GC33-4010-5

'0S/VS-DOS/VSE ——VM/37O
Systems | Assembler Language



Sixth Edition (March 1979)

This is a major revision of, and obsoletes, GC33-4010-4. Changes to the text and to
illustrations are indicated by a vertical line to the left of the change.

This edition applies to Release 4 of OS/VS1, Release 3 of 0S/VS2, Release 2 of VM/370,
DOS/VSE, and to all other releases until otherwise indicated in new editions or
Technical Newsletters.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, Order No. GC20-0001 for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to JBM Nordic Laboratory, Product
Communications, Box 962, S-181 09 Lidingé 9, Sweden. IBM may use or distribute
any of the information you supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines 1972, 1979

ii



Read This First

This manual describes the 0S5/VS - DOS/VSE - VM/370 assembler
language.

The 0S/VS - VM/370 assembler language offers the following improvements
over the 0S/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

The figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. If you are already familiar with the 0S/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the figure on the following pages are the
improvements of the DOS/VS assembler language over the DOS/360 assembler
language as processed by the D assembler.

AOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descrlptlons.

Note for VM/370 Users

The services provided by the 0S Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the CMS Loader. Therefore,
for any reference in this publication to those 0S programs, you may
assume that the CMS Loader performs the same function.

Certain shaded nctes in this publication refer to "OS only" information.
Where you see these notes you may assume the information also applies
for VM/370 users.

Note for DOS/VSE Users

All references to DOS and DOS/VS are also applicable to DOS/VSE.

iii



S —
COMPARISON OF ASSEMBLERS l‘

Feature Assemblers o
Language OS/VS Described in
DOS/360 (D) DOS/VSE 05/360 (F) VM/370
1. No of continuation lines allowed in 1 2 2 2 B1B
one statement
2. Location Counter value printed for 3 bytes 3 bytes 3 bytes 4 bytes caB
EQU, USING, ORG (in ADDR2 field) (upto 3
leading zeros
suppressed)
3.  Self-Defining Terms C4E
maximum value: 224-1 224-1 224-1 231.1
number of digits
binary: 24 24 24 32
decimal: 8 8 8 10
hexadecimal: 6 6 [ 8
character: 3 3 3 4
4. Relocatable and Absolute Expressions CéB
unary operators allowed: no yes no yes
value carried: truncated to truncated to truncated to 31 bits
24 bits 24 bits 24 bits
number of operators: 15 15 15 19
levels of parentheses: 5 5 5 6
5.  Alignment of Constants ALIGN/ constants constants constants D2
{with no length modifier) when NOALIGN not aligned aligned not aligned
NOALIGN option specified: option not
allowed
6.  Extended Branching Mnemonics D1H u
for RR format instructions: no yes no yes
7.  COPY Instruction E1A
nesting depth allowed: none 3 none 5
macro definitions copied: no yes no yes
8.  END Instruction
generated or copied END
instructions: no no no yes E1
9. All control sections initiated by a no yes no no E2C
CSECT start at location 0 in listing
and object deck
10. External Symbol Dictionary Entries E2G
maximum allowed: 255 511 255 399
(including
entry symbols
identified by
ENTRY)
11.  DSECT Instruction blank name entry: no yes no yes E3C
12. DRORP Instruction not allowed signifies all not allowed signifies all F1B
blank operand entry: current base current base
registers registers
dropped dropped
13. EQU Instruction G2A
second operand as length attribute: no no no yes
third operand as type attribute: no no no yes
14. DC/DS Instruction; one multiple multiple multiple G38
number of operands:
t S R D T R TR

iv



COMPARISON OF ASSEMBLERS

Language Feature Assemblers N
.
OS/VS - Described in
DCS/360 (D} DOS/VSE 0S5/360 {F) VN/|/370
15. Bit-length specification allowed: no yes yes yes G3B
16. Literal Constants G3C
multiterm expression for
duplication factor: no yes no yes
length, scale, and
exponent modifier: no yes no yes
G- or S-type address constant: no no no yes
17. Binary and Hexadecimal Constants G3D
number of nominal values: one one one multiple G3F
18. Q-type address constant allowed: no no yes yes G3M
19. ORG Instruction sequence symbol sequence symbol sequence symbol any symbol H1A
name entry aliowed: or blank or blank or blank or blank
20. Literal cross-reference: no yes no yes H1B
21. CNOP Instruction sequence symbol sequence symbol | only sequence any symbol H1C
symbol as name entry: or blank or biank symbol or blank or blank
22. PRINT Instruction
inside macro definition: no yes no yes H3A
23. TITLE Instruction H3B
number of characters in name
(if not a sequence symbol): 4 4 4 8
24. OPSYN Instruction: no no yes yes H5A
25. PUSH and POP Instructions H6
for saving PRINT and USING status: no no no yes
26. Symbolic Parameters and
Macro Instruction Operands
maximum number: 100 200 200 no fixed Jac
maximum K1B
mixing positional and keyword: all positional all positional all positional keyword param- J3c
parameters parameters parameters eters or operands] K3C
or operands or operands or operands can be inter-
must come must come must come spersed among
first first first positional param-
eters or operands
27. Generated op-codes START, CSECT, J4B
DSECT, COM allowed no ves no ves
28. Generated Remarks due to generated J4B
btanks in operand field: no no no yes
29. MNOTE Instruction JsD
in open code: no no no yes
30. System Variable Symbols J7
&SYSPARM: yes yes no yes
&SYSDATE: no no no yes
&SYSTIME: no no no yes
31.  Maximum number of characters in K5
macro instruction operand: 127 255 255 255
32. Type and Count Attribute of L1B
SET symbols: no no no yes
&SYSPARM, &SYSNDX,
&SYSECT, &SYSDATE, &SYSTIME: | no no no yes




S

COMPARISON OF ASSEMBLERS

Language Feature Assemblers Described in
E OS/VS -
DOS/360 (D) DOS/VSE 0S/360 (F) VM/370
33. SET Symbol Declaration L2
global and local mixed: no, global must no, giobal must no, global must yes
precede local precede focal precede local
. global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no
must immediately follow any source
macro definitions, if in open code: yes yes yes no
34. Subscripted SET Symbols L2
maximum dimension: 255 4095 2500 32,767
35." SETC Instruction L38
duplication factor in operand: no no no yes
maximum number of characters
assigned 8 255 8 255
36. Arithmetic Expressions L4A
in conditional assembly
unary operators allowed: no yes no yes
number of terms: 16 16 16 up to 25
levels of parentheses: 5 5 5 upto 11
37. ACTR Instruction allowed anywhere no, only immedi- | yes no, only immedi- | yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET
symbol symbol
declarations declarations
38. Options for Assembler Program
ALIGN no yes yes ves D2
ALOGIC no no no yes L8
MCALL no no no yes JgB
EDECK no yes no no Order No.
GC33-4024
MLOGIC no no no yes L8
LIBMAC no no no yes JBA
s




Preface

This is a reference manual for the 0S/VS - DOS/VS - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. 1In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

Major

How

This manual is for programmers coding in the 0S/VS - VM/370 or DOS/VS
assembler language.

Topics

This manual is divided into four main parts (aside from the
"Introduction" and the Appendixes) :

PART 1 (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.

PART II (Section D) describes the machine instruction types and their
formats.

PART I1I1 (Sections E through H) describes the assembler instructions.
PART IV (Sections I through L) describes the macro facility and the
conditional assembly language.

To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested in.

Complete specifications are given for each instruction or feature of the
assembler language (except for the machine instructions, which are
documented in Principles of Operation, -- see "References You May
Need") . In many cases a "Purpose" section suggests why you might use
the feature; a "how-to" section explains use of a complex feature; and
one or more fiqures give examples of coding an instruction.

If you are a present user of the OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
"Preface", which indicates those language features that are different
from the DOS or 0OS System/360 languages.

vii



TABS: Tabs mark the beginning of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

Tab - USING

0S-DOS DIFFERENCES: Wherever the 0S/VS and DOS/VS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The '0OS only' markings also apply for the VM/370
assembler.

KEYS: The majority of figures are placed to the right of the text that
describes them. Numbered keys within a figure are duplicated to the
left of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

o @

GLOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing, which was prepared by
Subcommittee X3.5 on Terminology and Glossary of American National
Standards Committee X3.

References You May Need

You may want to refer to

System/370 Principles of Operation, Order No. GA22-7000

for information on the functions of the machine instructions of the
assembler language and to

0S/VS - VM/370 Assembler Programmer's Guide, Order No. GC33-4021

for detailed information about the 0S/VS - VM/370 Assembler.

Guide to the DOS/VS Assembler, Order No. GC33-u4024

for detailed information about the D0OS/VS Assembler.

viii



Contents

-

SECTION A: INTRODUCTION « ¢ o @« « o« o o« C4C -- Symbol Length Attribute
Reference . . . . . . . . . . U4
CU4p -- Other Attribute References . U#6
C4E -- Self-Defining Terms . . . . . U6
C5 == LITERALS « « « « « o« « o« « « « - 50
C6 -- EXPRESSIONS . «. « « ¢« « « « « « « 53
C6A -- Purpose . . . e e« o o « « o 53
C6B -- Spec1f1catlons « = o e « s+ « 55
Absolute and Relocatable
Expressions . . « « « « « <« « . 56
Assembler Instruction Processing Absolute Expressions . . . . . . 57
Macro Instruction Processing . . Relocatable Expressions . . . . 58
A3 -- RELATIONSHIP OF ASSEMBLER TO Rules for Coding Expressions . . 59
OPERATING SYSTEM . 2 v ¢ o « « « Evaluation of Expressions . . . 60
Services Provided by the
Operating System . . . . . . . . 9 PART II: FUNCTIONS AND CODING OF
Al -- CODING BIDS ©+ « v o« o« « o o &« « « 10 MACHINE INSTRUCTIONS . « « « « « « « . 61
Symbolic Representation of

WHAT THE ASSEMBLER DOES . « o .
A1 -- THE ASSEMBLER IANGUAGE . . . . .
Machine Instructions . . .
Assembler Instructions . . . . .
Macro Instructions . . . . . . .

A2 -- THE ASSEMBLER PROGRAM . . .
A2A -- Assembler Processing Sequence
Machine Instruction Processing .

NN EWWWON -

-

Program Elements . . . « « « . o 10 SECTION D: MACHINE INSTRUCTIONS . . . . 63
Variety of Data Representation . 10

Controlling Address Assignment . 10 D1 -- FUNCTIONS : . - o « « « « .+ . . 63
Relocatability . . . . . . . . . 1 D1A -- Fixed-Point Arlthmetlc P 1)
Segmenting a Program . . . . . . 11 Operations Performed . . . . . . 64
Linkage Between Source Modules . 11 Data Constants Used . . . . . . 64
Program Listings . . . . . . . . 11 DiB -- Decimal Arithmetic . . . . . 85
Operations Performed . . . . . 65
PART I: CODING AND STRUCTURE . . . . . 13 Data Constants Used . . « . 65
. D1C -- Floating-Point Arlthmetlc . . 66
SECTION B: CODING CONVENTIONS . . - . . 15 Operations Performed . . . . . . 66
Standard Assembler Coding Form . 15 Data Constants Used . . . . . . 66
D1D -- Logical Operations . . . . . 67
B1 -- CODING SPECIFICATIONS . . . . . . 16 Operations Performed . . . . . . 67
B1A -- Field Boundaries . . . . . . 16 D1E -- Branching . . . . . . . . . . 68
The Statement Field . . . . . . 16 Operations Performed . . . . . . 68
The Identification-Sequence D1F -- Status Switching . . . . . . 69
Field . v ¢ v 4 ¢ 4 o o o =« « « 17 Operations Performed . . . . . . 69
The Continuation Indicator D1G -- Input/Output . . . . . . . . 71
Field . ¢ ¢ ¢ ¢ o ¢ o o a o« = « 17 Operations pPerformed . . . . . . 71

Field Positions . . . . . . . . 17 D1H -- Branching with Extended
B1B -- Continuation Lines . . . . . 18 Mnemonic Codes .« . . . . . . 72
B1C -- Comments Statement Format . . 19 D11 -- Relocation Handling . . . . . 74

B1D -- Instruction Statement Format 20 D2 -- ALIGNMENT . . . e« o e s o o« « o 15
Fixed Format . . . . 4 « « « « . 20 D3 -- STATEMENT FORMATS e e e e o o« o« - 18
Free Format . « ¢ ¢ ¢« « « « « « 20 D4 -- MNEMONIC OPERATION CODES . . . . 79
Formatting Specifications . . . 21 DS -- OPERAND ENTRIES . . . « « « « 80

General Specifications for

SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25 Coding Operand Entries . . . . . 80

DSA -- Registers . . . . « . « . . . 82

C1 -- THE SOURCE MOCULE . . . . . . . . 26 Purpocse and Usage « « . . . . . 82

C2 -- INSTRUCTION STATEMENTS . . . . . 26 Specifications . . . . . .« . . . 82

C2A -- Machine Instructions . . . . 29 DSB -- AddresseS . + « « - « « . - . 84

C2B -- Assembler Instructions . . . 30 Purpose and Definition . . . . . 84

Ordinary Assembler Instructions 30 Relocatability of Addresses . . 85

Conditional Assembly Specifications . . . . . . . . . 86

Instructions . . . . . . . . . . 32 Implicit Address . « « « - . . . 87

C2C -- Macro Instructions . . . . . 33 Explicit Address . . « « « « - o 87

C3 -— CHARACTER SET « - v « = « « « « - 34 D5C -- Lengths . . . « . « . « . . . 88

CYU == TERMS . . & & o 4 « 2 o « o« « « . 36 D5D -~ Immediate Data . . « <« .« - 90
C4A -- Symbols . . .« « &« &« &« « « « . 36 D6 -- EXAMPLES OF COCEL MACHINE

Symbol Definition . . . . . . . 38 INSTRUCTIONS . « « « « « « « &« « 92

Restrictions on Symbols . . . . U0 RR Format . « « « « « « « « - - 92

C4B -- Location Counter Reference . W41 RX FOrmat « « « o« o =« « « « « « 93

ix



RS FOrmat « « « o« o o o o o o =
SI FOrmat « « o« « o ¢ o« o o o =
S FOrmat . « ¢« o« o o o o o o =
SS FOrmat « « « o o o o o o o« @

PART III: FUNCTIONS OF ASSEMBLER
INSTRUCTIONS . <« ¢ ¢ ¢ o o o o o« o o =

SECTION E:

PROGRAM SECTIONING . . . .

E1 -- THE SOURCE MODULE . . . . . . .

E1A
E1B
E2

The Beginning of a Source
Module . . . . « e e . .
The End of a Source Nodule . .
-- The COPY Instruction . . . .
-- The END Instruction . . .

-- GENERAL INFORMATION ABOUT CONTROL

SECTIONS . . . . e o o e e o e

E2A
E2E
E2C
E2D
E2E
E2F
E2G
E3
E3A

E3B
E3C

E3D

E4

E5

-- At LCifferent Proce551ng
TiMES ¢ 2 o« « o o o o« o «
-- Types . . . e s e e s e
Executable Control Sections . .
Reference Control Sections . .
Location Counter Setting . .
First Control Section . . .
The Unnamed Control Section
Literal Pools in Control

Sections . . . . o e
-- External Symbol chtlonary
Entries . . . . .

-- DEFINING A CONTROL SECTION « o

-- The START Instruction . . .
-- The CSECT Instruction . . .
-~ The DSECT Instruction . .
How to Use a Pummy Control
Section ¢« ¢ ¢ ¢ ¢ e e 4 e o o =
Specifications . . . . . . . .
-- The COM Instruction . . . .
How to Use a Common Control
Section « ¢ v 4 v 4 4 4 e e W .
Specifications . . . « o o o

-- EXTERNAL DUMMY SWCTIONS « e e .

Generating an External Dummy

Section . . . . . . « o o o @
How to Use External Dummy
Sections . . . o .

-- DEFINING AN EXTERNAL DUMMY

SECTION . o ¢ ¢ ¢ o o o o o « &

E5A
ESB

SECTION F:

F1

-- The DXD Instruction . . . .
-- The CXD Instruction . . . .

ADDRESSING . . . . . . . .

-- ADDRESSING WITHIN SOURCE MODULES:

ESTABLISHING ADDRESSABILITY . .

F1a

How to Establish Addressability
-- The USING Instruction . . .
The Range of a USING
Instruction . . . . . . . . . .
The Domain of a USING
Instruction . . . . . . . . . .
How to Use the USING
Instruction . . . . - .
Specifications for the USING
Instruction . . « . . . < . . .

99
101
102

102
102
103
105

107

108
110
110
110
111

115
115
116
117
117
119
121

121
122

124
124
125
127
127
128
130
130
131
133
133
134
134
135

135

F1B

-- The DROP Instruction . . . .

144

F2 -- ADDRESSING BETWEEN SOURCE MODULES :

F2A
F2B
F2C

SYMBOLIC LINKAGE . . e o o o e
How to Establish Symbollc
Linkage . . . . . . . e o e e
-~ The ENTRY Instruct1on « o e
-- The EXTRN Instruction . . .
-- The WXTRN Instruction . . .

SECTION G: SYMBOL AND CATA DEFINITION

G1 -- ESTABLISHING SYMBOLIC
REPRESENTATION . . « « o o o o «

Assigning Values . . . . . . .
Defining and Naming Data . . .
G2 -- DEFINING SYMBOLS . . . & « .« «
G2A -- The EQU Instruction . . . .
G3 -- DEFINING DATB . ¢ « « o « o « «
G3A -- The DC Instruction . . . . .
G3B -- General Specifications for
Constants . . « « . ¢« ¢« o &
Rules for the DC Operand . . .
Information about Constants . .
Padding and Truncation
of Values . & & v ¢ ¢« 2 o o« o
Subfield 1: Luplication Factor
Subfield 2: Type « « « « « « .
Subfield 3: Modifiers . . . . .
Subfield 4: Nominal Value . . .
G3C -- Literal Constants . . . . .
G3D -- Binary Constant (B) . . . .
G3E -- Character Constant (C) . . .
G3F -- Hexadecimal Constant (X) . .
G3G -- Fixed-Point Constants
(Hand F) . ¢ o« « ¢« « o »
G3H -- Decimal Constants (P and Z)
G31 -- Floating-Point Constants
(E, Dand L) . v v o « « - .
G3J -- The A-Type and Y-Type Address
Constants « . ¢ ¢« « « o o«
G3K -- The S-Type Address Constant
G3L -- The V-Type Address Constant
G3M -- The Q-Type Address Constant
G3N -- The DS Instruction . . . . .
How to Use the LS Instruction .
Specifications . . . « e e e
G30 -- The CCW Instructlon « e e

SECTION H: CONTROLLING THE ASSEMBLER
PROGRAM . « ¢ ¢ o o o o o 2 o o o o

H1

H2

H3

-~ STRUCTURING A PROGRAM . .

H1A
H1E

H1C

-- The ORG Instruction .
-- The LTORG Instruction
The Literal Pool . . . .
Addressing Considerations . . .
Duplicate Literals . . . . . .
Specifications . . . e o e @
-- The CNOP Instructlon « . e

* s s 8
LI T 'Y
LI T B}

-- DETERMINING STATEMENT FORMAT AND
SEQUENCE . . . « e e e e e .

H2A
H2B

-- The ICTL Instructlon e o o o
-- The ISEQ Instruction . . . .

-- LISTING FORMAT AND OUTPUT . . .

H3A

-- The PRINT Instruction . . .

147

147
150
151
152

153

153
154
154
155
155
161
162

163
164
165

167
168
169
170
179
180
181
182
184

186
188

190

194
196
198
200
201
201
206
209

21

211
212
214
215
216
217
217
218

219
219
221
222
222



H3B -- The TITLE Instruction . . . 224
H3C -- The EJECT Instruction . . . 227
H3D -- The SPACE Instruction . . . 228
—HBY4 —— PUNCHING OUTPUT CARDS + v« w—v—228
HYA -- The PUNCH Instruction . . . 228
H4B -- The REPRO Instruction . . . 231
H5 -- REDEFINING SYMBOLIC OPERATION
CODES . . . . e e« o o o & o o 232
H5A -- The OPSYN Instructlon « - o 232
H6 -- SAVING AND RESTORING PROGRAMMING
ENVIRONMENTS . « « « « « « « « - 234
H6A -- The PUSH Instruction . . . . 234
H6B -- The POP Instruction . . . . 234
H6C -- Combining PUSH and POP . . . 235
PART IV: THE MACRO FACILITY . . . . . 237
SECTION I: INTRODUCING MACROS . . . . 239
Using Macros . . « « « « . - . 240
The Pasic Macro Concept . . . . 243
Defining a Macro . . . . . . . 245
Calling a Macro . . . . . . . . 26
The Contents of a Macro
Definition . . . . « o 2u8
The Conditional Assembly
Language « « « « « « o « o - o 250
SECTION J: THE MACRO DEFINITION . . . 251
J1 -~ USING A MACRO CEFINITION . . . . 251
JIA -- PUrPOSE &« o o o « « « « « - 251
J1B -~ Specifications . . . . . . . 252
Where to Define a Macro in a
Source Module . . . « <« « « . . 252
Open Code « o o« o o o o o « o« « 252
The Format of a Macro
Definition . . . « o o o o « 253
J2 -- PARTS OF A MACRO DEFINITION “ e 254
J2A -- The Macro Definition Header 254
J2B -- The Macro Definition Trailer 254
J2C -- The Macro Prototype Statement:
Coding . . . e e o e o« o o 255
Alternate Ways of Coding the
Prototype Statement . . . . . . 256
J2D -- The Macro Prototype Statement:
Entries . . . . . . . <« . . 256
The Name Entry . . . . . . . . 256
The Operation Entry . . . . . . 257
The Operand Entry . . . . . . . 258
J2E -- The Body of a Macro
Definition . . . . . . . . . 259
J3 -- SYMBOLIC PARAMETERS . . . . . . 260
General Specifications . . . . 260
Subscripted Symbolic Parameters 261
J3A -- Positional Parameters . . . 262
J3B -- Keyword Parameters . . . . . 263
J3C -- Combining Positional
and Keyword Parameters . . . 265
JY§ -- MODEL STATEMENTS . ¢« « « « « « . 266
JUA -- PUYPOSE « « « « « « « « - . 266
J4B -- Svecifications . . . . . . . 266
Format of Model Statements . . 266
Variable Symbols as Points of
Substitution . . . . . . . . . 267
Rules for Concatenation . . . . 268
Rules for Model Statement
Fields « « & ¢« v o ¢« « « & « - 269

Js

-- PROCESSING STATEMENTS . . . . . 272
J5A -- Conditional Assembly
Instructions . . . . . .« « . 272

J5C =~ The COPY Imnstruction . . . . 272
J5D -- The MNOTE Instruction . . . 273
J5E -- The MEXIT Instruction . . . 276
J6 -- COMMENTS STATEMENTS . . . . . . 277
J6A -- Internal Macro Comments
Statements . . <« . . . . ... 277
J6B -- Ordinary Comments Statements 277
J7 -- SYSTEM VARIABLE SYMBOLS . . . . 278
JTA —— ESYSDATE « o o« o = o o « « - 279
J7TB == ESYSECT v &+ 4« = = « « » « - 280
JT7C —— ESYSLIST © o = o « « « = » « 281
JID =— ESYSNDX o« 2 o« o « « « » « o 284
J7E -- ESYSPARM . . . . « « « . « . 284
JIF == ESYSTIME . .« . . . ¢ « % o o« 287
J8 -- LISTING OPTIONS . « « « « « « o 287
JBA == LIBMAC. v« « 2 « « « o « o o « 287
JBB == MCALL . ¢ o o « o « « « «.s 288
SECTION K: THE MACRO INSTRUCTION . . . 289
K1 -- USING A MACRO INSTRUCTION . ... 289
K1A -- PUrpoOS€ « « o o « o « o« @« o 289
K1B -- Specifications « « « « « « « 290
Where the Macro Instructions can
APPEAY « « ¢« « o o &« « « o« & o 290
Macro Instruction Format . . . 290
Alternate Ways of Coding a Macro
Instruction . .« . . + . « « . o 291
K2 -- ENTRIES . . . . e o o o o « & 292
K2A -- The Name Entry « o e e o o o 292
K2B -- The Operation Entry . . . . 293
K2C -- The Operand Entry . . . . . 293
K3 == OPERANDS « @« ¢ « « « e o o o o 294
K3A -- Positional Operands e e o o 294
K3B -- Keyword Operands . . . . . . 296
K3C -- Combining Positional
and Keyword Operands . . . . 299
K4 -~ SUBLISTS IN OPERANDS « . . . . . 300
K5 =-- VALUES IN CPERANDS . .« .+ . . - 302
K6 -- NESTING IN MACRO DEFINITIONS . « 307
K6A =— PUXPOSE « 2 o o « « o « o« o 307
Inner and Outer Macro
Instructions « . « « « « « . « 307
Levels of Nesting . « . « . . o 308
Recursion . « « « « « « &« « - « 310
K6B -- Specifications . . . . . . « 311
General Rules and Restrictions 311
Passing Values through Nesting
Levels . . . e o .o . 312
System Varlable Symbols in
Nested Macros . . « « « « « « « 314
SECTICN L: THE CONLCITIONAL ASSEMBLY
TANGUAGE ¢ 2 2 « « o o = o o o o « o« « 317
.1 -- ELEMENTS AND FUNCTIONS . . . . . 317
L1A -- SET Symbols . . . . . .« . 318
The Scope of SET Symbols « « o« 319
Specifications . « o e. 2 « - « 320
Subscripted SET Symbols -
Specifications . . . . . . . . 322
L1B -- Data Attributes . . . . . . 323
What Attributes Are. . . . . . 323
L1C -- Sequence Symbols . . . . . . 334

xi



L2

13

Ly

L6

7

L8

-~ DECLARING SET SYMBOLS . .

L2A -- The LCLA, LCLB, and LCLC

Instructions . . .

L2B -- The GBLA, GELB, and GBLC

Instructions . . . .

~- ASSIGNING VALUES TO SET SYMBOiS

L3A -- The SETA Instruction .
L3B -- The SETC Instruction .
L3C -- The SETB Instruction .
-- USING EXPRESSIONS . . . .
L4A -- Arithmetic (SETA)
Expressions . . . . .

L4B -- Character (SETC) Expressions

-

-

-

.

L4C -- Logical (SETE) Expressions .

-- SELECTING CHARACTERS
FROM A STRING . « « « o« «

L5A -- Substring Notation . .
-—- BRANCHING . . . « « « o «

L6A -~ The AIF Instruction .

L6B -- The AGO Instruction .

L6C -- The ACTR Instruction .
L6D -- The ANOP Instruction .

-— INOPEN CODE . . . « . . .
L7A -- PUrposSe . « « « « « .
L7B -- Specifications . . . .
-- LISTING OPTIONS . . . . .

336
336

340
343
343
345
347
349

349
355
359

364
364
367
367
369
370
373
374
374
374
376

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

II:

III:

V:

VI:

VII:

GLOSSARY .

INDEX .

xii

-

CHARACTER CODES . . . .

HEXADECIMAL-DECIMAL
CONVERSION TABLE . . .

MACHINE INSTRUCTION
FORMAT . « « o « o« <

MACHINE INSTRUCTION
MNEMONIC OPERATION
CODES & v o o o o o o &«
ASSEMBLER INSTRUCTIONS
SUMMARY OF CONSTANTS .

SUMMARY OF MACRO
FACILITY . . &« « « « &

.377

383

389

391

407

411

413
421

437



Section A: Introduction

What the Assembler Does - :

A computer can understand and interpret only machine
language. Machine language is in binary form and, thus,
very difficult to write. The assemkler language is a
symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead
of just the binary digits 0 and 1 used in the machine
language, you can make your coding easier to read,
understand, and change.

The assembler must translate the symbolic assembler language
into machine language Lefore the computer can execute ycur
program, as shown in the figure below.

CODING SHEETS

p——————
urce Deck

= (sore o
Program L_T_:> SOURCE MODULE

Assembler Language Input

or

il

TERMINAL N

ASSEMBLER

|1
Vv

_———. i
[ Object Deck
OBJECT MODULE
' Machine Language Output

LISTINGS

LINKAGE
EDITOR

Load
Module LOAD MODULE

U
Main Storage of
COMPUTER

] - . L . B Ssee—— IIUTIIEIINNNN————~

Section A: Introduction 1



Assume that your program, written in the assembler language,
has been punched into a deck of cards called the scurce
deck. This deck, alsc known as a source module, is the
input to the assembler. (You can also enter a source
module as input to the assembler through a terminal.)

The assembler processes your source module and prcduces
an okject module in machine language (called okject ccde).
Assume that the assembler punches this object module into
a deck of cards called the okject deck.

The okject deck or cbject module can be used as input to
be processed by another processing program, called the
linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, alcng with
other information on a program listing.

Al -- The Assembler Language

The assembler language is the symkolic programming language
that lies closest tc the machine language in form and
content. You will, therefore, find the asserbler language
useful when:

* You need to control your program closely, down to the
byte and even bit level or

e You must write subroutines for functions that are not
provided by other symtolic programming languages such as:
ALGOL, COBOL, FORTRAN, cr PL/I.

The assembler language is made up of statements that
represent instructions or comments. The instructicn
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructicns

2. Assembler instructions

3. Macro instructions.

Machine Instructions

A machine instruction is the symbolic representation of

a machine language instruction of the IBM Systen/370
instruction set. It is called a machine instruction because
the assembler translates it into the machine language ccde
which the ccmputer can execute. Machine instructions are
described in PART 11; SECTION L of this manual.



A2 -

Assembler Instructions

An assembler instruction is a request to the asserbler
program to perform certain operations during the assembly

of a source module, for example, defining data constants,
defining the end of the source module, and reserving stcrage
areas. Except for the instructions that define ccnstants,
the assembler does not translate assemkler instructiocns

into object code. The assembler instructions are described
in PART I111; SECTIONS E, F, G, and H and PART 1V; SECTIONS
J, K, and L. of this manual.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a rmacrc
definition. From this definition, the assembler generates
machine and assembler instructions which it then grocesses
as if they were part cf the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that ycu can call
for processing by coding the required macro instruction.
{These 1BM-supplied macro instructions are not described
in this manual.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART IV; SECTIONS J, K, and
L.

The Assembler Program

The assembler rprogram, also referred to as the ®"assembler®,
processes the machine, assembler, and macro instructions
you have coded in the assemkler language and produces an
object module in machine language.

Section A:

Introduction

3



A2A - ASSEMBLER PROCESSING SEQUENCE

The assembler processes the three types of assembler
language instructions at different times during its
processing sequence. You should be aware of the assembler's
processing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and

executed.
SRR S R —— -
TIMES
SOURCE
. PROGRAMMER
Coding PROGRAM
Time
\
Pre-Assembly
Titpe
> ASSEMBLER

Assembly
Time

1 y
Linkage A
Edit o LINKAGE
Time EDITOR

L \  LOADER
Program can combine
Fetch o linkage editing
Time J and loading
operations
0S only
-IIE:(ecution o CPU of
ime COMPUTER

A
The assembler processes most instructions on two occasions;

first at pre-assembly time and later at assembly time.

However, 1
processing

The assemb
processors
linkage-ed

t does scme processing, for example, macro
, only at pre-assembly time.

ler also produces information for other
The linkage editor uses such information at
it time tc combine object modules into load

modules.

modules) i

fetch time

executes t
assemkly t

The loader loads your program (comkined load
nto virtual storage (see GLOSSARY) at program
Finally, at execution time, the computer
he object ccde produced ky the assembler at
ire.

R



Machine Instruction Processing

The assembler processes all machine instructions and
translates them into okject code at assemkly time, as
in the figure belcw.

Machine

TIMES Instructions

Assembled
into
object code
Linkage
Edit
Program
Fetch
Executed
Execution

Assembler Instruction Processing

Assembler instructions are divided into two main tyges:

1. Ordinary assembler instructions

2. Conditional assembly instructions and the macro
processing instructions (MACRO, MENLC, MEXIT and MNOTH .

shcwn

Section A:

Introduction

5



The assembler processes ordinary assemkler instructicns
0 at asserbly time, as shown in the figure below.

—
Ordinary o
Assembler p - A \
Instructions and ENTRY
assembly DC EXTRN
time DS WXTRN PUNCH
TIMES expressions CCW Address constants REPRO
Coding

Pre-Assembly

Assembly
Linkage Edit :
~Provide. i
linkage . “Can provide
information finkage
Program Fetch o b
| ‘Provide .
ateasto
ol
Execution
— —
NOTES:

1. The assembler evaluates absolute and relocatable
expressions at assembly time; they are sometimes called
assermkly time expressions.

2. Some instructions produce ocutput for prccessing after
asserkly tirme.




The assembler prccesses conditional assemkly instructicns
and macrc processing instructions at pre-assembly time,

as shown in the figure kelow.

N PN _

Conditional Assembly
(and macro processing)
instructions and

o conditional assembly MNOTE

TIMES expressions

Coding

Pre-Assembly
Fully
processed

Assembly ' v

Generated
statements

Printed
message

Linkage Edit

Program Fetch

Execution

N/

NOTES :

1. The assenmbler evaluates the conditional assembly
o expressions {arithmetic, logical, and character) at gre-
asserkly tire. ) ) ’

2. The assembler processes the machine and asserbler
o instructions generated from pre-assembly processing at
assembly time.

5
b

Sectio




Macro Instruction Processing

The assembler processes macro instructions at pre-assembly
time, as shown in the figure kelow.

Macro ‘ Macro
TIMES Instructions Definitions
Coding
Pre-Assembly
Fully
Processed
Assembly
Generated
Statements
Linkage
Edit
Program
Fetch
Execution

NOTE: The assembler processes the machine and ordinary
assembler instructions generated from a macro definition
called by a macro instruction at assemkly tirme.

The assembler prints in a program listing all the
informaticn it produces at the various processing times
described in the above figures.



A3 - Relationship of Assembler to Operating System

" The assembler is a programming component of the 0S/VS, ) ) T
VM/370, or DOS/VS. These system control programs provide
the assembler with the services:

e For assembling a source module and

e For running the assembled okject module as a prograrnm.
In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Services Provided by the Operating System

0S/VS and DOS/VS provide the following services:

1. For assembling the source module:
a. A control program

b. Libraries tc contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the okject module:

a. A contreol program

b. Storage allocation

c¢. Input and output facilities
d. A linkage editecr

e. A lcader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

b. Files to contain source code and macro definitions

c. Utilities.
2. For preraring for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The CMS Loader.

Section A: Introduction 9



A4 -- Coding Aids

[

It can be very difficult to write an assemkler language
program using only machine instructions. The assembler
provides additional functions that make this task easier.
They are surmarized belcw.

Symbolic Rerresentation of Program Elements

Symbols greatly reduce programming effort and errcrs.

You can define symbols to represent storage addresses,
displacements, constants, registers, and almost any element
that makes up the assemkler language. These elements
include orerands, orerand subfields, terms, and expressions.
Symbols are easier to rememker and code than numbers;
moreover, they are listed in a symkol cross-reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
code.

Variety of Lata Representation

You can use decimal, binary, hexadecimal or character
representation which the assemkler will convert fcr you
into the binary values required by the machine language.

Controlling Address Assignment

If you code the aprrorriate assembler instruction, the
assembler will compute the displacement from a base address
of any symbclic addresses you specify in a machine
instruction. It will insert this displacement, alcng with
the base register assigned ky the asserkler instruction,
into the object code of the machine instruction.

At execution time, the cbject code of address references
must be in the base-displacement form. The computer obtains
the required address ky adding the displacement tc the

kase address contained in the base register.



Relocatability

ces—an-object module that can ke - s o S

relocated frorw an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their kase-displacement forr.

Segmenting a Program

You can divide a scurce module into one or more control
sections. After assemkly, you can include or delete
individual ccntrol sections from the resulting object

module before you lcocad it for execution. Control secticns
can be loaded separately into storage areas that are not
contiguous.

Linkage Between Scurce Modules

You can create symbolic linkages Letween serarately
assembled scurce modules. This allows you to refer
symbolically from one source module to data defined in
another scurce module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source mcdule,
including any generated statements, and the object cade
assembled from the source module. You can control the
form and content of the listing to a certain extent. The
assembler also prints messages akout actual errors amnd
warnings abcut potential errors in your source module.

Section A: Introduction 11






Part I: Coding and Structure

SECTION B: CODING CONVENTIONS
SECTION C: ASSEMBLER LANGUAGE STRUCTURE

13






Section B: Coding Conventions

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
before they are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape).

Standard Assenbler Ccding Form

You can write assembler language statements on the standard
coding form (Order No. GX28-6509) shown kelow. The cclumns
on this fcrr correspcnd tc the cclumns on a punched card

or positions on a source statement entered through a
terrinal. The form has space for program identification
and instructions to keypunch oreratocrs.

G. 509-5 U/M 050
IBM IBM System 360 Assernbler Coding Form X28-6509-5 U
o Printed in U.S.A.
orocnaM
PUNCHING GRAPHIC PAGE OF
T INSTRUCTIONS
PROGRAMMER lDATE PUNCH CARD ELECTRO NUMBER *
SraTemeNT
dematicmion
[ P P o P,
s ] s 50

L L P i

i | [ by : i Lol

8 o 16 16 20 25 30

* A standard card form, |BM electro 6509, 1s available for punching source statements from this form.
Instructions for using this form are in any 1BM System /360 Assembler Reference Manual.
Adafress comments concerning this form ta 18M Nordic Labaratory, Publications Devetopment,
Br.9E2S 18708 L.oirg. 5 Swide

9628 18708 Lgirg. 5 Swide

Section B: Coding Conventions 15



16

Bl - Coding Specifications

B1A - FIELD BOUNDARIES

Assembler language statement usually occupy one 80-column
line on the standard form (for statements occupying more
than 80 columns, see B1B below). Note that any printable
character punched into any column of a card, or otherwise
entered as a position in a source statement, is reproduced
in the listing printed by the assembler. All characters
are placed in the line by the assembler. Whether they are
printed or not depends on the printer. Each line of

the coding form is divided into three main fields:

The Statement field,

The Identification -Sequence field, and

The Continuation Indicator field.

The Statement Field

The instructions and comments statements must be written
in the statement field. The statement field starts in
the "begin® column and ends in the "end" column. Any
continuation lines needed must start in the "continue™
column and end in the "end®™ column. The assembler assumes
the following standard values for these columns:

e The "begin®" column is column 1

¢ The "end" column is column 71, and

e The "continue"™ column is column 16.

These standard values can be changed by using the ICTL
instruction. However, all references to the "begin®,

*end®, and "continue" columns in this manual refer to the
standard value described above.

Stmnt Field

GX28-6509-5 UIN

IEM IBM System 360 Assembler Coding Form Y

povonyw e pro— e - -

pe— = o [ . A—
o Y gt

Name Openation. Opecand Commants. Sequence

. e T 20 - - T o ol s

LlaBEL | [Jorclolo] JolpERANDSI TTTT T TT T T]1T 7 TREMARKS! ! BER HEER™

N T T 1 * g + + s -

N clonNTi[NuAT]i]on LiNE's] MusT sfTarRT i N [coLuMN 16 @ | L

~ t
'—'0 ; ; =
: : o‘ ;




The Identification - Sequence Field

The identification-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 72. A non-blank character in this column
indicates that the current statement is continued on the
next line. This column must be blank if a statement is
completed on the same line; otherwise the assembler will
treat the statement that follows on the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification-
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standard begin, end, and
continue columns can create a field béefore the begin column.
Thii field can then contain the identification-sequence
field.

Section B: Coding Conventions 17



B1B - CONTINUATION LINES

18

Continuation

To continue a statement on another line, the following
applies:

1. Enter a non-blank character in the continuation indicator
field (column 72). This non-blank character must not be
part of the statement coding. When more than one
continuation line is needed, a non-blank character must

be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
the continue column (column 16). Columns to the left of
the continue column must be blank. Comments may be
continued after column 16.

Note that if an operand is continued after column 16 it
is taken to be a comment. Also if the continuation
indicator field is filled in on one line and the user
tries to start a totally new statement after column 16 on
the next line, this statement will be taken as a comment
belonging to the previous statement.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
statements and the prototype statement of macro definitions
can have as many continuation lines as needed.

GX28-6508-5 U/M 050
IBM IBM System 360 Assembler Coding Form Primted m USA.
! PROGRAM PUNCHING GRAPHIC PAGE oF
[7 INSTRUCTIONS
oo o romcr canoEisoTmo M .
e S
Name Operation Operand Comments Sequence
) o T 20 A w “ s s w0 PP 5 P 50
LT T T PUNCH T \ iNcLlu[og” PljaslEB[ [T T 11 REE MAR]K[s. clo]N[T/1INJU[E TolN] T x 5
IR DU UMEXT [N TTTTTT i i : A ppzdinm
i : | i i i T i T ¥
e T
i ! ] | i
H H 1 i
| ! L : | | I
] i LA Ve e e e e e e e L +IX
= ‘ T :
] i+l 3l b ' : RIE M A
! j | i BEEERE clolnT 6 :
| ? | ] ‘ i | 1R
i ! [T T ] f ! P i i
LiA ! 1 +olepitioiajo b b b o] st +2CX | ;
! ‘ [ []oMMENT " kB Is lLoADED INTIO | 1, bMMEN =
| * LA 1. bl+ol+b +0l+p EEEN . e
I i oM MIEN[T comMMEINT I's RlEle] 11 1] \ j
| T \ 1T ‘ RRRRRE i




B1C - COMMENTS STATEMENT FORMAT

Comments

Comments statements are nct assemtbled as part of the ckiect
module, kut are only printed in the assembly listing.

As many comments statements as needed can ke written,
subject to the following rules:

c 1. Comments statements reguire an asterisk in the begin
column.

NOTE: Internal macrc definition comments statements require
a period in the begin column, followed by an asterisk (for
details see J6R).

2. BAny characters, including bla

k
cof the IBM System/370 Charact e

nks and special characters,

Set (see C3) can ke used.
3. Comments statements must lie in the statement field

e and not run over intc the continuation indicator field;
otherwise the statement fcllowing the comments statement
will be considered as a continuation line of that corments
statement.

4. Comments statements must not appear Lketween an
instruction statement and its continuation lines.

IBM IBM System 360 Assembler Coding Form g::_izfi‘cz-ss\:m 050

o I pry— o

p— o s oo »
S o

- P o — phgs

: - - 2 Y © s w “ © . . . ol s s

w [Trits] 1s] TaNT TolR|olt NAR]Y[ Ic[oMMEINTIS] [S[T]ATIEMIERTT], | WHITJcH] [CJAIN APPIE[AR ANY MRERIE] i IN IR

ﬁ AN Asls|EMB LER] PR OG[RIAM. ' ' B 1R

1 T ‘ — T

P : i Lo ! i ' “lj
) ! T T Y T 7 T i ; H ew‘
__" ‘ ‘ A ‘ . RN
— t
; H ! RN
[ ! T T T
j . i

—

Section B: Coding Conventions 19



BI1D -- INSTRUCTION STATEMENT FORMAT

Instructions

The statement field of an instructicn statement nust ke
forratted tc include frcm one to four of the following
entries:

1. A name entry
2. An oreraticn entry
3. An operand entry

4. A remarks entry.

EFixed Fcrmat

The standard ccding ferm is divided into fields that provide
fixed positions for the first three entries, as fcllcus:

IBM 1BM System 360 Assembler Coding Fi GX28-6509-5 U/M 050
- —o il ey e o Printed in US.A.

GRAPHIC PaGE o

PUNCHING
INSTRUCTIONS

PuUNCH CARD ELECTRO NUMBER *

Ideitication-
Comments Soquence
35 40 s 50 55 60 [ 7 13 20
T T T TTT T IBERE

L ’Rgmmnkﬁztﬁrnvf RENRERES
| ! ) | ‘

NAME [ENTRY oMIT|TED : ? L .
! \ ;‘¢‘ : B
SEECTD CSECIT ; . olpERAND ENTRY NoT rElQUI RE[D ; ‘

I

T + * T

ORG ; ‘o JOPERAIND ’:ENTRY OM | T-TEID

; —
: | ; :
I 1l i ! ]

I | ! | !

L RRRE | T RN ESENERE B

An 8-character name field starting in cclurn 1.

A 5-character cperaticn field starting in cclumn 10.

An operand field that begins in column 16.

Note that with this fixed format cne klank serarates each
field.

Free Format

It is not necessary tc code the nare, cperaticn, and crerand
entries acccrding tc the fixed fields on the standard

coding form. Instead, these entries can ke written ir

any pcsiticn, subject tc the formatting specifications
below.

20



Formatting Specifications

-‘Whetherusing fixed or free format, the following general
rules apply to the coding of an instruction statement:

1. The entries must be written in the following order:
name, operation, operand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end cclurn
(71) of any continuaticn lines.

3. The entries must be seprarated from each other by one
or more blanks.

é 4. If used, the name entry must start in the begin column.

5. The name and operation entries, each followed by at
least one blank, must be contained in the first line cf
an instruction statement.

6. The operation entry must start at least one column tc
the right of the begin column.

IBM 1BM System 360 Assembier Coding Farm

GX28-6509-5 U/M 050

Printed in U.S.A.
pmeem A pr— prrea—
-+ INSTRUCTIONS
PROGRAMMER {DA'E PUNCH CARD ELECTRO NUMBER *
e —
s p g p—— p
‘ . e n » . w© w . . w u B PP
N[aME gal Rl T Ti]al,l1Ts 11T [ TIRIeMaRIK]s! T FI-] ¥l x]elo] [FolrRMat] TTT 111 B
e T— P - 1 H [
| Sy zaamans AN | L i
EREEEESEE. | SUIRISNNIRSNANRE AN REAN ARERN RRRNRENANY
NAME “BALR][T1i4l, ISP IREMARKIS! | [--' T FREE Flo[rMAT [T 1 1l T
. . t \ — R , {
J Ll N 1] L || [ L l’ [ | L
] T ‘r 1 ; i i I T T

©
A

N S .

I
C
[

i

]

T

|
i

i

|

P
‘ T
i

— N

IS R . .

' ' i i

THE NAME ENTRY: The name entry identifies an instruction
statement.

The following applies tc the name entry:
1. It is usually optional.
2. It must be a valid symbol at assemkly time (after

substitution for variable symbols, if specified); for an
exception see the TITLFE instruction (H3B).

Section B: Coding Conventions

21



22

THE OPERATION ENTRY: The operation entry provides the
symbolic operation code that specifies the machine,
assembler, or macro instruction to ke processed. The
following applies to the operation entry:

1. It is mandatory.

2. For machine and assembler instructions it must be a
valid symkol at assembly time (after substitution for
variable symbols, if specified). The standard symkolic
operation codes are five characters or less (see Appendixes
IV and V) .

3. For macro instructions it can be any valid symbol that
is not identical to the operation codes described in 2
above.

THE OFERAND ENTRY: The operand entry has one or more
operands that identify and describe the data used by an
instruction. The following applies to operands:

1. One or more operands are usually required, depending
on the instruction.

2. Operands must be separated by commas. No blanks are
allowed between the operands and the commas that separate
them.

3. Operands must nct ccntain embedded blanks, because a
blank normally indicates the end of the operand entry.
However, blanks are allowed if they are included in
character strings enclosed in apostrophes (for example,
C'J N') or in logical expressions (see LUC).



THE REMARKS ENTRY: The remarks entry is used tc describe
the current instructicn. The following applies to the
remarks entry:

1
1

2.

It is cgtic

It can ccntain any of the 256 characters
combinations) of the IEM Syster/370 characte

klanks and special characters.

3. It can follow any operand entry.

(or punch
r set, including

4. If an crticnal cperand entry is omitted, rerarks are
allcwed if the absence cf the cperand entry is indicated
by a comma, preceded and followed ky one cx ncre tlanks.

GX286503-5 U/M 050

IBM IBM System 360 Assembier Coding Form oo m VS,
e A o | PV,
f INSTRUCTIONS PUNCH I CARD ELECTRO NUMBER
S foure
0 p—
Commants Sequence
Naers. . Operation e 2 73 20
ALwAWs LR 10,18 1) JBJE] [sElPAIRJA[TIED] [F R[oM
SIR 0,8 eNTR]Y] BY] [oNE o[r] M[ORIE]
plulNclH] [[LABENL * | |
T 1
‘ I
T 1 | NDI[cATE CE_OF oPPND ‘
oMIIT | SITART i | H pchgﬁf ABSﬁmcg o E
Nolnol | T [elsec [T [ B | NI -
T T T ‘ [ ! [ P
Nono2 TTTEND RERERAREREEREREE ks [T 7 T11 T | ‘ N
‘ Lo — L : ‘
AN L N INTEERENERRE 1
T ] T ; : R EERE L ‘ :
L1 | 1 1 — T ;
; L I L L | : ‘ ‘ i I . | |
i T } ' | ] Z‘ | P | il | i P i i [

Section B:

Coding Conventions

23






Section C: Assembler Language Structure

This section describes the structure of the assembler
language, that is, the various statements which are allowed

in the language and the elements that make up those
statements.

Section C: Assembler Language Structure 25



C1 -- The Source Module

A source module is a sequence of assembler language
statements that constitute the input to the assemkler.
The figure on the orposite rage shows an overall picture
of the structure of the assembler language.

C2 - Instruction Statements

26

The instruction statements of a source module are compcsed
of one to four entries that are contained in the statement
field. Other entries outside the statement field are
discussed in B1A. The four statement entries are:

1. A name entry (usually optional)

2. An operation entry (mandatory)

3. An operénd entry (usually required)
4. A remarks entry (optional).

NOTES:

1. The figures in this subsection show the owverall structure
of the statements that represent the assembler language
instructions and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual (as cross-referenced in the figures). Model
statements, used to generate assembler language statements,
are described in Ju.

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. It is
therefore not shown except in the overview opposite.



made up of
Source Statements

[ Source Statements arej

EITHER INSTRUCTION OR COMMENTS
STATEMENTS STATEMENTS
T
|
Which are of three
main types
MACHINE or] ASSEMBLER MACRO >
Instructions Instructions Instructions
Which are composed of
one to four entries
NAME OPERATION OPERAND REMARKS
; [
Which for machine instruc-
tions, is composed of l Which are composed of l
EXPRESSIONS
rWhich are composed of i
Combination CHARACTER
TERMS or of terms STRINGS
{Which are composed of characters|
IBM SYSTEM/370
CHARACTER SET
———

Section C:

Assembler Language Structure 27






C2A -- MACHINE INSTRUCTIONS

~———~The machine instructicnstatements are described inthe— ——-

figure below.

The instructions themselves are discussed in Part 1I cf
this manual and summarized in Aprendix 1IV.

—

NAME
Entry

Symbol
(or blank)

T

OPERATION
Entry

A symbolic
Operation
Code

OPERAND

One or more
operands
composed of

—

Expression

or Exp {Exp) or

Exp(Exp,Exp)
or
Exp {,Exp}

A
Literal
=H'Y

[Which can be
any of the
following

—

Arithmetic
or combination
of terms

Exp = Expression

Location
Counter

Reference
€0 *

Symbol
Length
Attribute
Reference
e.g. L’'HERE

A
Self-Defining
Term

Which can be
any of the
following

Decimal Hexadecimal Binary Character
eg. 9 eg. X 'DY eg B 1007 eg. C "JAN'
R _

Section C:

Assembler

Language Structure

29




C2RBR -- ASSEMBLER INSTRUCTIONS

The assemkler instruction statements can be divided into
two main groups: ordinary assembler instructions and
conditional assembly instructions.

Ordinary Assembler Instructions

Ordinary assembler instruction statements are described
in the figure on the opposite page.

These instructions are discussed in Part III of this manual
and summarized in Appendix V.

30



OPERATION

=

OPERAND

A
Symbol
{or blank)

Ent
cntl

ry

A symbolic
Operation
Code

Entry

One or more
operands

For Data Definition
(DC and DS
Instructions)

Operands can be
composed of one

ey

For alt other

Instructions

ordinary Assembler

Operands can be

1 Discussed more fully where individual instructions are described

Section C:

composed of
to four subfields
Constant Expression Character Symbolic
Constan ; .
Duplication Type Modifiers (Nominal or String Option
factor e.g.+4 e.g. &g
Value) g+ "TO BE NOGEN
PUNCHED' ’
/ One or more
constants of
1 / the format
e.g .19_..5..':3-200\ below
]
‘Decimal (Expression) "Character
number” or or string’
eg. F'2 e.g. A(ADDR) e.g. CAis B

D

Assembler Language Structure

31



32

Conditional Assembly Instructions %

Conditional assembly instruction statements and the macrc
processing statements (MACRO, MEND, MEXIT, MNOTE) are
described in the figure below.

The conditional assembly instructions are discussed in
Section L and macro processing instructions in Section
J; both types are summarized in Appendix V.

NAME OPERATION OPERAND
Entry Entry Entry
m ! must be I | can he I
:eqll:‘:loe Variable A symbolic Zero or more
SVE"(‘J or Symbol Operation operands
° & VAR Code composed of
{or blank)
. Expression Exp,’msg’

Sequence o \s/arlable or or or MNOTE or {exp)seq sym
Symbol ymbol {Expression) 3’ERROR’ (&A EQ1).SEQ

Which can be any
combination of
variable symbols
and other characters
that constitute an

Exp=Expression

Arithmetic Logical Character
Expression Expression Expression

&A +1 &B1 OR &B2 "JAN&C’




C2C -- MACRC INSTRUCTIONS

... Macro instruction statements are described in the figure
below; the prototype statement of a macro definition, which

serves as a model for the macro instruction staterent,

is also shown.

Macro instructicn statements are discussed in Section K
of this manual and the prototype statement is discussed
in Section J2.

Symbolic Symbolic Zero or more
Parameter Operation Symbolic
Code Parameters

Prototype
Statement
can be
Macro
Instruction
Statement NAME OPERATION OPERAND
Entry Entry Entry

Zero or more

E‘E Operands

which can be

L |

Ordinary ) ) Sublists with
Symbol or Sequence or Variable Operands with | or one or more
{or biank) Symbo! Symbol one value entries
Each entry
can have a
value
Values
can be
Character ‘Character
String or String’
{excluding (including
blanks) blanks)

Section C: Assembler Language Structure 33



C3 - Character Set

34

Terms, expressions, and character strings used to build
source statements are written with the fcllowing characters:

1. Alghameric Characters

Alghaketic characters (or letters): A through Z, and
$l #' a

Cigits (or numerals): 0 thrcugh 9
2. Special characters
+ - ,=.% () ' / & klank

Examples, showing the use of the above characters are given
in the figure below.

Normally, ycu would use strings of alphameric characters
to represent data (terms, see ClU), and special characters
as:

a. Arithmetic crerators in expressions

b. Data or field delimiterxs

c. Indicators to the assemkler for specific handling.

Characters are represented ky the card-runch ccrbinaticns
and irntermal kit ccnfiqgurations listed in Appendix 1I.

In addition to the printakle characters listed akcve, any

of the 256 combkinations fcr punched cards listed in Arrendix
I can be used:

1. Between raired apcstrothes
2. As statement remarks
3. In comments statements

4. In macrc instructicn cperands (for restrictions see
K5) .



Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

P e ———————————————
Characters Usage Example Constituting
Aiphameric In symbols LABEL NINE#01 Terms
Digits As decimal 0l 9 Terms
self-defining
terms
Special
Characters As Operators
+ Addition ‘NINE+F IVE
= Subtraction NINE-5
Expressions
Multiplication 9*FIVE P
/ Division TEN/3
+ or - (Unary) +NINE  -FIVE Terms
As Delimiters
Blanks Between fields LABEL AR 3,4 Statement
Comma Between operands OPND1 ,0PND2 Operand field
Apostrophes Enclosing
character strings C'STRING' String
Parentheses Enclosing subfields MOVE MVC TO(80),FROM Statement
or subexpressions (A+B x (C~D) ) Expression
As indicators
for
Ampersand Variable symbol &VAR Term
Period Seguence symbol .SEQ {iabet)
Comments statement + #*THIS IS A COMMENT Statement
in Macro definition
Concatenation &VAR.A Term
Bit-length DC CL.7'AB' Operand
specification
Decimal point DC F'1.7E4" Operand
Asterisk Location counter w+72 Expression
reference
Comments statement * THIS IS A COMMENT Statement
Equal sign Literal reference L 6,=F'2"' ‘Statement
Keyword &KEY=D Keyword
Parameter

Section C:

Assembler Language Structure

35




C4 -- Terms

A term is the smallest element of
the assembler language that
represents a distinct and separate

value. It can therefore ke used
alone or in ccmbination with other
terms to form expressions. Terms Terms Term Can Be Value Is
have absolute or relccatable values
that are assigned by the assemkler
or are inherent in the terms Absciute Relocatable Assigned by Inherent in
themselves. Assembler Term
A term is absolute if its value Symbols X X X
does not change upon program
relocation and is relocatable if Location
its value changes upon relocation. Counter X X
The varicus types cf terms described Reference
below are summarized in the figure
to the right. Symbol
- Length X X
Attribute
Other Data X X
Attributes
Self-Defining X X
Terms
_

C4A -- SYMBOLS

36

Furpose

You can use a symbcl tc represent storage locations or
arbitrary values.

SYMBOLIC REPRESENTATICN: You can write a symbol in the
name field of an instruction. Ycu can thren specify this
symkcl in the cperands cf other instructions and thus zreferx
to the former instructicn symbclically. This symkol
rerpresents a relocatakle address.

You can alsc assign an absolute value to a symbol ky coding
it in the name field of an EQU instructicn with an cgerand
whose value is absclute. This allows you to use this
symbol in instruction operands tc represent registers,
displacements in explicit addresses, inmediate data,
lengths, and implicit addresses with aksclute values. Fcr
details cf these prcgrar elements, see [5. The advantages
of symbolic over numeric rerresentaticn are:

1. Symbcls are easier tc remember and use than numerical
values, thus reducing prograrming errcrs and increasing
rrogramming efficiency.

2. Ycu can use reaningful symkcls tc descrike the prcgranm
elements they represent; for example, IKFUT can name a
field that is to contain input data, c¢r INCEX can nane

a register to ke used for indexing.




3. You can change the value cf cne symkol (through an EQU
instructicn) more easily than ycu can change several
numerical values in many instructicns.

4. Symbols are entered into a crcss-reference takble that
the assenkler prints in the program listing. This takle
helps you to find a symkol in a prcgrar listing, kecause
it lists (1) the numker of the statement in which the
syrkcl is defined (that is, used as the name entry) and
(2) the numkers of all the statements in which the symnkcl

is used in the crerands.

THE SYMECI TARLE: The assembler maintains an internal
takle called a symkcl takle. When the assenkler grccesses
your scurce statements for the first time, the assemkler
assigns an aksolute or relocatakle value tc every synkcl
that arrears in the name field of an instruction. The
assemkler enters this value, which norrally reflects the
setting cf the lccaticn ccunter, into the symbol takle;

it also enters the attrikutes asscciated with the data
represented by the symbcl. The values of the symkol and
its attrikutes are availakle later when the assernkler finds
this symbkcl cr attribute reference used as a term in an
operand or expression {(Attrikute references used as terns
are discussed in C4C and CUrL below).

Specifications

The three types of symbcl recognized
by the assembler are:

1. Ordinazy'symbols
‘Symbols
2. Sequence symbcls

3. Variable symbols. h
ORDINARY SYMBOLS: Ordinary symbols alphabetic character (letter)

can be used in the name and operand

field of machine and assembier 0 to 7 alphameric characters

instruction statements. They must
be coded in the format shown in
the figure to the right.

OIRDINSYM
NOTES:

Exampies:
1. No special ‘characters are allowed HERE #01 X
in an ordinary symbcl. READER #12 Y
AO001 @33 Z
2. No blanks are allowed in an B002 $OPEN  F2A

ordinary symbcl

Section C: Assembler Language Structure 37



38

VARIABLE SYMBOLS: Variable symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

SEQUENCE SYMBOLS: Sequence symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

Symbol Definition

An ordinary symbol is considered
defined when it appears as:

1. The name entry in a machine or
assembler instruction of the
assembler language.

2. One of the operands of an EXTRN
or WXTRN instruction.

NOTE: Ordinary symbols that appear
in instructions generated from model
statements at pre-assembly time

are also considered defined.

Var. Sym.

ampersand

alphabetic character (letter)

0 to 6 alphameric characters
& MR SY M!

Examples:
&A &PARAM

&B &KEYWORD
&C &CHAR3

—

—

period

alphabetic character (letter)

/ 0 to 6 alphameric characters
SITE QU S Y M!

.SEQ
.LOOP11
.EXIT20
.T0001

Examples:




The assembler assigns a value to
the ordinary symbol in the name
fields as follows:

1. According to the address of the
leftmost byte of the storage field
that contains one cf the following:

a. BAny machine or assemkler
instruction (excert the EQU or
CESYN instructions)

b. A storage area defined by
the L[S instruction

c. Any constant defined by the
DC instruction

d. A channel ccrmand word defined
by the CCW instruction.

The address value thus assigned

is relocatable, because the object
code assembled from these items

is relocatable; the relocatability
of addresses is descriked in LCSB.

2. According to the value of the
first or cnly exprressicn specified
in the operand of an EQU instruction.
This expressicn can have a
relocatable or absolute value, which

is then assigned to the ordinary
symbol. The value of an ordinary
symbol must lie in the range -231
through +231-1.

Section C:

Assembler Language Address Value, Object Code
Statements of Symbol in Hex
Address of
Relocatable AREA
LOAD L 3,AREA° LoAD—[58] 3] 0] xxxx]
AREA DS F 0 AREA—3% [xx_x x XXXX|
1
F200  DC F'ZOO'Q F200—/4[00 0 0 0oC8
)
/
FULL EQU AREA e FULL/
TWOO EQU F200 TWOO
Absolute
R3 EQU 3 0 R3=3
Address
of FULL
et e—
L R3,FULL 58130 |xxxx
A R3,TWO00 S5A 130 [xxxx
——
Address of
TWOO0
_

Assembler Language Structure 39




Restrictions cn Symbcls i *

UNIQUE DEFINITION: A symbol must
te defined only cnce in a source

module: EXTRN
0 either in the name field of a
source statement 0\
o or in the operand field of an ggg ;EG3
EXTRN or WXTRN instruction. EQU 4
This is true even for a source
module which contains two or more
control sections. L REG4, TABLE ( INDEX)
NCTE: The ordinary symbol that
pears in the name field of an B SECOND
SSYN or TITLE instruction does DS CL256
not constitute a definition of that
symkol. It can therefore be used
in the name field of any other
statement in a source mcdule. SECOND CSECT

CONTRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSECT,
DSECT, or CCM instruction. The
o first time a symbol is used to name
these instructions, it identifies
the beginning of the ccntrol section;
0 a duplicate use of the symbol
identifies the resumption of an
interrupted control section.

REG3,ADRDR

RESUME1

A (READER)

CSECT |

PREVIQUSLY DEFINED SYMBOL: In some
instructions the symbols used in

0 their operands must have been defined
in a previous instruction.
Previously defined symbols are END

LA INDEX, 20

required for the operands of the “ J

following instructions:

EQU
CNOP
CRG

CC and DS (in modifier and
duplication factor expressions).

40




C4B -- LOCATION COUNTER REFERENCE

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
assenkler's equivalent c¢f the
instruction counter in the computer.
You can refer to the current value

of the location counter at any place
in a source mcdule by specifying

an asterisk as a term in an operand.

THE LOCATION COUNTER: As th
instructions and constants of a
source module are being assemkled,
the lccatiocon counter has a value

that indicates a location in storage.
The assembler increments the location
counter according to the following:

1. After an instructicn or constant
has been assembled, the location
counter indicates the next availakle
location.

2. Before assembling the current
instructicn or ccnstant, the
assembler checks the koundary

alignment required fcr it and adjusts

the location counter, if necessary,
to indicate the prcrer boundary.

3. wWhile the instruction or constant
is being assembled, the location
counter value does not change.

It indicates the lccaticn of the
current data after boundary alignment
and is the value assigned toc the
symbol, if present, in the name

field of the statement.

4. After assembling the instruction
or ccnstant, the assembler increments
the location counter ky the length

of the assermbled data tc indicate

the next available location.

The assembler maintains a location
counter for each control section
in a source mcdule; fcr comgplete
details about the location counter
setting in control sections, see
E2C. The assembler carries an
internal location ccunter value

as a U-byte, 32-bit value, kut it
only uses the low-crder 3 bytes,
which are printed in the program
listings. However, if you specify
addresses greater than 22%-1, you
cause overflow into the high-order
kyte, and the assembler issues “‘he
error message "LOCATION COUNTER
OVERFLOW".

Location Source
in Hex Statements
000004 DONE DC CL3'SOB'
0000007\0 BEFORE EQU =*
0000084 ODURING DC F'200"
Oooooco AFTER  EQU x
000010 NEXT DS D
L

Section C:

Assembler Language Structure

41



42

NOTE: In the figure below, an example of a location counter
overflow (or wrap-around) is shown.

The internal address value of the symbol B is carried as

a 4-byte value, but the printed location only includes
o the low-order 3 bytes.

The location counter value for instructions or constants

is usually printed as a 3-byte wvalue.
value, with up to 3 leading zeros suppressed, is printed

for the addresses specified in the operands
i EQU, ORG, :

tions

anc
opera

NG.

However, the U4-byte

of the fcllowing

farues,

You can contrcl the setting of the location counter in
a particular control section by using the START or ORG
instructions.

Assembly Listings in Hexadecimal Representation

LoC OBJECT CODE | ADDR1 ADDR2 STMT SOURCE STATEMENT
000000 1 A START 0
000000 PUFFFFFE 2 0 ORG #+X'FFFFFE"'
FFFFFE 58506004 00D08 3 L 5,4(,6)
k% ERROR =¥ (Location counter overflow)
000002 4 B BR 15
000004 5 C DC A (B)
’§1000094 6 D EQU C
A —’

R ——

Up to 3 leading zeros
are suppressed




Specifications

The lccaticr ccunter reference is

specified by an asterisk (¥). The

asterisk carn ke srecified as a
relocatakle term acccrding to tkre
follcwing rules:

1. It can only ke srecified in the
cperands cf:

a. Machine instructions
bE. The IC and LS instructicns

c. The EQU, ORG, and USING
instructions.

2. It can alsc ke specified in
literal constants (see C5).

The value of the locaticn ccunter
reference (*¥) is the current value
cf the lccatien ccunter cf the

control section in which the asterisk

(*) is srecified as a term. The
asterisk has the same value as the
address cf the first kyte of the
instruction in which 1t agpears
(for the value cf the asterisk in
address constants with durlicaticn
factcrs, see G3J).

Section C:

Location Source Address

in Hex Statements Value of
| ¢ )

000104 HERE B *+8 same HERE

000108 B HERE+8 | effect

v |

00011C" CONSTANT DC A(*) o CONSTANT

,000120I THERE L 3,=A(x) THERE
% N —4

Assembler Language Structure 43



C4C -- SYMBOL LENGTH ATTRIBUTE REFERENCE

44

Purpose

when you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by a symbol. You can use this reference as a term in
instruction operands to:

1. Specify unknown storage area lengths

2. Cause the assembler to compute length specifications
for you

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid
symbol or the location counter reference (¥).

2. The symbol must be defined in the same source module
in which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in

the operand of any instruction that requires an absoclute
term. However, it cannot be used in the form L'* in any
instruction or expression that requires a previously defined
symbol.



“an instruction, constant, or field

The value of the length attribute

is normally the length in bytes

<G aal

of the storage area required by

represented by a symbcl. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the syrbcl.

When the assembler encounters a
symbel length attribute reference,
it substitutes the value of the
attrikute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symkols in the
name field cf instructions as
follows:

For machine instructicns, it assigns
either 2, 4, or 6, depending on
the format of the instruction.

For the DC and DS instructions,
it assigns either the implicit or
explicitly specified length. The
length attribute is not affected
by a duplication factor.

For the ECU instruction, it assigns
the length attribute value of the
leftmost cr only term of the first
expression in the first operand,
unless a specific length attribute
is surplied in a second orerand.

Note the lergth attrikute values
of the following terms in an EQU
instructicn:

e self-defining terms

e lccaticn ccunter reference

e T'%

The length attribute of the locaticn
counter reference (L'*) is equal

to the lergth attrikute cf the
instruction in which the L'# aggpears.

For the remaining assertler
instructions, see the specificaticns
for trke individual instructicns.

Length Attr.

_
l7 Value of Symbo

Source Module Length Attribute

(at assembly time)
MACHA MVC TO,FROM | L'MACHA 6
MACHB L 3,ADCON | L'MACHB o 4
MACHC LR 3,4 L' MACHC 2
TO DS  CL80 L'TO 80
FROM DS CL240 L'FROM 240
ADCON DC  A(OTHER) |L'ADCON 4
CHAR DC  C'YUKON' |L'CHAR 5
DUPL DC 3F'200" L'DUPL 4
RELOCL EQU L'RELOC1 80
RELOC2 EQU L'RELOC2 80
ABSOL1 EQU L'ABSOL1 240
ABSOL2 EQU L'ABSOL2 240
SDT1 EQU L'SDT1 1
SDT2 EQU L'SDT2 o 1
SDT3 EQU L'SDT3 i
ASTERISK  EQU L'ASTERISK 01
LOCTREF  EQU L'LOCTREF 0 1
LENGTH1 DC A{(L'*) L's 4

L'LENGTH1 4
LENGTH2 MVC TO (L'* ) ,FROM L's 6
LENGTH3 MVC TO (L'TO-20) ,FROM L'TO 80

L h

Section C:

Assembler Language Structure

45



C4p -- OTHER ATTRIBUTE REFERENCES

There are other attributes which describe the
characteristics and structure of the data you define in

a program. Fcr example, the kind of constant you specify
or the number of characters you need to represent a value.
These other attributes are the type (T'), scaling (S'),
integer (1'), count (K'), and numbexr (N') attributes.

NOTE: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details,
see L1B.

CuE -- SELF-DEFINING TERMS

46

Purpose

A self-defining term allows you to specify a value
explicitly. With self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. These
terms have absolute values and can ke used as absclute
terms in expressicns to represent bit configurations,
absolute addresses, displacements, length or other
modifiers, or duplication factors.



Specificaticns

GENERAL RULES: Self-defining ternms:

o Represent rachine language binary
values

¢ Are aksclute terms; their values
do not change upon pregrar
relccaticr.

The assemkler carries the vzlues

represented by self-defining terms

to 4 kytes or 32- blts, the higk-
eorder kit is the sign bit.

CECIN2L: P decimal self-defining
term is an unsigned decimal number.
The assemkler allows:

e« High-crder zercs

A maximum of 10 decimal digits

e A range cf values from 0 through
2,147,483,647.

Self-Defining
Self-Defining Decimal Binary
Term Value Value 0
15 15 1111
241 241 11110001
B'1111" 15 1111
B'11110001" 241 11110001
B'100000001" 257 100000001
X'F! 15 1111
X'F1°' 241 11110001
X'101* 257 100000001
c'l’ 241 11110001
c'a? 193 11000001
C'AB' 49,602 1100000111000010
4 bytes
(32 bits) ',
value bits :
24 16 8 0
1=Negative Value
O=Positive Value
L

Section C:

Assembler Language Structure 47



BINARY: 2 kinary self-defining
terr nust ke ccded in the fcrmat
shown in the figure to the right.
The assenkler:

” e Assembles each Linary digit as
it is specified

o e Allows a maximum of 32 kinary
digits

e Allows a range of values frcr
o -2,147,483,648 thrcugh

2,147,483,647.

NOTE: When used as an absolute

term in expressions, a kinary self-

defining terr has a negative value
@ it the high-order kit is 1.

48

apostrophes must enclose digits

\

B'110011.....101"

-
1 to 32 binary digits

binary

Examples Binary Value

B'1010111" @
0

B'11101010111"' 11101010117

High-order
sign bit

111...111'|= 2
N —— ——

32 digits 9 \

0000...000'|= =231
32 digits




e —
:;postrophes must enclose digit

I X'IFF. ..F56"
hexadecimal 1 to 8 hexadecimal digits

i

Conversion Table:

. 4-bit
Hexadecimal | Decimal Binary
Digit Equivalent| penresentation
6] 0 0000
1 1 0001
2 2 0010
3 3 0011
. 4 4 0100
HEXACECIMAL: A hexadecimal self- 5 5 0101
defining term mwust ke ccded as shcwn 6 6 0110
in the figure to the right. The 7 7 0111
assenkler: 8 8 1000
e« Assembles each hexadecimal digit g 20 %ggé
0 intc its U4-kit binary equivalent B 11 1011
{(listed in the figure toc the right) c 12 1100
e Allows a raximum cf 8§ hexadecimal 1]?; iz iigé
digits F 15 1111
¢ Allows a range cf values from
o-z,1u7,u83,648 through 2,147,483,647.
Examples: Binary Value

NOTE: When used as an absolute
term in an expression, a hexadecimal

oo +a

self-3efining termr has a ne “a
o i~ 4 L UC.L-I.AJJ.Iig [ -y lla<s a ucsa L VT

if t igh=- it is 1.
value if the high-order kit is ) X'FFA' 111111111010

8 digitse
e
X'7FFFFFFF' = %31-1
*ﬂ
X'80000000' = -2

/
o

Section C: Assembler Language Structure 43



Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CHARACTER: P character self-defining
tern must ke ccded as shcwn in the
figure to the right. The asserkler:

e Allows any of the 256 punch
combinations when using punched
cards as ingput. This includes the
printable characters, that is,
klanks and srecial characters.

e Assembles each character into

its 8-bit binary equivalent. @
table of characters and their Lkinary
equivalents can be found in Appendix
I). :

e e Requires that twc ampersands

or apostrophes be specified in the
character sequence fcr each ampersand
or apostrophe required in the
asserxrkled term.

o- Allows a maximum of 4 characters.

C5 - Literals

Purpose

You can use literals as operands

in order toc introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data rather than a reference to
data. This is convenient, kecause

1. The data ycu enter as numbers
for computation, addresses, or
messages to be printed is visikle
in the instruction in which the
1li teral appears, and

2. You avoid defining constants
elsewhere in your source module
and then using their symbclic names
in machine instruction operands.

50

apostrophes must enclose characters

C'ABCD'
4 characters
character .
Examples:
Character . .
.. | Characters Hexadecimal Binary
:2lrf';1defmmg Assembled | Value Value
C'A? X'cl! 11000001
A\\ |
c'1? 1 X'Fl' 11110001
c' ! (blank)| X'40' 01000000
C'#' # X'7B" 01111011
C'e' @ X'7¢! 01111100
C'&é' &/ X'50" 01010000
crre ' X'7D! 01111101
C'L''A! L'A X'D37DC1!
CI'II!' " XI7D7D|
C'FOUR' FOUR X'C6D6E4D9"
(4]

1,=F'200"'
2,=A (SUBRTN)
MESSAGE (16) ,=C'THIS IS AN ERROR'




The assembler assembles the data
specified in a literal into a
"literal pool®™ (fully described

in H1B) . It then assembles the
address of this literal data in

the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount

of space.

LITERALS, CONSTANTS, AND SELF-
DEFINING TERMS: Do not confuse
literals with constants or self-
defining terms. They differ in
three important ways:

1. In where you can specify them
in machine instructicns, that is,
whether they represent data or an
address cf data.

2. In whether they have relocatakle
or aksolute values.

3. In what is assembled into the
object code of the machine
instruction in which they arpear.

The figure to the right illustrates
the first two points.

a e A literal represents data.

s A constant is regresented Lty
Oits relocatable address. Note that
a symbol with an aksolute value
does not regresent the address of

a constant, but represents immediate

data (see D5D) or an absclute
address.

e A self-defining term represents
edata and has an absclute value.

M

Compare:
A literal with a relocatable address

3,=F'33"

3. F33 } same effect
7

Qe oo

‘1
W
w
@]
g
w
w

A Literal with a self-defining term
and a symbol with an absolute value

MVC FLAG,=X'00'
MVI FLAG,}
MVI FLAG,ZERQ

I same effect

FLAG DS X
ZERO EQU X'00'

A symbol having an absolute address value
with a self-defining term

LA 4,LOCORE
LA 4,1

LOCORE EQU 1000

}same effect

Section C: Assembler Language Structure 51



52

The figure to the right illustrates
the third point.

o * The address of the literal,
rather than the literal data itself
is asserbled into the cbject code.

oo The address of a constant is
assenkled intc the object code.
Note that when a symbol with an

oabsolute value rerresents immediate
data, it is the absolute value that
is asserbled into the cbject code.

e The absolute value of a self-

defining term is assembled into
the object code.

— .
Source Statements Object Code
in Hex
5 displacement
0C
!n Hex base
LITERAL L  3,=
RELCON
ABSCON
| SELFDT
FLAGCON EQU X'B8'
248 |F200 DC F'200'
24C|BYTE DS X
LTORG ]
Literal
250 |[000000CE = F'200' |Pool
N RN




Specifications

Literals

A literal must be ccded as shown
in the figure to the right.

M

0The literal is specified in the N
same way as the operand of a DC Literal Specification
instruction (for restrictions see
G3C) .

GENERAL RULES FOR LITERAL USAGE:
A literal is not a term and can
be specified only as a complete
operand in a machine instruction.

In instructions with the RX format Subfields: nominal
they must not be specified in I value '
operands in which an index register
is also specified. o
Because literals provide *read-only”
data, they must not be used:
1. In operands that rerresent the
receiving field of an instruction
that modifies storage
2. In any shift or I/0 instructions.
C6 - Expressions
C6A -- PURPOSE
You can use an expression to specify: 0
o An address /
o An explicit length A EQU X-Y+13-P/Q g
o A modifiex
o 2 duplication factor B MvC | TO+L'TO-L'FROM |(L'FROM) ,FROM
o A complete cperand
You can write an expression with c DS (X-Y)XL(P/Q-10)
a simple term or as an arithmetic / \
combination of terms. The assembler o o
reduces multiterm expressions to
single values. Thus, you do not _
have to ccmpute these values
yourself .

Section C: Assembler Language Structure 53



54

Expressions have absclute or relocatable values. Whether
an expression is absolute or relocatable depends on the
value of the terms it contains. You can use the absclute
Oor relocatakle expression described in this subsection

in a machine instruction or any assemkler instruction cther
than a conditional assembly instruction. The assembler
evaluates relocatable and aksolute expressions at assenkbly
time. Throughout this manual, the word "expression" refers
to these types of expression. .

NOTE: There are three types of expressicn that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated
at pre-assembly time. In this manual they will always

be referred to by their full names; they are described
in detail in L4.



C6B -- SPECIFICATIONS

expressions.

NOTE: The relocatable values that are paired must have
the opposite sign after the resolution oF all unary
operators.

— The figure below defines both absolute and ¥elocatable

Expressions

Absolute
Expression |

Abs. Exp

+
Abs.Exp

Pairing of
Relocatable

Self- . |Symbol
Defining | or| Length
Attribute

Relocatabie
Expression

7

Location Un/ operators

Counter
Reference

(Abs.Exp) | or |+ Abs. Exp|or|— Abs. Exp

o Unary operators |

Operators Allowed

Unary: + Positive
— Negative

Binary: + Addition
Subtraction
Multiplication
/ Division

3

Abs. Exp = Absolute Expression

Rel. Exp = Relocatable Expression

—

Section C: Assembler Language Structure 55



56

Absolute and Relocatable Expressions

An expression is absclute if its
value is not changed Ly program
relocation; it is relocatable if

its value is changed upon program
relocaticn. A descrigtion of the
factors that determine whether an
expression is absclute or relocatable
follows.

PAIRED RELOCATABLE TERMS: An
expression can be aksolute even
though it contains relocatable
terms, provided that all the
relocatable terms are paired. The
pairing of relocatakle terms cancels
the effect cf relocaticn. The
assembler reduces paired terms.to
single absolute terms in the
intermediate stages of evaluation.
The assembler considers relocatable
terms as paired under the following
conditions:

e The paired terms must be defined
in the same contrcl section of a
source module ({that is, have the
same relocatability attribute).

o The paired terms must have
opposite signs after all unary
operators are resclved. In an
expression, the paired terms do
not have to be contiguous, that
is, other terms can come between
the paired terms.

e The value represented Lty the
Opaired terms is absclute.

P E—
Source Module
FIRST CSECT
Can be }];‘ g: g
ired o
B c DS F
LOCTREF EQU %*
ABSA EQU X'F!
ABSB EQU 300
ABSC EQU C'A"
SECOND CSECT
lCan be D D.S X
paired 0 [ B DS X
F DS X
END
Examples:
Paired Relocatable Terms o Absolute
Expressions
S
. e
+B=+C t——> B-C / \
=A--B —=> -A+B A+ABSA-B
LOCTREF-C
D-E D-E+ABSC
F-D F-D+B-C
paired paired
Unpaired Relocatable Terms Relocatable
Expressions
Unpaired
B B+ABSA
c C+X'FF'
LOCTREF B-5%(B-C) 0
D paired




Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the expression:

1. Is composed of a symbol with

an aksolute value, a self-defining

term, or a symbol length attrikute

reference, or any arithmetic
ocombination of absolute terms.

2. If it contains relocatable terms,
alone or in combination with aksolute
terms, and if all these relocatable
terms are paired.

Source Module

FIRST CSECT

A DC F'2!
B DC F'3"
C DC Fi4!

ABSA EQU 100
ABSB EQU X'FF!

ABSC EQU B-A

. —

. Paired
ABSD EQU s=A
END
Absolute
Expressions
ABSA
o
L'A

o {ABSA+ABSC ~ABSC*15

o
ABSA+15-B+C-ABSD/ (C

Section C: Assembler Language Structure

__/2 ~_

-A+ABSA)

5

-
i



58

Relocatable Expressions

A relccatable expressicn is cone
whose value changes, for example,
ky a 1000, if the cbject module
into which it is assemkled is
relocated 1000 bytes away from its
originally assigned storage area.
The assembler reduces a relocatable
expression to a single relocatatle
value if the expression:

1. Is composed of a single
relocatable term, orx

2. Contains relocatable terms, alone
or in combination with absolute
terms, and:

a. All the relocatable terms
but one are paired. Note that
the unpaired term gives the
expression a relocatable value;
the paired relccatable terms
and other absolute terms
constitute increments or
decrements to the value of the
unpaired term.

b. The relocatakility attrikute
of the whole exrression is that
of the unpaired term.

c. The sign preceding the unpaired
relocatable term must be positive,
after all unary operators have
been resolved.

COMPLEX RELOCATABLE EXPRESSIONS:
Complex relocatable expressions,
unlike relocatable expressions,
can contain:

a. Two or more unpaired
relocatable terms or

b. An unpaired relocatable term
preceded by a negative sign.

Complex relocatable expressions
can be used only in A-type and Y-
type address constants (see G3J) .

Reloc. Exp.

Source Module

FIRST CSECT

A DC H'2'
B DC H'3'?
C DC Hl4|
ABSA EQU 10

ABSB EQU oA

ABSC EQU 10%(B-A)

END

Relocatable Expresssions:

(Belong to control section named FIRST
and have same relocatable attribute as
A, Band C)

/A

N A+ABSA+10
B +A+C-10+ABSC

(1
/
B-A+C+100%ABSA+ABSA/ (C-A)

\\\\\\1ﬂ'—/”’///////




Rules for Coding Expressions

The rules fcr coding an absclute
or relocatable expression are:

1. Both unary (orerating cn one
value) and binary (operating on
two values) operators are allowed
in expressions.

2. An exrression can have one or
more unary operatcrs rreceding any
term in the expression or at the
beginning of the expression.

3. An expression must not begin
with a binary operatcr, nor can
it contain two binary operators
in successicn.

4. An expression must not contain
two terms in successicn.

5. No blanks are allowed between
an operator and a term nor -between
two successive operators.

6. An expression can contain up

to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

7. A single relocatable term is
not allowed in a multiply or divide

operation. Note that paired
relocatable terms have absolute
values and can be multiplied and
divided if they are enclosed in
parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression.

— 0
Location counter]
Reference

Ax/B
'

o/ABSA +%
ABSA + # ABSB

_— A
Operators
| - N Unary +,- 7
Binary | +,-,%,/
ABS —p - ABS
'REL+#ABS === - REL-ABS
Binary Context determines whether
+ or — is unary or binary
/ operator
A ———fp A+B

ABSC/ABSD#15 ==—=—=p ABSC / ABSD+15

REL+#ABS ==——=§  REL-ABS

Multiply l
o 3 INVALID
*+3 VALID

Contexi determines whether
an asterisk (%) is the binary

INVALID | operator for muitipiication
VALID or the location counter
INVALID | reference

Leftmost operator between
two terms is binary

X'FF' (10 A) INVALID
D e S ——
)
15B'101" INVALID

Section C:

Assembler Language Structure




Evaluation of Expressions

The assembler reduces a multiterm
expression to a single value as
follows:

1. 1t evaluates each term.

2. 1t performs arithmetic operations
from left tc right. Hcwever:

a. It performs unary operations
before binary cperations, and

b. 1t performs the binary
operaticns of nmultiplication
and division befcre the binary
operations of addition and
suktraction.

3. In division, it gives an integer
result; any fractional portion is
dropped. Civision by zero gives

0.

4. In parenthesized exrressions,
the assembler evaluates the inner
most expressicns first and then
considers them as terms in the next
outer level cf exrressions. 1t o
continues this process until the
outermost expression is evaluated.

§. A term or expression's
intermediate value and computed

result must lie in the range of
-231 through +231-1,

60

NOTE:
assemkler evaluates paired
relccatakle terms at each level
of expressicn nesting.

It is assured that the

N
Value of
Absolute Expressions Expression
A=5
Ak~ - X'A' @ 5%+ 10 Jﬁ +50
00
A=10 | A+10/B ——» 10+10/2 _— 15
B=2 |(A+10)/B => (10+10)/220/2 =} 10
A=10 A/2 —_— )
A=1 l A/2 _ 0
10%A/2 = 10% 1/2=10/2=) 5
L -
—

(3
O

(o —

A= (X'FF "% 2+B- (€/2%L"'C)

Stage |1

Final Evaluation




Part II: Functions and Coding of Machine Instructions

SECTION D: MACHINE INSTRUCTIONS

61






Section D: Machine Instructions

This section introduces the main functions of the machine
instructions and provides general rules for coding them

in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

= IBEM System/360 Principles of Oreration, Order No. GA22-
6821

e IBM System/370 Principles of Operation, Order Nc. GA22-
7000

D1 - Functions

At assemkly time, the assembler converts the symbolic
assenmbler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Blso at assemkly time, the assemkler creates the okject
code of the data constants and reserves storage for the
areas you specify in your PC and L[S assemkler instructions
(see G3) . At execution time, the machine instructions

can refer to these constants and areas, kut the ccnstants
themselves are not executed.

Section D: Machine Instructions 63



L12 -- FIXED-POINT ARITHMETIC

64

Purpose

You use fixed-point instructions
when you wish to perfcrm arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.

If they are tc orerate upcn data
representing mixed numbers (such

as 3.14 and 0.235) ycu must keep
track of the decimal point yourself.
For your constants yocu must prcvide
the necessary number of binary
positions tc represent the fracticnal
porticn of the number specified

by using the scale mcdifier (see
G3B) .

Operations Performed

Fixed-point instructicns allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer tc the ccnstants listed
in the figure to the right.

NOTE: Except for the conversion
operations, fixed-point arithmetic
is performed on signed binary values.

Mnemonic

(taking sign into

I Arithmetic Compare
account)

Fixed - Point
Operations Operation Codes
Add AR, A AH, ALR, AL
Subtract SR, S, SH, SLR, SL
Multiply MR, M, MH
Divide DR, D

CR,C,CH

Load into registers

LR, L, LH, LTR, LCR, LPR, LNR, LM

Store into areas

ST, STH, ST™M

Arithmetic Shift of
binary contents of
registers to left or
right (retaining

SLA, SRA, SLDA, SRDA

sign)

Convert (packed} cvB
decimal data to

binary

Convert binary data a CcvD

to (packed) decimal

data

Constants Used Type
Fixed-Point Hand F
Binary B
Hexadecimal X
Character C
Decimal {packed) P
Address Y,A, S, Vand Q




C1R -- TECIMAL ARITEMETIC

Furpose

You use the deciral instructicns
when you wish to perform arithmetic
cperaticns c¢n data that has the
kinary equivalent of decimal
representaticn, either in gacked

or zoned form. These instructions
treat all nurnkers as integers.

For example, 3.14, 31.4, and 314
are all processed as 314. Yocu nust
keep track cf the decimal pcint
yourself.

Operaticns Perxfcrmed

Cecimal instructicns allow you to
perform the operations listed in
the figure tc the right.

LCata Constants Used

In decimal instructions ycu can
refer tc the ccnstants listed in
the figure to the right.

NOTE: Excert fcr the ccnversicn
operations, decimal arithmetic is
performed on signed packed decimal

v = Vsamn e
VALUT e

pe—— w—-ﬁ
Decimal Mnemonic Operation
Operations Codes

Add AP
Subtract SP
Multiply MP
Divide DP
Arithmetic Compare CP
(taking sign into
account)

Move decimal data MVO
with a 4-bit offset

Shift decimal data SRP
in fields to left or

right

Set a field to zero ZAP
and add contents

of another fieid

Convert zoned to PACK
packed decimal

data o

Convert packed to UNPK
zoned decimal

data )

Constants Used Type

Decimal (packed) P

{zoned) Y4

Section D:

Machine Instructions

65



C1C -- FLCATING-FOINT ARITHMETIC

66

Furpose

You use floating-point instructicns
when ycu wish tc perfcrr arithmetic
operations on binary data that
represents kcth integers and
fractions. Thus, you do nct have

to keer track cf the decimal point
in ycur ccrgputaticns. Flcating-
point instructions also allow ycu
to perfcrm arithmetic creraticns

on koth very large numkers and very
small nurkers, with greater precision
than with fixed-point instructions.

Operaticns Pexfcrrmed

Flcating-rcint instructicns allow
you to perform the cperations listed
in the fiqure tc the right.

LCata Constants Used

In flcating-point instructions,
you can refer tc the ccnstants
listed in the figure to the right.

NOTE: Flcating-pcint arithmetic
is performed on signed values that
rust have a special flcating-roint
formrat. 1The fracticnal pcrticn

of floating-point numkers, when
used in additicn and subtracticn,
can have a normalized (no leading
zercs) cr urncrmalized format.

Floating - Point
Operations

Mnemonic Operation
Codes

Add l

ADR, AD, AER, AE, AWR
AW, AUR, AU, AXR

Subtract ’ SDR, SD, SER, SE, SWR,
SW, SUR, SU, SXR

Multiply MDR, MD, MER, ME, MXR,
MXDR,MXD

Divide DDR, DD, DER, DE

Halve HDR, HER

{division by 2)

Arithmetic Compare
(taking sign into
account)

CDR, CD, CER, CE

Load into floating -
point registers

LDR, LD, LER, LE, LTDR,
LTER, LCDR, LCER, LPDR,
LPER,LNDR,LDER,LRDR,

LRER
Store into areas STD, STE
Constants Used Type
Floating - Point E,D,and L




D1D -- LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, mcve data, or
inspect and change data.

Operations Performed

The logical instructions allow ycu
to perform the operations listed
in the figure to the right.

Logical Mnemonic Operation
Operations Codes
Move MVIi, MVC, MVN, MVZ, MVCL

Logicai Compare

CLR,CL, CLi, CLC, CLCL,

register

(unsigned binary CLM

values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR, 0, 0l,0C
addition)

Exclusive OR XR', X, X1, XC
(either........ or,

but not both)

Testing binary ™

bit patterns

Inserting characters IC, ICM

into registers

Store characters STC, STCM
into areas

L oad address into LA

Logical Shift of
unsigned binary
contents of
registers to left or
right

SLL, SRL,SLDL, SRDL

Replace argument
values by corresponding
function values from
table (translate)

TR, TRT

Edit (packed and
zoned decimal data)
values in preparation
for printing

ED, EDMK

R ——

Section D:

Machine Instructions

67



CiE --

BRANCHING

68

Purpose

You can use several tyges of
branching instructions, comkined
with the logical instructions listed
in D1D, to code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Performed

The kranching instructicns allow
you to perform the operations listed
in the figure to the right.

NOTE: Additional mnemonics for
bkranching on conditicn are described
in section L1H below.

Branching
Operations

Mnemonic Operation
Codes

Branch depending
on the results of

the preceding
operation (that

sets the condition
code)

BCR, BC

Branch to a
subroutine with a
return link to
current code

BALR, BAL

Branch according

to a count con-
tained in a register
{count is decremented
by one before deter-
mining course of
action)

BCTR, BCT

Branch by comparing
index value to fixed
comparand, (index
incremented or de-
cremented before
determining course
of action)

BXH, BXLE

Temporary Branch in
order to execute a
specific machine
instruction

EX




C1F _-- STATUS SWITCHING

Purpose

You can use the status switching
instructions to communicate Lketween
your program and the system contrcl
program. However, some of these
instructions are privileged
instructions and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the proklem state. The
privileged instructions are marked
with a "p® in the figure to the
right.

Operations Performed

The status switching instructions
allow you to perform the operations
listed in the figure to the right.

Status Switching

Mnemonic Operation

i _ Operations _____Codes |
Load program status information LPSW
Load sequence of control registers LCTL
Set bit patterns for condition code SPM
and interrupts for program

Set bit patterns for channel usage SSM
by system

Set protection key for a block of SSK
storage

Set time-of-day clock SCK

Insert protection key for storage ISK
into a register

Store time-of-day clock STCK

Store identification of channel STIDC, STIDP
or CPU

Store (save) sequence of control STCTL
registers

Call supervisor for system SVC
interrupt

Call monitor for interrupts de- MC
pending on contents of
control register

Test bit which is subsequently TS
setto 1

Write or Read directly to or WRD, RDD '
from other CPU’s

Set Clock Comparator SCKC

Store Clock Comparator STCKC

Set CPU Timer SPT

Store CPU Timer STPT

Store Then AND System Mask STNSM

Store Then OR System Mask STOSM

Section D:

Machine Instructions

69






p1G -- INPUT/OUTPUT

Purpose

You can use the input/output
instructions, instead cf the 1IBM-
supplied system macro instructions,
when you wish to control your input
and output cperations mcre closely.

M

Operations Ferformed Input o.r Output Mnemonic Operation
Operations Codes

The input or output instructions

allow you tc identify the channel, Start 1/0 SI0, SIOF

or the device on which the input

or output operaticn is to be Hait 1/0 HIO

performed. The operations performed

are listed in the figure tc the Test state of channel TIO, TCH

right. However, these are privileged or device being used

instructions, and ycu can only use

them when the CPU is in the Halt Device HDV

supervisor state, but not when it | —

is in the problem state.

Section D: Machine Instructions 71



Page of GC33-4010-0
Revised September 29,1972
By TNL GN33-8148

C1H -- BRANCHING WITH EXTENDED MNEMONIC CODES

Purpose

The kranching instructions described below allow you to

specify a mnemonic code for the condition on which a kranch

is to occur. Thus, you avoid having to specify the mask
value required by the EC and BCR kranching instructions.
The assembler translates the mnemonic code that represents
the condition into the mask value, which is then assenmbled
in the okject code of the machine instruction.

Specifications

The extended mnemonic codes are given in the figure on the
opposite page.

They can be used as operation codes for kranching

0 instructions, replacing the BC and BCR machine instruction
codes. Note that the first operand of the BC and BCR

0 instructions must not be present in the operand field of
the extended mnemonic branching instructions.

NOTE: The addresses represented are explicit addresses;
however, implicit addresses can also be used in this type
of instruction.

72



Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

oo K

B \/——“——\

D2(X2,B2) } Unconditional Branch RX BC 15,D2(X2,B2)
BR R2 RR BCR 15,R2
NOP  D2(X2,B2) No Operation RX BC 0,D2(X2,B2)
NOPR R2 } RR BCR O0,R2

Used After Compare Instructions

BH D2(X2,B2) } Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2(X2,B2) } Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2 (X2,B2) } Branch on Equal RX BC  8,D2(X2,B2)
BER R2 RR BCR 8,R2
BNH D2(X2,B2) } Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 RR BCR 13,R2
BNL D2(X2,B2) } Branch on Not Low RX BC 11,D2(X2,B2)
BNLR R2 RR BCR 11,R2
BNE D2(X2,B2) } Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 RR BCR 7,R2

Used After Arithmetic Instructions
BO D2(X2,B2) , Branch on Overflow RX BC 1,D2(X2,B2)
BOR R2 j RR BCR 1,R2
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2(X2,B2) } Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BNP D2(X2,B2) } Branch on Not Plus RX BC 13,D2(X2,B2)
BNPR R2 RR BCR 13,R2
BNM D2(X2,B2) } Branch on Not Minus RX BC 11,Db2(X2,B2)
BNMR  R2 RR BCR 11,R2
BNZ D2(X2,B2) Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 } RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 i RR BCR §8,R2
BNO D2(X2,B2) Branch on No Overflow RX BC 14,D2(X2,B2)
BNOR R2 } RR BCR 14,R2

Used After Test Under Mask Instructions
BO D2(X2,B2) } Branch if Ones RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BM D2(X2,B2) } Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2(X2,B2) Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 ] RR BCR 8,R2
BNO D2(X2,B2) Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2 } RR BCR 14,R2
BNM D2 (X2,B2) } Branch if Not Mixed RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BNZ D2 (X2,B2) } Branch if Not Zerocs RX BC 7,D2(X2,B2)
BNZR  R2 RR BCR 7,R2

D2=displacement,X2=index register,B2=base register,R2=register containing
branch address

Section D: Machine Instructions



D11 -- RELCCATION HANLLING - "-'—"""_""—"-—_'F‘

Relocation Mnemonic Operation

PUrpOSE Operations Code
Load Real Address LRA

You use the relocation instructions P Translation

in connnection with the relccate L”Lg:aside Bufffer PTLB

feature of IBM System/370. °
Reset Reference Bit RRB

. SCKC

Operations Performed Set Clock Comparator
Store Clock Comparator STCKC
The relocation instructions allow .
. N PT
you to perforr the crerations listed Set CPU Timer S
in the figure to the right. However, .

. . P STPT
these instructions are privileged Store CPU Timer F
instructions, and you can use them s 4 AND Svst
only when the CPU is in the N;“": an ystem STNSM
supervisor state, but not when it as
is i ocklenr state.

§ in the pr ate Store and OR System STOSM
Mask
" e

74




D2 - Alignment

Alignment

Purpose

The assemkler automatically aligns the object code of all
machine instructions on halfword koundaries. For executicn
of the IBM Syster/370 machines, the constants and areas

do not have to lie on specific koundaries to be addressed
ky the machine instructions.

However, if the assembler option ALIGN is set, you can
cause the assembler to align constants and areas; for
example, on fullword boundaries. This allows faster
execution of the fullwcrd machine instructions.

If the NOALIGN option is set, you do not need to align
constants and areas. They will ke assemkled at the next
available byte, which allows you to save space (no bytes
are skipped for alignment).

Section D: Machine Instructions 75



76

Specifications

MACHINE INSTRUCTIONS: When the

assembler aligns machine instructions

on halfword toundaries, it sets
cany bytes skipped to zero.

CONSTANTS AND AREAS: One cof the
assemkler options that can be set

in the job control language (that
initiates execution cf the assembler
program) concerns the alignment

of constants and areas; it can

be specified as ALIGN or NOALIGN.

If ALIGN is specified, the following
applies:

e The assemkler aligns ccnstants
0 and areas on the boundaries implicit

in their type, if no length

specification is surplied.

s The assembler checks all
expressions that represent storage
addresses to ensure that they are
aligned on the boundaries required
by the instructions. 1f they are
not, the assembler issues a warning
message.

If NCALIGN is specified, the
following applies:

e The asserbler dces not align
aggngtggts and areas on special
boundaries, even if the length
specification is cmitted. Note
that the CCW instruction, however,
always causes the alignment of the
channel command word on a doubleword
boundary.

e The assembler does not check
estorage addresses for bcundary
alignment.

NOTE 1: The assermbler always forces
alignment if a duplication factor

of 0 is specified in a constant

or area without a length modifier
(for an example, see G3N). Alignment
occurs when either ALIGN or NOALIGN
is set.

Object Code k

Source Statements
ALGN Half Word
Specified Boundary
L 3,AREA 00]58]| 30} xxxx
AREA
A 3,CONS C‘ oA

CONST

Full Word

AREA DS F XXXKKXXKK

CONST DC F'200'

000000C8

1

|
NOALGN Half Word
Specified Boundary
L 3,AREA 8
AREA
a 3,CONST Cn 5A

CONST

ICan be on any}
boundary

XXXXXXXX l-t

CONST DC F'200' ‘ 000000C8|
1} Equiv,

DS FL4

AREA DS F ] ,
Equiv.

pc FL4'200




NOTE 2: When NOALIGN is sgpecified,
the CNOFP assembler instruction can
ke used to ensure the cocrrect
alignment of data referred to Ly
the privileged instructions that
require specific boundary alignment.
The mnemonic operaticn codes for
these instructions are listed in
the figure to the right.

for Privileged Operations

Mnemonic Operation Codes Meaning

LPSW

ISK

SSK

LCTL

SCK

STIDP

STCTL

Load program status word.
Insert Storage Key.

Set Storage Key.

Load Control registers.
Set Clock.

Store CPU Identification

Store Control registers.

(Diagnose - not handled by assembler)

Section D: Machine Instructions 77



D3 -- Statement Formats

Machine instructicns are assembled
into object code according to one
of the six formats given in the
figure to the right.

When you code machine instructions
you use symbolic formats that
correspond to the actual rachine
language formats. Within each tasic
format, you can alsc ccde variations
of the symbolic representation
(Examples of coded machine
instructions, divided into groups
according to the six basic formats,
are illustrated in L6 kelow).

The assembler converts only the
operation code and the operand
entries of the assembler language
statement into object code. The
assemkler assigns tc the symbcl
you code as a name entry the value
of the address of the leftmost
ebxte of the assembled instruction.
When you use this same symbol in
the operand of an assembler language
statement, the assembler uses this
address value in converting the
symbolig¢ operand intc its object
o code form. The length attribute
assigned to the syrbcl derends on
the basic machine language format
of the instruction in which the
symbol appears as a name entry
(for details on the length attribute
see CU4C) .

A remarks entry is nct ccnverted
into cbject code.

78

- ﬁ
Format Length of Object Code ]
Reguired for the Assembled
Instruction in Bytes
RR 2
RX 4 o (L'LABEL=4)
RS 4
| SI 4
S 4
sSs 6
Example:
Assembler Language Statement

LABEL L

4,256(5,10)

OperationRegister
Code Operand

Storage
Operand

4 bytes

Object Code

(machine language) ot
Assembled Instruction
in Hex

e



D4 - Mnemonic Operation Codes

Furpose

You nust specify an cperaticn code
for each machine instruction
staterent. The mnercnic cperaticn
code indicates the type of cperaticn
to ke perfcrmed; fcr examgle, "A"
indicates the "addition"™ cperaticn.
Appendix IV ccntains a ccrrplete

list of mnemonic operation ccdes

and the fcrmats cf the corresronding
machine instructions.

Specificaticns

The general format of the machine
instructicn cperaticn ccde is shown
in the figure to the right.

0 The verk nust always be present.
It usually consists of one cor twe
characters and sgecifies the
operation tc ke performed. The
cther items ir the cperation ccde
are not always present. They
include:

0 e The modifier which further defines
the cperaticn

o e The type qualifier, which
indicates the type of data used
ky thke instructicn in its ogeration,
and

o e« The fcrmat qualifier, R cx

which indicates that an RR or
nmachire irstructicn fcrrat is
assemcled.

"
-

R S

VERB [MODIFIER} [DATA TYPE} [MACHINE FOR.MAT]

Examples:

MYC !
| character i
%E<: -” i
normalized short
loatin int
BN

Section D: Machine Instructions 79



DB -- Operand Entries

80

Furpocse

You rust stecify cne c¢r mcre cgerands
in each machine instructicn statement
to prcvide the data cx the location
of the data upon which the machine
operaticn is tc be rerfcrmed. The
operand entries consist of cne cr
wore fields cr subfields derending

on the format of the instruction
keing ccded. They can specify a
register, an address, a length,

and irmediate data.

You can code an operand entry either
with syrbcls cr with self-defining
terms. You can omit length fields
cr sukfields, which the assembler
will compute for you from the cthler
cperand entries.

General Srecifications for Coding
Operand Entries

The rules for coding crerend entries
are as fcllcws:

0 2 comma must separate operands.

efarentheses rust enclcse subfields.

A ccnna rust serparate subfields
enclosed in parentheses.

If a sukfield is crmitted because

it is in implicit in a symkelic
address, the rarentheses that would
have enclosed the sukfield rmust

ke critted.

P——— ——
LM 4, 4,/SAVE5
MVI 4 (12),C'F

"0
pd
MVC TO (80}, FROM
4
MVC 0(80,8), 240(8)
/ /
Mvi 4(12),C'F'
MvI KEY,C'F’
Implicit
Address
See D5B
—




If twc sukfields are enclcsed in
rarentheses and separated ty ccnrmas,
the fcllcwirg arplies:

/ 1\
If both subfields are oritted Lecause I 2,48(/4,15\}
they are implicit in a symbclic ——
entry, the serarating comra and L 2,FIELD
othe paréntheses that wculd have [ Implicit
been needed must also ke cmitted. Address
See D5B
If the first subfield is cmitted, L 2,48 (4,5)
the comma that separates it fror Index Register
e the seccnd sukfield must be written L 2,48(,5) is omitted
as well as the enclosing parentheses.
If tke seccrd subfield is omitted, /o Length
the comma that separates it frem MVC 32(,40),40(10) |Specification
o the first subfield nmust be ocmitted, L lisomitted
however, the enclosing rarentheses MVC 32(8,10),40(10)
rust ke written.
NCTE: Elanks must not appear within
the cperand field, excert as rart MVC 32(16,6) ,48(6)
o of a character self-defining tern
cr in the sgecificaticn ct a
e character literal. \
MVC TO(1l6) ,FROM
Base Register
implicit in symbolic
address TO
MVC 32(c',"',5),=CL64'A B'

IR ——

Section D: Machine Instructions

3

-

L



LSA -~ REGISTERS

Purpose and Usage

You can specify a register in an
operand for use as an arithmetic
accumulator, a base register, an
index register, and as a general
depository for data to which you
wish to refer over and cver.

You must be careful when specifying
a register whose contents have been
affected by the execution of another
machine instruction, the contrcl
program, or an IBEM-supplied system
macro instruction.

For some machine instructions you
are limited in which registers you
can specify in an operand.

Registers

Specifications

The expressions used to specify Operation Code  Register Operand

registers must have absolute values;

in general, registers 0 through Examples: L 3,AREA
15 can be specified for machine ” ,
instructions. However, the following LE 4, FLTAREA
restrictions on register usage
apply: SLDA 4,1
1. The floating-point registers ;
(0, 2, 4, or 6) must be specified SRDA 6,2
0 for floating-point instructions: o :
SLDL 8,3

2. The even numbered registers (0,
2, 4, 6, 8, 10, 12, 1‘4) must be

specified for the following groups SRDL 1243
of instructions: e
M 6 MULTIP
0 a. The double-shift instructions
. D DIVIDER
o b. The fullwecrd multiply and .
divide instructicns
MVCL -
Both register operands
o C. The move lonq and compare must be even-numbered
logical long instructicns. CLCL
3. The floating-point registers
0 and 4 must ke specified for the AR
instructions that use extended ‘
e floating-point data:

AXR, SXR, LRCR, MXR, MXDR, MXL.

NOTE: The assembler checks the
registers specified in the
instruction statements of the akove
groups. If the specified register
does not comply with the stated
restrictions, the asserxbler issues
a diagnostic message and does not
assemkle the instructicn.

82



REGISTER USAGE BY MACHINE
INSTRUCTICNS: Registers that are
not explicitly coded in the symbolic

- assembler language representation ——
of machine instructions, but are
nevertheless used by the assemkled
machine instructicns, are divided
into two categories:

1. The base registers that are

implicit in the symbolic addresses

specified. These implicit addresses

are described in detail in D5B.

The registers can be identified

by examining the cbject ccde of

the assembled machine instruction
eor the USING instructicn(s) that

assigns base registers for the

source module.

2. The registers that are used Ly
machine instructions in their
operations, but do not appear even
in the asserbled cbject ccde. They
are as follows:

a. For the double shift and
fullword multiply and divide
instructions, the odd-numbered
register whose number is one
greater than the even-numbered
register specified as the first
operand.

b. For the Move Long and Compare
Logical Long instructions, the
odd-numbered registers whose
number is one greater than the
even numbered registers specified
in the two operands.

c. For the Branch on Index High
(BXH) and the Branch on Index
Low or Equal (BXLE) instructions;
if the register specified for
the second operand is an even-
numbered register, the pext
higher odd-numbered register

is used to contain the value

to be used for corparison.

d. For the Translate and Test
(IRT) instructicn, registers

1 and 2 are also used.

e. For the Load Multiple (LM)
and Store Multiple (STM)
instructions, the registers that
lie between the registers
specified in the first two
operands.

REGISTER USAGE BY SY¥ST¥EM: The -
control program of the IBM System/370
uses registers 0, 1, 13, 14, and

15.

USING #x,12 e
Impilicit
Add

L 3,FIELD

P n 1
Source Module Object Code
| in Hex
START 0
BALR 12,0

1
[58]3]0]c]xxx]

Register 5

is also used

M 4,TWO

MVCL 4

Register 5 and 7
are also used

ESOEES

[OE}4]6 |

BXH 3,4,ADRESS (86134 [cxxx]
o Register 5
is also used
e Registers 1 and 2
TRT ARGUMENT (10) , TABLE are also used
/
DD [09JCTxxx[Cxxx]
LM 3,7,AREA [98]3]7]c|xxx]
Registers 4,5, and
0 6 are also used
——

Section D: Ma

chine Instructions 83



DS5B_-- ACDRESSES

84

Parpose and Definiticn

You can code a symbol in the name
field of a machine instructicn
statement to represent the address
of that instruction. Ycu can then
refer to the symbol in the operands
of other machine instruction
statements. The object code for
the IBM System/370 requires that
all addresses be assembled in a
numeric kase-displacement format.
This format allows you to specify
addresses that are relocatakle or
absolute.

You must not confuse the concept

of relocatakility with the actual
addresses that are coded as
relocatakle, nor with the format

of the addresses that are assemkled.

CEFINING SYMBOLIC ADDRESSES: You
define symbols to represent either
relocatable or absolute addresses.
You can define relocatable addresses
in two ways:

By using a symbol as the label in
the name field of an assembler
language statement cr

By equating a symbol to a relocatakle

expression.

You can define absolute addresses
(or values) by equating a symbcl
to an absolute expression.

REFERRING TC ADCRESSES: You can
refer to relocatable and absclute
addresses in the operands of machine
instruction statements. Such address
references are also called addresses
in this manual. The two ways of
coding addresses are:

Implicitly: that is, in a form

that the assembler must first convert
into an explicit base-displacement
form before it can be assemkled

into object ccde.

Explicitly: that is, in a form
that can be directly assembled into
object code.

Symbolic
Addresses
(Defined)

3F'370"

Address
References

Relocatable
Addresses

Absolute

MF Addresses




Relocatability of Addresses

i i acement—
form are relocatakle, because:s

e Each relocatakle address is
assembled as a displacement from
a base address and a base register.

e The base register contains the
tase address.

e If the okject module assembled
from your source module is relocated,
only the contents of the base
register need reflect this
relocation. This means that the
location in virtual storage of your
kase has changed and that ycur base
register must contain this new base
address.

e Your addresses have been assemkled
as relative to the base address;
therefore, the sum of the
displacement and the contents of

the kase register will point to

the correct address after relocation.

NOTE: Absoclute addresses are also
assembled in the base-displacement
form, but always indicate a fixed
location in virtual storage. This
means that the contents of the base
register must always be a fixed
absolute address value regardless
of relocation.

gase Address BALR 12,0

Displacement = X’C58’

i USING  #%,12

& .

S

p .

x - q

i MVC TO(80) ,FROM [D2]4 F|C cos|clcss

&

§ { Base Address |

©

2 Base Register {12)

B .

. Dlsplacement

J"'TO DS CL80 Register 0 as a base
|| FROM DS CL240 register is always

Source Module Object Code
T — TinHex T
I START 0

the absolute address
location 0

~ 0

considered to contain |

LA |4l[3[0|0|40
END gg?ster LDisplaoement
Section D: Machine Instructions 85



Page of GC33-4010-4
Revised July 31, 1976
By TNL: GN33-8207

Specifications

Addresses

MACHINE OR OBJECT COLE FORMAT: All addresses asserbled
into the object ccde of the IBM System/370 machine
instructions have the format given in the figure kelcw.

e ]
Format Coded or Symbolic Object Code
Representation of Representation
Explicit Addresses of Addresses
8 bits 4 bits | 4 bits | 4 bits| 12 bits 4 bits 12 bits
Operation Base | Displacement | Base | Displacement
Code ] Reg- Reg-
| ister ister

RS D2 (B2)

ST D1(B1)

SS D1(,Bl),D2(B2)

| Rx | D2(x2,82) G vt 7 (BRI | (

/0

{ndex
Register

1 S D1(B1)

R1 and R3 represent registers
12 represents an immediate value
L represents a length value

The addresses represented have a value which is the sum
of :

o e A displacement and
o e The contents of a base register.

NOTE: 1In RX instructions, the address represented has
a value which is the sum of a displacement, the ccntents
of a base register, and the contents of an index register.

86



Implicit Address

An implicit address is specified
by coding one expressicn. 7The
expression can be relocatable or
absolute. The assembler converts
all implicit addresses into their
kase-displacerent form before it
assembles them into object code.
The assembler converts imglicit
addresses into explicit addresses
only if a USING instructicn has
been specified. The USING
instruction assigns both a base
address, from which the assemkbler
computes displacements, and a base
regist to contain the base
address. The base register must
ke loaded with the ccrrect base
address at execution time. For
details on how the USING instructicn
is used when establishing
addressability, thus allowing
implicit references, see F1.

rooigter
-

Explicit Address

An explicit address is specified
by coding two absolute expressions
as follows:

The first is an absolute expression
°for the disgplacement, whese value
must lie in the range 0 through
4095 (4095 is the maximum value
that can be represented by the 12
kinary bkits available for the
displacement in the object code).

The second (enclcsed in parentheses)

is an absolute expression for the
a kase register, whose value must

lie in the range 0 through 15.

If the base register contains a

value that changes when the program
is relocated, the assembled address
is relocatakle. 1If the base register
contains a fixed absolute value

that is unaffected by rrogram
relocation, the assembled address

is aksolute.

NOTES (for implicit and explicit

addresses) :

1. An explicit base register

designation must nct acccmpany an

implicit address.

2. However, in RX instructions an
eindex register can be coded with

an implicit address as well as with

an explicitaddress.

3. When twc addresses are required,
8one address can be coded as an

explicit address and the cther as
an implicit address.

Source Module

Object Code
in Hex

TART ©
BALR 12,
USING =«

L 3,AREA

[58[3]0[Clxxx]

NN

LA

MVC

4,X'400'(,10)

3,256(4,12)

Explicit
Address

|41|410|Ar4(ﬁ[

[58[3[4]c[xxx]

[s8]3]4][c]100]

Section D:

Machine Instructions

AREA
Ds F Base Register] Displacement
.;»,;;! e :

LA 4,1000 41(4/0(0|3E8

¢ Always used as

* base register for

END absolute address | |Displacement
between 0 and
4095

—; —
Source Statement Object Code
in Hex

8

-
7



D5C_-- LENGTHS

88

Purpose

You can specify the length field in an SS-type instructicn.
This allows you to indicate explicitly the number of bytes
of data at a virtual storage location that is to be used
ky the instruction. However, you can omit the length
specification, because the assembler computes the nurker
of bytes of data to be used from the expression that
represents the address of the data.

Specifications

IMPLICIT LENGTH: When a length subfield is omitted from
an SS-type machine instruction an implicit length is
assemkled into the object ccde of the instruction. The
implicit length is either of the following:

1. For an implicit address (see DS5B above), it is the
length attribute of the first or only term in the expressicn
representing the implicit address.

2. For an explicit address (see DSB above), it is the
length attribute of the first or only term in the expressiocon
that represents the displacement.

For details on the length attribute of symtols and other
terms see CHC.

EXPLICIT LENGTH: When a length sukfield is specified in
an SS-type machine instruction, the explicit length thus
defined always overrides the implicit length.

NOTES:

1. An implicit or exrlicit length is the effective length.
The length value assembled is always one less than the
effective length. If an assembled length value of 0 is
desired, an explicit length of 0 or 1 can ke specified.

2. In the SS instructicns requiring one length value, the
allowable range for explicit lengths is 0 through 256.

In the SS instructions requiring two length values, the
allowable range fcr explicit lengths is 0 through 16.



Assembler Length Attribute Object Code

Language of term (symbols) in Hex

Statement
L= Length Value

v Address
implicit Lengths L TO FROM

MVC TO,FROM L'TO = [ D2 [4F | xxxx | xxxx]

MVC TO+80,FROM [D2] 4F] XXXX [xxxi]

L1 L2

AP AREA,TWO

}EAI 7 [ 3] xxxx[ xxxx]
o A

MVC  0(,10),80(10) @ PR EECE

0 l_—-_aL

MVC PROM-TO(,10),80(10) L'FROM [p2]EF][20a0]a050]

Explicit Lengths

Address
FROM

80 [D2] 9oF [ xxxx [xxxx]

MVC

MvC  0(86,10),80(10) 1 [D2[4F[£000]A050]
| (5 ¥

CLC 0(1,10),256(10) 1 |p5Joolaooo[aloo]
r 9 y

CLC 0(0,10),256(10) 1 [D5Joo[a000]Aa100]

TO bDs CL8¢
FROM DS CL240
AREA DS PLS8
TWO DC PL4'2'

Section D: Machine Instructions 89



D5D -- IMMEDIATE CATA

PUI‘EOSG

In addition to addresses, registers, and lengths, some
machine instruction operands require immediate data. Such
data is assemkbled directly into the object code of the
machine instructions. You use immediate data to specify
the bit patterns for masks or other absolute values you
need.

You should ke careful to specify immediate data only where
it is required. Tro not confuse it with address references
to constants and areas cr with any literals you specify

as the operands of machine instruction (for a compariscn
between constants, literals, and immediate data, see C5).

Specifications

Immediate data must be specified as absolute expressions
whose range of values depends on the machine instructicn
for which the data is required. The immediate data is

0 assembled into its #4-bit or 8-kit kinary representaticn 0
according to the figure on the orposite rage.

90



Immed. Data

_
Machine Instructions Range of Values Examples Object Code
in which immediate allowed for in Hex
data is required immediate data
(Op codes in
Appendix 1V)
SRP (s8) 0 through 9 SRP A,B, 3,/6\
»
lFOl?! 3]xxxx|xxx§|
PO ——
A B
Length of Addresses
Field A
| v
All BCR (RR) 0 through 15 BCR 8,3 [07]8]3]

All BC (RX)

0 through 15

Bc 11,4 [47]B]0] ]
L % o
AAA

Address
oy g
IcM (RS) 0 through 15 STCM 3,X'F',BBB IBE|3|F|xxxx]
STCM ‘B‘TBé_"
CLM Address
Address
SLOT
NI (S1) 0 through 255
CLI
XTI
MVI
oI
™ Address
RDD KEY
WRD
svC (RR) 0 through 255
e ———— R

Section D: Machine Instructions

91



D6 - Examples of Coded Machine Instructions

The examples in this suksection

are groured according tc machine
instruction format. They illustrate
the varicus ways in which ycu can
code the operands of machine
instructicns. Both symbclic and
numeric representation of fields

and subfields are shcwn in the
examples. You must therefore assume
that all symbcls used are defined
elsewhere in the same source module.

The okject ccde assembled from at
least one coded statement per group
is also included. A ccmplete summary
of machine instruction formats with
the ccded assembler language variants
can be found in 2ppendix III and

v.
RR Format
_ N
You use the instructicns with the Name Operation Operand
RR format mainly to move data ketween ALPHAL LR 1.2
registers. The cperand fields must !
thus designate registers, with the ALPHA2 LR INDEX , REG2
following excepticns: !
In BCR branching instructions when o
0 a 4-rit kranching mask reglaces
the first register specification GAMMA1 BCR 08,12
In SVC instructicns, where an DELTA1 sve zane
o immediate value (between 0 and 255)
replaces both registers. DELTAZ2 svC

o NOTE: Symnkcls used in RR
instructions are assumed to be
equated tc absclute values ketween

0 and 15.
Assembly Examples:
Object Code of
Assembler La Statement e Tectrs
mbler Language men Machine Instruction
in Hex

ALPHAlL LR 1,2

RR Format 138 1 LZ

Operation| Register
Code Operands|

2 bytes

92



1. Symkols used tc rerresent
registers are assumed to be equated
to absolute values between 0 and
15.

2. Symbols used to represent implicit
addresses can be either relocatakle
or aksolute.

3. Symbols used to represent
displacements in exrlicit addresses
are assumed to be equated to aksolute
values between 0 and 4095.

PR N
RX Format Name Operation Operand
‘You use the instructions with the - ALPHAL L 1,200(4,10)
RX format mainly to mcove data between AT.PHA2 . REGL, 200 ( INDEX , BASE)
a register and virtual storage. ! o
By adjusting the ccntents of the
index register in the RX-instructions BETAl L 2,200(,10)
you can change the locaticn in L ———
virtual storage being addressed. BETA2 L REG2,DISPL(, BASE) lNo lndexingl
The operand fields must therefore
designate registers, including index GAMMAL L 3 IMPLICIT o
registers, and virtual stcrage !
addresses, with the following
exception: GAMMA 2 L 3, IMPLICZE:I‘ (INDEX)

Literal Specification

In BC branching instructicns a 4- DELTAL L See C5
kit kranching mask, with a value
between 0 and 15, replaces the first
register specification. LAMDAL BC DISPL(,BASE)
NOTES : LAMDAZ BC o ADDRESS

Assembly Examples:

Assembler Language Statement

Object Code of

ALPHAL

RX Format

GAMMAl L

1,200(4,10

2,IMPLICIT(4)

Machine |nstructioq
in Hex

5 8|1(4]a]0 Cc 8

Operation
Code

Displacement
from Base

Section D:

Machine Instructions 93



%4

RS Format

You use the instructions with the

RS format mainly to move data ketween
one or more registers and virtual
storage or to compare data in one

or more registers (see the BXH and
BXLE operations in Appendix IV).

In the Insert Characters under Mask
(ICM) and the Store Characters Under
Mask (STCM) instructions, when a
4-bit mask, with a value Letween

) 0 and 15, replaces the second
registexr specification.

NOTES:

1. Symbols used to regresent
eregisters are assumed to be equated
to aksolute values between 0 and

15.

2. Symbols used tc represent implicit
addresses can be either relocatakle
or aksolute.

3. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to aksolute
values ketween 0 and 4095.

_
Name Operation Operand ‘
ALPHAL M 4,6,20(12)
ALPHA2 LM REG4 ,RE&6 ;20 (BASE)
0
BETAL STM 4,6,arEn)
BETA2 STM 4,6,DISPL(BASE)
GAMMA1 SLL 2,15
GAMMA 2 SLL 2,0(15)
DELTA1l ICM
DELTAZ2 ICM

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction

In Hex '

ALPHAl LM 4,6,20(12)

(o] ti R'egistérs Displacement
peration ispla
RS F R1 | R3 |Base
ormat Code or from Base
M3

B F |[3|E|A}|4 0 O

DELTAL ICM 3,X'E',1024(10)

S




SI _Format

You use the instructicns with the
SI format mainly to move immediate
data into virtual stcrage. The
operand fields must therefore
designate imrmediate data and virtual
storage addresses, with the following
exception:

OAn immediate field is not needed
in the statements whcse oreration
codes are: LPSW, SSM, TS, TCH, and
TIO.

NOTES:

1. Symbols used tc represent

o immediate data are assumed to be
equated to absolute values bketween
0 and 255.

2. Symbols used t¢ represent implicit
o addresses can be either relocatable
or absolute.

3. Symbols used tc rerresent
displacements in explicit addresses
are assumed to be eguated tc absclute
values between 0 and 4095.

Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

T Name Operation Operand
ALPHAL CLI 40(9) ,X'40"
ALPHA2 CLI
BETAL CLI o\IMPLICIT f
BETA2 CLI \KEY ,C'E!
a GAMMA1 LPSW 0(9)

GAMMA?2 LPSW NEWSTATE __ o

Assembly Examples:

Assembler Language Statement Object Code of

S| Format

ALPHAl CLI 40(9),X'f}0‘

Machine Instruction
In Hex

9 514 0

o
o
N
o]

Operation [Immediate

Code Data Displacement

from Base

Base
Register

Section D:

Machine Instructions 95



Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

96

S_Format

You use the instructions with the
S format to perform 1I/0 and other
system operations and not to move
data in virtual storage.

The operation codes for these
instructions are given in the figure
to the right. They are assembled
into two bytes.

AU Ty
~
Mnemonic Assembled Description
Operation Operation
Codes Code in
Hex
H SIO 9C00 Start 1/0
SIOF 9co1 Start 1/0 fast
release
HIO 9E00 Halt 1/0
HDV 9E01 Halt Device
STIDP B202 Store CPU ID
STIDC B203 Store Channel
ID
SCK B204 Set Clock
STCK B205 Store Clock
7 SCKC B206 Set Clock Comparator
STCKC B207 Store Clock Comparator
SPT B208 Set CPU Timer
STPT B209 Store CPU Timer
PTLB B20D Purge Translation
Lookaside Buffer
RRB B213 Reset-Reference Bit




SS Format

You use the instructions with the

SS format mainly tc move data between
two virtual storage locations.

The operand fields and subfields
must therefore designate virtual
storage addresses and the exglicit
data lengths you wish to include.
Bowever, note the fcllowing
exception:

In the Shift and Round Cecimal (SRP)
instruction a 4-bit irmediate data
field, with a value between 0 and
9, is specified as a third operand.

NOTES:

1. Symbols used to represent tkase
registers in explicit addresses

are assumed to be equated to aksolute
values between 0 and 15.

2. Symbols used to represent explicit
lengths are assumed tc be equated

to absolute values between 0 and

256 for SS instructions with one
length specification and ketween

0 and 16 for SS instructicns with
two length specifications.

3. Symbols used to represent implicit
addresses can be either relocatakle
or aksolute.

4, Symbols used to represent
displacements in exrlicit addresses
are assumed tc be equated to aksolute
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>