GC26-3986-0
File No. S370-25

VS FORTRAN
Application Programming:
Systems Language Reference

Program Numbers 5748-FO3 (Compiler
and Library)
5748-LM3 (Library Only)

Release 1

This publication was produced using the
IBM Document Composition Facility
(program number 5748-XX9%) and
the master was printed on the IBM 3800 Printing Subsystem.

First Edition (February 1981)

This edition applies to Release 1 of VS FORTRAN, Program Products
5748-F03 (Compiler and Library) and 5748-LM3 (Compiler Only), and
to any subsequent releases until otherwise indicated in new
editions or technical newsletters. Information concerning the IBM
3375 and 3380 direct access devices is for planning purposes only
until the availability of the devices.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibilography, 6€20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information vou supply.

© Copyright International Business Machines Corporation 1981

PREFACE

INDUSTRY STANDARDS

This manual outlines the programming rules for VS FORTRAN
1978-level source language. It includes Full American National
Standard FORTRAN (X3.9-1978) plus IBM extensions.

After a brief introduction, the following subjects are discussed:
1. The VS FORTRAN language
2. Data

Constants

Variables

Array elements
Character substrings

3. Expressions

Arithmetic
Character
Relational
Logical

4. Statements (in alphabetic order)
5. Appendix

Source Language Flagger (Includes execution-time
cautions)

VS FORTRAN-Supplied Procedures

IBM and ANS FORTRAN Features

Extended Error Handling Subroutines

EBCDIC and ASCII Codes

If this book is revised, a summary of amendments will be included
with the technical newsletter or new edition. Changes will be
highlighted.

The VS FORTRAN Compiler and Library program producf is designed
according to the specifications of the following industry
standards, as understood and interpreted by IBM as of June, 1980:

1. American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77).

Portions of this manual are copied from American National

Standard Programming Language FORTRAN, ANSI X3.9-1978. This

material is reproduced, with permission, from American
National Standards Institute, Incorporated, 1430 Broadway,
New York, New York 10018.

2. International Organization for Standardization 150 1539-1980
Programming Languages—FORTRAN.

3. American Standard FORTRAN, X3.9-1966.

4. International Organization for Standardization IS0 R
1539-1972 Programming Languages-FORTRAN.

Standards 1 and 2 above are technically equivalent. When this

manual refers to the current standard, it is referring to
standards 1 and 2.

Preface iii

Standards 3 and 4 above are technically equivalent. When this
magual refers to the old standard, it is referring to standards 3
and 4.

Both the FORTRAN 77 and the FORTRAN 66 standard languages include
IBM extensions. When this manual refers to current FORTRAN, it is
referring to the FORTRAN 77 standard plus the IBM extensions that
are valid with it. When this manual refers to old FORTRAN, it is
rezerrgng to the FORTRAN 66 standard plus the IBM extensions valid
with it. '

IBM VS _FORTRAN PUBLICATIONS

iv

The VS FORTRAN publications are designed to help develop programs
with a minimum of wasted effort. This book, ¥YS FORTRAN Application
Programming: Lanquage Reference, describes the rules for coding
VS FORTRAN programs when using the current FORTRAN.

A series of related publications contain detailed documentation
on writing programs using these rules:

. VS FORTRAN Application Programming: Guide, 5C26-3985,
contains guidance information on designing, coding,
debugging, testing, and executing V5 FORTRAN programs written
at the current FORTRAN language level.

. VS FORTRAN Application Programming: Library Reference,
SC26-3989, contains detailed information about the
execution-time library subroutines.

. YS FORTRAN Application Programming: System Services

Reference Supplement, 5C26-3988, contains FORTRAN-specific
reference documentation. -

. VS FORTRAN Application Programming: Source-Time Reference
Summary, $5X26-3731, is a pocket-sized reference card
containing current FORTRAN syntax and brief descriptions of
the compiler options.

. System/360 and System/370 FORTRAN IV lLanguage, GC28-6515,
contains tha rules for writing VS FORTRAN programs using
FORTRAN 66.

. IBM System7370 Reference Data, GX20-1850.

Figure 1 shows how these manuals can be used together.

VS FORTRAN Language Reference

VS FORTRAN
Application
Programming:
Guide Compile,
Design link, and
and code execute
FORTRAN 1V VS FORTRAN VS FORTRAN VS FORTRAN
Language Language System Services Library
Reference Reference Reference Reference
Supplement
VS FORTRAN
Reference
Summary

Figure 1. IBM VS FORTRAN Application Programming Publications

Preface v

CONTENTS

Introduction
Language e e e e e e e e . . .
Compiler e e e e . e . . .

Execution-Time L1brary

Methods of Presentation
Format Notation . e e e e e
Documentation of IBM Exten51ons e e e e .

Valid and Invalid VS FORTRAN Programs N

VS FORTRAN Language e s o o o o o o s s s o @
Language Definitions C e e e e e e e
Language Syntax
Source Language Statements . .
Fixed-Form Source Statements .
Free-Form Source Statements « e e
Source Statement Characters e e e e e e

¢« e o o @
o e ¢ o @

e e e e e

A

Names . e e e e e e e e e e e e e
Statement Numbers C e e e e e e e e e e e
Keyvwords e e e e e e e e e e e e e e e e e

vs FORTRAN Data . . * . L] L] L] * L] L] - > o . L] *
Constants . e e e e e e e

Arithmetic Constants e e e e e e e e e e e
Integer Constants e e e e e e e s e e e
Real Constants e e e e e e e e e e e
Complex Constants e e e e e e e e e e

Logical Constants e e e e e e e e .

Character Constants e e e e e e e e e e e

Hollerith Constants e e e e e e e e e e e

Hexadecimal Constants e e e e e e e e

Variables .. C et e e e e e e e e e e e e

Variable Names . e v e e e e e e .

Variable Types and Lengths

« 0 e o @

e o s e & o o

¢« ¢ o o s

P R R T TS S

* s e & o o e s @

e o 6 e o+ o o

¢ s e 6 e e ¢ s o e e o @

Type Declaration by the Predeflned Spec1f1catlon

Type Declaration by the IMPLICIT Statement

Type Declaration by Expllcvt SpecufucatIOn
Array Elements . . . e e e e e e
Subscripts . . o e e e
Size and Type Declarat1on of an Array . e .
Object-Time Dimensions e e e e e e e e
Character Substrings C e e e e e e e e e e e
VS FORTRAN Expressions ¢ ¢ ¢ ¢ o o o &
Evaluation of Expressions e e e e e e e e e
Arithmetic Expressions e e e e e e e e e e e

Arithmetic Operators

Statemeﬁté

.
.
.
.
.

.
-
-
.

Rules for Construct1ng Arlthmet1c ExpreSSIOns

Use of Parentheses in Arithmetic Expressions

.

¢ o e o

-

.
e o o

e o o s e o @

¢ e e

.

L T T R S Y

e ¢ o o o o o o o @

.
.
-
.

¢ e s s e .

Type and Length of the Result of Arithmetic Expéessxons

Examples of Arithmetic Expressions e e e
Character Expresslons . “ . e e e e
Use of Parentheses in Character Express1ons
Relational Expressions e e e e e e e e e e e s
Logical Expressions c e e e e e e e e e e
Logical Operators
Order of Computatlons in L091ca1 Expre551ons
Use of Parentheses in Logical Expressions

VS FORTRAN Statements e e s o s o s e s s e =

VS FORTRAN Statement Categor1es e e e e .
Assignment Statements . . e e e e e e
Control Statements e e e e e e e e e e e
Data Statement e e e e e e
Debug Statements . e e .
Input/Output Statements .
Main Program Statement e e
Specification Statements .

¢ s e o .
.
¢« e s

-

.

e s e & s e

L S S S Y

L B

e o ¢ ¢ 0

« 2 e

¢ e e e @ e o o e

PR SR

S 6 & o 4 e e 6 s e s e e e @

L Y

Contents

e ¢+ 4 0 s e e @

e 4 ¢ o 4 e e o o @

« s e e @

® e o s o o o o s o

o o o

e 0 e o s+ o e o @

e o ¢ ¢ + o o @

e o o6 o e s o o

Ui OO NOUVMIVTIUIA L WUWNNF

b b et S b et

vii

viii

VS FORTRAN Statement Descriptions ..

Subprogram Statements . .
VS FORTRAN Compiler Dlrectlng Statements
Order of Statements in a Program Unit . .

Arithmetic IF Statement e e e e e e e e
ASSIGN Statement . e e e e e e e e
Assigned GO T0 Statement e e e e e
Assignment Statements e e e e .
Arithmetic Assignment Statement e e .
Character Assignment Statement . .
Logical Assignment Statement . . .
AT Statement . e e e e e e e e .

BACKSPACE Statement e e e e e e
BLOCK DATA Statement e e e e e e
Block IF Statement et e e e e e e e
CALL Statement . e .
CHARACTER Type Statement .
CLOSE Statement e e e e e e

o ¢ s s e

v e e o s e e
.

Comments e e e e e e .
Fixed- Form Input e 4 e e e .
Free-Form Input . e e

COMMON Statement . . .
Blank and Named Common
COMPLEX Type Statement
Computed GO TO Statement . . e e
CONTINUE Statement e e e e e e e e e

e & ¢ o o 8 ¢ o o &
e ¢ 4 & 0 e s e o
e e o s e s 0 e e

e o e o ¢ o o s e

DO Statement . ..
DOUBLE PRECISION Type Statement . e

DATA Statement o« e e .
Implied DO in DATA Statement e e e .
DEBUG Statement e e e e
Considerations when Usung DEBUG e e e
DIMENSION Statement . e e e e
DISPLAY Statement e e e e e e e e e .

EJECT Statement . v e e e N

ELSE Statement . . o o v v v v
ELSE IF Statement C e e e e e e e e e e
END Statement .

END Statement ln a Functwn Subprogram

L S S R)

END Statement in a Subroutine Subprogram)

END DEBUG Statement e e e e e e e e e
ENDFILE Statement C e e e e e e e e e
END IF Statement e v e e e e e e e e e
ENTRY Statement
Actual Arguments 1n an ENTRY Statement
Dummy Arguments in an ENTRY Statement
EQUIVALENCE Statement e e e e e e e
Explicit Type Statement C e e e e e e e
EXTERNAL Statement e e e e e e e e e e e
FORMAT Statement . e e e .
General Rules for Data ConverSIOn . .
Forms of a FORMAT Statement . e .

I Format Code e e e e e e e e e e e
F Format Code e e e e e e e e
D, E, and Q Format Codes e e e e e e e
G Format Code . e e e e e e e e
P Format Code e e e e e e e e e e e e
Z Format Code e e e e e
Numeric Format Code Examples e e e e
L Format Code e e e e e e e e e e e e
A Format Code . . .
H Format Code and Character COnstants

X Format Code e e e e e e e e

T Format Code

Group Format Specrflcatlon

S, SP, and SS Format Codes

BN Format Code e e e e e e e
BZ Format Code e e e e e e e
Slash Format Code e e e e e s
Colon Format Code ..

e o e
PR R S S S Y

[R ST
o 6 0 s e e s
PR T T S T ST R

Reading Format Specuf\cattons at. Obj.ect Time

List-Directed Formattlng . e
FUNCTION Statement e . e e e .

VS FORTRAN Language Reference

« s 0 e s e

o e o e s e 4 e

o s e o o

« + e s

e & ¢ o o & 4 6 s s s s e

e ¢ 4 e ¢ e @ v e s s e s v s s s e

s e e e o

e & b+ o e o ¢ e e 0 s s s e

e 4 ¢ o e o ¢ o ¢ o o s & o

L S I I)

¢ o o o o o o

© e e e 4 e 4 o e s s .

e o o o & o o & 4 o o s e o s e s e .

« s e e s o

«

e ® 4 4 o e 0 s 6 e s+ s a4 o & e o & o o

o« e e o o e

103
103

104
105
109

Actual Arguments in a Function Subprogram
Dummy Arguments in a Function Subprogram
GO TO Statements . . e e e e e e e e e
Assigned GO TO Statement e e e e e e e e .
Computed GO TO Statement e e e e e e e e
Unconditional GO TO Statement
IF Statements « e e e
Arithmetic IF Statement e e .
Block IF Statement e e e e e
Logical IF Statement e e e e .
IMPLICIT Type Statement . .
INCLUDE Statement e e e e e e e
INQUIRE Statement e e e e e e e e e e e e e e e e e

o & s o e
o« o o 0

.
¢« e e e

L R)

e e & e s e
e e o o
e e o e s+ e s
e o e s e
o o o ¢ o o o
e o e o+ o e v e
.

INQUIRE by File Name . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ v o o o s o o o

INQUIRE by Unit Number e e e e e e e e e e e e e
INTEGER Type Statement e e e e e e e e e e e e
INTRINSIC Statement . e e e e e e e

Specific Names and Generlc Names e e e e e
Logical IF Statement . . .
LOGICAL Type Statement e e e e e .
NAMELIST Statement e e e e e e e e

NAMELIST Input Data . . .

NAMELIST Output Data .

.
« e e e
.

-

L T S

« o .

L N I Y N
.

¢ o e

P T S

P]
D T)

. e I Y

OPEN Statement . : : . L.
The I/0 Unit is Not Connected to the External Fl le . .

The I/0 Unit is Connected to the External File
PARAMETER Statement e e e e e e e e .
PAUSE Statement e e e e e e e .
PRINT Statement e e e e e e e .
PROGRAM Statement e e e e e e .

A
¢« e s e

¢ ¢ e .

o 4+ e e .

o« e v e

e o e e
.
“« .
.
¢ ¢ s e
« e o o s 4 e 0 .

READ Statements e e e e e . . .
READ Statement—Asynchronous . .
READ Statement—Formatted with Dlrect Access . .
READ Statement—Formatted with Sequential Access .
READ Statement—Unformatted with Direct Access e . .
READ Statement—Unformatted with Sequential Access .
READ Statement with Internal Files e e e e e e e e e
READ Statement with List-Directed 1/0 e e e e e e e s
READ Statement with NAMELIST e e e e e e e e e .

REAL Type Statement e e e e e e e e e e e e e e .

RETURN Statement . . e . .

RETURN Statement m a Functlon Subprogram . .
RETURN Statement in a Subroutlne Subprogram

D S TR T S

REWIND Statement e e . e e e e e e e . . e . . e
SAVE Statement . e e e e e . e e e . . .
Statement Function Statement e e e e e e s e e e e .
Statement Numbers . . e e e e e e e e e e e e e
Fixed Form Statement Numbers e e e e e e e e e e e
Free Form Statement Numbers e e e e e e e e e “ e e
STOP Statement . e e e e e e e e e e e e e e . . .
SUBROUTINE Statement e .
Actual Arguments in a Subroutlne Subpragram . . .

Dummy Arguments in a Subroutine Subprogram .
TRACE OFF Statement e e e e e e e e e e e e e e
TRACE ON Statement e e e e e et e e e e e e e e e
Unconditional GO TO e e e e e .

I S N)

WAIT Statement . . o v v v v v,

WRITE Statements . . e ke e e e e e e e
WRITE Statement—Asynchrcnous .
WRITE Statement—Formatted with D1rect Access .
WRITE Statement—Formatted with Sequential Access
WRITE Statement—Unformatted with Direct Access

L S S)

WRITE Statement—Unformatted with Sequential Access
WRITE Statement with Internal Files e e e e e . .

WRITE Statement with List-Directed I/0 e e e e e e
WRITE Statement with NAMELIST e . e e e e e e e
Appendix A. Source Language Flaager e &6 o & o o ® o o e o @
Items Flagged for Full ANS Language e e e e e e e e e e e
Global Items Flagged . . e e e e e e e e e e e
Statements Flagged e e e e e e e e e e e e e e e
Execution-Time Cautions e e e e e e e e e e e e e e

Contents

D

L T S S R S)

L]

LR T R I

I R S T)

e 4 & & 0 s s e e s

111
111
113
113
114
114
115
115
115
118
120
122
123
123
125
127
128
129
129
129
130
130
131
132
133
133
136
137
138
139
140
141
144
148
151
153
155
158
160
161
162
162
162
164
166
167
169
169
169
170
171
171
172
173
173
173
174
176
177
179
183
186
188
190
192
195

197
197
197
197
199

ix

Appendix B. FORTRAN-Supplied Procedures s s o e s e s o o+ 201
Mathematical and Character Functions P e o . . 201
Logarithmic and Exponential Routines e e e e eie e e s . . 202
Trigonometric Routines 4 14
Hyperbolic Function Routines . e e e e e e e e e« e . 202
Miscellaneous Mathematical Routmes e e e s e s s s e s+ .. 203
Internal Data Conversion Routines e e e e e e e e e e e . . 206
Character Manipulation Routines e e e e e s e e e s . . 204
Appendix C. IBM and ANS FORTRAN Features e s s o s o s s s « 205
New ANS FORTRAN 1977 Features C e e e e e e e s e e e e« . . 205
General Features e 205
New Statements e e e e e e e e e e e e e . . 206
New Features in 01d Statements e e e e e . . . 206
0ld IBM Extensions Now in ANS FORTRAN 1977 e e e o s . . . 209
IBM Extensions Not in ANS FORTRAN 1977 e e e e e e e e e . . 209
LANGLVL(66) Features Not in VS FORTRAN -3 1 |
Appendix D. Extended Error Handling Subroutines e s e s e . 212
ERRMON Subroutine 3 4
ERRSAV Subroutine Ve e e e e e e e e e e e e e . . 213
ERRSET Subroutine e e e e e e e e s e e e e e e e 214
Examples of CALL ERRSET e e e e . . . « e e . 215
ERRSTR Subroutine s e e e e e s e e e e e e e e e e e 216
ERRTRA Subroutine e e e e e e e e e e e e e e e . 216
Service Subroutines e e e e e e e e e . e e e e . 230
DVCHK Subroutine e e e e e 230
DUMP/PDUMP Subroutine PN e e e e e e v e e 230
CDUMP/CPDUMP Subroutine e e e e e e . . e e e e .. 232
EXIT Subroutine s e s e e e . e e e e . . 231
OPSYS Subroutine (DOS Only) e e 231

OVERFLUW SUBFroutine v v o o v v oooemo e e s o 231
Appendix E. EBCDIC and ASCII Codes - & 1
Glossary L] L] L] L] L] - - . - > [] L] - . - L] L] . L] L] L] - . L] L] L] * 238

Index -4 X 4

X VS FORTRAN Language Reference

FIGURES

NHEFOWVRNARTPLPUN -

e

13,

IBM VS FORTRAN Application Programming Publlcattons

Example of Fixed-Form Source Statements e e
Example of Free-Form Source Statements . e .
Source Statement Characters C e e e e e e e e
Data Type and Storage Length e e e e e e e e
Examples of Arithmetic Expressions e e e e e
Arithmetic Operators
Hierarchy of Arithmetic Operatlons

¢ e s e 0 o

Type and Length where the First Operand 15 Integer :

Type and Length where the First Operand 15 Real

Tvpe and Length where the First Operand is Complex

Character Operator e v e e e . e e . .
Relational Operators e e e e e e e e e e e
Logical Operators

e e e o e

Hierarchy of Operatvbﬂs Involvxng Ar1thmet1c Operators.
Hierarchy of Operations Involving Character Operators

Type and Length of the Result of Logical Operati
Order of Statements and Comment Lines
Conversion Rules for the Arithmetic Ass1gnment
Statement a=b Where Type of b is Integer or Real
Conversion Rules for the Arithmetic Assignment
Statement a=b Where Type of b is Complex .
Function Routine Prefix Meanings .
Option Table Preface e e e e e e e e e
Option Table Entry e e e e e e e
Option Table Default Values e e e .
Corrective Action After Error

ons

-

« o .

Corrective Action After Mathemat1ca1 Subrout:ne Error

Corrective Action After Program Interrupt

.

Figures

201
216
217
219
221
223
228

xi

INTRODUCTION

LANGUAGE

COMPILER

IBM VS FORTRAN consists of a language, a compiler, and an
execution-time library of subprograms.

The V5 FORTRAN language consists of a set of characters,
conventions, and rules that are used to convey information to the
compiler. The basis of the VS FORTRAN language is a statement
containing combinations of element names, operators, constants,
and words (keywords) whose meaning’is predefined to the compiler.

The V5 FORTRAN language is best suited to applications that
involve mathematical computations and other manipulation of
arithmetic data.

In a process called compilation, a program called the VS FORTRAN
compiler analyzes the source program statements and translates
them into a machine language program called the object program
that can be combined with library routines to form a program
suitable for execution. In addition, when the VS FORTRAN compiler
detects errors in the source program, it produces appropriate
diagnostic messages.

The VS FORTRAN compiler operates under control of an operating
system that provides it with input, output, and other services.
Object programs generated by the VS FORTRAN compiler also operate
unde(operating system control and depend on it for similar
services.

EXECUTION-TIME LIBRARY

The VS FORTRAN execution-time library consists of subroutines and
functions supplied as part of the product. For complete
information on the library, see VS FORTRAN Application
Programming: Library Reference. For a brief description of the
intrinsic functions and source subroutines to which the user may
refer directly in VS FORTRAN statements, see "Appendix B.
FORTRAN-Supplied Procedures”™ on page 201. For a discussion of
extended error handling subroutines, see "Appendix D. Extended
Error Handling Subroutines" on page 212.

Subroutines and functions to furnish any commonly used code
sequences can be compiled and added to an execution-time library
by the user., When written in VS FORTRAN, these can be structured
as function, subroutine, or block data subprograms. Other source
languages can be used if the subroutines are accessible by VS
FORTRAN calls. User subroutines may reside directly in the
supplied library data set or in a private data set called at load
or link-edit time.

Introduction 1

METHODS OF PRESENTATION

Because methods of presentation vary from book te book, the format
notation and method of indicating IBM extensions are outlined
here.

FORMAT NOTATION

In this manual, "must"™ is to be interpreted as a requirement;
conversely, "must not"™ is to be interpreted as a prohibition.

In describing the form of VS FORTRAN statements or constructs, the
following conventions and symbols are used:

U Special characters from the VS FORTRAN character set,
uppercase letters, and uppercase words are to be written as
shown, except where otherwise noted.

. Lowercase letters and lowercase words indicate general
entities for which specific entities must be substituted in
actual statements. Once a given lowercase letter or word is
used in a syntactic specification to represent an entity, all
subsequent occurrences of that letter or word represent the
same entity until that letter or word is used in a subsequent
syntactic specification to represent a different entity.

. Square brackets ([1) are used to indicate optional items.

. An underlined word (such as name, tvpe, list) indicates a
variable, such as an entry point, name of a function, data
type, or list of variables or array names.

U An ellipsis (...) indicates that the preceding optional items
may abpear one or more times in succession.

L Blanks are used to improve readability; however, unless
otherwise noted, they have no significance.

The general form of each statement is enclosed in a box. For
example:

syntax
CALL name [¢ [argl [,arg2] [,arg3l ... 1) 1

The following examples are among those allowed:

CALL nam
CALL name ()

CALL name (arg)

CALL name (arg, arg)

CALL pame (arg, arg, arg)

CALL name (arg, arg, arg, arg)

3
D

3>
0

i}

When an actual statement is written, specific entities are
substituted for name and each arg. For example:

CALL ABCD (X,1.0)

2 VS FORTRAN Language Reference

DOCUMENTATION OF IBM EXTENSIONS

In addition to the statements available in FORTRAN 77, IBM
provides "extensions" to the language. These extensions are shown
in the following ways.

I IBM EXTENSION |

This paragraph shows how IBM language extensions in text are
documented.

L END OF IBM EXTENSION]

The following example shows how boxes indicate IBM extensions.

Nane Type Length

I, J, K Integer variables 4 {, 2, 2
C Real variable 4

D Complex variable 16

The example below shows how IBM extensions are documented within a
table. The boxes around certain types and lengths of the result of
logical operations indicate IBM extensions.

First
Operand Logical Logical
Second 1 (%)
Operand
Logical Logical Logical
(1) (%) (4)
Logical Logical Logical
(%) (4) (

VALID AND INVALID VS FORTRAN PROGRAMS

This manual defines the rules (that is, the syntax, semantics, and
restrictions) applicable for writing valid VS FORTRAN programs
either for the 1978 Standard or for the 1978 Standard plus IBM
extensions. Most violations of the VS FORTRAN language rules are
diagnosed by the compiler; however, some syntactic and semantic
combinations are not diagnosed, some because they are detectable
only at execution time, others for performance reasons. VS

FORTRAN programs that contain these undiagnosed combinations are
invalid VS FORTRAN programs, whether or not they execute as
expected.

Introduction 3

VS _FORTRAN LANGUAGE

LANGUAGE DEFINITIONS

A VS FORTRAN program is made up of three basic elements:

Data Consists of constants, variables, and arrays. See
"YS FORTRAN Data"™ on page 11.

Expressions- Executable sets of arithmetic, character, logical,
or relational data. See "VS FORTRAN Expressions" on
page 25.

stataments Combinations of data and expressions. See "VS
FORTRAN Statement Descriptions" on page 45.

Some of the terms used in the discussion of the VS FORTRAN
programming language are defined as follows:

Main program. A program unit, required for execution, that can
call other program units but cannot be called by them. A main
program does not have a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement. The main program is the first to
receive control at execution time.

subprogram. A program unit that is invoked by another program
unit in the same program. In FORTRAN, a subprogram has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.

Procedure. A sequenced set of statements that may be used at one
or more points in one or more computer programs, and that usually
is given one or more input parameters and returns one or more
output parameters. A procedure consists of subroutines, function
subprograms, and intrinsic functions.

Intrinsic function. A function, supplied by VS FORTRAN, that
performs mathematical or character operations. (See "INTRINSIC
Statement™ on page 128.)

External procedure. A subroutine or function subprogram written
in FORTRAN.

Executable program. A program that can be executed as a
self-contained procedure. It consists of a main program and,
optionally, one or more subprograms or non—-FORTRAN-defined
external procedures, or both.

Executable statement. A statement that calculates, tests, or
alters the flow of control.

Nonexecutable statement. A statement that describes the
characteristics of the program unit, of data, of editing
information, or of statement functions, but does not cause an
action to be taken by the program.

Preconnected file. A unit or file that was defined at
installation time. However, a preconnected file does not exist
for a program if the file is not defined by a FILEDEF command or
by job control statements.

Program unit. A sequence of statements constituting a main
program or subprogram.

Additional definitions can be found in the "Glossary" on page 238.

4 VS FORTRAN Language Reference

LANGUAGE SYNTAX

For the compiler to understand instructions, certain syntax rules
must be carefully adhered to when entering the following items.
Each of these items is discussed more fully following the list.

Source language statements
Source statement characters
Names

Statement numbers

Kevuwords

SOURCE LANGUAGE STATEMENTS

VS FORTRAN accepts source input in either of two formats:

Fixed-form input format: Fixed-length 80-byte records.

r

IBM EXTENSION B

Free-form input format: Variable~length records (with a
maximum length of 1320 bytes). This frees the programmer
from card column restrictions and is useful for terminal
input.

END OF IBM EXTENSION .

A program unit must be written in either fixed form or free
form—not both.

Fixed-Form Source Statements

The statements of a VS FORTRAN source program can be written on a
standard FORTRAN Coding Form, GX28-7327. Each line on the coding
form is 80 characters long and is equivalent to one 80-column card
(or input line on a terminal)l.

Statement number

The statement number consists of from 1 to 5 decimal digits.
It must not be zero. Blanks and leading zeros in a statement
number are ignored. The values of the statement numbers do not
affect the order in which the statements are executed. The
same statement number must not be given to more than one
statement in a program unit.

Initial line

VS FORTRAN statements are written within columns 7 through
72. The first line of a statement may have a number in columns
1 through 5 and must have a blank or zero in column 6.

Comments

Comments to explain the program may be written in columns 2
through 72 if the letter C or an asterisk (¥) is placed in
column 1. The VS FORTRAN compiler does not process comments
other than to print them as part of the source program
listing. Comments may appear anywhere in the program before
the END statement. Blank lines can appear anyuhere in the
program and are processed as comments.

Continuation Line

A VS FORTRAN statement that cannot be completed on one line
may be continued onto as many as 19 additional lines. A
continuation line has any character other than a blank or zero
in column 6. The statement is then continued within columns 7
through 72.

Comments can appear between continuation lines.

VS FORTRAN Language 5

I IBM EXTENSION 1

VS FORTRAN allows columns 1 through 5 in a continuation line
to contain any characters, but they are ignored.

. . END OF IBM EXTENSION '

. Identification

Columns 73 through 80 of any VS FORTRAN line are not
significant to the compiler and may, therefore, be used for
identification, sequencing, or any other purpose.

As many blanks as desired may be written in a statement or comment
to improve its readability. They are ignored by the compiler.
However, blanks that are inserted in literal or character data are
retained and treated as blanks within the data.

Figure 2 illustrates fixed-form source statements.

Column: 1 67

c SAMPLE TEXT

.

.

10 D=010.5
GO TO 56
150 A=B+CX(D+EXXF+
18+H-2.X(G+P))
=3.

.

Figure 2. Example of Fixed-Form Source Statements

T ~ IBM EXTENSION -

Free-Form Source Statements

The following rules govern free-form input format (free-form
source):

. Statement number

The initial line may contain, as the first nonblank
character of that line, a statement number consisting of
from one to five decimal digits. Blanks and leading zeros in
a statement number are ignored. A blank need not separate a
statement number from the first nonblank character that
follows the statement number.

. Initial line

An initial line is the first line of the statement and may
start in any position on a new line.

. Comments

A comment line is a line that does not follow a continued
line and that has a quotation mark (") in the first
character position (column 1). Blank lines are not allowed
as comment lines. A comment line cannot be continued.

[VS FORTRAN Language Reference

L Continued line

A line of a statement to be continued is indicated by
terminating the line with a hyphen or minus sign (-). A
comment line cannot be continued.

U Preserving a minus sign

If the last character in the line is a hyphen (minus sign),

it is assumed to indicate continuation and is discarded. If
the last two characters in a line are hyphens, only the last
one is taken as a continuation character; the preceding one
is preserved as a minus sign. Any data (other than a second

hyphen) on the same line following a hyphen is ignored.

. Continuation line
A continuation line is a line following a continued line. It
may start in any position. Up to 19 continuation lines are
permitted in a single statement.

. Maximum statement length
The maximum length of a free-form source statement is 1320
characters, excluding the statement continuation character
and the statement number. Blank characters are counted in
the total number of characters.

Figure 3 illustrates free-form source statements.

Column: 1 7

"SAMPLE TEXT

.

10D=010.5

GO TO 56

150 A=B+C*(D+EXXF+-
G+g-2.*(G+P))

C=3.

-

Figure 3. Example of Free-Form Source Statements

L END OF IBM EXTENSION .

SOURCE STATEMENT CHARACTERS

The characters listed in Figure 4 on page 8 constitute the set of
characters acceptable in a VS FORTRAN program.

A special character may be an operator (or part of an operator),
part of a constant, or have some other special meaning. The
interpretation is implied by the context.

The special characters shown in Figure 4 on page 8 are listed in
their correct collating sequence. (The complete collating
sequence can be found in "Appendix E. EBCDIC and ASCII Codes™ on
page 233.)

VS FORTRAN Language 7

Special Characters Letters Digits

blank A 0 0
. period B P 1
(left parenthesis C Q 2
+ plus sign D R 3
$ currency sign E S 4
* asterisk F T 5
) right parenthesis G U 6
- minus sign H \ 7
/ slash I W 8
» comma J X 9
: colon K Y
' apostrophe L A
= equal sign M

N $

" quotation mark

Figure 4. Source Statement Characters

NAMES

8

Names (referred to as "symbolic names" in old FORTRAN
publications) can be assigned to the elements of a program unit.

pefinition

Name—A string of 1 through 6 letters (A,B,...,2) or digits
(0,1,...,9), the first of which must be a letter.

IBM EXTENSION

With this compiler, the currency symbol ($) is treated as
a letter when used in a name. Therefore, the currency
symbol ($) canh be used as the first character in a name.

END OF IBM EXTENSION

Names can be used to identify the following items in a program
unit:

An array and the elements of that array (see "Array Elements”
on page 20)

A variable (see "Variables" on page 18)
A constant (See "PARAMETER Statement™ on page 136)
A main program (see "PROGRAM Statement"™ on page 139)

A statement function (see "Statement Function Statement™ on
page 167)

An intrinsic function (see "Appendix B. FORTRAN-Supplied
Procedures™ on page 201)

A function subprogram (see "FUNCTION Statement™ on page 109)

A subroutine subprogram (see "SUBROUTINE Statement™ on page
171)

A block data subprogram (see "BLOCK DATA Statement” on page
56)

VS FORTRAN Language Reference

. A common-block (see "COMMON Statement™ on page 62)

. An external user-supplied subprogram that cannot be
classified by its usage in that program unit as either a
subroutine or function subprogram name (see "EXTERNAL
Statement™ on page 86)

. A NAMELIST (see "READ Statement with NAMELISTY on page 160 and
"WRITE Statement with NAMELIST" on page 195)

A name that identifies a constant, variable, array, external
function, or statement function also identifies its data type.
The name may be specified in a specification statement (see
"Specification Statements" on page 42). If the name does not
appear in such a statement, the type is implied by the first
letter of the name. A first letter of I through N implies integer
type, and any other letter (or the currency symbol) implies real
type, unless an IMPLICIT statement is used to change the default
type.
Names are either global or local.
. Classes of global names:

- Common block

- External function

- Subroutine

- Main program

- Block data subprogram
. Classes of local names:

- Array

- Variable

- Constant

- Statement function

- Intrinsic function

- Dummy procedure
Names must be unique within a class in a program unit and can
identify elements of only one class except in the following

situations:

. A common-block name can also be an array, variable, or
statement function name in a program unit.

L A function subprogram name must also be a variable name in the
function subprogram.

The name of a main program, subroutine, common-block, NAMELIST,
or block data subprogram has no type. A generic function name has
no predetermined type; it assumes a type dependent upon the type
of its argument(s).

Once a name is used as a main program name, a function subprogram
name, a subroutine subprogram name, a block data subprogram name,
a common—block name, or an external procedure name in any unit of
an executable program, no other program unit of that executable
program can use that name to identify an entity of these classes
in any other way.

VS FORTRAN Language 9

STATEMENT NUMBERS

KEYHORDS

Statement numbers identify statements in a VS FORTRAN program.

A statement number is a sequence of from one to five digits, one
of which must be nonzero. It can be written in either fixed form
or free form. See "Statement Numbers" on page 169.

Keywords identify VS FORTRAN-supplied procedures (intrinsic
functions) that can be used as part of any program. These
procedures are mathematical functions and service subroutines
that are supplied to save programmers the time it would take to
write them every time that particular sequence of statements is
needed in a program. See "Appendix B. FORTRAN-Supplied
Procedures"™ on page 201.

A keyword is a specified sequence of characters. Whether a
particular sequence of characters identifies a keyword or a name
is implied by context. There is no sequence of characters that is
reserved in all contexts.

10 VS FORTRAN Language Reference

VS FORTRAN DATA

CONSTANTS

ARITHMETIC CONSTANTS

Integer Constants

Data is a formal representation of facts, concepts, or
instructions. VS FORTRAN manipulates three general kinds of data:

. Constants

. Variables

U Arrays

Note: These are not to be confused with data types. Data types

correspond to the the five types of variables, as discussed under
"Variable Types and Lengths™ on page 18.

A constant is a fixed, unvarying quantity. There are several
classes of constants:

. Arithmetic constants specify decimal values:
Integer
Real
Complex

. Logical constants specify a logical value "true" or "false."
There are two logical constants:

.TRUE.
.FALSE.

. character constants are a string of alphameric and/or special
characters enclosed in apostrophes.

. Hollerith constants are used only in FORMAT statements.
r IBM EXTENSION 1

o Hexadecimal constants are used only as data initialization
values of arithmetic or logical variables.

L END OF IBM EXTENSION !

The PARAMETER statement allows a constant to be given a name., (See
"PARAMETER Statement™ on page 136.)

Arithmetic constants fall into three categories: integer, real,
and complex.

— pefinition

Integer Constant—A string of decimal digits containing no
decimal point and expressing a whole number. It occupies 4%
bytes of storage.

Maximum Magnitude: 2 147 483 647 (that is, 231-1).

VS FORTRAN Data 11

An integer constant may be positive, zero, or negative. If
unsigned and nonzero, it is assumed to be positive. (A zero may be
written with a preceding sign with no effect on the value.) Its
magnitude must not be greater than the maximum and it must not
contain embedded commas.
valid Integer constants:

0

91

173

=214 748 3647

Invalid Integer Constants:

27. Contains a decimal point.
3145903612 Exceeds the maximum magnitude.
5,396 Contains an embedded comma.
~2147483648 Exceeds the maximum magnitude,

even though it fits into 4 bytes.

12 VS FORTRAN Language Reference

Real Constants

Definition

Real Constant—A string of decimal digits that expresses a
real number. It can have one of three forms: a basic real
constant, a basic real constant followed by a real exponent,
or an integer constant followed by a real exponent.

A basic real constant is a string of digits with a decimal
point. It is used to approximate the value of the constant.

The storage requirement (length) of a real constant can also
be explicitly specified by appending an exponent to a basic
real constant or an integer constant. The standard exponents
consist of the letters E and D.

IBM EXTENSION

This compiler also allows the letter Q@ as an exponent.

END OF IBM EXTENSION

An exponent is followed by a signed or unsigned 1- or
2-digit integer constant. The letter E specifies a constant
of length 4; the letter D specifies a constant of length 8.

IBM EXTENSION
The letter Q specifies a constant of length 16.
END OF IBM EXTENSION

Magnitude: 0 or 16-%5 (approximately 10-7%)
through 16¢3 (approximately 1075)

Precision: (Four bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

IBM EXTENSION

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

END OF IBM EXTENSION

A real constant may be positive, zero, or negative (if unsigned

and nonzero, it is assumed to be positive) and must be within the
allowable range. It may not contain embedded commas. A zero may be

Wwritten with a preceding sign with no effect on the value. The

decimal exponent permits the expression of a real constant as the
product of a basic real constant or integer constant and 10 raised

to a desired pouwer.

VS FORTRAN Data

13

Valid Real constants (Four Bytes):

+0.

-999.9999

7.0E+0 That is, 7.0 x 10° = 7.0
9761.25E+1 That is, 9761.25 x 10! = 97612.5
7.E3

7.0E3 That is, 7.0 x 103 = 7000.0
7.0E+03

7E-03 That is, 7.0 x 10-3 = 0.007

21.98753829457168 Note: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.
Valid Real Constants (Eight Bytes):

1234567890123456.D-73 Equivalent to .1234567890123456x10-57

7.9D03
7.9D+03 That is, 7.9 x 103 = 7900.0
7.9D+3
7.9D0 That is, 7.9 x 10° = 7.9
7D03 That is, 7.0 x 103 = 7000.0
I IBM EXTENSION
valid Real constants (Sixteen Bytes):
.236523453456456734565678Q+43
5.001Q08
L END OF IBM EXTENSION
Invalid Real Constants:
1 Missing a decimal point or a
decimal exponent.
3,471.1 Embedded comma.
1.E Missing a 1- or 2-digit integer constant

following the E. It is not intepreted
as 1.0 x 109.

1.2E+113 Too many digits in the exponent.
23.5D+97 Magnitude outside the allowable range,
that is, 23.5 x 10°7>16¢93.
21.3D-99 Magnitude outside the allowable range,
- that is, 21.3 x 10-99<16-65,

14 VS FORTRAN Language Reference

complex constants

r IBM EXTENSION 1
88.63215748Q123 Too many digits in the exponent
L END OF IBM EXTENSION)

—— Definition

Complex Constant—An ordered pair of signed or unsigned
integer or real constants separated by a comma and enclosed
in parentheses. The first constant in a complex constant
represents the real part of the complex number; the second
represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be
positive, zero, or negative and must be within the allouwable
range. (If unsigned and nonzero, they are assumed to be positive.)
A zero may be written with a preceding sign, with no effect on the
value. If both constants are of type integer, however, then both
are converted to type real of length ¢ bytes.

I IBM EXTENSION —

If the constants of the ordered pair representing the complex
constant differ in precision, the constant of lower precision
is converted to a constant of the higher precision.

For example, if one constant is real and the other is double
precision, real is converted to double precision.

If the constants differ in type, the integer constant is
converted to a real constant of the same precision as the
original real constant.

For example, if one constant is integer and the other is
double precision, then the integer constant is converted to
a double precision constant.

L END OF IBM EXTENSION !

valid Complex Constants (i = square root of -1):

(3,-1.86) Has the value 3.- 1.86i;
both parts are real
(4 bytes long).

- IBM EXTENSION y

(-5.0E+03, .16D+02) Has the value -5000.+16.0i;
both parts are double
precision.

(4.7D+2,1.9736164D4%) Has the value 470.+19736.14i.

(47D+2,38D+3) Has the value 4700.+38000.i.

(1236.36456456567678Q59,=1.0Q-5)

(45Q6,6E45) Both parts are real (16 bytes
long.)

L END OF IBM EXTENSION 1

VS FORTRAN Data 15

LOGICAL CONSTANTS

CHARACTER CONSTANTS

Invalid complex Constants:

(A, 3.7) Real part is not a constant.

r IBM EXTENSION .

(.0009Q-1,7643.Q+1199) Too many digits in the exponent
of the imaginary part.

(49.76, .015D+92) Magnitude of imaginary part is
outside of allowable range.

1 END OF IBM EXTENSION -

———— Definition

Logical Constant—A constant that can have a logical value
of either true or false.

There are two logical constants:

. TRUE.
.FALSE.

The words TRUE and FALSE must be preceded and followed by
periods. Each occupies ¢ bytes.

T IBM EXTENSION 1
The abbreviations T and F may be used for .TRUE. and .FALSE.,
raespectively.

L END OF IBM EXTENSION 1

The logical constant .TRUE. or .FALSE., when assigned to a logical
variable, specifies that the value of the logical variable is true
or false, respectively. (See "Logical Expressions" on page 35.)

—— Definition

Character Constant—A string of any characters capable of
representation in the processor. The string must be enclosed
in apostrophes.

The delimiting apostrophes are not part of the data represented by
the constant. An apostrophe within the character data is
represented by two consecutive apostrophes with no intervening
blanks. In a character constant, blanks embedded between the
delimiting apostrophes are significant. The length of a character
constant must be greater than zero.

Each character requires one byte of storage.

Character constants can be used in character expressions, in an
assignment statement, in the argument list of a CALL statement or
function reference, as data initialization values, in input or
output statements, in FORMAT statements, or in PAUSE and STOP
statements.

16 VS FORTRAN Language Reference

valid Character Constants: Length:

"DATA! 4
'X-COORDINATE ~ Y-COORDINATE Z-COORDINATE' 44
'3.14" 4
"DON''T? 5
HOLLERITH CONSTANTS
—— Dbefinition

Hollerith Constant—A string of any characters capable of
representation in the processor and preceded by wH, where w
is the number of characters in the string.

Each character requires one byte of storage.
Hollerith constants can be used only in FORMAT statements.
Valid Hollerith Constants:
24H INPUT/0OUTPUT AREA NO. 2
6H DON'T
I IBM EXTENSION —

HEXADECIMAL CONSTANTS

——— Definition

Hexadecimal Constant—The character Z followed by two or
more hexadecimal numbers formed from the set of characters 0
through 9 and A through F.

Hexadecimal constants may be used as data initialization values
for any type of variable or array except those of character
typea.

One byte contains 2 hexadecimal digits. If a constant is
specified as an odd number of digits, a leading hexadecimal zero
is added on the left to fill the byte. The internal binary form
of each hexadecimal digit is as follows:

0—0000 ¢—0100 8—1000 C—1100
1—0001 5—0101 9—1001 D—1101
2—0010 6—0110 A—1010 E—1110
3—0011 7—0111 B—1011 F—1111

Valid Hexadecimal Constants:
Z1C49A2F1 represents the bit string:
00011100010010011010001011110001
ZBADFADE represents the bit string:
00001011101011011111101011011110

where the first 4 zero bits are implied because an odd number of
hexadecimal digits is written.

VS FORTRAN Data 17

VARIABLES

VARIABLE NAMES

The maximum number of digits allowed in a8 hexadecimal constant
depends upon the length specification of the variable being
initialized (see "Variable Types and Lengths"). The following
list shows the maximum number of digits for each length
specification:

Length Maximum Number of
of variable Hexadacimal Digits
16 32
8 16
4 8
2 4
1 2

If the number of digits is greater than the maximum, the excess
leftmost hexadecimal digits are truncated; if the number of
digits is less than the maximum, hexadecimal zeros are supplied
on the left.

L END OF IBM EXTENSION 1

A VS FORTRAN variable is a data item, identified by a name, that
occupies a storage area, except possibly in situations involving
error or interruption handling where normal program flow is
asynchronously interrupted. The value represented by the name is
always the current value stored in the area.

Before a variable has been assigned a value, its contents are
undefined, and the variable should not be referred to except to

assign it a value. If a variable has not been assigned a value, it
does not have a predictable value.

VS FORTRAN variable names must follow the rules governing element
names. (See "Names" on page 8.) The use of meaningful variable
names can serve as an aid in documenting a program.
Valid variable Names:
B292S
RATE
I IBM EXTENSION 1
$VAR
L END OF IBM EXTENSION !

Invalid variable Names:

B292704 Contains more than six characters.
4ARRAY First character is not alphabetic.
5I.X Contains a special character.

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the
variable represents. (See Figure 5 on page 19.) Thus, an integer
variable must represent integer data, a real variable must
represent real data, and so on. There is no variable type
associated with hexadecimal data; this type of data is identified
by a name of one of the other types. There is no variable type
associated with statement numbers; integer variables that contain

18 VS FORTRAN Language Reference

the statement number of an executable statement or a FORMAT
statement are not considered to contain an integer variable. (See
"ASSIGN Statement™ on page 46.)

For every type of variable data, there is a corresponding length
specifigation that determines the number of bytes that are
reserved.

T IBM EXTENSION 1

Optional length specification is an IBM extension.

L END OF IBM EXTENSION !

Figure 5 shows each data type with i1ts associated storage length
and standard length.

Data Type sStorage Length standard Length (Default)

Integer 2,1 % 4
Real % » 8; 16 4
Double 8 . 8

Precision

Complex 8 |, 16, 32 8
Logical 1,] 4 4
Character 1 - 500 1

Figure 5. Data Type and Storage Length

A programmer may declare the type of variable by using the
following:

. Explicit specification statements
. IMPLICIT statement
. Predefinedvspecification contained in the VS FORTRAN language

An explicit specification statement overrides an IMPLICIT
statement, which, in turn, overrides the predefined
specification. The optional length specification of a variable
may be declared only by the IMPLICIT or explicit specification
statements. If, in these statements, no length specification is
stated, the default length is assumed. INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and CHARACTER are used to specify the length
and type in these statements.

I IBM EXTENSION —
VS FORTRAN accepts INTEGER*2 to indicate 2 bytes and INTEGERX4

as an alternative to INTEGER to indicate 4 bytes; REAL%4 as an
alternative to REAL to indicate 4 bytes; REALX8 as an

VS FORTRAN Data 19

alternative to DOUBLE PRECISION to indicate 8 bytes; REALX16 to
indicate 16 bytes; LOGICAL¥1 to indicate 1 byte, and LOGICAL*4%
as an alternative to LOGICAL to indicate ¢ bytes.

¢ END OF IBM EXTENSION 1

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

. If the first character of the variable name is I, J, K, L, M,
or N, the variable is integer of length &.

. If the first character of the variable name is any other
alphabetic character, the variable is real of length 4.

]
I IBM EXTENSION 1

. If the first character of the variable name is a currency
symbol ($), the variable is real of length 4.
L END OF IBM EXTENSION !

This convention is the traditional FORTRAN method of specifying
the type of a variable as either integer or real. Unless otherwise
noted, it is presumed in the examples in this publication that
this specification applies. Variables defined with this
convention are of standard (default) length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined
convention. That is, the type is determined by the first character
of the variable name. However, by using the IMPLICIT statement,
the programmer has the option of specifying which initial
characters designate a particular variable type. The IMPLICIT
statement can be used to specify all types of variables—integer,
;eal%hcomplex, logical, and character—and to indicate storage
ength.

The IMPLICIT statement overrides the variable type as determined
by the predefined convention.

The IMPLICIT statement is presented in greater detail in
WIMPLICIT Type Statement"” on page 120.

Type Declaration by Explicit specification statements

ARRAY ELEMENTS

Explicit specification statements differ from the first two ways
of specifying the type of a variable in that an explicit
spacification statement declares the type of a particular
variable by its name rather than a group of variable names
beginning with a particular letter, as specified in Figure % on
page 8. Explicit type statements override IMPLICIT statements and
the predefined specifications.

The explicit specification statements are discussed in greater
detail in "Explicit Type Statement™ on page 82.

An array is an ordered and structured sequence of data items,
stored as multidimensional vectors of from one to seven
dimensions. The data items that make up the array are called array
elements. A particular element in the array is identified by the
array name and its position in the array (for example, first
element, third element, seventh element, and so on). (See "Names"

20 VS FORTRAN Language Reference

SUBSCRIPTS

on page 8.) All elements of an array have the same type and
length.

To refer to any element in an array, the array name plus a
parenthesized subscript must be used. In particular, the array
name alone does not represent the first element except in an
EQUIVALENCE statement.

Before an array element has been assigned a value, its contents is
undefined, and the array element may not be referred to except to
assign it a value.

A subscript is a quantity (or a set of subscript expressions
separated by commas) that is associated with an array name to
identify a particular element of the array. The number of
subscript quantities in any subscript must be the same as the
number of dimensions of the array with whose name the subscript is
associated. A subscript is enclosed in parentheses and is written
immediately after the array name. A maximum of seven subscript
expressions can appear in a subscript.

The following rules apply to the construction of subscripts. (See
"VS FORTRAN Expressions" on page 25 for additional information
and restrictions.)

1. Subscript expressions may contain arithmetic expressions that
use any of the arithmetic operators: +, -, %, /, %X,

2. Subscript expressions may contain function references that do
not change any other value in the same statement.

3. Subscript expressions may contain array elements.

. IBM EXTENSION ,

4. Mixed-mode expressions (integer and real only) within a
subscript are evaluated according to normal FORTRAN rules.
If the evaluated expression is real, it is converted to
integer.

' END OF IBM EXTENSION 4

5. The evaluated result of a subscript expression must always be
greater than or equal to the corresponding lower dimension
bound and must not exceed the corresponding upper dimension
bound (see "Size and Type Declaration of an Array" on page 22
for information about dimension bounds).

valid Array Elements:

ARRAY (IHOLD)
NEXT (19)

MATRIX (I-5)

I IBM EXTENSION —
BAK (I,J(K+2%L,.3%A(M,N))) J is an array.
L END OF IBM EXTENSION 1
ARRAY (I,J/6%Kx%%2) J is an array.
ARRAY (-5)
LOT €0)

VS FORTRAN Data 21

Invalid Array Elements:

ALLC.TRUE.) A subscript expression may not be a
logical expression.

NXT (1+(1.3,2.0)) A subscript expression may not be a
complex expression.

Note: The elements of an array are stored in column-major order.
To step through the elements of the array in the linearized order
defined as "column-major order,™ each subscript varies (in steps
of 1) from its lowest valid value to its highest valid value, such
that each subscript expression completes a full cycle before the
next subscript expression to the right is incremented. Thus, the
leftmost subscript expression varies most rapidly, and the
rightmost subexpression varies least rapidly.

The following list is the order of an array named C defined with
three dimensions:

DIMENSION C(1:3,1:2,1:4)
c(1,1,1) C(2,1,1) C(3,1,1) C1,2,1) C(2,2,1) C(3,2,1)
c(1,1,2) ¢(2,1,2) C(3,1,2) C1,2,2) C(2,2,2) C(3,2,2)
c(1,1,3) €(2,1,3) C(3,1,3) Cl1,2,3) C(2,2,3) C(3,2,3)
C(1,1,4) C(2,1,4) C(3,1,4) Cl1,2,4) C(2,2,4) C(3,2,%)

SIZE AND TYPE DECLARATION OF AN ARRAY

22

The size (number of elements) of an array is declared by
specifying, in a subscript, the number of dimensions in the array
and the size of each dimension. Each dimension is represented by
an optional lower bound (el) and a required upper bound (g2} in
the form:

syntax

name ([el:] e2)

is an array name.
where:
el
is the lower dimension bound. It is optional. If el

(with its following colon) is not specified, its value
is assumed to be 1.

is the upper dimension bound and must always be
specified.

The colon represents the range of values for an array's subscript.
For example,

DIMENSION A(0:9),B(3,-2:5)
DIMENSION ARAY(-3:-1),DARY(-3:ID3%%ID1)
DIMENSION IARY(3)

The upper and lower bounds (el and e2) are arithmetic expressions
in which all constants and variables are of type integer.

. If the array name is an actual argument, the expressions can
contain only constants or names of constants of type integer.

. The value of the lower bound may be positive, negative, or
zero. It is assumed to be 1 if it is not specified.

VS FORTRAN Language Reference

° A maximum of seven dimensions is permitted. The size of each
dimension is equal to the difference between the upper and
lower bounds +1. If the value of the lower dimension bound is
1, the size of the dimension is equal to the value of its
upper bound.

. Function or array element references are not allowed in
dimension bound expressions.

U The value of the upper bound must be greater than or equal to
the value of the lower bound. An upper dimension bound of an
asterisk is always greater than or equal to the lower
dimension bound.

. If the array name is a dummy argument and is in a subprogram,
the expressions can also contain:

- Integer variables that are also dummy arguments
- Expressions that contain:

- Signed or unsigned integer constants

— Names of integer constants

— Variables that are dummy arguments or appear in a
common-block in that subprogram

. The upper dimension bound of the last dimension of a dummy
array name can be an asterisk.

Size information must be given for all arrays in a VS FORTRAN
program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement,
a COMMON statement, or by one of the explicit type specification
statements. These statements are discussed in detail in
alphabetic sequence in "VS FORTRAN Statement Descriptions.”

The tvpe of an array name is determined by the conventions for
specifying the type of a variable name. Each element of an array
is of the type and length specified for the array name.

Object-Time Dimensions

If a dummy argument array is used in a function or subroutine
subprogram, the absolute dimensions of the array do not have to be
explicitly declared in the subprogram by constants. Instead, the
array declarators appearing in an explicit specification
statement or DIMENSION statement in the subprogram may contain
dummy arguments or variables in common that are integer variables
of length & to specify the size of the array. When the subprogranm
is called, these integer variables receive their values from the
actual arguments in the calling program reference or from common.
Thus, the dimensions of a dummy array appearing in a subprogram
may change each time the subprogram is called. This is called an
"adjustable array” or an "object-time dimension array."

The absolute dimensions of an array must be declared in the
calling program or in a higher level calling program, and the
array name must be passed to the subprogram in the argument list
of the calling program. The dimensions passed to the subprogram
must be less than or equal to the absolute dimensions of the array
declared in the calling program. The variable dimension size can
be passed through more than one level of subprogram (that is, to a
subprogram that calls another subprogram, passing it dimension
information).

Integer variables in the explicit specification or DIMENSION
statement that provide dimension information may be redefined
within the subprogram but the redefinitions have no effect on the
size of the array. The size of the array is determined at the
entry point at which the array information is passed.

VS FORTRAN Data 23

Character arrays are specified in the same manner as for the other
data types. (See "DIMENSION Statement™ on page 70 and "Explicit
Type Statement” on page 82.) The length of each array element is
either the standard length of 1 or may be declared larger with a
type or IMPLICIT statement. Each character array element is
treated as a single entity. Portions of an array element can be
accessed through substring notation.

CHARACTER SUBSTRINGS

A character substring is a contiguous portion of a character
variable or character array element. A character substring is
identified by a substring reference. It may be assigned values and
maytbe referred to. A substring reference is local to a program
unit.

The form of a substring reference is:

syntax

alel:e2)

a
is a character variable name or a subscripted character
array name (see "Array Elements" on page 20).

el and e2

are substring expressions.

Substring expressions are optional, but the colon (:) is always
required inside the parentheses. The colon represents a range of
values. If el is omitted, a value of one is implied for el. If g2
is omitted, a value equal to the length of the character variable
or array element is implied for 2. Both el and 2 may be omitted;
for example, the form v(:) is equivalent to v.

The value of el specifies the leftmost character position and the
value of e2 specifies the rightmost character position of the
substring. The substring information (if any) must be specified
after the subscript information (if any).

. The values of el and e2 must be integer, positive, and
nonzero.

. The value of el must be less than or equal to the value of 2.

. The values of el and @2 must be less than or equal to the
number of characters contained in the corresponding variable
name or array element.

Examples:

Example 1:

Given the following statements:

CHARACTERX5 CH(10)
CH(2)="ABCDE"

then
CH(2)(1:2) has the value AB.
CH(2)(:3) has the value ABC.
CH(2)(3:) has the value CDE.

Example 2:
SUBSTG(:) = SYMNAM

SUBST3(3:15) = SYMB3
SUBST5(5:9) = SUBARI(2)(1:)

2% VS FORTRAN Language Reference

VS _FORTRAN EXPRESSIONS

VS FORTRAN provides four kinds of expressions: arithmetic,
character, relational, and logical.

The value of an arithmetic expression is always a number whose
type is integer, real, or complex.

The value of a character expression is a character string.

The value of a relational or logical expression is always a
logical value: .TRUE. or .FALSE..

EVALUATION OF EXPRESSIONS

VSIFORTRAN expraessions are evaluated according to the following
rules:

ARITHMETIC EXPRESSIONS

Any variable, array element, function, or character substring
referred to as an operand in an expression must be defined
(that is, must have been assigned a value) at the time the
reference is executed.

In an expression, an integer operand must be defined with an
integer value, rather than a statement number. (See "ASSIGN
Statement"” on page 46.) If a character string or a substring
is referred to, all of the characters referred to must be
defined at the time the reference is executed.

The execution of a function reference in a statement must not
alter the value of any other entity within the statement in
which the function reference appears. The execution of a
function reference in a statement must not alter the value of
any entity in COMMON that affects the value of any other
function reference in that statement.

If a function reference in a statement alters the value of an
actual argument of the function, that argument or any
associated entities must not appear elsewhere in the
statement. For example, the following statements are
prohibited if the reference to the function F defines I or if
the reference to the function G defines X:

ACI) = F(I)
Y = 6(X) + X

The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function.

Any array element reference requires the evaluation of its
subscript. The data type of an expression in which an array
reference appears does not affect, nor is it affected by, the
evaluation of the subscript.

Any execution of a substring reference requires the
evaluation of its substring expressions. The data type of an
expression in which a substring name appears does not affect,
nor is it affected by, the evaluation of the substring
expressions.

The simplest arithmaetic expression consists of a primary, which
may be a single constant, name of a constant, variable, array

VS FORTRAN Expressions 25

element, function reference, or another expression enclosed in
parentheses. The primary may be either integer, real, or complex.

In an expression consisting of a single primary, the type of the
primary is the type of the expression. Examples of arithmetic
expressions are shown in Figure 6.

Primary Type of Primary Type Length

3 Integer constant Integer 4

A Real variable Real 4

3.164D3 Real constant ' Real - 8

3.14D3 Double precision constant Double 8
precision

(2.0,5.7) Complex constant Complex

SIN(X) Real function reference Real

(A%B+C) Parenthesized real Real 4

expression

Figure 6. Examples of Arithmetic Expressions

ARITHMETIC OPERATORS
More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that
express the computation(s) to be performed.

The arithmetic operators are shown in Figure 7.

Arithmetic
Operator pefinition
* % Exponentiation
% Multiplication
7 Division
+ Addition (or unary plus)
- Subtraction (or unary minus)

Figure 7. Arithmetic Operators

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS

The following are the rules for constructing arithmetic
expressions that contain arithmetic operators:

. All desired computations must be specified explicitly. That
is, if more than one primary appears in an arithmetic
expression, they must be separated from one another by an
arithmetic operator. For example, the two variables A and B
are not multiplied if written:

AB

In fact, AB is regarded as a single variable with a two-letter
name.

26 VS FORTRAN Language Reterence

If multiplication is desired, the expression must be written
as follouws:

. A¥B or B¥A
. No two arithmetic operators may appear consecutively in the
same expression. For example, the following expressions are
invalid:
A%/B and A%-B
The expression A¥-B could be written correctly as

A%(-B)

Two asterisks (¥%) designate exponentiation, not two
multiplication operations.

U Order of Computation

In the evaluation of expressions, priority of the operations
is shown in Figure 8.

Operation Hierarchy
Evaluation of functions ist
Exponentiation (¥x) 2nd
Multiplication and division (¥ and /) 3rd
Addition and subtraction (+ and -) G6th

Figure 8. Hierarchy of Arithmetic Operations

Note: A unary plus or minus has the same hierarchy as a plus or
minus in addition or subtraction.

If two or more operators of the same priority appear successively
in the expression, the order of priority of those operators is
from left to right, except for successive exponentiation
operators, where the evaluation is from right to left.

Consider the evaluation of the expression in the assignment
statement:

RESULT= AXB+CXDxxI
1. AxB Call the result X (multiplication) (X+CxDxx%I)
2. DxxI Call the result Y (exponentiation) (X+CXY)
3. CxY Call the result Z (multiplication) (X+2)
4. X+Z Final operation (addition)
The expression:
AXXBXXC
is evaluated as follows:
1. B¥%C Call the result Z.

2. A¥¥Z Final operation.

VS FORTRAN Expressions 27

Expressions with a unary minus are treated as follows:

A=-B is treated as A=0-B

A=-BXC is treated as A=-(BxC) Because ¥ has higher precedence
than -

A=-B+C is treated as A=(-B)+C Because - has equal precedence
to +

USE OF PARENTHESES IN ARITHMETIC EXPRESSIONS

Because the order of evaluation (and, consequently, the result)
of an expression can be changed through the use of parentheses,
refer to Figure 9, Figure 10, and Figure 11 to determine the type
and length of intermediate results. Where parentheses are used,
the expression contained within the most deeply nested
parentheses (that is, the innermost pair of parentheses) is
evaluated first. A parenthesized expression is considered a
primary.

For example, the expression,
B/Z((A-BIXC)+A%%2

is effectively evaluated in the following order:

1. A-B Call the result W B/ (WXCI+A%x2
2. WxC Call the result X B/X+A%x%2

3. B/X Call the result Y Y+A%X%2

G. A%x%2 Call the result Z Y+Z

5. Y+Z Final operation

TYPE AND LENGTH OF THE RESULT OF ARITHMETIC EXPRESSIONS

The type and length of the result of an operation depend upon the
type and length of the two operands (primaries) involved in the
operation.

Figure 9 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
an integer.

Figure 10 shows the tvpe and length of the result of adding,
sub}racting, multiplving, or dividing when the first operand is
real.

Figure 11 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
complex.

Note: Except for a value raised to an integer power, if two
operands are of different type and length, the operand that
differs from the type and/or length of the result is converted to
the type and/or length of the result. Thus the operator operates
on a pair of operands of matching type and length.

When an operand of real or complex type is raised to an integer

power, the integer operand is not converted. The resulting type
and length match the type and length of the base.

28 VS FORTRAN Language Reference

First

Operand
Integer Integer
(2) (%)
Second
Operand
Integer Integer Integer
(2) (2) (4)
Integer Integer Integer
(4) (4) (%)
Real Real Real
(%) (%) (%)
Real Real Real
(8) (8) (8)
Real Real Real
(16) (16) (16)
Complex Complex Complex
(8) (8) (8)
Complex Complex Complex
(16) (16) (16)
Complex Complex Complex
(32D (32) (32)
Figure 9. Type and Length where

the First Operand is Integer

VS FORTRAN Expressions

29

30

First
Operand
Real Real Real
(4) (8) (16)
second
Ooperand
Integer Real Real Real
2> (%) (8) (16)
Integer Real Real Real
(4) (4) (8) (16)
Real Real Real Real
(4) (4) (8) (16)
Real Real Real Real
(8) (8) (8) (16)
Real Real Real Real
(16) (16) (16) (16)
Complex Complex Complex Complex
(8) (8) (16) (32)
Complex Complex Complex Complex
(16) (16> (16) (32)
Complex Complex Complex Complex
(32) (32) (32) (32)

Figure 10. Type and Length where the First Operand is Real

VS FORTRAN Language Reference

First

VS FORTRAN Expressions

Operand

Complex Complex Complex

(8) (16) (32)

second
Operand

Integer Complex Complex Complex

(2) (8> (16) (32)
Integer Complex Complex Complex

(%) (8) (16) (32)
Real Complex Complex Complex

(4) (8) (16) (32)
Real Complex Complex Complex

(8) (16) (16) (32)
Real Complex Complex Complex

(16) (32) (32) (32)
Complex Complex Complex Complex

(8) (8) (16) (32)
Complex Complex Complex Complex

(16) (16) (16) (32)
Complex Complex Complex Complex

(32) (32) (32) (32)

Figure 11. Type and Length where the First Operand is Complex

31

EXAMPLES OF ARITHMETIC EXPRESSIONS

32

Assume that the type of the following variables has been specified
as indicated below:

Name Type Length

I, J, K Integer variables 4 |, 2, 2
Cc Real variable %

D Complex variable 16

Then the expression I¥J/Cx%K+D is evaluated as follows:

Subexpression Type and Length
IxJ (Call the result X) Integer of length 4
CxxK (Call the result Y) Real of length 4
XY (Call the result 2) Real of length 4

(X is converted to real of length 4 before division is performed.)
r IBM EXTENSION 1
2+D Complex of length 16

(Z is expanded to real of length 8 and a complex quantity of
length 16 (call it W) is formed in which the real part is the
expansion of Z and the imaginary part is zero. Then the real
part of W is added to the real part of D and the imaginary part
of W is added to the imaginary part of D.)

Thus, the final type of the entire expression is complex of
length 16, but the tvypes of the intermediate expressions change
at different stages in the evaluation.

L END OF IBM EXTENSION !

Depending on the values of the variables involved, the result of
the expression I¥J*C might be different from IXC*J. This may occur
because of the number of conversions performed during the
evaluation of the expression.

Because the operators are the same, the order of the evaluation is
from left to right. With I¥J%C, a multiplication of the two
integers I¥J yields an intermediate result of tvype integer and
length 4. This intermediate result is converted to a type real of
length 4 and multiplied with C of type real of length 4 to yield a
type real of length & result.

With I%CxJ, the integer I is converted to a type real of length 4
and the result is multiplied with C of type real of length ¢ to

.yield an intermediate result of type real of length 4. The integer

J is converted to a type real of length 4 and the result is
multiplied with the intermediate result to yield a type real of
length 4 result.

Evaluation of IXJXC requires one conversion and IX¥C¥J requires
two conversions. The expressions require that the computation be
performed with different types of arithmetic. This may yield
different results.

VS FORTRAN Language Reference

When division is performed using two integers, any remainder is
truncated (without rounding) and an integer quotient is given. If
the mathematical quotient is less than 1, the answer is 0. The
sign is determined according to the rules of algebra. For example:

I J I/

9 2 4
-5 2 -2
1 -4 0

CHARACTER EXPRESSIONS

The simplest form of a character expression is a character
constant, character array element reference, character substring
reference, or character function reference. More complicated
character expressions may be formed by using one or more character
operands together with character operators and parentheses.

The character operator is shown in Figure 12.

Character L.
Operator Definition
V4 Concatenation

Figure 12. Character Operator
The concatenation operation joins the operands in such a way that
the last character of the operand to the left immediately precedes
the first character of the operand to the right. For example:
'AB'//7'CD' yields the value of YABCD'

The result of a concatenation operation is a character string
consisting of the values of the operands concatenated left to
right and its length is equal to the sum of the lengths of the
operands.
Note: Except in a CHARACTER assignment statement, the operands
of a concatenation operation must not have inherited length. That
is, their length specification must not be an asterisk (¥) unless
the operand is the name of a constant. See "Explicit Type
Statement™ on page 82.

USE OF PARENTHESES IN CHARACTER EXPRESSIONS

Parentheses have no effect on the value of a character expression.
For example:

If X has the value "AB',
Y has the value 'CD'
and
Z has the value 'EF'
then the two expressions:
X7/7¥7/72
Xr7/7(Y//2)
both yield the same result, the value "ABCDEF'

VS FORTRAN Expressions 33

valid character Expressions:
Substring:

ST1311(I) = CVARI1I(:I)
Function Reference:

ST1314(IVAR1) = CHAR(CIVAR1)

RELATIONAL EXPRESSIONS

34

Relational expressions are formed by combining two arithmetic
expressions with a relational operator or two character
expressions with a relational operator.

The six relational operators are shown in Figure 13.

Relational

Cperator befinition
.GT. Greater than
.GE. Greater than or equal to
AT Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to

Figure 13. Relational Operators
Relational operators:
. Express a condition that can be either true or false.

. Operators may be used to compare two arithmetic expressions
{except complex) or two character expressions. Only the .EQ.
and .NE. operators may be used to compare an arithmetic
expression with a complex expression. If the two arithmetic
exprassions being compared are not of the same type or length,
they are converted following the rules indicated in Figure 9,
Figure 10, and Figure 11.

° Comparison of an arithmetic expression to a character
expression or vice versa is not allowed.

In the case of character expressions, the shorter operand is
considered as being extended temporarily on the right with blanks
to the length of the longer operand. The comparison is made from
left to right, character by character, according to the collating
seguence as shown in Figure 4 and in "Appendix E. EBCDIC and ASCII
Codes."

VS FORTRAN Language Reference

LOGICAL EXPRESSIONS

Examples:

Assume that the type of the following variables has been specified
as indicated:

variable Names Type

ROOT, E Real

A, I, F Integer

L Logical

C Complex

CHAR Character of length 10

Theh the following examples illustrate valid and invalid
relational expressions.

valid Relational Expressions:
E .LT. I
EX%2.7 .LE. (5%R0O0T+4)
.5 .GE. (.9%R0OOT)
E .EQ. 27.3E+05
CHAR .EQ. '"ABCDEFGH®
C.NE. CMPLX(ROOT,E)
Invalid Relational Expressions:
C.GE.(2.7,5.9E3) Complex quantities can only be compared
for equal or not equal in relational

expressions.

L.EQ.(A+F) Logical quantities may never be compared by
relational operators.

Exx2 LT 97.1E1 There is a missing period immediately
after the relational operator.

.GT.9 There is a missing arithmetic expression
before the relational operator.

E¥2 .EQ. YABC' A character expression may not be compared
to an arithmetic expression.

I IBM EXTENSION 1

Length of a Relational Expression: A relational expression is
always evaluated to a LOGICAL¥4 result, but the result can be
converted in an assignment statement to LOGICALX1.

L END OF IBM EXTENSION - 1

The simplest form of logical expression consists of a single
logical primary. & logical primary can be a logical constant, a
name of a logical constant, a logical variable, a logical array
element, a logical function reference, a relational expression
(which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in
parentheses. A logical primary, when evaluated, always has a
value of true or false.

More complicated logical expressions may be formed by using
logical operators to combine logical primaries.

VS FORTRAN Expressions 35

LOGICAL OPERATORS

36

The logical operators are shown in Figure 14. (A and B represent
logical constants or variables, or expressions containing

relational operators.)

Logical .
Operator| Use Meaning

.NOT. .NOT.A If A is true, then .NOT.A is false; if A
is false, then .NOT.A is true.

.AND. A.AND.B If A and B are both true, then A.AND.B is
true; if either A or B or both are false,
then A.AND.B is false.

.OR. A.OR.B If either A or B or both are true, then
A.OR.B is true; if both A and B are false,
then A.OR.B is false.

.EQV. A.EQV.B If A and B are both true or both false,
then A.EQV.B is true; otherwise it is
false.

.NEQV. A.NEQV.B| If A and B are both true or both false,
then A.NEQV.B is false; otherwise it is
true.

Figure l14. Logical Operators

The only valid sequences of two logical operators are:
.AND..NOT.
.OR..NOT.
.EQV. .NOT.
-NEQV..NOT.

The sequence .NOT..NOT. is invalid.

Only those expressions which have a value of true or false when
evaluated, may be combined with the logical operators to form
logical expressions.

Examples:

Assume that the types of the following variables have been
specified as indicated:

Variable Names

ROOT, E
A, I, F
L, W

CHAR, SYMBOL

Type

Real

Integer

Logical

Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Valid Logical Expressions:

(ROOT*A
L .AND.

.NOT. W
L .AND.

.GT. A)

LNOT. (I
(E+5.9E2 .GT.
.AND.
.NOT. W .OR. CHAR//'123'.LT.SYMBOL

.AND. W
.GT. F)
2%E)
.NOT.,

.OR. L
L

(A%%F ,GT. ROOT .AND. .NOT. I .EQ. E)

VS FORTRAN Language Reference

Invalid Logical Expressions:
A.AND.L A is not a logical expression.

.OR.W .OR. must be preceded by a logical
expression.

NOT.(A.GT.F) Missing period before the logical operator
.NOT..

L.AND..OR.NW The logical operators .AND. and .OR. must
always be separated by a logical expression.

.AND.L .AND. must be preceded by a logical
expression.

ORDER OF COMPUTATIONS IN LOGICAL EXPRESSIONS

In the evaluation of logical expressions, priority of operations
involving arithmetic operators is as shown in Figure 15. Within a
hierarchic level, computation is performed from left to right.

Operation Involving Arithmetic Operators Hierarchy
Evaluation of functions l1st (highest)
Exponentiation (%x) 2nd
Multiplication and division (¥ and /) 3rd
Addition and subtraction (+ and -) 6th
Relationals (.G6T.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. 6th

.AND. 7th

.OR. 8th

.EQV. or .NEQV. 9th

Figure 15. Hierarchy of Operations lnvolving Arithmetic Operators

In the evaluation of logical expressions, priority of operations
involving character operators is as shown in Figure 16. Within a
hierarchic level, computation is performed from left to right.

operation Involving Character Operators Hierarchy
Evaluation of functions 1st (highest)
Concatenation (//) 2nd
Relationals (:GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) - 3th

.NOT. Gth

.AND. 5th

.OR. 6th

.EQV. or .NEQV. 7th

Figure 16. Hierarchy of Operations Involving Character Operators

VS FORTRAN Expressions 37

Example:

Assume the type of the following variables has been specified as
follows:

variable Names Type Length
B,D REAL)
A REAL 8
L,N LOGICAL 4

The expression
A.GT.D%*B.AND..NOT.L.OR.N

is effectively evaluated in the following order (and from left to
right):

1. DxxB Call the result W.

Exponentiation is performed because arithmetic operators have
a higher priority than relational operators, yielding a real
result W of length 4.

2. A.GT.W Call the result X.

The real variable A of length 8 is compared to the real
variable W which was extended to a length of 8, vielding a
logical result X whose value is true or false.

3. .NOT.L Call the result Y.

The logical negation is performed because .NOT. has a higher
priority than .AND., yielding a logical result Y whose value
is true 1f L is false and false if L is true.

4. X.AND.Y Call the result Z.

The logical operator .AND. is applied because .AND. has a
higher priority than .0R. to vield a logical result Z whose
value is true if both X and Y are true and false, if both X and
Y are false, or if either X or Y is false.

5. Z.0R.N

The logical operator .OR. is applied to yield a logical result
of true if either Z or N is true or if both 2 and N are true.
If both Z and N are false, the logical result is false.

Note: Calculating the value of logical expressions may not always
require that all parts be evaluated. Functions within logical
expressions may or may not be invoked. For example, assume a
logical function called LGF. In the expression A.OR.LGF(.TRUE.),
it should not be assumed that the LGF function is always invoked,
since it is not always necessary to do so to evaluate the
expression when A is true.

USE OF PARENTHESES IN LOGICAL EXPRESSIONS

38

Parentheses may be used in logical expressions to specify the
order in which the operations are to be performed. Where
parentheses are used, the expression contained within the most
deeply nested parentheses (that is, the innermost pair of
parentheses) is evaluated first.

VS FORTRAN Language Reference

Example:

Assume the type of the following variables specified as follows:

Variable Names Type Length
B REAL 4
C REAL 8
K,L LOGICAL 4

The expression
.NOT.((B.GT.C.OR.K).AND.L)

is avaluated in the following order:

1. B.GT.C Call the result X.

B is extended to a real of length 8 and compared with C of
length 8 yielding a logical result X of length 4 whose value
is true if B is greater than C or false if B is less than C.

2. X.0R.K Call the result Y.

The logical operator .OR. is applied to vield a logical result
of Y whose value is true if either X or K is true or if both X
and Kfa;e true. If both X and K are false, the logical result
Y is false.

3. Y.AND.L Call the result Z.

The logical operator .AND. is applied to vield a logical
result Z whose value is true if both Y and L are true and
false if both Y and L are false or if either Y or L is false.

4. .NOT.Z

The logical negation is performed to vield a logical result
whose value is true if Z is false and false if Z is true.

A logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more
quantities. Otheruwise, because of the higher precedence of the
.NOT. operator, it will apply to the first operand of the
relation. For example, assume that the values of the logical
variables, A and B, are false and true, respectively. Then the
following two expressions are not equivalent:

.NOT.(A.QOR.B)

.NOT.A.OR.B
In the first expression, A.OR.B is evaluated first. The result is
true; but .NOT.(.TRUE.) is the equivalent of .FALSE.. Therefore,
the value of the first expression is false.
In the second expression, .NOT.A is evaluated first. The result is

true; but .TRUE..OR.B is the equivalent of .TRUE.. Therefore, the
value of the second expression is true.

VS FORTRAN Expressions 39

The lengths of the results of the various logical operations are
shown in Figure 17. (The result of logical operations is always
logical of length 4.)

First

Operand Logical Logical

Second (1) (%)

Operand -

Logical Logical Logical

(1) (%) (%)
Logical Logical Logical

(%) (4) (4)

Figure 17. Type and Length of the Result of Logical Operations

40 VS FORTRAN Language Reference

VS FORTRAN STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions and allocates storage for
data areas. A given VS FORTRAN statement performs one of three
functions:

L It performs certain executable operations (for example,
addition, multiplication, branching).

. It specifies the nature of the data being handled.
L It specifies the characteristics of the source program.

VS FORTRAN statements are either executable or nonexecutable.

VS FORTRAN STATEMENT CATEGORIES

Statements are divided into the following categories according to
what they do:

. Assignment statements

. Control statements

. Data statement

I IBM EXTENSION 1

. Debug statements

L END OF IBM EXTENSION !

. Input/output statements
. Main program statement

. Specification statements
. Subprogram statements

. VS FORTRAN compiler directing statements

ASSIGNMENT STATEMENTS

CONTROL STATEMENTS

There are four types of assignment statements: the arithmetic,
character, and logical assignment statements and the ASSIGN
statement. Execution of an assignment statement assigns a value
to a variable. Assignment statements are executable.

In the absence of control statements, VS FORTRAN statements are
executed sequentially. That is, after one statement has been
executed, the statement immediately following it is executed.
Control statements alter this normal sequence of execution of
statements in the program. They are executable.

CALL IF (ELSE, ELSE IF, END IF)
CONTINUE PAUSE

DO RETURN

END STOP

G0 TO

VS FORTRAN Statements 41

DATA STATEMENT

DEBUG STATEMENTS

The DATA statement assigns initial values to variables, array
elements, arrays, and substrings. It is nonexecutable.

I IBM EXTENSION 1

The debug facility is a programming aid that helps locate errors
in a VS FORTRAN source program. The debug facility traces the
flow of execution within a program, traces the flow of execution
between programs, displays the values of variables and arrays,
and checks the validity of subscripts. DISPLAY, TRACE OFF, and
TRACE ON are executable; AT, DEBUG, and END DEBUG are
nonexecutable.

AT END DEBUG
DEBUG TRACE OFF
DISPLAY TRACE ON
L END OF IBM EXTENSION 1

INPUT/0UTPUT STATEMENTS

Input/output (I/70) statements transfer data between two areas of
internal storage or between internal storage and an input/output
device. Examples of input/output devices are card readers,
printers, punches, magnetic tapes, disk storage units, or
terminals. .

The I/0 statements allow the programmer to specify how to process
the VS FORTRAN files at different times during the execution of a
program. Except for the FORMAT statements, these statements are
executable.

BACKSPACE OPEN
CLOSE PRINT
ENDFILE READ
FORMAT REWIND
INQUIRE WRITE
i IBM EXTENSION ,
WAIT '
— END OF IBM EXTENSION !

Note: The description of the VS FORTRAN input and output
statements is made from the point of view of a VS FORTRAN program.
Therefore words such as file, record, or OPEN must not be confused
with the same words used when discussing an operating system. See
the descriptions of each I/70 statement.

MAIN PROGRAM STATEMENT

The PROGRAM statement names the main program. It can only be used
in a main program. It is not required. The PROGRAM statement is
nonexecutable.

SPECIFICATION STATEMENTS

The specification statements provide the compiler with
information about the nature of the data in the source program. In
addition, they supply the information required to allocate
storage for this data.

42 VS FORTRAN Language Reference

The specification statements must follow the PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statements. They may be preceded by FORMAT
or ENTRY statements. Specification statements are nonexecutable.

COMMON EXTERNAL
DIMENSION IMPLICIT
EQUIVALENCE INTRINSIC
Explicit type: PARAMETER
COMPLEX, INTEGER, SAVE

LOGICAL, REAL,
CHARACTER, and
DOUBLE PRECISION
r IBM EXTENSION 1
NAMELIST

: END OF IBM EXTENSION J

SUBPROGRAM STATEMENTS

There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCKDATA. There are also intrinsic function procedures and
statement function procedures. The list of intrinsic functions
supplied with VS FORTRAN is contained in "Appendix B.
FORTRAN-Supplied Procedures" on page 201.

Function subprograms differ from subroutine subprograms in the
way they are invoked and in that function subprograms return a
value to the calling program, whereas subroutine subprograms need
not return any.

The function subprogram is a VS FORTRAN subprogram that begins
with a FUNCTION statement. It is independently written and is
executed whenever its name is appropriately referred to in
another program. It is called by coding its name with any
necessary parameters. At least one executable statement in the
function subprogram must assign a result to the function name;
this value is returned to the calling program as. the result of the
function.

The subroutine subprogram is similar to the function subprogram
except that it begins with a SUBROUTINE statement and does not
return an explicit result to the calling program. The rules for
naming function and subroutine subprograms are similar. They both
require an END statement and they both may contain dummy
arguments. Like the function subprogram, the subroutine
subprogram can be a set of commonly used computations, but it need
not return any results to the calling program. The subroutine
subprogram is executed whenever its name is referred to by the
CALL statement.

Subprogram statements are nonexecutable.

BLOCK DATA Statement function
ENTRY SUBROUTINE
FUNCTION

I IBM EXTENSION 1

VS FORTRAN COMPILER DIRECTING STATEMENTS

The EJECT and INCLUDE statements are IBM extensions that direct
the compiler to start a new page or to insert one or more source
statements into the program. They are not considered part of the
VS FORTRAN language.

L END OF IBM EXTENSION —!

VS FORTRAN Statements = 43

ORDER OF STATEMENTS IN A PROGRAM UNIT

44

The order of statements in a VS FORTRAN program unit (other than a
BLOCK DATA subprogram) is as follows:

1. PROGRAM or subprogram statement, if any.
2. PARAMETER statements and/or IMPLICIT statements, if any.

3. Other specification statements, if any. (Explicit
specification statements that initialize variables or arrays
must follow other specification statements that contain the
same variable or array names.)

4. Statement function definitions, if any.
5. Executable statements.
6. END statement.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements except
PARAMETER statements. Any specification statement that specifies
the type of a name of a constant must precede the PARAMETER
statement that defines that particular name of a constant; the
PARAMETER statement must precede all other statements containing
the names of constants that are defined in the PARAMETER
statement.

FORMAT and ENTRY statements may appear anywhere after the PROGRAM
or subprogram statement and before the END statement. The ENTRY
statement, however, may not appear between a block IF statement
and its corresponding END IF statement or within the range of a
DO. DATA statements must follow the IMPLICIT statements and any
specification statements that contain the same variable or array
names.

r IBM EXTENSION 1
A NAMELIST statement declaring a NAMELIST name must precede the
use of that name in any input/output statement. Its placement is
as indicated for other specification statements.

! END OF IBM EXTENSION !

The order of statements in BLOCK DATA subprograms is discussed in
"BLOCK DATA Statement"™ on page 56. Figure 18 shows a diagram of
the order of statements.

. The vertical lines in the figure delineate varieties of
statements that may be interspersed. For example, FORMAT
statements may be interspersed with statement function
statements and executable statements.

. Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable
statements.

VS FORTRAN Language Reference

comment
Lines

PROGRAM, FUNCTION, SUBROUTINE,

or BLOCK DATA

Statemant
IMPLICIT
PARAMETER Statements
FORMAT Statements
Other
and Specification
Statements
ENTRY
Statement
Statements Function
DATA Statements
Statements -
Executable
Statements

END Statement

Figure 18. Order of Statements and Comment Lines

VS FORTRAN STATEMENT DESCRIPTIONS
The rules for coding each VS FORTRAN statement are described in

this section in alphabetic sequence. Brief examples are included.
For additional examples and explanations, see VS_FORTRAN

Application Programming: Guide.

Notes:

1. Comments and statement numbers are included because, although
they are not actual statements, they are integral parts of VS
FORTRAN programs.

2. Each described statement begins at the top of a page.

ARITHMETIC IF STATEMENT

See "IF Statements"™ on page 115.

VS FORTRAN Statements

45

ASSIGN
ASSIGN STATEMENT

The ASSIGN statement assigns a number (statement number) to an
integer variable. See also "Statement Numbers"™ on page 169.

syntax
ASSIGN stn TO i

U
e+
3

is the number of an executable statement or a FORMAT
statement in the program unit containing the ASSIGN
statement.

is the name of an integer variable (not an array element) of
length 4 that is assigned the statement number stn.

The statement number must be the number of a statement that
appears in the same program unit as the ASSIGN statement. The
statement number must be the number of an executable statement or
a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined
with a statement number.

A variable must have been defined with a statement number when it
is referred to in an assigned GO TO statement or as a format
identifier in an input or output statement. An integer variable
defined with a statement number may be redefined with the same or
a different statement number or an integer value.

If stn is the statement number of an executable statement, i can
be used in an assigned GOT0 statement.

If stn is the statement number of a FORMAT statement, i can be
used as the format identifier in a READ, WRITE, or PRINT statement
with FORMAT control.

The value of 1 is not the integer constant represented by stn and
cannot be used as such. To use i as an integer, it must be
assigned an integer value by an assignment or input statement.
This assignment can be done directly or through EQUIVALENCE,
COMMON, or argument passing.

ASSIGNED GO TO STATEMENT

See "GO TO Statements"™ on page 113.

46 VS FORTRAN Language Reference

Assignment
ASSIGNMENT STATEMENTS

This VS FORTRAN statement closely resembles a conventional
algebraic equation; however, the equal sign specifies a
replacement operation rather than equality. That is, the
expression to the right of the equal sign is evaluated, and the
resulting value replaces the current value of the variable, array
element, character substring, or character variable to the left
of the equal sign.

syntax

a=h

is a variable, array element, character substring, or
character variable.

b
is an arithmetic, logical, or character expression.

An assignment statement is used for the results of calculations.
The result of evaluating the expression replaces the current
value of a designated variable, array element, or character
substring. There are three assignment statements: arithmetic,
logical, and character.

Arithmetic Assignment Statement

If b is an arithmetic expression, a must be an integer, real, or
complex variable or an array element.

Figure 19 shows the rules for conversion in arithmetic assignment
statements, a=b, where the type of b is integer or real.

Figure 20 shows the rules for conversion in arithmetic assignment
statements, a=b, where the type of b is complex.

VS FORTRAN Statements 47

Assignment

Type
of b INTEGERX2 REAL %4 REAL X8 REALX16
INTEGER*% REAL DOUBLE
Tvype PRECISION
of a INTEGER
INTEGER¥%2
Assign Fix and Fix and Fix and
assign assighn assign
INTEGERX4
INTEGER
REAL X4 Float and Assign Real Real
assign assign assign
REAL
REAL X8 DP float DP extend Assign DP assign
and assign and assign
DOUBLE
PRECISION
QP float QP extend QP extend Assign
REALX*16 and assign and assign and assign
Float and Assign to Real assign Real assign
COMPLEXx8 assign to real part; real part; real part;
real part; imaginary imaginary imaginary
imaginary part set part set part set
COMPLEX part set to 0 to O to O to 0
DP float and DP extend Assign to DP assign
assign to and assign real part; real part;
COMPLEXx*16 real part; to real part; imaginary imaginary
imaginary imaginary part set part set
part set to 0 part set to 0 to 0 to 0
QP float and QP extend QP extend Assign real
assign to and assign and assign part;
COMPLEXx%32 real part; t6 real part; real part; imaginary
imaginary imaginary imaginary part set
part set to 0 part set to 0 part set to 0 to 0
Figure 19. Conversion Rules for the Arithmetic Assignment Statement a=b Where Type of

b is Integer or Real

48 VS FORTRAN Language Reference

Tvpe
of b COMPLEXX8 COMPLEXX16 COMPLEX*32
Type COMPLEX
of a
INTEGERX*2 Fix and Fix and Fix and
assign real assign real assign real
part; part; part;
INTEGERX*4 imaginary imaginary imaginary
part not used part not used part not used
INTEGER
Assign real Real assign, Real assign,
REAL X4 part; real part; real part;
imaginary imaginary imaginary
part not part not part not
REAL used used used
DP extend and Assign real DP assign
REALX8 assign real part; real part;
part; imaginary imaginary
DOUBLE imaginary part not part not
PRECISION part not used used used
QP extend QP extend Assign real
and assign and assign part;
REAL%16 real part; real part; imaginary
imaginary imaginary part not
part not used part not used used
Real assign Real assign
COMPLEXx*8 Assign real and real and
imaginary imaginary
parts parts
COMPLEX
DP extend DP assign
and assign Assign real and
COMPLEXX*16 real and imaginary
imaginary parts
parts
QP extend QP extend
and assign and assign Assign
COMPLEX%32 real and real and
imaginary imaginary
parts parts

Assignment

Figure 20. Conversion Rules for the Arithmetic Assignment Statement a=b Where Type of
b is Complex

VS FORTRAN Statements 49

Assignment

Notaes to Figures: IBM extensions are shown with inner boxes in
the figures. For clarity of presentation, the extensions are not
marked in the following definitions. Terms in the figures are
defined as follows:

Assign

Real assign

DP assign

Fix

Float

DP float
DP extend
QP float

QP extend

Examples:

Transmit the expression value without change. If the
expression value contains more significant digits
than the variable a can hold, the value assigned to a
is unpredictable.

Transmit to a as much precision of the most
significant part of the expression value as REALX4%
data can contain.

Transmit as much precision of the most significant
part of the expression value as double precision
(REAL*8) data can contain.

Truncate the fractional portion of the expression
value and transform the result to an integer of
length % bytes. If the expression value contains
more significant digits than an integer of length 4
bytes can hold, the value assigned to the integer
variable is unpredictable.

Transform the integer expression value to a REALX¢4
number, retaining in the process as much precision
of the value as a REAL¥4 number can contain.

Transform the integer expression value to a double
precision (REAL¥8) number.

Extend the real value to a double precision (REALX8)
number.

Transform the integer expression value to a REAL*16
number.

Extend the real value to a REAL¥16 number.

Assume the type of the following data items has been specified:

Name Type Length

I, J, K Integer variables 4, 4 |, 2
A, B, C, Real variables 4, 4, 8, 8
E Compiex variable 3
F¢1),...,F(5) Real array elements 4

G, H Logical variables 4, 4

50 VS FORTRAN Language Reference

Assignment

The following examples illustrate valid arithmetic statements
using constants, variables, and array elements as defined above.

statament

Dascription

A =B

The value of A is replaced by the current
value of B.

K =28

The of B is converted to an integer value, and
the value of K is replaced by as much as can
be held in 2 bytes.

The value of I is converted to a real value,
and replaces the value of A.

The value of I is replaced by the value of I +
1.

E = I%%J+D

I is raised to the power J and the result is
converted to a real value to which the value
of D is added. This result replaces the real
part of the complex variable E. The imaginary
part of the complex variable is set to zero.

A = CxD

The most significant part of the product of C
and D replaces the value of A.

The real part of the complex variable E
replaces the value of A.

The value of A replaces the value of the real
part of the complex variable E; the imaginary
part is set equal to zero.

G = .TRUE.

The value of G is replaced by the logical
value true.

H = .NOT.G

If 6 is true, the value of H is replaced by

the logical value false. If G is false, the

:alue of H is replaced by the logical value
rue.

G = 3..6T.1

The value of I is converted to a real value;
if the real constant 3. is greater than this
result, the logical value true replaces the
value of 6. If 3. is not greater than the
converted I, the logical value false replaces
the value of G.

E=(1.0,2.0)

The value of the complex variable E is
replaced by the value of the complex constant
(1.0,2.0). The statement E = (A,B), where A
and B are real variables, is invalid. The
mathematical function subprogram CMPLX can be
used for this purpose. See "Appendix B.
FORTRAN-Supplied Procedures" on page 201.

F(1) = A

The value of element 1 of array F is replaced
by the value of A.

E = F(5)

The real part of the complex constant E is
replaced by the value of array element F(5).
The imaginary part is set equal to zero.

VS FORTRAN Statements 51

Assignment

statement Description

C = 99999999.0 Even though C is of length 8, the constant
having no exponent is considered to be of
length 4. Thus the number will not have the
accuracy that may be intended. If the basic
real constant were entered as 99999999.0D0,
the converted value placed in the variable C
would be a closer approximation to the entered
basic real decimal constant because 15 decimal
digits can be represented in 8 bytes.

Character Assignment statement

If b is a character expression, a must be a character variable,
character array element, or character substring.

None of the character positions being defined in a must be
referenced in b directly or through associations of variables
(that is, using COMMON, EQUIVALENCE, or argument passing).

The lengths of a and b may be different. The characters of b are
moved from left to right into the corresponding character
positions of a. If a has more positions than there are characters
in b, the rightmost positions of a are filled with blanks. If a
has fewer positions than there are characters in b, only the
leftmost characters of b are moved to fill the positions of a.

valid Character Assignment Statemant:
ST1306(CHAR1) = 'TEST'//CHARL

Logical Assiagnment Statement

Ifb is a logical expression, a must be a logical variable or
logical array element. The value of b must be either true or
false.

52 VS FORTRAN Language Reference

AT
r IBM EXTENSION i

AT STATEMENT

The AT statement identifies the beginning of a debug packet and
indicates the point in the program at which debugging is to
begin.

syntax
A

—

stn

stn
is the number of an executable statement in the program or
function or subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are
performed prior to the execution of the statement indicated by
the statement number (stn) in the AT statement.

The statement number cannot be specified in another debug
packet.

There must be one AT statement for each debug packet; there may
be many debug packets for one program or subprogram.

The AT statement identifies the beginning of a debug packet and
the end of the preceding packet (if any) unless this is the last
packet, in which case it is ended by the END DEBUG statement.

For a more complete discussion of debug packets and for examples
of the AT statement, see "DEBUG Statement"” on page 67.

: END OF IBM EXTENSION J

VS FORTRAN Statements 53

BACKSPACE
BACKSPACE STATEMENT

The BACKSPACE statement positions a sequentially accessed
external file at the beginning of the VS FORTRAN record last
written or read. (See "OPEN Statement™ on page 132.)

syntax
BACKSPACE un
BACKSPACE ([UNIT=lun [,I0STAT=ios] [,ERR=stnl])

UNIT=un
un is the reference to the number of an I/0 unit. It can
optionally be preceded by UNIT= if the second form of the
statement is used. un can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
4, if necessary) must be zero or positive; otherwise, an
error is detected.

If UNIT= is not specified, un must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
order.

IOSTAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. ios is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.
ERR=stn
stn is the number of a statement in the same program unit as
the BACKSPACE statement. Transfer is made to stn if an error
is detected.
Valid BACKSPACE Statements:
BACKSPACE un
BACKSPACE (un,ERR=stn)
BACKSPACE (UNIT=un,IO0STAT=ios,ERR=stn}
BACKSPACE (ERR=stn,UNIT=un)
BACKSPACE(UNIT=2%IN+2)
BACKSPACE(IOSTAT=I0S,ERR=99999,UNIT=2%IN-10)

Invalid BACKSPACE Statements:

BACKSPACE UNIT=un UNIT= is not allowed without the
parentheses.

BACKSPACE un,ERR=stn Parentheses must be specified.

BACKSPACE (ERR=stn,un) UNIT= must be specified.

When the BACKSPACE statement is encountered, the unit specified
by un must be connected to an external file for SEQUENTIAL access.

(See VS FORTRAN Application Programming: Guide.) If the unit is
not connected, an error is detected.

The external file connected to the unit un must exist; otherwise,
an error is detected. (The existence of a file can be determined
with the INQUIRE statement. exs must have the value true. see
"INQUIRE Statement™ on page 123.)

A BACKSPACE statement positions an external file to the beginning
of the preceding record. If there is no preceding record, the

‘54 VS FORTRAN Language Reference

BACKSPACE

BACKSPACE statement has no effect. The BACKSPACE statement must
not be used with external files using list-directed formatting.

r - IBM EXTENSION g
The BACKSPACE statement must not be used with external files

written using NAMELIST. If it is used, the result is
unpredictable.

An external file can be extended if the execution of an ENDFILE
statement or the detection of an end-of-file is immediately
followed by the execution of a BACKSPACE and a WRITE statement
on this file. (See "READ Statement—Formatted with Sequential
Access™ on page 148.)

The BACKSPACE statement may be used with asynchronous READ and
WRITE statements provided that any input or output operation on
the file has been completed by the execution of a WAIT
statement. A WAIT statement is not required to complete the
BACKSPACE operation.

— END OF IBM EXTENSION —

Transfer is made to the statement number specified by the ERR
parameter if an error is detected. If I0OSTAT=jos is specified, a
positive integer value is assigned to ios when an error is
detected. Execution continues with the statement number specified
by the ERR parameter (if present) or with the next statement if
the ERR parameter is not specified. If the ERR parameter and the
IOSTAT parameter are both omitted, program execution is
terminated when an error is detected.

VS FORTRAN Statements 55

BLOCK DATA
BLOCK DATA STATEMENT

The BLOCK DATA statement names a block of data.
syntax
BLOCK DATA [namel

is the name of the block data subprogram. This name is
optional. It must not be the same as the name of another
subprogram, a main program, or common block name in the
executable program. There can only be one unnamed block data
subprogram in an executable program.

To initialize variables in a named common block, a separate
subprogram must be written. This separate subprogram contains
only the BLOCK DATA, IMPLICIT, PARAMETER, DATA, COMMON,

DIMENSION, SAVE, EQUIVALENCE, and END statements, comment lines,
and explicit type specification statements associated with the
data being defined. This subprogram is not called; its presence
provides initial data values for named common blocks. Data may not
be initialized in unnamed common blocks.

The BLOCK DATA statement must appear only as the first statement
in the subprogram. Statements that provide initial values for
data items cannot precede the COMMON statements that define those
data items.

Any main program or subprogram using a named common block must
contain a COMMON statement defining that block. If initial values
are to be assigned, a block data subprogram is necessary.

A particular common block may not be initialized in more than one
block data subprogranm.

Entities not in a named common block must not be initialized and
must not appear in a DIMENSION, EQUIVALENCE, or type statement in
a block data subprogram.

All elements of a named common block must be listed in the COMMON

statement, even though they are not all initialized. For example,
the variable A in the COMMON statement in the following block data
subprogram does not appear in the DATA statement.

Example 1:

BLOCK DATA

COMMON /ELN/C,A,B

COMPLEX € ,

DGBA €/(2.4,3.769)/,B/1.2/
E

Data may be entered into more than one common block in a single
block data subprogram.

Example 2:

BLOCK DATA VALUE1L

COMMON/ELN/C,A,B/RMG/Z,Y

COMPLEX C

DOUBLE PRECISION Z

EGEA Cs7(2.4,3.769)/,B71.2/,2/7.64980825D0/

As a result of this example, in BLOCK DATA named VALUEL,
COMMON/ELN/C,A,B

56 VS FORTRAN Language Reference

BLOCK IF STATEMENT

BLOCK DATA
will have the complex variable C real part initialized to 2.4 and
the imaginary part initialized to 3.769. The variable A will not
be initialized and B will be initialized to 1.2.

COMMON/RMG/Z,Y

will have the double precision variable Z initialized with the
double precision constant 7.664980825 and Y will not be
initialized.

See "IF Statements"™ on page 115.

VS FORTRAN Statements 57

CALL
CALL STATEMENT

The CALL statement:
. Transfers control to a subroutine subprogram
. Evaluates actual arguments that are expressions

. Associates actual arguments with dummy arguments

—— syntax

CALL pame [([argl [,arg2] [,arg3] ... 1) 1

is the name of a subroutine subprogram or an entry point.
This name may be a dummy argument in a FUNCTION, SUBROUTINE,
or ENTRY statement.

is an actual argument that is being supplied to the
subroutine subprogram. The argument may be a variable, array
element or array name, a constant, an arithmetic, logical,
or character expression, a function or subroutine name, or
an asterisk (¥) followed by the statement number of an
executable statement that appears in the same program unit
as the CALL statement.

If no actual argument is specified, the parentheses may be
omitted.

The CALL statement transfers control to the subroutine subprogram
and replaces the dummy variables with the values of the actual
arguments that appear in the CALL statement.
The CALL statement can be used in a main program, a function
subprogram, or a subroutine subprogram, but a subprogram must not
refer to itself directly or indirectly and must not refer to the
main program. A main program cannot call itself.
If name is a dummy argument in a subprogram containing CALL name,
this CALL statement can be executed only if the subprogram is
given control at one of its entry points where name appears in the
list of dummy arguments. (See "EXTERNAL Statement" on page 86.)
valid CALL Statements:

CALL SZoo00o1l

CALL S520001¢)

CALL S19001(CVAR40)

CALL TEST2(TF1,KF2,JIF3)

CALL SUB1(COM2+3%COM3-7,VAL2%VAL3/.6,.TRUE.)

CALL SUB2(A,B,%10,%20,%30)

CHARACTER TYPE STATEMENT

See "Explicit Type Statement™ on page 82.

58 VS FORTRAN Language Reference

CLOSE
CLOSE STATEMENT

A CLOSE statement disconnects an external file from an input or
output unit.

syntax
CLOSE ¢ [UNIT=lun [,ERR=stn] [,5TATUS=stal [,I0STAT=ios])

UNIT=un
un is the reference to the number of an I/0 unit. It can
optionally be preceded by UNIT=., It can be an integer or real
arithmetic expression. Its value (after conversion to
integer of length 4, if necessary) must be zero or positive;
otheruwise, an error is detected.

If UNIT= is not specified, un must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
order.

ERR=stn
is optional. stn is a statement number. If an error occurs in
the execution of the CLOSE statement, control is transferred
to the statement labeled stn. That statement must be
executable and must be in the same program unit as the CLOSE
statement. If ERR=s5tn is omitted, execution halts when an
error is detected.

STATUS=sta
is optional. sta is a character expression whose value (when
any trailing blanks are removed) must be KEEP or DELETE. sta
determines the disposition of the file that is connected to
the specified unit.

IOSTAT=igs
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in IOSTAT.

Each of the parameters of the CLOSE statement may appear only
once. The unit specifier (un) must appear. All value assignments
are made according to the rules for assignment statements.

Execution of a CLOSE statement that refers to a unit may occur in
any program unit of an executable program and need not occur in
the same program unit as the execution of an OPEN statement
referring to that unit. When the CLOSE statement is encountered,
the unit specified by un may or may not be connected to a file. If
the unit is connected, the file may or may not exist.

If KEEP is specified for a file that exists, the file continues to
exist after the execution of the CLOSE statement. If KEEP is
specified for a file that does not exist, the file will not exist
aftter the execution of the CLOSE statement. If DELETE is
specified, the file is deleted.

If STATUS is omitted, the assumed value is KEEP, unless the file
status prior to execution of the CLOSE statement is SCRATCH, in
which case the assumed value is DELETE. (The STATUS parameter
affects only the internal V5 FORTRAN status. The external status
is set by the JCL or other system environment and will not be
overridden.)

After a Unit has been disconnected by execution of a CLOSE
statement, it may be connected again within the same executable
program to the same file or a different file.

After a file has been disconnected by execution of a CLOSE
statement, it may be connected again within the same executable

VS FORTRAN Statements 59

CLOSE

60

program to the same unit or a different unit provided that the
file still exists. (See "OPEN Statement™ on page 132.)

When execution ends normally, all units that are connected are
closed. Each unit is closed with status KEEP unless the file
status prior to termination of execution was SCRATCH, in which
case the unit is closed with status DELETE.

Example 1:

Assume that the type of the following variables has been specified
as follouws:

Variable Names Type Length
IN,IACT,Z INTEGER 4
DELETE CHARACTER 6

and that

DELETE = 'DELETE!
The following statements are valid:
CLOSE(6+IN)
CLOSE(ZXIN+2)
CLOSE(Z*IN+3,STATUS=DELETE)
CLOSE(IOSTAT=IACT,ERR=99999,STATUS="KE'//"EP ',UNIT=0)
Example 2:
STATUS='KEEP'
DELETE=STATUS
CLOSE(UNIT=6,STATUS=DELETE)
CLOSE(UNIT=6,STATUS=STATUS)
CLOSE(UNIT=6,STATUS='KEEP'")

Each of these CLOSE statements should execute the same way and
give a status of KEEP.

VS FORTRAN Language Reference

Comments
COMMENTS

Comments provide documentation for a program. They can be entered
in either fixed form or free form.

Fixed-Form Input
Fixed-form comments have the following attributes:

. A "C" or an asterisk (¥) may appear in column 1 or all blanks
may appear in columns 1 to 72.

. A comment may appear anywhere before the END statement.

T IBM EXTENSION

Free-Form Input

Free-form comments have the following attributes:

. Any line that does not follow a continued line and that has
the quotation mark (") character as its first character is
considered a comment.

. A comment line cannot be continued.

END OF IBM EXTENSION !

VS FORTRAN Statements 61

COMMON
COMMON STATEMENT

The COMMON statement makes it possible for two or more program
units to share storage and to specify the names of variables and
arrays that are to occupy the area.

syntax
COMMON [/[nhamells] listll [,] /lnamenls/ listn 1 ...

name
is an optional common block name. These names must always be
enclosed in slashes. They cannot be the same as names used in
PROGRAM, SUBROUTINE, FUNCTION, ENTRY, or BLOCK DATA
statements.
The form 77 (Wwith no characters except possibly blanks
between the slashes) denotes blank common. If namel denotes
blank common, the first two slashes are optional.
The comma preceding the common block name designator Zname/
is optional.

list

is a list of variable names or array names that are not dummy
arguments. If a variable name is also a function name,
subroutine name, or entry name, it must not appear in the
list., If the list contains an array name, dimensions may also
be decla;ed for that array. (See "DIMENSION Statement™ on
page 70.

A given common block name may appear more than once in a COMMON
statement, or in more than one COMMON statement in a program unit.

Blank and named common entries appearing in COMMON statements are
cummulative throughout the program unit. Consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E 75/ F
COMMON G, H »S7 I, J /R/R//7U
These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W /R/ D, E, R/S/ F, I, J
If a character variable or character array is in a common block,
all the other variables and arrays in that common block must be of

type character.

Although the entries in a COMMON statement can contain dimension
information, object-time dimensions may never be used.

The length of a blank common can be extended by using an
EQUIVALENCE statement, but only by adding beyond the last entry.

Because the entries in a common area share bytes, the order in
which they appear is significant when the common area is used to
transmit arguments. The names of the variables and arrays of the
same common block may be different between the program units of a
program.

Blank and Named Common

Variables and arrays may be placed in separate common blocks by
giving distinct common block names (name). Those blocks that have
the same name occupy the same storage area. The name cannot be the
same as the main program name, subprogram name, or entry name. The
variables and arrays of a common block must all be of type

62 VS FORTRAN Language Reference

COMMON

character or all noncharacter in all the program units that refer
to the common block.

Naming these saeparate blocks permits a calling program to share
one common block with one subprogram and another common block with
another subprogram. It also makes it easier to document the
program.

The differences between blank and named common are:

. There is only one blank common in an executable program, and
it has ho name.

There may be many named commons, each with its own name.

. Bl@gk common may have different lengths in different program
units.

Each program unit that uses a named common must define it to
be of the same length.

L Variables_apd_array elements in blank common cannot be
assigned initial values.

Variables and array elements in hamed common may be assigned
initial values by DATA statements in a block data subprogram.

I IBM EXTENSION .

Variables and array elements in named common may be
assigned initial values by explicit type specification
skatements in a block data subprogram.

L g END OF IBM EXTENSION !

Variables that are to be placed in named common are preceded by
the common block name enclosed in slashes. For example, the
variables A, B, and C are placed in the named common, HOLD, by the
following statement:

COMMON /HOLD/ A,B,C

In a COMMON statement, blank common is distinguished from named
common by placing two consecutive slashes before the variables
(or, if the variables appear at the beginning of the COMMON
statement, by omitting any common block name). For example,

COMMON A, B, C Z/ITEMS/ X, Y, Z 7/ 7 D, E, F
The variables A, B, C, D, E, and F are placed in blank common in

that order; the variables X, Y, and Z are placed in the named
common ITEMS.

COMPLEX TYPE STATEMENT

See "Ekxplicit Type Statement"™ on page 82.

COMPUTED GO TO STATEMENT
See "GO TO Statements" on page 113.

VS FORTRAN Statements 63

CONTINUE
CONTINUE STATEMENT

The CONTINUE statement is an executable control statement that
takes no action. It can be used to designate the end of a DO loop,
or to label a position in a program.

syntax

CONTINUE

CONTINUE

is a statement that may be placed anywhere in the source
program (where an executable statement may appear) without
affecting the sequence of execution. It may be used as the
last statement in the range of a DO loop in order to avoid
ending the DO loop with an unconditional or assigned GO TO0,
block IF, ELSE IF, ELSE, ENDIF, STOP, RETURN, END,
arithmetic IF, another DO statement, or a logical IF
statement containing an unconditional or assigned GO T0, or
a STOP, RETURN, or arithmetic IF statement.

64 VS FORTRAN Language Reference

DATA STATEMENT

DATA

The DATA statement defines initial values of variables, array
elements, arrays, and substrings.

syntax
DATA listl /clistls [[,] list2 sclist2s 1 ...

list
is a list of variables, array elements, arrays or
substrings, and implied DO lists. The comma preceding
list2...listn is optional.

Subscript and substring expressions used in each list can
contain only integer constants or names of integer
constants. (An exception is described under "Implied DO in
DATA Statement™ on page 66.)

clist
is a list of constants or the names of constants. Integer,
real, or complex constants may optionally be signed. Any of
these constants may be preceded by r*¥, where r is a nonzero
unsigned integer constant or the name of such a constant.
When the form r* appears before a constant, it indicates that
the constant is to be repeated r times.

I IBM EXTENSION 1

A hexadecimal constant can be used to initialize any arithmetic
or logical type of variable or array element.

L END OF IBM EXTENSION !

A DATA initialization statement is not executable. The DATA
statement cannot precede a PROGRAM, FUNCTION, SUBROUTINE, BLOCK
DATA, IMPLICIT, PARAMETER, or an explicit type statement.
Otherwise, a DATA statement can appear anywhere in the program.

There must be a one-to-one correspondence betueen the total
number of elements specified or implied by the list list and the
total number of constants specified by the corresponding list
clist after application of any replication factors, r.

Integer, real, and complex variables or array elements must be
initialized with integer, real, or complex constants; conversions
take place according to the arithmetic assignment rules, if
necessary.

Charactaer items can be initialized by character data only. Each
character constant initializes exactly one variable, one array
element, or one substring. If a character constant contains more
characters than the item it initializes, the additional rightmost
characters in the constant are ignored. If a character constant
contains fower characters than the item it initializes, the
additional rightmost characters in the item are initialized with
blank characters. (Each character represents one byte of
storage.)

I IBM EXTENSION 1

A logical variable or logical array may be initialized with T
instead of .TRUE. and F instead of .FALSE..

L END OF IBM EXTENSION 1

A variable or array element defined with an initial value may not
be in blank common and may not be assigned an initial value more
than once. If the variable or array element is in a named common
block, it may be initially defined only in a block data

VS FORTRAN Statements 65

DATA

subprogram. For purposes of this constraint, entities that are
associated with each other through COMMON or EQUIVALENCE
statements are considered as the same entity.
Valid DATA Statements:

DATA A, B, €C/5.0,6.1,7.3/,Dr725%1.0,25%2.0/,E/5.1/

DATA Fs/5%1.0/, Gr9%2.0/, L/4%.TRUE./, C/'FOUR's

DATA CC(1)(1:2)/YAB'/,CC(1)(3:4)/'CD"'/

Implied DO in DATA statement

66

The form of an implied DO list in a DATA statement is:

syntax
(dlist, i = ml, m2 [, m31)

where:

dlist
is a list of array element names and implied DO lists.

is the name of an integer variable called the implied DO
variable.

ml, m2, and m3
are each an integer constant or name of an integer constant,
or an expression containing only integer constants or names
of integer constants. The expression may contain implied DO
variables of other surrounding implied DO lists that have
this implied DO list within their ranges (dlist). m3 is
optional and, if omitted, it is assumed to be 1, and the
preceding comma must be omitted. ’

The range of an implied DO list is dlist. An iteration count is
established from ml, m2, and m3 exactly as for a DO-loop except
that the iteration count must be positive. (See "DO Statement"™ on
page 72.)

Upon completion of the implied DO, the implied DO variable is
undefined and may not be used until assigned a value in a DATA
statement, assignment statement, or READ statement.

Each subscript expression in dlist must be an integer constant or
an expression containing only integer constants or names of
integer constants. The expression may contain implied DO
variables of implied DO lists that have the subscript expression
within their ranges.

valid Implied DO Statement:
DATA ((X(J,I),I=1,J),J4=1,5)/715%0./

VS FORTRAN Language Reference

DEBUG
I IBM EXTENSION]

DEBUG STATEMENT

The DEBUG statement sets the conditions for operation of the
debug facility and designates debugging operations that apply
to the entire program unit (such as subscript checking).

syntax
DEBUG option,..., option

An option may be any of the following:

UNIT (un)
un is an integer constant that represents a unit number.
All debugging output is placed in this file called the
debug output file. If this option is not specified, any
debugging output is placed in the installation-defined
output file. All unit definitions within an executable
program must refer to the same unit.

SUBCHK (al, a2,..., an)
a is an array name. The validity of the subscripts used
with the named arrays is checked by comparing the
subscript combination with the size of the array. If the
subscript value exceeds the size of the array, a message is
placed in the debug file. Program execution continues,
using the incorrect subscript. If the list of array names
is omitted, all arrays in the program are checked for valid
subscript usage. If the entire option is omitted, no
arrays are checked for valid subscripts.

TRACE
This option must be in the DEBUG specification statement
of each program or subprogram for which tracing is
desired. If this option is omitted, there can be no display
of program flow by statement number within this program.
Even when this option is used, a TRACE ON statement must
appeardin the first debug packet in which tracing is
desired.

INIT (i1, i2,..., in)
i is the name of a variable or an array that is to be
displaved in the debug output file only when the variable
or the array elements are assigned a value. If i is a
variable name, the name and value are displaved whenever
the variable is assigned a new value in either an
assignment, a READ or an ASSIGN statement. If i1 is an array
name, the array element is displaved. If the list of names
is omitted, a display occurs whenever the value of a
variable or an array element is assigned a value. If the
entire option is omitted, no display occurs when values
are assigned.

SUBTRACE
This option specifies that the name of this subprogram is
to be displayed whenever it is entered. The message RETURN
is to be displayed whenever execution of the subprogram is
completed.

The options in a DEBUG statement may be given in any order and
they must be separated by commas.

All debugging statements must precede the first statement of
the program being debugged. The required statement sequence is:

1. DEBUG statement

2. Debug packets

VS FORTRAN Statements 67

DEBUG

3. END DEBUG statement

4. First of the source program statements of a program unit to
be debugged

A debug packet begins with an AT statement and ends when either
another AT statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form
and follow the same rules as other VS FORTRAN statements.

In addition to the VS FORTRAN language statements, the
following debug statements are allowed:

TRACE ON
TRACE OFF
DISPLAY

All VS FORTRAN statements are allowed in a debug packet except
as listed in "Considerations when Usina DEBUG."

considerations when Using DEBUG

The following precautions must be taken when setting up a debug
packet:

. Any DO loops, block IF, ELSE IF, or ELSE statements
initiated within a debug packet must be wholly contained
within that packet.

. Statement numbers within a debug packet must be unique.
They must be different from statement numbers within other
debug packets and within the program being debugged.

. An error in a program should not be corrected with a debug
packet; when the debug packet is removed, the error remains
in the program.

. No specification statements can appear in a debug packet;
nor can any of the following statements:

BLOCK DATA

ENTRY

FUNCTION

PROGRAM

statement function
SUBROUTINE

. The program being debugged must not transfer control to any
statement number defined in a debug packet; however,
control may be returned to any point in the program being
debugged from a packet. In addition, no debug packet may
refer to a label defined in another debug packet. A debug
packet may contain a RETURN, STOP, or CALL statement.

END OF IBM EXTENSION

68 VS FORTRAN Language Reference

DEBUG
DEBUG Examples:

Example 1:

DEBUG UNIT(6)
AT 11
WRITE(6,21)A,B,C
21 FORMAT(1X,'A=',I10,'B=",I10,'C="',I10)
END DEBUG

INTEGER A,B,C

10 B=A% SQRT(FLOAT(C))
11 IF(B)40,50,60

The values of A, B, and C are to be examined as they were at the
completion of the arithmetic operation in statement 10.
Therefore, the statement number specified in the AT statement is
ll.tThe values of A, B, and C are written to the file connected to
unit 6.

Example 2:

DEBUG TRACE, UNIT(6)
AT 10

TRACE ON

AT 25

TRACE OFF

AT 35

DISPLAY C

TRACE ON

END DEBUG

10 A=2.0

15 L=1

20 B=A+1.5

25 DO 30 I-1,5

30 CONTINUE

35 C=B+3.415

40 D=Cxx%2

45 CALL SUB1(D,L,R)

When statement 10 is encountered, tracing begins, as specified by
the TRACE ON statement in the first debug packet. When statement
25 is encountered, tracing stops, as specified by the TRACE OFF
statement in the second debug packet. When statement 35 is
encountered, tracing begins again and the value of C is written to
the debug output file, as specified in the third debug packet.

VS FORTRAN Statements 69

DIMENSION
DIMENSION STATEMENT

The DIMENSION statement specifies the name and dimensions of an
array.

syntax
DIMENSION al(diml) [, a2(dim2) 1 ...

is an array name.

Q.
Ed

is composed of one through seven dimension bounds, separated
by commas, that represent the limits for each subscript of
the array in the form:

el:g2
or

e2

where:

el
is the lower dimension bound. It is optional. If el
(with its following colon) is not specified, its value
is assumed to be 1.

e2

is the upper dimension bound and must always be
specified.

(See "Size and Type Declaration of an Array"” on page 22
for rules about dimension bounds.)

Each a in a DIMENSION statement declares that a is an array in
that program unit. Array names and their bounds may also be
declared in COMMON statements and in type statements. Only one
declaration of the array name (a) as an array is permitted in a
program unit.
valid DIMENSION sStatements:

DIMENSION A(10), ARRAY(5,5,5), LIST(10,100)

DIMENSION A(1:10), ARRAY(1:5,1:5,1:5), LIST(1:10,1:100)

DIMENSION B(0:24), C(-4:2), DATA(0:9,-5:4,10)

DIMENSION G(I:J,M:N)

DIMENSION (MxN:I%J)

DIMENSION (MxN:IxJ, %)

70 VS FORTRAN Language Reference

DISPLAY
! IBM EXTENSION 1

DISPLAY STATEMENT

The DISPLAY statement displays data in NAMELIST output format.
It may appear anywhere within a debug packet.

syntax
DISPLAY list

list
is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or
NAMELIST and WRITE statements to display the results of a
debugging operation. The data is placed in the debug ocutput
file.

The effect of a DISPLAY list statement is the same as the
following source language statements:

NAMELIST /names/list
WRITE (un, name)

where name is the same in both statements.

Array elements, dummy arguments, and substring references may
not appear in the list.

For examples and explanations of the DISPLAY statement, see
"DEBUG Statement™ on page 67.

L END OF IBM EXTENSION !

VS FORTRAN Statements 71

DO
DO STATEMENT

The DD statement indicates that the statements that physically
follow it, up to and including a specified statement, are to be

executed. These statements are called the "range of the DO or a
"DO-loop."

—— syntax

End of DO Initial Test
Range variable Value value Increment
DO stn [,] i = ml, m2 [,m31

»
3

is the number of an executable statement appearing after the
DO statement in the program unit containing the DO. The comma
after stn is optional.

[ote

is an integer, real, or double precision variable (not an
array element) called the DO variable.

ml, m2, and m3,
are integer, real, or double precision arithmetic
expressions. The values of the expressions ml, m2 and m3 are
converted to the type of the DO variable i, if necessary. m3
is optional and cannot have a value of zero; if it is
omitted, its value is assumed to be 1, and the preceding
comma must be omitted.

The statements in the range of the DO are executed only if:

ml is less than or equal to m2, and m3 is greater than 0
or

ml is greater than or equal to m2, and m3 is less than 0

If one of the above relationships between ml, m2, and m3 is true,
the first time the statements in the range of the DO are executed,
iis initialized to the value of ml; on each succeeding iteration,
i is increased by the value of m3. The number of iterations that

can be executed, also called iteration count, is the value of:
MAX (INT((m2, - ml, + m3) 7 m3),0).

The first time i exceeds m2 at the end of the iteration, control
passes to the statement following the statement numbered stn.
Upon completion of the DO, the DO variable i contains the last
value that exceeded m2.

If one of the above relationship is not true, execution continues
with the statement following the last statement of the range of
the DO or the outer DO if the statement numbered stn is shared by
more than one DO. (See "IF Statements™ on page 115.)
valid DO Sstatements:

DO 40, INT=1,4,1

DO 20, VAR=START,END,INC

For examples (with explanations) of DO statements (including
nesting), see VS_FORTRAN Application Programming: Guide.

DOUBLE PRECISION TYPE STATEMENT

See "Explicit Type Statement™ on page 82.

72 VS FORTRAN Language Reference

EJECT

IBM EXTENSION 1

EJECT STATEMENT

EJECT is a compiler directive. It starts a new full page of the
source listing.

syntax
EJECT

L END OF IBM EXTENSION

ELSE STATEMENT
See "IF Statements"™ on page 115.

ELSE IF STATEMENT
See "IF Statements"™ on page 115.

VS FORTRAN Statements 73

END
END STATEMENT

The END statement defines a program unit. That is, it terminates a
main program, or a function, subroutine, or block data
subprogram.

syntax

END

The END statement may be numbered. It may not be continued and no
other statement in the program unit may have an initial line that
appears to be an END statement. The END statement terminates
program execution if it is executed in the main program. If
executed in a subprogram, it has the effect of a RETURN statement.

Execution of an END statement terminates the association between
the dummy arguments of the subprogram and the current actual
arguments. All entities within the subprogram become undefined
except:

. Entities specified in SAVE statements (see "SAVE Statement™
on page 166)

. Entities initially defined in a DATA or explicit
specification statement that have not been redefined

. Entities in blank common

. Entities in named common that appear in the subprogram and
appear in at least one other program unit that is referring to
the subprogram either directly or indirectly

All variables that are assigned a statement number with the ASSIGN
statement become undefined regardless of whether the variable is
in common or specified in a SAVE statement.

END Statement in a Function subprogaram

All function subprograms must end with an END statement. They may
also contain RETURN statements. The END statement specifies the
physical end of the subprogram.

A subprogram must not be referred to twice during the execution of
an executable program without the intervening execution of a
RETURN or END statement in that subprogram.

END Statement in a Ssubroutine Subprogram

All subroutine subprograms must end with an END statement. They
may also contain RETURN statements. The END statement specifies
the physical end of the subprogram. If the END statement is
reached during execution of the subroutine subprogram, it is
executed as a RETURN statement.

74 VS FORTRAN Language Reference

END DEBUG
r IBM EXTENSION 1

END DEBUG STATEMENT

The END DEBUG statement terminates the last debug packet for the
program.

syntax
END DEBUG

END DEBUG is placed after the other debug statements and just
before the first statement of the program being debugged. Only
one END DEBUG statement is allowed in a program unit.

For examples of debug packets and the END DEBUG statement, see
"DEBUG Statement™ on page 67.

L END OF IBM EXTENSION !

VS FORTRAN Statements 75

ENDFILE
ENDFILE STATEMENT

The ENDFILE statement writes an end-of-file record on a
sequentially accessed external file.

syntax
ENDFILE un
ENDFILE ¢ [UNIT=]un [, ERR=stn] [, IOSTAT=iosl])

UNIT=un
is the reference to the number of an I/0 unit. un can
optionally be preceded by UNIT= if the second form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of lenagth
%, if necessary) must be zero or positive; otheruwise, an
error is detected.

ERR=stn
is optional. stn is a statement number. If an error occurs in
the execution of the ENDFILE statement, control is
transferred to the statement labeled stn. That statement
must be executable and must be in the same program unit as
the ENDFILE statement. If ERR=stn is omitted, execution
halts when an error is detected.

I0OSTAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in igs.

If UNIT= is specified, UNIT, ERR, and IOSTAT can appear in any
order; otherwise, un must appear first.

valid ENDFILE Statements:
ENDFILE un
ENDFILE (un,ERR=stn)
ENDFILE (UNIT=un,ERR=stn)
ENDFILE (ERR=stn,UNIT=un)
Invalid ENDFILE Statements:

ENDFILE UNIT=un UNIT= is not allowed outside
parentheses.

ENDFILE un,ERR=stn Parentheses must be specified.

ENDFILE (ERR=stn,un) UNIT= must be specified

or un must be first in the list.

When the ENDFILE statement is encountered, the unit specified by
un must be connected to an external file with SEQUENTIAL access.
(See ¥S FORTRAN Application Programming: Guide for an example.)
If the unit is not connected, an error is detected.

After successful execution of the ENDFILE statement, the external
file connected to the unit specified by un is created if it does
not already exist.

r IBM EXTENSION 1
Use of ENDFILE with asynchronous READ and WRITE statements is

allowed provided that any input or output operation on the file
has been allowed to complete by the execution of a WAIT

76 VS FORTRAN Language Reference

END IF STATEMENT

ENDFILE

statement. A WAIT statement is not required to complete the
ENDFILE operation.

Transfer is made to the statement specified by the ERR= if an
error is detected. If I0OSTAT=ios is specified, a positive
integer value is assigned to igs when an error is detected. Then
execution continues with the statement specified with the ERR
parameter, if present, or with the next statement if ERR is not
specified. If the ERR parameter and the I0OSTAT parameter are
both omLtted, program execution is terminated when an error is
detected.

Multiple file data sets are permitted in VS FORTRAN. Therefore,
after execution of an ENDFILE, additional data may be
transferred to the subsequent files.

L END OF IBM EXTENSION !

See "IF Statements"™ on page 115.

VS FORTRAN Statements 77

ENTRY
ENTRY STATEMENT

The ENTRY statement names the place in a subroutine or function
subprogram that can be used in a CALL statement or as a function
reference.

The normal entry into a subroutine subprogram from the calling
program is made by a CALL statement that refers to the subprogram
name. The normal entry into a function subprogram is made by a
function reference in an arithmetic, character, or logical
expression. Entry i1s made at the first executable statement
following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for
a subroutine subprogram) or a function reference (for a function
subprogram) that refers to an ENTRY statement in the subprogram.
Entry is made at the first executable statement following the
ENTRY statement.

—— Syntax
ENTRY name [¢ [argl [, arg2 1 ... 1) 1

is the name of an entry point in a subroutine or function
subprogram. If ENTRY appears in a subroutine subprogram,
name is a subroutine name. If ENTRY appears in a function
subprogram, name is a function name.

is an optional dummy argument corresponding to an actual
argument in a CALL statement or in a function reference. See
"Subprogram Statements" on page 43. If no arg is specified,
the parentheses are optional.

arg may be a variable name, array name, or dummy procedure
name or an asterisk. An asterisk is permitted only in an
ENTRY statement in a subroutine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or any of its entry
points etther directly or indirectly.

ENTRY statements are nonexecutable and do not affect control
sequencing during execution of a subprogram. They can appear
anywhere after a FUNCTION or SUBROUTINE statement except that an
ENTRY statement must not appear between a block IF statement and
its matching END IF statement or between a DO statement and the
terminal statement of its range.

Note: ENTRY statements can appear before the IMPLICIT or
PARAMETER statements. The appearance of an ENTRY statement does
not alter the rule that statement functions must precede the first
executable statement.

Within a function or subroutine subprogram, an entry name must not
appear as a dummy argument of a FUNCTION, SUBROUTINE, or ENTRY
statement and it must not appear in an EXTERNAL statement.

If information for an object-time dimension array is passed in a
reference to an ENTRY statement, the array name and all its
dimension parameters (except any that are in a common area) must
appear in the argument list of the ENTRY statement. See "Size and
Tvpe Declaration of an Array" on page 22.

In a function subprogram, the type of the function name and entry
name are determined (in order of decreasing priority) by:

78 VS FORTRAN Language Raference

ENTRY
1. An explicit type statement
2. An IMPLICIT statement
3. Predefined convention

In function subprograms, an entry name must not appear preceding
the entry statement except in a type statement.

If any entry name in a function subprogram or the name of the
function subprogram is of type character, all entry names of the
function subprogram must be of type character with the same
length. Thae CHARACTER type statement or IMPLICIT statement can be
used to specify the type and length of the entry point name. The
length specification is restricted to the forms permitted in the
FUNCTION statement.

The types of these variables (that is, the function name and entry
names) can be different only if the type is not character; the
variables are treated as if they were equivalenced. After one of
these variables is assigned a value in the subprogram, any others
of different type become indeterminate in value.

In a function subprogram, either the function name or one of the
entry names must be assigned a value.

Upon exit from a function subprogram, the value returned is the
value last assigned to the function name or any entry name. It is
returned as though it were assigned to the name in the current
function reference. If the last value is assigned to a different
entry name, and that entry name differs in type from the name in
the current function reference, the value of the function is
undefined.

Entry names in a subroutine subprogram do not have a type;
explicit typing is not allouwed.

valid ENTRY Statements:
ENTRY ENT(T)
ENTRY SUB2 (T,%,%)
ENTRY SUB3 (%,%)

Actual Arguments in an ENTRY Statement

Entry into a function subprogram associates actual arguments with
the dummy arguments of the referenced ENTRY statement. Thus, all
appearances of these arguments in the whole subprogram become
associated with actual arguments.

See "Actual Arguments in a Subroutine Subprogram™ on page 171 and
"Actual Arguments in a Function Subprogram" on page 111.

Dummy Arguments in an ENTRY Statement

The dummy arguments in the ENTRY statement need not agree in
order, type, or number with the dummy arguments in the SUBROUTINE
or FUNCTION statement or any other ENTRY statement in the same
subprogram. However, the actual arguments for each CALL or
function reference must agree in order, type, and number with the
dummy arguments in the SUBROUTINE, FUNCTION, or ENTRY statement
to which it refers.

Any dummy argument of an ENTRY statement must not be in an
executable statement preceding the ENTRY statement unless it has
already appeared as a dummy argument in an ENTRY, SUBROUTINE, or
FUNCTIQON statement prior to the executable statement.

VS FORTRAN Statements 79

ENTRY

80

If an ENTRY dummy argument is used as an adjustable array name,
the array name and all its dimensions (except those in COMMON)
must be in the same dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names,
or asterisks. The asterisk is allowed only in an ENTRY statement
in a subroutine subprogram and indicates an alternate return
specifier.

A dummy argument must not appear in the expression of a statement
function definition unless the name is also a dummy argument to
the statement function, or is in a FUNCTION or SUBROUTINE
Ztigemgpt, or is in an ENTRY prior to the statement function
efinition.

A dummy argument used in an executable statement is allowed only
if that dummy argument appears in the argument list of the
FUNCTION, SUBROUTINE, or ENTRY statement by which the subprogram
was entered.

See "Dummy Arguments in a Subroutine Subprogram” on page 172 and
"Dummy Arguments in a Function Subprogram" on page 111.

VS FORTRAN Language Reference

EQUIVALENCE
EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits the sharing of data storage
within a single program unit.

syntax
EQUIVALENCE (listl) [, (list2) 1

list

is alist of variable, array, array element, or character
substring names. Names of dummy arguments of an external
procedure in a subprogram must not appear in the list. Each
pair of parentheses must contain at least two names.

The number of subscript quantities of array elements must be
equal to the number of dimensions of the array. If an array
name is used without a subscript in the EQUIVALENCE
statement, it is interpreted as a reference to the first
element of the array.

An array element refers to a position in the array in the
same manner as it does in an assignment statement (that is,
the array subscript specifies a position relative to the
first element of each dimension of the array).

The subscripts and substring information may be integer
expressions containing only integer constants, or names of
integer constants. They must not contain variables, array
elements, or function references.

All the named data within a single set of parentheses share the
same storage location. When the logic of the program permits it,
the EQUIVALENCE statement can reduce the number of byvtes used by
sharing two or more variables of the same type or different
noncharacter types. Character type variables and character type
array elements can only be equivalenced with other character type
variables, character type array elements, or portions of them.
The length of the equivalenced entities can be different.
Equivalence betuween variables implies storage sharing.

Mathematical equivalence of variables or array elements is
implied only when they are of the same noncharacter type, when
they share exactly the same storage, and when the value assigned
to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing
two elements of two different arrays implicitly equivalences
other elements of the two arrays. The EQUIVALENCE statement must
not contradict itself or any previously established equivalences.

Two variables in one common block or in two different common
blocks cannot be made equivalent. However, a variable in a program
unit can be made equivalent to a variable in a common block. If
the variable that is eauivalenced to a variable in the common
block is an element of an array, the implicit equivalencing of the
rest of the elements of the array can extend the size of the
common block. The size of the common block cannot be extended so
that elements are added ahead of the beginning of the established
common block.

valid EQUIVALENCE Statements:
EQUIVALENCE (C(1), A(1)), (C(50,50), B(1))
EQUIVALENCE (A, B(1), €(5,3)), (D(5,10,2), E)
EQUIVALENCE (B,D(11})

VS FORTRAN Statements 81

Explicit Type

EXPLICIT TYPE STATEMENT

The explicit type statement:

. Specifies the type and length of variables; arrays, and
user-supplied functions.

. Specifies the dimensions of an array.

I IBM EXTENSION 1

. Assigns initial data values for variables and arrays.
L END OF IBM EXTENSION d

The explicit type statement overrides the IMPLICIT statement,
which, in turn, overrides the predefined convention for
specifying type.

syntax
tvpe namel [, name2 1 ...

type
is COMPLEX, INTEGER, LOGICAL, REAL, DOUBLE PRECISION, or
CHARACTERI*lenl, 1]

where:

%xlen
specifies the length (number of characters between 1
and 500). It is optional. It can be expressed as:

. An unsigned, nonzero, integer constant.

. An expression with a positive value that contains
integer constants, names of integer constants
enclosed in parentheses, or an asterisk enclosed in
parentheses.

The length *¥len immediately following the word
CHARACTER is used as the length specification of any
name in the statement that has no length specification
attached to it. To override a length for a particular
name, see the alternative forms of name below. If ¥len
is not specified, it is assumed to be 1.

The comma in CHARACTERI[*lenl,]1] must not appear if ¥len is
not specified. It is optional if ¥len is specified.

If the length specification (¥len) is a constant, it must be an
unsigned, nonzero, integer constant. If the length specification
is an arithmetic expression enclosed in parentheses, it can
contain only integer constants or names of integer constants.
Function and array element references must not appear in the
expression. The value of the expression must be a positive,
nonzero, integer constant.

If the length specification is an asterisk (%), name must be the
name of a character constant. The character constant assumes the
length of its corresponding expression in a PARAMETER statement.

If the CHARACTER statement is in a subprogram, the asterisk (%)
must be associated with a name that is a dummy argument. The dummy
argument assumes the length of the associated actual argument for
each reference of the subroutine.

The length specified (or assigned by default) with an array name
is the length of each element of the array.

82 VS FORTRAN Language Reference

Explicit Type

If a character function has the length specified as an asterisk
(%) in a program unit, the function name must appear as the name
of a function in a FUNCTION or ENTRY statement in the same program
unit. When a reference to such a function is executed, the
function assumes the length specified in the calling program
unit. The length of a CHARACTER statement function cannot be
specified by an asterisk (¥) but can be a constant arithmetic
expression.

The length specified for a character function in the program unit
that refers to the function must be an expression involving only
integer constants or names of integer constants. The
exponentiation operator is not permitted unless the exponent is
of type integer. This length must agree with the length specified
in the subprogram that specifies the function if the length is not
specified as an asterisk.

r IBM EXTENSION |

type
is COMPLEX[*lenll, INTEGERI[*len1l, LOGICAL[%lenl], or

REALILxlenl]

where:

¥lenl
is optional and represents one of the permissible
length specifications for its associated type as
described in Figure 5.

L END OF IBM EXTENSION =

is a variable, array, function name, dummy procedure name or
the name of a constant. It can have the form:

al(dim)]
or
al(dim)ll*len2]

where:

is a variable, array, function name, or dummy procedure
name.

Q.
E3

is optional. dim is composed of one through seven
dimension bounds, separated by commas, that represent
the limits for each subscript of the array in the form:

el:eg2
or

e2

where:

el
is the lower dimension bound. It is optional. If
el (with its following colon) is not specified,
its value is assumed to be 1.

e2
is the upper dimension bound and must always be
specified.

(See "Size and Type Declaration of an Array"™ on page 22 for
rules about dimension bounds.)

If a specific intrinsic function name appears in an explicit
specification statement that causes a conflict with the type

VS FORTRAN Statements 83

Explicit Type

specified for this function in "Appendix B. FORTRAN-Supplied
Procedures" on page 201, the name loses its intrinsic
function property in the program unit. A type statement that
confirms the type of an intrinsic function is permitted. If a
generic function name appears in an explicit specification
statement, it does not lose its generic property in the
program unit.

¥len2

overrides the length as specified in the statement by
CHARACTERI*lenl,1].

IBM EXTENSION —

is a variable, array, function name, dummy procedure name
or the name of a constant. It can have the form:

al*len3]ll(dim)]
or
al*len3ll(dim)1lziz]
where:

a

is a variable, array, function name, or dummy
procedure name.

%xlen3 .
overrides the length as specified in the initial
kevword of the statement as COMPLEX, INTEGER,
LOGICAL, REAL, COMPLEXI[*lenll, INTEGER[*lenll,
LOGICALIL*lenll, or REALI[X*lenll

Q.
3

is optional. dim is composed of one through seven
dimension bounds, separated by commas, that represent
the limits for each subscript of the array. See the
description of dim above.

fae

is optional and represents initial data values. Dummy
arguments and names of constants, functions, and
statement functions may not be assigned initial
values.

Initial data values may be assigned to variables or arrays that
are not dummy arguments or in blank common, by use of in, where
in is a constant or list of constants sepatated by commas. Each
in provides initialization only for the immediately preceding
variable or array. Lists of constants are used only to assign
initial values to array elements. The data must be of the same
type as the variable or array, except that hexadecimal data may
also be used.

Note: If hexadecimal data is used, the hexadecimal constant
form must be followed (see "Hexadecimal Constants™ on page 17).

Successive occurrences of the same constant can be represented
by the form iXconstant, as in the DATA statement. If iniftial
data values are assigned to an array in an explicit
specification statement, the dimension information for the
array must be in the explicit specification statement or in a
preceding DIMENSION or COMMON statement.

84 VS FORTRAN Language Reference

Explicit Type
valid Explicit Type statements:
COMPLEX C,Ds/(2.1,4.73)/,E%16
INTEGER%2 ITEM/767, VALUE
REAL A(5,5)720%6.9E2,4%1.0/,B(100)7100%0.0/,TEST*8(5)/5%0.0D0/
REAL%8 BAKER, HOLD, VALUE%4, ITEM(5,5)
CHARACTERX(*)APPLES,CATS

END OF IBM EXTENSION : .)

VS FORTRAN Statements 85

EXTERNAL
EXTERNAL STATEMENT

The EXTERNAL statement identifies a user-supplied subprogram name
and permits such a name to be used as an actual argument.

syntax
EXTERNAL namel [, name2 1 ...

name

is a name of a user-supplied subprogram (function or
subroutine) that is passed as an argument to another
subprogram.

EXTERNAL is a specification statemént and must precede statement
function definitions and all executable statements.

Statement function namas cannot appear in an EXTERNAL statement.
If the name of a V5 FORTRAN-supplied function (that is, intrinsic
function) is used in an EXTERNAL statement, the function is nho
longer recognized as being an intrinsic function when it appears
as a function reference. Instead, it is assumed that the function
is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC
statement.

The name of any subprogram that is passed as an argument to
another subprogram must appear in an EXTERNAL or INTRINSIC
statement in the calling program.

Valid EXTERNAL Statement:

EXTERNAL TREES

86 VS FORTRAN Language Reference

FORMAT STATEMENT

FORM

The FORMAT statement is used with the input/Zoutput list in the
READ and WRITE statements to specify the structure of FORTRAN
records and the form of the data fields within the records.

syntax

AT

FORMAT (f1 [, f2 L ... 1 1)

fl, £2,..., fn are format codes.

Format Codes Description

alw Integer data fields

alu.m Integer data fields

alDu.d Double precision data fields

aEw.d Real data fields

aEw.dEe Real data fields

aFw.d Real data fields

abw.d Real data fields

abu.dEe Real data fields

nP Scale factor

alw Logical data fields

aA Character data fields

alduw Character data fields

*literal® Literal data (character constant)

wH Literal data (Hollerith constant)

wX A field is skipped on input or filled with
blanks on output

Tr Transfer of data starts in current position

TLr Transfer of data starts r characters to the
left of current position

TRr Transfer of data starts r characters to the
right of current position

at...D Group format specification

S Display of optional plus sign is restored

SP Plus sign is produced in output

S5 Plus sign is not produced in output

BN Blanks are ignored in input

BZ Blanks are treated as zeros in input

/ Data transfer on the current record is ended

VS FORTRAN Statements

87

FORMAT

Format Codes Description

Format control is terminated if there are no
more items in the input/output list

T IBM EXTENSION 1
Format Codes | Description
aEw.dDe Real data fields
atu.d Integer or logical data fields
atu.dEe Integer or logical data fields
aQu.d Extended precision data fields
azZw Hexadecimal data fields

L END OF IBM EXTENSION !

is optional and is a repeat count, an unsigned, nonzero,
integer constant used to denote the number of times the
format code or group is to be used. If a is omitted, the code
or group is used only once.

W
is an unsigned, nonzero, integer constant that specifies the
width of the field.

m
is an unsigned integer constant that specifies the number of
digits to be printed.

d . s
is an unsigned integer constant that specifies the number of
digits to the right of the decimal point.

e
is an unsigned, nonzero, integer constant that specifies the
number of digits in the exponent field.

n
is an (optionally) signed integer constant that specifies a
scale factor to be applied.

r

is an unsigned, nonzero, integer constant that specifies a
character position in a record.

(...}
is a group format specification. Within the parentheses are
format codes or additional levels of groups, separated by
commas, slashes, or colons. Commas are optional before or
after a slash and before or after a colon, if the slash or
colon is not part of a character constant.

The FORMAT statement is used with READ and WRITE statements for
internal and external files. The external files must be connected
for SEQUENTIAL or DIRECT access. In the FORMAT statement, the data
fields are described with format codes, and the order in which
these format codes are specified determines the structure of the
FORTRAN records. The I/0 list gives the names of the data items
that make up the record. The length of the list, in conjunction

88 VS FORTRAN Language Reference

FORMAT

with the FORMAT statement, specifies the length of the record (see
"Forms of a FORMAT Statement"™ on page 91).

The format codes delimited by left and right parentheses may
appear appear as a character constant in the format specification
of the READ or WRITE statement, instead of in a separate FORMAT
statement. For example,

READ (UNIT=5,FMT='(I3,F5.2,E10.3,G10.3)")N,A,B,C

READ (5,'(I3,F5.2,E10.3,610.3)")N,A,B,C
Throughout this section, the examples show punched card input and
printed line output. However, the concepts apply to all

input/output media. In the examples, the character b represents a
blank.

General Rules for Data Conversion

The following is a list of general rules for using the FORMAT
statement or a format in a READ or WRITE statement.

. FORMAT statements are not executed; their function is to
supply information to the object program. They may be placed
anywhere in a program unit other than in a block data
subprogram, subject to the rules for the placement of the
PROGRAM, FUNCTION, SUBROUTINE, and END statements.

. Complex data in records require two successive D, E, G, or F
format codes.

I IBM EXTENSION 1
VS FORTRAN also accepts the Q@ format code for complex data.
L END OF IBM EXTENSION —

The two codes may be different and the format codes T, TL, TR,
X, /, ¢+, S, SP, SS, P, BN, BZ, H, or a literal enclosed in
apostrophes may appear between the two codes.

. When defining a FORTRAN record by a FORMAT, it is important to
consider the maximum size record allowed on the input/output
medium. For example, if a FORTRAN record is to be punched for
output, the record should not be longer than 80 characters. If
it is to be printed, it should not be longer than the
printer's line length. For input, the FORMAT should not
define a FORTRAN record longer than the actual input record.

U When formatted records are prepared for printing at a printer
or terminal, the first character of the record is not printed
or displayed. It is treated as a carrier control character. It
can be specified in a FORMAT statement with either of two
forms of literal data:

'x' or 1lHx

where x is one of the following:

X Meaning

blank Advance one line before printing.

0 Advance two lines before printing.
1 Advance to first line of next page.
+ Do not advance before printing.

(Overstrike the current line.)

For media other than a printer or terminal, the first
character of the record is treated as data.

. If the I/0 list is omitted from the READ or WRITE statement,
the following general rules apply:

VS FORTRAN Statements 89

FORMAT

- Input: A record is skipped.

- Output: A blank record is written unless the FORMAT
statement contains an H format code or a character
constant (see "H Format Code and Character Constants" on
page 100).

To produce a blank record on output, an empty format
specification of the form FORMAT () may be used.

To illustrate the nesting of group format specifications, the
following statements are both valid:

FORMAT (...,af...,al...),...5aC...),...))
or
FORMAT (...,g(...,_a_(...,_a_(...),...),...),...)

Names of constants must not be a part of a format
specification (see "PARAMETER Statement"™ on page 136).

With numeric data format codes I, F, E, 6, and D, the
following general rules apply:

- Input: Leading blanks are not significant. The
interpretation of blanks, other than leading blanks, is
determined by a combination of the value of the BLANK=
specifier given when the file was connected (see "OPEN
Statement"” on page 132) and any BN or BZ blank control
that is currently in effect. Plus signs may be omitted. A
field of all blanks is considered to be zero.

With F, E, G, and D format codes, a decimal point
appearing in the input field overrides the portion of a
format code that specifies the decimal point location.
The input field may have more digits than VS FORTRAN uses
to approximate the value.

- output: The representation of a positive or zero
internal value in the field may be prefixed with a plus,
as controlled by the S, SP, and S5 format codes. The
representation of a negative internal value in the field
is prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If
the number of characters produced by the editing is
smaller than the field width, leading blanks are inserted
in the field.

If the number of characters produced exceeds the field
width or if an exponent exceeds its specified length
using the Ew.dEe or Gu.aEe format codes, the entire field
of width W 1s filled with asterisks. Homever, if the field
width is not exceeded when optional characters are
omitted, asterisks are not produced. When an SP format
code is in effect, a plus is not optional.

IBM EXTENSION 1

With VS FORTRAN, format code Q makes the following
additional rules apply:

- Input: With Q editing, a decimal point appearing in the
input field overrides the portion of a format code that
specifies the decimal point location. The input field
may have more digits than VS FORTRAN uses to approximate
the value.

- Output: If the number of characters produced exceeds
the field width or if an exponent exceeds its specified
length using the Ew.dDe or Qu.d format codes, the entire

90 VS FORTRAN Language Reference

FORMAT

field of width w is filled with asterisks. However, if
the field width is not exceeded when optional characters
are omitted, asterisks are not produced. When an SP
format code is in effect, a plus is not optional.

L END OF IBM EXTENSION —

Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in
parentheses. Within these parentheses, the format codes are
delimited by commas. The comma may be omitted between a P format
code and an immediately following F, E, D, or G format code, and
before or after a colon or slash format code.

Execution of a formatted READ or formatted WRITE statement
initiates format control. Each action of format control depends
on information provided jointly by the I/0 list, if one exists,
and the format specification. If there is an I/0 list, there must
be at least one I, D, E, F, A, G, or L format code in the format
specification.

I IBM EXTENSION 1

The Q@ and Z format codes may also appear in the format
specification.

1 END OF IBM EXTENSION 1

There is no I/0 list item corresponding to the format codes: T,
TL, TR, X, H, literals enclosed in apostrophes, S, SP, S5, BN, BZ,
P, the slash (/), or the colon (:). These communicate information
directly to the record.’

Whenever an I, D, E, F, A, G, or L format code is encountered,
format control determines whether there is a corresponding
element in the I/70 list.

I IBM EXTENSION 1

With VS FORTRAN, the list of format codes includes Q@ and Z.

Whenever a @ or Z code is encountered, format control determines
whether there is a corresponding element in the I/0 list.

The comma may be omitted between a P format code and an
immediately following Q@ format code.

L END OF IBM EXTENSION !

If there is a corresponding element, appropriately converted
information is transmitted. If there is no corresponding element,
the format control terminates, even if there is an unsatisfied
repeat count.

When format control reaches the last (outer) right parenthesis of
the format specification, a test is made to determine whether
another element is specified in the 170 list. If not, control
terminates. If another list element is specified, the format
control starts a new record. Control then reverts to that group
specification terminated by the last preceding right parenthesis,
including its group repeat count, if any, or, if no group
specification exists, then to the first left parenthesis of the
format specification. Such a group specification must include a
closing right parenthesis. If no group specification exists,
control reverts to the first left parenthesis of the format
specification.

For example, assume the following FORMAT statements:

70 FORMAT (I5,2(1I3,F5.2),I4,F3.1)

VS FORTRAN Statements 91

FORMAT

I Format Code

F Format Code

80 FORMAT (13,F5.2,2(1I3,2F3.1))
90 FORMAT (I3,F5.2,214,5F3.1)

With additional elements in the I/70 list after control has reached
the last right parenthesis of each, control would revert to the
2(I3,F5.2) specification in the case of statement 70; to
2(I3,2F3.1) in the case of statement 80; and to the beginning of
the format specification, I3,F5.2,... in the case of statement

9¢6.

The question of whether there are further elements in the I/0 list
is asked only when an I, D, E, F, A, G, or L format code or the
final right parenthesis of the format specification is
encountered.

r IBM EXTENSION 1

The question is also asked when a Q or Z format code is
encountered.

: END OF IBM EXTENSION !

Before this is done, T, TL, TR, X, and H codes, literals enclosed
in apostrophes, colons, and slashes are processed. If there are
fewer elements in the I70 list than there are format codes, the
remaining format codes are ignored.

The I format code edits integer data. For example, if a READ
statement refers to a FORMAT statement containing I format codes,
the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the
maximum magnitude of an integer constant.

INPUT: Leading blanks in a field of the input line are interpreted
as zeros. Embedded and trailing blanks are treated as indicated in
the general rules for numeric fields described under "General
Rules for Data Conversion™ on page 89. If the form Iw.m is used,
the value of m has no effect.

OUTPUT: If the number of significant digits and sign required to
represent the quantity in the byte is less than W, the leftmost
print positions are filled with blanks. If it is greater than w,
asterisks are printed instead of the number. If the form Inu.m is
used, the output is the same as the Iw form, except that the
unsigned integer constant consists of at least m digits and, if
necessary, has leading zeros. The value of m must not exceed the
value of w. If m is zero and the value of the internal datum is
zaro, the output field consists of only blank characters,
regardless of the sign control in effect.

The Fw.d format code edits real data. It indicates that the field
occugies W positions, the fractional part of which consists of d
digits.

INPUT: The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If the
decimal point is omitted, the rightmost d digits of the string,
with leading zeros assumed if necessary, are interpreted as the
fractional part of the value represented.

The input field may have more digits than VS FORTRAN uses to
approximate the value of the datum. The basic form may be followed
by an exponent of one of the following forms:

) Signed integer constant.

92 VS FORTRAN Language Reference

FORMAT

. E followed by zero or more blanks, followed by an optionally
signed integer constant.

¢ D followed by zero or more blanks, followed by an optionally
signed integer constant.

r IBM EXTENSION]

. Q followed by zero or more blanks, followed by an uptionally
signed integer constant.

L END OF IBM EXTENSION —!

An exponent containing a D is processed identically to an exponent
containing an E.

OUTPUT: The output field consists of blanks, if necessary,
followed by a minus sign if the internal value is negative, or an
optional plus otherwise, followed by a string of digits that
contains a decimal point and represents the magnitude of the
internal value, as modified by the established scale factor and
rounded to d fractional digits. Leading zeros are not provided
except for an optional zero immediately to the left of the decimal
point if the magnitude of the value in the output field is less
than one. The optional zero appears if there would otherwise be no
digits in the output field.

D, E, and @ Format Codes

The Dw.d, Ew.d, Ew.dEe format codes edit real, complex, or double
precision data.

q IBM EXTENSION 1

The Ew.dDe and Quw.d format codes edit extended precision data in
addition to real, complex, and double precision data.

— END OF IBM EXTENSION 4

The external field occupies W positions, the fractional part of
which consists of d digits (unless a scale factor greater than one
is in effect). The exponent part consists of e digits. (The e has
no effect on input.)

INPUT: The input field may have more digits than VS FORTRAN uses
to approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D or E
exponent, or may be omitted from the exponent if the exponent is
signed.

f IBM EXTENSION 1

It may also have a Q exponent.

L END OF IBM EXTENSION —

All exponents must be preceded by a constant; that is, an
optional sign followed by at least one decimal digit with or
without decimal point. If the decimal point is present, its
position overrides the position indicated by the d portion of the
format code, and the number of positions specified by w must
include a place for it. If the data has an exponent and a P format
code is in effect, the scale factor is ignored.

The interpretation of blanks is explained in "General Rules for
Data Conversion" on page 89.

The input datum may have an exponent of any form. The input datum
is converted to the length of the variable as specified in the 1/0
list. The @ of the exponent in the format code has no effect on
input.

VS FORTRAN Statements 93

FORMAT

G Format Code

P Format Code

OUTPUT: For data written under a D or E format code, unless a
P-scale factor is in effect, output consists of an optional sign
(required for negative values), a decimal point, the number of
significant digits specified by d, and a D or E exponent requiring
four positions.

I IBM EXTENSION 1

For data written under a Q@ format code, unless a P~scale factor
is in effect, output consists of an optional sign (required for
negative values), a decimal point, the number of significant
digits specified by d, and a @ exponent requiring four
positions.

b END OF IBM EXTENSION 1

On output, W must provide sufficient space for an integer segment
if it is other than zero, a fractional segment containing d
digits, a decimal point, and, if the output value is negative, a
sign. If insufficient space is provided for the integer portion,
including the decimal point and sign (if any), asterisks are
written instead of data. If excess space is provided, the number
is preceded by blanks.

The fractional segment is rounded to d digits. A zero is placed to
the left of the decimal point If the output field consists only of
a fractional segment, and if additional space is available. If the
entire value is zero, a zero is printed before the decimal point.

The G format code is a generalized code used to transnit real data

according to the type specification of the corresponding variable
in the I/70 list.

INPUT: The form of the input field is the same as for the F format
coda.

OUTPUT: For real data, the d determines the number of digits to be
printed and whether the number should be printed with the letter E
or D followed by the exponent, depending on the length
spaecification of the variable in the I/0 list. The w specification
for real data must include a position for a decimal point and,
four positions for a decimal exponent, which includes the sign. A
zero exponent has a plus sign. All other rules for output are the
same as those for the individual format codes.

I IBM EXTENSION |
The letter Q is used for the exponent of real data.

The G format code may be used to transmit integer or logical

data according to the type specification of the corresponding
variable in the I/0 list.

If the variable in the I/0 list is integer or logical, the d
portion of the format code, specifying the number of
significant digits, can be omitted; if it is given, it is
ighored.

L END OF IBM EXTENSION !

A P format code spacifies a scale factor n, where n is an
optionally signed integer constant. The value of the scale factor
is zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F, E, D, and
G format codes until another scale factor is encountered, then
that scale factor is established.

96 VS FORTRAN Language Reference

FORMAT
r IBM EXTENSION .

It also applies to all subsequently interpreted Q@ format codes.

L END OF IBM EXTENSION =

Reversion of format control does not affect the established scale
factor. A repetition code can precede these format codes. For
example, 2P3F7.4 is valid. A comma can be placed after the P
format code, for example, 2P,3F7.4. A scale factor of zero may be
specified.
INPUT: If an exponent is in the data field, the scale factor has
no effect. If no exponent is in the field, the externally
represented number equals the internally represented number
multiplied by 10%Xn for the external representation.
For example, if the input data is in the form

XX . XXXX
and is to be used internally in the form

« XXXXXX

then the format code used to effect this change is

2PF7.4
which may also be written 2P,F7.4.
Similarly, if the input data is in the form

XX o XXXX

and is to be used internally in the form

RKXXX « XX
then the format code used to effect this change is

-2PF7.4
which also may be written -2P,F7.4.

OUTPUT: With an F format code, the internally represented number
reduced by 10%¥Xn is produced.

For example, if the number has the internal form
« XXXXKX

and is to be written in the form

XX « XXXX
the format code used to effect this change is

2PF7 .4
which also may be written 2P,F7.4.
On output with E and D format codes, the value of the internally
represented number is not changed. When the decimal point is moved
according to the d of the format code, the exponent is adjusted so

that the value of the externally represented number is not
multiplied by 10%xn.

VS FORTRAN Statements 95

FORMAT

I IBM EXTENSION 1

On output with @ format code, the value of the internally
represented number is not changed.

L END OF IBM EXTENSIGN !

For example, if the internal number
238.47

were printed according to the format E10.3, it would appear as
0.238Eb03

If it were printed according to the format 1PE10.3 or 1P,E10.3 it
would appear as

2.385Eb02

On output with a 6 format code, the effect of the scale factor is
suspended unless the magnitude of the internally represented
number (m) is outside the range that permits the use of F format
code editing. This range for use of the F format code is

.1>m> 10 *x d

where d is the number of digits as specified in the 6 format code
Gu.d.

I IBM EXTENSION |

Z Format Code
The Z format code transmits hexadecimal data.

INPUT: Scanning of the input field proceeds from right to left.
Leading, embedded, and trailing blanks in the field are treated
as zeros. One byte in internal storage contains two hexadecimal
digits; thus, if an input field contains an odd number of
digits, the number is padded on the left with a hexadecimal zero
when it is stored. If the storage area is too small for the
1np¥t data, the data is truncated and high-order digits are

ost.

OUTPUT: If the number of digits in the byte is less than w, the
leftmost print positions are filled with blanks. If the number
of digits in the byte is greater than w, the leftmost digits are
truncated and the rest of the number is printed.

L END OF IBM EXTENSION : 1

Numeric Format Code Examples

Example 1:

The following example illustrates the use of format codes I, F, D,
E, and G.

75 FORMAT (I3,F5.2,E10.3,G10.3)
READ (5,75) N,A,B,C

96 VS FORTRAN Language Reference

Explanation:

Four input fields are described in the FORMAT statement

FORMAT

and

four variables are in the I/70 list. Therefore, each time the

READ statement is executed, one input line is read from
file connected to unit number 5.

the

When an input line is read, the number in the first field of

the line (three columns) is stored in integer format in

location N. The number in the second field of the input line

(five columns) is stored in real format in location A, a
on.

If there were one more variable in the I/0 list, say M,
another line would be read and the information in the fi
three columns of that line would be stored in integer fo
in location M. The rest of the line would be ignored.

If there were one fewer variable in the list (say C is
omitted), format code G10.3 would be ignored.

nd so

rst
rmat

This FORMAT statement defines only one record format. "Forms

of a FORMAT Statement™ on page 91 explains how to define more
than one record format in a FORMAT statement.
IBM EXTENSION 1
Example 2:
This example illustrates the use of the Z, D, and G format
codes.
fssume that the following statements are given:
75 FORMAT (24,D10.3,2G10.3)
READ (5,75) A,B,C,D
where A, C, and D are REAL¥4 and B is REALX8 and that on
successive executions of the READ statement, the following
input lines are read:
Column: 1 5 15 25 35
v v v v v
b3F1156432D+02276.38E+15bbbbbbbbbb
ITpUt 2AF3155381+02b382506E+28276 .38E+15
Lines 3ACb346.18D-03485.322836276.38E+15
Format: 26 D10.3 G10.3 G10.3
Then the variables A, B, C and D receive values as if the
following data fields had been supplied:
A B c D
03F1 156.432D02 276 .38E+15 000000.000
2AF3 155.381+20 382.506E28 276 .38E+15
3ACO 366.18D-03 485.322836 276 .38E+15
VS FORTRAN Statements 97

FORMAT

Explanation:

. Leading blanks in an input field are treated as zeros. If
all other blanks are assumed to be treated as zero, because
the value for B on the second input line was not right
justified in the field, the exponent is 20 not 2.

. Values read into the variables C and D with a G format code
are converted according to the type of the corresponding
variable in the I/0 list.

L END OF IBM EXTENSION !

Example 3¢

This example illustrates the use of the literal enclosed in
apostrophes and the F, E, 6, and I format codes.

Assume that the following statements are given:
76 FORMAT ('0',F6.2,E12.3,614.6,15)
WRITE (6,76)A,B,C,N

and that the variables A, B, C and N have the following values on
successive executions of the WRITE statement:

A B c N
034.40 123.380E+02 123.380E+02 031
031.1 1156 .1E+02 123456789. 130
-354.32 834.621E~03 1234.56789 %28
01.132 83.121E+06 123380.D+02 000

Then, the following lines are printed by successive executions of
the WRITE statement:

Print
Column: 1 9 21 35
v v v v
34.40 0.123E 05 12338.0 31
31.10 0.116E 06 0.123457E 09 130
KKK KK 0.835E 00 1234 .57 428

1.13 0.831E 08 0.123380E 08 0
Explanation:

. The integer portion of the third value of A exceeds the format
code specification, so asterisks are printed instead of a
value. The fractional portion 6f the fourth value of A exceeds
the gormat code specification, so the fractional portion is
rounded.

. For the variable B the decimal point is printed to the left of
the first significant digit and only three significant digits
are printed because of the format code E12.3. Excess digits
are rounded off from the right.

. The values of the variable C are printed according to the
format specification Gl4.6. The s specification, which in
this case is 6, determines the number of digits to be printed
and whether the number should be printed with a decimal
exponent. Values greater than or equal to 0.1 and less than
1000000 are printed without a decimal exponent in this
example. Thus, the first and third values have no exponent.

$8 VS FORTRAN Language Reference

L Format Code

A Format Code

FORMAT

The second and fourth values are greater than 1000000, so they
are printed with an exponent.

The L format code transmits logical variables.

INPUT: The input field must consist of either zeros or blanks with
an optional decimal point, followed by a T or F, followed by
optional characters, for true and false, respectively. The T or F
assigns a value of true or false to the logical variable in the
input list. The logical constants .TRUE. and .FALSE. are
acceptable input forms.

OUTPUT: AT or F is inserted in the output record depending upon
whether the value of the logical variable in the I/0 list was true
or false, respectively. The single character is right justified
in the output field and preceded by w-1 blanks.

The A format code transmits character data. Each alphabetic or
special character is given a unique internal code. Numeric
characters are transmitted without alteration; they are not
converted into a form suitable for computation. Thus, the A format
code can be used for numeric fields, but not for numeric fields
requiring arithmetic.

If wis specified, the field consists of u characters.

If the number of characters W is not specified with the format
code A, the number of characters in the field is the length of the
character item in input/output list.

INPUT: The maximum number of characters stored in internal
storage depends on the length of the variable in the I/0 list. If
W is greater than the variable length, say v, then the leftmost
w-v characters in the field of the input 11ne are skipped and
remaxnlng v characters are read and stored in the variable. If uw
is less than v, then w characters from the field in the input line
are read and remaining rightmost characters in the variable are
filled with blanks.

OUTPUT: If w is greater than the length v of the variable in the
I/0 list, then the printed field contains v characters
right-justified in the field, preceded by leading blanks. If w is
less than v, the leftmost w characters from the variable are
printed and the rest of the data is truncated.

Example 1:

Assume that B has been specified as CHARACTERXS, that N and M are
CHARACTERX4, and that the following statements are given:

25 FORMAT (3A7)
READ (5,25) B, N, M

When the READ statement is executed, one input line is read from
the data set associated with data set reference number 5 into the
variables B, N, and M in the format specified by FORMAT statement
number 25. The following list shows the values stored for the
given input lines (b represents a blank).

Input Line B N M
ABCDEFG46bATb11234567 ABCDEFGb ATbl 4567
HIJKLMN76543213334445 HIJKLMNDb 4321 4465

VS FORTRAN Statements 99

FORMAT

Example 2:
Assume that A and B are character variables of length 4, that C is

a character variable of length 8, and that the following
statements are given:

26 FORMAT (A6,A5,A6)
WRITE (6,26) A,B,C
When the WRITE statement is executed, one line is written on the
data set associated with data set reference number 6 from the
variables A, B, and C in the format specified by FORMAT statement

26. The printed output for values of A, B and C is as follouws (b
represents a blank):

A B c Printed Line
AlB2 C3D4 E5F6G7HS bbA1B2bC3ID4ESF6G7

H Format Code and Character Constants

X Format Code

Character constants can appear in a FORMAT statement in one of two
ways: following the H format code or enclosed in apostrophes. For
example, the following FORMAT statements are equivalent.

25 FORMAT (22H 1981 INVENTORY REPORT)
25 FORMAT (' 1981 INVENTORY REPORT')

No item in the output list corresponds to the character constant.
The constant is written directly from the FORMAT statement. (The
FORMAT statement can contain other types of format code with
corresponding variables in the I/0 list.)

INPUT: Character constants cannot appear in a format used for
input.

OUTPUT: The character constant from the FORMAT statement is
written on the output file. (If the H format code is used, the w
characters following the H are written. If apostrophes are used,
the characters enclosed in apostrophes are written.) For example,
the following statements:

8 FORMAT (14HOMEAN AVERAGE:, F&.4)
WRITE (6,8) AVRGE

would write the following record if the value of AVRGE were
12.3456:

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is
the carrier control character for printed output. One line is
skipped before printing, and the carrier control character does
not appear in the printed line.

Note: If the character constant is enclosed in apostrophes, an
apostrophe character in the data is represented by two successive
apostrophes. For example, DON'T would be represented as "DON''T"'.

The X format code specifies a field of u characters to pe skipped
on input or filled with blanks on output if the field was not
previously filled. On output, an X format code does not affect the
length of a record. For example, the following statements:

. Read the first ten characters of the input line into variable
I.

100 VS FORTRAN Language Reference

T Format Code

FORMAT
. Skip over the next ten characters without transmission.

U Read the next four fields of ten characters each into the
variables J, K, L, and M.

5 FORMAT (I10,10X,4I10)
READ (5,5) I,J,K,L,M

The T format code specifias the position in the FORTRAN record at
which the transfer of data is to begin.

To illustrate the use of the T code, the following statements:
5 FORMAT (T7640,'1981 STATISTICAL REPORT', T80,
X 'DECEMBER',T1,'OPART NO. 10095")
WRITE (6,5)
print the following:

Print
Position: 1 39 79

v v v
PART NO. 10095 1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type
of format code, as, for example, with FORMAT ('0',T40,I5).

INPUT: The T format code allows portions of a record to be
processed more than once, possibly with different format codes.

OUTPUT: The record is assumed to be initially filled with blank
characters, and the T format code can replace or skip characters.
On output, a T format code does not affect the length of a record.

(For printed output, the first character of the output data record
is a carrier control character and is not printed. Thus, for
example, if T50,'Z"' is specified in a FORMAT statement, a Z will
be the 50th character of the output record, but it will appear in
the 49th print position.)

TL AND TR FORMAT CODES: The TL and TR format codes specify how
many characters left (TL) or right (TR) from the current character
position the transfer of data is to begin. With TL format code, if
the current position is less than or equal to the position
specified with TL, the next character transmitted will be placed
in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with
any type of format code. On output, these format codes do not
affect the length of a record.

Group Format Specification

The group format specification repeats a set of format codes and
controls the order in which the format codes are used.

The group repeat count a is the same as the repeat indicator a
that can be placed in front of other format codes. For example,
the following statements are equivalent:

10 FORMAT (I3,2(I4,15),1I6)

10 FORMAT (I3,(I%,15,I4,I5),16)

VS FORTRAN Statements 101

FORMAT

S, SP, and SS Format

‘BN Format Code

Group repeat specifications control the order in which format
codes are used, since control returns to the last group repeat
specification when there are more items in the I/0 list than there
are format codes in the FORMAT statement (see "Forms of a FORMAT
Statement™ on page 91). Thus in the previous example, if there
were more than six items in the I/0 list, control would return to
the group repeat count 2 that precedes the specification (I4,I5).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT (I3,(F6.2,D10.3))
READ (5,15) N,A,B,C,D,E

read values from the first record for N, A, and B, according to
the format codes I3,F6.2, and D10.3, respectively. Then, because
the I/0 list is not exhausted, control returns to the last group
repeat specification, the next record is read, and values are
transmitted to C and D according to the format codes F6.2 and
D10.3, respectively. Since the I/0 list is still not exhausted,
another record is read and value is transmitted to E according to
the format code F6.2—the format code D10.3 is not used.

All format codes can appear within the group repeat
specification. For example, the following statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))

The first physical record, containing two data items, is
transmitted according to the specification 2I3; the second,
fourth, and so on, records, each containing four data items, are
transmitted according to the specification 3F6.2,F6.3; and the
third, fifth, and so on, records, each also containing four data
items, are transmitted according to the specification
D10.3,3D106.2, until the I/0 list is exhausted.

Codes

The S, SP, and 55 format codes control optional plus characters in

numeric output fields. At the beginning of execution of each

formatted output statement, a plus is produced in numeric output
fields. If an SP format code is encountered in a format
specification, a plus is produced in any subseaquent position that
normally contains an optional plus. If 55 is encountered, a plus
is not produced in any subsequent position that normally contains
an optional plus. If an S is encountered, the option of producing
the plus is restored.

The $, SP, and SS format codes affect only I, F, E, G, and D
editing during the execution of an output statement.

r IBM EXTENSION 1
The $, SP, and SS format codes also affect @ editing.
t END OF IBM EXTENSION .

The S, SP, and SS format codes have no effect during the execution
of an input statement.

The BN format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of
each formatted input statement, such blank characters are
interpreted as zeros or are ignored depending on the value of the
BLANK= specifier given when the unit was connected (see "OPEN
Statement™ on page 132).

102 VS FORTRAN Language Reference

BZ Format Code

Slash Format Code

FORMAT
If BN is encountered in a format specification, all such blank
characters in succeeding numeric input fields are ignored.
However, a field of all blanks has the value zero.

The BN format code affects only I, F, E, G, and D editing during
execution of an input statement.

r IBM EXTENSION - :

The BN format code also affects Q editing during execution of an
input statement.

L END OF IBM EXTENSION 4

The BN format code has no effect during execution of an output
statement.

The BZ format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields.

If BZ is encountered in a format specification, all nonleading
blank characters in succeeding numeric fields are treated as
zeros. If no OPEN statement is given and the file is preconnected,
all nonleading blanks in numeric fields are interpreted as zeros.

The BZ format code affects only I, F, E, G, and D editing during
execution of an input statement.

I IBM EXTENSION |

The BZ format code also affects Q editing during execution of an
input statement.

L END OF IBM EXTENSION —

The BZ format code has no effect during execution of an output
statement.

A slash indicates the end of a FORTRAN record.

On input from a file connected for sequential access, the
remaining portion of the current record is skipped and the file is
positioned at the beginning of the next record.

On output to a file connected for sequential access, a new record
is created. For example, on output, the statement:

25 FORMAT (13,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, ete.,
records are transmitted according to the format I3, F6.2 and the
second, fourth, etc., records are transmitted according to the
format D10.3, F6.2.

Consecutive slashes can be used to introduce blank output records
or to skip input records. If there are n consecutive slashes at
the beginning or end of a FORMAT statement, n input records are
skipped or n blank records are inserted between output records. If
n consecutive slashes appear anywhere else in a FORMAT statement,
the number of records skipped or blank records inserted is p-1.
For example, the statement:

25 FORMAT (1X,101I5/7/71X,8E14.5)
describes three FORTRAN record formats. On output, it places a

blank line between the line written with format 1X,10I5 and the
line written with the format 1X,8El4.5.

VS FORTRAN Statements 103

FORMAT

colon Format Code

For a file connected for direct access, when a slash is
encountered, the record number is increased by one and the file is
positioned at the beginning of the record that has that record
number.

A colon terminates format control if there are no more items in
the input/output list. The colon has no effect if there are more
items in the input/output list.

Example:

Assume the following statements:

ITABLE=10
IELEM=0

10 WRITE(6,1000)ITABLE, IELEM

ITABLE=11
IELEM=25

XMIN=.37E1
XMAX=.26495E3

.

20 WRITE(6,1000)ITABLE, IELEM,XMIN,XMAX
1000 FORMAT('0 TABLE NUMBER',I5,:,"CONTAINS',I5,'ELEMENTS',:,
1 /'MINIMUM VALUE:',E15.7,
2 7/ "MAXIMUM: VALUE:',E15.7)

The WRITE statement at statement number 10 generates the
following:

TABLE NUMBER 10 CONTAINS 0 ELEMENTS

The WRITE statement at statement number 20 generates the
following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS
MINIMUM VALUE: -.3700000E+01
MAXIMUM VALUE: .2495000E+03

Reading Format Specifications at Obhject Time

FORTRAN provides for variable FORMAT statements by allowing a
format specification to be read into a character array element or
a character variable in storage. The data in the character array
or variable may then be used as the format specification for
subsequent input/output operations. The format specification may
also be placed into the character array or variable by a DATA
statement or an explicit specification statement in the source
program. The following rules are applicable:

. The format specification must be a character array or
character variable, even if the array size is only 1.

. The format codes entered into the array or character variable
must have the same form as a source program FORMAT statement,
except that the word FORMAT and the statement number are
omit’geda The parentheses surrounding the format codes are
required.

104 VS FORTRAN Language Reference

FORMAT

. If a format code read at object time contains two consecutive
apostrophes within a character field that is defined by
apostrophes, it should be used for output only.

. Blank characters may precede the format specification, and
character data may follow the right parenthesis that ends the
format specification.

Example: Assume the following statements:

DIMENSION C(5)
CHARACTERX%16 FMT
READ(5, 1)FMT
1 FORMAT (A)
READ(5,FMT)A,B, (C(1),I=1,5)

Assume, also, that the first input line assoicated with unit 5
contains (2E10.3, 5F10.8).

The data on the next input line is read, converted, and stored in
A,B, and the array C, according to the format codes 2E10.3,
5F10.8.

I IBM EXTENSION : —

READING A FORMAT INTO A NONCHARACTER ARRAY

Assume the following statements:

DIMENSION FMT(16),C(5)
READ(5,1) FMT

1 FORMAT(16A1)
READ(5,FMT)>A,B,(C(I),I=1,5)

Assume also that the first input line associated with unit 5
contains (2E10.3, 5F10.8).

The data on the next input record is read, converted, and stored
in A, B, and the array C, according to the format codes 2E10.3,
5F10.8.

L END OF IBM EXTENSION !

List-Directed Formatting

The characters in one or more list-directed records constitute a
sequence of values and value separators. The end of a record has
the same effect as a blank character, unless it is within a
character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a
character constant.

Each value is either a constant, a null value, or one of the
forms:

rxf
or
rX

where r is an unsigned, nonzero, integer constant. The r*f form is
equivalent to r successive appearances of the constant f, and the
r*¥ form is equivalent to r successive null values. Neither of
these forms may contain embedded blanks except where permitted
within the constant f.

A value separator is one of the following:

. A comma, optionalliy preceded by one or more blanks and
optionally followed by one or more blanks

VS FORTRAN Statements 105

FORMAT

106

. A slash, optionally preceded by one or more blanks and
optionally followed by one or more blanks

L One or more blanks between two constants or following the last
constant

INPUT: Input forms acceptable to format specifications for a
given type are acceptable for list-directed formatting, except as
noted below. The form of the input value must be acceptable for
the type of the input list item. Blanks are never treated as
zeros, and embedded blanks are not permitted in constants, except
within character constants and complex constants as specified
below. The end of a record has the effect of a blank, except when
it appears within a character constant.

When the corresponding input list item is of type real or double
precision, the input form is that of a numeric input field. A
numeric input field is a field suitable for the F format code that
is assumed to have no fractional digits unless a decimal point
appears within the field.

When the corresponding list item is of type complex, the input
form consists of a left parenthesis, an ordered pair of numeric
input fields separated by a comma, and a right parenthesis. The
first numeric input field is the real part of the complex constant
and the second is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record
may occur between the real part and the comma or between the comma
and the imaginary part.

When the corresponding list item is of type logical, the input
form must not include either slashes or commas among the optional

characters permitted for the L format code.

When the corresponding list item is of type character, the input
form consists of a nonempty string of characters enclosed in
apostrophes. Each apostrophe within a character constant must be
represented by two consecutive apostrophes without an intervening
blank or end of record. Character constants may be continued from
the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character to
become part of ‘the constant. The constant may be continued on as
many records as needed. The characters blank, comma, and slash may
appear in character constants.

For example, let len be the length of the list item, and let w be
the length of the character constant. If len is less than or equal
to W, the leftmost len characters of the constant are transmitted
to the list item. If len is greater than w, the constant is
transmitted to the leftmost w characters of the list item and the
remaining len-w characters of the list item are filled with
blanks. The effect is that the constant is assigned to the list
item in a character assignment statement.

A null value is specified by having no characters between
successive separators, by having no characters preceding the
first value separator in the first record read by each execution
of a list-directed input statement, or the r* form. A null value
has no effect. . on the definition status by the corresponding input
list item. If the input list item is defined, it retains its
previous value; if it is undefined, it remains undefined. A null
value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire
complex constant. The end of a record following any other
se??rator, with or without separating blanks, does not specify a
nu value.

A slash encountered as a value separator during execution of a
list-directed input statement causes termination of execution of
that input statement after the assignment of the previous value.
If there are additional items in the input list, the effect is as
if null values had been supplied for them.

VS FORTRAN Language Reference

FORMAT

All blanks in a list-directed input record are considered part of
some value separator, except for the following:

. Blanks embedded in a character constant

. Embedded blanks surrounding the real or imaginary part of a
complex constant

. Leading blanks in the first record read by each execution of a
list-directed input statement, unless immediately followed by
a slash or comma

OUTPUT: The form of the values produced is the same as that
required for input, except as noted. With the exception of
character constants, the values are separated by one of the
following:

. One or more blanks

. A comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks

VS FORTRAN may begin new records as necessary but, except for
complex constants and character constants, the end of a record
must not occur within a constant, and blanks must not appear
within a constant.

Logical output constants are T for the value .TRUE. and F for the
value .FALSE..

Integer output constants are produced with the effect of an Iw
edit descriptor for some reasonable value of w.

Real and double precision constants are produced with the effect
of either an F format code or an E format code, depending on the
magnitude x of the value and a range:

10xx%d]l < 10%xd2

where dl and d2 are processor-dependent integer values. If the
magnitude x is within this range, the constant is produced using
O0PFu.d; otherwise, 1PEw.dEe is used. Reasonable
processor-dependent values of w, d, and g are used for each of the
cases involved.

Complex constants are enclosed in parentheses, with a comma
separating the real and imaginary parts. The end of a record may
occur between the comma and the imaginary part only if the entire
constant is as long as, or longer than, an entire record. The only
embedded blanks permitted within a complex constant are between
the comma and the end of a record and one blank at the beginning
of the next record.

Character constants produced:
. Are not delimited by apostrophes
. Are not preceded or followed by a value separator

. Have each internal apostrophe represented externally by one
apostrophe

. Have a blank character inserted at the beginning of any record
that begins with the continuation of a character constant
from the preceding record

If two or more successive values in an output record produced have
identical values, the sequence of identical values are written.

Slashes, as value separators, and null values are not produced by
list-directed formatting.

VS FORTRAN Statements 107

FORMAT

Each output record begins with a blank character to provide
carrier control if the record is printed.

108 VS FORTRAN Language Reference

FUNCTION STATEMENT

FUNCTION

The FUNCTION statement identifies a function subprogram. A
function subprogram consists of a FUNCTION statement followed by
other statements including at least one RETURN statement. It is an
independently written program that is executed wherever its name
is referred to in another program.

[tvpe]l FUNCTION name (largl [, arg2] ... 1)

syntax

type

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTERI[*1lenll

where:

¥lenl)
is the length specification. It is optional; if

omitted, it is assumed to be 1. It may be an unsigned,
nonzero, integer constant, an integer constant
expression enclosed in parentheses, or an asterisk
enclosed in parentheses. The expression can only
contain integer constants; it must not include names of
integer constants.

If the name is of type CHARACTER, all entry names must
be of type CHARACTER, and lengths must be the same. If
one length is specified as an asterisk, all lengths
must be specified as an asterisk.

name
is the name of the function.
r IBM EXTENSION 1
namexlen2
is the name of the function.
where:
xlen2
is a positive, nonzero, unsigned integer constant. It
represents one of the permissible length
specifications for its associated type. (See "Variable
Types and Lengths" on page 18.) It may be included
optionally only when tvpe is specified. It must not be
used when DOUBLE PRECISION or CHARACTER type is
specified.
L END OF IBM EXTENSION !
arg

is a dummy argument. It must be a variable or array name that
may appear only once within the FUNCTION statement or dummy
procedure name. If there is no argument, the parentheses
must be present. (See "Dummy Arguments in a Function
Subprogram" on page 111.)

A type declaration for a function name may be made by the
predefined convention, by an IMPLICIT statement, by an explicit
specification in the FUNCTION statement, or by an explicit type
specification statement within the function subprogram. If the
type of a function is specified in a FUNCTION statement, the
function name must not appear in an explicit type specification
statement.

VS FORTRAN Statements 10¢%

FUNCTION

The name of a function must not be in any other nonexecutable
statement except a type statement.

Because the FUNCTION statement is a separate program unit, there
is no conflict if the variable names and statement numbers within
it are the same as those in other program units.

The FUNCTION statement must be the first statement in the
subprogram. The function subprogram may contain any FORTRAN
statement except a SUBROUTINE statement, another FUNCTION
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a function subprogram, it must
follow the FUNCTION statement and may only be preceded by another
IMPLICIT statement, a PARAMETER, FORMAT, or ENTRY statement.

The name of the function (or one of the ENTRY names) must appear
as a variable name in the function subprogram and must be assigned
a value at least once during the execution of the subprogram in
one of the following ways:

. As the variable name to the left of the equal sign in an
arithmetic, logical, or character assignment statement

. As an argument of a CALL statement that will cause a value to
be assigned in the subroutine referred to

. In the list of a READ statement within the subprogram

. As one of the parameters in an INQUIRE statement that is
assighed a value within the subprogram

The value of the function is the last value assigned to the name
of the function when a RETURN or END statement is executed in the
subprogram. For additional information on RETURN and END
statements in a function subprogram, see "RETURN Statement"™ on
page 162 and "END Statement™ on page 74.

The function subprogram may also use one or more of its arguments
to return values to the calling program. An argument so used must
appear:

. On the left side of an arithmetic, logical, or character
assignment statement

. In the list of a READ statement within the subprogram

. As an argument in a function reference that is assigned a
value by the function referred to

. As an argument in a CALL statement that is assigned a value in
the subroutine referred to

. As one of the parameters in an INQUIRE statement

The dummy arguments of the function subprogram (for example,

argl, arg2, arg3,..., argn) are replaced at the time of invocation
by the actual arguments supplied in the function reference in the
calling program.

If a function dummy argument is used as an adjustable array name,
the array name and all the variables in the array declarators
(except those in COMMON) must be in the dummy argument list. See
"Size and Type Declaration of an Array" on page 22.

If the predefined convention is not correct, the function name
must be typed in the program units that refer to it. The type and
length specifications of the function name in the function
reference must be the same as those of the function name in the
FUNCTION statement.

Except in a chaﬁacter assignment statement, the name of a
character function whose length specification is an asterisk must
not be the operand of a concatenation operation.

110 VS FORTRAN Language Reference

FUNCTION

The length specified for a character function in the program unit
that refers to the function must agree with the length specified
in the subprogram that specifies the function. There is always
agreement of length if the asterisk is used in the referenced
subprogram to specify the length of the function.

Actual Arguments in a Function Subprogram

Dummy Arguments in a

The actual arguments in a function reference must agree in order,
number, and type with the corresponding dummy arguments in the
dummy argument list of the referenced function. The use of a
subroutine name as an actual argument is an exception to the rule
requiring agreement of type.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If thé length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a function reference must be one ef the
following:

. An expression in parentheses (except a character expression
involving concatenation of an operand whose length
specification is an asterisk) (If the operand is the name of a
constant, parentheses are not required.)

. An array name

. An intrinsic function name

. An external procedure name

o A dummy argument name

For an entry point in a function subprogram, see "ENTRY Statement™

on page 78.

Function Subprogram

The dummy arguments of a function subprogram appear after the

function name and are enclosed in paréntheses. They are replaced

at the time of invocation by the actual arguments supplied in the
function reference.

Dummy arguments must adhere to the following ruless*

. None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement, except as NAMELIST or common block names, in which
case the names are not associated with the dummy argument
names.

L A dummy argument name must not be the same as the procedure
name appearing in a FUNCTION, SUBROUTINE, ENTRY or statement
function definition in the same program unit.

U The dummy arguments must correspond in number, order, and
type to the actual arguments.

. If a dummy argument is assigned a value in the subprogram, the

corresponding actual argument must be a variable, an array
elememt, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the subprogram.

VS FORTRAN Statements 111

FUNCTION
. A referenced subprogram cannot assign new vaiues to dummy

arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

112 VS FORTRAN Language Reference

GO TO
GO TO STATEMENTS

GO TO statements transfer control to an executable statement in
the program unit. There are three G0 T0O statements:

. Assigned GO TO statement
® Computed GO TO statement
. Unconditional GO TO0 statement

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement
numbered stnl, stn2, stn3d ..., depending on whether the current
assignment of i is stnl, stn2, stn3 ..., respectively. (See
"ASSIGN Statement™ on page 46.)

—— syntax
60 TO0 i [[,]1 (stnl [,stn2] [,stn31 ...) 1

foute

is an integer variable (not an array element) of length ¢
that has been assigned a statement number by an ASSIGN
statement.

stn
is the number of an executable statement in the program unit
containing the assigned GO TO statement.

Tihe list of statement numbers, that is, (stnl, stn2 ...), is
optional. If omitted, the preceding comma must be omitted. If the
list of statement numbers is specified, the preceding comma is
optional. The statement number assigned to i must be one of the
statement numbers in the list. The statement number may appear
more than once in the list.

The ASSIGN statement that assigns the statement number to i must
appear in the same program unit as the assigned GO TO statement
that is using this statement number.

For example, in the statement:
GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement
number 8, then the statement numbered 8 is executed next. If the
current assignment of N is statement number 10, the statement
numbered 10 is executed next. If N is assigned statement number
25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the
current value of m must have been assigned the statement number of
an executable statement (not a FORMAT statement) by the previous
execution of an ASSIGN statement.

f% at the time of the execution of an assigned GO T0 statement,
the current value of m contains an integer value, assigned
directly or through EQUIVALENCE, COMMON, or argument passing, the
result of the GO TO is unpredictable. Also, the integer variable i
may not be a dummy argument in a subprogram. An integer variable
may not be used as an actual argument in a subprogram reference at
the time it is assigned a number.

Any executable statement immediately following the assigned GO TO

statement should have a statement number; otherwise, it can never
be referred to or executed.

VS FORTRAN Statements 113

GO TO

Example:

ASSIGN 150 TO IASIGN
IVAR=150.
50 TO IASIGN

Computed GO TO Statemant

The computed GO TO statement transfers control to the statement
numbered stnl, stn2, or stn3,... depending on whether the current
value of stn is 1, 2, or 3,... respectively.

syntax
GO TO (stnl [, stn2) [, stn3) ...) [,I m

stn
is the number of an executable statement in the program unit
containing the computed GO TO0 statement. The same number may
appear more than once within the parentheses.

m
is an integer expression. The comma before m is optional. If
the value of m is outside the range 1 £ m £ n, the next
statement is executed.

Example:

171 GO T70(172,173,176,173) INT(A)
172 A = A + 1.0

173 A= A+ 1.0
174 CONTINUE

Unconditional GO TO Statement

114

The unconditional GO TO statement transfers control to the
statement specified by the statement number. Every subsequent
execution of this GO TO statement results in a transfer to that
same statement.

syntax
GO TO stn

stn ‘
is the number of an executable statement in the program unit
containing the unconditional GO TO statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

Example:

GO TO 5
999 I =1 + 200

VS FORTRAN Language Reference

IF STATEMENTS

IF

The IF statements specify alternative paths of execution
depending on the condition given. There are three forms of the IF
statement:
. Arithmetic IF
. Block IF

END IF

ELSE

ELSE IF

. Logical IF

Arithmatic IF Statement

Block IF Statement

The arithmetic IF statement transfers control to the statement
numbered stnl, stn2, or stn3 when the value of the arithmetic
exprassion (m) is less than, equal to, or greater than zero,
respectively. The same statement number may appear more than once
within the same IF statement.

syntax
IF (m) stnl, stn2, stn3

is an arithmetic expression of any tvype except complex.

stn
is the number of an executable statement in the program unit
containing the IF statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

The block IF statement is used with the END IF statement and,
optionally, the ELSE IF and ELSE statements to control the
execution sequence.

syntax
IF (m) THEN

m
is any logical expression.

Two terms are used in connection with the block IF statement,
IF-leval and IF-block.

IF-level The number of IF-levels in a program unit is determined
by the number of sets of block-IF statements (IF (m)
THEN and END IF statements).

The IF-level of a particular statement (stn) is
determined with the formula:

nl - n2.

VS FORTRAN Statements 115

IF

116

where:

nl
is the number of block IF statements from the
beginning of the program unit up to and including
the statement (stn).

is the number of END IF statements in the program
unit)up to, but not including, the statement
(stn).

IF-block An IF-block begins with the first statement after the
block IF statement (IF (m) THEN), ends with the
statement preceding the next ELSE IF, ELSE, or END IF
statement that has the same IF-level as the block IF
statement, and includes all the executable statements
in between. An IF-block may be empty. An IF-block is
empty if there are no executable statements in it.

Transfer of control into an IF-block from outside the
IF-block is prohibited.

Execution of a block IF statement evaluates the expression m. If
the value of m is true, normal execution sequence continues with
the first statement of the IF-block. If the value of m is true,
and the IF-block is empty, control is transferred to the next END
IF statement that has the same IF-level as the block IF statement.
If the value of m is false, control is transferred to the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the block IF statement.

If the execution of the last statement in the IF-block does not
result in a transfer of control, control is transferred to the
next END IF statement that has the same IF-level as the block IF
statement that precedes the IF-block.

A block IF statement cannot terminate the range of a DO.
END IF Statement

The END IF statement concludes an IF-block. Normal execution
sequence continues.

syntax
END IF

For each block IF statement, there must be a matching END IF
statement in the same program unit. A matching END IF statement is
the next END IF statement that has the same IF-level as the block
IF statement.

An END IF statement cannot terminate the range of a DO. Execution
of an END IF statement has no effect.

Example:
IF (m) THEN

END IF

VS FORTRAN Language Reference

IF
ELSE Statement

The ELSE statement is executed if the preceding block IF or ELSE
IF condition is evaluated as FALSE. Normal execution sequence
continues.

syntax

ELSE

An ELSE-block consists of all the executable statements after the
ELSE statement up to, but not including, the next END IF statement
that has the same IF-level as the ELSE statement. An ELSE-block
may be empty.

An END IF statement of the same IF-level as the ELSE statement
must appear before the appearance of an ELSE IF or ELSE statement
of the same IF-level.

Transfer of control into an ELSE-block from outside the
ELSE-block is prohibited. The statement number, if any, of an ELSE
statement must not be referred to by any statement (except an AT
statement of a DEBUG packet). An END IF statement cannot terminate
the range of a DO.

Example:

IF (m) THEN
ELS%
END IF

ELSE IF Statement

The ELSE IF statement is executed if the preceding block IF
condition is evaluated as FALSE.

syntax
ELSE IF (m) THEN

n
is any logical expression.

An ELSE IF-block consists of all of the executable statements
after the ELSE IF statement up to, but not including, the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement. An ELSE IF-block may be empty.

If the value of the logical expression m is true, normal execution
sequence continues with the first statement of the ELSE IF-block.

If the value of m is true and the ELSE IF-block is empty, control
is transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next

ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement.

VS FORTRAN Statements 117

IF

Logical IF statemant

118

Transfer of control into an ELSE IF-block from outside the ELSE
IF-block is prohibited. The statement number (stn), if any, of the
ELSE IF statement must not be referred to by any statement (except
an AT statement of a DEBUG packet).

If execution of the last statement in the ELSE IF-block does not
result in a transfer of control, control is transferred to the
next END IF statement that has the same IF-level as the ELSE IF
statement that precedes the ELSE IF-block.

An END IF statement cannot terminate the range of a DO.

Example 1:

IF (m) THEN
ELSE IF (m) THEN
END IF
Example 2:
IF (m) THEN

ELSE IF (m) THEN

ELSE
END IF

The logical IF statement evaluates a logical expression and
executes or skips a statement, depending on whether the value of
the expression is true or false, respectively.

syntax
IF (m) stn

1=

is any logical expression.

(]
3

is any executable statement except a DO statement, another
logical IF statement, an END statement, a block IF, ELSE IF,
ELSE, or END IF statement.

I IBM EXTENSION T
stn may not bae a TRACE ON, TRACE OFF, or DISPLAY statement.

L END OF IBM EXTENSION !

The statement stn must not have a statement number.

The execution of a function reference inm is permitted to
affect entities in the statement stn.

VS FORTRAN Language Reference

IF

Examples:
IF(A.LE.0.0) GO TO 25
C =D+ E
IF (A.EQ.B) ANSWER = 2.0x%A/C
F = G/H

25 W = X¥%Z

VS FORTRAN Statements 119

IMPLICIT Type

IMPLICIT TYPE STATEMENT

The IMPLICIT type statement specifies the type and length of all
variables, arrays, and user-supplied functions whose names begin
with a particular letter. It may be used to change or confirm
implicit typing.

syntax
IMPLICIT tvpe (2 [, a 1...) [, tvype (a [, al...) 1 ...

tvpe
is CHARACTERI*lenll, COMPLEX, DOUBLE PRECISION, INTEGER,

LOGICAL, or REAL
where:
¥lenl
can be an unsigned, honzero, integer constant or a

positive integer constant expression enclosed in
parentheses. It is optional.

If lenl is not specified, the length is one.

T IBM EXTENSION - 1

type
is COMPLEXI*len2], INTEGERIxlen2], LOGICALI%len2], or
REAL[%1len2]

where:

¥len2
can be a positive, nonzero, unsigned, integer
constant. It represents one of the permissible length
specifications for its associated type. It is
optional.

L END OF IBM EXTENSION !

is a single alphabetic character or a range of characters
drawn from the set A, B,..., Z. The range is denoted by the
first and last characters of the range separated by a minus
sign (for example, (A-D)).

r IBM EXTENSION 1

The alphabetic character a can also be the currency symbol
($). The currency symbol ($) follows the letter Z.

L END OF IBM EXTENSION g

The IMPLICIT specification statement can only be preceded by a
PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA, PARAMETER, ENTRY, or
FORMAT statement, or another IMPLICIT statement. The IMPLICIT
specification statement declares the type of the variables and
user-supplied functions appearing in this program (that is,
integer, real, complex, logical, or character) by specifying that
names beginning with certain designated letters are of a certain
type. Furthermore, the IMPLICIT statement allows the programmer
to declare the number of bvtes to be allocated for each in the
group of specified variables.

When tvpe is CHARACTER, the length specification is 1 or n, with n
less than 500. The standard (default) length is 1.

The type and length associated with a letter or a range of letters
must not conflict with the type or length given previously to the
same letters in the same IMPLICIT statement, in a different

120 VS FORTRAN Language Reference

IMPLICIT Type

IMPLICIT statement or in a PARAMETER statement. Type
specification by an IMPLICIT statement may be overridden or
confirmed for any particular variable, array, name of a constant,
external function, or statement function name by the appearance
of that name in an explicit type specification statement.

(See "Type Declaration by the Predefined Specification”™ on page
20.)

Note: An IMPLICIT statement has no effect on names of
FORTRAN-supplied (intrinsic) functions.

Valid IMPLICIT Statements:
IMPLICIT INTEGER(A-H), REAL(I-K), LOGICALC(L,M,N)

IMPLICIT COMPLEX(C-F)
, IBM EXTENSION -

IMPLICIT INTEGER(W-$)

All names beginning with W, X, Y, 2, and $ are
considered integers of length 4 bytes.

L END OF IBM EXTENSION

VS FORTRAN Statements 121

-INCLUDE

— IBM EXTENSION

INCLUDE STATEMENT

The INCLUDE statement is a compiler directive. It inserts a
specified statement or a group of statements into a program
unit.

syntax

INCLUDE (name)

is the name of a group of one or more FORTRAN source
statements to be inserted into the source program being
compiled.

The group must reside on a library known to the VS FORTRAN
compiler.

The following rules apply to the INCLUDE statement:
. INCLUDE is a compile-time control statement only.
. No replacement or editing is done.

. The inserted group may contain any complete VS FORTRAN
source statement, including another INCLUDE statement.

. An INCLUDE of a group may not contain an INCLUDE statement
that refers to a currently open INCLUDE group (that is,
recursion is not permitted).

. Multiple INCLUDE statements may appear in the original
source program.

. INCLUDE statements may appear anywhere in a source program
before the END statement, except as the trailer of a logical
IF statement. An END statement may be part of the included
group.

. The FORTRAN statements in the group being included must be
in the same form as the source program being compiled; that
is, fixed form or free form.

U The resulting FORTRAN program after the inclusion of all
groups must follow all FORTRAN rules as to sequence of
statements.

L END OF IBM EXTENSION

122 VS FORTRAN Language Reference

INQUIRE STATEMENT

INQUIRE by File Name

INQUIRE

An INQUIRE statement supplies information about properties of a
particular named external file or of the connection to a
particular external unit.

There are two forms of the INQUIRE statement:
. Inquire by file name
. Inquire by unit number

A sequential file or a direct-access file can be queried about its
existence, its connection to a unit, its unit number, its name,
its access method, whether it is formatted or unformatted, and how
blanks are to be interpreted. In addition, a direct-access file is
queried about its record length or its next record number.

The INQUIRE statement may be executed before, while, or after a
file is connected to a unit. All values assigned by the INQUIRE
statement are those that are current at the time the statement is
executed. All value assignments are done according to the rules
for assignment statements. No error is given if the value is
truncated because the receiving field is too small to contain it
all.

This INQUIRE statement supplies information about a file. When
this statement is executed, the file specified by fn may or may
not be connected to a unit. If the file is connected to a unit,
the file may or may not exist. (For example, an output unit may be
connected to a file but no output has been written.)

syntax
INQUIRE (FILE=fn [, ERR=stnl] [, IOSTAT=josl [, EXIST=exsl

[, OPENED=opnl [, NAMED=nmdl [, NAME=naml
[, SEQUENTIAL=seql [, DIRECT=dirl

[, FORMATTED=fmt]l [, UNFORMATTED=unf]

[, NUMBER=pnuml [, ACCESS=accl [, FORM=frml
[, RECL=rcll [, NEXTREC=pxrl] [, BLANK=blkl)

All parameters except FILE=fn are optional.

FILE=fn
FILE=fn is required. fn is the reference to a file and must
be preceded by FILE=. It is a character expression. Its
value, when any trailing blanks are removed, must be 1 to 7
alphameric characters, the first one being alphabetic. It
specifies the name of the file being inquired about and must
be known to the program.

ERR=stn
stn is the number of a statement in the same program unit as
the INQUIRE statement to which control is given when the
value of fn (as described under FILE=fn) is not a valid file
name.

IOSTAT=igs
ios is an integer variable or an integer array element. Its
value is positive if an error is detected on a file; negative
if an end of file is detected; and zero if no error is
detected. VSAM return and reason codes are placed in ios.

VS FORTRAN Statements 123

INQUIRE

EXIST=exs
exs is a logical variable or logical array element. It is
assigned the value true if the file by the specified name
exists; othermwise, it is assigned the value false.

THE FILE EXISTS: The following parameters have a value only if the
file being inquired about exists; that is, exs has the value true.
They are all optional.

OPENED=opRNn
opn 1s a logical variable or a logical array element. It is
assigned the value true if the file specified is connected to
a unit, otherwise, it is assigned the value false.

NAMED=nnd
nmd is a logical variable or a logical array element. If the
file has a name (fn), nmd is assigned the value true;
otherwise, it is assigned the value false.

NAME=nam
nam is a character variable or character array element. If
the file has a name (fn), nam is assigned the value of pname.
name is not necessarily the same as the name in the FILE
parameter (fn).

SEQUENTIAL=seqg
seq is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
sequential access input/output; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
direct access input/output; NO if it cannot; and UNKNOWN if
it is not possible to determine whether the file can be
connected for direct access.

FORMATTED=fmt
fmt is a character variable or character array element. It is
assigned the value YES if the file can be connected for
formatted input/ocutput; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=UNnf
unf is a character variable or character array element. It is
assigned the value YES if the file can be connected for
unformatted input/output; NO if it cannot; and UNKNOWN if it
is not possible to determine whether the file can be
connected for unformatted input/output.

THE FILE IS CONNECTED TO AN EXISTING UNIT: The following
parameters have a value only if the file exists (exs has the value
true) and if the file is connected to a unit (opn has the value
true). They are all optional.

NUMBER=NnUM
num is an integer variable or integer array element. It is

:§Tigned the value of the external unit connected to the
ile.

ACCESS=acc
acc is a character variable or character array element. If
there is a name fn, acc is assigned a value (SEQUENTIAL or
DIRECT) associated with the connection of the external file.

FORM=frn
frm is a character variable or character array element. It is
assigned the value FORMATTED if the file is connected for

formatted input/output; UNFORMATTED if the file is connected
for unformatted input/output.

124 VS FORTRAN Language Reference

INQUIRE

THE FILE IS CONNECTED FOR DIRECT ACCESS I/0: The following
parameters have a value only if the file exists (exs has the value
true) and if the file is connected for direct access (acc=DIRECT).
They are all optional.

RECL=rcl
rel is an integer variable or integer array element. It is
assigned the value of the record length of the file connected
for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files
consisting of unformatted records.

NEXTREC=SnXnr
nxr is an integer variable or integer array element. It is
assigned the value ntl, where n is the record number of the
last record read or written on the direct access file. If the
file is connected, but no records have been read or written
since the connection, nxr is assigned the value 1.

THE FILE IS CONNECTED FOR FORMATTED 1/0: The following parameter
has a value only if the file exists (exs has the value true) and
if the file is connected for formatted input/output (frm has the
value FORMATTED). It is optional.

BLANK=blk
blk is a character variable or character array element. It is
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERO if they are treated as zeros.

The parameters can be entered in any order. Each parameter cannot
appear more than once in an INQUIRE statement. The same variable
or array element may not be specified for more than one parameter
in the same INQUIRE statement.

valid INQUIRE Statement:

INQUIRE (FILE=DDNAME, IOSTAT=I0S, EXIST=LEX, OPENED=LOD,
NAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FMT, UNFORMATTED=UNF, ACCESS=ACC, FORM=FRM,
NUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLANK=BLNK)

INQUIRE by Unit Number

This INQUIRE statement supplies information about an input/output
unit.

A unit can be queried as to its existence and its connection to &
file. If it is connected to a file, the inquiry is-being made
about the connection and the file connected. When this statement
is executed, the unit specified by un may or may not be connected
to a file. If the unit is connected to a file, the file may or may
not exist. For example, an ocutput unit may be connected to a file
but no output has been uwritten.

syntax
INQUIRE ([UNIT=lun [, ERR=stnl] [, IOSTAT=ios]l [, EXIST=exsl
[, OPENED=opnl [, NAMED=nmdl] [, NAME=paml
[, SEQUENTIAL=seql [, DIRECT=dir]

[, FORMATTED=fmt] [, UNFORMATTED=unf]

[, NUMBER=numl] [, ACCESS=accl [, FORM=frml
[, RECL=rcll [, NEXTREC=nxrl [, BLANK=blk]

All parameters except UNIT=un are optional.

V5 FORTRAN Statements 125

INQUIRE

UNIT=un
un is required. It is the reference to an I/0 unit. un can be
preceded optionally by UNIT=., It is an integer expression
whose value represents the unit number that is being
queried.

ERR=stn
stn is the number of a statement in the same program unit as
the INQUIRE statement to which control is given when the
value of un (as described under UNIT=un) is not a valid unit
number.

IOSTAT=i0s
ios is an integer variable or an integer array element. Its
‘value is positive if an error is detected on a file; negative
if an end of file is detected; and zero if no error is
detected. VSAM return and reason codes are placed in ios.

EXIST=exs
exs is a logical variable or logical array element. It is
assigned to value true if the specified unit exists and is
known to the program unit. If neither of these conditions is
met, exs is assigned the value false.

OPENED=0pPN
opn is a logical variable or logical array element. It is
assigned the value true if the file specified is connected to
a unit; otherwise, it is assigned the value false.

THE UNIT IS CONNECTED TO AN EXTERNAL FILE: The following
parameters have a value only if the unit exists (exs has the value
true) and the unit is connected to an external file (opn has the
value true). They are all optional.

NAMED=nmd
nmd is a logical variable or a logical array element. It is
assigned the value true if the file connected to the unit has
a name; otherwise, it is assigned the value false.

NAME=nam »
nam is a character variable or character array element. If
the file connected to the unit has a name, it is assigned the
value of the name of that file. If the file is unnamed, a
default name is assigned.

SEQUENTIAL=seq
seqg is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
sequential access input/output; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
direct access input/output; NO if it cannot; and UNKNOWN if
it is not possible to determine whether the file can be
connected for direct access.

FORMATTED=fmt
fmt is a character variable or character array element. It is
assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=unf
unf is a character variable or character array element. It is
assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

126 VS FORTRAN Language Reference

INQUIRE

NUMBER=num
num s an integer variable or integer array element. Its
value is the value of un.

ACCESS=acc
acc is a character variable or character array element. It is
assigned the value (SEQUENTIAL or DIRECT) associated with

the connection of the external file.

FORM=frm
frm is a character variable or character array element. frm
is assigned the value FORMATTED i1f the file is connected for
formatted input/output; UNFORMATTED if the file is connected
for unformatted output.

THE UNIT IS CONNECTED TO AN EXTERNAL FILE FOR DIRECT ACCESS I/0:
The following parameters have a value only if the unit exists (exs
has the value true) and is connected to an external file for
direct access input/output (acc has the value DIRECT). They are
all optional.

RECL=rcl
rel is an integer variable or integer array element. It is
assigned the value of the record length of the direct access
file. The length is measured in characters for files
consisting of formatted records and in bytes for files
consisting of unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element. It is
assigned the value n+l where n is the record number of the
last record read or written on the direct access file. If the
file is connected, but no records have been read or written
since the connection, nxr is assigned the value 1.

BLANK=b1lk
blk is a character variable or character array element. It is
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERD 1f they are treated as zeros.

The parameters can be entered in any order unless UNIT=un is
omitted. If omitted, un, as described under UNIT=un, must be
first,

Valid INQUIRE Statement:

INQUIRE (0, IOSTAT=IACT(1), ERR=99999, EXIST=LACT(S),
OPENED=LACT(8), NAMED=LACT(7), NAME=ACTUAL(1),
SEQUENTIAL=ACTUAL(2), DIRECT=ACTUALC(3),
FORMATTED=ACTUAL(4), UNFORMATTED=ACTUAL(5),
ACCESS=ACTUAL(6), FORM=ACTUAL(7), NUMBER=IACT(2),
RECL=IACT(3), NEXTREC=IACT(4), BLANK=ACTUAL(8))

INTEGER TYPE STATEMENT

See "Explicit Type Statement"™ on page 82.

VS FORTRAN Statements 127

INTRINSIC
INTRINSIC STATEMENT

Thae INTRINSIC statement identifies a name as representing a
FORTRAN-supplied procedure (intrinsic function) (see "Appendix B.
FORTRAN-Supplied Procedures" on page 201). This name can be a
generic name or a specific name. See "Specific Names and Generic
Names" on page 129. It also permits a specific intrinsic function
name to be used as an actual argument.

syntax
INTRINSIC pamel [, name2 1 ...

name

is the name of a VS FORTRAN intrinsic function.

The INTRINSIC statement is a specification statement and must
precede statement function definitions and all executable
statements.

Intrinsic functions are those functions known to the compiler.
Intrinsic function names are either generic or specific. A
generic name does not have a type unless it is also a specific
name. When a generic name is used with any of the argument types
available for that generic name, the specific named function
corresponding to the argument type is chosen. This makes it
unnecessary for the user to know whtch intrinsic function name
goes with which argument type.

Appearance of a name in an INTRINSIC statement declares that name
to be an intrinsic function name. If a specific name of an
intrinsic function is used as an actual argument in a program
unii, it must appear in an INTRINSIC statement in that program
unit.

The following names of specific intrinsic functions must not be
passed as actual arguments:

AMAX0 INT
AMAX1 LGE
AMINO LGT
AMIN1 LLE
CHAR LLT
DMAX1 MAX0
DMIN1 MAX1
FLOAT MINO
ICHAR MIN1
IDINT REAL
IFIX SNGL

— IBM EXTENSION ,
CMPLX QCMPLX
DBLE QEXT
DBLEQ QEXTD
DCMPLX QFLOAT
DFLOAT QMAX1
DREAL QMIN1
HFIX QREAL
IQINT SNGLQ

L END OF IBM EXTENSION !

The appearance of a generic function name in an INTRINSIC
statement does not cause the name to lose its generic property.
Only one appearance of name in all of the INTRINSIC statements of
a program unit is permitted. The same name must not appear in both
an EXTERNAL and an INTRINSIC statement in a program unit.

128 VS FORTRAN Language Reference

INTRINSIC

If the name of a VS FORTRAN intrinsic function appears in an
explicit specification statement, the type must confirm its
associated type.

If the name of a FORTRAN intrinsic function appears in the dummy
argument list of a subprogram, that name is not considered as the
name of a FORTRAN intrinsic function in that program unit.

specific Names and Generic Names
Generic names simplify referring to intrinsic functions because
the same function name may be used with more than one type of
argument (See "Appendix B. FORTRAN-Supplied Procedures"™ on page
201). Only a specific intrinsic function name may be used as an
actual argument when the argument is an intrinsic function. For
those intrinsic functions that require more than one argument,
all arguments must be of the same type.

LOGICAL IF STATEMENT
See "IF Statements"™ on page 115.

LOGICAL TYPE STATEMENT
See "Explicit Type Statement™ on page 82.

VS FORTRAN Statements 129

NAMELIST

NAMELIST STATEMENT

NAMELIST Input Data

f IBM EXTENSION

The NAMELIST statement specifies one or more lists of names for
use in READ and WRITE statements.

syntax
NAMELIST /namels/ listl /name2/ list2 ...

name
is a NAMELIST name. It is a name enclosed in slashes that
must not be the same as a variable or array name.
list
is of the form al, a2,..., an
where:
a

is a variable name or an array name.

The list of variables or array names belonging to a NAMELIST
name ends with a new NAMELIST name enclosed in slashes or with
the end of the NAMELIST statement. A variable name or an array
name may belong to one or more NAMELIST lists.

Neither a dummy variable nor a dummy array name may appear in a
NAMELIST list.

The NAMELIST statement must precede any statement function
definitions and all executable statements. A NAMELIST name must
be declared in a NAMELIST statement and may be declared only
once. The name may appear only in input/output statements.

The NAMELIST statement declares a name name to refer to a
particular list of variables or array names. Thereafter, the
forms READ(un,name) and WRITE(un,name) are used to transmit
data between the file associated with the unit un and the
variables specified by the NAMELIST name name.

The rules for input/output conversion of NAMELIST data are the
same as the rules for data conversion described in "General
Rules for Data Conversion" on page 8% under "FORMAT Statement"
on page 87. The NAMELIST data must be in a special form,
described in "NAMELIST Input Data."

Input data must be in a special form in order to be read using a
NAMELIST list. The first character in each record to be read
must be blank. The second character in the first record of a
group of data records must be an ampersand (&) immediately
followed by the NAMELIST name. The NAMELIST name must be
followed by a blank and must not contain any embedded blanks.
This name is followed by data items separated by commas. (A
comma after the last item is optional.) The end of a data group
is signaled by &END.

The form of the data items in an input record is:

. Name = Constant

- The name may be an array element name or a variable
name.

- The constant may be integer, real, complex, logical, or
character. (If the constants are logical, they may be

130 VS FORTRAN Language Reference

NAMELIST

in the form T or .TRUE. and F or .FALSE., if the
constants are characters, they must be included between
apostrophes.)

- Subscripts must be integer constants.

. Array Name = Set of Constants (separated by commas)

- The set of constants consists of constants of the type
integer, real, complex, logical, or character.

- The number of constants must be less than or equal to
the number of elements in the array.

- Successive occurrences of the same constant can be
represented in the form cXconstant, where ¢ is a
nonzero integer constant specifying the number of times
the constant is to occur.

The variable names and array nhames specified in the input file
must appear in the NAMELIST list, but the order is not
significant. A name that has been made equivalent to a name in
the input data cannot be substituted for that name in the
NAMELIST list. The list can contain names of items in COMMON but
must not contain dummy argument names.

Each data record must begin with a blank followed by a complete
variable or array name or constant. Embedded blanks are not

permitted in names or constants. Trailing blanks after integers
and exponents are treated as zeros.

Examples:
All records have a blank in column 1.

Column 2
v
first card &NAM1 1(2,3)=5,J=4,B=3.2

last card A(3)=4.0,L=2,3,7%4,8END
where NAM1l is defined in a NAMELIST statement as:
NAMELIST /NAM1/A,B,I,J,L

and assuming that A is a 3-element array and I and L are 3X3
element arrays.

NAMELIST Output Data

When output data is written using a NAMELIST list, it is written
in a form that can be read using a NAMELIST list. All variable
and array names specified in the NAMELIST list and their values
are written out, each according to its type. Character data is
included between apostrophes. The fields for the data are made
large enough to contain all the significant digits. The values
of a complete array are written out in columns.

Exampleae:
NAMELIST /NAM1/A,B,I,J,L/NAM2/C,J,1,L
READ (CARD,NAM1)
WRITE (ITAPE,NAML)

L END OF IBM EXTENSION 1

VS FORTRAN Statements 131

OPEN
OPEN STATEMENT

An OPEN statement may be used to:

. Connect an existing file to a unit.

. Create a file that is preconnected.

. Create a file and connect it to a unit.

. Change certain identifiers of a connection between a file and
a unit.

—— syntax
OPEN ([UNIT=lun [, ERR=stn] [, STATUS=stal [, FILE=fn]
[, ACCESS=acec] [, BLANK=blk] [, FORM=frml

[, IOSTAT=iosl [, RECL=prcll)

All parameters are optional except un.

UNIT=un
is required. It is the reference to an I/0 unit. un can be
preceded optionally by UNIT=., It is an integer expression
whose value represents the unit number.

ERR=stn
stn is the number of a statement in the same program unit as
the OPEN statement to which control is given when an error is
detected during execution of the OPEN statement.

STATUS=sta
sta is a character expression. Its value when any trailing
blanks are removed must be NEW, OLD, SCRATCH, or UNKNOWN. If
STATUS is omitted, it is assumed to be UNKNOWN.

If the status of the external file is specified as:

. NEW, FILE=fn must be specified and the file fn must not
exist.

. OLD, FILE=fn must be specified and the file fn must
exist. i

. SCRATCH, FILE=fn must not be specified and the file fn
may or may not exist.

. UNKNOWN, FILE=fn is optional.

FILE=fn
fn is a character expression. Its value when any trailing
blanks are removed is the name of the file to be connected to
the unit specified by un. This file name must be a string of
1 to 7 alphameric characters, the first one being
alphabetic.

ACCESS=acc
acc is a character expression whose value (when any trailing
blanks are removed) must be SEQUENTIAL or DIRECT. It
specifies the file as being accessed as a sequential or
direct file. If ACCESS=acc is not specified, it is assumed to
be SEQUENTIAL.

BLANK=h1Kk
blk is a character expression whose value (when any trailing
blanks are removed) must be NULL or ZERO. This specifier
affects the processing of the arithmetic fields accessed by
READ statements with format specification or with

132 VS FORTRAN Language Reference

OPEN

list-directed only. It is ignored for nonarithmetic fields,
for READ statements without format specification or with
NAMELIST, and for all output statements. If NULL is
specified, all blank characters in arithmetic formatted
input fields on the specified unit are ignored, except that a
field of all blanks has a value of zero. If ZERO is
specified, all blanks, other than leading blanks, are
treated as zeros. If this specifier is omitted and
FORM=FORMATTED, a value of NULL is assumed.

FORM=frm

frm is a character expression whose value (when any trailing
blanks are removed) must be FORMATTED or UNFORMATTED. This
specifier indicates that the external file is connected for
formatted or unformatted input/output. If this specifier is
omitted for a file connected with direct access, a value of
UNFORMATTED is assumed. If this specifier is omitted for a
file connected with sequential access, a value of FORMATTED
is assumed.

IOSTAT=i0S]
ios is an integer variable or an integer array element. Its
value is positive if an error is detected on a file; negative
if an end of file is detected; and zero if no error is
detected. VSAM return and reason codes are placed in jos.

DIRECT ACCESS FILES: The following specifier is used with direct
access files; it is ignored if it is used with sequential access
files. It is optional.

RECL=rcl
rcl is an integer variable or integer array element. It is
assigned the value of the record length of the file connected
for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files
consisting of unformatted records.

Each of the parameters of the OPEN statement may appear only once.
The unit specifier (un) must appear. All value assignments are
made according to the rules for assignment statements.

If UNIT= is not specified, un must appear first in the statement.
The other parameters may appear in any order. If UNIT= is
specified, the parameters may appear in any order.

Before the OPEN statement is executed, the I/0 unit specified by
un may be either connected or not connected to an external file.

OPEN is required for direct-access and VSAM files. It is optional
for sequential files.

It is invalid for internal files.

The I/0 Unit is Not Connected to the External File

Successful execution of the OPEN statement connects the I/70 unit
specified by un to the external file specified by fn with the
parameters specified (or assumed) in the OPEN statement. (See VS

FORTRAN Application Programming: Guide for the parameters allowed
with the different definitions of data sets.)

The I/0 Unit is Connected to the External File

A unit connected in any program unit of an executable program is
available in any other program unit of the executable program.

The unit reference and the file name are un and fn in the OPEN
statement.

VS FORTRAN Statements 133

OPEN

134

BEFORE EXECUTION OF OPEN

. If some parameters are specified on the OPEN statement, they
must match the attributes of the connection of file fn (except
that BLANK may be different).

. The external file fn must not be connected to an I/0 unit.

. The OPEN is executed as a CLOSE (UNIT=un, STATUS=UNKNOWN)
followed by an OPEN with unit un and external file fnl.

. If any error is detected, the unit un stays connected to file
fn.

AFTER SUCCESSFUL OPEN

. Unit un stays connected to file fn.

. The new value of the BLANK specifier comes into effect.

. File fn exists (exs has the value true).

. If it had the NEW attribute, it is changed to OLD.

L The other attributes stay unchanged.

. The file is not repositioned at the beginning.

. The unit un is connected to the external file fnl. The
attributes of the connection are described in VS FORTRAN
Application Programming: Guide.

. The unit reference and the file name are unl and fn in the
OPEN statement (unl different from un). An error is detected
and the unit un stays connected to file fn.

CONDITIONS THAT PREVENT EXECUTION OF OPEN: Any of the following
conditions prevent execution of the OPEN statement:

. Invalid unit number specified, that is, un.

. Invalid file name specified, that is, fn.

. Invalid values of the specifiers in the OPEN statement.
— OLD specified for a file that does not exist.

- ACCESS, FORM, REC do not match the actual attributes of an
existing file.

- RECL=rcl value is not positive integer.

- OPEN statement specifies a different unit than the one
the file is connected to.

Control transfers to the statement specified in ERR=stn or, if
ERR=stn is not specified, execution of the program is terminated.

VS FORTRAN Language Reference

OPEN
Examples:

Open a NeW External File: The following statement would open a new
external file.

DDNAME = 'DDNAME'

OPEN (UNIT=2x%IN-10, IOSTAT=I10S, ERR=99999, FILE=DDNAME,
STATUS=NEW, ACCESS='SEQU'//'ENTIAL ', FORM=FORMAT,
BLANK=ZERD)

Open an 0ld External File: The following statement would open an
old external file.

OPEN (0, IOSTAT=IACT(1), FILE='DDNAME',STATUS='0OLD',
ACCESS='SEQUENTIAL', FORM='FORMATTED',
BLANK='NULL")

Open a Preconnected, Nonexistent File: The following statement
would open a preconnected, nonexisting file unknown for direct.

OPEN (IOSTAT=IACT(1), ERR=99999, STATUS=UNKNOWN,
ACCESS='DIRECT', RECL=32, UNIT=IN+6)

VS FORTRAN Statements 135

PARAMETER
PARAMETER STATEMENT

The parameter statement assigns a name to a constant.

syntax
PARAMETER (namel = ¢cl1 [, pame2 = ¢c2 1 ...

name
is the name of a specific constant in this program unit (even
if it looks like a hexadecimal constant, for example,
ZOABC). The name must be defined only once in a PARAMETER
statement of a program unit.

[+

is a constant or a constant expression of type integer, real,
complex, logical, or character.

Before using the PARAMETER statement, name must have been
specified by the IMPLICIT statement or an explicit type
statement. (Otheruwise the predefined conventions are used.)

The type and length of a name of a constant must not be changed by
subsequent specification statements, including IMPLICIT
statements. The following is invalid:

PARAMETER (INT=10)
IMPLICIT CHARACTER%5(I)

If the length of a character constant represented by a name has
been explicitly specified previously or has been been specified
as an asterisk, the length is considered to be the length of the
value of the character expression (g).

If the name (name) is of type integer, real, or complex, the
corresponding expression (c) must be a constant, the name of a
constant, or another expression enclosed in parentheses. The
exponentiation operator is not permitted unless the exponent is
of type integer.

If the name (name) is of type character, the corresponding
expression (g) must be a character expression containing only
character constants or names of character constants. The
expression result cannot exceed 255 characters in length.

If the name (name) is of type logical, the corresponding
expression (c) must be a logical expression containing only
logical constants or names of logical constants.

Each (name) is the name of a constant that becomes defined with
the value of the expression (¢) that appears to the right of the
equal sign. The value assigned is determined by the rules used for
assignment statements (see Figure 19 and Figure 20).

Any name of a constant that appears in an expression (¢) must be
defined by appearing previously on the left of an equal sign in
the same or a preceding PARAMETER statement in the same program
unit. If it is in the same PARAMETER statement, it must appear to
the left of its usage.

Once defined, the name can be used in a subsequent expression or a
DATA statement instead of the constant it represents. It must not
be part of a FORMAT statement or a format specification.

The name of a constant must not be used to form part of another
constant; for example, any part of a complex constant.

136 VS FORTRAN Language Reference

PAUSE STATEMENT

PAUSE

The PAUSE statement temporarily halts the execution of the object
program and may display a message.

syntax
PAUSE [nl

PAUSE ['message'l

n
a string of 1 through 5 decimal digits.

messaqga’
a character constant enclosed in apostrophes and containing
alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

If either n or "message' is specified, PAUSE displavs the
requested information. The program waits until operator
intervention causes it to resume execution, starting with the
next statement after the PAUSE statement or the next iteration of
the DO loop, if it is the last statement of a DO range. For
further information, see VS _FORTRAN Application Programming:
Guide.

VS FORTRAN Statements 137

PRINT
PRINT STATEMENT

138

The PRINT statement transfers data from internal storage to an

exte

PR

rnal device.

syntax
INT fmt [,1istl

fmt

can be one of the following:

A statement number

An integer variable
character constant
character array element
character array name
character expression

> > > >

IBM EXTENSION -

U An array name

END OF IBM EXTENSION 4

. An asterisk that indicates that printing is to be
performed according to the data transmission rules of
list-directed WRITE.

See "WRITE Statement—Formatted with Direct Access" on page
179 for explanations of these format identifiers.

is a list of output items and implied DO-lists. An output
list item can be:

A variable name

An array element

A character substring

An array name

Any expression (except a character expression involving
concatenation of operands whose length specification is
an asterisk)

An implied DO-list is a list of input items and items as
specified for the DO statement. See "Implied DO in DATA
Statement™ on page 66 and "DO Statement" on page 72.

If list is omitted, a blank record is transmitted to the
output device unless the FORMAT statement referred to
contains, as its first specification, a character constant
or slashes. In this case, the record (or records) indicated
zy these specifications are transmitted to the output
evice.

PRINT fmt has the same effect as a WRITE (un,fmt) list where fmt
and list are defined as above, and the value of un is installation

depe
Acce

ndent. See "WRITE Statement—Formatted with Sequential
ss'" on page 183.

valid PRINT Statement:

PRINTX, EIGHT8

VS FORTRAN Language Reference

PROGRAM STATEMENT

PROGRAM

The PROGRAM statement assigns a name to a main program. It must be
the first statement in the main program.

syntax
PROGRAM name

name
is the name of the main program in which this statement
appears.

A main program cannot contain any BLOCK DATA, SUBROUTINE,
FUNCTION, or ENTRY statements.

i IBM EXTENSION 1

A RETURN statement may appear; it has the same effect as a STOP
statement.

L END OF IBM EXTENSION 1

The PROGRAM statement can only be used in a main program but is
not required. If it is used, it must be the first statement of the
main program. If it is not used; the name of the main program is
assumed by this compiler to be MAIN#.

The name must not be the same as any other name in the main
program or as the name of a subprogram or common block in the same
executable program. The name of a program does not have any type
and the other specification statements have no effect on this
name.

Execution of a program begins with the execution of the first

executable statement of the main program. A main program may not
be referred to from a subprogram or from itself.

VS FORTRAN Statements 139

READ
READ STATEMENTS

The READ statements transfer data from an external device to
storage or from one internal file to another.

Forms of tha READ Statement:

T IBM EXTENSION
1. READ Statement—Asynchronous

END OF IBM EXTENSION
READ Statement—Formatted with Direct Access
READ Statement—Formatted with Sequential Access

READ Statement—Unformatted with Sequential Access

2
3
4. READ Statement—Unformatted with Direct Access
5
6 READ Statement with Internal Files

7

. READ Statement with List-Directed I/0

I IBM EXTENSION

8. READ Statement with NAMELIST

L END OF IBM EXTENSION

140 VS FORTRAN Language Reference

READ (Asynchronous)
I IBM EXTENSION ' 1

READ Statement—Asynchronous

The asynchronous READ statement transmits unformatted
sequential data between direct access or sequential storage
devices. The asynchronous READ statement provides high-speed
input. The statements are asynchronous in that while data
transfer is taking place, other program statements may be
executed. An OPEN statement is not permitted for asynchronous
I/0. The unit and statement identifier are the only items
allowed within the parentheses.

syntax
READ ([UNIT=]un, ID=id) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un
is an unsigned integer expression of length 4. It is the
reference to an I/70 unit.

ID=id
id is an integer constant or integer expression of length
4, It is the identifier for the READ statement.
list
is an asynchronous I/0 list and may have any of four forms:
e
el...e2
el...
c..02
where:

is the name of an array.

el and e2
are the names of elements in the same array. The
ellipsis (...) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by un must be connected to a file that
resides on a sequential or direct-access device. The array (g)
or array elements (el through e2) constitute the receiving area
for the data to be read.

The asynchronous READ statement initiates a transmission. The
WAIT statement, that must be executed for each asynchronous
READ, terminates the transmission cvcle. When executed after an
asynchronous READ, the WAIT statement enables the program to
refer to the transmitted data. This process ensures that a
program will not refer to a data field while transmission to it
is still in progress.

The asynchronous READ statement differs from other READ
statements in that a special parameter, ID=id, is specified
within the parentheses of the statement. ID=id establishes a
unique identification for the READ statement.

Synchronous READ statements may be executed for the file only
after all asynchronous READ and WRITE operations have been
completed and a REWIND has been executed for the file.
Conversely, asynchronous READ statements may be executed for a
file previously read synchronously after a REWIND or CLOSE has
been executed.

VS FORTRAN Statements 141

READ (Asynchronous)

Execution of an asynchronous READ statement initiates reading
of the next record on the specified file. The record may contain
more or less data than there are bytes in the receiving area. If
there is more data, the excess is not transmitted to the
receiving area; if there is less, the values of the excess array
elements remain unaltered. The extent of the receiving area is
determined as follows:

. If @ is specified, the entire array is the receiving area.

. If el...e2 is specified, the receiving area begins at array
element el and includes every element up to and including
2. The subscript value of 21 must not exceed that of e2.

. Ifel... is specified, the receiving area begins at element
el and includes every element up to and including the last
element of the array.

K If ...g2 is specified, the receiving area begins at the

first element of the array and includes every element up to
and including g2.

If list is not specified, there is no receiving area, no data is
transmitted, and a record is skipped.

Subscripts in the list of the asynchronous READ must not be
defined as array elements in the receiving area. If a function
reference is used in a subscript, the function reference may not
perform I/0 on any file.

Given an array with elements of length len, transmission begins
with the first len bytes of the record being placed in the first
specified (or implied) array element. Each successive len bytes
of the record are placed in the array element with the next
highest subscript value. Transmission ceases after all elements
of the receiving area have been filled, or the entire record has
been transmitted—whichever occurs first. If the record length
is less than the receiving area size, the last array element to
receive data may receive fewer than len bytes.

The specified array may be multidimensional. Array elements are
filled sequentially. Thus, during transmission, the leftmost
subscript quantity increases most rapidly, and the rightmost
least rapidly. ;

Any number of program statements may be executed between an
asynchronous READ and its corresponding WAIT, subject to the
following rules:

. No array element in the receiving area may appear in any
such statement. This and the following rules apply also to
indirect references to such array elements; that is,
reference to or redefinition of any variable or array
element associated by COMMON or EQUIVALENCE statements, or
argument association with an array element in the receiving
area.

. No executable statement may appear that redefines or
undefines a variable or array element appearing in the
subscript of el or 2. See "Valid and Invalid VS FORTRAN
Programs" on page 3.

. If a function reference appears in the subscript expression
of el or 22, the function may not be referred to by any
statements executed between the asynchronous READ and the
corresponding WAIT. Also; no subroutines or functions may
be referred to that directly or indirectly refer to the
function in the subscript reference, or to which the
subscript function directly or indirectly refers.

U No function or subroutine may be executed that performs
input or output on the file being manipulated, or that

142 VS FORTRAN Language Reference

READ. (Asynchronous)

contains object-time dimensions that are in the receiving
area (whether they be dummy arguments or in a common block).

Valid READ Statement:
READ (ID=10, UNIT=3%IN-3) ACTUAL(3)...ACTUAL(7)
END OF IBM EXTENSION 4

VS FORTRAN Statements 143

READ (Formatted, Direct Access)

READ Statement—Formatted with Direct Access

144

This READ statement transfers data from an external direct-access
device into internal storage. The user specifies in a FORMAT
statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The data must
reside on an external file that is connected for direct access to
a unit (see "OPEN Statement"™ on page 132).

syntax
READ ([UNIT=lun, [FMT=1fmt, REC=rec [, ERR=stnl
[, I0STAT=ios]) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is

an unsigned integer expression of length 4. It is the
reference to an 170 unit.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference number must appear first.

FMT=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

f IBM EXTENSION 1

> > 2>

An array name

L END OF IBM EXTENSION -

The statement number must be the statement number of a FORMAT
statement in the same program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the READ
statement.

The.character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis, and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophe in a constant
enclosed in apostrophes is represented by two consecutive
apostrophes.

The character array element must contain character data
whose leftmost character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes
described in the FORMAT statement can be used between the
parentheses. Blank characters may precede the left
parenthesis and character data may follow the right

VS FORTRAN Language Reference

READ (Formatted, Direct Access)

parenthesis. The length of the format identifier must not
exceed the length of the array element.

The character arrav name must contain character data whose
leftmost characters constitute a valid format identifier.
The length of the format identifier may exceed the length of
the first element of the array; it is considered the
concatenation of all the array elements of the array in the
order given by array element ordering.

IBM EXTENSION 1

The array name may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

END OF IBM EXTENSION 1

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format identifier. The
operands of the expression must have length specifications
that contain only integer constants or names of integer
constants. (See "VS FORTRAN Expressions" on page 25.)

REC=rec

rec is a relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associated with un. The relative record number of the first
record is 1.

ERR=stn

stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.

I0STAT=ios

jos is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in ios.

is an I70 list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists.

An item in the list, or an item associated with it through
EQUIVALENCE, COMMON, or argument passing, must not contain
any portion of the format identifier fmt.

Valid READ statements:

READ (un,fmt,REC=rec) list
READ (un,FMT=fmt,REC=rec) list
READ (UNIT=un,FMT=fmt,REC=rec) list
READ (REC=rec,FMT=fmt,UNIT=un)

VS FORTRAN Statements 145

READ (Formatted, Direct Access)

146

Invalid READ statements:
READ (fmt,un,REC=rec) un must appear before fmt.

READ (FMT=fmt,un,REC=rec) list un must appear first because
UNIT= is not included.

READ (b,UNIT=un,REC=rec) list FMT must be used because
UNIT= is included.
READ (un,fmt) list REC=rec must be specified

for direct-access.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for direct access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

This statement permits a programmer to read records randomly from
any location within an external file. It contrasts with the
sequential input statements that process records, one after the
other, from the beginning of an external file to its end. With the
direct-access statements, a programmer can go directly to any
record in the external file, process a record and go directly to
gng other record without having to process all the records in
etween.

Each record in a direct-access file has a unique number associated
with it. This number is the same as specified when the record is
written. The programmer must specify in the READ statement not
only the unit reference number, but also the number of the record
to be read. Specifying the record number permits operations to be
performed on selected records of the file instead of on records in
their sequential order.

The OPEN statement specifies the size and the type of the records
in the direct-access file. All the records of a file connected for
direct access have the same length.

DATA TRANSMISSION: A READ statement with FORMAT starts data

transmission at the beginning of the record specified by REC=rec.
The format codes in the format identifier fmt are taken one by one
and associated with every item of the list in the order they are
specified. Tha number of character data specified by the format
code is taken from the record, converted according to the format
code and transmitted into the storage associated with the
corresponding item in the list. Data transmission stops when data
has been transmitted to every item of the list or when the end of
the record specified by rec is reached.)

If the list is not specified and the format identifier starts with
an I, E, F, D, G, or L format code, or is empty (that is,
FORMAT()), the internal record number is increased by one but no
data is transferred.

r IBM EXTENSION 1

VS FORTRAN adds that, if the format identifier starts with a Q
or Z format code, the internal record number is increased by one
but no data is transferred.

L END OF IBM EXTENSION 4

DATA AND I/0 LIST: The length of every FORTRAN record is specified
in RECL of the OPEN statement. If the record rec contains more
data than is necessary to satisfy all the items of the list and
the associated format identifier, the remaining data is ignored.
If the record rec contains less data than is necessary to satisfy
all the items of the list and the associated format identifier, an
error is detected. If the format identifier indicates (for

VS FORTRAN Language Reference

READ (Formatted, Direct Access)

example, slash format code) that data be taken from the next
record, then the internal record number rec is increased by one
and data transmission continues with the next record. The INQUIRE
statement can be used to determine the record number.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT is specified, a positive integer value is assigned
to ios when an error is detected. If ERR is specified, then
execution continues with the statement specified with the ERR, if
present, or with the next statement if ERR is not specified. If
ERR and IOSTAT are both omitted, program execution is terminated
when an error is detected.

Valid READ Statement:
READ (UNIT=2%IN-10, FMT='(I9%9)', REC=3)

VS5 FORTRAN Statements 147

READ (Formatted, Sequential Access)
READ Statemant—Formatted with Sequential Access

This READ statement transfers data from an external I/0 device to
storage. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed
during the transfer. The data must reside in an external file that
is connected for sequential access to a unit. (See "OPEN
Statement™ on page 132.) .

The sequential I/70 statements with format identifiers process
_records one after the other from the beginning of an external file
to its end.

—— Ssyntax

READ ¢ [UNIT=lun, [FMT=1fmt [, ERR=stnl] [, END=stn]l
[, I0STAT=ios]) [listl

READ fmt [, listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression or an asterisk (x), It is the
reference to an I70 unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

In the form of the READ where un is not specified, un is
installation dependent.

FMT=fmnt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

I IBM EXTENSION —

> > > X

An array name

L END OF IBM EXTENSION .

See "READ Statement—Formatted with Direct Access™ on page
146 for explanations of these format identifiers.

ERR=stn ;

stn is the number of an executable statement in the program
unit containing the READ statement. Transfer is made to stn
if an error is detected.

END=stn

is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when

148 VS FORTRAN Language Reference

READ (Formatted, Sequential Access)
the end of the external file is encountered.

I0STAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in ios.

is an I70 list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. In the form of the READ where un is not specified,
if the list is not present, the comma must be omitted. An
item in the list, or an item associated with it through
EQUIVALENCE, COMMON or argument passing, must not contain
any portion of the format identifier fmt.

Valid READ statements:

READ (un,fmt) list

READ (un, FMT=fmt) list

READ (UNIT=un, FMT=fmt) list FMT=fmt can appear first.

READ fmt, list

READ (5,98) A,B,(C(I,K),I=1,10)

READ (IOSTAT=I0S, UNIT=2%IN-10, FMT='(I9)', END=3600)
Invalid READ Statements:

READ (fmt,un) un must appear before fmt.

READ (FMT=fmit, un) list

n must appear first because

u
UNIT= is not included.

READ (fmt, UNIT=un) list FMT must be used because
UNIT= is included.
READ FMT=fmt, list FMT must not be used in this

form of READ.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A READ statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the
format identifier fmt are taken one by one and associated with
every item of the list in the order they are specified. The number
of character data specified by the format code is taken from the
record, converted according to the format code, and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

DATA AND I/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list and the associated
format specification, the extra data is skipped over. The next
READ statement with FORMAT will start with the next record if no
other I/0 statement is executed on that file. If the record
contains less data than is necessary to satisfy all the items of
the list and the associated format identifier, an error is
detected.

If the list is not specified and the format identifier starts with

an I, E, F, D, G, or L format code or is empty (that is, FORMAT()),
a record is skipped over.

VS FORTRAN Statements 149

READ (Formatted, Sequential Access)
— IBM EXTENSION 1
VS FORTRAN adds the Q and Z format codes to the list.
L END OF IBM EXTENSION !

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT is specified, a positive integer value is assigned
to ios when an error is detected. Then execution continues with
the statement specified with the ERR, if present, or with the next
statement if ERR is not specified. If ERR and IOSTAT are both
omitted, object program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the file was encountered. If
I0STAT=jos is specified, a negative integer value is assigned to
ios. Then execution continues with the statement specified with
END, if present, or with the next statement if END is not
specified. If END and IOSTAT are both omitted, object program
execution is terminated when the end of the file is encountered.

150 VS FORTRAN Language Reference

READ (Unformatted, Direct Access)
READ Statement—uUnformatted with Direct Access

This statement transfers data without conversion from an external
direct-access 170 device into internal storage. The data must
reside on an external file that is connected with direct access to
a unit (see "OPEN Statement™ on page 132).

syntax
READ ([UNIT=lun, REC=rec [, ERR=stnl] [, IOSTAT=iosl])
[listl]
UNIT=un

un is required. It can optionally be preceded by UNIT=,
an unsigned integer expression of length 4. It is the
reference to an 1/0 unit.

IC
o
]

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

REC=rec
rec is a relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associated with un. The relative record number of the first
record is 1.

ERR=stn
.stn is the number of a statement in the same program unit as

the READ statement. Transfer is made to stn if an error is
detected.

I0OSTAT=ios
ios 1s an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error is detected.
VSAM return and reason codes are placed in ios.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, and
implied DO lists.
valid READ statements:
READ (un,REC=rec) list
READ (REC=rec, UNIT=un)
READ (IOSTAT=IO0S, UNIT=11, REC=3) ACTUAL(3)(1l:)
READ (IOSTAT=IACT(1),UNIT=3%IN-2,FMT=%) ACTUAL(1l)
Invalid READ statements:

READ (REC=rec,un) list UNIT must be used because un
is after REC=rec.

READ (UNIT=un) list REC=rec must be specified for
direct files.

If this READ statement is encountered, the unit must exist and the
file must be connected for direct access. If the unit is not
connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to
a defaubt file name. If the file is not preconnected, an error is
detected.

VS FORTRAN Statements 151

READ (Unformatted, Direct Access)

152

DATA TRANSMISSION: A READ statement without format starts data

transmission at the beginning of the record specified by REC=rec.

The number of character data specified by the type of each item in

the list is taken from the record and transmitted into the storage

associated with the corresponding item in the list. Data

:;anfmission stops when data has been transmitted to every item of
e list.

If the list is not specified, the internal record number is
increased by one but no data is transferred. The INQUIRE statement
can be used to determine the record number.

DATA AND I/0 LIST: The length of the FORTRAN records in the file
are specified by RECL in the OPEN statement. If the record rec
contains more data than is necessary to satisfy all the items of
the list, the extra data is ignored. If the record rec contains
less data than is necessary to satisfy all the items of the list,
an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
arg bzt% omitted, program execution is terminated when an error is
etected.

VS FORTRAN Language Reference

READ (Unformatted, Sequential Access)
READ Statement—Unformatted uith Sequential Access

This READ statement transfers data without conversion from an
external 170 device into internal storage. The data resides on an
external file that is connected for sequential access to a unit
(see "OPEN Statement" on page 132).

The sequential I/0 statements without format control process
;ecords ohe after the other from the beginning of an external file
o its end.

The ENDFILE, REWIND, and BACKSPACE statements may be used to
manipulate the file.

syntax
READ ¢ [UNIT=lun [, ERR=stn] [, END=stnl] [, IOSTAT=josl)
[list]

UNIT=uUn
un is required. It can optionally be preceded by UNIT=., un is
an unsigned integer expression of length 4 (or an asterisk
(¥)). It is the reference to an I/0 unit. An asterisk ()
represents an installation-dependent unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.
END=stn
is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the external file is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/0 list. It can contain variable names; array element
names, character substring names, array names, and implied
DO lists.
valid READ statements:

READ (un) list

READ (UNIT=un) list

READ (un)

READ (IOSTAT=I0S, UNIT=1l)

Invalid READ statements:

READ un, list un must be in parentheses.

READ, list (un) must be included.

If this READ statement is encountered, the unit specified by un
must be connected to a file for sequential access. If the unit is

VS FORTRAN Statements 153

READ (Unformatted, Sequential Access)

154

not connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to
a default file name. If the file is not preconnected; an error is
detected. .

DATA TRANSMISSION: A READ statement without conversion starts
data transmission at the beginning of a record. The data specified
by the item in the list is taken from the record and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

If the list is not specified, a record is passed over without
transmitting any data.

DATA AND I/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement without format will start
with the next record if no other I/0 statement is executed on that
file. If the record contains less data than is necessary to
satisfy the list, an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If I0OSTAT=ios is specified, a positive integer value is
assigned to jos when an error is detected. Then execution
continues with the statement specified with ERR, if present or
with the next statement if ERR is not specified. If ERR and IOSTAT
gr: bitg omitted, program execution is terminated when an error is
etected. S

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the file was encountered., If
I0OSTAT=jos is specified, a negative integer value is assigned to
ios when an end of file is detected. Then execution continues with
the statement specified with END if present, or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, program execution is terminated when the end of the file
is encountered.

VS FORTRAN Language Reference

READ (Internal)

READ Statement with Internal Files

This READ statement transfers data from one area of internal
storage into another area of internal storage. The user specifies
in a FORMAT statement (or in a reference to a FORMAT statement)
the conversions to be performed during the transfer. The area in
internal storage that is read from is called an internal file.

An internal file is always

Connected to a unit

Positioned before data transmission at the beginning of the
storage area represented by the unit identifier

Accessed sequentially with a FORMAT statement (see "FORMAT
Statement” on page 87)

READ ([UNIT=lun, [FMT=1fmt U, ERR=stnl] [, END=stnl

syntax

[, IOSTAT=3io0s]) [listl

UNIT=un

un is the reference to an area of internal storage called an
internal file. It can optionally be preceded by UNIT=., It can
be the name of:

A character variable

A character array

A character array element
A character substring

Its length must not be specified as an asterisk.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference must appear first.

FMT=fmt

|

[~

mt is a required format identifier. It can optionally be
preceded by FMT=.

The format identifier can be:

A statement number

An integer variable

A character constant

A character array element
A character expression

IBM EXTENSION 1

An array name

END OF IBM EXTENSION]

See "READ Statement—Formatted with Direct Access"™ on page
144 for explanations of these format identifiers.

The format specification must not be:
. In the area un.

U Associated with un through EQUIVALENCE, COMMON or
argument passing.

If FMT= is not included, the format specification must
appear second.

VS FORTRAN Statements 155

READ (Internal)

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn
stn is the number of a statement in the same program unit a
READ statement. Transfer is made to stn if an error is

+ Ot

is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the storage area (un) is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an 170 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions.

An item in the list must not be:

. Contained in the area represented by un

. Associated with any part of un through EQUIVALENCE, COMMON,
or argument passing

valid READ statements:
READ (un,fmt) list
READ (un,FMT=fmt) list
READ (UNIT=un,FMT=fmt) list
Invalid READ statements:

READ (fmt,un) list un must appear before fmt.

READ (FMT=fmt,un) list un must appear first because
UNIT= is not included.

READ (fmt,UNIT=un) list FMT must be used because

UNIT= is included.

DATA TRANSMISSION: An internal READ statement starts data
transmission at the beginning of the storage area specified by un.
The format codes in the format specification fmt are taken one by
one and associated with every item of the list in the order they
are specified. The number of character data specified by a format
code is taken from the storage area un, converted according to the
format code, and moved into the storage associated with the
corresponding item in the list. Data transmission stops when data
has been moved to every item of the list or when the end of the
storage area a is reached.

If un is a character variable, a character array element name, or
a character substring name, it is treated as one record only in
relation to the format identifier.

If un is a character array name, each array element is treated as
one record in relation to the format identifier.

DATA AND I/0 LIST: The lenagth of a record is the length of the
character variable, character substring name, character array
element specifified by un when the READ statement is executed.

156 VS FORTRAN Language Reference

READ (Internal)

If a record contains more data than is necessary to satisfy all
the items in the list and the associated format identifier, the
remaining data is ignored.

If a record contains less data than is necessary to satisfy all
the items in the list and the associated format identifier, an
error is detected.

If the format identifier indicates (for example, slash format
code) that data be moved from after the character variable,
character substring, or the last array element of a character
array, an end of file is detected. If it is not the last array
element in the character array, data is taken from the next array
element.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
datun. If I0OSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR if present or with
the next statement if ERR is not specified. If ERR and IOSTAT are
both %mitted, program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the file was encountered. If
I0OSTAT=ios is specified, a negative integer value is assigned to
ios when an end of file is detected. Then execution continues with
the statement specified with END if present or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, program execution is terminated when the end of the file
is encountered.

Example:

1 CHARACTERX* 120 CHARVR

2 READ (UNIT=5, FMT=100) CHARVR
100 FORMAT (A120)

3 ASSIGN 200 TO J

4 IF (CHARVR (3:4).EQ. "AB') ASSIGN 300 TO J

5 READ(UNIT = CHARVR, FMT=J) Al, A2, A3
200 FORMAT(4X,F5.1, F10.3, 3X, F12.8)
300 FORMAT (4X, F3.1, F6.3, 20X, F8.4)
Statement 1 defines a character variable, CHARVR, of fixed length
120. Statement 2 reads into CHARVR 120 characters of input.
Statement 3 assigns the format number 200 to the integer variable
J. Statement 4§ tests the third and fourth characters of CHARVR to
determine which type of input is to be processed. If these two
characters are AB, then the format numbered 300 replaces the
format numbered 200 and is used for processing the data. This is
done by assigning 300 to the integer variable J. Statement 5 reads

the file and performs the conversion using the appropriate FORMAT
statement and assigning values to Al, A2, and A3.

VS FORTRAN Statements 157

READ (List-Directed)

READ Statement with List-Directed I/0

This statement transfers data from an external device into
internal storage. The tvpe of the items specified in this
statement determines the conversion to be performed. The data
resides on an external file that is connected for sequential
access to a unit (see "OPEN Statement" on page 132).

syntax

READ ([UNIT=lun, [FMT=1% [, ERR=stn]l [, END=stnl
[, I0STAT=ios]) [listl

READ % [, listl

UNIT=un
un is required in the first form of the READ statement. It
canh optionally be praeceded by UNIT=. un is an unsigned
integer expression (or an asterisk (¥)). It is the reference
to an I/0 unit. An asterisk (¥) represents an
installation~dependent unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

IdeNIT= is included, all the parameters can appear in any
order.

In the form of the READ where un is not specified, un is
installation dependent.

FMT=x%
specifies that a list-directed READ is to be executed. It can
optionally be preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn

stn is the number of a statement in the same program unit as
gh READ statement. Transfer is made to stn if an error is
e
t

e
tected.

END=sth
is the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when

the end of the external file is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in jos.

is an I70 list and can contain variable names, array element
names, character substring names, array names, and implied
DO lists.

valid READ statements:

READ

'C

n,*) list

READ n, FMT=%) list

READ T=%,UNIT=un) lis

READ (x%,%) list

READ %, list

READ (IOSTAT=IACT(1), UNIT=3%IN-2, FMT=%) ACTUAL(1)

~
'HIC
=2

158 VS FORTRAN Language Reference

READ (List-Directed)
Invalid READ statements:
READ (%¥,un) list
READ (FMT=%,un) list

un must appear before ¥.

el
>

must appear first because
UNIT- is not included.

l:

READ (*;UNIT=QQ) list FMT must be used because
UNIT= is included.
READ FMT=x%, list FMT must not be specified.

If this READ statement is encountered, the unit specified by un

must be connected to a file for sequential access. If the unit is

not connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to

S %efiuif file name. If the file is not preconnected, an error is
etected.

DATA TRANSMISSION: A READ statement with list-directed I/0
accessing an external file starts data transmission at the
beginning of a record. One value on the external file is
transferred to each item of the list in the order they are
specified. The conversion to be performed depends on the type and
length of the name of the item in the list. Data transmission
stops when data has been transmitted to every item in the list,
when a slash separator is encountered in the file or when the end
of file is reached.

DATA AND I/0 LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement with list-directed I/0 will
start with the next record if no other I/0 statement is executed
on that file. If the record contains less data than is necessary
to satisfy the list and the record does not have a slash after the
last element, an error is detected. If the list has not been
satisfied when a slash separator is found, the remaining items in
the list remain unaltered and execution of the READ is terminated.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during transmission
of data. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, object program execution is terminated when an
input error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement i5 executed after the last record on the file has
already been read. No indication is given of the number of list
items read before the end of the file was encountered. If
I0STAT=jos is specified, a negative integer value is assigned to
jos when an end of file is detected. Then execution continues with
the statement specified with END, if present, or with the next
statement if END is not specified. If END and I0STAT are both
omitted, object program execution is terminated when the end of
the file is encountered.

VS FORTRAN Statements 159

READ (NAMELIST)

r IBM EXTENSION

READ Statement with NAMELIST

This statement transfers data from an external I/0 device into
storage. The type of the items specified in the NAMELIST
determines the conversions to be performed. The data resides on
an external file that is connected for sequential access to a
unit (see "OPEN Statement" on page 132).

syntax
READ (un, name [, ERR=stnl] [, END=stn] [, I0STAT=ios])

is required. un is an unsigned integer expression of

i
length 4. It is the reference to an I/0 unit.

is a NAMELIST name. This name must appear as the second
parameter in the list and must be the same as the name in a
NAMELIST statement that precedes the READ statement (see
"NAMELIST Statement™ on page 130). '

ERR=stn
sth is the number of a statement in the same program unit
as the READ statement. Transfer is made to stn if an error
is detected.

END=stn
is the number of an executable statement in the program
unit containing the READ statement. Transfer is made to
stn when the end of the external file is encountered.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
is detected. VSAM return and reason codes are placed in
ios.

Valid READ statements:

READ (un,name)

READ (IN+IN+3, NAMEIN, IOSTAT=IO0S)
Invalid READ statements:

READ (name,un) un must appear before name.
READ (un,name) list list must not be specified.

If this READ statement is encountered, the unit specified by un
must exist and it must be connected to a file for sequential
access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file
is not preconnected, an error is detected.

The NAMELIST I/0 statements associate the name given to the data
in the FORTRAN program with the data itself. There is no format
identifier but the data is converted according to the type of
data in the FORTRAN program. The data on the external file must
be in a specific format. See "NAMELIST Input Data™ on page 130.

The READ statement specifies the list of data to be transferred
by referring to a NAMELIST statement. This form of data
transmission is useful for debugging purposes.

160 VS FORTRAN Language Reference

READ (NAMELIST)

BACKSPACE and REWIND should not be used with NAMELIST I/0. If
they are, the results are unpredictable (see "BACKSPACE
Statement™ on page 54 and "REWIND Statement™ on page 164).

DATA TRANSMISSION: A READ statement with NAMELIST starts data
transmission from the beginning of the NAMELIST with name name
on the external file. The names associated with the NAMELIST
name name in the NAMELIST statement are matched with the names
of the NAMELIST name on the external file. When a match is
found, the value associated with the name on the external file
is converted to the type of the name and transferred into
storage. If a match is not found, an error is detected.

DATA AND NAMELIST: The NAMELIST name name must appear on the
external file. The variable names or array names associated
with the NAMELIST name name in the NAMELIST statement must
appear on the external file. They are read in the order they are
specified in the NAMELIST statement, but they can appear in any
order on the external file (see "NAMELIST Input Data" on page
130 for the format of the input data).

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during
transmission of data. If ERR is omitted, program execution is
terminated when an error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read before the end of the file was encountered. If END is
omitted, object program execution is terminated when the end of
the file is encountered.

L END OF IBM EXTENSION 4

REAL TYPE STATEMENT

See "Explicit Type Statement"™ on page 82.

VS FORTRAN Statements 161

RETURN
RETURN STATEMENT
The RETURN statement returns control to a calling program.

r IBM EXTENSION —_

In a main program, a RETURN statement performs the same function
as a STOP statement.

L END OF IBM EXTENSION !

The RETURN statement can be used in either a function or a
subroutina subprogram.

RETURN Statement in a Function Subprogram

Function subprograms may contain RETURN statements. The RETURN

statement signifies a logical conclusion of the computation and
returns the computed function value and control to the calling

program. See also "FUNCTION Statement™ on page 109.

syntax
RETURN

Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities (that is, common blocks,
variables, or arrays) within the subprogram become undefined
except:

. Entities specified in SAVE statements (see "SAVE Statement™
on page 166)

L Entities given an initial value in a DATA or explicit
specification statement and whose initial values were not
changed

. Entities in blank common

. Entities in named common that appear in the subprogram and
appear in at least one other program unit that is referring
either directly or indirectly to the subprogram

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A function subprogram must not be referred to twice during the
execution of an executable program without the execution of a
RETUR94s§atement in that subprogram. (See also "END Statement™ on
rage .

RETURN Statement in a subroutine Subprogram

Subroutine subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and
returns control to the calling program. See also "SUBROUTINE
Statement™ on page 171.

syntax
RETURN [ml

162 VS FORTRAN Language Reference

RETURN

is an integer expression. m must be within the range of the
argument list., If it is not or if it is less than or equal to
zero, the RETURN is executed, as if there were nonm
specified.

The normal sequence of execution following the RETURN statement
of a subroutine subprogram is to the next statement following the
CALL statement in the calling program. It is also possible to
return to any numbered statement in the calling program by using a
return of the type RETURN m.

Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities within the subprogram became
undefined except:

. Entities specified in SAVE statements. (See "SAVE Statement"
on page 166.)

L Entities given an initial value in a DATA or explicit
specification statement and where initial values were not
changed.

L Entities in blank common.

. Entities in named common that appear in the subprogram and
appear in at least ohe other program unit that is referring
either directly or indirectly to the subprogram.

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A subprogram must not be referred to twice during the execution of
an executable program without the execution of a RETURN statement
in that subprogram.

A CALL statement that is used with a RETURN m form may be best
understood by comparing it to a CALL and computed 60 TO statement
in sequence. For example, the following CALL statement:

CALL SUB (P,x%20,Q,%35,R,%22)
is equivalent to:

CALL SUB (P,Q,R,I)
G0 T0 (20,35,22),1

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

VS FORTRAN Statementé 163

REWIND
REWIND STATEMENT

The REWIND statement positions an external file at the beginning
of the first record of the file. The external file must be
connected with sequential access to a unit. (See "OPEN Statement"
on page 132.)

syntax
REWIND un
REWIND ¢ [UNIT=Jun [, ERR=errl [, IOSTAT=jos])

UNIT=un
is the reference to the number of an I/0 unit. un can
optionally be preceded by UNIT= if the second form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
4, if necessary) must be zero or positive; otherwise, an
error is detected.

ERR=grpr
is optional. err is a statement number. If an error occurs in
the execution of the CLOSE statement, control is transferred
to the statement labeled err. That statement must be
executable and must be in the same program unit as the CLOSE
statement. If ERR=err is omitted, execution halts when an
error is detected.

IOSTAT=ioS
is optional. ios is an integer variable or an integer array
element of length ¢. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in jios.

If UNIT= is specified, all the parameters can appear in any order;
otherwise un must appear first.

If the unit specified by un is connected, it must be connected for
sequential access. If it is not connected to a file, it is assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is
not preconnected, an error is detected.

The external file connected to the unit specified by un may or may
not exist when the statement is executed. If the external file
does not exist, the REWIND statement has no effect. If the
external file does exist, an end-of-file is created, if
necessary, and the file is positioned at the beginning of the
first record.

The REWIND statement causes a subsequent READ or WRITE statement
referring to un to read data from or write data into the first
record of the external file associated with un.

— IBM EXTENSION 1

The REWIND statement may be used with asynchronous READ and
WRITE statements provided that any input/output operation on
the file has been completed by the execution of a WAIT
statement. A WAIT statement is not required to complete the
REWIND operation.

L END OF IBM EXTENSION !

Transfer is made to the statement specified by the ERR parameter
if an error is detected. If the I0OSTAT=jos is specified, a
positive integer value is assigned.-to ios when an error is
detected. Then execution continues with the statement specified
Wwith the ERR parameter, if present, or with the next statement if
ERR is not specified. If the ERR parameter and the IOSTAT

164 VS FORTRAN Language Reference

REWIND

parameter are both omitted, program execution is terminated when
an error is detected.

Valid REWIND Statements:
REWIND (5)
REWIND (3%IN-2,ERR=99999)
REWIND (UNIT=2%IN+2)
REWIND (IOSTAT=I0S,ERR=99999,UNIT=2%IN-10)

VS FORTRAN Statements 165

SAVE
SAVE STATEMENT

The SAVE statement retains the definition status of the name of a
named common block, variable, or array after the execution of a
RETURN or END statement in a subprogram.

Because VS FORTRAN saves these names without user action, the SAVE
statement serves only as a documentation aid.

syntax
SAVE [namel [, name2 1 ... 1

nama

is a named common block name preceded and followed by a
slash, a variable name, or an array name. Redundant
appearances of an item are not permitted.

Dummy argument names, procedure names, and names of entities in a
common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained
the names of all allowable items in that program unit.

The appearance of a named common block in a SAVE statement has the
effect of specifying all entities in that named common block.

The execution of a RETURN statement or an END statement within a
subprogram causes all entities within the subprogram to become
undefined except for the following:

. Entities specified by SAVE statements.
. Entities in blank common.

. Initially defined entities that have neither been redefined
nor become undefined.

L3 Entities in named common blocks that appear in the subprogram
and appear in at least one other program unit that is
referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by
execution of a RETURN or END statement in .another program
unit.

Within a function or subroutine subprogram, an entity (that is, a
common block, variable, or array) specified by a SAVE statement _
does not become undefined as a result of the execution of a RETURN

or END statement in the subprogram.

If a local entity that is specified by a SAVE statement and is not
in a common block is in a defined state at the time a RETURN or END
statement is executed in a subprogram, that entity is defined with
the same value at the next reference of that subprogram. An entity
in a common block never becomes undefined as a result of the
execution of a RETURN or END statement in a program unit that does
not reference that common block. The entities in a named common
b19:k may become undefined or redefined by some other program
unit.

166 VS FORTRAN Language Reference

Statement Function
STATEMENT FUNCTION STATEMENT
A statement function definition specifies operations to be

performed whenever that statement function name appears as a
function reference in another statement in the same program unit.

syntax

name ([argl [, arg2 1 ... 1) =n

nane
is the statement function name (see "Names" on page 8).

arg
is a statement function dummy argument. It must be a distinct
variable, that is, it may appear only once within the list of
arguments. Parentheses must be specified even if no dummy
argument is specified.

is any arithmetic, logical, or character expression. Any
statement function appearing in this expression must have
been defined previously. In a function or subroutine
subprogram, this expression can contain dummy arguments that
appear in the FUNCTION, SUBROUTINE, or ENTRY statements of
the same program unit. (See "VS FORTRAN Expressions" on page
25 for evaluation and restrictions of this expression.)

All statement function definitions to be used in a program must
follow the specification statements and precede the first
executable statement of the program.

The length of a character statement function must be an expression
containing only integer constants or names of integer constants.

The expression to the right of the equal sign defines the
operations to be performed when a reference to this function
appears in a statement elsewhere in the program unit. The
expression defining the function must not contain (directly or
indirectly) a reference to the function it is defining or a
reference to any of the entry point names (PROGRAM, FUNCTION,
SUBROUTINE, ENTRY) of the program unit where it is defined.

If the expression is an arithmetic expression, its type may be
different from the type of the name of the function. Conversions
are made as described for the assignment statement.

The dummy arguments enclosed in parentheses following the
function name are dummy variables for which the arguments given in
the function reference are substituted when the function
reference is encountered. The same dummy arguments may be used in
more than one statement function definition, and may be used as
variables of the same type outside the statement function
definitions, including dummy arguments of subprograms. The length
specification of a dummy argument of type character must be an
arithmetic expression containing only integer constants or names
of integer constants.

An actual argument in a statement function reference may be any
expression of the same type as the corresponding dummy argument.
It cannot be a character expression involving concatenation of
onhe or more operands whose length specification is an asterisk.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argumant are associated with the dummy argument.

VS FORTRAN Statements 167

statement Function

The name of a statement function must not appear in an EXTERNAL
statement and must not be used as an actual argument.

For example, The statement:
FUNC(A,B) = 3. X%A+BXX2. +X+Y+Z
defines the statement function FUNC, where FUNC is the function
name and A and B are the dummy arguments. The expression to the
right of the equal sign defines the operations to be performed
when the function reference appears in an arithmetic statement.
The function reference might appear in a statement as follous:
C = FUNC(D,E)
This is equivalent to:
C = 3.%D+EX%2.+X+Y+2Z
Notice the correspondence between the dummy arguments A and B in
the function definition and the actual arguments D and E in the
function reference.

valid statement Function Definitions and References:

pefinition Reference

SUM(CA,B,C,D) = A+B+C+D NET = GROS-SUM(TAX,COVER,HOSP,
STO0C)

FUNC(Z) = A+X%YxZ ANS = FUNC(RESULT)

VALIDCA,B) = .NOT. A .OR. B VAL = TEST .OR. VALID(D,E)
BIGSUM = SUM(A,B,SUM(C,D,E,F),G(I))
Invalid Statement Function Definitions:

SUBPRG(3,J,K)=3%I+J%x3 Arguments must be variables.
SOMEFC(A(I),B)=A(I)/B+3. Arguments must not be array
elements.

SUBPROGRAM(A,B) =A%%2+B%x2 Function name exceeds limit
of six characters.

JFUNC(D)=3.14X%E Function name must begin with
an alphabetic character.

BAD(A,B)=A+B+BAD(C,D) Recursive definition not
permitted.

NOGOODC(A,A)=A%A Arguments are not distinct

variable names.
Invalid statement Function References:
(The functions are defined as above.)
WRONG = SUM(TAX,COVER) Number of arguments does not
agree with above definition.

MIX = FUNCC(I) Tvpe of argument does not agree
with above definition.

168 VS FORTRAN Language Reference

Statement Numbers
STATEMENT NUMBERS
Statement numbers identify statements in a VS FORTRAN program.
Any statement can have a number. A statement can be written in
either fixed form or free form. See "Source Language Statements"
on page 5.
Fixaed Form Statement Numbers

Fixed form statement numbers have the following attributes:

. They contain one to five decimal digits (not zero) and are on
a noncontinued line.

. Blanks and leading zeros are ignored.
. They are in columns 1 through 5.

I IBM EXTENSION 1

Free Form Statement Numbers
Free form statement numbers have the following attributes:

. They must be the first nonblank characters (digits) on an
initial line.

. Blanks and leading zeros are ignored.

. No blanks are needed between the statement number and the
first nonblank character following.

L END OF IBM EXTENSION !

See "ASSIGN Statement™ on page 46 for information on assignment of
statement numbers.

VS FORTRAN Statements 169

sTOP
STOP STATEMENT

The STOP statement terminates the execﬁtion of the object program
and may display a message.

syntax
STOP [nl

STOP ['message'l

n
a string of 1 through 5 decimal digits.

'message'
a character constant enclosed in apostrophes and containing
alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

If either n or "message' is specified, STOP displays the requested

information. For further information, see VS FORTRAN Application
Programming: Guide.

170 VS FORTRAN Language Reference

SUBROUTINE
SUBROUTINE STATEMENT

The SUBROUTINE statement identifies a subroutine subprogram.

syntax
SUBROUTINE name [([argll [,arg2] ... 1) 1

is the subroutine name (see "Names"™ on page 8).

is a distinct dummy argument (that is, it may appear only
once wWwithin the statement). There need not be any arguments,
in which case the parentheses may be omitted. Each argument
used must be a variable or array name, the dummy name of
another subroutine or function subprogram, or an asterisk,
where the character ¥ denotes a return point specified by a
statement number in the calling program.

Because tbe subroutine is a separate program unit, there is no
conflict if the variable names and statement numbers within it are
the same as those in other program units.

The SUBROUTINE statement must be the first statement in the
subprogram. The subroutine subprogram may contain any FORTRAN
statement except a FUNCTION statement, another SUBROUTINE
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a subroutine subprogram, it must
follow the SUBROUTINE statement and may only be preceded by
agother iMPLICIT statement, a PARAMETER, FORMAT, or ENTRY
statement.

The subroutine name must not appear in any other statement in the
subroutine subprogram. It must not be the same as any name in the
program unit or as the PROGRAM name, a subroutine name, or a
common block name in any other program unit of the executable
program. The subroutine subprogram may use one or more of its
arguments to return values to the calling program. An argument so
used wWill appear on the left side of an arithmetic, logical, or
character assignment statement, in the list of a READ statement
within the subprogram, or as an argument in a CALL statement or
function reference that is assigned a value by the subroutine or
function referred to.

The dummy arguments (argl, arg?2, arg3,..., argn) may be
considered dummy names that are replaced at the time of execution
by the actual arguments supplied in the CALL statement.

If a subroutine dummy argument is used as an adjustable array
name, the array name and all the variables in the array
declarators (except those in common) must be in the dummy argument
list. See "Size and Type Declaration of an Array"” on page 22.

The subroutine subprogram can be a set of commonly used
computations, but it need not return any results to the calling
program. For information about using RETURN and END statements in
a subroutine subprogram, see "END Statement”™ on page 74 and
"RETURN Statement™ on page 162.

Actual Arguments in a subroutine Subprogram

The actual arguments in a subroutine reference must agree in
order, number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The use of a
subroutine name or an alternate return specifier as an actual
argument is an exception to the rule requiring agreement of type.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual

VS FORTRAN Statements 171

SUBROUTINE

bummy Arguments in a

172

argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a subroutine reference must be one of the
following:

[]

An expression, except for a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses (unless the operand is the name of a
constant)

An array name

An intrinsic function name

An external procedure name

A dummy procedure name

An alternate return specifier (statement number preceded by
an asterisk)

An actual argument in a subroutine reference may be a dummy
argument name that appears in a dummy argument list within the
subprogram containing the reference. An asterisk dummy argument
cannot be used as an actual argument in a subprogram reference.

subroutine subprogram

The dummy arguments of a subprogram appear after the subroutine
name and are enclosed in parentheses. They are replaced at the
time of execution of the CALL statement by the actual arguments
supplied in the CALL statement in the calling program.

Dummy arguments must follow certain rules:

None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement except as common block names.

A dummy argument name must not be the same as the entry point
name appearing in a PROGRAM, FUNCTION, SUBROUTINE, ENTRY, or
statement function definition in the same program unit.

The dummy arguments must correspond in number, order, and
tvpe to the actual arguments.

If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array
element, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the subprogram.

A referenced subprogram cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

The subprogram reserves no storage for the dummy argument,
using the corresponding actual ‘argument in the calling
program for its calculations. Thus the value of the actual
argument changes as soon as the dummy argument changes.

VS FORTRAN Language Reference

TRACE OFF and TRACE ON
. IBM EXTENSION .

TRACE OFF STATEMENT

The TRACE OFF statement stops the display of program flow by
statement number.

syntax
TRACE OFF

TRACE OFF may appear anvwhere within a debug packet. After a
TRACE ON statement, tracing continues until a TRACE OFF
statement is encountered.

TRACE ON STATEMENT

The TRACE ON statement initiates the display of program flow by
statement number.

syntax
TRACE ON

TRACE ON is executed only when the TRACE option appears in a
DEBUG packet. (See "DEBUG Statement™ on page 67.) Tracing
continues until a TRACE OFF statement is encountered. TRACE ON
stays in effect through any level of subprogram CALL or RETURN
statement. However, if a TRACE ON statement is in effect and
control is given to a program in which the TRACE option is not
specigied, the statement numbers in that program are not
traced.

Each time a statement with an external statement number is
executed, a record of the statement number is made on the debug
output file.

For a given debug packet, the TRACE ON statement takes effect
immediately before the execution of the statement specified in
the AT statement.

L END OF IBM EXTENSION 1

UNCONDITIONAL GO TO
See "GO TO Statements"™ on page 113.

VS FORTRAN Statements 173

WAIT

T IBM EXTENSION

WAIT STATEMENT

The WAIT statement completes the data transmission begun by the
corresponding asynchronous READ or WRITE statement.

—— Ssyntax

WAIT ¢ [UNIT=lun, plist) [list]

UNIT=uh
un is required. It can optionally be preceded by UNIT=. It
is the reference to an 170 unit. un is an unsigned integer
expression of length 4.

plist
is a parameter list that contains (in any order) one or
more of the following forms:

ID=id
where id is an integer constant or integer
expression of length 4.

If the WAIT is completing an asynchronous READ, the
expression id is subject to the following rules:

. No array element in the receiving area of the
read may appear in the expression. This also
includes indirect references to such elements;
that is, reference to or redefinition of any
variable or array element associated by COMMON or
EQUIVALENCE statement, or argument association
with an array element in the receiving area.

U If a function reference appears in the subscript
expression of el or 2, the function may not be
referred to in the expression id. Also, no
functions or subroutines may . be referred to by
the expression that directly or indirectly refers
to the subscript function, or to which the
subscript function directly or indirectly refers.

COND=il
where il is an integer variable name of length 4. This
form is optional.

If COND=il is specified, the variable il is assigned
a value of 1 if the input or output operation was
completed successfully; 2 if an error condition was
encountered; and 3 if an end-of-file condition was
encounterad while reading. In case of an error or
end-of-file condition, the data in the receiving area
may be meaningless.

NUM=i2
where i2 is an integer variable name of length 4. This
form is optional.

If NUM=i2 is specified, the variable i2 is assigned a
value representing the number of bytes of data
transmitted to the elements specified by the list. If
the list requires more data from the record than the
record contains, this parameter must be specified. If
the WAIT is completing an asynchronous WRITE, ji2
remains unaltered.

list

is optional. It is an asynchronous I/70 list as specified
for the asynchronous READ and WRITE statements.

174 VS FORTRAN Language Reference

WAIT

If alist is included, it must specify the same receiving or
transmitting area as the corresponding asynchronous READ

or WRITE statement. It must not bhe specified if the
asynchronous READ did not specify a list.

WAIT redefines a receiving area and makes it available for
reference, or makes a transmitting area available for
redefinition.

The corresponding asynchronous READ or WRITE, which need not
appear in the same program unit as the WAIT, is the statement
that:

. Was not completed by the execution of another WAIT

. Refers to the same file as the WAIT

L Contains the same value for id in the ID=id form as did the
asynchronous READ or WRITE when it was executed

The correspondence between WAIT and an asynchronous READ or
WRITE holds for a particular execution of the statements.
Different executions may establish different correspondences.
When the WAIT is completing an asynchronous READ, the
subscripts in the list may not refer to array elements in the
receiving area. If a function reference is used in a subscript,
the function reference may not perform I/0 on any file.
valid WAIT Statements:

WAIT (8,ID=1) ARRAY(101)...ARRAY(500)

WAIT (9,ID=1,COND=ITEST)

WAIT (8,ID=1,NUM=N)

WAIT (9,ID=2)

L- END OF IBM EXTENSION 1

VS FORTRAN Statements 175

WRITE
WRITE STATEMENTS

The WRITE statements transfer data from storage to an external
device or from one internal file to another internal file.

FORMS OF THE WRITE STATEMENT:

I IBM EXTENSION
1. WRITE Statement—Asynchronous

L END OF IBM EXTENSION
2. WRITE Statement—Formatted with Direct Access

3 WRITE Statement—Formatted with Sequential Access
4. WRITE Statement—Unformatted with Direct Access

5. WRITE Statement—Unformatted with Sequential Access
6 WRITE Statement with Internal Files

7 WRITE Statement with List-Directed I/0

T IBM EXTENSION

8. WRITE Statement with NAMELIST

: END OF IBM EXTENSION

176 VS FORTRAN Language Reference

WRITE (Asynchronous)
r IBM EXTENSION -1

WRITE Statement—Asynchronous

The asynchronous WRITE statement transmits data from an array
in main storage to an external file.

syntax
WRITE (L[UNIT=lun, ID=id) list

UNIT=un
un is required. It can optionally be preceded by UNIT=. un
is an unsigned integer expression of length 4. It is the
reference to an I/0 unit.

ID=id
id is an integer constant or integer expression of length
4. It is the identifier for the WRITE statement.
list
is an asynchronous I/0 list that may have any of four
forms:
e
el...e2
el...
...02
where:

is the name of an array.

el and g2
are the names of elements in the same array. The
ellipsis (...) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by un must be connected to a file that
resides on a sequential or direct access device. The array or
array elements specified by @ (or el and e2) constitute the
transmitting area for the data to be written. The extent of the
transmitting area is determined as follows:

. If @ is specified, the entire array is the transmitting
area.

U If gl...g2 is specified, the transmitting area begins at
array element el and includes every element up to and
igcluding e2. The subscript value of g1 must not exceed that
of e2.

. If el... is specified, the transmitting area begins at
element gl and includes every element up to and including
the last element of the array.

. If ...e2 is specified, the transmitting area begins at the
first element of the array and includes every element up to
and including g2.

. If a function reference is used in a subscript of the list,
the function reference may not perform I/0 on any file.

Execution of an asynchronous WRITE statement initiates writing
of the next record on the specified file. The size of the record
is equal to the size of the transmitting area. All the data in
the area is written.

VS FORTRAN Statements 177

WRITE (Asynchronous)

Given an array with elements of length len, the number of bytes
transmitted will be len times the number of elements in the
array. Elements are transmitted sequentially from the smallest
subscript element to the highest. If the array is
multi-dimensional, the leftmost subscript quantity increases
most rapidly, and the rightmost least rapidly.

Because the asynchronous WRITE statement can only refer to
files with sequential access, REC may not be specified even
though the file may be resident on a direct-access device.

There is no FORMAT statement associated with the output data and
no conversion takes place.

Any number of program statements may be executed between an
asynchronous WRITE and its corresponding WAIT, subject to the
following rules:

. No such statement may in any way assign a new value to any
array element in the transmitting field. This and the
following rules apply also to indirect references to such
array elements; that is, assigning a new value to a variable
or array elements associated by COMMON or EQUIVALENCE
statements, or argument association with an array element
in the transmitting area.

. No executable statement may appear that redefines or
undefines a variable or array element appearing in the
subscript of el or g2.

. If a function reference appears in the subscript expression
of gl or e2, the function may not be referred to by any
statements executed between the asynchronous WRITE and the
corresponding WAIT. Also, no subroutines or function may be
referred to that directly or indirectly refer to the
subscript function, or to which the subscript function
directly or indirectly refers.

. No function or subroutine may be executed that performs
input or output on the file being manipulated.

valid WRITE statement:
WRITE (ID=10, UNIT=2%IN+2) . . . EXPECT(9)

END OF IBM EXTENSION

178 VS FORTRAN Language Reference

WRITE (Formatted, Direct Access)
KRITE Statement—Formatted with Direct Access

This statement transfers data from internal storage onto an
external device. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed
during the transfer. The data must be sent to an external file
that is connected with direct access to a unit (see "OPEN
Statement" on page 132).

syntax
WRITE ¢ [UNIT=lun, [FMT=]fmt, REC=rec [,ERR=stnl]
[, IOSTAT=ios 1) [listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an I/0 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

FMT=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

r IBM EXTENSION 4

>

An array name

L END OF IBM EXTENSION .

The statement number must be the statement number of a FORMAT
statement in the same program unit as the WRITE statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the WRITE
statement.

The character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophe in a constant
enclosed in apostrophes is be represented by two consecutive
apostrophes.

The character array element must contain character data
whose leftmost character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes

VS FORTRAN Statements 179

WRITE (Formatted, Direct Access)

1380

described in the FORMAT statement can be used between the
parentheses. Blank characters may precede the left
parenthesis and character data may follow the right
parenthesis. The length of the format specification must not
exceed the length of the character array element.

The character arrav name must contain character data whose
leftmost characters constitute a valid format specification.
The length of the format specification may exceed the length
of the first element of the array; it is considered the
concatenation of all the elements of the array in the order
given by array element ordering.

IBM EXTENSION |

The arrav nhame may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

END OF IBM EXTENSION !

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format specification.
The operands of the expression must have length
specifications that contain only integer constants or names
of integer constants.

REC=rec

rec is an integer expression. It represents the relative
position of a record within the file associated with un. Its
value after conversion to integer, if necessary, must be
greater than zero. The internal record number of the first
record is 1. The INQUIRE statement can be used to determine
the record number.

If list is omitted, a blank record is transmitted to the
output device unless the FORMAT statement referred to
contains, as its first specification, a character constant
or slashes. In this case the record (or records) indicated by
these specifications are transmitted to the output device.

ERR=stn

stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=jos

ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VS5AM return and reason codes are placed in ios.

is an I/0 list and can contain variable names, array element
names, character substring names, array names, and implied
DO lists. ‘

VS FORTRAN Language Reference

WRITE (Formatted, Direct Access)

valid HRITE Statements:

WRITE (un,fmt) list

WRITE (un,FMT=fmt) list

WRITE (FMT=fmt,UNIT=un) list

WRITE fmt, list

WRITE (REC=1, UNIT=11, FMT='(I9)")

WRITE (0,"(A8)', REC=3)
Invalid WRITE Statements:

WRITE (fmt,un) list un must appear before fmt.

WRITE (FMT=fmt,un) list un must appear first because
UNIT= is not included.

WRITE (fmt, UNIT=un) list FMT must be used because
UNIT= is included.

WRITE FMT=fmt, list FMT must not be specified.

If this WRITE statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record specified by REC=rec.
The format codes in the format specification fmt are taken one by
ohe and associated with every item of the list in the order they
are specified. The data is taken from the item of the list,
converted according to the corresponding format code, and the
number of character data specified by the format code is
transmitted onto the record of the external file. Data
transmission stops when data has been taken from every item of the
list or when the end of the record specified by rec is reached.

If the list is not specified and the format specification starts
withan I, E, F, D, G, or L, or is empty (that is, FORMATC()), the
record is filled with blank characters and the relative record
number rec is increased by one.

r IBM EXTENSION 1

This is also true when the format specification starts with a G,
Q, or Z format code.

L END OF IBM EXTENSION .

DATA AND I/0 LIST: The length of every FORTRAN record is specified
in the RECL parameter of the OPEN statement. If the length of the
record rec is greater than the total amount of data specified by
the format codes used during transmission of data, an error is
detected, but as much data as can fit into the record is
transmitted. If the format specification indicates (for example,
slash format code) that data be transmitted to the next record,
then the relative record number rec is increased by one and data
transmission continues.

After successful execution of the WRITE statement, the value of
the NEXTREC variable specified in the OPEN statement is set to the
relative record number of the last record written, incremented by
one. If an error is detected, the NEXTREC variable contains the
relative record number of the record being written.

VS FORTRAN Statements 181

WRITE (Formatted, Direct Access)

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I05TAT=ios is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement, if ERR is not specified. If ERR and
IOSTAT are both omitted, program execution is terminated when an
error is detected.

182 VS FORTRAN Language Reference

WRITE (Formatted, Sequential Access)
HRITE Statement—Formatted with Sequential Access

This statement transfers data from internal storage onto an
external I/0 device. The user specifies in a FORMAT statement (or
in a reference to a FORMAT statement) the conversions to be
performed during the transfer. The data must be sent to an

external file that is connected with sequential access to a unit
(see "OPEN Statement™ on page 132).

syntax
WRITE ¢ [UNIT=lun, [FMT=]fmt [, ERR=stn] [, IO0OSTAT=iesl)
[list]

PRINT fmt [, listl

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is

an unsigned integer expraession or an asterisk (¥). It is the
reference to an I/0 unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

if UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

In the form of the PRINT statement where un is not specified,
or in the form of a WRITE statement where un is an asterisk,
un is installation dependent.

FMT=fmt
mt is a required format identifier. It can optionally be
preceded by FMT=,

|

.

|

If FMT is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appear in any order.

The format identifier (fmt) can be:

A statement number

An integer variable
character constant
character array element
character array name
character expression

T IBM EXTENSION

> > > >

An array name

END OF IBM EXTENSION !

See "WRITE Statement—Formatted with Direct Access"™ on page
179 for explanations of these format identifiers.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ioS
jos is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

VS FORTRAN Statements 183

WRITE (Formatted, Sequential Access)

184

list
is an I70 list. It can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. In the PRINT statement, if the list
is not present, the comma must be omitted.
valid WRITE and PRINT Statements:
WRITE (un,fmt) list
WRITE (un, FMT=fmt) list.
WRITE (%,fmt) list
WRITE (UNIT=un, FMT=fmt) list FMT=fmt can appear first.
WRITECIOSTAT=IO0S, ERR=99999, FMT=%,UNIT=2%IN+3)
WRITE(IN+8,NAMEOT, IOSTAT=IACT(1),ERR=99999)
PRINT ¥, list

PRINT fmt, list

PRINT fmt
Invalid HRITE and PRINT Statements:

WRITE (fmt,un) un must appear first before fmt.

WRITE (FMT=fmt,un) list un must appear first because
UNIT= is not included.

WRITE (£fmt,UNIT=un) list FMT must be used because
UNIT= is included.

PRINT FMT=fmt, list FMT must not be used with
PRINT.

If the unit specified by un is connected, it must be connected for
sequential access. If it is not connected to a file, it is assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is
not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the
format specification fmt are taken one by one and associated with
every item of the list in the order they are specified. The data
is taken from the item of the list, converted according to the
corresponding format code and the number of character data
specified by the format code is transmitted onto the record of the
external file. Data transmission stops when data has been taken
from every item of the list.

If the list is not specified and the format’specification starts
with an I, E, F, D, G, or L, or is empty (that is, FORMAT(J)), a
blank record is written out.

I IBM EXTENSION |

This is also true when the format specification starts with a Q
or Z format code.

The WRITE statement can be used to write over an end of file and
extend the external file. An ENDFILE, BACKSPACE, CLOSE, or
REWIND statement will then reinstate the end of file.

L END OF IBM EXTENSION !

VS FORTRAN Language Reference

WRITE (Formatted, Sequential Access)

After execution of a sequential WRITE or PRINT, no record exists
in the file following the last record transferred by that
statement.

DATA AND I/0 LIST: The amount of character data specified by all
the format codes used during the transmission of the data defines
the length of the FORTRAN record (also called a logical record). A
single WRITE statement may create several FORTRAN records. This
occurs when a slash format code is encountered in the format
specification or when the I/70 list exceeds the format
specification which causes the FORMAT statement to be used in full
or part again. (See "FORMAT Statement" on page 87.)

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/0 device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0OSTAT=ios is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
3r$ b%th omitted, execution is terminated when an error is
etected.

VS FORTRAN Statements 185

WRITE (Unformatted, Direct Access)

HRITE Statement—Unformatted with Direct Access

186

The statement transfers data without conversion from internal
storage onto an external I/0 device. The data must be sent to an
external file that is connected with direct access to a unit (see
"OPEN Statement" on page 132).

—— Syntax
WRITE ([UNIT=]un, REC=rec [, ERR=stnl] [, IOSTAT=josl)
(listl
UNIT=un

un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an 1I/0 unit. '

Tf UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

REC=rec
rec is a relative record number. It is an integer expression
that must be greater than zero. It represents the relative
position of a record within the external file associated
with un. The relative record number of the first record is 1.

ERR=stn
sth is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ioS
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions.
valid WRITE Statements:
WRITE (un,REC=rec) list
WRITE (REC=rec,UNIT=un) list
WRITE (IOSTAT=IO0S, ERR=99999, REC=IN-3, UNIT=IN+6)
WRITE (IOSTAT=IACT(1), REC=2%IN-7, UNIT=2%IN+1) EXPECT(3)
WRITE (REC=1, UNIT=11) EXPECT(1)
Invalid WRITE Statements:

WRITE (REC=rec,un) list UNIT must be used.

WRITE (un) list REC=rec must be specified.

If the unit specified by un is encountered, it must exist and the
file must be connected for direct access. If the unit is not
connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to
a default file name. If the file is not preconnected, an error is
detected.

VS FORTRAN Language Reference

WRITE (Unformatted, Direct Access)

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the record specified by rec. The data is
taken from the items of the list in the order in which they are
specified and transmitted onto the record rec of the external
file. Data transmission stops when data has been transferred from
every item of the list.

DATA AND I/0 LIST: The length of every FORTRAN record is specified
in the RECL parameter of the OPEN statement. If the length of the
record rec is greater than the total amount of data transmitted
from the items of the list, the remainder of the record is filled
with zeros. If the length of the record rec is smaller than the
total amount of data transmitted from the items of the list, as
much data as can fit in the record is written, the internal record
number is increased by one. The INQUIRE statement can be used to
determine the record number.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be uritten, only that an error occurred during transmission of
data. If I0OSTAT=ios is specified, a positive integer value is
assigned to ios whan an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
gr: b%tz omitted, execution is terminated when an error is
etected.

VS FORTRAN Statements 187

WRITE (Unformatted, Sequential Access)

HRITE Statement—uUnformatted with Sequential Access

138

This statement transfers data without conversion from internal
storage onto an external I/0 device. The data must be sent to an
external file that is connected with sequential access to a unit
(see "OPEN Statement™ on page 132).

syntax
WRITE ([UNIT=lun [, ERR=stnl] [, IOSTAT=ios]) [listl]

UNIT=un
un is required. It can optionally be preceded by UNIT=. un is
an unsigned integer expression of length 4. It is the
reference to an I/70 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

IdeNIT= is included, all the parameters may appear in any
order.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is
detected.

I0OSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

list
is an I70 list and can contain variable names, array

elements, character substring names, array names, impiied DO
lists, and expressions.

valid URITE Statements:
WRITE (un) list
WRITE (UNIT=un) list
WRITE(5) EXPECT(4)
Invalid WRITE Statement:
WRITE un,list un must be in parentheses.

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the beginning of a record. The data is taken
from the items of the list in the order in which they are
specified and transmitted onto the record of the external file.

Data transmission stops when data has been transferred from every
item of the list.

After execution of a sequential WRITE statement, no record exists
in the file following the last record transferred by that
statement.

— IBM EXTENSION 1

The WRITE statement writes over an end of file and extends the
external file. An END FILE, BACKSPACE, CLOSE, or REWIND
statement will then reinstate the end of file.

L END OF IBM EXTENSION : -

VS FORTRAN Language Reference

WRITE (Unformatted, Sequential Access)

DATA AND I/0 LIST: The amount of character data specified by the
items of the list defines the length of the FORTRAN record (alse
called a logical record). A single WRITE statement creates only
one FORTRAN record.

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/0 device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0STAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

VS FORTRAN Statements 189

WRITE (Internal)

WRITE Statement with Internal Files

This statement transfers data from one or more areas in internal
storage to another area in internal storage. The user specifies in
a FORMAT statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The receiving
area in internal storage is called an internal file.

syntax
WRITE ([UNIT=lun, [FMT=1fmt [, ERR=stnl] [, IOSTAT=igsl)
[list]

UNIT=un
un is the reference to an area of storage called an internal
file. It can optionally be preceded by UNIT=. It can be the
name of a character variable, character array, character
array element, or character substring. Its length must not
be specified as an asterisk.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference must appear first.

FMT=fmt
is the format specification. It may optionally be preceded
by FMT=.

If FMT= is not included, the format specification must
appear second.

If both UNIT= and FMT= are included, all parameters, except
list, may appear in any order.

The format specification can be:

A statement number

An integer variable

A character constant

A character array element
A character expression

I IBM EXTENSION |

An array name

L END OF IBM EXTENSION 1

See "WRITE Statement—Formatted with Direct Access" on page
179 for explanations of these format specifications.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions.

Neither the format specification (fmt) nor an item in the list
(list) can be:

J Contained in the area represented by un

190 VS FORTRAN Language Reference

WRITE (Internal)

. Associated with any part of un through EQUIVALENCE, COMMON,
or argument passing

Valid WRITE Statements:
WRITE (un,fmt) list
WRITE (un,FMT=fmt) list
WRITE (FMT=fmt,UNIT=un) list
WRITE (IOSTAT=I0S, ERR=99999%9, FMT='(A9)', UNIT=2%IN-10) '1 2 3°'
WRITE C(IN+IN-10, '(A9)', IOSTAT=IACT(1l)) '4 5 ¢6'
Invalid WRITE Statements:

WRITE (fmt,un) list un must appear first before fmt.

WRITE (FMT=fmt,un) list un must appear first because
URIT= is not included.

WRITE (fmt,UNIT=un) list FMT must be used because UNIT=

is included.

DATA TRANSMISSION: A WRITE statement starts data transmission at
the beginning of the area specified by un. The format codes in the
format specification fmt are taken one by one and associated with
every item of the list in the order they are specified. Data is
taken from the item of the list, converted according to the format
code, and the number of character data specified by the format
code is moved into the storage area un. Data transmission stops
Nhen data has been moved from every item of the list.

If un is a character variable, a character array element, or a
character substring name, it is treated as one record only in
relation to the format specification.

If un is a character array name, each array element is treated as
one record in relation to the format specification.

DATA AND I/0 LIST: The length of a record is the length of the
character variable, character substring name, or character array
element specified by un when the WRITE statement is executed.

If the length of the record is greater than the amount of data
specified by the items of the list and the associated format
specification, the remainder of the record is filled with blank
characters.

If the length of the record is less than the amount of data
specified by the items of the list and the associated format
specification, as much data as can fit in the record is
transmitted and an error is detected.

The format specification may indicate (for example, slash format
code) that data be moved to the next record of storage area un. If
un specifies a character variable, a character array element, or a
character substring name, an error is detected. If un specifies a
character array name, data is moved into the next array element
unless the last array element has been reached. In this latter
case, anh error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0OSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

VS FORTRAN Statements 191

WRITE (Internal)
WRITE Statement with List-Directed I/0

This statement transfers data from internal storage onto an
external 170 device. The data must be sent to an external file
that is connected with sequential access to a unit. (See "OPEN
Statemant"™ on page 132). The type of the items specified in the
statement determines the conversion to be performed.

syntax

WRITE ([UNIT=lun, [FMT=1% [, ERR=stnl [, IOSTAT=iosl)
[list]
PRINT * [, listl

UNIT=un

un is required. It can optionally be preceded by UNIT=., un is
an unsigned integer expression or an asterisk (¥). It is the
reference to an 170 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

In the form of the PRINT statement where un is not specified
or in the form of a WRITE statement where un is an asterisk,
un is installation dependent.

FMT =%
An asterisk (¥) specifies that a list-directed WRITE has to

be executed. It can optionally be preceded by FMT= if un is
specified.

If FMT= is not included, the format identifier must appear
sacond.

If both UNIT= and FMT= are included, all parameters, except
list, may appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as

the WRITE statement. Transfer is made to stn if an error is
detected.

IDSTAT=ios
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VS5AM return and reason codes are placed in ios.

list
is an I/0 list and can contain variable names, array

elements, character substring names, array names, implied DO
lists, and expressions.

192 VS FORTRAN Language Reference

WRITE (List-Directed)
valid URITE Statements:
WRITE (un,*) list
WRITE (un,FMT=%) list
WRITE (FMT=%,UNIT=un) list
WRITE (5,%)
WRITE (FMT=%,UNIT=%) FIFTY5,ISEG

WRITE (IOSTAT=I0S, ERR=99999, FMT=%, UNIT=2XIN+3)
YYYY//7EXPECT(LY /Y Y

PRINT %, list
Invalid HRITE Statements:

WRITE (¥.,un) list un must appear before .

WRITE (FMT=%,un) list un must appear first because
UNIT= is not included.

WRITE(%,UNIT=un) list FMT must be used because
UNIT= is included.

PRINT FMT=%, list FMT must not be used.

If the unit specified by un is encountered, it must be connected
to a file for sequential access. If the unit is not connected to a
file, it is assumed to have been preconnected through job control
language and an implicit OPEN is performed to a default file name.
If the file is not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE or PRINT statement with list-directed
I/0 accessing an external file starts data transmission at the
beginning of a record. The data is taken from each item in the
list in the order they are specified and transmitted onto the
record of the external file. Data transmission stops when data has
been transferred from every item in the list.

After execution of a sequential WRITE or PRINT statement, no
record exists in the file following the last record transferred by
that statement.

The WRITE or PRINT statement can uwrite over an end of file and
extend the external file. An ENDFILE, CLOSE, or REWIND statement
will reinstate the end of file.

An external file with sequential access written with
list-directed 170 is suitable for printing, because a blank
character is always inserted at the beginning of each record as a
carrier control character.

DATA AND I/0 LIST: The amount of character data specified by the
items in the list and the necessary data separators define the
length of the FORTRAN record (also called a logical record). A
single WRITE or PRINT statement creates only one FORTRAN record.

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/0 device. In particular, a logical record
may span over many physical records. A character constant or a
complex constant can be split over the next physical record if
there is not enough space on the current physical record to
contain it all.

Character constants produced:
. Are not delimited by apostrophes

. Are not preceded or followed by a value separator

VS FORTRAN Statements 193

WRITE (List-Directed)

. Have each internal apostrophe represented externally by one
apostrophe

. Have a blank character inserted by the processor for carrier
control at the beginning of any record that begins with the
continuation of a character constant from the preceding
record

Transfer is made to the statement specified by ERR if an error
occurs. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If I0OSTAT=5tn is specified, a positive integer value is
assighed to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and I0OSTAT
are both omitted, execution is terminated when an error occurs.

194 VS FORTRAN Language Reference

WRITE (NAMELIST)
T IBM EXTENSION -

WRITE Statement with NAMELIST

This statement transfers data from internal storage onto an
external 170 device. The type of the items specified in the
NAMELIST statement determines the conversions to be performed.

— Syntax
WRITE (un, name [, ERR=stnl] [, IOSTAT=iosl)

un
un is required. It is an unsigned integer expression of
length 4. It is the reference to an I/70 unit.

name
is a NAMELIST name. This name must appear as the second
parameter in the list and must be the same as the name in a
NAMELIST statement that precedes the WRITE statement (see
"NAMELIST Statement™ on page 130).

ERR=stn
stn is the number of a statement in the same program unit
as the WRITE statement. Transfer is made to stn if an error
is detected.

IOSTAT=ios

i0s is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
is detected. VSAM return and reason codes are placed in
ios.
Valid URITE Statements:
WRITE (un, name)
WRITE (IN+8, NAMEOUT, IOSTAT=IACT(1), ERR=99999)

Invalid HRITE Statements:

WRITE (name,un) un must appear before name.
WRITE (un,name) list list must not be specified.

If the unit specified by un is encountered, it must exist and
must be connected to a file for sequential access. If the unit
is not connected to a file, it is assumed to have been
praconnected through job control language and an implicit OPEN
is performed to a default file name. If the file is not
preconnected, an error is detected.

A BACKSPACE or REWIND statement should not be used for a file
that is written using NAMELIST. If it is, the results are
unpredictable (see "BACKSPACE Statement™ on page 54).

DATA TRANSHISSION: A WRITE statement with NAMELIST starts data
transmission from the beginning of a record. The data is taken
from each item in the NAMELIST with name in the order in which
they are specified and transmitted onto the record of the
external file. Data transmission stops when data has been
transferred from every item in the NAMELIST name.

After execution of a WRITE statement with NAMELIST, no record

exists in the file following the end of the NAMELIST just
transmitted.

VS FORTRAN Statements 195

WRITE (NAMELIST)

DATA AND NAMELIST: The NAMELIST name name must appear on the
external file.

The number of characters specified by the items in the NAMELIST
name and the necessary data separators and identifiers are
placed on the external file.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be written, only that an error occurred during
transmission of data. If ERR is omitted, execution is
terminated when an error occurs.

END OF IBM EXTENSION

196 VS FORTRAN Language Reference

APPENDIX A. SOURCE LANGUAGE FLAGGER

The VS FORTRAN compiler can flag FORTRAN statements that do not
conform to the syntax of the Full or Subset ANS FORTRAN 1978
Standard. See the ANS manual for subset language flags.

ITEMS FLAGGED FOR FULL ANS LANGUAGE

GLOBAL ITEMS FLAGGED

STATEMENTS FLAGGED

FREE option.

The FIPS option cannot be specified with free-form source.
The FIPS flagging is ignored.

LANGLVL(66) option.

The FIPS option cannot be specified for the 1966 ANS FORTRAN
language. The FIPS flagging is ignored.

Columns 1 to 5 of a continuation card are not blank.
The currency symbol ($) is used in a name.

A name has a redundant, noncenflicting declaration.

A noncharacter variable has an actual length specified.

One of the following names is used as an intrinsic function
name:

ALGAMA, ARCOS, ARSIN, CC0OS, CDABS, CDC0S, CDEXP, CDLOG,
CDSIN, CDSQRT, COTAN, CQABS, CQCO0S, CQEXP, CQLOG, CQSIN,
CQSQRT, DARCOS, DARSIN, DBLE®Q, DCMPLX, DCONJG, DCOTAN, DERFC,
DERF, DFLOAT, DGAMMA, DIMAG, DLGAMA, DREAL, ERF, ERFC, GAMMA,
HFIX, IMAG, IQINT, LGAMMA, QABS, QARCOS, QARSIN, QATAN,
QATAN2, QCMPLX, QCONJG, QCOSH, QCQS, QCOTAN, QDIM, QERFC,
QERF, QEXP, QEXTD, QEXT, QFLOAT, QIMAG, QINT, QLOG, QLOG10,
g?ﬁﬁl'sggigl, QMOD, QREAL, QSIGN, QSINH, QSIN, QSQRT, QTANH,

Explicit type specification statements for REALX16; explicit
type specification statements for COMPLEXX¥16 and COMPLEX*32.

hH in other than a FORMAT statement.

Invalid statement

- Asynchronous READ statement
- Asynchronous WRITE statement
- AT statement

- DEBUG statement

- DISPLAY statement

- EJECT statement

- INCLUDE statement

= NAMELIST statement

— READ statement with NAMELIST

Appendix A. Source Language Flagger 197

— TRACE statement

= WAIT statement

= WRITE statement with NAMELIST
. CALL statement

The ampersand (&) character is used in front of a statement
number.

U DATA statement

The statement appears before the end of the specification
statements.

A, @, Z, or nH constant is used.

Character constants must correspond to character variables.
. ENTRY statement

An argument is embedded between slashes.
. EQUIVALENCE statement

One subscript is specified for a multidimensional array.
. EXTERNAL statement

A name is preceded by an ampersand (&) character.
. FORMAT statement

The Q or Z format codes are used.
J FUNCTION statement

An argument is embedded between slashes.

A length is specified for a real, logical, integer, or complex
function.

. IMPLICIT statement

A length is specified for a real, logical, integer, or complex
range.

The currency symbol ($) is used as an alphabetic character.
. INTEGER, REAL, COMPLEX, LOGICAL type statements

Data initialization is specified.
. OPEN statement

RECL is used with SEQUENTIAL.
. PARAMETER statement

This statement is preceded by an executable statement, a DATA
statement, or a statement function definition.

. SUBROUTINE statement

An argument is embedded between slashes.

k 198 VS FORTRAN Language Reference

EXECUTION-TIME CAUTIONS

The
are

following items are not flagged. However, they are items that
open to misinterpretation and may cause confusion.

Array declarators in DIMENSION, INTEGER, REAL, COMPLEX,
DOUBLE PRECISION, CHARACTER, and COMMON statements.

The value of the lower dimension can exceed the value of the
upper dimension when it is an expression.

ASSIGN statement

A variable containing a statement number can be used as
containing an integer value with unpredictable results.

Assigned GOTO statement

The index variable may not contain a statement number which is
specified in the list of statement numbers.

Assignment statement

A character assignment can be made with unpredictable results
into a string which is also used on the right-hand side of the
equal sign.

COMMON statement

The same COMMON block can contain character variables
corraesponding to noncharacter variables across subprograms.

The length of the same COMMON block may not be the same across
subprograms.

The same COMMON block may be initialized in more than one
BLOCK DATA.

DO statement

The value of the m3 expression can be zero.

Transfer into an inactive DO loop with unpredictable results.
ENDFILE statement

Multifiles can be written.

FUNCTION, SUBROUTINE, ENTRY statements

The subprograms must be available.

The subprograms can be called recursively with unpredictable
results.

The number, type, and length of the actual and dummy arguments
may not match.

More than one subprogram may have the same name.

IMPLICIT statement

The same letter is redefined with different type or length.
OPEN statement

The file is repositioned at the beginning.

READ statement on an internal file

Read records until the end of an array even if the file is one
record.

READ statement with FORMAT

Appendix A. Source Language Flagger 199

Data can be read into the nH field of a FORMAT statement.
L Subscript

Subscript value may be outside the dimension bounds.
. WRITE statement without format on a DIRECT file.

Spanned records can be written.

200 VS FORTRAN Language Reference

APPENDIX B. FORTRAN~-SUPPLIED PROCEDURES

The procedures supplied by VS FORTRAN are called intrinsic
functions. Detailed descriptions can be found in VS _FORTRAN

Application Programming Library Reference.

MATHEMATICAL AND CHARACTER FUNCTIONS

These routines provide intrinsic functions for mathematical and
character operations. When a VS FORTRAN program requests an
intrinsic function, the routine is handled as a called subroutine
during link-editing and is either:

. Inserted inline into the program
U Included in the load module

The generic name can be used for a function; VS FORTRAN will
select the particular function named, depending upon the
precision of the data.

Alternatively, the name of the specific alternative entry point
can be used. A prefix to the generic name specifies the
alternative entry point and indicates the data type of the result,
as shown in Figure 21.

Prefix Result pata Tvpe
A REAL (included only for compatibility)
D REAL %8
Q REAL %16
c COMPLEX %38
CD COMPLEX %16
cQ COMPLEX %32

Figure 21. Function Routine Prefix Meanings

VS FORTRAN includes mathematical and character, subroutines in
several categories:

1. Logarithmic and exponential routines
2. Trigonometric routines

3. Hyperbolic function routines

4. Miscellaneous mathematical routines
5. Internal data conversion routines

6. Character manipulation routines

Appendix B. FORTRAN-Supplied Procedures 201

LOGARITHMIC AND EXPONENTIAL ROUTINES

TRIGONOMETRIC ROUTINES

L

EXP—Obtain an exponent.

3éternative entry points: CDEXP, CEXP, CQEXP, DEXP, EXP,
XP.

LOG—O0btain a natural logarithm.

Alternative entry points: ALOG, CDLOG, CLOG, CQLOG, DLOG,
LOG, QLOG.

LOGl0—O0btain a common logarithm.
Alternative entry points: ALOG10, DLOG10, LOG10, QLOG1O.
SQRT—0Obtain a square root.

Alternative entry points: CDSQRT, CQSQRT, CSQRT, DSQRT,
QSQRT, SQRT.

ACOS—=0Cbtain an arccosine.

Alternative entry points: ACOS, ARCOS, DACOS, DARCOS, QARCOS.
ASIN—©Obtain an arcsine.

Alternative entry points: ARSIN, ASIN, DARSIN, DASIN, QARSIN.
ATAN/ATAN2—0Obtain an arctangent.

Alternative entry points: ATAN, ATAN2, DATAN, DATAN2, QATAN,
QATANZ2.

C0S—O0btain a cosine.

géggrnative entry points: CC0S, CDCO0S, CO0S, €CQCO0S, DCOS,

COTAN—Obtain a cotangent.
Alternative entry points: COTAN, DCOTAN, QCOTAN.
SIN—Obtain a sine.

g%ﬁernative entry points: CDSIN, CQSIN, CSIN, DSIN, QSIN,

TAN—Obtain a tangent.
Alternative entry points: DTAN, QTAN, TAN.

HYPERBOLIC FUNCTION ROUTINES

202

COSH—O0btain a hyperbolic cosine.
Alternative entry points: COSH, DCOSH, QCOSH.
SINH—O0btain a hyperbolic sine.

Alternative entry points: DSINH, QSINH, SINH.
TANH—Obtain a hyperbolic tangent.
Alternative entry points: DTANH, QTANH, TANH.

VS FORTRAN Language Reference

MISCELLANEOUS MATHEMATICAL ROUTINES

ABS—Obtain an absolute value.

Alternative entry points: ABS, CABS, CDABS, CQABS, DABS.,
IABS, QABS.

AINT—Truncation of a real number.

Alternative entry points: AINT, DINT, QINT.
ANINT—O0Obtain nearest whole number.

Alternative entry points: ANINT, DNINT.
CONJG—0Obtain conjugate of a complex argument.
Alternative entry points: CONJG, DCONJG, QCONJG.
DIM—Obtain a positive difference.

Alternative entry points: DIM, DDIM, IDIM, QDIM.
DPROD—0Obtain a double precision product.
ERF—Error function for normal curve.

Alternative Entry points: DERF, ERF, QERF.
ERFC—Error function complement for normal curve.
Alternative Entry points: DERFC, ERFC, QERFC.
GAMMA—Gamma function.

Alternative Entry points: DGAMMA, GAMMA.
IMAG—O0Obtain imaginary part of complex argument.
Alternative Entry points: AIMAG, DIMAG, IMAG, QIMAG.
LGAMMA—Log-gamma function.

Alternative Entry points: ALGAMMA, DLGAMMA, LGAMMA.
MAX—0Obtain the largest value.

gézggnative Entry points: AMAX1, DMAX1, MAX, MAX0, MAX1,

MIN—Obtain the smallest value.

Alternative Entry points: AMIN1, AMING, DMIN1l, MIN, MINGO,
MIN1, QMINL.

MOD—O0btain a remainder.

Alternative Entry points: AMOD, DMOD, MOD, QMOD.
NINT—O0btain nearest integer.

Alternative Entry points: IDNINT, NINT.
SIGN—Transfer of sign.

Alternative Entry points: DSIGN, ISIGN, QSIGN, SIGN.

Appendix B. FORTRAN-Supplied Procedures

203

INTERNAL DATA CONVERSION ROUTINES
. CMPLX—Convert to complex.
Alternative entry points: CMPLX, DCMPLX, QCMPLX.
. DBLE—Convert to double precision.
Alternative entry points: DBLE, DBLEQ, DFLOAT.
. INT—Convert to integer.
Alternative entry points: HFIX, IDINT, IFIX, INT, IQINT.
. QEXT—Convert to real extended precision.
Alternative entry points: QEXT, QEXTD, QFLOAT.
. REAL—Convert to reali

Alternative entry points: DFLOAT, DREAL, FLOAT, QFLOAT,
QREAL, REAL, SNGL, SNGLQ.

. SNGL—Convert to single precision.

Alternative entry points: SNGL, SNGLQ.

CHARACTER MANIPULATION ROUTINES

. CHAR—Convert an integer to the character that corresponds to
it in the collating sequence.

. ICHAR—Convert a character to an integer that corresponds to
the character's position in the collating sequence.

. INDEX—O0btain location of character substring.
. LEN—Obtain length of character item.

. LGE—Alphamerically greater than or equal.

. LGT—Alphamerically greater than.

. LLE—Alphamerically less than or equal.

. LLT—Alphamerically less than.

204 VS FORTRAN Language Reference

APPENDIX C. IBM AND ANS FORTRAN FEATURES

Either the old FORTRAN (LANGLVL(66)) or the current FORTRAN
(LANGLVL(77)) compiler option is provided at the time of
compilation. The following groups of features are listed in this
appendix:
. New ANS FORTRAN 1977 features

General features

New statements

New features in old statements
. 0ld IBM extensions now in ANS FORTRAN 1977
. IBM extensions not in ANS FORTRAN 1977

o LANGLVL(66) features not in VS FORTRAN

NEKW ANS FORTRAN 1977 FEATURES
The following new features of the 1977 American National Stantard
(ANS) FORTRAN (not supported by the old IBM 0S and DQS FORTRAN
compilers) are supported in VS FORTRAN.

GENERAL FEATURES

. May use asterisk comment indicator in column one.

. Comment before continuation is allowed anywhere in the
program unit. Blank card is treated as a comment.

. External unit identifier may be an integer expression.
. Direct-access input/Zoutput (syntax different from IBM's).
J Storage-to-storage input/output (Internal File).
. Specified ignoring of input blanks.
. Expressions are allowed in output lists.
. Character data type is allowed.
- May include character substrings.
- The collating sequence may be altered.
. Subprograms without RETURN.
- END in subprogram is the same as RETURN.

. Functions (and their entry points) may exist without
arguments.

. Dummy argument may be defined if actual argument is in common.
. Array elements are allowed in statement function definitions. .

L Array némes without subscripts are allowed in the EQUIVALENCE
statement.

. Complex data may be defined through real components.

. Variables used in adjustable dimensions and lengths may be
redefined without any effect on size of array.

. Integer expressions are allowed in array declarators.

Appendix C. IBM and ANS FORTRAN Features 205

NEW STATEMENTS

Nonunity lower bounds for arrays are alloued.
Nonposi{ive subscript values are allowed.

Named BLOCK DATA subprograms are allowed.

Executable statements that cannot be reached are alloued.

ANINT, CHAR, DNINT, DPROD, ICHAR, IDNINT, INDEX, LEN, and
NINT are recognized as FORTRAN-supplied function names.

DARCOS and DARSIN functions have different names: DACOS and
DASIN.

Logical operators .EQV. and .NEQV., are allowed.
A number is permitted on nonexecutable statements.

Comparison of complex operands with equal and not equal
relationals is allowed.

Exponentiation of complex with complex is allowed.

All specification statements must precede all DATA
statements.

Negative values for input or output unit identifiers is
prohibited.

Literal format cannot be used for input.
H format cannot be used for input.

Use of a slash as a value separator in list-directed input is
allowed.

Character function is allowed.

Unspecified width is allowed in A format.

Block IF, ELSE IF, ELSE, END IF statements
CHARACTER type statement

CLOSE statement

DOUBLE PRECISION type statement

INQUIRE statement

INTRINSIC statement

OPEN statement

PARAMETER statement

PROGRAM statement

SAVE statement

NEW FEATURES IN OLD STATEMENTS

BACKSPACE statement:
- UNIT, ERR, and IOSTAT may be used.
COMMON statement:

- Commas are optional.

206 VS FORTRAN Language Reference

DATA statement:

- Implied DO statement is allowed.

- Type conversion is allowed.

- Commas after nonterminal slashes are optional.
DIMENSION statement:

— Specification can be negative or zero.

- Both lower and upper bound can be names of constants or
expressions.

DO statement:
- Loops may be indexed by nonpositive values.

- Loops may be indexed by integer, real, or double
precision values.

- Backward loops may be used.

- Zero trip loops may be used.

- Control variable is defined on completion.

- Control variable may be real or double precision.

- Terminal statements are allowed with computed GO TO,
PAUSE, LOGICAL IF, STOP, or RETURN. They are not allowed
with block IF.

- Comma is optional following terminal statement number.

- Subscript values can be negative or zero.

- Parameters may be any arithmetic expression except
complex.

- Parameters may be redefined in loop with no effect on loop
control.

- A block IF statement in the DO range must be entirely
within the range of the DO.

- The range of a DO within a block IF must be entirely
contained within the block.

- Transfer may be made into any active loop.

- D0 may be ended by any fall-through statement.

- Comma may be used before control variable.

END statement:

= May be numbered.

- Implies STOP or RETURN.

- Is executable.

ENDFILE statement:

= UNIT, ERR, and IOSTAT may be used.

EXTERNAL statement:

An ampersand (&) character as the first character of a name is
not permitted for compiler option LANGLVL(77). Any name that

appears in an EXTERNAL statement is considered as the name of
a user-supplied subprogram.

Appendix C. IBM and ANS FORTRAN Features 207

. FORMAT statement:
- BN and BZ specify ignoring of input blanks.
- Unlimited parentheses may be used.

- The label ASSIGNED may be the number of a FORMAT
statement.

- Field width is optional in Aw.
- Explicit nP scale factor may be used.

- Ew.dEe, Gw.dEe, Iw.d, SP, 85, S, TlLc, and TRc field
descriptors may be used.

- Colon may be used as scan terminator.

- Optional commas may be used with slashes and colons.
. GO TO statement, Assigned:

- List of statement numbers is optional.

- Comma outside parentheses is optional.
. GO0 TO statement, Computed:

- Index may be an integer expression.

- Comma may be outside parentheses.
. IMPLICIT statement:

- More than one may be used in a program unit.

- IMPLICIT may be preceded by ENTRY, FORMAT, or PARAMETER

statements and must precede all other specification

statements except PARAMETER statements.

- DOUBLE PRECISION and CHARACTER type statements are
included.

. PRINT statement:
- FORMAT designator may be a character constant.
. READ statements:
- FORMAT designator may be a character constant.
- UNIT, ERR, and IOSTAT may be used.
. RETURN statement:
- Index may be an integer expression.
. REWIND statement:
- UNIT, ERR, and IOSTAT may be used.
. STOP statement:
- Quoted literal is allowed.
- A character constant is permitted.
. Auxiliary input and output statements:

- UNIT and ERR may be used.

208 VS FORTRAN Language Reference

. WRITE statement:

- May not be used after ENDFILE in sequential input or
output.

- FORMAT designator may be a character constant.

- UNIT, FMT, REC, and IOSTAT may be used.

OLD IBM EXTENSIONS NOW IN ANS FORTRAN 1977
The following items supported as IBM extensions in old IBM 0S and
DOS FORTRAN compilers are now part of the 1977 ANS FORTRAN
language. These items are also supported in VS FORTRAN.
. Literals are enclosed in apostrophes.
. STOP and PAUSE statements:
- Decimal digits are supported.
- STOP statement string is accessible.
- Quoted literal in PAUSE statement is supported.
. T format is accepted as a field descriptor.
. Computed GO TO index out of range.
. All combinations of arithmetics across equal sign.
. Mixed-mode arithmetic.
. Mixed-mode relationals.
. Successive exponentiations.
. Generalized subscripts.
. Seven-dimensional arrays.
. END in READ.
. ERR in READ and WRITE.
. Short form of READ and PRINT.
. Sequential list-directed input/output.
. Asterisks for undersized output fields.
. IMPLICIT statement.
. Array names in DATA statement.
. ENTRY statement.
. Alternative returns from subroutines.
. Function and entry names in type statements.
] Generic facility.

. Additional processor-supplied functions.

IBM EXTENSIONS NOT IN ANS FORTRAN 1977
The following IBM extensions are supported by old IBM 0S and DO0OS

FORTRAN compilers but are not part of the 1977 ANS FORTRAN. They
will continue to be supported in VS FORTRAN as IBM extensions.

Appendix C. IBM and ANS FORTRAN Features 209

210

Some of the following features are available only under the
compiler option described in the next section, "LANGLVL(66)
Features Not in VS FORTRAN"

NAMELIST statement.

Hexadecimal.

Double Precision Complex.

Z and @ format descriptor.

G format for integer and logical.

ALGAMA, ARCOS, ARSIN, CC0S, CDABS, CDCOS, CDEXP, CDLOG,
CDSIN, CDSQRT, COTAN, CQABS, CQCO0S, CQEXP, CQLOG, CQSIN,
CQSQRT, DARCOS, DARSIN, DBLEQ, DCMPLX, DCONJG, DCOTAN, DERFC,
DERF, DFLOAT, DGAMMA, DIMAG, DLGAMA, DREAL, ERF, ERFC, GAMMA,
HFIX, IMAG, IQINT, LGAMMA, QABS, QARCOS, QARSIN, QATAN,
QATAN2, QCMPLX, QCONJG, QCOSH, QC0S, QCOTAN, QDIM, QERFC,
QERF, QEXP, QEXTD, QEXT, QFLOAT, QIMAG, QINT, QLOG, QLOG1O,
Q?iﬁl,sggfgl, QMOD, QREAL, QSIGN, QSINH, QSIN, QSQRT, QTANH,
Q » .

CeL%E%VCHK, CALL DUMP/PDUMP, CALL EXIT, CALL OVERFL, SLITE,
SLI .

Asynchronous READ, WRITE, and WAIT.

Extended Precision for REAL and COMPLEX.

Extended debug facility.

Hexadecimal constants in Z format are allowed.

Free form source statements.

TBe currency symbol ($) used as alphabetic character.
Data initialization in type specification statements.

Optional length specification in specification statements
(INTEGER, REAL, COMPLEX, LOGICAL) and in FUNCTION statements.

Mixed mode expressions involving complex and double
precision.

FORMAT identifier may be an array name (other than character
tvpe).

Continuation line may have anything in columns 1 through 5
other than "C" in column 1.

RETURN statement is the same as STOP in a main program.
Partitioned data sets.
Closing of data set on ABEND.

STOPn is allowed, where n equals a return code.

VS FORTRAN Language Reference

LANGLVL(66) FEATURES NOT IN VS FORTRAN

LANGLVL(66) instructs the compiler to compile a program according
to the 1966 FORTRAN language. Listed here are some of the features
of LANGLVL(66) that are not in LANGLVL(77). These items are not
compatible with VS FORTRAN.

Character constants may be assigned to integer, real,
complex, or logical in a DATA statement.

The ampersand (&) is included in the character set.

The ampersand (&) must be used instead of the asterisk (¥) for
an alternate return.

A program name can only be specified as a compiler option.
Arguments are received by value.
Dummy arguments can be enclosed in slashes.

DARCOS and DARSIN used as function names are recognized as
FORTRAN-supplied functions; DACOS and DASIN are recognized as
user-supplied function names.

DEFINE FILE statement.
DO statement and implied DO in I/0:
Loops are always executed at least once.

EQUIVALENCE statement. (Accept a multidimensional array with
one subscript.)

EXTERNAL statement:

If a FORTRAN-supplied function name appears in an EXTERNAL
statement preceded by an ampersand (&) it is considered a
user-supplied function name. If it is not preceded by an
ampersand (&), it is considered a FORTRAN-supplied function
name except as described below. The following names are
always considered user-supplied function names if they appear
in an EXTERNAL statement preceded or not by an ampersand (&):

ABS, AIMAG, AINT, AMAX0, AMAX1, AMINO, AMINl, AMOD, CMPLX,
CONJG, DABS, DBLE, DBLEQ, DCMPLX, DCONJG, DDIM, DFLOAT, DIM,
DIMAG, DINT, DMAX1, DMIN1, DMOD, DREAL, DSIGN, FLOAT, HFIX,
IABS, IDIM, IDINT, IFIX, IMAG, INT, IQINT, ISIGN, MAX, MAXO,
MAX1, MIN, MINO, MIN1, MOD, QABS, QCMPLX, QCONJG. QDIM, QEXT,
QEXTD, QFLOAT, QIMAG, QINT, QMAX1l, QMIN1, QMOD, QREAL, QSIGN,
REAL, SIGN, SNGL, SNGLQ.

FIND statement.

Function names: ANINT, CHAR, DPROD, DNINT, ICHAR, IDNINT,
INDEX, LEN, and NINT are recognized as user-supplied function
names.

GENERIC statement.

GENERIC means that generic names of FORTRAN-supplied
functions will be recognized as generic; if GENERIC is not
specified, the automatic function selection facility will not
be in effect.

IBM direct-access READ and WRITE.

INTRINSIC statement is not recognized as a VS FORTRAN
statement.

PUNCH b, list.

Appendix C. IBM and ANS FORTRAN Features 211

APPENDIX D. EXTENDED ERROR HANDLING SUBROUTINES

ERRMON SUBROUTINE

IBM provides four subroutines for use in extended error handling:
ERRSAV, ERRSET, ERRSTR, and ERRTRA. These subroutines allow
access to the option table to alter it dynamically.

Certain option table entries may be protected against alteration
when the option table is set up. If a request is made by means of
CALL ERRSTR or CALL ERRSET to alter such an entry, the request is
ignored.

Changes made dynamically are in effect for the duration of the
program that made the change. Only the current copy of the option
table in main storage is affected; the copy in the FORTRAN library
remains unchanged.

The user has the ability to call, from his own program, the
FORTRAN error monitor (ERRMON) routine, the same routine used by
FORTRAN itself when it detects an error. ERRMON examines the
option table for the appropriate error number and its associated
entry and takes the actions specified. If a user—-exit address has
been specified, ERRMON transfers control to the user-written
routine indicated by that address. Thus, the user has the option
of handling errors in one of two ways: (1) by calling ERRMON
without supplying a user-written exit routine; or (2) by calling
ERRMON and providing a user-uritten exit routine.

The error numbers chosen for user subprograms are restricted in
range. IBM-designated error conditions have reserved error codes
from 000 to 301. Error codes for installation-designated error
situations must be assigned in the range 302 to 899. Before you
use these subroutines, check with your system administrator about
codes and options you can use. The error code is used by FORTRAN
to find the proper entry in the option table.

Thé format of option table preface is shown in Figure 22.
The format of option table entries is shown in Figure 23.

Option table default values, as supplied by IBM, are shown in
Figure 24%.

The corrective action taken after an error occurs, is shown in
Figure 25.

The corrective action taken after a mathematical subroutine error
is shown in Figure 26.

The corrective action taken after a program interrupt is shown in
Figure 27.

To call the ERRMON routine, the following statement is used:

syntax v
CALL ERRMON (imes,iretcd,ierno [,datal,data2,...3)

imes
is the name of an array aligned on a fullword boundary, that
contains, in EBCDIC characters, the text of the message. The
number of the error condition should be included as part of
the text, because the error monitor prints only the text
passed to it. The first item of the array contains an integer
whose value is the length of the message. Thus, the first
four bytes of the array are not printed. If the message

212 VS FORTRAN Language Reference

ERRSAV SUBROUTINE

length is greater than the length of the buffer, it is
printed on two or more lines of printed output.

ireted
is an integer variable made available to the error monitor
fog the setting of a return code. The following codes can be
set?

0—The option table or user-exit routine indicates that
standard correction is required.

1—The option table indicates that a user exit to a
corraective routine has been executed. The function is to
be reevaluated using arguments supplied in the
parameters datal,data2... . For input/output type
errors, the value 1 indicates that standard correction
is not wanted.

ierno
is the error condition number in the option table. Should any
number not within range of the option table be specified, an
error message is printed.

datal,dataz. . o
are variable names in an error-detecting routine for the
passing of arguments found to be in error. One variable must
be specified for each argument. Upon return to the
error~detecting routine, results obtained from corrective
action are in these variables. Because the content of the
variables can be altered, the locations in which they are
placed should be only in the CALL statement to the error
monitor; otherwise, the user of the function may have
literals or variables destroyed.

Because datal and data2 are the parameters that the error
monitor passes to a user-written routine to correct the
detected error, care must be taken to make sure that these
parameters agree in type and number in a call to ERRMON
and/or in a call to a user-written corrective routine, if one
exists.

An example of CALL ERRMON is:
CALL ERRMON (MYMSG,ICODE,315,D1,D2)

The example states that the message to be printed is contained in
an array named MYMSG,-the field named ICODE is to contain the
return code, the error condition number to be investigated is 315,
and arguments to be passed to the user-uritten routine are
contained in fields named D1 and D2.

The CALL ERRSAV statement copies an option table entry into an
8-byte storage area accessible to the FORTRAN programmer. CALL
ERRSAV has the format:

——— Syntax
CALL ERRSAV (jierno, tabent)

ierno
is the error number in the option table. Should any number
not within the range of the option table be used, an error
message is printed.

tabent
is the name of an 8-byte storage area in which the option
table entry is to be stored.

An example of CALL ERRSAV is:

Appendix D. Extended Error Handling Subroutines 213

ERRSET SUBROUTINE

CALL ERRSAV (213,ALTERX)

The example states that error number 213 is to be stored in the
area named ALTERX.

The CALL ERRSET statement permits the user to change up to five
different options. It consists of six parameters. The last four
parameters are optional, but each omitted parameter must have its
place noted by a comma or a zero if succeeding parameters are
specified. (Omitted parameters at the end of the list require no
place notation.) CALL ERRSET has the format:

syntax
CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

1erno
is the error number in the option table. Should any number
not within the range of the option table be used, an error
message is printed. (If iernoc is specified as 212, there is a
special relationship between the ierno and irange
parameters. See the explanation of irange.)

inoal
is an integer specifying the number of errors permitted
before each execution is terminated. If inoal is specified
as aeither zero or a negative number, the specification is
ignored, and the number-of-errors option is not altered. If
a value of more than 255 is specified, an unlimited number of
errors is permitted.

The value of inoal should be set at 2 or greater if transfer
of control to a user-supplied error routine is desired after
an error. If this parameter is specified with a value of 1,
execution is terminated after only one error.

inomas
is an integer indicating the number of messages to be
printed. A negative value specified for inomes suppresses
all messages; a specification of zero indicates that the
number-of-messages option is not to be altered. If a value
greater than 255 is specified, an unlimited number of error
messages is permitted.

itrace
is an integer whose value may be 0, 1, or 2. A specification
of 0 indicates the option is not to be changed; a
specification of 1 requests that no traceback be printed
after an error. (If a value other 1 or 2 is specified, the
option remains unchanged.)

iusadr
specifies one of the following:

1. The value 1, indicating that the option table is to be
sat to show no user-exit routine (that is, standard
corrective action is to be used when continuing
execution).

2. The name of a closed subroutine that is to be executed
after the occurrence of the error identified by ierno.
The name must appear in an EXTERNAL statement in the
source program, and the routine to which control is to be
passed must be available at link editing time.

3. The value 0, indicating that the table entry is not to be
altered.

214 VS FORTRAN Language Reference

irange
serves a double function. It specifies one of the following:

1. An error number higher than that specified in ierno.
This number indicates that the options specified for the
other parameters are to be applied to the entire range of
error conditions encompassed by ierno and irange. (If
irange specifies a number lower than ierno, the
parameter is ignhored, unless ierno specifies the number
as 212.)

2. A print control character if ierno specified 212. The
value 1 is specified to provide single spacing for an
overflow line. If a value other than 1 is specified, no
print control is vrovided.

The default value 0 is assumed if the parameter is omitted (that
is, ho print control is provided, and the values specified for all
parameters apply only to the error condition number in ierno).

EXAMPLES OF CALL ERRSET
Example 1:
CALL ERRSET (310,20,5,0,MYERR,320)
This example specifies the following:
1. Error condition 310 (ierno).

2. The error condition may occur up to 20 times (inoal).

3. The corresponding error message may be printed up to 5 times
(inomes).

4., The default for traceback information is to remain in force

(itrace).

5. The user-uwritten routine MYERR is to be executed after each
error (iusadr).

6. The same options are to apply to all error conditions from 310
to 320 (irange).

Example 2:
CALL ERRSET (212,10,5,2,1,1)
This example specifies:
1. Error condition 212.
2. The condition may occur up to 10 times.
3. The corresponding message may be displayed up to 5 times.
4. Traceback information is to be displayed after each error.
5. Standard corrective action is to be executed after an error.
6. Print control is to be emploved.

For illustration purposes, this example explicitly specifies all
default options except that used in requesting print control.

Example 3:

CALL ERRSET (212,0,0,0,0,1)
This example illustrates an alternative method of specifying
exactly the same options as the second example. It states that no

changes are to be made to default settings in requesting print
control.

Appendix D. Extended Error Handling Subroutines 215

ERRSTR SUBROUTINE

ERRTRA SUBROUTINE

To ztore an entry in the option table, the following statement is
used:

syntax
CALL ERRSTR (ierno,tabent)

jerno
is the error number for which the entry is to be stored in
the option table. Should any number not within the range of
the option table be used, an error is printed.

tabhent ‘
is the name of an 8-byte storage area containing the table
entry data.

An example of CALL ERRSTR is:
CALL ERRSTR (213,ALTREX)

The example states that error number 213, stored in ALTREX, is to
be restored to the option table.

The CALL ERRTRA statement permits the user to dynamically request
a traceback and continued execution. It has the format:

syntax
CALL ERRTRA

The CALL ERRTRA statement has no parameters.

Field Field Default Field
Contents Length Value . Dascription

in Bytes ’
Number of 141 Number of entries in the option table.
entries
Boundary 160 Message number of the first table entry.
Alignment

Figure 22. Option Table Preface

216 VS FORTRAN Language Reference

Field

Field Length . L.
Contents in bytes befault Field Description
Number 1 102 Number of times this error condition
of error should be allowed to occur. When the
occurrences value of the error count field (below)
equals this value, job processing is
terminated. Number may range from 0 to
to 255. A value of 0 means an unlimited
number of occurrences.?
Number 1 5% Number of times the corresponding error
messages message is to be printed before message
to print printing is suppressed. A value of 0
means ho message is to be printed.
Error 1 0 The number of times this error has
count occurred. A value of 0 indicates that no
occurrences have been encountered.
Option 1 42 Eight option bits defined as follows
bits (hexa~- (the default setting is underscored):
decimal)
Bit|Setting|Explanation:
0 1] No control character
supplied for overflow lines.

1 Control character supplied
to provide single spacing
for overflow lines.

1 0 Table entry cannot be
modified.5

1 Table entry can be
modified.

2 g Fewer than 256 errors have
occurred.

1 More than 256 errors have
occurred. (Add 256 to error
count field above to
determine the number.

36)] Do not print buffer contents
with error message.

1 Print buffer contents.

% 0 Reserved.
5 9 Print messages default
number of times only.

1 Unlimited printing
requested; print for every
occurrence of error.

6 0 Do not print traceback map.

1 Print traceback map.

7 g Reserved.
User 4 1 Indicates where a user corrective
exit routine is available. A value other than

1 specifies the address of the user-
written routine.

Figure 23. Option Table Entry

Appendix D. Extended Error Handling Subroutines

217

218

Notes to Figure 23:

1.

The default values shouwn apply to all error numbers
(including additional user entries) unless excepted by a
footnote.

Errors 208, 210, and 215 are set as unlimited, and errors 205,
217, 230, and 240 are set to 1.

An unlimited number of errors may cause the FORTRAN job to
loop

Error 210 is set to 10, and errors 205, 217, 230, and 240 are
set to 1.

The entry for errors 205, 230, and 240 cannot be modified.

The entry is set to 0 except for errors 212, 215, 218, 221,
222, 223’ 224; and 225.

VS FORTRAN Language Reference

Option Bits

No. of No. of Modi~ |Print |Trace- |standard
Error |Errors Messages|Print fiable|{Buffer [back corrective|User
code |Allowed .JAllouwed jcontrol]eEntry {ContentjAllowed|action Exit
170- 10 5 NA Yes No Yes Yes None
200
203 10 5 NA Yes No Yes No None
206 10 5 NA Yes No Yes Yes None
205 1 1 NA No No No No None
206 10 5 NA Yes NA Yes Yes None
207 10 5 NA Yes NA Yes Yes None
208 Unlimited 5 NA Yes NA Yes Yes None
209 10 5 NA Yes NA Yes Yes None!l
210 Unlimited 10 NA Yes NA Yes Yes?! None
211 10 5 NA Yes NA Yes Yes None
212 10 5 No?2 Yes Yes Yes Yes None
213 10 5 NA Yes NA Yes Yes None
214 10 5 NA Yes NA Yes Yes None
215 Unlimited 5 NA Yes Yes Yes Yes None
216 10 5 NA Yes NA Yes Yess None
217 14 5 NA Yes NA Yes Yes None
218 105 5 NA Yes YesS Yes Yes None
219 10¢ 5 NA Yes NA Yes Yes None
220 10 5 NA Yes NA Yes Yes None
221 10 5 NA Yes Yes Yes Yes None
222 10 5 NA Yes Yes Yes Yes None
223 10 5 NA Yes Yes Yes Yes None
224 10 5 NA Yes Yes Yes Yes None
225 10 5 NA Yes Yes Yes Yes None
226 10 5 NA Yes NA Yes Yes None
227 10 5 NA Yes Yes Yes Yes None
228 10 5 NA Yes NA Yes Yes None
229 10 5 NA Yes Yes Yes Yes None
230 1 1 NA No NA Yes No None
231 10 5 NA Yes NA Yes Yes None
232 10 5 NA Yes NA Yes Yes None
233; 10 5 NA Yes NA Yes Yes None
3
238 10 5 NA Yes Yes Yes Yes None
240 1 1 NA No NA Yes No None
2;1; 10 5 NA Yes NA Yes Yes None
8
286 10 5 NA Yes NA Yes Yes None
287 10 5 NA Yes NA Yes Yes None
288 10 5 NA Yes NA Yes Yes None
289~ 10 5 NA Yes NA Yes Yes None
301
Figure 24. Option Table Default Values

Notes to Figure 24:

1.

No corrective action is taken except to continue execution.
For boundary alignment, the corrective action is part of the
support for misalign—- ment. For error 209, no user corrective
action can be specified.

If a print control character is not supplied, the overflow
line is not shifted to incorporate the print control
character. Thus, if the device is tape, the data is intact,
but if the device is a printer, the first character of the
overflow line is not printed but is treated instead as the
print control. Unless the user has planned the overflow, the
first character would be random and thus the overflow print
line control can be any of the posible ones. It is suggested
that when the device is a printer, the option be changed to
provide single spacing.

Corrective action consists of return to execution for SLITE.

Appendix D. Extended Error Handling Subroutines 219

220

It is not considered an error if the END parameter is present
in a READ statement. No message or traceback is printed and
the error count is not altered.

For an input/output error, the buffer may have been partially
filled or not filled at all when the error was detected. Thus,
the buffer contents could be blank when printed. When an ERR
parameter is specified in a READ statement, it is honored even
though the error occurrence is greater than the amount
allowed.

The count field does not necessarily mean that up to 10
missing DD cards will be detected in a single debugging run,
since a single WRITE performed in a loop could cause 10
occurrences of the message for the same missing DD card.

VS FORTRAN Language Reference

Error | Parameters | Standard Corrective User-supplied
Code pPassed to Action corrective Action
User

205 A,B,D Program termination. See Note 2.

206 A,B,I I=low order part of number for User may alter I (see
input too large. Note 3).

211 A,B,C Treat format field containing C If compiled FORMAT
as end of FORMAT statement. statement, put

hexadecimal equivalent
of character in C. If
variable format, move
EBCDIC character into C.
(See Note 1).

212 A,B,D Input: Ignore remainder of I/0 See Note 2.
list.

Qutput: Continue by starting
new output record. Supply
carriage control character if
required by Option Table.

213 A,B,D Ignore remainder of I/70 list. See Note 2.

214 A,B,D Input: Ignore remainder of I/0 If user correction is
list. Ignore input/output requested, the remainder
request if for ASCII tape. of the I/0 list is

ighored.
Qutput: If unformatted write
initially requested, change
record format to VS. If
formatted write initially
requested, ignore input/output
request.

215 A,B,E Substituta zero for the invalid The character placed in

character. E will be substituted
for the invalid
character; input/output
operations may not be
paerformed (see Note 1).

217 A,B,D Increment FORTRAN sequence See Note 2.
number and read next file.

218 A,B,D,F Ignore remainder of I/0 list. See Note 2.

219- A,B,D Ignore remainder of 170 list. See Note 2.

226

225 A,B,E Substitute zero for the invalid The character placed in
character. E will be substituted

for the invalid
character (see Note 1).
226 A,B,R R=0 for input number too small. User may alter R.
R = 16%%63 - 1 for input number
too large.

227 A,B,D Ignore remainder of I/0 list. See Note 2.

229 A,B,D Ignore remainder of I/0 list. See Note 2.

231 A,B,D Ignore remainder of I/0 list. See Note 2.

232 A,B,D,6 Ignore remainder of I/0 list. See Note 2.

Figure 25 (Part 1 of 2).

Corrective Action After Error

Appendix D. Extended Error

Handling Subroutines

221

Error | Parameters | Standard Corrective User-Supplied
Code Passed to Action corrective Action
User »
233 A,B,D Change record number to list See Note 2.
maximum allowed (32000).
234 A,B,D Ignore remainder of I/0 list. See Note 2.
236
237 A,B,D,F Ignore remainder of I/0 list. See Note 2.
238 A,B,D Ignore remainder of I/0 list. See Note 2.
240 See Note 4 Program termination None
286 A,B,D Ignore request ‘ | See Note 2.
287 A,B,D Ignore request see Note 2.
288 A,B,D Implied wait See Note 2.

Figure 25 (Part 2 of 2). Corrective Action After Error

222

Notes to Figure 25:

Parameter Meaning

Address of return code field (INTEGERX4)

Address of error number (INTEGERX4)

Address of invalid format character (LOGICALX1)
Address of data set reference number (INTEGERX%)
Address of invalid character (LOGICAL%1)

Address of DECB

Address of record number requested (INTEGERX4%)
Result after conversion (INTEGER%4%)

Result after conversion (REAL¥4)

AHOMMOO W

If error condition 218 (input/output error detected) occurs while
error messages are being written to the object error data set, the
message is written to the console and the job is terminated. If no
DD card has been supplied for the object error data set, error
message IFY2191 is written out at the console and the job is
terminated.

Note 1: Alternatively, the user can set the return code to 0,
thus requesting a standard corrective action.

Note 2 If the error was not caused during asynchronous
input/output processing, the user exit-routine cannot perform any
asynchronous I/0 operation and, in addition, may not perform any
REWIND, BACKSPACE, or ENDFILE operation. If the error was caused
during asynchronous input/ocutput processing, the user cannot
perform any input/output operation. On return to the library, the
remainder of the input/output request will be ignored.

Note 3: The user exit routine may supply an alternative answer
for the setting of the result register. The routine should always
set an INTEGER¥4 variable and the FORTRAN library will load
fullword or halfuword depending on the length of the argument
causing the error.

Note 4: Code 240 generates a message showing the system or
program code causing program termination, the address of the STAE
Control Block, and the contents of the last PSW when abnormal
termination occurred. Further information appears under message
code IFY240 in VS FORTRAN System Service Reference Supplement.

VS FORTRAN Language Reference

Options
User-supplied
FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range. (See Notes 2 and 3) (See Note 4)
261 K=I%%J I=0, J<O K=0 I,J
262 Y=X¥%%] X=0, IZ<O If I=0, Y=1 X,1I
If I<0, Y=o
243 DA=D¥X] D=0, I<0 If I=0, Y=1 D,I
If I<0, Y=e
244 XA=XxxY X=0, Y0 XA=0 X,Y
245 DA=D*%DB D=0, DB<ZO DA=0 D,DB
246 CA=Cxx*] C=0+0i, IZL0 If I=0, C=1+0i c,I
If I<0, C=e+0i
247 CDA=CD*I C=0+0i, I<O If I=0, C=1+0i CD,1
If I<0, C=e+0}
248 Q=QAXX%J QA=0, JLO J<0, Q=e QA,J
J=0, Q=1
249 Q=QA%%QB QA=0, QBZO QB<0, Q=e QA,QB
QB=0, Q=1
QA<0, QB#.0 Q=| QA [%*%*QB
250 Q=QAX%QB logs(QA)I*QB2252| Q=e QA, QB
251 Y=SQRT (X) X<0 Y=|x|1/2 X
252 Y=EXP (X} X>176.673 Ye X
253 Y=ALOG (X) X=0 Y=o X
X<0 Y=loglX] X
Y=ALOG10 (XD X=0 Y=-% X
X<0 Y=log,, 1x1 X
2564 Y=C0S (X) IX|2(218)%n Y=V272 X
Y=SIN (X)
255 Y=ATAN2 (X,XA)| X=0. XA=0 Y=y X, XA
256 Y=SINH (X) |H|2175.366 Y=(SIGN of X)e X
Y=COSH(X) Y=e
257 Y=ARSIN (X) IX]>1 If X>1.0,ARSIN(X)=§'
If X<-1.0,ARSIN(X)=-§
Y=ARCO0S (XD If X>1.0,ARC0S=0
If X<-1.0,ARCOS=Tm
258 Y=TAN (X) IX]2¢28)y%n Y=1 X
Y=COTAN (X)

Figure 26 (Part 1 of:4).

Corrective Action After Mathematical Subroutine Error

Appendix D. Extended Error Handling Subroutines

223

Options
Standard User-supplied
FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range (5ee Notes 2 and 3) (See Note 4)
259 Y=TAN (X) X is too close] Y=e X
to an odd
multiple of-g
Y=COTAN (X) X is too close| Y=ze
to a multiple
ofm
260 Q=2%%QA QA>252 Q=e QA
261 DA=D3QRT (D) D<0 DA=|D| /2 D
262 DA=DEXP (D) D>174.673 D=e
263 DA=DLOG (D) D=0 DA=-e
D<0 DA=loglX|
DA=DLOG10 (D) D=0 DA=-e D
D< DA=log,, IXI
264 DA=DSIN (D) IDI2(250)% « DA=N272 D
DA=DCOS (D)
265 DA=DATAN2(D,DB)]| D=0,DB=0 DA=¢ D,DB
266 DA=DSINH (D) ID}2175.366 DA=(SIGN of X)e D
DA=DCOSH (D) DA=e
267 DA=DARSIN (D) IDI>1 If D>1.0 DARSIN ='§
If D<-1.0 DARSIN=-~
DA=DARCOS (D) If D>1.0 DARCOS (D)=0
If D<-1.0 DARCOS(D)=7
268 DA=DTAN (D) IX]12¢259)% 7 DA=1 D
DA=DCOTAN (D)
269 DA=DTAN (D) D is too close|DA=e D
to an odd
multiple of f
DA=DCOTAN (D) D is too close|DA=e D
to a multiple
ofw
For error 270, CQA=X,+iX,
270 CQ=CQA»¥J CQA=0+0i J=0, CQ=1+0.i CQA,J
J<o J<0, CQ=e+0,i
For errors 271 through 275, C=X +iX,
271 Z=CEXP (C) X,>174.673 Z=%(C0S X,+ iSIN X;) c
272 |Z=CEXP (C) IX, 12022 0)% 1 |Z=e*140%i
273 Z2=CL0G (C) C=0+0i Z2=-e+03

Figure 26 (Part 2 of 4). Corrective Action After Mathematical Subroutine Error

224 VS FORTRAN Language Reference

Options
User-Supplied
FORTRAN Invalid Standard Corrective
Error Reference Argument Corrective Action Action
Code (See Note 1) Range - (See Notes 2 and 3) (See Note %)
274 Z=CSIN (C) IX,IZ(ZI‘)*" Z=0+SINH(X 2) %i C
Z=CC0S (C) Z=COSH(X,)+0%i c
275 Z=SCIN (C) X3>176,673 Z=s(SIN X{+iC0S X,) C
2
2=CC0S (C) Z=2(C0S X,-iSIN Xy
2
Z=CSIN (C) X,<=174.673 Z=e (SIN Xy-iCOS Xy Cc
2
Z=CC0S (C) Z=%(COS X +iSIN Xy) c
For errors 276 through 280, CQ=X,+iX,
276 Z=CQEXP (CQ) X;>174.673 Z=%(C0S X,+iSIN X,) cQ
277 |z=ceEXP (CcQ) IX,]>2190 z='1 +0%i cQ
278 Z2=CQLOG (CQ) CQ=0+0i 2=~-e+0j cQ
279 Z2=CQSIN (CQ) IX 22100 Z=0+DSINH(X,) %i cQ
Z2=CQC0S (CQ) Z=DCOSH(X5)+0%i
280 Z=CQSIN (CQ) X,>1764.673 Z=%(SIN X;+iC0S X;) cQ
Z=CQC0s (cQ) Z=%(COS X =iSIN X;) cQ
Z=CQSIN (CQ) X2<-174.673 Z=%(SIN X =iC0S X,) cQ
Z=CQC0Ss (CQ) Z=%(COS X +iSIN X, cQ
For errors 281 through 285, CD=X;+iX,
281 Z=CDEXP (CD) Xl>174.673 Z=%(C0S Xz+iSIN X,) cD
282 Z=CDEXP (CD) IXZIZ(25°)*ﬂ Z=exl +0%;§ CDh
283 2=CDLOG (CD) CD=0+0i{ Z=-¢+0i ch
284 Z=CDSIN (CD) IXIIZ(25°)*ﬂ z= 0+SINH(X2)*i (o)}
Z=CDCOS (CD) Z= COSH(X,)+0%j
285 Z=CDSIN (CD) X2>1764.673 Z=%(SIN X, +ic0s X,) CcD
Z=CDC0S (CD) Z=%(COS X,~iSIN X) cb
Z=CDSIN (CD) X3<=174.673 Z=%(SIN X,=iC0S X,) ()]
Z=CDCO0S (CD) Z=%(COS X‘+iSIN Xy) ch
Figure 26 (Part 3 of 4). Corrective Action After Mathematical Subroutine Errpr

Appendix D. Extended Error Handling Subroutines

225

Optipns
User-Supplied
FORTRAN - Invalid Standard Correctiva
Error Reference Argument Corractive Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Note 6)
289 |[QAZQSQRT (Q) Q<0 QA=|Q[1/2 Q
290 Y=GAMMA (X) X<2-252 op Y=o X
X257.5744%
291 Y=ALGAMA (X) X<0 or Y=o X X
X26.2937%1073
292 QA=QEXP (Q) Q>174.673 QA=e Q
293 QA=QLOG (Q) Q=0 QA=-e Q
Q<0 QAzlog|X| Q
QA=QLOG10 (Q) Q=0 QA==+ Q
Q<0 QA=log,4IX| Q
296 [QA=QSIN (Q) [Q[22100 QA=V272 Q
QA=QCO0S (Q)
295 QA=QATAN2(Q,QB)| @=0, QB=0 QA=0 Q,QB
296 QA=QSINH (Q) [Q[2175.366 QA=e(SIGN Q)e Q
QA=QCOSH (Q) QA=e
297 |QA=QARSIN (Q) fQl>1 If Q1.0 QARSIN=T
If Q<-1.0 QARSIN=-T
QA=QARCOS (Q) If Q>1.0 QARCOS(Q)=0 Q
If Q<~1.0 QARCOS(Q)=T7
298 QA=QTAN (Q) [Qf>2100 QA=1 Q
QA=QCOTAN (Q)
299 QA=QTAN (Q) Q@ is too close|QA=e Q
to an odd -
multipla of
QA=QCOTAN (Q) Q is too close|QA=e Q
to a multiple
of m
300 DA=DGAMMA (D) Dg2-252 op DAze D
D257.5774
301 DA-DLGAMA (D) D50 or DA=e
D24.2937%1073

Figure 26 (Part 4 of 4). Corrective Action After Mathematical Subroutine Errar

226 VS FORTRAN Language Reference

Notes to Figure 26:

1. The variable types are as follows:

Variable Type

I,J,K INTEGERX4
X, XA,Y REALX4
D,DA,DB REAL%8
C,CA COMPLEXx8
Q,QA,QB REAL%16
CQ,CQA COMPLEX%32
Z,X,5X, Complex variables to be given the length
of the functioned argument when they appear.
CD,CDA COMPLEXx16

2. The largest number that can be represented in floating point
is indicated by the symbol ».

3. The value e= 2.7183 (approximately).
4. The user-supplied answer is obtained by recomputation of the

function using the value set by the user routine for the
parameters listed.

Appendix D. Extended Error Handling Subroutines 227

Program Interrupt Messages Options
Parameters User-
Passed to Supplied
Error| User Exit Reason for Interrupt Standard Corrective Corrective
Code (Note 1) (Note 2) Action Action
207 D,I Exponent overflow Result register set to}User may
(Interrupt Code 12) the largest possible alter D.
floating point number.|(Note 3)
The sign of the result
register is not
altered.
208 D,I Exponent underflow The result register is|User may
(Interrupt Code 13) set to zero. alter D.
(Note 3)
209 None Divide check, integer For floating point See Note 5.
divide (interrupt divide, where n/0 and
code 9), decimal divide |n=0, result register
(Interrupt Code 11}, is set to 0; where
floating point Code 11),|n#0, result register
floating point divide set to largest
(interrupt code 15). possible floating
See Note %. point number. No
standard fixup for
.other interrupts.
210 None Specification interrupt |No special corrective |See Note 5.
(interrupt Code 6) action other than
occurs for boundary correcting boundary
misalignment. Operation |misalignments.
exception (interrupt
code 1) occurs for oper-
ation interrupt. Other
interrupts occur during
boundary alignment
adjustment or extended
precision floating point
simulation. They will be
shown with this error
code and the PSW portion
of the message will
identify the interrupt.
Figure 27. Corrective Action After Program Interrupt
Notes to Figure 27:
1. The variable types and meaning are as follows:
Variable Type Meaning
REALX8 This variable contains the contents
I INTEGERX% The variable contains the "exponent" as
an integer value for the number in D.
It may be used to determine the amount of
the underflow or overflow. The value in I
is not the true exponent, but what was
left in the exponent field of a floating
point number after the interrupt.
2. Asynchronous Program interrupts are described in the
appropriate principles of operation publiction, as listed in
the Preface.
3. The user exit routine may supply an alternate answer for the
setting of the result register. This is accomplished by
placing a value for D in the user-exit routine. Although the
interrupt may be caused by a long or short floating-point
228 VS FORTRAN Language Reference

operation, the user-exit routine need not be concerned with
this. The user-exit routine should always set a REALX*16
variable and the FORTRAN library will load the correct length
data item depending upon the floating-point operation that
caused the interrupt.

For floating-point divide check, the contents of the result
register is shown in the message.

The user-exit routine does not have the ability to change
result registers after a fixed-point divide check. The
boundary alignment adjustments are informative messages, and
there is nothing to alter before execution continues.

Appendix D. Extended Error Handling Subroutines 229

SERVICE SUBROUTINES

DVCHK SUBROUTINE

The CALL DVCHK statement tests for a divide-check exception and
returns a value indicating the existing condition.

syntax
CALL DVCHK (3)

i
is an integer or real variable in the program unit.

The values of j returned have the following meanings:

Value Meaning
1 The divide-check indicator is on.
2 The divide-check indicator is off.

DUMP/PDUMP SUBROUTINE

The CALL DUMP/PDUMP statement dynamically dumps a specified area
of storage.

syntax
CALL {DUMP|PDUMP} (al,bl,il,...an,bn,in)

& and b
are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either a or b can represent the upper or lower limits of the
storage area.

i e
specifies the dump format to be used.

The values that can be specified for j and their meanings are:
value Format Requested

Hexadecimal
LOGICAL*4
INTEGERX%2
INTEGERX%
REAL X4
REALX%8
COMPLEXXS8
COMPLEXx*16
CHARACTER
REAL¥16
COMPLEX%*32

OOV NOUILUWN -

- -

When a CALL DUMP statement is executed, the area requested is
dumped onto the system output data set and execution is
terminated.

When a CALL PDUMP statement is executed, the area requested is
dumped onto the system output data set and execution continues.

230 VS FORTRAN Language Reference

CDUMP/CPDUMP SUBROUTINE

EXIT SUBROUTINE'

The CALL CDUMP/CPDUMP statement dynamically dumps a specified
area of storage.

syntax
CALL {CDUMPI|CPDUMP} (al,bl,...an,bn)

a and b
are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either a or b can represent the upper or lower limits of the
storage area.

The dump is always produced in character format.

The CALL EXIT statement terminates execution of the load module or
phase and returns control to the operating system.

syntax
CALL EXIT

CALL EXIT performs a function similar to that of the STOP
statement, except that no operator message is produced.

OPSYS SUBROUTINE (DOS ONLY)

OVERFLW SUBROUTINE

The CALL OPSYS statement loads the overlay feature, allowing the
user to divide a program into a number of phases.

syntax
CALL OPSYS('LOAD', 'phasename’)

LOAD
is required to be entered as shown.

"phasename’
specifies the name of the phase to be loaded. The phase must
be in the core image library.

the "phasename' must be specified in eight alphameric characters.
If fewer than eight characters are specified, the name should be
left-adjusted within the field and padded on the right with
blanks. Alternatively, the name of the phase may be specified as a
variable or in an array.

The CALL OVERFLW statement tests for exponent overflow or
underflow, and returns a value indicating the existing condition.

syntax
CALL OVERFLW (3)

is an integer or real variable defined within this program
unit.

Appendix D. Extended Error Handling Subroutines 231

232

The values of j returned have the following meanings:

Value Meaning
1 Floating-point overflow occurred last.
2 No overflow or underflow condition is current.
3 Floating-point underflow occurred last.

Note: The values for 1 and 3 indicate the last one to occur; if
the same statement causes an overflow followed by an underflow the
value returned is 3 (underflow occurred last).

VS FORTRAN Language Reference

APPENDIX E. EBCDIC AND ASCII CODES

EBCDIC refers to IBM EBCDIC code point ordering for the 256 character set.
IS0 8 bit refers to IS0 2022 code point ordering for the 256 character set.

ASCII 7 bit refers to ANSI X3.4-1977 code point ordering for the 128 character set.
ASCII 6 bit refers to ANSI X3.32-1973 code point ordering for the 64 character set.

The column used for the lexical intrinsic functions is ASCII 7 bit.

The blank character to be used to extend character strings for the intrinsic functions
LGE, LGT, LLE, and LLT is the ASCII blank (HEX 20).

Note 1: This position does not exist in ANSI X3.4-1977 for 7-bit code.
Note 2: This position does not exist in ANSI X3.32-1973 for 6-bit code.
Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR ICHAR ICHAR
00] NUL Null 0 0 Note 2
01 1 SOH Start of heading 1 1 Note 2
02 2 STX Start of text 2 2 Note 2
03 3 ETX End of text 3 3 Note 2
04 4 SEL Select 156 Note 1 Note 2
05 5 HT Horizontal Tab 9 9 Note 2
06 6 RNL Reguired new line 134 Note 1 Note 2
07 7 DEL Delete 127 127 Note 2
08 8 GE Graphic Escape 151 Note 1 Note 2
09 9 SPS Superscript 141 Note 1 Note 2
0A 10 RPT Repeat 142 Note 1 Note 2
0B 11 vT Vertical Tab 11 11 Note 2
oC 12 FF Form Feed 12 12 Note 2
0D 13 CR Carriage Return 13 13 Note 2
0E 14 S0 Shift out 14 14 Note 2
0F 15 SI Shift in 15 15 Note 2
10 16 DLE Data link escape 16 16 Note 2
11 17 DC1 Device control 1 17 17 Note 2
12 18 DC2 Device control 2 18 18 Note 2
13 19 DC3 Device control 3 19 19 Note 2
14 20 RES Restore 157 Note 1 Note 2
ENP Enable presentation
15 21 NL New line 133 Note 1 Note 2
acknowledgement
16 22 BS Backspace 8 8 Note 2
17 23 PQOC Program-operator 135 Note 1 Note 2
communication
18 2% CAN Cancel 24 2% Note 2
19 25 EM End of Medium 25 25 Note 2
1A 26 UBS Unit backspace 146 Note 1 Note 2
1B 27 cuUl Customer use 1 143 Note 1 Note 2
i1C 28 IFS Interchange file 28 28 Note 2
separator
1D 29 IGS Interchange group 29 29 Nota 2
separator

Appendix E. EBCDIC and ASCII Codes

233

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR ICHAR ICHAR
1E 30 IRS Interchange record 30 30 Note 2
separator
1F 31 IUS Interchange unit 31 31 Note 2
separator
ITB Intermediate trans.
block
20 32 DS Digit select 128 Note 1 Note 2
21 33 S0S Start of 129 Note 1 Note 2
significance
22 34 FS Field separator 130 Note 1 Note 2
23 35 WUS Word underscore 131 Note 1 Note 2
24 36 BYP Bypass 132 Note 1 Note 2
INP Inhibit presentation
25 37 LF Line feed 10 10 Note 2
26 38 ETB End of trans. block 23 23 Note 2
27 39 ESC Escape 27 27 Note 2
28 40 Reserved 136 Note 1 Note 2
29 41 Reserved 137 Note 1 Note 2
2A 42 SM, SW Set mode, Switch 138 Note 1 Note 2
2B 43 FMT Format 139 Note 1 Note 2
2C 44 Reserved 140 Note 1 Note 2
2D 45 ENQ Enquiry 5 5 Note 2 -
2E 46 ACK Acknowledge 6 6 Note 2
2F 47 BEL Bell 7 7 Note 2
30 48 Reserved 144 Note 1 Note 2
31 49 Reserved 145 Note 1 | Note 2
32 50 SYN Synchronous 22 22 Note 2
33 51 IR Index 147 Note 1 Note 2
34 52 PP Presentation position 148 Note 1 Note 2
35 53 TRN Transparent 149 Note 1 Note 2
36 54 NBS Numeric backspace 150 Note 1 Note 2
37 55 EOT End of transmission % 4 | Note 2
38 56 SBS Subscript 152 Note 1 Note 2
39 57 IT Indent 153 Note 1 Note 2
3A 58 RFF Required 154 Note 1 Note 2
3B 59 CcuU3 Customer use 3 155 Note 1 Note 2
3C 60 DC4 Device code 4§ 20 20 Note 2
3D 61 NAK Negative acknowledge 21 21 Note 2
JE 62 Reserved 158 Note 1 Note 2
3F 63 SUB Substitute 26 26 Note 2
40 66 SP Space 32 32 0
41 65 RSP Required space 160 Note 1 Note 2
42 66 161 Note 1 Note 2
43 67 162 Note 1 Note 2
44 68 163 Note 1 Note 2
45 69 164 Note 1 Note 2
46 70 165 Note 1 Note 2
47 71 166 Note 1 Note 2
48 72 167 Note 1 Note 2
49 73 168 Note 1 Note 2
GA 74 ¢ Cent sign 91 91 59
4B 75 . Period, decimal point 46 46 146
4C 76 < Less-than sign 60 60 28
4D 77 (Left parenthesis 40 40 8
GE 78 + Plus sign 43 43 11
4F 79] Logical OR 33 33 1
234 VS FORTRAN Language Reference

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR ICHAR ICHAR
50 80 & Ampersand 38 38 6
51 81 169 Note 1 Note 2
52 82 170 Note 1 Note 2
53 83 171 Note 1 Note 2
54 84 172 Note 1 Note 2
55 85 173 Note 1 Note 2
56 86 174 Note 1 Note 2
57 87 175 Note 1 Note 2
58 88 176 Note 1 Note 2
59 89 177 Note 1 Note 2
54 90 ! Exclamation point 93 93 61
5B 91 $ Currency symbol 36 36 %
5C 92 % Asterisk %2 42 10
5D 93) Right parenthesis 41 41 9
5E 94 H Semicolon 59 59 27
5F 95 - Logical NOT 94 9% 62
60 96 - Minus sign, Hyphen 45 45 13
61 97 / Slash 47 47 15
62 98 178 Note 1 Note 2
63 99 179 Note 1 Note 2
6% 100 180 Note 1 Note 2
65 101 181 Note 1 Note 2
66 102 182 Note 1 Note 2
67 103 183 Note 1 Note 2
68 104 184 Note 1 Note 2
69 105 185 Note 1 Note 2
6A 106 | Vertical line 124 124 Note 2
6B 107 » Comma 44 44 12
6C 108 % Percent sign 37 37 5
6D 109 _ Underscore 95 95 63
6E 110 > Greater-than sign 62 62 30
6F 111 ? Question mark 63 63 31
70 112 186 Note 1 Note 2
71 113 187 Note 1 Note 2
72 114 188 Note 1 Note 2
73 115 189 Note 1 Note 2
74 116 190 Note 1 Note 2
75 117 191 Note 1 Note 2
76 118 192 Note 1 Note 2
77 119 193 Note 1 Note 2
78 120 194 Note 1 Note 2
79 121 GRA Grave accent 96 96 Note 2
74 122 : Colon 58 58 26
7B 123 # Number sign 35 35 3
7C 124 d At sign 64 64 32
7D 125 ' Prime, Apostrophe 39 39 7
7E 126 = Equal sign 61 61 29
7F 127 w Quotation marks 34 34 2
80 128 195 Note 1 Note 2
81 129 a Lower case a 97 97 Note 2
82 130 b Lower case b 98 98 Note 2
83 131 c Lower case c 99 99 Note 2
84 132 d Lower case d 100 - 100 Note 2
85 133 e Lower case e 101 101 Note 2
86 134 f Lower case f 102 102 Note 2
87 135 g Lower case g 103 103 Note 2
88 136 h Lower case h 104 04 Note 2
89 137 i Lower case i 105 105 Note 2
84 138 196 Note 1 Note 2
8B 139 197 Note 1 Note 2

Appendix E. EBCDIC

and ASCII Codes

235

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for
ICHAR Control ICHAR | ICHAR ICHAR
8C 140 198 Note 1 Note 2
8D 141 199 Note 1 Note 2
8E 142 200 Note 1 Note 2
8F 143 201 Note 1 Note 2
90 1644 202 Note 1 Note 2
91 145 3 Lower case j 106 106 Note 2
92 146 k Lower case k 107 107 Note 2
93 147 1 Lower case 1 108 108 Note 2
94 148 m Lower case m 109 109 Note 2
95 149 n Lower case n 110 110 Note 2
96 150 [} Lower case o 111 111 Note 2
97 151 P Lower case p 112 112 Note 2
98 152 q Lower case d 113 113 Note 2
99 153 r Lower case r 114 114 Note 2
9A 154 203 Note 1 Note 2
9B 155 204 Note 1 Note 2
9C 156 205 Note 1 Note 2
9D 157 206 Note 1 Note 2
SE 158 207 Note 1 Note 2
9F 159 208 Note 1 Note 2
A 160 209 Note 1 Note 2
Al 161 TIL Tilde 126 126 Note 2
A2 162 s Lower case s 115 115 Note 2
A3 163 t Lower case t 116 116 Note 2
A 164 u Lower case u 117 117 Note 2
A5 165 v Lower case v 118 118 Note 2
Ab 166 W Lower case w 119 119 Note 2
A7 167 X Lower case X 120 120 Note 2
A8 168 v Lower case y 121 121 Note 2
A9 169 z Lower case =z 122 122 Note 2
AA 170 210 Note 1 Note 2
AB 171 211 Note 1 Note 2.
AC 172 212 Note 1 Note 2
AD 173 213 Note 1 Note 2
AE 174 214 Note 1 Note 2
AF 175 215 Note 1 Note 2
BO 176 216 Note 1 Note 2
Bl 177 217 Note 1 Note 2
B2 178 218 Note 1 Note 2
B3 179 219 Note 1 Note 2
B4 180 220 Note 1 Note 2
B5 181 221 Note 1 Note 2
B6 182 222 Note 1 Note 2
B7 183 , 223 Note 1 Note 2
B8 184 224 Note 1 Note 2
B9 185 225 Note 1 Note 2
BA 186 226 Note 1 Note 2
BB 187 227 Note 1 Note 2
BC 188 228 Note 1 Note 2
BD 189 229 Note 1 Note 2
BE 190 230 Note 1 Note 2
BF 191 231 Note 1 Note 2
Co 192 { Opening brace 123 123 Note 2
Cl 193 A Upper case A 65 65 33
c2 194 B Upper case B 66 66 34
C3 195 C Upper case C 67 67 35
Cé 196 D Upper case D 68 638 36
Cc5 197 E Upper case E 69 69 37
Cé 198 F Upper case F 70 70 38
c7 199 G Upper case G 71 71 39

236 VS FORTRAN Language Reference

Ordinal EBCDIC IS0 ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code: for or for for for
ICHAR Control ICHAR ICHAR ICHAR
Cc8 200 H Upper case H 72 72 40
c9 201 I Upper case I 73 73 41
CcA 202 232 Note 1 Note 2
CB 203 233 Note 1 Note 2
cC 204 234% Note 1 Note 2
CcD 205 235 Note 1 Note 2
CE 206 236 Note 1 Note 2
CF 207 237 Note 1 Note 2
DO 208 } Closing brace 125 125 Note 2
D1 209 J Upper case J 74 74 42
D2 210 K Upper case K 75 75 43
D3 211 L Upper case L 76 76 44
D4 212 M Upper case M 77 77 45
D5 213 N Upper case N 78 78 46
Dé 214 1] Upper case 0 79 79 47
D7 215 P Upper case P 80 80 48
D8 216 Q Upper case Q 81 81 49
D9 217 R Upper case R 82 82 50
DA 218 238 Note 1 Note 2
DB 219 239 Note 1 Note 2
DC 220 240 Note 1 Note 2
DD 221 241 Note 1 Note 2
DE 222 242 Note 1 Note 2
DF 223 243 Note 1 Note 2
EO 2264 \ Reverse slant 92 92 60
El 225 159 Note 1 Note 2
E2 226 S Upper case S 83 83 51
E3 227 T Upper case T 84 86 52
E4 228 U Upper case U 85 85 53
E5 229 v Upper case V 36 86 54
E6 230 W Upper case W 87 87 55
E7 231 X Upper case X 88 88 56
E8 232 Y Upper case Y 89 89 57
ES 233 z Upper case Z 90 90 58
EA 234 244 Note 1 Note 2
EB 235 245 Note 1 Note 2
EC 236 246 Note 1 Note 2
ED 237 247 Note 1 Note 2
EE 238 248 Note 1 Note 2
EF 239 249 Note 1 Note 2
“ FoO 240 0 Zero 48 48 16
F1 241 1 One 49 69 17
F2 242 2 Two 50 50 18
F3 243 3 Three 51 51 19
F& 244 4 Four 52 52 20
F5 245 5 Five 53 53 21
Fé6 246 6 Six 54 54 22
F7 247 7 Saven 55 55 23
F8 248 8 Eight 56 56 24
F9 249 9 Nine 57 57 25
FA 250] Long vertical mark 250 Note 1 Note 2
FB 251 251 Note 1 Note 2
FC 252 252 Note 1 Note 2
FD 253 253 Note 1 Note 2
FE 254 254 Note 1 Note 2
FF 255 EO Eight ones 255 Note 1 Note 2

Appendix E. EBCDIC

and ASCII Codes

237

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standarization (IS0).

An asterisk (%) to the left of a term
indicates that the entire entry is
reproduced from the American National
Dictionary for Information Processing,
copyright 1977 by the Computer and
Business Equipment Manufacturers
Association, copies of which may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018.

An asterisk (¥) to the right of an item
number indicates an ANSI definition in an
entry that also includes other
definitions.

The symbol "(IS0)" at the beginning of a
definition indicates that it has been
discussed and agreed upon at meetings of
the International Organization for
Standardization Technical Committee
97/Subcommittee 1 (Data Processing
Vocabulary), and has also been approved
by ANSI and included in the American
National Dictionary for Information
Processing.

alphabetic character. A character of the
set A, B, C,...,2. See also "letter."

——— IBM EXTENSION 1

In VS FORTRAN, the currency symbol ($)
is considered an alphabetic character.

L———— END OF IBM EXTENSION ——

alphameric. Pertaining to a character
set that contains letters, digits, and
other characters, such as punctuation
marks.

alphameric character set. A character
set that contains both letters and digits
and also contains control characters,
special characters, and the space
character.

argument. A parameter passed between a
calling program and a SUBROUTINE
subprogram, a FUNCTION subprogram, or a
statement function. ‘

arithmatic constant. A constant of type
integer, real, double precision, or
complex.

arithmatic expression. One or more
arithmetic operators and/or arithmetic
primaries, the evaluation of which
produces a numeric value. An arithmetic
expression can be an unsigned arithmetic

238 VS FORTRAN Language Reference

constant, the name of an arithmetic
constant, or a reference to an arithmetic
variable, array element, or function
reference, or a combination of such
primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that
directs VS5 FORTRAN to perform an
arithmetic operation. The arithmetic
operators are:

+ addition

- subtraction

* multiplication
/ division

% exponentiation.

array. An ordered set of data items
identified by a single name.

array declarator. The part of a
statement that describes an array used in
a program unit. It indicates the name of
the array, the number of dimensions it
contains, and the size of each dimension.
An array declarator may appear in a
DIMENSION, COMMON, or explicit type
statement.

array element. A data item in an array,
identified by the array name followed by
a subscript indicating its position in
the array.

array name. The name of an ordered set of
data items that make up an array.

assignment statement. A statement that
assigns a value to a variable or array
element. It is made up of a variable or
array element, followed by an equal sign
(=), followed by an expression. The
variable, array element, or expression
can be character, logical, or arithmetic.
When the assignment statement is
executed, the expression to the right of
the equal sign replaces the value of the
variable or array element to the left.

basic real constant. A string of decimal
digits containing a decimal point, and
expressing a real value.

blank common. An unnamed common block.

character constant. A string of one or
more alphameric characters enclosed in
apostrophes., The delimiting apostrophes
are not part of the constant.

character expression. An expression in
the form of a single character constant,
variable, array element, substring,
function reference, or another
expression enclosed in parentheses. A
character expression is always of type
character.

character type. A data type that can
consist of any alphameric characters; in
storage, one byte is used for each
character.

common block. A storage area that may be
referred to by a calling program and one
or more subprograms.

complex constant. An ordered pair of real
or integer constants separated by a comma
and enclosed in parentheses. The first
real constant of the pair is the real
part of the complex number; the second is
the imaginary part.

complex type. An approximation of the
value of a complex number, consisting of
an ordered pair of real data items
separated by a comma and enclosed in
parentheses. The first item represents
the real part of the complex number; the
sacond represents the imaginary part.

connacted file. A file that has been
connected to a unit and defined by a
FILEDEF command or by job control
statements.

constant. An unvarying quantity. The
four classes of constants specify numbers
(arithmetic), truth values (logical),
character data (character), and
hexadecimal data.

control statement. Any of the statements
used to alter the normal sequential
execution of FORTRAN statements, or to
terminate the execution of a FORTRAN
program. FORTRAN control statements are
any of the forms of the GO 70, IF, and DO
statements, or the PAUSE, CONTINUE, and
STOP statements.

data. (1)% (IS0} A representation of
facts or instructions in a form suitable
for communication, interpretation, or
processing by human or automatic means.
(2) In FORTRAN, data includes constants,
variables, arrays, and character
substrings.

data item. A constant, variable, array
element, or character substring.

data sat. The major unit of data storage
and retrieval consisting of data
collected in one of several prescribed
arrangements and described by control
information to which the system has
access.

data set reference numbher. A constant or
variable in an input or output statement
that identifies a data set to be
processed.

data typa. The properties and internal
representation that characterize data
and functions. The basic types are
integer, real, complex, logical, double
precision, and character.

¥ digit. (I50) A graphic character that
represents an integer. For example, one
of the characters 0 to 9.

DO loop. A range of statements executed
repetitively by a DO statement. See also
"range of a DO."

double precision. The standard name for
real data of storage length 8.

DO variable. A variable, specified in a
DO statement, that is initialized or
incremented prior to each execution of
the statement or statements within a DC
range. It is used to control the number
of times the statements within the range
are executed. See also "range of a DO."

dummy argument. A variable within a
subprogram or statement function
definition with which actual arguments
from the calling program or function
reference are positionally associated.
Dummy arguments are defined in a
SUBROUTINE or FUNCTION statement, or in a
statement function definitinn

executable program. A program that can be
executed as a self-contained procedure.
It consists of a main program and,
optionally, one or more subprograms or
non-FORTRAN~-defined external procedures,
or both. ‘

executable statement. A statement that
causes ah action to be taken by the
program; for example, to calculate, to
test conditions, or to alter the flow of
control.

existing file. A file that has been
defined by a FILEDEF command or by job
control statements.

expression. A notation that represents a
value: a constant or a reference
appearing alone, or combinations of
constants and/or references with
operators. An expression can be
arithmetic, character, logical, or
relational.

external file. A set of related external
records treated as a unit; for example,
in stock control, an external file would
consist of a set of invoices.

external function. A function defined
outside the program unit that refers to
it.

external procedure. A SUBROUTINE or
FUNCTION subprogram written in FORTRAN.

file. A set of records. If the file is
located in internal storage, it is an
internal file; if it is on an
input/output device, it is an external
file.

file definition statement. A statement

that describes the characteristics of a
file to a user program. For example, the
05/VS DD statement or DOS/VSE ASSGN

Glossary 239

statement for batch processing, or the
FILEDEF command for CMS processing.

file reference. A reference within a
program to a file. It is specified by a
unit identifier.

formatted record. (1) A record,
described in a FORMAT statement, that is
transmitted, when necessary with data
conversion, between internal storage and
internal storage or to an external
record. (2) Transmitted with
list-directed READ or WRITE statements
and an EXTERNAL statement.

FORTRAN-supplied procedure. See
"intrinsic function."

function reference. A source program
reference to an intrinsic function, to an
external function, or to a statement
function.

function subprogram. A subprogram
invoked through a function reference, and
headed by a FUNCTION statement. It
returns a value to the calling program
unit at the point of reference.

——————— IBM EXTENSION 1

hexadecimal constant. A constant that
is made up of the character Z followed
by two or more hexadecimal digits.

L————— END OF IBM EXTENSION —

hierarchy of operations. The relative
order used to evaluate expressions
containing arithmetic, logical, or
character operations.

implied DO. An indexing specification,
similar to a DO statement, causing
repetition over a range of data elements.
(The word DO is omitted, hence the term
"implied".)

integer constant. A string of decimal
digits containing no decimal point and
expressing a whole number.

integer expression. An arithmetic
expression whose values are of integer
type.

integer type. An arithmetic data type
capable of expressing the value of an
integer. It can have a positive,
negative, or zero value It must not
include a decimal point.

internal file. A set of related internal
records treated as a unit.

intrinsic function. A function, supplied
by V5 FORTRAN, that performs mathematical
or character operations.

¥ I/0. Pertaining to either input or
output, or both.

I/0 list. A list of variables in an input
or output statement specifying which data

240 VS FORTRAN Language Reference

is to be read or which data is to be
written. An output list may also contain
a constant, an expression involving
operators or function references, or an
expression enclosed in parentheses.

labeled common. See "named common."

length specification. A source language
specification of the number of bytes to
be occupied by a variable or array
element.

letter. A symbol representing a unit of
the alphabet.

list-directed. An input/output
specification that uses a data list
instead of a FORMAT specification.

logical constant. A constant that can
have one of two values: true or false.

logical expression. A combination of
logical primaries and logical operators
that can express the values true or
false.

logical operator. Any of the set of five
operators .NOT. (negation), .AND.
(connection: both), or .0R. (inclusion:
either or both), .EQV. (equal), .NEQV.
(not equal)l.

logical primary. A primary that can have
the value true or false. See also
"orimary."

logical type. A data type that can have
the value true or false for VS FORTRAN.
See also "data type."

looping. Repetitive execution of the
same statement or statements. Usually
controlled by a DO statement.

main program. A program unit, required
for execution, that can call other
program units but cannot be called by
them.

name. A string of from one through six
alphameric characters, the first of which
must be alphabetic. Used to identify a
constant, a variable, an array, a
function, a subroutine, or a common
block.

named common. A separate common block
consisting of variables, arrays, and
array declarators, and given a name.

nested DO. A DO statement whose range is
entirely contained within the range of
another DO statement.

nonexecutable statement. A statement
that describes the characteristics of the
program unit, of data, of editing
information, or of statement functions,
but does not cause an action to be taken
by the program.

nonexisting file. A file that has not
been defined by a FILEDEF command or by
job control statements.

¥ numeric character. (IS0) Synonym for
digit.

numeric constant. A constant that
expresses an integer, real, or complex
number.

preconnected file. A unit or file that
was defined at installation time.
However, a preconnected file does not
exist for a program if the file is not
defined by a FILEDEF command or by job
control statements.

predefined specification. The implied
type and length specification of a data
item, based on the initial character of
its name in the absence of any
specification to the contrary. The
initial characters I-N type data items as
integer; the initial characters A-H, 0-2Z,
and $ type data items as real. No other
data types are predefined. For VS
FORTRAN, the length for both types is &
bytes.

primary. An irreducible unit of data; a
single constant, variable, array
element, function reference, or
expression aenclosed in parentheses.

procedure. A sequenced set of statements
that may be used at one or more points in
one or more computer programs, and that
usually is given one or more input
parameters and returns one or more output
parameters. A procedure consists of
subroutines, function subprograms, and
intrinsic functions.

procedure subprogram. A function or
subroutine subprogram.

program unit. A sequence of statements
constituting a main program or
subprogram.

ranga2 of a D0. Those statements that
physically follow a DO statement, up to
and including the statement specified by
the D0 statement as being the last to be
executed; also called a "DO loop."

real constant. A string of decimal digits
that expresses a real number. A real
constant must contain either a decimal
point or a decimal exponent and may
contain both.

real type. An arithmetic data type,
capable of approximating the value of a
real number. It can have a positive,
negative, or zero value.

record. A collection of related items of
data treated as a unit.

relational expression. An expression
that consists of an arithmetic
expression, followed by a relational
operator, followed by another arithmetic

expression or a character expression,
followed by a relational operator,
followed by another character
expression. The result is a value that is
true or false.

relational operator. Any of the set of
operators:

.GT. greater than

.GE. greater than or equal to
.LT. less than
.LE. less than or equal to

LEQ. equal to
.NE. not equal to

scale factor. A specification in a FORMAT
statement that changes the location of
the decimal point in a real number (and,
on input, if there is no exponent, the
magnitude of the number).

specification statement. One of the set
of statements that provides the compiler
with information about the data used in
the source program. In addition, the
statement supplies the information
required to allocate data storage.

specification subprogram. A subprogram
headed by a BLOCK DATA statement and used
to initialize variables in named common
blocks.

statement. The basic unit of a FORTRAN
program, that specifies an action to be
performed, or the nature and
characteristics of the data to be
processed, or information about the
program itself. Statements fall into two
broad classes: executable and
nonexecutable.

statement function. A name, followed by a
list of dummy arguments, that is equated
to an arithmetic, logical, or character
expression. In the remainder of the
program the name can be used as a
substitute for the expression.

statement function definition. A
statement that defines a statement
function. Its form is a name, followed by
a list of dummy arguments, followed by an
equal sign (=), followed by an arithmetic
or logical expression.

statement function reference. A
reference in an arithmetic, logical, or
character expression to the name of a
previously defined statement function.
statement labal. See "statement
number."

statement number. A number of from one
through five decimal digits that is used
to identify a statement. Statement
numbers can be used to transfer control,
to define the range of a DO, or to refer
to a FORMAT statement.

subprogram. A program unit that is

invoked by another program unit in the
same program. In FORTRAN, a subprogram

Glossary 261

has a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement.

subroutine subprogram. A subprogranm
whose first statement is a SUBROUTINE
statement. It optionally returns one or
more parameters to the calling program
unit.

¥ subscript. (1) (IS0) A symbol that is
associated with the name of a set to
identify a particular subset or element.

(2) A subscript quantity or set of
subscript quantities, enclosed in
parentheses and used with an array name
to identify a particular array element.

subscript quantity. A component of a
subscript: an integer constant, an
integer variable, or an expression
evaluated as an integer constant.

———— IBM EXTENSION \

In VS5 FORTRAN, a subscript quantity may
also be a real constant, variable, or
expression.

L———— END OF IBM EXTENSION —88——

type declaration. The explicit
specification of the type of a constant,
variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is

transmitted unchanged between internal
storage and an external record.

2642 VS FORTRAN Language Reference

unit. A means of referring to a file in
order to use input/output statments. A
unit can be connected or not connected to
a file. If connected, it refers to a
file. The connection is symmetric: that
is, if a unit is connected to a file, the
file is connected to the unit.

unit identifier. The number that
specifies an external unit.

1. An integer expression whose value
must be zero or positive. For VS
FORTRAN, this integer value of length
% must correspond to a DD name, a
FILEDEF name, or an ASSGN name.

2. An asterisk (¥) that corresponds on
input to FT005001 and on output to
FT006001.

3. The name of a character array,
character array element, or
character substring for an internal
file.

variable. (1) ¥ A quantity that can
assume any of a given set of values.

(2) A data item, identified by a name,
that is not a hamed constant, array, or
array element, and that can assume
different values at different times
during program execution.

special Characters

(period) 8
(ellipsis) 2

+ (plus sign) 8
¢ (currency symbol) 8
¥ (asterisk) 8
WRITE statement 192
- (minus sign or hyphen) 7, 8
7/ (slash) &
> (comma) 8
() (parentheses) &8
: (colon)
[1 (brackets) 2
' (apostrophe) 8
= (equal sign) 8
"

(quotation mark) 6, 8

A

A format code 99
ACCESS=
INQUIRE by file name 124
INQUIRE by unit number 127
OPEN statement 132
actual argument 22
in a function subprogram 111
in a subroutine subprogram 171
in an ENTRY statement 79
alphabetic character 7
See also letter
definition 238
alphabetic primary
See primary
alphameric character set 7
definition 238
alphameric, definition 238
alternate return specifier 80
alternative paths of execution 115
ANS FORTRAN features 205-211
ANSI definitions 238
apostrophe 8
argument
actual 79, 171
definition 238
dummy 79, 172
arithmetic assignment statement 47
conversion rules (complex) 649
conversion rules (integer or
real) 48
valid statements 51-52
arithmetic constant
See also digit
complex 15
definition 238
integer 11
primary 26
real 13
arithmetic expression 25
definition 238
rules for constructing 26
type and length of (complex) 31
tvpe and length of (inteter) 29
tyvpe and length of (real) 30

use of parentheses in 28
arithmetic IF statement 115
arithmetic operation 27

addition 26, 27

division 26, 27

evaluation of functions 27

exponentiation 26, 27

first operand is complex 28

first operand is integer 28

first operand is real 28

multiplication 26, 27

subtraction 26, 27

unary minus 26

unary plus 26
arithmetic operator 26

definition 238

operations involving 37
array

actual argument 22

definition 238

dimension bounds 22

DIMENSION statement 70

dimensions of 70

dummy argument 23

size and type declaration 22, 23

subscripts 21
array declarator

definition 22, 238
array element 20

definition 238

invalid 22

valid 21
array name

definition 238

DIMENSION statement 70

READ statement 145

WRITE statement 180
ASCII codes 233-237
assign a name to a constant 136
assignh a name to a main program 139
assign a number to a variable 646
ASSIGN statement 46
assigned GO TO statement 113
assignment statement 47

arithmetic 47

ASSIGN statement 46

character 52

definition 238

logical 52
associate actual with dummy argument
asterisk 8

READ statement 148

WRITE statement 192
asynchronous READ statement 141
asynchronous WRITE statement 177
AT statement 53

in debug packet 67, 68

BACKSPACE statement 5%
invalid statements 54
valid statements 54

basic real constant 13
definition 238

begin debug packet 53

Index

58

243

blank 8
format code 103
FORMAT statement 102
INQUIRE by file name 125
INQUIRE by unit number 127
blank common 62
and named common 62
definition 62, 238
BLANK=
INQUIRE by file name 125
INQUIRE by unit number 127
OPEN statement 132
BLOCK DATA statement 56
block data subprogram 63
block IF statement 115
ELSE 117
ELSE IF 117
END IF 116
BN format code 102
bypass statements 6%
BZ format code 103

c

CALL CDUMP/PCDUMP statement 231
CALL DUMP/PDUMP statement 230
CALL DVCHK statement 230
CALL ERRMON statement 212
CALL ERRSAV statement 213
CALL ERRSET statement 214
CALL ERRSTR statement 216
CALL ERRTRA statement 216
CALL EXIT statement 231
CALL OPSYS statement 231
CALL OVERFLW statement 231
CALL statement 58
CDUMP/PCDUMP subroutine 231
character array element
READ statement 144
WRITE statement 179
character array name
READ statement 145
WRITE statement 180
character assignment statement 52
character constant 16
definition 16, 238
READ statement 144
valid 17
WRITE statement 179
character constant transmission 100
character data transmission 99
character expression 33
definition 238
READ statement 145
use of parentheses in 33
~ WRITE statement 180
character functions 201
character manipulation routines 204
character operator 33
operations involving 37
character skipping 100
character substring 24
reference 24
variable 24
character type 79, 120
definition 238
CHARACTER type statement 82
character variable
storage length 19
substring 24
CLOSE statement 59
examples 60

244 VS FORTRAN Language Reference

colon 8
colon format code 103, 104
comma 8
comments
fixed-form 5, 61
free-form 6, 61
common block 56
definition 239
COMMON statement 62
compiler-directed statement 43
EJECT 73
INCLUDE 122
compiler, executing on 1
complex constant 15
definition 15, 239
invalid 16
valid 15
complex data requirements 89
complex type 82, 120
definition 239
COMPLEX type statement 82
complex variable
storage length 19
computed GO TO statement 114
COND= '
WAIT statement 174
connect a file to unit 132
connected file 124
definition 239
formatted READ—direct access 146
formatted READ—sequential
access 149
formatted WRITE—sequential
access 184
READ with list-directed I/0 159
READ with NAMELIST 160
unformatted READ—direct access 151
unformatted READ—sequential
access 154
unformatted WRITE—direct access 186
WRITE with list-directed I/0 193
WRITE with NAMELIST 195
constant 11
arithmetic 11
assign a name to 136
character 16
complex 15
definition 239
hexadecimal 17
Hollerith 17
integer 11
logical 16
real 13
continuation line
fixed-form 5§
free-form 7
continue a DO loop 64
CONTINUE statement 64
continued line 7
free-form 7
control statement 41
assigned GO TO 113
CALL 58
computed GO 7O 114
CONTINUE 64
definition 239
DO 72
END statement 74
GO TO 113
IF 115
PAUSE 137
RETURN 162
STOP 170
unconditional GO TO0 1146
conversion rules 48

corrective action definition 239

after error 221 implied 66
after mathematical subroutine double precision 19
error 223-227 constant 15
after program interrupt 229 data editing 93
create a file 132 definition 239
create a preconnected file 132 storage length 19
currency symbol 8 type 82, 120
IMPLICIT statement 120 DOUBLE PRECISION type statement 82

DP assign 50

DP extend 50

DP float 50

D dummy argument 23, 111
definition 239

in a function subprogram 111

D format code 93 in a subroutine subprogram 172

data 11 in an ENTRY statement 79
definition 239 dummy procedure name 109

data item, definition 239 DUMP/PDUMP subroutine 230

data set DVCHK subroutine 230

reference number, definition 239
data set, definition 239
DATA statement 462, 65

character data in 65 E

implied DO in 66
data transfer 101

data type, definition 239 E format code 93
debug a program 67 EBCDIC codes 233, 237
debug packet 68 editing double precision data 93
DEBUG statement 42, 67 editing integer data 92
AT statement 53, 68 editing real data 93, 9%
DISPLAY statement 68, 71 EJECT statement 73
END DEBUG statement 68, 75 ELSE IF statement 117
examples 69 ELSE statement 117
TRACE OFF statement 68, 173 end a program 74
TRACE ON statement 68, 173 END DEBUG statement 75
decimal point in format codes 90 in debug packet 68
default options 220 END IF statement 116
define values of END statement 74
array elements 65, 82 in a function subprogram 74
arrays 65, 82 in a subroutine subprogram 74
‘substrings 65 END=
variables 65, 82 READ statement 148
definitions 238, 242 ENDFILE statement 76
digit 8 invalid 76
definition 239 valid 76
dimension bound, lower 22 ENTRY statement 78
DIMENSION statement 70 actual arguments in 79
explicit statement 83 valid 79
dimension bound, upper 22 equal sign 8
DIMENSION statement 70 EQUIVALENCE statement 81
explicit statement 83 valid 1
DIMENSION statement 70 ERR=
direct access files 133 BACKSPACE statement 5%
direct access input/output 127 CLOSE statement 59
INQUIRE statement 124, 126 ENDFILE statement 76
direct access READ statement INQUIRE by file name 123
formatted 144 INQUIRE by unit number 126
unformatted 151 OPEN statement 132
direct access WRITE statement READ statement 145
formatted 179 REWIND statement 164
unformatted 186 WRITE statement 180
DIRECT= ERRMON subroutine 212
INQUIRE by file name 124 error detected 126
INQUIRE by unit number 126 error handling subroutines 212-232
disconnect an external file 59 error, corrective action after 221
display data in NAMELIST format 71 ERRSAV subroutine 213
DISPLAY statement 71 ERRSET subroutine 214
in debug packet 68 ERRSTR subroutine 216
DO list 65 ERRTRA subroutine 216
DO loop 68, 72 evaluate actual argument 58
See also range of a DO examples of numeric format codes 96
definition 239 executable program 9
DO statement 72 definition &, 239
DO variable executable statement 19

Index 245

definition 4, 239
execute a set of statements 72
execution—-time cautions 199
execution-time library 1
EXIST=

INQUIRE by file name 124

INQUIRE by unit number 126
existence of unit 126
existing file

definition 239

INQUIRE statement 123

OPEN statement 132
EXIT subroutine 231
explicit type statement 82

CHARACTER type 82

COMPLEX type 82

DOUBLE PRECISION type 82

INTEGER type 82

LOGICAL type 82

REAL type 82

valid 85
exponential routines 202
expression 25

arithmetic 25

character 33

definition 239

evaluation of 25

examples 26

logical - 35, 37, 38

relational 34

type of primary in 26
extended error handling

subroutines 212, 232

extensions, IBM, documentation of 3

external 133
function name 78
function, definition 239
I/0 unit connected to 133
I/0 unit not connected to 133
procedure, definition 4, 239
external file 76, 133
definition 239
sequential 76
EXTERNAL statement 86
actual argument 86
valid 86
external unit 124

F format code 92
file
definition 239
definition statement, definition
reference, definition 240
file connected to a unit 12%
FILE=
INQUIRE by file name 123
OPEN statement 132
first character of record 89
fix 50
fixed-form source statement
comments 5, 61
continuation line 5
example of 6
jdentification. 6
initial line 5

statement number 5, 169

flagger, source language 197-198
float 50
FMT=

READ statement 144

246 VS FORTRAN Language Reference

239

WRITE statement 179
FORM=
INQUIRE by file name 124
INQUIRE by unit number 127
OPEN statement 133
format codes
begin data transmission (T) 101

blanks, interpretation of (BN) 102
blanks, interpretation of (BZ) 103

character constant transmission
(H) 100 »

character data transmission (A)
character skipping (X) 100 »
colon 103, 104
double precision data editing (Q)
format specification reading 104
general rules 89 ‘
group format specification 101
hexadecimal data transmission (Z)
integer data editing (I) 92
list-directed 105
logical variable transmission (L)
numeric 96
plus character control (S, SP,
$S) 102
real data editing (D, E) 93
real data editing (F) 92
real data editing (G) 94
scale factor specification (P)Y 94
slash 103

format identifier 179
READ statement 144
WRITE statement 179

format notation 2
blanks 2
ellipsis 2
example 2
general form 2
lowercase letters and words 2
special characters 2
square brackets 2
underlined words 2

FORMAT statement 87
A code 99
BN code 102
BZ code 103
colon code
D code 93
E code 93
examples 96
F code 92
format specification reading 104
forms of 91
G code 94
general rules for conversion 89
group format specification 101
H code 100
I code 92
L code 99
list-directed formatting 105
numeric code 96

103, 104

P code 9%
Q code 93
S code 102

slash code 103
SP code 102
5SS code 102

T code 101
X code 100
Z code - 96

formatted input/output
INQUIRE statement 124, 126
formatted PRINT 138
formatted READ statement
Wwith direct access 144

with sequential access 148
formatted record 89

definition 240

INQUIRE statement 12%

OPEN statement 133
formatted WRITE statement

with direct access 179

with sequential access 183
FORMATTED=

INQUIRE by file name 124

INQUIRE by unit number 126
forms of a FORMAT statement 91

FORTRAN-supplied procedure 10, 201-204

See also intrinsic function

keywords 10
free-form source statement

comments 6, 61

continuation line 7

continued line 7

example of 7

initial line 6

maximum length 7

minus sign 7

statement number 6, 169
function

reference, definition 240

subprogram, definition 240
function reference 25

statement function statement
FUNCTION statement 109
function subprogram 43

actual arguments 111

definition 240

dummy arguments 111

END statement 74

ENTRY statement 78

naming 43 _

RETURN statement 162

G

G format code 94
generic names 129
glossary 238-242
GO TO0 statement 113
assigned 113
computed 114
unconditional 114
group format nesting 90
group format specification 101

H

H format code 100

hexadecimal constant 17
definition 17, 240
valid 17

hexadecimal data transmission 96

hierarchy of operations
arithmetic 27
arithmetic operators 37
character operators 37
definition 240

Hollerith constant 17
definition 17
valid 17

hyperbolic function routines 202

I format code 92
I/0
definition 240

list-directed READ statement 158

list-directed WRITE 192
list, definition 240

IBM extensions, documentation of 3
%gﬂ FORTRAN features 205-211
READ statement 141
WAIT statement 174
WRITE statement 177
identification 6
fixed-form 6
identify a function subprogram 109
identify statements 169
identify user-supplied subprogram
IF block 116
IF statement 115
arithmetic 115
block 115
logical 118
IF-level 115
IMPLICIT type statement 120
implied DO
definition 240
statement 66
INCLUDE statement 122
information about file 123
INIT
DEBUG statement 67
initial line 5, 6
fixed-form 5
free-form 6
input data, NAMELIST statement 130
input/output statement 42
BACKSPACE 54
CLOSE 59
ENDFILE 76
FORMAT 87
INQUIRE 123
OPEN 132
PRINT 138
READ 1490
REWIND 164
WAIT 174
WRITE 176
input/output unit 133
connected to external file 133
not connected to external file
INQUIRE statement 123
by file name 123
by unit number 125
insert statements 122
integer constant 11
definition 11, 240
invalid 12
subscripts and substrings 81
valid 12
integer data editing 92
integer expression 26
definition 240
subscripts and substrings 81
integer type 82, 120
definition 240
INTEGER type statement 82
integer variable
READ statement 144
storage length 19
WRITE statement 179

Index

'I70 list omitted from READ or WRITE 89

247

internal data conversion routines 204

internal file 190
definition 240
READ statement 155
WRITE statement 190
intrinsic function 128, 201-204
definition 4, 240
INTRINSIC statement 128
invalid VS FORTRAN programs 3
IOSTAT=
BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 76
INQUIRE by file name 123
INQUIRE by unit number 126
OPEN statement 133
READ statement 145
REWIND statement 164
WRITE statement 180
IS0 definitions 238

K

keywords 10

L format code 99
labeled common
. See named common

LANGLVL(66) features 211
LANGLVL(77) features 205
language syntax 5
leading blanks 90
length specification 120

definition 240
letter 8

definition 240
library 1
list-directed 105

definition 240
list-directed formatting 105
list~-directed I/0

READ statement with 158

WRITE statement with 192
list-directed PRINT 138
logarithmic routines 202
logical assignment statement 52
logical constant 16

definition 16, 240
logical expression

definition 240

invalid 37

order of computations in 37

use of parentheses in 38

valid 36
logical IF statement 118
logical operation 40

type and length of the result 40
logical operator 35

AND 36

definition 240

EQY 36

examples 36

invalid 36

NEQV 36

NOT 36

OR 36

valid 36

268 VS FORTRAN Language Reference

logical primary
See primary
logical type 82, 120
LOGICAL type statement 82
primary, definition 240
~ type, definition 240
logical variable
storage length 19
transmission 99
logical variable transmission 99
looping 68
definition 240
lower dimension bound 22
DIMENSION statement 70
explicit statement 83

M

main program
assign a name to 139
definition 4, 240
PROGRAM statement 139
main program statement (PROGRAM)
mathematical functions 201

42

mathematical subroutine errors 223-227

maximum size records &9

maximum statement length
free-form 7

minus sigh 8

N

name 8
a block of data 56
a variable 62
an array 62, 70
definition 8, 240
elements of a program 8
generic 129
in a CALL statement 78
in a function reference 78
specific 129
name of file 123, 124
name of unit 126
NAME=
INQUIRE by file name 124
INQUIRE by unit number 126
named common 62
and blank common 62
definition 62, 2640
NAMED=
INQUIRE by file name 124
INQUIRE by unit number 126
NAMELIST .
READ statement with 160
WRITE statement with 195
NAMELIST statement 130
input data 130
output data 131
names in READ and WRITE statements
names of constants 90
nested DO 72
definition 240
nesting of group formats 90
new file 132
NEXTREC=
INQUIRE by file name 125
INQUIRE by unit number 127
nonexecutable statement

130

definition &, 2640
nonexisting file
definition - 240

OPEN statement 135
null 125, 127
NUM=

WAIT statement 174

125, 127
123, 169

124
127

number of last record
number of statement
NUMBER=
INQUIRE by file name
INQUIRE by unit number
numeric character
See arithmetic constant
numeric constant 11
definition 241
numeric data format codes 90
numeric format code 96
examples 96

. 0
old file 132
OPEN statement 132
OPENED=

INQUIRE by file name

INQUIRE by unit number
0PSYS subroutine 231
option

default 215, 220

in DEBUG statement 67
option table default values
option table entry 218
order of computation 37

in logical expressions 37
order of statements 44
output data, NAMELIST statement
OVERFLW subroutine 231

124
126

220

131

P format code 94
PARAMETER statement
PAUSE statement 137
period 8 »
plus character control
plus sign 8
position an external file
preconnected file
definition &, 2641
formatted READ—direct access
formatted READ—sequential
access 149
formatted WRITE—sequential
access 184
READ with list-directed I/0
READ with NAMELIST 160
unformatted READ—direct access
unformatted READ—sequential
access 154
unformatted WRITE—direct access
WRITE with list-directed Iv0 193
WRITE with NAMELIST 195
predaefined specification 20
definition 241
preserving a minus sign
free-form
primary 26
definition

136

102
164

159

261

146

151

186

logical 35
PRINT statement 138
procedure
BLOCK DATA 43
definition 4, 241
dummy 78, 80, 109

procedure subprogram 43
definition 241
program interrupt 229
PROGRAM statement 42, 139
program unit
definition &, 241
order of statements in 44

Q

Q format code 93
QP extend 50
QP float 50
quotation mark 8

R

range of a DO
definition 241
range of an implied DO 66
READ statement 140
asynchronous 141
formatted with direct access 144
formatted with sequential access
forms of 140
unformatted with direct access
unformatted with sequential
access 153
with internal files 155
with list-directed 170
with NAMELIST 160
READ statement with internal files
READ statement with list-directed

148
151

158
155

I0 158
READ statement with NAMELIST 160
READ statement--asynchronous 141

READ statement--formatted with direct
access 144
READ statement--formatted with
sequential access 148
READ statement--unformatted with direct
access 151
READ statement--unformatted with
sequential access 153
reading format specifications 104
real assign 50
real constant 13
definition 13, 241
invalid 14
valid 14
real data editing 93, 94
real data of length 8
See double precision
real data transmission 92
real type 82, 120
definition 241
REAL type statement 82
real variable, storage length 19
REAL %8
See double precision
REC=
READ statement 145
WRITE statement 180

Index 249

RECL=
INQUIRE by file name 125
INQUIRE by unit number 127
OPEN statement 133
record 87
definition 241
record length 125, 127, 133
record, number of last 125, 127
relational expression 34
definition 241
invalid 35
length of 34
valid 35
relational operator 34
definition 241
equal to 3%
greater than 34
greater than or equal to 34
less than 34
less than or equal to 34
not equal to 3%]
replace value of expression 47
reposition a file 54
required order of statements 44
retain definition status 166

return control to calling program

RETURN statement 162
in a function subprogram 162

in a subroutine subprogram 162

REWIND statement 164
rules for data conversion 89

S format code 102

SAVE statement 166

scale factor
definition 241
specification 94

scratch a file 132

sequential access input/output
INQUIRE statement 124, 126

sequential access READ statement
formatted 148
unformatted 153

sequential access WRITE statement

formatted 183

unformatted 188
SEQUENTIAL=

INQUIRE by file name 124

INQUIRE by unit number 126
service subroutines 230
share storage 62, 81
skipping characters 100
slash 8
slash format code 103

source language flagger 197, 198

source language statement
fixed-form 5
free-form 6, 7

source statement characters 7
digit 8
letter 8
special characters 8

SP format code 102

special characters
parentheses 8

specific names 129

specification statement 42
CHARACTER type 82
COMMON 62
COMPLEX type 82

250 VS FORTRAN Language Reference

definition 241
DIMENSION 70
DOUBLE PRECISION type 82
EQUIVALENCE 81 , :
explicit type 82
EXTERNAL 86
IMPLICIT type 120
INTEGER type 82
INTRINSIC 128
LOGICAL type 82
NAMELIST 130
PARAMETER 136
REAL type 82
SAVE 166
specification subprogram
definition 241
5SS format code 102
start a new page 73
start display 173
statement
definition 241
descriptions 41-196

function definition, definition

function reference, definition

function, definition 241
number, definition 241
number, fixed-form 5, 169
number, free-form 6, 169
READ statement 144
WRITE statement 179
statement function
statement 167
statement label
See statement number
statement number 10
ASSIGN statement 46
fixed-form 5, 169
free-form 6, 169
STATUS=
CLOSE statement 59
OPEN statement 132
stop a program 74
stop display 173
STOP statement 170
SUBCHK
DEBUG statement 67
subprogram
definition 4, 241
RETURN statement 162
SAVE statement 166
statement function statement
subprogram statement
BLOCK DATA 43, 56
ENTRY 78
FUNCTION 43, 109
statement function 167
SUBROUTINE 43, 171
SUBROUTINE statement 171
subroutine subprogram 43
actual arguments 171
definition 2642
dummy arguments 172
END statement 74
ENTRY statement 78
naming 43
RETURN statement 162
subscript 21
definition 262
in DATA statement 65
quantity, definition 242
substring 24
expression 24
in DATA statement 65
SUBTRACE
DEBUG statement 67

241

241

167

symbolic name

See name
syntax 5
T

T format code 101
terminate a program 74
terminate execution 170
terminate the last debug packet 75
test values 72
TRACE
DEBUG statement 67
TRACE OFF statement 173
in debug packet 68
TRACE ON statement 173
in debug packet 68
transfer control
to statement number 113
to subroutine subprogram 58
transmission
character constants 100
character data 99
hexadecimal data 96
logical variables 99
trigonometric routines 202
type declaration
by explicit type statement 20
by IMPLICIT statement 20
definition 242
of an array 22
predefined 20
type specification 120

u

unary minus 26, 27
unary plus 26, 27
unconditional GO TO statement 114
unformatted input/output
INQUIRE statement 124, 126
unformatted READ statement
with direct access 151
with sequential access 153
unformatted record
definition 242
INQUIRE statement 124
OPEN statement 133
unformatted WRITE statement
with direct access 186
Wwith sequential access 188
UNFORMATTED=
INQUIRE by file name 124
INQUIRE by unit number 126
unit
connected 126
connected to external file 133
DEBUG statement 67
definition 242
identifier, definition 242
INQUIRE statement 126
not connected to external file 133
number 126, 132
OPEN statement 132
UNIT=
BACKSPACE statement 5%
CLOSE statement 59

ENDFILE statement 76
INQUIRE by unit number 126
OPEN statement 132
READ statement 141
REWIND statement 164
WAIT statement 174
WRITE statement 177

unknown file 132

upper dimension bound 22
DIMENSION statement 70
explicit statement 83

v

valid VS FORTRAN programs 3
variable 18

character 24

definition 242

types and lengths of 18
variable names

invalid 18

valid 18
VS FORTRAN statements 41-196

W

WAIT statement 174
write an end-of-file record 76
WRITE statement 176
asynchronous 177
formatted with direct access 179
forms of 176
unformatted with direct access 186
unformatted with sequential
access 188
with internal files 190
with list-directed I/0 192
with NAMELIST 195
WRITE statement with internal files 190
WRITE statement with list-directed
I/0 192
WRITE statement with NAMELIST 195
WRITE statement--asynchronous. 177
WRITE statement--formatted with direct
access 179
WRITE statement--formatted with
sequential access 183
WRITE statement--unformatted with direct
access 186
WRITE statement--unformatted with
sequential access 188

X

X format code 100

Zz

Z format code 96
zero 125, 127

Index 251

tomated mail sorting equipment.

.u
Please use pressure sensitive or other gummed tape to seal this form.

Staples can cause problems

Note:

e L L R R A N R R R T R R R RN

sessereesssssee

tesscsstesmsesrsscueseseserenetor ettt raas sttt o

Reader’s

VS FORTRAN Application Programming: Comment
Language Reference Form
GC26-3986-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3986-0

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape
| ” || | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
.]
FIRST CLASS PERMIT NO.40 ARMONK, N.Y. T ——
- .|
POSTAGE WILL BE PAID BY ADDRESSEE ———
. |
L]
L]
N L]
IBM Corporation S —
P.O. Box 50020 ES—————
Programming Publishing O —
San Jose, California 95150 S N————
]
.|
.|

T 0 0008065000800 060000000 0000090000000000000000000000000000000000 080000000000 00srecssacesroncsesssossstacsottossccncssonscsean

Fold and tape Please do not staple Fold and tape
NN SR RS —
L& W ——
- -— L W]
—-— R L ¥]
- . - N
- L} L]
NS IR NN W
S T NS V.
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
. Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
2 Hamilton Avenue, White Plains, N.Y., U.S.A, 10601

0-986€-920D "V'S'N Ul palulld (GZ-0LES 'ON 3|l4) 8duaiajay abenbue :Buiwwelboid uonedlddy NYHIHOLH SA

€ 6 00050000 0008006000060006000 0000000000000 0060600000¢060 300600600000 0OC5GCOCIESECGCLLCIGCECESsISESEGCSEENOLSSEOCOCCSOCSGCESEDISGESESESEGCENOSLETososscesoestdi 600060 e60ssestesstesteesssstsssssesssorsosssssscsoensssasoccaos

GC26-3986-0

international Business Machines Corporation
Data Processing Division
1133 Westchester Avenue White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
" Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

0-986€-9209 'V'S'N Ui parulld (G2-0LES "ON 3j1d) adualajay abenbue] :Buiwwesbold uonesijddy NvHIHOH SA

	00001
	00002
	00003
	00004
	00005
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	replyA
	replyB
	xBack

