o hber,

Wy

IBM OS/VS COBOL
Compiler and Library
General Information



GC28-6470-2
File No. S370-20

IBM OS/VS COBOL
Compiler and Library
Program Product General Information

Program Numbers 5740-CB1 (Compiler and Library)
5740-LM1 (Library Only)

Release 2.4



Third Edition (August 1983)
This is a major revision of, and makes obsolete, GC28-6470-1.

This edition applies to Release 2.4 of 05/VS COBOL Compiler and
Library, Program Product 5740-CBl (Compiler and Library), and
5740-LM1 (Library only), and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments"” following the preface. Because the technical
changes in this edition are extensive and difficult to localize,
they are not marked by vertical bars in the left margin.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Systems370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current. )

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your

locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974,
1976, 1983



PREFACE

INDUSTRY STANDARDS

BOOK ORGANIZATION

RELATED MATERIAL

VS COBOL II

This publication contalns information to aid data systems
planners and analysts in evaluating the IBM program product,
0S/VS COBOL Compiler and Library.

COBOL (COmmon Business Oriented Language) is an English-like
programming language used for commercial data processing. It is
developed by the Conference On DAta SYstems Language (CODASYL).
In the USA, the standard of the language is American National
Standard COBOL, X3.23-1974, as approved by the American National
Standards Institute (ANSI).

The 0S/VS COBOL Release 2.4 Compiler and Library is designed

according to the specifications of the following industry

f;agdards, as understood and interpreted by IBM as of April
76:

. The highest level of American National Standard COBOL,
X3.23-1974 (excepting the Report Writer module). American
National Standard COBOL, X3.23-1974 is compatible with and
identical to International Organization for
Standardization/Draft International Standard (IS0/DIS)
1989-COBOL.

. The highest level of American National Standard COBOL,
X3.23-1968. American National Standard COBOL, X3.23-1968,
is compatible with and identical to ISO/R 1989-1972
Programming Language COBOL.

A number of IBM extensions are also implemented.

Includad in this manual are brief descriptions of the 0S5/VS
COBOL Compiler and Library features, information on
compatibility, and system requirements. The manual is intended
as an aid to evaluation and planning for use of the product; it
is not intended to be used as a specifications manual.
Specifications for the 0S/VS COBOL program product are given in

rogram Product Specifications: 0S/VS COBOL Compiler and
Library, GC28-6472.

IBM 0S/VS _COBOL Compiler and Library Programmer's Guide,
SC28-6483

IBM VS COBOL_ for 0S/VS, GC26-3857

IBM 0S COBOL Interactive Debug and (T7S0) COBOL Prompter, General
Information, GC28-6454%

For information about VS COBOL II, see VS COBOL II General
Information, GC26-4042.

-t

i

-ae

Preface



SUMMARY OF AMENDMENTS

RELEASE 2.4, AUGUST 1983

NEW PROGRAMMING FEATURE
Information about the MIGR compiler option %as been added. MIGR
flags major COBOL language elements that are no longer supported

or are supported differently by the VS COBOL II Compiler,
Program Number 5668-958.

RELEASE 2, SEPTEMBER 1976

NEW PROGRAMMING FEATURE

The text has been updated to reflect new 0S/VS COBOL features,
which include:

. Expanded Language Cépabilities in support of the 1974
American National Standard COBOL

. Enhanced VSAM Support _

. Expanded Physical Sequential Files through QSAM

. Added Communication Support

. Expanded Library Facilities

. User-Defined Collating Sequences for entire programs

. Federal Information Processing Standard for either the 1968
or 1974 American National Standard COBOL

iv 0S/VS COBOL Compiler and Library General Information



CONTENTS

0S/VS COBOL OVEFVIEH  « « « « o o o o o o o o &«
0S/VS COBOL Compiler Features .

Expanded Language Capab!lities e

Virtual System Support . C e e e e e
Advanced Program Appllcations N .
Enhanced VSAM Support
Expanded Physical Sequent1a1 Fule Capabllltles

COBOL Library Management Facillty
System7370 Instruction Generation
Dynamic Standard Block Specification
Productive Compile~-Time Performance . .
Speedy Sorted Cross—-Reference e e e e s

0ssVS COBOL Subroutine Library « e o s e s o .

Added Communication Support . e e
Expanded Library Facilities e e e e e s
Powerful Data Manipulation . e e e e e e
Extended Computational Factlltles e e
User-Defined Collating Sequences e e e e e
MERGE Facility . e e e e e e e e e
System/370 Device Support e e e e e e e e
Dynamic Subprogram Linkage . e e . .
Program Development Aids e e e e e e e
Eased Programming Rules . e
COBOL Source Program Debug Language
Federal Information Processing Standard (FIPS)
Migration Flagging . e e e e e e e e e e
Interactive Capab111tles . . e . . e e e
WHEN-COMPILED Special Reg1ster . e e
Lister Facility . . e e e e e e e
Verb Profiles . e e e e e e e e e
Execution-Time Statrst:cs e e e e e e e e
Background Symbolic Debug e e e e e e e e
Flow Trace . e e e e .
Syntax- Checklng Compllatton . . . .
Statement Number Option . . e e . e
Efficient Object-Time Performance . . .
Optimized Object Code . . . .

* ¢ o o o 0 e e o

3
e e o o e o s e s e

compatibility . e o o 5 v o s e e s o o
Data Set Compatlbrllty e e e e e e e e e e
Programming Compatibility e e e e e e e e
Object Program Compatibility e e e e e e e
CMS Compatibility e e e e e e

Compile-Time CMS Restructtons e e e e e e
Execution-Time CMS Restrictions e e s e
system Requirements e o o o o o o s e s e e

OS/VS COBOL Language Base e e o o © o o s o o

Related Cobol Development Aids « o o
TS0 COBOL Prompter e e e e e e e e
-Prompter Functions C e e e e e e e
COBOL Interactive Debug e e e e e s
Interactive Debug Functions . e e

e e o o @
.

e e o o @
.

Index ® ® ® ® o ¢ o © e o o e e ° 5 s o o v o

e o o o o o o

e o o e o o @

-n
[
[}
Q
I I . . .
0
e 0 e e e e o ¢ o o o

« e o o o o ®

¢« o o o 0

e o o e o
.

.
e o o e o o @

.
e o o e,

e o o o @

Contents

VD DUHUNUWUWN R QOONNOOUINIUT =

e e Y L Y Y SN S Sy S Yo

v



vi

COBOL Communication Environment e e e e e s
Example of Lister Facility Output e e e e
Example of Verb Profile Output .

Example of Execution-Time Stattstlcs Output .
Example of Background Symbolic Debugging Output

VT WUWN ==

0S/7VS COBOL Compiler and Library General Information



0S/VS_COBOL OVERVIEH

This manual describes the 05/VS COBOL Release 2.4 Compiler and
Library, an IBM program product that offers expanded language
capabilities through support of 1974 Standard COBOL. QS/VS
COBOL also provides advanced programming facilities meant to
reduce program development time and to aid in increasing
programmer productivity. 0S/VS COBOL Compiler features are:

Expandad Language Capabilities: The 05/VS COBOL Release 2
compiler accepts source language in support of the 1974
Standard. It also accepts source language in support of the

- 1968 Standard. IBM extensions are also supported. The

additional language capabilities make possible programming
applications not feasible previously.

virtual system Support, through 0S/V51 and 05/VS2, and the CMS
component of VM/370, makes use of the performance improvements
and large storage capacity of the Virtual Systems.

Advanced Program Applications are possible with these features:
. Enhanced VYSAM Support—VSAM is a high-performance VS access

method with a high degree of data security. The following
file organizations are supported:

- VSAM Sequential Files—using entry sequenced data sets.

- VSAM Indexed Files—using key sequenced data sets, and,
additionally, for Release 2, alternate indexes for
record retrieval.

- VSAM Relative Record Files—using relative record data
sets.

. Expanded Physical Sequential File Capabilities—through
QSAM, the following processing capabilities are available:

- Files can be extended.

- Input and/or output requests can be tested for success
or failure.

- The record area is available when the file is opened.

- Logical page formatting of the printed logical output
page can be specified through the source program.

. Added Communication Support—uwith the following features
available through 0S/VS COBOL:

- Automatic scheduling of the COBOL Communication program
upon demand.

- Queues made available/unavailable under COBOL program
control.

- Multiple destinations can be specified.

) Expanded Library Facilities—with the following features:

- References to library members are allowed at any pOInt
in the COBOL program.

- Multiple libraries can be specified.

- Replacement library text can be a literal, a word, or
any COBOL character string(s).

0S/VS COBOL Overview

1



. Powerful Data Manipulation—through the followirg COBOL
statements:

- INSPECT _Statement—counts and/or replaces one or more
characters in a data item; allows full or partial
initialization of such items.

- STRING/UNSTRING Statements:—multiple subfields can be
combined into a single field; a single field can be
separated into multiple subfields.

. Extended Computational Facilities—allows multiple receiving
fields in any arithmetic statement.

. User-Defined Collating Sequences—can be specified for an
entire program, for physical sequential data files, or for
Sort/Merge comparisons.

. Merge Facility—The MERGE verb enables two or more
identically sequenced input files to be combined into a
single output file by specifying a set of keys. Both
standard sequential and sequentially accessed VSAM files can
be designated as input or output.

. System/370 Device Support—including optical character
readers and large-capacity high-speed disk facilities.
High-performance System/370 devices also speed up execution
and allow advanced applications.

. Dvnamic Subprogram Linkage—at execution timae, user
subprograms can be fetched and loaded dynamically. The
storage assigned to such a subprogram can also be released
when the subprogram is no longer needed.

Program Davelopment Aids are provided through COBOL language
that eases former programming rules, through high-level
debugging features, and through standardization aids.

. Eased Programming Rules—give added COBOL capabilities and
make program development simpler:

- Table handling rules allow mixed indexes and literal
subscripts, as well as negative literals in the SET
statement.

- Level 77 items in Data Division entries can follow level
01 items.

- Relaxed punctuation rules.

- Page ejecting comment lines simplify page-by—paée format
control of the source program listing.

. COBOL Source Program Debug lLanguage—allows selective
monitoring of file-names, cd-names, procedure-names, and
identifiers. Both a compile-time switch and an object-time
fwitch are available to activate or deactivate the debugging

anguage.

. ederal Information Processi Standard IPS
Flagger—ensures that 05/VS COBOL programs can be written to
conform to a selected level of either the 1972 or the 1975
Federal Information Processing Standard.

. Migration Flagging—allows the COBOL user to identify
significant 0S/VS COBOL language that is either no longer
suppg;ted or is supported differently by the VS COBOL II
compiler. :

2 0S/VS COBOL Compiler and Library General Information



Interactive Capabilities—under 05/VS2 TS0 or VM/370 CMS,
compiler output can be directed to a terminal, and COBOL
background debugging facilities are available at a terminal.
(In addition, the TS0 COBOL Prompter Program Product is
available to the TS0 COBOL user, and the 0S COBOL
Interactive Debug Program Product is available to the TS0 or
CMS COBOL user.)

WHEN-COMPILED Special Register—provides a means of
associating a compilation listing with both the object

program and the output produced at execution time.

Lister Facility—provides specially formatted listing with
embedded cross-references for increased intelligibility and
ea:g of use. Reformatted source deck is available as an
option.

Verb_Profiles—facilitates identifying and locating verbs in
the COBOL source program. Options provide verb summary or
verb cross-reference listing which includes verb summary.

Execution-Time Statistics—maintains a count of the number
of times each verb in the COBOL source program is executed
during an individual program execution.

Background Symbolic Debug—during program execution,
COBOL-formatted snapshots and maps of the Data Division can

be obtained, either at specified points during execution or
at abnormal termination. Any number of debugging runs can
be executed without recompilation. No COBOL source language
changes are needed.

Flow Trace—shows program flow up to the point of abnormal
termination. The path of execution within and between
user-specified modules can be traced. HNo COBOL source
changes are needed.

Syntax-Checking Compilation—reduces compile time

signi ficantly by scanning the source code for syntax errors
but (conditionally or unconditionally) produces no other
compiler output.

Statement Number Option—provides information about the
COBOL statement being executed at abnormal termination.

Efficient Object-Time Performance can be achieved with 05/7VS
COBOL through the following features.

Optimized Object Code—can reduce generated Procedure
Division code. Programs are divided into 4K-byte procedure
blocks. Register assignment is optimized.

COBOL Library Management Facility—allows COBOL object
programs running in separate regions or partitions to save

virtual storage by sharing COBOL library subroutine modules.

Dynamic Subprogram Linkage—gives object-time control of
virtual storage resources. When a subprogram is no longer
needed, the storage it occupies can be freed.

System/370 Instruction Generation—System/370 instructions
save object program space and speed up execution.

Standard Block Specification—is allowed at object time.
Use of the Fixed Standard Block option (particularly for

direct access storage devices having the Rotational
Positional Sensing feature) results in improved input/output
performance.

0S/VS. COBOL Overview 3



Productive Compile-Time Performance is easy to achiaeve with
05/7VS COBOL. The following feature optimizes performance:?

. Speedy Sorted Cross-Reference—alphabetized cross-reference
listings make it easier to find user-specified names.

4 0S/VS COBOL Compiler and Library General Information



0S/VS COBOL_COMPILER FEATURES

The 0S/VS COBOL Compiler is a program product that offers the
following capabilities: expanded language capabilities, advanced
program applications, program development aids, efficient
object-time performance, and productive compile-time
performance, all of which are described on the following pages.

EXPANDED LANGUAGE CAPABILITIES
’ ' TBe 0S/VS COBOL Compiler accepts source language in support of

the 1974 COBOL Standard. Through this language support, the
programmer can make use of the following programming
advancements:
. Enhanced VSAM Support
. Expanded Physical Sequential File Capabilities
. Added Communication Support |
. Expanded Library Facility
. Powefful Data Manipulation
. Extended Computational Facilities
. User-Defined Collating Sequences
. Eased Programming Rules
. COBOL Source Prdgram Debug Language

Each of these features is separately described on the following
pages.

In addition, the Compiler accepts source language in support of
the complete 1968 Standard—including the Report Writer.

IBM extensions. (such as passwords for file security) are also
supported.

VIRTUAL SYSTEM SUPPORT

0S/VS COBOL makes available the advantages of the 0S/VS1 and
0S/7VS2 systems, the high-performance VSAM access method, and
(with 0S/VS2) the advantages of TSO0—including the ability to
use the TS0 COBOL Prompter and 0S COBOL Interactive Debug
Program Products. In addition, powerful System/370 instructions
are generated, and the performance of the advanced System/370
devices exploited. 0S5/VS1 and 05/VS2 can operate as independent
systems, or under control of VM/370. i

0S/VS COBOL also operates, with restrictions, dnder control of

the CMS component of VM/7370 (see the CMS Compatibility section
for further information).

0S/VS COBOL Compiler Features 5



ADVANCED PROGRAM APPLICATIONS

ENHANCED VSAM SUPPORT

VSAM is a high-performance access method of 05/VS1 and 0S/VS2
for use with direct access storage. VSAM offers high-speed
retrieval and storage .of data, flexible data organization, ease
of use—including simplified job control statements, data
protection against unauthorized access, central control of data
management functions, cross-system compatibility, device
independence (freedom from consideration of block sizes, control
information, record deblocking, etc.), the ability to monitor
the execution status of each input/output request, and ease of
conversion from other access methods. COBOL supports indexed
files with alternate indexes (through VSAM KSDS capabilities),
sequential files (through VSAM ESDS capabilities), and relative
files (through VSAM RRDS capabilities). VSAM provides.a
multifunction utility program known as Access Method Services to
define a VSAM data set, to load records into it, to convert an
existing indexed or sequential data set to VSAM format, and to
perform other tasks as well. VSAM allows key-sequenced,
entry-sedquenced, and relative record data sets.

In a key-sequenced data set (KSDS), records are stored in the
ascending collating sequence of an embedded prime record key
field. Records can be retrieved sequentially in prime key
sequence or alternate key sequence; they can also be retrieved
randomly according to the value of the desired key. VSAM uses
the contents of the key field and optional free space (space in
the data set not occupied by data) to insert new records in
their key sequence. Using dynamic access, the programmer can
specify sequential and/or random processing. More than one
record in a file may have the same value for the record field
aasoc1ated with the alternate key by specifying the DUPLICATES
phrase

In an entry-sequenced data set (ESDS), the records are stored in
the order in which they are presented for inclusion in the data
set. New records are stored at the end of the data set. 1In
COBOL, record retrieval must be sequential.

In a relative record data set (RRDS), the records are stored in
ascending order of relative record numbers, and this data set
provides the capability to access a mass storage file
sequentially or randomly. Each record in a relative file is
uniquely identified by an integer number representlng the
record’'s logical ordinal position in the file.

INDEXED FILE PROCESSING: A VSAM indexed (key-sequenced) file is
ordered in the ascending sequence of its prime record key, which
is embedded in the record and whose value must not change.
Embedded alternate record keys can be specified for retrieval in
another sequence. Records can be processed sequentially and/or
ragdozlg, and can be fixed or variable in length. Files can be
extended.

In sequential access, records are accessed in the ascending
order of their record key values or alternate record key values.

In random access, the sequence of record retrieval is controlled
by the programmer. The desired record is accessed through the
value placed in its RECORD KEY or ALTERNATE RECORD KEY data
item. A full or partial key value can be used.

In dynamic access, records are processed sequentially or
randomly, depending on the specific input/output request.

6 0S/VS COBOL Compiler and Library General Information



Performance Considerations: In a VSAM data set, inserted records
are stored and addressed the same way as original records; thus,
access speed after many insertions is equivalent to access speed
before insertions. Free space allows efficient automatic
reorganization of the data set by the access method; thus, there
is seldom need to reorganize the data set offline.

SEQUENTIAL FILE PROCESSING: In a VSAM sequential
(entry-sequenced) file, data is stored in the order in which it
is received. In COBOL, records can be retrieved only in the
same order in which they were stored. There is no key field
when the file is extended. New records are always stored at the
?nd g; the data set. Records can be fixed or variable in

ength.

Programming considerations: A record cannot be deleted from the
file; however, its space can be reused for a record of the same
length. If file reorganization becomes necessary, then a new
file must be created, using records from the existing file.

RELATIVE RECORD FILE PROCESSING: In VSAM relative files (VSAM
RRDS), the records are stored and retrieved in the order of
their relative record numbers. Storage and retrieval can be
sequential, random, or dynamic.

EXPANDED PHYSICAL SEQUENTIAL FILE CAPABILITIES

ADDED COMMUNICATION

With the OPEN EXTEND option, the user is able to open the file
for output operations. When an OPEN EXTEND statement is
executed, the file is prepared for the addition of records
immediately following the last record in the file.

Through the FILE STATUS clause, a value is placed into the
specified two-character data item to indicate the status of a
given input/output operation.

The LINAGE clause specifies the depth of a logical page as a
line number, and, optionally, specifies the line number at which
the footing area begins, as well as the top and bottom margins
of the logical page.

SUPPORT

The Communication feature allows the COBOL programmer to access,
process, and create messages and portions of messages, and to
control the flow of messages through a communication network.
Communication with local and remote communications devices is
through a Message Control System (MCS).

The Communication feature also allows the 05/VS COBOL user to
create device-independent message processing programs for
communication applications. )

In Communication applications, data flow into the system is
random and at relatively low speeds. Data in the system exists
as messages from remote stations, or as messages generated by

internal programs. Once delivered to the system, however,

messages can be processed at computer speeds.

The MCS acts as the logical interface between the entire network
of communications devices and the COBOL program, in much the
same manner as the operating system acts as an interface between
the COBOL object program and conventional input/output devices.
The MCS also performs device-dependent tasks, such as character
translation from terminal code to and from computer code
(EBCDIC), and insertion of control characters. Thus, the COBOL
Communications program is device-independent.

The MCS has two constituent parts: A user-written
Telecommunications Access Method (TCAM) Message Control Program
(MCP) coded in assembly language, and COBOL communications
feature object-time subroutines.

0S/7VS COBOL Compiler Features 7



To store messages until they can be processed, the MCS uses
message queues, which are similar to sequential data sets. The
queues act as buffers for both the COBOL Communications program
and the remote stations. That is, the COBOL Communications
program accepts messages from MCS queues, and places messages
into an MCS queue as if the queues were sequential files in a
conventional COBOL program. To the COBOL program, the MCS queue
from which it accepts messages is logically an input queue; the
queue into which it places messages is logically an output
gueue. ‘In this discussion, these terms are used with these
meanings. A COBOL program need not accept or transmit complete
messages from/to the MCS; portions of messages, known as nmessage
segments, may also be processed. *

A message can be logically subdivided into message segments,
which are delimited by End of Segment Indicators (ESI). A
message is delimited from the next message by an End of Message
Indicator (EMI). A group of messages can also be delimited from
another group by an End of Group Indicator (EGI). The presence
of these logical indicators is recognized and specified both by
the MCS and the COBOL program; however, no indicators are’
included in the message text processed by COBOL programs. For
incoming messages, the associated end indicators are identified
in the CD entry area. For outgoing messages, the COBOL program
spacifies the end indicators to be associated with the message.

The interface between COBOL and the MCS is established through -
the Communication Description (CD) entries in the Communication
Section. If input communication operations are to be performed,
there must be at least one CD entry for input; if output
communication operations are to be performed, there must be at
least one CD entry for output. Multiple input and/or output CD
entries are allowed. .

Each CD entry is an implicitly defined fixed stdrage area into
which information about messages is placed for use by both the
COBOL program and the MCS.

The following five statements are used by the COBOL object
program in the Procedure Division to request MCS services:

ENABLE allows data transfer betwwen the MCS and the
communication network.

DISABLE prevents data tfansfer between the MCS and the
communication network.

'RECEIVE causes data in an MCS input queue associated with a
specified queue structure to be passed to the COBOL obJect
program.

SEND causes data associated with the COBOL obJect program to
be passed to one or more MCS output queues

ACCEPT MESSAGE COUNT causes the MCS to return to the COBOL
object program the number of complete messages in the MCS
input queues associatgd with the specified queue structure.

A COEOL Communication program may be scheduled for execution
through job control language. It may also be scheduled for
execution by the MCS.

Figure 1 on page 10 111ustrates the COBOL Communication
environment.

Programming COnsiderationse For input, names identifying queues
in the input CD entry must be equated through the DD statement
to names used in the MCS. For output, the names in the output’
CD entry that identify symbolic destinations must be known to
the . MCS. The system provides a single ‘200-character buffer for
use by all queues; the buffer size can be increased or
decreased. This does not restrlct the amount of data the COBOL
program can request.

8 0S/VS COBOL Compiler and Library General Information



The user can test a COBOL Communication program by using
physical sequential data sets and linking to BSAM instead of to
TCAM. In general, this is accomplished through a JCL change
only; the COBOL program need not be changed.

EXPANDED LIBRARY FACILITIES

The COPY statement provides a COBOL user with the ability to
insert prewritten COBOL entries, which reside in a library or
libraries, into a COBOL source program at compile time.

Library text associated with a text-name is copied into the
source program, logically replacing the entire COPY statement
beginning with the word COPY and ending with the period. When
the REPLACING option is not specified, the library text is
copied unchanged. Replacement text can be a literal, a word, or
any COBOL character string(s).

A COPY statement may appear in the source program anyuwhere a
character string or a separator may appear; however, a COPY
statement must not be specified within a COPY statement.

POUERFUL DATA MANIPULATION

The INSPECT statement provides the user the ability to specify
that a character, or group(s) of characters in a data item are
to be counted, replaced, or counted and replaced. INSPECT
dynamically determines the length of a data item and initializes
a data item to zeros or spaces partially or completely.

STRING and UNSTRING statements give the 05/VS5 COBOL user greater
flexibility in data manipulation. STRING gives the programmer
the ability to put together the partial or complete contents of
two or more data items in one single data item; UNSTRING causes
contiguous data in a sending field to be separated and placed
into multiple receiving fields. In either case, the sending
field(s) can be specified as containing one or more
delimiters—characters which terminate the data transfer for the
field, but are not themselves transferred. Delimiters can be
specified at compile time or at object time. If the execution
of the statement completely fills the receiving field(s) before
the end of the sending field(s) is reached, an overflow
condition exists; provision is made for an ON OVERFLOW exit.

05/VS COBOL Compiler Features 9



Advanced Program Applications

COBOL Message Control Communication
Program System (MCS) Network
' | symbolic |
I : | I | Sources
Queue Structure Input
Definitions Queues
RECEIVE =
[ ]
[ ]
ACCEPT MESSAGE : °
COUNT L_—__J
ENABLE/DISABLE
INPUT (without-=e---- L— ——————————
TERMINAL)
ENABLE/DISABLE e e ]
INPUT TERMINAL
Output Symbolic
Queues Destinations

\

ENABLE/DISABLE - — — o ___
OUTPUT

Note: Flow of Data =—» Control = ——=———-—
Figure 1. COBOL Communication Environment

10 0S/VS COBOL Compiler and Library General Information



EXTENDED COMPUTATIONAL FACILITIES

When the GIVING option is specified, the value of the identifier
that follows the word GIVING is set equal to the calculated
result of the arithmetic operation.

The ADD, SUBTRACT, MULTIPLY, and DIVIDE arithmetic statements
are used for computations and can be coded with GIVING and a
series of identifiers. These arithmetic statements allow
multiple receiving fields.

The COMPUTE statement allows the user to assign one or more data
items the value of an arithmetic expression. COMPUTE allows the
user to combine arithmetic operations without the restrictions
on receiving data items imposed by the rules for the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements.

USER-DEFINED COLLATING SEQUENCES

MERGE FACILITY

The User-Defined Collating Sequences can be specified for an
entire program, for physical sequential data files, or for
Sort/Merge comparison.

The COLLATING SEQUENCE clause allows the user to specify any
number of alphabets in the Environment Division, any one of
which may then be used as the Program Collating Sequence (for
nonnumeric compares). Also, a different SORT/MERGE collating
sequence may be specified for each SORT or MERGE statement. The
file description statement allows a CODE-SET clause which names
an alphabet defined as NATIVE (EBCDIC) or STANDARD-1 (ASCII);
but not user defined.

The MERGE verb allows the COBOL user to combine two or more
identically ordered input files into one output file according
to embedded key(s) in the record. The MERGE verb uses the IBM
Program Product 05/VS Sort/Merge (Program Number 5740-SM1).
Special processing of merged records can also be specified.
More than one MERGE statement can be executed in one program.
Both standard sequential files and sequentially accessed VSAM
files can be designated as input or output.

SYSTEM/370 DEVICE SUPPORT

In 05/VS COBOL, the actual device upon which a file resides is
resolved at object time through JCL. This means that any valid

System/7370 0S/VS device whose functions correspond to COBOL
language capabilities can be used by the COBOL program. Such
device specification, in most cases, is not apparent to the

goggL program. However, special considerations apply to the
cllowing:

3886 Optical Character Reader: This general purpose online
device satisfies a broad range of data entry requirements. The
device scans documents line-by-line and the contents are
transmitted line-by-line to the processor. When the entire
document has been processed, it is ejected.

0S7VS COBOL supports the IBM 3886 Optical Character Reader
through object-time library subroutines. Functions provided
include: opening and closing the file, reading, checking,
controlling the document, and loading a new format record.

After each I/0 request, a code is returned to the program so
that any exceptional condition can be detected. The 05/VS COBOL
library contains the object-time subroutine.

systems370 Multifunction Card Devices: 05/VS COBOL supports the

combined function processing available through these devices.
Combined functions available are: read/punch, read/print,

0S/VS COBOL Compiler Features 11



read/punch/print, and punch/print. The functions must be
performed in the order shoun. The print function may use the
AFTER ADVANCING or AFTER POSITIONING options of the WRITE
statement.

All devices supported by 0S5 Full American National Standard
COBOL Version 4 are supported by 05/VS COBOL. These include,
among others: IBM 3504/3505 Card Reader (with OMR/RCE) and IBM
341073420 Magnetic Tape Units.

DYNAMIC SUBPROGRAM LINKAGE

Through the CALL and CANCEL statements, 05/VS COBOL allows
static or dynamic loading and deletion of subprograms. Through
the PARM field of the EXEC job control statement invoking the
compiler, the user can specify the mode (static or dynamic) of
the CALL literal statement. The CALL identifier statement is
always dynamic.

When the CALL statement is static, the main COBOL program and
all invoked subprograms must be part of the same load module.
Thus, when a subprogram is called it is already resident in
storage, and a branch to it occurs. MWhen subsequent CALL
statements are executed, the subprogram is entered in its
last-used state. If alternate entry points are specified, then
any CALL statement to the subprogram can select any of the
alternate entry points at which to enter the subprogram.

When the CALL statement is dynamic, the COBOL user can control
the loading of subprograms; that is, the called subprogram is
not link edited with the main program. At execution time, the
subprogram is loaded only if and when it is called.

Each subprogram invoked with a dynamic CALL statement may be
part of a different load module, which is a member of the system
link library or of a user-supplied private library. The
execution of the dynamic CALL statement to a subprogram that is
not currently resident in storage results in the loading of that
subprogram from secondary storage into the regions/partition
containing the main program, and a branch to the subprogram.

Thus, the first dynamic CALL to a subprogram obtains a fresh
copy of the subprogram. Subsequent calls to the same subprogram
(either by the original caller or by any other subprogram within
the same region or partition) result in a branch to the same
copy of the subprogram in its last-used state. If the ON
OVERFLOW option is specified, and there is not enough storage
available to accommodate the called subprogram, the ON OVERFLOW
imperative-statement is executed.

However, when a CANCEL statement is issued for that subprogram,
the storage occupied by the subprogram is freed, and a
subsequent CALL acts as though it were the first. A CANCEL
statement referring to a called subprogram may be issued by a
program other than the original caller.

When dynamic subprogram linkage is used, the COBOL Library
Management Facility must also be used by the main program and
all subprograms in one region/partition. Otherwise, multiple
copies of library subroutines may be resident at one time and
cause unpredictable results.

User subprograms that are to be invoked at object time with the
dynamic CALL statement must be members of the system link
library or of a user-supplied private library. For the CALL
statement to function as defined by the 1974 Standard, user
subprograms must be link-edited as nonreentrant and
nonserially-reusable. -

12 05/VS COBOL Compiler and Library General Information



PROGRAM DEVELOPMENT

AIDS

EASED PROGRAMMING RULES

Table Handlrng allous 11tera1 subscripts to be mixed with
index-names when referring to a table item. Negative. literals
may be used in the SET statement. The SET statement establishes
reference points for table handling operations by placing values
associated with table elements into indexes associated with
index-names.

Level 77 items in the Data Division under‘the Working-Storage
Section can follow level 01 ijtems.

Relaxed punctuation rules éllow a space before a,périod: comma,
or semicolon, and a space may immediately precede or may
immediately follow a parenthesis (except in PICTURE).

Also, a slash in column 7 causes that line to be treated as a
comment, and starts the comment on a new page.

COBOL SOURCE PROGRAM DEBUG LANGUAGE

FEDERAL INFORMATION

The Debugging features allow the user to specify conditions
under which data items or procedures are to be monitored during
program execution.

COBOL language elements that implement the Debugging features
are: a compile-time switch (WITH DEBUGGING MODE), an object-time
switch, USE FOR DEBUGGING Declarative, a special register
DEBUG-ITEM, and Debugging lines (which can be written anywhere
after the Object Computer paragraph in the Environment, Data,
and Procedure Divisions).

Compile-Time Switch%-in the Source-Computer paragraph of the
Configuration Section, the WITH DEBUGGING MODE clause acts as a
compile—time switch.

The WITH DEBUGGING MODE clause indicates that all Debugging
sections and all Debugging lines are to be compiled. If this
clause is not specified, all Debugging lines and sections are
compiled as if they were comment lines.

Object-Time Suitch——dynam%cally activates the Debugging code

‘generated when WITH DEBUGGING MODE is specified.

The USE FOR DEBUGGING Declarative identifies the items in the
source program that are to be monitored by the assoc1ated
declarative procedure

The DEBUG-ITEM 5peCIal register provides information about the
conditions causing Debugging section execution, and can be
referenced only in a Debugging Declarative.

A Debugging line is any line in a source program with a D coded
in column 7, the continuation area.

PROCESSING STANDARD (FIPS) FLAGGER

The 1975 Federal Information Processing Standard (FIPS) is a
compatible subset of American National Standard COBOL,
X3.23-1974, and the 1972 Federal Information Processing Standard
(FIPS) is a compatible subset of American National Standard
COBOL, X3.23-1968. FIPS recognizes four language levels:. low,
low-intermediate, high-intermediate, and full. When the FIPS
Flagger is used, source clauses and statements that do not
conform to FIPS are identified. This assists the user in
greating-OS/VS COBOL programs which conform to the specified
evel.

05/VS COBOL Compiler Features 13



MIGRATION FLAGGING

The Federal Information Processing Standard (FIPS) COBOL flagger
issues messages identifying nonstandard elements in a COBOL
source program. The FIPS flagger makes it possible to ensure
that COBOL clauses and statements in an 05/VS COBOL source
program conform to the specified level of either the 1975 or the
1972 Federal Information Processing Standard COBOL.

Programming considerations: At installation time, no flagging,
NOLVL (which is the system generation default), or flagging at a

‘specified FIPS level, LVL=A/B/C/D, can be specified as the

installation default option. At compile time, the programmer
can override any of these options by specifying another level of
FIPS flagging; if NOLVL is specified, however, the option is
ignored and the default LVL option is used. Through the LANGLVL
option, the programmer can specify flagging for either the 1972
FIPS or the 1975 FIPS.

Migration flagging analyzes COBOL source programs and jssues
informational messages indicating COBOL statements that are no
longer supported or that are supported differently by the VS
COBOL II Compiler, Program Number 5668-958. This helps
programmers migrate programs from 0S/VS COBOL to VS COBOL II.

For infbrmation about VS COBOL II, see VS COBOL II General
Information.

INTERACTIVE CAPABILITIES

The Compiler can provide output directed to a TSO or CMS
terminal. The terminal user can determine the characteristics
of compiler output to the terminal, such as:

. Compilation progress, diagnostic messages and compiler
diagnostics.

The TERM option orders the compiler, as it processes the
source program, to issue a progress message, and to issue
compiler error and warning messages to the terminal—each
compiler message including the line number of the source
statement in error and the message text. After all
diagnostic messages are issued, a message stating the total
number of statements in error is produced at the terminal.
Using Edit Mode subcommands, the programmer can retrieve the
statement by line number and correct the error before
recompiling.

L The compiler's entire listing data set.

The PRINT/NOPRINT option allows the programmer to choose
whether the program listing is to be placed in a data set,
displayved at the terminal, or suppressed. If the NOPRINT
option is specified, the compiler does not allocate a
SYSPRINT file. This saves compilation time and storage.

Through the NUM option, user-recorded line numbers in the input
data set may be substituted for internal statement numbers in
any diagnostic messages printed on the terminal.

Display and debugging output from a COBOL program can be
directed to the terminal, and the ACCEPT statement can invoke
input from the terminal. ’

‘Note: Additional interative capabilities are provided through

‘the separate Program Products TS0 COBOL Prompter and COBOL

Interactive Debug. Both Program Products are described in the

‘section on Related COBOL Development Aids.

14 0S/VS COBOL Compiler and Library General Information



WHEN-COMPILED SPECIAL REGISTER

LISTER FACILITY

The WHEN-COMPILED special register makes available to the object
program the date-and-time compiled constant carried in the
object module. WHEN-COMPILED provides a means of associating a
compilation listing with both the object program and the output
produced at execution time.

The Lister facility permits the user to obtain a reformatted
detailed source code listing that contains complete
cross-reference information at the source level. Each COBOL
statement is begun on a new line, and indented in a manner that
makes the logic of the program readily apparent, by highlighting
level numbers, nested IF statements, etc. Each line of the
reformatted source listing contains one or more references to
other source statements, specifying the statement number, and
indicating the type of reference.

Thus, when reading the Data Division, the user can identify
immediately the Procedure Division statements that read, write,
or inspect a given data item. File descriptions are
comprehended quickly because of uniform indenting conventions
that are imposed by the Lister facility. When reading the
Procedure Division, the user can see references to statements in
the Data division, showing use of the data item, and also to
other statements in the Procedure Division, simplifying the
tracing of program logic. The Lister facility further
facilitates the tracing of program logic by optionally printing
the Procedure Division in 2-column format, so that fewer page
turnings are required, and more logic appears on a page.
Optionally, the user may also obtain a new source deck that
reflects the reformatted source listing, with the exception of
embedded cross-reference information. Figure 2 on page 16 gives
an example of Lister output.

The Lister facility also produces a summary listing that
contains selected statements from the source program, plus a
condensation of the detailed information from the reformatted
source listing. The total number of each type of reference for
each File Description, and for each Section in the Procedure
Division is shoun.

Performance considerations: Although use of the Lister facility
necessarily adds time to the compilation run, the Lister
facility does not alter the source code. Therefore, such source
code takes no longer to compile than if the Lister option had
not been invoked. However, to save time on initial
compilations, the Lister facility should not be invoked until
the COBOL source program is known to be substantially free of
syntax errors. Once an up-to-date reformatted source listing
and new source deck reflecting the listing is obtained, the
Lister facility can be omitted on subsequent compilations. When
large COBOL programs are to be listed and compiled, the user may
be able to obtain shorter run times by electing to use Lister
cross—reference information in place of XREF or SXREF.

0S5/VS COBOL Compiler Features 15



uotjewJojul TeJdUBH AJRuqL] puR JBTLdWO) 104900 SA/SO 9T

‘(2 340 T 3ued) 2 dunbiy

GANT 2

1 ICENTIFICAYION DIVISICN.

2 PRCCPAM-IC. GRANTZ. ~

3 TNVIRGNMEAT DIVISICA,

& CONFIGUPATIIN SECTICM.

5 SGURCE-CCMPUTER., 1EwW-37~,
6 CBJEC T-COMPUTER, 18M-37(,
7 INPUT-QUTPUT SECTION.
8 FILE-CCNTFCL.
o

15/2¢€/72  PAGF ]

INAINQ A31TL99d 483st] 3O BIdwexy

SELECT INPUT-BUFFER ASSIGN TD UR-2540R-S-INFILE. 21
11 SELECT OUTPUT-BUFFER ASSIGN TO UR-1403-S-OUTFILE. 29
13 SELECT FILEX—-DIAGNOSTICS ASSIGN TG UT-2400-S-XFILE. 38
15 SELECT FILEY-WGRKFILE ASSIGN Y€ UT-2400-S-YFILE. S3
17 SELECT FILEZ-WOFKFILE ASSIGN TO UT-2400-S-ZFILE. ]

GRANTZ 19/06/73 PAGF 2
19 DATA CIVISICN. )
20 FILE SECTION. © :
6T 421RE,329R

21 FD INPUT-BUFFER
LABEL RECORDS APF CMITTSD.
23 91 INPLT-CARD.

24 02 INPLT-KYTE
25 INPUT~INDEX °oIC X
26 02 FILLER PIC X(fP).

@ Reference to FD statement number.

© FD referred to by SELECT statement.

© SELECT statement; (E) denotes Environment
Division reference.

333y . .
GCCURS 72 TIMES INDEXED 3Y 33734655G9£64U,6750,€7804,631046040,687Q,690Q9693Q,696Qy4A

o

322C+336Ce FETI AN FO6CC $HRLX G ARED JATSX yATAX 681X 684X, 8

Pre " Divi

(4] ion st t; (R) d that
statement 328 reads this data item.

©Data item changed by statement 322.

OFootnotes for additional references at
bottom of this page.




sesunjeay Jayidwo) 10802 SA/SO

L1

‘(2 JO 2 3Jed) g Banbiy

3nding A}LyLoey J4ajsi] jo ayrduwexy

317
318

321
322

325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340

L
361
362

GET-CARD-EXIT. €587,7797,1292T,126AT,13547T

A-85 77 SEQ-NUMBER

315 PROCEDURE CIVISION,
*

START-JCB. -

OPEN INPUT INPUT-BUFFER OUTPUT CUTPUT-BUFFER, 21,29
FILEX-DIAGNOSTICSy FILEY-WORKFILE 38,53
FILEZ-WCRKFILE. 64

MOVE SPACES TO BUFFER-AREA, NIAGNOSTIC a\~ 33,39

SET INPUT-INDEX, PROC-INDEX, LABEL=-INDFX, 2541754214
LABEL-INDEX-ENDy DICT—-INDEX, 2154142

DICT-INDEX-END TO 1 143

MCVE 0 TO SEQ-NUMBER. o— A
MOVE SPACES TC DIAGNCSTIC. 39
GET-CARC. 338G+658P,779P,1292P,1258P, 1354P

READ INPLT-BUFFER AT END 21

GO TO END-OF-INPUT. 197
MOVE SPACES TO OUTPUT=PRINTER, 30
ADD 1 TO SEC-NUMBER A
MOVE SEQ-NUMBER TO SEQUENCS-NUMBER. A,32
MCVE INPUT-CARD TO OUTPUT-RECCRC 23, 34
MOVE SPACES TO BUFFER-AREA 33
WRITE OUTPUT-PP INTER. 30
SET INPLT-INDEX TC 1. 25
IF INPUT-BYTE (1) EQUAL TQ =% 24

GC TO GET-CARD. 227

EXIT.

IF SWITCH2 TQUAL T0 2 78
GO TC PROCESS-NUM-DAT A-APRAY1CA L3k

PIC 999 VALUE C.

363 ELSE

364 GC T PRNCESS —AL PH-DATA-AFRAY122

3A8 FLSF

366 NEXT SENTENCF.

307 IF SWITCH1 EQUAL TO 2

368 MOVE 1 T2 SWITCH1

36"@ IF EIGHT=BYTF NPT EQJAL TO *DATA-DIV!

372 GC TO DIAG-BAD-INPYT

371 EL SE

372 G0 TO READ-DATA-WORP,

373 IF FLAG2 EQUAL T0O 1 AND NOT PESE2VED-WORD AND
NCT ARDAY

375 MOVE

YONLY RFSERVFD WORDS MAY APPEAR INMN COL 1,
- ¢ COL2.* T(r TEXT1A

376 PEKFCRM DIAG-EMD

377 IF SWITCH2 MOT GREATER THAN 2

374 GD TO NO=-DATVA-TYPE,

379 IF APRAY AND SWITCH2 EQUAL TO 2

380 GO TC NO-DATA-TVPE,

38l IF RESERVEN-WNRD AND FLAG2 NOT FOJAL TO 1

382 PEFFORM DIAS-2E S—-wARO-NCT-CCOL1 THPU
OIAG=EXIT,

383 IF PFOC-DIV

3gs 60 TO FINISH-DATA-DIV,

®
3e5 IF NUM-CATA
38+ GO TO PRACESS-MUM-IATa,

"

IF ARR D SWITLAD FOUAL

e et —
225C,4331C4332U,7941)

4ag

77
77
117
1361

343

113,121

123

ASSUME

bt
1381
18
1308

123,78

13CR

121, 11¢

137)
1386
126
485

124
413

QR ARPRAY AND 123,76, 1=

Note two-column Procedure Division listing.

€ Data items.
@ Footnoted data item.

© Paragraph Gone to (G) and Performed (P)
by referenced statements.

® Nested IFs indented progressively.

@DFootnote.

(1 2] Division stat

oced ts referencing
this data item.




VERB PROFILES

The verb profiles option produces a list of all verbs contained
in the COBOL source program. Each different COBOL verb in the
program is shown, followed by a count representing the number of
times it appears in the source program. Optionally, the count
is followed by the associated statement numbers.

Figure 3 gives an example of verb profile output.

VERBS OCCURS REFERENCE!
CLOSE 000001 000081
GENERATE 000001 000078

GO 000002 000077 000079
INITIATE 000001 000069
OPEN 000001 000068
READY 000001 000067
RESET 000001 000074
RETURN 000001 000077
SORT 000001 000070
STOP 000001 000075
TERMINATE 000001 000030

Figure 3. Example of Verb Profile Output

Note

1 Statement number references can be requested optionally in

addition to the verb count.

EXECUTION-TIME STATISTICS

The execution-time statistics option provides the programmer
with information that aids user program optimization by
identifying heavily-used portions of the COBOL source program.
It is also useful to the programmer in debugging by providing
verification that all portions of a program have been executed.
During execution of the object program, a count is maintained
for each verb in the source program. Just prior to program
termination, the system prints the accumulated execution count
showing the verb, the name of the procedure in which it appears,
and the number of the statement in which it appears. Figure &
on page 19 gives an example of Execution-Time Statistics output.

18 0S/VS COBOL Compiler and Library General Information



Line-by-line Analysis N
STATEMENT PROCEDURE NAME L VERB ID VERB COUNT PERCENT

119 PAGE-HEAD-RTN

120 USE

121  PAGE-HEAD-RTN-SWITCH

122 GO 6 2.343
123  PAGE-HEAD-RTN-TEST

124 IF 5 1.953
124 MOVE 2 .781
125 , ELSE

125 MOVE 3 1.171
126 MOVE 3 1.171
127 GO 5 1.953
128  PAGE-HEAD-RTN-ALTER

129 ALTER 1 .390
130  PAGE-HEAD-RTN-SUPPRESS

131 MOVE 1 .390
132 PAGE-HEAD-RTN-EXIT

133 EXIT 6 2.290
136  OPEN-FILES

136 OPEN 1 .390
137 INITIATE 1 .390
138 READATA

139 RFAD 73 28.515
139 GO 1 .390
140 GENEPATE 72 28.125
141 G0 72 28.125
142 COMPLETE

143 PERFORM 1 .390
144 TERMINATE 1 .390
145 CLOSE 1 .390
146 * STOP 1 .390

1 .
Last Block (this column contains an asterisk (*) for the last block in each

subroutine)

' Summary Analysis
VERB STATIC COUNT DYNAMIC COUNT VERB EXECUTIONS PERCENT

- - - = - - - - - - = - = - = = - = - - An em = = = e wn S Sw = em e =

ALTER 1 1 1 .390
CLOSE 1 1 1 .390
EXIT 1 1 6 2.343
GENERATE 1 1 72 28.125
GO 4 4 84 32.812
IF 1 1 5 1.953
INITIATE 1 1 1 .390
MOVE 4 4 9 3.515
OPEN 1 1 1 .390
PERFORM 1 1 1 .390
READ 1 1 73 28.515
STOP 1 1 1 .390
TERMINATE 1 1 1 .390

Figurae 4. Examplae of Execution-Time Statistics QOutput

0S/VS COBOL Compiler Features 19



BACKGROUND SYMBOLIC DEBUG

This feature reduces program development time by making
debugging information available in a COBOL format instead of a
hexadecimal -dump format. No source language changes are needed;
the debugging information is requested through object-time
control cards. Thus, multiple debugging runs can be made
without recompilation.

When a program terminates abnormally, the user receives a
COBOL-formatted map of his Data Division. Each data area is
identified by its source name, and its contents are easily
readable. The user can also request snapshots of the Data
Division at any point during program execution.

If two or more COBOL programs are link-edited together and one
of them terminates abnormally, the user is provided with such
COBOL-formatted information for the program causing termination
and its callers, up to and including the main program. Abnormal
termination information is provided in the following parts:

1. Abnormal termination message—including the program-name,
and the COBOL sequence number of the statement and of the
verb being executed.

2. An Optional Flow Trace—if requested, a time-sequenced trace
of the names of the last "n" COBOL procedures executed.

3. 'Selected areas in the Task Global Table.
4. COBOL-formatted map of the Data Division including:
a. MWorking-Storage Section
b. Linkage Section
c. For FDs, the data record and file status summary
d. For RDs, the report line, page counter, and line counter
For SDs, the sort record

f. For CDs, the CD itself in its implicit format, and the
area containing the message data currently in the buffer

Figure 5 on page 21 gives portions of a sample program compiled
using the Background Symbolic Debug feature, and shows an
example of the abnormal termination information that can be
requested. )

At compile time, an option tells the compiler to create a debug
file, an additional data set which contains descriptions of data
items (the dictionary) and other debugging information. At
object time, this debug file is required online, and symbolic
debug output is requested through control cards.

Several COBOL programs link-edited together must have separate
debug files if they each use the Background Symbolic Debug
feature. This feature automatically provides optimized object
code. The user can request that source sequence numbers be
checked and corrected. When the user requests that dynamic
snapshots be taken, they can be specified at a STOP RUN, EXIT
PROGRAM, or GOBACK statement. In this case, an "end-of-job"
snapshot results.

Note: The separate Program Product 0S COBOL Interactive Debug
is also available to the TS0 or CMS COBOL user.

20 0S/VS COBOL Compiler and Library General Information



12 Soaunjeaj J4aytdwo) 0400 SA/SO

3nd3ing BuiBBngag 31T0quAS punouBioeg 3o Blduex3y g 8J4n6 (4

Portions of TESTRUN source program, compiled using the Symbolic Debugging Feature -

.

00038 000370 WORKING-STORAGE SECTION. -

00055 000530 01 . RECORDA.

00056 000535 02 A PIC S9(4) VALUE 1234.
Field B does not contain 00057 000540 02 B REDEFINES A PIC S9(7) COMPUTATIONAL-3.
valid COMPUTATIONAL-3 .
data. : o

- 00059 000550 ° PROCEDURE DIVISION.

00066 000620 STEP-1l. OPEN OUTPUT FILE-1l. MOVE ZERO-TO KOUNT, NUMBR.

Therefore, source state- 00067 000630 STEP-2., ADD 1 TO KOUNT, NUMBR.
ment 00069 is in error. 00068 000640 - MOVE ALPHA (KOUNT) TO NO-OF-DEPENDENTS.
00069 000650 COMPUTE B = B + 1.

Portions of symbolic formatted dump produced at abnormal termination.

Message giving source . . -

statement and verb number

causing abnormal termination. COBOL ABEND DIAGNOSTIC AIDS
Portion of Data Division dump PROGRAM TESTRUN ~ LAST PSW BEFORE ABEND ...

Data present in RECORDA. COMPLETION CODE 0C7

LAST CARD NUMBER/VERB NUMBER EXECUTED -- CARD NUMBER 000069/VERB NUMBER 01.

Fields A & B. (Invalid numeric
positions in field B shown as
asterisks (*).

000055 01 RECORDA

DO = i ™"\ 003E40 (HEX) FLF2F3C4
_ st .o \003E40 000056 02 A ND-OT +1234
NpS - mmeicpeddedml= Voo3z40 000057 02 B NP-S  +*1%2%3

Note: In the complete dump, an explanation of the data codes used and selected areas of the TGT are printed after the statement number message and before
the Data Division dump.




FLOW TRACE

The flow trace option allows the user to receive a formatted
trace (that is, a list containing the program identification and
statement numbers) corresponding to a variable number of
procedures executed prior to an abnormal termination. The
number of procedures to be traced is specified by the user. The
flow trace option reauires no source language changes.

A flow trace is printed only in the event of an abnormal.
termination. The number of procedures to be traced may be
specified at compile time or execution time, and the output,
when running under TS0, may be directed to the terminal.

SYNTAX-CHECKING COMPILATION

With the 05/VS COBOL Compiler, the user can request a
syntax-checking compilation, through the PARM field of the EXEC
control statement. Such compilations can be unconditional or
conditional.

When unconditional syntax-checking is requested, the compiler
scans the source text for syntax errors, and generates the
appropriate error messages, but does not generate object text.

When conditional syntax~checking is requested, a full
compilation is produced if no messages or only W- or C-level
messages are generated; if one or more E-level or D-level
messages are generated, no object code is produced.

Syntax-only compilation can considerably reduce compile time.
Unconditional syntax checking can reduce compilation time more
than conditional syntax checking.

Programming considerations: When object text is not generated,
the following compile-time options are suppressed: LOAD, XREF,
SXREF, CLIST, NOSUPMAP, PMAP, DECK, VBSUM, VBREF, COUNT; if
optimized obJect code is requested, the obJect code is not
produced; if background symbolic debugging is requested. the
symbolic debugglng option is suppressed.

Unconditional syntax checking is assumed if all of the following
compile-time options are specified:

NOLOAD NOCLIST SUPMAP
NODECK NOMAP NOXREF/NOSXREF

A full compilation—including error messages, object text (if
requested), and all other specified (or default) options—is
produced if:

e Neither uhéonditional nor conditional syntax—-checking is
specified

. Unconditional syntax-checking is not assumed

STATEMENT NUMBER OPTION

This option facilitates debugging by providing information about
the statement being executed in the event of an abnormal
termination. At abnormal termination, the statement number is
printed; if there are two or more verbs in the source statement,
the verb being executed is identified. The program containing
the statement is also identified. This option requires no
source language changes.

Performance consideratlons- Five additional bytes are generated

for each procedure-name in the program, and 5 to 17 addttlonal
bytes are generated for each verb.

22 0S/VS COBOL Compiler and Library General Information



EFFICIENT OBJECT-TIME PERFORMANCE

OPTIMIZED OBJECT CODE

The object code generated by the 05/VS COBOL Compiler can be
optimized. When optimization is requested, the resulting object
program contains fewer machine instructions than it would
contain if optimization had not been requested; programs are
divided into 4K-byte procedure blocks; register assignment is
made more efficient than without optimization.

Use of the feature results in a considerable reduction in use of
object program storage. The reduction in size is dependent upon
source program size and content. In general, the larger the
number of source statements, branching statements, and 0l-level
data names, the larger the percentage of reduction.

Programming Considerations: Optimization is requested at compile
time through the OPT parameter in the PARM field of the EXEC job
control statement.

Optimized object code is automatically provided when Background
Symbolic Debug is specified; it may be requested when the flow
trace or statement number options are requested.

COBOL LIBRARY MANAGEMENT FACILITY

The 0S/VS COBOL library management facility allows a single copy
of the COBOL library subroutines to be shared by all currently
executing COBOL programs, even in different partitions or
regions. (When the feature is not specified, all programs and
subprograms, plus their required COBOL subroutines, are
link-edited into one load module for execution in one
partition/region. Thus, many copies of one COBOL subroutine may
be resident in virtual (or real) storage at one time, one in
each partition/region.)

When the library management facility is used, the COBOL library
subroutines may be wholly or partially resident in the VS2 link
pack area (LPA) or in the VSl resident reusable routine area
(RRR), or they may be resident within each partition/region.
(Some routines cannot be so placed—such as the subroutine used
for intraregion/intrapartition communication, the queue
structure description routine, a STOP RUN routine, a special
DISPLAY routine, etc.) The actual physical location of these
routines is not apparent to the executing program.

The primary advantage in placing the COBOL library subroutines
in the LPA/RRR area is the economy it allows in virtual storage
allocation. Though the LPA/RRR area must be made larger to
accommodate all the required COBOL library subroutines, it is
pageable, and each region/partition no longer requires its oun
copy. -

Programming Considerations: To be able to place the COBOL
subroutines in the LPA/RRR area, the user must execute a utility
program to add two members to the system parameter library. The
members are: ' :

1. A User List of.all names and all aliases for those COBOL
subroutines the user wishes to place in the LPA/RRR area.

2. A lLinkage Routine that allows the concatenation of the
system link library with the COBOL subroutine library, or
with a private library containing selected COBOL
subroutines. (Note that, if the user wishes to place
selected COBOL subroutines into a private library, a utility
program must be executed to catalog that library.)

0S5/VS COBOL Compiler Features 23



At initial program loading (IPl) time, the user tdentrfles the
user list to the system. The system then uses the linkage
routine to place the listed COBOL subroutines into the LPA/RRR
area.

The COBOL library management facility 15 invoked at compile-time
through the PARM field of the EXEC job control statement.

In any given reglon or partition, if the COBOL llbrary
management facility is used at all, it must be used by the main
program and by all subprograms in that region or partition.
Otherwise, multiple copies of COBOL library subroutines may be
resident at the same time and cause unpredictable results.

For a. region or partition nof using the COBOL library management
facility, the COBOL object program and the COBOL library
subr?uttnes it uses are link-edited together into one load
module

If COBOL library subroutines that were not loaded into the
LPA/RRR area at IPL time are required for execution of the
programg and the COBOL library management facility is being
used, then:

U For a main. program, such subroutines are loaded into the
region/partition before execution of the main program.

. For a subprogram, those required subroutines that have not
vet been loaded are loaded into the region/partition
directly before subprogram initialization. Thus, there is
only one copy of the needed subroutines resident in each
region/partition.

For the dynamic CALL and CANCEL functions, the COBOL library
management facility is an implied required feature. (See
"Dynamic Subprogram Linkage.")

Programs written and compiled for the IBM 0S Full American
National Standard COBOL Program Product Compilers are compatible
with 05/VS COBOL without recompilation, whether or not they use
the COBOL library management facility.

8YSTEM/370 INSTRUCTION GENERATION

System/370 instruction generation is automatic. These
System/370 instructions replace object-time subroutines and
instructions that previous compilers generate under
System/360—including routines and instructions to handle
decimal arithmetic scaling (where operands have a different
number of decimal places) and rounding. System/370 support also
gives much improved processing of variable-length fields.

Because System/370 does not require boundary alignment for
COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2 items, no
internal moves are generated for items that are not
SYNCHRONIZED.

Performance considerations: Space occupied by an 0S/VS COBOL
program is decreased, particularly when calls to. object-time
subroutines are no longetr necessary. Such calls are always
generated in System/7360 for variable-length moves and
comparisons. If there is at least one variable-length
alphanumeric move in the source program, System/370 support
reduces the size of the object program by at least 484% bytes; if
there is also at least one variable-length alphanumerlc
comparison, System/370 support reduces the size of the object
program by at least an additional 498 bytes.

24 0S/VS COBOL Compiler and Library General Information



DYNAMIC STANDARD BLOCK SPECIFICATION

For queued sequential data sets, the RECFM subparameter of the
DD statement may optionally be specified at object time,
permitting the programmer to specify the standard block option
(for data sets with recording mode F) or the track overflow
option for the data set. (The track overflow option is
equivalent to writing an APPLY RECORD-OVERFLOW clause in the
source program.) Use of the standard block option (particularly
for direct-access devices having the Rotational Positional
Sensing feature) results in significant I/0 performance
improvement.

Fixed-block single volume data sets as created by COBOL are
standard (except possibly when extended using the DISP=MOD
parameter of the DD statement). Multivolume data sets as
created by COBOL are standard if the volume switching occurs
through automatic end-of-volume procedures. If, however, the
programmer issues a CLOSE REEL/UNIT statement, then the number
of logical records in the volume must be an integral multiple of
n, where a BLOCK CONTAINS n RECORDS clause (or an equivalent
BLOCK CONTAINS—CHARACTERS clause) has been specified in the
source program (that is, no truncated blocks exist). The
staTdafd block option and the track overflow option are mutually
exclusive.

05/VS COBOL Compiler Features 25



PRODUCTIVE COMPILE~TIME PERFORMANCE

SPEEDY SORTED CROSS-REFERENCE

If an alphabetized cross-reference list is requested, the 05/VS
COBOL Compiler produces a cross-reference dictionary in which
data-names, file-names, and procedure-names are sorted
alphanumerically into two groups. One group consists of
data-names and file-names; the second consists of
procedure-names. Each is preceded by an appropriate subheading.

This option is requested at compile-time via the PARM field of
the EXEC job control statement.

Note: ‘A more comprehensive reformatted listing of the entire
COBOL source program can be obtained by invoking the Lister
facility. The listing thus produced contains embedded
cross-reference information and simplifies tracing program:
logic. (See the preceding description of the Lister facility.)

26 0S/VS COBOL Compiler and Library Gaeneral Information



0S/VS COBOL SUBROUTINE LIBRARY

The 0S/VS COBOL Subroutine Library is a partitioned data set
residing on a direct-access device, containing the COBOL
object-time libratry subroutines in load module form. The 0S/VS
COBOL Subroutine Library is designed for use with object modules
produced by the 05/VS COBOL Compiler. The 05/VS COBOL
Subroutine Library is available as a separate Program Product.
When more than one copy of the Subroutine Library is needed,
this Program Product must be ordered.

COBOL library subroutines perform execution-time operations
requiring either repetitive or extensive generated code. It is
inefficient to place such code inline in the object module each
time it is needed. Instead, library subroutines are used to
reduce the size of the object module. Any library subroutines
required to execute the problem program are either combined with
the object module at link-edit time or are dynamically fetched
during program execution.

To save even more virtual storage, the 05/VS COBOL library
management facility allows a single copy of such COBOL
object-time subroutines to be shared by problem programs in
different partitions or regions. This is controlled by the user
by placement of modules through a compile-time option. See the
section describing the COBOL Library Management Facility.

There are several major categories into which the object-time
subroutine library can be classified:

. Input/Output (excluding VSAM)
. Conversion

U Arithmetic verbs

U Other verbs

. Sort/Merge interfaces
U Checkpoint/Restart

° Segmentation feature
U Communications

. Debugging

. VSAM

® 3886 processing

The 05/VS COBOL Subroutine Library contains all subroutines
needed to support the new features of the 05/VS COBOL Compiler.

0S/VS COBOL Subroutine Library 27



COMPATIBILITY

DATA SET COMPATIBILITY

The 05/VS COBOL Release 2 Compiler provides support for indexed,
sequential, and relative file capabilities through VSAM Release
2 as well as 0S5 Full American National Standard indexes and
relative file capabilities.

The VSAM compatibility allows the user to perform all equivalent
ISAM-like functions on VSAM data sets using existing COBOL ISAM
programs. MWhen ISAM data sets are converted to VSAM format, the
user can continue present operation with only minor JCL changes.
The resulting VSAM data set usually requires less frequent
reorganization than the ISAM data set, because VSAM uses free
space within the data set for updating.

Data set compatibility (except for previously described VSAM
data sets) exists between 05/VS COBOL and all versions of IBM 0S
Full American National Standard COBOL.

DOS/VS and 05/VS VSAM compatibilities are explained in DOS/VS
Access Method Services. Common COBOL VSAM compatibilities do
not affect these compatibilities.

PROGRAMMING COMPATIBILITY

For the most part, a single source program can utilize both 1974
Standard language elements and 1968 Standard language elements.
When 1968 Standard language elements are used, the 05/VS COBOL
Compiler gives results equivalent to those given by the IBM 0S5
Full American National Standard COBOL compilers. For a few
language elements, the two standards conflict; for these items,
a compiler option is provided so that the programmer can
instruct the compiler which language interpretation to use.

0S/VS COBOL incorporates all language elements from IBM 0S Full
American National Standard COBOL with two exceptions: The
MESSAGE COUNT clause replaces the QUEUE DEPTH clause, and the
AECEPT MESSAGE COUNT statement replaces the IF MESSAGE
statement.

Most programs written for previous versions-of the IBM 0S Full
American National Standard COBOL compiler can be compiled on the
0S5/VS COBOL Compiler without modification, provided that new
0S/7VS COBOL reserved words have not been specified as
user-defined names, the QUEUE DEPTH clause is not used, and the
IF MESSAGE statement is not used. (A complete list of 05/VS
COBOL reserved words is included in IBM VS COBOL for 0S5/VS.)

OBJECT PROGRAM COMPATIBILITY

Programs written and compiled for the IBM 05 Full American
National Standard COBOL Program Product Compilers are compatible
with 05/VS COBOL without recompilation, whether or not they use
the COBOL library management facility.

28 0S/VS COBOL Compiler and Library General Information



CMS COMPATIBILITY

Under the CMS component of VM/370, the 0S/VS COBOL Compiler can
accept and compile any COBOL source program that it can accept
and compile under 0S5/VS1 and 0S5/VS2. The object code generated
under CMS can be executed under control of 05/VS1 and 0S5/VS52.
With restrictions listed in the following paragraphs, the object
code can also be executed under CMS. The compiler is not aware
of the CMS environment, and does not flag or identify the
restricted usage for any operating system.

Compile-Time CMS Restrictions

The "(nn)" subparameter of the FLOW option must be specified; it
is not optional. The "*¥" and "dsname" subparameters of the
PRINT optlon. and the "dsname" subparameter of the LIB option
must not be specified.

Execution-Time CHMS Restrictions

Indexed files (BISAM and QISAM) are not supported. Various
clauses and statements associated with these access methods
are therefore invalid: RECORD KEY, TRACK- AREA, START, APPLY
REORG-CRITERIA, and APPLY CORE-INDEX. :

There is no Checkpoint/Restart feature. Therefore, the
RERUN clause is not supported.

The positioning options of the OPEN (EXTEND) and CLOSE
statements are ignored.

There is no multivolume data set support. Therefore, the
CLOSE statement with the REEL or UNIT option is invalid.

There is no TCAM support; however, the BSAM test facility
will function for single level queues (i.e., not for queue
structures). -

There is ﬁo Sort/Merge feature. Therefore, the SORT verb is
not supported. :

None of the user label handling functions are supported.
Therefore, the label handling format of USE is invalid. The
data-name option of the LABEL RECORDS clause is invalid.
ASCII-encoded tape files are not supported.

Spanned recording mode is not available under Q5AM, BDAM,
and BSAM. This means that the S-mode default (block size
smaller than record size) cannot be specified, and that the
RECORDING MODE IS S clause cannot be specified.

Neither the LISTING nor the SYSUT5 data set can be used
under other systems.

No support for the 3886 Optical Character Reader is
provided.

Creating direct files is restricted as follows:
- For - U or V recording modes, access must be sequgntial;

- For ACCESS IS SEQUENTIAL, track identifier ﬁust not be
" modified.
- The XTENT option of the FILEDEF command must be
specified to indicate the number of 1og|cal records to
be written.

CALL...ON OVERFLOW statement is not availablo.

Compatibility 29



. No status key information on duplicate record using VSAM
with alternate indexes.

. The GIVING option of the USE statement in the error
declarative section is not supported for VSAM data sets.

. The AIXBLD execution-time option is not supported.
Therefore, the dynamic building of alternate indexes and the
dynamic completion of VSAM relative record data sets (RRDS)
record information is not supported.

30 0S/VS COBOL Compiler and Library General Information



SYSTEM REQUIREMENTS

Operating 0s/vsit
System 05/VS2 (with or without TS0)?!
Needed MVS/XA (24-bit mode only)
CMS component of VM/370!
Compile-time Any System/370 model that supports 0S/VS or CMS2
Machine . .
Requirements Disk HWork File Tape or Disk Work File

SYSUTI (required) SYSUT2—SYSUT4G (required)
: SYSUTS5—if Symbolic Debug is used
SYSUT6—if FIPS flagger is used

Object-time Any System/370 model that supports 05/VS or CMS2
Machine
Requirements One Work File (tape or disk) when Symbolic Debug is used
. : Input/output devices used by the object program
Virtual 128K bytes for Release 2 of the Compiler
Storage .
Notes

-1 Release 2 of VSAM is required for execution of COBOL object
programs that use VSAM alternate index, or relative record.
Use of VSAM file status feedback when creating duplicate
alternate record keys or use of Q5AM file EXTEND requires at
least 05/7VYS1 Release 6.0, 05/VS2 Release 3.7 (MVS) plus SU8,
or 05/VS2 Release 1.7 (5VS) Extended. TCAM Mod lLevel 5 is
required if the Communications Feature is used.

2 For CMS restrictions, see the CMS Compatibility section.

System Requirements 31



0S/VS COBOL LANGUAGE BASE

0S/7VS COBOL is designed according to the specifications of the
highest levels of the following 1974 Standard modules:

NUCLEUS—provides improved internal processing capabilities.
Extended data manipulation statements, enhanced arithmetic
capabllltles, user-specified. collatlng sequences, and eased
data grouping rules are all provrded

TABLE HANDLING——a convenlent method for searching a table is
provided which allows the definition of tables and making
reference to them through subscrlpts. mixed indexes, and
1|tera1 subscrlpts.

SEQUENTIAL I- 0-1mp1ements the VSAM ESDS processing, allous

" sequential files to be extended, and provides added page
placement capabilities for physvcal sequentlal flles
destined: for printed output

RELATIVE I 0—allous the user to specify relative record
file organization—the records in such a file are stored and
retrieved in the order of their relative record humbers.
Storage and retrieval can be sequential or random. Relative
I-0 !s implemented through. the VSAM RRDS capablllt|es

INDEXED I-0—gives added Indexed file processnng
capabilities through VSAM KSDS processing. Records are
stored according to some prime record key; they can be
retrieved through the prime record key or through alternate
record keys. -Storage and retrleval can be sequent1a1 or
random. i .

SORT-MERGE—gives the capability of ordering the records in
onae or more files (sorting) and of combining two or more
identically ordered files (merglng). The sort or merge can
be upon either the EBCDIC or ASCII collating sequence, or
upon a user-specified collattng sequence.

SEGMENTATION——allows the user to spectfy obJect program
overlay reqU|rements

LIBRARY——allows the user to replace all occurrences of a
given library text with alternate text during compllatlon.
Mult!ple COBOL source libraries can be specvfred

DEBUG—provides the capability of monitoring object program
execution through Declarative procedures, special debugging
lines (executed only when: in debugging mode), and a special
register DEBUG-ITEM which gives spec:flc lnformatlon about

execution status.

INTER-PROGRAM COMMUNICATION—allows a COBOL‘program to
communicate with one or more other programs through
transfers of control and acceSs to common data itehs.

COMMUNICATION——prov:des the ability to communlcate through a
Message Control Program (MCP) with local or remote
communication devices, and to access, process, and create
partial and complete messages., :

32 0S/VS COBOL Compiler and Library General Information



0S/VS COBOL also supports the highest levels of all eight
modules of 1968 Standard COBOL. (Language in the 1968 Standard
that differs from 1974 Standard COBOL is considered an extension
to the 1974 Standard.) These eight modules are:

NUCLEUS—defines the permissible character set and the basic
elements of the language contained in each of the four COBOL
divisions., Identification Division, Environment Division,
Data Division, and Procedure Division.

TABLE HANDLING—allows the definition of tables and making
reference to them through subscripts and indexes. A
convenient method for searching a table is provided.

SEQUENTIAL ACCESS—allows the records of a file to be read
or written in a serial manner. The order of reference is
implicitly determined by the position of the logical record
in the file.

RANDOM ACCESS—-allows the records of a file to be read or

written in a manner specified by the programmer.

z;og;aTmmer specified keys control successive references to
e file.

SORT—provides the capability of sorting files in ascending
and/or descending order. This feature also includes
procedures for handling such files both before and after
they have been sorted.

REPORT WRITER—allows the programmer to describe the format
of a report in the Data Division, thereby minimizing the
amount of Procedure Division coding necessary.

SEGMENTATION-—allows large problem programs to be split into
segments to be designated as permanent or overlayable
storage. This assures more efficient use of storage at
object time.

LIBRARY—supports the retrieval and updating of prewritten
source program entries from a user's library, for inclusion
in a COBOL program at compile time. The effect of the
compilation of library text is as though the text were
actually part of the source program.

In addition, 05/VS COBOL includes IBM extensions that provide
programmer convenience and additional processing capabilities.
The major IBM extensions are:

PASSWORD CLAUSE—provides file security for physical
sequential and VSAM files.

TRANSFORM STATEMENT—provides easy translation capabilities
from one collating sequence to another.

ENTRY STATEMENT—gives the user the ability to specify
alternate entry points in a called program.

0S/VS COBOL Language Base 33



RELATED COBOL DEVELOPMENT AIDS

IS0 COBOL PROMPTER

PROMPTER FUNCTIONS

In addition to the program development features included within
the 0S/VS COBOL Compiler and Library itself, there are two
related IBM Program Products, available under TS0, that greatly
facilitate program development. Both reduce program turnaround
time and increase programmer productivity. These Program
grgducts are: the TS50 COBOL Prompter and COBOL Interactive
ebug.

Both are described in IBM 0S COBOL Interactive Debug and (TS0)
COBOL Prompter, General Information.

The following discussion describes how these Program Products
can be used with 05/VS COBOL to make effective use of all three.

The TS0 COBOL Prompter makes possible conversational 05/VS COBOL
compilations from a terminal. The Prompter functions exactly as
its name implies: if the terminal user has omitted necessary
compilation information, or has entered such information
incorrectly, the Prompter asks for the correct information.

This saves time, effort, and expense, because, at one terminal
session, the 05/VS COBOL program can achteve results that might
take several batch processing runs.

o Accepts terminal input—including optional compilation
parameters and the source data set name

. Analyzes the input and prompts the terminal user

L Dvnamically allocates data sets—both those required by the
Compiler, and any that are optional

. Builds option and ddname lists for the Compiler
. Invokes the Compiler, supplying any user-omitted items

During a terminal session, the uéer will receive both
informational and prompting messages.

Prompting messages ask the user to correct erroneous compilation
information. When the information is corrected, the terminal
session resumes.

The user can also request assistance from the Prompter in using
the Prompter itself.

36 0S/VS COBOL Compiler and Library General Information



COBOL INTERACTIVE DEBUG

COBOL Interactive Debug greatly simplifies the debugging of
0S/VS COBOL object programs by providing facilities which make
any error readily apparent and easily correctable. COBOL
Interactive Debug is available under the TS0 option of 0S/VS2
and under the CMS component of VM/370.

During one session at the terminal, without changing source code
and without recompilation, the user can dynamically trace the
path of program flow, temporarily alter the logic flow of the
program, execute and reexecute portions (or all) of the object
program using different data values, and inspect the contents of
data items at any selected point in the program. Many other
features are also available. The result is that one terminal
session can take the place of many batch debugging runs; this
saves both machine time and programmer time, and speeds up
program development.

INTERACTIVE DEBUG FUNCTIONS

The Interactive Debug user can dynamically monitor the execution
of his COBOL program from a terminal. As execution of the
object program proceeds, the user, through the specification of
Interactive Debug subcommands, can dynamically:

. Establish breakpoints at which program execution is to be
unconditionally suspended and control returned, and remove
breakpoints already established.

° Establish conditional breakpoints which are effective only
when certain conditions are met. Such conditions might be,
for example, the debug monitor detecting a change in value
of a data field, or, a valid relational test involving two
data fields or a data field and a literal.

. Specify that at a breakpoint certain actions will
automatically take place (for example, changing the value of
a data item), after which execution will automatically be
resumed (that is, patch the code).

] List the active breakpoints.

. Resume execution at a specified source procedure-name.

. Trace the execution of the object program by requesting a
display of the names or line numbers of all source
procedures through which control has passed.

. Display selected COBOL source statements.

. List the status of files in the program.

. Display/compare/modify the contents of data items in the
COBOL program.

. Obtain a system dump of the problem program region.

. Request information about the function, syntéx, or operands
of the Interactive Debug subcommands.

Related Cobol Development Aids 35



A

abnormal termination

flow trace and 22

statement number option and 22
ACCEPT MESSAGE COUNT

statement in communications 8,10

ACCEPT statement in TS0 14

advanced program applications, feature

list 1
American National Standard COBOL,
compatibility with iii

background symbolic debug feature
description 20-21
optimized object code and 20

c

CALL statement 12
CANCEL statement 12
categories of library routines 27
CD entry, communications 8
CMS (conversational monitor
system)
COBOL and 14
compatibility 29
interactive debug program
product 35
restrictions under 29-30
virtual system support 5
COBOL development aids
interactive debug 3%
TS0 prompter 34
COBOL library management feature
description 23-24

programming considerations 23-24

COBOL prompter 34
COBOL VSAM considerations 6,7
collating sequences 11

combined function card devices 11,12

communications
environment illustration 10
feature description 7-9
language base 32
programming considerations 8-9
Communication Section,
communications 8
compatibility
American National Standard iii
CMS 29
data set 28
international standard iii
object program 28
programming 28

compile time

CMS restrictions 29

machine requirements 31
computational facilities 11
conditional syntax checking 22
conversational monitor system (CMS)

Data Division
communications 7-8
lister option 15-17
data manipulation statements 9
data set compatibility 28
data-and-time-compiled constant 15
debugging
language base 32
source program 13
symbolic 20-21
device independence of 0S/VS COBOL
DISABLE statement in
communications 8,10
dynamic CALL statement 12
dynamic FBS (fixed block standard)
specification 25
dynamic snapshots, symbolic
debug 20-21
dynamic subprogram linkage
description
library management and 23

E

efficient object-time performance
features, list
ENABLE statement in communications
entry-sequenced VSAM data sets 6,7
examples
background symbolic debug 21
communications 10
execution statistics 19
Lister facility 16,17
verb profiles 18
execution-time CMS restrictions 29
execution-time statistics feature
description 18
illustration 19
expanded language capabilities 1,5

F

FBS (fixed block standard) option
FIPS (Federal Information Processin
Standard) flagger 13-14

flagging, migration 1%

flow trace feature 22

36 0S/VS COBOL Compiler and Library General Information

1,5

11

8,10

=30

25
g



improved compilation performance
feature 3
industry standards iii
input queues, communications 8
INSPECT manipulated statement 9
interactive capabilities 14

cMS 14

TS0 14
interactive debug 35
international standard,
with 111
invoking subprograms at obJect
time

compatibility

K

key-sequenced VSAM data sets 6,7

language capabilities 5
library facilities, expanded 9,1
library language base 32,33
library management feature 32,33
Lister facility

description 15

illustration 16-17
LPA (link pack area) and COBOL library
management 23-24
load modules and COBOL library
management 23,24

machine requirements 31
MCS (message control system),
communication 7-9
merge facility
description 11
language base 32
message condition, communication
migration flagging 14
multifunction card devices 11-12
multiple receiving fields in arithmetic
statements 11

7-9

N

NOPRINT option, under CMS/TSO 14
nucleus language base 32,33
NUM option, under CMS/TS0 14

o

object time
CMS restrictions 29-30
machine requirements 31
object-time subroutine library 27
OCR (optical character reader) 11
OMR (optical mark read) proc2551ng 12
optimized object code
background symbolic debug
provides 20
description 23
programming considerations 23
0S/VS COBOL
compatibility 28,iii
compiler features description
language base
communications 32
debug 32
IBM extensions 33
indexed access 32
inter-program communicatlon 32
library 32,33
nucleus 32,33
random access 33
relative access 32
report writer 33
segmentation 32,33
sequential access
sort 33
sort/merge 32
table handling 32,33
overview iii
subroutine library description 27
system requirements 31
0S5/VS1 and 05/VS2 control
systems 5,31
output queues,
overflow condition,
manipulation 9

5-27

32,33

communication 8
data

p

performance considerations
lister option 15
sorted cross-reference 26
statement number option 22
System/370 instruction
generation 24
physical sequential file capabilities,
expanded, feature 5,1
preface iii
PRINT option, under CMS/TS0O 14
procedure division
communication 8
lister option 15
processing options, 3886 OCR 11
program debugging 20,21
program development aids,
list 2-3
program logic tracing in lister
option 15
programming compatibility 28

feature

Index

37



programming considerations
COBOL library management 23- 24
communications 8-9
FIPS flagger 13-14
optimized object code 23
syntax-checking compilation 22
VSAM

programming rules eased 13

o

Q

queues in communications 8

random access, language base 32
RCE (read column eliminate)
processing 12 .
RECEIVE statement in
communications 8,10
receiving fields in data
manipulation 9
relative record VSAM data sets 6,7
report writer language base 32
RRR (resident reusable routine) area
and library management 23,24

saegmentation language base 32,33
SEND statement in communication 8,10
sending fields in string
manipulation 9
sequential access
language base 32,33
merge facility and 11
snapshots in symbolic debug 20
SORT language base 33
sorted cross-reference (SXREF)
feature 26
source program debug language 13
special register WHEN-COMPILED 15
standard block (FBS) option
specification 25
standard sequential files and
merge 11
statement number option
description 22
performance considerations 22
static CALL statement 12
STRING manipulation statement 9
subprogram loading 12 .
subroutine library categories 27
summary listing, lister option 15
Summary of Amendments ijv
SXREF (sorted cross-reference
feature) 26
symbolic debug feature
description 20
example 21
syntax-chacking comptlation feature

description 22

programming considerations 22
system requirements 31
System/370 card devices 11-12
System/370 devices

support 11-12
System/370 instruction generation

description 24

table handling language base 32,33
TERM option, under CMS5/TS0 14
time sharing option (TS50} 14
750 (time sharing option)
COBOL and 14
COBOL prompter program product 34
flow trace option and 22
interactive debug program
product 35

U

unconditional syntax checking 22
UNSTRING manipulation statement 9
User-defined Qollating sequences 11

v

verb profiles feature
description 18
example 18
Version 4, 05 American National
Standard COBOL device
support continued 12
virtual memory needed 31
virtual system support description 5
VM/7370 control system
VSAM (virtual storage access method)
COBOL considerations 6,7
compatibility 28-31
features of support 6,7
merge facility and 11

WHEN-COMPILED special register 16

1,2,3

3410 and 3420 tapes 12
3886 OCR (optical character
raeadar) 11-12

38 0S5/VS COBOL Compiler and Library Gaeneral Information



R e

Please use pressure sensitive or other gummed tape to seal this form.

AU U LW MUY el WAV TS VTR W LT e

00000 ces 0800 000000000000000000000800000000000000000es000sss0OTIITS

R N R Y PR T RN

seseose

$0 0000000008000 00000000000000000000 0000000000000

escsce

seces

Reader’s

IBM OS/VS COBOL Compiler and Comment
Library General Information Form
GC28-6470-2

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:
Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.



GC28-6470-2

Reader’s Comment Form

Fold and tape

9 8 000000 C0 0000000000000 00000000000 00000000 000CTIO0OCCCIECE00000CGC0LC0ECROCEO0COIC0R00C000000000000000e0®oscccinscocsscsencsoconse

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.-

8 00000 000000000000 0000000000000000000600000000000 0000000000000 00 0000000000000 00000CCC000C00CC0CCC0COCCIIAICIIOIOOIOCEOEIEOIOIROIREOIOSETSOTS

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

00600060688 006060000°5060060600800000008000000000000000¢0Icsoiensonntonscststieteosnssdiorstonsstostorsornssncitestssecesossosssoesssnsoscssccsosnsccsscscosccncnscoroscenitoces

Fold and tape

{N7-N7€C *ONl a11d) UONPIUHTINIIL 1P1ANAA A ID 1A NUD 1andIAA tAAAA ALt~ .

7-N7H0-Q7N0 "W'Q'N Ul D31UlIA



Please use pressure sensitive or other gummed tape to seal this form.

—————

05000000000 0000000ssto0ssssisstenttosstesetesttosscssscsecsssacnsscevecssons®os

seescesccsssscescsccscs

secssssssssssssscrcns

ssescesserrsssressssesssesacesteessten e

Reader’s

IBM OS/VS COBOL Compiler and Comment
Library General Information Form
GC28-6470-2

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.



GC28-6470-2

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

00 000000 0000000000 000000¢000000000000000C0IO0C0000OC00C0C0C0CCC0ICVT0C0CCCO0OCRO0GC0CCC0CILCO0O000C00C0CRILELLIIIIIENONOEOIOIEOSIOEIINOEETOIOINIOINTIOOIOIOIOIOITIES

| ” || I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS  PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

0000000000080 060090000060000600060000006000000000000CO0CCOCOCIOERNGEOAINEIOLIO0IIGCOEIEOO00000000C000cCocornesnorsensolioersecsersesoecseneseesssnessecsscesccssensoscscscssorsrocacncs

5 00000000000 0000000000000 leltncdetstssitritecetocivinitstiisrtrestietectsonetoenscerisensiosstorsensecsoeroecessnoscssccceccnsas

Fold and tape Please do not staple Fold and tape

TS RS a_—m——
LK W __ J ——

-— - e T A

- L 4 L v ]

-_ S - R

- - - - - .

I Y G W .

T SRR S Y S

&

[(AZ-N70C "OAI A1) 1HIANDIIIATIN inatiam £ omamim miom oo

Z-N/59-2770  ‘WY'Q°'N Ul Daluli4



GC28-6470-2

IBM OS/VS COBOL Compiler and Library Genera

/.«S..m:os (File No. S370-20) Printed in U.S.A. GC28-6470-2



