Systems

GC26-3986-1

File No. S370-25

VS FORTRAN
Application Programming:
Language Reference

Program Numbers 5748-FO3 (Compiler

Release 1.1

and Library)
5748-LM3 (Library Only)

This publication was produced using the
IBM Document Composition Facility
(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

second Edition (January 1982)

This is a major ravision of, and makes obsoleta, 6C26-3986-0, and
its technical newsletter, GN26-0830.

This edition applies to Release 1.1 of VS FORTRAN, Program
Products 5748-F03 (Compiler and Library) and 5748-LM3 (Library
Only), and to any subsequent releases until otherwise indicated
in new editions or technical neusletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.

Editgriai changes that hava no technical significance are not
noted.

Changes are periodically made to tha information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors

Bibilography, 6C20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may ba
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S5.A. 95150. IBM may use or
distribute any of the information vou supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information vou supply.

?9g%pyright International Business Machines Corporation 1981,

Ly

D)

o

‘:}

PREFACE

INDUSTRY STANDARDS

This manual outlines the programming rules for VS FORTRAN
1978-1level source language. It includes Full American National
Standard FORTRAN (X3.9-1978) plus IBM extensions.

After a brief introduction, the following subjects are discussed:
1. The VS FORTRAN language
2. Data

Constants

Variables

Array elements
Character substrings

3. Expressions

Arithmetic
Character
Relational
Logical

4. Statements (in alphabetic order)

5. Appendix

Source Language Flagger (Includes execution-time
cautions)

VS FORTRAN-Supplied Procedures

IBM and ANS FORTRAN Features

Extended Error Handling Subroutines

EBCDIC and ASCII Codes

If this book is revised, a summary of amendments will be included
with the technical neuwsletter or new edition. Changes will be
highlighted.

The VS FORTRAN Compiler and Library program product is designed
according to the specifications of the following industry
standards, as understood and interpreted by IBM as of June, 1980:

1. American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77).

Portions of this manual are copied from American National
Standard Programming Langua FORTRAN, ANSI X3.9-1978. This
material is reproduced, with permission, from American
National Standards Institute, Incorporated, 1430 Broaduay,
New York, New York 10018.

2. International Organization for Standardization IS0 1539-1980
Programming Languages—FORTRAN.

3. American Standard FORTRAN, X3.9-1966.

4. International Organization for Standardization ISO R
1539-1972 Programming Languages-FORTRAN.

Standards 1 and 2 above are technically equivalent. When this
manual refers to the current standard, it is referring to
standards 1 and 2.

-t
e
-to

Preface

Standards 3 and 4 above are technically equivalent. When this
magu:l refers to the old standard, it is referring to standards 3
an .

Both the FORTRAN 77 and the FORTRAN 66 standard languages include
IBM extensions. When this manual refers to current FORTRAN, it is
referring to the FORTRAN 77 standard plus the IBM extensions that
are valid with it. When this manual refers to old FORTRAN, it is
rgzﬁrrgng to the FORTRAN 66 standard plus the IBM extensions valid
Wi it.

IBM VS FORTRAN PUBLICATIONS

iv

The VS FORTRAN publications are designed to help develop programs
with a minimum of wasted effort. This book, VS FORTRAN Application
Programming: lLanquage Reference, describes the rules for coding
VS FORTRAN programs when using the current FORTRAN.

A series of related publications contain detailed documentation
on writing programs using these rules:

. VS FORTRAN Application Programming: Guide, SC26-3985,
contains guidance information on designing, coding,
debugging, testing, and executing VS FORTRAN programs uritten
at the current FORTRAN language level.)

. VS _FORTRAN Application Programming: ibrarvy Reference,
5C26-3989, contains detailed information about the
execution-time library subroutines.

. VS FORTRAN Application Programming: stem Services
Reference Supplement, 5C26-3988, contains FORTRAN-specific
reference documentation.

. VS _FORTRAN Application Programming: Source-Time Reference
Summary, 5X26-3731, is a pocket-sized reference card
containing current FORTRAN syntax and brief descriptions of
the compiler options.

. System/360 and System/370 FORTRAN IV Language, GC28-6515,

contains the rules for writing VS FORTRAN programs using
FORTRAN 66.

. IBM System/370 Reference Data, GX20-1850.

Figure 1 shows how these manuals can be used together.

VS FORTRAN Language Reference

o

(:3’ Application Programming and Operation

Publications
VS FORTRAN
Application Programming:
Guide compile
Design Link
- Code Execute
Debug Debug
FORTRAN 1V VS FORTRAN Vs FORTRAN Vs EORTRAN
Language Language system Services tibrary
Reference Reference Reference Reference
supplement
VS FORTRAN
Reference
summary

C

Figure 1. IBM VS FORTRAN Application Programming Publications

Preface

v

SUMMARY OF AMENDMENTS

RELEASE 1.1, JANUARY 1982

MISCELLANEOUS CHANGES

L]

ELEASE UNE 198

MISCELLANEOUS CHANGES

Function subroutine charts have been added to Appendix B.

The IBM extension abbraviations for .TRUE. and .FALSE. have
been clarified.

Several examples have been corracted.

The syntax designations in tha GO TO and logical IF statements
have been corrected. v

Adjustments have been made to the ERRTRA subroutine
description, including the Option Table Default Values.

The index has been expanded.

Unsigned arithmetic constants are explained.

O

The IBM extension to the DATA statement is rewritten.
The EJECT statement should not ba continued.

A logical IF statement containing stn may be labeled.
The INCLUDE statement may not be continued.

A parenthesis has been added to the PARAMETER statement
syntax.

MAIN® has been changed to MAIN in the PROGRAM statement.

ID=id is a required parameter in tha WAIT statement.

vi VS FORTRAN Language Referencea

CONTENTS

Introduction . .
Language . e . .
Compiler .« e . .
Execution-Time lerary .
Methods of Presentation .

Format Notation . .

Documentation of IBM Exten51ons .
Valid and Invalid VS FORTRAN Programs

« o @
* o e 0

“ e o o o ®
e o o o @

e o o o @

¢ o o o o @

-
-
.
.

¢ & o & o o O
e » o o ¢ o o O
e ¢ o o o o o @
¢« ¢ o e o o o @
o o ¢ o 0 ¢ o+ @

VS FORTRAN Language o o o
Language Definitions . .
Language Syntax .« .
Source Language Statements
Fixed-Form Source Statements
Free-Form Source Statements
Source Statement Characters
Names .. e e e e e s
Statement Numbers e e e e
Keywords e e e e e e e e e

VS FORTRAN Data
Constants
Arithmetic Constants .
Integer Constants .
Real Constants e e e

o e @

o o @
* o s 0
s s o @
« o e

“« .

e o o o
s s ¢ o 4 ¢ o 0 o @
¢ 6 o e 4 o e s s @
¢ ¢ o 2 e ¢ o o o @
* o 8 s e 0

L A I)

e ¢ o ¢ o o 4 s e @

¢ o o o

Complex Constants
Logical Constants .
Character Constants
Hollerith Constants
Hexadecimal Constants

Variables . . e e e e
Variable Names . .
Variable Types and Lengths

¢ o o o+ o o o 8

¢ s e o e 2 e s 0 e o @
o ¢ o o o o o 0 o s o 0
e o ¢ o e o e e o s e »
e o ¢ o 9+ s o o e o o 0@
e o 0 o o o ¢ 0 s o o 0
e o & & ¢ 4 & s s 0o s @

o ¢ e o o e s e s s s @

e ¢ & o o o o o o s o 0 ®
* o & ¢ o o o 0 o o o o ®
e o o o o o o s o o o 0o @

e ¢ o o o o o @

« & e 2 o o s o o+

¢ 6 & ¢ o o ¢ & o s 2 0

* e o 0 o 0 s ¢ o 0 e o o 8 2 s o @

s ¢ e o o s s @

-
.
.
.

e o o o e 9 e ®
v e 8 o & 2 o+ »

s o o @

4 0 v s e 0 s 0 e 0

e o o s @ ¢ ¢ o o e o

¢ o o & o o ¢ o s & 0 o 0
-

Type Declaration by the Predeflned Specrficatlon

Tvype Declaration by the IMPLICIT Statement
Tvype Declaration by Explicit Specification
Array Elements e s e et e e e e e e e e e
Subscripts
Size and Type Declarat\on of an Array .
Object-Time Dimensions e e e e e e
Character Substrings e e e e e e e e e e

VS FORTRAN EXPressions . . « « « «

Evaluation of Expressions e e e e

Arithmetic Expressions « e e
Arithmetic Operators . . .

e o o o

-
.
.
.

- « *

o . . e .

¢ * o
L I]

Stateme&t

-

-

Rules for Constructing Arvthmetlc Expressions

Use of Parentheses in Arithmetic Expressions

Type and Length of the Result of Arithmetic Expressxon

Examples of Arithmetic Expressions . e e
Character Expressrons . . .

Use of Parentheses in Character ExprQSSIOns
Relational Expressions e e e e e e e e e e e
Logical Expressions e e e e e e e e e e e e

Logical Operators

Order of Computations 1n Loglcal Expresstons

Use of Parentheses in Logical Expressions

V& FORTRAN Statements c o e s o @
VS5 FORTRAN Statement Categories .
Assignment Statements .
Sontrol Statements « . e .
Data Statement e e e e e .
Ilebug Statements e e e e .
Input/Output Statements .
Mzain Program Statement . .
Spacification Statements .
Subprogram Statements . ..
VS FORTRAN Compiler Directing

e o o o o o
e ¢ o 0 o o e ¢ o @
e & 6 o o 0 o o o @

e o o s ¢ o o o @

.
¢ o ¢ o s & o 0 s o @

*
.
. .
.« . e
e e .
. . .
. e .
.« e e
. e
. e
State

-

¢ 6 & e o o o 0 s e 8

e 2+ e o o

e o ¢ 0

-

.

* e o

a & o & o o o o ¢ o @

o« ¢ o o

.
e o
. o
-

. e
.

.

.
.
-
-
-

e ¢ o o e o o

.

e o & ¢ ¢ 6 o s 0 s @
¢ e o ¢ o o ¢ o s v &

Contents

e e o o * s o+ @

.

¢ o o o

e o o 2 4 o s s e e o s

.

.

.

¢ o o o o e o o

e ¢ o e o o 4 0 o o @

¢ o & o o o o o e @ e ¢ o o o s e @

LI AL I T TSN B I S L S I L B

W, o ¢ o ¢ @

¢ o ¢ e ¢ o o @

¢ o o & s & ¢ o o o 0

e & e ¢ o 0 s s s e o

« o e 0 0

N A

e o o e s o e o

¢ e e e o s @

e * & o ¢ ¢ o 0

L N I I I I Y B]

e ¢ o 4 o o 0 ¢ 2 0 0 s e v 0

PR T T SR) e« o o 0 o

® ¢ o o o o o

¢ o e & o 4 4 e s o »

o o ¢ 9 o o o @

* 6 e o ¢ o o @

UGN OO NOVIVILIAD WUNN R -

b et b et b b

15

vii

Order of Statements in a Program Unit c s e e e e e e e e 44
VS FORTRAN Statement Descriptions &5
Arithmetic IF Statemaent e e e e e e e e s e e e e e s e e 45
ASSIGN Statement s e e s s e e e e e e e e e e e e e e e 46 o
Assigned GO 7O Statement00 0. &6
Assignment Statements T - 4 e
Arithmetic Assignment Statement e e e e e e e e e e e s 47
Character Assignment Statement e e e e s e e e e e e 47
Logical Assignment Statement e e e o e s e e s e e e e 47
AT Statement O . 53
BACKSPACE Statement e e s e s e s e s e e e e e e e e e e 4
BLOCK DATA Statement t e e e e e e e e e e e e e e e . . 36
Block IF Statement e s e e ae e e e e 57 -
CALL Statement . e b e e s e e e e e e e e e e e 58
CHARACTER Type Statement e e e s e e e e e e e e e e e s 58
CLOSE Statement 59
Comments .. e .
Fixed-Form Input e e b e e e e e e e e e et e e e e .. . 61
Free-Form Input e e s s e e s s e e e e e e e e . . 61
COMMON Statement s e e e e e e e e e e e e e e e e e e e 62
Blank and Named Common e e e e e e e e e e e e e e ee 63
COMPLEX Type Statement e e e e e e e e e e e e e e e e e . 6%
Computed GO TO Statement e e e e s e e s e e e e e e e e 64
CONTINUE Statement C e e e e e e e s e e e e e e e e e e . 65
DATA Statement 66
DEBUG Statement e e e e e e e e e e e 68
Considerations when Usmg DEBUG e e e e e . e h e e e e 69
DIMENSION Statement e e e e e e e e e e e e e e e e 71
DISPLAY Statement e e e e e 4 e e s e e e e e e e e e a e 72
DO Statement . . e e e e e e e e e e e e . 73
Implied DO in a DATA Statement e e e e e e « e . 7%
Implied DO in an Input/Output Statement .« e e e . 74
DOUBLE PRECISION Type Statement e e e e e e e e e e e e 75
EJECT Statement C e e e s e s e e e e e e e e e e e e e 76
ELSE Statement e e e s e e s e e e s e e e e s e e e e e 76
ELSE IF Statement e e e e s e e e e e e e et e e e e . 76
END Statement . . . e e e e e e e e e e e e e e e e 77
END Statement in a Function Subprogram e e e e e e e 77 SN
END Statement in a Subroutine Subprogram 77 s
END DEBUG Statement e e e e e e e e e e e e e e e e e e e 78 S
ENDFILE Statement e e e e e s e s e e e e e e e e e e e e 79
END IF Statement e e e e e e e s e e e e e e e e e e e 80
ENTRY Statement P T S c e e e e e . . 81
Actual Arguments in an ENTRY Statement e e e e e e . . 82
Dummy Arguments in an ENTRY Statement e e e e e e 82
EQUIVALENCE Statement e e e e s e e e e e e e e e e 8%
Explicit Type Statement e e e e e e e e e e 85
EXTERNAL Statement e e e s s s e e s e s e e e e e e e e e 89
FORMAT Statement . e e e e e e e e e e e e .« e e . 90
General Rules for Data Conversion 92
Forms of a FORMAT Statement e e e e e e e e e e e . . 94
I Format Code 95
F Format Code c v e e e e e e e e e e 95
D, E, and Q@ Format Codes 96 .
G Format Code C e e e e e e e e e e e 97
P Format Code 97
Z Format Code e e e e e e e e e e . e et e e e e e . 99
Numeric Format Code Examples e o s = a .« . - s e s 99 .
L Format Code N 14
A Format Code e e e e . et e e e s e e o« « . 102
H Format Code and Character Constants e e e e e e e e 103
X Format Code e s e s e s e . . e s s e s e s e o o+ 103
T Format Code e e e e e e e e e e e h e e e . 104
Group Format Specification . . 104

S, SP, and SS Format Codes
BN Format Code e e e o e e
BZ Format Code e e s e o e

e o o o o o o
e o e o & o ¢
‘e ¢ o o o o o o
¢ e e o v 0

. . . . « 106

Slash Format Code e e e e e .« « 106

Colon Format Code .« o e & s s e s e s e o « s 107

Reading Format Specifications at ObJect Time 107

List-Directed Formatting e e e e s s e e s s s s s o s . 108
FUNCTION Statement ¢« ¢ ¢ ¢ ¢ v ¢ v v o o o o o« o« 111 AN
Actual Arguments in & Function Subprogram e e e s ... 113 4(#/
Dummy Arguments in a Function Subprogram e e e e e o s« 113 et

GO TO Statements © s s e s e e s s e e s o s 115

viii VS FORTRAN Language Reference

Assigned GO TO Statement . .
Computed GO TO Statement . e
Unconditional GO TO Statement
IF Statements . e e e
Arithmetic IF Statement
Block IF Statement . e
Logical IF Statement . .
IMPLICIT Type Statement .
INCLUDE Statement .« e e
INQUIRE Statement . e e s

.
e e o ¢ o o e 2 o o
e 0 & 0 0 0 0 0 0 0

¢ & o o o o
.

INQUIRE by File Name

INQUIRE by Unit Number .
INTEGER Type Statement . .
INTRINSIC Statement . .

Specific Names and Generlc Names .

e o o o o & o o o o

Logical IF Statement . .
LOGICAL Type Statement . .
NAMELIST Statement .« e e e

. e o e o
e s s

s e e o

NAMELIST Input Data
NAMELIST Qutput Data
OPEN Statement

e 0 o o o o o+ o o o

¢ o & o o s e o o .

e o o e e & e . -

e ® © & o o

The I70 Unit is Not Connected to the External File

The I/0 Unit is Connected to the External File

PARAMETER Statement . .
PAUSE Statement v e e e
PRINT Statement e e e e
PROGRAM Statement .« e .
READ Statements

¢ o e o

...............

READ Statement——Aéynchronous e e e s e e e e

READ Statement—Formatted with Direct Access
READ Statement—Formatted with Sequential Access
READ Statement—Unformatted with Direct Access
READ Statement—Unformatted with Sequential Access

READ Statement with Internal Files
READ Statement with List-Directed I/0

READ Statement with NAMELIST

REAL Type Statement
RETURN Statement “ s e e

.

¢ e e & © o+ e e

RETURN Statement in a Functlon Subprogram
RETURN Statement in a Subroutine Subprogram

e 6 o & ¢ 2 s o o o
e 0 o s o o s 0 s o
e o o o 0 0 e o o o

......

......

o o 0

o 6 o o o o o ¢ o ¢ 6 ¢ e 0 0 s 0 0 o

REWIND Statement e e e e e e e e e e e e e e .
SAVE Statement e e e e s e e e e e e e e e e e e e e e
Statement Function Statement e e e e e e e s e e e e e .
Statement Numbers . e e e s e e s e e e e e e e

Fixed Form Statement Numbers e e e e e « .

Free Form Statement Numbers . e e e
STOP Statement e e e e e e e o e e e
SUBROUTINE Statement

Actual Arguments in a Subroutlne.Subprogram
Dummy Arguments in a Subroutine Subprogram

TRACE OFF Statement et e e e e e e

TRACE ON Statement e
Unconditional GO TO e e e e s o e e
WAIT Statement« . . .

* o o

WRITE Statements e e e e e e e e e
WRITE Statement—Asynchronous

WRITE Statement—Formatted with Dtrect
WRITE Statement—Formatted with Sequential Acces
WRITE Statement—Unformatted with Direct Access .

o e o o

o o ¢ o o
¢ o o o o

o o

e o o ¢ o o o

Access

We o ¢ o o 2 o o
¢ o o o s s 0 e o o

WRITE Statement—Unformatted with Sequential Access

WRITE Statement with Internal Files

WRITE Statement with List-Directed I/0

WRITE Statement with NAMELIST .« ..

Appendix A. Source Language Flagger .
Items Flagged for Full ANS Language .
Global Items Flagged e e e e e e

Statements Flagged e e e e e e e e
Execution-Time Cautions e e e e e e .

Appendix B. FORTRAN-Supplied Procedures

Mathematical and Character Functions
Logarithmic and Exponential Routines
Trigonometric Routines e e e e e e s
Hyperboliec Function Routines e o e e

¢ o o o @

e e o o o e e e

LY

« s e

* e e

« o ¢ o @
« o o o @
* e s e @

e e s e 0
LI T
¢ o o o+ @

e o o o @

.

e o o o o

e e s e 0

* o e e @
s o e o+ @
* e o ¢+ @
* o e o o
* e o o 0
« o o e 0

e o o o 0
e o o o o
LR B I]
e o o o+ @
e o o e @
* o o o @

Contents

202

204
206
205
205
205

ix

x

Miscellaneous Mathematical Routines e e s e s e s e e .

Character Manipulation Routines

. . ® e e s s e e s e e

Internal Data Converslon Genaric Function Dascriptions

Appendix C. IBM and ANS FORTRAN Features e o o o o o s o o

New ANS FORTRAN 1977 Features . .
General Features e e e e e e e .
New Statements e e e e
New Features in Old Statements

e o e & o s e ° e e e e o

® e & e o e e s s e e . .

01d IBM Extensions Now in ANS FORTRAN 1977 e e e e e e e
IBM Extensions Not in ANS FORTRAN 1977 e e e s e e e e e .
LANGLVL(66) Features Not in VS FORTRAN e e e e e e e e e

Appendix D. Extended Error Handling
ERRMON Subroutine e e v e
ERRSAV Subroutine . e e e
ERRSET Subroutine
Examples of CALL ERRSET
ERRSTR Subroutine .« . e
ERRTRA Subroutine N

Message Option Tables

¢« o o o o

Message Corrective Action Cross Reference T

Service Subroutines e e e e e e
DVCHK Subroutine e e e v e e e
DUMP/PDUMP Subroutine e e e e
CDUMP/PCDUMP Subroutine . e e e
EXIT Subroutine
OPSYS Subroutine (D0S Only) . .
OVERFLW Subroutine

Appendix E. EBCDIC and ASCII Codes
G lossary L] . . L] L] L] L] L] L] . L] L] L d

Index ® ® ® ® o © © @ o ¢ ° ° o o o

VS FORTRAN Language Reference

subroutines

* o o s o

e W o 0 00

s o 4 o e ¢ s+ o o

bi es .

o o e o o

e & o ¢ @ 2 s 0 2 s 0

206
207
207

208
208
208
209
210
212
213
214

215
215
216
217
218
219
219

29N

~v

223
233
233
233
234
234
234
234

236
241
247

(e

FIGURES

1. 1IBM VS FORTRAN Application Programming Publlcatlons . .V
2. Example of Fixed-Form Source Statements . e e P -
3. Example of Free-Form Source Statements B
4. Source Statement Characters e+ e e e e s s+ s s e e e e . 8
5. Data Type and Storage Length e e e e e e e . 19
6. Examples of Arithmetic Expressions e e e e e e e e e . 26
7. Arithmetic Operators . e e e e e e s e s e e e e 26
8. Hierarchy of Arithmetic Operattons . e e . . . 27
9. Type and Length where the First Operand is Integer . . 29
10. Type and Length where the First Operand is Real . . . 30
11. Type and Length where the First Operand is Complex . . 31
12. Character Operator e e e e e s e e e e e e e e e e e e 33
13. Relational Operators e e e e e e e e e e s e e e e e 34
14, Logical Operators . . . ¢ ¢ ¢ ¢« ¢ ¢« o o« o o o o o .- . 36
15. Hierarchy of Operations Involving Artthmetlc Operators 37
16. Hierarchy of Operations Involving Character Operators 37
17. Type and Length of the Result of Logical Operations . 40

18. Order of Statements and Comment Lines 45
19. Conversion Rules for the Arithmetic Assignment

Statement a=b Where Type of b is Integer or Real . e . 48
20. Conversion Rules for the Arithmetic Assignment

Statement a=b Where Type of b is Complex e e e e e e . 49
21. Function Routine Prefix Meanings e e e e e e e e s . . 206
22. Option Table Preface e e e e e e e e e e e e e e+ . . 219
23. Option Table Entry e e e e e e e e e e e e . . . 220
24. Option Table Default Values e e e e e e e e e e e . . 222
25. Corrective Action after Error . . . 223

26. Corrective Action after Mathemattcal Subroutlne Error 226
27. Corrective Action after Program Interrupt e e e e e . . 231

Figures xi

O

INTRODUCTION

LANGUAGE

COMPILER

IBM VS FORTRAN consists of a language, a compiler, and an
execution-time library of subprograms.

The VS FORTRAN language consists of a set of characters,
conventions, and rules that are used to convey information to the
compiler. The basis of the VS FORTRAN language is a statement
containing combinations of element names, operators, constants,
and words (keywords) whose meaning is predefined to the compiler.

The VS FORTRAN language is best suited to applications that
involve mathematical computations and other manipulation of
arithmetic data.

In a process called compilation, a program called the VS FORTRAN
compiler analyzes the source program statements and translates
them into a machine language program called the object program
that can be combined with library routines to form a program
suitable for execution. In addition, when the VS FORTRAN compiler
detects errors in the source program, it produces appropriate
diagnostic messages.

The VS FORTRAN compiler operates under control of an operating
system that provides it with input, output, and other services.
Object programs generated by the VS FORTRAN compiler also operate
under operating system control and depend on it for similar
services.

EXECUTION-TIME LIBRARY

" The VS FORTRAN execution-time library consists of subroutines and

functions supplied as part of the product. For complete
information on the library, see VS FORTRAN Application
Programming: Library Reference. For a brief description of the
intrinsic functions and source subroutines to which the user may
refer directly in VS FORTRAN statements, see "Appendix B.
FORTRAN-Supplied Procedures™ on page 2064. For a discussion of
extended error handling subroutines, see "Appendix D. Extended
Error Handling Subroutines" on page 215.

Subroutines and functions to furnish any commonly used code
sequences can be compiled and added to an execution-time library
by the user. When written in VS FORTRAN, these ctan be structured
as function, subroutine, or block data subprograms. Other source
languages can be used if the subroutines are accessible by VS
FORTRAN calls. User subroutines may reside directly in the
supplied library data set or in a private data set called at load
or link-edit time.

Introduction 1

METHODS OF PRESENTATION

Because mathods of presentation vary from book to book, the format
aotation and method of indicating IBM extensions are outlined
ere.

FORMAT NOTATION

In this manual, "must™ is to be interpreted as a requirement;
conversely, "must not"™ is to be interpreted as a prohibition.

In describing the form of VS FORTRAN statements or constructs, the
following conventions and symbols are used:

. Special characters from the VS FORTRAN character set,
uppercase letters, and uppercase words are to be written as
shown, except where otherwisae noted.

. Lowercase letters and lowercase words indicate general
entities for which specific entities must be substituted in
actual statements. Once a given lowercase letter or word is
used in a syntactic specification to represent an entity, all
subsequent occurrences of that letter or word represent the
same entity until that letter or word is used in a subsequent
syntactic specification to represent a different entity.

. Square brackets ([1) are used to indicate optional items.

L An underlined word (such as name, type, list) indicates a
variable, such as an entry point, name of a function, data
type, or list of variables or array names.

. An ellipsis (...) indicates that the preceding optional items
may appear one or more timaes in succession.

. Blanks are used to improve readability; however, unless
otherwise noted, they have no significance.

The general form of each statement is enclosed in a box. For
example:

syntax
CALL name [([argl [,arg2] [,arg3] ... 1) 1

The following examples are among those allowed:

CALL name

CALL name ()

CALL name (argqg)

CALL name (arg, argq)

CALL name (arg, arg, arg)

CALL name (arg, arg, arg, arg)

When an actual statement is written, specific entities are
substituted for name and each arg. For example:

CALL ABCD (X,1.0)

2 VS FORTRAN Language Reference

C

DOCUMENTATION OF IBM EXTENSIONS

In addition to the statements available in FORTRAN 77, IBM
provides "extensions" to the language. These extensions are shoun
in the following ways.

r IBM EXTENSION —

This paragraph shows how IBM language extensions in text are
documented.

! END OF IBM EXTENSION]

The following example shows how boxes indicate IBM extensions.

Name Type Length

I, J, K Integer variables 4 |, 2, 2
Cc Real variable 4

D Complex variable 16

The example below shows how IBM extensions are documented within a
table. The boxes around certain types and lengths of the result of
logical operations indicate IBM extensions.

First

Operand Logical Logical

Second (1) (%)

Operand

Logical Logical Logical

(1) (%) (4)
Logical Logical Logical

(%) (%) (4)

VALID AND INVALID VS FORTRAN PROGRAMS

This manual defines the rules (that is, the syntax, semantics, and
restrictions) applicable for writing valid VS FORTRAN programs
either for the 1978 Standard or for the 1978 Standard plus IBM
extensions. Most violations of the VS FORTRAN language rules are
diagnosed by the compiler; however, some syntactic and semantic
combinations are not diagnosed, some because they are detectable
only at execution time, others for performance reasons. VS
FORTRAN programs that contain these undiagnosed combinations are
invaliddVS FORTRAN programs, whether or not they execute as
expected.

Introduction 3

VS FORTRAN LANGUAGE

A VS FORTRAN program is made up of threa basic elements:

Data Consists of constants, variables, and arrays. See
"YS FORTRAN Data" on page 11.

Expressions Executable sets of arithmetic, character, logical, -
or re;gtional data. Seae "VS FORTRAN Expressions" on
page .

Statements Combinations of data and expressions. See "VS -
‘FORTRAN Statement Descriptions™ on page 45.

LANGUAGE DEFINITIONS

Some of the terms used in the discussion of the VS5 FORTRAN
programming language are defined as follows:

Main program. A program unit, required for execution, that can
call other program units but cannot be called by them. A main
program does not have a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement. The main program is the first to
receive control at execution time.

subprogram. A program unit that is invoked by another program
unit in the same program. In FORTRAN, a subprogram has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.

Procedure. A sequenced set of statements that may be used at one
or more points in one or more computer programs, and that usually
is given one or morae input parameters and returns one or more
output parameters. A procedure consists of subroutines, function
subprograms, and intrinsic functions.

Intrinsic function. A function, supplied by V5 FORTRAN, that
performs mathematical or character operations. (Sea "INTRINSIC
Statement™” on page 130.)

O

External procedure. A subroutine or function subprogram written
in FORTRAN.

Executable program. A program that can be executed as a
self-contained procedure. It consists of a main program and,
optionally, one or more subprograms or non-FORTRAN-defined
external procedures, or both.

Executable statement. A statement that calculates, tests, or -
alters the flow of control.

Nonexecutable statement. A statement that describes the

characteristics of the program unit, of data, of editing -
information, or of statement functions, but does not causa an

action to be taken by the program.

Preconnacted file. A unit or file that was defined at
installation time. However, a preconnected file does not exist
for a program if the file is not defined by a FILEDEF command or
by job control statements.

Program unit. A sequence of statements constituting a main
program or subprogram.

Additional definitions can be found in tha "Glossary"™ on page 261.

4 VS FORTRAN Language Reference

LANGUAGE SYNTAX

(:D‘ . For the compiler to understand instructions, certain syntax rules
B must be carefully adhered to when entering the following items.
Each of these items is discussed more fully following the list.

Source language statements
Source statement characters
Names
Statement numbers
- Keywords
SOURCE LANGUAGE STATEMENTS
VS FORTRAN accepts source input in either of two formats:
. Fixed-form input format: Fixed-length 80-byte records.

r IBM EXTENSION 1

U Free-form input format: Fixed-length records (with a
maximum length of 1320 bytes). This frees the programmer
from card column restrictions and is useful for terminal
input.

L END OF IBM EXTENSION d

A program unit must be written in either fixed form or free
form—not both.

Fixed-Form Source Statements

The statements of a VS FORTRAN source program can be written on a
\ standard FORTRAN Coding Form, GX28-7327. Each line on the coding
/ form is 80 characters long and is equivalent to one 80-column card
(or input line on a terminal).

o Statement number

The statement number consists of from 1 to 5 decimal digits.
It must not be zero. Blanks and leading zeros in a statement
number are ignored. The values of the statement numbers do not
affect the order in which the statements are executed. The
same statement number must not be given to more than one
statement in a program unit.

. Initial line

VS FORTRAN statements are written within columns 7 through
. 72. The first line of a statement may have a number in columns
1 through 5 and must have a blank or zero in column 6.

. Comments

Comments to explain the program may be written in columns 2
through 72 if the letter C or an asterisk (¥) is placed in
column 1. The VS FORTRAN compiler does not process comments
other than to print them as part of the source program
listing. Comments may appear anvuwhere in the program before
the END statement. Blank lines can appear anywhere in the
program and are processed as comments.

. Continuation Line
A VS FORTRAN statement that cannot be completed on one line
may be continued onto as many as 19 additional lines. A
continuation line has any character other than a blank or zero
in column 6. The statement is then continued within columns 7
% through 72.

Comments can appear between continuation lines.

VS FORTRAN Language 5

6

T : IBM EXTENSION 1

VS FORTRAN allows columns 1 through 5 in a continuation line
to contain any charactars, but they are ignored.

L END OF IBM EXTENSION }
. Identification
Columns 73 through 80 of any VS FORTRAN linae are not

significant to thae compiler and may, therefore, be used for
identification, sequencing, or any other purpose.

As many blanks as desired may be written in a statement or comment
to improve its readability. They are ignored by the compiler.
However, blanks that are inserted in literal or character data are
retained and treated as blanks within the data.

Figure 2 illustrates fixed-form sourca statements.

c SAMPLE TEXT

.

10 D=010.5
GO TO 56
150 A=B+Cx(D+EXXF+
18+§-2.*(G+P))

.
.
.

Figure 2. Example of Fixed-Form Source Statements

[IBM EXTENSION |

Free-Form Source Statements

The following rules govern free-form input format (free-form
source):

. Statement number

The initial line may contain, as the first nonblank
character of that line, a statement number consisting of
from one to five decimal digits. Blanks and leading zeros in
a statement number are ignored. A blank need not separate a
statement number from the first nonblank character that
follows the statement number.

] Initial line

An initial line is the first line of the statement and may
start in any position on a new line.

. Comments

A comment line is a line that does not follow a continued
line and that has a quotation mark (") in the first
character position (column 1). Blank lines are not allowed
as comment lines. A comment line cannot be continued.

VS FORTRAN Language Reference

o Continued line

A line of a statement to be continued is indicated by
terminating the line with a hyphen or minus sign (-). A
comment line cannot be continued.

. Preserving a minus sign

If the last character in the line is a hyphen (minus sign),

it is assumed to indicate continuation and is discarded. If
the last two characters in a line are hyphens, only the last
one is taken as a continuation character; the preceding one
is preserved as a minus sign.

) Continuation line
A continuation line is a line following a continued line. It
may start in any position. Up to 19 continuation lines are
permitted in a single statement.

. Maximum statement length
The maximum length of a free-form source statement is 1320
characters, excluding the statement continuation character
and the statement number. Blank characters are counted in
the total number of characters.

Figure 3 illustrates free-form source statements.

Column: 1 7

"SAMPLE TEXT

10D=010.5

GO TO 56

150 A=B+CX(D+EXXF+-
g+§-2.*(G+P))

-
-
.

Figure 3. Example of Free-Form Source Statements

L END OF IBM EXTENSION !

SOURCE STATEMENT CHARACTERS

The characters listed in Figure 4 on page 8 constitute the set of
characters acceptable in a VS FORTRAN program.

A special character may be an operator (or part of an operator),
part of a constant, or have some other special meaning. The
interpretation is implied by the context.

The special characters shown in Figure 4 on page 8 are listed in
their correct collating sequence. (The complete collating
sequeg§: gan be found in "Appendix E. EBCDIC and ASCII Codes"™ on
page .

VS FORTRAN Language 7

equal sign

Special Characters Letters Digits

blank A 0 0
. period B P 1
¢ left parenthesis C Q 2
+ plus sign D R 3
$ currency sign E S %
* asterisk F T 5
) right parenthesis G U 6
- minus sign H v 7
/ slash I W 8
» comma J X 9
: colon K Y
* apostrophe h Z

N

G

quotation mark

Figure 4. Source Statement Characters

NAMES

8

Names (referred to as "symbolic names™ in old FORTRAN
publications) can be assigned to the elements of a program unit.

Definition

Name—A string of 1 through 6 letters (A,B,...,2Z) or digits
(0,1,...,9), the first of which must be a letter.

IBM EXTENSION

With this compiler, the currency symbol ($) is treated as
a letter when used in a name. Therefore, the currency
symbol ($) can be used as the first character in a name.

END OF IBM EXTENSION

Names can be used to identify the following items in a program
unit:

An array and the elements of that array (see "Array Elements™
on page 20)

A variable (see "Variables" on page 18)
A constant (See "PARAMETER Statement™ on page 138)
A main program (see "PROGRAM Statement™ on page 141)

A statement function (see "Statement Function Statement™ on
page 169)

An intrinsic function (see "Appendix B. FORTRAN-Supplied
Procedures" on page 204%)

A function subprogram (see "FUNCTION Statement™ on page 111)

A subroutine subprogram (see "SUBROUTINE Statement™ on page
173)

2621°Ck data subprogram (see "BLOCK DATA Statement™ on page

VS FORTRAN Language Reference

. A common—-block (see "COMMON Statement™ on page 62)

. An external user-supplied subprogram that cannot be
classified by its usage in that program unit as either a
subroutine or function subprogram name (see "EXTERNAL
Statement” on page 89)

. A NAMELIST (see "READ Statement with NAMELIST" on page 162 and
"WRITE Statement with NAMELIST"™ on page 198)

A name that identifies a constant, variable, array, external

function, or statement function also identifies its data type.

The name may be specified in a specification statement (see

"Specification Statements™ on page 43).

If the name does not

appear in such a statement, the type is implied by the first

letter of the name. A first letter of I through N implies integer
type, and any other letter (or the currency symbol) implies real
type, unless an IMPLICIT statement is used to change the default

type.

Names are either global or local.

. Classes of global names:

Common block
External function
Subroutine

Main program

Block data subprogram

. Classes of local names:

Array

Variable

Constant

Statement function
Intrinsic function

Dummy procedure

Names must be unique within a class in a program unit and can
identify elements of only one class except in the following
situations:

U A common-block name can also be an array, variable, or
statement function name in a program unit.

. A function subprogram name must also be a variable name in the
function subprogram.

The name of a main program, subroutine, common-block, NAMELIST,
or block data subprogram has no type. A generic function name has
no predetermined type; it assumes a type dependent upon the type

of its argument(s).

Once a name is used as a main program name, a function subprogram
name, a subroutine subprogram name, a block data subprogram name,
a common-block name, or an external procedure name in any unit of
an executable program, no other program unit of that executable
program can use that name to identify an entity of these classes

in any other way.

VS FORTRAN Language

9

STATEMENT NUMBERS

Statement numbers identify statemants in a VS FORTRAN program.

A statement number is a sequence of from one to five digits, one
of which must be nonzero. It can be written in eithar fixed form
or free form. See "Statement Numbers" on page 171.

KEYWORDS

10

Keywords identify VS FORTRAN-supplied procedures (intrinsic
functions) that can be used as part of any program. These
procedures are mathematical functions and service subroutines
that are supplied to save programmers the time it would take to
write them every time that particular sequence of statements is
needed in a program. See "Appendix B. FORTRAN-Supplied
Procedures" on page 2064.

A keyword is a specified sequence of characters. Whether a
particular sequence of characters identifies a keyword or a name
is implied by context. There is no sequence of characters that is
reserved in all contexts.

VS FORTRAN Language Reference

,/ . k\\

o/

C

VS FORTRAN DATA

CONSTANTS

ARITHMETIC CONSTANTS

Data is a formal representation of facts, concepts, or
instructions. VS FORTRAN manipulates three general kinds of data:

U Constants

° Variables

. Arrays

Note: These are not to be confused with data tvpes. Data types

correspond to the the five types of variables, as discussed under
"Variable Types and Lengths" on page 18.

A constant is a fixed, unvarying quantity. There are several
classes of constants:

. Arithmetic constants specify decimal values:
Integer
Real
Complex

. Logical constants specify a logical value as "true" or
"false." There are two logical constants:

.TRUE.
.FALSE.

J Character constants are a string of alphameric and/or special
characters enclosed in apostrophes.

. Hollerith constants are used only in FORMAT statements.
r IBM EXTENSION 1

° Hexadecimal constants are used only as data initialization
values of arithmetic or logical variables.

L END OF IBM EXTENSION !

The PARAMETER statement allows a constant to be given a name. (See
"PARAMETER Statement™ on page 138.)

Arithmetic constants fall into three categories: integer, real,
and complex.

An unsigned constant is a constant with no leading sign. A signed
constant is a constant with a leading plus or minus sign. An
optionally signed constant is a constant that may be either signed
or unsigned. Only integer and real constants may be optionally
signed.

VS FORTRAN Data 11

Integer Constants

12

pefinition

Integer Constant—A string of decimal digits containing no
decimal point and expressing a whole number. It occupies 4
bytes of storage.

Maximum Magnitude: 2 147 483 647 (that is, 231-1),

An integer constant may be positive, zero, or negative. If
unsigned and nonzero, it is assumed to be positive. (A zero may be
written with a preceding sign with no effect on the value.) Its
magni tude must not be greater than the maximum and it must not
contain embedded commas.
valid Integer Constants:

0

91

173

=214 7648 3647

Invalid Integer Constants:

27. Contains a decimal point.
3145903612 Exceeds the maximum magnitude.
5,396 Contains an embedded comma.
-21647483648 Exceeds the maximum magnitude,

even though it fits into 4 bytes.

VS FORTRAN Language Reference

Real Constants

pefinition

Real Constant—A string of decimal digits that expresses a
real number. It can have one of three forms: a basic real
constant, a basic real constant followed by a real exponent,
or an integer constant followed by a real exponent.

A basic real constant is a string of digits with a decimal
point. It is used to approximate the value of the constant.

The storage requirement (length) of a real constant can also
be explicitly specified by appending an exponent to a basic
real constant or an integer constant. The standard exponents
consist of the letters E and D.

IBM EXTENSION

This compiler also allows the letter Q@ as an exponent.

END OF IBM EXTENSION

An exponent is followed by a signed or unsigned 1- or
2-digit integer constant. The letter E specifies a constant
of length 4; the letter D specifies a constant of length 8.

IBM EXTENSION

The letter Q specifies a constant of length 16.
END OF IBM EXTENSION

Magnitude: 0 or 16-¢5 (approximately 10-78)
through 16¢3 (approximately 1075)

Precision: (Four bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

IBM EXTENSION

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

END OF IBM EXTENSION

A real constant may be positive, zero, or negative (if unsigned
and nonzero, it is assumed to be positive) and must be within the
allowable range. It may not contain embedded commas. A zero may be
written with a preceding sign with no effect on the value. The
decimal exponent permits the expression of a real constant as the
product of a basic real constant or integer constant and 10 raised
to a desired pouer.

VS FORTRAN Data 13

valid Real Constants (Four Bytes):

. O

=999.9999

7.0E+0 That is, 7.0 x 10° = 7.0

9761.25E+1 That is, 9761.25 x 10! = 97612.5

7.E3 -
7.0E3 That is, 7.0 x 103 = 7000.0

7.0E+03 .
7E-03 That is, 7.0 x 10-3 = 0.007

21.98753829457168 Note: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.
valid Real constants (Eight Bytes):

1234567890123456.D-73 Equivalent to .1234567890123456x10-57

7.9D03

7.9D+03 That is, 7.9 x 103 = 7900.0

7.9D+3

7.9D0 That is, 7.9 x 10° = 7.9

7D03 That is, 7.0 x 103 = 7000.0 i
T IBM EXTENSION | SNl
Valid Real Constants (Sixteen Bytes):

.23452364536456456734565678Q+43

5.001Q08
L END OF IBM EXTENSION !
Invalid Real Constants:

1 Missing a decimal point or a -

decimal exponent.
3,471.1 Embedded comma.
1.E Missing a 1- or 2-digit integer constant i

following the E. It is not intepreted
as 1.0 x 10°,

1.2E+113 Too many digits in the exponent.

23.5D+97 Magnitude outside the allowable range,
that is, 23.5 x 10°7>16¢3,

21.3D-99 Magnitude outside the allowable range,

that is, 21.3 x 10-?9<16-%3,

14 VS FORTRAN Language Reference

[IBM EXTENSION —
!:m 88.63215748Q123 Too many digits in the exponent
' END OF IBM EXTENSION 1

Complex Constants

Definition

Complex Constant—An ordered pair of signed or unsigned
integer or real constants separated by a comma and enclosed
in parentheses. The first constant in a complex constant

3 represents the real part of the complex number; the second
represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be
positive, zero, or negative and must be within the allowable
range. (If unsigned and nonzero, they are assumed to be positive.)
A zero may be written with a preceding sign, with no effect on the
value. If both constants are of type integer, however, then both
are converted to type real of length 4 bytes.

r IBM EXTENSION

If the constants of the ordered pair representing the complex
constant differ in precision, the constant of lower precision
is converted to a constant of the higher precision.

For example, if one constant is real and the other is double
precision, real is converted to double precision.

™, If the constants differ in type, the integer constant is
Y/ converted to a real constant of the same precision as the
original real constant.

For example, if one constant is integer and the other is
double precision, then the integer constant is converted to
a double precision constant.

END OF IBM EXTENSION d
valid Complex Constants (i = square root of -1):

(3,-1.86) Has the value 3.- 1.86i;
both parts are real
(4 bytes long).

f IBM EXTENSION 1

(-5.0E+03,.16D+02) Has the value -5000.+16.0i;
both parts are double
- precision.

(4.7D+2,1.973614D4) Has the value 470.+19736.16i.

(47D+2,38D+3) Has the value 4700.+38000.i.

(1234.365456567678Q59,-1.0Q-5)

(45Q6,6E45) Both parts are real (16 bytes
long.)

END OF IBM EXTENSION 1

VS FORTRAN Data 15

LOGICAL CONSTANTS

CHARACTER CONSTANTS

Invalid Complex Constants: -
(‘ 1
(A, 3.7) Real part is not a constant. (J

I IBM EXTENSION 1

(.0009Q-1,7643.Q+1199) Too many digits in the exponent
of the imaginary part.

(49.76, .015D+92) Magnitude of imaginary part is -
outside of allowable range.

L END OF IBM EXTENSION .

pefinition

Logical Constant—A constant that can have a logical value
of either true or false.

There are two logical constants:

.TRUE.
.FALSE.

The words TRUE and FALSE must be preceded and followed by
periods. Each occupies 4 bytes.

T IBM EXTENSION]

The abbreviations T and F (without the periods) may be used for S0)
.TRUE. and .FALSE., respectively, (in a source program only) ;Méf
for the initialization of logical variables or logical arrays ’
in the DATA statement and in the explicit type statement. For

use as input/output data, see "L Format Code™ under "FORMAT

Statement."

L END OF IBM EXTENSION !

The logical constant .TRUE. or .FALSE., when assigned to a logical
variable, specifies that the value of the logical variable is true
or false, respectively. (See "Logical Expressions"™ on page 35.)

pefinition .

Character Constant—A string of any characters capable of
representation in the processor. The string must be enclosed
in apostrophes.

The delimiting apostrophes are not part of the data represented by
the constant. An apostrophe within the character data is
represented by two consecutive apostrophes with no intervening
blanks. In a character constant, blanks embedded between the
delimiting apostrophes are significant. The length of a character
constant must be greater than zero.

Each character requires one byte of storage.

Character constants can be used in character expressions, in an

assignment statement, in the argument list of a CALL statement or ,y@:n
function reference, as data initialization values, in input or W 4
output statements, in FORMAT statements, in PARAMETER statements, g

or in PAUSE and STOP statements.

16 VS FORTRAN Language Reference

valid character constants: Length:

*DATA' 4
*X-COORDINATE Y-COORDINATE Z-COORDINATE" 44
'3.14" 4
'DON''T?' 5
HOLLERITH CONSTANTS
r— Definition

Hollerith Constant—A string of any characters capable of
representation in the processor and preceded by wH, where w
is the number of characters in the string.

Each character requires one byte of storage.
Hollerith constants can be used only in FORMAT statements.
Valid Hollerith Constants:
24H INPUT/0UTPUT AREA NO. 2
6H DON'T
i IBM EXTENSION 1

HEXADECIMAL CONSTANTS

Definition

Hexadecimal Constant—The character Z followed by two or
more hexadecimal numbers formed from the set of characters 0
through 9 and A through F.

Hexadecimal constants may be used as data initialization values
for any type of variable or array except those of character
type.

One byte contains 2 hexadecimal digits. If a constant is
specified as an odd number of digits, a leading hexadecimal zero
is added on the left to fill the byte. The internal binary form
of each hexadecimal digit is as follows:

0—0000 4—0100 8—1000 c—1100
1—0001 5—0101 9—1001 D—1101
2—0010 6—0110 A—1010 E—1110
3—0011 7—0111 B—1011 F—1111

valid Hexadecimal Constants:
Z1C49A2F1 represents the bit string:
00011100010010011010001011110001
ZBADFADE represents the bit string:
00001011101011011111101011011110

where the first 4 zero bits are implied because an odd number of
hexadecimal digits is written.

VS FORTRAN Data 17

VARIABLES

VARIABLE NAMES

The maximum number of digits allowed in a hexadecimal constant

depaends upon the length specification of the variable baing "
initialized (see "Variable Types and Lengths"). The following ’ m
list shows the maximum number of digits for each length

specification:

Length Maximum Number of
of variable Hexadecimal Digits
16 32
8 16
[8
2 %
1 2

If the number of digits is greater than the maximum, the excess
leftmost hexadecimal digits are truncated; if the number of
digits fsfiess than the maximum, hexadecimal zeros are supplied
on the left.

L . END OF IBM EXTENSION g

A VS FORTRAN variable is a data item, identified by a name, that
occupies a storage area, except possibly in situations involving
error or interruption handling where normal program flow is
asynchronously interrupted. The value represented by the name is
always the current value stored in the area.

Before a variable has been assigned a value, its content are
undefined, and the variable should not be referred to except to
assign it a value. If a variable has not been assigned a value, it
does not have a predictable value.

O

VS FORTRAN variable names must follow the rules governing elemant
names. (See "Names" on page 8.) The use of meaningful variable
names can serve as an aid in documenting a progranm.

valid variable Names:

B292S
RATE
T IBM EXTENSION 1
S$VAR -
L END OF IBM EXTENSION d
Invalid Variable Names: .
B29%92704 Contains more than six characters.
4ARRAY First character is not alphabetic.
SI.X Contains a special character,

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the

variable represents. (See Figure 5 on page 19.) Thus, an integer

variable must represent integer data, a real variable must

represent real data, and so on. There is no variable type ™
associated with hexadecimal data; this type of data is identified (M;L
by a name of one of the other types. There is no variable type

associated with statement numbers; integer variables that contain

18 VS FORTRAN Language Reference

the statement number of an executable statement or a FORMAT
statement are not considered to contain an integer variable. (See
"ASSIGN Statement"™ on page 46.)

For every type of variable data, there is a corresponding length
specification that determines the number of bytes that are
reserved.

T IBM EXTENSION ,

Optional length specification is an IBM extension.

L END OF IBM EXTENSION]

Figure 5 shows each data type with its associated storage length
and standard length.

Data Type Storage Length Standard Length (Default)

Integer 2,] & 4
Real 4% |, 8, 16 4
Double 8 8
Precision

Complex 8 |, 16, 32 8
Logical 1,] 4 4
Character 1 - 500 1

Figure 5. Data Type and Storage Length

A programmer may declare the type of variable by using the
following:

. Explicit specification statements
. IMPLICIT statement
L Predefined specification contained in the VS FORTRAN language

An explicit specifigation statement overrides an IMPLICIT
statement, which, in turn, overrides the predefined
specification. The optional length specification of a variable
may be declared only by the IMPLICIT or explicit specification
statements. If, in these statements, no length specification is
stated, the default length is assumed. INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and CHARACTER are used to specify the length
and type in these statements.

f IBM EXTENSION 1
VS FORTRAN accepts INTEGERX¥2 to indicate 2 bytes and INTEGERX4

as an alternative to INTEGER to indicate 4 bytes; REAL¥% as an
alternative to REAL to indicate 4 bytes; REALX8 as an

VS FORTRAN Data 19

alternative to DOUBLE PRECISION to indicate 8 bytas; REAL¥*16 to
indicate 16 bytes; LOGICALX1 to indicate 1 byte, and LOGICALX4
as an alternative to LOGICAL to indicate 4 bytes. Q:D

L END OF IBM EXTENSION .

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

. If the first character of the variable name is I, J, K, L, M,
or N, the variable is integer of length 4.

. If the first character of the variable name is any other
alphabetic character, the variable is real of length 4.

r IBM EXTENSION 1

. If the first character of the variable name is a currency
symbol ($), the variable is real of length 4.

L END OF IBM EXTENSION !

This convention is the traditional FORTRAN method of specifying
the type of a variable as either integer or real. Unless otheruwise
noted, it is presumed in the examples in this publication that
this specification applies. Variables defined with this
convention are of standard (default) length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined (k\
convention. That is, the type is determined by the first character S’
of the variable name. However, by using the IMPLICIT statement, i
the programmer has the option of specifying which initial
characters designate a particular variable type. The IMPLICIT

statement can be used to specify all types of variables—integer,
Iealéhcomplex. logical, and character—and to indicate storage

ength.

The IMPLICIT statement overrides the variable type as determined
by the predefined convention.

The IMPLICIT statement is presented in greater detail in
"IMPLICIT Type Statement™ on page 122.

Type Declaration by Explicit Specification Statements

ARRAY ELEMENTS

Explicit specification statements differ from the first two ways

of specifying the type of a variable in that an explicit

specification statement declares the type of a particular

variable by its name rather than a group of variable names -
beginning with a particular letter, as specified in Figure % on

page 8. Explicit type statements override IMPLICIT statements and

the predefined specifications.

The explicit specification statements are discussed in greater
detail in "Explicit Type Statement" on page 85.

An array is an ordered and structured sequence of data items,

stored as multidimensional vectors of from one to seven

dimensions. The data items that make up the array are called array
elements. A particular element in the array is identified by the A@:;
array name and its position in the array (for example, first

element, third element, seventh element, and so on). (See "Namas"

20 VS FORTRAN Language Reference

SUBSCRIPTS

on page 8.) All elements of an array have the same type and
length.

To refer to any element in an array, the array name plus a
parenthesized subscript must be used. In particular, the array
name alone does not represent the first element except in an
EQUIVALENCE statement.

Before an array element has been assigned a value, its contents is
undefined, and the array element should not be referred to before
assigning it a value.

A subscript is a quantity (or a set of subscript expressions
separated by commas) that is associated with an array name to
identify a particular element of the array. The number of
subscript quantities in any subscript must be the same as the
number of dimensions of the array with whose name the subscript is
associated. A subscript is enclosed in parentheses and is written
immediately after the array name. A maximum of seven subscript
expressions can appear in a subscript.

The following rules apply to the construction of subscripts. (See
"VS FORTRAN Expressions” on page 25 for additional information
and restrictions.)

1. Subscript expressions may contain arithmetic expressions that
use any of the arithmetic operators: +, -, %, 7/, ¥x%,

2. Subscript expressions may contain function references that do
not change any other value in the same statement.

3. Subscript expressions may contain array elements.

I IBM EXTENSION]

4. Mixed-mode expressions (integer and real only) within a
subscript are evaluated according to normal FORTRAN rules.
If the evaluated expression is real, it is converted to
integer by truncation.

L : END OF IBM EXTENSION !

5. The evaluated result of a subscript expression must always be
greater than or equal to the corresponding lower dimension
bound and must not exceed the corresponding upper dimension
bound (see "Size and Type Declaration of an Array™ on page 22
for information about dimension bounds).

valid Array Elements:
ARRAY (IHOLD)

NEXT (19)
MATRIX (I-5)
r IBM EXTENSION 1
BAK (I,JCK+2%L,.3%A(M,N))) J is an array.

L END OF IBM EXTENSION !
ARRAY (I,J/64%K%%2)
ARRAY (-5)
LOT (0)

VS FORTRAN Data 21

Invalid Array Elements:

ALLC(.TRUE.) A subscript expression may not be a ‘ Q;E
logical expression. »

NXT (1+(1.3,2.0)) A subscript expression may not be a
complex expression.

Note: The elements of an array are stored in column-major order.

To step through the elements of the array in the linearized order
defined as "column-major order," each subscript varies (in steps -
of 1) from its lowest valid value to its highest valid value, such

that each subscript expression completes a full cycle before the

naxt subscript expression to the right is incremented. Thus, the v
leftmost subscript expression varies most rapidly, and the .
rightmost subexpression varies least rapidly.

The following list is the order of an array named C defined with
three dimensions:

DIMENSION C(1:3,1:2,1:4)

c(1,1,1) c(2,1,1) C(3,1,1) C(1,2,1) €(2,2,1) C(3,2,1)
c(1,1,2) C€(2,1,2) C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)
c(1,1,3) C(2,1,3) C(3,1,3) C(1,2,3) C(2,2,3) C(3,2,3)
C(1,1,4) C(2,1,4) C(3,1,4) C(1l,2,4) C(2,2,4) C(3,2,4)

SIZE AND TYPE DECLARATION OF AN ARRAY

22

The size (number of elements) of an array is declared by
specifying, in a subscript, the number of dimensions in the array
and the size of each dimension. Each dimension is represented by
:g oztional lower bound (gl) and a required upper bound (e2) in

e form:

\\
syntax _ C;/‘
name ([el:] g2)

is an array name.
where:

el
is the lower dimension bound. It is optional. If el
(with its following colon) is not specified, its value
is assumed to be 1.

e2
~is the upper dimension bound and must always be
specified.

The colon represents the range of values for an array's subscript.
For example,

DIMENSION A(0:9),B(3,-2:5)
DIMENSION ARAY(-3:-1),DARY(~3:ID3%%ID1)
DIMENSION IARY(3)

The upper and lower bounds (el and @2) are arithmetic expressions
in which all constants and variables are of type integer.

. If the array name is an actual argument, the expressions can
contain only constants or names of constants of type integer.

>

. The value of the lower bound may be positive, negative, or
zero. It is assumed to be l if it is not specified.

VS FORTRAN Language Reference

. A maximum of seven dimensions is permitted. The size of each
dimension is equal to the difference between the upper and
lower bounds +1. 1f the value of the lower dimension bound is
1, the size of the dimension is equal to the value of its
upper bound. ’

. Function or array element references are not allowed in
dimension bound expressions.

. The value of the upper bound must be greater than or equal to
the value of the lower bound. An upper dimension bound of an
asterisk is always greater than or equal to the lower
dimension bound.

. If the array name is a dummy argument and is in a subprogram,
the expressions can also contain:

- Integer variables that are also dummy arguments
- Expressions that contain:

— Signed or unsigned integer constants

—— Names of integer constants

— Variables that are dummy arguments or appear in a
common-block in that subprogram

. The upper dimension bound of the last dimension of a dummy
array name can be an asterisk.

Size information must be given for all arrays in a VS FORTRAN
program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement,
a COMMON statement, or by one of the explicit type specification
statements. These statements are discussed in detail in
alphabetic sequence in "VS FORTRAN Statement Descriptions.™

The type of an array name is determined by the conventions for
speci fying the type of a variable name. Each element of an array
is of the type and length specified for the array name.

object-Time Dimensions

If & dummy argument array is used in a function or subroutine
subprogram, the absolute dimensions of the array do not have to be
explicitly declared in the subprogram by constants. Instead, the
array declarators appearing in an explicit specification
statement or DIMENSION statement in the subprogram may contain
dummy arguments or variables in common that are integer variables
of length 4 to specify the size of the array. When the subprogram
is called, these integer variables receive their values from the
actual arguments in the calling program reference or from common.
Thus, the dimensions of a dummy array appearing in a subprogram
may change each time the subprogram is called. This is called an
"adjustable array"” or an "object-time dimension array."

The absolute dimensions of an array must be declared in the
calling program or in a higher level calling program, and the
array name must be passed to the subprogram in the argument list
of the calling program. The dimensions passed to the subprogram
must be less than or equal to the absolute dimensions of the array
declared in the calling program. The variable dimension size can
be passed through more than one level of subprogram (that is, to a
subprogram that calls another subprogram, passing it dimension
information).

Integer variables in the explicit specification or DIMENSION
statement that provide dimension information may be redefined
within the subprogram but the redefinitions have no effect on the
size of the array. The size of the array is determined at the
entry point at which the array information is passed.

VS FORTRAN Data 23

CHARACTER SUBSTRINGS

24

Character arrays are specified in the same manner as for the other
data types. (See "DIMENSION Statement" on page 71 and "Explicit
Type Statement"™ on page 85.) The length of each array element is
either the standard length of 1 or may be declared larger with a
type or IMPLICIT statement. Each character array element is
treated as a single entity. Portions of an array element can bea
accessed through substring notation.

A character substring is a contiguous portion of a character
variable or character array element. A character substring is
identified by a substring reference. It may be assigned values and
maytbe referred to. A substring reference is local to a program
unit.

-
1

he form of a substring reference is:

syntax

alel:e2)

a
is a character variable name or a subscripted character
array name (see "Array Elements? on page 20).

el and e2

are substring expressions.

Substring expressions are optional, but the colon (:) is always
required inside the parentheses. The colon represents a range of
values. If @l is omitted, a value of one is implied for @l1. If @2
is omitted, a value equal to the length of the character variable
or array element is implied for @2. Both el and e2 may be omitted;
for example, the form v(:) is equivalent to v.

The value of el specifies the leftmost character position and the
value of @2 specifies the rightmost character position of the

substring. The substring information (if any) must be specified
after the subscript information (if any).

. The values of el and e2 must be integer, positive, and
nonzero.

. The value of gl must be less than or equal to the value of @2.

. The values of gl and @2 must be lass than or equal to the
number of characters contained in the corresponding variablae
name or array element.

Examples:

Example 1:

Given the following statements:

CHARACTERX%5 CH(10)
CH(2)="ABCDE"

then
CH(2)(1:2) has the value AB.
CH(2)(:3) has the value ABC.
CH(2)(3:) bhas the value CDE.
Example 2:

SUBSTG(:) = SYMNAM
SUBST3(3:15) = SYMB3J
SUBST5(5:9) = SUBARI(2)(1:)

VS FORTRAN Language Reference

N

YS FORTRAN EXPRESSIONS

VS FORTRAN provides four kinds of expressions: arithmetic,
character, relational, and logical.

The value of an arithmetic expression is always a number whose
type is integer, real, or complex.

The value of a character expression is a character string.

The value of a relational or logical expression is always a
logical value: .TRUE. or .FALSE..

EVALUATION OF EXPRESSIONS

VS FORTRAN expressions are evaluated according to the following
rules:

ARITHMETIC EXPRESSIONS

Any variable, array element, function, or character substring
referred to as an operand in an expression must be defined
(that is, must have been assigned a value) at the time the
reference is executed.

In an expression, an integer operand must be defined with an
integer value, rather than a statement number. (See "ASSIGN
Statement™ on page 46.) If a character string or a substring
is referred to, all of the characters referred to must be
defined at the time the reference is executed.

The execution of a function reference in a statement must not
alter the value of any other entity within the statement in
which the function reference appears. The execution of a
function reference in a statement must not alter the value of
any entity in COMMON that affects the value of any other
function reference in that statement.

If a function reference in a statement alters the value of an
actual argument of the function, that argument or any
associated entities must not appear elsewhere in the
statement. For example, the following statements are
prohibited if the reference to the function F defines I or if
the reference to the function G defines X:

ACI) = F(D)
Y = G(X) + X

The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function.

Any array element reference requires the evaluation of its
subscript. The data type of an expression in which an array
reference appears does not affect, nor is it affected by, the
evaluation of the subscript.

Any execution of a substring reference requires the
evaluation of its substring expressions. The data type of an
expression in which a substring name appears does not affect,
nor is it affected by, the evaluation of the substring
expressions,

The simplest arithmetic expression consists of a primary, which
may be a single constant, name of a constant, variable, array

VS FORTRAN Data 25

ARITHMETIC OPERATORS

element, function reference, or another expression enclosed in
parentheses. The primary may be either integer, real, or complex.

In an expression consisting of a single primary, the type of the
primary is the type of the expression. Examples of arithmetic
expressions are shown in Figure 6.

Primary Type of Primary Type Length
3 Integer constant Integer 4
A Real variable Real 4
3.14D3 Real constant Real 8
3.14D3 Double precision constant Double 8
precision
(2.0,5.7) Complex constant Complex 8
SIN(X) Real function reference Real 4
(A%B+C) Parenthesized real Real 4

expression

Figure 6. Examples of Arithmetic Expressions

More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that
express the computation(s) to be performed.

The arithmetic operators are shown in Figure 7.

Arithmatic
Operator Definition
* % Exponentiatioh
* Multiplication
/ Division
+ Addition (or unary plus)
- Subtraction (or unary minus)

Figure 7. Arithmetic Operators

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS

26

The following are the rules for constructing arithmetic
expressions that contain arithmetic operators:

. All desired computations must be specified explicitly. That
is, if more than one primary appears in an arithmetic
expraession, they must be separated from one another by an
arithmetic operator. For example, the two variables A and B
are not multiplied if written:

AB

In fact, AB is regarded as a single variabla with a two-letter
name.

VS FORTRAN Language Reference

O

If multiplication is desired, the expression must be written
as follows:

A¥XB or BXA
. No two arithmetic operators may appear consecutively in the
same expression. For example, the following expressions are
invalid:
A%/B and A%-B
The expression A¥-B could be written correctly as
A¥(-B)

Two asterisks (¥%) designate exponentiation, not two
multiplication operations.

. Order of Computation

In the evaluation of expressions, priority of the operations
is shown in Figure 8.

Operation Hierarchy
Evaluation of functions i1st
Exponentiation (%x) 2nd
Multiplication and division (X and /) 3rd
Addition and subtraction (+ and -) 4th

Figure 8. Hierarchy of Arithmetic Operations

Note: A unary plus or minus has the same hierarchy as a plus or
minus in addition or subtraction.

If two or more operators of the same priority appear successively
in the expression, the order of priority of those operators is
from left to right, except for successive exponentiation
operators, where the evaluation is from right to left.

Consider the evaluation of the expression in the assignment
statement:

RESULT= AXB+CxD¥%xI

1., AxB Call the result X (multiplication) (X+CXD*XI)
2. DxxI Call the result Y (exponentiation) (X+CXY)

3. Cxy Call the result Z (multiplication) (X+2)

4. X+Z Final operation (addition)

The expression?
AXXBXX%C
is evaluated as follows:
1. Bx%C Call the result Z.

2. AX¥Z Final operation.

VS FORTRAN Expressions 27

Expressions with a unary minus are treated as follows:

A=-B is treated as A=0-B ﬂ;}
A=-B%C is treated as A=-(BXC) zﬁcause ¥ has higher precedence

an -
A=-B+C is treated as A=(-B)+(C 2ecause - has equal precedence

o +

USE OF PARENTHESES IN ARITHMETIC EXPRESSIONS

Because the order of evaluation (and, consequently, the result)
of an expression can be changed through the use of parentheses,
refer to Figure 9, Figure 10, and Figure 11 to determine the type
and length of intermediate results. Where parentheses are used,
the expression contained within the most deeply nested
parentheses (that is, the innermost pair of parentheses) is
evaluated first. A parenthesized expression is considered a
primary.

For example, the expression,
B/C(A-BIXC)+AXX%2

is effectively evaluated in the following order:

1. A-B Call the result W B/ (WXC) +A%X%2

2. WxC Call the result X B/X+AX%2

3 BsX Call the result Y Y+AXX2

G, A2 Call the result Z Y+Z -
5 Y+Z Final operation »wL}

TYPE AND LENGTH OF THE RESULT OF ARITHMETIC EXPRESSIONS

The type and length of the result of an operation depend upon the
type and length of the two operands (primaries) involved in the
operation.

Figure 9 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
an integer.

Figure 10 shows the type and length of thae result of adding,
sub}racting, multiplying, or dividing when the first operand is
real.

Figure 11 shows the type and length of the result of adding,
subtiacting, multiplying, or dividing when the first operand is
complex.

Note: Except for a value raised to an integer power, if two
operands are of different type and length, the operand that
differs from the type and/or length of the result is converted to
the type and/or length of the result. Thus the operator operates
on a pair of operands of matching type and length.

When an operand of real or complex type is raised to an integer

power, the integer operand is not converted. The resulting type
- and length match the type and length of the base.

28 VS FORTRAN Language Reference

C

First
Operand
Integer Integer
(2> (4)
Second
Operand
Integer Integer Integer
(2) 2) (%)
Integer Integer Integer
(%) (%) (%)
Real Real Real
(4) (4) (4)
Real Real Real
(8) (8) (8)
Real Real Real
(16) (16) (16)
Complex Complex Complex
(8) (8) (8)
Complex Complex Complex
(16) (16) (16)
Complex Complex Complex
(32) (32) (32)

Figure 9. Type and

Length where

the First Operand is Integer

VS FORTRAN Expressions

29

30

First

VS FORTRAN Language Reference

Operand
Real Real Real
(%) (8) (16)
Second
Operand

Integer Real Real Real

(2} (%) (8) (16)

Integer Real Real Real

(%) (%) (3) (16)

Real Real Real Real

(4) (4) (8) (16)

Real Real Real Real

(8) (8) (8) (16)

Real Real Real Real

(16) (16) (16) (16)
Complex Complex Complex Complex

(8) (8) (16) (32)
Complex Complex Complex Complex

(16) (16 (16) (32)
Complex Complex Complex Complex

(32) (32) (32) (32)

Figure 10. Type and Length where the First Operand is Real

.
N

Operand

' Complex Complex Complex

(8) (16) (323

Second
Operand

Integer Complex Complex Complex

(2) (8) (16) (32>
Integer Complex Complex Complex

(4) (8) (16) (32)
Real Complex Complex Complex

(4) (8) (16) (32)
Real Complex Complex Complex

(8) (16) (16) (32)
Real Complex Complex Complex

(16) (32) (32) (32)
Complex Complex Complex Complex

(8) (8) (16) (32)
Complex Complex Complex Complex

(16) (16) (16) (32)
Complex Complex Complex Complex

(32) (32) (32) (32)

Figure 11.

VS FORTRAN Expressions

Tvpe and Length where the First Operand is Complex

31

EXAMPLES' OF ARITHMETIC EXPRESSIONS

Assume that the type of the following variables has been specified QZ}
as indicated below: e

Name Type Length

I, J, K Integer variables 4 1, 2, 2
Cc Real variable 4

D Complex variable 16

Then the expression I*J/Cx%K+D is evaluated as follows:

subexpression Type and Length
I*J (Call the result X) Integer of length &
Cx¥x¥K (Call the result Y) . Real of length 4%
XY (Call the result 2) Real of length 4

(X is converted to real of length 4 before division is performed.)

{ IBM EXTENSION 1
2+D Complex of length 16 _fh\
s

(Z is expanded to real of length 8 and a complex quantity of
length 16 (call it W) is formed in which the real part is the
expansion of Z and the imaginary part is zero. Then the real
part of W is added to the real part of D and the imaginary part
of W is added to the imaginary part of D.)

Thus, the final type of the entire expression is complex of
length 16, but the types of the intermediate expressions change
at different stages in the evaluation.

L END OF IBM EXTENSION .

Depending on the values of the variables involved, the result of
the expression I*®J%C might be different from I*C*J. This may occur
because of the number of conversions performed during the
evaluation of the expression.

Because the operators are the same, the order of the evaluation is

from left to right. With I*¥JxC, a multiplication of the two

integers I%J yields an intermediate result of type integer and .
length 4. This intermediate result is converted to a type real of
length 4 and multiplied with C of type real of length 4 to yield a

type real of length 4 result.

With I%CxJ, the integer I is converted to a type real of length 4§
and the result is multiplied with C of type real of length 4 to
vield an intermediate result of type real of length 4. The integer
J is converted to a type real of length 4 and the result is
multiplied with the intermediate result to yield a typa real of
length 4 result.

Evaluation of I¥J*C requires one conversion and I¥CXJ requires

two conversions. The expressions require that the computation be A
performed with different types of arithmetic. This may yield AWl
different results. e

32 VS FORTRAN Language Reference

When division is performed using two integers, any remainder is
truncated (uithout rounding) and an integer quotient is given. If
the mathematical quotient is less than 1, the answer is 0. The
sign is determined according to the rules of algebra. For example:

I J 173

9 2 4
-5 2 -2
1 -4 0

CHARACTER EXPRESSIONS

The simplest form of a character expression is a character
constant, character array element reference, character substring
reference, or character function reference. More complicated
character expressions may be formed by using one or more character
operands together with character operators and parentheses.

The character operator is shown in Figure 12.

Character Lo
Operator Definition
/7 Concatenation

Figure 12. Character Operator
The concatenation operation joins the operands in such a way that
the last character of the operand to the left immediately precedes
the first character of the operand to the right. For example:
"AB'//7'CD' yields the value of 'ABCD'

The result of a concatenation operation is a character string
consisting of the values of the operands concatenated left to
right and its length is equal to the sum of the lengths of the
operands.
Note: Except in a CHARACTER assignment statement, the operands
of a concatenation operation must not have inherited length. That
is, their length specification must not be an asterisk (%) unless
the operand is the name of a constant. See "Explicit Type
Statement" on page 85.

USE OF PARENTHESES IN CHARACTER EXPRESSIONS

Parentheses have no effect on the value of a character expression.
For example:

If X has the value 'AB',
Y has the value 'CD'
and
Z has the value 'EF'
then the two expressions:
Xr/7¥r72
Xr/7(Yr72)
both yield the same result, the value "ABCDEF'

VS FORTRAN Expressions 33

valid Character Expressions:

Substring:
ST1311(I) = CVAR1(:I) |

Function Reference:

ST1314(IVARL1) = CHAR(IVAR1)

RELATIONAL EXPRESSIONS)

Relational expressions are formed by combining two arithmatic
expressions with a relational operator or twe character
expressions with a relational operator.

The six relational operators are shown in Figure 13.

Relational

Operator Definition
.GT. Greater than
.GE. Greater than or equal to
LT, Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to

Figure 13. Relational Operators ~g;;

Relational operators:
. Express a condition that can be either true or false.

. Operators may be used to compare two arithmetic expressions
(except complex) or two character expressions. Only the .EQ.
and .NE. operators may be used to compare an arithmetic
expression with a complex expression. If the two arithmetic
expressions being compared are not of the same type or length,
they are converted following the rules indicated in Figure 9,
Figure 10, and Figure 11.

. Comparison of an arithmetic expression to a character
expression or vice versa is not allowed.

In the case of character expressions, the shorter operand is
considered as being extended temporarily on the right with blanks
to the length of the longer operand. The comparison is made from
left to right, character by character, according to the collating

sequence as shown in Figure 4 and in "Appendix E. EBCDIC and ASCII
Codes."

34 VS FORTRAN Language Reference

LOGICAL EXPRESSIONS

Examples:

Assume that the type of the following variables has been specified
as indicated:

Variable Names Type

ROOT, E Real

A, I, F Integer

L Logical

C Complex

CHAR Character of length 10

Then the following examples illustrate valid and invalid
relational expressions.

valid Relational Expressions:

E .LT. I

Ex%2.7 .LE. (5%R00T+4)

.5 .GE. (.9%R0O0T)

E .EQ. 27.3E+05

CHAR .EQ. 'ABCDEFGH'

C.NE. CMPLX(ROOT,E)
Invalid Relational Expressions:

C.GE.(2.7,5.9E3) Complex quantities can only be compared

for equal or not equal in relational

expressions.

L.EQ.(A+F) Logical quantities may never be compared by
relational operators.

Exx2 LT 97.1El There is a missing period immediately
after the relational operator.

.6T7.9 There is a missing arithmetic expression
before the relational operator.

Ex2 .EQ. 'ABC® A character expression may not be compared
to an arithmetic expression.

. IBM EXTENSION .

Length of a Relational Expression: A relational expression is
always evaluated to a LOGICALX4 result, but the result can be
converted in an assignment statement to LOGICAL¥!.

1 END OF IBM EXTENSION !

The simplest form of logical expression consists of a single
logical primary. A logical primary can be a logical constant, a
name of a logical constant, a logical variable, a logical array
element, a logical function reference, a relational expression
(which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in
parentheses. A logical primary, when evaluated, always has a
value of true or false.

More complicated logical expressions may be formed by using
logical operators to combine logical primaries.

VS FORTRAN Expressions 35

LOGICAL OPERATORS

36

The.logical operators are shown in Figure ;Q. (A and B represent
logical constants or variables, or expressions containing
relational operators.

)

Logical
Operator| Use Meaning

.NOT. .NOT.A If A is true, then .NOT.A is false; if A
is false, then .NOT.A is true.

.AND. A.AND.B If A and B are both true, then A.AND.B is
true; if either A or B or both are false,
then A.AND.B is false.

.OR. A.OR.B If either A or B or both are true, then
A.OR.B 1s true; if both A and b are false,
then A.OR.B is false.

.EQV. A.EQV.B If A and B are both true or both false,
then A.EQV.B is true; otheruwise it is
false.

.NEQV. A.NEQV.B| If A and B are both true or both false,
then A.NEQV.B is false; otherwise it is
true.

Figure 14. Logical Operators

The only valid sequences of two logical operators are:

.AND. .NOT.
.OR..NOT.

.EQV. .NOT.
NEQV..NOT.

The sequence .NOT..NOT.

is invalid.

Only those expressions which have a value of true or false when
evaluated, may be combined with the logical operators to form

logical expressions.

Examples:

Assume that the types of the following variables have been
specified as indicated:

Variable Names

RCOOT, E

A, I, F

L, W

CHAR, SYMBOL

Type

Real
Integer
Logical

Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

valid Logical Expressions:

(ROOTXA .GT. A)

L .AND. .NOT. (I
(E+5.9E2 .GT.
.NOT. W .AND.
L .AND. .NOT. W
(AX%F .GT. ROOT

VS FORTRAN Language Reference

.AND. W
6T, F)
2XE)
.NOT. L

.gﬁb CHAR//7'123".LT.SYMBOL

.OR. L

.NOT. I .EQ. E)

Invalid Logical Expressions:
A.AND.L A is not a logical expression.

.OR.W .OR. must be preceded by a logical
expression.

NOT.(A.GT.F) Mi3$ing period before the logical operator

L.AND..OR.W The logical operators .AND. and .0OR. must
always be separated by a logical expression.

LAND.L .AND. must be preceded by a logical
expression.
ORDER OF COMPUTATIONS IN LOGICAL EXPRESSIONS
In the evaluation of logical expressions, priority of operations

involving arithmetic operators is as shown in Figure 15. Within a
hierarchic level, computation is performed from left to right.

Operation Involving Arithmetic Operators Hierarchy
Evaluation of functions 1st (highest)
Exponentiation (%x) 2nd
Multiplication and division (¥ and /) 3rd
Addition and subtraction (+ and -) 4th
Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. : 6th

.AND. 7th

.0R. 8th

.EQV. or .NEQV. 9th

Figure 15. Hierarchy of Operations Involving Arithmetic Operators

In the evaluation of logical expressions; priority of operations
involving characteér operators is as shown in Figure 16. Within a
hierarchic level, computation is performed from left to right.

operation Involving Character Operators Hierarchy
Evaluation of functions 1st (highest)
Concatenation (/7) . 2nd
Relationals (.GT.,.GE.,.LT...LE...EQ.,.NE.) 3th

.NOT, , 4th

.AND. ; 5th

.0OR. 6th

.EQV. or .NEQV. 7th

Figure 16. Hierarchy of Operations Involving Character Operators

VS FORTRAN Expressions 37

Exampla: @
i)
"Assume the type of the following variables has been specified as , <

follows:
vVariable Names Type Length
B,D REAL 4
A REAL 8
L,N LOGICAL 4

The expression
A.GT.D%%B.AND..NOT.L.OR.N

is eifectively evaluated in the following order (and from left to
right):

1. DxxB Call the result W.

Exponentiation is performed because arithmetic operators have
a higher priority than relational operators, vielding a real
result W of length 4.

2. A.GT.W Call the result X.

The real variable A of length 8 is compared to the real
variable W which was extended to a length of 8, yielding a
logical result X whose value is true or false.

3. L.NOT.L Call the result Y.

The logical negation is performed because .NOT. has a higher
priority than .AND., vielding a logical result Y whose value
is true if L is false and false if L is true. /,\\

4. X.AND.Y Call the result Z.

The logical operator .AND. is applied because .AND. has a
higher priority than .0R. to vield a logical result Z whose
value is true if both X and Y are true and false, if both X and
Y are false, or if either X or Y is false.

5. Z.0R.N

The logical operator .0R. is applied to vield a logical result
of true if either Z or N is true or if both Z and N are true.
If both Z and N are false, the logical result is false.

Note: Calculating the value of logical expressions may not always
require that all parts be evaluated. Functions within logical
expressions may or may not be invoked. For example, assume a
logical function called LGF. In the expression A.OR.LGF(.TRUE.),
it should not be assumed that the LGF function is always invoked,
since it is not always necessary to do so to evaluate the
expression when A is true.

USE OF PARENTHESES IN LOGICAL EXPRESSIONS

38

Parentheses may be used in logical expressions to specify the
order in which the operations are to be performed. Where
parentheses are used, the expression contained within the most
deeply nested parentheses (that is, the innermost pair of
parentheses) is evaluated first.

VS FORTRAN Language Reference

Example:

Assume the type of the following variables specified as follows:

Variable Names Type Length
B REAL 4
c REAL 8
K,L LOGICAL 4

The expression
.NOT.((B.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B.GT.C Call the result X.

B is extended to a real of length 8 and compared with C of
length 8 yielding a logical result X of length ¢ whose value
is true if B is greater than C or false if B is less than or
equal to C.

2. X.0R.K Call the result Y.

The logical operator .OR. is applied to yield a logical result

of Y whose value is true if either X or K is true or if both X

$nd Kfare true. If both X and K are false, the logical result
is false.

3. Y.AND.L Call the result Z.

The logical operator .AND. is applied to vield a logical
result Z whose value is true if both Y and L are true and
false if both Y and L are false or if either Y or L is false.

4. .NOT.Z

The logical negation is performed to vield a logical result

whose value is true if Z is false and false if 2 is true.
A logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more
quantities. Otherwise, because of the higher precedence of the
.NOT. operator, it will apply to the first operand of the
relation. For example, assume that the values of the logical
variables, A and B, are false and true, respectively. Then the
following two expressions are not equivalent:

.NOT.CA.OR.B)

.NOT.A.OR.B
In the first expression, A.OR.B is evaluated first. The result is
true; but .NOT.(.TRUE.) is the equivalent of .FALSE.. Therefore,
the value of the first expression is false.
In the second expression, .NOT.A is evaluated first. The result is

true; but .TRUE..OR.B is the equivalent of .TRUE.. Therefore, the
value of the second expression is true.

VS FORTRAN Expressions 39

40

The lengths of the results of the various logical operations are
shown in Figure 17. (The result of logical operations is always

logical of length 4.)

First

Operand Logical Logical

Second (1) (4)

Operand

Logical Logical Logical

(1) (%) (%)
Logical Logical Logical

(%) (%) (%)

Figure 17. Typae and Length of the Result of Logical Operations

VS FORTRAN Language Reference

VS _FORTRAN STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions and allocates storage for
datatareas. A given VS FORTRAN statement performs one of three
functions:

. It performs certain executable operations (for example,
addition, multiplication, branching).

L It specifies the nature of the data being handled.
. It specifies the characteristics of the source program.

VS FORTRAN statements are either executable or nonexecutable.

VS FORTRAN STATEMENT CATEGORIES

Statements are divided into the following categories according to
what they do:

. Assignment statements
. Control statements
. Data statement

I IBM EXTENSION 1

. Debug statements

L END OF IBM EXTENSION !

. Input/output statements

. Main program statement

. Specification statements

. Subprogram statements

T IBM EXTENSION 1
. VS FORTRAN compiler directives

L END OF IBM EXTENSION .

ASSIGNMENT STATEMENTS

There are four types of assignment statements: the arithmetic,
character, and logical assignment statements and the ASSIGN
statement. Execution of an assignment statement assigns a value
to a variable. Assignment statements are executable.

CONTROL STATEMENTS

In the absence of control statements, VS FORTRAN statements are
executed sequentially. That is, after one statement has been
executed, the statement immediately following it is executed.
Control statements alter this normal sequence of execution of
statements in the program. They are executable.

VS FORTRAN Statements 41

CALL IF (ELSE, ELSE IF, END IF)

CONTINUE PAUSE
DO RETURN
END STOP
GO TO

DATA STATEMENT

The DATA statement assigns initial values to variables, array
elements, arrays, and substrings. It is nonexecutable.

: IBM EXTENSION .

DEBUG STATEMENTS

The debug facility is a programming aid that helps locate errors
in a VS FORTRAN source program. The debug facility traces the
flow of execution within a program, traces the flow of execution
between programs, displays the values of variables and arrays,
and checks the validity of subscripts. DISPLAY, TRACE OFF, and
TRACE ON are executable; AT, DEBUG, and END DEBUG are

nonexecutable.
AT END DEBUG
DEBUG TRACE OFF
DISPLAY TRACE ON

L END OF IBM EXTENSION !

INPUT/0UTPUT STATEMENTS

Input/output (I/0) statements transfer data between two areas of
internal storage or between internal storage and an input/output
device. Examples of input/output devices are card readers,
printers, punches, magnetic tapes, disk storage units, or
terminals.

The I/0 statements allow the programmer to specify how to process
the VS FORTRAN files at different times during the execution of a
program. Except for the FORMAT statements, these statements are

executable.
BACKSPACE ~ OPEN
CLOSE PRINT
ENDFILE READ
FORMAT REWIND
INQUIRE WRITE
r IBM EXTENSION 1
WAIT

t END OF IBM EXTENSION .

Note: The description of the VS FORTRAN input and output
statements 15 made from the point of view of a VS FORTRAN program.
Therefore words such as file, record, or OPEN must not be confused
with the same words used when discussing an operating system. See
the descriptions of each 1/0 statement.

MAIN PROGRAM STATEMENT

42

The PROGRAM statement names the main program. It can only be used
in a main program. It is not required. The PROGRAM statement is
nonexecutable. .

VS FORTRAN Language Reference

e

A

,/(—\.J\

Nt

SPECIFICATION STATEMENTS

(:D; The specification statements provide the compiler with

R information about the nature of the data in the source program. In
addition, they supply the information required to allocate
storage for this data.

The specification statements must follow the PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statements. They may be preceded by FORMAT
or ENTRY statements. Specification statements are nonexecutable.

- COMMON EXTERNAL
' DIMENSION IMPLICIT
EQUIVALENCE INTRINSIC
Explicit type: PARAMETER
COMPLEX, INTEGER, SAVE

LOGICAL, REAL,
CHARACTER, and
DOUBLE PRECISION
T IBM EXTENSION 2
NAMELIST

L END OF IBM EXTENSION !

SUBPROGRAM STATEMENTS

There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCKDATA. There are also intrinsic function procedures and
statement function procedures. The list of intrinsic functions
supplied with VS FORTRAN is contained in "Appendix B.
FORTRAN-Supplied Procedures" on page 204%.

> Function subprograms differ from subroutine subprograms in the
way they are invoked and in that function subprograms return a
value to the calling program, whereas subroutine subprograms need
not return any.

The function subprogram is a V5 FORTRAN subprogram that begins
with a FUNCTION statement. It is independently written and is
executed whenever its name is appropriately referred to in
another program. It is called by coding its name with any
necessary parameters. At least one executable statement in the
function subprogram must assign a result to the function name;
thistvalue is returned to the calling program as the result of the
function.

The subroutine subprogram is similar to the function subprogram
except that it begins with a SUBROUTINE statement and does not
return an explicit result to the calling program. The rules for
naming function and subroutine subprograms are similar. They both
require an END statement and they both may contain dummy
arguments. Like the function subprogram, the subroutine
subprogram can be a set of commonly used computations, but it need
not return any results to the calling program. The subroutine
subprogram is executed whenever its name is referred to by the
QALL statement.

Subprogram statements are nonexecutable.

BLOCK DATA Statement function
ENTRY SUBROUTINE
FUNCTION

VS FORTRAN Statements 43

r . IBM EXTENSION 1

VS FORTRAN COMPILER DIRECTING STATEMENTS th

The EJECT and INCLUDE statements are IBM extensions that direct
the compiler to start a new page or to insert one or more source
statements into the program. They ara not considered part of the
VS FORTRAN language.

‘ END OF IBM EXTENSION 4

ORDER OF STATEMENTS IN A PROGRAM UNIT

44

The order of statements in a VS FORTRAN program unit (other than a
BLOCK DATA subprogram) is as follows:

1. PROGRAM or subprogram statement, if any.
2. PARAMETER statements and/or IMPLICIT statements, if any.

3. Other specification statements, if any. (Explicit
specification statements that initialize variables or arrays
must follow other specification statements that contain the
same variable or array names.)

4. Statement function definitions, if any.

3

5. Executable statements.
6. END statement.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements except
PARAMETER statements. Any specification statement that specifies ™
the type of a name of a constant must precede the PARAMETER ./
statement that defines that particular name of a constant; the T
PARAMETER statement must precede all other statements containing
tzetnamei of constants that are defined in the PARAMETER

statement.

FORMAT and ENTRY statements may appear anvyuhere after the PROGRAM
or subprogram statement and before the END statement. The ENTRY
statement, however, may not appear between a block IF statement
and its corresponding END IF statement or within the range of a
DO. DATA statements must follow the IMPLICIT statements and any
specification statements that contain tha same variable or array
names.

T IBM EXTENSION » 1

A NAMELIST statement declaring a NAMELIST name must precede the :
use of that name in any input/output statement. Its placement is

as indicated for other specification statements.

¢ END OF IBM EXTENSION !

The order of statements in BLOCK DATA subprograms is discussed in
"BLOCK DATA Statement" on page 56. Figure 18 shows a diagram of
the order of statements.

. The vertical lines in the figura delineate varieties of
statements that may be interspersed. For example, FORMAT
statements may be interspersed with statement function
statements and executable statements.

U Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable o f
statements. :a:D

VS FORTRAN Language Reference

Comment
Lines

PROGRAM, FUNCTION,

SUBROUTINE, or BLOCK DATA

statement
IMPLICIT
PARAMETER Statements
FORMAT Statements
Other
and Specification
Statements
ENTRY
Statement
Statements Function
DATA Statements
Statements
Executable
Statements

END Statement

Figure 18. Order of Statements and Comment Lines

VS _FORTRAN STATEMENT DESCRIPTIONS

The rules for coding each VS FORTRAN statement are described in
this section in alphabetic sequence. Brief examples are included.
For additional examples and explanations, see VS FORTRAN

Application Programming: Guide.

Notes:
o 1. Comments and statement numbers are included because, although
‘:D they are not actual statements, they are integral parts of VS
FORTRAN programs.

2. Each described statement begins at the top of a page.

ARITHMETIC IF STATEMENT

See "IF Statements" on page 117.

VS FORTRAN Statements

45

ASSIGN
ASSIGN STATEMENT

The ASSIGN statement assigns a number (statement number) to an Q:D
integer variable. See also "Statement Numbers™ on page 171. 2

syntax
ASSIGN stn TO i

stn
is the number of an executable statement or a FORMAT
statement in the program unit containing the ASSIGN

statement.

is the name of an integer variable (not an array element) of
VTmmmbla 4 Slamd T & acetmund dlhha ebabamand mimlvan adn
SBWIIY Wiy T wria . o GIItgiisw witE - e VCEIITSRII A TS ;\l:.

The statement number must be the number of a statement that
appears in the same program unit as the ASSIGN statement. The
statement number must be the number of an executable statement or
a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined
with a statement number.

A variable must have been defined with a statement number when it
is referred to in an assigned GO TO0 statement or as a format
identifier in an input or output statement. An integer variable
defined with a statement number may be redefined with the same or
a different statement number or an integer value.

If stn is the statement number of an executable statement, i can

be used in an assigned GOT0 statement. “C;D

If stn is the statement number of a FORMAT statement, i can be
used as the format identifier in a READ, WRITE, or PRINT statement
with FORMAT control.

The value of i is not the integer constant represented by stn and
cannot be used as such. To use i as an integer, it must be
assigned an integer value by an assignment or input statement.
This assignment can be done directly or through EQUIVALENCE,
COMMON, or argument passing.

ASSIGNED GO TO STATEMENT

See "GO TO Statements"™ on page 115.

46 VS FORTRAN Language Reference

‘2}.

C

Assignment

ASSIGNMENT STATEMENTS

This VS FORTRAN statement closely resembles a conventional
algebraic equation; however, the equal sign specifies a
replacement operation rather than equality. That is, the
expression to the right of the equal sign is evaluated, and the
resulting value replaces the current value of the variable, array
element, character substring, or character variable to the left
of the equal sign.

syntax

is a variable, array element, character substring, or
character variable.

b
is an arithmetic, logical, or character expression.

An assignment statement is used for the results of calculations.
The result of evaluating the expression replaces the current
value of a designated variable, array element, or character
substring. There are three assignment statements: arithmetic,
logical, and character.

Arithmetic Assignment Statement

Ifb is an arithmetic expression, a must be an integer, real, or
complex variable or an array element.

Figura 19 showus the rules for conversion in érithmetic assignment
statements, atb, where the type of b is integer or real.

Figure 20 shows the rules for conversion in arithmetic assignment
statements, a=b, where the type of b is complex.

Character Assignment Statement

If b is a character expression, a must be a character variable,
character array element, or character substring.

None of the character positions being defined in a must be
referenced in b directly or through associations of variables
(that is, using COMMON, EQUIVALENCE, or argument passing).

The lengths of a and b may be different. The characters of b are
moved from left to right into the corresponding character
positions of a. If a has more positions than there are characters
in b, the rightmost positions of a are filled with blanks. If a
has fewer positions than there are characters in b, only the
leftmost characters of b are moved to fill the positions of a.

Logical Assignment Statement

Ifb is a logical expression, a must be a logical variable or
#ogical array element. The value of b must be either true or
alse.

VS FORTRAN Statements 47

Assignment

Type
of b INTEGER%2 REAL X4 REAL %8 REALX%16
INTEGERX4% REAL DOUBLE
Tvype PRECISION
of a INTEGER
INTEGER%2
Assign Fix and Fix and Fix and
assign assign assign
INTEGERX%
INTEGER
REAL ¥4 Float and Assign Real Real
assign assign assign
REAL
REALX8 DP float DP extend Assign DP assign
and assign and assign
DOUBLE ‘
PRECISION
QP float QP extend QP extend Assign
REAL*16 and assign and assign and assign
Float and Assign to Real assign Real assign
COMPLEXx%8 assign to real part; real part; real part;
real part; imaginary imaginary imaginary
imaginary part set part set part set
COMPLEX part set to 0 to O to O to 0O
DP float and DP extend Assign to DP assign
assign to and assign real part; real part;
COMPLEX*16 real part; to real part; imaginary imaginary
imaginary imaginary part set part set
part set to 0 part set to 0 to 0 to 0
QP float and QP extend QP extend Assign real
assign to and assign and assign part;
COMPLEX%32 real part; to real part; real part; imaginary
imaginary imaginary imaginary part set
part set to 0 part set to 0 part set‘to 0 to O

Figure 19. Conversion Rules for the Arithmetic Assignment Statement a=b Where Type of
b is Integer or Real

48

VS FORTRAN Language Reference

N

Iy

b is Complex

Type
of b COMPLEXx8 COMPLEX%16 COMPLEX%32
Type COMPLEX
of a
INTEGERX2 Fix and Fix and Fix and
assign real assign real assign real
part; part; part;
INTEGERX4 imaginary imaginary imaginary
part not used part not used part not used
INTEGER
Assign real Real assign, Real assign,
REAL X4 part; real_part; feal.part;
imaginary imaginary imaginary
part not part not part not
REAL used used used
DP extend and Assign real DP assign
REAL X8 assign real part; real part;
part; imaginary imaginary
DOUBLE imaginary part not part not
PRECISION part not used used used
QP extend QP extend Assign real
and assign and assign part;
REALX%16 real part; real part; imaginary
imaginary imaginary part not
part not used part not used used
Real assign Real assign
COMPLEXx%8 Assign real and real and
imaginary imaginary
parts parts
COMPLEX
DP extend DP assign
and assign Assign real and
COMPLEXX16 real and imaginary
imaginary parts
parts
QP extend QP extend
and assign and assign Assign
COMPLEXx%32 real and real and
imaginary imaginary
parts parts
Figure 20. Conversion Rules for the Arithmetic Assignment

Assignment

Statement a=b Where Type of

VS FORTRAN Statements 49

Assignment

Notes to Figures: IBM extensions are shown with inner boxes in

the figures. For clarity of praesentation, the extensions are not. @i%\
marked in the following definitions. Terms in the figures arae N
defined as follows:

Assign

Real assign

DP assign

Fix

Float

DP float
DP extend
QP float

QP extend

Examples:

Transmit the expression value without change. If the
expression value contains more significant digits
than the variable a can hold, the value assigned to a
is unpredictable.

Transmit to a as much precision of the most -
significant part of the expression valua as REALX%
data can contain.

Transmit as much precision of the most significant
part of the expression value as double precision
(REAL%8) data can contain.

Truncate the fractional portion of tha expression
value and transform the result to an integer of
length 4 bytes. If the expression value contains
more significant digits than an integer of length &
bytes can hold, the value assigned to the integer
variable is unpredictable.

Transform the integer expression value to a REALX4
number, retaining in the process as much precision
of the value as a REAL*4 number can contain.

Transform the integer expression value to a double
precision (REAL*8) number.

Extend the real value to a double precision (REALX8)
number.

Transform the integer expression value to a REALX16 /
number. :VGM

Extend the real valuae to a REAL¥16 number.

Assume the type of the following data items has been specified:

Name Type Length

I, J, K Integer variables 4, & |, 2

A, B, C, Real variables 4, 4, 8, 8

E Complex variable 8)
F(1),...,F(5) Real array elements %

G, H Logical variables %, 4

50 VS FORTRAN Language Reference

Assignment

| The following examples illustrate valid assignment statements
‘ZD using constants, variables, and array elements as defined above.

statement

Description

A

B

The value of A is replaced by the current
value of B.

The value of B is converted to an integer
value, and the value of K is replaced by as
much as can be held in 2 bytes.

The value of I is converted to a real value,
and replaces tha value of A.

The value of I is replaced by the value of I +

IxxJ+D

I is raised to the power J and the result is
converted to a real value to which the value
of D is added. This result replaces the real
part of the complex variable E. The imaginary
part of the complex variable is set to zero.

CxD

The most significant part of the product of C
and D replaces the value of A.

The real part of the complex variable E
replaces the value of A.

The value of A replaces the value of the real
part of the complex variable E; the imaginary
part is set equal to zero.

.TRUE.

The value of G is replaced by the logical
value true.

.NOT.G

If 6 is true, the value of H is replaced by

the logical value false. If G is false, the

;alue of H is replaced by the logical value
rue.

3..6T7.1

The value of I is converied to a real value;
if the real constant 3. is greater than this
result, the logical value true replaces the
value of 6. If 3. is not greater than the
converted I, the logical value false replaces
the value of G.

(1.0,2.0)

The value of the complex variable E is
replaced by the value of tha complex constant
(1.0,2.0). The statement E = (A,B), where A
and B are real variables, is invalid. The
mathematical function subprogram CMPLX can be
used for this purpose. See "Appendix B.
FORTRAN-Supplied Procedures" on page 204%.

F(1)

= A

The value of element 1 of array F is replaced
by the value of A.

E

F(5)

The real part of the complex coanstant E is
replaced by the value of array element F(5).
The imaginary part is set equal to zero.

VS FORTRAN Stat: :ents 51

Assignment

statement

pescription

C = 99999999.

]

Even though C is of length 8, the constant
having no exponent is considered to be of
length 4. Thus the number will not have the
accuracy that may be intended. If the basic
real constant were entered as 99999999.0D0,
the converted value placed in the variable C
would be a closer approximation to the entered
basic real decimal constant because 15 decimal
digits can be represented in 8 bytes.

ST1306(1:20)
'TEST'//CHAR1

CHARI must be declared CHARACTER with a type
statement.

52 VS FORTRAN Language Reference

AT STATEMENT

AT

I : IBM EXTENSION

The AT statement identifies the beginning of a debug packet and

gndjcates the point in the program at which debugging is to
egin.

syntax

A

e

stn

stn

is the number of an executable statement in the program or
function or subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are
performed prior to the execution of the statement indicated by
the statement number (stn) in the AT statement.

The statement number cannot be specified in another debug
packet.

There must be one AT statement for each debug packet; there may
be many debug packets for one program or subprogram.

The AT statement identifies the beginning of a debug packet and
the end of the preceding packet (if any) unless this is the last
packet, in which case it is ended by the END DEBUG statement.

For a more complete discussion of debug packets and for examples
of the AT statement, see "DEBUG Statement" on page 68.

END OF IBM EXTENSIGON '

VS FORTRAN Statements 53

BACKSPACE
BACKSPACE STATEMENT

The BACKSPACE statement positions a sequentially accessed
external file at the beginning of the VS FORTRAN record last
written or read. (See "OPEN Statement™ on page 134.)

syntax

BACKSPACE un
BACKSPACE ¢ [UNIT=lun [,I0STAT=jos] [,ERR=stnl)

UNIT=un
un is the reference to the number of an I/0 unit. It can
optionally be preceded by UNIT= if the second form of the
statoment is used. un can be an integer or real arithmetice
expression. Its value (after conversion to integer of length
%4, if necessary) must be zero or positive; otheruwise, an
error is detected.

If UNIT= is not specified, un must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
order. i
IOSTATSios
is optional. ios is an integer variable or an integer array
element of length 4. ios is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.
ERR=stn
stn is the number of a statement in the same program unit as
the BACKSPACE statement. Transfer is made to stn if an error
is detected.
Valid BACKSPACE Statements:
BACKSPACE un
BACKSPACE (un,ERR=stn)
BACKSPACE (UNIT=un,I0STAT=jios,ERR=stn)
BACKSPACE (ERR=stn,UNIT=un)
BACKSPACE(UNIT=2%IN+2)
BACKSPACE(IOSTAT=10S,ERR=99999,UNIT=2%IN-10)
Invalid BACKSPACE Statements:

BACKSPACE UNIT=un UNIT= is not allowed without the

parentheses.
BACKSPACE un,ERR=stn Parentheses must be specified.
BACKSPACE (ERR=stn,un) UNIT= must be specified.

When the BACKSPACE statement is encountered, the unit specified
by un must be connected to an external file for SEQUENTIAL access.
(See VS FORTRAN Application Programming: Guide.) If the unit is
not connected, an error is detected.

The external file connected to the unit un must exist; otherwise,
an error is detected. (The existence of a file can be determined
with the INQUIRE statement. exs must have the value true. see
"INQUIRE Statement™ on page 125.)

A BACKSPACE statement positions an external file to the beginning
of the preceding record. If there is no preceding record, the

54 VS FORTRAN Language Reference

o

BACKSPACE

BACKSPACE statement has no effect. The BACKSPACE statement must
not be used with external files using list-directed formatting.

r . IBM EXTENSION
The BACKSPACE statement must not be used with external files

written using NAMELIST. If it is used, the result is
unpredictable.

An external file can be extended if the execution of an ENDFILE
statement or the detection of an end-of-file is immediately
followed by the execution of a BACKSPACE and a WRITE statement
on this file. (See "READ Statement—Formatted with Sequential
Access" on page 150.)

The BACKSPACE statement may be used with asynchronous READ and
WRITE statements provided that any input or output operation on
the file has been completed by the execution of a WAIT

statement. A WAIT statement is not required to complete the
BACKSPACE operation. :

END OF IBM EXTENSION !

Transfer is made to the statement number specified by the ERR
parameter if an error is detected. If I0OSTAT=ios is specified, a
positive integer value is assigned to ios when an error is
detected. Execution continues with the statement number specified
by the ERR parameter (if present) or with the next statement if
the ERR parameter is not specified. If the ERR parameter and the
IOSTAT parameter are both omitted, program execution is
terminated when an error is detected.

VS FORTRAN Statements 55

BLOCK DATA
BLOCK DATA STATEMENT

The BLOCK DATA statement names a block of data.

syntax
BLOCK DATA [namel

name
is the name of the block data subprogram. This name is
optional. It must not be the same as the name of another
subprogram, a main program, or common block name in the
executable program. There can only be one unnamed block data
subprogram in an executable program.
To initialize variables in a named common block, & separate
subprogram must be written. This separate subprogram contains
only the BLOCK DATA, IMPLICIT, PARAMETER, DATA, COMMON,
DIMENSION, SAVE, EQUIVALENCE, and END statements, comment linas,
and explicit type specification statements associated with the
data being defined. This subprogram is not called; its presence
provides initial data values for named common blocks. Data may not
be initialized in unnamed common blocks.

The BLOCK DATA statement must appear only as the first statement
in the subprogram. Statements that provide initial values for
data items cannot precede the COMMON:. statements that define those
data items.

Any main program or subprogram using a named common block must
contain a COMMON statement defining that block. If initial values
are to be assigned, a block data subprogram is necessary.

A particular common block may not be initialized in more than one
block data subprogram.

Entities not in a named common block must not be initialized and
must not appear in a DIMENSION, EQUIVALENCE, or type statement in
a block data subprogram.

All elements of a named common block must be listed in the COMMON

statement, even though they are not all initialized. For example,
the variable A in the COMMON statement in the following block data
subprogram does not appear in the DATA statement.

Example 1:

BLOCK DATA

COMMON /ELN/C,A,B

COMPLEX C

DATA C/(2.4,3.769)/,Bs/1.27
END

Data may be entered into more than one common block in a single
block data subprogram.

Example 2:

BLOCK DATA VALUE1

COMMON/ELN/C,A,B/RMG/Z,Y

COMPLEX C

DOUBLE PRECISION Z

EGBA €r7(2.4,3.769)/,B71.2/,277.64980825D0/

As a result of this example, in BLOCK DATA named VALUEL,
COMMON/ELN/C,A,B '

56 VS FORTRAN Language Reference

Fc

AN

'\ka

BLOCK IF STATEMENT

BLOCK DATA
will have the complex variable C real part initialized to 2.4 and
the imaginary part initialized to 3.769. The variable A will not
be initialized and B will be initialized to 1.2.

COMMON/RMG/2,Y

will have the double precision variable Z initialized with the

double precision constant 7.64980825 and Y will not be
initialized.

See "IF Statements™ on page 117.

VS FORTRAN Statements 57

CALL
CALL STATEMENT
The CALL statement:
. Transfers control to a subroutine subprogram
. Evaluates actual arguments that are expressions

U Associates actual arguments with dummy arguments

—— syntax

CALL pame [¢ [argl [,arqg2) {,arg3] ... 1)1

name
is the name of a subroutine subprogram orF a
This name may be a dummy argument in a FUNC
or ENTRY statement. '

-
-
on

is an actual argument that is being supplied to the
subroutine subprogram. The argument may be a variable, array
element or array name, a constant, an arithmetic, logical,
or character expression, a function or subroutine name, or
an asterisk (¥) followed by the statement number of an
executable statement that appears in the same program unit
as the CALL statement.

If no actual argument is specified, the parentheses may be
omitted.

The CALL statement transfers control to the subroutine subprogram
and replaces the dummy variables with the values of the actual
arguments that appear in the CALL statement.
The CALL statement can be used in a main program, a function
subprogram, or a subroutine subprogram, but a subprogram must not
refer to itself directly or indirectly and must not refer to the
main program. A main program cannot call itself.
If name is a dummy argument in a subprogram containing CALL name,
this CALL statement can be executed only if the subprogram is
given control at one of its entry points where name appears in the
list of dummy arguments. (See "EXTERNAL Statement"™ on page 89.)
valid CALL Statements:
 CALL $Z0001

CALL S20001C)

CALL S19001(CVAR4D)

CALL TEST2(TF1,KF2,JIF3)

CALL SUB1(COM2+3%COM3-7,VAL2%VAL3/.6,.TRUE.)

CALL SUB2(A,B,%10,%20,%30) -

' CALL B('A',0,1,R)

CHARACTER TYPE STATEMENT

See "Explicit Type Statement™ on page 85.

58 VS FORTRAN Language Reference

CLOSE STATEMENT

CLOSE

A CLOSE statement disconnects an external file from an input or
output unit.

syntax
CLOSE ¢ CUNIT=lun [,ERR=stn] [,STATUS=stal [,I0STAT=ios])

UNIT=un
un is the reference to the number of an I/0 unit. It can
optionally be preceded by UNIT=, It can be an integer or real
arithmetic expression. Its value (after conversion to
integer of length 4, if necessary) must be zero or positive;
otherwise, an error is detected.

If UNIT= is not specified, un must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
urder.

ERR=st{"
is optional. stn is a statement number. If an error occurs in
tha execution of the CLOSE statement, control is transferred
to the statement labeled stn. That statement must be
exzcutable and must be in the same program unit as the CLOSE
statement. If ERR=stn is omitted, execution halts when an
errcr is detected.

STATUS=sta
is cptional. sta is a character expression whose value (when
any trailing blanks are removed) must be KEEP or DELETE. sta
determines the disposition of the file that is connected to
the specified unit.

I0STAT=ioS
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in I0OSTAT.

Each of the parameters of the CLOSE statement may appear only
once. The unit specifier (un) must appear. All value assignments
are made accor:iiing to the rules for assignment statements.

Execution of a £LOSE statement that refers to a unit may occur in
any program unit of an executable program and need not occur in
the same program unit as the execution of an OFPEN statement
referring to that unit. When the CLOSE statement is encountered,
the unit specified by un may or may not be connected to a file. If
the unit is connected, the file may or may not exist.

1f KEEP is specifiazd for a file that exists, the file continues to
exist after the exccution of the CLOSE statement. If KEEP is
specified for a fila that does not exist, the file will not exist
after the execution of the CLOSE statement. If DELETE is
specified, the file is deleted.

If STATUS is omitted, the assumed value is KEEP, unless the file
status prior to execution of the CLOSE statement is SCRATCH, in

-which case the assumed value is DELETE. (The STATUS parameter

affects only the internal VS FORTRAN status. The external status
is set by the JCL or other system environment and will not be
overridden.) i

After a unit has been disconnected by execution of a CLOSE
statement, it may be cornected again within the same executable
program to the same file or a different file.

After a file has beeh disconnected by execution of a CLOSE
statement, it may be connected again within the same executable

VS FORTRAN Statements 59

CLOSE

60

program to the same unit or a different unit providad that the

file still exists. (See "OPEN Statement™ on pagae 134.) A”W\
When execution ends normally, all units that #re connected are “hﬁ/
closed. Each unit is closed with status KEEP unless the file
status prior to termination of execution was 3CRATCH, in which
case the unit is closed with status DELETE.

Example 1:

Assume that the type of the following variaslaes has been specified
as follows:

Variable Names Type Length
IN,IACT,Z INTEGER 4 -
DELETE CHARACTER 6

and that

DELETE = 'DELETE'
The following statements are valid:
CLOSE(6+IN)
CLOSE(ZXIN+2)
CLOSE(Z*IN+3,STATUS=DELETE)
CLOSE(CIOSTAT=IACT,ERR=99999,STATUS='KE'//'EP ',UNIT=0)
Example 2:
STATUS='KEEP" N
DELETE=STATUS A
CLOSE(UNIT=6,STATUS=DELETE)
CLOSE(UNIT=6,STATUS=STATUS)
CLOSECUNIT=6,STATUS="KEEP')

Each of these CLOSE statements should execute the same way and
give a status of KEEP.

VS FORTRAN Language Reference

COMMENTS

¢

Fixed-Form Input

Free-Form Input

comments

Comments provide documentation for a program. They can be entered
in either fixed form or free form.

Fixed-form comments have the following attributes:

. A "C" or an asterisk (¥) may appear in column 1 or all blanks
may appear in columns 1 to 7

. A comment may appear anywhere before the END statement.

¢ IBM EXTENSION !

Free-form comments have the following attributes:

U Any line that does not follow a continued line and that has
the quotation mark (") character as its first character is
considered a comment.

U A comment line cannot be continued.

L END OF IBM EXTENSION 4

VS FORTRAN Statements 61

COMMON
COMMON STATEMENT

AT
The COMMON statement makes it possible for two or more program %Wy
units to share storage and to specify the names of variables and
arrays that are to occupy the area.
syntax
COMMON [/Ilnamell/] listlil [,]) /lpamenls/ listn] ...
name
is an optional common block name. Thesa names must always be
enclosed in slashes. They cannot be the same as names used in
PROGRAM, SUBROUTINE, FUNCTION, ENTRY, or BLOCK DATA
statements.
The form /7 (with no characters except possibly blanks
betuween the slashes) denotes blank common. If namel denotes
blank common, the first two slashes are optional.
The comma preceding the common block name designator /pame/
is optional.
list
is a list of variable namas or array names that are not dummy
arguments. If a variable name is also a function name,
subroutine name, or entry name, it must not appear in the
list. If the list contains an array name, dimensions may also
be declared for that array. (See "DIMENSION Statement™ on
page 71.)
A given common block name may appear more than once in a COMMON
statement, or in more than one COMMON statement in a program unit. e
N
Blank and named common entries appearing in COMMON statements are ‘\“”'

cumulative throughout the program unit. Consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E /S5/ F
COMMON G, H #S7 I, J /R/R//W
These tuwo statements have tﬁe same effect as the single statement:
COMMON A, B, C, G, H, W/R/ D, E, R/S/ F, I, J
If a character variable or character array is in a common block,
all the other variables and arrays in that common block must be of

type character.

Although the entries in a COMMON statement can contain dlmensuon
information, object-time dimensions may never be used.

The length of a blank common can be extended by using an
EQUIVALENCE statement, but only by adding beyond the last entry. -

A common block resides in a fixed location in storage during the
execution of a program. Because of this, all program units of this
program refer to data at that location as defined in the COMMON
statements in each program unit.

In the following example, the complex variable, CV, and the real
array, RV, refer to the same storage locations.

The statement: RV(2) = 1.2 will assign the value of 1.2 to the
imaginary part of CV.

62 VS FORTRAN Language Reference

COMMON

Main Program subroutine
COMMON CV SUBROUTINE SUB
COMPLEXX8 CV COMMON RV(2)
CALL SUB RV(2) = 1.2
STOP RETURN

END ' END

Blank and Named Common

Variables and arrays may be placed in separate common blocks by
giving distinct common block names (name). Those blocks that have
the same name occupy the same storage area. The name cannot be the
same as the main program name, subprogram name, or entry name. The
variables and arrays of a common block must all be of type
character or all noncharacter in all the program units that refer
to the common block.

Naming these separate blocks permits a calling program to share
one common block with one subprogram and another common block with
another subprogram. It also makes it easier to document the
program.

The differences between blank and named common are:

. There is only one blank common in an executable program, and
it has no name.

There may be many named commons, each with its own name.

[Blank common may have different lengths in different program
units.

Each program unit that uses a named common must define it to
be of the same length.

. Variables and array elements in blank common cannot be
assigned initial values.

Variables and array elements in named common may be assigned
initial values by DATA statements in a block data subprogram.

i IBM EXTENSION 1

Variables and array elements in named common may be
assigned initial values by explicit type specification
statements in a block data subprogram.

L END OF IBM EXTENSION .

Variables that are to be placed in named common are preceded by
the common block name enclosed in slashes. For example, the
variables A, B, and C are placed in the named common, HOLD, by the
following statement:

COMMON /HOLD/ A,B,C

In a COMMON statement, blank common is distinguished from named
common by placing two consecutive slashes before the variables
(or, if the variables appear at the beginning of the COMMON
statement, by omitting any common block name). For example,

COMMON A, B, C /ITEMS/ X, Y, 2 7 7 D, E, F

VS FORTRAN Statements 63

COMMON
The variables A, B, C, D, E, and F are placed in blank common in

that order; the variables X, Y, and Z are placed in the named
common ITEMS.

COMPLEX TYPE STATEMENT

Sea "Explicit Type Statement™ on page 85.

COMPUTED GO TO STATEMENT
See "GO0 TO Statements™ on page 115.

64 VS FORTRAN Language Reference

O

CONTINUE

CONTINUE STATEMENT

The CONTINUE statement is an executable control statement that
takes no action. It can be used to designate the end of a DO loop,
or to label a position in a program.

syntax
CONTINUE

CONTINUE
is a statement that may be placed anywhere in the source
program (uhere an executable statement may appear) without
affecting the sequence of execution. It may be used as the
last statement in the range of a DO loop in order to avoid
ending the DO loop with an unconditional or assigned GO TO,
block IF, ELSE IF, ELSE, ENDIF, STOP, RETURN, END,
arithmetic IF, another DO statement, or a logical IF
statement containing an unconditional or assigned GO T0, or
a STOP, RETURN, or arithmetic IF statement.

VS FORTRAN Statements 65

DATA

DATA STATEMENT

66

The DATA statement defines initial values of variables, array
elements, arrays, and substrings.

syntax
DATA listl /clistl/s [[,]) list2 /clist2s J e

list
isalist of variables, array elements, arrays or
substrings, and implied DO lists. The comma preceding
list2...listn is optional. :

Subscript and substring expressions used in each list can
contain only integer constants or names of integer
constants. (An exception is described under "Implied DO in a
DATA Statement"™ on page 74.)

clist
is a list of constants or the names of constants. Integer and
real constants may optionally be signed. Any of these
constants may be preceded by r¥, where r is a nonzero
unsigned integer constant or the name of such a constant.
When the form r* appears before a constant, it indicates that
the constant is to be repeated r times.

A DATA initialization statement is not executable. The DATA
statement cannot precede a PROGRAM, FUNCTION, SUBROUTINE, BLOCK
DATA, IMPLICIT, PARAMETER, or an explicit type statement.
Otherwise, a DATA statement can appear anywhere in the program.

There must be a one-to-one correspondence between the total
number of elements specified or implied by the list list and the
total number of constants specified by the corresponding list
clist after application of any replication factors, r.

Integer, real, and complex variables or array elements must be
initialized with integer, real, or complex constants; conversions
take place according to the arithmetic assignment rules, if
necessary.

T IBM EXTENSION - 1

A hexadecimal constant can be used to initialize any arithmetic
or logical type of variable or array element.

If a hexadecimal constant initializes a complex data type, one
constant is used that initializes both the real and the
imaginary parts and the constant is not enclosed in
parentheses. If the constant is smaller than the length (in
bytes) of the entire complex entity, zeros are added on the
left. If the constant is larger, the leftmost hexadecimal
digits are truacated.

A logical variable or logical array may be initialized with T
instead of .TRUE. and F instead of .FALSE.. ¢

L END OF IBM EXTENSION !

Character items can be initialized by character data only. Each
character constant initializes exactly one variable, one array
element, or one substring. 1f a character constant contains more
characters than the item it initializes, the additional rightmost
characters in the constant are ignored. If a character constant
contains fewer characters than the item it initializes, the
additional rightmost characters in the item are initialized with
blank characters. (Each character represents one byte of
storage.)

VS FORTRAN Language Reference

DATA
A variable or array element defined with an initial value may not
. be in blank common and may not be assigned an initial value more
‘Zj‘ than once. If the variable or array element is in a named common
d block, it may be initially defined only in a block data
subprogram. For purposes of this constraint, entities that are
associated with each other through COMMON or EQUIVALENCE
statements are considered as the same entity.
valid DATA statements:
DATA A, B, €/5.0,6.1,7.37,D/725%1.0,25%2.0/,E/5.1/
DATA Fs5%1.0/, G/9%2.0/, L/4% . TRUE./, C/'FOUR'/

DATA CC(1)(1:2)/'AB"'/,CC(1)(3:4)/7'CD"'/

C
)

VS FORTRAN Statements 67

DEBUG

T IBM EXTENSION

DEBUG STATEMENT

68

The DEBUG statement sets the conditions for operation of the
debug facility and designates debugging operations that apply
to the entire program unit (such as subscript checking).

syntax
DEBUG option,..., option

An option may be any of the following:

UNIT (un)
un is an integer constant that represents a unit number.
All debugging output is placed in this file called the
debug output file. If this option is not specified, any
debugging output is placed in the installation-defined
output file. All unit definitions within an executable
program must refer to the same unit.

SUBCHK (al’ 32,00.’ Q_n)
a is an array name. The validity of the subscripts used
with the named arrays is checked by comparing the
subscript combination with the size of the array. If the
subscript value exceeds the size of the array, a message is
placed in the debug file. Program execution continues,
using the incorrect subscript. If the list of array names
is omitted, all arrays in the program are checked for valid
subscript usage. If the entire option is omitted, no
arrays are checked for valid subscripts.

TRACE
This option must be in the DEBUG specification statement
of each program or subprogram for which tracing is
desired. If this option is omitted, there can be no display
of program flow by statement number within this program.
Even when this option is used, a TRACE ON statement must
3ppgardih the first debug packet in which tracing is
esired. -

INIT (il, i2,..., in)
i is the name of a variable or an array that is to be
displayed in the debug output file only when the variable
or the array elements are assigned a value. If i is a
variable name, the name and value are displayed whenever
the variable is assighed a new value in either an
assignment, a READ or an ASSIGN statement. If i is an array
name, the array element is displayed. If the list of names
is omitted, a display occurs whenever the value of a
variable or an array element is assigned a value. If thke
entire option is omitted, no display occurs when values
are assigned.

SUBTRACE
This option specifies that the name of this subprogrum is
to be displayed whenever it is entered. The message RETURN
is to be displayed whenever execution of the subprogram is
completed.

The options in a DEBUG statement may be given in any ordar and
they must be separated by commas.

All debugging statements must precede the first statemant of
the program being debugged. The required statement secuence is:

1. DEBUG statement

2. Debug packets

VS FORTRAN Language Reference

e

DEBUG
3. END DEBUG statement

4. First of the source program statements of a program unit to
be debugged

A debug packet begins with an AT statement and ends when either
another AT statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form
and follow the same rules as other VS FORTRAN statements.

In addition to the VS FORTRAN language statements, the
following debug statements are allowed:

TRACE ON
TRACE OFF
DISPLAY

All VS FORTRAN statements are allowed in a debug packet except
as listed in "Considerations when Using DEBUG."

Considerations when Using DEBUG

The following precautions must be taken when setting up a debug
packet:

. Any DO loops, block IF, ELSE IF, or ELSE statements
initiated within a debug packet must be wholly contained
within that packet.

. Statement numbers within a debug packet must be unique:
They must be different from statement numbers within other
debug packets and within the program being debugged.

. An error in a program should not be corrected with a debug
packet; when the debug packet is removed, the error remains
in the program.

. No specification statements can appear in a debug packet;
nor can any of the following statements:

BLOCK DATA

ENTRY

FUNCTION

PROGRAM

statement function
SUBROUTINE

. The program being debugged must not transfer control to any
statement number defined in a debug packet; however,
control may be returned to any point in the program being
debugged from a packet. In addition, no debug packet may
refer to a label defined in another debug packet. A debug
packet may contain a RETURN, STOP, or CALL statement.

t . END OF IBM EXTENSION 1

VS FORTRAN Statements 69

DEBUG

70

DEBUG Examples: . @

‘Example 1:

DEBUG UNIT(6)
AT 11
WRITE(6,21)A,B,C
21 FORMAT(1X,'A=',I110,'B=',I10,'C="',I10)
END DEBUG

INTEGER A,B,C

AT(C))

o]
(.3 aad
[+ Y]

The values of A, B, and C are to be examined as they were at the
completion of the arithmetic operation in statement 10.
Therefore, the statement number specified in the AT statement is
ll:the values of A, B, and C are written to the file connected to
uni .

Example 2:

DEBUG TRACE, UNIT(6)

AT 10

TRACE ON

AT 25

TRACE OFF N

AT 35 ‘
DISPLAY C &%W
TRACE ON
END DEBUG

10 A4=2.0

15 L=1

20 B=A+1.5

25 DO 30 1=1,5

30 CONTINUE

35 C=B+3.415

40 D=Cxx2

45 CALL SUBL(D,L,R)

When statement 10 is encountered, tracing begins, as specified by
the TRACE ON statement in the first debug packet. When statement
25 is encountered, tracing stops, as specified by the TRACE OFF
statement in the second debug packet. When statement 35 is
encountered, tracing begins again and the value of C is written to
the debug output file, as specified in the third debug packet.

VS FORTRAN Language Reference

C

DIMENSION STATEMENT

DIMENSION

The DIMENSION statement specifies the name and dimensions of an
array.

syntax
DIMENSION al(diml) [, a2(dim2) 1 ...

is an array hame.

is composed of one through seven dimension bounds, separated
by commas, that represent the limits for each subscript of
the array in the form:

el:g2
or
e2
whera?

el
is the lower dimension bound. It is optional. If el
(with its following colon) is not specified, its value
is assumed to be 1.

e2

is the upper dimension bound and must always be
specified.

(See "Size and Type Declaration of an Array™ on page 22
for rules about dimension bounds.)

Each a in a DIMENSION statement declares that 3 is an array in
that program unit. Array names and their bounds may also be
declared in COMMON statements and in type statements. Only one
declaration of the array name (g) as an array is permitted in a
program unit.
valid DIMENSION Statements:

DIMENSION A(C10), ARRAY(5,5,5), LIST(10,100)

DIMENSION A(1:10), ARRAY(1:5,1:5,1:5), LIST(1:10,1:100)

DIMENSION B(0:24), C(-4:2), DATA(0:9,-5:4,10)

DIMENSION G(I:J,M:N)

DIMENSION ARRAY (M%N:IxJ)

DIMENSION ARRAY (MxN:IxJ, %)

VS FORTRAN Statements 71

DISPLAY

DISPLAY STATEMENT

"IBM EXTENSION

The DISPLAY statement displays data in NAMELIST output format.
It may appear anyuwhere within a debug packet.

syntax
DISPLAY list

list
is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or

- NAMELIST and WRITE statements to display the results of a

debugging operation. The data is placed in the debug output
file.

The effect of a DISPLAY list statement is the same as the
following source language statements:

NAMELIST /name/list

WRITE (un, nama)
where name is the same in both statements.

Array elements, dummy arguments, and substring references may
not appear in the list.

For examples and explanations of the DISPLAY statement, see
"DEBUG Statement™ on page 68.

END OF IBM EXTENSION

72 VS FORTRAN Language Reference

' DO
DO STATEMENT

» (:m The DO statement indicates that the statements that physically

” follow it, up to and including a specified statement, are to be
?xecuted. These statements are called the "range of the DO" or a
'DO-1loo0p."

—— Syntax

End of Do Initial Test
Range Variable Value Value Increment
DO stn [,1 _i_ = ml: _n_!Z [)QS]

]
3

is the number of an executable statement appearing after the
DO statement in the program unit containing the DO. The comma
after stn is optional.

Jomte

is an integer, real, or double precision variable (not an
array element) called the DO variable.

ml, m2, and _m3y
are integer, real, or double precision arithmetic
expressions. The values of the expressions ml, m2 and m3 are
converted to the type of the DO variable i, if necessary. m3
is optional and cannot have a value of zero; if it is
omitted, its value is assumed to be 1, and the preceding
comma must be omitted. ‘

The statements in the range of the DO are executed only if:

C. ml is less than or equal to m2, and m3 is greater than 0

} or

e ml is greater than or equal to m2, and m3 is less than 0
If one of the above relationships between ml, m2, and m3 is true,
the first time the statements in the range of the DO are executed,
i is initialized to the value of ml; on each succeeding iteration,
i is increased by the value of m3. The number of iterations that
can be executed, also called iteration count, is the value of:

MAX (INT((m2 - m1 + m3) 7/ m3), 0).

The first time i exceeds m2 at the end of the iteration, control
passes to the statement following the statement numbered stn.
Upon completion of the DO, the DO variable i contains the last
value that exceeded m2.

If one of the above relationship is not true, execution continues
with the statement following the last statement of the range of
the DO or the outer DO if the statement numbered stn is shared by
more than one D0. (See "IF Statements™ on page 117.)
Valid PO statements:

DO 40, INT=1,4,1

DO 20, VAR=START,END,INC

For examples (with explanations) of DO statements (including
nesting), see YS FORTRAN Application Programming: Guide.

VS FORTRAN Statements 73

DO

Implied DO in a DATA Statement

The form of an imblied DO list in a DATA statement is:

syntax
(dlist, i = ml, m2 [, m3)

where:

dlist

is a list of array element names and implied DO lists.

is the name of an integer variablae called the implied DO
variable.

ml, m2, and m3

are each an integer constant or name of an integer constant,
or an expression containing only integer constants or names
of integer constants. The expression may contain implied DO
variables of other surrounding implied DO lists that have
this implied DO list within their ranges (dlist). m3 is
optional and, if omitted, it is assumed to be 1, and the
preceding comma must be omitted.

The range of an implied DO list is dlist. An iteration count is
established from ml, m2, and m3 exactly as for a DO-loop except
that the iteration count must be positive.

Upon completion of the implied DO, the implied DO variable is
undefined and may not be used until assigned a value in a DATA
statement, assignment statement, or READ statement.

Each subscript expression in dlist must be an integer constant or
an expression containing only integer constants or names of

integer constants. The expression may contain implied DO

variables of implied DO lists that have the subscript expression
within their ranges.

Valid Implied DO Statement:

DATA ((X¢J,I),I=1,J),J=1,5)715%0./

Implied DO in an Input/Output Statement

74

If an implied DO appears in the list parameter of an input/output
statement, the items specified by the implied DO are transmitted

to or from the file. The implied DO list in an input/output

statement is of the form:

(dlist, i = ml, m2 L, E!SJ)

where:

dlist

is an input/output list.

is the name of an integer, real, or double precision variable
(not an array element) called the DO variable.

ml, m2, and m3

are integer, real, or double precision arithmetic
expressions. The values of the expressions ml, m2, and m3
are converted to the type of the DO variable i, i1f necessary.
m3 is optional and cannot have a value of zero; if it is
omitted, its value is assumed to be 1, and the preceding
comma must be omitted.

VS_FORTRAN Language Reference

y'/_v \\\
N

Do

In an input statement, the DO-variable i, or an associated entity,
must not appear as an input list item in dlist. When an implied-D0
list appears in an input/output list, the list items in dlist are
specified once for each iteration of the implied DO list with
appropriate substitution of values for any occurrence of the
DO-variable i.

For example, assume that A is a variable and that B, C, and D are
one-dimensional arrays, each containing 20 elements. Then the
statement:

READ (UNIT=5)A,B,(C(I),I=1,4),D(4)

reads one value into A, the next 20 values into B, and the next 4
values into the first four elements of the array C, and the next
value into the fourth element of D.

Or the statement:
WRITE (UNIT=6)A,B,(C(1),1I=1,4),D(4)

writes one value from A, the next 20 values from B, and the next 4
values from the first four elements of the array C, and the next
value from the fourth element of D.

If the subscript (I) were not included with the array C, the
entire array would be transferred four times.

Implied DO's can be nested, if required. For example, to read an
element into array B after values are read into each row of a
10x20 array A, the following input statement would be written:

READ (UNIT=5)((A(I,J),J=1,20),B(I),I=1,10)
Or to write an element from array B after values are written into
each row of a 10x20 array A, the following output statement would
be written:

WRITE (UNIT=6)({A(I.J).J=1,20),B(I),I=1»10)

The order of the names in the list specifies the order in which
the data is transferred.

DOUBLE PRECISION TYPE STATEMENT

See "Explicit Type Statement™ on page 85.

VS FORTRAN Statements 75

EJECT

IBM EXTENSION 1 Q:D

EJECT STATEMENT
EJECT is a compiler directive. It starts a new full page of the
source listing. The EJECT statement should not be continued.

syntax

EJECT

L — END OF IBM EXTENSION

See "IF Statements™ on page 117.

ELSE IF STATEMENT
Sea "IF Statements" on page 117.

76 VS FORTRAN Language Reference

END
END STATEMENT

The END statement defines a program unit. That is, it terminates a
main program, or a function, subroutine, or block data
subprogram.

syntax
END

The END statement may be numbered. It may not be continued and no
other statement in the program unit may have an initial line that
appears to be an END statement. The END statement terminates
program execution if it is executed in the main program. If
executed in a subprogram, it has the effect of a RETURN statement.

Execution of an END statement terminates the association betuween
the dummy arguments of the subprogram and the current actual
arguments. All entities within the subprogram become undefined
except:

. Entities specified in SAVE statements (see "SAVE Statement™
on page 168)

[Entities in blank common.

. Initially defined entities that have neither been redefined
nor become undefined.

. Entities in named common blocks that appear in the subprogram
and appear in at least one other program unit that is
referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by
exg:ution of a RETURN or END statement in another program
unit.

All variables that are assigned a statement number with the ASSIGN
statement become undefined regardless of whether the variable is
in common or specified in a SAVE statement.

END Statement in a Function Subprogram

All function subprograms must end with an END statement. They may
also contain RETURN statements. The END statement specifies the
physical end of the subprogram.

A subprogram must not be referred to twice during the execution of
an executable program without the intervening execution of a
RETURN or END statement in that subprogram.

END Statement in a subroutine Subprogram

All subroutine subprograms must end with an END statement. Theay
may also contain RETURN statements. The END statement specifies
the physical end of the subprogram. If the END statement is
reached during execution of the subroutine subprogram, it is
executed as a RETURN statement.

VS FORTRAN Statements 77

END DEBUG

I IBM EXTENSION

END DEBUG STATEMENT

The END DEBUG statement terminates the last debug packet for the
program. .

syntax
END DEBUG

END DEBUG is placed after the other debug statements and just
before the first statement of the program being debugged. Only
one END DEBUG statement is allowed in a program unit.

For examples of debug packets and the END DEBUG statement, see
"DEBUG Statement™ on page 68.

L END OF IBM EXTENSION

78 VS FORTRAN Language Reference

LN

O

ENDFILE STATEMENT

ENDFILE

The ENDFILE statement writes an end-of-file record on a
sequentially accessed external file.

syntax
ENDFILE un
ENDFILE ¢ [UNIT=lun [, ERR=stn) [, IOSTAT=iosl)

UNIT=un
is the reference to the number of an I/70 unit. un can
optionally be preceded by UNIT= if the second form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
%, if necessary) must be zero or positive; otherwise, an
error is detected.

ERR=stn
is optional. stn is a statement number. If an error occurs in
the execution of the ENDFILE statement, control is
transferred to the statement labeled stn. That statement
must be executable and must be in the same program unit as
the ENDFILE statement. If ERR=stn is omitted, execution
halts when an error is detected.

IOSTAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in jos.

If UNIT= is specified, UNIT, ERR, and I0STAT can appear in any
order; otherwise, un must appear first.

valid ENDFILE Statements:
ENDFILE un
ENDFILE (un,ERR=stn)
ENDFILE (UNIT=un,ERR=stn)
ENDFILE (ERR=stn,UNIT=un)
Invalid ENDFILE Statements:

ENDFILE UNIT=un UNIT= is not allowed outside
parentheses.

ENDFILE un,ERR=stn Parentheses must be specified.

ENDFILE (ERR=stn,un) UNIT= must be specified

or un must be first in the list.

When the ENDFILE statement is encountered, the unit specified by
un must be connected to an external file with SEQUENTIAL access.

(See VS FORTRAN Application Programming: Guide for an example.)

If the unit is not connected, an error i1s detected.
After successful execution of the ENDFILE statement, the external

file connected to the unit specified by un is created if it does
not already exist.

VS FORTRAN Statements 79

ENDFILE

END IF STATEMENT

M IBM EXTENSION

Use of ENDFILE with asynchronous READ and WRITE statements is
allowed provided that any input or output operation on the file
has been allowed to complete by the execution of a WAIT
statement. A WAIT statement is not required to complete the
ENDFILE operation.

Transfer is made to the statement specified by the ERR= if an
error is detected. If I0STAT=ios is specified, a positive
integer value is assigned to ios when an error is detected. Then
execution continues with the statement specified with the ERR
parameter, if present, or with the next statement if ERR is not
specified. If the ERR parameter and the I0STAT parameter are
both omitted, program execution is terminated when an error is
detected.

Multiple €i
after executi
transferred t

L END OF IBM EXTENSION

o
0
Q.
]

ta sets are permitited in VS | TRAN,
n of an ENDFILE, additional data may be
he subsequent files.

o0
fan

See "IF Statements™ on page 117.

80 VS FORTRAN Language Reference

ENTRY STATEMENT

ENTRY

The ENTRY statement names the place in a subroutine or function
subprogram that can be used in a CALL statement or as a function
reference.

The normal entry into a subroutine subprogram from the calling
program is made by a CALL statement that refers to the subprogram
name. The normal entry into a function subprogram is made by a
function reference in an arithmetic, character, or logical
expression. Entry is made at the first executable statement
following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for
a subroutine subprogram) or a function reference (for a function
subprogram) that refers to an ENTRY statement in the subprogram.
Entry is made at the first executable statement following the
ENTRY statement.

Syntax
ENTRY name [([arql [, arg2 1 ... 1) 1

name
is the name of an entry point in a subroutine or function
subprogram. If ENTRY appears in a subroutine subprogram,
name is a subroutine name. If ENTRY appears in a function
subprogram, name is a function name.

arg

is an optional dummy argument corresponding to an actual
argument in a CALL statement or in a function reference. See
"Subprogram Statements" on page 43. If no arq is specified,
the parentheses are optional.

arg may be a variable name, array name, or dummy procedure
name or an asterisk. An asterisk is permitted only in an
ENTRY statement in a subroutine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or any of its entry
points either directly or indirectly.

ENTRY statements are nonexecutable and do not affect control
sequencing during execution of a subprogram. They can appear
anywhere after a FUNCTION or SUBROUTINE statement except that an
ENTRY statement must not appear between a block IF statement and
its matching END IF statement or between a DO statement and the
terminal statement of its range.

Note: ENTRY statements can appear before the IMPLICIT or
PARAMETER statements. The appearance of an ENTRY statement does
not alter the rule that statement functions must precede the first
executable statement.

Within a function or subroutine subprogram, an entry name must not
appear as a dummy argument of a FUNCTION, SUBROUTINE, or ENTRY
statement and it must not appear in an EXTERNAL statement.

If information for an object-time dimension array is passed in a
reference to an ENTRY statement, the array name and all its
dimension parameters (except any that are in a common area) must
appear in the argument list of the ENTRY statement. See "Size and
Type Declaration of an Array"™ on page 22.

In a function subprogram, the type of the function name and entry
name are determined (in order of decreasing priority) by:

VS FORTRAN Statements 81

ENTRY

1. An explicit type statement A
2. An IMPLICIT statement p
3. Predefined convention

In function subprograms, an entry name must not appear preceding
the entry statement except in a type statement.

If any entry name in a function subprogram or the name of the
function subprogram is of type character, all entry names of the
function subprogram must be of type character with the same
length. The CHARACTER type statement or IMPLICIT statement can be
used to specify the type and length of the entry point name. The
length specification is restricted to the forms permitted in the
FUNCTION statement.

The types of these variables {that is, tha function name and entry
names) can be different only if the type is not character; the
variables are treated as if they were equivalenced. After one of
these variables is assigned a value in the subprogram, any others
of different type become indeterminate in value.

In a function subprogram, either the function name or one of the
entry names must be assigned a value.

Upon exit from a function subprogram, the value returned is the
value last assigned to the function name or any entry name. It is
returned as though it were assigned to the name in the current
function reference. If the last value is assigned to a different
entry name, and that entry name differs in type from the name in
the current function reference, the value of the function is
undefined.

Entry names in a subroutine subprogram do not have a type; I
explicit typing is not allowed.

valid ENTRY Statements:
ENTRY ENT(T)
ENTRY SUB2 (T,x,%)
ENTRY SUB3 (%,%)

Actual Arguments in an ENTRY Statement

Entry into a function subprogram associates actual arguments with

the dummy arguments of the referenced ENTRY statement. Thus, all
appearances of these arguments in the whole subprogram become
associated with actual arguments. -

See "Actual Arguments in a Subroutine Subprogram" on page 173 and
"Actual Arguments in a Function Subprogram" on page 113.

Dummy Arguments in an ENTRY Statement

82

The dummy arguments in the ENTRY statement need not agree in
order, type, or number with the dummy arguments in the SUBROUTINE
or FUNCTION statement or any other ENTRY statement in the same
subprogram. However, the actual arguments for each CALL or
function reference must agree in order, type, and number with the
dummy arguments in the SUBROUTINE, FUNCTION, or ENTRY statement
to which it refers.

Any dummy argument of an ENTRY statement must not be in an
executable statement preceding the ENTRY statement unless it has PN
already appeared as a dummy argument in an ENTRY, SUBROUTINE, or @;
FUNCTION statement prior to the executable statement.

VS FORTRAN Language Reference

ENTRY

If an ENTRY dummy argument is used as an adjustable array name,

the array name and all its dimensions (except those in COMMON)
must be in the same dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names,
or asterisks. The asterisk is allowed only in an ENTRY statement
in a subroutine subprogram and indicates an alternate return
specifier.

A dummy argument must not appear in the expression of a statement
function definition unless the name is also a dummy argument to
the statement function, or is in @ FUNCTION or SUBROUTINE
statement, or is in an ENTRY prior to the statement function
definition.

A dummy argument used in an executable statement is allowed only
if that dummy argument appears in the argument list of the
FUNCTION, SUBROUTINE, or ENTRY statement by which the subprogram
was entered.

See "Dummy Arguments in a Subroutine Subprogram”™ on page 174 and
"Dummy Arguments in a Function Subprogram”" on page 113.

VS FORTRAN Statements 83

EQUIVALENCE
EQUIVALENCE STATEMENT : Q::
L)
t X 4

The EQUIVALENCE statement permits the sharing of data storage
within a single program unit.

syntax
EQUIVALENCE (listl) [, (list2) 1

list

is a list of variable, array, array element, or character
substring names. Names of dummy arguments of an external
procedure in a subprogram must not appear in the list. Each
pair of parentheses must contain at least two names.

The number of subscript gquantities of array elements must be
equal to the number of dimensions of the array. If an array
name is used without a subscript in the EQUIVALENCE
statement, it is interpreted as a reference to the first
element of the array.

An array element refers to a position in the array in the
same manner as 1t does in an assignment statement (that is,
the array subscript specifies a position relative to the
first element of each dimension of the array).

The subscripts and substring information may be integer
expressions containing only integer constants, or names of
integer constants. They must not contain variables, array
elements, or function references.

All the named data within a single set of parentheses share the

same storage location. When the logic of the program permits it, TN
the EQUIVALENCE statement can reduce the number of bytes used by Aw;y
sharing two or more variables of the same type or different T
noncharacter types. Character type variables and character type

array elements can only be equivalenced with other character type
variables, character type array elements, or portions of them.

The length of the equivalenced entities can be different.

Equivalence between variables implies storage sharing.

Mathematical equivalence of variables or array elements is
implied only when they are of the same noncharacter type, when
they share exactly the same storage, and when the value assigned
to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing
two elements of two different arrays implicitly equivalences
other elements of the two arrays. The EQUIVALENCE statement must
not contradict itself or any previously established equivalences.

Two variables in one common block or in two different common
blocks cannot be made equivalent. However, a variable in a program
unit can be made equivalent to a variable in a common block. If
the variable that is equivalenced to a variable in the common

_block is an element of an array, the implicit equivalencing of the
rest of the elements of the array can extend the size of the
common block. The size of the common block cannot be extended so
that elements are added ahead of the beginning of the established
common block.

valid EQUIVALENCE Statements:
EQUIVALENCE (C(1), A(1)), (C(50,50), B(1))
EQUIVALENCE (A, B(1l), C(5,3)), (D(5,10,2), E)
EQUIVALENCE (B,D(1)) | ,q;;

84 VS FORTRAN Language Reference

Explicit Type
(:3 EXPLICIT TYPE STATEMENT
' The explicit type statement:

. Specifies the type and length of variables, arrays, and
user-supplied functions.

. Specifies the dimensions of an array.

T IBM EXTENSION 1

. Assigns initial data values for variables and arrays.

L END OF IBM EXTENSION !

The explicit type statement overrides the IMPLICIT statement,
which, in turn, overrides the predefined convention for
specifying type.

syntax
tvpe pamel [, name2 1 ...

tvpe
is COMPLEX, INTEGER, LOGICAL, REAL, DOUBLE PRECISION, or

CHARACTER[*len[,1]
uhere:

xilen
specifies the length (number of characters betuween 1
and 500). It is optional. It can be expressed as:

(ZD » U An unsigned, nonzero, integer constant.

. An expression with a positive value that contains
integer constants, names of integer constants
enclosed in parentheses, or an asterisk enclosed in
parentheses.

The length *len immediately following the word
CHARACTER is used as the length specification of any
name in the statement that has no length specification
attached to it. To override a length for a particular
name, see the alternative forms of name below. If ¥len
is not specified, it is assumed to be 1.

The comma in CHARACTERI¥lenl,]] must not appear if ¥len is
not specified. It is optional if ¥len is specified.

If the length specification (¥len) is a constant, it must be an
unsigned, nonzero, integer constant. If the length specification
is an arithmetic expression enclosed in parentheses, it can
contain only integer constants or names of integer constants.
Function and array element references must not appear in the
expression. The value of the expression must be a positive,
nonzero, integer constant.

If the length specification is an asterisk (%), name must be the
name of a character constant. The character constant assumes the
length of its corresponding expression in a PARAMETER statement.

If the CHARACTER statement is in a subprogram, the asterisk (%)
must be associated with a name that is a dummy argument. The dummy
argument assumes the length of the associated actual argument for
each reference of the subroutine.

The length specified (or assigned by default) with an array name
. is the length of each element of the array.

VS FORTRAN Statements 85

Explicit Type

If a character function has the length specified as an asterisk AN
(%) in a program unit, the function name must appear as the name Wby
of a function in a FUNCTION or ENTRY statement in the same program :

unit. When a reference to such a function is executed, the

function assumes the length specified in the calling program

unit. The length of a CHARACTER statement function cannot be

specified by an asterisk (%) but can be an integer constant

expression.

The length specified for a character function in the program unit
that refers to the function must be an expression involving only

integer constants or names of integer constants. This length must
agree with the length specified in the subprogram that specifies

the function if the length is not specified as an asterisk.

r IBM EXTENSION "

dow osm ma

AYEPE
is COMPLEX[*lenll], INTEGER{*lenl], LOGICALI%lenll, or
REALI[¥*lenl]
where:
¥xlenl

is optional and represents one of the permissible
length specifications for its associated type as
described in Figure 5.

L END OF IBM EXTENSION !

is a variable, array, function name, dummy procedure name or
the name of a constant. It can have the form:

al(dim)] ™
or i
al(dim)ll*len2] 7
where:
a
is a variable, array, function name, or dummy procedure
name.
dim
is optional. dim may only be specified for arrays. It is
composed of one through seven dimension bounds,
separated by commas, that represent the limits for each
subscript of the array in the form:
el:e2
ar
e2
where:)
el
is the lower dimension bound. It is optional. If
el (with its following colon) is not specified,
its value is assumed to be 1.
e2
is the upper dimension bound and must always be
_ specified.
(See "Size and Type Declaration of an Array" on page 22 for
rules about dimension bounds.) ‘«;;
If a specific intrinsic function name appears in an explicit

specification statement that causes a conflict with the tvpe
specified for this function in "Appendix B. FORTRAN-Supplied

86 VS FORTRAN Language Reference

Explicit Type

function property in the program unit. A type statement that
confirms the type of an intrinsic function is permitted. If a
generic function name appears in an explicit specification
statement, it does not lose its generic property in the
program unit.

¥len2

overrides the length as specified in the statement by
CHARACTER[*lenl,]].

0 Procedures" on page 204, the name loses its intrinsic

I IBM EXTENSION 1

name
is a variable, array, function name, dummy procedure name
or the name of a constant. It can have the form:
al*len3ll(dim)]
or
Q[*_l_ggS][(_cﬂm_)] [/il,j_Z.j_S, “e ,j_n/]
where:
| a
is a variable, array, function name, or dummy
procedure name.
%len3d
overrides the length as specified in the initial.
keyword of the statement as COMPLEX, INTEGER,
LOGICAL, REAL, COMPLEX[%lenll, INTEGERI[%lenll,
‘ZE LOGICALI*lenll, or REALI%lenl]
' dim
is optional. dim may only be specified for arrays. It
is composed of one through seven dimension bounds,
separated by commas, that represent the limits for
each subscript of the array. See the description of
' - dim above.
11112313, con ’_i_ﬂ

are optional and represent initial data values.

Dummy arguments and names of constants, functions, and
statement functions, may not be assigned initial values.
Initial data values may not be assigned for any items of type
DOUBLE PRECISION or CHARACTER.

are not dummy arguments or in blank common, by use of in, where
in is a constant or list of constants separated by commas. Each
in provides initialization only for the immediately preceding
variable or array. Lists of constants are used only to assign
initial values to array elements. The data must be of the same
type as the variable or array, except that hexadecimal data may
also be used.

l Initial data values may be assigned to variables or arrays that

Note: If hexadecimal data is used, the hexadecimal constant
form must be followed (see "Hexadecimal Constants"™ on page 17).

o

VS FORTRAN Statements 87

Explicit Type

by the form i¥constant, as in the DATA statement. If initial u
data values are assigned to an array in an explicit 7
specification statement, the dimension information for the

array must be in the explicit specification statement or in a

preceding DIMENSION or COMMON statement.

t END OF IBM EXTENSION

Successive occurrences of the same constant can be represented q:m

valid Explicit Type Statements:

CHARACTERX8APPLES
DATA APPLES/'APPLES '/

— IBM EXTENSION .
COMPLEX C,D/(2.1,4.7)/,EX16
INTEGER%2 ITEM/76/, VALUE
REAL A(5,5)/20%6.9E2,4%1.0/,B¢100)/100%0.0/,TEST*8(5)/5%0.0D0/
REALX8 BAKER, HOLD, VALUEX4, ITEM(5,5)
L END OF IBM EXTENSION

88 VS FORTRAN Language Reference

C

{

EXTERNAL STATEMENT

EXTERNAL

The EXTERNAL statement identifies a user-supplied subprogram name
and permits such a name to be used as an actual argument.

syntax

EXTERNAL namel [, name2 1 ...

hame
is a name of a user-supplied subprogram (function or

subroutine) that is passed as an argument to another
subprogram.

EXTERNAL is a specification statement and must precede statement
function definitions and all executable statements.

Statement function names cannot appear in an EXTERNAL statement.
If the name of a VS FORTRAN-supplied function (that is, intrinsic
function) is used in an EXTERNAL statement, the function is no
longer recognized as being an intrinsic function when it appears
as a function reference. Instead, it is assumed that the function
is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC
statement.

The name of any subprogram that is passed as an argument to
another subprogram must appear in an EXTERNAL or INTRINSIC
statement in the calling program.

Valid EXTERNAL Statement:

EXTERNAL TREES

VS FORTRAN Statements 89

FORMAT
FORMAT STATEMENT
The FORMAT statement is used with the input/output list in the _Q:@

READ and WRITE statements to specify the structure of FORTRAN
records and the form of the data fields within the records.

syntax
FORMAT (f1 [, f2 [... 1 1)

f1i, £2,..., fn are format codes.

Format Codes | Description
alw Integer data fields
alw.m Integer data fields
abu.d Double precision data fields
aEw.d Real data fields
atw.dEe Real data fields
afFuw.d Real data fields
abw.d Real data fields
abu.dEe Real data fields
nP Scale factor
alw Logical data fields Q:;
ahA Character data fields "J
aAw Character data fields
'literal? Literal data (character constant)
wH Literal data (Hollerith constant)
wX Skip a field Cinput); fill with blanks (output)
Tr Transfer of data starts in current position
TLr Transfer of data starts r characters to the
left of current position
TRr Transfer of data starts r characters to the
right of current position
a(...) Group format specification
S Display of optional plus sign is restored i
SP Plus sign is produced in output
SS Plus sign is not produced in output
BN Blanks are ignored in input
BZ Blanks are treated as zeros in input
/ Data transfer on the current record is ended
H Format cohtrol is termfnated if there are no ‘
more items in the input/output list ﬁd;@

90 VS FORTRAN Language Reference

IBM EXTENSION

Format Codes | Description

aEw.dDe Real data fields

abu.d Integer or logical data fields
abuw.dEe Integer or logical data fields
aQu.d Extended precision data fields
aZu Hexadecimal data fields

END OF IBM EXTENSION !

a
is optional and is a repeat count, an unsigned, nonzero,
integer constant used to denote the number of times the
format code or group is to be used. If a is omitted, the code
or group is used only once.

W
is an unsigned, nonzero, integer constant that specifies the
width of the field.

m
is an unsigned integer constant that specifies the number of
digits to be printed.

d
is an unsigned integer constant that specifies the number of
digits to the right of the decimal point.

e . . . Ce:
is an unsigned, nonzero, integer constant that specifies the
number of digits in the exponent field.

n . '
is an (optionally) signed integer constant that specifies a
scale factor to be applied.

L
is an unsigned, nonzero, integer constant that specifies a
character position in a record.

(...)

is a group format specification. Within the parentheses are
format codes or additional levels of groups, separated by
commas, slashes, or colons. Commas are optional before or
after a slash and before or after a colon, if the slash or
colon is not part of a character constant.

The FORMAT statement is used with READ and WRITE statements for
internal and external files. The external files must be connected
for SEQUENTIAL or DIRECT access. In the FORMAT statement, the data
fields are described with format codes, and the order in which
these format codes are specified determines the structure of the
FORTRAN records. The I/70 list gives the names of the data items
that make up the record. The length of the list, in conjunction

VS FORTRAN Statements 91

FORMAT

with the FORMAT statement, specifies the length of the record (see

"Forms of a FORMAT Statement” on page 94).

The format codes delimited by left and right parentheses may
appear as a character constant in the format specification of the
READ or WRITE statement, instead of in a separate FORMAT
statement. For example,

READ (UNIT=5,FMT="(I3,F5.2,E10.3,610.3)')N,A,B,C
READ (5,'(I3,F5.2,E10.3,G10.3)')N,A,B,C

Throughout this section, the examples show punched card input and

printed line output. However, the concepts apply to all

;Tpuﬁloutput media. In the examples, the character b represents a
ank.

General Rules for Data Conversion

92

The following is a list of general rules for using the FORMAT
statement or a format in a READ or WRITE statement.

FORMAT statements are not executed; their function is to
supply information to the object program. They may be placed
anywhere in a program unit other than in a block data
subprogram, subject to the rules for the placement of the
PROGRAM, FUNCTION, SUBROUTINE, and END statements.

Complex data in records require two successive D, E, G, or F
format codes.

IBM EXTENSION -)
VS FORTRAN also accepts the Q@ format code for complex data.

END OF IBM EXTENSION 4

The two codes may be different and the format codes T, TL, TR,
XI 7y i, 5’ SP; SS, P' BN; BZ' H’ or a literal enclosed in
apostrophes may appear between the two codes.

When defining a FORTRAN record by a FORMAT, it is important to
consider the maximum size record allowed on the input/output
medium. For example, if a FORTRAN record is to be punched for
output, the record should not be longer than 80 characters. 1If
it is to be printed, it should not be longer than the
printer's line length. For input, the FORMAT should not
define a FORTRAN record longer than the actual input record.

When formatted records are prepared for printing at a printer
or terminal, the first character of the record is not
printed or displayved. It is treated as a carrier control
character. It can be specified in a FORMAT statement with
either of two forms of literal data:

X' or 1Hx

where x is one of the following:

X Meaning

blank Advance ona line before printing.

0 Advance two lines before printing.
1 Advance to first line of next page.
+ Do not advance before printing.

(Overstrike the current line.)

For media other than a printer or terminal, the first
character of the record is treated as data.

If the I/0 list is omitted from the READ or WRITE statement,
the following general rules apply:

VS FORTRAN Language Reference

a
Ny

Lo

FORMAT
- Input: A record is skipped.

- output: A blank record is written unless the FORMAT
statement contains an H format code or a character
constagt (see "H Format Code and Character Constants™ on
page 103).

To produce a blank record on output, an empty format
specification of the form FORMAT () may be used.

To illustrate the nesting of group format specifications, the
following statements are both valid:

FORMAT (..,’Q(..-’Q_(.-o)’..o)é(-.-))..-))
or
FORMAT (...pQ(..-;Q(..-}Q(...)’-..)’...);...)

Names of constants must not be a part of a format
specification (see "PARAMETER Statement” on page 138).

With numeric data format codes I, F, E, G, and D, the
following general rules apply:

- Input: Leading blanks are not significant. The
interpretation of blanks, other than leading blanks, is
determined by a combination of the value of the BLANK=
specifier given when the file was connected (see "OPEN
Statement™ on page 134) and any BN or BZ blank control
that is currently in effect. Plus signs may be omitted. A
field of all blanks is considered to be zero.

With F, E, 6, and D format codes, a decimal point
appearing in the input field overrides the portion of a
format code that specifies the decimal point location.
The input field may have more digits than VS5 FORTRAN uses
to approximate the value.

- output: The representation of a positive or zero
internal value in the field may be prefixed with a plus,
as controlled by the S, SP, and SS format codes. The
representation of a negative internal value in the field
is prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If
the number of characters produced by the editing is
smaller than the field width, leading blanks are inserted
in the field.

If the number of characters produced exceeds the field
width or if an exponent exceeds its specified length
using the Ew.dEe or Gu.aEe format codes, the entire field
of width w is filled with asterisks. However, if the field
width is not exceeded when optional characters are
omitted, asterisks are not produced. When an SP format
code is in effect, a plus is not optional.

IBM EXTENSION |

With VS FORTRAN, format code Q makes the following
additional rules apply:

- Input: With Q@ editing, a decimal point appearing in the
input field overrides the portion of a format code that
specifies the decimal point location. The input field
may haYe more digits than VS5 FORTRAN uses to approximate
the value.

- output: If-the number of characters produced exceeds

the field width or if an exponent exceeds its specified
length using the Ew.dDe or Qu.d format codes, the entire

VS FORTRAN Statements 93

FORMAT

field of width w is filled with asterisks. However, if

the field width is not exceeded when optional characters @{"ﬁ
are omitted, asterisks are not produced. When an SP %
format code is in effect, a plus is not optional.

L END OF IBM EXTENSION !

Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in
parentheses. Within these parentheses, the format codes are
delimited by commas. The comma may be omitted betueen a P format
code and an immediately following F, E, D, or 6 format code, and
before or after a colon or slash format code.

Execution of a formatted READ or formatted WRITE statement
initiates format control. Each action of format control depends
on information provided jointly by the I/70 list, if one exists,
and the format specification. If there is an 170 list, there must
be at least one I, D, E, F, A, G, or L format code in tha format
specification.

T IBM EXTENSION 1

The @ and Z format codes may also appear in the format
specification.

L END OF IBM EXTENSION g

There is no I/0 list item corresponding to the format codes: T,
TL, TR, X, H, literals enclosed in apostrophes, S5, SP, S5, BN, BZ,
P, the slash (/), or the colon (:). These communicate information
directly to the record.

Whenever an I, D, E, F, A, G, or L format code is encountered, AN
format control determines whether there is a corresponding N
element in the I/0 list. /

i IBM EXTENSION 1
With VS FORTRAN, the list of format codes includes Q and Z.

Whenever a Q@ or Z code is encountered, format control determines
whether there is a corresponding element in the I/0 list.

The comma may be omitted between a P format code and an
immediately following Q@ format code.

L END OF IBM EXTENSION !

If there is a corresponding element, appropriately converted
information is transmitted. If there is no corresponding element,
the format control terminates, even if there is an unsatisfied

repeat count.

When format control reaches the last (outer) right parenthesis of
the format specification, a test is made to determine whether
another element is specified in the I/0 list. If not, control
terminates. If another list element is specified, the format
control starts a new record. Control then reverts to that group
specification terminated by the last preceding right parenthesis,
including its group repeat count, if any, or, if no group
specification exists, then to the first left parenthesis of the
format specification. Such a group specification must include a
closing right parenthesis. If no group specification exists,
control reverts to the first left parenthesis of the format
specification.

For example, assume the following FORMAT statements: q:“
W~
70 FORMAT (15,2(I3,F5.2),14,F3.1) L

(. 5

94 VS FORTRAN Language Reference

I Format Code

F Format Code

FORMAT
80 FORMAT (13,F5.2,2(13,2F3.1))
90 FORMAT (I3.F5.2.214,5F3.1)

With additional elements in the I/0 list after control has reached
the last right parenthesis of each, control would revert to the
2(13,F5.2) specification in the case of statement 70; to
2(13,2F3.1) in the case of statement 80; and to the beginning of
gge format specification, I3,F5.2,... in the case of statement

The question of whether there are further elements in the I/70 list
is asked only when an I, D, E, F, A, G, or L format code or the
final right parenthesis of the format specification is
encountered.

r IBM EXTENSION q

The question is also asked when a Q@ or Z format code is
encountered.

L END OF IBM EXTENSION .

Before this is done, T, TL, TR, X, and H codes, literals enclosed
in apostrophes, colons, and slashes are processed. If there are
fewer elements in the I/0 list than there are format codes, the
remaining format codes are ignored.

The I format code edits integer data. For example, if a READ
statement refers to a FORMAT statement containing I format codes,
the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the
maximum magnitude of an integer constant.

INPUT: Leading blanks in a field of the input line are interpreted
as zeros. Embedded and trailing blanks are treated as indicated in
the general rules for numeric fields described under "General
Rules for Data Conversion" on page 92. If the form Iw.m is used,
the value of m has no effect.

OUTPUT: If the number of significant digits and sign required to
represent the quantity in the byte is less than w, the leftmost
print positions are filled with blanks. If it is greater than w,
asterisks are printed instead of the number. If the form Iu.m is
used, the output is the same as the Iw form, except that the
unsigned integer constant consists of at least m digits and, if
necessary, has leading zeros. The value of m must not exceed the
value of w. Ifm is zero and the value of the internal datum is
zero, the output field consists of only blank characters,
regardless of the sign control in effect.

The Fu.d format code edits real data. It indicates that the field
ggcgzies u positions, the fractional part of which consists of d
igits.

INPUT: The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If the
decimal point is omitted, the rightmost d digits of the string,

with leading zeros assumed if necessary, are interpreted as the
fractional part of the value represented.

The input field may have more digits than VS FORTRAN uses to
approximate the value of the datum. The basic form may be followed
by an exponent of one of the following forms:

. Signed integer éonstant.

VS FORTRAN Statements 95

FORMAT

. E followed by zero or more blanks, followed by an optionally
signed integer constant. q:p

. D followed by zero or more blanks, followed by an optionally
signed integer constant.

I IBM EXTENSION 1

. Q followed by zero or more blanks, followed by an optionally
signed integer constant.

L END OF IBM EXTENSION !

An exponent containing a D is processed identically to an exponent
containing an E.

OUTPUT: The output field consists of blanks, if necessary,
followed by a minus sign if the internal value is negative, or an
optional plus otherwise, followed by a string of digits that
contains a decimal point and represents the magnitude of the
internal value, as modified by the established scale factor and
rounded to d fractional digits. Leading zeros are not provided
except for an optional zero immediately to the left of the decimal
point if the magnitude of the value in the output field is less
than one. The optional zero appears if there would otherwise be no
digits in the output field.

D, E, and @ Format Codes

The Dw.d, Ew.d, Ew.dEe format codes edit real, complex, or double
precision data.

f IBM EXTENSION 1

The Ey.dDe and Qu.d format codes edit extended precision data in
addition to real, complex, and double precision data.

L END OF IBM EXTENSION !

'

The external field occupies w positions, the fractional part of
which consists of d digits (unless a scale factor greater than one
is in effect). The exponent part consists of @ digits. (The e has
no effect on input.)

INPUT: The input field may have more digits than VS FORTRAN uses
to approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D or E
egpongnt, or may be omitted from the exponent if the exponent is
signed.

T IBM EXTENSION 1

It may also have a Q@ exponent.

! END OF IBM EXTENSION ! .

All exponents must be preceded by a constant; that is, an
optional sign followed by at least one decimal digit with or
without decimal point. If the decimal point is present, its
position overrides the position indicated by the d portion of the
format code, and the number of positions specified by w must
include a place for it. If the data has an exponent and a P format
code is in effect, the scale factor is ignored.

The interpretation of blanks is explained in "General Rules for
Data Conversion"” on page 92.

is converted to the length of the variable as specified in the I/0
list. The e of the exponent in the format code has no effect on
input.

The input datum may have an exponent of any form. The input datum q:;

96 VS FORTRAN Language Reference

G Format Code

P Format Code

FORMAT

OUTPUT: For data written under a D or E format code, unless a
P-scale factor is in effect, output consists of an optional sign
(required for negative values), a decimal point, the number of
significant digits specified by d, and a D or E exponent requiring
four positions.

r IBM EXTENSION -1

For data written under a @ format code, unless a P-scale factor
is in effect, output consists of an optional sign (required for
negative values), a decimal point, the number of significant
digits specified by d, and a @ exponent requiring four
positions.

L ‘ END OF IBM EXTENSION '

On output, W must provide sufficient space for an integer segment
if it is other than zero, a fractional segment containing d
digits, a decimal point, and, if the output value is negative, a
sign. If insufficient space is provided for the integer portion,
including the decimal point and sign (if any), asterisks are
written instead of data. If excess space is provided, the number
is preceded by blanks.

The fractional segment is rounded to d digits. A zero is placed to
the left of the decimal point If the output field consists only of
a fractional segment, and if additional space is available. If the
entire value is zero, a zero is printed before the decimal point.

The 6 format code is a generalized code used to transmit real data
according to the type specification of the corresponding variable
in the 170 list.

INZUTt The form of the input field is the same as for the F format
code.

OUTPUT: For real data, the d determines the number of digits to be
printed and whether the number should be printed with the letter E
or D followed by the exponent, depending on the length
specification of the variable in the I/0 list. The W specification
for real data must include a position for a decimal point and,
four positions for a decimal exponent, which includes the sign. A
zero exponent has a plus sign. All other rules for output are the
same as those for the individual format codes.

r IBM EXTENSION -

The letter Q is used for the exponent of real data.

The G format code may be used to transmit integer or logical
data according to the type specification of the corresponding
variable in the I/0 list.

If the variable in the I/0 list is integer or logical, the d
portion of the format code, specifying the number of
significant digits, can be omitted; if it is given, it is
ignored.

L END OF IBM EXTENSION .

A P format code specifies a scale factor n, wheren is an
optionally signed integer constant. The value of the scale factor
is zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F, E, D, and
G format codes until another scale factor is encountered, then
that scale factor is established.

VS FORTRAN Statements 97

FORMAT

T IBM EXTENSION 1 @:D
It also applies to all subsequently interpreted Q@ format codes. ”,
L END OF IBM EXTENSION 1

Reversion of format control does not affect the established scale
factor. A repetition coda can precede these format codes. For
example, 2P3F7.4 is valid. A comma can be placed after the P
formgg.c%de, for example, 2P,3F7.4. A scale factor of zero may be
specified.

INPUT: If an exponent is in the data field, the scale factor has
no effect. If no exponent is in the field, the externally

represented number equals the internally represented number ‘
multiplied by 10%%n for the external representation.

For example, iT the input data is in the form
XX o XXXX
and is to be used internally in the form
« XXX X
then the format code used to effect this change is
2PF7.4
which may also be written 2P.F7.4.£

Similarly, if the input data is in the form

XX« XXXX
//\\
and is to be used internally in the form &QV
XXXX . XX -

then the format code used to effect this change is
-2PF7.4
which also may be written -2P,F7.4.

QUTPUT: With an F format code, the internally represented number
reduced by 10%%n is produced.

For example, if the number has the internal form
- XXXXXX

and is to be written in the form

XX o XXXX
the format code used to effect this change is

2PF7.4
which also may be written 2P,F7.4.
On output with E and D format codes, the value of the internally
represented number is not changed. When the decimal point is moved
according to the d of the format code, the exponent is adjusted so

that the value of the externally represented number is not
multiplied by 10%Xn.

98 VS FORTRAN Language Reference

C
Y
I

Z Format Code

FORMAT
i IBM EXTENSION 1

On output with Q@ format code, the value of the internally
represented number is not changed.

L END OF IBM EXTENSION d

For example, if the internal number
238.47

were printed according to the format E10.3, it would appear as
0.238Eb03

If it were printed according to the format 1PE10.3 or 1P,E10.3 it
would appear as

2.385Eb02
On output with a 6 format code, the effect of the scale factor is
suspended unless the magnitude of the internally represented
number (m) is outside the range that permits the use of F format
code editing. This range for use of the F format code is

1 >m > 10 xx d

where d is the number of digits as specified in the G format code
Gu.d.

M IBM EXTENSION |

The Z format code transmits hexadecimal data.

INPUT: Scanning of the input field proceeds from right to left.
Leading, embedded, and trailing blanks in the field are treated
as zeros. One byte in internal storage contains two hexadecimal
digits; thus, if an input field contains an odd number of
digits, the number is padded on the left with a hexadecimal zero
when it is stored. If the storage area is too small for the
;npgt data, the data is truncated and high-order digits are
ost.

OUTPUT: If the number of digits in the byte is less than w, the
leftmost print positions are filled with blanks. If the number
of digits in the byte is greater than w, the leftmost digits are
truncated and the rest of the number is printed.

L END OF IBM EXTENSION !

Numeric Format Code Examples

Example 1:

The following example illustrates the use of format codes I, F, D,
E, and G. .

75 FORMAT (I3,F5.2,E10.3,610.3)
READ (5,75) N,A,B,C

VS FORTRAN Statements 99

FORMAT

Explanation:

. Four input fields are described in the FORMAT statement and
four variables are in the I/0 list. Therefore, each time the
READ statement is executed, one input line is read from the
file connected to unit number 5.

. When an input line is read, the number in the first field of
the line (three columns) is stored in integer format in
location N. The number in the second field of the input line
(five columns) is stored in real format in location A, and so
on.

. If there were one more variable in the 170 list, say M,
another line would be read and the information in the first
three columns of that line would be stored in integer format
in location M. The rest of the line would be ignored.

. I there were one fewer variable in the list (say € is
omitted), format code G10.3 would be ignored.

J This FORMAT statement defines only one record format. "Forms
of a FORMAT Statement™ on page 9% explains how to define more
than one record format in a FORMAT statement.

I IBM EXTENSION

Example 2:

This example illustrates the use of the Z, D, and G format
codes.
Assume that the following statements are given:

75 FORMAT (Z4,D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, C, and D are REAL¥4 and B is REALX8 and that on
successive executions of the READ statement, the following
input lines are read:

Column: 1 5 15 25 35

v v v v v
b3F1156432D+02276.38E+15bbbbbbbbbb

Input
Ui 2AF3155381+02b382506E+28276.38E+15
ines
3ACb346.18D-03485.322836276.38E+15
Format: Z4 D10.3 G10.3 G10.3

Then the variables A, B, C and D receive values as if the
following data fields had been supplied:

A B c D

03F1 156.432D02 276 .38E+15 000000.000
2AF3 155.381+20 382.506E28 276 .38E+15
3ACO 346.18D-03 485.322836 276.38E+15

100 VS FORTRAN Language Reference

FORMAT

Explanation:

Leading blanks in an input field are treated as zeros. If
all other blanks are assumed to be treated as zero, because
the value for B on the second input line was not right
justified in the field, the exponent is 20 not 2.

Values read into the variables C and D with a G format code
are converted according to the type of the corresponding
variable in the I/0 list.

END OF IBM EXTENSION !

Example 3:

This example illustrates the use of the literal enclosed in
apostrophes and the F, E, G, and I format codes.

Assume that the following statements are given:

76 FORMAT ('0',F6.2,E12.3,6164.6,1I5)

WRITE (6,76)A,B,C,N

and that the variables A, B, C and N have the following values on
successive executions of the WRITE statement:

A B C N
034.40 123.380E+02 123.380E+02 031
031.1 1156.1E+02 123456789. 130
-354.32 834.621E-03 1234.56789 428
01.132 83.121E+06 123380.D+02 000

Then, the following lines are printed by successive executions of
the WRITE statement:

Print
Column: 1 9 21 35
v v v v
36.40 0.123E 05 12338.0 31
31.10 0.116E 06 0.123457E 09 130
13332 31 0.835E 00 1234.57 428
1.13 0.831E 08 0.123380E 08 0

Explanation:

The integer portion of the third value of A exceeds the format
code specification, so asterisks are printed instead of a
value. The fractional portion of the fourth value of A exceeds
the format code specification, so the fractional portion is
rounded.

For the variable B the decimal point is printed to the left of
the first significant digit and only three significant digits
are printed because of the format code E12.3. Excess digits
are rounded off from the right.

The values of the variable C are printed according to the
format specification 6l4.6. The s specification, which in
this case is 6, determines the number of digits to be printed
and whether the number should be printed with a decimal
exponent. Values greater than or equal to 0.1 and less than
1000000 are printed without a decimal exponent in this
example. Thus, the first and third values have no exponent.

VS FORTRAN Statements 101

FORMAT

L Format Code

A Format Code

The second and fourth values are greater than 1000000, so they
are printed with an exponent.

The L format code transmits logical variables.

INPUT: The input field must consist of either zeros or blanks with
an optional decimal point, followed by a T or. F, followed by
optional characters, for true and false, respectively. The T or F
assigns a value of true or false to the logical variable in the
input list. The logical constants .TRUE. and .FALSE. are
acceptable input forms.

OUTPUT: A T or F is inserted in the output record depending upon
whether the value of the logical variable in the I/0 list was true
or faise, respectively. The single character is right justified
in the output field and preceded by w-1 blanks.

The A format code transmits character data. Each alphabetic or
special character is given a unique internal code. Numeric
characters are transmitted without alteration; they are not
converted into a form suitable for computation. Thus, the A format
code can be used for numeric fields, but not for numeric fields
requiring arithmetic.

If w is specified, the field consists of w characters.

If the number of characters w is not specified with the format
code A, the number of characters in the field is the length of the
character item in input/output list.

INPUT: The maximum number of characters stored in internal
storage depends on the length of the variable in the I/0 list. If
W is greater than the variable length, say ¥, then the leftmost
w-v characters in the field of the input line are skipped and
remaining v characters are read and stored in the variable. If u
is less than ¥, then w characters from the field in the input line
are read and remaining rightmost characters in the variable are
filled with blanks.

OUTPUT: If w is greater than the length v of the variable in the
I/0 list, than the printed field contains v characters
right-justified in the field, preceded by leading blanks. If w is
less than v, the leftmost w characters from the variable are
printed and the rest of the data is truncated.

Example 1:

Assume that B has been specified as CHARACTERX*8, that N and M are
CHARACTER*4, and that the following statements are given:

25 FORMAT (3A7)
READ (5,25) B, N, M

When the READ statement is executed, one input line is read from
the data set associated with data set reference number 5 into the
variables B, N, and M in the format specified by FORMAT statement
number 25. The following list shows the values stored for the
given input lines (b represents a blank).

Input Line B N M
ABCDEFG46bATb11234567 ABCDEFGb ATbl 4567
HIJKLMN76543213334445 HIJKLMNDb 4321 4445

102 VS FORTRAN Language Reference

N

FORMAT
Example 2:
Assume that A and B are character variables of length 4, that C is
a character variable of length 8, and that the following
statements are given:

26 FORMAT (A6,A5,A6)
WRITE (6,26) A,B,C

When the WRITE statement is executed, one line is written on the
data set associated with data set reference number 6 from the
variables A, B, and C in the format specified by FORMAT statement

26. The printed output for values of A, B and C is as follows (b
represents a blank):

A B c Printed Line
AlB2 c3D4 E5F6G7H8 bbA1B2bC3D4ESF6G7

H Format Code and Character Constants

X Format Code

Character constants can appear in a FORMAT statement in one of two
ways:® following the H format code or enclosed in apostrophes. For
example, the following FORMAT statements are equivalent.

25 FORMAT (22H 1981 INVENTORY REPORT)
25 FORMAT (' 1981 INVENTORY REPORT'")

No item in the output list corresponds to the character constant.
The constant is written directly from the FORMAT statement. (The
FORMAT statement can contain other types of format code with
corresponding variables in the I/0 list.)

INPUT: Character constants cannot appear in a format used for
input.

QUTPUT: The character constant from the FORMAT statement is
written on the output file. (If the H format code is used, the n
characters following the H are written. If apostrophes are used,
the characters enclosed in apostrophes are written.) For example,
the following statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.4)
WRITE (6,8) AVRGE

Tguégszrite the following record if the value of AVRGE were

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is
the carrier control character for printed output. One line is
skipped before printing, and the carrier control character does
not appear in the printed line.

Note: If the character constant is enclosed in apostrophes, an
apostrophe character in the data is represented by two successive
apostrophes. For example, DON'T would be represented as "DON''T"'.

The X format code specifies a field of W characters to be skipped
on input or filled with blanks on output if the field was not
previously filled. On output, an X format code does not affect the
length of a record.- For example, the following statements:

. ?ead the first ten characters of the input line into variable

VS FORTRAN Statements 103

FORMAT

T Format Code

. Skip over the next ten characters without transmission.

. Read the next four fields of ten characters each into the
variables J, K, L, and M.

5 FORMAT (I10,10X,4I10)
READ (5,5) I,J,K,L,M

The T format code specifies the position in the FORTRAN record at
which the transfer of data is to begin.

To illustrate the use of the T code, the following statements:
5 FORMAT (740,'1981 STATISTICAL REPORT', T80,
X 'DECEMBER',T1,'0PART NO. 10095")
WRITE (6,5)
print the follouwing:

Print
Position: 1 39 79

v v’ v
PART NO. 10095 1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type
of format code, as, for example, with FORMAT ('0',T40,1I5).

INPUT: The T format code allows portions of a record to be
processed more than once, possibly with different format codes.

OUTPUT: The record is assumed to be initially filled with blank
characters, and the T format code can replace or skip characters.
On output, a T format code does not affect the length of a record.

(For printed output, the first character of the output data record
is a carrier control character and is not printed. Thus, for
example, if T50,'Z' is specified in a FORMAT statement, a Z will
be the 50th character of the output record, but it will appear in
the 49th print position.)

TL AND TR FORMAT CODES: The TL and TR format codes specify how
many characters left (TL) or right (TR) from the current character
position the transfer of data is to begin. With TL format code, if
the current position is less than or equal to the position
specified with TL, the next character transmitted will be placed
in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with
any type of format code. On output, these format codes do not
affect the length of a record.

Group Format Specification

The group format specification repeats a set of format codes and
controls the order in which the format codes are used.

The group repeat count g is the same as the repeat indicator a
that can be placed in front of other format codes. For example,
the following statements are equivalent:

10 FORMAT (I3,2(14,15),16)

10 FORMAT (I3,(14,15,I4,15),16)

104 VS FORTRAN Language Reference

G

O

c

S, P, and SS Format

BN Format Code

FORMAT

Group repeat specifications control the order in which format
codes are used, since control returns to the last group repeat
specification when there are more items in the I/0 list than there
are format codes in the FORMAT statement (see "Forms of a FORMAT
Statement™ on page 94). Thus in the previous example, if there
were more than six items in the I/0 list, control would return to
the group repeat count 2 that precedes the specification (14,15).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT (I3,(F6.2,D10.3))
READ (5,15) N,A,B,C,D,E

read values from the first record for N, A, and B, according to
the format codes 13,F6.2, and D10.3, respectively. Then, because
the 170 list is not exhausted, control returns to the last group
repeat specification, the next record is read, and values are
transmitted to C and D according to the format codes F6.2 and
D10.3, respectively. Since the I/0 list is still not exhausted,
another record is read and value is transmitted to E according to
the format code F6.2—the format code D10.3 is not used.

All format codes can appear within the group repeat
specification. For example, the following statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))
L)

The first physical record, containing two data items, is
transmitted according to the specification 213; the second,
fourth, and so on, records, each containing four data items, are
transmitted according to the specification 3F6.2,F6.3; and the
third, fifth, and so on, records, each also containing four data
items, are transmitted according to the specification
D10.3,3D10.2, until the I/70 list is exhausted.

Codes

The S, SP, and 55 format codes control optional plus characters in
numeric output fields. At the beginning of execution of each
formatted output statement, a plus is produced in numeric output
fields. If an SP format code is encountered in a format
specification, a plus is produced in any subsequent position that
normally contains an optional plus. If S5 is encountered, a plus
is not produced in any subsequent position that normally contains
an optional plus. If an S is encountered, the option of producing
the plus is restored.

The S, SP, and SS format codes affect only I, F, E, G, and D
editing during the execution of an output statement.

I IBM EXTENSION 1
The S, 5P, and SS format codes also affect Q@ editing.
L END OF IBM EXTENSION]

The S, SP, and S5 format codes have no effect during the execution
of an input statement.

The BN format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of
each formatted input statement, such blank characters are
interpreted as zeros or are ignored depending on the value of the
BLANK= specifier given when the unit was connected (see "OPEN
Statement™ on page 134).

VS FORTRAN Statements 105

FORMAT

Slash Format Cade

If BN is encountered in a format specification, all such blank
characters in succeeding numeric input fields are ignored.
However, a field of all blanks has the value zero. @:D

The BN format code affects only I, F, E, G, and D editing during
execution of an input statement.

I IBM EXTENSION |

The BN format code also affects Q editing during execution of an
input statement.

L END OF IBM EXTENSION .

The BN format code has no effect during execution of an output
statement.

The BZ format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields.

If BZ is encountered in a format specification, all nonleading
blank characters in succeeding numeric fields are treated as
zeros. If no OPEN statement is given and the file is preconnected,
all nonleading blanks in numeric fields are interpreted as zeros.

The BZ format code affects only I, F, E, G, and D editing during
execution of an input statement.

. IBM EXTENSION .

The BZ format code also affects Q editing during execution of an
input statement.

7N
L END OF IBM EXTENSION ! w
N

The BZ format code has no effect during execution of an output
statement.

A slash indicates the end of a FORTRAN record.

On input from a file connected for sequential access, the
remaining portion of the current record is skipped and the file is
positioned at the beginning of the next record.

On output to a file connected for sequential access, a new record
is created. For example, on output, the statement:

25 FORMAT (I3,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc.,
records are transmitted according to the format I3, F6.2 and the

second, fourth, etc., records are transmitted according to the
format D10.3, F6.2.

Consecutive slashes can be used to introducé blank output records
or to skip input records. If there are n consecutive slashes at
the beginning or end of a FORMAT statement, n input records are
skipped or n blank records are inserted between output records. If
n consecutive slashes appear anyuhere else in a FORMAT statement,
the number of records skipped or blank records inserted is n-1.
For example, the statement:

25 FORMAT (1X,1015//1X,8E14.5)
describes three FORTRAN record formats. On output,

it places a QZD
blank line between the line written with format 1X,10I5 and the QY
line written with the format 1X,8E14.5.)

106 VS FORTRAN Language Reference

Colon Format Code

FORMAT

For a file connected for direct access, when a slash is
encountered, the record number is increased by one and the file is
positioned at the beginning of the record that has that record
number.

A colon terminates format control if there are no more items in
the input/output list. The colon has no effect if there are more
items in the input/output list.

Example:

Assume the following statements:

ITABLE=10
IELEM=0

.

10 WRITE(6,1000)ITABLE, IELEM

-

ITABLE=11
IELEM=25

-

XMIN=.37E1
XMAX= .24 95E3

20 WRITE(6,1000)ITABLE, IELEM, XMIN,XMAX
1000 FORMAT('O0 TABLE NUMBER',I5,:,'CONTAINS',I5, ELEMENTS',:,
1 /'MINIMUM VALUE:',El15.7,
2 /'MAXIMUM VALUE:',E15.7)

The WRITE statement at statement number 10 generates the
following:

TABLE NUMBER 10 CONTAINS 0 ELEMENTS

The WRITE statement at statement number 20 generates the
following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS
MINIMUM VALUE: -.3700000E+01
MAXIMUM VALUE: .2495000E+03

Reading Format Specifications at Object Time

FORTRAN provides for variable FORMAT statements by allowing a
format specification to be read into a character array element or
a character variable in storage. The data in the character array
or variable may then be used as the format specification for
subsequent input/output operations. The format specification may
also be placed into the character array or variable by a DATA
statement or an explicit specification statement in the source
program. The following rules are applicable:

o The format specification must be a character array or
character variable, even if the array size is only 1.

[The format codes entered into the array or character variable
must have the same form as a source program FORMAT statement,
except that the word FORMAT and the statement number are
omit‘_teda The parentheses surrounding the format codes are
required.

VS FORTRAN Statements 107

FORMAT

. If a format code read at object time contains two consecutive
apostrophes within a character field that is defined by
apostrophes, it should be used for output only.

. Blank characters may precede the format specification, and
character data may follow the right parenthesis that ends the
format specification.

Example: Assume the following statements:

DIMENSION C(5)
CHARACTER%16 FMT
READ(5, 1)FMT
1 FORMAT (A)
READ(5,FMT)A,B,(C(I),I=1,5)

Assume, also, that the first input line assoicated with unit 5
contains (2E10.3, 5F10.8).

The data on the next input line is read, converted, and stored in
A,B, and the array C, according to the format codes 2E10.3,
5F10.8.

r IBM EXTENSION 1

READING A FORMAT INTO A NONCHARACTER ARRAY

Assume the following statements:

DIMENSION FMT(16),C(5)
READ(5,1) FMT

1 FORMAT(16Al)
READ(5,FMT)A,B,(C(I),I=1,5)

Assume also that the first input line associated with unit 5
contains (2E10.3, 5F10.8).

The data on the next input record is read, converted, and stored
;21%,;h and the array C, according to the format codes 2E10.3,

t END OF IBM EXTENSION !

List-Directed Formatting

108

The characters in one or more list-directed records constitute a
sequence of values and value separators. The end of a record has
the same effect as a blank character, unless it is within a
character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a
character constant.

Each value is either a constant, a null value, or one of the
forms:

r*f
or

r¥
where r is an unsigned, nonzero, integer constant. The r*f form is
equivalent to r successive appearances of the constant f, and the
r%¥ form is equivalent to r successive null values. Neither of
these forms may contain embedded blanks except where permitted
within the constant f.
A value separator is one of the following:

L A comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks

VS FORTRAN Language Reference

', .
Y
R

FORMAT

L4 A slash, optionally preceded by one or more blanks and
optionally followed by one or more blanks

. One or more blanks between two constants or following the last
constant

INPUT: Input forms acceptable to format specifications for a
given type are acceptable for list-directed formatting, except as
noted below. The form of the input value must be acceptable for
the type of the input list item. Blanks are never treated as
zeros, and embedded blanks are not permitted in constants, except
within character constants and complex constants as specified
below. The end of a record has the effect of a blank, except when
it appears within a character constant.

When the corresponding input list item is of type real or double
precision, the input form is that of a numeric input field. A
numeric input field is a field suitable for the F format code that
is assumed to have no fractional digits unless a decimal point
appears within the field.

When the corresponding list item is of type complex, the input
form consists of a left parenthesis, an ordered pair of numeric
input fields separated by a comma, and a right parenthesis. The
first numeric input field is the real part of the complex constant
and the second is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record
may occur between the real part and the comma or between the comma
and the imaginary part.

When the corresponding list item is of type logical, the input
form must not include either slashes or commas among the optional
characters permitted for the L format code.

When the corresponding list item is of type character, the input
form consists of a nonempty string of characters enclosed in
apostrophes. Each apostrophe within a character constant must be
represented by two consecutive apostrophes without an intervening
blank or end of record. Character constants may be continued from
the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character to
become part of the constant. The constant may be continued on as
many records as needed. The characters blank, comma, and slash may
appear in character constants.

For example, let len be the length of the list item, and let W be
the length of the character constant. If len is less than or equal
to W, the leftmost len characters of the constant are transmitted
to the list item. If len is greater than w, the constant is
transmitted to the leftmost w characters of the list item and the
remaining len-w characters of the list item are filled with
blanks. The effect is that the constant is assigned to the list
item in a character assignment statement.

A null value is specified by having no characters betuween
successive separators, by having no characters preceding the
first value separator in the first record read by each execution
of a list-directed input statement, or the % form. A null value
has no effect on the definition status by the corresponding input
list item. If the input list item is defined, it retains its
previous value; if it is undefined, it remains undefined. A null
value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire
complex constant. The end of a record following any other
separator, with or without separating blanks, does not specify a
null value.

A slash encountered as a value separator during execution of a
list-directed input statement causes termination of execution of
that input statement after the assignment of the previous value.
If there are additional items in the input list, the effect is as
if null values had been supplied for them.

VS FORTRAN Statements 109

FORMAT

All blanks in a list-directed input record are considered part of
some value separator, except for the follouwing:

. Blanks embedded in a character constant “

. Embedded blanks surrounding the real or imaginary part of a
complex constant

. Leading blanks in the first record read by each execution of a
list-directed input statement, unless immediately followed by
a slash or comma

QUTPUT: The form of the values produced is the same as that

required for input, except as noted. With the exception of

character constants, the values are separated by one of the

following: -

. One or more blanks

. A comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks

VS FORTRAN may begin new records as necessary but, except for
complex constants and character constants, the end of a record
must not occur within a constant, and blanks must not appear
within a constant.

Logical output constants are T for the value .TRUE. and F for the
value .FALSE..

Integer output constants are produced with the effect of an In
edit descriptor for some reasonable value of w.

Real and double precision constants are produced with the effect
of either an F format code or an E format code, depending on the
magnitude x of the value and a range:

N
10%x%dl < 10x%xd2 o
where dl and d2 are processor-dependent integer values. If the
magnitude x is within this range, the constant is produced using
0PFu.d; otherwise, 1PEw.dEe is used. Reasonable processor-
dependent values are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma
separating the real and imaginary parts. The end of a record may
occur between the comma and the imaginary part only if the entire
constant is as long as, or longer than, an entire record. The only
embadded blanks permitted within a complex constant are betueen
the comma and the end of a record and one blank at the beginning
of the next record.

Character constants produced:
. Are not delimited by apostrophes
L Are not preceded or followed by a value separator -

. Have each internal apostrophe represented externally by one
apostrophe

. Héve a blank character inserted at the beginning of any record
that begins with the continuation of a character constant
from the preceding record

If two or more successive values in an output record produced have
identical values, the sequence of identical values are written.

Slashes, as value separators, and null values are not produced by
list-directed formatting. @:;
;

Each output record begins with a blank character to provide
carrier control if the record is printed.

110 VS FORTRAN Language Reference

FORMAT

UNCTION STATEMENT

‘EE The FUNCTION statement identifies a function subprogram. A

3 function subprogram consists of a FUNCTION statement followed by
other statements including at least one RETURN statement. It is an
independently written program that is axecuted wherever its name
is referred to in another program.

syntax
[tvpal FUNCTION pname (flarql [, arg2l] ... 1))

tvpe
is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or

CHARACTERI[*len1]

where:

¥lenl
is the length specification. It is optional; if
omitted, it is assumed to be 1. It may be an unsigned,
nonzero, integer constant, an integer constant
expression enclosed in parentheses, or an asterisk
enclosed in parentheses. The expression can only
contain integer constants; it must not include names of
integer constants.

If the name is of type CHARACTER, all entry names must
be of type CHARACTER, and lengths must be the same. If
one length is specified as an asterisk, all lengths
must be specified as an asterisk.

) name
‘iD is the name of the function.

I IBM EXTENSION —

namexlen2

is the name of the function.
where:

¥len?2
is a positive, nonzero, unsigned integer constant. It
represents one of the permissible length
specifications for its associated type. (See "Variable
Types and Lengths"™ on page 18.) It may be included
optionally only when type is specified. It must not be
used when DOUBLE PRECISION or CHARACTER type is
specified.

— END OF IBM EXTENSION !

is a dummy argument. It must be a variable or array name that
may appear only once within the FUNCTION statement or dummy
procedure name. If there is no argument, the parentheses
must be present. (See "Dummy Arguments in a Function
Subprogram" on page 113.)

A type declaration for a function name may be made by the

predefined convention, by an IMPLICIT statement, by an explicit
specification in the FUNCTION statement, or by an explicit type
specification statement within the function subprogram. If the

X type of a function is specified in a FUNCTION statement, the
‘:}‘ function name must not appear in an explicit type specification
statement.

VS FORTRAN Statements 111

FUNCTION

The name of a function must not be in any other nonexecutable
statement except a type statement.

Because the FUNCTION statement is a separate program unit, there)
is no conflict if the variable names and statement numbers within e
it are the same as those in other program units.

The FUNCTION statement must be the first statement in the
subprogram. The function subprogram may contain any FORTRAN
statement except a SUBROUTINE statement, another FUNCTION
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a function subprogram, it must
follow the FUNCTION statement and may only be preceded by another
IMPLICIT statement, a PARAMETER, FORMAT, or ENTRY statement.

The name of the function (or one of the ENTRY names) must appear
as a variable name in the function subprogram and must be assigned
a value at least once during the execution of the subprogram in
one of the following ways:

. As the variable name to the left of the equal sign in an
arithmetic, logical, or character assignment statement

o As an argument of a CALL statement that will cause a value to
be assigned in the subroutine referred to

. In the list of a READ statement within the subprogram

. As one of the parameters in an INQUIRE statement that is
assigned a value within the subprogram

The value of the function is the last value assigned to the name

of the function when a RETURN or END statement is executed in the

subprogram. For additional information on RETURN and END

statements in a function subprogram, see "RETURN Statement" on

page 164 and "END Statement™ on page 77. .
/TR

The function subprogram may also use one or more of its arguments ‘WL);

to return values to the calling program. An argument so used must]

appear:

. On the left side of an arithmetic, logical, or character
assignment statement

. In the list of @ READ statement within the subprogram

. As an argument in a function reference that is assigned a
value by the function referred to

. As an argument in a CALL statement that is assigned a value in
the subroutine referred to

. As one of the parameters in an INQUIRE statement -

The dummy arguments of the function subprogram (for example,

argl, arg2, arg3,..., argn) are replaced at the time of invocation
by the actual arguments supplied in the function reference in the
calling program.

If a function dummy argument is used as an adjustable array namae,
the array name and all the variables in the array declarators
(except those in COMMON) must be in the dummy argument list. See
"Size and Type Declaration of an Array" on page 22.

If the predefined convention is not corraect, the function name
must be typed in the program units that refer to it. The type and
length specifications of the function name in the function
reference must be the same as those of tha function name in the
FUNCTION statement.

character function whose length specification is an asterisk must

Except in a character assignment statement, the name of a ~1ii
not be the operand of a concatenation operation.

112 VS FORTRAN Language Reference

FUNCTION

The length specified for a character function in the program unit
that refers to the function must agree with the length specified
in the subprogram that specifies the function. There is always
agreement of length if the asterisk is used in the referenced
subprogram to specify the length of the function.

Actual Arguments in a Function Subprogram

bummy Arguments in a

The actual arguments in a function reference must agree in order,
number, and type with the corresponding dummy arguments in the
dummy argument list of the referenced function. The use of a
subroutine name as an actual argument is an exception to the rule
requiring agreement of type.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a function reference must be one of the
following:

. An array name

. An intrinsic function name
. An external procedure name
. A dummy argument name

. An expression, except a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses, unless the operand is the name of a
constant.

For an entry point in a function subprogram, see "ENTRY Statement"
on page 81.

Function subprogram

The dummy arguments of a function subprogram appear after the
function name and are enclosed in parentheses. They are replaced
at the time of invocation by the actual arguments supplied in the
function reference.

Dummy arguments must adhere to the following rules:

. None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement, except as NAMELIST or common block names, in which
case the names are not associated with the dummy argument
names.

. A dummy argument name must not be the same as the procedure
name appearing in a FUNCTION, SUBROUTINE, ENTRY or statement
function definition in the same program unit.

. The dummy arguments must correspond in number, order, and
type to the actual arguments.

. If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array
element, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the subprogram.

VS FORTRAN Statements 113

FUNCTION

114

. A referenced subprogram cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

VS FORTRAN Language Reference

S

C

N

:\"L_V

C

GO TO STATEMENTS

GO TO

GO0 TO statements transfer control to an executable statement in
the program unit. There are three GO 70 statements:

. Assigned GO TO statement
. Computed GO0 TO statement

L Unconditional GO TO statement

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement
numbered stnl, stn2, stn3 ..., depending on whether the current
assignment of i 1s stnl, stn2, stn3 ..., respectively. (See
YASSIGN Statement" on page 46.)

— Syntax
GO T0 i [[,] (stnl [,stn2] [,stn3] ...) 1]

{aets

is an integer variable (not an array element) of length ¢
that has been assigned a statement number by an ASSIGN
statement.

stn

is the number of an executable statement in the program unit
containing the assigned GO T0 statement.

The list of statement numbers, that is, (stnl, stn2 ...), is
optional. If omitted, the preceding comma must be omitted. If the
list of statement numbers is specified, the preceding comma is
optional. The statement number assigned to i must be one of the
statement numbers in the list. The statement number may appear
more than once in the list.

The ASSIGN statement that assigns the statement number to i must
appear in the same program unit as the assigned GO T0 statement
that is using this statement number.

For example, in the statement:
GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement
number 8, then the statement numbered 8 is executed next. If the
current assignment of N is statement number 10, the statement
numbered 10 is executed next. If N is assigned statement number
25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the
current value of i must have been assigned the statement number of
an executable statement (not a FORMAT statement) by the previous
execution of an ASSIGN statement.

If at the time of the execution of an assigned GO TO statement,
the current value of i contains an integer value, assigned
directly or through EQUIVALENCE, COMMON, or argument passing, the
result of the GO TO is unpredictable. Also, the integer variable i
may not be a dummy argument in a subprogram. An integer variable
may not be used as an actual argument in a subprogram reference at
the time it is assigned a number.

Any executable statement immediately following the assigned GO TO

statement should have a statement number; otherwise, it can never
be referred to or executed.

VS FORTRAN Statements 115

GO TO

Example:

ASSIGN 150 TO IASIGN
IVAR=150.
GO TO IASIGN

Computed 60 T0 Statement

The computed GO TO statement transfers control to the statement
numbered stnl, stn2, or stn3,... depending on whether the current
value of m is 1, 2, or 3,... respectively.

syntax
GO TO (stnl [, stn2) [, stn3] ...) [L,1 m

stn
is the number of an executable statement in the program unit
containing the computed GO TO statement. The same number may
appear more than once within the parentheses.

n
is an integer expression. The comma before m is optional. If
the value of m is outside the range 1 < m £ n, the next
statement is executed.

Example:

171 GO T0(172,173,174,173) INT(A)
172 A=A+ 1.0
GO TO 174
173 A=A+ 1.0
174 CONTINUE

Unconditional GO TO Statement

116

The unconditional GO TO statement transfers control to the
statement specified by the statement number. Every subsequent
execution of this GO TO statement results in a transfer to that
same statement.

syntax
GO TO stn

stn
is the number of an executable statement in thae program unit
containing the unconditional GO TO statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

Example:

GO T0 5
999 I =1 + 200

VS FORTRAN Language Reference

3

IF STATEMENTS

IF

The IF statements specify alternative paths of execution
depending on the condition given. There are three forms of the IF
statement:
J Arithmetic IF
[Block IF

END IF

ELSE

ELSE IF

U] Logical IF

Arithmetic IF Statement

Block IF Statement

The arithmetic IF statement transfers control to the statement
numbered stnl, stn2, or stnd when the value of the arithmetic
expression (m) is less than, equal to, or greater than zero,
respectively. The same statement number may appear more than once
within the same IF statement.

syntax
IF (m) stnl, stn2, stn3

m
is an arithmetic expression of any type except complex.

stn
is the number of an executable statement in the program unit
containing the IF statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

The block IF statement is used with the END IF statement and,
optionally, the ELSE IF and ELSE statements to control the
execution sequence.

syntax
IF (m) THEN

m
is any logical expression.

Two terms are used in connection with the block IF statement,
IF-level and IF-hlock.

IF-level The number of lF-levels in a program unit is determined
by the number of sets of block~IF statements (IF (m)
THEN and END IF statements).

The IF-level of a particular statement (stn) is
determined with the formula:

nl - n2.

VS FORTRAN Statements 117

IF

118

where: .
&

nl
is the number of block IF statements from the
beginning of the program unit up to and including
the statement (stn).

n2

is the number of END IF stataeaments in the program
?n;t)up to, but not including, the statement -
stnJ.

IF-block An IF-block begins with the first statement after the
block IF statement (IF (m) THEN), ends with the
statement preceding the next ELSE IF, ELSE, or END IF
statement that has the same IF-lavel as the block IF
statement, and includes all the executable statements
in between. An IF-block is ambty if there are no
executable statements in it.

Transfer of control into an IF-block from outside the
IF-block is prohibited.

Execution of a block IF statement evaluates the expression m. If
the value of m is true, normal execution sequence continues with
the first statement of the IF-block, which is immediately
following the IF (m) THEN. If the value of m is true, and the
IF-block is empty, control is transferred to the next END IF
statement that has the same IF-level as the block IF statement. If
the value of m is false, control is transferred to the next ELSE
IF, ELSE, or END IF statement that has the same IF-level as the
block IF statement.

If the execution of the last statement in the IF-block does not

result in a transfer of control, control is transferred to the VAR
next END IF statement that has the same IF-level as the block IF Y
statement that precedes the IF-block. CF

A block IF statement cannot terminate the range of a DO.
END IF Statement

The END IF statement concludes an IF-block. Normal execution
sequence continues.

syntax
END IF

For each block IF statement, there must be a matching END IF
statement in the same program unit. A matching END IF statement is
the next END IF statement that has the same IF-level as the block
IF statement.

An END IF statement cannot terminate the range of a DO. Execution
of an END IF statement has no effect.

Example:
IF (m) THEN

END IF

»

VS FORTRAN Language Reference

e

ki

IF
ELSE Statement

The ELSE statement is executed if the preceding block IF or ELSE
IF iqndition is evaluated as FALSE. Normal execution sequence
continues.

syntax

ELSE

An ELSE-block consists of all the executable statements after the
ELSE statement up to, but not including, the next END IF statement
that has the same IF-level as the ELSE statement. An ELSE-block
may be empty.

Within an IF block, you can have only one ELSE.

Transfer of control into an ELSE4b16ck from ogtside the
ELSE-block is prohibited. The statement number, if any, of an ELSE
statement must not be referred to by any statement (except an AT
statement of a DEBUG packet). An ELSE statement cannot terminate
the range of a DO.

Example:

IF (m) THEN

ELSE

-

END IF

ELSE IF Statement

The ELSE IF statement is executed if the preceding block IF
condition is evaluated as false.

syntax
ELSE IF (m) THEN

n
is any logical expression.

An ELSE IF-block consists of all of the executable statements
after the ELSE IF statement up to, but not including, the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement. An ELSE IF-block may be empty.

If the value of the logical expression m is true, normal execution
sequence continues with the first statement of the ELSE IF-block.

If the value of m is true and the ELSE IF-block is empty, control
is transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement.

Transfer of control into an ELSE IF-block from outside the ELSE
IF-block is prohibited. The statement number (stn), if any, of the

VS FORTRAN Statements 119

IF

ELSE IF statement must not be referred to by any statement (except ﬁmz
an AT statement of a DEBUG packet). %Mw.

If execution of the last statement in the ELSE IF-block does not
result in a transfer of contrel, contrel is transferred to the
next END IF statement that has the same IF-level as the ELSE IF
statement that precedes the ELSE IF-block.

An END IF statement cannot terminate the range of a DO.

Example 1:

IF (m) THEN

.

ELSE IF (m) THEN
END IF

Example 2:
IF (m) THEN

.

ELSE IF (m) THEN

ELSE
END IF

N,

Logical IF Statement

The logical IF statement evaluates a logical expression and
executes or skips a statement, depending on whether the value of
the expression is true or false, respectively.

syntax
IF (m) st
m
is any logical expression.
st

is any executable statement except a DO statement, another
logical IF statement, an END statement, a block IF, ELSE IF,
ELSE, or END IF statement.

I IBM EXTENSION]

st may not be a TRACE ON, TRACE OFF, INCLUDE, or DISPLAY
statement.

L END OF IBM EXTENSION -

The statement st must not have a statement number.

The execution of a function reference inm is permitted to
affect entities in the statement st.

™
The logical IF statement containing st may have a statement :@;JT
number, /

120 VS FORTRAN Language Reference

Examples:

IF(A.LE.0.0) GO TO 25
C=D+E
IF (A.EQ.B) ANSWER =
F G/H

25 W X%xZ

2.0%A/C

VS FORTRAN Statements

IF

121

IMPLICIT Type

IMPLICIT TYPE STATEMENT

122

variables, arrays, and user-supplied functions whose names begin
with a particular letter. It may be used to change or confirm
implicit typing.

The IMPLICIT type statement specifies the type and length of all

syntax
IMPLICIT tvpe Ca [, a 1...0 [, type Ca [, al...2 1 ...

tvpe
is CHARACTER[%lenll, COMPLEX, DOUBLE PRECISION, INTEGER,
LOGICAL, or REAL

where:

®lenl
can be an unsigned, nonzero, integer constant or a
positive integer constant expression enclosed in
parentheses. It is optional.

If lenl is not specified, the length is one.

i IBM EXTENSION 1

type
is COMPLEX[%len2], INTEGER[*1len2], LOGICALI%len2], or
REAL[*len2]
wheare!
%len2 /A\
can be a postitive, nonzero, unsigned, integer N
constant. It represents one of the permissible length o
specifications for its associated type. It is
optional.
! END OF IBM EXTENSION }
a

is a single alphabetic character or a range of characters
drawn from the set A, B,..., Z. The range is denoted by the
first and last characters of the range separated by a minus
sign (for example, A-D).

[IBM EXTENSION 1

The alphabetic character a can also be the currency symbol
($). The currency symbol ($) follows the letter Z. Thus,
the range Y-$ is the same as Y,2,$

L END OF IBM EXTENSION !

The IMPLICIT specification statement can only be preceded by a
PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA, PARAMETER, ENTRY, or
FORMAT statement, or another IMPLICIT statement. The IMPLICIT
specification statement declares the type of the varlables and
user-supplied functions appearing in this program (that is,
integer, real, complex, logical, or character) by specifying that
names beginning with certain designated letters are of a certain
type. Furthermore, the IMPLICIT statement allows the programmer
to declare the number of bytes to be allocated for each in the
group of specified variables.

When type is CHARACTER, the length spec:fvcatlon is between 1 and
500. The standard (default) length is 1. @;;

The type and length associated with a letter or a range of letters L/
must not conflict with the type or length given previously to the v

VS FORTRAN Language Reference

IMPLICIT Type

same latters in the same IMPLICIT statement, in a different

(Z? IMPLICIT statement or in a PARAMETER statement. Type

{ / specification by an IMPLICIT statement may be overridden or
confirmed for any particular variable, array, name of a comstant,
external function, or statement function name by the appearance
of that name in an explicit type specification statement.

ége? "Type Declaration by the Predefined Specification™ on page

- Note: An IMPLICIT statement has no effect on names of
FORTRAN-supplied (intrinsic) functions.

Valid IMPLICIT Statements:
IMPLICIT INTEGER(A-H), REAL(I-K), LOGICAL(L,M,N)
IMPLICIT COMPLEX(C-F)

IBM EXTENSION)

IMPLICIT INTEGER(MW-$)

All names beginning with W, X, Y, Z, and $ are
considared integers of length 4 bytes.

L END OF IBM EXTENSION

VS FORTRAN Statements 123

INCLUDE

INCLUDE STATEMENT

124

_IBM EXTENSION

The INCLUDE statemaent is a compiler directive. It inserts a

speac
unit

— syntax

INC

ified statement or a group of statements into a program

LUDE (name)

name

is the name of a group of one or more FORTRAN source
statements to be inserted into the source program beina
compiled.

The group must reside in a library known to the VS FORTRAN
compiler.

The following rules apply to the INCLUDE statement:

[]

INCLUDE is a compile-time control statement only.
The INCLUDE statement may not be continued.
No replacement or editing is done.

The inserted group may contain any complete VS FORTRAN
source statement, including another INCLUDE statement.

An INCLUDE of a group may not contain an INCLUDE statement
that refers to a currently open INCLUDE group (that is,
recursion is not permitted).

Multiple INCLUDE statements may appear in the original
source program.

INCLUDE statements may appear anywhere in a source program
before the END statement, except as the trailer of a logical
IF statement. An END statement may be part of the included
group.

The FORTRAN statements in the group being included must be
in the same form as the source program being compiled; that
is, fixed form or free form.

The resulting FORTRAN program after the inclusion of all
groups must follow all FORTRAN rules as to sequence of
statements.

VS FORTRAN Language

END OF IBM EXTENSION

Reference

INQUIRE STATEMENT

INQUIRE

An INQUIRE statement supplies information about properties of a
particular named external file or of the connection to a
particular external unit.

There are two forms of the INQUIRE statement:

. Inquire by file name

. Inquire by unit numbher

A sequential file or a direct-access file can be queried about its
existence, its connection to a unit, its unit number, its name,
its access method, whether it is formatted or unformatted, and how
blanks are to be interpreted. In addition, a direct-access file is
queried about its record length or its next record number.

The INQUIRE statement may be executed before, while, or after a
file is connected to a unit. All values assigned by the INQUIRE

" statement are those that are current at the time the statement is

INQUIRE by File Name

executed. All value assignments are done according to the rules
for assignment statements. No error is given if the value is
truncated because the receiving field is too small to contain it
all.

This INQUIRE statement supplies information about a file. When
this statement is executed, the file specified by fn may or may
not be connected to a unit. If the file is connected to a unit,
the file may or may not exist. (For example, an output unit may be
connected to a file but no output has been written.)

syntax
INQUIRE (FILE=fn [, ERR=stnl] [, I0STAT=ios] [, EXIST=exsl

[, OPENED=opnl [, NAMED=nmd]l [, NAME=paml
[, SEQUENTIAL=seql [, DIRECT=dirl

[, FORMATTED=fmt] [, UNFORMATTED=unf]

[, NUMBER=numl [, ACCESS=accl [, FORM=frml
[, RECL=recll [, NEXTREC=nxrl [, BLANK=blkl)

All parameters except FILE=fn are optional.

FILE=fn '

FILE=fn is required. fn is the reference to a file and must
be preceded by FILE=. It is a character expression. Its
value, when any trailing blanks are removed, must be 1 to 7
alphameric characters, the first one being alphabetic. It
specifies the name of the file being inquired about and must
be known to the program.

ERR=stn
stn is the number of a statement in the same program unit as
the INQUIRE statement to which control is given when the
value of fn (as described under FILE=fn) is not a valid file
name.

I0STAT=ioS
ios is an integer variable or an integer array element. The
value of ios is set positive if an error is detected; it is
set to zero if no error is detected. VS5AM return and reason
codes are placed in ios.

VS FORTRAN Statements 125

INQUIRE

EXIST=exs
exs is a logical variable or logical array element. It is
assigned the value true if the file by the specified name
exists; otherwise, it is assigned the value false.

®

/\
&
-

LN

THE FILE EXISTS: The following parameters have a value only if the
file being inquired about exists; that is, exg has the value true.
They are all optional.

OPENED=0DN
opn is a logical variabla or a logical array element. It is -
assigned the value true if the file specified is connectad to
a unit, otherwise, it is assigned tha value false.

NAMED=nmd
nmd is a logical variable or a logical array element. If the
file has a name (fn), nmd is assigned tha value true;
otherwise, it is assigned the value false.

NAME=nam
nam is a character variable or character array element. If
the file has a name (fn), nam is assigned the value of namg.
- name is not necessarily the same as the name in the FILE
paramaeter (fn).

SEQUENTIAL=seq
seq is a charactaer variable or a character array element. It
is assigned the value YES if the file can be connected for
sequential access input/Zoutput; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It
1is assigned the value YES if the file can be connected for P
direct access input/output; NO if it cannot; and UNKNOWN if { #)
it is not possible to determine whether the file can be \W~z
connected for direct access.

FORMATTED=fmt
fmt is a character variable or character array element. It is
assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=unf .
unf is a character variable or character array element. It is
assigned the value YES if the file can be connected for
unformatted input/output; NO if it cannot; and UNKNOWN if it
is not possible to determine whether the file can be
connected for unformatted input/output.

THE FILE IS CONNECTED TO AN EXISTING UNIT: The following
parameters have a valua only if the fila exists (exs has the value
true) and if the file is connected to a unit (opn has the value
true). They are all optional.

NUMBER=hum ,
num is an integer variable or integer array element. It is

asiigned the value of the external unit connected to the
file.

ACCESS=acec .
ace is a character variable or character array element. If
there is a name fn, acg is assigned a value (SEQUENTIAL or
DIRECT) associated with the connection of the external file.

FORM=frm -
frm is a character variable or character array element. It is @f)
assigned the value FORMATTED if the file is connected for W4
formatted input/Zoutput; UNFORMATTED if the file is connectaed
for unformatted input/output.

126 VS FORTRAN Language Reference

INQUIRE

THE FILE IS CONNECTED FOR DIRECT ACCESS I/0: The following

parameters have a value only if the file exists (exs has the value
true) and if the file is connected for direct access (acc=DIRECT).
They are all optional. The file must have been explicitly opened.

RECL=pcl
rel is an integer variable or integer array element. It is
assigned the value of the record length of the file connected
for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files

consisting of unformatted records.

NEXTREC=nXr
nxr is an integer variable or integer array element. It is
assigned the value n+l, where n is the record number of the
last record read or wuritten on the direct access file. If the
file is connected, but no records have been read or written
since the connection, pxr is assigned the value 1.

THE FILE IS CONNECTED FOR FORMATTED I/0: The following parameter
has a value only if the file exists (exs has the value true) and
if the file is connected for formatted input/output (frm has the
value FORMATTED). It is optional.

BLANK=blk
blk is a character variable or character array element. 1t is
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERO if they are treated as zeros.

The parameters can be entered in any order. Each parameter cannot
appear more than once in an INQUIRE statement. The same variable
or array element may not be specified for more than one parameter
in the same INQUIRE statement.

valid INQUIRE Statement:

INQUIRE (FILE=DDNAME, IOSTAT=I0S, EXIST=LEX, OPENED=LOD,
NAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FMT, UNFORMATTED=UNF, ACCESS=ACC, FORM=FRM,
NUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLANK=BLNK)

INQUIRE by Unit Number

Thj: INQUIRE statement supplies information about an input/output
unit.

A unit can be queried as to its existence and its connection to a
file. If it is connected to a file, the inquiry is being made
about the connection and the file connected. When this statement
is executed, the unit specified by un mav or may not be connected
to a file. If the unit is connected to a file, the file may or may
not exist. For example, an output unit may be connected to a file
but no output has been written.

syntax
INQUIRE (IUNIT=Jun [, ERR=stnl [, IOSTAT=josl [, EXIST=exsl
[, OPENED=gpn] [, NAMED=nmdl] [, NAME=pnaml
[, SEQUENTIAL=seq} [, DIRECT=dirl

[, FORMATTED=fmt]l [, UNFORMATTED=unfl

[, NUMBER=puml [, ACCESS=accl [, FORM=frml
[, RECL=rcl] [, NEXTREC=nxrl [, BLANK=blkl

All parameters excebt UNIT=un are optional.

VS FORTRAN Statements 127

INQUIRE

UNIT=un
un is required. It is the reference to an 170 unit. un can be
preceded optionally by UNIT=., It is an integer expression
whosg :flue represents the unit number that is being
queried.

ERR=stn
stn is the number of a statement in the same program unit as
the INQUIRE statement to which control is given when the
valge of un (as described under UNIT=un) is not a valid unit
numober.

INOSTAT=jos
ios is an integer variablae or an integer array element. Its
value is set positive if an error is detected; it is set to
zero if no error is detected. VSAM return and reason codes
are placed in ios.

EXIST=exs
exs is a logical variable or logical array element. It is
assigned to value true if the specified unit exists and is
known to the program unit. If neither of these conditions is
mat, exs is assigned the value false.

OPENED=0pN
opn is a logical variable or logical array element. It is
assigned the value true if the file specified is connected to
a unit; othernise, it is assigned the value false.

THE UNIT IS CONNECTED TO AN EXTERNAL FILE: The following
parameters have a value only if the unit exists (exs has the value
true) and the unit is connected to an external file (opn has the
value true). They are all optional.

NAMED=nmd
nmd is a logical variable or a logical array element. It is
assigned the value true if the file connected to the unit has
a name; otherwise, it is assigned the value false.

NAME=nam
nam is a character variable or charactaer array element. If
the file connected to the unit has a name, it is assigned the
value of the name of that file. If the file is unnamed, a
default name is assigned.

SEQUENTIAL=seq
seq is a character variable or a character array element. It
is assigned the value YES i1f the file can be connected for
sequential access input/output; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
direct access input/output; NO if it cannot; and UNKNOWN if
it is not possible to determine whether the file can be
connected for direct access.

FORMATTED=fmt
fmt is a character variable or character array element. It is
_assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=uUnf
unf is a character variable or character array elemaent. It is
assigned the value YES if the fila can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

128 V§ FORTRAN Language Reference

/
1

INQUIRE

NUMBER=num

bpum is an integer variable or integer array element. Its
value is the value of un.

ACCESS=acc
acc is a character variable or character array element. It is
assigned the value (SEQUENTIAL or DIRECT) associated with
the connection of the external file.

FORM=frm
frm is a character variable or character array element. frm
is assigned the value FORMATTED if the file is connected for
formatted input/output; UNFORMATTED if the file is connected
for unformatted output.

THE UNIT IS CONNECTED TO AN EXTERNAL FILE FOR DIRECT ACCESS I/0:
The following parameters have a value only if the unit exists (exs
has the value true) and is connected to an external file for
direct access input/output (acc has the value DIRECT). They are
all optional.

RECL=rcl
rcl is an integer variable or integer array element. It is
assigned the value of the record length of the direct access
file. The length is measured in characters for files
consisting of formatted records and in bytes for files
consisting of unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element. It is
assigned the value n+l where n is the record number of the
last record read or written on the direct access file. If the
file is connected, but no records have been read or written
since the connection, nxr is assigned the value 1.

BLANK=blk
blk is a character variable or character array element. It is
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERO if they are treated as zeros.

The parameters can be entered in any order unless UNIT=un is
omitted. If omitted, un, as described under UNIT=un, must be
first.

Valid INQUIRE Sstatement:

INQUIRE (0, IOSTAT=IACT(1), ERR=99999, EXIST=LACT(9)
OPENED=LACT(8), NAMED=LACT(7), NAME=ACTUAL(
SEQUENTIAL=ACTUAL(2), DIRECT=ACTUAL(3),
FORMATTED=ACTUAL(4), UNFORMATTED=ACTUAL(5),
ACCESS=ACTUAL(6), FORM=ACTUAL(7), NUMBER=IACT(2),
RECL=IACT(3), NEXTREC=IACT(4), BLANK=ACTUAL(8))

’
L,

INTEGER TYPE STATEMENT

See "Explicit Type Statement™ on page 85.

VS FORTRAN Statements 129

INTRINSIC
INTRINSIC STATEMENT

The INTRINSIC statement identifies a name as representing a 1
FORTRAN-supplied procedure (intrinsic function) {sae "Appendix B.
FORTRAN-Supplied Procedures™ on page 204). This name can be a

generic name or a specific nama. See "Specific Names and Ganaric

Names" on page 131. It also permits a specific intrinsic function

name to be used as an actual argument.

syntax
INTRINSIC namel [, pname2 J ...

name
is the name of a VS FORTRAN intrinsic function.

Thae INTRINSIC statement is a specification statement and must
precede statement function definitions and all executable
statements.

Intrinsic functions are those functions known to the compilar.
Intrinsic function names are either generic or specific. A
generic name does not have a type unless it is also a specific
name. When a generic name is used with any of the argument types
available for that generic name, the specific named function
corresponding to the argument type is chosen. This makes it
unnecessary for the user to know which intrinsic function name
goes with which argument type.

Appearance of a name in an INTRINSIC statement declares that name
to be an intrinsic function name. If a specific name of an

intrinsic function is used as an actual argument in a program \ N
unit, it must appear in an INTRINSIC statement in that program (
unit. Ww;’
The following names of specific intrinsic functions must not be
passed as actual arguments:

AMAXO0 INT

AMAX1 LGE

AMINO LGT

AMIN1 LLE

CHAR , LLT

DMAX1 MAXO

DMIN1 MAX1

FLOAT MINO

ICHAR ‘ MIN1

IDINT ~ REAL

IFIX SNGL .
I IBM EXTENSION 1

CMPLX QCMPLX

DBLE QEXT <

DBLEQ QEXTD

DCMPLX QFLOAT

DFLOAT QMAX1

DREAL QMIN1

HFIX QREAL

IQINT SNGLQ
L END OF IBM EXTENSION d

The appearance of a generic function name in an INTRINSIC

statement does not cause the name to lose its generic property.

Only one appearance of name in all of the INTRINSIC statements of .
a program unit is permitted. The same name must not appear in both @;@
an EXTERNAL and an INTRINSIC statement in a program unit. ;

130 VS FORTRAN Language Reference

INTRINSIC

If tha name of a VS FORTRAN intrinsic function appears in an
explizit specification statement, the type must confirm its
associated type. i

If the name of a FORTRAN intrinsic function appears in the dummy
argume:t list of a subprogram, that name is not considered as the
name of & FORTRAN intrinsic function in that program unit.
sSpecific Names and Generic Names
Generic rnames simplify referring to intrinsic functions because
the same function name may be used with more than one type of
argument {Sea "Appendix B. FORTRAN-Supplied Procedures" on page
204). Only a specific intrinsic function name may be used as an
actual argument when the argument is an intrinsic function. For
those intrinsic functions that require more than one argument,
all argumesnits must be of the same type.
LOGICAL IF STATEMENT

See "IF Statcments™ on page 117.

LOGICAL TYPE STATEMENT

See "Explicit Type Statemeni" on page 85.

VS FORTRAN Statements 131

NAMELIST

NAMELIST STATEMENT

NAMELIST Input Data

r . IBM EXTENSION

The NAMELIST statemaent specifies one or more lists of namaes for
use in READ and WRITE statements.

syntax
NAMELIST /namels/ listl /name2s 1°st2 ...

name
is a NAMELIST name. It is a name enclosed in slashes that
must not be the same as a variable or array name.
list
is of the form al, a2,..., an
where:
a

is a variable name or an array name.

The list of variables or array names belonging to a NAMELIST
name ends with a new NAMELIST name enclosed in slashes or with
the end of the NAMELIST sta‘.ement. A variable name or an array
name may belong to one or mire NAMELIST lists.

Neither a dummy variable nor a dummy array name may appear in a
NAMELIST list.

The NAMELIST statement must precede any statement function
definitions and all executable statements. A NAMELIST nama must
be declared in a NAMELIST statement and may be declared only
once. The name may appear only in input/output statements.

The NAMELIST statement declares a name name to refer to a
particular list of var.ables or array names. Thereafter, the
forms READ(un,name) ard WRITE(un,name) are used to transmit
data between the file associated with the unit un and the
variables specified by the NAMELIST name pame.

The rules for input/cutput conversion of NAMELIST data are the
same as the rules fo:* data conversion described in "General
Rules for Data Conversion" on page 92 under "FORMAT Statement™
on page 90. The NAMILIST data must be in a special form,
described in "NAMELIST Input Data."

Input data must ba in a special form in order to be read using a
NAMELIST list. The first character in each record to be read
must be blank. The second character in the first record of a
group of data records must be an ampersand (&) immediately
followed by the NAMELIST name. The NAMELIST name must be
followed by a bilank and must not contain any embedded blanks.
This name is fcllowed by data items separated by commas. (A
comma after tha last item is optional.) The end of a data group
is signaled by &END.

The form of the data items in an input record is:

. Name = Constant

- The name may be an array element name or a variablae
name.

- Tha constant may be integer, real, complex, logical, or
character. (If the constants are logical, they may be

132 VS FORTRAN Language Refe -ance

o~

I o Y
/ N
Ny

NAMELIST

in the form T or .TRUE. and F or .FALSE., if the
constants are characters, they must be included between
apostrophes.)

- Subscripts must be integer constants.

. Array Name = Set of Constants (separated by commas)

- The set of constants consists of constants of the type
integer, real, complex, logical, or character.

- The number of constants must be less than or equal to
the number of elements in the array.

- Successive occurrences of the same constant can be
represented in the form c*constant, where ¢c is a
nonzero integer constant specifying the number of times
the constant is to occur.

The variable names and array names specified in the input file
must appear in the NAMELIST list, but the order is not
significant. A name that has been made equivalent to a name in
the input data cannot be substituted for that name in the
NAMELIST list. The list can contain names of items in COMMON but
must not contain dummy argument names.

Each data record must begin with a blank followed by a complete
variable or array name or constant. Embedded blanks are not

permitted in names or constants. Trailing blanks after integers
and exponents are treated as zeros.

Examples:
All records have a blank in column 1.
Column 2
v

first card &NAM1 1(2,3)=5,J=6,B=3.2

last card A(3)=4.0,L=2,3,7%4,&END
where NAM1l is defined in a NAMELIST statement as:

NAMELIST /NAM1/A,B,I,J,L
and assuming that A is a 3-element array and I and L are 3X3
element arrays.

NAMELIST Output Data

When output data is written using a NAMELIST list, it is written
in a form that can be read using a NAMELIST list. All variable
and array names specified in the NAMELIST list and their values
are written out, each according to its type. Character data is
included between apostrophes. The fields for the data are made
large enough to contain all the significant digits. The values
of a complete array are written out in columns.
Example:

NAMELIST /NAM1/A,B,I,J,L/NAM2/C,J,1I,L

READ (CARD,NAM1)

WRITE (ITAPE,NAM1) ,

L END OF IBM EXTENSION !

VS FORTRAN Statements 133

OPEN
OPEN STATEMENT

An OPEN statement may be used to:

. Connect an existing file to a unit.

. Create a file that is preconnected.

. Create a file and connect it to a unit.

. Chang: certain identifiars of a connection between a file and
aunit.

— Syntax
OPEN ¢ [UNIT=lun [, ERR=stn] [, STATUS=stal [, FILE=fn]
[, ACCESS=acc] [, BLANK=blk] [, FORM=frm]

[, I0STAT=ios] [, RECL=rcll])

All parameters are optional except un.

UNIT=un
is required. It is the reference to an I/0 unit. un can be
preceded optionally by UNIT=. It is an integer expression
whose value represents the unit number.

ERR=stn
stn is the number of a statement in the same program unit as
the OPEN statement to which control is given when an error is
detected during execution of the OPEN statement.

STATUS=sta
sta is a character expression. Its value when any trailing
blanks are removed must be NEW, OLD, SCRATCH, or UNKNOWN. If
STATUS is omitted, it is assumed to be UNKNOWN.

If the status of the external file is specified as:

. NE@,tFILE=jg may be specified and the file fn must not
exist.

. OLD, FILE=fn may be specified and the file fn must exist.

. SCRATCH, FILE=fn must not be specified and the file fn
may or may not exist.

e UNKNOWN, FILE=fn is optional.

FILE=fn
fn is a character expression. Its value when any trailing
blanks are removed is the name of the file to be connected to
the unit specified by un. This file name must be a string of
1 to 7 alphameric characters, the first one being
alphabetic.

ACCESS=acc
acc is a character expression whose value (when any trailing
blanks are removed) must be SEQUENTIAL or DIRECT. It
specifies the file as being accessed as a sequential or
direct file. If ACCESS=acc is not specified, it is assumed to
be SEQUENTIAL.

BLANK=b1lk ‘

blk is a character expression whose value (when any trailing
blanks are removed) must be NULL or ZERO. This specifier
affects the processing of the arithmetic fields accessed by
READ statements with format specification or with
list-directed only. It is ignored for nonarithmetic fields,

134 VS FORTRAN Language Reference

TN

OPEN

for READ statements without format specification or with
NAMELIST, and for all output statements. If NULL is
specified, all blank characters in arithmetic formatted
input fields on the specified unit are ignored, except that a
¥field of all blanks has a value of zero. If ZERO is
specified, all blanks, other than leading blanks, are
treated as zeros. If this specifier is omitted and
FORM=FORMATTED, a value of NULL is assumed.

FORM=frm

frm is a character expression whose value (when any trailing
blanks are removed) must be FORMATTED or UNFORMATTED. This
specifier indicates that the external file is connected for
formatted or unformatted input/output. If this specifier is
omitted for a file connected with direct access, a value of
UNFORMATTED is assumed. If this specifier is omitted for a
file connected with sequential access, a value of FORMATTED
is assumed.

IOSTAT=ios
- ios is an integer variable or an integer array element. Its
value is set positive if an error is detected; it is set to
zero if no error is detected. VSAM return and reason codes
are placed in ios.

DIRECT ACCESS FILES: The following specifier is used with direct
access files. '

RECL=recl
rcl is an integer expression. It is assigned the value of the
record length of the file connected for direct access. The
length is measured in characters for files consisting of
formatted records and in bytes for files consisting of
unformatted records.

Each of the parameters of the OPEN statement may appear only once.
The unit specifier (un) must appear. All value assignments are
made according to the rules for assignment statements.

If UNIT= is not specified, un must appear first fn the statement.
The other parameters may appear in any order. If UNIT= is
specified, the parameters may appear in any order.

Before the OPEN statement is executed, the 170 unit specified by
un may be either connected or not connected to an external file.

OPEN is required for direct-access and VSAM files. It is optional
for sequential files.

It is invalid for internal files.

The I/0 Unit is Not Connected to the External File

Successful execution of the OPEN statement connects the I70 unit
specified by un to the external file specified by fn with the
parameters specified (or assumed) in the OPEN statement. (See VS

FORTRAN Application Programming: Guide for the parameters allowed
with the different definitions of data sets.)

The I/0 Unit is Connected to the External File

A unit connected in any program unit of an executable program is
available in any other program unit of the executable program.

The unit reference and the file name are un and fn in the OPEN
statement.

VS FORTRAN Statements 135

OPEN

BEFORE EXECUTION OF OPEN“

If some parameters are specified on the OPEN statement, they
must match the attributes of the connection of file fn (except
that BLANK may be different).

The external file fn must not be connected to an 170 unit.

The OPEN is executed as a CLOSE (UNIT=un, STATUS=UNKNOWN)
followed by an OPEN with unit un and external file fnl.

If any error is detected, the unit un stays connected to file
fn.

AFTER SUCCESSFUL OPEN

v

3
.~

mdarsm marsasmmd sl
LGy I LUlinisLLeu

rt

€3V =~
T4

~h
=3

-~
134

lt:
=3

The new value of the BLANK specifier comes into effect.

File fn exists (exs has the value true).

If it had the NEW attribute, it is changed to OLD.

The other attributes stay unchanged.

The file is not repositioned at the beginning.

The unit un is connected to the external file fnl. The
attributes of the connection are described in VS FORTRAN
Application Programming: Guide.

The unit reference and the file name are unl and fn in the
OPEN statement (unl different from un). An error is detected
and the unit un stays connected to file fn.

CONDITIONS THAT PREVENT EXECUTION OF OPEN: Any of the following
conditions prevent execution of the OPEN statement:

Invalid unit number specified, that is, un.

Invalid file name specified, that is, fn.

Invalid values of the specifiers in the OPEN statement.

OLD specified for a file that does not exist.

ACCESS, FORM, REC do not match the actual attributes of an
existing file.) .

RECL=rcl value is not positive ihteger.

OPEN statement specifies a different unit than the one
the file is connected to.

Control transfers to the statement specified in ERR=stn or, if
ERR=stn is not specified, execution of the program is terminated.

136 VS FORTRAN Language Reference

&

Rne——

v/r") \ \

s

C

OPEN
Examples:

Open a New External File: The following statement would open a new
external file.

DDNAME = 'DDNAME?

OPEN (UNIT=2XIN-10, IOSTAT=I0S, ERR=999%99, FILE=DDNAME,
STATUS=NEW, ACCESS='SEQU'//'ENTIAL ', FORM=FORMAT,
BLANK=ZEROD)

Open an 0ld External File: The following statement would open an
old external file.

OPEN (0, IOSTAT=IACT(1), FILE='DDNAME',STATUS='0OLD’',
ACCESS="SEQUENTIAL', FORM='FORMATTED',
BLANK="NULL")

Open a Preconnected, Nonexistent File: The following statement
would open a preconnected, nonexisting file unknown for direct.

OPEN (IOSTAT=IACT(1), ERR=99999, STATUS=UNKNOWN,
ACCESS='DIRECT', RECL=32, UNIT=IN+6)

VS FORTRAN Statements 137

PARAMETER
PARAMETER STATEMENT

The parameter statement assigns a nama to a constant.

syntax
PARAMETER (pamel = g1 [, name2 = ¢2 1] ...)

is the name of a specific constant in this program unit (even
if it looks like a hexadecimal constant, for example,

Z0ABC). The name must be defined only once in a PARAMETER
statement of a program unit.

is a constant or a constant expression of type integar, real,
complex, logical, or character.

Before using the PARAMETER statement, name must have been
specified by the IMPLICIT statement or an explicit type
statement. (Otheruwise the predefined conventions are used.)

The type and length of a name of a constant must not ba changed by
subsequent specification statements, including IMPLICIT
statements. The following is invalid:

PARAMETER (INT=10)
IMPLICIT CHARACTERX5(I)

If the length of a character constant represented by a name has
been explicitly specified previously or has bean been specified
as an asterisk, the length is considered to be the length of the
value of the character expression (g).

If the name (name) is of type integer, real, or complex, the
corresponding expression (c) must be a constant, the name of a
constant, or another expression enclosed in parentheses. The
exponentiation operator is not permitted unless the exponent is
of type integer.

If the name (nhame) is of type character, the corresponding
expression (¢) must be a character expression containing only
character constants or names of character constants. The
expression result cannot exceed 255 characters in length.

If the name (name) is of type logical, the corresponding
expression (c) must be a logical expression containing only
logical constants or names of logical constants.

Each (name) is the name of a constant that becomes defined with
the value of the expression (g) that appears to the right of the
equal sign. The value assigned is determined by the rules used for
assignment statements (see Figure 19 and Figure 20).

Any name of a constant that appears in an expression (c) must be
defined by appearing previously on the left of an equal sign in
the same or a preceding PARAMETER statement in the same program
unit. If it is in the same PARAMETER statement, it must appear to
the left of its usage.

Once defined, the name can be used in a subsequent expression or a
DATA statement instead of the constant it represents. It must not
be part of a FORMAT statement or a format specification.

The name of a constant must not be used to form part of another
constant; for example, any part of a complex constant.

138 VS FORTRAN Language Reference

®

PAUSE

PAUSE STATEMENT

(:E Thae PAUSE statement temporarily halts the execut!on of the object
program and may display a message.

syntax
PAUSE [n])
PAUSE ['message']

a string of 1 through 5 decimal digits.

'messa
a character constant enclosed in apostrophes and containing

alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

If either n or "message' is specified, PAUSE displays the
requested information. The program waits until operator
intervention causes it to resume execution, starting with the
next statement after the PAUSE statement or the next iteration of
the DO loop, if it is the last statement of a DO range. For

further information, see VS FORTRAN Application Programming:

Guide.

VS FORTRAN Statements 139

PRINT

PRINT STATEMENT

140

The PRINT statement transfers data from internal storage to an
external davice.

syntax
PRINT fmt [,1listl

fmt
can be one of the following:
. A statement number
. An integer variable
. A character constant
s A character array elament
. A character array name
U A character expression
T IBM EXTENSION 1
U An array name
f END OF IBM EXTENSION -
. An asterisk that indicates that printing is to be
performed according to the data transmission rules of
list-directed WRITE.
See "WRITE Statement—Formatted with Direct Access™ on rage
181 for explanations of these format identifiers.
list

isalist of output items and implied DO lists. An output
list item can be:

A variable name

An array element

A character substring

An array name

Any expression (except a character expression iavolving
concatenation of operands whose length specification is
an asterisk)

¢ o0 00

For a discussion of Implied DO lists, see "Implied DO in an
Input/0utput Statement" on page 74.

A function must not be referenced within an expression if
such a reference causes an input or output statement to be
executed.

If list is omitted, a blank record is transmittad to the

output device unless the FORMAT statement referred to
contains, as its first specification, a characi:er constant

or slashes. In this case, the record (or recor:is) indicated

gy these specifications are transmitted to the: output
evice.

PRINT fmt has the same effect as a WRITE (un,fmt) ’ist where fmt
and list are defined as above, and the value of un is installation
dependent. See "WRITE Statement—Formatted with Sequential
Access" on page 185.

valid PRINT Statement:

PRINT*, EIGHTS8

VS FORTRAN Language Reference

TN

~

s

PROGRAM
PROGRAM STATEMENT

‘:3) The PROGRAM statement assigns & name to a main program. It must be
D the first statement in the main program.

syntax
PROGRAM name

name
is the name of the main program in which this statement
appears.

" A main program cannot contain any BLOCK DATA, SUBROUTINE,
FUNCTION, or ENTRY statements.

T IBM EXTENSION 1

A RETURN statement may appear; it has the same effect as a STOP
statement.

L END OF IBM EXTENSION !

The PROGRAM statement can only be used in a main program but is
not required. If it is used, it must be the first statement of the
main program. If it is not used, the name of the main program is
assumed by this compiler to be MAIN.

The name must not be the same as any other name in the main
program or as the name of a subprogram or common block in the same
executable program. The name of a program does not have any type
and the other specification statements have no effect on this

name.

g‘:D Execution of a program begins with the execution of the first
' executable statement of the main program. A main program may not
be referred to from a subprogram or from itself.

- VS FORTRAN Statements 141

READ
READ STATEMENTS

The READ statements transfer data from an external device to
storage or from one internal file to another.

Forms of the READ Statement:

0
1. READ

IBM EXTENSION

Statement—Asynchronous

2. READ
3. READ
4. READ
5. READ
6. READ
7. READ

END OF IBM EXTENSION
Statemenf——Formatted with Direct Access
Statement—Formatted with Sequential Access
Statement—Unformatted with Direct Access
Statement—Unformatted with Sequential Access
Statement with Internal Files

Statement with List-Directed I/0

g
8. READ

IBM EXTENSION
Statement with NAMELIST

END OF IBM EXTENSION

142 VS FORTRAN Language Reference

READ (Asynchronous)

IBM EXTENSION |

READ Statement—Asynchronous

The asynchronous READ statement transmits unformatted
sequential data between direct access or sequential storage
devices. The asynchronous READ statement provides high-speed
input. The statements are asynchronous in that while data
transfer is taking place, other program statements may be
executed. An OPEN statement is not permitted for asynchronous
I70. The unit and statement identifier are the only items
allowed within the parentheses.

syntax
READ ¢ [UNIT=lun, ID=jid) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un

is an unsigned integer expression of length 4. It is the
reference to an I/0 unit.

ID=id
id is an integer constant or integer expression of length
4. It is the identifier for the READ statement.

list

is an asynchronous 1/0 list and may have any of four forms:

e
el...e2
el...
Y- V4

where:

is the name of an array.

el and e2
are the names of elements in the same array. The
ellipsis (...) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by un must be connected to a file that
resides on a sequential or direct-access device. The array (g)
or array elements (el through 22) constitute the receiving area
for the data to be read.

The asynchronous READ statement initiates a transmission. The
WAIT statement, that must be executed for each asynchronous
READ, terminates the transmission cycle. When executed after an
asynchronous READ, the WAIT statement enables the program to
refer to the transmitted data. This process ensures that a
program will not refer to a data field while transmission to it
is still in progress.

The asvynchronous READ statement differs from other READ
statements in that a special parameter, ID=jid, is specified
within the parentheses of the statement. ID=id establishes a
unique identification for the READ statement.

Synchronous READ statements may be executed for the file only
after all asynchronous READ and WRITE operations have been
completed and a REWIND has been executed for the file.
Conversely, asynchronous READ statements may be executed for a
file previously read synchronously after a REWIND or CLOSE has
been executed.

VS FORTRAN Statements 143

READ (Asynchronous)

Execution of an asynchronous READ statement initiates reading
of the next record on the specified file. The record may contain
more or less data than there are bytes in the receiving area. If
there is more data, the excess is not transmitted to the
receiving area; if there is less, the values of the excess array
elements remain unaltered. The extent of the receiving area is
determined as follows:

. If @ is specified, the entire array is the receiving area.

] If @l...22 is specified, the receiving area begins at array
element el and includes every element up to and including
e2. The subscript value of el must not exceed that of g2.

. If el... is specified, the receiving area begins at element
el and includes every element up to and including the last
element of the array.

. If ...e2 is spacified, the receiving area begins at the
first element of the array and includes every element up to
and including e2.

If list is not specified, there is no receiving area, no data is
transmitted, and a record is skipped.

Subscripts in the list of the asynchronous READ must not be
defined as array elements in the receiving area. If a function
reference is used in a subscript, the function reference may not
perform I/0 on any file.

Given an array with elements of length len, transmission begins
with the first len bytes of the record being placed in the first
specified (or implied) array element. Each successive len bytes
of the record are placed in the array element with the next
highest subscript value. Transmission ceases after all elements
of the receiving area have been filled, or the entire record has
been transmitted—whichever occurs first. If the record length
is less than the receiving area size, the last array element to
receive data may receive fewer than len bytes.

The specified array may be multidimensional. Array elements are
filled sequentially. Thus, during transmission, the leftmost
subscript quantity increases most rapidly, and the rightmost
least rapidly.

Any number of program statements may be executed between an
asynchronous READ and its correspondlng WAIT, subject to the
following rules:

. No array element in the receiving area may appear in any
such statement. This and the following rules apply also to
indirect references to such array elements; that is,
reference to or redefinition of any variable or array
element associated by COMMON or EQUIVALENCE statements, or
argument association with an array element in the receiving
area.

. No executable statement may appear that redefines or
undefines a variable or array element appearing in the
subscript of el or 2. See "Valid and Invalid VS FORTRAN
Programs" on page 3.

. If a function reference appears in the subscript expression
of el or 2, the function may not be referred to by any
statements executed between the asynchronous READ and the
corresponding WAIT. Also, no subroutines or functions may
be referred to that directly or indirectly refer to the
function in the subscript reference, or to which the
subscript function directly or indirectly refers.

. No function or subroutine may be executed that performs
input or output on the file being manipulated, or that

144 VS FORTRAN Language Reference

£

READ (Asynchronous)

contains object-time dimensions that are in the receiving
QZD area (whether they be dummy arguments or in a common block).

Valid READ Statement:
READ (ID=10, UNIT=3%IN-3) ACTUAL(3)...ACTUAL(7)
L END OF IBM EXTENSION !

O

VS FORTRAN Statements 145

READ (Formatted, Direct Accass)

READ Statement—Formatted with Direct Access

146

This READ statement transfers data from an external direct-access
daevice into internal storage. The user specifies in a FORMAT
statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The data must
reside on an external file that is connected for direct access to
a unit (see "OPEN Statement"” on page 134).

syntax
READ ¢ [UNIT=lun, [FMT=1fmt, REC=rec [, ERR=stnl]
[, IOSTAT=ios]) [list]

UNIT=un)

un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an I/0 unit.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference number must appear first.

FMT=fmt

fmt is a required format identifier. It can optionally be
preceded by FMT=,

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

r IBM EXTENSION 1

> > >

An array name

L END OF IBM EXTENSION .

The statement number must be the statement number of a FORMAT
statement in thae same program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the READ
statement.

The character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis, and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophae in a constant
enclosed in apostrophes is represented by two consecutive
apostrophes.

Tha character array element must contain character data
whose leftmost character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes
described in the FORMAT statement can be used betuween the
parentheses. Blank characters may precede the left
parenthesis and character data may follow the right

VS FORTRAN Language Reference

G

G

READ (Formatted, Direct Access)

parenthesis. The length of the format identifier must not
exceed the length of the array element.

The character array name must contain character data whose
leftmost characters constitute a valid format identifier.
The length of the format identifier may exceed the length of
the first element of the array; it is considered the
concatenation of all the array elements of the array in the
order given by array element ordering.

IBM EXTENSION 1

The array name may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

END OF IBM EXTENSION !

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format identifier. The
operands of the expression must have length specifications
that contain only integer constants or names of integer
constants. (See "VS FORTRAN Expressions" on page 25.)

REC=rec

rec is & relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associate%uﬁth un. The relative record number of the first
record is 1. .

ERR=stn

stn is the number of a statement in the same program unit as

the READ statement. Transfer is made to stn if an error is
detected.

I0STAT=jios

ics is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in ios.

is an I70 list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement" on
page 74.

An item in the list, or an item associated with it through
EQUIVALENCE, COMMON, or argument passing, must not contain
any portion of the format identifier fmt.

valid READ statements:
READ Cun,fmt,REC=rec) list
READ (un, FMT=fmt,REC=rec) list
READ (UNIT=un,FMT=fmt,REC=rec) list
READ (REC=pec,FMT=fmt,UNIT=un)

VS FORTRAN Statements 147

READ (Formatted, Direct Access)

148

Invalid READ statements: . p
READ (fmt,un,REC=rec) un must appear before fmt. AM

%i
READ (FMT=fmt,un,REC=rec) list un must appear first because
UNIT= is not included.

READ (b,UNIT=un,REC=rec) list FMT must be used because
UNIT= is included.
READ (un,fmt) list REC=rec must be specified

for direct-access.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for direct access. If the
unit is not connected to a file, it is assumed to have been
preconnected thirough job control language and an implicit OPEN ie

performed to a default file name. If the file is not preconnected,
an error is detected.

This statement permits a programmer to read records randomly from
any location within an external file. It contrasts with the
sequential input statements that process records, one after the
other, from the beginning of an external file to its end. With the
direct-access statements, a programmer can go directly to any
record in the external file, process a record and go directly to
any other record without having to process all the records in
between. .
Each record in a direct-access file has a unique number associated
with it. This number is the same as specified when the record is
written. The programmer must specify in the READ statement not
only the unit reference number, but also the number of the record

to be read. Specifying the record number permits operations to be N
performed on selected records of the file instead of on records in W
their sequential order. “bﬁ

The OPEN statement specifies the size and the type of the records
in the direct-access file. All the records of a file connected for
direct access have the same length.

DATA TRANSMISSION: A READ statement with FORMAT starts data
transmission at the beginning of the record specified by REC=rec.
The format codes in the format identifier fmt are taken one by one
and associated with every item of the list in the order they are
specified. The number of character data specified by the format
code is taken from the record, converted according to the format
code and transmitted into the storage associated with the
corresponding item in the list. Data transmission stops when data
has been transmitted to every item of the list or when the end of
the record specified by rec is reached.

If the list is not specified and the format identifier starts with

an I, E, F, D, G, or L format code, or is empty (that is,

FORMAT()), the internal record number is increased-by one but no

data is transferred. -

I IBM EXTENSION 1

VS FORTRAN adds that, if the format identifier starts with a @
or Z format code, the internal record number is increased by one
but no data is transferred.

L END OF IBM EXTENSION - J
DATA AND I/0 LIST: The length of every FORTRAN record is specified

in RECL of the OPEN statement. If the record rec contains more
data than is necessary to satisfy all the items of the list and (IZD

the associated format identifier, the remaining data is ignored.
If the record rec contains less data than is necessary to satisfy
all the items of the list and the associated format identifier, an
error is detected. If the format identifier indicates (for

VS FORTRAN Language Reference

O

READ (Formatted, Direct Access)

example, slash format code) that data be taken from the next
record, then the internal record number rec is increased by one
and data transmission continues with the next record. The INQUIRE
statement can be used to determine the record number.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If I0OSTAT is specified, a positive integer value is assigned
to ios when an error is detected. If ERR is specified, then
execution continues with the statement specified with the ERR, if
present, or with the next statement if ERR is not specified. If
ERR and IOSTAT are both omitted, program execution is terminated
when an error is detected.

Valid READ Statement:
READ (UNIT=2XIN-10, FMT='(I9)', REC=3)

VS FORTRAN Statements 149

READ (Formatted, Sequential Access)
READ Statement—Formatted with Sequential Access @:E

This READ statement transfers data from an external 170 device to E
storage. The user specifies in a FORMAT statement (or in a

reference to a FORMAT statement) the conversions to be performed

during the transfer. The data must reside in an external file that

is connected for sequential access to a unit. (See "OPEN

Statement™ on page 134.)

The sequential 170 statements with format identifiers process
gecpgds oge after the other from the beginning of an external file
o its end.

syntax
READ ¢ [UNIT=1]

r
t, I05Y

READ fmt [, list]

C

n, [FMT=1fmt [, ERR=stnl] [, END=stnl

> -
f -

iosl) fiist]

-
i

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is

an unsigned integer expression or an asterisk (¥). It is the
reference to an 170 unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

In the form of the READ where un is not specified, un is O
installation dependent. y

FMT=fmt .
fmt is a required format identifier. It can optionally be

preceded by FMT=.

If FMT= is not included, the format identifier must appear
sacond.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable »

A character constant .
A character array element

A character array name

A character expression

r : IBM EXTENSION '

An array name

END OF IBM EXTENSION !

Seae "READ Statement—Formatted with Direct Access™ on page
146 for explanations of these format identifiers.

ERR=stn
stn is the number of an executabla statement in the program
unit containing the READ statement. Transfer is made to stn
if an error is detected. “QZE

END=stn

is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when

150 VS FORTRAN Language Reference

READ (Formatted, Sequential Access)
the end of the external file is encountered.

IOSTAT=jios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in jos.

list
is an I/70 list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement™ on
page 74. In the form of the READ where un is not specified,
if the list is not present, the comma must be omitted. An
item in the list, or an item associated with it through
EQUIVALENCE, COMMON or argument passing, must not contain
any portion of the format identifier fmt.
Valid READ statements:
READ (un,fmt) list
READ (un, FMT=fmt) list
READ (UNIT=un, FMT=fmt) list FMT=fmt can appear first.
READ fmt, list
READ (5,98) A,B,(C(I,K),I=1,10)
READ (IOSTAT=I0S, UNIT=2%IN-10, FMT="(19)', END=3600)
Invalid READ Statements:
READ (fmt,un)

READ (FMT=fmt, un) list

must appear before fmt.

55

must appear first because
UNIT= is not included.

READ (fmt, UNIT=un) list FMT must be used because
UNIT= is included.
READ FMT=fmt, list FMT must not be used in this

form of READ.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A READ statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the
format identifier fmt are taken one by one and associated with
every item of the list in the order they are specified. The number
of character data specified by the format code is taken from the
record, converted according to the format code, and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

DATA AND I/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list and the associated
format specification, the extra data is skipped over. The next
READ statement with FORMAT will start with the next record if no
other 170 statement is executed on that file. If the record
contains less data than is necessary to satisfy all the items of
Zhe llst and the associated format identifier, an error is
etected.

VS FORTRAN Statements 151

READ {Formatted, Sequential Access)

152

If the list is not specified and the format identifier starts with

an I, E, F, D, G, or L format code or is empty (that is, FORMAT()),

a record is skipped over.

r IBM EXTENSION 1
VS FORTRAN adds the Q and Z format codes to the list.

L END OF IBM EXTENSION -

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT is specified, a positive integer value is assigned
to ios when an error is detected. Then execution continues with
the statement specified with the ERR, if present, or with the next
statement if ERR is not specified. If ERR and IOSTAT are both
omitted, object program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the file was encountered. If
I0STAT=ios is specified, a negative integer value is assigned to
ios. Then execution continues with the statement specified with
END, if present, or with the next statement if END is not
specified. If END and I0OSTAT are both omitted, object program
execution is terminated when the end of the file is encountered.

VS FORTRAN Language Reference

-

©

READ (Unformatted, Direct Access)

READ Statement—Unformatted with Direct Access

This statement transfers data without conversion from an external
direct—-access I/0 device into internal storage. The data must
reside on an external file that is connected with direct access to
a unit (see "OPEN Statement"™ on page 134).

syntax
READ ([UNIT=lun, REC=rec [, ERR=stn] [, IOSTAT=ios])
[list]

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an 1I/0 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

IdeNIT= is included, all the parameters can appear in any
order.

REC=rec
rec is a relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associated with un. The relative record number of the first
record is 1.

ERR=stn
stn is the number of a statement in the same program unit as

the READ statement. Transfer is made to stn if an error is
detected.

I0STAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error is detected.
VSAM return and reason codes are placed in ios.

is an I70 list and can contain variable names, array
elements, character substring names, array names, and
implied DO lists. See "Implied DO in an Input/Output
Statement™ on page 74.
Valid READ statements:

READ (un,REC=rec) list

READ (REC=rec, UNIT=un)

READ (IOSTAT=I0S, UNIT=11, REC=3) ACTUAL(3)(1:)

READ (IOSTAT=IACT(1),UNIT=3%IN-2,FMT=%) ACTUAL(1)
Invalid READ statements:

READ (REC=rec,un) list UNIT must be used because un
is after REC=rec.

READ (UNIT=un) list REC-rec must be specified for
direct files.

If this READ statement is encountered, the unit must exist and the
file must be connected for direct access. If the unit is not
connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to

VS FORTRAN Statements 153

READ (Unformatted, Direct Access)

156

a default file name. If the file is not preconnected, an error is
detected.

DATA TRANSMISSION: A READ statement without format starts data

transmission at the beginning of the record specified by REC=rec.

The number of character data specified by the type of each item in

the list is taken from the record and transmitted into the storage

associated with the corresponding item in the list. Data

:;anfpi:sion stops when data has been transmitted to every item of
e list.

If the list is not specified, the internal record number is
increased by one but no data is transferred. The INQUIRE statement
can be used to determine the record number.

DATA AND I/0 LIST: The length of the FORTRAN records in the file
are specified by RECL in the OPEN statement. If the record rec
contains more data than is necessary to satisfy all the items of
the list, the extra data is ignored. If the record rec contains
less data than is necessary to satisfy all the items of the list,
an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If I0STAT=jios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement spacified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
gr: bzt% omitted, program execution is terminated when an error is
etected.

VS FORTRAN Language Reference

O

READ (Unformatted, Sequential Access)

READ Statement—Unformatted with Ssequential Access

This READ statement transfers data without conversion from an
external I/0 device into internal storage. The data resides on an
external file that is connected for sequential access to a unit
(see "OPEN Statement™ on page 134).

The sequential 1/0 statements without format control process
;ecords 03e after the other from the beginning of an external file
o its end.

The ENDFILE, REWIND, and BACKSPACE statements may be used to
manipulate the file.

syntax
READ ([UNIT=]un [, ERR=stnl] [, END=stn] [, IOSTAT=ios])
[listl]
UNIT=un

un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4 (or an asterisk
(%)). It is the reference to an I/70 unit. An asterisk (%)
represents an installation-dependent unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order,

IdeNIT= is included, all the parameters can appear in any
order.

ERR=stn
stn is the number of a statement in the same program unit as
ghe READ statement. Transfer is made to stn if an error is
etected.

END=stn
is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the external file is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

list
is an I70 list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement" on
page 74.
Valid READ statements:
READ (un) list
READ (UNIT=un) list
READ (un)
READ (IOSTAT=I0S, UNIT=11)

Invalid READ statements:

READ un, list un must be in parentheses.
READ, list : (un) must be included.

VS FORTRAN Statements 155

READ (Unformatted, Sequential Access)

156

If this READ statement is encountared, the unit specified by un

must be connected to a file for sequential access. If the unit is

not connected to a file, it is assumed to have been preconnected

through job control language and an implicit OPEN is performed to

g %efiubt file name. If the file is not preconnected, an error is
etecteaq.

DATA TRANSMISSION: A READ statement without conversion starts
data transmission at the beginning of a record. The data specified
by the item in the list is taken from the record and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

3

If the list is not specified, a record is passed over without
transmitting any data.

DATA AND I/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement without format will start
with the next record if no other I/0 statement is executed on that
file. If the record contains less data than is necessary to
satisfy the list, an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if presant or
with the next statement if ERR is not specified. If ERR and IOSTAT
Zre b%th omitted, program execution is terminated when an error is
etected. :

END OF FILE: Transfer is made to the statement specified by END /f\\
when the end of the file is encountered; that is, when a READ Nt

statement is executed after the last record on the file has -}
already been read. No indication is given of the number of list o
items read into before the end of the file was encountered. If
I0OSTAT=ios is specified, a negative integer value is assigned to

jos when an end of file is detected. Then execution continues with

the statement specified with END if present, or with the next

statement if END is not specified. If END and I0OSTAT are both

omitted, program execution is terminated when the end of the file

is encountered.

-

VS FORTRAN Language Reference

READ (Internal)
C\‘ READ Statement with Internal Files

o

This READ statement transfers data from one area of internal
storage into another area of internal storage. The user specifies
in a FORMAT statement (or in a reference to a FORMAT statement)
the conversions to be performed during the transfer. The area in
internal storage that is read from is called an internal file.

An internal file is always
. Connected to a unit

. Positioned before data transmission at the beginning of the
storage area represented by the unit identifier

J Accessed sequentially with a FORMAT statement (see "FORMAT
Statement” on page 90)

— Syntax

READ ¢ [UNIT=Jun, [FMT=]fmt [, ERR=stnl] [, END=stn]l
[, I0STAT=jos]) [list]

UNIT=un
un is the reference to an area of internal storage called an

internal file. It can optionally be preceded by UNIT=. It can
be the name of:

A character variable
A character array
N A character array element
o A character substring

wiea,

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference must appear first.

FMT=fmt

fmt is a required format identifier. It can optionally be
preceded by FMT=,

The format identifier can be:

A statement number

An integer variable

A character constant

A character array element
A character expression

T IBM EXTENSION

An array name

END OF IBM EXTENSION g

See "READ Statement—Formatted with Direct Access" on page
146 for explanations of these format identifiers.

The format specification must pot be:

. In the area un.

. Associated with un through EQUIVALENCE, COMMON or
argument passing.

If FMT= is not included, the format specification must
appear second.

VS FORTRAN Statements 157

READ (Internal)

158

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.

END=stn
is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the storage area (un) is encountered.

IOSTAT=ics
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered. and zero if no error condition is

detected. VSAM return and reason codes are placed in jios.

[t

is an I/0 list and can contain variable names, array
elements, character substring names, array names, and
implied DO lists. See "Implied DO in an Input/Output
Statement”™ on page 74.

An item in the list must not be:

. Contained in the area represented by un

. Associated with any part of un through EQUIVALENCE, COMMON,
or argument passing

Valid READ statements:

READ (un,fmt) list

READ (un,FMT=fmt) list

READ (UNIT=yn,FMT=fmt) list
Invalid READ statements:

READ (fmt,un) list un must appear before fmt.

READ (FMT=fmt,un) list un must appear first because
UNIT= is not included.

READ (fmt,UNIT=un) list FMT must be used because

UNIT= is included.

DATA TRANSMISSION: An internal READ statement starts data
transmission at the beginning of the storage area specified by un.
The format codes in the format specification fmt are taken one by
one and associated with every item of the list in the order they
are specified. The number of character data specified by a format
code is taken from the storage area un, converted according to the
format code, and moved into the storage associated with the
corresponding item in the list. Data transmission stops when data
has been moved to every item of the list or when the end of the
storage area a is reached.

If un is a character variable, a character array element name, or
a character substring name, it is treated as one record only in
relation to the format identifier.

If un is a character array name, each array element is treated as
one record in relation to the format identifier.

DATA AND I/0 LIST: The length of a record is the length of the

character variable, character substring name, character array
element specifified by un when the READ statement is executed.

VS FORTRAN Language Reference

o
§ 3
[
R

TN

Ncﬂﬁ

READ (Internal)

If a record contains more data than is necessary to satisfy all
the items in the list and the associated format identifier, the
remaining data is ignored.

If a record contains less data than is necessary to satisfy all
the items in the list and the associated format identifier, an
error is detected.

If the format identifier indicates (for example, slash format
code) that data be moved from after the character variable,
character substring, or the last array element of a character
array, an end of file is detected. If it is not the last array
eiement in the character array, data is taken from the next array
element.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
datun. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR if present or with
the next statement if ERR is not specified. If ERR and I0OSTAT are
gozh %mzfted, program execution is terminated when an error is
etected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the file was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to
ios when an end of file is detected. Then execution continues with
the statement specified with END if present or with the next
statement if END is not specified. If END and I0OSTAT are both
omitted, program execution is terminated when the end of the file
is encountered.

Example:

1 CHARACTER¥* 120 CHARVR

2 READ (UNIT=5, FMT=100) CHARVR
100 FORMAT (A120)

3 ASSIGN 200 TO J

4 IF (CHARVR (3:4).EQ. "AB') ASSIGN 300 TO J

5 READ(UNIT = CHARVR, FMT=J) Al, A2, A3
200 FORMAT(4X,F5.1, F10.3, 3X, F12.8)
300 FORMAT (4X, F3.1, F6.3, 20X, F8.4)
Statement 1 defines a character variable, CHARVR, of fixed length
120. Statement 2 reads into CHARVR 120 characters of input.
Statement 3 assigns the format number 200 to the integer variable
J. Statement 4 tests the third and fourth characters of CHARVR to
determine which type of input is to be processed. If these two
characters are AB, then the format numbered 300 replaces the
format numbered 200 and is used for processing the data. This is
done by assigning 300 to the integer variable J. Statement 5 reads

the file and performs the conversion using the appropriate FORMAT
statement and assigning values to Al, A2, and A3.

VS FORTRAN Statements 159

READ (List-Directed)
READ Statement with List-Directed I/0

160

This statement transfers data from an external device into Q;R
internal storage. The type of the items specified in this :
statement determines the conversion to be performed. The data

resides on an external file that is connected for sequential

access to a unit (see "OPEN Statement™ on page 134).

syntax

READ ([UNIT=lun, [FMT=1% [, ERR=stnl]l [, END=stnl
[, IOSTAT=ios]) [list]l
READ % [, listl

UNIT=un
un is required in the first form of the READ statement. It
can optionally be preceded by UNIT=. un is an unsigned
integer expression (or an asterisk (¥)). It is the reference
to an I/70 unit. An asterisk (¥) represents an
installation-dependent unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

IdeNIT= is included, all the .parameters can appear in any
order. ‘

In the form of the READ where un is not specified, un is
installation dependent.

FMT=% ‘
specifies that a list-directed READ is to be executed. It can Q;D
optionally be preceded by FMT=. et

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as

the READ statement. Transfer is made to stn if an error is
detected.

END=stn
is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the external file is encountered.

I0STAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in igs.

is an 170 list and can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement™ on
page 76.

VS FORTRAN Language Reference

vg“@

”%4!g

READ (List-Directed)
Valid READ statements:
READ

(un, %
READ (_Q;FMT ¥) list
READ (FMT=%,UNIT=un) list
READ (¥ ,*) ;asg
READ ¥, 1li

READ (IOSTAT IACT(1), UNIT=3%IN-2, FMT=x) ACTUAL(1)
Invalid READ statements:

READ (¥,un) list un must appear before %.

READ (FMT=%,un) list un must appear first because
UNIT= is not included.

READ (%,UNIT=un) list FMT must be used because
UNIT= is included.

READ FMT=x%, list FMT must not be specified.

If this READ statement is encountered, the unit specified by un

must be connected to a file for sequential access. If the unit is

not connected to a file, it is assumed to have been preconnected

through job control language and an implicit OPEN is performed to

3 defaui} file name. If the file is not preconnected, an error is
etected.

DATA TRANSMISSION: A READ statement with list-directed 1/0
accessing an external file starts data transmission at the
beginning of a record. One value on the external file is
transferred to each item of the list in the order they are
specified. The conversion to be performed depends on the type and
length of the name of the item in the list. Data transmission
stops when data has been transmitted to every item in the list,
when a slash separator is encountered in the file or when the end
of file is reached.

DATA AND 1/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement with list-directed I/0 will

.start with the next record if no other 1/70 statement is executed

on that file. If the record contains less data than is necessary
to satisfy the list and the record does not have a slash after the
last element, an error is detected. If the list has not been
satisfied when a slash separator is found, the remaining items in
the list remain unaltered and execution of the READ is terminated.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during transmission
of data. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, object program execution is terminated when an
input error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read before the end of the file was encountered. If
I0OSTAT=ios is specified, a negative integer value is assigned to

ios when an end of file is detected. Then execution continues with

the statement specified with END, if present, or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, object program execution is terminated when the end of
the file is encountered.

VS FORTRAN Statements 161

READ (NAMELIST)

f -IBM EXTENSION

READ Statement with NAMELIST

162

This statement transfers data from an external I/0 device into
storage. The type of the items specified in the NAMELIST
determines the conversions to be performed. The data resides on
an external file that is connected for sequential access to a
unit (see "OPEN Statement" on page 134).

syntax
READ (un, name [, ERR=stn]l [, END=stn] [, IOSTAT=josl])

o
=3

is required. un is an unsigned integer expression of
length 4. It is the reference to an 170 unit.

3
]
3
[

is a NAMELIST name. This name must appear as the second
parameter in the list and must be the same as the name in a
NAMELIST statement that precedes the READ statement (see
"NAMELIST Statement"™ on page 132).

ERR=stn
stn is the number of a statement in the same program unit
as the READ statement. Transfer is made to stn if an error
is detected.

END=stn
is the number of an executable statement in the program
unit containing the READ statement. Transfer is made to
stn when the end of the external file is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
is detected. VSAM return and reason codes are placed in
ios.

valid READ statements:

READ (un,name)

READ (IN+IN+3, NAMEIN, IOSTAT=IO0S)
Invalid READ statements:

READ (pame,un) un must appear before name.
READ (un,name) list list must not be specified.

If this READ statement is encountered, the unit specified by un
must exist and it must be connected to a file for sequential
access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file
is not preconnected, an error is detected.

The NAMELIST I/0 statements associate the name given to the data
in the FORTRAN program with the data itself. There is no format
identifier but the data is converted according to the type of
data in the FORTRAN program. The data on the external file must
be in a specific format. See "NAMELIST Input Data"™ on page 132.

The READ statement specifies the list of data to be transferred

by referring to a NAMELIST statement. This form of data
transmission is useful for debugging purposes.

VS FORTRAN Language Reference

READ (NAMELIST)

BACKSPACE and REWIND should not be used with NAMELIST 1/0. If
they are, the results are unpredictable (see "BACKSPACE
Statement™ on page 54 and "REWIND Statement™ on page 166).

DATA TRANSMISSION: A READ statement with NAMELIST starts data
transmission from the beginning of the NAMELIST with name name
on the external file. The names associated with the NAMELIST
name name in the NAMELIST statement are matched with the names
of the NAMELIST name on the external file. When a match is
found, the value associated with the name on the external file
is converted to the type of the name and transferred into
storage. If a match is not found, an error is detected.

DATA AND NAMELIST: The NAMELIST name name must appear on the
external file. The variable names or array names associated
with the NAMELIST name name in the NAMELIST statement must
appear on the external file. They are read in the order they are
specified in the NAMELIST statement, but they can appear in any
order on the external file (see "NAMELIST Input Data" on page
132 for the format of the input data).

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during
transmission of data. If ERR is omitted, program execution is
terminated when an error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read before the end of the file was encountered. If END is
omitted, object program execution is terminated when the end of
the file is encountered.

- END OF IBM EXTENSION !

REAL TYPE STATEMENT

See "Explicit Type Statement™ on page 85.

VS FORTRAN Statements 163

RETURN
RETURN

RETURN

RETURN

166

STATEMENT

The RETURN statement returns control to a calling progranm.

; — IBM EXTENSION

In a main program, a RETURN statement performs the same function
as a STOP statement.

L END OF IBM EXTENSION

The RETURN statement can be used in either a function or a
subroutine subprogram.

statement in a Function Subprogram
Ffunction subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and
returns the computed function value and control to the calling
program. See also "FUNCTION Statement™ on page 1l1l1.

AT

N s

syntax
RETURN

Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities (that is, common blocks,
variagles, or arrays) within the subprogram become undefined
except:

. Entities specified in SAVE statements (sea "SAVE Statement"™
on page 168)

. Entities given an initial value in a DATA or explicit
specif;cation statement and whose initial values were not
change

. Entities in blank common

. Entities in named common that appear in the subprogram and
appear in at least one other program unit that is referring
either directly or indirectly to the subprogram

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A function subprogram must not be referred to twice during the
execution of an executable program without the execution of a
RETURy7s§atement in that subprogram. (Sea also "END Statement™ on
page .

Statement in a Subroutine Subprogram

Subroutine subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and
returns control to the calling program. See also "SUBROUTINE
Statement"” on page 173.

syntax
RETURN [m]

VS FORTRAN Language Reference

RETURN

is an integer expression. m must be within the range of the
argument list. If it is not or if it is less than or equal to
zero, the RETURN is executed, as if there were nom
specified.

The normal sequence of execution following the RETURN statement
of a subroutine subprogram is to the next statement following the
CALL statement in the calling program. It is also possible to
return to any numbered statement in the calling program by using a
return of the type RETURN m.

Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities within the subprogram become
undefined except:

. Entities specified in SAVE statements. (See "SAVE Statement”
on page 168.)

. Entities given an initial value in a DATA or explicit
specification statement and where initial values were not

changed.
L Entities in blank common.
. Entities in named common that appear in the subprogram and

appear in at least one other program unit that is referring
either directly or indirectly to the subprogram.

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A subprogram must not be referred to twice during the execution of
an executable program without the execution of a RETURN statement
in that subprogram.

A CALL statement that is used with a RETURN m form may be best
understood by comparing it to a CALL and computed GO TO statement
in sequence. For example, the following CALL statement:

CALL SUB (P,%20,Q,%35,R,%22)
is equivalent to:

CALL SUB (P,Q,R,I)
GO T0 (20,35,22),1

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

VS FORTRAN Statements 165

REUIND
REWIND STATEMENT

The REWIND statement positions an external file at the beginning
of the first record of the file. The external file must be
connected with sequential access to a unit. (See "OPEN Statement™
on page 134.)

syntax
REWIND un
REWIND ¢ [UNIT=lun [, ERR=err] [, IOSTAT=ios])

UNIT=un
is the reference to the number of an I/0 unit. un can
optionally be preceded by UNIT= if the second form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
4, if necessary) must be zero or positive; otherwise, an
error is detected.

ERR=erp
is optional. err is a statement number. If an error occurs in
the execution of the REWIND statement, control is
transferred to the statement labeled grr. That statement
must be executable and must be in the same program unit as
the REWIND statement. If ERR=err is omitted, execution halts
when an error is detected.

I0STAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in jios.

If UNIT= is specified, all the parameters can appear in any order;
otherwise un must appear first.

If the unit specified by un is connected, it must be connected for
sequential access. If it is not connected to a file, it is assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is
not preconnected, an error is detected.

The external file connected to the unit specified by un may or may
not exist when the statement is executed. If the external file
does not exist, the REWIND statement has no effect. If the
external file does exist, an end-of-file is created, if
necessary, and the file is positioned at the beginning of the
first record.

The REWIND statement causes a subsequent READ or WRITE statement
referring to un to read data from or write data into the first
record of the external file associated with un.

T ' IBM EXTENSION .

The REWIND statement may be used with asynchronous READ and
WRITE statements provided that any input/output operation on
the file has been completed by the execution of a WAIT
statement. A WAIT statement is not required to complete the
REWIND operation.

L END OF IBM EXTENSION : !

Transfer is made to the statement specified by the ERR parameter
if an error is detected. If the I0STAT=ios is specified, a -
positive integer value is assigned to ios when an error is
detected. Then execution continues with the statement specified
with the ERR parameter, if present, or with the next statement if
ERR is not specified. If the ERR parameter and the I0STAT

166 VS FORTRAN Language Reference

G

<0

.f“g:;

REWIND

parameter are both omitted, program execution is terminated when

an error is detected.
valid REWIND Statements:
REWIND (5)
REWIND (3%IN-2,ERR=99999)
REWIND (UNIT=2%IN+2)
REWIND (IOSTAT=IO0S,ERR=99999,UNIT=2%IN-10)

VS FORTRAN Statements

167

SAVE

SAVE STATEMENT

168

The SAVE statement retains the definition status of the name of a
named common block, variable, or array after the execution of a
RETURN or END statement in a subprogram.

Because VS FORTRAN saves these names without user action, the SAVE
statement serves only as a documentation aid.

syntax
SAVE [namel [, pame2 1 ... 1

name

is 3 named comman hlock nama nreceded and followed
n

slash, a variable name, or an array name. Redundant
appearances of an item are not permitted.

hv a
by a

Dummy argument names, procedure names, and names of entities in a
common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained
the names of all allowable items in that program unit.

The appearance of a named common block in a SAVE statement has the
effect of specifying all entities in that named common block.

The execution of a RETURN statement or an END statement within a
subprogram causes all entities within the subprogram to become
undefined except for the follouwing:

. Entities specified by SAVE statements.
U Entities in blank common.

. Initially defined entities that have neither been redefined
nor become undefined.

. Entities in named common blocks that appear in the subprogram
and appear in at least one other program unit that is
referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by
exggution of a RETURN or END statement in another program
unit.

Within a function or subroutine subprogram, an entity (that is, a
common block, variable, or array) specified by a SAVE statement
does not become undefined as a result of the execution of a RETURN
or END statement in the subprogram.

If a local entity that is specified by a SAVE statement and is not
in a common block is in a defined state at the time a RETURN or END
statement is executed in a subprogram, that entity is defined with
the same value at the next reference of that subprogram. An entity
in a common block never becomes undefined as a result of the
execution of a RETURN or END statement in a program unit that does
not reference that common block. The entities in a named common
block may become undefined or redefined by some other program
unit.

VS FORTRAN Language Reference

Statement Function

STATEMENT FUNCTION STATEMENT

A statement function definition specifies operations to be
performed whenever that statement function name appears as a
function reference in another statement in the same program unit.

syntax
name ([argl [, argq2 1 ... 1

"
13

name
is the statement function name (see "Names" on page 8).

arg
is a statement function dummy argument. It must be a distinct
variable, that is, it may appear only once within the list of
arguments. Parentheses must be specified even if no dummy
argument is specified.

3

is any arithmetic, logical, or character expression. Any
statement function appearing in this expression must have
been defined previously. In a function or subroutine
subprogram, this expression can contain dummy arguments that
appear in the FUNCTION, SUBROUTINE, or ENTRY statements of
the same program unit. (See "VS5 FORTRAN Expressions" on page
25 for evaluation and restrictions of this expression.)

All statement function definitions to be used in a program must
follow the specification statements and precede the first
executable statement of the program.

The length of a character statement function must be an expression
containing only integer constants or names of integer constants.

The expression to the right of the equal sign defines the
operations to be performed when a reference to this function
appears in a statement elsewhere in the program unit. The
expression defining the function must not contain (directly or
indirectly) a reference to the function it is defining or a
reference to any of the entry point names (PROGRAM, FUNCTION,
SUBROUTINE, ENTRY) of the program unit where it is defined.

If the expression is an arithmetic expression, its tvpe may be
different from the type of the name of the function. Conversions
are made as described for the assignment statement.

The dummy arguments enclosed in parentheses following the
function name are dummy variables for which the arguments given in
the function reference are substituted when the function
reference is encountered. The same dummy arguments may be used in
more than one statement function definition, and may be used as
variables of the same type outside the statement function
definitions, including dummy arguments of subprograms. The length
specification of a dummy argument of type character must be an
arithmetic expression containing only integer constants or names
of integer constants.

An actual argument in a statement function reference may be any
expression of the same type as the correspending dummy argument.
It cannot be a character expression involving concatenation of
one or more operands whose length specification is an asterisk.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argunment are associated with the dummy argument.

VS FORTRAN Statements 169

statement Function

The name of a statement function must not appear in an EXTERNAL
statement and must not be used as an actual argument. @”m
¥

For example, The statement:

FUNC(A,B) = 3.%A+BX%%2.+X+Y+2

defines the statement function FUNC, where FUNC is the function
name and A and B are the dummy arguments. The expression to the
right of the equal sign defines the operations to be performed

when the function reference appears in an arithmetic statement.

The function reference might appear in a statement as follows:

C = FUNC(D,E)

This is equivalent to:

Notice the correspondence between the dummy arguments A and B in
the function definition and the actual arguments D and E in the

function reference.

valid statement Function Definitions and References:

Definition

SUM(A,B,C,D) = A+B+C+D

FUNC(Z) = A+X%Y*Z

VALID(A,B) = .NOT. A .OR. B

Reference

NET = GROS-SUM(TAX,COVER,HOSP,
STOC)

ANS FUNC(RESULT)
VAL TEST .OR. VALID(D,E)
BIGSUM = SUM(A,B,SUM(C,D,E,F),G(I))

3\
i

Invalid statement Function Definitions: N

SUBPRG(3,J,K)=3%T+J%x3
SOMEF(ACI),B)=A(I)/B+3.

SUBPROGRAM(A,B)=AX%2+Bx¥2

JFUNC(D)=3.14%E

BAD(A,B)=A+B+BAD(C,D)

NOGOOD(CA, A)=AX%A

Arguments must be variables.

Arguments must not be array
elements.

Function name exceeds limit
of six characters.

Function name must begin with
an alphabetic character.

Recursive definition not
permitted.

Arguments are not distinct
variable names.

Invalid statement Function References:

(The functions are defined as above.)

WRONG = SUM(TAX,COVER)

MIX = FUNC(I)

170 VS FORTRAN Language Reference

Number of arguments does not
agree with above definition.

Type of argument does not agree
with above definition.

statement Numbers
STATEMENT NUMBERS

’:31 Statement numbers identify statements in a VS FORTRAN program.

y Any statement can have a number. A statement can be written in

o either fixed form or free form. See "Source Language Statements”
on page 5.

Fixed Form Statement Numbers
Fixed form statement numbers have the following attributes:

. They contain one to five decimal digits (not zero) and are on
a noncontinued line.

. Blanks and leading zeros are ignored.
. They are in columns 1 through 5.

. IBM EXTENSION —

Free Form Statement Numbers
Free form statement numbers have the following attributes:

L They must be the first nonblank characters (digits) on an
initial line.

. Blanks and leading zeros are ignored.

. No blanks are needed between the statement number and the
first nonblank character following.

(i? END OF IBM EXTENSION .

See "ASSIGN Statement"™ on page 46 for information on assignment of
statement numbers.

VS FORTRAN Statements 171

STOP
STOP STATEMENT

The STOP statement terminates the execution of the object program
and may display a message.

syntax

STOP [nl
STOP ['message'l

1] .
a string of 1 through 5 decimal digits.

'messaqa’
a character cons t enc
alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

nandan +an
an
r

. s s
nclosed in apostrorhes and containing

If either n or "message' is specified, STOP displays the requested

information. For further information, see VS FORTRAN Application
Programming: Guide.

172 VS FORTRAN Language Reference

C

'~

(e

SUBROUTINE STATEMENT

SUBROUTINE

The SUBROUTINE statement identifies a subroutine subprogram.

syntax
SUBROUTINE name [¢ [argll [,arg2] ... 1) 1

is the subroutine name (see "Names"™ on page 8).

¥

is a distinct dummy argument (that is, it may appear only
once within the statement). There need not be any arguments,
in which case the parentheses may be omitted. Each argument
used must be a variable or array name, the dummy name of
another subroutine or function subprogram, or an asterisk,
where the character ¥ denotes a return point specified by a
statement number in the calling program.

Because the subroutine is a separate program unit, there is no
conflict if the variable names and statement numbers within it are
the same as those in other program units.

The SUBROUTINE statement must be the first statement in the
subprogram. The subroutine subprogram may contain any FORTRAN
statement except a FUNCTION statement, another SUBROUTINE
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a subroutine subprogram, it must
follow the SUBROUTINE statement and may only be preceded by
a:o:her iMPLICIT statement, a PARAMETER, FORMAT, or ENTRY
statement.

The subroutine name must not appear in any other statement in the
subroutine subprogram. It must not be the same as any name in the
program unit or as the PROGRAM name, a subroutine name, or a
common block name in any other program unit of the executable
program. The subroutine subprogram may use one or more of its
arguments to return values to the calling program. An argument so
used will appear on the left side of an arithmetic, logical, or
character assignment statement, in the list of a READ statement
within the subprogram, or as an argument in a CALL statement or
function reference that is assigned a value by the subroutine or
function referred to.

The dummy arguments (argl, arg?, arg3,..., argn) may be
considered dummy names that are replaced at the time of execution
by the actual arguments supplied in the CALL statement.

If a subroutine dummy argument is used as an adjustable array
name, the array name and all the variables in the array
declarators (except those in common) must be in the dummy argument
list. See "Size and Type Declaration of an Array" on page 22.

The subroutine subprogram can be a set of commonly used
computations, but it need not return any results to the calling
program. For information about using RETURN and END statements in
a subroutine subprogram, see YEND Statement™ on page 77 and
"RETURN Statement™ on page 164%.

Actual Arguments in a Subroutine Subprogram

The actual arguments in a subroutine reference must agree in
order, number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The use of a
subroutine name or an alternate return specifier as an actual
argument is an exception to the rule requiring agreement of type.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual

VS FORTRAN Statements 173

SUBROUTINE

Dummy Arguments in a

argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the Qi1~
length of an associated dummy argument, the leftmost characters 3

of the actual argument are associated with the dummy argument.

-3

An actual argument in a subroutine reference must be one of the
following:

U An expression, except for a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses (unless the operand is the name of a
constant)

. An array name

] An intrinsic function name
L An external procedure name
. A dummy procedure name

. An alternate return specifier (statement number preceded by
an asterisk)

An actual argument in a subroutine reference may be a dummy
argument name that appears in a dummy argument list within the
subprogram containing the reference. An asterisk dummy argument
cannot be used as an actual argument in a subprogram reference.

subroutine Subprogaram

The dummy arguments of a subprogram appear after the subroutine

name and are enclosed in parentheses. They are replaced at the

time of execution of the CALL statement by the actual arguments _
supplied in the CALL statement in the calling program. N

Dummy arguments must follow certain rules:

. None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement except as common block names.

. A dummy argument name must not be the same as the entry point
name appearing in a PROGRAM, FUNCTION, SUBROUTINE, ENTRY, or
statement function definition in the same program unit.

. The dummy arguments must correspond in number, order, and
type to the actual arguments.

. If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array
element, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the subprogram.

. A referenced subprogram cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

. The subprogram reserves no storage for the dummy argument,
using the corresponding actual argument in the calling
program for its calculations. Thus the value of the actual
argument changes as soon as the dummy argument changes.

174 VS FORTRAN Language Reference

C

TRACE OFF STATEMENT

TRACE ON STATEMENT

UNCONDITIONAL GO TO

TRACE OFF and TRACE ON

IBM EXTENSION -

The TRACE OFF statemeht stops the display of program flow by
statement number.

syntax
TRACE OFF

TRACE OFF may appear anywhere within a debug packet. After a
TRACE ON statement, tracing continues until a TRACE OFF
statement is encountered.

The TRACE ON statement initiates the display of program flow by
statement number.

syntax
TRACE ON

TRACE ON is executed only when the TRACE option appears in a
DEBUG packet. (See "DEBUG Statement™ on page 68.) Tracing
continues until a TRACE OFF statement is encountered. TRACE ON
stays in effect through any level of subprogram CALL or RETURN
statement. However, if a TRACE ON statement is in effect and
control is given to a program in which the TRACE option is not
:pecigied. the statement numbers in that program are not
raced.

Each time a statement with an external statement number is
executed, a record of the statement number is made on the debug
output file.

For a given debug packet, the TRACE ON statement takes effect
immediately before the execution of the statement specified in
the AT statement.

END OF IBM EXTENSION !

Sea "GO0 TO Statements™ on page 115.

VS FORTRAN Statements 175

WAIT

. ' IBM EXTENSION - ,

WAIT STATEMENT 4y

The WAIT statement completes the data transmission begun by the
corresponding asynchronous READ or WRITE statement.

syntax
WAIT ¢ [UNIT=lun, plist) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. It
is the reference to an I/0 unit. un is an unsigned integer
expression of length 4.

plist
is a parameter list that contains (in any order) one or
more of the following forms:

Ip=id
where id is an integer constant or integer
expression of length 4. This parameter is required.

If the WAIT is completing an asynchronous READ, the
expression id is subject to the following rules:

. No array element in the receiving area of the
read may appear in the expression. This also
includes indirect references to such elements;
that is, reference to or redefinition of any
variable or array element associated by COMMON or
EQUIVALENCE statement, or argument association N
with an array element in the receiving area. <QJJ

. If a function reference appears in the subscript
expression of el or @2, the function may not be
referred to in the expression id. Also, no
functions or subroutines may be referred to by
the expression that directly or indirectly refers
to the subscript function, or to which the
subscript function directly or indirectly refers.

COND=i1l
where il is an integer variable name of length 4. This
parameter is optional.

If COND=jl is specified, the variable il is assigned
a value of 1 if the input or ocutput operation was
completed successfully; 2 if an error condition was
encountered; and 3 if an end-of-file condition was
encountered while reading. In case of an error or
end-of-file condition, the data in the receiving area
may be meaningless.

NUM=i2
where i2 is an integer variable name of length 4. This
parameter is optional.

If NUM=j2 is specified, the variable i2 is assigned a
value representing the number of bytes of data
transmitted to the elements specified by the list. If
the list requires more data from the record than the
record contains, this parameter must be specified. If
the WAIT is completing an asynchronous WRITE, i2
remains unaltered.

list , afx
is optional. It is an asynchronous 170 list as specified
for the asynchronous READ and WRITE statements.

176 VS FORTRAN Language Referénce

j'

HAIT

Ifalist is included, it must specify the same receiving or
transmitting area as the corresponding asynchronous READ

or WRITE statement. It must not be specified if the
asynchronous READ did not specify a list.

WAIT redefines a receiving area and makes it available for
reference, or makes a transmitting area available for
redefinition.

The corresponding asynchronous READ or WRITE, which need not
appear in the same program unit as the WAIT, is the statement
that:

. Was not completed by the execution of another WAIT

. Refers to the same file as the WAIT

. Contains the same value for id in the ID=id form as did the
asynchronous READ or WRITE when it was executed

The correspondence between WAIT and an asynchronous READ or
WRITE holds for a particular execution of the statements.
Different executions may establish different correspondences.
When the WAIT is completing an asynchronous READ, the
subscripts in the list may not refer to array elements in the
receiving area. If a function reference is used in a subscript,
the function reference may not perform I/0 on any file.
valid KAIT statements:

WAIT (8,ID=1) ARRAY(101)...ARRAY(500)

WAIT (9,ID=1,COND=ITEST)

WAIT (8,ID=1,NUM=N)

WAIT (9,1ID=2)

END OF IBM EXTENSION !

VS FORTRAN Statements 177

WRITE

WRITE STATEMENTS

178

The WRITE statements transfer data from storage to an external
device or from one internal file to another internal file.

FORMS OF THE WRITE STATEMENT:

T IBM EXTENSION
1. WRITE Statement—Asynchronous
L END OF IBM EXTENSION

2. WRITE Statement—Formatted with Direct Access

3. WRITE Statement—Formatted with Sequential Access
4. WRITE Statement—Unformatted with Direct Access

5. MWRITE Statement—Unformatted with Sequential Access
6. WRITE Statement with Internal Files

7. MWRITE Statement with List-Directed I/0

I IBM EXTENSION
8. MWRITE Statement with NAMELIST

L - END OF IBM EXTENSION

VS FORTRAN Language Reference

WRITE (Asynchronous)
I IBM EXTENSION —

(:D” WRITE Statement—Asynchronous

The asynchronous WRITE statement transmits data from an array
in main storage to an external file.

syntax
WRITE ¢ [UNIT=}un, ID=id) list

UNIT=un
- un is required. It can optionally be preceded by UNIT=. un
is an unsigned integer expression of length ¢. It is the
reference to an I/0 unit.
ID=id
id is an integer constant or integer expression of length
4. It is the identifier for the WRITE statement.

list
is an asynchronous 170 list that may have any of four
forms:
e
el...e2
el...
vce.02
where:
e
(:D is the name of an array.
el and e2

are the names of elements in the same array. The
ellipsis (...) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by un must be connected to a file that
resides on a sequential or direct access device. The array or
array elements specified by e (or el and g2) constitute the
transmitting area for the data to be written. The extent of the
transmitting area is determined as follous:

° If ¢ is specified, the entire array is the transmitting
area.

. If el...e2 is specified, the transmitting area begins at
array element el and includes every element up to and
including e2. The subscript value of el must not exceed that
of e2.

U Ifel... is specified, the transmitting area begins at
element el and includes every element up to and including
the last element of the array.

. If ...e2 is specified, the transmitting area begins at the
first element of the array and includes every element up to
and including e2.

U If a function reference is used in a subscript of the list,
the function reference may not perform I/0 on any file.

Execution of an asynchronous WRITE statement initiates writing

of the next record on the specified file. The size of the record

is equal to the size of the transmitting area. All the data in
ﬂ) the area is written.

VS. FORTRAN Statements 179

WRITE (Asynchronous)

Given an array with elements of length len, the number of bytes
transmitted will be len times the number of elements in the
array. Elements are transmitted sequentially from the smallest
subscript element to the highest. If the array is
multi-dimensional, the leftmost subscript quantity increases
most rapidly, and the rightmost least rapidly.

Because the asynchronous WRITE statement can only refer to
files with sequential access, REC may not be specified even
though the file may be resident on a direct-access device.

There is no FORMAT statement associated with the output data and

no conversion takes place.

Any number of program statements may be executed between an

. asynchronous WRITE and its corresponding WAIT, subject to the

following rules:

s No such statement may in any Way assign a new valus to any
array element in the transmitting field. This and the
following rules apply also to indirect references to such

array elements; that is, assigning a new value to a variable

or array elements associated by COMMON or EQUIVALENCE
statements, or argument association with an array element
in the transmitting area.

. No executable statement may appear that redafines or
undefines a variable or array element appearing in the
subscript of el or e2.

. If a function reference appears in the subscript expression
of el or 22, the function may not be referred to by any
statements executed between the asynchronous WRITE and the
corresponding WAIT. Also, no subroutines or function may be
referred to that directly or indirectly refer to the .
subscript function, or to which the subscript function
directly or indirectly refers.

. No function or subroutine may be executed that performs
input or output on the file being manipulated.

valid WRITE Statement:
WRITE (ID=10, UNIT=2%IN+2) . . . EXPECT(9)

END OF IBM EXTENSION

1890 VS FORTRAN Language Reference

C

WRITE (Formatted, Direct Access)

WRITE Statement—Formatted with Direct Access

This statement transfers data from internal storage onto an .
external device. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed
during the transfer. The data must be sent to an external file
that is connected with direct access to a unit (see "OPEN
Statement"” on page 134).

syntax

WRITE C [UNIT=Jun, [FMT=1fmt, REC=rec [,ERR=stn]
[, IOSTAT=jos 1) [list]

UNIT=un
un is required. It can optionally be preceded by UNIT=.

an unsigned integer expression of length 4. It is the
reference to an 170 unit.

5
4
)

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

FMT=fmt

fmt is a required format identifier. It can optionally be
preceded by FMT=. -

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

T IBM EXTENSION 1

> >

An array name

END OF IBM EXTENSION !

The statement number must be the statement number of a FORMAT
statement in the same program unit as the WRITE statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the WRITE
statement.

The character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophe in a constant
enclosed in apostrophes is be represented by two consecutive
apostrophes.

The character array element must contain character data
whose leftmost character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes

VS FORTRAN Statements 181

WRITE (Formatted, Direct Access)

182

parentheses. Blank characters may precede the left M
parenthesis and character data may follow the right

parenthesis. The length of the format specification must not

exceed the length of the character array element.

described in the FORMAT statement can be used between the ﬂi;
|

The character array name must contain character data whose
laftmost characters constitute a valid format specification.
The length of the format specification may exceed the length
of the first element of the array; it is considered the
concatenation of all the elements of tha array in the order
given by array element ordering.

IBM EXTENSION |

The array name may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

END OF IBM EXTENSION 4

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format specification.
The operands of the expression must have length
specifications that contain only integer constants or names
of integer constants.

REC=rec

rec is an integer expression. It represents the relative
position of a record within the file associated with un. Its
value after conversion to integer, if necessary, must be

greater than zero. The internal record number of the first N
record is 1. The INQUIRE statement can be used to determine g
the record number. oL

If list is omitted, a blank record is transmitted to the
output device unless the FORMAT statement referred to
contains, as its first specification, a character constant
or slashes. In this case the record (or records) indicated by
these spacifications are transmitted to the output device.

ERR=stn

stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ions

list

ios is an integer variable or an integer array element. Its B
value is positive if an error is detected; negative if an end

of file is encountered; and zero if no error condition is

detected. VSAM return and reason codes are placed in jos.

is an I70 list and can contain variable names, array element
names, character substring names, array.names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 74%.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

VS FORTRAN Language Reference

WRITE (Formatted, Direct Access)
Valid WRITE Statements:

WRITE Cun,fmt,REC=rec) list

WRITE Cun,FMT=fmt,REC=rec) list
WRITE (FMT=fmt,REC=rec,UNIT=un) list
WRITE (REC=1, UNIT=11, FMT='(I9)')
WRITE (0,"(A8)', REC=3)

Invalid WRITE Statements:
WRITE (fmt,un) list un must appear before fmt.

REC= is required for direct access.

WRITE (FMT=fmt,_un) list un must appear first because UNIT=
is not included. REC= is required
for direct access.

WRITE (fmt, UNIT=un) list FMT must be used because UNIT=
is included. REC= is required
for direct access.

WRITE FMT=fmt, list FMT must not be specified.
REC= is required for direct access.

If this WRITE statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record specified by REC=rec.
The format codes in the format specification fmt are taken one by
one and associated with every item of the list in the order they
are specified. The data is taken from the item of the list,
converted according to the corresponding format code, and the
number of character data specified by the format code is
transmitted onto the record of the external file. Data
transmission stops when data has been taken from every item of the
list or when the end of the record specified by rec is reached.

If the list is not specified and the format specification starts
withan I, E, F, D, G, or L, or is empty (that is, FORMAT(C)), the
record is filled with blank characters and the relative record
number rec is increased by one.

T IBM EXTENSION 1

This is also true when the format specification starts with a G,
Q, or Z format code.

L END OF IBM EXTENSION 4

DATA AND I/0 LIST: The length of every FORTRAN record is specified
in the RECL parameter of the OPEN statement. If the length of the
record rec is greater than the total amount of data specified by
the format codes used during transmission of data, an error is
detected, but as much data as can fit into the record is
transmitted. If the format specification indicates (for example,
slash format code) that data be transmitted to the next record,
then the relative record number rec is increased by one and data
transmission continues.

After successful eiecution of the WRITE statement, the value of
the NEXTREC variable specified in the INQUIRE statement is set to
the relative record number of the last record written,

VS FORTRAN Statements 183

WRITE (Formatted, Direct Access)

184

incremented by one. If an error is detected, the NEXTREC variable
contains the relative record number of the record being written.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=jos is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement, if ERR is not specified. If ERR and
I0OSTAT are both omitted, program execution is terminated when an

error is detected.

VS. FORTRAN Language Reference

)

O

WRITE (Formatted, Sequential Access)
WRITE Statement—Formatted with Sequential Access

,(:D This statement transfers data from internal storage onto an

{ / external 1/0 device. The user specifies in a FORMAT statement (or
in a reference to a FORMAT statement) the conversions to be
performed during the transfer. The data must be sent to an
external file that is connected with sequential access to a unit
(see "OPEN Statement™ on page 134).

syntax

WRITE ¢ [UNIT=lun, [FMT=1fmt [, ERR=stn) [, IOSTAT=ios])
[list]

- PRINT fmt [, listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression or an asterisk (¥). It is the
reference to an I/0 unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

In the form of the PRINT statement where un is not specified,
or in the form of a WRITE statement where un is an asterisk,
un is installation dependent.

FMT=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appear in any eorder.

The format identifier (fmt) can be:

A statement number

An integer variable

A character constant

A character array element
A character array name

A character expression

r IBM EXTENSION 1

An array name

L END OF IBM EXTENSION !

See "WRITE Statement—Formatted with Direct Access" on page
181 for explanations of these format identifiers.

ERR=stn

llnI
&
>

is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
jos is an integer variable or an integer array element. Its
m value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

VS FORTRAN Statements 185

WRITE (Formatted, Sequential Access)
list

is an I/0 list. It can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. In the PRINT statement, if the list =
is not present, the comma must be omitted. Seae "Implied DO in
an Input/Output Statement™ on page 74.

A function must not be referenced within an expression if such a

reference causes an input or output statement to be executed.

valid WRITE and PRINT Statements:

WRITE (un,fmt) list
WRITE Cun, FMT=fmt) list
WRITE (%,fmt) list

WRITE (UNIT=Sun, FMT=fmt)

4 ms’

FMT=

Isi

WRITE(IOSTAT=I0S,ERR=99999,FMT=%,UNIT=2%XIN+3)
WRITECIN+8,NAMEOT, IOSTAT=IACT(1),ERR=99999)

PRINT %, list

PRINT fmt, list

PRINT fmt

Invalid MRITE and PRINT Statements:

WRITE (fmt,un) un must appear first before fmt.

WRITE (FMT=fmt,un) list un must appear first because
UNIT= is not included. N

WRITE (fmt,UNIT=un) list’ FMT must be used because 7

UNIT= is included.

FMT must not be used with
PRINT.

PRINT FMT=fmt, list

If the unit specified by un is connected, it must ba connected for
sequential access. If it is not connected to a file, it is assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is
not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the

format specification fmt are taken one by one and associated with

every item of the list in the order they are specified. The data

- is taken from the item of the list, converted according to the
corresponding format code and the number of character data
specified by the format code is transmitted onto the record of the .

external file.

Data transmission stops when data has been taken

from every item of the list.

If the list is not specified and the format specrficatlon starts
with an I, E, F, D, G, or L, or is empty (that ls, FORMAT(C), a

blank record is written out.

186 VS FORTRAN Language Reference

WRITE (Formatted, Sequential Access)
r IBM EXTENSION .

This is also true when the format specification starts with a Q
or Z format code.

The WRITE statement can be used to write over an end of file and
extend the external file. An ENDFILE, BACKSPACE, CLOSE, or
REWIND statement will then reinstate the end of file.

L END OF IBM EXTENSION !

After execution of a sequential WRITE or PRINT, no record exists
in the file following the last record transferred by that
statement.

DATA AND 170 LIST: The amount of character data specified by all
the format codes used during the transmission of the data defines
the length of the FORTRAN record (also called a logical record). A
single WRITE statement may create several FORTRAN records. This
occurs when a slash format code is encountered in the format
specification or when the 170 list exceeds the format
specification which causes the FORMAT statement to be used in full
or part again. (See "FORMAT Statement"™ on page 90.)

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/0 device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0STAT=ios is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IQSTAT
ar: bith omitted, execution is terminated when an error is
detected.

VS FORTRAN Statements 187

WRITE (Unformatted, Direct Access)
WRITE Statement—Unformatted with Direct Access

138

The statement transfers data without conversion from internal Y
storage onto an external I/0 device. The data must be sent to an]
external file that is connected with direct access to a unit (saee ’
YOPEN Statement™ on page 134).

[—— Syntax
WRITE ([UNIT=lun, REC=rec [, ERR=stnl] [, I0STAT=jiosl])

[listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length ¢. It is the
reference to an 170 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order. .

REC=rec
rec is a relative record number. It is an integer expression
that must be greater than zerg. It represents the relative
position of a record within the external file associated
with un. The relative record number of the first record is 1.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is ~
detected. I

IOSTAT=jos T
ios is an integer variable or an integer array element. Its .
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Qutput
Statement™ on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

valid WRITE statements: -
WRITE (un,REC=rec) list
WRITE (REC=rec,UNIT=un) list
WRITE (IOSTAT=IO0S, ERR=99999, REC=IN-3, UNIT=IN+6)
WRITE (IOSTAT=IACT(1), REC=2XIN-7, UNIT=2xIN+1) EXPECT(3)
WRITE (REC=1, UNIT=11) EXPECT(1)
Invalid WRITE Statements:
WRITE (REC=rec,un) list UNIT must be used.
WRITE (un) list REC=rec must be specified.

file must be connected for direct access. If the unit is not

\\
If the unit specified by un is encountered, it must exist and the dif
connected to a file, it is assumed to have been preconnected e

VS FORTRAN Language Reference

WRITE (Unformatted, Direct Access)

through job control language and an implicit OPEN is performed to
3 default file name. If the file is not preconnected, an error is
etected.

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the record specified by rec. The data is
taken from the items of the list in the order in which they are
specified and transmitted onto the record rec of the external
file. Data transmission stops when data has been transferred from
every item of the list.

DATA AND I/0 LIST: The length of every FORTRAN record is specified
in the RECL parameter of the OPEN statement. If the length of the
record rec is greater than the total amount of data transmitted
from the items of the list, the remainder of the record is filled
with zeros. If the length of the record rec is smaller than the
total amount of data transmitted from the items of the list, as
much data as can fit in the record is written, the internal record
number is increased by one. The INQUIRE statement can be used to
determine the record number.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0OSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
gre botZ omitted, execution is terminated when an error is
etected.

VS FORTRAN Statements 189

WRITE (Unformatted, Sequential Access)

HRITE statement—Unformatted with Sequential Access

190

This statement transfers data without conversion from internal
storage onto an external I/0 device. The data must be sent to an
external file that is connected with sequential access to a unit
(see "OPEN Statement"™ on page 134).

syntax
WRITE ¢ [UNIT=Jun [, ERR=stnl [, IOSTAT=jiosl]) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an I/0 unit.
If UNIT= is not included, un must appear Tirst in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is
detected.

I0STAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

list
is an I70 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement™” on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

valid WRITE Statements:
WRITE (un) list
WRITE (UNIT=un) list
WRITE(5) EXPECT(4)
Invalid WRITE Statement:

WRITE un,list un must be in parentheses.

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the beginning of a record. The data is taken
from the items of the list in the order in which they are
specified and transmitted onto the record of the external file.
Data transmission stops when data has been transferred from every
item of the list.

After execution of a sequential WRITE statement, no record exists
in the flle following the last record transferred by that
statement.

VS FORTRAN Language Reference

W\Y
{)

WRITE (Unformatted, Sequential Access)
r IBM EXTENSION 1

The WRITE statement writes over an end of file and extends the
external file. An END FILE, BACKSPACE, CLOSE, or REWIND
statement will then reinstate the end of file.

L END OF IBM EXTENSION !

DATA AND 1/0 LIST: The amount of character data specified by the
items of the list defines the length of the FORTRAN record (also
called a logical record). A single WRITE statement creates only
one FORTRAN record.

The VS _FORTRAN ication Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external 1/0 device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0STAT=ios is specified, a positive integer value is
assigned to jos when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
3re b%th omitted, execution is terminated when an error is
etected.

VS FORTRAN Statements 191

WRITE (Internal)

HRITE statement with Internal Files

This statement transfers data from one or more areas in internal
storage to another area in internal storage. The user specifies in
a FORMAT statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The receiving
area in internal storage is called an internal file.

syntax -
WRITE ¢ [UNIT=lun, [FMT=1fmt [, ERR=stn] [, IOSTAT=ios])
[list]

UNIT=un
un is the reference to an area of storage called an 1nterna1

file. It can cptionally be precaded by UNIT=, It can be the

name of a character variable, charqcter array, character
array element, or character substring.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference must appear first.

FMT=fnmt
;s the format specification. It may optionally be preceded
y FMT=.

If FMT= is not included, the format specification must
appear second.

If both UNIT= and FMT= are included, all parameters, except
list, may appear in any order.

The format specification can be:

A statement number

An integer variable

A character constant

A character array element
A character expression

T IBM EXTENSION 1

An array name

L END OF IBM EXTENSION .

See "WRITE Statement—Formatted with Direct Access" on page
181 for explanations of these format specifications.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in jios.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement” on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

192 VS FORTRAN Language Reference

A

7N

WRITE (Internal)

Neither the format specification (fmt) nor an item in the list
(list) can be:

. Contained in the area represented by un

. Associated with any part of un through EQUIVALENCE, COMMON,
or argument passing

valid WRITE Statements:
WRITE (un,fmt) list
WRITE (un,FMT=fmt) list
WRITE (FMT=fmt,UNIT=un) list
WRITE (IOSTAT=I0S, ERR=99999, FMT='(A9)', UNIT=CHAR(1:5)) '1 2 3°'
WRITE (CHAR(1:5), '(A9)', IOSTAT=IACT(1l)) '4¢ 5 6°'
Invalid URITE Statements:

WRITE (fmt,un) list un must appear first before fmt.

WRITE (FMT=fmt,un) list un must appear first because
UNIT= is not included.

WRITE (fmt,UNIT=un) list FMT must be used because UNIT=

is included.

DATA TRANSMISSION: A WRITE statement starts data transmission at
the beginning of the area specified by un. The format codes in the
format specification fmt are taken one by one and associated with
every item of the list in the order they are specified. Data is
taken from the item of the list, converted according to the format
code, and the number of character data specified by the format
code is moved into the storage area un. Data transmission stops
when data has been moved from every item of the list.

If un is a character variable, a character array element, or a
character substring name, it is treated as one record only in
relation to the format specification.

If un is a character array name, each array element is treated as
one record in relation to the format specification.

DATA AND I1/0 LIST: The length of a record is the length of the
character variable, character substring name, or character array
element specified by un when the WRITE statement is executed.

If the length of the record is greater than the amount of data
specified by the items of the list and the associated format
specification, the remainder of the record is filled with blank
characters.

If the length of the record is less than the amount of data
specified by the items of the list and the associated format
specification, as much data as can fit in the record is
transmitted and an error is detected.

The format specification may indicate (for example, slash format
code) that data be moved to the next record of storage area un. If
un specifies a character variable, a character array element, or a
character substring name, an error is detected. If un specifies a
character array name, data is moved into the next array element
unless the last array element has been reached. In this latter
case, an error is detected.

Transfer is made to- the statement specified by ERR if an error is

detected. No indication is given of which record or records could

not be written, only that an error occurred during transmission of
data. If I0STAT=jos is specified, a positive integer value is

VS FORTRAN Statements 193

WRITE (Internal)

assigned to ios when an error is detected. Then execution N
continues with the statement specified with ERR, if present, or W
with the next statement if ERR is not specified. If ERR and IOSTAT i
are both omitted, execution is terminated when an error is
detected.
N
Y

194 VS FORTRAN Language Referencea

C

WRITE (List-Directed)

URITE Statement with List-Directed /0

This statement transfers data from internal storage onto an
external 170 device. The data must be sent to an external file
that is connected with sequential access to a unit. (See "OPEN
Statement™ on page 134.) The type of the items specified in the
statement determines the conversion to be performed.

syntax

WRITE ¢ [UNIT=lun, [FMT=1% [, ERR=stnl] [, IOSTAT=jos))
[list]
PRINT % [, list)

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression or an asterisk (x). It is the
reference to an I/0 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

IdeNIT= is included, all the parameters may appear in any
order.

In the form of the PRINT statement where un is not specified
or in the form of a WRITE statement where un is an asterisk,
un is installation dependent.

FMT=% _
An asterisk (¥) specifies that a list-directed WRITE has to
be executed. It can optionally be preceded by FMT= if un is
specified.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, may appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTATZios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in jos.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement™ on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

VS FORTRAN Statements 195

WRITE (List-Directed)
valid KRITE Statements:

WRITE (un,%) list

WRITE (un,FMT=%) list

WRITE (FMT=%,UNIT=un) list

WRITE (5,%)

WRITE (FMT=%,UNIT=%) FIFTY5,ISEG)

WRITE (¥9?I¢IE§226T§§§;3????' FMT=%, UNIT=2XIN+3)

PRINT %, list

Invalid WRITE Statements:

WRITE (%,un) list un must appear beforae ¥,

WRITE (FMT=%,un) list un must appear first because
UNIT= is not included.

WRITE(%,UNIT=un) list

PRINT FMT=%, list

FMT must be used because
UNIT= is included.

FMT must not be used.

If the unit specified by un is encountered, it must be connected
to a file for sequential access. If the unit is not connected to a
file, it is assumed to have been preconnected through job control
language and an implicit OPEN is performed to a default file name.
If the file is not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE or PRINT statement with list-directed
I/0 accessing an external file starts data transmission at the
beginning of a record. The data is taken from each item in the

(N

i

list in the order they are specified and transmitted onto the
record of the external file. Data transmission stops when data has
been transferred from every item in the list.

After execution of a sequential WRITE or PRINT statement, no
record exists in the file following the last record transferred by

that statement.

The WRITE or PRINT statement can write over an end of file and
extend the external file. An ENDFILE, CLOSE, or REWIND statement

will reinstate the end of file.

An external file with sequential access written with
list-directed I/0 is suitable for printing, because a blank -
character is always inserted at the beginning of each record as a

carrier control character.

DATA AND I/0 LIST: The amount of character data specified by the

items in the list and the necessary data separators define the .
length of the FORTRAN record (also called a logical record). A

single WRITE or PRINT statement creates only one FORTRAN record.

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/0 device. In particular, a logical record
may span over many physical records. A character constant or a
complex constant can be split over the next physical record if
there is not enough space on the current physical record to

contain it all.

Character constants produced:

. Are not delimited by apostrophes

. Are not preceded or followed by a value separator

196 VS FORTRAN Language Referenceae

WRITE (List-Directed)

. Have each internal apostrophe represented externally by one
apostrophe

. Have a blank character inserted by the processor for carrier
control at the beginning of any record that begins with the
contiguation of a character constant from the preceding
recor

Transfer is made to the statement specified by ERR if an error
occurs. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0STAT=stn is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error occurs.

VS FORTRAN Statements 197

WRITE (NAMELIST)

I IBM EXTENSION

WRITE Statement with NAMELIST

This statement transfers data from internal storage onto an
external I/70 device. The type of the items specified in the
NAMELIST statement determines the conversions to be performed.

— sSyntax

@

£

WRITE (un, name [, ERR=stn) [, IOSTAT=iosl)

un
un is required. It is an unsigned integer expressicn of
length 4. It is the reference to an I/0 unit.

is a NAMELIST name. This name must appear as the second
parameter in the list and must be the same as the name in a
NAMELIST statement that precedes the WRITE statement (see
"NAMELIST Statement™ on page 132).

ERR=stn
stn is the number of a statement in the same program unit

as the WRITE statement. Transfer is made to stn if an error
is detected.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
is detected. VS5AM return and reason codes are placed in
ios.

valid WRITE Statements:

WRITE (un, name)

WRITE (IN+8, NAMEOUT, IOSTAT=IACT(1), ERR=99999)
Invalid WRITE Statements:

WRITE (name,un) un must appear before name.

WRITE (un,name) list list must not be specified.

If the unit specified by un is encountered, it must exist and
must be connected to a file for sequential access. If the unit
is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN
is performed to a default file name. If the file is not
preconnected, an error is detected.

A BACKSPACE or REWIND statement should not be used for a file
that is written using NAMELIST. If it is, the results are
unpredictable (see "BACKSPACE Statement" on page 54).

DATA TRANSMISSION: A WRITE statement with NAMELIST starts data
transmission from the beginning of a record. The data is taken
from each item in the NAMELIST with name in the order in which
they are specified and transmitted onto the record of the
external file. Data transmission stops when data has been
transferred from every item in the NAMELIST name.

After execution of a WRITE statement with NAMELIST, no record

exists in the file following the end of the NAMELIST just
transmitted.

198 VS FORTRAN Language Reference

(-»,, MRITE (NAMELIST)

e DATA AND NAMELIST: The NAMELIST name name must appear on the
external file.

The number of characters specified by the items in the NAMELIST
pame and the necessary data separators and identifiers are
placed on the external file.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be written, only that an error occurred during
transmission of data. If ERR is omitted, execution is
terminated when an error occurs.

END OF IBM EXTENSION 4

VS FORTRAN Statements 199

APPENDIX A. SOURCE LANGUAGE FLAGGER

The VS FORTRAN compiler can flag FORTRAN statements that do not
conform to the syntax of the Full or Subset ANS FORTRAN 1978
Standard. See the ANS manual for subset language flags.

ITEMS FLAGGED FOR FULL ANS LANGUAGE

. FREE option.

The FIPS option cannot be specified with free-form source. -
The FIPS flagging is ignored.

* LANGLVL(66) option

vie

The FIPS option cannot be specified for the 1966 ANS FORTRAN
language. The FIPS flagging is ignored.
GLOBAL ITEMS FLAGGED
. Columns 1 to 5 of a continuation card are not blank.
. The currency symbol ($) is used in a name.
. A name has a redundant, noncon%licting declaration.
. A noncharacter variable has an actual length specified.

L One of the following names is used as an intrinsic function
name:
ALGAMA, ARCOS, ARSIN, CCOS, CDABS, CDCOS, CDEXP, CDLOG, ?
CDSIN, CDSQRT, COTAN, CQABS, CQCOS, CQEXP, CQLOG, CQSIN, C
CQSQRT, DARCOS, DARSIN, DBLEQ, DCMPLX, DCONJG, DCOTAN, DERFC,
DERF, DFLOAT, DGAMMA, DIMAG, DLGAMA, DREAL, ERF, ERFC, GAMMA,
HFIX, IMAG, IQINT, LGAMMA, QABS, QARCOS, QARSIN, QATAN,
QATAN2, QCMPLX, QCONJG, QCOSH, QCO0S, QCOTAN, QDIM, QERFC,
QERF, QEXP, QEXTD, QEXT, QFLOAT, QIMAG, QINT, QLOG, QLOG10,
g?Aﬁl’SSMEgl' QMOD, QREAL, QSIGN, QSINH, QSIN, QSQRT, QTANH,

AN, GLQ.

. Explicit tvpe specification statements for REALX16; explicit
type specification statements for COMPLEX%16 and COMPLEXx%32.

. nH in other than a FORMAT statement.

STATEMENTS FLAGGED

. Invalid statement
— Asynchronous READ statement
= Asynchronous WRITE statement
= AT statement
— DEBUG statement
— DISPLAY statement
- EJECT statement
— INCLUDE statement _ M;D
= . NAMELIST statement '
~ READ statement with NAMELIST

200 VS FORTRAN Language Reference

- TRACE statement

= WAIT statement

-~ WRITE statement with NAMELIST
CALL statement

The ampersand (&) character is used in front of a statement
number.

DATA statement

The statement appears before the end of the specification
statements.

A, @, Z, or nH constant is used.

Character constants must correspond te character variables.
ENTRY statement

An argument is embedded between slashes.

EQUIVALENCE statement

One subscript is specified for a multidimensional array.
EXTERNAL statement

A name is preceded by an ampersand (&) character.

FORMAT statement

The @ or Z format codes are used.

FUNCTION statement

An argument is embedded between slashes.

A length is specified for a real, logical, integer, or complex
function.

IMPLICIT statement

A length is specified for a real, logical, integer, or complex
range.

The currency symbol ($) is used as an alphabetic character.
INTEGER, REAL, COMPLEX, LOGICAL type statements

Data initialization is specified.

OPEN statement

RECL is used with SEQUENTIAL.

PARAMETER statement

This statement is preceded by an executable statement, a DATA
statement, or a statement function definition.

SUBROUTINE statement

An argument is embedded between slashes.

Appendix A. Source Language Flagger 201

EXECUTION-TIME CAUTIONS

202

The following items are not flagged. However, they are items that
are open to misinterpretation and may cause confusion.

Array declarators in DIMENSION, INTEGER, REAL, COMPLEX, @:D§
DOUBLE PRECISION, CHARACTER, and COMMON statements.

The value of the lower dimension can exceed the value of the
upper dimension when it is an expression.

ASSIGN statement

A variable containing a statement number can be used as
containing an integer value with unpredictable results.

Assigned GOTO statement

The index variable may not contain a statement number which is
specified in the list of statement numbers.

Assignment statement

A character assignment can be made with unpredictable results
into a string which is also used on the right-hand side of the
equal sign.

COMMON statement

The same COMMON block can contain character variables
corresponding to noncharacter variables across subroutines.

The length of the same COMMON block may not ba the sama across
subroutines.

The same COMMON block may be initialized in morae than one
BLOCK DATA.

TN
DO statement }Wu%
The value of the m3 expression can be zero. ‘
Transfer into an inactive DO loop with unpredictable results.

ENDFILE statement

Multifiles can be written.

FUNCTION, SUBROUTINE, ENTRY statements

The subroutines must be available.

The subroutines can bae callaed recursively with unpredictable
results.

The number, type, and length of the actual and dummy arguments
may not match.

More than one subroutine may have the same name.

IMPLICIT statement

The same letter is redefined with different typa or length.
OPEN statement

The file is repositioned at the beginning.

READ statement on an internal file

Read records until the end of an array even if the file is one
record.

READ statement with FORMAT 4@;9

VS FORTRAN Language Reference

Data can ba read into the nH field of a FORMAT statement.
Subscript

Subscript value may be outside the dimension bounds.
WRITE statement without format on a DIRECT file.

Spanned records can be written.

Appendix A. Source Language Flagger 203

APPENDIX B. FORTRAN-SUPPLIED PROCEDURES

The procedures supplied by VS FORTRAN are called intrinsic
functions.

MATHEMATICAL AND CHARACTER FUNCTIONS

These routines provide intrinsic functions for mathematical and
character operations. When a VS FORTRAN program requests an
intrinsic function, the routine is handled as a called subroutine
during link-editing and is either:

] Inserted into the program (inline).
. Included in the load module.

The generic name can be used for a function; VS FORTRAN will
select the particular function named, depending upon the
precision of the data.

Alternatively, the name of the specific alternative entry point
can be used. A prefix to the generic name specifies the
alternative entry point and indicates the data type of the result,
as shown in Figure 21.

. prefix Result Data Type
A REAL (included only for compatibility)
D REAL %8
Q REAL %16
c COMPLEX %8
cD COMPLEX %16
cQ ‘ COMPLEX %32

Figure 21. Function Routine Prefix Meanings

VS FORTRAN includes mathematical and character subroutines in
several categoriaes:

1. Logarithmic and exponential routines
2. Trigonometric foutines

3. Hyperbolic Function routines

4. Miscellaneous Mathematical routines
5. Internal Data Conversion routines

6. Character Manipulation routines

204 VS FORTRAN Language Reference

LOGARITHMIC AND EXPONENTIAL ROUTINES

. [EXP—0Obtain an exponent.
f(:; glternative entry points: CDEXP, CEXP, CQEXP, DEXP, EXP,
Lo EXP.

. LOG—Obtain a natural logarithm.

Alternative entry points: ALOG, CDLOG, CLOG, CQLOG, DLOG,
L0G, QLOG.

- ° LOG10—O0Obtain a common logarithm.
Alternative entry points: ALOG10, DLOG10, LOG10, QLOG10.
. SQRT—0btain a square root.
Alternative entry points: CDSQRT, CQSQRT, CSQRT, DSQRT,
QSQRT, SQRT.
TRIGONOMETRIC ROUTINES
. AC0OS—Obtain an arccosine.
Alternative entry points: ACOS, ARCOS, DACOS, DARCOS, QARCOS.
. ASIN—Obtain an arcsine.
Alternative entry points: ARSIN, ASIN, DARSIN, DASIN, QARSIN.
. ATAN/ATAN2—Obtain an arctangent.

3k¥§;gative entry points: ATAN, ATAN2, DATAN, DATAN2, QATAN,

/(i:\ . C0S—0btain a cosine.

séggrnative entry'points= CcC0S, CDCOS, C€0S, CQCOS, DCOS,

. COTAN—Obtain a cotangent.
Alternative entry points: COTAN, DCOTAN, QCOTAN.
. SIN—Obtain a sine.

glﬁernative entry points: CDSIN, CQSIN, CSIN, DSIN, QSIN,
IN.

. TAN—Obtain a tangent.
Alternative entry points: DTAN, QTAN, TAN.

HYPERBOLIC FUNCTION ROUTINES
o COSH—Obtain a hyperbolic cosine.
Alternative entry points: COSH, DCOSH, QCOSH.
. SINH—Obtain a hyperbolic sine.
Alternative entry points: DSINH, GQSINH, SINH.
. TANH—Obtain a hyperbolic tangent.
Alternative entry points: DTANH, QTANH, TANH.

e

Appendix B. FORTRAN-Supplied Procedures 205

MISCELLANEOUS MATHEMATICAL ROUTINES

206

ABS—Obtain an absolute value.

Alternative entry points: ABS, CABS, CDABS, CQABS, DABS,
IABS, QABS.

AINT—Truncation of a real number.

Alternatfve entry points: AINT, DINT, QINT.
ANINT—Obtain nearest whole number.

Alternative entry points: ANINT, DNINT.
CONJG—Obtain conjugate of a complex argument.
Alternative entry points: CONJG, DCONJG, QCONJG.
DIM—O0btain a positive difference.

Alternative entry points: DIM, DDIM, IDIM, QDIM.
DPROD—0btain a double precision product.
ERF—Error function for normal curve.
Alternative Entry points: DERF, ERF, QERF.
ERFC—Error function complement for normal curve.
Alternative Entry points: DERFC, ERFC, QERFC.
GAMMA—Gamma function.

"Alternative Entry points: DGAMMA, GAMMA..

IMAG—Obtain imaginary part of complex argument.
Alternative Entry points: AIMAG, DIMAG, IMAG, QIMAG.
LGAMMA—Log-gamma function.

Alternative Entry points: ALGAMA, DLGAMA, LGAMMA.
MAX—0Obtain the largest value.

sézignative Entry points: AMAX1, DMAX1, MAX, MAX0, MAX1,

MIN—Obtain the smallest value.

Alternative Entry points: AMIN1, AMINO, DMIN1, MIN, MINO,
MIN1, QMIN1.

MOD—O0btain a remainder.

Alternative Entry points: AMOD, DMOD, MOD, QMOD.
NINT—Obtain nearest integer.

Alternative Entry points: IDNINT, NINT.
SIGN—Transfer of sign.

Alternative Entry points: DSIGN, ISIGN, QSIGN, SIGN.

VS FORTRAN Language Reference

Las

CHARACTER MANIPULATION ROUTINES

. CHAR—Return the character corresponding to the position in
the collating sequence of thae input argument.

J ICHAR—Raturn the position in tha collating sequence of the
input argument.

. INDEX—0btain location of character substring.
. LEN—Obtain length of character item.

] LGE~—Alphamerically greater than or equal.

. LGT—Alphamerically greataer than.

. LLE—Alphamerically less than or equal.

° LLT—Alphamerically laess than.

INTERNAL DATA CONVERSION GENERIC FUNCTION DESCRIPTIONS

The following are the generic function names of the internal data
conversion routines.

. CMPLX—Convert to complex.
Alternative entry points: CMPLX, DCMPLX, QCMPLX.
. DBLE—Convert to double precision.
Alternative entry points: DBLE, DBLEQ, DFLOAT.
. INT—Convert to intager.
Alternative entry points: HFIX, IDINT, IFIX, INT, IQINT.
. QEXT—Convert to real extended precision.
Alternative entry points: QEXT, QEXTD, QFLOAT.
. REAL—Convert to real.

Alternative entry points: DFLOAT, DREAL, FLOAT, QFLOAT,
QREAL, REAL, SNGL, SNGLQ.

. SNGL—Conveaert to single precision.

Alternative entry points: SNGL, SNGLQ.

Appendix B. FORTRAN-Supplied Procedures 207

APPENDIX C. IBM AND ANS FORTRAN FEATURES

Either the old FORTRAN (LANGLVL(66)) or the current FORTRAN
(LANGLVL(77)) compiler option is provided at the time of
compilation. The following groups of features are listed in this
appendix:
. New ANS FORTRAN 1977 features

General features

New statements

New features in old statements
. 0ld IBM extensions now in ANS FORTRAN 1977
. IBM extensions not in ANS FORTRAN 1977

. LANGLVL(66) features not in VS FORTRAN

NEW ANS FORTRAN 1977 FEATURES
The following new features of the 1977 American National Stantard

(ANS) FORTRAN (not supported by the old IBM 0S and DOS FORTRAN
compilers) are supported in VS FORTRAN.

GENERAL FEATURES

. May use asterisk comment indicator in column one.

. Comment before continuation is allowed anywhere in the
program unit. Blank card is treated as a:comment.

J External unit identifier may be an integer expression.
. Direct~access input/output (syntax different from IBM's).
i Storage-to-storage input/output (Internal File).
. Specified ignoring of input blanks.
. Expressions are allowed in output lists.
. Character data type is allowed.
- May include character substrings.
= The collating sequence may be altered.
. Subroutines without RETURN.
- END in subroutine is the same as RETURN.

. Functions (and their entry points) may exist without
arguments. :

. Dummy argument may be defined if actual argument is in common.
. Array elements are allowed in statement function definitions.

. Array names without subscripts are allowed in the EQUIVALENCE
statement.

. Complex data may be defined through real components.

. Variables used in adjustable dimensions and lengths may be
redefined without any effect on size of array.

. Integer expressions are allowed in array declarators.

208 VS FORTRAN Language Reference

. Nonunity lower bounds for arrays are allowed.

. Nonpositive subscript values are allowed.

. Named BLOCK DATA subroutines are allowed.

. Executable statements that cannot be reached are allouwed.

. ANINT, CHAR, DNINT, DPROD, ICHAR, IDNINT, INDEX, LEN, and
NINT are recognized as FORTRAN-supplied function names.

U DARCOS and DARSIN functions have different names: DACOS and
DASIN.

. Logical operators .EQV. and .NEQV., are alloued.
. A number is permitted on nonexecutable statements.

. Comparison of complex operands with equal and not equal
relationals is allowed.

[Exponentiation of complex with complex is allowed.

. All specification statements must precede all DATA
statements.

. Negative values for input or output unit identifiers is
prohibited.

L Literal format cannot be used for input.
. H format cannot be used for input.

. Use of a slash as a value separator in list-directed input is
allowed.

. Character function is alloued.

. Unspecified width is allowed in A format.

NEW STATEMENTS
. Block IF, ELSE IF, ELSE, END IF statements
. CHARACTER type statement
. CLOSE statement
. DOUBLE PRECISION type statement
. INQUIRE statement
. INTRINSIC statement
. OPEN statement
o PARAMETER statement
U PROGRAM statement
. SAVE statement

Appendix C. IBM and ANS FORTRAN Features 209

NEW FEATURES IN OLD STATEMENTS

. BACKSPACE statement:

210

UNIT, ERR, and IOSTAT may be used.

. COMMON statement:

Commas are optional.

. DATA statement:

Implied DO statement is allowed.
Type conversion is allowed.

Commas after nonterminal slashes are optional.

] DIMENSION statement:

Specification can be negative or zero.

Both lower and upper bound can be names of constants or
expressions.

. DO statement:

Loops may be indexed by nonpositive values.

Loops may be indexed by integer, real, or double
precision values.

Backward loops may be used.

Zero trip loops may be used.

Control variable is defined on completion. N
Control variable may be real or double precision.
Terminal statements are allowed with computed GO TO,
PAUSE, LOGICAL IF, STOP, or RETURN. They are not allowed
with block IF.

Comma is optional following terminal statement number.

Subscript values can be negative or zero.

Parameters may be any arithmetic expression except
complex.

Parameters may be redefined in loop with no effect on loop
control.

A block IF statement in the DO range must be entirely
within the range of the DO.

The range of a DO within a block IF must be entirely -
contained within the block.

Transfer may be made into any active loop.

DO may be ended by any fall-through statement.

Comma may be used before control variable.

statement:

May be numbered.

Implies STOP or RETURN. Q;D

Is executable.

12
. ENDFILE statement:

VS FORTRAN Language Reference

- UNIT, ERR, and IOSTAT may be used.
EXTERNAL statement:

An ampersand (&) character as the first character of a name is

not permitted for compiler option LANGLVL(77). Any name that
appears in an EXTERNAL statement is considered as the name of
a user-supplied subroutine.

FORMAT statement:

- BN and BZ specify ignoring of input blanks.

- Unlimited parentheses may be used.

- The label ASSIGNED may be the number of a FORMAT
statement.

- Field width is optional in Auw.
- Explicit nP scale factor may be used.

- Ew.dEe, Guw.dEe, Iw.d, SP, SS, S, TlLc, and TRc field
descriptors may be used.

- Colon may be used as scan terminator.

- Optional commas may be used with slashes and colons.

GO TO statement, Assigned:

- List of statement numbers is optional.

- Comma outside parentheses is optional.

GO TO statement, Computed:

- Index may be an integer expression.

- Comma may be outside parentheses.

IMPLICIT statement:

- More than one may be used in a program unit.

- IMPLICIT may be preceded by ENTRY, FORMAT, or PARAMETER
statements and must precede all other specification

statements except PARAMETER statements.

- DOUBLE PRECISION and CHARACTER type statements are
included.

PRINT statement:

- FORMAT designator may be a character constant.
READ statements:

- FORMAT designator may be a character constant.
= UNIT, ERR, and IOSTAT may be used.

RETURN statement: '

- Index may be an integer expression.

REWIND statement:

- UNIT, ERR, and IOSTAT may be used.

STOP statement:
- Quoted litéral is allowed.

- A character constant is permitted.

Appendix C. IBM and ANS FORTRAN Features 211

Auxiliary input and output statements:
— UNIT and ERR may be used.
WRITE statement:

- May not be used after ENDFILE in sequential input or
output.

- FORMAT designator may be a character constant.

- UNIT, FMT, REC, and IOSTAT may be used.

OLD IBM EXTENSIONS NOW IN ANS FORTRAN 1977

212

The following items supported as IBM extensions in old IBM 0S

DOS FORTRAN compilers are now part of the 1977 ANS FORTRAN
language. These items are also supported in VS FORTRAN.

*

Literals are enclosed in apostrophes.

STOP and PAUSE statements:

— Decimal digits are supported.

— STOP statement string is accessible.

= Quoted literal in PAUSE statement is supported.
T format is accepted as a field descriptor.
Computed GO TO index out of range.

All combinations of arithmetics across equal sign.
Mixed-mode arithmetic.

Mixed-mode relationals.

Successive exponentiations.

Generalized subscripts.

Seven-dimensional arrays.

END in READ.

ERR in READ and WRITE.

Short form of READ and PRINT.

Sequential list-directed input/output.
Asterisks for undersized output fields.
IMPLICIT statement.

Array names in DATA statement.

ENTRY statement.

Alternative returns from subroutines.
Function and entry names in type statements.
Generic facility.

Additional processor-supplied functions.

VS FORTRAN Language Reference

C

IBM_EXTENSIONS NOT IN ANS FORTRAN 1977

The following IBM extensions are supported by old IBM 0S5 and DOS
FORTRAN compilers but are not part of the 1977 ANS FORTRAN. They
will continue to be supported in VS FORTRAN as IBM extensions.

Some of the following features are available only under the
compiler option described in the next section, "LANGLVL(66)
Features Not in VS FORTRAN."

NAMELIST statement.

Hexadecimal.

Double Precision Complex.

Z and @ format descriptor.

G format for integer and logical.

ALGAMA, ARCOS, ARSIN, CCO0S, CDABS, CDCOS, CDEXP, CDLOG,
CDSIN, CDSQRT, COTAN, CQABS, CQC0S, CQEXP, CQLOG, CQSIN,
CQSQRT, DARCOS, DARSIN, DBLEQ, DCMPLX, DCONJG, DCOTAN, DERFC,
DERF, DFLOAT, DGAMMA, DIMAG, DLGAMA, DREAL, ERF, ERFC, GAMMA,
HFIX, IMAG, IQINT, LGAMMA, QABS, QARCOS, QARSIN, QATAN,
QATAN2, QCMPLX, QCONJG, QCOSH, QC0S, QCOTAN, QDIM, QERFC,
QERF, QEXP, QEXTD, QEXT, QFLOAT; QIMAG, QINT, QLOG, QLOGI1O,
QMAX1, QMIN1, QMOD, QREAL, QSIGN, QSINH, QSIN, QSQRT, QTANH,
QTAN, SNGLQ.

CALL DVCHK, CALL DUMP/PDUMP, CALL EXIT, CALL OVERFL.
Asynchronous READ, WRITE, and WAIT.

Extended Precision for REAL and COMPLEX.

Extended debug facility.

Hexadecimal constants in 2 format are allowed.

Free form source statements.

The currency symbol ($) used as alphabetic character.

Data initialization in type specification statements.

Optional length specification in specification statements
(INTEGER, REAL, COMPLEX, LOGICAL) and in FUNCTION statements.

Mixed mode expressions involving complex and double
precision.

FORMAT identifier may be an array name (other than character
type).

Continuation line may have anything in columns 1 through 5
other than "C" in column 1.

RETURN statement is the same as STOP in a main program.
Partitioned data sets.
Closing of data set on ABEND.

STOPn is allowed, where n equals a return code.

Appendix C. IBM and ANS FORTRAN Features 213

LANGLVL(66) FEATURES NOT IN VS FORTRAN

214

LANGLVL(66) instructs the compiler to compile a program according
to the 1966 FORTRAN language. Listed here are some of the features @:D
of LANGLVL(66) that are not in LANGLVL(77). These items are not

compatible with VS FORTRAN.

. Character constants may be assigned to integer, real,
complex, or logical in a DATA statement.

. The ampersand (&) is included in the character set.

. The ampersand (&) must be used instead of the asterisk (%) for
an alternate return.

. A program name can only be specified as a compiler option.

. Arguments are received by value.

. DARCOS and DARSIN used as function names are recognized as
FORTRAN-supplied functions; DACOS and DASIN are recognized as
user-supplied function names.

. DEFINE FILE statement.
. D0 statement and implied DO in I/0:
Loops are always executed at least once.

. EQUIVALENCE statement. (Accept a multidimensional array with
one subscript.)

U EXTERNAL statement:

statement preceded by an ampersand (&) it is considered a
user-supplied function name. If it is not preceded by an
ampersand (&), it is considered a FORTRAN-supplied function
name except as described below. The following names are
always considered user-supplied function names if they appear
in an EXTERNAL statement preceded or not by an ampersand (&):

ABS, AIMAG, AINT, AMAX0, AMAX1, AMINO, AMIN1, AMOD, CMPLX,
CONJG, DABS, DBLE, DBLEQ, DCMPLX, DCONJG, DDIM, DFLOAT, DIM,
DIMAG, DINT, DMAX], DMIN1l, DMOD, DREAL, DSIGN, FLOAT, HFIX,
IABS, IDIM, IDINT, IFIX, IMAG, INT, IQINT, ISIGN, MAX, MAXO,
MAX1, MIN, MINO, MIN1, MOD, QABS, QCMPLX, QCONJG. QDIM, QEXT,
QEXTD, QFLOAT, QIMAG, QINT, QMAX1l, QMINl, QMOD, QREAL, QSIGN,
REAL, SIGN, SNGL, SNGLQ.

U FIND statement.

J Function names: ANINT, CHAR, DPROD, DNINT, ICHAR, IDNINT,
INDEX, LEN, and NINT are recognized as user-supplied function
names.

L4 GENERIC statement.

GENERIC means that generic names of FORTRAN-supplied
functions will be recognized as generic; if GENERIC is not
specified, the automatic function selection facility will not
be in effect.

. IBM direct-access READ and WRITE.

. INTRINSIC statement is not recognized as a VS FORTRAN
statement.

e PUNCH b, list.

If a FORTRAN-supplied function name appears in an EXTERNAL 7N

VS FORTRAN Language Reference

I}

C

APPENDIX D. EXTENDED ERROR HANDLING SUBROUTINES

ERRMON SUBROUTINE

IBM provides five subroutines for use in extended error handling:
ERRSAV, ERRSET, ERRSTR, and ERRTRA. These subroutines allow
access to the option table to alter it dynamically.

Certain option table entries may be protected against alteration
when the option table is set up. If a request is made by means of
CALL ERRSTR or CALL ERRSET to alter such an entry, the request is
ignored. See Figure 24 on page 222 for those IBM-supplied option
table entries that cannot be altered.

Changes made dynamically are in effect for the duration of the
program that made the change. Only the current copy of the option
table in main storage is affected; the copy in the FORTRAN library
remains unchanged.

The user has the ability to call, from his own program, the
FORTRAN error monitor (ERRMON) routine, the same routine used by
FORTRAN itself when it detects an error. ERRMON examines the
option table for the appropriate error number and its associated
entry and takes the actions specified. If a user~-exit address has
been specified, ERRMON transfers control to the user-written
routine indicated by that address. Thus, the user has the option
of handling errors in one of tuwo ways: (1) by calling ERRMON
without supplying a user-written exit routine; or (2) by calling
ERRMON and providing a user-uwritten exit routine.

The error numbers chosen for user subprograms are restricted in
range. IBM-designated error conditions have reserved error codes
from 000 to 301. Error codes for installation-designated error
situations must be assigned in the range 302 to 899. Before you
use these subroutines, check with your system administrator about
codes and options you can use. The error code is used by FORTRAN
to find the proper entry in the option table.

Error Monitor Routines Figure
Option table preface Figure 22.
Option table entries Figure 23.
Option table default values Figure 24.
Corrective action after error Figure 25.
Corrective action after Figure 26.
mathematical subroutine error

Corrective action after program Figure 27.
interrupt

To call the ERRMON routine, the following statement is used:

syntax
CALL ERRMON (imes,iretcd,ierno [,datal,data2,...1)

imes
is the name of an array aligned on a fullword boundary, that
contains, in EBCDIC characters, the text of the message. The
number of the error condition should be included as part of
the text, because the error monitor prints only the text
passed to it. The first item of the array contains an integer

Appendix D. Extended Error Handling Subroutines 215

whose value is the length of the message. Thus, the first
four bytes of the array are not printed. If the message
length is greater than the length of the buffer, it is
printed on two or more lines of printed output.

iretcd
is an integer variable made available to the error monitor

fo: the setting of a return code. The following codes can be
set:

0—The option table or user-exit routine indicates that
standard correction is required.

1-—The option table indicates that a user exit to a
corrective routine has been executed. The function is to
be reevaluated using arguments supplied in the
parameters datal,data2... . For input/output type

errors, thf :alue 1l indicates that standard correction
is not wanted,

ierno
is the error condition number in the option table. Should any

number not within range of the option table be specified, an
error message is printed.

datal,data2...
are variable names in an error-detecting routine for the
passing of arguments found to be in error. One variable must
be specified for each argument. Upon return to the
error-detecting routine, results obtained from corrective
action are in these variables. Because the content of the
variables can be altered, the locations in which they are
placed should be only in the CALL statement to the error
monitor; otherwise, the user of the function may have
literals or variables destroyed.

Because datal and data?2 are the parameters that the error
monitor passes to a user-written routine to correct the
detected error, care must be taken to make sure that these
parameters agree in type and number in a call to ERRMON
and/or in a call to a user-written corrective routine, if one
exists.

An example of CALL ERRMON is:
CALL ERRMON (MYMSG,ICODE,315,D1,D2)

The example states that the message to be printed is contained in
an array named MYMSG, the field named ICODE is to contain the
return code, the error condition number to be investigated is 315,
and arguments to be passed to the user-written routine are
contained in fields named D! and D2.

ERRSAV SUBROUTINE

‘216

The CALL ERRSAV statement copies an option table entry into an
8-byte storage area accessible to the FORTRAN programmer. CALL
ERRSAV has the format:

—— Syntax
CALL ERRSAV (jerno, tabent)

ierno
is the error number in the option table. Should any number
not within the range of the option table be used, an error
message is printed.

tabent

is the name of an 8-byte storage area in which the option
table entry is to be stored.

VS FORTRAN Language Reference

s

,/'(o

% §)
.

ERRSET SUBROUTINE

An example of CALL ERRSAV is:
CALL ERRSAV (213,ALTERX)

The example states that errer number 213 is to be stored in the
area named ALTERX.

The CALL ERRSET statement permits the user to change up to five
different options. It consists of six parameters. The last four
parameters are optional, but each omitted parameter must have its
place noted by a comma or a zero if succeeding parameters are
speci fied. (Omitted parameters at the end of the list require no
place notation.) CALL ERRSET has the format:

syntax
CALL ERRSET (jierno,inocal,inomes,itrace,iusadr,irange)

1erno
is the errer number in the eptien table. Should any number
not within the range of the option table be used, an error
message is printed. (If ierno is specified as 212, there is a
special relationship between the ierno and irange
parameters. See the explanation ef irange.)

inoal
is an integer specifying the number of errors permitted
before each execution is terminated. If inoal is specified
as either zero or a negative number, the specification is
ignored, and the number-of-errors optien is not altered. If
a value of more than 255 is specified, an unlimited number of
errors is permitted.

The value of inoal should be set at 2 er greater if transfer
of control to a user-supplied error routine is desired after
an error., If this parameter is specified with a value of 1,
execution is terminated after enly ene error.

inomes
is an integer indicating the number of messages to be
printed. A negative value specified for inomes suppresses
all messages; a specification of zero indicates that the
number-of-messages option is not to be altered. If a value
greater than 255 is specified, an unlimited number of error
messages is permitted.

itrace
is an integer whose value may be 0, 1, or 2. A specification
of 0 indicates the option is not to be changed; a
specification of 1 requests that no traceback be printed
after an error. (If a value other 1 or 2 is specified, the
option remains unchanged.) .

iusadr
specifies one of the fellowing:

1. The value 1, indicating that the eptien table is to be
set to show no user-exit routine (that is, standard
corrective action is to be used when continuing
execution).

2. The name of a closed subroutine that is to be executed
after the occurrence of the error identified by ierno.
The name must appear in an EXTERNAL statement in the
source program, and the routine to which control is to be
passed must be available at link editing time.

3. The value 0, indicating that the table entry is not to be
altered.

Appendix D. Extended Error Handling Subroutines 217

irange
serves a double function. It specifies onae of thae following:

1. An error number higher than that specified in jerno.
This number indicates that the options specified for the @:@
other parameters are to be applied to the entire range of r 4
error conditions encompassed by ierno and irange. (If
irange specifies a number lower than jerno, the
parg?gtfr is ignored, unless ierng specifies tha number
as .

2. A print control character if ierno specified 212. The
value 1 is specified to provide single spacing for an
overflow line. If a value other than 1 is specified, no
print control is provided.

The default value 0 is assumed if thae parameter is omitted (that
is, no print control is provided, and the values specified for all
parameters apply only to the error condition number in jierno).

EXAMPLES OF CALL ERRSET

218

Example 1:
CALL ERRSET (310,20,5,0,MYERR,320)
This example specifies the following:
1. Error condition 310 (ierno).
2. The error condition may occur up to 20 times (inoal).

3. The corresponding error message may be printed up to 5 times
(inomes).

4. The default for traceback information is to remain in force
(itrace).

"
5. The user-uritten routine MYERR is to be executed after each waﬁ
error (jusadr).
6. The same options are to apply to all error conditions from 310
to 320 (irange).
Example 2:
CALL ERRSET (212,10,5,2,1,1)
This example specifiesﬁ
1 Error condition 212.
2 The condition may occur up to 10 times.
3. The corresponding maessage may be displayed up to 5 times.
4 Traceback information is to be displayed after each error.
5 Standard corrective action is to be executed after an error.
6. Print control is to be employed.
For illustration purposes, this example explicitly specifies all
default options except that used in requesting print control.
Example 3¢
CALL ERRSET (212,0,0,0,0,1)
This example illustrates an alternative method of specifying
exactly the same options as the second example. It states that no -
changes are to be made to default settings in requesting print @:;»
control. -

VS FORTRAN Language Reference

ERRSTR SUBROUTINE

ERRTRA SUBROUTINE

To store an entry in the option table, the following statement is
used:

Syntax
CALL ERRSTR (ierno,tabent)

ierno
is the error number for which the entry is to be stored in
the option table. Should any number not within the range of
the option table be used, an error is printed.

tabent
is the name of an 8-byte storage area containing the table
entry data.
An example of CALL ERRSTR is:
CALL ERRSTR (213,ALTREX)

The example states that error number 213, stored in ALTREX, is to
be restored to the option table.

The CALL ERRTRA statement permits the user to dynamically request
a traceback and continued execution. It has the format:

syntax
CALL ERRTRA

The CALL ERRTRA statement has no parameters.

Field Field Default Field

Contents Length vValue Description

Number of 4 bytes 152 Number of entries in the option tabie.
entries

Boundary 4 bytes 150 Message number of the first table entry.
Alignment

Figure 22. Option Table Preface

Appendix D. Extended Error Handling Subroutines 219

MESSAGE OPTION TABLES

Field Field .
contents | Length |Defaultl Field Description
Number 1 byte 102 Number of times this error condition
of error should be allowed to occur. When the
occur- value of the error count field (below)
rences equals this value, job processing is
terminated. Number may range from 0 to
to 255. A value of 0 means an unlimited
number of occurrences.?3
Number 1 byte 54 Number of times the corresponding
messages message is to be printed before message
to print printing is suppressed. A value of 0
means no message is to be printed.
Error i byte 0 The number of times this error has
count occurred. A value of 0 indicates that no
occurrences have been encountered.
Option 1 byte 42 Eight option bits defined as follous
bits (hex) (the default setting is underscored):
Bit]Setting|Explanation:
0 g No control character
supplied for overflow lines.

1 Control character supplied
to provide single spacing
for overflow lines.

1 0 Table entry cannot be
modified.5

1 Table entry can be
modi fied.

2 2 Fewer than 256 errors hav
occurred.

1 More than 256 errors have
occurred. (Add 256 to error
count field above to
determine the number.

3¢ 9 Do not print buffer
with error message.

1 Print buffer contents.

4 '] Reserved.
5 8 Print messages default
number of times only.

1 Unlimited printing
requested; print for every
occurrence of error.

67 0 Do not print traceback map.

1 Print traceback map.

7 1] Reserved.
User 4 bytes 1 Indicates where a user corrective
exit routine is available. A value other than
1 specifies the address of the user-
written routine.

Figure 23. Option Table Entry

220 VS FORTRAN Language Reference

o

Notes to Figure 23:

1.

2.

The default values shown apply to all error numbers
#incluging additional user entries) unless excepted by a
ootnote.

Errors 207, 208, 209, and 215 are set as unlimited, and errors
%62i 163, 164, 165, 167, 168, 205, 217, 230, and 240 are set
ol.

?n unlimited number of errors may cause the FORTRAN job to
oop.

Errors 162, 163, 164, 165, 167, 168, 230, and 240 are set to

-

The entry for errors 162’ 163; 164, 165) 167; 168, 205, 230,
and 240 cannot be modified.

The entry is set to 0 except for errors 212, 215, 218, 221,
222, 223, 224, 225, 227, 229, and 238.

The entry is set to 1 except for error 205.

Appendix D. Extended Error Handling Subroutines 221

Option Bits

No. of No. of Modi- {Print |Trace- |Standard
Error|Errors |Messages|Print |fiable|Buffer [back Corrective|User
Code |Allowed |Allouwed |Control|Entry]Content|Allowed|Action Exit
150- 10 5 NA Yes No Yes Yes None

161
162- 1 1 NA No No Yes Yes None
165
166 10 5 NA Yes No Yes Yes None
167 1 1 NA No No Yes Yes None
168 1 1 NA No No Yes Yes None
169~ 10 5 NA Yes No Yes Yes None
204
205 1 1 NA No No No No None
206 10 5 NA Yes No Yes Yes None
207 Unlimited 5 NA Yes No Yes Yes None
2068 Unlimited 5 NA Yes No Yas Yes None
209 Unlimited 5 NA Yes No Yes Yes None?!
210 10 5 NA Yes No Yes Yes! None
211 10 5 NA Yes No Yes Yes None
212 10 5 No?2 Yes Yes Yes Yes None
213 10 5 NA Yes No Yes Yes None
214 10 5 NA Yes No Yes Yes None
215 Unlimited 5 NA Yes Yes Yes Yes None
216 10 5 NA Yes No Yes Yes None
217 13 1 NA Yes No Yes Yes None
218 104 4 NA Yes Yes* Yes Yes None
219 105 5 NA Yes No Yes Yes None
229 10 5 NA Yes No Yes Yes None
Zgég 10 5 NA Yes Yes Yes Yes None
226 10 5 NA Yes No Yes Yes None
227 10 5 NA Yes Yes Yes Yes None
228 10 5 NA Yes No Yes Yes None
229 10 5 NA Yes Yes Yes Yes None
230 1 1 NA Yes No Yes No None
Zgé; 10 5 NA Yes No Yes Yes None
238 10 5 NA Yes Yes Yes Yes None
239 10 5 NA Yes No Yes Yes None
240 1 1 NA No No Yes No None
241~ 10 5 NA Yes No Yes Yes None:
301
Figure 24. Option Table Default Values

Notes to Figure 24:

1. No corrective action is taken except to continue execution.
For boundary alignment, the corrective action s part of the
support for misalign- ment. For error 209, no user corrective
action can be specified.

2. If a print control character is not supplied, the overflouw
line is not shifted to incorporate the print control
character. Thus, if the device is tape, the data is intact,
but if the device is a printer, the first character of the
overflow line is not printed but is treated instead as the
print control. Unless the user has planned the overflow, the
first character would be random and thus the overflow print
line control can be any of the posible ones. It is suggested
that when the device is a printer, the option be changed to
provide single spacing.

3. It is not considered an error if the END parameter is present
in a READ statement. No message or tracekack is printed and
the error count is not altered.

4. For an input/output error, the buffer may have been partially
filled or not filled at all when the error was detected. Thus,

222 VS FORTRAN Language Reference

N

; }

C

the buffer contents could be blank when printed. When an ERR
parameter is specified in a READ statement, it is honored even
though the error occurrence is greater than the amount

allowed.

The count field does not necessarily mean that up to 10
missing DD cards will be detected in a single debugging run,
since a single WRITE performed in a loop could cause 10
occurrences of the message for the same missing DD card.

MESSAGE CORRECTIVE AQT‘ON CROSS REFERENCE TABLES

Parameters .
Error | Passed standard User-supplied
Code To User corrective Action corrective Action
205 A,B,D Program termination. See Note 1.
206 A,B,1 I=low order part of number for User may alter I (see
input too large. Note 2).
211 A,B,C Treat format field containing C If compiled FORMAT
as end of FORMAT ‘statement. statement, put
hexadecimal equivalent
of character in C. If
variable format, move
EBCDIC character into C.
(See Note 3).
212 ‘A,B,D {ngu:t Iénore remainder of I/0 See Note 1.
ist.

Qutput: Continue by starting

new output record. Supply

carriage control character if

required by Option Table.

213 A,B,D Ignore remainder of I/0 list. See Note 1.

214 A,B,D Input: Ignore remainder of 1/0 If user correction is
list. Ignore input/output requested, the remainder
request if for ASCII tape. of the I/70 list is

ignored.
Butput: If unformatted write
initially requested, change
record format to VS. If
formatted write initially
requested, ignore input/output
request.

215 A,B,E Substitute zero for the invalid The character placed in

character. E will be substituted
for the invalid
character; input/output
operations may not be
performed (see Note 3).

217 A,B,D Increment FORTRAN sequence See Note 1.
number and read next file.

218 A,B,D,F Ignore remainder of I/70 list. See Note 1.

géz- A,B,D Ignore remainder of I/70 list. See Note 1.

Figure 25 (Part 1 of 2). Corrective Action after Error

Appendix D. Extended Error

Handling Subroutines

223

Paramaters .
Error | Passed standard User-Supplied
Code To User corrective Action ; corrective Action
225 A,B,E Substitute zero for the invalid Tha character placed in
character. E will be substituted
for the invalid
character (see Note 3).
226 A,B,R R=0 for input number too small. User may alter R.
R = 16%%63 - 1 for input number
too large.
227 A,B,D Ignore remainder of I/0 list. See Note 1.
229 A,B,D Ignore remainder of 1/0 list. See Note 1.
231 A,B,D Ignore remainder of I/0 list. Seae Note 1.
232 A,B,D,G Ignore remainder of I/0 list. See Note 1.
233 A,B,D Change record number to list See Note 1.
maximum allowed (32000).
ggg A,B,D Ignore remainder of 170 list. See Note 1.
237 A,B,D,F Ignore remainder of 170 list. Seae Note 1.
238 A,B,D Ignore remainder of I/0 list. ‘| See Note 1.
240 See Note 4 Program termination None
286 A,B,D Ignore request See Note 1.
287 A,B,D Ignore request see Note 1.
288 A,B,D Implied wait See Note 1.

Figure 25 (Part 2 of 2). Corrective Action after Error

Notes to Figure 25:

Parameter Meaning

Address of return code field (INTEGERX%)

Address of error number (INTEGERX4)

Address of invalid format character (LOGICALX1)
Address of data set reference number (INTEGERX4)
Address of invalid character (LOGICALX1)

Address of DECB

Address of record number requested (INTEGERX%4)
Result after conversion (INTEGERX4)

Result after conversion (REALX4%)

AFOTMITMOO W

If error condition 218 (input/output error detected) occurs whila
error messages are being written to the object error data set, the
message is written to the console and the job is terminated. If no
DD card has been supplied for the object error data set, error
message IFY2191 is written out at the console and the job is
terminated.

Note 1t If the error was not caused during asynchronous
input/output processing, the user exit-routine cannot perform any
asynchronous I/0 operation and, in addition, may not perform any
REWIND, BACKSPACE, or ENDFILE operation. If the error was caused
during asynchronous input/output processing, the user cannot
perform any input/output operation. On return to the library, the
remainder of the input/output request will be ignored.

224 VS FORTRAN Language Reference

(e

Note 2: The user exit routine may supply an alternative ansuer
for the setting of the result register. The routine should always
set an INTEGER*4 variable and the FORTRAN library will load
fullword or halfword depending on the length of the argument
causing the error.

Note 3: Alternatively, the user can set the return code to 0,
thus requesting a standard corrective action.

Note 4: Code 240 generates a message showing the system or
program code causing program termination, the address of the STAE
Control Block, and the contents of the last PSW when abnormal
termination occurred. Further information appears under message
code IFY240 in VS FORTRAN System Service Reference Supplement.

Appendix D. Extended Error Handling Subroutines 225

Options

User-supplied
FORTRAN Invalid Standard Corrective
‘Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)
241 K=I%%J 1=0, J<0 K=0 1,J
242 Y=X¥%x%]1 X=0, I<0 If I=0, Y=1 X,1
If I<0, Y=o
243 DA=D*x*I D=0, I<0 If I=0, Y=1 D,I
If I<0, Y=ze
246 XASX¥XY X=0, Y<0 XA=0 X, Y
245 DA=D%%DB D=0, DBZLO DA=O D,DB
2646 CA=C*X*I C=0+0i, I<0 If 1=0, C=1+0i c,I
If I<0, C=e+0i
247 CDA=CDXI €=0+0i, I<O If I=0, C=1+0i CD,1I
If I<0, C=e+0i
248 Q=QA%Xx%J QA=0, J<O J<0, Q=e QA,J
J=0, Q=1
249 Q=QAXXQB QA=0, QBZO QB<0, Q=e QA, QB
QB=0, Q=1
QA<0, QB#.0 Q=|QA|%%QB
250 Q=QAX*QB logs(QAIXQB22521 Q=e QA,QB
251 Y=SQRT (X) X<0 y=|x]1/2 X
252 Y=EXP (X) X>1764.673 Ye X
253 Y=ALOG (X) X=0 Y=-o X
X<0 Y=1logl Xl X
Y=ALOG10 (X) | X=0 Y=-e X
X<0 Y=log,, IXI X
254 Y=C0S (X) IX]2(228)%nm Y=V272
Y=SIN (X)
255 |Y=ATAN2 (X,XA)| X=0. XA=0 Y=0 X, XA
256 Y=SINH (X) 1H12175.366 Y=(SIGN of X)e X
Y=COSH(X) Y=o
257 Y=ARSIN (X) Ix)>1 If X>1.0,ARSIN(X)=f
If X<-1.0,ARSIN(X)=-F
Y=ARCOS (X) If X>1.0,ARC05=0
If X<-1.0,ARC0S= "
258 Y=TAN (X) IX|2(238)%nm Y=1
Y=COTAN (X)

Figure 26 (Part 1 of 4%).

Corrective Action after Mathematical Subroutine Error

226 VS FORTRAN Language Reference

®

Nes]

Options
[CD Standard User-supplied
. FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Note %)
259 Y=TAN (X) X is too close| Y=e X
to an odd
multiple of £
Y=COTAN (X) X is too close| Y=o
to a multiple
of n
260 Q=2%X%QA QA>252 Q=e QA
261 DA=DSQRT (D) D<o DA=|D| /2
262 DA=DEXP (D) D>174.673 D=e
263 DA=DLOG (D) D=0 DA=-e
D<0 DA=loglX|
DA=DLOG10 (D) D=0 DA=-e D
D<0 DA=log,, IXI]
264 DA=DSIN (D) IDI2(259)% n DA=272 D
DA=DCOS (D)
265 DA=DATAN2(D,DBY] D=0,DB=0 DA=0 D,DB
266 DA=DSINH (D) IDl2175.366 DA=(SIGN of X)e D
DA=DCOSH (D) DA=e
*0 267 |DA=DARSIN (D) | IDI>1 If D>1.0 DARSIN =J
If D<-1.0 DARSIN=-I
DA=DARCOS (D) If D>1.0 DARCOS (D)=0
If D<-1.0 DARCOS(D)=m
268 DA=DTAN (D) IXl2¢259)% n DA=1 D
DA=DCOTAN (D)
269 DA=DTAN (D) D is too close|DA=e D
to an odd
multiple of.g
DA=DCOTAN (D) D is too close|DA=e D
to a multiple
. of n
For error 270, CQA=X,+iX,
270 CQ=CQAx%xJ CQA=0+0i J=0, CQ=1+0.i CQA,J
J<o J<0, CQ=e40.i
For errors 271 through 275, C=X;+iX,
271 Z=CEXP (C) X1>174.,673 Z=%(C0S X;+ iSIN X;) c
x .
272 Z=CEXP (C) |X2|2(2‘°)*n Z=e 1+0%i C
273 Z=CLOG (C) C=0+0i Z=-e40i C
Figure 26 (Part 2 of 4). Corrective Action after Mathematical Subroutine Error

Appendix D. Extended Error Handling Subroutines

227

Options

User-Supplied

Z=2(COS X, +iSIN
2

FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (Sea Note 4)
2764 2=CSIN (C) IX;12¢28)% 7 | Z=0+SINH(X2)%i Cc
2=CC0S (C) Z=COSH(X2)+0*i C
275 Z=SCIN (C) X,>174.673 Z=%(SIN X, +iC0S Xl) C
Z2=CC0S (C) Z=2(C0S X,-iSIN Xl)
Z=CSIN (C) X,<-174.673 Z=%_(SIN X,-iCo0s Xl C
Z=CC0S (C) Z=%(COS Xy +iSIN X)) (o
For errors 276 through 280, CQ=X;+iX;
276 Z=CQEXP (CQ) X,>1764.673 Z=%(C0S X,+iSIN Xz) cQ
X
277 Z=CQEXP (CQ) IX,1>2100 2=e 1 +0%j cQ
278 Z2=CQLOG (CQ) CQ=0+03 2=-010i cQ
279 Z=CQSIN (CQ) IX, 22100 Z=0+DSINH(X2)%i cQ
Z=CQC0S (CQ) Z=DCOSH(X2)+0%i
280 Z=CQSIN (CQ) X,>174.673 Z=o(SIN X‘+iCOS X,) cQ
2
2=CQC0S (CQ) 2=2(C0OS X1=iSIN X, cQ
2
2=CQSIN (cQ) X,<-1764.673 Z=2(SIN Xl-iCOS X)) cQ
Z=CQC0S (CQ) Z=%(COS X,=iSIN X;)
For errors 281 through 285, CD=X,+iX,
281 Z2=CDEXP (CD) X, >174.673 Z=%(C0S X,+iSIN Xz) CcD
x
282 Z=CDEXP (CD) IX,12(250)% ® {Z=a@ 1 +0%j CD
283 Z=CDLOG (CD) CD=0+0i Z=-e+0i cD
284 Z=CDSIN (CD) I1X,1202%%)y% m |Z= 0+SINH(X,)i ch
Z2=CDC0S (CD) Z= COSH(X,)+0%i
285 Z=CDSIN (CD) X,>174.673 Z=%(SIN X, +iC0s X,) cD
Z=CDCO0S (CDY Z=%(COS XI-iSIN X,) cD
Z=CDSIN (CD) X,<=174.673 Z=%(SIN X,-iC0os X,) cD
Z=CDCO0S (CD) X.,) CcD

Figure 26 (Part

228

3 of 4).

Corrective Action after Mathematical Subroutine Error

VS FORTRAN Language Reference

Options
User-Supplied
FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)
289 |QAZQSQRT (Q) Q<o QA=|Q|1/2 Q
290 Y=GAMMA (X) X<2-252 op Y=o X
X257.5744
291 Y=ALGAMA (XD X<0 or Y=e X
X26.2937%1073
292 QA=QEXP (Q) Q>174.673 QA=e Q
293 QA=QLOG (Q) Q=0 QA=-o Q
Q<0 QA=logiX|
QA=QLOG1C (Q) Q=0 QA=e Q
Q<o QA=1091°|X| Q
294 |QA=QSIN (Q) Q22100 QA=V2/2 Q
QA=QC0S (Q)
295 QA=QATAN2(Q,QB)| Q=0, QB=0 QA=0 Q,QB
296 QA=QSINH (Q) 1Q12175.366 QA=e(SIGN Q)e Q
QA=QCOSH (Q) QAce
297 QA=QARSIN (Q) iQl>1 If Q>1.0 QARSIN=§
If Q<-1.0 QARSIN=- f Q
QA=QARCOS (Q) If Q>1.0 QARCOS(Q)=0 Q
If Q<-1.0 QARCOS(Q)=
298 |[QA=QTAN (Q) lQl>2t00 QA=1 Q
QA=QCOTAN (Q)
299 QA=QTAN (Q) Q is too close|QA=e Q
to an odd
multiple vfg
QA=QCOTAN (Q) Q is too close|{QA=e Q
to a multiple
of n
360 DA=DGAMMA (D) D<2-252 qp DA=e D
D257.5774
301 DA-DLGAMA (D) DSO or DA=e
D24.2937%1073

Figure 26 (Part 4 of 6).

Corrective Action after Mathematical Subroutine Error

Appendix D. Extended Error Handling Subroutines

229

230

Notes to Figure 26:

1. The variable types ara as follows:

Variable Jvpe

I,J,K INTEGERX4

X,XA,Y REALX4

D,DA,DB REAL %8

C,CA COMPLEX*8

Q,QA,QB REALX%16

CQ,CQA COMPLEX»32

Xy X »X Complex variables to be given the

length of the functioned argument
when they appear.
CD,CDA COMPLEXx*16

2. The largest number that can be represented in floating point
in indicated by the symbol ¢,

3. The value e=2.7183 (approximately).
4. The user-supplied answer is obtained by recomputation of the

function using the value set by the user routine for the
parameters listed.

VS FORTRAN Language Reference

N

A

Program Interrupt Messages Options
Parameters User-
Passed to Supplied
Error| User Exit Reason for Interrupt Standard Corrective Corrective
Code (Note 1) (Note 2) Action Action
207 D,1 Exponent overflow Result register set to({User may
(Interrupt Code 12) the largest possible alter D.
floating point number.|(Note 3)
The sign of the result
register is not
altered.
208 D,1 Exponent underflow The result register is|User may
(Interrupt Code 13) set to zero. alter D.
(Note 3)
209 None Divide check, integer For floating point See Note 5.
divide (interrupt divide, where n/0 and
code 9), decimal divide |n=0, result register
(Interrupt Code 11), is set to 0; where
floating point Code 11), {n#0, result register
floating point divide set to largest
(interrupt code 15). possible floating
See Note 4. point number. No
standard fixup for
other interrupts.
210 None Specification interrupt |[No special corrective [See Note 5.
(interrupt Code 6) action other than
occurs for boundary correcting boundary
misalignment. Operation |misalignments.
exception (interrupt
code 1) occurs for oper-
ation interrupt. Other
interrupts occur during
boundary alignment
adjustment or extended
precision floating point
simulation. They will be
shown with this error
code and the PSW portion
of the message will
identify the interrupt.
Figure 27. Corrective Action after Program Interrupt

Notes to Figure 27:

1. The variable types and meaning are as follows:

Variable Type
D REAL %8
I INTEGERX4

the Preface.

Meaning

This variable contains the contents

The variable contains the "exponent™
as an integer value for the number

in D. It may be used to determine the
amount of the underflow or overflow.
is not the true
but what was left in the
floating point

The value in I
exponent,
exponent field of a

number after the interrupt.

Asynchronous Program interrupts are described in the X
appropriate principles of operation publiction, as listed in

The user exit routine may supply an alternate answer for the

setting of the result register. This is accomplished by

Appendix D. Extended Error Handling Subroutines

232

placing a value for D in the user-exit routine. Although the
interrupt may be caused by a long or short floating-point
operation, the user-exit routine need not be concerned with
this. The user-exit routine should always set a REALx16
variable and the FORTRAN library will load the correct length
data item depending upon the floating-point operation that
caused the interrupt.

4. For fleating-point divide check, the contents of the result
register is shown in the message.

5. The user-exit routine does not have the ability to change
result registers after a fixed-point divide check. The
boundary alignment adjustments are informative messages, and
there is nething to alter before execution continues.

VS FORTRAN Language Reference

ot

SERVICE SUBROUTINES

{(") DVCHK SUBROUTINE

The CALL DVCHK statement tests for a divide-check exception and
returns a value indicating the existing cendition.

syntax
CALL DVCHK (3)

|
is an integer or real variable in the program unit.

The values of j returned have the fellowing meanings:

value Meaning
1 The divide-check indicater is on.
2 The divide-check indicator is off.

DUMP/PDUMP SUBROUTINE

<

The CALL DUMP/PDUMP statement dynamically dumps a specified area
of storage.

syntax
CALL [DUNP'PDUMP] (al,bl,jl,...an,bn,in)

a and b
are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either a or b can represaent the upper or lower limits of the

storage area.

i

specifies the dump format te be used.
The values that can be specified for j and their meanings are:

value Format Requested
Hexadecimal
LOGICAL*¢4
INTEGERX2
INTEGERX¢%
REAL X4
REALX8
COMPLEX%S8
COMPLEX*16
CHARACTER
REAL%16
COMPLEX%32

OOV NAUNPDUN R

[y

When a CALL DUMP statement is executed, the area requested is
dumped onto the system output data set and execution is
terminated.

When a CALL PDUMP statement is executed, the area requested is
dumped onto the system output data set and execution continues.

Appendix D. Extended Error Handling Subroutines 233

CDUMP/PCDUMP SUBROUTINE

The CALL CDUMP/PCDUMP statement dynamically dumps a specified
area of storage. :

syntax
CALL [CDUMP|PCDUMP] (al,bl,...an,bn)

a and b
are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either a or b can represent the upper or lower limits of the

storage area.

The dump is always produced in character format.

EXIT SUBROUTINE

The CALL EXIT statement terminates execution of the load module or
phase and returns control to the operating system.

syntax
CALL EXIT

CALL EXIT performs a function similar to that of the STOP
statement, except that no operator message is produced.

OPSYS SUBROUTINE (DOS ONLY)

The CALL OPSYS statement loads the overlay feature, allowing the
user to divide a program into a number of phases.

syntax
CALL OPSYS('LOAD','phasename"')

LOAD
is required to be entered as shouwn.

'phasename’
specifies the name of the phase to be loaded. The phase must
be in the core image library.

the 'phasename' must be specified in eight alphameric characters.
If fewer than eight characters are specified, the name should be
left-adjusted within the field and padded on the right with
blanks. Alternatively, the name of the phase may be specified as a
variable or in an array.

OVERFLHW SUBROUTINE

234

The CALL OVERFLW statement tests for exponent overflow or
underflow, and returns a value indicating the existing condition.

syntax
CALL OVERFLW (1)

is an integer or real variable defined within this program
unit. ;

VS FORTRAN Language Reference

The values of j returned have the following meanings:

value Meaning
1 Floating-point overflow occurred last.
2 No overflouw or underflow condition is current.
3 Floating-point underflow occurred last.

Note: The values for 1 and 3 indicate the last one to occur; if
the same statement causes an overflow followed by an underflow the
value returned is 3 (underflow occurred last).

Appendix D. Extended Error Handling Subroutines 235

APPENDIX E. EBCDIC AND ASCII CODES

EBCDIC refers to IBM EBCDIC code point ordering for the 256 character set.

150 8 bit refers to 150 2022 code point ordering for the 256 character set.

ASCII 7 bit refers to ANSI X3.4-1977 code point ordering for the 128 character set.
ASCII 6 bit refers to ANSI X3.32-1973 code point ordering for the 64 character set.
The column used for the lexical intrinsic functions is ASCII 7 bit.

The blank character to be used to extend character strings for the intrinsic functions
LGE, LGT, LLE, and LLT is the ASCII blank (HEX 20).

Note 1: This position does not exist in ANSI X3.4-1977 for 7-bit code.
Note 2: This position does not exist in ANSI X3.32-1973 for 6-bit code.
Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
. ICHAR Control ICHAR ICHAR ICHAR
00] NUL Null 0 0 Note 2
01 1 SOH Start of heading S | 1 Note 2
02 2 STX Start of text 2 2 Note 2
03 3 ETX End of text 3 3 Note 2
04 4 SEL Select 156 Note 1 Note 2
05 5 HT Horizontal Tab 9 9 Note 2
06 6 RNL Reguired new line 134 Note 1 Note 2
07 7 DEL Delete 127 127 Note 2
08 8 GE Graphic Escape 151 Note 1 Note 2
09 9 SPS Superscript 141 Note 1 Note 2
0A 10 RPT Repeat 142 Note 1 Note 2
0B 11 VT Vertical Tab 11 11 Note 2
0C 12 FF Form Feed 12 12 Note 2
0D 13 CR Carriage Return 13 13 Note 2
0E 14 S0 Shift out 14 14 Note 2
OF 15 S1 Shift in 15 15 Note 2
190 16 DLE Data link escape 16 16 Note 2
11 17 DC1 Device control 1 17 17 Note 2
12 18 DC2 Device control 2 18 18 Note 2
13 19 DC3 Device control 3 19 19 Note 2
14 20 RES Restore 157 Note 1 Note 2
ENP Enable presentation
15 21 NL New line 133 Note 1 Note 2
acknowledgement
16 22 BS Backspace 8 8 Note 2
17 23 POC Program-operator 135 Note 1 Note 2
communication
18 24 CAN Cancel 24 24 Note 2
19 25 EM End of Medium 25 25 Note 2
1A 26 UBS Unit backspace 146 Note 1 Note 2
1B 27 cul Customer use 1 143 Note 1 Note 2
1C 28 IFS Interchange file 28 28 Note 2
separator
1D 29 IGS Interchange group 29 29 Note 2
separator

236 VS FORTRAN Language Reference

G

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or ' for for for
ICHAR Control ICHAR ICHAR ICHAR
1E 30 IRS Interchange record 30 30 Note 2
separator
1F 31 IUS Interchange unit 31 31 Note 2
separator
ITB Intermediate trans.
block
20 32 DS Digit select 128 Note 1 Note 2
21 33 S0S Start of 129 Note 1 Note 2
significance
22 34 FS Field separator 130 Note 1 Note 2
23 35 WUS Word underscore 131 Note 1 Note 2
2% 36 BYP Bypass 132 Note 1 Note 2
INP Inhibit presentation
25 37 LF Line feed 10 10 Note 2
26 38 ETB End of trans. block 23 23 Note 2
27 39 ESC Escape 27 27 Note 2
28 40 Reserved 136 Note 1 Note 2
29 41 Reserved 137 Note 1 Note 2
2A 42 SM, SW Set mode, Suwitch 138 Note 1 Note 2
2B 43 FMT Format 139 Note 1 Note 2
2C 44 Reserved 140 Note 1 Note 2
2D 45 ENQ Enquiry 5 5 Note 2
2E 46 ACK Acknouwledge 6 6 Note 2
2F 47 BEL Bell 7 7 Note 2
30 48 Reserved 144 Note 1 Note 2
31 49 Reserved 145 Note 1 Note 2
32 50 SYN Svynchronous 22 22 Note 2
33 51 IR Index 147 Note 1 Note 2
34 52 PP Presentation position 148 Note 1 Note 2
35 53 TRN Transparent 149 Note 1 Note 2
36 54 NBS Numeric backspace 150 Note 1 Note 2
37 55 EOT End of transmission 4 4 Note 2
38 56 SBS Subscript 152 Note 1 Note 2
39 57 IT Indent 153 Note 1 Note 2
3A 58 RFF Required 154 Note 1 Note 2
3B 59 Cu3 Customer use 3 155 Note 1 Note 2
3C 60 DC4 Device code 4 20 20 Note 2
3D 61 NAK Negative acknowledge 21 21 Note 2
3E 62 Reserved 158 Note 1 Note 2
3F 63 SUB Substitute 26 26 Note 2
40 64 SP Space 32 32 0
41 65 RSP Required space 160 Note 1 Note 2
42 66 161 Note 1 Note 2
43 67 162 Note 1 Note 2
44 68 163 Note 1 Note 2
45 69 164 Note 1 Note 2
46 70 165 Note 1 Note 2
47 71 166 Note 1 Note 2
48 72 167 Note 1 Note 2
49 73 168 Note 1 Note 2
GA 74 ¢ Cent sign 91 91 59
4B 75 . Period, decimal point 46 46 14
4C 76 < Less-than sign 60 60 28
4D 77 (Left parenthesis 40 40 8
4E 78 + Plus sign 43 43 11
4F 79 | togical OR 33 33 1

Appendix E. EBCDIC and ASCII Codes

237

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR ICHAR ICHAR
50 80 & Ampersand 38 38 6
51 81 169 Note 1 Note 2
52 82 17¢ Note 1 Note 2
53 83 171 Note 1 Note 2
54 84 172 Note 1 Note 2
55 85 173 Note 1 Note 2
56 86 174 Note 1 Note 2
57 87 175 Note 1 Note 2
58 88 176 Note 1 Note 2
59 89 177 Note 1 Note 2
5A 90 ! Exclamation point 93 93 61
5B 91 $ Currency symbol 36 36 4
5C 92 * Asterisk 42 42 10
5D 93) Right parenthesis 41 61 9
S5E 94 ; Semicolon 59 59 27
5F 95 - Logical NOT 94 94 62
60 96 - Minus sign, Hyphen 45 45 13
61 97 / Slash 47 47 15
62 98 178 Note 1 Note 2
63 99 179 Note 1 Note 2
64 100 180 Note 1 Note 2
65 101 181 Note 1 Note 2
66 102 182 Note 1 Note 2
67 103 183 Note 1 Note 2
68 104 184 Note 1 Note 2
69 105 185 Note 1 Note 2
6A 106] Vertical line 124 124 Note 2
6B 107 ’ Comma 44 44 12
6C 108 % Percent sign 37 37 5
6D 109 - Underscore 95 95 63
6E 110 > Greater-than sign 62 62 30
6F 111 ? Question mark 63 63 31
70 112 186 Note 1 Note 2
71 113 187 Note 1 Note 2
72 114 188 Note 1 Note 2
73 115 189% Note 1 Note 2
74 116 190 Note 1 Note "2
75 117 191 Note 1 Note 2
76 118 192 Note 1 Note 2
77 119 193 Note 1 Note 2
78 120 194 Note 1 Note 2
79 121 GRA Grave accent 96 96 Note 2
74 122 : Colon 58 58 26
7B 123 # Number sign 35 35 3
7C 124 3 At sign 64 64 32
7D 125 ' Prime, Apostrophe 39 39 7
7€ 126 = Equal sign 61 61 29
7F 127 " Quotation marks 34 34 2
80 128 195 Note 1 Note 2
81 129 a Lower case a 97 97 Note 2
82 130 b Lower case b 98 98 Note 2
83 131 c Lower case ¢ 99 99 Note 2
84 132 d Lower case d 100 100 Note 2
85 133 e Lower case e 101 101 Note 2
86 134 f Lower case f 102 102 Note 2
87 135 g Lower case g9 103 103 Note 2
88 136 h Lower case h 104 104 Note 2
89 137 i Lower case i 105 105 Note 2
8A 138 196 Note 1 Note 2
8B 139 197 Note 1 Note 2
238 VS FORTRAN Language Reference

AN f }

TN
« })?

©

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or . for for for
ICHAR Control ICHAR ICHAR ICHAR
8C 140 198 Note 1 Note 2
8D 141 199 Note 1 Note 2
8E 142 200 Note 1 Note 2
8F 143 201 Note 1 Note 2
90 144 202 Note 1 Note 2
91 145 3 Lower case j 106 106 Note 2
92 146 k Lower case k 107 107 Note 2
93 147 1 Lower case 1 108 108 Note 2
94 148 m Lower case m 109 109 Note 2
95 149 n Lower case n 110 110 Note 2
96 150 o Lower case o 111 111 Note 2
97 151 P Lower case p 112 112 Note 2
98 152 q Lower case q 113 113 Note 2
99 153 r Lower case r 114 114 Note 2
9A 154 203 Note 1 Note 2
9B 155 204 Note 1 Note 2
9C 156 205 Note 1 Note 2
9D 157 206 Note 1 Note 2
9E 158 207 Note 1 Note 2
9F 159 208 Note 1 Note 2
AO 160 209 Note 1 Note 2
Al 161 TIL Tilde 126 126 Note 2
A2 162 5 Lower case s 115 115 Note 2
A3 163 t Lower case t 116 116 Note 2
A4 164 u Lower case u 117 117 Note 2
A5 165 v Lower case v 118 118 Note 2
A6 166 W Lower case w 119 119 Note 2
A7 167 x Lower case x 120 120 Note 2
A8 168 Y Lower case y 121 121 Note 2
A9 169 2 Lower case 2z 122 122 Note 2
AA 170 210 Note 1 Note 2
AB 171 211 Note 1 Note 2
AC 172 212 Note 1 Note 2
AD 173 213 Note 1 Note 2
AE 174 214 Note 1 Note 2
AF 175 215 Note 1 Note 2
BO 176 216 Note 1 Note 2
Bl 177 217 Note 1 Note 2
B2 178 218 Note 1 Note 2
B3 179 219 Note 1 Note 2
B4 180 220 Note 1 Note 2
B5 181 221 Note 1 Note 2
B6 182 222 Note 1 Note 2
B7 183 223 Note 1 Note 2
B8 184 224 Note 1 Note 2
B9 185 225 Note 1 Note 2
BA 186 226 Note 1 Note 2
BB 187 227 Note 1 Note 2
BC 188 228 Note 1 Note 2
BD 189 229 Note 1 Note 2
BE 190 230 Note 1 Note 2
BF 191 231 Note 1 Note 2
Cco 192 { Opening brace 123 123 Note 2
Cl 193 A Upper case A 65 65 33
Cc2 194 B Upper case B 66 66 34
Cc3 195 C Upper case C 67 67 35
C4 196 D Upper case D 68 68 36
C5 197 E Upper case E 69 69 37
Cé 198 F Upper case F 70 70 38
c7 199 G Upper case G 71 71 39

Appendix E.

EBCDIC and ASCII Codes

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR ICHAR ICHAR
c8 200 H Upper case H 72 72 40
C9 201 I Upper case I 73 73 41
CA 202 232 Note 1 Note 2
CB 203 233 Note 1 Note 2
ccC 204 234 Note 1 Note 2
CcD 205 235 Note 1 Note 2
CE 206 236 Note 1 Note 2
CF 207 237 Note 1 Note 2
Do 208 } Closing brace 125 125 Note 2
D1 209 J Upper case J 74 74 42
D2 210 K Upper case K 75 75 43
D3 211 L Upper case L 76 76 44
D4 212 M Upper case M 17 17 45
D5 213 N Upper case N 78 78 46
D6 214 0 Upper casa 0 79 79 47
D7 215 P Upper case P 80 80 48
D8 216 Q Upper case Q 81 81 49
D9 217 R Upper case R 82 82 50
DA 218 238 Note 1 Note 2
DB 219 239 Note 1 Note 2
DC 220 240 Note 1 Note 2
DD 221 241 Note 1 Note 2
DE 222 242 Note 1 Note 2
DF 223 ‘243 Note 1 Note 2
EO 224 \ Reverse slant 92 92 60
El 225 159 Note 1 Note 2
E2 226 S Upper case S 83 83 51
E3 227 T Upper case T 84 84 52
E4 228 U Upper case U 85 85 53
ES 229 v Upper case V 86 86 56
E6 230 W Upper case W 87 87 55
E7 231 X Upper case X 88 88 56
E8 232 Y Upper case Y 89 89 57
ES 233 Z Upper case 2 90 90 58
EA 234 244 Note 1 Note 2
EB 235 245 Note 1 Note 2
EC 236 246 Note 1 Note 2
ED 237 247 Note 1 Note 2
EE 238 248 Note 1 Note 2
EF 239 249 Note 1 Nota 2
FO 240 0 Zero %8 48 16
Fl 241 1 One 49 49 17
F2 2642 2 Two 50 50 18
F3 243 3 Three 51 51 19
F& 244 4 Four 52 52 20
F5 245 5 Five 53 53 21
Fé 246 6 Six 54 54 22
F7 247 7 Seven 55 55 23
F8 248 8 Eight 56 56 2%
F9 249 9 Nine 57 57 25
FA 250 | Long vertical mark 250 Note 1 Note 2
FB 251 251 Note 1 Note 2
FC 252 252 Note 1 Note 2
FD 253 253 Note 1 Note 2
FE 254 254 Note 1 Note 2
FF 255 EO Eight ones 255 Note 1 Note 2
240 VS FORTRAN Language Reference

O

C

13

GLOSSAR

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standarization (1S0).

An asterisk (%) to the left of a term
indicates that the entire entry is
reproduced from the American National
Dictionary for Information Processing,
copvright 1977 by the Computer and
Business Equipment Manufacturers
Association, copies of which may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018.

An asterisk (¥) to the right of an item
number indicates an ANSI definition in an
entry that also includes other
definitions.

The symbol "(IS0)" at the beginning of a
definition indicates that it has been
discussed and agreed upon at meetings of
the International Organization for
Standardization Technical Committee
97/Subcommittee 1 (Data Processing
Vocabulary), and has also been approved
by ANSI and included in the American
National Dictionary for Information

Processing.

alphabetic character. A character of the
set A, B, C,...,Z. See also "letter."

[IBM EXTENSION - 1

In VS FORTRAN, the currency symbol ($)
is considered an alphabetic character.

L———— END OF IBM EXTENSION —m8m

alphameric. Pertaining to a character
set that contains letters, digits, and
other characters, such as punctuation
marks.

alphameric character set. A character
set that contains both letters and digits
and also contains control characters,
special characters, and the space
character.

argument. A parameter passed between a
calling program and a SUBROUTINE
subprogram, a FUNCTION subprogram, or a
statement function.

arithmetic constant. A constant of type
integer, real, double precision, or
complex.

arithmetic expression. One or more
arithmetic operators and/or arithmetic
primaries, the evaluation of which
produces a numeric value. An arithmetic
expression can be an unsignhed arithmetic

constant, the name of an arithmetic
constant, or a reference to an arithmetic
variable, array element, or function
reference, or a combination of such
primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that
directs VS FORTRAN to perform an
arithmetic operation. The arithmetic
operators are:

+ addition

- subtraction

¥ multiplication
/ division

¥* % exponentiation.

array. An ordered set of data items
identified by a single name.

array declarator. The part of a
statement that describes an array used in
a program unit. It indicates the name of
the array, the number of dimensions it
contains, and the size of each dimension.
An array declarator may appear in a
DIMENSION, COMMON, or explicit type
statement.

array element. A data item in an array,
identified by the array name followed by
a subscript indicating its position in
the array.

array name. The name of an ordered set of
data items that make up an array.

assignment statement. A statement that
assigns a value to a variable or array
element. It is made up of a variable or
array element, followed by an equal sign
(=), followed by an expression. The
variable, array element, or expression
can be character, logical, or arithmetic.
When the assignment statement is
executed, the expression to the right of
the equal sign replaces the value of the
variable or array element to the left.

basic real constant. A string of decimal
digits containing a decimal point, and
expressing a real value.

blank common. An unnamed common block.

character constant. A string of one or
more alphameric characters enclosed in
apostrophes. The delimiting apostrophes
are not part of the constant.

character expression. An expression in
the form of a single character constant,
variable, array element, substring,
function reference, or another
expression enclosed in parentheses. A
character expression is always of type
character.

Glossary 241

character type. A data type that can
consist of any alphameric characters; in
storage, one byte is used for each
character.

common block. A storage area that may be
referred to by a calling program and one
or more subprograms.

complex constant. An ordered pair of real
or integer constants separated by a comma
and enclosed in parentheses. The first
real constant of the pair is the real
part of the complex number; the second is
the imaginary part.

complex type. An approximation of the
value of a complex number, consisting of
an ordered pair of real data items
separated by a comma and enclosed in
parentheses. The first item represents
the real part of the complex number; the
second represents the imaginary part.

connected file. A file that has been
connected to a unit and defined by a
FILEDEF command or by job control
statements.

constant. An unvarying quantity. The
four classes of constants specify numbers
(arithmetic), truth values (logical),
character data (character), and
hexadecimal data.

control statement. Any of the statements
used to alter the normal sequential
execution of FORTRAN statements, or to
terminate the execution of a FORTRAN
program. FORTRAN control statements are
any of the forms of the GO T0, IF, and DO
statements, or the PAUSE, CONTINUE, and
STOP statements.

data. (1)% (ISO) A representation of
facts or instructions in a form suitable
for communication, interpretation, or
processing by human or automatic means.
(2) In FORTRAN, data includes constants,
variables, arrays, and character
substrings.

data item. A constant, variable, array
element, or character substring.

data set. The major unit of data storage
and retrieval consisting of data
collected in one of several prescribed’
arrangements and described by control
information to which the system has
access.

data set reference number. A constant or
variable in an input or output statement
that identifies a data set to be
processed.

data type. The properties and internal
representation that characterize data
and functions. The basic types are
integer, real, complex, logical, double
precision, and character.

242 VS FORTRAN Language Reference

% digit. (ISO) A graphic character that
represents an integer. For example, one

of the characters 0 to 9. ﬂﬁz@
W
DO loop. A range of statements executed T

repetitively by a DO statement See also
"range of a DO.™

double precision. The standard name for
real data of storage length 8.

DO variable. A variable, specified in a >
D0 statement, that is initialized or
incremented prior to each execution of

the statement or statements within a DO

range. It is used to control the number

of times the statements within the range

are executed. See also "range of a DO."

dummy argument. A variablie within a
subprogram or statement function
definition with which actual arguments
from the calling program or function
reference are positionally associated.
Dummy arguments are defined in a
SUBROUTINE or FUNCTION statement, or in a
statement function definition.

executable program. A program that can be
executed as a self-contained procedure.
It consists of a main program and,
optionally, one or more subprograms or
non-FORTRAN-defined external procedures,
or both.

executable statement. A statement that

causes an action to be taken by the e
program; for example, to calculate, to K(jﬁ
test conditions, or to alter the flow of B
control.

existing file. A file that has been
defined by a FILEDEF command or by job
control statements.

expression. A notation that represents a
value: a constant or a reference
appearing alone, or combinations of
constants and/or references with
operators. An expression can be
arithmetic, character, logical, or
relational.

external file. A set of related external
records treated as a unit; for example,
in stock control, an external file would
consist of a set of invoices.

external function. A function defined
ggtside the program unit that refers to
it.

external procedure. A SUBROUTINE or
FUNCTION subprogram written in FORTRAN.

file. A set of records. If the file is
located in internal storage, it is an
internal file; if it is on an
input/output device, it is an external
file.

BN
file definition statement. A statement .@;ﬂ
that describes the characteristics of a ‘ 4!
file to a user program. For example, the

057/VS DD statement or DOS/VSE ASSGN

statement for batch processing, or the
FILEDEF command for CMS processing.

file reference. A reference within a
program to a file. It is specified by a
unit identifier.

formatted record. (1) A record,
described in a FORMAT statement, that is
transmitted, when necessary with data
conversion, between internal storage and
internal storage or to an external
record. (2) A record transmitted with
list-directed READ or WRITE statements
and an EXTERNAL statement.

FORTRAN-supplied procedure. See
"intrinsic function.”

function reference. A source program
reference to an intrinsic function, to an
external function, or to a statement
function.

function subprogram. A subprogram
invoked through a function reference, and
headed by a FUNCTION statement. It
returns a value to the calling program
unit at the point of reference.

———— IBM EXTENSION 1

hexadecimal constant. A constant that
is made up of the character Z follouwed
by two or more hexadecimal digits.

L——— END OF IBM EXTENSION ——mm—

hierarchy of operations. The relative
order used to evaluate expressions
containing arithmetic, logical, or
character operations.

implied DO. An indexing specification
(similar to a DO statement, but without
specifying the word D0) with a list of
data elements, rather than a set of
statements, as its range. In a DATA
statement the list can contain integer
constants or expressions containing
integer constants. In input/output
statements the list can contain integer,
real, or double precision arithmetic
expressions.

integer constant. A string of decimal
digits containing no decimal point and
expressing a whole number.

integer expression. An arithmetic
:xpression whose values are of integer
ype.

integer type. An arithmetic data type
capable of expressing the value of an
integer. It can have a positive,
negative, or zero value. It must not
include a decimal point.

internal file. A set of related internal
records treated as a unit.

intrinsic function. A function, supplied
by VS FORTRAN, that performs mathematical
or character operations.

¥ I/70. Pertaining to either input or
output, or both.

I/0 list. A list of variables in an input
or output statement specifying which data
is to be read or which data is to be
written. An output list may also contain
a constant, an expression involving
operators or function references, or an
expression enclosed in parentheses.
labeled common. See "named common."
length specification. A source language
specification of the number of bytes to
be occupied by a variable or an array
element.

letter. A symbol representing a unit of
the alphabet.

list-directed. An input/output
specification that uses a data list
instead of a FORMAT specification.

logical constant. A constant that can
have one of two values: true or false.

logical expression. A combination of
logical primaries and logical operators.
A logical expression can have one of two
values: true or false.

logical operator. Any of the set of”
operators .NOT. (negation), .AND.
(connection: both), or .OR. (inclusion:
either or both), .EQV. (equal), .NEQV.
(not equal).

logical primary. A primary that can have
the value true or false. See also
"orimary."

logical type. A data type that can have
the value true or false for VS FORTRAN.
See also "data type.™

looping. Repetitive execution of the
same statement or statements. Usually
controlled by a D0 statement.

main program. A program unit, required
for execution, that can call other
program units but cannot be called by
them.

name. A string of from one through six
alphameric characters, the first of which
must be alphabetic. Used to identify a
constant, a variable, an array, a
function, a subroutine, or a common
block.

named common. A separate common block
consisting of variables, arrays, and
array declarators, and given a name.

nested DO. A DO statement whose range is
entirely contained within the range of
another DO statement.

nonexecutable statement. A statement

that describes the characteristics of the
program unit, of data, of editing

Glossary 2643

information, or of statement functions,
but does not cause an action to be taken
by the program.

nonexisting file. A file that has not
been defined by a FILEDEF command or by
job control statements.

¥ numeric character.
digit.

(I150) Synonym for

numeric constant. A constant that
expresses an integer, real, or complex
number.

preconnected file. A unit or file that
was defined at installation time.

However, a preconnected file does not
exist for a program if the file is not

dafined by a FILEDEF command or by job

control statements.

predefined specification. The implied
tvpe and length specification of a data
item, based on the initial character of
its name in the absence of any
specification to the contrary. The
initial characters I-N type data items as
integer; the initial characters A-H, 0-2,
and $§ type data items as real. No other
data types are predefined. For VS
FORTRAN, the length for both types is &
bytes.

primary. An irreducible unit of data; a
single constant, variable, array
element, function reference, or
expression enclosed in parentheses.

procadure. A sequenced set of statements
that may be used at one or more points in
one or more computer programs, and that
usually is given one or more input
parameters and returns one or more output
parameters. A procedure consists of
subroutines, function subprograms, and
intrinsic functions.

procedure subprogram. A function or
subroutine subprogram.

program unit. A sequence of statements
constituting a main program or
subprogram.

ranga of a DO. Those statements that
physically follow a DO statement, up to
and including the statement specified by
the DO statement as being the last to be
executed; also called a "DO loop."

real constant. A string of decimal digits
that expresses a real number. A real
constant must contain either a decimal
point or a decimal exponent and may
contain both.

real type. An arithmetic data type,
capable of approximating the value of a
real number. It can have a positive,
negative, or zero value.

record. A collection of related items of
data treated as a unit.

2664 VS FORTRAN Language Reference

relational exprassion. An expression

that consists of an arithmetic

expression, followed by a relational

operator, followed by another arithmetic @mbx
expression or a character expression, =
followed by a relational operator, '
followed by another character

expression. The result is a value that is

true or false.

relational operator. Any of the set of
operators:

.GT. greater than

.GE. greater than or equal to
AT, less than

.LE. less than or equal to
.EQ. equal to

.NE. not equal to

scale factor. A specification in a FORMAT
statement that changes the location of
the decimal point in a real number (and,
on input, if there is no exponent, the
magnitude of the number).

specification statement. One of the set
of statements that provides the compiler
with information about the data used in
the source program. In addition, the
statement supplies the information
required to allocate data storage.

specification subprogram. A subprogram

headed by a BLOCK DATA statement and used

to initialize variables in named common

blocks. AN

statement. The basic unit of a FORTRAN)
program, that specifies an action to be o
performed, or the nature and

characteristics of the data to be

processed, or information about the

program itself. Statements fall into two

broad classes: executable and

nonexecutable.

statement function. A name, followed by a
list of dummy arguments, that is equated
to an arithmetic, logical, or character
expression. In the remainder of the
program the name can be used as a
substitute for the expression.

statement function definition. A

statement that defines a statement

function. Its form is a name, followed by

a list of dummy arguments, followed by an

equal sign (=), followed by an -
arithmetic, logical, or character

expression.

statement function reference. A
reference in an arithmetic, logical, or
character expression to the name of a
previously defined statement function.

statement label. See "statement

number."

statement numbher. A number of from one

through five decimal digits that is used d;@
to identify a statement. Statement

numbers can be used to transfer control,

to define the range of a DO, or to refer
to ‘a FORMAT statement.

subprogram. A program unit that is
invoked by another program unit in the
sama program. In FORTRAN, a subprogram
has a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement.

subroutine subprogram. A subprogram
whose first statement is a SUBROUTINE
statement. It optionally returns one or
mor: parameters to the calling program
unit.

% subscript. (1) (IS0) A symbol that is
associated with the name of a set to
identify a particular subset or element.

(2) A subscript quantity or set of
subscript quantities, enclosed in
parentheses and used with an array name
to identify a particular array element.

subscript quantity. A component of a
subscript: an integer constant, an
integer variable, or an expression
evaluated as an integer constant.

——— IBM EXTENSION 1

In VS FORTRAN, a subscript quantity may
also be a real constant, variable, or
expression.

L———— END OF IBM EXTENSION ~—m

type declaration. The explicit
specification of the type of a constant,
variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is
transmitted unchanged between internal
storage and an external record.

unit. A means of referring to a file in
order to use input/output statements. A
unit can be connected or not connected to
a file. If connected, it refers to a
file. The connection is symmetric: that
is, if a unit is connected to a file, the
file is connected to the unit.

unit identifier. The number that
specifies an external unit.

1. An integer expression whose value
must be zero or positive. For VS
FORTRAN, this integer value of length
% must correspond to a DD name, a
FILEDEF name, or an ASSGN name.

2. An asterisk (¥) that corresponds on
input to FTO05F001 and on output to
FTO06F001.

3. The name of a character array,
character array element, or
character substring for an internal
file.

variable. (1) ¥ A quantity that can
assume any of a given set of values.

(2) A data item, identified by a name,
that is not a named constant, array, or
array element, and that can assume
different values at different times
during program execution.

Glossary 245

special Characters

(period) 8
(ellipsis) 2

(plus sign) 8
(currency symbol) 8
(asterisk) 8

WRITE statement 195
(minus sign or hyphen) 7, 8
(slash) 8

(comma) 8

) (parentheses) 8
(colon) 8
] (brackets) 2
(apostrophe) 8

(equal sign) 8
(quotation mark) 6, 8

KO do o

T wrmee e \ |

A

A format code 102
ACCESS=
INQUIRE by file name 125
INQUIRE by unit number 127
OPEN statement 134
actual argument 22
in a function subprogram 113
in a subroutine subprogram 173
in an ENTRY statement 82
alphabetic character 7
See also letter
definition 241
alphabetic primary
See primary
alphameric character set 7
definition 241
alphameric, definition 241
alternate return specifier 83
alternative paths of execution 117
ANS FORTRAN features 208-214
ANSI definitions 241
apostrophe 8
argument
actual 82, 173
definition 241
dummy 82, 174
arithmetic assignment statement 47
conversion rules (complex) 49
conversion rules (integer or
real) 48
valid statements 51-52
arithmetic constant
See also digit
complex 15
definition 241
integer 12
primary 26
‘real 13
arithmetic expression 25
definition 241
rules for constructing 26
tvpe and length of (complex) 31
type and length of (integer) 29
type and length of (real) 30

use of parentheses in 28
arithmetic IF statement 117
arithmetic operation 27

addition 26, 27

division 26, 27

evaluation of functions 27

exponentiation 26, 27

first operand is complex 28

first operand is integer 28

first operand is real 28

multiplication 26, 27

subtraction 26, 27

unary minus 26

unary plus 26
arithmetic operator 26

definition 241

operations involving 37
array

actual argument 22

definition 241

dimension bounds 22

DIMENSION statement 71

dimensions of 71

dummy argument 23

size and type declaration 22, 23

subscripts 21
array declarator

definition 22, 241
array element 20

definition 241

invalid 22

valid 21
array name

definition 241

DIMENSION statement 71

READ statement 147

WRITE statement 182
ASCII codes 236-240
assign a name to a constant 138
assign a name to a main program 141
assign a number to a variable 46
ASSIGN statement 46
assigned GO TO statement 115
assignment statement 47

arithmetic 47

ASSIGN statement 66

character 67

definition 2641

logical 47
associate actual with dummy argument
asterisk 8

READ statement 150

WRITE statement 195
asynchronous READ statement 143
asynchronous WRITE statement 179
AT statement 53

in debug packet 68, 69

BACKSPACE statement 54
invalid statements 54
valid statements 54

basic real constant 13
definition 261

begin debug packet 53

Index

58

247

blank 8
format coda 106
FORMAT statement 105
INQUIRE by file name 125
INQUIRE by unit number 127
blank common 63
and named common 63
definition 63, 241
BLANK=
INQUIRE by file name 125
INQUIRE by unit number 127
OPEN statement 134
BLOCK DATA statement 56
block data subprogram 43
block IF statement 117
ELSE 119
ELSE IF 119
END IF 118
BN format code 105
bypass statemaents 65
BZ format code 106

c

CALL CDUMP/PCDUMP statement 234
CALL DUMP/PDUMP statement 233
CALL DVCHK statement 233
CALL ERRMON statement 215
CALL ERRSAV statement 216
CALL ERRSET statement 217
CALL ERRSTR statement 219
CALL ERRTRA statement 219
CALL EXIT statement 234
CALL OPSYS statement 234
CALL OVERFLW statement 234
CALL statement 58
carrier control 92
H format code 103
T format code 104
CDUMP/PCDUMP subroutine 234
character array element
READ statement 146
WRITE statement 181
character array name
READ statement 147
WRITE statement 182
character assignment statement 47
character constant 16
definition 16, 241
READ statement 146
valid 17
WRITE statement 181
character constant transmission 103
character data transmission 102
character expression 33
definition 241
READ statement 147
use of parentheses in 33
WRITE statement 182
character functions 204
character manipulation routines 207
character operator 33
operations involving 37
character skipping 103
character substring 2%
reference 2%
variable 24
character type 82, 122
definition 242
CHARACTER type statement 85
character variable
storage length 19

248 VS FORTRAN Language Reference.

substring 24
CLOSE statement 59

examples 60 %z\‘
colon 8 &
colon format code 106, 107 i
comma
comments

fixed-form 5, 61

free-form 6, 61
common block 56

definition 242
COMMON statement 62 .
compiler-directed statement 44

EJECT 76

INCLUDE 124
compiler, executingon 1
complex constant 15 '
definition 15, 242
invalid 16
valid 15
complex data requirements 92
complex type 85, 122
definition 2642
COMPLEX type statement 85
complex variable
storage length 19
computed GO T0 statement 116
COND=
WAIT statement 176
connect a file to unit 134
connected file 126
definition 242
formatted READ—direct access 148
formatted READ—sequential
access 151
formatted WRITE—sequential
access 186
READ with list~-directed I/0 161
READ with NAMELIST 162
unformatted READ—direct access 154
unformatted READ—sequential
access 156
unformatted WRITE—direct access 189
WRITE with list-directed Iv0 196
WRITE with NAMELIST 198
constant 11
arithmetic 11
assign a name to 138
character 16
complex 15
definition 242
hexadecimal 17
Hollerith 17
integer 12
logical 16
real 13
continuation line
fixed-form 5
free-form 7
continue a DO loop 65
CONTINUE statement 65
continued lina 7
free-form 7
control statement 41
assigned GO TO0 115
CALL 58
computed GO TO 116
CONTINUE 65
definition 242
po 73 ,
END statement 77 .ﬂi‘
GO T0 115 § W%
IF 117 r
PAUSE 139
RETURN 164

.(“\
£
ek

STOP 172

unconditional GO TO 116
conversion rules 48
corrective action

after error 223

after mathematical subroutine

error 226-230

after program interrupt 232
create a file 134
create a preconnected file 134
currency symbol 8

IMPLICIT statement 122

D

D format code 96
data 11
definition 242
data item, definition 242
data set
reference number, definition
data set, definition 242
DATA statement 42, 66
character data in 66
implied DO in 74
data transfer 104
data type, definition 242
debug a program 68
debug packet 69
DEBUG statement 42, 68
AT statement 53, 69
DISPLAY statement 69, 72
END DEBUG statement 69, 78
examples 70
TRACE OFF statement 69, 175
TRACE ON statement 69, 175
decimal point in format codes 93
declaration of type 20
default options 223
define values of
array elements 66, 85
arrays 66, 85
substrings 66
variables 66, 85
definitions 241, 245
digit 8
definition 242
dimension bound, lower 22
DIMENSION statement 71
explicit statement 86
dimension bound, upper 22
DIMENSION statement 71
explicit statement 86
DIMENSION statement 71
direct access files 135
direct access input/output 129
INQUIRE statement 126, 128
direct access READ statement
formatted 146
unformatted 153
direct access WRITE statement
formatted 181
unformatted 188
DIRECT=
INQUIRE by file name 126
INQUIRE by unit number 128
disconnect an external file 59
display data in NAMELIST format
DISPLAY statement 72
in debug packet 69
DO list 66
DO loop 69, 73

See also range of a DO
definition 242

D0 statement 73
DO variable

definition 242
implied in DATA statement 74
implied in input/output statement

double precision 19

constant 15

data editing 96
definition 242
storage length 19
type 85, 122

DOUBLE PRECISION type statement 85
DP assign 50

DP extend 50

DP float 50

dummy argument 23, 113

definition 242

in @ function subprogram 113
in a subroutine subprogram 174
in an ENTRY statement 82

dummy procedure name 111
DUMP/PDUMP subroutine 233
DVCHK subroutine 233

E format code 96

EBCDIC codes 236, 240

editing double precision data 96
editing integer data 95

editing real data 96, 97

EJECT statement 76

ELSE IF statement 119

ELSE statement 119

end a program 77

END DEBUG statement 78

in debug packet 69

END IF statement 118
END statement 77

in a function subprogram 77
in a subroutine subprogram 77

END=

READ statement 150

ENDFILE statement 79

invalid 79
valid 79

ENTRY statement 81

actual arguments in 82
valid 82

equal sign 8
EQUIVALENCE statement 84

valid 84

ERR=

BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by file name 125
INQUIRE by unit number 128
OPEN statement 134

READ statement 147

REWIND statement 166
WRITE statement 182

ERRMON subroutine 215

error detected 128

error handling subroutines 215-235
error, corrective action after 223
ERRSAV subroutine 216

ERRSET subroutine 217

ERRSTR subroutine 219

ERRTRA subroutine 219

Index

76

249

evaluate actual argument 58
examples of numeric format codes 99
executable program. 9
definition 4, 242
executable statement 19
definition &, 242
execute a set of statements 73
execution-time cautions 202
execution-time library 1
EXIST=
INQUIRE by file name 126
INQUIRE by unit number 128
existence of unit 128
existing file
definition 242
INQUIRE statement 125
OPEN statement 134
EXIT subroutine 234
explicit type statement 85
CHARACTER typengas

COMPLEX type 85
DOUBLE PRECISION type 85
INTEGER type 85
LOGICAL type 85
REAL type 85
valid 88

exponential routines 205

expression 25
arithmetic 25
character 33
definition 242
evaluation of 25
examples 26
logical 35, 37, 38
relational 34
type of primary in 26

extended error handling

subroutines 215, 235

extensions, IBM, documentation of 3

external 135
function name 81
function, definition 242
I7/0 unit connected to 135
I/0 unit not connected to 135
procedure, definition 4, 242

external file 79, 135
definition 242
sequential 79

EXTERNAL statement 89
actual argument 89
valid 89

external unit 126

F

F format code 95
file
definition 242
definition statement, definition 242
reference, definition 243
file connected to a unit 126
FILE=
INQUIRE by file name 125
OPEN statement 134
;irst character of record 92
ix
fixed-form source statement
comments 5, 61
continuation line 5
example of 6
identification 6
initial line 5

250 VS FORTRAN Language Refarence

format notation 2

statement number 5, 171

flagger, source language 200-201
float
FMT=

READ statement 1646 q:;p
WRITE statement 181

FORM=

INQUIRE by file name 126
INQUIRE by unit number 129
OPEN statement 135

format codes

begin data transmission (T) 104
blanks, interpretation of (BN) 105

blanks, interpretation of (BZ) 106 4
character constant transmission

(H) 103
character data transmission (A) 102
character skipping (X) 103 v

colon 106, 107

double precision data editing (Q) 96
format specification reading 107
general rules 92
group format specification 104
hexadecimal data transmission (2} 99
integer data editing (I) 95
list-directed 108

logical variable transmission

(L) 102
numeric 99

plus character control (5, SP,

$S) 105

real data editing (D, E) 96

real data editing (F) 95

real data editing (G) 97
scale factor specification (P) 97
slash 106

format identifier 181

READ statement 146)
WRITE statement 181 (0
N

blanks 2

ellipsis 2

example 2

general form 2

lowercase letters and words 2
special characters 2

square brackets 2

underlined words 2

FORMAT statement 90

A code 102

BN code 105

BZ code 106

colon code 106, 107

D code 96

E code 96 ’
examples 99

F code 95

format specification reading 107

forms of 94

G code 97 ~
general rules for conversion 92

group format specification 104

H code 103
I code 95
L code 102

list-directed formatting 108
numeric code 99

P code 97
Q code 96
S code 105

slash code 106
SP code 105

S5 code 105 , q;;g
T code 104 ,
X code 103

Z code 99 definition 243

formatted input/output : Hollerith constant 17
INQUIRE statement 126, 128 _) definition 17
formatted PRINT 140 valid 17
formatted READ statement . : hyperbolic function routines 205

with direct access 146
with sequential access 150
formatted record 92
definition 243 I
INQUIRE statement 126
OPEN statement 135

formatted WRITE statement I format code 95
with direct access 181 1/0
with sequential access 185 definition 243
FORMATTED= list-directed READ statement 160
INQUIRE by file name 126 list-directed WRITE 195
INQUIRE by unit number 128 list, definition 243
forms of a FORMAT statement 94 170 list omitted from READ or WRITE 92
FORTRAN-supplied procedure 10, 204-207 IBM extensions, documentation of 3
See also intrinsic function IBM FORTRAN features 208-214
keywords 10 ID=
free-form source statement READ statement 143
comments 6, 61 WAIT statement 176
continuation line 7 WRITE statement 179
continued line 7 : identification 6
example of 7 fixed-form 6
initial line 6 identify a function subprogram 111
maximum length 7 identify statements 171
minus sign 7 identify user-supplied subprogram 89
statement number 6, 171 IF block 118
function IF statement 117
reference, definition 243 arithmetic 117
subprogram, definition 243 block 117
function reference 25 logical 120
statement function statement 169 IF-level 117
FUNCTION statement 111 IMPLICIT type statement 122
function subprogram 43 implied DO
actual arguments 113 definition 2643
definition 243 in DATA statement 74
dummy arguments 113 in PRINT statement 74
END statement 77 in READ statement 74
ENTRY statement 81 ‘ in NRITE statement 74
naming 43 INCLUDE statement 124
RETURN statement 164 }R;$rmation about file 125

DEBUG statement 68
initial line 5, 6
G fixed-form 5
free-form 6
input data, NAMELIST statement 132

G format code 97 input/output statement 42
generic function name 206 BACKSPACE 54
generic names 131 CLOSE 59
glossary 241-245 ENDFILE 79
GO0 T0 statement 115 FORMAT 90
assigned 115 implied DO 74
computed 116 INQUIRE 125
unconditional 116 OPEN 134
group format nesting 93 PRINT 140
group format specification 104 READ 142
REWIND 166
- ' WAIT 176
WRITE 178
H input/output unit 135

connected to external file 135
not connected to external file 135

H format code 103 PRINT statement 74
hexadecimal constant 17 READ statement 74
definition 17, 243 WRITE statement 74
valid 17 INQUIRE statement 125
hexadecimal data transmission 99 by file name 125
hierarchy of operations by unit number 127
arithmetic 27 - insert statements 124
arithmetic operators 37 integer constant 12
character operators 37 definition 12, 263

Index 251

invalid 12
subscripts and substrings 84
valid 12
integer data editing 95
integer expression 26
definition 243
subscripts and substrings 84
integer typa 85, 122
definition 243
INTEGER type statement 85
integer variable
READ statement 146
storage length 19
WRITE statement 181
internal data conversion routines
internal file 192
definition 243
READ statement 157
WRITE statement 192
intrinsic function 130, 204-207
definition 4, 243
INTRINSIC statement 130
invalid VS FORTRAN programs 3
IOSTAT=
BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by file name 125
INQUIRE by unit number 128
OPEN statement 135
READ statement 147
REWIND statement 166
WRITE statement 182
IS0 definitions 241

K

keywords 10

L format code 102
labeled common
See named common
LANGLVL(66) features 214
LANGLVL(77) features 208
language syntax 5
leading blanks 93
length specification 122
definition 243
letter 8
definition 243
library 1
list-directed 108
definition 243
list-directed formatting 108
list-directed I/0
READ statement with 160
WRITE statement with 195
list-directed PRINT 140
logarithmic routines 205
logical assignment statement 47
logical constant 16
definition 16, 243
logical expression
definition 243
invalid 37
order of computations in 37
use of parentheses in 38

207

252 VS FORTRAN Language Reference

valid 36
logical IF statement 120
logical operation 40
" type and length of the result
logical operator 35
AND 36
definition 243
EQV 36
examples 36
invalid 36
NEQV 36
NOT 36
OR 36
valid 36
logical primary
See primary
logical type 85, 122
LOGICAL type statement 85
primary, definition 243
typa, definition 243
logical variable
storage length 19
transmission 102

40

logical variable transmission 102

looping 69
definition 243

lower dimension bound 22
DIMENSION statement 71
explicit statement 86

M

main program
assign a name to 141
definition 6, 243
PROGRAM statement 141
main program statement (PROGRAM)
mathematical functions 204
mathematical subroutine errors
maximum size records 92
maximum statement length
free-form
minus sign 8

N

name 8
a block of data 56
a variable 62
an array 62, 71
definition 8, 243
elements of a program 8
generic 131
in a CALL statement 81
in a function reference 81
specific 131
name of file 125, 126
name of unit 128
NAME=
INQUIRE by file name 126
INQUIRE by unit number 128
named common 63
and blank common 63
definition 63, 243
NAMED=
INQUIRE by file name 126
INQUIRE by unit number 128
NAMELIST
READ statement with 162

42
226-230

{

*)

O

WRITE statement with 198
NAMELIST statement 132
input data 132
output data 133
names in READ and WRITE statements
names of constants 93
nested DO 73
definition 2643
nesting of group formats 93
new file 134
NEXTREC=
INQUIRE by file name 127
INQUIRE by unit number 129
nonexecutable statement
definition &, 243
nonexisting file
definition 244
OPEN statement 137
null 127, 129
NUM=
WAIT statement 176
number of last record 127, 129
number of statement 125, 171
NUMBER=
INQUIRE by file name 126
INQUIRE by unit number 129
numeric character
See arithmetic constant
numeric constant 11
definition 244
numeric data format codes 93
numeric format code 99
examples 99

o

old file 134
OPEN statement 134
OPENED=
INQUIRE by file name 126
INQUIRE by unit number 128
0PSYS subroutine 234
option .
default 218, 223
in DEBUG statement 68
option table default values 223
option table entry 221
order of computation 37
in logical expressions 37
order of statements 44

132

output data, NAMELIST statement 133

OVERFLW subroutine 234

p

P format code 97

PARAMETER statement 138

PAUSE statement 139

period 3

plus character control 105

plus sign 8

position an external file 166

preconnected file
definition 4, 244%
formatted READ—direct access
formatted READ—sequential
access 151
formatted WRITE—sequential
access 186

148

READ with list-diraected I/0 161
READ with NAMELIST 162
unformatted READ—direct access 154
unformatted READ—sequential
access 156
unformatted WRITE—direct access 189
WRITE with list-directed I/0 196
WRITE with NAMELIST 198
predefined specification 20
definition 244
preserving a minus sign
free-form
primary 26
definition 244
logical 35
PRINT statement 140
implied DO in 74
procedure
BLOCK DATA 43
definition 6, 244
dummy 81, 83, 111
procedure subprogram 43
definition 244
program interrupt 232
PROGRAM statement 42, 141
program unit
definition 6, 24%
order of statements in 44

Q

Q format code 96
QP extend 50

QP float 50
quotation mark 8

range of a DO
definition 2644
range of an implied DO 74
READ statement 142
asynchronous 143
formatted with direct access 146
formatted with sequential access 150
forms of 142
implied DO in 74
unformatted with direct access 153
unformatted with sequential
access 155
with internal files 157
with list-directed I/0 160
with NAMELIST 162
READ statement with internal files 157
READ statement with list-directed
I7/0 160
READ statement with NAMELIST 162
READ statement--asynchronous 143
READ statement--formatted with direct
access 146
READ statement--formatted with
sequential acgess 150

READ statement--unformatted with direct

access 153
READ statement--unformatted with
sequential access 155

reading format specifications 107
real assign 50

real constant 13

Index 253

definition 13, 244
invalid 14
valid 14
real data editing 96, 97
real data of length 8
See double precision
real data transmission 95
real type 85, 122
definition 244
REAL type statement 85
real variable, storage length 19
REALX8
See double precision
REC=
READ statement 147
WRITE statement 182
RECL=
INQUIRE by file name 127
INQUIRE by unit number 129
OPEN s%atement 135

record 90
definition 244
record length 127, 129, 135
record, number of last 127, 129
relational expression 34
definition 244
invalid 35
length of 34
valid 35
relational operator 34
definition 244
equal to 34
greater than 34
greater than or equal to 34
less than 34
less than or equal to 34
not equal to 34
replace value of expression 647
reposition a file 54
required order of statements 44
retain definition status 168
return control to calling program 164%
RETURN statement 164
in a function subprogram 16%
in a subroutine subprogram 16%
REWIND statement 166
rules for data conversion 92

s

S format code 105

SAVE statement 168

scale factor
definition 2644
specification 97

scratch a file 134

sequential access input/output 129
INQUIRE statement 126, 128

sequential access READ statement
formatted 150
unformatted 155

sequential access WRITE statement
formatted 185
unformatted 190

SEQUENTIAL=
INQUIRE by file name 126
INQUIRE by unit number 128

service subroutines 233

share storage 62, 8%

skipping characters 103

slash 8

slash format code 106

254 VS FORTRAN Language Reference

source language flagger 200, 201
source language statement
fixed-form 5
free-form 6, 7
source statement characters 7 q:}
digit &8 4
letter 8
special characters 8
SP format code 105
special characters
parentheses 8
specific names 131
specification statement 43
CHARACTER type 385
COMMON 62
COMPLEX type 85
definition 2644
DIMENSION 71 ’
DOUBLE PRECISION type 85
EQUIVALENCE 84
explicit tvne 85
EXTERNAL 89
IMPLICIT type 122
INTEGER typa 85
INTRINSIC 130
LOGICAL type 85
NAMELIST 132
PARAMETER 138
REAL type 85
SAVE 168
specification subprogram
definition 244
55 format code 105
start a new page 76
start display 175

statement
definition 2644
descriptions 41-199
function definition, definition 244 ((\}
function reference, definition 244% ey

function, definition 244
number, definition 2644
number, fixed-form 5, 171
number, free-form 6, 171
READ statement 146
WRITE statement 181
statement function
statement 169
statement label
See statement number
statement number 10
ASSIGN statement 46
fixed-form 5, 171
free-form 6, 171
STATUS= ’
CLOSE statement 59
OPEN statement 134
stop a program 77
stop display 175
STOP statement 172
SUBCHK
DEBUG statement 68
subprogram
definition 4, 245 .
RETURN statement 164
SAVE statement 168
statement function statement 169
subprogram statement
BLOCK DATA 43, 56
ENTRY 81
FUNCTION 43, 111
statement function 169
SUBROUTINE 43, 173 @:}
SUBROUTINE statement 173)
subroutine subprogram 43

actual arguments 173

definition 245

dummy arguments 176

END statement 77

ENTRY statement 81

naming 43

RETURN statement 164
subscript 21

definition 245

in DATA statement 66

quantity, definition 245
substring 24

expression 24

in DATA statement 66
SUBTRACE

DEBUG statement 68
symbolic name

See name
syntax 5
T

T format code 10%
terminate a program 77
terminate execution 172
terminate the last debug packet 78
test values 73
TRACE
DEBUG statement 68
TRACE OFF statement 175
in debug packet 69
TRACE ON statement 175
in debug packet 69
transfer control
to statement number 115
to subroutine subprogram 58
transmission
character constants 103
character data 102
hexadecimal data 99
logical variables 102
trigonometric routines 205
type declaration
by explicit type statement 290
by IMPLICIT statement 20
definition 245
of an array 22
predefined 20
type specification 122

u

unary minus 26, 27
unary plus 26, 27
unconditional GO TO statement 116
unformatted input/output
INQUIRE statement 126, 128
unformatted READ statement
Wwith direct access 153
with sequential access 155
unformatted record
definition 245
INQUIRE statement 126
OPEN statement 135
unformatted WRITE statement
with direct access 188
with sequential access 190
UNFORMATTED=

INQUIRE by file name 126
INQUIRE by unit number 128
unit
connected 128
connected to external file 135
DEBUG statement 68
definition 245
identifier, definition 245
INQUIRE statement 128
not connected to external file
number 128, 134
OPEN statement 134
UNIT=
BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by unit number 128
OPEN statement 134
READ statement 143
REWIND statement 166
WAIT statement 176
WRITE statement 179
unknoun file 134
upper dimension bound 22
DIMENSION statement 71
explicit statement 86

v

valid VS FORTRAN programs 3
variable 18 .
character 24
definition 245
types and lengths of 18
variable names
invalid 18
valid 18
VS FORTRAN statements 41-199

WAIT statement 176
write an end-of-file record 79
WRITE statement 178
asynchronous 179
formatted with direct access 181
forms of 178
implied DO in 74
unformatted with direct access
unformatted with sequential
access 190
with internal files 192
with list-directed I0 195
with NAMELIST 198
WRITE statement with internal files
WRITE statement with list-directed
I/0 195
WRITE statement with NAMELIST 198
WRITE statement--asynchronous 179

WRITE statement--formatted with direct

access 181
WRITE statement--formatted with
sequential access 185

WRITE statement~--unformatted with direct

access 188
WRITE statement--unformatted with
sequential access 190

Index

X

X format code 103

256

VS FORTRAN Language Reference

¥4

Z format code 99

zero

127,

129

GC26-3986-1

VS FORTRAN Application Programming: Language Reference (File No. S370-25) Printed in U.S.A. GC26-3986-1

S

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

sesssessssens

08 0880008 0000ancect et ssntecsetatsttees tsttseseseteneseeesitereneeccertssrsesercosses

cessene

essessssnssecscssacs

cee

sssee

Reader’s

VS FORTRAN Application Programming: Comment
Language Reference Form
GC26-3986-1

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3986-1

Reader’'s Comment Form

id and tape Please do not staple Folid and tape

0 09 0 0 00 000 E 0000000000000 000000000000000000000000 000000000000 00000000000000000EIses s000000° 0000000000000

| ” || | NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

I1BM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

6000000 00006006060080000600000 0000008000000 O0EICOVesocsossosososerssosstcsecstosssossetocsecrtostsostsrsstetecessosistotsnsnisrsesisoeords ioerosssrsronscesnsesssocsssscscnccsocsescscssnnrctncoces

96 00 0000000000002 00 0000000000000 000NNETErIOsOEIONNIPIOORGEONOIOIOOIEOIEEIROIOIOIOEVTIEOIOIOITITEOIGOPOIGOTTIPOTTTS

1-986€-9209 VSN Ul paiulld (GZ-0LES "ON 2|id) adualegay abenbueT :bujwwesbolyd uoiedyddy NvHLHOS SA

¥
id and tape Please do not staple Fold and tape

»
L Y A
L WY A—
-— - GEE S ARmEE
- L —
- T D WY S
-— T SER S -
TR SRR AN WP e
N S S v —_——
®

