

VS FORTRAN Version 2

General Information

Release 3

GC26-4219-4

Fifth EdlUon (November 1987)

This Is a major revision of, and makes obsolete, GC26-4219-3.

This edition applies to Release 3 of VS FORTRAN Version 2, Licensed Programs 5668-805 and 5668-806,
and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface, "About
This Manual." Because the technical changes in this edition are extensive and difficult to localize, they are
not indicated by vertical bars in the left margin.

Changes are made periodically to this publication; before using this publication In connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM OP.erates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California, U.S.A. 95150. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

C Copyright International Business Machines Corporation 1985, 1986, 1987

About This Manual

This manual is intended to help managers and technical personnel evaluate and
plan for using the VS FORTRAN Version 2 licensed program. (It is not intended to
be used as a specifications manual.)

About This Manual iii

Summary of Changes

Release 3, March 1988

Major Changes to the Product
.... Enhancements to the vector feature of VS FORTRAN Version 2

Automatic vectorization of user programs is improved by relaxing some
restrictions on vectorizable source code. Specifically, VS FORTRAN
Version 2 can now vectorize MAX and MIN intrinsic functions, COMPLEX
compares, adjustably dimensioned arrays, and DO loops with unknown
increments.

Ability to specify certain vector directives globally within a source
program.

Addition of an option to generate the vector report in source order.

Ability to collect tuning information for vector source programs.

Ability to record compile-time statistics on vector length and stride and
include these statistics in the vector report.

Ability to record and display run-time statistics on vector length and
stride. Two new commands, VE CST AT and LISTVEC, have been added
to Interactive Debug to support this function.

Enhancements to Interactive Debug to allow timing and sampling·of DO
loops.

Inclusion of vector feature messages in the on-line HELP function of
Interactive Debug.

Simplification of the VECTOR compile-time option .

.... Enhancements to the language capabilities of VS FORTRAN Version 2

Ability to specify the file or data-set name on the INCLUDE statement.

Ability to write comments on the same line as the code to which they refer.

Support for the DO WHILE structured programming construct.

Support for the ENDDO statement as the terminal statement of a DO loop.

Enhancements to the DO statement so that the label of the terminal state­
ment is optional.

Support for statements extending to 99 continuation lines or a maximum of
6600 characters.

Implementation of IBM's Systems Application Architecture (SAA)
FORTRAN definition; support for a flagger to indicate source language that
does not conform to the language defined by SAA.

Support for the use of double-byte characters as character data in source
programs, 110, and for Interactive Debug input and output.

Summary of Changes V

Support for the use of a comma to indicate the end of data in a formatted
input field, thus eliminating the need for the user to insert leading or
trailing zeros or blanks .

... Enhancements to the programming aids in VS FORTRAN Version 2

Enhancements to the intercompilation analysis function to detect con­
flicting and undefined arguments.

Support for the Data-In-Virtual facility of MVS/XA.

Ability to allocate certain commonly used files and data sets dynamically.

Enhancements to the Multitasking Facility to allow large amounts of data to
be passed between parallel subroutines using a dynamic common block.

Support for named file 1/0 in parallel subroutines using the Multitasking
Facility.

... Enhancements to the full screen functions of Interactive Debug

Major Changes to This Manual
... Documentation of the major product enhancements has been added.

... Information presented in Chapter 2 of previous editions has been merged into
Chapter 1 of this edition.

Release 2, June 1987

Major Changes to the Product
... Support for 31-character symbolic names, which can include the underscore U

character .

... The ability to detect incompatibilities between separately-compiled program
units using an intercompilation analyzer. The ICA compile-time option invokes
this analysis during compilation.

... Addition of the NONE keyword for the IMPLICIT statement.

... Enhancement of SDUMP when specified for programs vectorized at LEVEL(2),
so that ISNs of vectorized statements and DO-loops appear In the object listing .

... The ability of run-time library error-handling routines to identify vectorized
statements when a program interrupt occurs, and the ability under Interactive
Debug to set breakpoints at vectorized statements.

... The ability, using the INQUIRE statement, to report file existence information
based on the presence of the file on the storage medium .

... Addition of the OCSTATUS execution-time option to control checking of file
existence during the execution of OPEN statements, and to control whether
files are deleted from their storage media.

... Under MVS, addition of a data set and an optional DD statement to be used
during execution for loading library modules and Interactive Debug.

... Under VM, the option of creating during installation a single VSF2LINK TXTLIB
for use in link mode in place of VSF2LINK and VSF2FORT.

Vi VS FORTRAN Version 2: General Information

... The ability to sample CPU use within a program unit using Interactive Debug.
The new commands LISTSAMP and ANNOTATE have been added to support
this function .

... The ability to automatically allocate data sets for viewing in the Interactive
Debug source window.

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Release 1.1, September 1986

Major Changes to the Product
... Addition of vector directives, including compile-time option (DIRECTIVE) and

installation-time option (IGNORE)

... Addition of NOIOINIT execution-time option

... Addition of support for VM/XA System Facility Release 2.0 (5664-169) operating
system

Major Changes to This Manual
Documentation of the above product enhancements has been added.

Summary of Changes Yil

Contents

Chapter 1. The Features of VS FORTRAN Version 2
The Vector Feature . 2

How Vector Processing Works . 2
Compiler Versatility . 2
Vector Language Considerations . 3
Vector Directives . 4
Vector Report . 4
Vector Tuning . 4

Extensive Language Capabilities . 4
Design Aids . 5
Free-Form Source Option . 5
Extended Statement Length . 5
Comma in Formatted Input . 6
Standard Language Flaggers . 6
IMPLICIT NONE Statement . 6
Input/Output Capabilities . 6
Character Data Type . 6
Long Symbolic Names . 6
Mathematical Subroutines . 7
Bit String Manipulation . 7
Additional Supplied Subroutines and Functions . 7
DBCS Support . 7

Programming Aids . 7
Optimized Object Code . 8
Reentrancy . 8
Dynamic Loading of Library Routines . 8
Multiple System Support . 8
Dynamic Common . 9
Upward Compatibility . 9
Data-In-Virtual Support . 9
lntercompilation Analysis . 9
Dynamic File Allocation . 9
Multitasking Facility 10

Interactive Debug . 10
Source Listing and Display Animation . 11
Additional Interactive Debug Features . 11

Other Debugging Aids 12
Extensive Diagnostics 13
Static Debug ... 13
Additional Tools ... 13

Chapter 2. Programming Requirements and Support 15
Hardware ... 15
Software . 15
Installation .. 16
Compatibility ... 17
License ... 20
Program Services . 20
Warranty . 20

Appendixes .. 23

Contents ix

Appendix A. The Language of VS FORTRAN Version 2 25

Appendix B. Supplied Functions . 29
Mathematical Functions . 29
Additional Functions . 31
Service Subroutines . 31
Error-Handling Subroutines 32

Appendix C. Options .· 35
Compile-Time Options 35
Run-Time Options .. 37

Appendix D. Commands for Interactive Debugging 39

Appendix E. Publications . 43

Index .. 45

X VS FORTRAN Version 2: General Information

Chapter 1. The Features of VS FORTRAN Version 2

FORTRAN is a programming language developed for applications involving math­
ematical computations and other manipulation of numeric data. This makes It
especially well suited to scientific and engineering applications. Because
FORTRAN Is simple and easily learned and produces efficient code, It is widely
used.

Over the years, IBM has developed a number of successful large-system FORTRAN
products. VS FORTRAN Version 2 Is the latest In this series. It offers the proven
facilities of predecessor FORTRANs, plus a number of new features-all of which
help programmers develop applications easily and efficiently, and use the power of
IBM's latest large systems.

Some of the highlights of VS FORTRAN Version 2 are:

... Vector Support

... Extensive Language Capabilities

... Programming Aids

... Interactive Debugging

"" Other Debugging Aids

The following pages describe these features and advantages.

Chapter 1. The Features of VS FORTRAN Version 2 1

The Vector Feature
The VS FORTRAN Version 2 compiler can produce programs that use the speed of
the IBM 3090 Vector Facility. When instructed by a compile-time option, the com­
piler transforms eligible statements in DO loops into vector instructions. Such
instructions can result in significantly faster processing.

For nested DO loops, the VS FORTRAN Version 2 compiler examines eight levels of
loops beginning with the innermost level, and selects for conversion to vector
instructions the eligible loop that will yield the fastest running time of the entire
nest.

A simple recompilation allows most existing programs to take advantage of this
new vector feature. There is no new source language to learn, and, in general, no
recoding is necessary. (Both 7.7-level and 66-level programs can be vectorized.)

How Vector Processing Works
The characteristic feature of vector instructions is that they process multiple array
elements. In effect, they process iterations of a DO loop In groups, and can there­
fore reduce run time dramatically. Figure 1 illustrates this reduction in run time.

DO 8 K = 1, 90
8 A(K)aA(K)+B(K)

Traditional scalar (non-vector) processing requires each element of the
array A to be computed in sequence, one after the other:

A(l)=A(l)+B(l) A(2)=A(2)+B(2) A(3)=A(3)+B(3) A(90)=A(90)+B(90)
run time I

In comparison, vector processing allows the computation of multiple
elements of array A to be overlapped, speeding up processing:

A(l)=A(l)+B(l)
A(2)=A(2)+B(2)
A(3)=A(3)+B(3)

A(90)aA(9G)+B(90)
- run time -I

Figure 1. How Vector Processing Speeds Run Time

Compiler Versatility
VS FORTRAN Version 2 compiles source programs to produce either traditional
nonvector code (usually called scalar code), or vector code. The compiler and
library can operate on both scalar and vector processors. Programs that are can­
didates for vector processing can first be compiled in scalar mode and debugged
on a scalar machine, and then recompiled in vector mode and transported to the
vector machine for linking, loading, and run-time production.

2 VS FORTRAN Version 2: General Information

Vector Language Considerations
Vectorization (the process of compiling DO loops into vector object code) Is
handled for the programmer by the VS FORTRAN Version 2 compiler. In general,
no recoding is necessary to take advantage of vectorization.

VS FORTRAN Version 2 Is able to process source statements with the following
data types Into vector instructions:

REAL*4
REAL*8
COMPLEX*B
COMPLEX*16
LOGICAL*4
INTEGER*4
INTEGER*2 (with some restrictions)

Vector versions of most of the VS FORTRAN Version 2 intrinsic mathematical func­
tions are provided with the product. Thus, these mathematical calculations within
DO loops are eligible to take advantage of the speed of vector processing.
Because these vector mathematical functions have the same names as their scalar
counterparts, programmers need make no coding changes. The compiler automat­
ically selects the correct version.

Statements with the following data types and usage are ineligible for vectorization:

REAL*16
COMPLEX*32
CHARACTER
LOGICAL*1

Even If they satisfy the above data type requirements, not all statements are
vectorizable. Statements and DO loops are ineligible if they contain:

Certain types of branches
1/0 statements
External references (some intrinsic functions are eligible)
ASSIGN
ENTRY
PAUSE
RETURN
STOP
DO loop index variables of other than INTEGER*4 data type
Inner loops ineligible for any of the above reasons

The VS FORTRAN Version 2 compiler will examine each DO loop and select for
vectorization only those statements that can be safely and effectively transformed.
Statements that can not be safely vectorized, or would not run faster as vector
instructions, are compiled into standard nonvector instructions.

Chapter 1. The Features of VS FORTRAN Version 2 3

Vector Directives

Vector Report

Vector Tuning

Directives are available which enable the user to provide additional information to
affect vectorization performed by the compiler. Through these directives the user
can:

.... Tell the compiler what loop-count values are expected during processing, so
that the compiler can better determine whether the loop can be
advantageously vectorized.

.... Indicate to the compiler that certain data relationships should not be consid­
ered in determining eligibility for vectorization. This makes certain ambiguous
loops more likely to vectorize.

.... Specify whether vector or scalar code is preferred.

The programmer can include individual directives for each DO loop or specify that
certain directives be used globally within the source program.

In addition to producing vector code, the compiler can produce a vector report for
the programmer. This lists the results of the compiler's source code analysis, and
shows which loops have been vectorized. If requested, the compiler will generate
compile-time statistics on the length and stride of each DO loop in the source
program (both vectorized and non-vectorized); these statistics can be ll11ted on the
vector report. (Run-time statistics can also be generated by Interactive Debug.)

The report can be used to "tune" the source program; that is, the programmer can
examine the source program for possible coding refinements. Certain sections
that were not vectorized may be recoded to make them eligible for vectorization.
The vector report can also be used to debug and to help understand the structure
of the object code.

The report can be organized according to source order -just as the programmer
coded the source- or according to the sequence in which the compiler placed the
vectorized source code.

Interactive Debug provides the user with the ability to collect information needed to
tune vector source programs for more efficient processing. IAD will record run­
time statistics on the vector length and stride of each DO loop and display the
results on the screen. The timing and sampling facilities provide information on
the relative efficiency of each DO loop. By using the tuning information provided
by IAD, the user can make decisions on how to modify the source code to improve
the run-time performance of the program. For example, from a comparison of the
compiler estimates of vector length and stride to the run-time statistics generated
by IAD, the programmer can modify the vector directives in the program to more
accurately reflect the vector lengths and strides.

Extensive Language Capabilities
VS FORTRAN Version 2 offers flexible language capabilities. It supports both
FORTRAN 77 and FORTRAN 66 language standards. In addition, VS FORTRAN
Version 2 implements IBM's Systems Application Architecture (SAA) FORTRAN
definition.

4 VS FORTRAN Version 2: General Information

Design Aids

Some of the highlights of the VS FORTRAN Version 2 language are described
below. (For a complete listing of the elements of the language, see
Appendix A, "The Language of VS FORTRAN Version 2" on page 25.)

VS FORTRAN Version 2 offers several facilities that ease program design:

The Block IF Statement: Lets programmers create blocks of procedural statements
according to structured programming rules. Constructed with THEN, ELSE, and
END IF, block IF allows one to easily identify each path of the IF and see its overall
scope.

DO WHILE Statement: Lets programmers code DO loops according to the rules of
structured programming. The DO WHILE statement processes groups of state­
ments based on the evaluation of a logical expression, thus providing one of the
basic structured programming constructs. Use of the DO WHILE and block IF state­
ments makes programs easier to debug and maintain.

The INCLUDE Statement: Lets users insert a sequence of prewritten statements
into a source program (at the location of the INCLUDE). This provides the ability to
maintain a set sequence of FORTRAN statements in one location that need to be
inserted at several places in a large program (for example, COMMON, DIMEN­
SION, and EQUIVALENCE statements in multiple subprograms).

INCLUDE is also available in a conditional form (along with a compile-time option).
This gives the ability to selectively include prewritten statements that can cus­
tomize a single program for various applications, without requiring coding and
maintaining a separate program for each.

Programmers can use either a ddname or the file or data-set name on the
INCLUDE statement. Using the file or data-set name decreases the amount of job
control language and file definition statements needed for the program.

Names for Constants: Lets users associate a name with a constant (through the
PARAMETER statement), and then reference that constant by name in the
remainder of the program unit.

End of Line Commentary: Lets programmers write comments on the same line as
the code to which they pertain.

Free-Form Source Option
In VS FORTRAN Version 2, both free format and fixed format are available. Pro­
grammers can use whichever they prefer when coding new programs, and existing
programs can always be recompiled without change to their source format.

Extended Statement Length
Programmers can write statements which extend up to 99 continuation lines or
6600 characters. By allowing longer statements in source programs, VS FORTRAN
Version 2 facilitates the use of long FORMAT statements, initialization of large
arrays, and the use of long names.

Chapter 1. The Features of VS FORTRAN Version 2 5

Comma in Formatted Input
Programmers can use a comma to indicate the end of data in a formatted input
field. By using the comma, the programmer no longer has to insert leading or
trailing blanks or zeros.

Standard Language Flaggers
VS FORTRAN Version 2 provides tools to assist programmers in creating source
programmers that conform to the FORTRAN 77 standard or that adhere to the
Systems Application Architecture FORTRAN definition. (Adherence to SAA
FORTRAN helps to ensure portability of the·source code.)

At the user's request, the compiler will flag source language that doesn't conform
to the specified level of the FORTRAN 77 standard. Or, the user can request the
compiler to identify source language used in the program that is not part of the
SAA FORTRAN definition.

IMPLICIT NONE Statement
The keyword NONE, an extension of the IMPLICIT statement, enforces the good
programming practice of assigning an explicit type to all variables, arrays, external
functions, and named constants. IMPLICIT NONE precludes all default implicit
typing except for the intrinsic functions. This extension provides a check on vari­
able usage and identifies otherwise hard-to-find programming errors such as
spelling mistakes.

Input/Output Capabilities
VS FORTRAN Version 2 offers three types of file access: sequential, direct, and
keyed. This includes access to VSAM ESDS (entry sequenced data sets), ARDS
(relative record data sets), and KSDS (key sequenced data sets).

Language features such as OPEN, CLOSE, INQUIRE, and IOSTAT offer program­
mers extensive control over 1/0 operations. In addition to the standard read/write
operations, programmers can connect and disconnect files, retrieve useful infor­
mation about files and records, and continue executing after 1/0 errors.

Character Data Type
VS FORTRAN Version 2 allows programmers to specify and process character
data. Character data items (variables and array elements) can be up to 32767
characters in length.

For even more programming versatility, VS FORTRAN Version 2 allows use'rs to
identify and process portions (substrings) of character data items.

Long Symbolic Names
VS FORTRAN Version 2 allows symbolic names to be a maximum of 31 characters
long and to include the underscore U character. The use of th~ underscore char­
acter improves the readability of long names.

6 VS FORTRAN Version 2: General Information

Mathematical Subroutines
Mathematical subroutines supplied in VS FORTRAN Version 2 offer enhanced per­
formance and accuracy over their VS FORTRAN Version 1 counterparts.

Many of the routines in VS FORTRAN Version 2 return a value that is never more
than one low-order bit in error. Some always provide a correctly-rounded result.
In contrast, the VS FORTRAN Version 1 routines are typically several low-order bits
In error.

In addition to supplying this increased accuracy, many of the routines run faster
than their Version 1 counterparts.

Bit String Manipulation
VS FORTRAN Version 2 supplies functions that allow programmers to view
INTEGER*4 data as an ordered set of bits, where the set is a binary representation
of an integer value. Programmers can perform logical operations on the bits, shift
them left or right, set them, and test them.

Additional Supplied Subroutines and Functions

DBCS Support

VS FORTRAN Version 2 also has built into it a great number of predefined functions
and subroutines, in addition to the mathematical and bit manipulation routines
described above. These functions and subroutines offer help in a wide variety of
programming tasks. Among them are:

Character manipulation
Internal data conversion
Date and time recording
Error handling subroutines

Because these facilities are provided in the VS FORTRAN Version 2 product, users
can achieve considerable programming power with minimal effort.

For a full list of the facilities provided, see Appendix 8, "Supplied Functions" on
page 29.

Through its support for the double-byte character set, VS FORTRAN Version 2
allows programmers whose languages are ideographic (such as Japanese) to write
programs that process some information in their own language.

Programmers can use double-byte characters In character constants, symbolic
names, and comments within a source program. They can also include FORTRAN
110 statements for character data containing double-byte characters.

Programming Aids
VS FORTRAN Version 2 aids system and programmer performance in the following
ways.

Chapter 1. The. Features of VS FORTRAN Version 2 7

Optimized Object Code

Reentrancy

Programmers can request three levels of object code optimization. Optimized
object code usually requires less storage and results in faster processing. The
levels are:

1. Register and branch optimization.

2. Full text and register optimization, to the extent allowed while retaining inter­
ruption localizing. (Interruption localizing prohibits moving code out of a loop
if it might cause an interruption that would not occur without optimization.)

3. Full text and register optimization, without retaining interruption localizing.
(Although this optimization might result in unanticipated interruptions, incor­
rect answers will not be generated from a legal program.)

VS FORTRAN Version 2 reduces use of main storage by using reentrancy in three
different ways:

1. The compiler itself is reentrant.
2. The compiler can generate reentrant object code.
3. Many of the library routines are reentrant.

Reentrancy means that many people can use the compiler or run an application at
the same time, and a single copy of the compiler, program, or program part serves
them all. A separate copy for each user is not necessary.

Similarly, when different applications running at the same time need to use a reen­
trant FORTRAN library routine, a single copy of that routine can be shared. Each
concurrent application does not need its own copy.

Reentrant application routines need not be shared among different users to
produce savings. Because the shareable parts of infrequently-used reentrant pro­
grams need not be loaded unless they are actually used, main storage require­
ments may be reduced.

Dynamic Loading of Library Routines
Users can choose to have the VS FORTRAN Version 2 library routines linked with
their object modules, or loaded dynamically at run time. Dynamic loading reduces
auxiliary storage requirements for load modules, speeds link-editing, and-in an
XA environment-allows many library routines to reside above the 16-megabyte
line or to be shared by being placed in the extended link pack area.

Multiple System Support
VS FORTRAN Version 2 runs on both MVS and VM systems. (For a complete list,
see "Software" on page 15.) This includes the XA environment, with its large
amounts of virtual storage.

A VS FORTRAN Version 2 program can be compiled on one supported operating
system and then link-edited or loaded and run on another supported system. This
is convenient if an installation has central development systems and separate pro­
duction systems.

8 VS FORTRAN Version 2: General Information

Dynamic Common
The dynamic common (DC) compiler option defines the names of common blocks
to be allocated at run time. This allows specification of very large common blocks
that can reside in the additional storage space available in an XA environment.
This also reduces storage requirements by allocating only those common blocks
that are in subprograms actually referenced during processing.

Upward Compatibility
In general, VS FORTRAN Version 2 is compatible with Version 1 and with earlier
IBM large-system FORTRANs. For details, see "Compatibility" on page 17.

Data-In-Virtual Support
VS FORTRAN Version 2 allows programmers to make use of the data-in-virtual
facility on MVS/XA.

The data-in-virtual facility reduces the amount of overhead inherent in processing
large amounts of data through traditional record-oriented access methods. By
invoking a series of VS FORTRAN Version 2 callable routines, the user can access
a VSAM linear data set, map It to a dynamic common, and process the data set as
if it were a large array.

lntercompilation Analysis
By using the intercompilation analysis function, users can significantly reduce
development time by detecting incompatibilities between program units before
attempting to debug an application. This function' detects conflicting external
names, provides usage information for common blocks, and checks for
disagreement between actual arguments and dummy arguments and for undefined
arguments.

When the ICA(UPDATE) compiler option is in effect, VS FORTRAN Version 2 builds
a file of information obtained from compilations. The user can request the com­
piler to reference and update this file when compiling individual program units to
check the interfaces between currently-compiled and previously compiled program
units.

Dynamic File Allocation .
For certain types of files and data sets, VS FORTRAN Version 2 will allocate a file
or data set-associate a file and device with a FORTRAN program- dynamically.
This means that the user can allocate files or data sets as they are required by the
program, rather than at the time the program is loaded into storage. Dynamic file
allocation reduces the need for file definition and job control statements for certain
common types of files or data sets.

The OPEN and INQUIRE statements have been extended to allow the programmer
to specify a CMS file identifier or MVS data set name, rather than a ddname. A
new callable utility, FILEINF, allows the programmer to optionally specify attributes
of the file. If the programmer chooses not to specify the attributes of the file or
data set, VS FORTRAN Version 2 provides default attributes through a default attri­
bute table which can be changed at customization time. VS FORTRAN Version 2
will build a file definition statement for the file or data set based on the specified or
default attributes.

Chapter 1. The Features of VS FORTRAN Version 2 9

Multitasking Facility
VS FORTRAN Version 2 allows MVS users to take advantage of the improved run­
time performance available on tightly-coupled multiprocessors and attached­
processor systems. This multitasking facility lets a single VS FORTRAN Version 2
application program use several processors in a multiprocessing system simul­
taneously.

The programmer writes multiple subroutines to handle areas of code that can be
run independently. Each subroutine can then be executed simultaneously on a
separate processor.

For example, if a program had a large array of 1000 elements, and the calculation
to be performed on each element is independent of the results of the others, the
programmer could write four subroutines that each process a portion of the array.
On request, VS FORTRAN Version 2 would run the subroutines simultaneously, and
considerably reduce elapsed time. With each subroutine processing 250 elements,
the 1000-element array could be processed three-to-four times as quickly.

The multitasking facility of VS FORTRAN Version 2 handles the dispatching of the
subroutines, so that the programmer need have no special knowledge of the oper­
ating system or of the coupled processors. The programmer controls the subrou­
tines through normal FORTRAN CALL statements. (Such subroutines are not
available to Interactive Debug.)

Because VS FORTRAN Version 2 multitasking is simple to use, it can be quickly
designed into new appll.catlons, and also easily introduced into existing ones.
Large amounts of data can be shared between the main task program and the par­
allel subroutines by using a dynamic common block; each subroutine can perform
1/0 functions for named files. With little coding effort, it allows users to take advan­
tage of the power of two-way and four-way multiprocessing systems, and consider­
ably reduce the run-time of certain types of programs. It is especially valuable for
running large computation-intensive programs that operate on different data inde­
pendently, and can run on dedicated or otherwise-idle machines.

Interactive Debug
Interactive Debug, a component of the VS FORTRAN Version 2 product, is a flex­
ible, efficient tool for monitoring program processing. Use of Interactive Debug
can increase programmer productivity during the development cycle by expediting
the debugging and tuning of programs. It helps users find program bugs by
allowing them to simultaneously view the source program listing and control
program processing. They can debug programs in a convenient, conversational
manner, monitoring the program's activities as it runs.

The programmer can:

... Stop and restart the program at selected points

... Examine and change values of variables, arrays, and array elements

... Trace program transfers

... Track processing frequency of statements

... Skip processing of sections of code

... Control "the action taken for run-time errors

... Locate errors, repair the problem, and continue debugging before recompiling

... Identify the parts of the program that use the most CPU time

10 VS FORTRAN Version 2: General Information

... Record and display run-time statistics on vector length and stride for each DO
loop in the program

For a full list of all of the Interactive Debug commands, and a description of the
functions they provide, see Appendix D, "Commands for Interactive Debugging."

Full use of Interactive Debug requires ISPF (IBM Interactive System Product
Facility) Version 2 and ISPF/PDF (IBM Program Development Facility). For details,
see Chapter 2, "Programming Requirements and Support" on page 15.

Source Listing and Display Animation
VS FORTRAN Version 2 Interactive Debug offers full screen support. Users can
perform debugging on one part of the screen, while watching their program run on
the other part.

When the program is processing, its source listing can be automatically scrolled
through a portion (a window) of the screen, while highlighting the currently­
processing line (color, blinking, and intensification may be used for highlighting).
The effect is an animated picture of program processing. The speed of processing
can also be reduced, so that a slow-motion version can be monitored. Further­
more, because the user can halt processing where desired, a stop-action or freeze­
frame ability is also provided.

Because the user's source listing is moving in tandem with program processing, it
is easier than ever to understand what is happening in the program, and to see the
connection between debugging output and any specific source statement.

Additional Interactive Debug Features
In addition to above functions, VS FORTRAN Version 2 Interactive Debug offers
additional capabilities for versatile program debugging.

An easy Invocation procedure:
The user simply specifies the DEBUG option when invoking a program to be
debugged. This reduces the need for planning, and also allows the debugging of
previously-compiled programs with minimal effort.

Selective debugging of program units:
An optional run-time control file lets the user specify which program units, and
portion of program units, to be debugged. Code not requiring examination can be
run without the overhead of run-time debugging.

Online help information:
Information is provided for all Interactive Debug commands and functions, and for
all vector feature messages. By entering HELP (or using the equivalent PF key),
the user will be presented with the first of a set of screens containing explanatory
information.

Menu screens:
The user is provided with various menus on the screen, which allow for an easy
selection of a choice of action. Menus are available for the HELP facility, for the
screen design facility (choices of color, highlighting, and so forth), and for source
listing identification.

Chapter 1. The Features of VS FORTRAN Version 2 11

Program Sampling:
Interactive Debug enables users to identify the sections of the program that take
the most CPU time to process. Sampling information is collected at regular inter­
vals for each statement of every debuggable program unit, and for each DO loop in
a program unit. Relative distributions are obtained for various program sections.
With this knowledge, programmers can concentrate improvement efforts on the
areas that will have the most effect on performance.

Timing:
Users can measure the CPU run time of the program units, or of the DO loops
within a program unit, being monitored. Users can then judge the relative effi­
ciency of performance improvements by comparing timing data collected before
and after they are implemented.

Manlpulatlon of external files whlle debugging:
Commands that are similar fo FORTRAN 110 statements (for example, ENDFILE,
BACKSPACE, CLOSE, and REWIND) allow a user to manipulate the program's
external sequential files. Also, while remaining in debug mode, it is possible to
browse or edit these files.

Ablllty to Issue system commands while debugging:
Without terminating the debug session, the user can issue commands at the
system level.

Support for the double-byte character set:
Interactive Debug allows programmers to do run-time debugging on a program unit
that contains double-byte characters in the source, or that operates on double-byte
data. The programmer can view both double-byte and EBCDIC characters on the
Interactive Debug panels. Double-byte characters can be used in input entered on
the command line of the main debugging panel or on the line-mode command
entry.

Logging:
Interactive Debug allows users to place the output from some of the commands in
the print data set for later examination. All debug sessions can be logged in a data
set. This data set can subsequently be used as input to Interactive Debug to
recreate a previous debugging session.

Debugging of vectorized and optimized code: Programs compiled with the
VECTOR option or at any optimization level can be debugged (with restrictions).

Batch-mode support:
Debugging sessions can be run in batch mode, by creating an input file of debug­
ging commands. Debugging output will be placed in a file for later examination.

Other Debugging Aids
In addition to the Interactive Debug component, VS FORTRAN Version 2 offers the
following analysis tools:

12 VS FORTRAN Version 2: General Information

Extensive Diagnostics

Static Debug

Additional Tools

Both the compiler and the run-time library provide diagnostic Information.

Complle-Tlme Messages explain the cause of the error, indicate its severity, and
Identify its location (If known). Both error messages and the statements In error
can be displayed at the programmer's terminal. Messages can also be printed on
the source listing, either grouped separately or Inserted inline at the locations of
the errors.

MAP and XREF output on the compilation listing can be viewed at the terminal (In
72-column format) if so desired. One feature of XREF is that It will identify any var­
iables that have been referenced but not Initialized. XREF can also provide SET
and FETCH Information for each variable reference.

Run-Time Messages not only Include an explanation, but identify the offset and
routine of the erroneous statement, and can also identify the line number or
Internal statement number (ISN). In addition, the contents of the program status
word (PSW) are printed in the case of program interrupts and abends (plus register
contents for abends).

Other Run-Time Information can be obtained by calling the many service subrou­
tines supplied with VS FORTRAN Version 2 (for example, OVERFL and DVCHK).
The product supplies additional subroutines that allow a program to dynamically
control its handling of errors.

VS FORTRAN Version 2 programmers can specify debugging packets at the begin­
ning of the source program. Using these debugging packets, they can:

... Check the validity of array subscripts

... Trace the order of processing of all or part of the program

... Display array or variable values each time they change during program proc­
essing, or whenever desired

Should a program abnormally terminate, VS FORTRAN Version 2 automatically
provides two diagnostic aids:

... A traceback map that shows the sequence of called routines up to that point

... A symbolic dump of the program's variables and array elements

The program can also print a traceback map or a dump at any time during proc­
essing by calling a service routine provided by VS FORTRAN Version 2.

Chapter 1. The Features of VS FORTRAN Version 2 13

Chapter 2. Programming Requirements and Support

Hardware

Software

To run programs compiled with the vectorization option specified, the IBM 3090
with the Vector Facility is required. All VS FORTRAN Version 2 programs can be
compiled, and all scalar programs will run, on any IBM System/370 43xx or 30xx
processor, where supported by the operating systems listed under "Software."

The processor must have sufficient real storage to meet the combined storage
requirements of the host operating system and access methods used. Terminal
support is provided by the host subsystem.

On MVS, VS FORTRAN Version 2 can use any 1/0 devices supported by the BSAM,
BDAM, or VSAM access methods. On VM, VS FORTRAN Version 2 can use any 1/0
device supported by OS simulation ~·nder CMS.

VS FORTRAN Version 2 supports vector and scalar compilation, and scalar proc­
essing, under:

.. MVS/System Product Version 1 (5740-XYN or 5740-XYS)-all current releases,
with or without TSO/E (5665-285)

.. MVS/XA: MVS/System Product Version 2 (5665-291 or 5740-XC6) -all current
releases and MVS/XA DFP Version 2 (5665-XA2)-all current releases, with or
without TSO/E (5665-285)1

.. VM/System Product (5664-167)-Release 4 or later, with or without VM/SP HPO
(5664-173) -Release 4 or later2.4

.. VM/XA System Product (5664-308)-Release 1, with bimodal CMS3

.. VM/XA System Facility (5664-169)-Release 2

VS FORTRAN Version 2 supports vector processing under:

.. MVS/XA: MVS/SP Version 2 Release 1.3 Vector Facility Enhancement or
Release 1.7 (5665-291 or 5740-XC6) or later, and MVS/XA DFP Version 2
(5665-XA2)-all current releases, with or without TSO/E (5665-285)1

.. VM/System Product (5665-167)-:-Release 4 or later, with VM/SP HPO
(5664-173)-Release 4.2, with Vector Facility Support2.4

.. VM/XA System Facility (5664-169)-Release 2

.. VM/XA System Product (5664-308)-Release 1, with bimodal CMS3

Chapter 2. Programming Requirements and Support 15

Virtual Storage

Installation

Notes

Use of Data-in-Virtual requires MVS/SP Version 2 Release 2 Vector
Facility Enhancement and MVS/XA DFP Version 2 Release 3.

2 Use of the double-byte character set requires VM/System Product
Release 5.

3 VS FORTRAN Version 2 Release 3 will support VM/XA System Product
Release 1 with bimodal CMS concurrent with the availability of ISPF
support

4 Processing of VSAM files under VM/SP, and under VM/XA in 370 com­
patibility mode, requires VSENSAM (5746-AM2)
Release 1, 2, or 3

Interactive debugging requires TSO/E (on MVS) or CMS (on VM). Interactive
debugging in full-screen mode also requires:

• Under MVS, ISPF Version 2 (5665-319), with or without ISPF/PDF Version 2 for
MVS (5665-317). For enhanced full-screen functions, 5665-319 is required.

• Under VM, ISPF Version 2 for VM (5664-282), with or without,ISPF/PDF Version
2 for VM (5664-285). For enhanced full-screen functions, 5664-282 is require~.

In the requirements given above for Interactive debugging in full-screen mode, the
appropriate ISPF/PDF product must be selected in order to use the following capa­
bilities:

PDF browse and edit facilities in split-screen mode
Automatic browse of the debug print file and log at session end
Start of debugging using Interactive Debug's foreground invocation panel

The compiler requires approximately 1770K bytes of virtual storage (below the
16-megabyte line) to process a typical 100-statement source program. This storage
estimate is for the compiler and its work areas enly, and does not include space for
operating system overhead or other programs. Because VS FORTRAN Version 2
does no page fixing, the minimum real storage for initiating a job is the only real
storage requirement. No auxiliary storage is required since no work files are used.
Because the compiler Is reentrant, a single copy can support multiple users.

The Interactive Debug component requires approximately 400K bytes to begin
processing (plus the storage required to load the program that will be debugged).
Interactive Debug also acquires additional dynamic storage during processing.
The amount varies according to the program being debugged and the type and
quantity of debugging commands issued.

To install and customize the VS FORTRAN Version 2 product under MVS, the
System Modification Program (SMP or SMP/E) is required. VS FORTRAN Version 2
provides the System Modification Program control statements and sample installa­
tion jobs, and the customization jobs needed to install and customize the product.

For installing and customizing under VM, EXECs are provided as part of VS
FORTRAN Version 2.

For customizing VS FORTRAN Version 2 on an XA system, Assembler H Version 2
is required.

16 VS FORTRAN Version 2: General Information

Compatibility
In general, VS FORTRAN Version 2 is compatible with Version 1 and with earlier
large-system IBM FORTRANs.

Source Program Compatibility
Valid source programs that compiled correctly with VS FORTRAN Version 1 will
compile correctly with VS FORTRAN Version 2.

Users who want to convert source programs written in earlier IBM FORTRANs
(FORTRAN G1, HX, or 66-level VS FORTRAN) to FORTRAN 77 can use the IBM
FORTRAN Language Conversion Program (5668-864). The converted programs can
be compiled at a FORTRAN 77 level by the VS FORTRAN Version 2 compiler.

With Version 2 Release 3, comment lines may not precede an @PROCESS state­
ment that Includes the following compiler options:

• DBCS
•SAA
• FIPS
• LANGLVL
• CHARLEN
• NAME
• VECTOR
• FREE I FIXED
• DIRECTIVE

Vector Considerations - Subscript Values and Array Bounds: The VS FORTRAN
Version 2 Compiler assumes that subscripts remain inside array dimensions. Pro­
grams conforming to the FORTRAN 77 standard require that every subscript be
within its corresponding dimension declaration. The FORTRAN 66 standard
requires only that the array element finally selected reside within the boundary of
the total array; In particular, subscripting such as the following is permitted by the
FORTRAN 66 standard:

REAL A(le,1e)
DO 1 I = 1,20

1 A{I,2) = A{I,1)

However, if vectorization Is specified, the loop above will be vectorized with no
check for array bounds exceeded. Thus, it is possible that a program that runs cor­
rectly In scalar mode will not run correctly when vectorized if it does not conform
to the FORTRAN 77 standard when referencing elements in an array.

Input/Output Considerations: For programs compiled on VS FORTRAN Version 2
Release 1.1 or earlle~ compatibility of Input and output source statements may be
affected by semantics changes. For more information, see "Input/Output
Compatibility" on page 18.

Chapter 2. Programming Requirements and Support 17

Object Module Compatibility
Existing object modules compiled by VS FORTRAN Version 1 Release 3 pr later,
OS FORTRAN G1, and OS FORTRAN H Extended can be link-edited together with
those compiled by VS FORTRAN Version 2. The only exception is the following: if
the object modules were produced by the VS FORTRAN Version 1 compiler prior to
Release 3, and if they are programs that pass character arguments to subprograms
or are subprograms that receive character arguments, then they must be recom­
piled by the VS FORTRAN Version ·2 compiler or Version 1 Release 3 or later com­
piler to be compatible.

Object modules may be affect~d by input/output semantics changes. See
"Input/Output Compatibility" for more information.

Library Compatibility
The VS FORTRAN Version 2 Release 3 library must be used to create (that is, to
link-edit) an executable load module from the object module generated by the VS
FORTRAN Version 2 Release 3 compiler.

Input/Output Compatibility
Programs compiled on VS FORTRAN Version 2 Release 1.1 or earlier may be
affected by an improvement in input/output statement semantics.

To assist in file existence verification, the semantics for OPEN, CLOSE, and
INQUIRE have been changed, and the run-time options OCSTATUS and
NOOCSTATUS have been added.

These changes allow the program to determine file existence on the basis of a
file's presence in a storage medium, to coordinate file existence with OPEN state­
ment processing, arid to report and enforce file existence and connectedness prop­
erties.

Some considerations involving input/output compatibility under the new semantics
are as follows:

... A preconnected file can be implicitly opened only once in a program, since the
file loses Its preconnection when a CLOSE statement is given or when another
file is opened on the same unit.

... An OPEN statement cannot be issued for a currently open file except to change
the BLANK specifier .

... INQUIRE can be used to determine the properties of a file that has never been
opened .

.,. INQUIRE specifiers SEQUENTIAL, DIRECT, KEYED, FORMATIED, and UNFOR­
MATIED will return values dependent on how the files could potentially be
connected .

... If run-time option OCSTATUS is in effect:

File existence is checked for consistency with the OPEN statement
specifiers STATUS= 'OLD' and STATUS= 'NEW'.

File deletion occurs when the CLOSE statement specifier
STATUS= 'DELETE' is given (on devices which allow deletion).

... If run-time option NOOCSTATUS is in effect:

18 VS .FORTRAN Version 2: General Information

File existence is not checked for consistency with the OPEN statement
specifiers STATUS= 1OLD 1 and STATUS= 'NEW'.

File deletion does not occur with the CLOSE statement specifier
STATUS= 'DELETE'.

Load Module Compatibility
Existing VS FORTRAN Version 1 and VS FORTRAN Version 2 load modules are
compatible with the VS FORTRAN Version 2 Release 3 library as follows:

... For Version 1 Releases 2, 3, and 3.1

Load modules using the MVS reentrant 1/0 library load module (IFYVRENT)
will run if the VS FORTRAN Version 2 library is made available during
processing. Load modules created with Version 1 prior to Release 2 that
use the reentrant 110 library load module must be relinked with the VS
FORTRAN Version 2 Release 3 library.

... For Version 1 Release 4 or later and Version 2 Release 1 or later

Load modules that ran in load mode will continue to run If the VS
FORTRAN Version 2 library Is made available during processing.

Load modules with nonshareable portions of object modules will run If the
load modules that contain the corresponding shareable portions of those
object modules are made available during processing. No relinking Is nec­
essary.

... For Version 1 all releases and Version 2 Release 1 and 1.1

Load module compatibility may be affected by input/output semantics
changes. For more information, see "Input/Output Compatibility" on
page 18.

Arithmetic Results Compatibility
Because of architectural differences between the vector and scalar hardware, bit­
wise identical results generally occu_r but are not guaranteed between scalar proc­
essing and vector processing of programs compiled and run under VS FORTRAN
Version 2. Bit-wise identical results can be obtained by using the
VECTOR(NOREDUCTION) (or VECTOR(NOINTRINSIC) if the Version 1 library is
used) compiler option; when this option is used, however, some vectorization may
be inhibited.

The instructions used by the VS FORTRAN Version 2 Release 3 compiler to gen­
erate more efficient vectorized code may produce different results from the same
program compiled with the Version 2 Release 2 compiler.

Data Set Compatibility
Data sets created by standard-conforming VS FORTRAN Version 1 programs can
be used by VS FORTRAN Version 2 programs.

When a program is compiled with the LANGLVL(66) option, VS FORTRAN Version 2
provides support for all the file processing capabilities of IBM System/360 and
System/370 FORTRAN IV products: sequential, direct, and asynchronous.

When a program is compiled with the LANGLVL(77) option, VS FORTRAN Version 2
provides support for VSAM ESDS (entry sequenced data set), RRDS (relative
record data set), and KSDS (key sequenced data set), as well as all the same capa­
bilities provided with the LANGLVL(66) option.

Chapter 2. Programming Requirements and Support 19

Interactive Debug Compatiblllty

License

VS FORTRAN Version 2 Interactive Debug is designed for use with programs com­
piled by VS FORTRAN Version 2, and by VS FORTRAN Version 1 Release 4 or later.

Programs compiled with releases subsequent to Version 1 Release 4 (including
Version 2 releases) require link editing with the corresponding library release or a
later library. For example, programs compiled on the Release 4.1 compiler would
require link editing with the Release 4.1 library or a later library.

Batch-mode debugging is available only if the program is using the VS FORTRAN
Version 2 library.

Program sampling is available only if the program is using the VS FORTRAN
Version 2 Release 2 or later library.

DO loop analysis is available only to programs compiled on the Version 2 Release
3 compiler using the IVA suboption of the VECTOR option.

AFFON files for debugging jobs run on Release 2 or earlier must be modified to run
on Release 3.

Separate licenses for the Compiler and Library and Interactive Debug (5668-806) or
the Library only (5668-805) are required for each system on which the licensed
program materials will be used.

Program Services

Warranty

Central Service, including the IBM support center, will be available until discon­
tinued by IBM upon twelve months' written notice.

The VS FORTRAN Version 2 product will conform, when shipped to the Customer,
to its Licensed Program Specifications which are in effect for it at that time, pro­
vided it is properly used in a Specified Operating Environment.

If the Customer believes there is a defect in the program such that it does not meet
its Licensed Program Specifications, the Customer must notify IBM while Program
Services are available for the program.

IBM does not warrant that the functions contained In the program will meet the
Customer's requirements or will operate in the combinations which may be
selected for use by the Customer, or that the operation of the program will be unin­
terrupted or error free or that all program defects will be corrected.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR­
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Licensed Program Specifications may be updated from time to time and such
updates may constitute a change in specifications.

20 VS FORTRAN Version 2: General Information

For Distributed Systems License Option (OSLO) Licenses, warranty service, if any,
will be provided only through the Basic License location.

Following the discontinuance of all program services, the program will be distrib­
uted on an "As Is" basis without warranty of any kind either express or implied.

Any other documentation with respect to this licensed program, including any doc­
umentation referenced herein, is provided for reference purposes only and does
not extend or modify these specifications.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's program may be used. Any functionally equivalent
program may be used instead.

Chapter 2. Programming Requir.ements and Support 21

Appendixes

Appendixes 23

Appendix A. The Language of VS FORTRAN Version 2

VS FORTRAN Version 2 is designed according to the specifications of the following
external standards:

.,. American National Standard Programming Language FORTRAN, ANSI
X3.9-1978, and International Organization for Standardization ISO 1539-1980
Programming Languages-FORTRAN. (These two standards are technically
equivalent, and are referred to inforn:ially as the 77 level.)

... American Standard FORTRAN, X3.9-1966, and International Organization for
Standardization ISO R 1539-1972 Programming Languages-FORTRAN. (These
two standards are technically equivalent, and are referred to informally as the
66 level.)

With Release 3, VS FORTRAN Version 2 supports the Systems Application Architec­
ture Common Programming Interface FORTRAN definition.

VS FORTRAN Version 2 not only supports SAA and both of the above standards,
but also includes many IBM language extensions. The table in Figure 2 on
page 26 lists the major elements of the VS FORTRAN Version 2 language. The
table shows whether:

... An element is supported at the 77 and the 66 levels

... An element is st~ndard (Std) or an IBM extension (Ext) to either the 77 or 66
standard,

... An element is included in the Systems Application Architecture FORTRAN defi­
nition.

Only high-level aspects of the language are shown. (For complete information,
refer to the Language and Library Reference).

Appendix A. The Language of VS FORTRAN Version 2 25

Statement or In 77 ln66
Feature Use Level? Level? In SAA?

Ampersand(&) Allowed as special character No Yes-Ext No

ASSIGN Assigns GOTO targets Yes ·Std Yes-Std Yes

Assigns FORMAT labels Yes -Std No Yes

Assignment statements Assign values to arithmetic and logical data Items Yes - Std Yes-Std Yes

Assign values to character data Items
Yes - Std No Yes

Asynchronous 110 Read/write In asynchronous mode Yes- Ext Yes- Ext No

AT Specifies beginning of debugging packet Yes - Ext Yes- Ext No

BACKSPACE Repositions file at previous record Yes-Std Yes-Std Yes

BLOCK DATA Identifies a data subprogram Yes· Std Yes-Std Yes

CALL Transfers control to a subroutine Yes - Std Yes· Std Yes

Character data type Allows character (string) data Yes-Std No Yes

CLOSE Disconnects file from a program Yes- Std No Yes

Columns 1 to 5 Can be non-blank on continuation line Yes- Ext Yes- Ext No

COMMON Defines storage shared between programs Yes- Std Yes-Std Yes

Allows both character and noncharacter data In one block Yes- Std No Yes

Complex data type Complex numbers of single precision Yes- Std Yes-Std Yes

Complex numbers of double and extended precision Yes· Ext Yes- Ext Yes

CONTINUE Nonoperational executable statement for programming Yes-Std Yes - Std Yes
convenience

Currency symbol ($) Can be used In names Yes ·'Ext Yes-Ext No

DATA Initializes variables and array elements Yes-Std Yes· Std Yes

Initializes variables and arrays with implied DO loops If Yes-Std No Yes
desired

DEBUG and END DEBUG Delimit the debugging packet portion of a program Yes· Ext Yes· Ext No

DEFINE FILE Specifies a direct-access file No Yes - Ext No

DELETE Deletes record from a KSDS file Yes - Ext No No

DIMENSION Defines arrays of up to three dimensions Yes-Std Yes-Std Yes

Defines arrays of up to seven dimensions Yes· Std Yes - Ext Yes

Defines arrays with adjustable size Yes - Std Yes-Std Yes

Defines arrays with explicit lower bounds (which can be Yes - Ext No Yes
positive or negative)

Direct-access 110 Read/write by record number Yes- Std Yes· Ext Yes

DISPLAY Displays data within a debugging packet Yes- Ext Yes- Ext No

DO Gives a convenient way to program loops (using integer DO Yes- Std Yes-Std Yes
variables)

Real and double precision DO variables are allowed; nega- Yes-Std No Yes
live incrementation parameter Is allowed

DO WHILE Initiates processing of program loops based on evaluation Yes-Ext No No
of a logical expression

Figure 2 (Part 1 of 3). Major Elements of the VS FORTRAN Version 2 Language

26 VS FORTRAN Version 2: General Information

Statement or In 77 ln66
Feature Use Level? Level? In SAA?

EJECT Starts new page of source listing Yes- Ext Yes No

END Marks end of program unit Yes-Std Yes-Sid Yes

Terminates program processing Yes-Std No Yes

END DO Terminates processing of a DO or DO WHILE loop Yes- Ext No No

end of line commentary The"!" indicates the beginning of a comment Yes- Ext Yes-Ext No

ENDFILE Writes end-of-file record Yes-Std Yes-Std Yes

ENTRY Specifies alternate entry points into subprograms Yes-Std Yes- Std Yes

EQUIVALENCE Defines shared storage Yes-Std Yes - Ext Yes

Can relate character and noncharacter data Yes-Std No Yes

Explicit type statements Define data types of specific variables Yes-Std Yes -Std Yes

Expressions Manipulate arithmetic, relational, or logical items, or other Yes- Std Yes-Std Yes
expressions

Manipulate character items or arithmetic double precision Yes- Std No Yes
or complex Items

EXTERNAL Defines linked subprograms Yes-Std Yes- Std Yes

FIND Locates next Input record No Yes-Ext No

FORMAT Defines record formats Yes-Std Yes- Std Yes

Character constants and run-time formats allowed Yes-Std No Yes

Free-form source Relaxes format rules for source program Yes- Ext Yes- Ext No

FUNCTION Identifies a function subprogram Yes-Std Yes-Std Yes

GENERIC Allows automatic function selection No Yes - Ext No

GOTO Specifies transfers of control Yes -Std Yes-Std Yes

Hexadecimal constants For Initializing data values Yes- Ext Yes - Ext No

Hollerith constants For initializing integer variables Yes- Ext Yes-Std No

As arguments In CALL statements No Yes - Ext No

As character strings In FORMAT statements Yes- Ext Yes-Std Yes

IF Specifies alternate paths of processing, using arithmetic Yes-Std Yes-Std Yes
and logical IF versions

Block IF version, using ELSE, ELSE IF, and END IF Yes- Std No Yes

IMPLICIT Types groups of variables Yes- Std Yes - Ext Yes

INCLUDE Copies prewritten source statements into program Yes- Ext No Yes

Integer data type Allows Integer numbers Yes-Std Yes-Std Yes

INQUIRE Retrieves Information about a file Yes-Std No Yes

Internal files Allow easy data conversion Yes-Std No Yes

Intrinsic functions Supply arithmetic and generic functions Yes-Std Yes-Std Yes

Supply character and bit functions Yes-Std No Yes

INTRINSIC Explicitly defines intrinsic functions Yes-Std No Yes

• '0 status indicator Determine success of Input/output statement Yes-Std No Yes

F igure 2 (Part 2 of 3). Major Elements of the VS FORTRAN Version 2 Language

Appendix A. The Language of VS FORTRAN Version 2 27

Statement or In 77 ln66
Feature Use Level? Level? In SAA?

Keyed 110 Read/write by record key value Yes - Ext No No

Length fields Optional specification for data types Yes - Ext Yes- Ext Yes

List-directed 1/0 Read/write formatted data without FORMAT statement Yes - Std Yes- Ext Yes

'Literal constants' Literal constants enclosed in apostrophes Yes-Std Yes - Ext Yes

Logical data type Allows true/false values Yes-Std Yes-Std Yes

Mixed-mode expressions Allow mixing of data types Yes - Std Yes - Ext Yes

NAMELIST Read/write referencing named list Yes - Ext Yes - Ext No

OPEN Connects files to a program; error routines can be speci- Yes - Std No Yes
tied

PARAMETER Establishes names for constants Yes - Std No Yes

PAUSE Suspends program processing temporarily Yes - Std Yes- Std Yes

PRINT Installation-dependent write statement Yes - Std Yes- Ext Yes

PROGRAM Names a main program Yes - Std No Yes

PUNCH Installation-dependent write statement No Yes- Ext No

Quotation mark Double quote (") allowed as special character Yes - Ext No No

READ Reads a record from a file Yes-Std Yes -Std Yes

Real data type Single precision floating-point numbers Yes - Std Yes - Std Yes

Double precision floating-point numbers Yes-Std Yes - Std Yes

Extended precision floating-point numbers Yes - Ext Yes - Ext No

Real subscripts Expressions with floating-point numbers can be used as Yes- Ext No No
subscripts

RETURN Returns control to a calling program Yes- Std Yes-Std Yes

REWIND Repositions to beginning of file Yes- Std Yes -Std Yes

REWRITE Rewrites record in a KSDS file Yes-Ext No No

SAVE Saves values after a called program completes executing Yes-Std No Yes

Sequential 110 Read/write sequential files Yes- Std Yes -Std Yes

Statement functions Allow convenient programming of expressions Yes-Std Yes -Std Yes

STOP Terminates program processing Yes- Std Yes - Std Yes

SUBROUTINE Identifies a subroutine subprogram Yes- Std Yes -Std Yes

Symbolic names May be 31 characters long Yes- Ext No Yes

TRACE ON/OFF Traces specific portions of a program Yes- Ext Yes - Ext No

Underscore character U Can be used in names Yes- Ext No Yes

VSAM 110 Supports F.SDS, RRDS, and KSDS files Yes - Ext No No

WRITE Writes a record into a file Yes-Std Yes- Std Yes

Figure 2 (Part 3 of 3). Major Elements of the VS FORTRAN Version 2 Language

28 VS FORTRAN Version 2: General Information

Appendix B. Supplied Functions

The VS FORTRAN Version 2 program product supplies you with a great number of
predefined, built-in functions and subroutines. These offer you help in a wide
variety of programming tasks-mathematical calculation, character and bit manipu­
lations, error-handling operations, and others.

This appendix lists the provided functions and subroutines.

Mathematical Functions

General Type
of Function

Logarithmic

Exponential

Square Root

Trigonometric

Hyperbolic

Most of the mathematical functions are available in multiple versions to support a
variety of data types and precisions. For example, the square root is available in
six versions, so that both real and complex numbers (each in single, double, and
extended precision) can be computed.

Specific Function Function Name

Natural logarithm LOG,ALOG,OLOG,QLOG,CLOG,CDLOG,CQLOG

Common logarithm LOG10, ALOG10, DLOG10, QLOG10

e raised to the power X EXP,DEXP,QEXP,CEXP,COEXP,CQEXP

Principal square root SQRT,DSQRT,QSQRT,CSQRT,CDSQRT,CQSQRT

Sine SIN, DSIN, QSIN, CSIN, CDSIN, CQSIN

Cosine COS,DCOS,QCOS,CCOS,CDCOS,CQCOS

Tangent TAN, DTAN, QTAN

Cotangent COTAN,DCOTAN,QCOTAN

Arcsine ASIN, DASIN, QARSIN

Arccosine ACOS,DACOS,QARCOS

Arctangent ATAN,DATAN,QATAN,ATAN2,DATAN2,QATAN2

Hyperbolfc sine SINH, DSINH, QSINH

Hyperbolic cosine COSH,DCOSH,QCOSH

Hyperbolic tangent TANH,DTANH,QTANH

Figure 3 (Part 1 of 2). Mathematical Functions Supplied

Appendix B. Supplied Functions 29

General Type
of Function Specific Function Function Name

Miscellaneous Math- Absolute value ABS, IABS, DABS, QABS, CABS, CDABS, CQABS
ematlcal

Error function for normal curve ERF, DERF, QERF

Error function complement for ERFC, DERFC, QERFC
normal curve

Gamma function GAMMA, ALGAMA, DGAMMA, DLGAMA

Imaginary part of complex argu- IMAG, AIMAG, DIMAG, QIMAG
ment

Conjugate of a complex argu- CONJG, DCONJG, QCONJG
ment

Truncation of a real number AINT, DINT, QINT

Nearest whole number ANINT, DNINT

Nearest Integer NINT, IDNINT

Remainder MOD, AMOD, DMOD, QMOD

Transfer of sign ISIGN, SIGN, DSIGN, QSIGN

Positive difference IDIM, DIM, DDIM, QDIM

Double precision product DPROD

Largest value MAX, MAXO, AMAXO, MAX1, AMAX1, DMAX1, QMAX1

Smallest value MIN, MINO, AMINO, MIN1, AMIN1, DMIN1, QMIN1

Figure 3 (Part 2 of 2). Mathematical Functions Supplied

30 VS FORTRAN Version 2: General Information

Additional Functions

General Type
cf Function

Character Manipu­
lation

Bit Manipulation

Internal Data Con­
version

SpecHlc Function Function Name

Convert character to integer value of !CHAR
position In collating sequence

Convert integer to corresponding
character In collating sequence

length of character Item

location of character string

lexically greater than or equal to

lexically greater than

lexically less than or equal to

lexically less than

logical AND

loglcalOR

logical exclusive OR

Logical complement

left or right shift

Bit test

Bit set to 1

Bit set to O

To integer

To real

To single precision

To double precision

To extended precision

To complex

CHAR

LEN

INDEX

LGE

LGT

LLE

LLT

IAND

IOR

IEOR

NOT

ISHFT

BT EST

IBSET

IBCLR

INT, IFIX, IDINT, IQINT, HFIX

REAL,FLOAT,SNGL,SNGLQ,DREAL,QREAL,DFLOAT,QFLOAT

SNGL,SNGLQ

DFLOAT,DBLE,DBLEQ

QEXT,QEXTD,QFLOAT

CMPLX, DCMPLX, QCMPLX

Figure 4. Additional Functions Supplied

Service Subroutines
Service subroutines give VS FORTRAN Version 2 programmers control over certain
mathematical excepti,ons and over program termination when unusual conditions
occur. In addition, they provide date and time information, allow the programmer
to manipulate double-byte character strings, and to specify certain attributes for
dynamically allocated files or data sets. (All these prewrltten subroutines are
accessed through a CALL statement.)

Appendix B. Supplied Functions 31

The following subroutines are provided:

ASSIGNM

CDUMPICPDUMP

CLOCKICLOCKX

DATIMIDATIMX

DVCHK

DUMPIPDUMP

EXIT

FILEINF

OVERFL

SDUMP

SYSABDISYSABN

SYS RCS

SYSRCT

SYSRCX

Error-Handling Subroutines

Moves a character string that contains both single- and
double-byte characters to a character variable, substring, or
array element.

Dynamically dumps a specified area of storage.

Provides the current time.

Provides the current day and time.

Tests for a divide-check exception and returns a value indi­
cating the condition that exists.

Dumps a specified area of storage and either terminates
(DUMP) or continues processing (PDUMP).

Terminates processing by returning control to the operating
system.

Sets up file characteristics before processing an OPEN or
INQUIRE statement.

Tests for an exponent overflow or underflow exception and
returns a value indicating the condition that exists.

Provides a symbolic dump of variables.

Causes abnormal termination of the job, either with or
without a dump.

Sets the return code to a value.

Examines the current return code value.

Halts the program (equivalent to EXIT), and passes the
current return code to the operating system.

During program processing, VS FORTRAN Version 2 issues messages if the fol­
lowing errors occur:

Operation
Fixed-point divide
Decimal divide
Floating-point divide
Exponent overflow
Exponent underflow
Specification exception for boundary alignment (vector)
Unnormalized operand (vector)

VS FORTRAN Version 2 also issues messages if it detects various abnormal condi­
tions and if 1/0 errors occur.

32 VS FORTRAN Version 2: General Information

Through the run-time error-handling subroutines provided in, VS FORTRAN
Version 2 you can dynamically control:

The number of times an error can occur before the program is terminated
The maximum number of times a message is printed
Whether a traceback map is to be printed with the message
Whether a user error routine is to be called

(During installation, you can set the default values for these controls in the error
option table.)

Dynamic control is available by calling the following predefined subroutines:

ERRSAV

ERRSTR

ERRSET

ERRTRA

ERR MON

Obtains a copy of an error option table entry.

Stores an updated entry in the error option table.

Changes parameters in the option table (for example, the number of
errors permitted or number of messages to be printed).

Requests a trace of program processing.

Prints an error message.

Appendix B. Supplied Functions 33

Appendix C. Options

Compile-Time Options
VS FORTRAN Version 2 provides you with many options for controlling the opera­
tion and output of the compiler.

These options are:

AUTODBL (value)
Requests that the precision of floating-point items in the program be increased
(single to double, double to extended). Padding can also be requested, to pre­
serve the size relationship of any items sharing storage.

CHARLEN (number)
Specifies the maximum length permitted for any character variable, character
array element, or character function.

Cl (number1 ,number2, ...)
Specifies the identification numbers of the INCLUDES to be processed.

DBCSJNODBCS
Indicates that the source file may contain double-byte characters.

DC (name1 ,name2, ...)
Defines the names of common blocks to be allocated at run time. This option
allows specification of large common blocks that can reside in the additional
storage space available in an XA environment.

DECK I NODECK
Specifies whether the object module in card image format is to be produced.

DIRECTIVE (trigger-constant) I NODIRECTIVE [(trigger-constant)]
Specifies a string which permits processing of selected comments as directive
statements. The DIRECTIVE option can be specified only in an @PROCESS
statement.

FIPS (S I F) I NOFIPS
Specifies whether standard language flagging is to be performed, and, if it is,
the standard language flagging level (subset or full).

FLAG (I I W I E I S)
Specifies the level of diagnostic messages to be written.

FREE I FIXED
Denotes whether the input source program Is In free format or in fixed format.

GOSTMT I NOGOSTMT
Specifies whether internal sequence numbers (for traceback purposes) are to
be generated for a call sequence to a subprogram.

ICA (USE(name1,name2, ...) UPDATE I UPD(name) MXREF I NOMXREF CLEN I
NOCLEN CVAR I NOCVAR MSG(NEW I NONE I ALL)) I NOICA
Specifies whether intercompilation analysis is to take place. Only NOICA can
be specified in an @PROCESS statement.

IL (DIM I NODIM)
Specifies whether the code for adjustably-dimensioned arrays is to be placed
in-line or done via library call.

Appendix C. Options 35

LANGLVL (66 I 77)
Specifies the language level in which the input source program is written.

LINECOUNT (number)
Specifies the maximum number of lines on each page of the printed source
listing.

LIST I NOLIST
Specifies whether the object module listing is to be produced.

MAP I NOMAP
Specifies whether a table of symbolic names and statement labels is to be
written.

NAME (name)
Specifies, for FORTRAN 66 programs only, the name to be given to a main
program.

OBJECT I NOOBJECT
Specifies whether the object module is to be produced.

OPTIMIZE (0 I 1 I 2 I 3) I NOOPTIMIZE
Specifies the optimizing level to be used during compilation.

RENT I NORENT
Specifies whether the compiler should produce reentrant object code.

SAA I NOSAA
Specifies whether the compiler should flag all language elements in a source
program which are not part of Systems Application Architecture.

SDUMP (ISN I SEQ) I NOSDUMP
Specifies whether symbol table information will be printed if the program exe­
cutes a CALL SDUMP statement or abnormally terminates at run time. Also
specifies whether internal statement numbers or sequence numbers are to be
generated for use by Interactive Debug.

SOURCEINOSOURCE
Specifies whether the source listing is to be produced.

SRCFLG I NOSRCFLG
Controls the inserting of error messages in the source listing.

SXM I NOSXM
Specifies whether the MAP and XREF output should be 72 columns wide, to
allow convenient viewing on a terminal.

SYM I NOSYM
Invokes the production of SYM cards in the object text file. These cards
contain location information for variables within a FORTRAN program.

TERMINAL I NOTERMINAL
Specifies whether error messages and compiler diagnostics are to be written
on the output data set and whether a summary of error messages is to be
printed.

TEST I NOTEST
Generates calls to VS FORTRAN Version 2 Interactive Debug at each statement
boundary.

TRMFLG I NOTRMFLG
Causes the FORTRAN source statement in error (if applicable) and its associ­
ated error messages (formatted for the terminal being used) to be displayed at
the terminal.

36 VS FORTRAN Version 2: General Information

VECTOR (REPORT(LIST I XLIST I TERM I SOURCE ISTAT) I NOREPORT INTRINSIC
I NOINTRINSIC IVA I NOIVA REDUCTION I NOREDUCTION SIZE(ANY I LOCAL I
number)) I NOVECTOR
Invokes the vectorization process, which produces programs that can exploit
the speed of the IBM 3090 Vector Facility. The user can control the scope of
vectorization to be done, the type of report desired, the vector section size to
be used, and whether statistics should be generated on the vector lengths and
strides and included on the vector report.

XREFINOXREF

Run-Time Options

Specifies whether a cross-reference listing is to be produced. The cross­
reference listing includes all variables and labels used in the source program.

Options are available to allow you to control certain aspects of a program's proc­
essing:

ABSDUMPINOABSDUMP
Specifies whether, when an abnormal termination is scheduled, the
post-ABEND symbolic dump information is to be printed.

AUTOTASK (/oadmodname,numtasks) I NOAUTOTASK
Specifies control information when using the multitasking facility (MTF).

DEBUG I NODEBUG
Specifies whether VS FORTRAN Version 2 Interactive Debug is to be invoked.
Using this component, a programmer can debug a program as it executes in
either a CMS or a TSO environment.

DEBUNIT (unltnumbers) I NODEBUNIT
To avoid conflict when using interactive debug, identifies any terminal devices
the program will use for its own 110.

IOINIT I NOIOINIT
Specifies whether the error message unit is to be opened or not during initial­
ization of the run-time environment.

OCSTATUSINOOCSTATUS
Controls whether file existence will be checked for consistency with the OPEN
specifiers STATUS= 'OLD' and STATUS= 'NEW' and, for files not dynamically
allocated by the VS FORTRAN Version 2 program, controls whether file
deletion will occur with the CLOSE specifier STATUS=' DELETE'.

SPIE I NOSPIE
Specifies whether, when a program interrupt occurs, the run-time environment
should take control.

STAE I NOSTAE
Specifies whether, when an abnormal termination is pending, the run-time
environment should take control.

XUFLOW I NOXUFLOW
Specifies whether, when exponent underflow occurs, the program will be inter­
rupted or continue with a hardware-provided fixup.

Appendix C. Options 37

Appendix D. Commands for Interactive Debugging

Through an extensive command set, the Interactive Debug component of VS
FORTRAN Version 2 provides the opportunity to examine and modify a program as
it runs. These commands are:

ANNOTATE Copies source listings to the AFFPRINT file and controls the source
listing window. (Use of the ON, OFF, and TOGGLE options require
ISPF.)

AT Sets a breakpoint (the place at which processing of the user's
program is suspended) at one or more statements. The AT
command may specify a list of Interactive Debug commands to be
processed whenever the breakpoint is reached.

AUTOLIST Automatically displays the contents of requested variables in the
monitor window during animation or when program is suspended.
(Use of this command requires ISPF.)

BACKSPACE Positions a sequentially-accessed external file at the beginning of
the preceding record. BACKSPACE may be used where a sequen­
tial file is being read or written. This command allows the user to
move backward in the file to rewrite or reread a record. Its use is
similar to the FORTRAN BACKSPACE statement.

CLOSE Disconnects a sequentially accessed external file from an input or
output unit. CLOSE may be used w,here a sequential file is being
written or read. Its use is similar to the FORTRAN CLOSE state­
ment.

COLOR Specifies color and highlighting choices for various fields of the
debugging screen. (Use of this command requires ISPF.)

DBCS Indicates that the source file and listings may contain double-byte
characters and that variables which contain double-byte characters
can be entered and displayed during a full-screen or line-mode
debugging session.

DESCRIBE Displays data types of variables, and dimensions of arrays.

ENDDEBUG Terminates all debugging activity and allows program processing to
continue as though Interactive Debug had not been invoked.
Optionally initiates program sampling.

ENDFILE Writes an end-of-file mark to a sequentially accessed external file.

ERROR

FIXUP

GO

This command permits the user to edit or browse through the
sequential file. Its use is similar to the FORTRAN ENDFILE state­
ment.

Determines whether messages are received for run-time errors and
specifies how library-detected errors are to be handled. Corrective
action may be taken by the library, or control may be given to the
user, allowing the specification of corrective action using the FIXUP
command.

Assigns new values for the arguments to a library function when the
original arguments were in error. When no arguments are speci­
fied, standard corrective action is performed.

Resumes program processing after it has been suspended.

Appendix D. Commands for Interactive Debugging 39

HALT Terminates processing of a command list, or causes processing to
be suspended at the start of every statement, following every
branch, or at entry to or exit from a new routine.

HELP Provides on-line information about using Interactive Debug and
about messages printed in the vector report listing. HELP can be
used to view the correct syntax and usage of a command or to
receive a detailed tutorial on resolving an error message.

IF Processes a given Interactive Debug command when a logical
expression is true. IF can be used to conditionally process Interac­
tive Debug commands within a list of commands automatically proc­
essed at an AT breakpoint.

LIST Displays the values of variables, array elements, and arrays at the
user's terminal or in a print data set. These can be displayed in a
variety of formats.

LISTBRKS Lists all breakpoints currently set by the AT command and all WHEN
conditions that are currently defined. LISTBRKS will also list the
current HALT command status.

LISTFREQ Lists the number of times statements in the currently qualified
program have been processed or lists statements that have never
been processed.

LISTINGS Displays the listing data set panel. (Use of this command requires
ISPF.)

LISTSAMP Lists sampling counts by statement, DO loop, or by program unit.

LISTSUBS Displays information about all debuggable program units in the load
module.

LISTTIME Displays current elapsed processing time for DO loops and program
units.

LISTVEC Displays vector length and stride information for DO loops, both
vectorized and non-vectorized.

MOVECURS Moves the cursor between the command line and the source listing
window. (Use of this command requires ISPF.)

NEXT Sets a temporary breakpoint (will be processed only once) at the
next statement to be processed.

OFF Removes breakpoints set with the AT command.

OFFWN Suspends monitoring established with the WHEN command.

POSITION Positions the cursor in either the log file at the desired log line or
the source window at the desired ISN, sequence number, or monitor
line number. (Use of this command requires ISPF.)

PREVDISP Redisplays the previous panel displayed by the application program,
if it was displayed via ISPF. (Use of this command requires ISPF.)

PROFILE Displays a panel which the user can use to specify desired defaults
for later debugging sessions. (Use of this command requires ISPF.)

PURGE Cancels output from the currently-executing Interactive Debug
command.

QUALIFY Specifies the default program unit that applies to statement and vari­
able, array element, and array references.

40 VS FORTRAN Version 2: General Information

QUIT Stops all testing, exits Interactive Debug, and returns program
control to the invoking program, usually the operating system.

RECONNECT Tells the library to reset a file to its original (preconnected) state so
that it can be implicitly opened again.

REFRESH Gives users control over the degree of screen refresh when panels
are displayed. (Use of this command requires ISPF.)

RESTART Restarts the debugging session without erasing the current log.
(Use of this command requires ISPF.)

RESTORE Restores the source window to the last point of execution. (Use of
this command requires ISPF.)

RETRIEVE Retrieves the last command issued from the command line. (Use of
this command requires ISPF.)

REWIND Positions a sequentially accessed file at the beginning of the first
record. REWIND allows the user to position at the beginning of the
file so that It may be rewritten or reread. Its use is similar to the
FORTRAN REWIND statement.

SEARCH Locates an ISN or string in the source program. Locates a line
number in the log. (Use of this command requires ISPF.)

SET Assigns a value to a VS FORTRAN Version 2 variable or array
element. Multiple elements of the array may be altered.

SIZE Enlarges or reduces the size of the windows on the main debugging
panel. (Use of this command requires ISPF.)

STEP Provides an animated execution of the program (equivalent to
repeated NEXT-GO pairs).

SYSCMD Processes system commands during Interactive Debug processing.

TERMIO Specifies the 110 routines to be used for the FORTRAN program ter­
minal 1/0. These can be the normal VS FORTRAN Version 2 llbrary
1/0 routines or special Interactive Debug routines that allow 110 to
be captured in the log of the debugging session. It can also specify
whether to send output to a user while in batch mode.

TIMER Initiates timing for specified DO loops or program units.

TRACE Provides tracing of control transfers in the program or tracing of
entries to, and exits from, subroutines.

VECSTAT Records the average length and stride of vectors in the FORTRAN
program.

WHEN

WHERE

Permits suspending execution of the FORTRAN program when a
given condition is satisfied or when a given variable or array
element changes value.

Displays the location within the FORTRAN program at which exe­
cution has been suspended. Optionally, WHERE displays the calling
sequence leading to the currently executing program unit and the
last 10 branches within the program.

Appendix D. Commands for Interactive Debugging 41

WINDOW

ZOOM

Opens, closes, and reconfigures the windows on the main debug­
ging panel. (Use of this command requires ISPF.)

Allows you to switch between allocating the entire screen to one
window and sharing the screen among the windows as defined by
the WINDOW panel. (Use of this command requires ISPF.)

42 VS FORTRAN Version 2: General Information

Appendix E. Publications

The publications supporting the VS FORTRAN Version 2 licensed program are:

VS FORTRAN Version 2: Installation and Customization For VM
(SC26-4339)-describes how to install VS FORTRAN and customize it to the
needs of your installation site under VM.

VS FORTRAN Version 2: Installation and Customization For MVS
(SC26-4340)-describes how to install VS FORTRAN and customize it to the
needs of your installation site under MVS.

VS FORTRAN Version 2: Language and Library Reference (SC26-4221)-gives
the rules for coding source programs using FORTRAN 77 and IBM extensions,
and describes the library routines provided with VS FORTRAN Version 2.

VS FORTRAN Version 2: Programming Guide (SC26-4222)--gives guidance
information on designing, coding, compiling, executing, and debugging VS
FORTRAN programs.

VS FORTRAN Version 2: Interactive Debug Guide and Reference
(SC26-4223)-gives guidance on invoking and executing VS FORTRAN Interac­
tive Debug.

VS FORTRAN Version 2: Reference Summary (SX26-3751)-a convenient
pocket-sized reference booklet summarizing source language and compiler
options.

VS FORTRAN Version 2: Diagnosis Guide (LY27-9516)--gives information on
diagnosing compiler and run-time library errors and instructions on submitting
APARs.

VS FORTRAN Version 2: Licensed Program Specifications (GC26-4225)-a brief
description of the VS FORTRAN Version 2 Release 2 Program Product, which
serves as the basis for the warranty.

VS FORTRAN Version 2 Release 3 supports the Systems Application Architecture
FORTRAN interface definition. The FORTRAN interface definition is documented in
Systems Application Architecture Common Programming Interface FORTRAN Ref­
erence, SC26-4257.

Appendix E. Publications 43

Index

A
abnormal termination subroutines 32
access methods supported 15
advantages 1
allocating files and data sets 9
American National Standard (ANS) 25
arithmetic expression 27
asynchronous inpuUoutput 26
automatic error handling 32
automatic function selection 27

B
bit manipulation functions 7, 31
block IF statement 5
built-in functions 29

c
Central Service 20
character data type 6, 26
character manipulation functions 31
CLOSE statement, changes to 18
CMS 15
comma in formatted Input, use in 6
commands, debugging 39
commentary, end of line 5
compatibility 17
compilation compatibility 9
compile-time options 3E
compiler

diagnostics 13
flexibility 8
requirements 15
versatility 2

complex data type 26
concurrent usage (reentrancy) 8
continuation lines 5
conversion functions 31
copying source (INCLUDE) 5

D
data conversion functions 31
data set allocation, dynamic 9
data set attribute utility routine 32
data set compatibility 19
data type

character 26
complex 26
double precision 28
extended precision 28
integer 27
logical 28

data type (continued)
real 28

data-in-virtual facility 9
DBCS (double-byte character set) 7
debugging 10-13

program sampling 12
design aids 5-7
devices supported 15
diagnostic tools 10, 13
direct access inpuUoutput 26
directives, vector 4
divide-check subroutine 32
DO loops and vectorization. 2
DO WHILE statement 5
double precision data type 28
double-byte character set 7
dump subroutine 31
dump, automatic 13
dynamic common 9
dynamic file allocation 9

specifying attributes 32
dynamic loading of library routines 8

E
end of line commentary 5
entry sequenced data sets

See ESDS
equipment requirements 15
error handling subroutines 13, 32
error messages 13, 32
ESDS 6
exponent overflow/underflow subroutine 32
exponent underflow control 37
exponential functions 29
expressions 27
extended precision data type 28
extensions, IBM 25

F
features 1
file allocation, dynamic 9
file attribute utility routine 32
file processing 6, 19
fixed-form source 5
flagging of nonstandard language 6
flexibility 8
formatted Input, use of comma in 6
FORTRAN language

advantages 1
description 25
features 1
history 1

Index 45

FORTRAN language (continued)
IBM extensions 4, 25
levels 4, 25
standards 25

free-form source 5
functions 29

G
generic functions 27
G1 (OS) FORTRAN IV programs 18

H
H-Extended (OS) FORTRAN IV programs 18
hardware requirements 15
history of FORTRAN 1
Hollerith constants 27
hyperbolic functions 29

I
IBM extensions 4, 25
ICA compile-time option 9
IF statement 5
IMPLICIT NONE statement 6
INCLUDE statement 5
information from compiler and library 13
input/output capabilities 6
input/output compatibility 18
INQUIRE statement, changes to 18
installation requirements 16
integer data type 27
Interactive Debug

commands 39
compatibility 20
features 10--12
requirements 16

Interactive System Productivity Facility
See ISPF·

intercompilation analysis 9
internal data conversion functions 31
International Organization for Standardization 25
Interrupt messages 32
intrinsic functions 27, 29
ISO standard 25
ISPF 16

K
key sequenced data sets

See KSDS
keyed access input/output 28
KSDS 6

46 VS FORTRAN Version 2: General Information

L
language 4, 25
Language Conversion Program

See LCP
language flaggers 6
LCP 17
length of statements extended 5
library, run-time

compatibility 18
dynamic loading 8
functions supplied in 29
reentrancy 8

licensing required 20
list-directed input/output 28
literal constants 28
load module compatibility 19
logarithmic functions 29
logical data type 28

M
machine requirements 15
math library subroutines

list of 29
vector versions 3

mathematical subroutines 7
messages 32

compile-time 13
error 13, 32
interrupt 32
run-time 13
warning 13

mixed-mode arithmetic expressions 28
multitasking facility 10
MVS/SP 15
MVS/XA 8, 9, 15

data-in-virtual facility 9

N
name, long symbolic 6
naming constants 5
NONE parameter on IMPLICIT statement 6
NOOCSTATUS run-time option 18

0
object code optimization 8
object module compatibility 18
OCSTATUS run-time option 18
OPEN statement, changes to 18
operating systems 8, 15
optimized object code 8
options

compile-time 35
run-time 37

overflow control 32

p
PDF 16
processor requirements 15
Program Development Facility

See PDF
program interrupt messages 32
program sampling 12
program services 20
programmer-controlled error handling 33
programming aids 7
programming requirements and support 15

R
real data type 28
reentrancy 8
relational expression 27
relative record data sets

See RRDS
requirements

compiler 15
hardware 15
installation 16
interactive debug 16
machine 15
processor 15
programming 15, 16
run-time 15
virtual storage 16

RRDS 6
run-time

s

diagnostics 13
error control 33
options 37
requirements 15

SAA language flagger 6
sequential access inpuUoutput 28
service subroutine 31
seventy-seven language level 25
sixty-six language level 25
software requirements 15
standard language flagger 6
standardsforlanguage 4,25
statement function 28
statement length, extended 5
static debug 13
storage requirements 15
subroutines 29
subroutines, mathematical 7
substring, character 6
support from IBM 20
symbolic (static) debug 13
symbolic names 6
System/360-370 FORTRAN IV compatibility 18

Systems Application Architecture 4, 25
systems supported 15

T
terminate processing service routine 32
traceback map 13
trigonometric functions 29
TSO/E 15

u
underflow control 32, 37

v
variable typing 6
vector directives 4
vector feature

considerations 19
description 2
limitations 3
speeds processing of DO loops 2

vector report 4
virtual storage requirements 16
VM/SP 15
VM/XA 15
VM/XA SP with bimodal CMS 15
VSAM support 6, 16

w
warning messages 13
warranty 20

Numerics
31-character name 6
66-level language 25
77-level language 25

Index 47

Qi
0 z

VS FORTRAN Version 2
General Information
GC26-4219-4

Reader's
Comment
Form

This manual is part of a library that serves as a 1eference source for system analysts, programmers, and operators of I BM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action. if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN Ls) to this book, please list them here:--------------

Chapter/Section --

Page No.--------------

Comments:

If you want a reply, please complete the following information.

Name--------------------------- Phone No.(__) _________ _

CompanY--

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

GC26-4219-4

Reader's Comment Form

Fold arid tape

Fold arid tape

--.....- ------ ----- - -- -. _.__
- ----------_ _.. __ _

<!>

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

back nf thP. titlP. nAnR I

II

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

