vS FORTRAN library contains the following types of subprograms: (1)
mathematical and character functions, (2) service subprograms, (3) input/output
subprograms, and, (4) error handling subprograms. The mathematical and service
subprograms handle single, double and extended-precision arguments. Character
subprograms handle conversation between character and integer data.

The library subprograms may be used in either a FORTRAN or an assembler
language program. (Appendix B contains calling information for the assembler
language programmer.) In VS FORTRAN, calls to the library subprograms are either
at the programmer’s request or in response to the program requirements.
Subprograms required by the program being compiled are provided by the linkage
editor or loader, which takes the subprograms from the library.

Mathematical and
Character Functions

These routines provide commonly used mathematical and character functions.
When VS FORTRAN requests a function, the routine is either:

inline Inserted into the program during compilation, or
Out-of-Line Included in the load module as a called subprogram during link
editing.

This publication discusses both out-of-line and inline routines. The American
National Standard Institute (ANSI) defines several arithmetic functions, such as
absolute value (ABS), positive difference (DIM), and transfer of sign (SIGN) as
intrinsic functions. For the most part, code for these functions is inserted inline by
the FORTRAN compiler at the point in the source module where the function’s
name is used. However, the following ANSI-defined intrinsic functions have been
implemented as part of the VS FORTRAN library and are provided out-of-line for all
systems:

INDEX
LGE/LGT
LLE/LLT
MAX/MIN
MAX0/MINO
AMAX0/AMINO
MAX1/MINI1
AMAX1/AMIN1
DMAX1/DMIN1
QMAX1/QMIN1
MOD/AMOD/AINT
IFIX/INT/IDINT

Introduction 7

8 VS FORTRAN Library Reference

Service Subroutine
Subprograms

Each of the service subprograms corresponds to a subroutine form as defined by a
SUBROUTINE statement in a FORTRAN source module. These subprograms perform
mathematical exception test and utility functions. They may or may not return a
value to the calling module.

Input/Output and Error
Processing Routines

The library contains certain input/output and error processing routines that act as
interfaces with the compiled program and operating system. Frequently, the
mathematical and service functions require assistance from these routines for
input/output, interruption, and error processing. Storage estimates for these
routines are included in Appendix B.

i
m’"

) i /
et

Mathematical and Character Subprograms

The mathematical and character subprograms supplied in the vS FORTRAN library
perform computations and conversions needed by the programmer. Mathematical
and character subprograms are called in two ways: explicitly, when the programmer
includes the appropriate entry name in a source language statement (see Figure 1);
and implicitly, when certain notation (for example, raising a number to a power)
appears within a source language statement (see Figure 1).

The following text describes the individual mathematical and character
subprograms and explains their use in a VS FORTRAN program. Detailed informa-
tion about the actual method of computations used in each subprogram, error
messages, and storage estimates are discussed later in this publication.

Mathematical and Character Subprograms 9

General Function

Specific Function

Entry Name(s)

Logarithmic and exponential subpraﬁrénis‘
(described in Figure 2)

Exponential

EXP
DEXP
CEXP
CDEXP
QEXP
CQEXP

Logarithmic, common and natural

ALOG, ALOGI10
DLOG, DLOG10
CLOG

CDLOG

QLOG, QLOG10
CQLOG

Square root

SQRT
DSQRT
CSORT
CDSQRT
QSQRT
CQSQRT

Trigonometric subprograms
(described in Figure 3)

Arcsine and arccosine

ARSIN, ARCOS
DARSIN, DARCOS
ASIN, ACOS
DASIN, DACOS
QARSIN, QARCOS

Arctangent

ATAN, ATAN2
DATAN, DATAN2
QATAN

QATAN2

Sine and cosine

SIN, COS
DSIN, DCOS
CSIN, CCOS
CDSIN, CDCOS
QSIN, QCOS
CQSIN, CQCOS

Tangent and cotangent

TAN, COTAN
DTAN, DCOTAN
QTAN, QCOTAN

Hyperbolic function subprograms Hyperbolic sine and cosine SINH, COSH
(described in Figure 4) DSINH, DCOSH
QSINH, QCOSH
Hyperbolic tangent TANH
DTANH
QTANH
Character Convert integer to character CHAR
Manipulation
Routines Convert character to integer ICHAR
(see Figure 6)
Length of character item LEN
Index of character item INDEX
Alphamerically greater than or equal LGE
Alphamerically greater than LGT
Alphamerically less than or equal LLE
Alphamerically less than LLT

Figure 1. (Part 1 of 2) Explicitly Called Mathematical and Character Subprograms

10 VS FORTRAN Library Reference

General Function

Specific Function

Entry Name(s)

Miscellaneous subprograms
(described in Figure 7)

Absolute value

CABS
CDABS
CQABS
IABS
ABS
DABS
QABS

Error function

ERF, ERFC
DERF, DERFC
QERF, QERFC

Gamma and log-gamma

GAMMA, ALGAMA
DGAMMA, DLGAMA
LGAMMA

Maximum and minimum value

AMAXO0, AMINO, MAXO0, MINO
AMAXI1, AMIN1, MAXI1, MIN1
DMAX]1, DMIN1

MAX, MIN
Modular arithmetic MOD
AMOD, DMOD
QMOD
Truncation AINT
INT, IDINT
Imaginary Part of Complex IMAG, AIMAG
Argument DIMAG
QIMAG
Conjugate of a Complex Number CONJG
DCONIG, QCONIJG
Obtain ANINT
Nearest Whole Number DNINT
Obtain NINT
Nearest Integer IDNINT
Obtain Positive Difference DIM, IDIM
DDIM, QDIM
Transfer of Sign SIGN, ISIGN
DSIGN
QSIGN
Obtain Double Precision Product DPROD

Figure 1. (Part 2 of 2) Explicity Called Mathematical and Charscter Subproyims

Mathematical and Character Subprograms

11

12

Explicitly Called Subprograms

Each explicitly called subprogram performs one or more mathematical or character
functions. Each mathematical and character function is identified by a unique entry
name.

A subprogram is called whenever the appropriate entry name is included in a v§
FORTRAN arithmetic or character expression. The programmer must supply one or
more arguments. These arguments are separated by commas, the list of arguments
is enclosed in parentheses, following the entry name.

For example, the source statement:
RESULT = SIN (RADIAN)

causes the sine subprogram to be called. The sine of the value in RADIAN is com-
puted and the function value is stored in RESULT.

In the following example, the square root subprogram is called to compute the
square root of the value in AMNT. The function value is then added to the value in
STOCK and the result is stored in ANS.,

ANS = STOCK + SQRT (AMNT)

The explicitly called subprograms are described in Figures 2 through S. The follow-
ing information is provided:

General Function: This column states the nature of the computation performed
by the subprogram.

Entry Name: This column gives the entry name that the programmer must use to
call the subprogram. A subprogram may have more than one entry name; the par-
ticular entry name used depends on the computation to be performed. For exam-
ple, the sine and cosine subprogram has two entry names: SIN and COS. If the sine
is to be computed, entry name SIN is used; if the cosine is to be computed, entry
name COS is used.

Definition: This column gives a mathematical equation that represents the com-
putation. An alternate equation is given in those cases where there is another way
of representing the computation in mathematical notation. For example, the
square root can be represented either as: y =~/ xor y =x12,

Argument Numbers: This column gives the number of arguments that the
programmer must supply.

Argument Type: This column describes the type and length of each of the argu-
ment(s). INTEGER, REAL, COMPLEX, and Character represent the type; the notations
*4,*8, *16, *32, and *n represent the size of the argument in number of storage
locations. (The notation *n describes character data.)

r IBM EXTENSION 1

Argument Range: This column gives the valid range for arguments. If an argu-
ment is not within this range, an error message is issued. For a description of the
error messages see Appendix C of this publication.

VS FORTRAN Library Referenée

s

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

Function Value Type and Range: This column describes the type and range of
the function value returned by the subprogram. Type notation used is the same as
that used for the argument type. The range symbol y = 1683 (1 — 167¢) for regular
precision routines, 1653 (1 — 16-4) for double-precision and y = 1663 (1 — 16728)
for extended-precision. ‘

L END OF IBM EXTENSION J

Error Code: This column gives the number of the message issued when an error
occurs. Appendix C contains descriptions of the error messages.

Throughout this publication, the following approximate values are represented by
218 e qrand 250 . 7r: ‘

218 o g = .8235496645826428D + 06

250 o = .3537118876014220D + 16

Detailed information for the assembler language programmer is given in
Appendix A.

Mathematical and Character Subprograms 13

Function Value Error
A t(s
General Entry rgument(s) Type* and Code
Function Name Definition No. Type! Range Range*
Common ALOG y=log.x or 11 REAL *4 x>0 REAL *4 253
and natural y=Inx y = —180.218
logarithm y = 174.673
ALOG10 | y=logux 1 | rReEaL*4 x>0 REAL *4 253
y = —78.268
y = 75.859
DLOG y=log.x or 1 REAL *8 x>0 REAL *8 263
y=Inx y = ~-180.218'
y = 174.673
DLOG10 y=logux 1 REAL *8 x>0 REAL *8 263
’ y = —78.268
y = 75.859
CLOC y=PVlige, (z) 11 compiex*8 1y 20408 COMPLEY *8 273
See Note 2 yi = —180.218
v = 175.021
- TSRS n
CDLOG | y=PVlog. (z) |1 |compLex*16|z=0 + 0i COMPLEX *16 283
See Note 2 y) = —180.218
= 175.021
- é 4] § Ld
QLOG y=loge x or 1 | REAL*16 x>0 REAL*16 293
y=lnx y = —180.218
y = 174.673
QLOG10 y=log;, x 1 REAL*16 x>0 REAL*16 293
y &= —78.268
y = 175.859
CQLOG y=PV loge (z) 1 COMPLEX*32 [z 0 + 0i COMPLEX *32 278
See Note 2 y, = —180.218
¥, = 175.021
ek 37 XU
Exponential |EXP y=eX 1 REAL *4 x = 174.673 REAL *4 252
0=y=v
DEXP y=eX 1 REAL *8 x = 174.673 REAL *8 262
Osy=svy
CEXP y=es 1 |compLEx*8 |x = 174.673 COMPLEX *8 271,
See Note 3 x| < (218 e w) ~TENasYy 272
CDEXP y=e3s 1 COMPLEX *16 | xi = 174.673 COMPLEX *16 281,
See Note 3 Ixe] < (259 7) —“v=y,VsSv 282
QEXP y=ex 1 REAL*16 x = —180.218 REAL*16 292
X = 174.673 O0sysy
CQEXP §=ex 1 COMPLEX*32 | x,= 174.673 COMPLEX *32 276,
ee Note 3 : X, & 2100 —y =Ry, =y m
NoTes: (See end of figure.)

Figure 2. (Part 1 of 2) Logarithmic and Exponential Subprograms

14 VS FORTRAN Library Reference

~
_/

né
‘“‘5_/'

Lomtema,

Function Value
Argument(s)
General Entry g Type! and Error
Function Name Definition No. Type! Range Ranget Code
Square root [SQRT y=Vxor 1 REAL *4 x=0 REAL *4 251
y=x” Osy=y"
SQRT y=Vxor 11 REAL *8 x=0 . REAL*8 261
y=x"* Osy=qy"»
ESQRT y=Vzor 1 COMPLEX *8 |any COMPLEX COMPLEX *8
y=2"% argument 0=y, = 10987 (4'") —_—
See Note 3 [ye] = 1.0087 (4'*)
ICDSQRT | y=Vzor 1 | coMpPLEX *16 | any compLEX COMPLEX *16
y=2z7 argument 0=y = 1.0987(+'") —_—
See Note 3 lye] = 1.0987 (4'7)
QSQRT |y =+VXor 1 | RrEAL®16 xZ0 REAL*16 289
y = x!/2 Osy=y2
CQSQRT |(y=+Zor 1 COMPLEX *32 }any COMPLEX COMPLEX *32
y =2zl argument 0=y, = 1.0987 (y/2)
See Note3 y, = 1.0987 (y'/2)
NoTES:
! REAL *4, REAL *8, and REAL *16 arguments correspond to REAL DOUBLE PRECISION and EXTENDED PRECISION arguments,
respectively, in VS FORTRAN.
2 pv = principal value. The answer given (y, + y,i) is that one whose imaginary part (),) lies between — 7 and + = . More
specifically: — 7 < y, = m, unless x; < 0 and x, = — 0, in which case, y, = — =.
3 zis a complex number of the form x; + x, i.
4 y = 16% (1 — 16°¢) for regular precision routines, 1663 (1 — 16-14) for double precision routines, and 1663 (1 — 16-28)
for extended precision.

.,

Figure 2 (Part 2 of 2) Logarithmic and Exponential Subprograms

Mathematical and Character Subprograms 15

Function Value
Ar t
General Entry Definition gument(s) Type! and Error
Function Name No. 1 Type! Range Range* Code
Arcsine and |ASIN See ARSIN, DARSIN or QARSIN
arccosine :
ACOS See ARCOS, DARCOS or QARCOS
ARSIN =arcsin (x) 1 REAL *4 x| =1 REAL *4 (in radians) | 257
L 3 ~
e 14Ty
ARCOS y=arccos (x) 1 REAL *4 x| =1 REAL *4 (in radians) | 257
0=y=~
DASIN See DARSIN
DACOS See DARCOS
|DARSIN | y=arcsin (x) 1 |ReAL*8 x| =1 REAL *8 (in radians) | 267
L 2 ~
- ‘2—§ y §?
DARCOS | y=arccos (x) 1 REAL *8 x|=1 REAL *8 (in radians) | 267
. 0Sy=~
QARSIN y=arcsin(x) 1 REAL*16 Ix|=1 REAL*16 297
Fsvs
QARCOS | y=arcos(x) 1 REAL*16 Ix|=1 REAL*16 297
0sysw
Arctangent JATAN =arctan (x) 1 REAL *4 any REAL argument REAL *4 (in radians) —_—
L 2 »
~“gEYEY
ATAN2 X) 2 REAL *4 any REAL arguments { REAL *4 (inradians)| 255
y=arctan {~ (except 0, 0) ~-r<y=S~»
DATAN y=arctan (x) 1 REAL *8 any REAL argument REAL *8 (in radians) -
2 "7 2
DATAN2 (X)' 2 REAL *8 any REAL arguments | REAL *8 (in radians) 265
y=arctan 7, (except 0, 0) -r<y=r~
QATAN | y=arctan(x) 1 | ReaL*16 any REAL REAL *16 (in radians)
argument -if_s y si’_
'QATANz y=arctan (.;1) 2 | REAL’16 any REAL REAL*16 (in radians) 295
o2 arguments -w<ySw
(except 0,0)

Notes: (See end of table.)

Figure 3. (Part 1 of 2) Trigonometric Subprograms.

16 VS FORTRAN Library Reference

o

C

e

Argument(s)

Function Value

General Entry Definition Type® and Error
Function Name No. Type! Range Range* Code
Sine and [SIN =sin (x) 1 |rEaL*4 W< (2%) REAL *4 254
cosine (in radians) -1=y=1
COS y=cos (x) 1 REAL *4 |x] < (218«) REAL *4 254
(in radians) -1=y=1
DSIN y=sin (x) 1 REAL *8 x| < (250 ¢ x) REAL *8 264
(in radians) -1=sy=1
DCOS y=cos (x) 1 | ReaL*8 x| < (250 ¢ 7) REAL *8 264
(in radians) -1=sy=1
CSIN y=sin (z) 1 COMPLEX *8 ||x/| < (2!%* 7) COMPLEX *8 274,
See Note 2 (in radians) ||x.| =< 174.673 Y ENVB=Y 275
CCOS y=cos (z) 1 COMPLEX *8 |lxi| < (2% 7) COMPLEX *8 274,
See Note 2 (in radians) ||x.| = 174.673 A Enye=y 275
CDSIN y=sin (z) 1 COMPLEX *16] x| < (2%« =) COMPLEX *16 284,
See Note 2 (in radians) |{x.] = 174.673 “YENYET 285
CDCOS y=cos (z) 1 COMPLEX *16}[x:| < (27" ¢ =) COMPLEX *16 284,
See Note 2 (in radians) ||x.| < 174.673 -y =Sy, a=Zvw 285
QSIN y=sin(x) 1 REAL*16 |x| < 2100 REAL*16 294
(in radians) [lsys=s1
QCOS y=cos(x) 1 REAL*16 |x| < 2100 REAL*16 294
(in radians) [l=sy=1
CQSIN y=sin(z) 1 COMPLEX *32 |[{x,|< 2% COMPLEX *32 279,
See Note 2 (in radians) || x;|= 174.673 ySy,y,ay 280
CQCOS y=cos(z) 1] coMpLEX*32 ||x,|< 2100 COMPLEX *32 279,
See Note 2 (in radians) || x;|= 174.673 yEYy,Y, =y 280
Tangent TAN y=tan (x) 1 REAL *4 x| < (2" e xr) REAL *4 258,
and (in radians) |See Note 4 -y =y=swy 259
cotangent
COTAN y=cotan (x) 1 REAL *4 x| < (215 x) REAL *4 258,
(in radians) |See Note 4 —-v=y=Ew 259
DTAN y=tan (x) 1 REAL *8 [x] < (2% x) REAL *8 268,
(in radians) |See Note 4 —ySy=~w 269
DCOTAN | y=cotan (x) 1 REAL *8 Ix] < (259 ¢ #) REAL *8 268,
(in radians) |See Note 4 —y=y=y« 269
QTAN y=tan(x) 1 | reaL*16 |x| < 2100 REAL *16 298,
(in radians) | See Note 3 yEySy 299
QCOTAN | y=cotan(x) 1 REAL*16 lxl< 2100 REAL*16 298,
(in radians) |Ixi= 16 ySySy 299
See Note 3
NoTES:

1 REAL*4, REAL *8, and REAL *16 correspond 1o REAL. DOUBLE and EXTENDED PRECISION arguments, respectively, in VS FORTRAN.

2 zis a complex number of the form X, + X, 1.

3 x may not be such that one can find a singularity within 8 units of the last digit value of the floating-point representation of x.
Singularities are = (2n + l)-%n =0,1,2,...fortangent,and = nw,n=0, 1, 2, ... for cotangent.
4 The argument for the cotangent functions may not approach a multiple of #; the argument for the tangent functions may not
approach an odd multiple of #/2.

8 5 = 1683 (1 — 167¢) for regular precision routines, 1652 (1 — 167!4) for double-precision routines and 16¢3 (1 — 16-2%) for

extended precision.

Figure 3. (Part 2 of 2) Trigonometric Subprograms.

Mathematical and Character Subprograms

17

18

Function Value
t
General Entry Definition Argument(s) Type! and Error
Function Name No. Type! Range Range® Code
Hyperbolic (SINH _ e —e" 1 REAL *4 |x] < 175.366 REAL *4 256
sine and y= 2 ~-ySy=<w«w
cosine
COSH - & t+er 1 | ReaL *4 |x} < 175.366 REAL *4 256
y) ISy=snv
|DSINH _ e —e* 1 REAL *8 |x] < 175.368 REAL *8 266
=3 -v=Sy=sv
|DCOSH y= Ster 1 |REAL*8 |x] < 175.366 REAL *8 266
2 1=y=v
QSINH =Lf—=ex 1 REAL *16 |x|=175.366 REAL *16 296
y=r = —ymy=y
QCOSH _eXx+ex 1 REAL*16 |x|=175.366 REAL *16 296
y Isysy
Hyperbolic _ e -—e* 1 REAL *4 any REAL argument REAL *4 -
tangent TANH Y= Tt e ~-1sy=1
DTANH _ &—e 1 REAL *8 any REAL argument REAL *8 —
y e +e™ -lsy=s1
QTANH =& _F eX 1 REAL *16 any REAL REAL *16 —
Y e Fex argument ~lsys=s1
NoOTES:

' REAL *4, REAL*8, and REAL *16 arguments correspond to REAL, DOUBLE and EXTENDED PRECISION arguments, respectively,
in Vs FORTRAN.

2 5 = 16 (1 — 16-9) for regular precision routines, 16%® (1 — 16-16) for double-precision routines, and 16% (1 — 16-%)
for extended precision.

"Figure 4. Hyperbolic Function Subprograms

VS FORTRAN Library Reference

A
s

General Entry Argument(s) Fu.!;;gzln X::llw Error
0\ Function Name Definition No. Type! Range Range* Code
Absolute CABS y=lz|= (x:2 + x?)"* | 1 |coMpPLEX *8 |any COMPLEX REAL *4
value argument 0=yn=vy
See Note 2 ys=0 -
|CDABS y=[z]= (2 + x:2)** | 1 |compLEx *16}any compLEX REAL *8
argument 0=yn=¥« —
See Note 2 yr=0
' CQABS y=lz]= (x2+x972 | 1 | compLex *32 |any comPLEX REAL *16
argument Osy, Sy
See Note 1 y. =0 —_—
1ABS y=Ix| 1 | INTEGER*4 |any INTEGER INTEGER *4
argument O0sy=sy -_—
ABS y = |x| 1 REAL *4 any REAL REAL *4
argument Isysy —_—
DABS y =[x| 1 |REAL*S any REAL ' REAL *8
argument O0sy, =svy —_
QABS y = |x| 1 REAL *16 any REAL REAL *16
argument 0=y, sy P—
Error |ERF 2 f* s 1 REAL *4 any REAL REAL *4
function Y="\7=f e du argument -1=y=1 .
§
ERFC 9 f* 1 |REAL*4 any REAL REAL *4
Y-"ﬁf e du argument 0sy=2 .
y=1 —erf (x)
DERF s fF 1 |REAL®*8 any REAL REAL *8
Y=7-= e du argument -1=y=1
»Jo —
DERFC 9 [1 REAL *8 any REAL REAL *8
Y=z e du argument Osy=2
Jx —
y=1 —erf (x)
QERF 2 X 1 REAL*16 any REAL REAL *16
y= 1rfe'"’du argument -lsy=s1
" —
QERFC 2 (* 1 REAL *16 any REAL REAL *16
. Y= af evidu argument 0sy=2
X _
y=1—erf (x)

Nortes: (See end of figure.)

Figure 5. (Part I of 3) Miscellaneous Mathematical Subprograms

Mathematical and Character Subprograms

Function Value

General Entry _ Argument(s) Type* and Error
Function Name Definition No. Type! Range Range® Code
Gamma and |GAMMA bt 1 |REAL*4 x > 27282 and REAL *4
log-gamma y= u*te™ du x < 57.5744 088560 =y =+« 290
)
ALGAMA | y=log.T (x) or 1 REAL *4 x> 0 and REAL *4
® x < 429131073 —-0.12149 <y =
y=log. f u*le*du v=v 261
o
DGAMMA w] REAL *8 x > 27352 gnd REAL *8
y= f u*le*du x < 57.5744 088560 =y=4v 300
o
DLGAMA | y=log.T (x) or 1 REAL *8 x> 0and REAL *8
i x < 4.2913°107%] =0.12149 Sy =
y=log. J u*te*du y=7 301
(]
LGAMMA | y=log. T (x) or 1 REAL *4 x > 27252 and REAL *4
o x < 57.5744 088560 =y < v 290
y=log, u*le*du
[}
Maximum MAX0 y=max (X1,...,%n) = 2 | INTEGER *4 |any INTEGER INTEGER *4
an.d. arguments —_
minimum
values
MINO y=min (X1,...,Xa) =2 | INTEGER *4 |any INTEGER INTEGER *4
arguments —
AMAXO y=max (Xi,...,Xn) =2 | INTEGER *4 |any INTEGER REAL *4
arguments —_—
AMINO y=min (Xx:1,...,Xa) = 2 | INTEGER *4 |any INTEGER REAL *4
arguments —_
MAX1 y=max (Xi,...,Xn) =2 | nreaL*4 any REAL INTEGER *4
arguments —
MIN1 y=min (xi,...,Xn) =2 | rEaL *4 any REAL INTEGER *4
’ arguments —_—
AMAX1 y=max (X:,...,Xa) =2 | REAL *4 any REAL REAL *4
arguments —
AMIN1 y=min (Xi,...,Xn) =2 | ReaL *4 any REAL REAL *4
arguments —
DMAX1 y=max (Xi,...,Xn) Z 2 |REAL*8 any REAL REAL *8
arguments —
DMIN1 y=min (X1, ..., Xa) =2 |ReaL*8 any REAL REAL *8
arguments —_

NoTEs: (See end of figure.)

Figure 5. (Part 2 of 3) Miscellaneous Mathematical Subprograms

20 VS FORTRAN Library Reference

/

A

General Entry Argument(s) F“’!I"cﬁype’onx:ilue Error
(Function Name Definition No. Type! Range Range® Code
R Maximum MAX y=max (X1,...,Xa) = 2 |INTEGER *4 | any INTEGER INTEGER *4
and arguments —_—
minimum
values : - ~ . .
(continued) |MIN y=min (x1,...,Xa) Z 2 |INTEGER *4 | any INTEGER INTEGER *4
arguments -
QMAX1 y=max (x;,...,X,) =2 | REAL*16 any REAL REAL*16
t argument -
QMINi y=min (x,, ..., x,) =2 | REAL*16 any REAL REAL*16
argument —_—
Modular MOD y=x: (modulo x:) 2 | INTEGER Xe 5% 0 INTEGER *4
arithmetic See Note 3 See Note 4 —_—
AMOD y=x; (modulo x.) 2 | REAL *4 X290 REAL *4
See Note 3 See Note 4 —_—
DMOD y=x: (modulo x:) 2 |REAL*8 X2 5% 0 REAL *8
See Note 3 See Note 4 —_—
QMOD y=x, (modulo x) 2 | REAL*16 x,#0 REAL*16
See Note 3 See Note 4 R
C
Truncation [AINT y = (sign of x)en 1 REAL *4 any REAL REAL *4
where n = [|x]] argument —
See Note 6
INT y = (sign of x)en 1 REAL *4 | any REAL INTEGER *4
where n = ||x]} argument —_
See Note 6
IDINT y = (sign of x)en 1 REAL *8 any REAL INTEGER *4
where n = ||x|} argument —_—
See Note 6
NOTES:
! REAL *4, REAL*8, and REAL *16 arguments correspond to REAL, DOUBLE and EXTENDED PRECISION arguments, respectively, in
VS FORTRAN.
- 2 Floating-point overflow can occur.
3 The expression x, (modulo x,) is defined as x, — [—’;—;] e X,, where the brackets indicate that an integer is used. The
larg’?st integer whose magnitude does not exceed the magnitude of % is used. The sign of the integer is the same as the sign
. Of LR
X2
4 If x, = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an
interruption occurs. (A detailed description of the interruption procedure is given in Appendix C.)
8 y = 16 (1 - 1678) for regular precision routines, 165 (1 — 16-'4) for double-precision routines and 163 (1 — 16-%) for
extended precision routines.
For example, n = {m |where m is the greatest integer satisfying the relationship|m|= |x].

Figure 5. (Part 3 of 3) Miscellaneous Mathematical Subprograms

Mathematical and Character Subprograms 21

Argument(s)

General Entry Definition Function Value | Error
Function Name Type and Code
No. | Type Function Range
Convert ICHAR Conversion to 1 Character | Integer INTEGER *4 -
character integer
to integer
Convert CHAR Conversion 1 Integer { Character INTEGER *4 188
integer to to character
character
Length of LEN Length of 1 Character | Integer INTEGER *4 -
character character
item entity
Index of INDEX Location of 2 Character Integer INTEGER *4 189,
9haracte~ substring a; 190
item in string a,
Alphamerically | LGE a,=a, 2 Character Logical LOGICAL *4 191,
greater 192
than or equal
Alphamerically | LGT a, >a, 2 Character Logical LOGICAL *4 191,
greater 192
than
Alphamerically | LLE a, <a, 2 Character Logical LOGICAL *4 191,
less than 192
or equal
Alphamerically|{ LLT a, <a, 2 Character Logical LOGICAL *4 191,
less than 192

Figure 6. Character Manipulation Routines

22 VS FORTRAN Library Reference

Implicitly Called Subprograms

The implicitly called subprograms are executed as a result of certain notations
appearing in a VS FORTRAN source statement. When a number is raised to a power
or when a multiplication or division of complex numbers is to be performed, the vs
FORTRAN compiler generates the instructions necessary to call the appropriate
subprogram. For example, if the following source statement appears in a source
module,

ANS = BASE**EXPON

where BASE and EXPON are REAL*4 variables, the VS FORTRAN compiler generates a
reference to FRXPR#, the entry name for a subprogram that raises a real number
to a real power.

The implicitly called subprograms in the VS FORTRAN library are described in
Figure 6. The column headed ‘“‘Implicit Function Reference’’ gives a representa-
tion of a source statement that might appear in a VS FORTRAN source module and
cause the subprogram to be called. The rest of the column headings in Figure 6
have the same meaning as those used with the explicitly called subprograms.
Algorithms for implicitly called subprograms are given in the chapter
““Algorithms.”” Additional information for assembler language programmers is
given in Appendix A.

For subprograms that involve exponentiation, the action taken within a
subprogram depends upon the types of the base and exponent used. Figures 7
through 11 show the result of an exponentiation performed with the different com-
binations and values of base and exponent. In these figures, I and J are integers; A
and B are real numbers; C is a complex number.

Mathematical and Character Subprograms 23

24

Page of 5C26-3989 as updated 03 Junae 1981 by TNL SN26-0852

General Entry! éum:fg:f;; Argument(s) - l\lfrﬁgg " Error
Function Name Reference® No. Type Type® Code
Multiply and CDMPY# y=2z*z 2 COMPLEX *16 COMPLEX *16
divide complex -
numbers
CDDVD# y = z/7s 2 | comPLEX *16 COMPLEX *16
CMPY# y=n"2Z 2 COMPLEX *8 COMPLEX *8
CDVD# y = 2/2s 2 COMPLEX *8 COMPLEX *8
CQMPY# y=2z"2 2 COMPLEX *32 COMPLEX *32
CQDVD# y =2z,/z, 2 COMPLEX *32 COMPLEX *32
Compare of CXMPR # ¥ =2, compop z, 2 COMPLEX LOGICAL*4
Complex (See (See f\lote 5) (of all —_—
numbers Note 4) lengths)
Raise an integer | FIXPI# y=i**j 2 i = INTEGER *4 INTEGER *4
to an integer j = INTEGER *4 241
power
Raise a real FRXPI# y=a**j 2 a = REAL *4 REAL *4
number to an j = INTEGER *4 242
integer power
' FDXPI# y=a**j 2 a = REAL *8 REAL *8
j = INTEGER *4 243
FQXPI# y = a*%j 2 a = REAL *16 REAL*16 248
J = INTEGER *4
Raise a real FRXPR# y=a**b 2 a = REAL *4 REAL *4
number to a b = REAL *4 244
real power
FDXPD# y=a**b 2 a = REAL *8 REAL *8
b = RreaL 8* 245
FQXPQ# y =a**b 2 a = REAL *16 REAL *16 249,
b = REAL *16 250
Raise 2to a FQXP2# y=2*"0b 1 b = REAL *16 REAL *16
real power 260
Raise a complex FCDXI# y=2z**j 2 Z = COMPLEX *16 COMPLEX *16
number to an j = INTEGER *4 247
integer power
FCXPI1# y=1z**j 2 Z = COMPLEX *8 COMPLEX *8
j = INTEGER *4 246
FCQXI# y=1z*% 2 Z = COMPLEX *32 COMPLEX *32 270

j = INTEGER *4

Figure 7. Implicitly Called Mathematical Subprograms (Part 1 of 2)

VS FORTRAN Library Reference

O

e

Paga of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

‘NOTES:

1. This name must be used in an assembler language program to call the subprogram; the character # is a part of the name
and must be included.

2. This is only a representation of a FORTRAN statement; it is not the only way the subprogram may be called.

3. REAL *4, REAL *8, and REAL *16 arguments correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments,
respectively, in VS FORTRAN.

4. CXMPR# is an entry name in the library module IFYCCMPR, which is also used for a compare of character arguments.

§. compop is one of the following relational operators: equal or not equal.

Figure 7. Implicitly Called Mathematical Subprograms (Part 2 of 2)

Implicit Argument(s) Function E
S:g;}; Function N T Value . C:c(l);
Reference o. ype Type
CCMPR# y = X; COMPOP X, 6 Character Any character 193
' (See Note) argument 194
CMOVE# y=x 4 Character Any character 195
argument 196
197
CNCAT# y=x,//%;...//%x, | &2 | Character Any character 198
argument 199

NoTtE: Where compop is one of the following relational operators:
equal
not equal
greater than
less than
greater than or equal

less than or equal

Figure 8. Implicitly Called Character Subprograms

Mathematical and Character Subprograms

25

Exponent (B)

Base (A) B>0 B=0 B<0
A >0 }|Compute the Function Compute the
function value | value =1 function value

A =0 |Function Error message | Error message
value = 0 244 or 244 or
245 245
A <L0 |Error message | Function Error message
253 or value = 1 253 or
263 263

Exponent (J)
Race (I) -
720 J=0 J]<0
I1>1 Compute the | Function Function
function value] value = 1 value = 0
I=1 Compute the | Function Function
function value] value = 1 value = 1
I=0 Function Error message | Error message
value = 0 241 241
I = -1 |Compute the | Function If J is an odd
function value| value = 1 number, function
value = -1,
If] is an even
number, function
value = 1.
I < -1 |Compute the | Function Function
function value| value = 1 value = 0

Figure 10.1. Exponentiation with Real Base and Exponent

Figure 9. Exponentiation with Integer Base and Exponent

Exponent (J)
Base (A
(A) J>0 J=0 J<0
A >0 [Compute the Function Compute the
function value |value =1 function value

A =0 |Function Error message | Error message
value = 0 242 or 242 or
243 243
A <0 |Compute the Function Compute the
function value |value =1 function value

Figure 10. Exponentiation with Real Base and Integer Exponent

26 VS FORTRAN Library Reference

Base (C) Exponent (J)

C=P+Qi I>0 j=0 J<O

P > 0and Compute the | Function Compute the
Q>0 function value| value=1 + 0; | function value
P > 0and Compute the | Function Compute the
Q=0 function value| value=1 + 0i | function value
P > 0and Compute the | Function Compute the
Q0o function value | value=1 + 0i | function value
P = 0and Compute the | Function Compute the
Q>0 function value | value=1 + 0i | function value
P =0and Function value| Error message | Error message
Q=0 0+ 0i 246 or 246 or

247 247

P = 0and Compute the | Function Compute the
Q<o function value | value=1 + 0i |function value
P < 0and Compute the | Function Compute the
Q>0 function value | value=1 + 0i |function value
P < 0and Compute the | Function Compute the
Q=0 function value | value=1 + 0i }function value
P < 0and Compute the |Function Compute the
Q<o function value | value=1 + 0i |function value

Figure 10.2. Exponentiation with Complex Base and Integer
Exponent

3

Service Subroutine Subprograms

The service subprograms supplied in the VS FORTRAN library are divided into two
groups: One group tests for mathematical exceptions and the other groups perform
utility functions. Service subprograms are called by the appropriate entry name in a
VS FORTRAN language CALL statement.

Mathematical Exception Test Subprograms

These subprograms test the status of indicators and may return a value to the call-
ing program. In the following descriptions of the subprograms, j represents an
integer value.

Overflow Indicator Subprogram

Entry Name: OVERFL

This subprogram tests for an exponent overflow or underflow exception and
returns a value that indicates the existing condition. After testing, the overflow
indicator is turned off. This subprogram is called by using the entry name overrL in
a cavL Statement. The source language statement is:

CALL OVERFL ()
The value of j is returned by the subprogram to indicate the following:

1 = floating-point overflow condition has occurred last.
2 = no overflow or underflow condition has occurred.
3 = a floating-point underflow condition has occurred last.

Note: A value for jof 1 or 3 indicates that condition was the last one to occur. An
overflow followed by an underflow in the same statement would be recorded as
condition 3 —“‘underflow occurred last.”’

Divide Check Subprogram
Entry Name: DVCHK

This subprogram tests for a divide-check exception and returns a value that indi-
cates the existing condition. After testing, the divide-check indicator is turned off.
This subprogram is called by using entry name pvcuk in a caLL statement. The
source language statement is:

CALL DVCHK ()

where:
J is set to one if the divide-check indicator was on; or to 2 if the indicator was off.

Service Subroutine Subprograms 27

Utility Subprograms

The utility subprograms perform two operations for the FORTRAN programmer:
they either terminate execution (EXIT) or dump a specified area of storage (DUMP/
PDUMP).

End Execution Subprogram

Entry Name: EXIT

The end execution subprogram terminates execution of the load module and
returns control to the operating system. (Except that no operator message is pro-
duced, EXIT performs a function similar to that performed by the STOP statement.)
This subprogram is called by using the entry name EXIT in a CALL statement. The
source language statement is:

CALL EXIT

Siorage Dump Subprogram
Entry Names: DUMP/PDUMP, CDUMP/CPDUMP
These subprograms dump character data.

Entry names DUMP/PDUMP dump a specified area of storage. Either of two entry
names (DUMP or PDUMP) can be used to call the subprogram. The entry name is
followed by the limits of the area to be dumped and the format specification. The
entry name used in the CALL statement depends upon the nature of the dump to be
taken.

If execution of the load module is to be terminated after the dump is taken, entry
name DUMP is used. The source language statement is:
where:

CALLDUMP (a,, by, £, . .., ay. b,.fy)

aand bare variables that indicate the limits of storage to be dumped (either aor b
may represent the upper or lower limits of storage).

Jf indicates the dump format and may be one of the integers given in Figure 11.
A sample printout for each format is given in Appendix E.

VS FORTRAN

0 specifies hexadecimal
1 specifies LOGICAL *1
2 specifies LOGICAL *4
3 specifies INTEGER *2
4 specifies INTEGER *4
5 specifies REAL *4
6 specifies REAL *8
7 specifies COMPLEX *8
8 specifies COMPLEX *16
9 specifies literal

10 specifies REAL *16

11 specifies COMPLEX *32

Figure 11. DUMP/PDUMP Format Specifications

If execution is to be resumed after the dump is taken, entry name PDUMP is
used. The source language statement is:

CALL PDUMP (a,, by, £, . . ., @y, by, £3)

where a, b, and f have the same meaning as for DUMP.

28 VS FORTRAN Library Reference

O

Programming Considerations

A load module or phase may occupy a different area of storage each time it is
executed. To ensure that the appropriate areas of storage are dumped, the follow-
ing conventions should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in COMMON, B is a REAL number, and
TABLE is an array of 20 elements. The following call to the storate dump
subprogram could be used to dump TABLE and B in the hexadecimal format and
terminate execution after the dump is taken:

CALL DUMP (TABLE(1), TABLE(20),0,B,B,0)

If an area of storage in COMMON is to be dumped at the same time as an area of
storage not in COMMON, the arguments for the area in COMMON should be given
separately. For example, the following call to the storage dump subprogram could
be used to dump the variables A and B in REAL*8 format without terminating

- execution:

CALL PDUMP (A,A,6,B,B.6)

If variables not in COMMON are to be dumped, each variable must be listed
separately in the argument list. For example, if R, P, and Q are defined implicitly in
the program, the statement

CALL PDUMP (R,R,5,P,P,5,Q.Q,5)

should be used to dump the three variables in REAL *4 format. If the statement

CALL PDUMP (R,Q,5)

is used, all main storage between R and Q is dumped, which may or may not
include P, and may include other variables.

If an array and a variable are passed to a subroutine as arguments, the arguments
in the call to the storage dump subprogram in the subroutine should specify the
parameters used in the definition of the subroutine. For example, if the subroutine
SuBL is defined as:

SUBROUTINE SUBI (C,Y)
DIMENSION X (10)

and to call to SuBI within the source module is:

DIMENSION A (10)

CALL SUBI (A, B)

then the following statement should be used in SUBI to dump the variables in hex-
adecimal format without terminating execution:

CALL PDUMP (X(1), X(10),0, Y, Y, 0)

If the statement

CALL PDUMP (X(1), Y, 0)

~““Service Subroutine Subprograms 29

is used, all storage between (1) and vis dumped because of the method of transmit-
ting arguments.

When hexadecimal (0) or literal (9) is specified, the programmer should realize
that the upper limit is assumed to be of length 4.

Storage Dump Subprogram
Entry Names: CDUMP/CPDUMP

This subprogram dumps a specified area of storage, which contains character data
only. Either of two entry names (CDUMP or CPDUMP) can be used to call the
subprogram. The entry name is followed by the limits of the area to be dumped.
The entry name used in the CALL statement depends upon the nature of the dump
to be taken.

If execution of the load module is to be terminated after the dump is taken, entry
name CDUMP is used. The source language statement is:

CALL CDUMP (a,, b,, ..., a,, b,)

where:
a and b are variables that indicate the limits of storage to be dumped.

A sample printout for each format is given in Appendix E.

If execution is to be resumed after the dump is taken, entry name CPDUMP is used.
The source language statement is:

CALL CPDUMP (a;, b,,...,a,,b,)
‘'where a, and b, have the same meaning as for CDUMP.

If ¢, is a character variable of length 8 and ¢, is a character array of dimension 10
and length 15 then the statement:

CALL CPDUMP (¢, ¢ (1), ¢; (10))

will dump the variable ¢; and all the array elements of array ¢, in character format
and continue execution.

Programming Considerations

A load module may occupy a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped, the following conventions
should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in COMMON, B is a REAL number, and
TABLE is an array of 20 elements. The following cail to the storate dump
subprogram could be used to dump TABLE and B in the hexadecimal format and
terminate execution after the dump is taken:

CALLCDUMP (a,, b, ..., a,, b,)

If an area of storage in COMMON is to be dumped at the same time as an area of
storage not in COMMON, the arguments for the area in COMMON should be given
separately. For example, the following call to the storage dump subprogram could
be used to dump the variables A and B in REAL*8 format without terminating
execution:

CALL PDUMP (A,A,6,B,B,6)

30 VS FORTRAN Library Reference

o

N

~
.

Algorithms

This chapter contains information about the method by which each mathematical
function is computed. The information for explicitly called subprograms is arranged
alphabetically according to the specific function of each subprogram (i.e., absolute
value, exponentiation, logarithmic, etc.). The individual entry names associated
with each subprogram are arranged logically from simple to complex within each
function. For example, the heading “Square Root Subprograms” will have algo-
rithms arranged in the following order by entry name: sQRT, DSQRT, CSQRT, CDSQRT.

Information for the implicity called subprograms is arranged alphabetically
according to function, and alphabetically by entry name within that function. For
example, the heading “Complex Multiply and Divide Subprograms” will have
algorithms arranged in the following order: copvp#/compy#, covp# /cMmPY#.

The information for cach subprogram is divided into two parts. The first part
describes the algorithm used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its major computational steps;
the formulas necessary for each step are supplied. For the sake of brevity, the
needed constants are normally given only symbolically. (The actual values can be
found in the assembly listing of the subprograms.) Some of the formulas are widely
known; those that are not so widely known are derived from more common for-
mulas. The process leading from the common formula to the computational for-

mula is sketched in enough detail so that the derivation can be reconstructed by

anyone who has an understanding of college mathematics and access to the com-
mon texts on numerical analysis. Many approximations were derived by the so-
called “‘minimax’’ methods. The approximation sought by these methods can be
characterized as follows. Given a function f(x), an interval I, the form of the
approximation (such as the rational form with specified degrees), and the type of
error to be minimized (such as the relative error), there is normally a unique
approximation to f(x) whose maximum error over / is the smallest among all
possible approximations of the given form. Details of the theory and the various
methods of deriving such approximation are provided in standard reference. The
accuracy figures cited in the algorithm sections are theoretical, and they do not
take round-off errors into account. Minor programming techniques used to
minimize round-off errors are not necessarily described here.

The accuracy of an answer provided by these algorithms is influenced by two fac-
tors: the performance of the subprogram (see the chapter, ‘Accuracy Statistics’’)
and the accuracy of the argument. The effect of an argument error upon the
accuracy of an answer depends solely upon the mathematical function involved
and not upon the particular coding used in the subprogram.

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted
data. This guide (expressed as a simple formula where possible) is intended to
assist users in assessing the effect of an argument error.

Algorithms 31

The following symbols are used in this chapter to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL EXPLANATION
g(x) The result given by the subprogram.
f(x) The correct result.
f(x) — g(x) The relative error of the result
¢ f(x) given by the subprogram.
b The relative error of the argument.
E | f(x) — g(x)| The absolute error of the result
given by the subprogram.
A The absolute error of the argument.

The notation used for the continued fractions complies with the specifications
set by the National Bureau of Standards.!

Although it is not specifically stated below for each subroutine, the algorithms is
the chapter were programmed to conform to the following standards governing
floating-point overflow/underflow.

® Intermediate underflow and overflows are not permitted to occur. This pre-
vents the printing of irrelevant messages.

® Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to CDABS and CABS.

® When the magnitude of the answer is less than 16 ~*, zero is given as the
answer. If the floating-point underflow exception mask is on at the time, the
underflow message will be printed.

Control of Program Exceptions in Mathematical Functions

The VS FORTRAN mathematical functions have been coded with careful control of
error situations. A result is provided whenever the answer is within the range
representable in the floating-point form. In order to be consistent with VS
FORTRAN control of exponent overflow/underflow exceptions, the following types
of conditions are recognized and handled separately.

When the magnitude of the function value is too large to be represented in the
floating-point form, the condition is called a terminal overflow; when the mag-
nitude is too small to be represented, a terminal underflow. On the other hand, if
the function value is representable, but if execution of the chosen algorithm causes
an overflow or underflow in the process, this condition is called an intermediate
overflow or underflow.

Function subroutines in the VS FORTRAN library have been coded to observe the
.ollowing rules for these conditions: :

1. Algorithms which can cause an intermediate overflow have been avoided.
Therefore an intermediate overflow should occur only rarely during the execu-
tion of a function subroutine of the library.

2. Intermediate underflows are generally detected and not allowed to cause an
interrupt. In other words, spurious underflow signals are not allowed to be
given. Computation of the function value is successfully carried out.

3. Terminal overflow conditions are screened out by the subroutine. The argu-
ment is considered out of range for computation and an error diagnostic is
given.

1 For more information, see Milton Abramowitz and Irene A. Stegun (editors), Handbook of Math ical Functi Applied

Mathematics Series-55 (National Bureau of Standards, Washington, D.C., 1965).

32 VS FORTRAN Library Reference

o

4. Terminal underflow conditions are handled by forcing a floating-point under-
flow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC, and DERFC.

For implicit arithmetic subroutines, these rules do not apply. In this case, both
terminal overflows and terminal underflows will cause respective floating-point
exceptions. In addition, in the case of complex arithmetic (implicit multiply and
divide), premature overflow/underflow is possible when the result of arithmetic is
very close to an overflow or underflow condition.

Algorithms 33

34

VS FORTRAN Library Reference

Explicitly Called Subprograms

Absolute Value Subprograms

ABS/IABS
Algorithm
If x < 0,|x] = —x Otherwise | x| = x.

CABS/CDABS

Algorithm

1. Write |x + iy| = a + ib.

2. Let v; = max ([z}, |y|), and v, = min (|z], |y]).

3. If characteristics of v; and v, differ by 7 (15 for cpaBs) or more, or if v, = 0,
thena = v,,b = 0.

4. Otherwise,

Vg \ 2
a=2ep; ¢ \}%"'%(';,—) ,andb =0,
1

If the answer is greater than 1683, the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram (SQRT or DSQRT).

CQABS
Algorithm

1. Write | x + | = a + ib.
2. Let vy = max (|x]|,|y|), and v, = min (| x|, |»]).
Let16°-'ss v, < 16~
3. If characteristics of v; and w, differ by 15 or more, or if v, = 0, then a = v,
b=0.
4. Otherwise, let w, = 1617 « v, and w, = 161-7 « u,.
. Compute w=+/ w2+ w,2. Thena=16""' wand b= 0.
. The scaling factor 16” -1 is easy to construct. Scaling is carried out by short pre-
cision divisions, and the restoration is carried out by extended precision
multiplication.

A

Effect of an Argument Error

2
€ ~j§ 8(x) + %2 8(y) where 8(x) and 8(y) are relative erros inherent in
the real part and the imaginary part of the argument, respectively.

p

Arcsine and Arccosine Subprograms

ARSIN/ARCOS

Algorithm
1. If 0 =< x < 1%, then compute arcsin (x) by a continued fraction of the form:
arcsin (x) == x + x® * F where
pe & ds
(2+c)+ (22+c)’

The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 =x>=1) for
arcsin (x)/x of the following form:

arcsin(x) . a; + axx®

— =0 + a2 [W .
Minimax was taken under the constraint that a, = 1 exactly. The relative error
of this approximation is less than 2—32#3,
If 0 = x < %, arccos(x) is computed as:

arccos(x) = -—;——- arcsin(x).

2. If % < x= 1, then compute arccos(x) essentially as:

arccos(x) = 2 ¢ arcsin (\}1 _2_ x).

This case is now reduced to the first case because within these limits,

og\llg"g%.

This computation uses the real square root subprogram (sQrr).
If % < x = 1, arcsin(x) is computed as:

arcsin(x) = _12"__. arccos(x).

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round off errors.

3. If - 1 =z < 0, then arcsin(x) = — arcsin |x|
and arccos(x) = = — arccos |x|.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A

E~ *\7—1—:';2 For small values of x, E ~ A, Toward the limits (% 1) of the

range, a small A causes a substantial error in the answer. For the arcsine, ¢ ~ 8§
if the value of x is small.

ASIN/ACOS
Algorithm

If x is R*4, then ASIN(x) = ARSIN(x) and ACOS(x) = ARCOS(x)
If x is R*8, then DASIN(x) = DARSIN(x) and DACOS(x) = DARCOS(x)
If x is R*16, then QASIN(x) = QARSIN(x) and QACOS(x) = QARCOS(x)

Algorithms 35

36

DARSIN/DARCOS @

Algorithm
1. If 0 < x < Y%, then compute arcsin(x) by a continued fraction of the form:
arcsin(x) == x + 2%+ F where
+ d1 d2 da d4
AT) (B ta) T (2 Fc) + (2 Fcs)
The relative error of this approximation is less than 2—57-2,
The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 =x2=1) for
arcsin(x)/x of the following form:
arcsin(x) + I’ ay + axx? + agx* + ax® + asx® ,
=ae beo+b1x2+ng‘+bax“+x8J'

F =

Minimax was taken under the constraint that @, = 1 exactly.
If 0 = x = %, arccos(x) is computed as:

arccos(x) = % — arcsin(x).

2. If % < x < 1, then compute arccos (x) essentially as:

arccos(x) = 2 * arcsin (Jl ; x)_

This case is now reduced to the first case because within these limits,

og\llg"g%. Y

This computation uses the real square root subprogram (psQRT).
If %6 < x =< 1, arcsin(x) is computed as:

arcsin(x) = —;— — arccos(x).

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round-off errors.

3. If —1==x<0,thenarcsin(x) = — arcsin le, and arccos(x) = = — arccos |x|.
This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A
E ~ —=—= . For small values of x, E ~ A. Toward the limits (% 1) of the

Vi—=x
range a small A causes a substantial error in the answer. For the arcsine, e ~ § if
the value of x is small.

DASIN/DACOS ’
These names are aliases for DARSIN and DARCOS. '

VS FORTRAN Library Reference

QARSIN/QARCOS

Algorithm

1.If0= x é%‘, then compute arcsin (x) by a minimax rational approximation of

.

the following form:

w= 2x2, and
L S [g+ wla, + a, w+ ... + ag W]
aresin)= x+ X W= pFpwF . FHW¥T W

Coefficients { a,, b,} were determined by a minimax technique and the relative
error of this approximation is less than 16728, The order of evaluating this
rational form was so chosen as to reduce round-off errors.

Ifo=x= %, arccos (x) is computed as:

arccos (x) = 21— arcsin (x).

2. If-;— < x= 1, then compute arccos (x) essentially as:
arccos(x) =2 - arcsin (,/_1 - x)
2

Or more specifically, w= 1 — x, z= Y2(1 — %), and
arccos (x) =z + z w[a, + the above rational form].

This case is now reduced to the first case because, within these limits,

1—x_1
0= 2 =.,.

This computation uses the square root subroutine (QSQRT).

If % < x =1, arcsin (x) is computed as:

arcsin (x) =—2ﬂ;—- arccos (x).

3.1If — 1 = x < 0, then arcsin (x) = —arcsin | x|
and arccos (x) = 7 —arccos | x| .
This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A
E ~7—5 - For a small value of x, E ~ A. Towards the limits (1) of the

range, a small A causes a substantial error in the answer. For arcsin, € ~ 8 if the
value of x is small.

Algorithms 37

38

Arctangent Subprograms

ATAN

Algorithm

1. Reduce the computation of arctan (x) to the case 0 = x =< 1, by using
arctan (— x) = — arctan (x), or

1_ =
arctan(lx])— g~ arctan |x].

2. If necessary, reduce the computation further to the case |x| = tan 15° by using
V_S ex —1

— o s
arctan (x) = 30° + arctan z+v3)

RE
The value of Vx " xv_§ = tan 15° if the value of x is within the range,

tan 15° < x = 1. The value of (V3 *x — 1) is computed as
(V3 =1)x — 1+ x to avoid the loss of significant digits.

3. For |x| =< tan 15°, use the approximation formula:

arctan (x) 0.55913709
——— — 2 .
= == 0.60310579 — 0.05160454x* + = + 14087813

This formula has a relative error less than 2-2"! and can be obtained by
transforming the continued fraction

x2
arctan (x) x? 5
——— == 1 —
x 3+ (5
(— + x-2) -w
7
where w has an approximate value of (- %-x‘* + 3,:;;5) 10—, but the true
4+5
. 779
value of w is o .
— -2
o1l +x) +

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

A
E~ 1+ For small values of x, ¢ ~ §; as the value of x increases, the effect

of 8 upon ¢ diminishes.

ATAN/ATAN2

Algorithm

1. For arctan (x;, %2):
If x, < 0, use the identity arctan (x;, x;) = —arctan (—x, x2).
Hence we may assume that x; = 0. Then:

If either x, = O or I%-I > 2%, the answer =
. 2

wla

Hx, <0and li—:l < 2—24, the answer = .

VS FORTRAN Library Reference

N
Ny

A

' x
For the general case, if x; > 0, the answer = arctan (l‘;l-l), and
2.

if xs < 0, the answer = » — arctan (l%‘) .
2

x
2. The computation of arctan (L—:l) above, or of arctan(x) for the single argu-

ment case, follows the algorithm given for the subprogram aran witha
single argument.

Eftect of an Argument Error

E ~ -1—%-’?. For small values of x, ¢ ~ 8, and as the value of x increases, the effect
of € upon § diminishes. .
DATAN

Algorithm

1. Reduce the computation of arctan (x) to the case 0 = x = 1 by using
arctan(—x) = — arctan(x) and

arctan 1_~_ arctan |x|
x| — 2 :
2. If necessary, reduce the computation further to the case |x| = tan 15° by using

V3ex—1
x+ V3

/3ex —1
The value of \/x +x V3 =< tan 15°, if the value of x is within the range tan

15° < x < 1. The value of (v3+x — 1) is computed as (V3 — 1) x — 1 + «
to avoid the loss of significant digits.

arctan(x) = 30° + arctan (

3. For |x| = tan 15°, use a continued fraction of the form:

arctan(x) [a a as

— =1t "'[T (b ¥ %) = (b +2°) — (bs + xﬂ)]’
The relative error of this approximation is less than 2-%07,
The coefficients of this formula were derived by transforming a minimax
rational approximation (in relative error, over the range 0 = x* = 0.071797)
for arctan(x)/x of the following form:

arctan(x) Co +c1x* + coxt + c3x®

— =gy + &7 m .

x do + dlx- + dgx4 + x“]

Minimax was taken under the constraint that g, = 1 exactly.

Effect of an Argument Error

A
E~ 1+«

of ¢ upon § diminishes.

For small values of x, ¢ ~ 5, and as the value of x increases, the effect

DATAN/DATAN2

Algorithm

1. For arctan(x;, x2):
If x; < 0, use the identity arctan(x;, x») = —arctan (—x4, x2).
Hence we may assume that x, = 0. Then:

. Xy T
If either x, = O or ‘—;—I > 25 the answer = -
1Y

Algorithms 39

If x» < 0and H 2-56, the answer = .

For the general case, if x, > 0, the answer = arctan (H) and

if x; < 0, the answer = = — arctan (H)

x
2. The computation of arctan (l-él) above, or of arctan(x) for the single argu-

ment case, follows the algorithm given for the subprogram DATAN with a single
argument.

Effect of an Argument Error

E~ A
1+

of ¢ upon § diminishes.

) r UGS | R NP (e o h | 3 1 r . =1 o o
For small values of X, € ~ 0, dNU as e value o1 X Imcreases, e emect

QATAN/QATAN2
Algorithm
1. For arctan(x), if x < 0, then arctan(x) = —arctan(|x|). So assume x = 0.

2. Define break points 8, i = 0,1,2,...,8as §; = tan(R) :
Define origins 6; to be approximately fé mi=20,12...,8insuchaway

that tan 6; are exact short form numbers. 63 = —’25- exactly.

3 Bi=x< Bipafori=0,1,2,...,7, then use the following reduction:
- x—tané,
arctan(x) = 6; + au'ctan(—————-1 Frtand,)
If 83 = x < =, use the reduction:
=T =1
arctan(x) =) + arctan(p)

Note the quantity within the parentheses on the right is in either case within
the basic range (8,, 8,), that is, is less than%in magnitude.

4. Within the basic rang =x= 312' , a minimax approximation of the fol-

-
2=
lowing form is used to compute arctan (x):
arctan (x) sxx +a, 2% + ax 2% + ... + @12 2%
The relative error of this approximation is less than 2—112,

It is sufficient to compute the last three terms in double precision.

5. For arctan (x, x2):
If x; < 0, use the identity arctan(x,, x;) = —arctan(|x,|, x2).
Hence we may assume that x; = 0. Then:

> 2112, the answer

o X1 n
if either x; = 0 or| 7 =73

If x, < 0 and % < 2112 the answer == =,
2

For the general case, if x; > 0, the answer =

=D

40 VS FORTRAN Library Reference

O

A

X1

Here arctan (s

) is computed as described in steps 1 through 4 above,

except for the following simplification for the case gy < ,-i—‘- <
2
1

arctan(| =) = = 4 arctan = [o] .
X2 2 lx11

This combines two needed extended precision divisions into one for this case.

Effect of an Argument Error

E ~ For a small value of x, ¢ ~ 3, and as the value of x increases, the

S
14 a2’
effect of 8 upon ¢ diminishes.

Error Functions Subprograms

ERF/ERFC

Algorithm
1. If 0 = x < 1, then compute the error function by the following approximation:
erf(x) == x(ay + a\x% + axx* + ... + asx'?).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of x? over the range 0 = x> = 1. The relative
error of this approximation is less than 2—2¢6, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) = by + bz + byz® + ... + byz®

where z = x — Ty and Ty == 1.709472, The coeflicients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z +
T,) over the range — 0.709472 < z =< 0.33098. The absolute error of this
approximation is less than 2—31-5, The limits of this range and the value of the
origin T, were chosen to minimize the hexadecimal round-off errors. The value

1
of the complemented error function within this range is between 6 and 0.1573.

The value of the error function is computed as erf(x) = 1 — erfc(x).
3. If 2.040452 = x < 13.306, then compute the complemented error function by
the following approximation:
erfc(x) =e~*« F/x wherez = x* and
- ¢ + oz + 32
Co diz + dsz? + 23
The coefficients for F were obtained by transforming a minimax rational

approximation (in absolute errors, over the range 13.306—% =< w = 2.040452—2)
of the function f(w) = erfc(x) * x * e, w = x~2, of the following form:

F =

ao + a,w + aw? + a;w?
f(w) =) 2
by + byw + w
The absolute error of this approximation is less than 2—26-1, This computation
uses the real exponential subprogram (Exp).

If 2.040452 = x < 3.919206, then the error function is computed as
erf(x) = 1 — erfc(x).
If 3.919206 =< «x, then the error function is == 1.

Algorithms 41

)

4. If 13.306 = «x, then the error function is == 1, and the complemented error func-
tion is == 0 (underflow).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(— x) = — erf(;c),anderfc (= x) =2 — erfc(x).

Effect of an Argument Error

E ~ e —#*+ A. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ¢ ~ 8. For the complemented error function, if the value of x is
e—r’
2
orless than 1, thene ~ e—%** A,

greater than 1, erfc(x) ~ . Therefore, e ~ 2 2 + 8, If the value of x is negative

DERF/DERFC

Algorithm
1. If 0 = x < 1, then compute the error function by the following approximation:

erf(x) == x(ap + a;x® + axx* + ... + a;,x%2).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of x2 over the range 0 < x? =< 1. The relative
error of this approximation is less than 2—5%-%, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

2. If 1 =<x < 2040452, then compute the complemented error function by the
following approximation:

erfc(x) = by + b1z + boz® + ... byg2'®

where z = x — T and T, == 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z + Ty)
over the range —0.709472 < z =< 0.33098. The absolute error of this approxi-
mation is less than 2-903, The limits of this range and the value of the origin
T, were chosen to minimize the hexadecimal round-off errors. The valde of the

complemented error function within this range is between —2%— and 0.1573. The

value of the error function is computed as erf(x) = 1 — erfe(x).
3. If 2.040452 =< x < 13.306, then compute the complemented error function by
the following approximation:
erfe(x) == e~?+ F/x where z = x% and
d, d; de dq

F=C°+(z+cl)+ (z+c)+ """ (z+ce) + (z+¢cq)°

The coefficients for F were derived by transforming a minimax rational approxi-
mation (in absolute errors, over the range 13.306—2 < w =< 2.040452—2) of the
function f(w) = erfc(x) * x * e **, w = 22, of the following form:
_ a0+ aqw + axw? + ... + aw?
f(w) = bo + blw + b2w2 +...+ baw6 +uw'’

The absolute eiror of this approximation is less than 2-57°, This computation
uses the real exponential subprogram (pExp). If 2.040452 < x < 6.092368, then
the error function is computed as erf(x) = 1 — erfc(x).

If 6.092368 < «x, then the error function is == 1.

4, If 13.306 < x, then the error function is == 1, and the complemented error
function == 0 (underflow).

VS FORTRAN Library Reference

o

C

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:
erf(— x) = — erf(x), and erfc (— x) = 2 — erfc(x).

Effect of an Argument Error
E ~ e—*2+ A. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For

small values of x, ¢ ~ 8. For the complemented error function, if the value of
—x2

x is greater than 1, erfc(x) ~ ezx . Therefore, ¢ ~ 2x2 ¢« 3. If the value of x

is negative or less than 1, thene ~ e =2 ¢ A,

QERF/QERFC

Algorithm
1. 0=x=<1, then:

Write a(z) = 12}1 erf(x) where z = x2

Then x2xa'+ a = -3—/2—"- % (erf(x)) wherea' = —3‘;— = gx*

thatis 2za'+a=e*

Then 2za" + 30’ = —e—* = —(2za' + a)
sothat 2za”" 4+ (22+3)a’'+a=0

Now integrate twice

2
2za' + 2za + a — A’ adz — A where A is a constant

Butifz2 =0thenx = 0anda = lsothatA =1
Hence z

adz
2a'+2a+“;1-"’fz =0

and z

z { adz =R =
+ a—-1 dz=B =2
24 of{2a+ -2

z z

m
Now writed = 1 + 3 a;2' as an approximation to a and solve
i=1

z . Fédz
2a + sp =1 ¢ d=8+:T ,
J{2a+ p” —oz } m+1

Where T* = go T*,i X x!is the Chebyshev polynomial over the appropriate
m (= m

range.

Equating coefficients of powers of z and multiplying the coefficient f of z' by #*
we have: ’

3a1 +1=,T*
m+1,1
1082 +3a1=4T*

m+1,2

m2m+1l)a + (2m—1)am —1=m?rT*
m m+1l,m

2m+1)am= (m+1)2,T*
m4-1, m+1

Algorithms 43

44 VS FORTRAN Library Reference

and we can solve these equations to obtain

2 _2_a2, . .%_'am and r.

\/1r \/1r Vr

Then erf(x) = x +(-\—/7,2r_— 1) x+x g (-—_&_al)(x2)#

cer{() 3 (e

2. If1 =x = 284375, then:

Write b(z) = erfc(x) wherez =x — ¢,

Thend' = — —=e*?

VvV

and b = —-_2_.27ce-"2

sothatb” + 2(z+t,) ' =0
Now integrate twice
V+2z+t)b—~2fbdz=A

b+2(z+1t) fbdz —4ffbdzdz = Az + B

- m
Letb = 3 b;z'be an approximation to b and solve the equations:

i=0

b+2(z +t0)(f13dz —4jg'édzdz =Az+B+:T* +oT*

m+-2 m+1

Nowz =0= A = Db'(0) + 2t,b(0) = erfc'(t,) + 2¢, erfc(t,)

and B = b(0) = erfc (t,)
Hence the equations solved are:

by, =1'T*0 +oT* Lo + erfe(ty)
m, m-+4
bl + 2t0bo = p T* . + 0’T*+l 1 + erfc’ (to) + 2to etfc (to)
bz + tobl = T* + o T*
_ m, 2 m+1, 2
b:; + l‘bl + "g'tobz = 7 T* + o T*
3 3 m,3 m+1, 3
2m - 4 2 I "
bm + m(m - 1) bm_2 +_t0bm_1 - TTm,m + aTm-}-l.m
om — 2 2 - .
(m+ l)m bm_1+ m+1 Obm -rTm.m+l+0Tmm.m-‘-l
2m bm = TT*

(m+2)(m+1)
Finally
erfc(x) — b(z) ~wherez=x—1#,

. 1£2.84375 < x =< 13.306, then:

Write ¢(z) = x ex® erfc(x) where z = 1/2?

Then c’={ +2xc———g-x} x32
- —

ie. 220+ (z42)c=—0t
=
m41

m+-1, m4-2

Let' ¢c= 2 izt be an approximation to ¢ and solve the equations:

2z2c+(z+2)c=—£+-rT*
Vr m42

N

| |
N

Then use the approximation

T ne1=0
to approximate ¢, ,, 2™ *! by a polynomial of degree m.
The equations solved in (A) are:

2¢, =7277—+ T* 2o

cot2c,=7T* 4,

(2m+ l)cm+ 2Cm+1 =T T*m+2,m+l
Qm+3)c, 4, =7T" ns2m+1

Finally:
= o2 = 2
erfc (x) = c(z) >X wherez= 1/ x

4.1f 13.306 = x, then erf(x) = 1 and erfc (x) = 0.
5.1f 0> x, then erf(x) = —erf(—x), and erfc(x) = 2 — erfc(—x).

Effect of an Argument Error

E~-x2 « A For the error function, as the magnitude of the argument exceeds

1, the effect of an argument error upon the final accuracy diminishes rapidly.

For small values of X, e — &. For the complicated error function, if the value of
—x2

Xis greater than 1, erfc (x) -§T’

Therefore, € — 2X 2 - 3. If the value of x is negative or less than 1, then

e~ e-x2 o A,

Exponential Subprograms

EXP

Algorithm
1. If x < — 180.218, then 0 is given as the answer via floating-point underflow.
2. Otherwise, divide x by log.2 and write

x

y=B———=4a—b—d

where ¢ and b are integers,0 = b <3and0=d < 1.
3. Compute 2—7 by the following fractional approximation:
2d

2—d§1-— .

617.97227
0.034657359 d* + d + 9.9545948 — ——=—en

This formula can be obtained by transforming the Gaussian continued fraction

1+ 2- 3+ 2- 5+ 2—- 7+ 2°

The maximum relative error of this approximation is 2—2,
Multiply 2—¢ by 2-°.
Finally, add the hexadecimal exponent a to the characteristic of the answer.

Algorithms 45

Effect of an Argument Error

¢ ~ A. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because A = 8 + x.

DEXP

Algorithm
1. If x < — 180.2187, then 0 is given as the answer via floating-point underflow.
2. Divide x by log.2 and write

x= (4a—b—-T06-)°loge2—r
where a, b, and c are integers, 0 =b=3,0=c=15, and the remainder r is

an extra

within the range 0 < r < 16" log 2. This red

precision to ensure accuracy. Then e? = 169« 2=t « 2-¢/16 4 g1,
3. Compute e~" by using a minimax polynomial approximation of degree 6 over

1
the range 0 = r < " log2. In obtaining coefficients of this approximation,

the minimax of relative errors was taken under the constraint that the constant
term a, shall be exactly 1. The relative error is less than 2—56-87,

4. Multiply e—" by 2—°/18, The 16 values of 2—¢/1¢ for 0 =< ¢ =< 15 are included in
the subprogram. Then halve the result b times.

5. Finally, add the hexadecimal exponent of a to the characteristic of the answer.

Effect of an Argument Error

€ — A. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because A = & + x.

CEXP/CDEXP

Algorithm

The value of e*+*% is computed as e* * cos(y) + i+ e” * sin(y). The algorithms for
both complex exponential subprograms are identical. Each subprogram uses the
appropriate real exponential subprogram (exp or pExp) and the appropriate real
sine/ cosine subprogram (cos/sIN or DCOS/DSIN).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e/ +# = R+ e then H = y and ¢(R) ~ A (x).

QEXP
Algorithm

1. Basic computation is that of 2*. For QEXP entry, multiply x by log.e in a 31 hex-
adecimal digit arithmetic, and raise the result to the power of 2.
2. Decompose xas x = 4p — q — rwhere pisaninteger,¢=0,1,2,0r3,and0 =
r<l.
3. Find two indices i, j, 0= i =8,0= j =3 such that 4/ + jis the integer nearest to
32r.
Using these indices, select two encoded constants «,, 8, where
= [2—:78], B}= [2-]/32].
Here the bracket indicates rounding to the nearest 17 binary digit number.
Obtain the product ¥; = a8

46 VS FORTRAN Library Reference

L

p

.

4. Obtain the reduced argument s = —r — log, (¥,) accurately by subtracting log,
(¥;) = log; a; + log, B; + in an extra precision. Constants log, a;and log, 8,
are encoded in 31 hexadecimal digits of accuracy. Then s is approximately

bounded by i—tlST
5. Compute 2°by a minimax approximation of the form:

2
2=+t Lt

where Pand Q are polynomials of degree 2.

6. Then2*= 16 « (2-¥;) - 2¢ Inassembling this product a virtual rounding
is applied.

7. The limited use of extra precision arithmetic in the above computation
enhances accuracy of both QEXP and A** B application (see note below).

Effect of an Argument Error

€ ~ A. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because A = 8 « x.

OQEXP

Algorithm

The value of ex +¥ is computed ase* « cos() + i * e~ « sin(y). The algorithms
for both complex exponential subprograms are identical. Each subprogram uses
the appropriate real exponential subprogram (QEXP) and the appropriate real sine/
cosine subprogram (QCOS/QSIN).

Effect of an Argument Error

The effect of the argument error depends upon the accuracy of the individual parts
of the agreement. Ifex+»= R « e/ then H= yand e(R)~ A (x).

Gamma and Log Gamma Subprograms

GAMMA/ALGAMA/LGAMMA

Algorithm

1. If 0 < x = 2252, then compute log-gamma as log.I'(x) = — log.(x).
This computation uses the real logarithm subprogram (ALoc).

2. If 2-%2 < x < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(z+1)

3. If2-%2 < x < 1, thenuse I'(x) = to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:
z [ao + a1z + a22? + asz3]
by + b1z + byz® + 2B
where 2 = x — 1.5. The absolute error of this approximation is less than 2—25-9,
5 If2 < x< 8 thenuse I'(x) = (x — 1) I'(x — 1) to reduce step by step to the
preceding case. .

I(x) =c¢cp +

6. If 8 = x, then compute log-gamma by the use of Stirling’s formula:

Algorithms 47

4

VS FORTRAN Library Reference

log.I'(x) == x(log.(x) — 1) — % log.(x) + ¥ log.(2x) + G(x).
The modifier term G(x) is computed as
G(x) =dpx~1+ dix—2

These coefficients were obtained by a form of minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x « 22, Remembering the fact that x < log.I’'(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2—26-2, This computation uses the real logarithm subprogram (aroc).

For gamma, compute I'(x) = e?, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (Exp).

Effect of an Argument Error
€ ~ ¢ (x) * Afor gamma, and E ~ ¢y (x) * A for log-gamma, where y is the
digamma function.

1
I 5 < x < 3,then —2 < y (x) < 1. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial e in this range.

If the value of x is large, then ¢ (x) ~ log. (x). Therefore, for gamma, € ~ 8§
x « loge (x). In this case, even the roundoff error of the argument contributes
greatly to the relative error of the answer. For log-gamma with large values of x,
€ ~ d.

DGAMMA /DLGAMA/LGAMMA

Algorithm

L. If0 < x = 2—252, then compute log-gamma as log.I'(x) = — log.(x).
This computation uses the real logarithm subprogram (oroc).

2. If 2-22 < x < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

F(x+1
3. If2-252 < x < 1, thenuse I'(x) = _(T—l to reduce to the next case.

4. If 1 = x =< 2, then compute gamma by the minimax rational approximation (in

absolute error) of the following form:
zlag + a1z + ... + agz®]

bo+bxz+... +b3z°+z"
where z = x — 1.5. The absolute error of this approximation is less than 2593,

5 If2 < x < 8 thenuse I'(x) = (x — 1) T(x — 1) to reduce to the preceding
case.

6. If 8 = x, then compute log-gamma by the use of Stirling’s formula:

log.I'(x) = x(log.(x) — 1) — Y% log.(x) + % log.(2x) + G(x).
The modifier term G(x) is computed as
G(x) =dx— '+ dix2+ dpx5 + dsx~7 + dgx~°.

These coefficients were obtained by a form of minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x + 2561, Remembering the fact that x < log.I'(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2-3¢1, This computation uses the real logarithm subprogram (proc). For
gamma, compute I'(x) = e¥, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (pexp).

F(x)=co+

(C

Effect of an Argument Error
e ~ y(x) * A for gamma, and E ~ y(x) * A for log-gamma, where y is the
digamma function.

1
If 5 <x< 3, then —2 < y(x) < 1. Therefore, E ~ A for log-gamma. How-
ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.

If the value of x is large, then y(x) ~ log.(x). Therefore, for gamma,
¢ ~ 8+ x ¢ log.(x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, € ~ 8.

LGAMMA
Algorithm

If xis R*4, then LGAMMA (x) = ALGAMA (x).
If xis R*8. then LGAMMA (x) = DLGAMA (x).

‘Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm
1. If x| < 1.0, then compute sinh(x) as:
sinh(x) =x + ¢;2® + %% + c3x7.
The coefficient ¢, were obtained by the minimax approximation (in relative

sinh (x;
error) of ——Q-Llas a function of x 2. The maximum relative error of this

approximation is 27256,
2. If x = 1.0, then sinh(x) is computed as:

sinh(x) -— (1 + 8) [e.l»+l(bg¢17 -— 02/eJ+Ingec]_

1
Here, 1 + § = 35 > 50 that this expression is theoretically equivalent to

[e® — e=+]}/2. The value of v (and consequently those of log.v and §) was so
chosen as to satisfy the following conditions:

a) v is slightly less than 1%, so that 8§ > 0 and small.

b) log.v is an exact multiple of 218,
The condition b) ensures that the addition x + log. vis carried out exactly. This
maneuver was designed to reduce the roundoff errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential
subprogram (EXP).

. Ifx = — 1.0, use sinh(x) = — sinh(|x|) to reduce to case 2 above.

. If cosh (x) is desired, then for all valid values of arguments use the identity:
cosh(x) = (1 + §) [ertWsv 4 p2/e +1er], Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (Exp).

]

Effect of an Argument Error
For the hyperbolic sine, E ~ A * cosh (x) and e ~ A « coth(x).

Algorithms 49

50 VS FORTRAN Library Reference

For the hyperbolic cosine, E ~ A * sinh(x) and ¢ ~ & * tanh(x).
Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ § for
small values of x.

DSINH/DCOSH

Algorithm
L. If x| < 0.881374, then compute sinh(x) as:
sinh (x) == cox + c12® + cx® + ... + cex!®.
The coefficients ¢; were obtained by the minimax approximation (in relative
sinh(x)

error) of as the function of x%. Minimax was taken under the constraint

that ¢, = 1 exactly. The maximum relative error of this approximation is 2—557,
If x = 0.881374, then sinh{x) is computed as:

sinh(x) = (1 + §) [es+18 — p2/ev+lo8,],

1o

1
Here,1 + 8 = o ° that this expression is theoretically equivalent to

[er — e—=]/2. The value of v (and consequently those of log.v and §) was so
chosen as to satisfy the following conditions:
a) v is slightly less than %, so that § > 0 and small.
b) log.v is an exact multiple of 218,
The condition b) insures that the addition x + log.v is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub-
program (DEXP).
3. If x = —0.881374, then use sinh(x) = —sinh(|x|) to reduce to case 2 above.
4. If cosh(x)is desired, then, for all valid arguments use the identity:
cosh(x) = (1 + 8) [er+lg? 4+ p2?/e*+1°¢.r], Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).

Effect of an Argument Error
For the hyperbolic sine, E ~ A * cosh(x) and ¢ ~ A * coth(x).
For the hyperbolic cosine, E ~ A ¢ sinh(x) and ¢ ~ A * tanh(x).
Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ § for
the small values of x.

QSINH/QCOSH

Algorithm
1. If |x| < 1 then compute sinh(x) as:
sinh(x) = cox + c1x® + cox® + ... + c1o2%5.

The coefficients ¢; were obtained by the minimax approximation (in relative
sinh(x)
x

that ¢, = 1 exactly. The maximum relative error of this approximation is less
than 2-112,
2. If x = 1 then sinh(x) is computed as:
sinh(x) = (1 + §) [e?+108.r — p2/ezt1o8.0],

error) of as the function of x%. Minimax was taken under the constraint

Here, 1 + & = '217, so that this expression is theoretically equivalent to

[e* — e~¢]/2. The value of v (and consequently those of log.v and) was so

chosen as to satisfy the following conditions.

107

a) v is slightly less than —L , so that 8 > 0 and small.

b) log.v is an exact multlple of 2-18,

The condition b) insures that the addition x + log.v is carried out exactly This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the exponential subpro-
gram. Accuracy of the quotient v®/e*+"6.7 is not critical if x is large. For x >
21.85, a double precision division yields a sufficiently accurate result.

3. Ifx = —1 then use sinh(x) = —sinh(|x|) to reduce the case to 2 above.

4. If cosh(x) is desired, for all allowable arguments use the identity: cosh(x)
= (1 + 8) [e**'8.” + v*/e*tEr], Here the notation and the consideration
are identical to the case 2 above.

Effect of an Argument Error

‘For hyperbolic sine, E ~ A « cosh(x) and ¢ ~ A + coth(x). For hyperbolic cosine,
E ~ A-sinh(x) and ¢ ~ & - tanh(x). In other words, for cosine, e ~ A over the
the entire range; for sine ¢ ~ 8 for small values of x.

Hyperbolic Tangent Subprograms

TANH

Algorithm
L. If |x|=< 2-'% then tanh(x) = x.
2. If 212 < |x| = 0.7, use the following fractional approximation:
tanh(x) 0.8145651
x x* + 2471749
The coefficients of this approximation were obtained by taking the minimax
of relative error, over the range 22 < 0.49, of approximations of this form under
the constraint that the first term shall be exactly 1.0. The maximum relative
error of this approximation is 2264,

3. If 0.7 <x< 9.011, then use the identity tanh(x) = 1 —

=]1-x [0.0037828 +

(er)2 + 1"

The computation for this case uses the real exponential subprogram (Exp).
4. If x = 9.011, than tanh(x) = 1.
5. If x < —0.7, then use the identity tanh(x) = —tanh(—x).

Effect of an Argument Error

2A
m . For small values of x, ¢ ~ 8, and as the

value of x increases, the effect of § upon « diminishes.

E ~ (1 — tanh?x) A, and e ~

DTANH

Algorithm

1. If |x| = 2% then tanh(x) = x.

2. If2-2 < |x| < 0.54931, use the following fractional approximation:
tanh(x) dix? d. ds

=T e Yo+ +x2+c«,,+ x2 +cy’

This approximation was obtained by rewriting a minimax approximation of the
following form:

tanh(x)s +ate ao + a,x% + axxt
T B+ b ¥ bt + 2

Algorithms 51

52 VS FORTRAN Library Reference

Here the minimax of relative error, over the range x? = 0.30174, was taken
under the constraint that ¢, shall be exactly 1.0. The maximum relative error of
the above is 263,

2

3. If 0.54931 =< x < 20.101, then use the identity tanh(x) =1 ~ = T

This computation uses the double precision exponential subprogram (pexp).
4. If x = 20.101, then tanh(x) == 1.
5. If x =< — 0.54931, then use the identity tanh(x) = — tanh(— x).

Effect of an Argument Error

24
"E ~ - 2 ~ ———. For small values of x, ¢ ~ 5. As the
E ~ (1 — tanh?x) A, and ¢ sinh (20) valu €
value of x increases, the effect of § upon ¢ diminishes.
QTANH
Algorithm

1. If |x| = 0.54931, use a minimax fractional approximation of the following form:

2 (ay + ax® + axxt + a;x® + ax®)

by + bx? + boxt + byx® + byx® + x1°
Approximation of this form attains accuracy better than 2—112 for x in the above
range.

2. If 0.54931 < x = 39.1628, compute tanh(x) with the aid of the exponential
subroutines as follows:

tanh(x) =1 —

tanh(x) = x+

2
e*+1"’
Here if x > 21.14, the division is carried out in double precision to save execu-
tion time. The quotient term is so small relative to 1 that double precision is
accurate enough.
3. If x > 39.1628, then tanh(x) = 1.

4. If x = —0.54931, then use the identity tanh(x) = —tanh(—x) to reduce the
case to either 3. or 4. above.

Effect of an Argument Error

E~ (1 —tanh?x) A,and e ~ 24

sinh(2x)"
of x increases, the effect of 8 upon ¢ diminishes.

For small values of x, ¢ ~ 8. As the value

Logarithmic Subprograms (Common and Natural)

ALOG/ALOG10

Algorithm

1. Write x = 167 « 2-9 « m where p is the exponent, ¢ is an integer, 0 = q = 3,
and m is within the range, Y2 = m < L.

2. Define two constants, a and b (where a = base point and 2—° = a), as follows:

1
If<m< == thena= Y% andb = 1.

v’
1
—_—<< = =
va2=m<1,thena land b = 0.
3 Writez = ™% Then,m = a* 1 and |2] < 0.1716
- Write z = ———. Then,m =a* 3——an |z] < 0.1716.

1+
4. Now, x = 24r=a-bs i +Z andlog.(x) = (4p— g — B log.2 + loge(-l—_—z)\

-z z

N
N ;

. 1+:2 m-—a P
5. To obtain loge<T:—z—), first compute w = 2z = 0Sm T+ 03a (which is repre-
sented with slightly more significant digits than z itself), and apply an approx-
imation of the following form:

1+2 aw?
log, T=Zz)=w]|¢% + P wz].

These coeficients were obtained by the minimax rational approximation of

1 142
= loge(1= z) over the range z? ¢ (0, 0.02944) under the constraint that ¢,

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2—-25‘33_)
6. If the common logarithm is desired, then log,gx = log;ee * logex.

Effect of an Argument Error

E — 8. Specifically, if 8 is the roundoff error of the argument, for example,
8~ 6 - 1078, then E~ 56 - 108, Therefore, if the argument is close to 1, the
relative error can be very large because the value of the function is very small.

DLOG/DLOG10

Algorithm
1. Write x = 167 « 2—¢ « m where p is the exponent, g is an integer, 0 = ¢ =< 3,
and m is within the range Y2 < m < 1.
2. Define two constants, a and b (where a = base point and 2—% = a), as follows:
If%§m<'\‘/l‘—é'—,thena= bandb = 1.
If;/%gm< 1,thena=1land b = 0.
m-—a 142
3. Writez = ——— Then,m =a*
m+a 1—-2z
+ 2z

and |z| < 0.1716.

1+
,andlogx = (4p — g — b) log2 + log. (1 _:)

+ z o~ m-— a L
, firstcompute w = 2z = 0Sm+ 0353 (which is repre-

4. Now,x = 24r—a—be

1-:
sented with slightly more significant digits than z itself), and apply an approx-
imation of the following form:

142 Cs
log. (l_z)zw cot+aw? f w+c + o .
Wt oy o
6

These coefficients were obtained by the minimax rational approximation of
1 1+z
o log. (1 — z) over the range 22 ¢ (0, 0.02944) under the constraint that ¢,
shall be exactly 1.0. The maximum relative error of this approximation is less
than 26035, .

6. If the common logarithm is desired, then log;ox = log;qe * log.x.

5. To obtain log,(!

Effect of an Argument Error
E ~ §. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

Algorithms 53

CLOG/CDLOG

Algorithm
1. Write log. (x + iy) = a + ib.
2. Then, a = log, |x + iy| and b = the principal value of arctan (y, x).
3. log. [x + iy| is computed as follows:
Let v; = max (|x[, |y|), and v, = min (|x], [y]).

1
Let t be the exponent of v,, i.e., v; = m * 16, 6= =m<1

tift =0
Finally, let t, = {t —-1ift> 0},
and s = 164.
H = . .31; 1’1\2-' *
Then, log. |x + iy| = 4t, * log.(2) + % log, [(.)2 + (7)) &

Computation of v,/sand v,/s are carried out by manipulation of the characteristics
of v, and v,. In particular, if v/sis very small, it is taken to be 0. The algorithms for
both complex logarithm subprograms are identical. Each subprogram uses the
appropriate real natural logarithm subprogram (ALOC or DLOC) and the appropriate
arctangent subprogram (ATAN2 or DATAN2).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r * ' and log, (x + iy) = a + ib,thenh = b
and E(a) = §(r).

QLOG/QLOG10 ”“
Algorithm w*

1. Decompose xas x = 16° « 2-1 « m, where%S m<1.

2. Make an estimate of log,m and define three indices 0 = i= 8,0 = /=5 3,
0 = k= 4 sothat 20i + 5i + kis the nearest integer to — 160 « log,m. Using
these indices, select three constants «;, 8, v« where

[2 4/8] Bf [2 j/32] Yk [2—-10/100]
Here the bracket indicates rounding to the nearest 17 digit binary number.
Obtain the exact product ¢, = «; 8;yx by use of ME and MXD instructions.
The 18 short constants «;, 8;, and y;, are encoded in the subroutine.

3. Denote z = (m — ¢;)/(m + ¢:1).

Compute w = 2z/log.(2) = (m — ¢;;:)/[0.5log.(2) * (m + ¢,;)].

and it has 112 bit

The computed w is bounded approximately by + -3%5 ,

accuracy.

4. Compute log: (i L

- z) = log,(m) — logz(%) as follows:

log (;tz)sw+a1w3+a2w5+...+a5w“
where coeflicients {a,} have been obtained by the minimax technique.

log. (}1—._’:—2) is approximately bounded by i-g-(lﬁ. This value is computed
with full 28 hexadecimal digit accuracy, and the absolute error is at most 18-,

l+z

5. Now logs(x) = 4p — q + logza; + logsB; + logzy: + log.

1-
log.ai, logaB;, and logyy;, are encoded with 31 hexadecimal dlglts of accuracy. qut/
Combine these components in such a way that the maximum absolute error is

54 VS FORTRAN Library Reference

still 16-3° approximately. This is done to improve accuracy of A**B applica-
tion (see Note below).

6. Truncate log:(x) at the 28th hexadecimal digit, and multiply by log.(2) or by
logi0(2) to obtain log.(x) or log,s(x) as desired.

Effect of an Argument Error 4
E ~ 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large, because the value of the function is very small.

LOG/10G 10
Algorithm

If x is R*4, then LOG (x) = ALOG(x) and LOG10(x) = ALOG10(x).
If xis R*8, then LOG(x) = DLOG(x) and LOG10(x) = DLOG10(x).
If xis R*16, then LOG(x) = QLOG(x) and LOG10(x) = QLOG10(x).

CQLOG
Algorithm
1. Writelog.(x + iy) = a + ib
2. Then, a = log. |x + iy| and b = the principal valuc of arctan(y,x).
3. log. |x + iy| is computed as follows:
Let v; = max({x], [y[), and vs = min({xl, ‘y])

Let t be the exponent of vy, i.e., v, = m* 16, Té =m< L
<
Finally, let t, = 1: _ llflzt >00
and s = 164,

Then, log, |x + iy| = 4t, - log.(2) + -%:loge[(_%_)2 + (_1_7;_)-’] .

Computation of v/s and w/s are carried out by manipulation of the charac-
teristics of v, and v,. In particular, if v,/sis very small, it is given the exponent of
— 16 to avoid characteristic wrap-around.

Effect of an Argument Error
E ~ §. Therefore, if the argument is close to 1, the relative error can be very large
because the value of the function is very small.

Algorithms 55

Sine and Cosine Subprograms

SIN/COS

Algorithm

4
1. Define z = — * |x| and separate z into its integer part (g) and its fraction part
w

(r).Thenz=q+r,and]xi=() (_.,)

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to g. This adjustment of q reduces the general case to the computation
“of sin (x) for x = 0 because

cos (£x) = sin (%+ x),and
sin (— x) = sin(= + x).
3. Let g9 =q mod 8.

Then, for q = 0, sin (x) = sin (j:—' r),
gy = 1,sin (x) = cos (%—(1 - 1')),

T
4 ")’
Go = 3,sin (x) = sin (—Z—(l - r)),
gy = 4,sin (x) = — sin (—E—‘ r),
g0 =35,sin (1) = — cos (- (1= 1),
)

or

go = 7,sin (x) = — sin (-—-—- 1 —r))

gy = 2,sin (x) = cos (

go = 6,sin (x) = —cos(

"
These formulas reduce each case to the computation of either sin (T- rl)

™
or cos (ra rl) where 1, is either r or (1 — r) and is within the range,

0§T1§1.

4. If sin (Z o1)is needed, it is computed by a polynomial of the following

form:
sin .1 o o= + 2 4 1 4 6)
7 n)=n (a0 + ayry® + aory? + asri®).

The coefficients were obtained by interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 2-2s-: for the range.

5. If cos (%’ ')is needed, it is computed by a polynomial of the following

form:

cos (% °r)a‘ 1+ byry? + bory* +bsry®

56 VS FORTRAN Library Reference

Coefficients were obtained by a variation of the minimax approximation which
provides a partial rounding for the short precision computation. The absolute
error of this approximation is less than 2—24-57,

Effect of an Argument Error

E ~ A. As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be maintained outside

the principal range, — -;—r— Sas + —%—
DSIN/DCOS
Algorithm

1. Divide |x| byj‘;L and separate the quotient (z) into its integer part (g) and

its fraction part (7). Then, z = |x] °

= q + r, where q is an integer and r
™

is within the range, 0 =< r < 1.

2. If the cosine is desired, add 2 to g. If the sine is desired and if x is negative,
add 4 to g. This adjustment of q reduces the general case to the computation of
sin (x) for x = 0, because

cos { * x) = sin (}x] + —;~),and
sin (— x) = sin (|x| +).

3. Let go = g mod 8.

Then, for g, = 0, sin (x) = sin (-17;— -.f),
go = 1,sin (x) = cos (%—(1 - r)),
go = 2,8in (x) = cos (—Z—- r),
go = 3,sin (x) = sin -Z—(l - r)),
go = 4,sin (x) = — sin (Z 01),

go = 5,sin (x) = — cos (—Z—(l'— r)),

go = 6,sin (x) = —cos(;r or),

go = T,sin (x) = — sin (-Z—(l - r)).
These formulas reduce each case to the computation of either sin (-{— . r;)
or cos (%— °r), where r, is either r or (1 — r), and is within the range,

o=n=s1l

4. Finally, either sin (—:—- o1) or COS (—;—r— °r)is computed, using the polynomial

interpolations of degree 6 in r,2 for the sine, and of degree 7 in ;2 for the cosine.
In either case, the interpolation points were the roots of the Chebyshev poly-

Algorithms 57

nomial of one higher degree. The maximum relative error of the sine polynomial
- is 258 and that of the cosine polynomial is 2—%-3, @ |

Effect of an Argument Error

E ~ A. As the value of the argument increases, A increases. Because the function
value diminishes periodically, no consistent relative error control can be main-

tained outside of the principal range, — -’é—g = +-g—.
CSIN/CCOS
Algorithm
1, If the sine is desired, then
sin(x + iy) = sin(x) * cosh(y) + i+ cos(x) ¢ sinh(y). .
If the cosine is desired, then

cos(x + iy) = cos (x) * cosh(y) — i+ sin(x) * sinh(y).

2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh(— x) = — sinh(x).
1

3. If x = 0.346574, then use sinh (x) = % (e’ - -;)
4. If 0 = x < 0.346574, then compute sinh(z) by use of a polynomial:

sinh(x)

x

= ay + a;x% + axx*.

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 < x2 < 0.12011 under the constraint that

ao shall be exactly 1.0. The relative error of this approximation is less than N
92618 Mg

1
5. The value of cosh(x) is computed as cosh (x) = sinh|x| + PR
This computation uses the real exponential subprogram (EXP) and the real sine/
cosine subprogram (SIN/COS).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the smv/cos, exp, and
SINH/ cosH subprograms.

CDSIN/CDCOS

Algorithm
1. If the sine is desired, then
sin (x+iy) = sin(x) * cosh(y) + i+ cos(x) * sinh(y).
If the cosine is desired, then
cos(x + iy) = cos(x) * cosh(y) — i *sin(x) * sinh(y).
2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh(— x) = ~ sinh(x).

3. If x = 0.481212, then use sinh(x) = % (e" - -:7)

sinh(x)

x

4. If 0 = x < 0.481212, then compute sinh(x) by use of a polynomial: Q

== ay + a,x% + axxt + azx® + ax® + agx?®.

58 VS FORTRAN Library Reference

C

The coeficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 = x? < 0.23156 under the constraint
that a, shall be exactly 1.0. The relative error of this approximation is less
than 2—56.07,

1
5. The value of cosh(x) is computed as cosh (x) = sinh|x| + =T

This computation uses the real exponential subprogram (pexe) and the real
sine/cosine subprogram (bsiN/Dcos).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the psiN/pcos,
DEXP, and DSINH/DCOSH subprograms.

QSIN/QCOS

Algorithm

1. Separate the argument into an integral multiple of —211 and the remainder part:

” . .
|x| = =+ q + r where q is an integer, and — — < r < —-.

2 4 4
In this decomposition, after g is estimated in the working precision, r is accu-

W .

5 4 with the aid of approximately 10 hexa-

rately computed as r = |x| —
decimal guard digits.
2. Add 1 to q if cosine is desired, since cos(£ x) = sin —g—+ x) .

Add 2 to g if sine is desired and x is negative, since sin(—x) = sin(r + x).
These adjustments reduce the general case to computation of sin(x) for x = 0.

3. Let gy= g mod 4. Then,

if qo = 0,sin(|x|) = sin(r)
go = 1,sin(|x|) = cos(r)
qo = 2,sin(|x|) = —sin(r)
go = 3,sin(|x|) = —cos(r)
4. Compute sin(r) or cos(r) as follows:
sin(r) =r+ar®+ax®+ ...+ a1
cos(r) =14 byr* + bort + ... + bor®?
Coefficients {a;}, {b;} are determined by the minimax technique as applied to
the range 0 = r = —%— The relative errors of these approximations are less

than 2112,

Effect of an Argument Error
E ~ A. As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be normally maintained

outside the principal range — -’2'— =sx=+ —725- .

CQSIN/CQCOS

Algorithm
1. If the sine is desired, then

sin(x + iy) = sin(x) - cosh(y) + i* cos(x) *sinh(y).
If the cosine is desired, then
cos (x + iy) = cos(x) + cosh(y) — i+ sin(x) - sinh(y).

Algorithms 59

60 VS FORTRAN Library Reference

2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh(—x) = —sinh(x).
3. If x = 0.481212, then use sinh(x) = %(e’ - ?lz-

4. If 0 =< x < 0.481212, then compute sinh(x) by the use of the polynomial:
i‘-‘%ﬂgao +ax® + axt + ...+ a0

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 =< x2 =< 0.23156 under the constraint that
a, shall be exactly 1.0. The relative error of this approximation is less than 2—112,
The highest three terms of this polynomial need only be evaluated in double
precision.

5. The value of cosh(x) is computed as cosh(x) = sinh |x| + 'g;l? .

Effect of an Argument Error

Combine such effects on sine/cosine/hyperbolic-sine/ hyperbolic-cosine functions

according to the formula in step 1 of the algorithm.

Square Root Subprograms

SQRT

Algorithm
1. If x = 0, then the answer is 0.
2. Write x = 16°*~7 *+ m, where 2p — q is the exponent and g equals either 0 or 1;

m is the mantissa and is within the range —1%— =m<L
3. Then, Vx = 167+ 4~¢\/m.
4. For the first approximation of \/x, compute the following:
1.288973
0.8408065 + m) °

This approximation attains the minimax relative error for hyperbolic fits of V/x.
The maximum relative error is 25748,

5. Apply the Newton-Raphson iteration

x
n = % (n +)
Ynt+1 Y —“yn

twice. The second iteration is performed as

Yo =160+ 4-a. (1.681595 -

x x
=1 -—) +—,
Y2 (yx " v
with a partial rounding. The maximum relative error of y, is theoretically

2—-25.9.

Effect of an Argument Error

1
e~28.

DSQRT

Algorithm
1. If x = 0, then the answer is 0.
2. Writex = 16% -9+ m, where 2p — q is the exponent and q equals either 0 or 1;

) 1
m is the mantissa and is within the range 5T =m<L

O

L
)

3. Then, Vx = 162+ 4-7v/m. _
4. For the first approximation of v/ x, compute the following:
Yo = 167+ 41-2¢ 0.2202 (m + 0.2587).

The extrema of relative errors of this approximation for ¢ = 0 are 23202 ¢

1
m=1,2"325atm = 0.2587,and 2-2" atm = 16 This approximation, rather

x
than the minimax approximation, was chosen so that the quantity P ys be-
3

low becomes less than 16°—*® in magnitude. This arrangement allows us to
substitute short form counterparts for some of the long form instructions in the
final iteration.

5. Apply the Newton Raphson iteration

X
Y41 = 1/2 (yn +"!;"')

four times to y,, twice in the short form and twice in the long form. The final
step is performed as

x
y4=y3+1/z(-——-y3)
Ys

with an appropriate truncation maneuver to obtain a virtual rounding. The
maximum relative error of the final result is theoretically 2—93-23,

Effect of an Argument Error

1
€e~—3

2

CSQRT/CDSQRT
Algorithm
1. Write \Vx + iy = a + ib.

x| + |x + iy|
2. Compute the value z = J-——-——-—é——-——

are defined in 3 or 4, below. In any case let v; = max (|x|, |y|) and
vy = min (|, [y]).

3. In the special case when either v, = 0 or v, greatly exceeds v,, let w, = v,and

w, = v, 50 that w, + w,is effectively equal to v,.
Alsoletk = 1if v, = |x| and

k=1/v2ifv, = |y|.

as ke vV w, + w, where k, w; and w;

Uy 2
4. In the general case, compute F = \} a4+ Y (-;—) .
1
If |x| is near the underflow threshold, then take
w, =]xl, w: = v, *2F,and k = 1//2.
If v, * F is near the overflow threshold, then take
wy = |x|/4, w2 = v, *F/2, and k = V.
In all other cases, take 1, = [x|/2,w, = v, * F,and k = 1.
5 If 2= 0,thena =0and b = 0.
If zs£0and x = 0, then a = z, and
_Y
2z°

Ifz%0andx < 0, thenag = ‘Eyzl,and

b = (signy) * z.

Algorithms 61

62

VS FORTRAN Library Reference

The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (sQRT or W
DSQRT). o

Effect of an Argument Error
The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r+e*and Vx + iy = R+ e,

then ¢(R) ~ —;— 8(r),and (H) ~ 8(h).

QSQRTY .
Algorithm
1. Letx = 16%#+%+m, where p is an integer, ¢ = O or 1, and

T%gm<1. Letz, = 162-7-m .

This scaling by 163 is made to avoid intermediate underflows.
2. Compute the first approximation y, to \/x; as follows:

1.576942
= 1616 - 4— _——rs
Yo = 1610 - 470 { 1807018 0.9540356 + m}

These coeflicients were determined to minimize the relative error of the approxi-
mation while being exact at m = 1. The maximum relative error is 2—548,

3. Apply Newton Raphson iteration three times — twice in short form and once in
long form.

=1 od) :
yi_ 2(%—1 + yi—l i 1’ 2, 3'
At the end of the third iteration, the relative error e; of y is at most 241,
4. Apply to y; the following cubic refinement in extended precision: N
y: — X \"“-"yq
Ys =Yys — 2ys*~ 3 .
3y3 + X1

The relative error ¢, of y, is;i-(eﬁ,)3 or 2-12,

Since the right hand term is only a correctional term, a simplified extended

division suffices. In the process of assembling y,, a virtual rounding is given.
5. Replace the exponent of y, with the correct exponent p + g.

Effect of an Argument Error
e~—3

2
CQSQRT
Algorithm
1. Write Vx + iy =a + ib
2. Let16%+e—! < max(|x|, ly|) < 16*+7,q = 0,0r1
Letx; =x-16-2, andy;, = y - 16—22,
This scaling operation is carried out by manipulation of the characteristic fields
of xand y. In doing this necessary precaution is exercised to avoid the anomaly
of characteristic wrap-around.

3. Compute z, = \/[xl‘ + I;l + iy,

Restore scaling: z = 167« z,

‘4."Ifz=0,thena=0andb= 0.

Ifz£0,and x = 0, then a = z, and @b\

=Y
b-—2z.

If zs£0andx < 0, thena = |_2y? ,and

b= (signy) -z

Effect of an Argument Error
Using polar coordinate, write x + iy = r- e and Vx + iy = R - e'f.

Then «(R) ~ 5 8(r), and «(H) ~ 8(h).
Tangent and Cotangent Subprograms
TAN/COTAN

Algorithm

1. Divide |x| by-%r- and separate the result into the integer part (¢) and the

fraction part (). Then |x| =-g—(q +)

2. Obtain the reduced argument () as follows:

if g is even, thenw = r
ifgisodd, thenw =1 —r.

The range of the reduced argumentis0 = w = 1.

3. Let g9 = g mod 4.

Then for g, = 0, tan x| = tan (_14_.-_ . w)and cot 'x! = cot (% . u‘),

qo = 1, tan x! = cot (—;—r— . w)and cot ‘x| = tan (—g— . w),

wn (5 o)
an-z—u,

. ki3 ™
go = 3,tan x, = — tan (T . w) and cot x| = — cot (—4— . u:).

f

: ™ ,
go = 2,tan x; = — cot (T . w) and cot |x;

. 'rhe va]ue of tan (% LT) and cot (—141- . u)) are Computed as the ratio Of twc

polynomials:
(T weP(u) (n) Q(u)
tan { T w)= t{—- uw

! o) " \1 =w-P(u)

where u = %1? and

P(u) = — 8.460901 + u

Q(u) = — 10.772754 + 5.703366 * u — 0.159321 « u-.
These coefficients were obtained by the minimax rational approximation (in
relative error) of the indicated form. The maximum relative error of this
approximation is 2-26. Choice of urather than w? as the variable for Pand Qis to
improve the roundoff quality of the coefficients.

. If x < 0, then tan(x) = — tan «x/, and cot(x) = — cot |x|.
. This program is provided with two kinds of error controls. One is for arguments

whose magnitude is greater than 2!* ¢ ». The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. More specifically,
the second control screens out the following arguments:

a) |x| = 16~ for coran (the result would overflow).

b) x is such that one can find a singularity within eight units of the last digit

Algorithms 63

o w

64 VS FORTRAN Library Reference

value of the floating-point representation of the sum g + r. Singularities are
cases when the cotangent ratio is to be taken and w = 0.

Effect of an Argument Error

E ~

,and e ~ for tan(x). Therefore, near the singularities

2
cos?(x) sin(2x)
1
x = (k +—2-) =, where k is an integer, no error control can be maintained. This

is also true for cotan(x) for x near kr, where k is an integer.

DTAN/DCOTAN
Algorithm

w
1. Divide |x| by—~and separate the result into integer part (q) and the fraction
x

part (r). Then |x] =—£—(q +r).

2. Obtain the reduced argument (w) as follows:
ifqgiseven, thenw = r
ifgisodd,thenw =1 —1r,

The range of the reduced argumentis 0 < w = 1.
3. Let go =g mod 4.
™ T
yul w)and cot |x| = cot (T . w),

T ™
) °w)andcot |x| = tan (—‘-1—-" w),

go = 2, tan |x| = — cot (-Z—- . w)and cot |x| = — tan (—;L . w),

Z ow)andcot |xl = - cot (—E—ow).

4. The value of tan (%— . w) and cot (:

Then for gy = 0, tan |x| = tan (

qo = 1, tan |x| = cot (

go = 3, tan |x| = — tan (

. w) are computed as the ratio of

two polynomials:

tan (—} . w) = wé(l)(g;z)» and cot (_ * w) wQ°(;()22)

where both P and Q are polynomials of degree 3 in w2 The coeficients of P

and Q were obtained by the minimax rational approximation (in relative error)

1
of o tan (—Z- w) of the indicated form. The maximum relative error of this

approximation is 2356,

If x < 0, then tan(x) = — tan |x], and cot(x) = — cot |x].
This program is provided with two kinds of error controls. One is for argu-
ments whose magnitude is greater than 25 » . The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
speciﬁcally, the second control screens out the following arguments:
) |x| = 16— for coran (the result would overflow).
b) x is such that one can find a singularity within eight units of the last digit
value of the floating-point representation of the sum g + r. Singularities are
cases when the cotangent ratio is to be taken and w = 0.

/r\\

Effect of an Argument Error

E and ¢ ~) for tan(x). Therefore, near the singularities of

2
~ cos?(xy sin(2x

1
x = (k + _é-) =, where k is an integer, no error control can be maintained.
This is also true for cotan(x) for values of x near kx, where k is an integer.
QTAN/QCOTAN
Algorithm
1. Separate argument into an integral multiple of —’2'- and the remainder part:
”

2
In this decomposition, after g is estimated in the working precision, r is accu-

x| = + r where g is an inte er,and——l’—gr(—"—.
q q g 4)

rately computed as r = [x| — —-- g with the aid of approximately 10 hexa-
P 5 P

decimal guard digits.
2. If cot(x) is desired, add 1 to g, and remember to change the sign of the answer.

Since cot(x) = -—tan (x + —;—) , this reduces the case to computation of
tangent.
3. If giseven, tan(|x|) = tan(r), and the latter is obtained by a minimax approxi-

mation of the form:

tan(r) == —'gé%))

where P and Q are polynomials of degree 6 and 5 respectively.

If q is odd, tan(|x|) = —cot(r), and the latter is computed as
cot(r) = 7P (%)

using the same polynomials as the former case.

The relative errors of these approximations are less than 2-1'1, In evaluating
these rational approximations, an exponent scaling is used to avoid intermediate
partial underflows, which can result in a loss of accuracy.

4. Ifx < 0, thentan(x) = —tan(]x|), and cot(x) = —cot(|x|).
Eftect of an Argument Error

A 2A
E ~ cos*(x)’ and ¢ ~ sin(2x)

for tan(x). Therefore near the singularities

1 . .
x={k +—2—')1r, where k stands for integers, no error control can be maintained.

This is also true for cot(x) for x near kr, where k is an integer.

Algorithms 65

66

Implicitly Called Subprograms

The entry point names of the following implicitly called subprograms are gener-
ated by the compiler.

Complex Multiply and Divide Subprograms

CDVD#/CMPY # (Divide/Multiply for COMPLEX*8 Arguments)
CDDVD #/CDMPY # (Divide/Multiply for COMPLEX*16 Arguments)

Algorithm
Multiply: (A + Bi) (C + Di) = (AC — BD) + (AD + BC)i
Divide: (A + Bi)/(C + Di)
1. If |C| = |D|, set
A=B,B=—-AC=D,D = — C,since
A + Bi B — Ai

= step 2.
CIDIi =D before step

2 seta =2 p=Lp_D
c C’ c’
then compute
A+Bi A+Bi A+BD B —AD
C+Di_ 1+Di_ 1+pD T T¥DD *

Error Conditions

Partial underflows can occur in preparing the answer.

CQMPY# /CQDVD# (Multiply/Divide for COMPLEX*32 Arguments)
Algorithm
Multiply: (a+bi) (¢+di) = (ac=bd) + (ad+bc)i
Divide: (a+bi)/(c+di)
1. Leta + biand ¢ + di be the first and the second operands respectively.
2. Find exponents p;, p; which satisfy the following:
16%-1 = max(|al, |b]) < 167, 16! =< max(|c|, |d]|) < 16#s.
Choose g= -3 ifp, =0
q= 31 if P < 0
3. Scale c and d by 167:—7 and change sign of d if CQDVD#:
¢ =c- 1677
d = fd-16-2. if COMPY#
! |—d-1677. if CQDVD#.
Here if the exponent adjustment results in underflow, replace the affected
quantity with 0.
4. Compute u, + vii = (ac; — bd,) + (ad, + be,) i
5. If CQMPY#, restore the scaling to obtain the answer u + vi:
¥ =1u;*16%"%and v = v, - 16779,
6. If CQDVD#, compute the denominator as follows:
w; = (2 + d;2) 16—
Note that 162 = w; < 2.
Then divide: u; = u,/w, and v, = v,/w,
Finally, restore the scaling to obtain the answer 4 + vi:
% =1u°167%and v = vy 16— 7,

Effect of an Argument Error
In terms of complex vector relative errors, ¢ ~ 8x + 8y where 8x is the relative
error of the first operand and 8y is the relative error of the second operand.

VS FORTRAN Library Reference

»

S

Complex Exponentiation Subprograms
(Exponentiation of a Complex Base to an Integer Power)

FCDXI# (COMPLEX* 16 Arguments)
FCXPl4# (COMPLEX*8 Arguments)

Algorithm

The value of y, + y.i = (2, + 2.i)/ is computed as follows.
K

Let lj| = 2 r.* 2*whercr, = Qorlfork=0,1,..., K
k=0

Then z|j| = I1 z2*, and the factors z?*, can be obtained by successive squaring.

More specifically:
1. Initially: k = 0, n'® = [j|, y, " + y2'"i =1 + 0,
zl“" -+ 22(0)i = + Z;gi.

2. Raise the index k by 1, and let nt*~" = 2q + r, where g is the integer
quotientand r = Qor 1.
3. Letnt® = gq.

4. Ifr = 0, then y, ') + yo'Mi = %=V + ¢, =D,
If r = 1, then P + g, i = (g, F—Y y2(k—l)i) (2:%*—D + 2 =1i),
5. If n'® 4= 0, then ;%) + 2,Mi = (z,%—1 + 2,51)2 and steps 2
through 5 are repeated until n*) = 0.
6. Whenn® = 0,andj = 0, theny, + yi = ;¥ +y.i.
Ifj < 0, theny, + ysi = (14 0i) / (1n'™® + y>).

(Exponentiation of a Complex Base to a Complex Power)

FCQXQ# (COMPLEX *32 Arguments)
FCDXD# (COMPLEX *16 Arguments)
FCXPC# (COMPLEX *8 Arguments)

Algorithm
z, ** z, = exp (z, * log z), where the functions ‘exp’ and ‘log’ are CEXP and
CLOG, CDEXP and CDLOG, or CQEXP and CQLOG respectively as the argu-
ments are C*8, C*16, or C*32.

ERect of an Argument Error

Ifz,=x,+ iy,and z,= x, + iy, then

z,** z, = exp (a) * (cos(d) + i sin(d)), where
a=x,*log| x, + iy, | — y,*arctan (y,/x,) and
b= y,*log| x, + iy, |+ x,*arctan ()»/x,).

The function z** z is calculated using the FORTRAN routines for sin, cos, exp, log,
and arctan.

Therefore the effect of an argument error upon the accuracy of the result depends
upon its effect in the functions SIN, COS, EXP, LOG, and ATAN.

Algorithms 67

68 VS FORTRAN Library Reference

Exponentiation of a Real Base to a Real Power Subprograms

FDXPD# (REAL*8 Arguments) ' @ :
FRXPR# (REAL*4 Arguments) '

Algorithm
Assume the desired answer is aS.

1.If a = 0 and b = 0, error return.
If a = 0and & > 0, the answer is 0.
2. If a # 0 and 6 =0, the answer is 1.

3. All other cases, compute a* as e# * ¢« In this computation the exponential
subroutine and the natural logarithm subroutine are used. If a is negative or if
b < log aistoo large, an error return is given by one of these subroutines.

The relative error of the answer can be expressed as (¢, +) b * log (a) + e
where ¢, e, and ¢; are relative errors of the logarithmic routine, machine multi-
plication, and the exponential routine, respectively.

For FDxPD¥#, ¢f =< 3.5x10- 1%, ¢, < 2.2x10-1¢, and ;3 =< 2.0x10—'%, Hence the
relative error < 5.7x10~'% | b « log a | + 2.0x10~' Note that b * log a is the
natural logarithm of the answer.

For FrxPR¥, ¢ = 8.3x10~7, ¢, =< 9.5x10~7, and 3 =< 4.7x10-7. Hence the relative
error < 1.8210=%x | b * loga | + 4.7x10~".

Effect of an Argument Error

{a(1 + 8,)1D(1 + 8:) ==a"(1 + 8.b * loga + bs,). Note that if the answer does
not overflow, |b « log a| < 175. On the other hand b can be very large without ¢
causing an overflow of @ if log a is very small. Thus, if @ = 1 and if b is very %
large, then the effect of the perturbation 8, of a shows very heavily in the relative ‘
error of the answer.

Exponentiation of a Real Base to an Integer Power Subprograms

FDXPl £ (REAL*8 Arguments)
FRXPI# (REAL*4 Arguments)

Algorithm

1. If a = 0 and 6 = 0, error return.
If a = 0and b > 0, the answer is 0.

2. If a # 0 and b =0, the answer is 1. K
3. The value of y = @’ is computed as follows: Let |j| = Z ri2% wherer, =0
k=20
orl fork=0,1,...,K Thendil =11 :2* and the factors a** can be obtained
1, %
by successive squaring. '
More specifically:
L. Initially: k = 0,n® = |j], y© = 1,and 2@ = a.
2. Raise the index k by 1, and decompose n'* =1 = 2q + r, where q is the
integer quotient and r = O or 1.
3. Letn® = gq. @
4. If r = 0, then y® = y@—n,

If r = 1, then y" = y*—Dgk=1, }

5. If n® 5= 0, then 2" = z(*=Dz(#1-) and steps 2 through 5 are repeated
untiln® = 0,

1
6. Whenn") = 0,andj = 0, theny = y™.Ifj < 0, theny = —

y

Note: The negative exponent is computed by taking the reciprocal of the posi-
tive power. Thus it is not possible to compute 16.0**— 64 because there is a lack of
symmetry for real floating-point numbers — i.e., 16.0**—64 can be represented,
but 16.0**64 cannot. The result is obtained by successive multiplications and is
exact only if the answer contains at most 14 significant hexadecimal digits.

Exponentiation of an Integer Base to an Integer Power Subprogram

FIXPi# (INTEGER*4 Arguments)

Algorithm
1.If a = 0 and b = O, error return.
If a = 0 and b > 0, the answer is 0. K,

2. If a # 0 and b =0, the answer is 1.
3. The value of L = [’ is computed as follows: Let j = Z: ri* 2" where

k=0
rn=0orlfork=0,1,..., K Then /' =11 /12" and the factors /2* can be

=0

obtained by successive squaring. A

More specifically: ’

1. Initially: k = 0,n'» = j,y' = L,and m'" = I.

2. Raise the index k by 1, and decompose n*~V = 2q + r, where q is the
integer quotient and r = O or 1.

3. Letn'® = gq.

4, If r = 0, then y» = y'*— v,
Ifr =1, theny™ = y*—" e uth—1o,

5. If n' == 0, then m'™ = m"*~Y « mt~1_and steps 2 through 5 are repeated
until n® = Q,

6. Whenn'*' = 0,L = L'*',

Note: The result is obtained by successive multiplications. The result is exact
only if it is less than (2**31) — 1. Results are meaningless when this limit is
exceeded and may even be of changed sign. No tests for overflow are made.

Algorithms 69

Complex Exponentiation Subprogram
FCQXI1# (COMPLEX*32 Arguments)

Algorithm
1. Write (x + yi)’ = a + bi.

2 fx+yi=0+0iand] > 0,thena + bi =0+ 0i
3. If] =0,a + bi = 1.0 + 0i. Assume now J 5£ 0.
4.

Let]]] = jgog, 2*—~/where g; = Oorl, g, = 1.

Initialize a, + boi = x + yi. If |J| = 1, skip the following.
Do the following forj = 1,2,...,n:
| {(ai—1 + bj_si)? ' ifg;=0
)\,(a,-_l +. b,_li)z(x +yi) if g, = 1
At the end of iteration a, + b,i = (x + yi)ll.
5] <0,(x+ yi) =-(%3_—';-i9)',,—7

Effect of an Argument Error
|| ~ J |8] where 8 is the complex relative error of the base and e is the complex
relative error of the result due to this.

a,+b;i=

Exponentiation of a Base 2 Argument to a Real Power Subprogram

FQXP2+# (REAL* 16 Arguments)

Algorithm
This subprogram uses the same algorithm as the QEXP explicit subprogram.

Exponentiation of a Real Base to an Integer Power Subprogram

FQXPI# (REAL*16 Arguments)

Algorithm .

1. Writex =y

2. Ifx=0and]J > 0,theny =0

3. Ifxs£0,and] = 0, then y = 1.0. Assume now J 5£ 0.
4,

Let |J| = éog, 2*—iwhereg; = Oor 1, g = L

Initialize yo = x. If |J| = 1, skip the following.
Do the following forj = 1,2,...,n:

(Y% ifgy=0

zy2_1'x lfg,'=1

At the end of iteration y, = xVI.

_ 1
5. If]<0’xJ_;PT

Note: The negative power is computed by taking the reciprocal of the positive
power. Thus it is not possible to compute 16.0**—64 because there is a lack of
symmetry in real floating point numbers; i.e., 16.0**—84 can be represented, but
16.0**84 cannot.

Effect of an Argument Error
e~]38

Y=

70 VS FORTRAN Library Reference

Exponentiation of a Real Base to a Real Power Subprogram

FQXPQ# (REAL*16 Arguments)
Algorithm

L
2.

Basically, xv = 2V *l08,(),

More specifically, log,(x) is computed with aimed accuracy of 16—3° in abso-
lute error, or 16—28 in relative error, whichever is smaller, by the algorithm of
QLOG/QLOGI10. The result is kept as two components; the high order part
is represented by a single precision number; and the low order part, which is
less than 16— in absolute value, is represented by an extended precision
number.

The product y * log:(x) is obtained by a simulated multiplication to obtain up
to 31 hexadecimal digits of accuracy.

Raise the result to the power of 2 by the algorithm of QEXP. As stated there,
this includes a virtual final rounding with the result that one obtains the full
28 hexadecimal digit accuracy unless x is very close to 1.0.

Effect of an Argument Error

e~ y-8, + y-log(x) -8, The factor y - log(x) is limited by 180 in magnitude.
If beyond this, the result will overflow. However, the other factor y can be very
large if x is close to 1. This is so because log(x) will then be very small.

Algorithms n

Accuracy Statistics

This chapter contains accuracy statistics for explicitly and implicitly called
mathematical subprograms. These statistics are presented in Figure 12. They are
arranged in alphabetic order, according to the entry names. The following informa-
tion is given in the two figures:

Entry Name: This column gives you the entry name that is used to call the
subprogram.

Argument Range: This column gives the argument range used to obtain the
accuracy figures. For each function, accuracy figures are given for one or more
representative segments within the valid range. In each case, the figures given are
the most meaningful to the function and range under consideration.

The maximum relative error and standard deviation of the relative error are
generally useful and revealing statistics; however, they are useless for the range of
a function where its value becomes 0. This is because the slightest error in the
argument can cause an unpredictable fluctuation in the magnitude of the answer.
When a small argument error would have this effect, the maximum absolute error
and standard deviation of the absolute error are given for the range.

Sample: This column indicates the type of sample used for the accuracy figures.
The type of sample depends on the function and range under consideration. The
statistics may be based either upon an exponentially distributed (E) argument
sample or a uniformally distributed (U) argument sample.

Accuracy Figures: This column gives accuracy figures for one or more represen-
tative segments within the valid argument range. The accuracy figures supplied are
based on the assumption that the arguments are perfect, that is, without error and,
therefore, have no error propagation effect upon the answers. The only errors in
the answer are those introduced by the subprograms. The chapter ‘‘Algorithms”’
contains a description of some of the symbols used in the chapter; the following
additional symbols are used in the presentation of accuracy figures:

The maximum

f(x) — g(x) lative error
M () =MaxHEL—8(E))f(x)g(relative
during testing.
The standard
— 1 f(x) — g(x;) % deviation (root-
o) = —1\721 f(x;) mean-square)of

the relative error.

The maximum
absolute error
produced

during testing.

M(E) = Max | f(x) — g(x) |

5 The standard
deviation (root-
mean-square) of
the absolute error.

o(B) = |EE, |) - gl

72 VS FORTRAN Library Reference

In case of complex functions, the absolute value signs employed in the above
definitions are to mean the complex absolute values. In the formulas for standard
deviation, N represents the total number of arguments in the sample; i is a
subscript that varies from 1 to N.

O

Entry Argument Sample : Accuracy Figures
Name Range E/U M (e) Relative o (o) M (E) Absglute o (E)

ALGAMA |0< X <05 U | 116x 10 3.54 X 1077
05=X<30 9] 9.43 X 1077 3.42 X 1077
30=X <80 1§) 1.25 x 10~ 3.04 X 1077
80=X < 16.0 U 1.18 x 10 3.80 X 1077
16.0 = X < 500.0 U 9.85 X 1077 1.90 X 1077

ALOG 05=X=15 U 6.85 X 1078 2.33 x 108
X<05X>15 E 8.32 X 1077 1.19 x 1077

ALOG 10 [05=X=15 U 7.13 X 1078 2.26 x 1078
X<05X>15 E 1.05 X 10°° 217 X 1077

ARCOS -1=X=+1 U 8.85 x 1077 3.19 X 1077

ARSIN -1=X=+1 U 9.34 X 1077 2.06 X 1077

ATAN The full range Note 7 | 1.01 x 10°¢ 468 X 1077

ATAN2 The full range Note 7 { 1.01 X 1078 4.68 x 1077

CABS The full range Note 1 | 9.15 X 107 2.00 X 1077

CCoS 1X:| =10, |X:| = 1 U | 250 x 10 7.66 X 1077

See Note 2
CDABS The full range Note 1 | 2.03 X 10-'¢ 483 X 1077
CDCOS X =10, X =1 U |398x10 250 X 1071
See Note 3

CDEXP Xi| S 1, [Xsf = v/2 U {376 x 1071 110 x 10716
IXi| = 20, |X.| < 20 U {274 %101 9.64 X 10716

CDLOG The full range Note 1 | 2.72 X 1071¢ 5.38 X 1077
except (1 + Oi)

CDSIN X[=10, [Xof = 1 U [235x107 2.25 X 10716

See Note 4

CDSQRT The full range Note 1 | 1.76 x 10-'¢ 4,06 X 10717

CEXP [Xa| = 170, [X.| = n/2 U [993x107 2.67 X 10-7
|X:] = 170, U 1.07 X 10-¢ 2.73 X 1077
w/2 < |Xo| =20

CLOG The full range Note 1 | 7.15 X 1077 1.36 x 1077
except (1 + Oi)

COS 0=X=nr 1) 1.19 X 1077 4.60 X 1078
-10=X<0, U 1.28 x 1077 4.55 X 1078
r<X=10
10 < |X| = 100 U 1.14 X 1077 4.60 X 10°¢

COSH -5=X=+5) 1.27 X 107 2.63 X 1077

COTAN X|=n/4 U 1.07 x 10 3.58 X 1077
/4 < |X| = n/2 U 1.40 X 107% (Note 5) 2.56 X 1077
/2 <|X| =10 U 1.30 X 107% (Note 5) { 3.11 X 1077
10 < |X]| = 100 U 1.49 X 10°% (Note 5) 3.15 X 1077

NorTes: (See end of figure.)

Figure 12. (Part 1 of 6) Accuracy Figures

Accuracy Statistics

73

Accuracy Figures

Entry Argument Sample -
Name Range E/U M Relative =T33 T Absolute I
CQABS Full range Note9 | 2.77 x 10 5.45 x 10-%
CQCOS -10<x < 10 U | 687 x 10™ 2.44 x 10®
-1<y<1
CQDVD# . Note 8 | 5.32 x 10" 142 x 10
CQEXP -170 < x < 170 U |[382x10™ 8.30 x 10"
-5 <v<—
CQLOG Full range Note 9 | 4.53 x 10™® 9.72 x 107
CQMPY# . Note 8 | 4.52x 10 1.27 x 10
CQSIN —10<x< 10 U | 726 %10 2.37 x 10
-1<y<1
CQSQRT | Full range Note 9 | 3.37 x 10 7.27 x 10
CSIN Xi| =10, |Xo] <1 U | 192x10¢ 7.38 x 1077
See Note 6
CSQRT The full range Note 1 | 7.00 x 1077 1.71 x 10°?
DARCOS | |X|=1 U | 207x107 7.05 x 10717
DARSIN X/ =1 U | 2.04 x 1016 5.15 x 10°1*
DATAN The full range Note 7 | 2.18 x 1071¢ 7.04 X 10-17
DATAN2 | The full range Note 7 | 2.18 X 10-1¢ 7.04 X 10717
DCOS 0=X=<n U 1.79 X 10718 8.53 X 107
-10=X<0, U 1.75 x 10716 5.93 x 1077
rX=10
10 < X =< 100 U 2.64 x 10715 1.01 x 1071
DCOSH X <5 U | 363 x 1016 9.05 x 10717
DCOTAN | [X| = n/4 U | 246 x 10719 (Note 5) | 8.79 x 107
/4 < |X| = #/2 U | 278x1013(Note5)| 861 x 107
/2 < |X| =10 U | 5.40 x 10713 (Note 5)| 1.13 x 101
10 < [X| < 100 U | 861 x 10713 (Note5)| 4.61 x 10-14
DERF X|=10 U | 1.89 x 1016 2.60 x 10717
1.0 < |X| =< 2.04 U | 287 x107 9.84 x 10718
2.04 < |X| < 6.092 U | 139 x 107 8.02 x 1071#
DERFC -86<X<0 U | 208 x 101 6.52 x 1017
0=X=1 U | 140 x 10716 2.59 x 10717
1< X =204 U | 411 x 101¢ 8.86 x 1077
204 < X < 4 U | 3.26x 1016 8.85 x 1077
4=X<133 U | 351 x 10715 1.96 X 10715

NotEs: (See end of figure.)

Figure 12. (Part 2 of 6) Accuracy Figures

74

VS FORTRAN Library Reference

pR—

Accuracy Figures
Entry Argument Sample -
Name Range E/U TR Relative 0 5 T
DEXP X|=1 U 2.04 X 1071 543 X 10717
1< X|=20 U | 203x101 4.87 X 107*
20 < |X| =170 U 1.97 x 1078 4.98 x 107
DGAMMA |0 <X <1 U 2.14 x 1071 7.84 X 10717
1=X=2 U | 252 %1017 6.07 X 10718
2« X <4 . U 221 x 10716 8.49 x 1077
4=X<«8 U 5.05 X 10-1¢ 1.90 x 1071
8= X <18 U 6.02 x 1071 1.78 x 10713
16=X <« 57 U 1.16 x 10°¢ 4.11 x 10715
DLGAMA |0 < X=05 U 2.77 X 1076 9.75 X 1077
05<X<3 U 2.24 X 10718 7.77 X 1077
3=X<8 U | 2.89 x 1018 8.80 X 1077
8=X<« 16 U 2.86 x 10716 8.92 X 10717
16 =X < 500 U 1.99 x 10718 3.93 X 1077
DLOG 05=X=15 U 4.60 X 10-%7 2.09 x 10-17
X<05X>15 E 3.32 x 10716 552 X 1077
DLOGI10 05=X=15 U 2.73 X 10717 1.07 x 1077
X<05X>15 E 3.02 X 10718 6.65 x 10717
DSIN Xl =x/2 §) 3.60 X 10718 4.82 x 10717 7.74 X 1077 1.98 x 10717
/2L |X| =10 U 1.64 X 10718 6.49 X 1077
10 < |X| = 100 U 2.68 x 10718 1.03 x 10713
DSINH IX| = 0.88137 U 2.06 X 1071 3.74 X 1077
088137 < [X| =5 U 3.80 x 10718 9.21 x 107
DSQRT The full range E 1.06 x 1071¢ 2.16 x 10-17
DTAN Xl = »/4 U 341 xX 10716 6.27 x 1077
/AL |X| = /2 U | 143X 102 (Note5)| 2.95x 10714
/2 < |X| =10 U 2.78 X 10**(Note 5) | 7.23 X 1071°
10 < [X| = 100 U 3.79 X 1072 (Note 5)} 9.50 X 107¢
DTANH X[= 0.54931 U 1.91 x 10718 3.86 x 10717
054931 < [X| =5 U | 154 x 10718 1.87 x 1077
ERF X} =10 U | 816 x 107 110 x 107
10 < |X| = 2.04 U | 113 x 107 370 x 10-
2.04 < |X| = 3.9192 U 5.95 x 108 341 x 10°8

NoTtEs: (See end of figure.)

Figure 12. (Part 3 of 6) Accuracy Figures

Accuracy Statistics

75

Entry Argument

Sample

Accuracy Figures

Name Range E/U Relative Absolute
M(e) a(e) M(E) o(E)
ERFC -38«<X<0 U 9.10 X 1077 296 X 1077
0=X=10 U 7.42 X 1077 1.27 X 1077
10 « X =204 U 1.54 X 10°¢ 3.78 X 1077
204< X =40 U 2.28 X 107 3.70 X 1077
40< X =133 U 1.55 x 10°® 8.57 x 10°¢
EXP Xl =1 U 4.65 X 1077 1.28 x 1077
1< X[=170 U | 442 x 107 1.15 X 1077
FCQXI# 2=J=160, 3.7 X 10 X] 10%¥ X (J — 1)
10—10/.1 < !.‘(+ l)/q < 1075/.!
FQXPI# 2=]=160, 25X 10 x (J—1) 6.1 X 107 X (J = 1)
10-75,1 <x < 1075 J
FOQXPQ# 099 < A< 1.01 U 568 x 107 5.16 x 107
~75loga 10 < 8
< 75log, 10
(A**B) 0.5 < A =0.99, U 5.65 X 10~™ 2.16 X 10
orl0l =AK2
~75 logs 10 < B
< 751oga 10
0<A=S 0.5_, E 1.60 x 107* 3.87 X 10°%
or2 = A < 10™
~75log. 10 < B U 1.60 x 10 3.87 X 10""
< 75 log, 10
FQXP2# | —-260 < x < 252 U 1.52 x 10™* 3.78 x 10
GAMMA 0<X<lo U 9.86 X 1077 3.66 X 1077
10=X=20 U 1.13 X 1077 3.22 x 108
20 < X=40 U 947 X 1077 3.79 X 1077
40 < X < 80 U | 226 %10 8.32 X 107
8O=X=160 U | 220x 10 7.61 X 107
160 <« X =570 U 4,62 x 1078 1.51 x 10°®
QARCOS -1=x=1 U 3.18 X 10~ 9.81 x 107
QARSIN -1=x=1 U 3.14 X 10°® 7.89 x 107
QATAN -10" < x < 10% Note 10| 2.92 X 107 7.32 X 107
QATAN2 Full range Note 9 3.53 X 10~ 7.83 x 107
QCOSs 0=x=n U 441 x 10 6.58 X 107 3.23 X 107 1.48 X 107
~-10<x<0,o0r U 3.43 X 107 1.57 x 10
r=x<10
-200 < x = -10,0r U 3.48 x 107 1.57 X 10
10 = x < 200
QCOSH -10<x<10 U . 5.83 x 10 1.57 X 107

NoTEs: (See end of figure.)

Figure 12. (Part 4 of 6) Accuracy Figures

76 VS FORTRAN Library Reference

‘_,,2 7

Accuracy Figures
:‘I::;’; A;‘g}‘ l:;znt Sg?{}le Relative Absolute
) M (c) v () M(E) o (E)
3.02 x 10 .09 X 107
QCOTAN| - F <x< v 10 909X 10
398 X 10 . -3
——;’<x§—-}’,or U 10 1.09 X 10
Tei<F
. ad -33
—10<x§—"2r_,or—;;§x<10 U 4.55 x 10 1.13 x 10
-200< x < ~10,0r 10 = x < 200 U 3.98 x 10*® 1.11 % 10>
QERF Ixl <1 U 3.0 x 10™ 5.3 X 107
1= [x| < 2.84375 U 92 x 107 2.3 X 107
2.84375 = |x| < 5 U | 19 x 10™ 13 x 10™
QERFC | -5<x <0 U 3.1 x 10 12 x 10°®
0=x<1 U 3.3 x 10* 5.8 X 107
1 =x <2.84375 U 70 X 10 2.8 x 10
284375 = x <5 U 488 x 10% 1.83 X 10~
QEXP -1<x<1 U 1.51 x 10-*® 427 x 10~
-10<x< 10 U 1.53 X 107 3.96 X 10°*
-180 < x <174 U 1.54 x 10 3.82 x 10
QLOG 0.99 <x <101 U 427 x 10°® 151 x 10-® 1.92 X 10*| 8.36 X 10™
05<x<2 U 4.06 X 10™® 8.24 x 107 3.17 X 10°*| 1.63 x 107
10" <x<10™ E 4.45 x 10 8.77 X 10
QLOGIO| 10" <x < 10™® E 3.59 x 10~ 1.16 X 10
' U | 248 x 10® 12 x 10 95 % 10| 1.17 x 10"
OSIN —‘g‘<x<"§‘ 8 X1 3.1 1 2.95 x 10 1.1 10
U 3.48 X 107*| 1.60 x 10
-10<<x= - "2L,or—';—§x<10
-200<x = —10,0r 10 = x < 200 U 3.50 X 10*| 1.56 X 10*
QSINH | -1<x<1 4] 291 x 10® 6.86 X 107
-10<x=~-Lorl =x<10 U 6.71 x 10 1.37 X 10™®
QSQRT | 10 < x < 10® E 1.49 x 10-® 2.95 X 10
10" < x < 10™ E 1.39 x 10™® 276 X 107
U 3.75 x 10°*® 9.16 X 10%
QTAN | - T <x<°f
; 277 X 10 8.78 X 10
- <x=T,or v
2 4
T
. X Rl 3 X Bt
“10<X§*%,or‘g'éx<10 v 452 % 10 9.16 x 10
-200<x = ~10,0r 10 = x < 200 U 447 X 10% 9.12 X 10
QTANH | —0.54931 < x < 0.54931 U 2.41 X 10™® 512 x 107
=5 < x = -0.54931, or U 2.09 X 10® 2.46 X 10™ 1.04 X 10| 1.68 x 10™*
054931 =x <5
NoTes: (See end of figure.)

Figure 12. (Part 5 of 6) Accuracy Figures

Accuracy Statistics

7

Accuracy Figures
Entry Argument Sample Relative / Absolute
Name Range E/U M) e v (E) ’(i)
SIN X| = /2 §) 1.32 x 107 1.82 x 1077 1.18 x 1077 4.55 x 1078
/2 < |X| =10 U 1.15 X 1077 4.64 X 10
10 < |X| < 100 U 1.28 X 1077 452 X 10
SINH -5=X=+5 U | 1.26x 107 217 x 10”7 '
SQRT The full range E 4.45 X 107 843 x 1078
TAN X| < ~/4 U | 171 x10° 2.64 X 1077
x/4 < |X| < #/2 U [1.05x 10 (Note5) |359x 107
/2 < [X| = 10 U | 6.49 x 10-° (Note 5) | 3.38 x 107
10 <X = 100 U 1.57 X 107 (Note 5) 3.07 x 1077
TANH X =07 1Y) 8.48 x 1077 1.48 x 1077
0.7<[X|=5 1) 2.44 X 1077 423 x 108
Nortes:

! The distribution of sample arguments upon which these statistics are based is exponential radially and is uniform around the
origin.
2 The maximum relative error cited for the ccos function is based upon a set of 2000 random arguments within the range. In

the immediate proximity of the points(n + -—l--) » + 0i (wheren =0, £ 1, £ 2,...)) the relative error can be quite

2
high, although the absolute error is small.
3 The maximum relative error cited for the cpcos function is based upon a set of 1500 random arguments within the range.

In the immediately proximity of the points (n+ -;—) x + 0i (wheren =0, £ 1, + 2,...,) the relative error can be quite

high, although the absolute error is small.

4 The maximum relative error cited for the cpsiN function is based upon a set of 1500 random arguments within the range.
In the immediate proximity of the points nx + 0i (wheren = % 1, = 2,...,) the relative error can be quite high, although
the absolute error is small.

& The figures cited as the maximum relative errors are those encountered in a sample of 2500 random arguments within the
respective ranges. See the appropriate section in the chapter “Algorithms™ for a description of the behavior of errors when
the argument is near a singularity or a zero of the function.

8 The maximum relative error cited for the csiN function is based upon a set of 2000 random arguments within the range. In
the immediate proximity of the points nw + 0i (wheren = = 1, = 2,...,) the relative error can be quite high, although
the absolute error is small.

m k.
" The sample arguments were tangents of numbers uniformly distributed between — ——and + —-.

2 2
8 x + iy = 8 ¢'0, where 5 is exponentially distributed in (0, 10%), and 8 is uniformly distributed in (— =, =).
? x + iy = 8 e'0, where 5 is exponentially distributed in (0, 1075), and @ is uniformly distributed in (— =, m).
1o Tapgents of linearly scaled random angles between — gand 12'

Figure 12. (Part 6 of 6) Accuracy Figures

78 VS FORTRAN Library Reference

@

Appendix A: Assembler Language Information

The mathematical and service subprograms in the VS FORTRAN library can be used
by,the assembler language programmer. Successful use depends on three things:
(1) making the library available to the linkage editor; (2) setting up proper calling
sequences, based on either a call macro instruction or a branch; and (3) supply cor-

rect parameters.

UBRARY AVAILABILITY

The assembler language programmer must arrange for the desired subprograms
(modules) to be taken from the VS FORTRAN library and brought into main storage,
usually as a part of the programmer’s load module. This can be done by employing
the techniques described in the OS/VS Linkage Editor and Loader, and Guide to the
DOS/VSE Assembler, publications.

For example, the vS FORTRAN library could be made part of the automatic call

library by using these job control statements:

//jobname JOB desired operands
//stepname EXEC ASMFCLG,PARM.LKED=‘XREF,LIST, MAP’
//ASM.SYSIN DD*

(assembler language program source deck)
/t
//LKED.SYSLIB DD DSNAME=data set name,DISP=SHR
/#
Subprograms requested in the source program would then be available to the
linkage editor for inclusion in the load module.

CALLING SEQUENCES

Two general methods of calling are possible: (1) coding an appropriate macro

instruction (for OS/VS and VM/370 CMS, see OS/VS Supervisor Services and macro

Instructions, and for DOS/VSE see DOS/VSE Data Management Concepts, and DOS/

VSE Macro User'’s Guide), such as CALL; or (2) coding assembler language branch

instructions.

In all cases, a save area must be provided that:

® is aligned on a fullword boundary

® s at least as large as the size specified in Figures 13, 14, and 15, (but preferably
the standard 18 words to ensure future compatibility)

@ All extended precision mathematical subprograms (both explicit and implicit)
use all 16 registers, and require their callers to supply a full 18 word save area.

‘® hasits address in general register 13 at the time of the CALL macro instruction
or branch

Notes:

1. For performance reasons, VS FORTRAN subprograms use certain floating-point
registers (see Figure 14), but do not save and restore original register con-
tents. If you wish floating-point information retained, you must save it before
calling the subprogram and restore it on return,

- 2. From the DOS/VSE control program register 1 is not used but the execution

parameters are passed as bit settings in the communications area.

Appendix A: Assembler Language Information 79

If the called subprogram uses VS FORTRAN input/output, error processing, or inter-
ruption routines (see Figure 17), the calling program must initialize the execution
environment by executing the following two instructions before the branch is
made:

L 15,=V(VSCOM#)
BAL 14,64(15)

These instructions cause a branch into the VSCOM# subprogram, which initial-
izes return coding and prepares routines to handle interruptions. If this initializa-
tion is omitted, an interruption or error may cause abnormal termination. (After
initialization, VSCOM# returns to the instruction following the BAL.)

Note:

An initialization entry to VSCOM# is not required if the main program is written
in FORTRAN, and the assembier ianguage routine is an intermediate.

80 VS FORTRAN Library Reference

O

Save Area Registers Used® Save Area Registers Used®
Entry Name(s) - (Fullwords) | Result | Intermediate Entry Name(s) (Fullwords) | Result | Intermediate
AINT 9 0 2,4,6 CDMPY#, CDDVD# 5 0,2 4,6
ALGAMA, GAMMA 9 0 2,4,8 CDVD#, CMPY# 5 0,2 | © 4,6
ALOG, ALOGI10 7 0 2,4,6 FIXPI# 18 o*
AMAXO0, AMINO 6 0 FRXPI# 18 0
MAXO0, MINO 9 o* FDXPI# 18 0
AMAX]1, AMIN1 6 0 FRXPR# 18 0
MAX], MIN1 9 o* FDXPD# 18 0
AMOD, DMOD 9 0 2,4,6 FCDX1# 18 0,2
ARCOS, ARSIN 10 0 2,4 FCXPI# 18 0,2
ATAN 5 0 2,4,6
ATAN, ATAN2 7 0 2.4,6 *Floating-point; asterisk indicates general.
CABS 7 0,2 4,6
CCOS, CSIN 9 0,2 4 Figure 14. Assembler Information for the Implicitly Called
CDABS 7 0,2 4,6 Mathematical Subprograms
CDCOS, CDSIN 9 0,2 4
CDEXP 8 0,2 4,6 .
CDLOG 8 0,2 4,6
CDSORT 9 0.2 46 Entry Name(s) Save Area (Fullwords) .
CEXP 8 0,2 4,6 CCMPR# 18
CLOG 8 0,2 4,6 CMOVE# 18
COS, SIN 7 0 2,4 CNCAT# 18
COSH, SINH 8 0 2,4 LGE,LGT,LLE,LLT 18
COTAN, TAN 7 0 2,4
CSQRT 9 0,2 4,6 . . L.
DARCOS, DARSIN 13 0 2.4 Figure 15. Assembler Information for the Implicitly Called
DATAN 5 0 2.4,6 Character Subprograms.
DATAN, DATAN2 7 0 2,4,6
DCOS, DSIN 7 0 2,4
DCOSH, DSINH 8 0 2,4 Entry Name(s) Save Area (Fullwords)
DCOTAN, DTAN 7 0 2,4,6
DERF, DERFC 11 0 2,4,6 DUMP, PDUMP 18
DEXP 7 0 2 DVCHK 10
DGAMMA, DLGAMA 11 0 2,4,6 EXIT 5
DLOG, DLOG10 9 0 2,4,6 OVERFL 10
DMAXI1, DMIN1 9 0
DSQRT 7 0 2,4
DTANH 5 0 2. 4,6 Figure 16. Assembler Information for the
EXP 11 0 Service Subprograms
ERF, ERFC 11 0 2,4,6
IDINT, INT, IFIX 9 0*
MOD 9 o*
SQRT 7 0 2
TANH 5 0 2,4,6

'Floating-point; asterisk indicates general.

Figure 13. Assembler Information for the Explicitly Called
Mathematical Subprograms

Appendix A: Assembler Language Information 81

When a branch instruction rather than a call macro instruction is used to invoke a (ﬂ(j
subprogram, several additional conventions must be observed: ¥

® Anargument (parameter) address list must be assembled on a fullword bound-
ary. It consists of one 4-byte address constant for each argument, wuth the last
address constant containing a 1 in its high order bit.

® The address of the first item in this argument address list must be in general
register 1.

® From the DOS/VSE control program register 1 is not used but the execution
parameters are passed as bit settings in the communications area.

® The address of the entry point of the called subprogram must be in general
register 15.

® The address of the point of return to the calling program miusi be in general
register 14.

The total requirements for an assembler language calling sequence are illustrated
in Figure 14.

82 VS FORTRAN Library Reference

BAL 14, 64(15)
.« * e =

LA 13,area
LA 1,arglist

L 15,entry
BALR 14,15
NOP X'id"’/

* L * L

*] * *

For one argument
CNOP DSOF
arglist DC X'80’

DC AL3 (arg)
For more than one argument

arglist DC A (arg)
DC A (args)

DC X'so’

L 15, = V(IBCOM#)

entry DC V (entry name)
or
entry DC A (entry name)
*® L] * *
area DS xF

DC ALS3 (arga)

These two statements are necessary only if the called subprogram uses
FORTRAN input/output, error, or interrupt routines (see Appendix B), and if
the main program is not a FORTRAN routine.

General register 13 contains the address of the save area.
General register 1 contains the address of the argument list.
General register 15 contains the address of the subprogram.

General register 14 contains the address of the point of return to the calling
program,

This statement is optional. The id represents an identification number.
This number is supplied by the programmer and may be any hexadecimal
integer less than 2" —1.

NotE: In this case, the entry name must be defined by an EXTRN instruc-
tion to obtain proper linkage.

This statement defines the save area needed by the subprogram. The xx repre-
sents the minimum size of the save area required; however, the programmer is
advised to use a save area of 18 fullwords for all subprograms. (The minimum
save area requirements are given in Figures 13 and 14 for the mathematical
subprograms and in Figure 16 for the service subprograms.)

Aligns the argument list at a fullword boundary.
Places a 1 in the high order bit of the only argument.

Contains the address of the argument.

Contains the address of the first argument.
Contains the address of the second argument.

Places a 1 in the high order bit of the last argument.

Contains the address of the last argument.

Figure 17. General Assembler Language Calling Sequence

Appendix A: Assembler Language Information 83

84 VS FORTRAN Library Reference

Supplying Correct Parameters

Arguments must be of the proper type, length, quantity, and in certain cases, with-
in a specified range, for the subprogram called.

For mathematical and character subprograms, this information can be found in
Figures 2 through 6. INTEGER *4 denotes a signed binary number four bytes long.
REAL *4 and REAL *8 are normalized floating point numbers, 4 and 8 bytes long,
respectively. COMPLEX *8 and COMPLEX *16 are complex numbers, 8 and 16 bytes
long, respectively, whose first half contains the real part, and whose second half
contains the imaginary part. Each part is a normalized floating-point number.
Four-byte argument types must be aligned on fullword boundaries, and 8-byte and
16-byte types must be aligned on doubleword boundaries.

Argument information for nonmathematical subprograms can be found in “‘Ser-
vice Subprograms.’’

Error messages resulting from incorrect arguments are explained in “‘Appendix C.
Library Interruption Procedures, Error Procedures, and Messages.”’

Results

Each mathematical subprogram returns a single answer of a type listed in Figures 2

through 6 (see ‘‘Function Value Type”’). The INTEGER answers are returned in
general register 0, REAL answers are returned in floating-point register 0, and COM-

PLEX answers are returned in floating-point register 0 and 2. Result registers are
listed by subprogram entry name in Figure 12.

For extended precision mathematical subprograms, results are always returned in
the floating-point registers: 0 and 2 for REAL *16 results, and 0, 2, 4, and 6 for COM-

PLEX *32 results.

The location and form of the service subroutine results can be determined from
the discussion in ‘‘Service Subprograms.”

Example

To find the square root of the value in AMNT, the library square root subprogram
(entry name SQRT) could be invoked, using the following statements (for
assembler language MAIN programs only):

L 15,=V(VSCOM#)
BAL 14,64(15)
LA 13,SAVE
CALL SQRT, (AMNT),VL
STE 0,ANSWER

SAVE DS 18F

AMNT DC E’144°

ANSWER DC B0’

(The VL operand in CALL indicates that the macro expansion should flag the end
of the parameter list.) '

Employing only assembler language instructions, the sequence would be:

L 15,=V(VSCOM#)

BAL 14.64(15)

LA 13,SAVE

LA 1,ARG

L 15,ENTRY

BALR 14.15

STE 0,ANSWER
ENTRY DC V(SQRT)
ANSWER DC B0’
SAVE DS 18F

DS OF,
ARG DC X°80°,AL3(AMNT)
AMNT DC E'144’

Note that, in both cases, a branch to VSCOM# is provided, a save area is set up,
and AMNT meets argument specifications by being a four-byte non-negative nor-
malized floating-point number, aligned on a fullword boundary.

In both cases, the answer is returned in floating-point register 0 as a four-byte
floating-point number.

SPACE CONSIDERATIONS

Many of the mathematical subprograms require other mathematical subprograms
for their calculations. In addition, -most of the subprograms use the input/output,
error processing, and interruption library subroutines. (This interdependence is
outlined in ‘“‘Appendix B. Storage Estimates.’’). Thus, although the programmer
may request just one VS FORTRAN subprogram, the requirements of that
subprogram may make the resultant load module quite large. The SQRT routine,
for example, takes only 344 bytes of storage itself, but requires other subroutines
that increase the load module size by approximately 20,000 bytes.

Appendix A: Assembler Language Information 85

Paga of 5C26-3989 as updatad 03 June 1981 by TNL SN26-0852
Appendix B: Storage Estimates

This Appendix contains decimal storage estimates (in bytes) for the library
subprograms. The estimate given does not include any additional mathematical
subprograms for VS FORTRAN routines that the subprograms may use during
execution. The entry-names of any additional mathematical library subprograms
used are given in Figure 18. Figures 18, 19, and 20 also indicate which mathematical
and service subprograms require VS FORTRAN routines for input/output, interruption,
and error procedures.

The programmer must add the estimates for all subprograms and routines needed
to determine the amount of storage required. If the programmer has not made
allowances for the storage required by any of these additional routines (see Figure
21), the amount of available storage may be exceeded and execution cannot begin,
or may terminate abnormally.

1/0, Error
Additional Mathematical & Interrupt

Entry Name(s) Decimal Estimates in Bytes Subprograms Used Routines
AINT 80 No
ALGAMA, GAMMA 848 ALOG, EXP Yes
ALOG, ALOG10 464 Yes
AMAX0, AMINO, MAX0, MINO 224 No
AMAXI1, AMIN], MAX], MIN1 224 No
AMOD, DMOD 120 No
ARCOS, ARSIN 496 SQRT Yes
ATAN . 200 No
ATAN, ATAN2 488 Yes
CABS 192 SQRT Yes
CCOS, CSIN 760 EXP. SIN/COS Yes
CDABS 200 DSQRT Yes
CDCOS, CDSIN 832 DEXP, DSIN/DCOS Yes
CDDVD#, CDMPY# 240 No
CDEXP 624 DEXP, DSIN/DCOS Yes
CDLOG 488 DLOG, ATAN2 Yes
CDSQRT 328 DSQRT Yes
CDVD#, CMPY# 216 No
CEXP 592 EXP, SIN/COS Yes
CLOG 464 ALOG, ATAN2 Yes
COS, SIN 504 Yes
COSH, SINH 504 EXP Yes
COTAN, TAN 648 . Yes
QCABS 344 QSQRT No*
CQCOS, CQSIN 1,100 QEXP, QSIN, QCOS Yes
CQDVD#, CQMPY# 576 No
CQEXP 624 QEXP, QSIN, QCOS Yes
CQLOG 584 QLOG, QATAN2 Yes
CQSQRT 504 QSQRT No*
CSQRT 312 SQRT Yes
CXMPR# (see Figure 20.)
DARCOS, DARSIN 648 DSQRT Yes
DATAN 312 No
DATAN, DATAN2 648 Yes
DCOS, DSIN 696 Yes
DCOSH, DSINH 592 DEXP Yes
DCOTAN, DTAN 760 Yes
DERF, DERFC 808 DEXP Yes
DEXP 704 . Yes
DGAMMA. DLGAMMA 1056 DLOG, DEXP Yes
DLOG, DLOG10 538 Yes
* (See notes at end of figure.)

Figure 18. Mathematical Subprogram Storage Estimates (Part 1 of 2)

86

VS FORTRAN Library Reference

O

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

1/0, Error,
Additional Mathematical & Interrupt
Entry Name(s) Decimal Estimates in Bytes Subprograms Used Routines
DMAXI1, DMINI1 120 No
DSQRT 352 Yes
DTANH 304 DEXP Yes
EXP 424 Yes
ERF, ERFC 520 EXP Yes
FCDXPI# 560 CDMPY#/CDDVD# Yes
FCXPI# 536 CDVD#/CMPY# Yes
FCQXI# 608 CQMPY#, CQDVD# Yes
FDXPD# 464 DEXP, DLOG Yes
FDXPI# 368 Yes
FQXPI# 384 Yes
FQXPQ#, FQXP2#1 2.880 Yes
FRXPR# 432 EXP, ALOG Yes
FIXPl# 368 Yes
FRXPI# 360 Yes
IDINT, INT 136 No
MOD 56 No
QARCOS, QARSIN 1,104 QSQRT Yes
QATAN, QATAN2 1,160 Yes
QCOS, QSIN 976 Yes
QCOSH, QSINH 896 QEXP Yes
QCOTAN, QTAN 1,112 Yes
QERF, QERFC 1,200 QEXP# Yes
QEXP, QLOG, QLOG10% 2,880 Yes
QSQRT 520 Yes
QTANH 664 QEXP No*
SQRT 344 Yes
TANH 256 EXP Yes

* Note that although these mathematical subprograms do not themselves require the input/output, error or interruption routines,
they use other mathematical subprograms which do.

t All share the same subroutine.
¥ When the argument falls between 2.84375 and 13.306, the module IFYQERF2 (size 1,300 bytes) is also used. IFYQERF2 in

turn uses routine FQXPQ#.

Figure 18. Mathematical Subprogram Storage Estimates (Part 2 of 2)

Decimal 1/0, Error
Estimates & Interrupt
Entry Name (in bytes) Routines
DUMP/PDUMP 870 Yes
DVCHK 60 Yes
EXIT 32 Yes
OVERFL 72 Yes

Figure 19. Service Subprogram Storage Estimates

Appendix B: Storage Estimates

87

88

Page of SC26-3989 as updated 03 Junae 1981 by TNL SN26-0852

Entry Name(s) ! Decimal 1/0, Error,
Estimates and Interrupt
(in bytes) Routines

CCMPR# CXMPRY 2 604 Yes®

CMOVE# ’ 456 Yes

CNCATH 480 Yes

LGE, LGT, LLE, LLT 1728 Yes

Notes to Figure:

1. No additional character subprograms are used.

2. The entry point CXMPR# is used for complex operands

3. There is no I/O error or interrupt routine invoked for the CXMPR# entry name

Figure 20. Character Subprogram Storage Estimates

+ buffer size(s).
+ buffer size(s).

+ buffer size(s).

5 This routine is for DOS/VSE only.

Routine Name Decimal Estimates

(in bytes)
IFYUATBL* Installation dependant
IFYUOPT Installation dependent
IFYDIOCS 360
IFYIBCOM 2452
IFYLDFIO 4372
IFYNAMEL 3356
IFYOPSYS5 672
IFYVASU 2526
IFYVASYNS3 1696
IFYVCLOS 596
IFYVCOMD 8799
IFYVCOMH 4640
IFYVCOM2 736
IFYVCONI 740
IFYVCOND 1316
IFYVCVTH 4216
IFYVDIOS? 2500
IFYVERRE 430
IFYVERRM 1124
IFYVFENTH 1414
IFYVIIOS 632
IFYVINQR 1792
IFYVMOPT 735
IFYVOPEN 1693
IFYVSCOM 2252
IFYVSERH 203
IFYVSIOS! 5724
IFYVSTAE 1671
IFYVTEN 680
IFYVTRCH 746
IFYVVIOS! 2304

NoOTES TO FIGURE:

1 This module also requires dynamic storage. For each 170 unit used, the amount (in bytes) is 184
2 This module also acquires dynamic storage. For each 1/0 unit used, the amount (in bytes) is 224
3 This module also acquires dynamic storage. For each I/0 unit used, the amount (in bytes) is 256

4 The number of bytes in table IFYUATBL may be computed by the formula 16n + 8, where nis
the number of data set reference numbers requested at installation time.

Figure 21. Library Execution-Time Routines Storage Estimates

VS FORTRAN Library Reference

@ |

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

APPENDIX C. LIBRARY INTERRUPTION PROCEDURES, ERROR PROCEDURES, AND MESSAGES

This appendix contains brief explanations of the program
interruption and error procedures used by the FORTRAN library.
The messages generated by the VS FORTRAN library are also given.
A full description of program interrupts is given in the
publication IBM System/370 Principles of Operation. For detailed
information about error processing and message formats, see VS
FORTRAN Application Programming: Guijde.

LIBRARY INTERRUPTION PROCEDURES

The VS FORTRAN library processes those interrupts that are

described below; all others are handled directly by the system
Supervisor:

1. When an interrupt occurs, indicators are set to record
exponent overflow, underflow, fixed-point, floating-point or
decimal divide exceptions. These indicators can be
interrogated dynamically by the subprograms described in the
chapter, "Service Subroutine Subprograms."

2. A message is printed on the object program error unit when
each interrupt occurs. The old program status word (PSW)
printed in the message indicates the cause of each
interrupt.

3. Result registers are changed when exponent overflow or
exponent underflow (codes C and D) occur. Result registers
are also set when a floating-point instruction is referenced
by an assembler language execute (EXEC) instruction.

4. Condition codes set by floating-point addition or
?ubgtrggtion instructions are altered for exponent underflow
code .

5. After the foregoing services are performed, execution of the
program continues from the instruction following the one
that caused the interrupt.

LIBRARY ERROR PROCEDURES

During execution, the mathematical subprograms assume that the
argument(s) is the correct type. However, some checking is done
for erroneous arguments (for example, the wrong type, invalid
characters, the wrong length, etc.); therefore, a computation
performed with an erroneous argument has an unpredictable
result. Houwever, the nature of some mathematical functions
requires that the input be within a certain range. For example,
the square root of a negative number is not permitted. If the
argument is not within the valid range given in Figures 2
through 6, an error messgae is written on the object program
error unit data set defined by the installation during system
generation. The execution of this load module or phase is
terminated and control is returned to the operating system.
However, execution can continue, with extended error handling
for this program. This facility provides for standard corrective
action by the user. For a full description of extended error
handling, see VS_FORTRAN lication Programming: Guide.

Library Interruption and Error Procedures and Messages 89

LIBRARY MESSAGES

The VS FORTRAN library generates three types of maessagas:®
. Program interrupt messages

. Execution error meﬁsages

L4 Operator messages

All library messages are numbered. Program interrupt messages
are written when an exception to a system restriction occurs,
such as when an invalid storage address or an authorized access
to protected storage is requested. Execution error messages are
written when a FORTRAN library function or subroutine is misused
or an I/0 error occurs. Operator messages are written when a
STOP n or PAUSE statement is executed.

Refer to "Section 1. Guide™ of VS FORTRAN Diagnosis when a
problem recurs after you have performed the specified programmer
response for the message received.

PROGRAM INTERRUPT MESSAGES

90

Program interrupt messages are written with the old Program
Status Word (PSW), which aids the programmer in determining the
nature of the error.

Program interrupt messages consist of messages IFY207I, IFY208I,
IFY2091, and IFY210I.

IFY207I VFNTH - PROGRAM INTERRUPT (P} - OVERFLOW PSH
XXXXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: The message indicates that an exponent-overflow
exception, identified by the character € in the eighth position
of the PSW, has occurred. This exception occurs when the result
of a floating-point arithmetic operation is greater than or
equal to 16°3 (approximately 7.2x107%).

supplemental Data Provided: The floating point number (nnnnnnnn)
before alteration.

standard cCorrective Action: Execution continues at the point of
the interrupt with the result register set to the largest
possible correctly-signed floating-point number that can be
represented in short precision (16¢3%(1-16-%)), in long
precision (16¢3%(1-16-19), or in extended precision
(1663%(1-16-28%8)).

Programmer Response: Make sure that a variable or variable
expression does not exceed thae allowable magnitude. Verify that
all variables have been initialized correctly in previous source
statements and have not been inadvertently modified.

IFY208I VFNTH ~ PROGRAM INTERRUPT (P) - UNDERFLOW PSH
XXXXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: The message indicates that an exponent-underflow
exception, identified by a D in the eighth position of the PSW,
has occurred. This exception occurs when the result of a
floating-point arithmetic operation is less than 16-%53
(approximately 5.6 x 10-79),

supplemental Data Provided: The floating point number (nnnnnnnn)
before alteration.

standard corrective Action: Execution continues at the point of

the interrupt with the result register set to a true zero of
correct precision.

VS FORTRAN Application Programming: Llibrary Reference

(CE”

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

Programmer Response: Make sure that a variable or variable
expression is not smaller than the allowable magnitude. Verify
that all variables have been initialized correctly in previous
source statements and have not been inadvertently modified.

IFY2091 VFNTH - PROGRAM INTERRUPT (P) - DIVIDE CHECK PSUW
AXAXXXXXXXXXXXXX REGISTER CONTAINS nnnnnnnn

Explanation: This message indicates that an attempt to divide
by zero has occurred. A fixed-point-divide exception is
identified by a 9 in the eighth position of the PSW; a
floating-point-divide exception by an F.

supplemental Data Provided: Floating-point number (nnnnnnnn)
before alteration, for a floating-point interrupt.

standard corrective Action: For floating-point-divide,
execution continues at the point of tha interrupt with the
result registers set to:

1. True zero of correct precision for case of n/0 where n=0.

2. Largest possible floating-point number of correct precision
for case of n/0 where n#0. For fixed-point-divide, leave
registers unmodified and continue execution.

Programmer Response: Either correct the source where division
by zero is occurring, or modify previous source statements to
test for the possibilities, or bypass the invalid division.

IFY210I VFNTH - PROGRAM INTERRUPT (P/0) - CCCCCCCCCCCCCC PSM
XARXXXXKRXXXXX KX XX

Explanation: The operating system has detected a condition that
causes a program interruption.

The letter P enclosed in parentheses indicates that the
interruption was precise. This will always be the case for
non-specification interrupt messages in FORTRAN except when
using machines with special hardware on which imprecise
interruptions may occur. The letter 0 enclosed in parentheses
indicates that extended precision floating point simulation has
taken place and a secondary interrupt occurred.

The eighth character position in the PSW (1, 4, 5, 6, 7, 9, C,
D, or F) represents the hexadecimal code number associated with
the type of interrupt. The following text describes those
interrupts.

CODE l1—oOperation Exception:

An operation exception is recognized when the processor
encounters an instruction with an invalid operation code. The
operation code may not be assigned, or the instruction with that
operation code may not be available on the processor. (For the
purpose of recognizing an operation exception, the first eight
bits of an instruction, or, when the first eight bits have the
hegad§cima1 value B2, the first 16 bits form the operation

code.

supglemental Data Provided: The instruction-length code is 1, 2,
or 3.

standard Corrective Action: The operation is suppressed.
Programmer Response: Correct the operation code.

CODE §—Protection Exception:

The protection exception (code 4) is recognized when the key of

an operand in storage does not match the protection key in the
PSW. A message is issued only if a specification exception (code

Library Interruption and Error Procedures and Messages 91

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

92

6) has already been recognized in the same instruction.
Otherwise, the job terminates abnormally.

supplemental Data Provided: None.

standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: If the job has been terminated with a
completion coda of SYSTEM=0C6 (Specification Interrupt), correct
the source statements that are causing boundary misalignment.

CODE 5—Addressing Exception:

The addressing exception (code 5) is recognized when the address
of the data is outside of the addressable storage for the
particular system configuration or installation. A message is

issued only if axception codes 5 or € have already been

recognized in the same 1nstructton. OtherWIse, the job
terminates abnormally. ’

Supplemental Data Provided: None.

standard corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: If the job has been terminated with a
completion code of SYSTEM=0C6 (Specification Interrupt), correct
the source statements that are causing boundary misalignment.

CODE 6—sSpecification Exception:

The specification exception (code 6) is recognized when a data
address does not specify an integral boundary for that unit of
information as required by the instruction, or an improper
register is used in an instruction. For example, a specification
error would occur during execution of the following
instructions:

DOUBLE PRECISION D, E
COMMON A, B, C
EQUIVALENCE (B, D)

D = 3.0D02

Note: If an instruction causes a boundary violation, a
specification interrupt Wwill occur and the message will be
issued with code 6. The boundary-adjustment routine will then be
invoked if the BOUNDARY=ALIGN option was specified in the
FORTLIB macro instruction during program installation. If an
instruction that has been processed for boundary misalignment
also contains a protection, addressing, or data error, the
interrupt message will be reissued with the appropriate code (4,
5, or 7). The job will then terminate because both a
specification error and a protection, addressing, or data error
have been detected. The completion code will specify that the
job terminated because of the specification error.

supplemental Data Provided: None.

standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: Make sure that proper alignment of
variables is guaranteed. Arrange variables in fixed descending
order according to length, or force proper alignment with dummy
variables. Construct COMMON blocks so that the displacement of
each variable can be evenly divided by the element length
associated with the variable. Use the MAP option for information
on the relative address of each variable in the block. Make sure
that EQUIVALENCE statements do not cause misalignment.

CODE 7—Data Exception:

VS FORTRAN Application Programming: Library Reference

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

The data exception (code 7) is recognized when the sign or digit
codes for a CONVERT TO BINARY instruction are incorrect.

supplemental Data Provided: None.

standard Corrective Action: The interrupted instruction is
ignored and execution continues at the point of interrupt.

Programmer Response: If the job has been terminated with a
completion code of SYSTEM=0C6 (specification interrupt), correct
the source statements that are causing boundary misalignment.

CODE 9—Fixed-Point-Divide Exception:

The fixed-point-divide exception (code 9) is recognized when
division of a fixed-point number by zero is attempted. For
example, a divide exception would occur during execution of the
following statement:

K=1sJ
where
J=0 and I=7
supplemental Data Provided: None.

standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt.

Programmer Response: Either correct the source where division
by zero is occurring, or modify previous source statements to
test for the possibility of, or to bypass, the invalid division.

CODE C—Exponent-Overflou Exception:

The exponent-overflow exception (code C) is recognized when the
result of a floating-point addition, subtraction,
multiplication, or division is greater than or equal to 1663
(approximately 7.2x1073). For example, an exponent-overflow
would occur during execution of the statement:

A=1.0E + 75 + 7.2E + 75

When the interrupt occurs, the result register contains a
floating-point number whose fraction is normalized and whose
sign is correct. However, the number is not usable for further
conmputation since its characteristic field no longer reflects
the true exponent. The content of the result register as it
existed when the interrupt occurred is printed following the
program interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where hhhhhhhhhhhhhhhh is the floating-point number in
hexadecimal notation. (An additional 16 hexadecimal characters
are printed for extended-precision numbers.)

Exponent overflow causes "exponent wraparound”™ - i.e., the
characteristic field represents an exponent that is 128 smaller
than the correct one. Treating bits 1 to 7 (the exponent
characteristic field) of the of the floating-point number as a
binary integer, the true exponent may be computed as follows:

TE = (Bits 1 to 7) + 128 - 64

standard corrective Action: The result register is set to the
largest possxble floating-point number that can be represented
in short precys\on (16¢3%(1-16-%)) in long precxsxon
(16°3%(1-16-14), or in extended precision (16¢3%(1-16-2%)), but
t?s 51gn of the result is not changed. The condition code is not
altered.

Library Interruption and Error Procedures and Messages 93

Page of S5C26-3989 as updated 03 June 1981 by TNL SN26-0852

94

Programmer Response: Make surae that a variable expression does

not exceed the allowable magnitudae. Verify that all variables ~
have been initialized correctly in previous source statements

and have not been inadvertently modified in intermediate source.

CODE D—Exponent-uUnderflou Exception:

The exponent-underflow exception (code D) is recognized when the
result of a floating-point addition, subtraction,
multiplication, or division is less than 16-%5 (approximately
5.4x10-7?). For example, an exponent-underflow exception would
occur during execution of tha statement:

A=-1.0E - 50 % 1.0E - 50

Although exponent underflows are maskable, FORTRAN jobs are
executed with the mask enabled so that the library will handle
such interrupts.

When the interrupt occurs, the result register contains a
floating~point number whose fraction is normalized and whose
sign is correct. However, the number is not usable for further
computation since its characteristic field no longer reflects
the true exponent. The content of the result register as it
existed when the interrupt occurred is printed following the
program interrupt message with the format:

REGISTER CONTAINS hhhhhhhhhhhhhhhh

where hhhhhhhhhhhhhhhh is the floating-point number in

hexadecimal notation. (An additional 16 hexadecimal characters

are printed for extended-precision numbers.) Exponent overflow

causes "exponent wraparound” - i.e., the characteristic field

represents an exponent that is 128 larger than the correct one.

Treating bits 1 to 7 (the exponent characteristic field) of the
floating-point number as a binary integer, the true exponent may .
be computed as follows: :

TE = (Bits 1 to 7) - 128 - 64

standard corrective Action: The result register is set to a true
zero of correct precision. If the interrupt resulted from a
floating-point addition or subtraction operation, the condition
code is set to zero to reflect the setting of the result
register.

Programmer Response: Make sure that a variable or variable
expression is not smaller than the allowable magnitude. Verify
that all variables have been initialized correctly in previous
source statements and have not been inadvertently modified in
intermediate source. To take advantage of the 'exponent
wraparound' feature and override the FORTRAN interruption
routine, a programmer may handle the interrupt in his own
program, but must call an assembly language subroutine to issue
a SPIE macro instruction.

CODE F—Floating-Point-Divide Exception:
The floating-point-divide exception (code number F) is
recognized when division of a floating-point number by zero is
attempted. For example, a floating-point divide exception would
occur during execution of the statement:

C=A/B
where

B=0.0 and A=1.0 or B=0.0 and A=0.0

Supplemental Data Provided: Registers before alteration. Q;D;

VS FORTRAN Application Programming: Library Reference

-

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

standard Corrective Action: The interrupted instruction is
ignored and execution continues at point of interrupt with
result registers set to:

1. Tr:e zero of the correct precision for the case of n/0 uhere
n=0.

2. Largest possible floating point number of correct sign and
precision for case of n/0 where n#0.

Programmer Response: Either correct the source statement(s)
where division by zero is occurring, or modify previous source
statements to test for the possibility of, or to bypass, the
invalid division.

Library Interruption and Error Procedures and Messages 95

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

EXECUTION ERROR MESSAGES

96

Execution error messages have the form:
IFYXxxI VFNTH [message textl
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,REG. 15,REG. O,REG. 1

The description of each diagnostic message contains the error
number, the abbreviated module name for the origin of the error,
and an explanation describing the type of error. In addition,
supplemental data is provided and standard corrective action to
be taken to correct the error is described.

Variable information in the message is shown in lower case
letters, and, in the corrective action descriptions, ¢ denotes
the largest possible number that can be represented for a
fioating-point value.

The abbreviated module name for the origin of the error is:

VASYN IFYVASYN routine (performs asynchronous 1/0
processing).
VDIOS IFYVDIOS routine (performs direct access I/0
operations for FORTRAN load module execution).
VCVTH IFYVCVTH routine (performs conversions).
VSIOos IFYVSIOS routine (performs I/0 operations for FORTRAN
load module execution).
VCOMH IFYVCOMH routine (performs interruption and error
procedures).
-
VSERH IFYVSERH routine (performs the processing of errors WwM}
detected during compilation of the load modules). '
LDFIO IFYLDFIO routine (performs list-directed I/0
processing).
NAMEL IFYNAMEL routine (performs namelist processing).
other Mathematical routine implicit or explicit entry points
(perform mathematical calculations).
Note: Messages issued by the error handler contain no module or
entry point name. For information on the error handling
subroutines, refer to VS FORTRAN Application Programming
Language Reference.
IFY160I VCOMH - FORMAT NESTED PARENTHESES TABLE OVERFLOW.
REDUCE NUMBER OF NESTED PARENTHESES IN PROGRAM AND
RERUN
Explanation: The format contains more nested parentheses than
the library table can hold.
| supplemental Data Provided: None.
standard Corrective Action: Parenthesis group is ignored.
Processing continues. Results are unpredictable.
Programmer Rasponse: Reduce the number of parenthesis groups to
50 or less.
IFY1611 VASYN - ASYNCHRONOUS I/0 NOT SUPPORTED ON THIS N
OPERATING SYSTEM (DOS OR CMS) ‘ J

VS FORTRAN Application Programming: Library Reference

Page of SC26-3989 added 03 June 1981 by TNL SN26-0852

Explanation: A program called the asynchronous I/0 scheduling
routine while running in a D0S or CMS environment.

Supplemental Data Provided: TRACEBACK PATH is provided. If
GOSTMT is used as a compiler option, then TRACEBACK provides the
ISN of the 1/0 statement making the asynchronous I/0 request.

standard corrective Action: The asynchronous I/0 request is
ignored and the ARRAY expected to be modified, if a READ (IN®#)
request, is unchanged. The ARRAY isn't saved or uwritten if a
WRITE (QUT#) request.

Programmer Response: Run the program on an 0S system (MVS or
VS1) or rewrite the program to use synchronous I/0
(unformatted).

IFyYle21 VVIOS (CVIOS, DVIOS) - WRITE STATEMENT CANNOT BE
:??UED TO SEQUENTIALLY ACCESSED VSAM RRDS FILE
ename

Explanation: An attempt was made to add a record to a
sequentially accessed VSAM relative record file that was not
empty when the file was opened.

supplemental Data Provided: Name of the file upon which the
request was made.

| standard Corrective Action: The execution is terminated.
Programmer Response?! If a record must be added to a nonempty
VSAM relative record file, use the access mode of DIRECT.
IFY1631 VVI0S (CVIONS, DVIOS) - FILE POSITIONING INPUT/OUTPUT
STATEMENT IS NOT ALLOWED IN THE DIRECT ACCESS METHOD

Explanation: A file positioning input/output statement (REWIND,
BACKSPACE, or ENDFILE) was issued to a VSAM direct file.

| supplemental Data Provided: None.

| standard Corrective Action: The execution is terminated.

Programmer Response: Correct the program so that no file
poiitioning input/Zoutput statements are issued for VSAM direct
files.

IFY1641 Vvios (CVIOS, DVIOS) - RECORD LENGTH OF FILE filename
IS LONGER THAN THE ONE DEFINED IN VSAM CATALOG

Explanation: The maximum record length for the file found in
VSAM catalog (that is, the value specified in the RECORDSIZE
parameter when the VSAM cluster is defined using Access Method
Services) is less than the length of the record to be written.

supplemental Data Provided: Name of the file upon which the
request was made.

| standard Corrective Action: The execution is terminated.

Programmer Response: Either correct the program so that the
length of the record to be written is not greater than the one
in the VSAM catalog, or change the record length in the VSAM
catalog by redefining the cluster.

IFY1651 VVIiOS (CVIDS, DVIOS) - FILE filename 1S CONNECTED TO
A KEY SEQUENCED DATA SET

Explanation: VS FORTRAN supports VSAM entry sequenced data sets
(ESDS) and relative record data sets (RRDS). The file used uwas
connected to VSAM key sequenced data sets (KSDS).

Library Interruption and Error Procedures and Messages 96.1

Page of 5C26-3989 added 03 June 1981 by TNL SN26-0852

supplemental Data Provided: Name of the file upon which the
request was made. Q:D

| standard Corrective Action: The execution is terminated.

Programmer Response: Change the JCL so that the file is
connected to ESDS or RRDS.

IFY166IX VVIOS (CVIOS, DVIOS) - ENDFILE STATEMENT IS TREATED
AS DOCUMENTATION FOR VSAM FILE filename

Explanation: A request was made to write an end-of-file mark on
a VSAM file.

supplemental Data Provided: Name of the file upon which the
request was made.

N o ot B S arme A

*d Correctivé Action: The request is ignored.

[72]

Programmer Response: Remove the statement after carefully
checking the effact of removing the statement.

IFYle71I VVI0S (CVIOS, DVIOS) - ERROR ON VSAM FILE: WHEN
QSEEMPTING TO PROCESS A(N) xxXXXXXXXXX RC=yy ERROR
=2zz

Explanation: An error was detected by Y5AM while an input or
output statement indicated by xxxxxxxxxx was being processed.
The return code and the error code returned by VSAM were yy and
zz22, respectively.

supplemental Data Provided: Name of the operation that caused
the error and the return and error codes from VSAM.

| standard Corrective Action: The execution is terminated. “QV}

Programmer Response: Determine the cause for the error by
examining the VSAM return and error codes.

IFY1681 VVIOS (CVIOS, DVIOS) = XXXXXXXXXX OPERATION IS ISSUED
TO UNOPENED VSAM FILE ON UNIT uuu

Explanation: An input or output request was made to an unopened
VSAM file.

supplemental Data Provided: Name of the operation issued to an
unopened file.

| standard Corrective Action: The execution is terminated.

Programmer Response: Make sure that the OPEN statement for the
file was successfully executed.

IFYleé9I DFNTH - EXTENDED PRECISION OPERATION NOT SUPPORTED IN
DOS ENVIRONMENT, PSH, XXXXXXXXXX

Explanation: An extended precision machine operation was
attempted in the DOS/VSE environment that is not supported by
the machine instruction set. This is generally a divide
operation.

supplemental Data Provided: The program status word (PSW) at the

point of interrupt. An IFY210I message with TRACEBACK or a dump

of storage follows.

| standard Corrective Action: None. @;Dﬁ
4

Programmer Response: Change program to exclude tha unsupported
instruction.

96.2 VS FORTRAN Application Programming: Library Reference

Page of SC26-3989 addaed 03 June 1981 by TNL SN26-0852

IFY1701 VSIOS - OPEN OR CLOSE STATEMENT NOT ALLOMED ON OBJECT
PROGRAM ERROR UNIT, REQUEST FOR FILE filename

Explanation: An OPEN or CLOSE statement was directed to the
gpit :pgn which execution time error messages are being
irected.

supplemental Data Provided: Name of the file connected to the
error message unit.

standard Corrective Action: The request is ignored and the job
terminated if an ERR= or IOSTAT parameter was not specified in
the OPEN or CLOSE.

Programmer Response: Change the program to request I/0 to a
unit not being used for error messages.

IFY1711 VSIOS - CLOSE STATUS OF KEEP IS NOT ALLOMWED ON FILE
OPENED WITH STATUS OF SCRATCH, FILE filename

Explanation: The file connected to the unit specified in the
CLOSE statement was opened as a SCRATCH file and cannot be kept
at close time.

supplemental Data Provided: Name of the file connected to the
unit specified in the CLOSE statement.

standard Corrective Action: The CLOSE status is changed to
DELETE and execution proceeds.

Programmer Response: Change either the OPEN or CLOSE STATUS
parameter to agree with the file usage.

IFY1721 VSIOS - FILE filename ALREADY CONNECTED TO A UNIT,
OPEN REQUEST CANCELLED.

Explanation: The file whose name appears in the message already

is connected to a unit which is different than the unit

specified in the OPEN statement.

supplemental Data Provided: Name of the file specified in the
OPEN statement.

standard Corrective Action: The OPEN request is ignored.
Programmer Response: Change the program to specify a different

unit in the OPEN request or change the logic to use the current
unit to which the file is connected.

IFY173: VSIOS - OPEN SPECIFYING UNFORMATTED I/0 ATTEMPTED ON
FORMATTED FILE filename

Explanation: FORMATTED and UNFORMATTED I/0 request on the same
file is not allowed.

supplemental Data Provided: Name of the file upon which the
request was made.

standard Corrective Action: The 1/0 operation is ignéred.

Programmer Response: Correct the program to direct FORMATTED

and UNFORMATTED I/0 to different files.

IFY1761 VSIOS - OPEN SPECIFYING FORMATTED I/0 ATTEMPTED ON
UNFORMATTED FILE filename

Explanation: FORMATTED and UNFORMATTED I/0 request on the same
file is not allowed.

Library Interruption and Error Procedures and Messages 96.3

Paga of S5C26-3989 added 03 June 1981 by TNL SN26-0852

supplemental Data Provided: Name of the file upon which the

request was made.

standard Corrective Action: The I/0 operation is ignored.

Programmer Response: Correct the program to direct FORMATTED

and UNFORMATTED I/0 to different files.

IFY1751 OPSYS - AN INVALID LITERAL PARAMETER WAS DETECTED ON

"THE CALL OPSYS STATEMENT

Explanation: The first parameter in the call to 0PSYS did not

specify a literal of FILEOPT or LOAD.
supplemental Data Provided: None.

standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify the correct

parameter value.

96.4 VS FORTRAN Application Programming: Library Reference

3ot

(t}

IFYl761 OPSYS - THE FORTRAN LOGICAL UNIT NUMBER IS ASSIGNED
TO SYSTEM USE, UNIT unit

Explanation: The unit specified in the call to OPSYS currently
has a file connected and cannot be modified.

SUpp%emental Data Provided: Unit number 5pec1fled in the call to
OPSYS.

standard corrective Action: The request is ignored.

Programmer Response: Correct the program to process the I/0 on

a different unit.

IFY1771 OPSYS = INVALID BLOCK SIZE SPECIFIED; ASCII (18-2048)
OR EBCDIC (18-32767), UNIT unit

Explanation: An invalid block size was specified for the unit
set up for ASCII or EBCDIC processing.

gggplemental Data Provided: Unit number specrftad in the call to
YS.

standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify a block

size consistent with the file usage.

IFY1781 OPSYS = INVALID BUFFER OFFSET SPECIFIED; GREATER THAN
99, EXCEEDS BLOCK SIZE OR IS NEGATIVE, UNIT unit

Explénation: The buffer offset specified was larger than the

blocksize for the file, or was a negative value, or a value

greater than 99.

gggggemental pata Provided: Unit number specified in the call to

standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify an offset

consistent to the restrictions.

IFY1791 OPSYS - AN I/0 OPERATION HAS ALREADY BEEN PERFORMED
ON THE UNIT, REQUEST IGNORED FOR UNIT unit

Explanation: An attempt was made to modify the parameters for a
file which was already being used for 1/0 operations.

gggeéemental pata Provided: Unit number specified in the call to

standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to process the 170 on

a different unit.

IFY1801 VOPEN ~ FILE PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT unit

Explanation: The FILE= parameter on the OPEN statement did not

specify a 7 character or less name and/or specwfred a name that

did not start with an alphabetic character.

supplemental Data Provided: Unit number for which the command
was issued.

Standard Corrective Action: The OPEN statement is ignored.

Library Interruption and Error Procedures and Messages 97

98

Programmer Response: Correct the program to specify a correct
filename.

O

e

IFY1811 VOPEN - STATUS PARAMETER IS NOT VALID FOR AN OPEN
© STATEMENT, UNIT unit

Explanation: The STATUS= parameter did not specify NEW, OLD,
fﬁRATC@Q or UNKNOWN as the status of the fila being opened on
@ unit.

supplemental Data Provided: Unit number for which the command
was issued.

Standard Corrective Action: STATUS is set to UNKNOWN and
processing continues.

Programmer Response: Correct the program to specify a corract
STATUS parameter.

IFY1821 VOPEN - ACCESS PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT unit

Explanation: The ACCESS= parameter did not spacify SEQUENTIAL
or DIRECT for the type of file access to be employed on the
unit.

Supplemental Data Provided: Unit number for which tha command
was issued.

Standard Corrective Actien: The OPEN request is ignored.

Programmer Response: Correct the program to specify a corraect
ACCESS parameter.

Ve
/ \

IFY1831 VOPEN -~ BLANK PARAMETER IS NOT VALID FOR AN OPEN A
STATEMENT, UNIT unit

Explanation: The BLANK= parameter did not specify ZERO or NULL
for the treatment of blanks on a FORMATTED I/0 request.

A

supplemantal Data Provided: Unit number for which the command
was issued.

standard corrective Action: The BLANK parameter is assigned the
value NULL.

Programmer Response: Correct the program to specify a correct

BLANK parameter.

IFY184I VOPEN - FORM PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT unit

Explanation: The FORM= parameter did not specify FORMATTED or
UNFORMATTED for the file.

Supplemental Data Provided: Unit number for which the command
was issued.

standard Corrective Action: The OPEN request is ignored.

Programmer Response: Correct the program to specify thae corract

formatting techniqua.

IFY1851 VOPEN - STATUS OF SCRATCH NOT ALLOWED FOR A NAMED
FILE OPEN STATEMENT, UNIT unit

Explanation: An OPEN requaested FILE= and STATUS='SCRATCH' at \i@{
the same time. The STATUS value is not allowed.

VS FORTRAN Application Programming: Library Reference

supplemental Data Provided: Unit number for which tha command
was issued.

standard Corrective Action: The STATUS value is set to UNKNONN
and processing continues.

Programmer Response: Correct the program to make the two
paramaeters consistent with each other.

IFY1861 VCLOS - STATUS PARAMETER IS NOT VALID FOR A CLOSE
STATEMENT, UNIT unit

Explanation: The STATUS= parameter did not specify KEEP or .
DELETE, or a STATUS of KEEP was specified on the CLOSE statement
for a file that was opened with a STATUS of SCRATCH.

supplemental Data Provided: Unit number for which the command
was issued.

standard Corrective Action: The STATUS value is set to DELETE if

ﬁEEPfile was opened as SCRATCH; otherwise, the status is set to

Programmer Response: Correct the program to specify the corraect

status values or make the status of the OPEN and CLOSE
consistent with each other.

IFY1871 DSPAN - LOWER BOUND OF ARRAY DIMN. GREATER THAN
UPPER.

Explanation: For an array with adjustable dimensions the lower

bound of an array dimension has been specified greater than the

upper bound.

supplemental Data Provided: None.

standard Corrective Action: Span calculations are not complaeted

for this array. Invalid results will probably generated from

raferences to this array.

Programmar Response: Correct the calculation or specification

of the dimensions. '

IFY1881 CITFN - ARGUMENT T0 CHAR FUNCTION GREATER THAN 255

Explanation: A value greater than 255 (highest EBCDIC
representation) has been specified for tha CHAR function.

supplemental Data Provided# None.

Standard corrective Action: The function is not evaluated and
execution continues.

Programmer Response: Specify correct valua.

IFY1891 INDEX = INVALID LENGTH FOR INDEX - OP THWO.
Explanation: The length specified for the second operand of the
ggDEX function is less than or equal to zero or greater than

0.
supplemental Data Provided: None.

standard corrective Action: The function is not aevaluated and
execution continues.

Programmer Response: Specify the correct langth.

Library Interruption and Error Procedures and Messages 99

IFY190I INDEX - INVALID LENGTH FOR INDEX - OP ONE.
Explanation: The length specified for the first operand of the
gggex function is less than or equal to zero or greater than
supplemental Data Provided: None.

standard Corrective Actiont The function is not evaluated and
executdon continues.

Programmer Response: Specify the correct length.
IFY191I #égHP = INVALID LENGTH FOR LEXICAL COMPARE -~ OPERAND

Explanation: The length specified for the second operand of the
LGE, LGT LLE, or LLT function is less than or equal to zero or
areater than 500,

supplemental Data Provided: None.

standard Corrective Action: The function is not evaluated and
execution continues.

Programmer Response: Specify the correct length.

IFYl921 gﬁOHP - INVALID LENGTH FOR LEXICAL COMPARE - OPERAND
E.

Explanation: The length specified for the first operand of the
LGE, LGT LLE, or LLT function is less than or equal to zero or
greater than 500.

supplemantal Data Provided: None.

standard Corrective Action: The function is not evaluated and
execution continues.

Programmer Response: Specify the correct length.

IFY193I ?CHPR = INVALID LENGTH FOR CHARACTER COMPARE - OP
Ho.

Explanation: The length of the second operand of a Character

relational compare (.eq., .lt., ...) is less than or equal to

zero or greater than 500.

supplemental Data Provided: None.

standard Corrective Action: The function is not performed and
execution continues.

Programmer Response: Specify the correct length.

IFY1941 CCMPR - INVALID LENGTH FOR CHARACTER COMPARE - OP

Explanation: The length of the first operand of a Character
relational compare (.eq., .1lt., ...) is less than or equal to
zero or greater than 500. ’

supplemental Data Provided: Nona.

standard Corrective Action: The function is not performed and
execution continues.

Programmer Response: Specify the correct length.

100 VS FORTRAN Application Programming: Library Reference

£

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

IFY1951 CMOVE - CHARACTER MOVE INVALID - TARGET AND SOURCE
OVERLAP DESTRUCTIVELY.

Explanation: The storage locations assigned to the target and
source are such that source data will be destroyed by the
requested assignment.

supplemental Data Provided: None.

standard Corrective Action: The assignment is not performed and
execution continues.

Programmer Response: Check storage MAP for storage assignments.
Also check EQUIVALENCE statements. ’
IFY1961 CMOVE = INVALID TARGET LENGTH FOR CHARACTER MOVE.

Explanation: The length of the target (left of equal variable)
is less than or equal to zero or greater than 500.

supplemental Data Provided: None.

standard corrective Action: The assignment is not performed and
execution continues.

Programmer Response: Specify the correct length.

IFY1971 CMOVE - INVALID SOURCE LENGTH FOR CHARACTER MOVE.

Explanation: The length of the source (right of equal
expression) is less than or equal to zero or greater than 500.

sSupplemental Data Provided: None.

standard Corrective Action: The assignment is not performed and
execution continues.

Programmer Response: Specify the correct length.

IFY1981 CNCAT = CONCATENATED STRING LENGTH GREATER THAN
TARGET

Explanation: The concatenation of the specified character

strings will produce a string whose length is greater than 500

or greater than the length of the target (left of equal

variable).

supplemental Data Provided: None.

Standard Corrective Action: The concatenated string is truncated
oh the right.

Programmer Response: Specify the correct length.

IFY199I CNCAT - INVALID LENGTH FOR CONCATENATION OPERAND
Explanation: The length of one of the operands of a
concatenation operation is less than or equal to zero or greater
than 500.

Supplemental Data Provided: None.

standard corrective Action: The concatenation operation is not
performed.

Programmer Response: Specify the correct length.

Library Interruption and Error Procedures and Messages 101

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

102

IFY2001 VIIOS - END OF INTERNAL FILE, I/0 PROCESSING ENDS

Explanation: The end of an internal file was reached before thea @:D ;
completion of an internal 1/0 request.

supplemental Data Provided: None.

standard Corrective Action: Return to END= label if the request
is a READ; otherwise, the job is terminated.

Programmer Response: Either keep a counter to avoid exceeding
the end of record or file, or insert an END=n parameter on the
READ statement for appropriate transfer of control on end of
data set. Check all job control statements.

IFY2011 VIIOS - REQUEST FOR INTERNAL FILE CONTROL, CLOSE OR
LIST DIRECTED IS NOT ALLOWED

Explanation: A request for OPEN, CLOSE, list directed file
input/output, or control operation has been requested for an

;pfernal file. Such operations are not supported for internal
iles.

supplemental Data Provided: None.

Standard Correctiva Action: The function is not performed, and
execution continues.

Qrggrammer Response: Change the source program, and rerun the
job.

IFY2031 IBCOM - INVALID COMBINATION OF INITIAL, TEST, AND
INCREMENT VALUE FOR READ/WRITE IMPLIED DO, FILE
filename N
N
Explanation: A READ/WRITE statement with an implied DO had an o
invalid combination of initial, test, and increment values (Il,
I2, and I3, respectively) for one of its levels of nesting:
1. 1I3=0, or
2. 1I2<11 and I3<£12-I1, or
3. I1<I2 and I3<0.
supplemental Data Provided: Filename.
standard Corrective Action: Processing is terminated.

Programmer Response: Check the statements which set the
initial, test, and increment variables.

IFY20641 LDFIO - ITEM SIZE EXCEEDS BUFFER LENGTH, FILE
filename

Explanation: For a non-complex number, the number is longer

than the buffer. For a complex number, half the length of the

number plus one (for the comma) is longer than the buffer.

supplemental Data Provided: Filename.

standard Corrective Action: The remainder of the 170 list is
ignored.

Programmer Response: Make sure that the record length specified
is large enough to contain the longest item in the I/0 list.

L)

VS FORTRAN Application Programming: Library Reference

Page of S5C26-3989 as updated 03 June 1981 by TNL SN26-0852

IFY205I VASYN - I/0 SUBTASK ABENDED

Explanation: An asynchronous I/0 subtask resulted in an
abnormal termination.

supplemental Data Provided: None.

standard cCorrective Action: Processing is terminated.

Programmer Response: Verify that all DD statements are coded

correctly and refer to the appropriate data sets. Check all READ

and WRITE statements and any END FILE, REWIND, and BACKSPACE

statements. Check the system completion code for assistance in

determining the type of error that caused abnormal termination.

IFY2061 VCVTH = INTEGER VALUE OUT OF RANGE nnnnnnnn

Explanation: An integer was too large to be processed by the

load module. (The largest integer that can be processed is

2%%15-1 for INTEGERX*2 and 2%%31-1 for INTEGERX4.)

supplemental Data Provided: Integer input for processing.

standard Corrective Action: Specify as much of the lower order

part of the given integer as uwill fit for the integer size

(INTEGERX2 or INTEGERX4) specified.

Programmer Response: Make sure that all integer input data used

is within the required range for the integer variable size.

IFY2071

Explanation: Refer to "Program Interrupt Messages" for

information on this message.

IFY2081

Explanation: Refer to "Program Interrupt Messages™ for

information on this message.

IFY2091

Explanation: Refer to "Program Interrupt Messages™ for

information on this message.

IFY2101

Explanation: Refer to "Program Interrupt Messages" for

information on this message.

IFY2111 VCOMH - ILLEGAL field FORMAT CHARACTER SPECIFIED char
FILE filename

Explanation: An invalid character has been detected in a FORMAT
statement.

supplemental Data Provided: The field containing the character
in error, the character specified, and the filename.

standard Corrective Action: Format field treated as an end of
format.

Programmer Response: Make sure that all format specifications
read in at object time are valid.

Library Interruption and Error Procedures and Messages 103

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

104

IFv2121 VCOMH - FORMATTED 1/0, END OF RECORD, FILE filename

Explanation: An attempt has been made to read or write a
record, undar FORMAT control, that exceeds the buffer length.

supplemental Data Provided: Filename.

Standard corrective Action: For a read, the remainder of the I/0
list is ignored; for a write, a new record is started with no
control character.

Programmer Response: If the error occurs on input, verify that
a FORMAT statement does not define a FORTRAN record longer than
the record supplied by the data set. No record to be punched
should be specified as longer than 80 characters. For printed
output, make sure than no specification is longer than the
printer's line length.

VCOMH
LDFIO
VASYN

IFY213X - READ, END OF RECORD, FILE filename

o e s ey

e oo o x|

Explanation:

FOR VCOMH AND VASYN: The input list in an I/70 statement without
a FORMAT specification is larger than the logical record.

supplemental Data Provided: Filename.

Standard Corrective Action: The remainder of the I/0 list is
ignored.

Programmer Response: Make sure the number of elements in the
I/0 list matches the number of items in the record.

FOR LDFIO: A FORTRAN list-directed READ statement attempted to
read more items from a variable spanned logical record than were
present in the record. (This message can be issued only when the
record format is variable spanned.)

supplemental Data Provided: Filename.

standard Corrective Action: The remainder of the I/0 list is
ignored.

Programmer Response: Make sure that the records and the input
data agree in number. Either delete extra variable names or
supply additional logical records.

IFY2141 [VSIOS ! = UNFORMATTED I/0, RECORD FORMAT NOT
l VASYN SPECIFIED AS VS OR VBS, FILE filename

o+

Explanation:

FOR VSIOS: For unformatted records read or written in EBCDIC
sequentially organized data sets, the record format
specification must be variable spanned and can be blocked or
unblocked. This message appears if the programmer has not
specified variable spanned, or if an ASCII tape was specified.

supplemental Data Provided: Filename.

standard Corrective Action: For non-ASCII data sets, the read
request is ignored; for a write request, the record form is
changed to variable spanned.

Programmer Response: Correct the record format to variable
spanned.

VS FORTRAN Application Programming: Library Reference

poS—

C

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

For VASYN: For unformatted records in an asynchronous 1/0
operation, the record format specification (RECFM) did not
include the characters VS.

supplemental Data Provided: Filename.

standard Corrective Action: For an input operation, the read
request is ignored; for an output operation, VS is assumed.

Sgogrammer Response: Change the record format specification to

IFY21512 VCVTH - ILLEGAL DEOIHAL CHARACTER char

Explanation: An invalid character was found in the decimal
input corresponding to an I, E, F, or D format code.

supplemental Data Provided: The record in which the character
appeared.

standard Corrective Action: 0 replaces the character
encountered.

Programmer Response: If an IFY214I message has occurred
previously, correct the source causing the error. Otheruise,
make sure that all decimal input is valid. Correct any FORMAT
statements specifying decimal input where character input should
be indicated.

IFY2161 VSIOS = INVALID USE OF 1/0 CONTROL COMMAND AT LOAD
POINT filename

Explanation: The use of a BACKSPACE control command was
recognized when the file was at the start of the first record.

§upp1§menta1 Data Provided: Filename for which command was
issued.

standard corrective Action: The control command is ignored.
Programmer Response: Correct program to ensure that a BACKSPACE
Wwill not occur at the first command for a file.

IFY21l71 VSIOS - END OF DATA SET, FILE filename.

IFY2171 VASYN - END OF DATA SET, FILE filename.

Explanation: An end of data set was sensed during a READ
operation; that is, a program attempted to read beyond the data.

supplemental Data Provided: filename.

Standard Corrective Action: The next file is read, that is, the
data set sequence number is incremented by 1 in the 0S5
environment. A permanent I/0 error is set for the DOS
environment.

Programmer Response: Either keep a counter to avoid exceeding
the end of record or file, or insert an END=n parameter on the

READ statement for appropriate transfer of control on end of
data set. Check all job control statements.

IFY2181 name - I/0 ERROR, FILE filename, XXX...XXX

Explanation: VASYN, VSIO0S or VDIOS - One of the following
occurred:

. A permanent I/0 error has been encountered.

Library Interruption and Error Procedures and Messages 105

Paga of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

106

L For sequential 170, the length of a physical record is
inconsistent with the default block size or the block size ™
specified on the job control statement. ' '

. An attempt has been made to read or urite a record that is
less than 18 bytes long on magnetic tapea.

XXX...XxX is the character string specifying the type of 1/0
error.

Note: If a permanent 170 error has been detected while writing

in the objact error unit data sat, the error message is written
to the programmer either at the terminal or the 0S5 SYSOUT data

set, and job execution is terminated.

Supplemental Data Provided: Abbreviated module name and
filename.

standard Corrective Action: The interrupted instruction and the
170 request are ignored. After the traceback is completed,
control is returned to the call routine statement designated in
the E$8 sarameter of an I/0 statement if that parameter was
spacified.

Note: ERR=parametaer is honored.

Programmer Response: For sequential I/0, make sure that the
length of the physical record is consistent with the default or
specified block size. Check all job control statements. Make
sure that no attempt has bean made to read or write a magnetic
tape record that is fewer than 18 bytes in length.

[vs108 |
IFY219I | VDIOS | - OPEN FAILED, MISSING OR INVALID CONTROL
| vAsYN STATEMENT, FILE filename o~

W !
Explanation:

FOR EBCDIC DATA SETS:

Either a data set is referred to in the load module and no job
control statement is supplied for it, or a job control statement
has an erroneous filename.

supplemental Data Provided: Filename.

Standard Corrective Action: The interrupted instruction is
ignored, and execution continues and the 170 request is ignored.

Note: If no job control statement has been supplied for the
object error unit data set, the message is written eithaer to the
programmer at the terminal or console or to the 0S SYSOUT data
set, and tha job is terminated.

Programmer Response: Either provide the missing job control
statement, or correct any erroneous job control statement. Refer

to VS FORTRAN Application Programming: Guide for more

information.

FOR ASCII DATA SETS:

A data set may have been referred to in the load module but had
no corresponding job control statement, or the job control
statement may have had an erroneous filenama.

supplemental Data Provided: Filename.

standard Corrective Action: The I/0 request is ignored and .
execution continues. : @:WJ}

VS FORTRAN Application Programming: Library Reference

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

Programmer Response: Either provide the missing job control
statement, or correct any erroneous filename. Also, for 0S
files, be sure that the LABEL parameter on the DD statement
specifies AL (or NL provided that the DCB subparameter OPTCD=Q
is also specified). Also be sure that the operating system
permits the use of ASCII data sets.,

IFY2201 name - UNIT NUMBER OUT OF RANGE, UNIT unit

Explanation: VSIOS or VASYN - A unit numbar exceeds the limit
specified for unit numbers when the library was installed.

SUpglemental Data Provided: Abbreviated module name and unit
numper.

standard Corrective Action: The interrupted instruction is
ignored, and execution continues.

Programmer Response: Correct the invalid unit number.

IFY2211 NAMEL - NAME LARGER THAN EIGHT CHARACTERS. NAME=name

Explanation: An input variable name is longer than eight
characters.

supplemental Data Provided: First eight characters of the name
specified.

standard Corrective Action: The remainder of the NAMELIST
request is ignored.

Programmer Response: Correct the invalid NAMELIST input
variable, or provide any missing delimiters.

IFY2221 NAMEL - NAME NOT IN NAMELIST DICTIONARY NAME=name
Explanation: An input variable name is not in the NAMELIST
dictionary, or an array is specified with an insufficient amount
of data.

supplemental Data Provided: The name specified.

Standard Corrective Action: The remainder of the NAMELIST
request is ignored.

Programmer Response: Make sure that a correct NAMELIST
statement is included in the source module for all variable and
array names read in using NAMELIST.

IFY2231 NAMEL - END OF RECORD ENCOUNTERED BEFORE EQUAL SIGN.
NAME=name

Explanation: An input variable name or a subscript has no
delimiter.

supplemental Data Provided: Name of item.

standard Ccorrective Action: The remainder of the NAMELIST
request is ignored.

Programmer Response: Make sure that all NAMELIST input data is
correctly specified and all delimiters are correctly positioned.
Check all delimiters. Make sure that sequence numbers are not
present in columns 73 through 80.

Library Interruption and Error Procedures and Messages 107

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

108

IFY2241 NAMEL - SUBSCRIPT FOR NON-DIMEMSIONED VARIABLE OR
SUBSCRIPT OUT OF RANGE. NAME=name

| O
Explanation: A subscript is encountered after an undimensioned Ny
input name, or the subscript is too large.

Supplemental Data Provided: Name of item.

standard corrective Action: The remainder of the NAMELIST
request is ignored.

Programmer Response: Insert any missing DIMENSION statements,
or correct the invalid array referenca.

IFvaas: VCVTH -~ ILLEGAL HEXADECIMAL CHARACTER char

Explanation: An invalid character is encountered on input for
the Z format code.

supplemental Data Provided: Display the record in which the
character appeared.

standard Corrective Action: 0 replaces the encountered
character.

Programmer Response: Either correct the invalid character, or
correct or delete the Z format code.

IFY2261 VCVTH = REAL VALUE OUT OF RANGE chars

Explanation: A real number was too large or too small to be
processed by the load module. (The largest number that can be
prog:ssgd)is 16%3-1; the smallest number that can be processed
is -65,

supplemental Data Provided: The field of input characters. kggff
standard Corrective Action: If the number was too large, the
result is set to 16¢3-1. If the number was too small, the result
is set to zero.

Programmer Response: Make sure that all real input is within
the required range for the number specified.

IFY2271 LDFIO - ERROR IN REPEAT COUNT, FILE filename

Explanation: A repeat count (k¥---) was not followed by a
blank, comma, or integer.

supplemental Data Provided: Filename.

Standard corrective Action: The remainder of the I/0 list is
ignored.

Programmer Response: Make sure that all repeat counts are

followed by a valid character: a blank, a comma, or an integer.

IFY2281 VASYN = LAST ELEMENT IN THE I/0O LIST HAS A LOWER
ADDRESS THAN THE FIRST ELEMENT. FILE filename

Explanation: An I/0 list contained an element having a lower
storage address than the first element in the list.

supplemental Data Provided: Filename.

standard corrective Action: The interrupted instruction is
ignored, and execution continues. <{;D}

Programmer Response: Make sure that all elements in the I/0
list are specified in the correct order.

VS FORTRAN Application Programming: Library Reference

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

IFY230I VSERH - SOURCE ERROR AT ISN ° ' EXECUTION
TERMINATED. THE PROGRAM NAME IS ‘program'.

Explanation: An attempt to run a program containing compile
errors has been intercepted at the execution of the statement in
error.

Supplemental Data Provided: ISN of statement in compiled program
that is in error, and the name of the routine or subroutine in
which the ISN is located.

standard Corrective Action: Execution terminates with a return
code of 16.

Programmer Response: Correct the source program statement, and
rerun the job.

IFY231I VSIOS - SEQUENTIAL I/0 ATTEMPTED ON A DIRECT ACCESS
DATA SET, UNIT unit

IFY2311 VDIOS - DIRECT ACCESS I/0 ATTEMPTED BEFORE AN OPEN OR
DEFINE FILE, UNIT unit

Explanation: (1) Direct access 1/0 statements are used for a
sequential file, or I/70 statements for a sequential file are
used for a direct access file. (2) The same file cannot be
opened in the same programming unit for both sequential and
direct access processing.

supplemental Data Provided: Unit number.
Standard Corrective Action: The I/0 request is ignored.
Programmer Raesponse:

For Cause 1: Either include the necessary DEFINE FILE statement
for direct access or delete the DEFINE FILE for a sequential
file. Make sure that all job control statements are correct.
Verify that all data sets are referenced with valid FORTRAN
statements for the file type.

For Cause 2: Make sure the same filename is not used twice
within the same program unit for different types of access.

For Cause 3: For a file opened for direct access, the READ or
N$I§E statement must contain a record specification (REC= or
u'rd.

For a file opened for sequential access, the READ or WRITE

stagement must not contain a record specification (REC= or
u'r).)

IFY2321 VDIOS - RECORD NUMBER nnnn OUT OF RANGE, FILE
filename

Explanation: The relative position of a record is not a

positive integer, or the relative position exceeds the number of

records in the data set.

supplemental Data Provided: Record number and filename.

standard Corrective Action: The I/0 request is ignored.

Programmer Response: Make sure that the relative position of

the record on the data set has been specified correctly. Check
all job control statements.

IFY2331 VDIOS - RECORD LENGTH GREATER THAN 32767 SPECIFIED,
FILE filename

Library Interruption and Error Procedures and Messages 109

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

110

Explanation: The record length specified in the DEFINE FILE or

OPEN statement exceeds the capabilities of the system and the @:D,
physical limitation of the voluma assigned to the data set in Vo
thae job control statement.

supplemental Data Provided: Filename.
Standard corrective Action: Record length is set to 32,000.

Programmer Response: Make sure that appropriate parameters of
the job control statement conform to specifications in the
DEFINE FILE or OPEN statement; the record length in both must be
equivalent and within the capabilities of the system and the
physical limitations of the assigned volume.

IFY2341 VDIOS -~ ATTEMPT TO USE THE OBJECT ERROR UNIT AS A
DIRECT ACCESS DATA SET, UNIT unit

Explanation: The data set assigned to print execution error
messages cannot be a direct access data set.

supplemental Data Provided: Unit number.

Standard COrreétive Action: The request for direct I/0 is
ignored.

Programmer Response: Make sure that the object error unit
spaecified is not direct access.

IFY2351 VDIOS -~ ATTEMPT TO USE A UNIT FOR DIRECT ACCESS I/0
WHICH IS CURRECTLY OPEN FOR SEQUENTIAL I/0, UNIT unit

Explanation: A unit number assigned to a direct access data set —~
is used for a sequential data set. quk
supplemental Data Provided: Unit number. A ’

Standard Corrective Action: The request for direct I/0 is
ignored.

Programmer Response: Make sure that use of and/or reference to
sequential data sets does not conflict with FORTRAN direct
access data sets. Verify that device classes assigned by the
installation do not conflict with the specification on the UNIT
parameter of the job control statement. Make sure that the unit
specified in a DEFINE FILE or OPEN statement defines a direct
access data set. Check all job control statements.

IFY2361 VDIOS - DIRECT ACCESS READ REQUESTED BEFORE DATASET
WAS CREATED, FILE filename

Explanation: A READ is executed for a direct access data set
that has not been created.

sSupplemental Data Provided: Filename.
Standard Corrective Action: The 1/0 request is ignored.

Programmer Response: Make sure that either a data set utility
program has been used, or appropriate parameters have been
specified on the associated job control statement. For further

information, refer to VS _FORTRAN Application Programming: Guide.

IFY2371 VDIOS =~ INCORRECT RECORD LENGTH SPECIFIED, FILE
filename

Explanation: The length of the record did not correspond to the a;D}
l:ngth o: the record specified in the DEFINE FILE or the OPEN L
statement.

~

VS FORTRAN Application Programming: Library Reference

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

supplemental Data Provided: Filename.
standard Corrective Action: The I/0 request is ignored.

Programmer Response: Make sure that the length of the records
supplied matches the length specified in the DEFINE FILE or the
OPEN statement. If necessary, change the statement to specify
the correct record length.

IFY238I LDFIO -~ INCORRECT DELIMITER IN COMPLEX OR LITERAL
INPUT, FILE filename

Explanation: A literal string in the input record(s) was not
closed with a quotation mark (or was longer than 256
characters); alternatively, a complex number in the input
record(s) contained embedded blanks, no internal comma, or no
closing right parenthesis.

Supplemental Data Provided: Filename.

Standard Corrective Action: The remainder of the I/0 list is
ignored.

Programmer Response: Supply the missing quotation mark or amend
the literal data to keep within the 256—character limit if the
error was in the literal input. Check complex input numbers to
see that they contain no embedded blanks, and that they contain
an internal comma and a closing right parenthesis.

IFY2391 VASYN - BLKSIZE IS NOT SPECIFIED FOR AN INPUT FILE,
FILE filename

Explanation: The block size for an input file was not specified
in the JCL or was specified as zero.

supplemental Data Provided: Filename for which error occurred.
standard Corrective Action: The I/0 request is ignored.

Programmer Response: Make sure the block size is specified on
the JCL for a new file.

IFY2401 VSTAE - ABEND CODE IS: SYSTEM $8SS, USER UUUU,
SCB/SDWA= HHHHHHHH.

IFY26401 VSTAE = IO - NOT RESTORED. PSW IS XXXXXXXXXXXXXXXX.

IFY2640X VSTAE - REGS 0-3 XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX

IFY2401 VSTAE = REGS £=7 XXXXXXXX XXXXXXXX XXXXXXXX
AXXXXXXX

IFY240X VSTAE - REGS 8-11 XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX

IFY240X VSTAE - REGS 12-15 XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX

Explanation: An abnormal termination occurred. In some
instances, pointers to subroutine entry points may have been
destroved, causing the traceback map to be incomplete. If an
incomplete subroutine traceback map is printed, the following
additional text appears between message IFY2401 and the
traceback map:

Library Interruption and Error Procedures and Messages 111

Page of SC26-3989 as updated 03 June 1981 by TNL SN26-0852

112

TRACEBACK HAY NOT BEGIN WITH ABENDING ROUTINE.

supplemental Data Provided: $S5S represents the completion code
if a system code caused termination; UUUU represents the
completion code if a program code caused taermination.

For specific explanations of the completion codes, see tha
messages and codes manual that applies to your operating system.

The SCB field (HHHHHHHH) gives the address of the STAE Control
Block, which contains the old PSW and the contents of general
registers at the time of abnormal termination. The PSW field
givaes the contents of the last FORTRAN program status word when
abnormal termination occurred.

Input/output operations associated with the error are defined as
NOT RESTORED, RESTORED, or NONE, as follows:

Lesm e o mwon wmam wm e

NOT RESTORED--Input/output has been halted and cannot be
restored.

RESTORED--Input/output has been halted. FORTRAN will attempt
to restart I/0 and then close data sets.

NONE--No active I/0 operations were present at abnormal
termination time. Fortran will close data sets.

standard Corrective Action: None.

Programmer Response: Use the abend code, the contents of the
SCB and PSW, and any accompanying 5ystem messages, to determine
the nature of the error.

IFY261I FIXPI INTEGER BASE=0, INTEGER EXPONENT=exp LE ZERO

Explanation: For an exponentiation operation (I¥XJ) in the
subprogram IFYFIXPI (FIXPI#) where I and J represent integer
variables or integer constants, I is equal to zero and J is less
than or equal to zero.

supplemental Data Provided: Exponent specified.
standard Corrective Action: Result = 0.

Programmer Response: Make sure that integer variables and/or
interger constants for an exponentiation operation are within
the allouable range. If the base and exponent may or will fall
outside that range during program execution, then either modify
the operands or insert source code to test for the situation and
make the appropriate compensation. Bypass the exponentiation
oparation if necessary.

IFY242I FRXPI - REAL¥% BASE=0.0, INTEGER EXPONENT=exp LE ZERO
Explanation: For an exponentiation operation (R¥%J) in the
subprogram IFYFRXPI (FRXPI#), where R represents a REAL¥4G
variable or REALX%4 constant and J represents an integer variable
or integer constant, R is equal to zero and J is less than or
equal to zero.

supplemantal Data Provided: Exponent specified.

standard Corrective Action:

If BASE=0,EXP<0,RESULT=e;
If BASE=0.0,EXP=0,RESULT=1,

VS FORTRAN Application Programming: Library Reference

O

Page of 5C26-3989 added 03 Juna 1981 by TNL SN26-0852

Programmer Response: Make sure that both the real variable or
Y constant base and the integer variable or constant exponent for
(231 an exponentiation operation are within the allowable range. If
the base and exponent may or will fall outside that range during
program execution, then either modify the operand(s), or insert
source code to test for the situation and make the appropriate
compensation. Bypass the exponentiation operation if necessary.

Library Interruption and Error Procedures and Messages 112.1

&

S,

...V\\Jy

()

IFY2431 ngg! = REAL¥%8, BASE=0.0, INTEGER EXPONENT=exp LE
ZER

Explanation: For an exponentiation operation (D%%J) in the
subprogram IFYFDXPI (FDXPI#), where D representa a REAL%8
variable or REAL¥8 constant and J represents an integer variable
or integer constant, D is equal to zero and J is less than or
equal to zero.

supplemental Data Provided: Exponent specified.
standard Corrective Action:

If BASE=0,EXP<0,RESULT=s;
1f BASE=0.0,EXP=0,RESULT=1.

Programmer Response: Make sure that both the real variable or
constant base and the integer variable or constant exponent for
an exponentiation operation are within the allowable range. If
the base and exponent may or will fall outside that range during
execution, then either modify the operand(s), or insert source
code to test for the situation and make the appropriate
compensation. Bypass the exponentiation operation if necessary.

IFY26441 FRXPR - REALX%, BASE=0.0, REAL¥4 EXPONENT=exp LE ZERO

Explanation: For an exponentiation operation (R%%S) in the
subprogram IFYFRXPR (FRXPR#), wuhere R and S represent REALX4
variables or REAL¥% constants, R is equal to zero and S is less
than or equal to zero.

supplemental Data Provided: Exponent specified.
standard Corrective Action:

If BASE=0, EXP<0,RESULT=e;
If BASE=0.0,EXP=0,RESULT=1.

Programmer Response: Make sure that both the real variable or
constant base and exponent for an exponentiation operation are
within the allowable range. If the base and exponent may or will
fall outside that range during program execution, then either
modi fy the operand(s), or insert source code to test for the
situation and make appropriate compensation. Bypass the
exponentiation operation if necessary.

IFY26451 FDXPD REALX8 BASE=0.0, REALX8 EXPONENT=exp, LE ZERO

Explanation: For an exponentiation operation (DX¥P) in the
subprogram IFYFDXPD (FDXPD#), where D and P represent REALX8
variables or REAL¥8 constants, D is equal to zero and P is less
than or equal to zero.

supplemental Data Provided: Exponent specified.
standard corrective Action: Result=0.

Programmer Response: Make sure that both the real variable or
constant base and exponent for an exponentiation operation are
within the allouwable range. If the base and exponent may or will
fall outside that range during program execution, then either
modify the operand(s), or insert source code to test for the
situation and make appropriate compensation. Bypass the
exponentiation operationr if necessary.

IFY2646] FCXPC COMPLEX%8 BASE=0.0+0.0I, EXPONENT=exp LE ZERO

IFY266I nggéRgONPLEX*S BASE=0.040.0I, INTEGER EXPONENT=exp,

Library Interruption and Error Procedures and Messages 113

114

Explanation: For an exponentiation operation (Z¥%%J) in tha
subprograms IFYFCXPI (FCXPI#) and IFYFCXPC (FCXPC#), where Z
represents a COMPLEX%8 variable or COMPLEXX%8 constant and J
represents an integer variable or integar constant, Z is equal
to zaero and J is less than or equal to zaero.

supplemental Data Provided: Exponent specifiaed.
standard Corrective Action:

If BASE=0,EXP<0,RESULT=s;
If BASE=0.0,EXP=0,RESULT=1

Programmer Response: Make sure that both the complex variable
or constant base and the integer variable or constant exponent
for an exponentiation operation are within the allowable range.
If tha base and exponent may or will fall outside that range
during program execution, then either modify the operand(s), or
insert source code to test for the situation and make the
appropriate compensation. Bypass the exponaentiation operation if

IFY2471 {CDXIRSOHPLEX!16 BASE=0.0+40.0I, INTEGER EXPONENT=exp,
E ZE

IFY2471 FCDCD COMPLEX%16 BASE=0.0+0.0l, EXPONENT=exp, LE ZERO

Explanation: For an exponentiation operation (Z%%J) in the
subprograms IFYFCDXI (FCDXI#) and IFYFCDCD (FCDCD#), where 2
represents a COMPLEXX16 variable or COMPLEX%16 constant and J
represents an integer variable or integer constant, 2 is equal
to zero and J is less than or equal to =zero.

supplemental Data Provided: Exponent specified.
standard Corrective Action:

If BASE=0,EXP<0,RESULT=e;
If BASE=0.0,EXP=0,RESULT=1

Programmer Response: Make sure that both the complex variable
or constant base and the integer variable or constant exponent
for an exponentiation operation are within the allowable range.
If the basa and exponent may or will fall outside that range
during program execution, then either modify the oparand(s), or
insert source code to test for the situation and make the
appropriate compensation. Bypass the exponentiation operation if
necessary.

IFY2481 ;gggl# REAL%16 BASE=0.0, INTEGER EXPONENT=exp, LE

Explanation: For an exponentiation opaeration (Q%%J) in the
subprogram IFYFQXPI (FQXPI#), where Q represents a REAL%16
variable or constant and J represents an integer variable or
constant, Q is equal to zero and J is less than or equal to
2ero.

supplemental Data Provided: Exponent specified.
standard corrective Action:

If BASE=0,EXP<0,RESULT=e;
If BASE=0.0,EXP=0,RESULT=1

Programmer Response: Make sure that both the real variable or
constant base and the integer variable or constant exponant for
an exponentiation operation are within the allowable range. If
the base and exponent may or will fall outside that range during
execution, then either modify thae operand(s), or insert source
code to test for the situation and make the appropriate

VS FORTRAN Application Programming: Library Reference

compensation. Bypass the exponentiation operation if necassary.

IFY269I FQXPQ# REALX%16 BASE=bhase,REAL%16 EXP-exp, BASE=0.0,
AND EXP LE ZERO OR BASE LT ZERO AND EXP NE ZERO

Explanation: For an exponentiation operation (XXXY) in the
subprogram IFYFQXPQ(FQXPQ#), where X and Y represent REALX16
variables or constants, if X equals zero, Y must be greater than
2ero; if X is less than zero, Y must equal zero. One of these
conditions is violated.

Supplemental Data Provided: Base and exponent specified.
Standard corrective Action:

If BASE=0 and EXP<0,RESULT=e;
If BASE=0.0 and EXP=0,RESULT=1;
If BASE=<0.0 and EXP#0,RESULT=|X|%xY.

Programmer Response: Make sure that both the real variablae or
constant base and exponent for an exponentiation operation are
within the allowable range. If the base and exponent may or uill
fall outside that range during program aexecution, then aithaer
modify the operand(s), or insert source code to test for the
situation and make appropriate compensation. Bypass the
exponentiation operation if necessary.

IFY2501 FQXPQ® REALX16 BASE=base, REALX16 EXP=exp, ARGUMENT
COMBINATION EXP.%L0G2 (BASE) GE 252

Explanation: For an exponentiation operation in the subprogram

IFYFQXPQ, the argument combination of y*log2(x) generates a

number greater than or equal to 252.

supplemental Data Provided: The arguments specified.

standard corrective Action: Result=e.

Programmer Response: Make sure that the base and aexponent are

within the allowable range. If necessary, restructure arithmetic

operations.

IFY2511 SQRT ARGUMENT=arg LT ZERO

Explanation: In the subprogram IFYSSQRT (SQRT), the argument is
less than p.

supplemental Data Provided: Argument specified.

standard Corrective Action: Result={X{i-2,

Programmer Response: Make sure that the argument is within
allouwable range. Either modify the argument, or insert source
code to test for a negative argument and make the necessary
compensation. Bypass the function reference if necessary.

IFv25ar EXP ARG=arg, GT 174.673

Explanation: In the subprogram IFYSEXP(EXP), the argument is
greater than 174.673.

Supplemental Data Provided: Argument specified.

standard Corrective Action: Result=e.

Programmer Response: Make sure that the argument to the
exponentiation function is within allowable range. If the

argument may or will exceed that range during program execution,
then provide code to test for the situation and, If necessary,

" modify the argument or bypass the source raferencing the

Library Interruption and Error Procedures and Messages 115

116

function subprogram.

IFY2531 ALOG-ALOG10 ARG=arg, LE ZERO

Explanation: 1In the subprogram IFYSLOG (ALOG and ALOG10), the
argument is less than or equal to zero. Because this subprogram
is called by an exponential subprogram, this message may also
indicate that an attempt has been made to raise a negativae base
to a real power.

supplemental Data Provided: Argument specified.
standard corrective Action:

If X=0, RESULT=-e;
If X<0, RESULT=log|X]| or loglolxl.

Programmer Response: Make sure that the argument to the
logarithmic function is within the allowable range. If the
argument may or will be outside that range during program
execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram.

IFY2541 SIN-COS ABS(ARG)=arg GE PIX(2xx18)

Explanation: In the subprogram IFYSSCN (SIN and C0S), the
absolute value of an argument is greater than or equal to 21!% x
pi (2% % pi=.82354966406249996D + 06).

supplemental Data Provided: None.
standard Corrective Action: Result=SQRT(2)/2.

Programmner Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°) +to the
trigonometric sine or cosine function is within the allowable
range. If the argument may or will exceed that range during
program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY2551 ATAN2 ARGUMENTS=0.0

Explanation: In the subprogram IFYSATN2, when entry name ATAN2
is used, both arguments are equal to zero.

SUpplemental Data Provided: None.

standard Corrective Action: Result=0.

Programmer Response: Make sure that bbth arguments do not

become 0 during program execution, or are not inadvertently
initialized or modified to 0. Provide code to test for the

situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY2561I SINH~COSH/ARG/=/arg/, GE 175.366

Explanation: In the subprogram IFYSSCNH (SINH or COSH), the
argument is greater than or equal to 175.366.

supplemental Data Provided: Argument specified.
Standard corrective Action: SINH(X)=%e; COSH(X)=e
Programner Response: Make sure that the argument to the

hyperbolic sine or cosine function is within the allowable
range. If the argument may or will exceed that range during

VS FORTRAN Application Programming: Library Reference

-

o/

R

program exacution, then provide code to test for tha situation
and, if necessary, modify the argument or bypass the source
referaencing the function subprogram.

IFY2571 ARSIN-ARCOS /ARG/=/args GT 1

Explanation: In the subprogram IFYSASCN (ARSIN or ARCO0S), the
absolute value of the argument is greater than 1.

supplemental Data Provided: Argument specified.
standard Corrective Action:

If x>1.0,ARC0S(x)=0;
If <-1.0,ARCOS(x)=pi;
If x>1.0,ARSIN=pi/2;
If x<-1.0,ARSIN=-pi/2.

Programmer Response: Make sure that the argument to the arcsine
or arccosine function is between -1 and +1, inclusive. If the
argument may or will fall outside that range during program
execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram.

IFY2581 TAN-COTAN /ARG/=/arg(HEX=hex)/, GE PIx2%x18

Explanation: In the subprogram IFYSTNCT (TAN or COTAN), the
absolute value of the argument is greater than or equal to
218%pi (21%%pi=.823564966406249996D+06).

9uph1ementa1 Data Provided: Argument specified.
standard Corrective Action: Result=1.

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57. 2957795131°) to the
trigonometric tangent or cotangent function is within the
allowable range. If the argument may or will exceed that range
during program execution, then provide code to test for the
situation and, if necessary, modify the argument or bypass the
source referencing the function subprogram.

IFY2591 TAN-COTAN /ARG/=/7arg(HEX=hex)/, APPROACHES
SINGULARITY

Explanation: In the subprogram IFYSTNCT (TAN or COTAN), the
argument value is too close to one of the singularities (*pis/2,
*3pi/z2, ... for the tangent or *pi, *2pi, ... for the
cotangent).

supplemental Data Provided: Argument specified.
standard corrective Action: Result=e,

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°) +to the
trigonometric tangent or cotangent function is within the
allowable range. If the argument may or will approach the
corresponding singularities for the function during program
execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram.

IFY2601 FQXP2%# REAL%16 EXPONENT=exp, GE 252

Explanation- In the subprogram IFYFQXPR(FQXP2%#), the exponent
is beyond tha range of 2252

Library Interruption and Error Procedures and Messages 117

118

supplemental Data Provided: Exponent specified.
standard Corrective Action: Result=e.

Programmer Response: Make sure that the exponent is within the
allowable range.

IFY261I DSQRT ARGUMENT=arg LT ZERO

Explanation: In the subprogram IFYLSQRT(DSQRT), the argument is
lass than 0.

Supplemental Data Provided: Argument specified.
standard 00rrectivq Action: Result=|x|1-2,

Programmer Response: Make sure that the argument is within the
allowable range. Either modify thae argument, or insert source
coda to test for a negative argument and make the nacessary
compaensation. Bvpass the function refarance if necessary.

IFY2621 DEXP ARG=arg, GT 174.673

Explanation: 1In the subprogram IFYLEXP(DEXP), the argument is
greater than 174.673.

supplemental Data Provided: Abgumant specified.
standard Correctiva Action: Rasult=e,

Programmer Response: Make sure that the argument to the
exponential function is within allowable range. If the argument
may or will exceed that range during program execution, then
provide codae to test for the situation and, if necessary, modify
the argument or bypass the source referencing the function
subprogranm.

IFY2631 DLOG-DLOG10 ARG=arg, LE ZERO

Explanation: In the subprogram IFYLLOG (DLOG and DLOG10), the
argument is less than or equal to zero. Because the subprogram
is called by an exponential subprogram, this message may also
indicate that an attempt has been made to raise a negative base
to a real power.

Supplemental Data Provided: Argument specified.
Standard Corrective Action:

If X=0,RESULT=~e;

If X<0,RESULT=log|X] or loglolXI.

Programmer Response: Make sure that the argument to the
logarithmic function is within the allowable range. If thae
argument may or will ba outside that range during program
execution, then provida code to test for the situation and, if
necessary, modify the argument or bypass the source raeferencing
the function subprogram.

IFY2641 DSIN-DCOS /ARG/=/argl(HEX=hex)s, GE PI2%%50
Explanation: In the subprogram IFYLSCN (DSIN and DCOS), the
absolute value of the argument is greater than or equal to
25%9%pi (2%%%pi=.35371188737802239D+16).

supplemental Data Provided: Argument specified.

Standard Corrective Action: ResultzSQRT(2)/2.

VS FORTRAN Application Programming: Library Reference

Y

Ly

Py

WWV§

@;ﬁ

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.29577951319) +to the
trigonometric sine or cosine function is within the allowable
range. If the argument may or will exceed that range during
program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY2651 DATAN2 ARGUMENTS=0.0

Explanation: In subprogram IFYLATN2, when entry name DATAN2 is
used, both arguments are equal to zero.

supplemental Data Provided: Argument specified.
standard Corrective Action: Result=0.

Programmer Response: Make sure that both arguments do not
become zero during program execution, or are not inadvertently
initialized or modified to zero. Provide code to test for the
situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY2661 DSINH-DCOSH /ARG/=arg/, GE 175.366

Explanation: In the subprogram IFYSCNH (DSINH or DCOSH), the
absolute value of the argument is greater than or equal to
175.366.

supplemental Data Provided: Argument specified.

Standard Corrective Action: DSINH(X)=%e; DCOSH(X)=e
Programmer Response: Make sure that the argument to the
hyperbolic sine or cosine function is within the allowable
range. If the argument may or will exceed that range during
program execution, then provide code to test for tha situation
and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY2672 DARSIN-DARCOS /ARG/=/arg/ GT 1

Explanation: In the subprogram IFYLASCN (DARSIN or DARCOS), the
absolute value of the argument is greater than 1.

Supplemental Data Provided: Argument specified.
standard Corrective Action:

If x > 1.0 DARCOS(x) = 0;
If x < -1.0 DARCOS(X) = pi;
If x> 1.0 DARSIN = pi/2;
If x < -1.0 DARSIN = -pis2.

Programmer Response: Make sure that the argument to the arcsine
or arccosine function is between -1 and +1, inclusive. If the
argument may or will fall outside that range during execution,
then provide coda to test for the situation and, if necassary,
modify the argument or bypass the sourca referencing the
function subprogram.

IFY26381 DTAN-DCOTAN ZARG/=7arg(HEX=hex)/, GE PIX2%%50
Explanation: In the subprogram IFYLTNCT (DTAN or DCOTAN), the
absolute value of the argument is greater than or equal to
259%%pi (23%%pi=.35371188760142201D+16).

Supplemental Data Provided: Argument specified.

Library Interruption and Error Proceduraes and Massages 119

standard Corrective Action: Result=l.

Programmer Rasponse: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°%) to the
trigonometric tangent or cotangent function is within the
allowable range. If the argument may or will exceed that range
during program execution, then provide code to test for the
situation and, if necessary, modify the argument or bypass the
source referencing the function subprogram.

IFY2691 DTAN-DCOTAN ZARG/=/arg(HEX=hex)s/, APPROACHES
SINGULARITY

Explanation: In the subprogram IFYLTNCT (DTAN or DCOTAN), the
argument value is too close to one of the singularities (%pis2,
*3piz2, ... for the tangent; *pi, *2pi, ... for the cotangent).

supplemental Data Provided: Argument specified.
Standard Corrective Action: Result=e,

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°%°) +to the
trigonometric tangent or cotangent function is within the
allowable range. If the argument may or will approach the
corresponding singularities for the function during program
execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram.

IFY2701 FCQXI gONPLEX*32 BASE=0.0+0.0I, INTEGER EXPONENT=exp,
LE ZER

IFY2701 FCQCG COMPLEX%32 BASE=0.0%0.0I, EXPONENT=exp, LE ZERO
Explanation: 1In the subprograms IFYFCQXI (FCQXI#) and IFYFCQCG
(FCQCG#), a base 0 number has been raised to a pouwer less than
or equal to zero.

supplemental Data Provided: Argument specified.

standard Corrective Action:

If X=0+0i and J=0, RESULT=1+01i;
If X=0+0i and J<0, RESULT=e+0i,.

(where J=exponent)
Programmar Response: Make sure the base is a non-zero number or
raise the exponent to a non-zero value.
IFY2711 CEXP REAL ARG=arg(HEX=hex), 6T 174.673

Explanation: In the subprogram IFYCSEXP (CEXP), the value of
the real part of the argument is greater than 174.673.

supplemental Data Provided: Argument specified.

standard Corrective Action: Result=e(C0S X + iSIN X) where X is
the imaginary portion of the argument.

Programmer Response: Make sure that the argument to the
exponential function is within the allowable range. If the
argument may or will exceed that range during program execution,
then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the
function subprogram.

120 VS FORTRAN Application Programming: Library Reference

®

IFY2721 CEXP IMAG ARG=arg(HEX=hex), ABS VALUE GE PI2x%x18

Explanation: In the subprogram IFYCSEXP (CEXP), the absolute
valua of the imaginary part of the argument is greater than or
equal to 2!%x%pi (21%%pi=.82354966406249996D+06).

supplemental Data Provided: Argument specified.
Standard Corrective Action: Result=eX!+0%i.

Programmer Response: Make sure that the argument to the
exponential function is within the allowable range. If the
argument may or will exceed that range during program execution,
then provide code to test for the situation, and, if necessary,
modify the argument or bypass the source referencing the
function subprogram.

IFY2731 CLOG ARGUMENT=0.0+0.0I

Explanation: In the subprogram IFYCSLOG (CLOG), the real and
imaginary parts of the argument are equal to zero.

sSupplemental Data Provided: None.
Standard Corrective Action: Result=-e+0i.

Programmer Response: Make sure that both the real and imaginary
parts of the argument do not become zero during program
execution, or are not inadvertently initialized or modified to
zero. Provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the
function subprogram.

IFY2741 CSIN-CCOS /REAL ARG/=/arg(HEX=hex)/, GE PI%2x%18

Explanation: In the subprogram IFYCSSCN (CSIN or CCOS), the
absolute value of the real part of the argument is greater than
or equal to 21®X¥pi (21%%pi=.82354966406269996D+06).

Supplemental Data Provided: Argument specified.
standard Corrective Action:
Result=COSH(x2)+0*i; CSIN=0+SINH(x2)*i.

Programmer Response: Make sure that the real part of the
argument (in radians where 1 radian is equivalent to
57.2957795131°) to the trigonometric sine or cosine function is
within the allowable range. If the real part of the argument may
or will exceed the range during program execution, then provide
code to test for the situation and, if necessary, modify the
real part of the argument or bypass the source referencing the
function subprogram.

IFY2751 CSIN-CCOS /IMAG ARG=/arg(HEX=hex)/, 6T 174.673
Explanation: 1In the subprogram IFYCSSCN (CSIN or CCOS), the
absolute value of the imaginary part of the argument is greater
than 174.673.

Supplemental Data Provided: Argument specified.

standard Corrective Action: If imaginary part > 0, (X is real
portion of argument):

For sine, raesult=e/2(SIN X + iC0S X).
For cosinae, result=es/2(C0S X - iSIN X).

If imaginary part < 0, (X is real portion of argument):

Library Interruption and Error Procedures and Messages 121

For sinae, result=e/2(SIN X =~ iC0S X).
For cosinae, raesult=e/2(C0S X + iSIN X).

Programmer Response: Make sure that the imaginary part of. the
argument (in radians whaere 1 radian is equivalent to
57.29577951319) to the trigonometric sine or cosine function is
within the allowable range. If the imaginary part of the
argument may or will excead that range during program aexecution,
then provide code to test for tha situation and, if necessary,
modify tha imaginary part of the argument or bypass the source
referencing the function subprogram. .

IFY2761 CQEXP REAL ARG=arg, GT 176.673

Explanation: In the subprogram IFYCQEXP (CQEXP), the valuae of
the real part of the argument is greatar than 174.673.

supplemental Data Provided: Argument specified.

[YRVEY

SIN X)) where X is

Standard corrective Action: Result '=2¢({0S X #+
the imaginary portion of the argument.

Programmer Response: Make sure that the real part of the
argument to tha exponential function is within the allouwable
range. If the real part of the argument may or will exceed the
range during program execution, then provide code to test for
the situation, and, if necessary, modify the real part of the
argument or bypass thae source referencing the function
subprogram.

IFY2771 CQEXP IMAG ARG=arg, ABS VALUE GT PIx2xx100

Explanation: In the subprogram IFYCQEXP (CQEXP), thae absolute
valua of the imaginary part of the argument is greater than
2100xpi (2100x%pj=, 39824418129956973D + 31)

supplemental Data Provided: Argument specified.
standard Corrective Action: Result=e X1:0x%i.

Programmer Response: Make surae that the imaginary part of the
argument to tha exponential function is within the allowable
range. If the imaginary part of the argument may or will exceed
that range during program execution, then provide coda to test
for the situation and, if necassary, modify thae imaginary part
of the argument or bypass the source refaeraencing tha function
subprogram.

IFY2781 CQLOG ARGUMENT = 0.0+0.0I

Explanation: In the subprogram IFYCQLOG (CQLOG), tha real and
imaginary parts of the argument are equal to zero.

supplemental Data Provided: Nona.
standard Corrective Action: Result=-e+0i.

Programmer Response: Make surae that both the real and imaginary
parts of the argument do not become zero during program
execution, or are not inadvertently initialized or modified to
zero. Provide code to tast for the situation and, if necessary,
modify the argument or bypass tha source referencing the
function subprogram.

IFY2791 CQSIN-CQCOS /REAL ARG/=/arg/, GE 2x%x%100
Explanation: In the subprogram IFYCQSCN (CQSIN or CQCO0S), the

absolute value of the real part of the argument is greatar than
or equal to 2199,

122 VS FORTRAN Application Programming: Library Reference

supplemental Data Provided: Argument specified.

standard Corrective Actiont If the argument is X + iY, for
?$§Ig§ result=0 + DSINH (Y)*i and, for CQCO0S, result = DCOSH
+0%5 .

Programmer Response: Make sure that the real part of the
argument (in radians where 1 radian is equivalent to
57.2957795131°) to the trigonometric sine or cosine function is
within the allowable range. If the part of the argument may or
will exceed the range during program execution, then provide
code to test for the situation and, if necassary, modify the
real part of the argument or bypass the source referencing the
function subprogram. ')

IFY2801 CQSIN-CQCOS /IMAG ARG/=/arg/, GT 174.673

Explanation: In the subprogram IFYCQSCN(CQSIN or CQCO0S), the
:gsolg;: z?%ue of the imaginary part of the argument is greater
an . .

supplemental Data Provided: Argument specified.

Standard Corrective Action: If imaginary part > 0, (X is real
portion of argument):

For sine, resultze/2(SIN X + iC0S X).
For cosine, result=e/2(C0S X - iSIN X).

If imaginary part <0, (X is real portion of argument):

For sine, result=e/2(SIN X - iC0S X).
For cosine, result=es/2(C0S X + iSIN X).

Programmer Response: Make sure that the imaginary part of the
argument (in radians where 1 radian is equivalent to
57.2957795131°) to the trigonometric sine or cosine function is
within the allowable range. If the imaginary part of the
argument may or will exceed that range during program execution,
then provide code to test for the situation and, if naecessary,
modify the imaginary part of the argument or bypass the source
referencing the function subprogram.

IFy281: CDEXP REAL ARG=arg(HEX=hex), 6T 174.673

Explanation: In the subprogram IFYCLEXP (CDEXP), the value of
thae real part of the argument is greater than 176.673.

supplemental Data Provided: Argument specified.

standard Corrective Action: Result=¢(C0S X + iSIN X) where X is
the imaginary portion of the argument.

Programmer Response: Make sure that the real part of the
argument to the exponential function is within the allouwable
range. If the real part of the argument may or will exceed that
range during program execution, then provide code to test for
the situation and, if necessary, modify the real part of the
argument or bypass the source referencing the function
subprogram.

IFY2821 CDEXP IMAG ARG=arg(HEX=hex),ABS VALUE GE PIX2%¥%50
Explanation: In the subprogram IFYCLEXP(CDEXP), the absolute
value of the imaginary part of the argument is greater than or
equal to 25%%pi (259%pi=.35371188760142201D+16).

supplemental Data Provided: Argument spacified.

standard Corrective Action: Results=e '+0xi.

Library Interruption and Error Procedures and Messages 123

124

Programmer Response: Make sure that the imaginary part of the
argument to the exponential function is within the allowable
range. If the imaginary part of the argument may or will exceed
that range during program execution, then provide code to test
for the situation, and, if necessary, modify the imaginary part
of the argument or bypass the source referencing the function
subprogranm.

IFY2831 CDLOG ARGUMENT=0.D0+0.D0IX

Explanation: In the subprogram IFYCLLOG (CDLOG), the real and
imaginary parts of the argument are equal to zero.

supplemental Data Provided: None.
standard Corrective Action: Result=-e+0i.

Programmer Response: Make sure that both the real and imaginary
parts of the argument do not become zero during program
execution, or are not inadvertently initialized or modified to
zero. Provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the
function subprogram.

IFY2841 CDSIN-CDCOS /REAL ARG/ =/arg(HEX=hex)s/, GE PIx2%x%50

Explanation: In the subprogram IFYCLSCN (CDSIN or CDCOS), the
absolute value of the real part of the argument is greater than
or equal to 25%x%pi (2%9%x%pi = ,35371188760142201D+16).

supplemental Data Provided: Argument specified.

Standard corrective Action: If the argument is X + iY, for
ggglg, the result=0 + DSINH (Y) +i; for CDCOS, the result=DCOSH
+0%i.

Programmer Response: Make sure that the real part of the
argument (in radians where 1 radian is equivalent to
57.2957795131°) to the trigonometric sine or cosine function is
within the allowable range. If the part of the argument may or
Wwill exceed the range during program execution, then provide
code to test for the situation, and, if necessary, modify the
real part of the argument or bypass the source referencing the
function subprogram.

IFY2851 CDSIN-CDCOS /IMAG ARG/=/arg(HEX=hex)s/, GT 174.673

Explanation: In the subprogram IFYCLSCN (CDSIN or CDCOS), the
:asolggg vgéue of the imaginary part of the argument is greater
an .673.

supplemental Data Provided: Argument specified.

standard Corrective Action: If imaginary part >0, (X is real
portion of argument):

For sine, result=es/2(SIN X + jiCO0S X).
For cosine, result=e¢/2(C0S X - iSIN X).

If imaginary part <0, (X is real portion of argument):

For sine, result=e/2(SIN X - iC0S X).
For cosine, result=es/2(C0S X + iSIN X).

Programmer Response: Make sure that the imaginary part of the
argument (in radians where 1 radian is equivalent to
57.2957795131°%) to the trigonometric sine or cosine function is
within the allowable range. If the imaginary part of the
argument may or will exceed that range during program execution,
then provide code to test for the situation and, if necassary,
modify the imaginary part of the argument or bypass the source

VS FORTRAN Application Programming: Library Reference

-

raferencing the function subprogram.

IFY2861 VEIOS - ATTEMPT TO ISSUE SYNCHRONOUS AND ASYNHRONOUS
I/0 REQUESTS WITHOUT AN INTERVERNING REWIND. FILE
filename

Explanation: A data. set that has been using one mode of I/0

operations (that is, either synchronous or asynchronous) must ba

rewound before changing modes. An attempt was made to change the
modae uwithout rewinding the data set.

supplemental Data Provided: Filename.

8tandard Corrective Action: The 1/0 request is ignored and
axacution continues.

Programmer Response: " Insert a REWIND statement at an

appropriate point in the program.

IFY2871 VASYN = A WAIT ISSUED WITH NO OUTSTANDING 1/0
REQUEST, FILE filename

Explanation: A WAIT statement was issued with no corresponding
READ or WRITE request.

supplemental Data Provided: Filename.

standard corrective Action: Tha WAIT statement is ignored and
execution continues. .

Programmer Response: Remove the WAIT statement or include a

corresponding READ or WRITE statement.

IFY2881 VASYN = NO WAIT ISSUED FOR AN OUTSTANDING I/O REQUEST
FILE filename

Explanation: No WAIT statement was issued for an outstanding
READ or WRITE request.

supplemental Data Provided: Filename.

3x§?dard corrective Action: Execution continues with an implied

Programmer Response: Include the WAIT statement or remove the
READ or WRITE statement.
IFY2891 QSQRT ARGUMENT=arg LT ZERO

Explanation: 1In the subprogram IFYQSQRT (QSQRT#), the argument
is less than zero.

supplemental Data Provided: Argument specified.

standard Corrective Action: Result = [x|!/2

Programmer Response: Make sure that the argument is within the
allowable range. Either modify the argument, or insert source
code to test for a negative argument and make the necessary
compaensation. Bypass the function reference if necessary.
IFY2901 GAMMA ARG=arg(HEX=hex),LE 2x%-252 OR GE 57.5744

Explanation: In the subprogram IFYSGAMA (GAMMA), the value of
the argument is outside thae valid range (2-252<x<57.5744).

supplemental Bata Provided: Argument specified.

Library Interruption and Error Procedures and Maessages 125

126

standard Corrective Action: Reaesult=se,

Programmer Response: Make sure that the argument to the gamma
function is within thae allowable range. 1If the argument may or
will ba outside that range during program execution, then
provide codae to taest for the situation and, if necessary, modify
the argument or bypass thae source referencing the function
subprogram.

IFY2911 ALGAMA ARG=arg(HEX=hex),LE ZERO. OR GE 4.2937%10%x%73

Explanation: In the subprogram IFYSGAMA (ALGAMA), the value of
the argument is outside the valid range (0<x<%.2937x1073%).

supplemental Data Provided: Argument specified.
standard corrective Action: Resultc=e,

Programmer Responsae: Make sure that the argument to the ALGAMA
function is within the allowahle range. I€ the ar sumenc may or
will be outside that range during program execution, then
provide code to test for the situation and, if necessary, modify
the argument or bypass the source referencing the function
subprogram.

IFY2921 QEXP ARG=arg, GT 174.673

Explanation: In the subprogram IFYFQXPR (QEXP), the argument is
greater than 174.673.

Supplemental Data Provided: Argument specified.
standard Corrective Action: Result=e,

Programmer Response: Make surae that the argument to the
exponaential function is within the allowable range. If the
argument may or will exceed that range during program execution,
than provide code to test for tha situation and, if necessary,
modi fy the argument or bypass the sourcae referencing the
function subprogram.

IFY2931 QLOG-QLOG10 ARG=arg, LE ZERO

Explanation: In the subprogram IFYQLOG (QLOG and QLOG10), tha
argument is less than or equal to zero. Because the subprogram
is called by an exponential subprogram, this message may also
indicate that an attempt has been made to raise a negative base
to a real powear.

supplemental Data Provided: Argument specified.

standard corrective Action: If X=0, rasultz-e; if X<0,
result=log|X| or loglolxl.

Programmer Response: Make surae that the argument to the
logarithmic function is within the allowable range. If the
argunent may or will be outside that range during program
execution, then provide codae to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram. .

IFY2941 QSIN-QCOS /ARG/=/arg/, GE 2%x%100

Explanation: 1In the subprogram IFYQSCN (QSIN and QC0S), the
absolute value of tha argument is greater than or aqual to 2100

Supplemantal Data Provided: Argument specified.

VS FORTRAN Application Programming: Library Reference

AN
/ \

N

Y
.

standard Corrective Action: Result=SQRT(2)/2

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°) +to the
trigonometric sine or cosine function is within the allouwable
range. If the argument may or will exceed that range during
program execution, then provide coda to test for the situation
and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY2951 QATAN2 ARGUMENTS = 0.0

Explanation: In subprogram IFYQATN2, when entry name QATAN2 is
used, both arguments are equal to zero.

Supplemental Data Provided: ane.
standard Corrective Action: Result=0.

Programmer Response: Make sure that both arguments do not
become zero during program execution, or are not inadvertently
initialized or modified to zero. Provide code to test for the
situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY2961 QSINH-QCOSH /ARG/=/arg/, GE 175.366

Explanation: In the subprogram IFYQSCNH (QSINH or QCOSH), the
gggoézze value of the argument is greater than (or equal to)

supplemental Data Provided: Argument specified.
standard corrective Action: QSINH(X)=%e; QCOSH(X)=e,

Programmer Response: Make sure that the argument to the
hyperbolic sine or cosine function is within the allowable
range. If the argument may or will exceed that range during
program execution, then provide code to tast for the situation
and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY2971 QARSIN-QARCOS /ARG/=/arg/, GT 1

Explanation: In the subprogram IFYQASCN (QARSIN or QARCO0S), tha
absolute value of the argumant is greater than 1.

supplemental Data Provided: Argumaent specified.
standard Corrective Action:

If X > 1.0 QARCOS(X) = 0;

If X < =-1.0 QARCOS(X) = pi;
If X > 1.0 QARSIN = pi/2;
If X < -1.0 DARSIN = =-pirs2.

Programmer Response: Makae sure that the argument to the arcsine
or arccosine function is between -1 and +1, inclusive. If the
argument may or will fall outside that range during program
execution, then provide code to tast for the situation and, if
necessary, modify thae argument or bypass the source raferencing
the function subprogram.

IFY2981 QTAN-QCOTAN /ARG/=/arg/, GE 2%%100

Explanation: In the subprogram IFYQTNCT (QTAN or QCOTAN), the
absolute value of tha argument is greater than or equal to 21990,

supplemental Data Provided: Argument specified.

Library Interruption and Error Procedures and Messages 127

standard Corrective Action: Result=1.

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°) to the
trigonometric tangent or cotangent function is within the
allowable range. If the argument may or will exceed that range
during program execution, then provide code to test for the
situation and, if necessary, modify the argument or bypass the
source referencing the function subprogram.

IFY2991 QTAN-QCOTAN /ARG/=/arg/s, APPROACHES SINGULARITY

Explanation:t In the subprogram IFYQTNCT (QTAN or QCOTAN), the
argument value is too closa to one of the singularities (¥pi/2,
t3pisz2,... for the tangent; *pi, *2pi,... for the cotangent).

supplemantal Data Provided: Argument specified.

'

standard Corrective Action: Result=e,

Programmer Response: Make sure that the argument (in radians
where 1 radian is equivalent to 57.2957795131°) to the
trigonometric tangent or cotengent function is within the
allowable range. If the argument may or will approach the
corresponding singularities for the function during program
execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing
the function subprogram.

IFY3001 DGAMMA ARG=arg(HEX=hex),LE 2x%-252 OR GE 57.574%

Explanation: In the subprogram IFYLGAMA (DGAMMA), the value of
the argument is outside the valid range (2-252<x<57.5744).

~ Supplemental Data Provided: Argument specified.
standard corrective Action: Result=e,

Programmer Response: Make sure that the argument to the DGAMMA
function is within the allowable range. If the argument may or
will be outside the range during program execution, then provide
code to test for the situation and, if necessary, modify the
argument or bypass the source referencing the function
subprogram.

IFY3011 DLGAMA ARG=arg(HEX=hex), LE ZERO. OR GE 4.2937%10%x%73

Explanation: In the subprogram IFYLGAMA (DLGAMA), the value of
the argument is outside the valid range (0<x<4.2937x1073).

supplemental Data Provided: Argument specified.
standard Corrective Action: Result=e.

Programmer Response: Make sure that the argument to the DLGAMA
function is within the allowable range. If the argument may or
will be outside that range during program execution, then
provide code to test for the situation and, if necessary, modify
the argument or bypass the source referencing the function
subprogram.

IFY900IX EXECUTION TERMINATING DUE TO ERROR COUNT FOR ERROR
NUMBER nnnn

Explanation: This error has occurred frequently enough to reach

the count specified as the number at which execution should be

terminated.

supplemental Data Provided: Error number.

128 VS FORTRAN Application Programming: Library Reference

@

standard corrective Action: No corrective action is
implemented.

gsystem Action: The job step is terminated with a completion
code of 16.

Programmer Response: Make sure -that occurrences of the error
number indicated are eliminated.

IFY9011 EXECUTION TERMINATING DUE TO SECONDARY ENTRY TO ERROR .
MONITOR FOR ERROR NUMBER nnnn WHILE PROCESSING ERROR
NUMBER nnnn

Explanation: In a user's corrective action routine, an error

has occurred that has called the error monitor before it has

returned from processing a previously diagnosed error.

supplemental Data Provided: Error numbers.

standard Corrective Action: No corrective action is attempted.

system Action: The job step is terminated with a completion
code of 16.

Note: If a traceback follows this message, it may be unreliable.

Programmer Response: Make sure that the error monitor is not
called prior to processing the diagnosed error.

Example: A statement such as R=A%XB (where A and B are REAL¥%4)
cannot be used in the exit routine for error 252, because FRXPR#
uses EXP, which detects error 252.

Refer to F icati rogrammin angua

for information on the error handling subroutines.

IFY9021 ERROR NUMBER nnnn OUT OF RANGE OF ERROR TABLE

Explanation: A request has been made to reference a
non-existent Option Table entry.

supplemental Data Provided: Error number.

system Action: The request is ignored and execution continues.
IRETCD is set to 0.

Programmer Response: Make sure that the value assigned to an

:r;gr condition is within the range of entries in the option
able.

IFY9031 VMOPT - ATTEMPT TO CHANGE UNMODIFIABLE TABLE ENTRY.
MESSAGE NUMBER=NNNN
Explanation: The Option Table specifies that no changes may be

made in this entry, but a change request has been made by use of
CALL ERRSET or CALL ERRSTR.

Refer to VS FORTRAN Application Programming Language Reference

for information on the error handling subroutines.
supplemental Data Provided: Message number.
system Action: The request is ignored and execution continues.

Programmer Response: Make sure that no attempt has been made to
alter dynamically an unmodifiable entry in the Option Table.

Library Interruption and Error Procedures and Messages 129

130

IFY9042 ATTEMPT TO DO I/0 DURING FIXUP ROUTINE FOR AN I/0
TYPE ERROR, FILE filenama

Explanation: When attempting to correct an I/0 error, the user
may not issue a READ, WRITE, BACKSPACE, ENDFILE, REWIND, CALL
PDUMP, CALL DUMP, DEBUG, or CALL ERRTRA.

Refar to ¥S F i i r in a
for information on the error handling subroutines.

supplemental Data Provided: Filenama.

system Action: The job stap is terminated with a complation
code of 16.

Programmer Rasponse: Make surae that, if an I/0 error is

detected, the user exit routine does not attempt to execute any
FORTRAN I/0 statement.

VS FORTRAN Application Programming: Library Reference

©

-

Page of SC26-3989 as updated 03 Juna 1981 by TNL SN26-0852

OPERATOR MESSAGES

Operator messages for PAUSE and STOP statements may be generated
during load module execution as follouws:

yV IFY001lA PAUSE X
Explanation: A FORTRAN PAUSE statement has been executed. The
yy is an identification number assigned to the message by the

operating system. The x can be:

. An unsigned 1- to 5-digit integer constant specified in the
PAUSE statement.

. A literal constant specified in the PAUSE statement.

L A zero to indicate that the PAUSE statement contained no
constant.

system Action: The program enters the wait state.

Operator Response: Follow the instructions given by the
programmer when the program was submitted for execution; these
instructions should indicate the action to be taken for any
constant printed in the message text or for a PAUSE statement
without a constant.

To resume execution, reply to the outstanding console message
after performing the operations requested.

IFY002A STOP X

Explanation: A FORTRAN STOP statement has been executed. The x
can be an unsigned 1- to 5-digit nonzero integer constant
specified in the STOP statement.

system Action: The STOP statement caused the program to
terminate.

Operator Response: None.

Library Interruption and Error Procedures and Messages 131

Page of 5C26-3989 as updated 03 June 1981 by TNL SN26-0852

APPEN D. DU NAMES

Entry Name Module Name
CHAR IFYCITFN
ICHAR IFYCITFN
INDEX IFYINDEX
LEN IFYCITFN
LGE IFYLXCMP
LGT IFYLXCMP
LLE IFYLXCMP
LLT IFYLXCMP

Figure 22. Character Subprogram Module Names

132

os

IFYVCOMH
IFYVSIOS
IFYVDIOS
IFYVIIOS
IFYVVIOS
IFYVCVTH
IFYVCONI
IFYVCONO
IFYVTEN

IFYVERRM
IFYVERRE
IFYVTRCH

Figure 23.

CMS

IFYVCOMH
IFYVSIOS
IFYVDIOS
IFYVIIOS
IFYCVIOS
IFYVCVTH
IFYVCONI
IFYVCONO
IFYVTEN

IFYVERRM
IFYVERRE
IFYVTRCH

IFYVCOMH
IFYDSIOS
IFYDDIOS
IFYVIIOS
IFYDVIOS
IFYVCVTH
IFYVCONI
IFYVCONO
IFYVTEN

IFYVERRM
IFYVERRE
IFYVTRCH

Reentrant Library Module Names

VS FORTRAN Application Programming:

Library Reference

O

Entry Name

ACOS
AINT
ALGAMA
ALOG
ALOG10
AMAXO
AMAX1
AMINO

~AMIN1

AMOD
ARCOS
ARSIN
ASIN
ATAN
ATAN2

CABS
CCO0S
CDABS
CDCOS
CDDVD#
CDEXP
CDLOG
CDMPY#
CDSIN
CDSQRT
CDVD#
CEXP
CLOG
CMPY#
c0S
COSH
COTAN
CQABS
CQC0$S
cQDVD#
CQEXP
CQLOG
CQMPY#
CQSIN.
CQSQRT
CSIN
CSQRT

DARCOS
DARSIN
DATAN
DATAN2
DCOS
DCOSH
DCOTAN
DERF
DERFC
DEXP
DGAMMA
DLGAMA
DLOG
DLOG10O
DMAX1
DMIN1
DMOD

Figure 24%.

Module Name

IFYSASEN
IFYFAINT
IFYSGAMA
IFYSLGC

IFYSLGC

IFYFMAXI
IFYFMAXR
IFYFMAXI
IFYFMAXR
IFYFMODR
IFYSASCN
IFYSASCN
IFYSASCN
IFYSATN2
IFYSATNZ2

IFYCSABS
IFYCSSCN
IFYCLABS
IFYCLSCN
IFYCLAD

IFYCLEXP
IFYCLLOG
IFYCLAM

IFYCLSCN
IFYCLSQT
IFYCSAD

IFYCSEXP
IFYCSLOG
IFYCSAM

IFYSCOS

IFYSSCNH
IFYSTNCT
IFYCQABS
IFYCQSCN
IFYCQRIT
IFYCQEXP
IFYCQLOG
IFYCQRIT
IFYCQSCN
IFYCQSQT
IFYCSSCN
IFYCSSQT

IFYLASCN
IFYLASCN
IFYLATN2
IFYLATN2
IFYLCOS
IFYLSCNH
IFYLTNCT
IFYLERF
IFYLERF
IFYLEXP
IFYLGAMA
IFYLGAMA
IFYLLGN
IFYLLGC
IFYFMAXD
IFYFMAXD
IFYFMODR

Entry Name

DSIN
DSINH
DSQRT
DTAN
DTANH

EXP
ERF
ERFC

FCDXI#
FCQAXI#
FCXPI#
FDXPD#
FDXPI#
FIXPI#
FQXPI#
FQXPQ#
FQXP2#
FRXPI#&
FRXPR#

GAMMA

IDINT
IFIX
INT

LGAMMA
LOG
LOG10

MAXO
MAXI
MINO
MIN1
MOD

QARCOS
QARSIN
QATAN
QATAN2
QCO0S
QCOSH
QCOTAN
QERF
QERFC
QEXP
QLOG
QLOG10
QSIN
QSINH
QSQRT
QTAN
QTANH

SIN
SINH
SQRT

TAN
TANH

Module Name

IFYLSIN

IFYLSCNH
IFYLSQRT
IFYLTNCT
IFYLTANH

IFYSEXP
IFYSERF
IFYSERF

IFYFCDXI
IFYFCQXI
IFYFCXPI
IFYFDXPD
IFYFDXPI
IFYFIXPI
IFYFQXPI
IFYFQXPQ
IFYFQXPQ
IFYFRXPI
IFYFRXPR

IFYSGAMA

IFYFIFIX
IFYFIFIX
IFYFIFIX

IFYSGAMA
IFYSLGN
IFYSLGN

IFYFMAXI
IFYFMAXR
IFYFMAXI
IFYFMAXR
IFYFMODI

IFYQASCN

IFYQASCN

IFYQATN2
IFYQATN2
IFYQSCN

IFYQSCNH
IFYQTNCT
IFYQERF

IFYQERF

IFYFQXPQ
IFYFQXPQ
IFYFQXPQ
IFYQSCN

IFYQSCNH
IFYQSQRT
IFYQTNCT
IFYQTANH

IFYSSIN
IFYSSCNH
IFYSSQRT

IFYSTNCT
IFYSTANH

Mathematical Subprogram Module Names

Appendix D.

Module Names

133

TNL SN26-0852 (03 June 1981) to SC26-3989

Appendix E: Sample Storage Printouts

A sample printout is given below for each dump format that can be specified for the
storage dump subprogram. The printouts are given in the following order: hex-
adecimal, LOGICAL *1, LOGICAL *4, INTEGER *2, INTEGER *4, REAL *4, REAL *8, COM-
PLEX *8, COMPLEX *16, and literal (see Figure 25). Note that the headings on the print-
outs are not generated by the system, but were obtained by using FORMAT statements.
The number printed at the left of each output line is the storage location (in hexadecimal)
of the first data item tabulated.

The output of the storage dump subprogram (for entry names DUMP, CPDUMP,
and PDUMP) is placed on the obiject error unit data set defined by the installation
during system generation.

CALL POUMP WITH HEXADECIMAL FORMAT SPECIFIED

00A3EQ &35FSE10 00000000 &35FSE1C 10000000 42100000
0060C8 4 00000000 00000000 00000000 00000000
0060F8 €0000000 00000000 1200000 41566666 0000000C 41100000

006ELE T F

CALL PDUMP WITH LOGICAL®l FORMAT SPECIFIED

006E10 kT

CALL PDUMP WITH LOGICAL®4 PORMAT SPECIFIED

CALL PDUMP WITH INTEGER®2 FORMAT SPECIFIED

006E18 10
006E1A -100
006E1C 10

006E20
006ENS

CALL PDUMP WITH INTEGER®4 FORMAT SPECIFIED

1 2 3 4 5 6 7] 9 10
11 12

CALL POUMP WITH REAL®4 FORMAT SPECIFIED
006E00 0.200000006 01 0.53999996€ 01

CALL PDUMP WITH REAL®B FORMAT SPECIFIED
006DC8 0.17599999999999990 03

006000

CALL PDUMP WITH COMPLEX®8 FORMAT SPECIFIED

(3.0000000,%,0000000) (%.0000000,8.0000000)

0060E0

CALL POUMP WITH COMPLEX*16 FORMAT SPECIFIED

€0.9999999999999990,0,9999999999999990) (-0.9999999999999990, -0.9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIED
006E5C THIS ARRAY CONTAINS ALPHAMERIC DATA

CALL CPDUMP

008980 FILE READ ARGUMENT

Figure 25, Sample Storage Printouts

134 VS FORTRAN Library Reference

O

c

INDEX

A

ABS/IAB 34
error message 116
absolute value subprograms 34,19
accuracy figures 72
AINT subprogram
size 86
ALGAMA/GAMMA
accuracy 73
algorithm 67-48
effect of argument error 48
error message 126
size 86
algorithms 31-71
ALOG/ALOG10
accuracy 73
algorithm 52-53
effect of argument error 53
error message 116
size 86
AMAX0/AMINQ subprograms
list of 11
AMOD/DMOD subprogram
list of 11
arguments 21 .
arcosine subprograms 35-37,16
ARCOS/ARSIN subprogram
accuracy 73
algorithm 35
effect of an argument 35
error message 117
size 86
arcsine subprograms 35-37,16
arctangent subprograms 38-41,16
arguments
assembler language 82
explicitly called 12~22
implicitly called 23-26
ARSINZ/ARCOS
(see ARCOS/ARSIN)
ASIN/ACOS
algorithm 35
(see ARSIN/ARCOS)
assembler language
calling sequence 79
requirements 81
ATAN
accuracy 73
algorithm 38
effect of an argument error 38
size 86
ATAN/ATAN2 subprogram
accuracy 73
algorithm 38-39
effect of an argument error 39
error message 116
size

c

CABS subprogram
accuracy 73
algorithm 34
effect of argument error 34

size 86 }
calling VS FORTRAN subprograms
explicitly 12,34
implicitly 23
in assembler language 81
calling sequence .
in assembler language 79
CALL macro instruction 79
CCO0S/CSIN subprogram
accuracy 73
algorithm 58
effect of an argument error 58
error message 121-122
size 86
CDABS subprogram
accuracy 73
algorithm 34
size 86
CDCOS/CDSIN subprogram
accuracy 73
algorithm 58
effect of an argument error 59
error message 124-125
size 86
CDDVD#/CDMPY# subprogram
algorithm 66
size 86
CDEXP subprogram
accuracy 73 .
algorithm 66
effect of an argument error 46
error message 123-124
size 86
CDLOG subprogram
accuracy 73
algorithm 54
effect of an argument error 54
error message 124
CDMPY#/CDDVD#
(see CDDVD#/CDMPY#H)
CDSIN/CDCOS
(see CDCOS/CDSIN)
CDSQRT subprogram
accuracy 73
algorithm 61
effect of an argument error 62
size 86
CDUMP/CPDUMP 30
CDUMP/CPDUMP subprogram 30
algorithm 66
effect of an argument error 66
size 86
CEXP subprogram
accuracy 73
algorithm 66
effect of an argument error &6
error message 120-121
size 86
CHAR subprogram 22
Character subprograms
CHAR 22,10
JCHAR 22,10
INDEX 22,10

LEN 22,10
LGE 22,10
L6T 22,10
LLE 22,10
LLyY 22,10

manipulation routines 22
storage estimates 87

Indaex

135

CLOG subprogram
accuracy 73
algorithm 54 :
effect of an argument erro 54
error message 121
size 86
CMPY#/CDVD#
(see CDVDH#/CMPY#)
common logarithm subprograms 52-55,14
complemented error function
subprogram 41-45,19
complex exponentiation
subprograms 67-71
complex multiply and divide
subprograms 66
corrective action
program interrupt
C0S5/SIN subprogram
accuracy 73
algorithm 56-57
effect of an argument error 57
error message 116
size 86
COSH/SINH subprogram
accuracy 73
algorithm 49
effect of an argument error 49
error message 116
size 86
cosine subprograms 17
COTAN/TAN subprogram
accuracy 73,78
algorithm 63-64
effect of an argument error 64
error message 117
size 86
cotangent subprograms 63-65,17
CQABS subprogram
accuracy 74
algorithm 35
effect of an argument error 34
size 86
€QCo0s
- (see CQSIN/CQCOS)
CQDVD#/CQMPY# subprograms
accuracy 74
algorithm 66
effect of an argument error 66
size 86
CQEXP subprogram
accuracy 74
algorithm 47
effect of an argument error 67
error message 122
size
CQLOG subprogram
accuracy 764
algorithm 55
effect of an argument error 55
error message 122
size 86
CQMPY #/CQDVD
(see CQDVD#/CQMPY#)
CQSIN/CQCOS subprogram
accuracy 74
algorithm 59-60
effect of an argument error 60
error message 123
size 86
CQSQRT subprogram
accuracy 74
algorithm 62-63
effect of an argument error 63
siza 86

136 VS FORTRAN Application Programming:

CSIN/CCOS
(see CCOS/CSIN)
CSQRT subprogram
accuracy 74
algorithm 61-62
effect of an argument error 62

size 86
D
DARSIN/DACOS

algorithm 36
effect of an argument error 36
error message 119
DASIN/DACOS
(see DARSIN/DARCOS)
DATAN
accuracy 74
algorithm 39
effect of an argument error 39
DATAN/DATAN2 subprogram
accuracy 74
algorithm 39
effect of an argument error 39
error message 119
size 86
DCOS/DSIN subprogram
accuracy 74
algorithm 57-58
effect of an argument error 58
error message 118
size 86
DCOSH/DSINH subprogram
accuracy 7%
algorithm 50
effect of an argument error 50
error message 119
size 86 ~
DCOTAN/DTAN subprogram
accuracy 74-75
algorithm 64-65
effect of an argument error 65
error message 120
size 86
accuracy 74
algorithm 62-43
effect of an argument error 43
size 86
DEXP subprogram
accuracy 75
algorithm 46
effect of an argument error 646
error message 118
size 86
DGAMMA/DLGAMA subprogram
accuracy 75
algorithm 48-49
effect of an argument error 69
error message 128
size 86
divide-check service subprogram 27
(see also DVCHK)
DLGAMMA/DGAMMA
(see DGAMMA/DLGAMA)
DLOG/DLOG10 subprogram
accuracy 75
algorithm 53
effect of an argument error 53
error message 118
size 86
(see DCOSH/DSINH)

Library Reference

i;?

N,

g\

s

DMAX1/DMIN1 subprogram 20
DMOD/AMOD 21
(see also AMOD/DMOD)
DSIN/DCOS 17
(see also DCOS/DSIN)
DSINH/DCOSH 18
(see also DCOSH/DSINH)
DSQRT subprogram
accuracy 75
algorithm 60-61
effect of an argument error 61
error message 118
size
DTAN/DCOTAN
(see DCOTAN/DTAN)
DTANH subprogram
accuracy 75
algorithm 51-52
effect of an argument error 52
size 86
DUMP/PDUMP subprogram
assembler language
requirements 28-29
format specifications 28
output 29
programming consideration 29
sample printouts 29
size
DVCHK service subprogram
assembler language

requirements 27,81
size 87
E

end of execution service
subprogram 28
(see also EXIT)
entry name
ERF/ZERFC subprogram
accuracy 75
algorithm 61-42
effect of an argument error 42
size 86
error
messages 90-131
procedures 90
error function subprograms 19
execution error messages 95-130
execution-time routines
messages 95
EXIT service subprogram
assembler language requirements
size 87
EXP subprogram
accuracy 76
algorithm 45-46
effect of an argument error 46
error message 115
size 86
explicitly called subprograms
accuracy statistics 72
list 10-11
size 86-87
use in assembler language 79
use in VS5 FORTRAN 12 ‘
exponential subprograms
explicit 45
implicit 67-71
list 14

28

exponentiation
explicit
(see EXP; QEXP; CQEXP)
implicit
with complex base and complex
exponent 67
with complex base and integer
exponent 67

with integer base and exponent 69
with real base and exponent 68

with real base and integer
exponent 68
exponent overflow exception 27
(see also OVERFL)
FCDXI# subprogram
algorithm 67
error message 114

size 86

FCDXD#/FCAXQ#/FCXPC#H
algorithm 67
effect of argument 67

FCQXI subprogram
accuracy 76
algorithm 70
effect of an argument error 70
error message 120
size 87

FCXPI# subprogram
algorithm 67
error message 114
size 86

FDXPD# subprogram
algorithm 68
effect of an argument error 68
error message 113
size &7

FDXPI# subprogram
algorithm 68
error message 113
size 87

FIXP1# subprogram
algorithm 69
error message 112
size 87 .

FQXP2# subprogram
accuracy 76
algorithm 70
error message 118
size 87

FQXPI# subprogram
accuracy 76
algorithm 70
effect of an argument error 70
error message 114
size 87

FQXPQ# subprogram
accuracy 76
algorithm 71
effect of an argument error 71
error messages 155
size 87

FRXPI# subprogram
algorithm 68
error message 112
size 87

FRXPR# subprogram
algorithm 68
effect of an argument error 68
error message 113
size 87

Index

G

GAMMA/ALGAMA
(see ALGAMMA/GAMMA)
GAMMA subprograms 67-49,20

hyperbolic cosine

subprograms 69-51,18
hyperbolic sine subprograms 69-51,18
hyperbolic tangent

subprograms 51-52,18

ICHAR
INDEX

module name 132
IDINT/IFIX/INT subprogram 21
implicitly called subprograms 66-71

list 26-26

input/out routlnes 8
in-line code
INT (sece IDINT/IFIX/INT)
interruption procedures
intrinsic functions 7

(see also implicitly called

subprograms)

introduction 7

LEN subprogram
LGAMMA 49
(see also ALGAMA/GAMMA)
library messages 90-131
library execution routines 88
LLE subprogram
LLT subprogram
LOG (see ALOG/DLOG)
logarithmic subprograms 52-55,164
log-gamma subprograms 67-49

M

mathematical exception tests
mathematical function subprograms

accuracy figures

algorithms

definition

explicitly called

implicitly called

lists 19-21

performance statistics

sizes

use in VS FORTRAN

use in assembler language
maximum value subprograms 20
MAX0/MINO subprograms 20

138 VS FORTRAN Application Programming:

minimum value subprograms 20
MOD subprogram 20-21
modular arithmetic subprograms 21
module names
character 132
mathematical 133

natural logarithm
subprograms 52-55,1%

opaerator messages 131

out-of-line code 7

OVERFL service subprogram
assembler requirements 27,18
size 87

overflow indicator service
subprogram 27

PDUMP/DUMP (see DUMP/PDUMP) 28-29
performance statistics 72
program interrupt messagaes 90-94¢
progamming considerations

CDUMP CPDUMP 30

DUMP/PDUMP 29

Q

QARCOS (see QARSIN/QARCOS subprogram)
QARSIN/QARCOS subprogram
accuracy
algorithm 37
effect of an argument error
error messagae 127-128
size
QATAN/QATAN2
accuracy 76
algorithm 40-41
affect of an argument error 41
error message 127
size 87
QCO0S (see QSIN/QCOS)
QCOSH (sea QSINH/QCOSH)
QCOTAN (see QTAN/QCOTAN)
QERF/QERFC subprogram
accuracy 77
algorithm 43-45
effect of an argument error 65
size 87
QEXP subprogram
accuracy 77
algorithm 46-47
effact of an argument error 47
error message 126

size 87
QLOG/QLOG10 subprogram .
accuracy 77

Library Reference

C

o : f

algorithm 54-55
effect of an argument error
error message 126-127
size 87
QSIN/QCOS subprogram
accuracy 77
algorithm 59
effect of an argument error
error message 127
size 87
QSINH/QCOSH subprogram
accuracy 76-77
algorithm 50-51
effect of an argument error
error message 127
size 87
QSQRT subprogram
accuracy 7
algorithm 62
effect of an argument error
size 87
QTAN/QCOTAN subprogram
accuracy 77
algorithm 65
effect of an argument error
error message 128
size 87
QTANH subprogram
accuracy 77
algorithm 52
effect of an argument error
size 87

relative error

sample dump printout 134
save areas 81

55

59

51

62

65

52

service subprograms
mathematical exception test 27
sizes 86-87
use in assembler language
use in VS FORTRAN 27
utility 28
SIN/CO0S (sea COS/SIN)
sine subprograms 56-65,17
SINH/COSH (see COSH/SINH)
square root subprograms - 60-63,15
SQRT subprogram
accuracy 78
algorithm 60
effect of an argument error 690
error message 115
size 87
storage estimates
character subprograms 87
execution-time routines 83

extended precision routines 86-87

mathematical function
subprograms 86-87
service subprograms 87
storage dump service
subprograms 28-30

T

TAN/COTAN (see COTAN/TAN)
tangent subprograms 63-65,17
TANH subprogram
accuracy 78
algorithm 51
effect of an argument error 51
size 87

trigonometric subprograms 35-61,16,10

truncation subprograms 21

u

utility service subprograms 28

Index

139

$C26-3989-0

VS FORTRAN Application Programming Cc;:ﬂm

-

s

e]

ace (File No. S370-25) Printed in U.S.A. SC26-3989-0

06960000000 0000009000esestosesdiotttatttosstaeonérnenisonersereloecessencrsensrerionesncsccscncacsorsonssonense:

Note: Staples can cause problems gutomaud mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form,

£ 0000880000008 0000000000000000000000000000000 70680 0avrsurercsrsossvsssve

hesesssscssssnccrsssocse

Reader's
Comment
Form

VS FORTRAN Application
Programming Library Reference
SC26-3989-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required. ‘

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLS here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

$C26-3989-0

Reader's Comment Form

Fold and tape

18 660000000 0060000es0erinetttostenNtetitsett ton s tossossnseniecesnetoensesnedrsssstnnsodiedsstitererstvsetescndssotssosssosossvosns

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

9 9 0 00PN eI 000 00 B0N0CEs00 0000000000000 0P00000000000000000R0N0RcL00R0000RsNRERNNOIIITRIIIRIOICETIRIRRPRORISIOIETRIRTBRTRIOO

Fold and tape

Lo Y A——
T USRS A——
- " SN EEER AR
-— S T AN
- S -
— N TN YEE WAy =,
RS RRRARERET S W S
S MRS NN Y

®

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

€0 0000000000 8000000000006000000C0OEsOEetostscsrssrtsittttttctttserssecessititctitientrecstecisoarnsssscsitecostonentorsestocserosesssne iervsitsetiscstssiossosestosserssescccsssenconsssnsosaos

Fold and tape

o

Please use pressure sensitive or other gummed tape to seal this form.

Note: Staples can cause broblen. g sutomated mail sorting equipment.

€0000008080000000800000s0000000000000000000000000000E00000000C00000000000R0000000000000000000 0000000000000 0

eseccencssssccsnsscsncs

seese

000900000000 00000e0000800c000008CREcceEssscessscossocssnnsonccsccassonsse

Reader’s

VS FORTRAN Application Comment
Programming Library Reference Form
$C26-3989-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systemgy. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLS here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:
Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

$C26-3989-0

Reader's Comment Form

Fold and tape Please do not staple

LB @ 8 6 08 802080000000 0000000 iosetostetsssaesteressssesstesstoseevitorsittsoesteectectietosstonssriecicoecscesessnessonsansasccsocsos

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

I1BM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

E B G0 000000000 000000 00Eirnsestosttsesestoiottsecerorcsrsetorenocsosnersioesnscenioersocsoeeonesnconcenosnsoenocenensensescscesnsensecsscone

Fold and tape Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

1 8 G s 00 e 8000000000000 0000I00000000000000060000000000600000O00CRCOCOCIOCO0OCEESO0CIIIOIIOEOIOEONOGRROONIIoIIlseoeesoesesesonoerserssesosrocsctioodsiosossiostotsssessnsdsistinceessceossneresossssocscscssscssscscosnose

Fold and tape

¢ ﬁlqn Bujwweibold uonesnddy NVHIHOH SA

-

%

0-686€-920S "V'S'N Ul paluild (GZ-0LES "ON 2i!) 3duds

£

o

JE
»

<
ollt

Technical Newsletter

This Newsletter No. SN26-0852
Date 3 June 1981

Base Publication No. SC26-3989-0
FileNo, 5370-25

Prerequisife Newsletters None

VS FORTRAN Application Programming: Library Reference

©Copyright IBM Corp. 1981

This technical newsletter, a part of Release 1 of VS FORTRAN, Program Products 5748-FO3
(Compiler and Library) and 5748-LM3 (Library only), provides new and replacement pages
for the subject publication. These replacement pages remain in effect for subsequent

releases unless specifically altered. Pages to be inserted and removed are:

cover-vi.2 (vi.1,vi.2 added)
13,14

23-26

85-96.4 (96.1-96.4 added)

101-112.1 (112.1 added)
131-134

Each technical change is marked by a vertical line to the left of the change.

Summary of Amendments

Changes included in this newsletter are summarized under “Summary of Amendments”
following the preface.

Note: Please file this cover letter at the back of the publication to provide a record of
changes.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Printed in U.S A,

L)

