
Systems

GC33-4010-5

OS/VS-DOS/VSE-~VMl370
Assembler Language

--- ------ ----- ---- - ---- - - ----------_.-

Sixth Edition (March 1979)

This is a major revision of, and obsoletes, GC33-401O-4. Changes to the text and to
illustrations are indicated by a vertical line to the left of the change.

This edition applies to Release 4 of OS/VS 1, Release 3 of OS/VS2, Release 2 of VMj370,
DOS/VSE, and to all other releases until otherwise indicated in new editions or
Technical Newsletters.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/3 70
Bibliography, Order No. GC20·0001 for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's comments. If the form
has been removed, comments may be addressed to IBM Nordic Laboratory, Product
Communications, Box 962, S·181 09 Lidingo 9, Sweden. IBM may use or distribute
any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines 1972, 1979

ii

Read This First

This manual describes the OS/VS - DOS/VSE - VM/370 assembler
language.

The OS/VS - VM/370 assembler language offers the following improvements
over the OS/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

The figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. If you are already familiar with the OS/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the figure on the following pages are the
improvements of the DOS/VS assembler language over the DOS/360 assembler
language as processed by the D assembler.

AOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descriptions.

Note for VM/370 Users

The services provided by the OS Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the eMS Loader. Therefore,
for any reference in this publication to those OS programs, you may
assume that the eMS Loader performs the same function.

Certain shaded notes in this publication refer to "OS only" information.
Where you see these notes you may assume the information also applies
for VM/370 users.

Note for DOS/VSE Users

All references to DOS and DOS/VS are also applicable to DOS/VSE.

iii

COMPARISON OF ASSEMBLERS 4
Language Feature Assemblers

Described in
OS/VS·

00S/360 (D) DOS/VSE OS/360 (F) VM/370

1. No of continuation lines allowed in 1 2 2 2 B1B
one statement

2. Location Counter value printed for 3 bytes 3 bytes 3 bytes 4 bytes C4B
EOU, USING~ ORG (in ADDR2 field) (up to 3

leading zeros
suppressed)

3. Self·Defining Terms
224.1 224·1 224.1 231 .1

C4E
maximum value:

number of digits
binary: 24 24 24 32
decimal: 8 8 8 10
hexadecimal: 6 6 6 8
character: 3 3 3 4

4. Relocatable and Absolute Expressions C6B
unary operators allowed: no yes no yes
value carried: truncated to truncated to truncated to 31 bits

24 bits 24 bits 24 bits
number of operators: 15 15 15 19
levels of parentheses: 5 5 5 6

5. Alignment of Constants ALIGN/ constants constants constants D2
(with no length modifier) when NOALIGN not aligned aligned not aligned

. NOALIGN option specified: option not
allowed

6. Extended Branching Mnemonics D1H ~ for R R format instructions: no yes no yes

7. COPY Instruction E1A
nesting depth allowed: none 3 none 5
macro definitions copied: no yes no yes

8. END Instruction

generated or copied END
instructions: no no no yes E1

9. All control sections initiated by a no yes no no E2C
CSECT start at location a in listing
and object deck

10. External Symbol Dictionary Entries E2G
I maximum allowed: 255 511 255 399

(including
entry symbols
identified by
ENTRY)

11. DSECT Instruction blank name entry: no yes no yes E3C

12. DROP Instruction not allowed signifies all not allowed signifies all F1B
blank operand entry: current base current base

registers registers
dropped dropped

13. EOU Instruction G2A
second operand as length attribute: no no no yes
third operand as type attribute: no no no yes

14. DCIOS Instruction; one multiple multiple multiple G3B

~ number of operands:

iv

COMPARISON OF ASSEMBLERS

Language Feature i Assemblers
! DOS/360 (D) DOS/VSE OS/360 (F) OS/VS - I "'<:O;)\,IILI<:OU III

VM/370 I

15. Bit-length specification allowed: no yes yes yes

I
G3B

16. Literal Constants G3C
multi term expression for
duplication factor: no yes no yes
length, scale, and

I exponent modifier: no yes no yes
Q- or S-type address constant:

I
no

I
no

I
no

I
yes

I 17. Binary and Hexadecimal Constants G3D
number of nominal values:

I
one one one multiple G3F

18. O-type address constant allowed: no no yes yes G3M

19. ORG Instruction

I
sequence symbol sequence symbol

I
sequence symbol any symbol

I
H1A

name entry allowed: or blank or blank or blank or blank

20. Literal cross-reference: no yes no yes H1B

I 21. CNOP Instruction I sequence symbol I sequence symbol I only sequence I any symbol I H1C
symbol as name entry:

I
or blank

I
or blank

I
symbol or blank

I
I

I
or blank

I 22. PRINT Instruction
inside macro definition: I no yes I no yes I H3A

23. TITLE Instruction H3B
number of characters in name
(if not a sequence symbol): 4 4 4 8

24. OPSYN Instruction: no no yes yes H5A

25. PUSH and POP Instructions H6
for saving PRINT and USING status: no no no yes

26. Symbolic Parameters and
Macro Instruction Operands

maximum number: 100 200 200 no fixed J2C
maximum K1B

mixing positional and keyword: all positional all positional all positional keyword param- I J3C
parameters parameters parameters eters or operands K3C
or operands or operands or operands can be inter- I
must come must come must come spersed among ~
first first first positional param

eters or operands

27. Generated op-codes START, CSECT, J4B
DSECT, COM allowed no yes no yes

I I I I I
28. Generated Remarks due to generated

I
J4B

blanks in operand field: no no no yes

I
29. MNOTE Instruction J5D

in open code: no no no yes

30. System Variable Symbols J7
&SYSPARM:

I
yes

I
yes

I
no

I
yes

I I &SYSDATE: no no no yes
&SYSTIME:

I
no no

I
no I yes I

31. Maximum number of characters in I I K5 I
macro instruction operand: 127 255 255 255

I 32. Type and Count Attribute of L1B
SET symbols: no no no yes
&SYSPARM, &SYSNDX,
&SYSECT, &SYSDATE, &SYSTIME: no no no yes ji

v

COMPARISON OF ASSEMBLERS

Language Feature Assemblers Described in

DOS/360 (D) DOS/VSE OS/360 (F) OS/VS -
VM/370

33. SET Symbol Declaration L2
global and local mixed: no, global must no, global must no, global must yes

precede local precede local precede local
global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no

must immediately follow any source
macro definitions, if in open code: yes yes yes no

34. Subscripted SET Symbols L2
maximum dimension: 255 4095 2500 32,767

35. SETC Instruction L3B
duplication factor in operand: no no no yes
maximum number of characters
assigned a 255 a 255

36. Arithmetic Expressions L4A
in conditional assembly

unary operators allowed: no yes no yes
number of terms: 16 16 16 up to 25
levels of parentheses: 5 5 5 up to 11

37. ACTR Instruction allowed anywhere no, only immedi- yes no, only immedi- yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET

symbol symbol
declarations declarations

3a. Options for Assembler Program
ALIGN no yes yes yes 02
ALOGIC no no no yes La
MCALL no no no yes JaB
EDECK no yes no no Order No.

GC33-4024

MLOGIC no no no yes La
LlBMAC no no no yes JaA

vi

Preface

This is a reference manual for the OSjVS - DOSjVS - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

This manual is for programmers coding in the OSjVS - VM/370 or DOS/VS
assembler language*

Iviajor Topics

This manual is divided into four main parts (aside from the
nlntroductionn and the Appendixes) :

PART I (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.
PART II (Section D) describes the machine instruction types and their
formats.
PART III (Sections E through H) describes the assembler instructions.
PART IV (Sections I through L) describes the macro facility and the
conditional assembly language.

How To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested ine

Complete specifications are given for each instruction or feature of the
assembler language (except for the machine instructions, which are
documented in Principles of Operation, see nReferences You May
Need·). In many cases a ,·Purpose- section suggests why you might use
the feature; a -how-to· section explains use of a complex feature; and
one or more figures give examples of coding an instruction.

If you are a present user of the OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
nPreface n, which indicates those language features that are different
from the DOS or OS System/360 languages.

vii

TABS: Tabs mark the beginning of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

Tab - USING

OS-DOS DIFFERENCES: Wherever the OSjVS and DOSjVS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The 'OS only' markings also apply for the VM/370
assembler.

KEYS: The majority of figures are placed to the right of the text that
describes them. Numbered keys within a figure are duplicated to the
left of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

Key- •

GLOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing, which was prepared by
Subcommittee x3.S on Terminology and Glossary of American National
Standards Committee X3.

References You May Need

You may want to refer to

System/370 Principles of Operation, Order No. GA22-7000

for information on the fUnctions of the machine instructions of the
assembler language and to

OSjVS - VM/370 Assembler Programmer's Guide, Order No. GC33-4021

for detailed information about the OSjVS - VM/370 Assembler.

Guide to the DOS/VS Assembler, Order No. GC33-4024

for detailed information about the DOS/VS Assembler.

viii

SECTION A: INTRODUCTION •

WHAT THE ASSEMBLER DOES • • •• 1
Al -- THE ASSEMBLER LANGUAGE. • • •• 2

Machine Instructions • 2
Assembler Instructions • • • •• 3
Macro Instructions • • 3

A2 THE ASSEMBLER PROGRAM • 3
A2A -- Assembler processing Sequence 4

Machine Instruction processing. 5
Assembler Instruction processing 5
Macro Instruction Processing •• 8

A3 -- RELATIONSHIP OF ASSEMBLER TO
OPERATING SYSTEM • • • • • • •• 9

Services Provided by the
Operating System • • • • • • 9

A4 -- CODING AIDS • • • • • • • • • 10
Symbolic Representation of
Program Elements • • • • • 10
Variety of Data Representation • 10
Controlling Address Assignment • 10
Relocatability •••••••• • 11
Segmenting a Program ••••• • 11
Linkage Between Source Modules. 11
Program Listings •••••••• 11

PART I: CODING AND STRUCTURE • • • •• 13

SECTION B: CODING CONVENTIONS • • • • • 15
Standard Assembler Coding Form • 15

Bl CODING SPECIFICATIONS • • • • 16
B1A -- Field Boundaries • 16

The Statement Field • • • . 16
The Identification-Sequence
Field • • • • . • • • • • • 17
The Continuation Indicator
Field • • • • • • • • • • • 17
Field Positions • • • • • • • • 17

B1B -- Continuation Lines • • • •• 18
B1C -- Comments Statement Format • • 19
B1D -- Instruction Statement Format 20

Fixed Format • • • • • • • • • • 20
Free Format • • • • • • • • •• 20
Formatting Specifications • •• 21

SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25

C1 -- THE SOURCE MOCULE • • • • • • • • 26
C2 -- INSTRUCTION STATEMENTS • • • •• 26

C2A -- Machine Instructions • • •• 29
C2B -- Assembler Instructions • •• 30

Ordinary Assembler Instructions 30
Conditional Assembly
Instructions • • • • • • • • • • 32

C2C -- Macro Instructions • • • •• 33
C3 -- CHARACTER SET • • • • • • • • • • 34
C4 -- TERMS • • • • • • • • • • • • • • 36

C4A -- Symbols • • • • • • • • • • • 36
Symbol Definition • • • • • •• 38
Restrictions on Symbols • • •• 40

C4B -- Location Counter Reference. 41

ix

Contents

C4C Symbol Length Attribute
Reference • • • • • • • 44

C4D Other Attribute References. 46
C4E Self-Defining Terms • • • • • 46

C5 -- LITERALS • • • • • • • • • • •• 50
C6 -- EXPRESSIONS • • • • • • • • • • • 53

C6A -- purpose • • • • • • • • • • • 53
C6B -- Specifications • • • • • 55

Absolute and Relocatable
Expressions • • • • • • • • •• 56
Absolute Expressions • • • • • • 57
Relocatable Expressions • • •• 58
Rules for Coding Expressions • • 59
Evaluation of Expressions • 60

PART II: FUNCTIONS AND CODING OF
MACHINE INSTRUCTIONS • • • • • 61

SECTION D: MACHINE INSTRUCTIONS • • • • 63

01 -- FUNCTIONS • • • • • • • • • • 63
D1A -- Fixed-Point Arithmetic • •• 64

Operations Performed • • • • • • 64
Data Constants Used • 64

D1B -- Decimal Arithmetic • 65
Operations Performed 65
Data Constants Used • • • 65

D1C -- Floating-point Arithmetic •• 66
Operations Performed • • • • • • 66
Data Constants Used • • • • •• 66

OlD -- Logical Operations • • • •• 67
Operations Performed • • • • • • 67

OlE -- Branching • • • • • • • • • • 68
Operations Performed • • • • • • 68

D1F -- Status Switching • • • • •• 69
Operations Performed • • • • • • 69

D1G -- Input/Output = = = = = = •• 71
Operations Performed • • • • • • 71

D1H -- Branching with Extended
Mnemonic Codes • • • • • •• 72

011 -- Relocation Handling • • • 74
D2 ALI GNMENT • • • • • • • • • • • • 75
03 STATEMENT FORMATS • • • • • • • • 78
04 MNEMONIC OPERATION CODES • • •• 79
05 OPERAND ENTRIES • • • • 80

General Specifications for
Coding Operand Entries • 80

D5A -- Registers ~ • • • • ."82
Purpose and Usage • • • • • •• 82
Specifications • • • • • • •• 82

D5B -- Addresses • • • • • • • • • • 84
Purpose and Definition ••••• 84
Relocatability of Addresses •• 85
Specifications • • 86
Implicit Address • ~ • • • •• 87
Explicit Address • . 87

D5C -- Lengths • • • • • 88
D5D -~ Immediate Data • • • • • 90

D6 EXAMPLES OF COCEC MACHINE
INSTRUCTIONS . • • • • 92

RR Format 92
RX Format • • • . • • • 93

RS Format • • • • • • • • • • • 94
SI Format • • • • • • • • • •• 95
S Format • • • • • • • • • • • • 96
SS Format • • • • • • • • 97

PART III: FUNCTIONS OF ASSEMBLER
INSTRUCTIONS • • • • • • • • • • 99

SECTION E: PROGRAM SECTIONING. 101

E1 -- THE SOURCE MODULE • • • • • 102
The Beginning of a Source
Module • • • • • • • • • • 102
The End of a Source Module 102

E1A -- The COpy Instruction • • • • 103
E1B -- The END Instruction • • •• 105

E2 -- GENERAL INFORMATION ABOUT CONTROL
SECTIONS •••••••••••• 107

E2A -- At Different processing
Times • • • • • • • • • •• 108

E2E -- Types ••••••••••• 110
Executable Control Sections •• 110
Reference Control Sections.. 110

E2C Location Counter Setting •• 111
E2D -~ First Control Section. •• 113
E2E The Unnamed Control Section 115
E2F Literal Pools in Control

Sections •••••••••• 115
E2G External Symbol Dictionary

Entries. • • • • • • • •• 116
E3 -- DEFINING A CONTROL SECTION ••• 117

E3A The START Instruction. 117
E3B -- The CSECT Instruction. 119
E3C -- The DSECT Instruction • 121

How to Use a Dummy Control
Section • • • • • • • • • • • • 121
Specifications • • • • • • •• 122

E30 -- The COM Instruction • • •• 124
How to Use a Common Control
Section •••••••••••• 124
Specifications • • . • • • •• 125

E4 -- EXTERNAL DUMMY SECTIONS • • .• 127
Generating an External Dummy
Section ••••.••••••• 127
How to Use External Dummy
Sections • • • . • • . • • 128

E5 DEFINING AN EXTERNAL DUMMY
SECTION •..•••.••• 130

E5A The DXD Instruction . • •• 130
E5B -- The CXD Instruction 131

SECTION F: ADDRESSING • • . • 133

F1 -- ADDRESSING WITHIN SOURCE MODULES:
ESTABLISHING ADDRESSABILITY •. 133

How to Establish Addressability 134
F1A -- The USING Instruction • .• 134

The Range of a USING
Instruction • • • • • • 135
The Domain of a USING
Instruction • • • • • • 135
How to Use the USING
Instruction. • • • • 137
Specifications for the USING
Instruction ••.••••••• 141

x

F1B -- The DROP Instruction • • • • 144
F2 ADDRESSING BETWEEN SOURCE MODULES:

SYMBOLIC LINKAGE • • • • • 147
How to Establish Symbolic
Linkage • • • • • • • • • • • • 147

F2A The ENTRY Instruction 150
F2B The EXTRN Instruction • 151
F2C The WXTRN Instruction 152

SECTION G: SYMBOL AND DATA DEFINITION 153

G1 -- ESTABLISHING SYMBOLIC
REPRESENTAT ION • • • • • • • • • 153

Assigning Values • • • • • •• 154
Defining and Naming Data • •• 154

DEFINING SYMEOLS • • • • • • • • 155
G2A -- The EQU Instruction • • •• 155

G3 -- DEFINING DATA. • • • • • • •• 161

G2

G3A The DC Instruction • • • • • 162
G3B -- General Specifications for

G3C
G3D
G3E
G3F
G3G

G3H
G31

G3J

G3K
G3L
G3M
G3N

Constants • • • • • • • •• 163
Rules for the DC Operand • •• 164
Information about Constants •• 165
padding and Truncation
of Values • • • • • • • • • • • 167
Subfield 1: Duplication Factor 168
Subfield 2: Type • • • • • •• 169
Subfield 3: Modifiers ••••• 170
Subfield 4: Nominal Value • • • 179

Literal Constants • • • •• 180
Binary Constant (B) • • •• 181
Character Constant (C). 182
Hexadecimal Constant (X) • • 184
Fixed-Point Constants
(H and F) • • • . • • • •• 186
Decimal Constants (P and Z) 188
Floating-Point Constants
(E, D and L) • • • • • • • • 190

The A-Type and Y-Type Address
Constants • • • • • • • •• 194
The S-Type Address Constant 196
The V-Type Address Constant 198
The Q-Type Address Constant 200
The DS Instruction • • • • • 201

How to Use the rs Instruction • 201
Specifications • • • • • • •• 206

G30 -- The CCW Instruction • • •• 209

SECTION H: CONTROLLING THE ASSEMBLER
PROGRAM • • • • • • • • • • • • • •• 2 11

H1 -- STRUCTURING A PROGRAM • • • • •
H1A -- The ORG Instruction •
H1B -- The LTORG Instruction •

The Literal Pool ••••
Addressing Considerations • • •
Duplicate Literals ••••••
Specifications • • • • • • • •

H1C -- The CNOP Instruction • •
H2 -- DETERMINING STATEMENT FORMAT AND

SEQUENCE • • • • • • • • • •
H2A -- The ICTL Instruction • •
H2B -- The ISEQ Instruction • •

H3 -- LISTING FORMAT AND OUTPUT •
H3A -- The PRINT Instruction • • •

211
212
214
215
216
217
217
218

219
219
221
222
222

H3B The TITLE Instruction • 224
H3C The EJECT Instruction 227
H3D The SPACE Instruction • 228

PUNCHING OUTPUT CARDS • • ---,.-- .,----..- .-22-S--.
H4A -- The PUNCH Instruction • • 228
H4B -- The REPRO Instruction • •• 231

H5 -- REDEFINING SYMBOLIC OPERATION
CODES • • • • • • • • • • • •• 232

H5A -- The OPSYN Instruction •• 232
H6 -- SAVING AND RESTORING PROGRAMMING

ENVIRONMENTS • • • • • • • • • • 234
H6A The PUSH Instruction • • • • 234
H6B The POP Instruction • • •• 234
H6C -- Combining PUSH and POP • • • 235

PART IV: THE MACRO FACILITY • • • •• 237

SECTION I: INTRODUCING MACROS •••• 239

Using Macros • • • • • • • •• 240
The Easic Macro Concept • • • • 243
Defining a Macro • • • • • •• 245
Calling a Macro • • • • • • • • 246
The Contents of a Macro
Definition • • • • • • • 248
The Conditional Assembly
Language • • • • • 250

SECTION J: THE MACRO DEFINITION • 251

J1 -~ USING A MACRO DEFINITION • • • • 251
J1A -- Purpose. • • • • • • • •• 251
J1B -- Specifications • 252

Where to Define a Macro in a

J2

J3

Source Module • • • • • • • • • 252
Open Code • • • • • 252
The Format of a Macro
Definition • • • • • • • • •• 253

PARTS OF A MACRO DEFINITION •• 254
J2A The Macro Definition Header 254
J2B The Macro Definition Trailer 254
J2C The Macro Prototype Statement:

Coding • • • • • • • • • • • 255
Alternate Ways of Coding the
Prototype Statement • • • • • • 256

J2D -- The Macro Prototype Statement:
Entries • • • • • • • • •• 256

The Name Entry • • • • • • •• 256
The Operation Entry • • • . • • 257
The Operand Entry • • • • • 258

J2E -- The Body of a Macro
Definition • • • • • • • • • 259

SYMBOLIC PARAMETERS • • • • •• 260
General Specifications • • •• 260
Subscripted Symbolic Parameters 261

J3A positional Parameters • •• 262
J3B -- Keyword Parameters • • • • • 263
J3C -- Combining positional

and Keyword Parameters •
J4 -- MODEL STATEMENTS • • • • •

• • 265
• 266

266
266
266

J4A -- Purpose • • • • • • • • • •
J4B -- Scecifications • • • • • • •

Form~ of MGde-1St~m.ents
Variable symbols as Points of
Substitution • • • • • • • •• 267
Rules for Concatenation • • • • 268
Rules for Model Statement
Fields • • • • • • • • • • •• 269

J5 -- PROCESSING STATEMENTS • • • • •
J5A -- Conditional Assembly

Instructions • • • • • •

272

272
-- uJ-5B- Inner ~~acro Instructions .. ~---

The COpy Instruction • • • • 272
J5D -- The MNOTE Instruction • 273
J5E -- The MEXIT Instruction • 276

J6 -- COMMENTS STATEMENTS • • • • 277
J6A Internal Macro Comments

Sta tements • • • • • • • • • 277
J6B -- Ordinary Comments Statements 277

J7 -- SYSTEM VARIABLE SYMBOLS • • •• 278
J7A &SYSDATE • • • • • • • • • • 279
J7B &SYSECT.......... 280
J7C &SYSLIST.......... 281
J7D &SYSNDX.......... 284
J7E &SYSPARM.......... 284
J7F &SYSTIME • • • • • • • • ~ • 287

J8 -- LISTING OPTIONS • • • • • • •• 287
J8A LIBMAC • • • • • • • • • • • 287
J8B -- MCALL • • • • • • • • • •• 288

SECTION K: THE MACRO INSTRUCTION • • • 289

K1 -- USING A MACRO INSTRUCTION • a. 289
K1 A -- Purpose • • • • • • • • •• 289
K1B -- Specifications ••••••• 290

Where the Macro Instructions can
Appear • • • • • • • • • • 290
Macro Instruction Format • • a 290
Alternate Ways of Coding a Macro

K2
Instruction • • • • • • • • • • 291

ENTRIES • • • • • • • • • • •• 292
K2A -- The Name Entry • • • • • • • 292
K2B -- The Operation Entry • • •• 293
K2C -- The Operand Entry • • a a. 293

K3 -- OPERANDS • • • • • • • • • • • • 294
K3A positional Operands • • •• 294
K3B -- Keyword Operands • • • • • • 296

K4
K5

K3C -- Combining positional
and Keyword Operands •

SUBLISTS IN OPERANDS • • •
VALUES IN OPERANDS • • • •

• 299
• 300

302
K6 NESTING IN MACRO DEFINITIONS • • 307

K6A -- Purpose • • • • • • 307
Inner and Outer Macro
Instructions • • • • • • 307
Levels of Nesting • • 308
Recursion • • • • • • • • • • • 310

K6B -- Specifications ••••••• 311
General Rules and Restrictions 311
passing Values through Nesting
Levels • • • • • • • • • • •• 312
System Variable Symbols in
Nested Macros ••••••••• 314

SECTION L: THE CONDITIONAL ASSEMBLY
LANGUAGE • 317

L1 -- ELEMENTS AND FUNCTIONS • •• 317
318
319
320

xi

L1A -- SET Symbols • • • • • •
The Scope of SET Symbols •
Specifications • • • a_. •
Subscripted SET Symbols -
Specifications • • • • • • • •

L1B -- Data Attributes ••••
What Attributes Are. • • •

L1C -- Sequence Symbols ••••••

322
323
323
334

L2 -- DECLARING SET SYMBOLS • • • •• 336
L2A The LCLA, LCLB, and LCLC

Instructions • • • • • • • • 336
L2B -- The GBLA, GELB, and GBLC

Instructions • • • • • • • • 340
L3 -- ASSIGNING VALUES TO SET SYMBOLS 343

L3A The SETA Instruction • • • • 343
L3B -- The SETC Instruction • • • • 345
L3C -- The SETB Instruction • • • • 347

L4 -- USING EXPRESSIONS • • • • 349
L4A Arithmetic (SETA)

Expressions • • • • • • •• 349
L4B -- Character (SETC) Expressions 355
L4C -- Logical (SErE) Expressions • 359

L5 -- SELECTING CHARACTERS
FROM A STRING • • • • • • • •• 364

L5A -- Substring Notation • • • • • 364
L6 -- BRANCHING • • • • • • • 367

L6A The AIF Instruction • • •• 367
L6B The AGO Instruction • • •• 369
L6C The ACTR Instruction • • • • 370
L6D The ANOP Instruction • • • • 373

L7 -- IN OPEN CODE • • • • • • • • • • 374
L 7A -- Purpose • • • • • • • • •• 374
L7B -- Specifications ••••••• 374

L8 -- LISTING OPTIONS • • • • • • •• 376

APPENDIX I: CHARACTER CODES. • .377

APPENDIX II: HEXADECIMAL-DECI~AL

CONVERSION TABLE 383

APPENDIX III: ~ACHINE INSTRUCTION
FOR~AT • • • • • • • • • 389

APPENDIX IV: MACHINE INSTRUCTION
MNEMONIC OPERATION
CODES • • • • • • • 391

APPENDIX V: ASSEMBLER INSTRUCTIONS • 407

APPENDIX VI: SUMMARY OF CONSTANTS •• 411

APPENDIX VII: SUMMARY OF MACRO
FACILITY .• • ••• 413

GLOSSARY •• . • • 421

INDEX . • . • . . • • • • . • • • •• 437

xii

c

Section A: Introduction

-Wltat- the Assembler noe~ _____ _

A computer can understand and interpret only machine
language. Machine language is in binary form and, thus,
very difficult to write. The assembler language is a
symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead
of just the binary digits 0 and 1 used in the machine
language, you can rr.ake your coding easier to read,
understand, and change.

The assembler must translate the symbolic assembler language
into machine language cefore the computer can execute ycur
program, as shown in the figure below.

CODING SHEETS

or

~ II L----_>"
TERMINAL D

ASSEMBLER

Main Storage of
COMPUTER

SOU RCE MODU LE
Assembler Language Input

OBJECT MODULE

Machine Language Output

LOAD MODULE

Section A: Introduction 1

Assume that your program, written in the assembler language,
has been punched into a deck of cards called the seurce
deck. This deck, also known as a source module, is the
input to the assembler. (YOU can also enter a source
module as input to the assembler through a terminal.)

The assembler processes your source module and produces
an object module in machine language (called object cede) •
Assume that the assembler punches this object module into
a deck of cards called the object deck.

The object deck or object module can be used as input to
be processed by another processing program, called the
linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, aleng with
other information on a program listing.

Al -- The Assembler Language

2

The assembler language is the symbolic prograrrroing language
that lies closest to the machine language in form and
content. You will, therefore, find the asserrbler language
useful when:

• You need to control your program closely, down to the
byte and even bit level or

• You must write subroutines for functions that are not
provided by other symbolic programming languages such as:
ALGOL, COBOL, FORTRAN, or PI/I.

The assembler language is made up of statements that
represent instructions or comments. The instruction
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions.

Machine Instructions

A machine instruction is the symbolic representation of
a machine language instruction of the Iffi1 Systerr/370
instruction set. It is called a machine instruction because
the assembler translates it into the machine language cede
which the computer can execute. Machine instructions are
described in PART II; SECTION r of this manual.

Assembler Instructions

An assembler instruction is a request to the asserrbler
program to ferform certain operations during the assembly
of a source module, for example, defining data constants,
defining the end of the source module, and reserving storage
areas. Except for the instructions that define constants,
the assembler does not translate assemtler instructions
into object code. ~he assembler instructions are described
in PART Ill; SECTIONS E, F, G, and H and PAR~ IV; SECTIONS
J, K, and L of this manual.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a rracro
definition. From this definition, the assembler generates
machine and assembler instructions which it then frocesses
as if they were part of the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call
for processing by coding the required macro instructiJn.
('I'hese IBM-supplied macro instructions are not described
in this manual.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART IV; SECTIONS J, K, and
L.

A2 -- The Assembler Program

The assembler program, also referred to as the "assembler-,
processes the machine, assembler, and macro instructiJns
you have coded in the asserntler language and produces an
object module in machine language.

Section A: Introduction 3

A2A - ASSEMBLER PROCESSING SEQUENCE

4

The assembler processes the three types of assembler
language instructions at different times during its
processing sequence. You should be aware of the assembler's
processing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and
executed.

TIMES

Coding
Time

Pre-Assembly

Titre

Assembly
Time

Linkage
Edit
Time

Program
Fetch
Time

Execution
Time

PROGRAMMER

ASSEMBLER

• LINKAGE
EDITOR

LOADER

• can combine
linkage editing
and loading
operations

OS only

• CPU of
COMPUTER

The assembler processes most instructions on two occasions; o first at pre-assembly time and later at assembly time. •
However, it does seme precessing, for example, macro
processing, only at pre-assembly time.

The assembler also produces information for other

•
processors. The linkage editor uses such information at
linkage-edit time to combine object modules into load
modules. The loader loads your program (comtined load

O
modules) into virtual storage (see GLOSSARY) at program

· fetch time. Finally, at execution time, the computer
executes the object code produced ty the assembler at
assembly tirre. •

Machine Instruction Processing

The assembler processes all machine instructions and
translates them into ocject code at assewcly tirre, as shewn
in the figure below.

TIMES

Linkage
Edit

Program
Fetch

Execution

Machine
! nstructions

Assembler Instruction Processing

Coded

Assembled
into
object code

Executed

Assembler instructions are divided into two rrain types:

1. Ordinary assembler instructions

2. Conditional assembly instructions and the macro
processing instructions ~ACRO, MENC, MEXI~ and MNO~~ •

Section A: Introduction 5

6

The assembler processes ordinary assemtler instructions 4Dt at asserrbly time, as shown in the figure below •

• Ordinary

Assembler

Instructions and

assembly

r----------------A--------------------_

•
•

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NO'IES:

•

time

expressions

Fully
processed

DC
DS
CCW

in ex ElW "
ti<)nQf

triacbil)e.·fo.st,

ENTRY
EXTRN
WX':L'RN
Address constants

Provide
linkage

information

Provide

areas to
hOld
addies~

1. The asserrbler evaluates absolute and relocatable
expressions at assembly time; they are sometimes called
assembly tirre expressions •

2. Some instructions produce output for processing after
asserrtly tirre.

PUNCH
REPRO

Can prOvide
linkage
commands

The assembler precesses conditional asserotly instructicns 4mt and macro processing instructions at pre-assembly time,
as shown in the figure telow.

•
•

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

~~OTES :

Conditional Assembly

(and macro processing)

instructions and

conditional assembly

• ex

Fully

processed

1. The asserobler evaluates the conditional assembly
expressions (arithmetic, logical, and character) at fre­
-asserrcly tirre.

2. The assembler processes the machine and asserrbler
instructions generated frem pre-assembly processing at
assembly time.

Section A: Introduction 7

8

~acro Instruction processing

•
The assembler processes macro instructions at pre-assembly
time, as shown in the figure below.

TIMES

Coding

Pre-Assembly

Assembly

Linkage
Edit

Program
Fetch

Execution

Fully
Processed

Macro
Instructions

Macro
Definitions

Generated
Statements

N~£E: The assembler processes the machine and ordinary
• assembler instructions genera ted from a macro definition

called by a macro instruction at assembly tirre.

The assembler prints in a program listing all the
information it produces at the various processing tines
described in the above figures.

A3 - Relationship of Assembler to Operating System

- TneClssemoler--ts-na -prograIflffi1hg componenr-Of-ffie- OS/VS,
VM/370, or DOSjVS. These system control programs provide
the assembler with the services:

• For assembling a source module and

• For running the assembled otject module as a progIarr.

In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Services Frovided by the Operating System

OSjVS and DOSjVS provide the following services:

1. For assembling the source module:

a. A control proqram

b. Libraries to contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the otject module:

a. A control program

h. Storage allocation

c. Input and output facilities

d. A linkage editor

e. A loader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

h. Files to contain source code and macro definitions

c. Utilities.

2. For preparing for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The eMS Loader.

Section A: Introduction 9

A4 -- Coding Aids

10

It can be very difficult to write an assemcler language
program using only machine instructions. The assembler
provides additional functions that make this task easier.
They are surrmarized below.

Symbolic Refresentation of Program Elements

Symbols greatly reduce programming effort and errors.
You can define symbols to represent storage addresses,
displacements, constants, registers, and almost any elerrent
that makes up the assemcler language. ~hese elements
include oferands, operand subfields, terms, and expressions.
Symbols are easier to rememcer and code than numbers;
moreover, they are listed in a symcol cross-reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
code.

Variety of Lata Representation

You can use decimal, binary, hexadecimal or character
representation which the assemcler will convert for you
into the binary values required by the machine language.

Controlling Address Assignment

If you code the afprofriate assembler instruction, the
assembler will compute the displacement from a base address
of any symbolic addresses you specify in a machine
instruction. It will insert this displacement, along with
the base register assigned cy the asserrcler instruction,
into the object code of the machine instruction.

At execution time, the object code of address references
must be in the base-displacement form. The computer obtains
the required address cy adding the displacerrent to the
case address contained in the base register.

Relocatability

'fhe assembleE' pE'oduees--an- objec~ module t--ha~---ean u£e
relocated fraIT an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their base-displacement forrr.

Segmenting a Program

You can divide a source module into one or more control
sections. After assembly, you can include or delete
individual centrol sections from the resulting object
module before you load it for execution. Control secticns
can be loaded separa tely into storage areas that are not
contiguous.

Linkage Between Seurce Modules

YOU can create symbolic linkages between separately
assembled seurce modules. This allows you to refer
symbolically from one source module to data defined in
another seurce module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source medule,
including any generated statements, and the object code
assembled from the source module. You can centrol the
form and content of the listing to a certain extent. The
assembler also prints messages about actual errors and
warnings abeut potential errors in your source module.

Section A: Introduction 11

Part I: Coding and Structure

SECTION B: CODING CONVENTIONS

SECTION C: ASSEMBLER LANGUAGE STRUCTURE

13

Section B: Coding Conventions

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
before they are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape).

Standard Asserrbler Ccdinq Form

You can write assembler language statements on the standard
coding form (Order No. GX28-6509) shown below. ~he cclurrns
on this fcrrr corresFcnd to the columns on a punched card
or positions on a source staterrent entered through a
terrrinal. ~he form has sface for program identification
and instructions to keypunch oFeratcrs.

IBM IBM System 360 Assembler Coding Form

:20 2S 30

* A standard card form. IBM electro 6509, IS ,waf/able for punching source statements from this form,

IflStr{Jctions for using thiS form are In any IBM Svsrem/360 Assembler Reff'f(!nCe Manual.

Address comments cO'7cernmg thi~ lorm w IBM NordiC Laboratory, Publications Developmt!11t

B:.:' 952$ 09 ... 0;g,9. S.· ... ,.,' ..

GX28-6509-5 U/M 050

Section B: Coding Conventions 15

16

Bl - Coding Specifications

B1A - FIELD BOUNDARIES

• • •

• • •

Assembler language statement usually occupy one 80-column
line on the standard form ~or statements occupying more
than 80 columns, see B1B below). Note that any printable
character punched into any column of a card, or otherwise
entered as a position in a source statement, is reproduced
in the listing printed by the assembler. All characters
are placed in the line by ~~e assembler. Whether they are
printed or not depends on the printer. Each line of
the coding form is divided into three main fields:

The Statement field,

The Identification -Seguence field, and

The Continuation Indicator field.

The Statement Field

The instructions and comments statements must be written
in the statement field. The statement field starts in
the "begin" column and ends in the "end H column. Any
continuation lines needed must start in the "continue"
column and end in the "end" column. The assembler assumes
the following standard values for these columns:

• The "begin" column is column 1

• The "end" column is column 71, and

• The "continue" column is column 16.

These standard values can be changed by using the ICTL
instruction. However, all references to the "begin",
"end", and "continue" columns in this manual refer to the
standard value described above.

Stmnt Field

IBM IBM System 360 Assembler Coding Form GX28-6509-5 UJr.I

ft-.J PUNCH'NG I I I I I I I I '. :'inted ie

n

U.S.A.

f----------------.------'Vi 'N'TRUCT'''''' 1f--------1I--jI--jI--jI-----+I--jI--jI--+CARD~C::::::: -_ 1)
14 16 20 25 71 13

Ii I
i I : i i

i , i Ii
I! ! . • i i

i !
I i :

i i

i I

j

I ! Ii
i I iT :4

i ! r I • i :

I i I 11 I II i i i ' !
I I ! I I

The Identification - Sequence Field

The identification-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the" source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 72. A non-blank character in this column
indicates that the current statement is continued on the
next line. This column must be blank if a statement is
completed on the same line; otherwise the assembler will
treat the statement that follows on the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification­
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standar1 begin, end, and
continue columns can create a field before the begin column.
This field can then contain the identification-sequence
field.

Section B: Coding Conventions 17

B 1 B =-.<~ON'I'INUATION LINES

•
•

18

To continue a statement on another line, the following
applies:

1. Enter a non-blank character in the continuation indicator
field (column 72). This non-blank character must not be
part of the statement coding. When more than one
continuation line is needed, a non-blank character must
be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
the continue column ~olumn 16). Columns to the left of
the continue column must be blank. Comments may be
continued after column 16.

Note that if an operand is continued after column 16 it
is taken to be a comment. Also if the continuation
indicator field is filled in on one line and the user
tries to start a totally new statement after column 16 on
the next line, this statement will be taken as a comment
belonging to the previous statement.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
statements and the prototype statement of macro definitions
can have as many continuation lines as needed.

IBM IBM System 360 Assembler Coding Form

Continuation

GX28-6509-S U/M 050

Printed in USA

PUNCH'NG I~_~I'----JT'----JT'----JT~'----JT~I~I_PAG' ___ ---I
f-----------------.I'D-ATE-------i 'NSTRUCTIONS r 1 I I I I I I eARD ElECTRDNUMBER

0,."""
8 10 14 16 20 25 35 50 55 60 65 BO

: i iii! PiU'NiC1H if 11 (I I [I!NICL!UD,E pIHA:SiE3i i! i I!: R!EM!A!RKls l ICiONTliNIUE lOiN X I\:! , i I

!!!! Ii 1 [, NIElXT: L I/N1E' j' i I!: i; ,1 II 1 Ii I Ii 1/;" i i: !!
;'1 !1 ii Vi" i i : Iii I]! : 11 :ai l1ii/('

j ! I: 118 : II Ii I I! I': i; • 11;1! ii; i

i ;! ,1, I: : ; i \ I I ! i I Ii::
, iii ii, : ; ! j iii • !: I I i I

! LjAI i " pHo +b!+pl+b .. 1 .. ~;. J.. .I·I··'··!,:! .1.:. i I .. 1 ... ' ii, .. : +~ * [-II I

i I Ii! • : I II I I ! • ! ! I i I! Iii I I .: I 11 ii: 11 ! Ii: i I LLU

B1C - COMMENTS STATEMENT FORMAT

Comments statements are nct--a-sse-mblea as part of t-he c"l:je-ct
module, but are only ~rinted in the assembly listing.
As many comments statements as needed can te written,
subject to the following rules:

O 1. Comments statements require an asterisk in the begin
column.

•

NOTE: Internal macro definition comments statements require
a period in the begin column, followed by an asterisk (for
details see J6A).

2. Any characters, including blanks and special characters,
of the IB~ System/370 Character Set (see C3) can te used.

3. Comments statements must lie in the staterrent field
and not run over into the continuation indicator field;
otherwise the statement following the comments statement
will be considered as a continuation line of that corrrrents
statement.

4. Comments statements must not appear tetween an
instruction statement and its continuation lines.

IBM IBM System 360 Assembler Coding Form

PI'IQGRAM
PUNCHING I GRAPHIC

PROGRAMMER I OAT'
INSTRUCTIONS

I PUNCH

STATEMENT

I I
I I

I
I

"'~ Ot:lef,I1,on Operand Commenls
8 10 !4 16 :20 2S 30 35 40 45 50 55

*1 Ir!H'1 :Sl il s A1Ni 10 R Dr I It-tLAIR Y Ie 101M MjE Njrjs jS[TiAlr EiMIE'NITI,1 jWIHjl ejHj ICjAN, iA,PIP EiAR
~ ,ANI 'Asis EM BLEIR PR olGiR AMI·I I I I I i I I I : I I

!

~ I,

I i i I i I I
I ! I I i ' ! I -. , ! !

! ' I ! i
I

I
, ;

,

! !
•

j

!

! "

I I

i Ii Ii i . i i J i I

I I I I I I I I I I I

L, Ii I I I :_,,_il
i I! I I I

I ! I
I I I

60 6S

A NiY I~HiE
, ;

!

!

,

i
!

I
I

Comments

I PAGE

GX28·6509-5 U/M 050

Printed in USA

0'

1 CARD ELECTRO NUMBER *
ldenut,eatlon-

-~ " 73 80

RIEl Ii NI iii I'
! i \ I I r

I, .: I, j

I ! I

I I I I I I I
t! 1 ; ;

i
i,

,

I

i I

I

I
I

I
i

Section B: Coding Conventions 19

B1D

20

• • • •

INS!RUC!ION S!ATEMENT FOR~AT

The statement field of an instructicn staterrent rrust I:e
forrratted tc include frcm one to four of the followins
entries:

1. A narre entry

2. An o~eraticn entry

3. An operand entry

4. A rerrarks entry.

The standard coding forrr is divided into fields that frovide
fixed positions for the first three entries, as fcllc~s:

i! ! i' 1 ! : 1 1 1 1 :! i l ':. 1" ! 1 l i

i • l I '

, '

1 1 i '! 1

IO)RiG 1 • I ~lp:EiRJAIN oj iE NiT R V 101M I TTiElo
. 1 ! !! I

I
I 1

i
.

: ! I i I I 1

1 :

I iii III II! I' II :! i

An 8-character name field starting in cclurrn 1.

A 5-character oferaticn field starting in cclurrn 10.

An o~erand field that begins in column 16.

Note that with this fixed format one clank se~arates each
field.

Free Format

i, !

I i

It is not necessary to code the narre, c~eraticn, and c~erand
entries acccrding tc the fixed fields on the standard
coding form. Instead, these entries can ce written ir:
any ~csition, subject tc the formatting specifications
below.

Instructions

" [,' -~

i :
;

; j , !

:

:

i i 4 ' : i:
:j i : !

I : :

:

1

I I : ! !

! j , : I

Formatting Specifications

Wh-et-her--using fixed· OL fLee --rorma'C~ 'E1lero--rr6wTng -general
r~les apply to the coding of an instruction statement:

1a The entries must be written in the following order:
name, operation, operand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end cclulrn
(71) of any continuaticn lines.

O 3. The entries must be se~rated from each other by one
or more blanks.

~ 4. If used, the name entry must start in the begin column.

5. The name and operation entries, each followed by at 4Et least one blank, must be contained in the first line cf
an instruction statement •

•
6. The operation entry must start at least one colurrn to

. the right of the begin column.

IBM IBM System 360 Assembler Coding Form

I PROGRAM

! ,"OCRAMMER

PUNCHING

jOATf: i INSTRUCTIONS i PUNCH i i
STATEMENT

i
... ~ OperallOn Oper,ncI Co

i

8 10 14 ,. 20 25 30 J5 40 .. SO 55 60

i i

NIAiMIEi I 1 I SIAILIR 1141.\115 I I 1 I ! I illl I II I R!EIMIA!R K!Si 1 - -I IF Idx Elo! IF!O RIMIAIT
I I !it- ~.V U-J+t-f--rl I! ! I I I ' ! I i I I ! I I I I i I I II 1 'i

: I

' , : ,,~ !
, i : I ' j

I !
! i ,

!
I ,

! ,

NIA MiE 1SiAIL RI11 !4!, i1 Sr-IRIEiM!A RIKISI I -- I F R'E'E 'F OIR'MiAiT ! I
,

1

!
. I ! ' i ' I

K.'lli I I I I i I I i! I i i : I I i I I : I i I I i I I . II i
i i , I . I I

i II I I I : I I , i! ! , I ! I , I I I I
! 1 ! l ,

j I ! I : ; II i I 1 iT i

i

S5

!
!

!
I

I !

i i

I PAG'

GX28-6509-5 UIM 050

Printed in U.S.A.

CAAOEL.ECTRONUMBER "
Ident.f,catlOn. -" 73 80

I Ii 1
Iii I
! I

I

T T I

r I
I I ' ! i

I
i! iii j , 114 '71115 I 10 N L!vl 10 P ERiA,N,O .'1 IAINol RIEIM'AIR KS IE N TIRjVT IA L'L 10fWi ol1HIER Ei , I l
~. I , I i I! I

I

, i i
I j ! I I ,1 T

i
i i I

!
I

,

, i : ! I ; I I ,

SjAL'R 14 I, i is N AIM,E IE N T!RY OMI T,T EO
, ' i i i

I ,
I I ; i

i I i I I I

i I 1 II 11 I ,

I i I ' , ! i Ii
I ' i i •. !

•
I, I I

I II I I I L' I I I ~LJ'II , II : U~I II iii I I I I j

THE NAME ENTRY: The name entry identifies an instruction
statement.

The following applies to the name entry:

1. It is usually optional.

2. It must be a valid symbol at assembly time (after
substitution for variable symbols, if specified); for an
exception see the TITLE instruction (H3E).

T 1 I ! :)
!

i [. i !
: I I I

I
, iii i I I

T , i I,
"

i
I : I I I I 'T ;

I

,
! T ~J I I \

Section B: Coding Conventions 21

22

THE OPERATION ENTRY: The operation entry provides the
symbolic operation code that specifies the machine,
assembler, or macro instruction to be processed. 'Ihe
following applies to the operation entry:

1. It is mandatory.

2. For machine and assembler instructions it must be a
valid symbol at assembly time (after substitution for
variable symbols, if specified). The standard syrr,bolic
operation codes are five characters or less (see Appendixes
IV and V) •

3. For macro instructions it can be any valid symbol that
is not identical to the operation codes described in 2
above.

THE OPERAND ENTRY: The operand entry has one or more
operands that identify and describe the data used by an
instruction. The following applies to operands:

1. One or more operands are usually required, depending
on the instruction.

2. Operands must be separated by commas. No blanks are
allowed between the operands and the commas that separate
them.

3. Operands must net contain embedded blanks, because a
blank normally indicates the end of the operand entry.
However, blanks are allowed if they are included in
character strings enclosed in apostrophes (for example,
C'J N') or in logical expressions (see L4C) •

THE REMARKS ENTRY: The rerrarks entry is used to descrite
the current instruction. The following applies to the
remarks entry:

1. It is c~ticnal.

2~ It can ccntain any of the 256 characters ~r punch
combinations) of the IEM Systerr/370 character set, including
tlanks and sfecial characters.

~ 3. It can follow any operand entry.

4. If an cfticnal oferand entry is orr.itted, rerrarks aIe
allowed if the absence of the operand entry is indicated

4It by a comma, preceded and followed ty one cr rrore tlanks.

mM GX28-6509-S U/M 050
IBM. System 360 Assembler Coding Form

Printed in U.S.A.

II n ""~OG,." __ • ---------------.1 ------1 ~::~,ONS 1::::,eO<TAO"''-.
~lp·~OG~·~~" _______________ ~lo='TE~_~~~m~~~NT-LI ____ ~I __ P~_.H_~L __ i_~ ____________ ~

~1L -ilvfsl 1
8 ~ R"'"''T

14

110 I 8 '" 11
0

';';' 1 I If II r (' 1 ~R ETMIA R Kis MUS T I IslE TslEIPIA R AliJE D

. I
F R OIM

MORE

[11 ! i'l I I I I: I I i i i I
I T I

I : ! I

I i ! i

r j 1 :1 1 I : ::! i I I i I. I I • I I ! I ! I II i I I i I I

ill I I ' i I : -] ! Ii, I : 1 1 i, I I I I I 1--:

Section B: Coding Conventions

Section C: Assembler Language Structure

This section describes the structure of the assembler
language, that is, the various statements which are allowed
in the language and the elements that make up those
statements.

Section C: Assembler Language Structure 25

CI .. The Source Module

A source module is a sequence of assembler language
statements that constitute the input to the assembler.
The figure on the o~~osite ~age shows an overall picture
of the structure of the assembler language.

C2 - Instruction Statements

26

The instruction statements of a source module are com~osed
of one to four entries that are contained in the statement
field. Other entries outside the statement field are
discussed in B1A. ~he four statement entries are:

1. A name entry (usually optional)

2. An operation entry ~andatory)

3. An operand entry (usually required)

4. A remarks entry (optional).

NOTES:

1. The figures in this sUbsection show the overall structure
of the statements that represent the assembler language
instructions and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual (as cross-referenced in the figures). Model
statements, used to generate assembler language statements,
are described in J4.

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. It is
therefore not shown except in the overview opposite.

I
~.

I

I

EITHER

NAME

INSTRUCTION
STATEMENTS

OPERATION

Source Modu!e
made up of
Source Statements

IBM SYSTEM!370
CHARACTER SET

COMMENTS
STATEMENTS

REMARKS

CHARACTER
STRINGS

I
-1-.

Section C: Assembler Language Structure 27

C2A -- MACHINE INSTRUCTIONS

·----rh e lUach ine ins truct±c-n--statement-s--ar-e-·-deser-ihed---in-~­
figure below.

The instructions themselves are discussed in Part II cf
this manual and summarized in Appendix IV.

NAME
Entry

A
Symbol
(or blank)

OPERATION
Entry

A symbolic
Operation
Code

OPERAND
Entry

One or more
operands
composed of

Exp(Exp,Exp)
or Exp (Exp) or or or

A

Decimal

e.g. 9

any of the
following

or

Hexadecimal

e.g. X '09'

Arithmetic
combination
of terms

Attribute
Reference
e.g. L'HERE

Binary

e.g. B '1001'

Exp i,Expi

Exp = Expression

Which can be

any of the
following

CharaCter

e.g. C 'JAN'

Section C: Assembler Language Structure 29

C2B -- ASSEMBLER INSTRUCTIONS

3 i\ ,,)

The assemtler instruction statements can be divided into
two main groups: ordinary assembler instructions and
conditional assembly instructions.

Ordinary Assembler Instructions

Ordinary asselrbler instruction statements are described
in the figure on the opposite page.

These instructions are discussed in Part III of this manual
and summarized in Appendix V.

Entry'

A
Symbol

(or blank)

Duplication
factor

e.g.

Entr{

A symbolic
Operation
Code

Operands can be
composed of one
to four subfields

Type Modifiers

'Decimal
number'

e.g. F '2'

or

Constant
(Nominal
Value)

One or more
constants of
the format
below

(Expression)

e.g. A(ADDR)

1 Discussed more fully where individual instructions are described

or

Entry

One or more
operands

Expression

e.g.,:<+4

'Character
string'

e.g. C' A is B'

or

Operands can be
composed of

Character
String

e.g.
'TO BE
PUNCHED'

Symbolic
Option

e.g·

NOGEN

Section c: Assembler Language Structure 31

32

Conditional Assembly Instructions

Conditional assembly instruction statements and the rracrc
processing statements (MACRO, MEND, MEXIT, MNOTE) are
described in the figure below.

The conditional assembly instructions are discussed in
Section L and macro processing instructions in Section
J; both types are summarized in Appendix V.

I
Sequence
Symbol
.SEQ

(or blank)

Sequence
Symbol

NAME
Entry

I
can be

I

or

or

I

Variable
Symbol
& VAR

Variable
Symbol

Arithmetic
Expression

&A +1

or

or

I

OPERATION
Entry

I
must be

I
A symbolic
Operation
Code

Expression

or
(Expression)

I

Which can be any
combination of
variable symbols
and other characters
that constitute an

Logical
Expression

&81 OR &82

or

or

OPERAND
Entry

Zero or more
operands
composed of

Exp,'msg'
MNOTE
3,'ERROR'

Character
Expression

'JAN&C'

or
(exp)seq sym

(&A EQ 1).SEQ

Exp=Expression

C2C -- MACRC INSTRUCTIONS

__ ~CLo~s_tIu_ction_s_t_at_elIlent~aLe __ descrihed_in ___ th~quLa __ _
below; the prototype statement of a macro definition, which
serves as a model for the macro instruction staterr.ent,
is also shown.

Macro instruction statements are discussed in Section K
of this manual and the prototype statement is discussed
in Section J2.

Prototype

Statement

Macro
Instruction
Statement

Ordinary
Symbol

(or blank)
or

Symbolic
Parameter

Sequence
Symbol

or Variable
Symbol

Symbolic
Operation
Code

Character
String

(excluding
blanks)

Zero or more

Symbolic
Parameters

Zero or more
Operands
which can be

or

Each entry
can have a
value

'Character
String'

(including
blanks)

Section c: Assembler Language Structure 33

C3 - Character Set

34

Terms, expressions, and character strings used to build
source statements are written with the fcllowing characters:

1. Alphameric Characters

Alphabetic characters (or letters): A through Z, and
$, i, Ii)

Digits (or numerals) : o thrcugh 9

2. Special characters

+ - , = • * () • / & 1:1 ank

Examples, showing the use of the above characters are given
in the figure below.

Normally, ycu would use strings of alphameric characters
to represent data (terms, see C4), and special characters
as:

a. Arithmetic cperators in expressions

b. Data or field delimiters

c. Indicators to the assem1:ler for specific handling.

Characters are represented ty the card-punch ccrrbinaticns
and internal 1:it ccnfigurations listed in Appendix I.
In addition to the printatle characters listed abcve, any
of the 256 combinations fcr punched cards listed in Affendix
I can be used:

1. Between paired apcstrophes

2. As staterrent remarks

3. In comments statements

4. In nacrc instructicn operands (for restrictions see
1<5) •

c

Characters Usage

Aiphameric
I

In symbols I

Digits As decimal

self-defining

terms

Special ! I Characters As Operators

+ Addition

- Subtraction

-" Multiplication

j I Division I
+ or - I (Unary)

I As Delimiters I

Blanks Between fields

Comma Between operands

Apostrophes

I
Enclosing

character strings

Parentheses Enclosing subfields

or subexpressions

As indicators

for

Ampersand Variable symbol

Period Sequence symbol

Comme.nts statement
in Macro definition

I Concatenation I

Bit-length

specification

Decimal point

Asterisk I Location counter i

I reference I
I I

I 1
Comments statement I

Equal sign Literal reference

Keyword

I

Example

LABEL NINE#Ol

01 9

NINE+FIVE""'

NINE-5

9*FIVE

TENj3
'"

+NINE -FIVE

LABEL AR 3,4

OPNDl,OPND2

C'STRING'

MOVE MVC TO(80} ,FROM
(A+B*(C-D) 1

&VAR

.SEQ

. * THIS IS A COMMENT

&VAR.A

DC CL.7'AB'

DC F'1.7E4'

"';-/2

':' THIS IS A COMMENT

L 6,=F'2'

&KEY=D

I
I

I
I

I

I
I

1

I

Page of GC33-401D-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Char. Set

Constituting

Terms

Terms

Expressions

Terms

Statement

Operand field

String

Statement

Expression

Term

(label)

Statement

Term

Operand

Operand

Expression

Statement

Statement

Keyword

Parameter

Section C: Assembler Language structure 35

C4 -- Terms

A term is the smallest element of
the assembler language that
represents a distinct and separa te
value. It can therefore te used
alone or in ccmbination with other
terms to form expressions. Terms
have absolute or reloca table values
that are assigned by the assemtler
or are inherent in the terms
themsel ves.

Terms Term Can Be

A term is absolute if its value
does not change upon program
relocation and is relocatable if
its value changes upon relocation.
The various types of terms described
below are summarized in the figure
to the right.

Symbols

Location
Counter
Reference

Symbol
Length
Attribute

Other Data
Attributes

Self-Defining
Terms

Absolute

X

X

X

X

C4A -- SYMBOLS

36

Furpose

You can use a syrebcl tc represent storage locations or
arbitrary values.

SYMBOLIC REPRESEN!A!ICN: You can ~rite a symbol in the
name field of an instruction. You can tten sfecify this
symtcl in tr.e c~erands cf other instructions and thus refer
to the former instruction symbolically. This symtol
represents a relocatatle address.

You can alsc assign an absolute value to a symbol ty coding
it in the name field of an EQU instructicn with an c~erand
whose value is absolute. This allo~s you to use this
symbol in instruction operands to represent registers,
displacements in explicit addresses, inttediate data,
lengths, and implicit addresses with atsclute values. For
details of these ~rograrr. elements, see [5. The advantages
of symbolic over numeric re~resentation are:

1. Synbols are easier to remember and use than numerical
values, thus reducing prograrrrring errors and increasing
~rogramming efficiency.

2. You can use rreaningful symtols to descrite the ~rcgrarr
elements they represent; for exaro~le, I~FUT can name a
field that is to contain in~ut data, or INrEX can nane
a register to te used for indexing.

Relocatable

X

X

Terms

Value Is

Assigned by Inherent in
Assembler Term

X

X

X

X

X

3. You can change the value of one symbol (through an EQU
instructicn) more easily than you can change several
numerical values in rr.any instructions.

4. Symbols are entered into a cress-reference table that
the asserrbler frints in the frog ram listing. ~his tatle
helps you to find a symtol in a prcgrarr listing, because
it lists (1) the numter of the staterrent in which the
syretcl is defined (that is, used as the name entry) and
(2) the numbers of all the staterrents in which the syrrbcl
is used in the cFerands.

'IHE SYMECI ~AELE: 'Ihe assembler rraintains an internal
table called a syrrbcl table. When the asserrtler Frccesses
your source staterrents for the first time, the assembler
assigns an absolute or relocatatle value tc every syrrtcl
that apfears in the name field of an instruction. The
assembler enters this value, which norrrally reflects the
setting cf the locaticn counter, into the symbol table;
it also enters the attritutes asscciated with the data
represented by the syrrbcl. 'Ihe values of the symbol and
its attributes are availatle later when the asserrbler finds
this syrrbcl cr attribute reference used as a term in an
operand or expression ~ttritute references used as terns
are discussed in C4C and C4C belo~) •

Specifications

The three types of symbol recognized
by the assembler are:

1. Ordinary symbols

2. Sequence symbols

3. Variable symbols.

Symbols '

ORDINARY SYMBOLS: Ordinary symbols
can be used in the name and operand
field of machine and assembler
instruction statements. They must
be coded in the format shown in
the figure to the right. .

~. alphabetic character (letter)

~ 7 alphame,;c cha,acte"

!Ol~·i·-~
NOTES:

1. No special cnaracters are allOwed
in an ordinary symbol.

2. No blanks are allowed in an
ordinary syrrbol

Examples:

HERE
READER
AOOI
B002

#01
#12

@33
$OPEN

x
y

Z
F2A

Section C: Assembler Language st~ucture 37

38

VARIABLE SYMBOLS: Variable symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded
in the format shown in the figure
to the right.

SEQUENCE SYMBOLS: Sequence symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded
in the format shown in the figure
to the right.

Symbol Definition

An ordinary symbol is considered
defined when it appears as:

1. The name entry in a machine or
assembler instruction of the
assembler language.

2. One of the operands of an EXTRN
or WXTRN instruction.

NOTE: Ordinary symbols that appear
in instructions generated from model
statements at pre-assembly time
are also considered defined.

Var. Sym.

ampersand

alphabetic character (letter)

~ 0 to 6 alphamede eh.,aete"

&~
Examples:

&A &PARAM
&B & KEYWORD
&C &CHAR3

Seq. Sym.

period d alphabetic eha"ete' (lette,)

~ alphame,;e eh.,actecs

• SIE Q U S Y MI

Examples:

.SEQ

.LOOPII

.EXIT20

.TOOOI

o
• •

The assembler assigns a value to
the ordinary symbol in the name
fields as follows:

1. According to the address of the
leftmost byte of the storage field
that contains one of the following:

a. Any machine or assemtler
instruction (exceft the EQU or
CFSYN instructions)

b. A storage area defined by
the tS instruction

c. Any constant defined by the
DC instruction

d. A channel corrmand word defined
by the CCW instruction.

The address value thus assigned
is relocatabl e, because the object
code assembled from these items
is relocatable; the relocatability
of addresses is descrited in C5B.

2. According to the value of the
first or only expression specified
in the operand of an EQU instruction.
This expression can have a

• relocatable or absolute value, which
is then assigned to the Ordinary.
symbol. The value of an ordinary
symbol must lie in the range -2 31
through +231_1.

Assembler Language Address Value Object Code
Statements of Symbol in Hex

Address of

Relocatable AREA

LOAD L 3, AREA 8 -------LOAD- ~lssl31 a I xxxxi

I
AREAJ1xx 'l\T'liT:"17\ DS F • xxxxi i-\.L'i..Dft. x x

1

I
F200f lOO F200 DC F'200' • a a oocsl

FULL EQU !~~~l. ;~~~)I mT .. 1('\n EQU ..I..VVUU L' "" uu J

8' Absolute
R3 EQU 3 I R3=3

Address

I of FULL

-------L R3,FULL I 15 S 13 1 a 1 xxxx I
A R3,TWOO ISA I :11 a 1 xxxx I

I
~

Address of
TWOO

Section C: Assembler Language Structure 39

o

•

Restrictions cn Symbcls

UNIQUE DEFINITION: A symbol must
te defined only once in a source
module:

either in the name field of a
source statement

or in the operand field of an
EXTRN or WXTRN instruction.

~his is true even for a source
module which contains two or more
control sections.

,'($
:061y

NOTE: The ordinary symbol that
~:p:p~~rs in the name field of an

'>()'e~N or TITLE instruction does
not constitute a definition of that
symtol. It can therefore be used
in the name field of any other
statement in a source wedule.

40

CONTRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSEC~,
DSECT, or COM instruction. The

• first time a symbol is used to name
these instructions, it identifies
the teginning of the centrol section;

•
a duplicate use of the symbol
ident1f1es the resumption of an
interrupted control section.

PREVIOUSLY DEFINED SYMBOL: In some
instructions the symbols used in

~their ope:ands.must ha~e been defined
in a prev10us 1nstruct1on.
previously defined symbols are
required for the operands of the
following instructions:

EQU

CNOP

ORG

CC and DS (in modifier and
duplication factor expressions).

SECOND

[G FIRST

G/~~#:~l

START a

CSECT

L

B

DC

CSECT

LA

END

.~
REG3
4

REG4,TABLE(INDEX}

SECOND

CL256

REG3,ADRDR

RESUMEl

A (READER)

INDEX,20

C4B -- LOCATION COUN~ER REFERENCE

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
asserotler's equivalent of the
instruction counter in the computer.
You can refer to the current value
of the location counter at any place
in a source module by specifying
an asterisk as a term in an operand.

THE LOCATION COUNTER: As the
instructions and constants of a
source module are being assembled,
the location counter has a value
that indicates a location in storage.
The assembler increrrents the location
counter according to the following:

1. After an instruction or constant
has been assembled, the location

O
counter indicates the next available
location.

2. Before assembling the c~rrent
instruction or constant, the
assembler checks the boundary
alignrrent required for it and adjusts

~ the location counter, if necessary,
. to indicate the prcfer boundary.

3. While the instruction or constant
is being assembled, the location
counter value does not change.
It indicates the lccation of the
current data after boundary alignment

•
and is the va lue a ssigned to the
symbol, if present, in the name
field of the staterrent.

4. After assembling the instruction
or constant, the assembler increments
the location counter by the length

O
of the asserrbled da ta to indica te

, the next available location.

The assembler maintains a location
counter for each control section
in a source module; fcr complete
details about the location counter
setting in control sections, see
E2C. The assembler carries an
internal location counter value
as a 4-byte, 32-bit value, but it
only uses the low-crder 3 bytes,
which are printed in the program
listings. However, if you specify
addresses greater than 224_1, you
cause overflow into the high-order
byte, and the assembler issues '~:he
error message "LOCA~ION COUNTER
OVERFLOW" •

Location
in Hex

000004

8000007'1)

000008·

OOOOOC.

000010

DONE

BEFORE

• DURING

AFTER

NEXT

Source
Statements

DC CL3 1 SOB I

EQU *

DC F 1 200'

EQU *

DS D

Section C: Assembler Language Structure 41

o
8

• o

NOTE: In the figure below, an example of a location counter
overflow (or wrap-around) is shown.

The internal address value of the symbol B is carried as
a 4-byte value, but the printed location only includes
the low-order 3 bytes •

The location counter value for instructions or constants
is usually ~rinted as a 3-byte value. However, the 4-byte
value, with up to 3 leading zeros suppressed, is frinted
for the addresses specified in the operands of the fcllowing
in~tr::~g~i()r~:i~gp.~ q~~, ... ~.I?clp~~NG. .pnfY··1 ... by~~~al~e~

~illl~t':l\;~~~'.px;l:n':ueq:fp1:·.·tbe·.·.· .. ();pe1:i.inqs:in •... ·tJ:l'e: •.• ·.··.·a.oove·······i::nS1Qx:uctiQns·.

42

You can control the setting of the location counter in
~ a particular control section by using the START or ORG

instructions.

LOC

000000

000000

FFFFFE

• OOOOQ2

000004

•

Assembly Listings in Hexadecimal Representation

OBJECT CODE ADDR 1 ADDR2

58506004

8?1' •
Up to 3 leading zeros I
are suppressed

STMT

1

2

3

SOURCE STATEMENT

A START 0

• ORG .:, + X' FFFFFE '

L 5,4(,6)

Specifications

'Iha~ccaticnu-C-CUD-teL. reference i-S­
specified by an asterisk (*).. 'Ine
asterisk can be s~ecified as a
relocatable term according to the
follcwing rules:

1. It can only be specified in the
cperands cf:

a. Machine instructions

b. The rc and rs instructions

c. the EQU, ORG, and USING
instructions.

2. It can alsc be specified in 4Dt literal constants (see C5).

the value of the locaticn counter
reference (*) is the current value
of the locaticn counter of the
control section in which the asterisk
(*) is specified as a terrr. the
asterisk has the sarr.e value as the

•
address cf the first byte of the
instruction in which it a~pears
(for the value cf the asterisk in
address constants with duplicaticn
factcrs, see G3J).

Location Source

I
Address

in Hex Statements Value of '"

1 • 000104
1

HERE B *+8 } same HERE

000108

1

/ B HERE+8 effect

I

100011C~ CONSTANT A(L. DC CONSTANT
1000120KHERE L 3, =A (*) THERE

I I

S'ection C: Assembler Language Structure 43

C4C -- SYMBOL LENGTH ATTRIBUTE REFERENCE

44

Purpose

When you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by a symbol. You can use this reference as a term in
instruction operands to:

1. Specify unknown storage area lengths

2. Cause the assembler to compute length specifications
for you

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid
symbol or the location counter reference (*).

2. The symbol must be defined in the same source module
in which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in
the operand of any instruction that requires an absolute
term. However, it cannot be used in the form L'* in any
instruction or expression that requires a previously defined
symbol.

The value of the length attribute
is normally the length in bytes
of the storage area required by

-cm----tnstruction, constan---;:-;---ur-fieta--­
represented by a symbcl. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the syrrbcl.

When the assembler encounters a
symbol length a ttribute reference,
it substitutes the value of the
attribute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symbols in the
name field of instructions as
follows:

o F?r machine instructions, ita ssigns
e1ther 2, 4, or 6, depending on
the format of the instruction.

• For the DC and DS instructions,
it assigns either the implicit or
explicitly specified length. The
length attribute is not affected
by a duplication factor"

For the EQU instruction, it assigns
the length attribute value of the

• leftmost or only term of the first
expression in the first operand,
unless a specific length attribute
is supplied in a second operand.

Note the ler:gth attribute values
of the following terrrs in an EQU
instructicn:

~. self-defining terrrs

~. lccaticn ccunter reference •. ~
The length attribute of the location o counter reference (L'*) is equal
to the ler:gth attribute of the
instruction in which the L'* appears.

For the rerraining asserrbler
instructions, see the specificaticns
for tr.e individual instructions.

Length Attr.

Source Module
I Value of Symbol

Length Attribute
(at assembly time)

MACHA MVC TO,FROM IL'MACHA eU MACHB L 3,ADCON L'MACHB
MACHC LR 3,4 L'MACHC

TO DS CLeO LITO

I 80 FROM DS CL240 L'FROM
• 24~ ADCON DC A(OTHER) L'ADCON

CHAR DC C'YUKON ' L'CHAR
DUPL DC 3F"200 ' L'DUPL

RELOC1 EQU L'RELOCI 80
RELOC2 EQU L ' RELOC2 80
ABSOL1 EQU L ' ABSOL1 240
ABSOL2 EQU L ' ABSOL2 240

SDT1 EQU I L'SDTI -0 SDT2 EQU L'SDT2
SDT3 EQU L'SDT3

ASTERISK EQU L'ASTERISK 8 1

LOCTREF EQU L'LOCTREF 0 1

LENGTHl DC A (L 1*) T<~ r ~ i ~ENGTHI. 4
LENGTH2 MVC TO (L 1*) ,FROM L '* 6
LENGTH3 MVC TO(L ' TO-20) ,FROM LITO 80

Section C: Assembler Language Structure 45

C4D -- OTHER ATTRIBUTE REFERENCES

There are other attributes which describe the
characteristics and structure of the data you define in
a program. For example, the kind of constant you specify
or the number of characters you need to represent a value.
These other attributes are the type (T'), scaling (S'),
integer (I'), count (K'), and number (N') attributes.

NOTE: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details,
see L1B.

C4E -- SELF-DEFINING TE~S

46

Purpose

A self-defining term allows you to specify a value
explicitly. With self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. 1hese
terms have absolute values and can te used as absclute
terms in expressicns to represent bit configurations,
absolute addresses, displacements, length or other
modifiers, or duplication factors. c

Specificaticns

GENEFAL FULES: Self-defining terrrs:

•
• Refresent rrachine language binary
values

• Are acsclute terrrs; their values
do not change upon prograrr
relocaticn.

~he assemtler carries the values
represented by self-defining terms

•
to 4 tytes or 32-cits; the higt­
order bit is the sign bit.

CECI~AL: A decirral self-defining
term is an unsigned decimal number.
~he assemt1er allows:

•• High-crder zercs

•• A maximum of 10 decirra1 digits

• A range of values from 0 througt
~ 2,147,483,647.

Self·Defining Decimal Binary
Term Value Value • 15 15 1111

241 241 11110001
B'1111' 15 1111
B'11110001' " 241

I

11110001
B'100000001'1 257 100000001
X'F' 15 1111
X'Fl' 241 11110001
X'101' 257 100000001
C'l' 241 11110001
CiA' 193 11000001
C'AB' 49,602 I 1100000111000010

r 4 bytes ., (32 bits)

I value bits I I

31 30 24 16 8 0

I.L I I J I

•• I value bits I
Isign bit I

l=Negative Value
O=Positive Value

• '214748364 i

S"ection C: Assembler Language Structure 47

48

EINARY: A tinary self-defining
terrr rrust te ceded in the fermat
shown in the figure to the right.
'Ihe asserrtler:

O . Assembles each tinary digit as
it is s{:ecified

8. Allows a maximum of 32 tinary
digits

• Allows a range of values frorr

•
-2,147,483,648 thrcugh
2,147,483,647.

NO'IE: When used as an absolute
term in expressions, a tinary self-

O
defining tern- has a negative value

. if the high-order tit is .1.

____________ apostrophes must enclose digits

\ .

B ',110011 •.••• 101'
\ \

1 to 32 binary digits
binary

Examples Binary Value

B'101011~_. kno~

B'll101010111'

High-order
~nbit

B ';_1111 ••• 111'

32 digitS.

B '):1l0000 ... 00.9'
• 32 digits

111010101111

BEXArECIMAL: A hexadecimal self­
defining terrr must be ceded as shown
in the figure to the right. ~be
asserrtler:

• Assembles each hexadecimal digit

•
inte its 4-bit binary equivalent
Uisted in the f1gure to the right}

•
• Allows a rraxirrurr ef 8 heJ(adecimal
digits

• Allows a range ef values from
~ -2,147,483,648 through 2,147,483,647.

N01E: When used as an absolute
term in an expression, a hexad~cirral
self=defining t€rrr has a negat1ve

• value if the high-order tit is 1.

apostrophes must enclose digit

/\
X 'FF ••• F56 '
\' ,
hexadecimal 1 to 8 hexadecimal digits

Conversion Table:

4-bit
Hexadecimal Decimal Binary
Digit Equivalent Representation

I
a

I
a

I
0000

1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101

I

6 6

I

0110

I
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Examples: Binary Value

X'A' 100 00110101

X'FFA'

8 digits 8
X'7FFFFFFF'

X'80000000'
I •

1111111111110101

= 2 31 _1

8\
= _2 31

Section C: Assembler Language Structure 49

Page of GC33-4010-4
Revised Feb. 25. 1975
By TNL: GN33-8193

CHARACTER: A character self-defining
tern nust te ceded as she~n in the
figure to the right. ~he assentler:

• Allows any of the 256 punch
combinations when using punched
cards as input. This includes the
printable characters, that is,
blanks and special characters.

• Assembles each character into

O its a-bit binary equivalent. (A
table of characters and their tinary
equivalents can be found in Appendix
I) •

•
• Requires that twe af!1persands
or apostrophes be specified in the
character sequence fer each ampersand 4It or apostrophe required in the
asserotled terrr.

• • Allows a maximum of 4 characters.

CS - Literals

50

Purpose

You can use literals as operands
in order to introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data rather than a reference to
data. This is convenient, tecause

1. The data yeu enter as numbers
for computation, addresses, or
messages to be printed is visitle
in the instruction in which the
Ii teral appears, and

2. You avoid defining constants
elsewhere in your source module
and then using their symbolic names
in machine instruction operands.

/arstroPhes must enclose characters

C'ABCD'

\ ~to 4 characters
character :_11*111

Examples:

Character Characters Hexadecimal self-defining
term Assembled Value

CiA' X'C1' ~ - •

L

C'l' 1
C' , (blank)
C'#' #
C'@' @

Ie /e
C'&&' &
C'" , ,
C'L"A' L'A
C""I' "

C'FOUR' FOUR ------•

1,=F'200'
2,=A(SUBRTN)

X'F1'
X'40'
X'7B'
X'7C'

X'SO'
X'7D'
X'D37DC1'
X'7D7D'

X'C6D6E4D9'

Binary
Value

11000001
=-

11110001
01000000
01111011
01111100

01010000
01111101

L
MVC MESSAGE(16),=C'THIS IS AN ERROR'

I

c

The, assembler assembles the data
specified in a literal into a
-iiteral pool- (fully described
in H1B) l~_then assembl es the­
address of this literal data in
the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount
of space.

LITERALS, CONSTANTS, AND SELF­
DEFINING TERMS: Do not confuse
literals with constants or self­
defining terms. They differ in
three important ways:

1. In where you can specify them
in machine instructicns, that is,
whether they represent data or an
address of datae

2. In whether they have relocatatle
or atsolute values.

3. In what is assembled into the
object code of the machine
instruction in which they afpear.

The figure to the right illustrates
the first two points.

O. A Ii teral represents dat a.

• A constant is refresented ty
• its relocatable address. Note tha t

a symbol with an absolute value
does not refresent the address of

• a constant, but represents immediate
data (see D5D) or an absolute

• cidd"re ss.

•

• A self-defining term represents
data and has an absclute value.

Compare:

A literal with a relocatable address • 3,=F'33'
3 1 F3e } same effect

L
L

F33 DC F'33'

A Litera! with a self-defining term
and a symbol with an absolute value

FLAG
ZERO

:i ~~~:;!.Jsameeffect
MVI FLAG,ZEROV

DS X
EQU X' 00'

•
A symbol having an absolute address value

with a self-defining term •

LA 4,LOCOREl .
~ 4 ,_.Isame effect

LOCORE EQU 1000

Section C: Assembler Language structure 51

52

The figure to the right illustrates
the thi rd point.

•• The address of the literal,
rather than the literal data itself
is asse~bled into the object code.

•• The address of a constant is
assembled intc the object code.
NOte that when a symbol with an

• absolute va lue re~resents immedia te
data, it is the absolute value that
is asserebled into the object code.

•
• The absolute value of a self-

· defining terre is assembled into
the object code.

Source Statements

J---4-----------------------------1--=~~d~is-.PI~ac~e-m-en-.t~

n Hex
LITERAL L

RELCON L

ABSCON

SELFDT

FLAGCON

248 F200

24C BYTE

TM

TM

EQU X'B8'

DC F' 200'

DS X

250 100000 oc8I

LTORG

(

Literal
Pool F'200'

base '\

4

Specifications

A .. Lit_ex_a_l_mu_s_t be. _cc_de.d_a.s __ ShO_wD
in the figure to the right.

o The literal is specified in the
same way as the operand of a DC
instruction (for restrictions see
G3C) •

GENERAL RULES FOR LITERAL USAGE:
A literal is not a term and can
be specified only as a complete
operand in a machine instruction.
In instructions with the RX format
they must not be specified in
operands in which an index register
is also specified.

Because literals provide "read-only·
data, they rrust not be used:

1. In operands that re~resent the
receiving field of an instruction
that IT:odifies storage

2. In any shift or I/O instructions.

C6 - Expressions

C6A -- PURPOSE

You can use an expression to specify:

o An address

• An explicit length

• A modifier

• A duplicati-on factor

• A complete c~erand

You can write an expression with
a simple term or as an arithmetic
combination of terms. The assembler
reduces multi term expressions to
single values. Thus, you do not
have to ccmpute these values
yourself.

Literal Specification

Subfields:

o

•
A

B

EQU
r=-~===--\/
IX-Y+13-P/QI

MVC

Ie
I TO+L'TO-L'FROM I(L'FROM) ,FROM 0/

C DS (~) XL <OP /Q-10)

/ e\ •

Section c: Assembler Language Structure 53

54

Expressions have absolute or relocatable values. Whether
an expression is absolute or relocatable depends on the
value of the terms it contains. You can use the absolute
Or relocatable ex~ression described in this subsection
in a machine instruction or any assembler instruction ether
than a conditional assembly instruction. The assembler
evaluates relocatable and absolute expressions at asserrbly
time. Throughout this manual, the word "expression" refers
to these types of expression.

NOTE: There are three types of ex~ression that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated
at pre-asserrbly tirr,e. In this manual they will always
be referred to by their full names; they are described
in detail in L4.

C6B -- SPECIFICATIONS

--------me figuIe -.be-tow jefines both abso.!1rEeand reIoca-cable--- ----­
expressions.

~NOTE: The relocatable values that are paired must have

•
the opposite sign after the resolution of all unary
opera-cors.

Relocatabie
Expression

Absolute
Expression

Expressions

Operators Allowed

Unary: + Positive
Negative

Binary: + Addition
- Subtraction
* Multiplication
/ Division

Abs. Exp = Absolute Expression

ReI. Exp = Relocatable Expression

Section C: Assembler Language Structure 55

56

Absolute and Relocatable Expressions

An expression is absolute if its
value is not changed cy program
relocation; it is relocatable if
its value is changed upon program
relocation. A descriftion of the
factors that determine whether an
expression is absolute or relocatable
follows.

PAIRED RELOCATABLE TERMS: An
expression can be acsolute even
though it contains relocatable
terms, provided that all the
relocatable terms are faired. The
pairing of relocatable terms cancels
the effect cf relocation. The
assembler reduces paired terms.to
single absolute terros in the
intermediate stages of evaluation.
The assembler considers relocatable
terms as paired under the following
conditions:

• The paired terms must be defined o in the saffe control section of a
source module ~hat is, have the
same relocatability attribute) •

• The paired terms must have
• opposi te signs after all unary

operators are resolved. In an

•
expression, the paired terms do
not have to be contiguous, that
is, other terms can come between
the paired terms.

• The value represented by the
~paired terms is absolute.

Source Module

FIRST CSECT .
Can be e{ A DS
paired B DS

C DS
LOCTREF EQU
ABSA EQU
ABSB EQU
ABSC EQU

SECOND CSECT

I:
.

Can be

0 I DS
paired DS

DS
END

Examples:

Paired Relocatable Terms •

B-A § C-A
+B-+C i > B-C
-A--B c:::::::::;> -A + B
LOCTREF-C
D-E
F-D

Unpaired Relocatable Terms
I

I
I
i
I
I

B I C
LOCTREF

I D

~

F
F
F
-,.
X'F'
300
CIA'

I
X
X
X

Absolute
Ex~ressions

Ie""
A+ABSA-B

D-E+ABSC

4 F-D+B-C
'---' L......-...i

paired paired

Relocatable
Expressions

Unpaired

B+ABSA
C+X'FF'
F-5~:< (B-C) •

paired

Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the expression:

o 1. Is composed of a symbol with
an absolute value, a self-defining
term, or a symbol length attribute
reference, or any arithmetic

~COmbination of absolute terms.

•
2. If it contains reloca table terms,
alone or in combination with absolute
terms, and if all these relocatable o te rms are paired.

Source Module

FIRST

A

IB
C

ABSA

ABSB

ABSC

ABSD

Absolute
Expressions

CSECT
.

DC

DC

DC

EQU

EQU

EQU

EQU

END

.{~~SA
L'A

F'2'

F'3'

P;4;

100

X'FF'

B-A
"---"
Paired
.-----.
>',:-A

I

~{ABSA+ABSC-ABSC*15 ______ e
8{B-A I ~

ABSA+15~-ABSD/(c:A+ABSA)

section C: Assembler Language Structure 57

•
•

58

Relocatable Expressions

A relocatable expression is one
whose value changes, for example,
by a 1000, if the object module
into which it is assembled is
relocated 1000 bytes away from its
originally assigned storage area.
The assembler reduces a relocatable
expression to a single relocatable
value if the expression:

1. Is composed of a single
relocatable term, or

2. Contains relocatable terms, alone
or in combination with absolute
terms, and:

a. All the relocatable terms
but one are paired. Note that
the unpaired term gives the
expression a relocatable value;
the paired relocatable terms
and other absolute terms
constitute increroents or
decrements to the value of the
unpa ired term.

b. The relocatability attribute
of the whole expression is that
of the unpaired term.

c. The sign preceding the unpaired
relocatable term must be positive,
after all unary operators have
been resolved.

COMPLEX RELOCATABLE EXPRESSIONS:
Complex relocatable expressions,
unlike relocatable expressions,
can contain:

a. Two or more unpaired
relocatable terms or

b. An unpaired relocatable term
preceded by a negative sign.

Complex relocatable expressions
can be used only in A-type and Y­
type address constants (see G3J) •

Source Module

FIRST CSECT

A DC H'2'

B DC H'3'

C DC H'4'

ABSA EQU 10

ABSB EQU

ABSC EQU

END

Relocatable Expresssions:

(Belong to control section named FIRST
and have same relocatable attribute as
A. B and C)

e--A

'A+ABSA+IO
B-+A+C-IO';'ABSC

Reloc. Exp.

.~
B-A+C+I00*ABSA+ABSA/(C-A)

-~.--------

o

Rules for Coding Expressions

~ rules for cOdl.ng ancn)sc!u~e
or relocatable expression are:

1. Both unary (oferating on one
value) and binary ~perating on
two values) operators are allowed
in expressions.

2. An expression can have one or
more unary operators preceding any
term in the expression or at the
beginning of the expression.

•
4. An expression must not contain

· two terms in succession.

5. No blanks are allowed between
an operator and a term nor ,between
two successive operators.

6. An expression can contain up
to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

1. A single relocatable term is
not allowed in a multiply or divide
operation. Note that paired
relocatable terms have absolute
values and can be multiplied and
divided if they are enclosed in
parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression.

Operators f- I Unary + - =t-----

~.~*S7 ABS .L:-+'i;/ R E L + iF ABS

I Uno", D R;nacy I
~~AOi~1 \

ABS9/ABSD;if15

REL+ ABS

I

====t. -ABS

===~t. - REL-ABS

Context determines whether
+ or - is unary or binary
operator

===~.~ A+B

====.. ABSC / ABSD + 15
======9~~ REL-ABS

I

1-----8---------1

I Multiply I
8

A' 3 INVALID
::,+3 VALID
- fLocation counter! I Reference I Context determines whether

~
an asterisk (::,) is the binary

6,~:< I B INVALID operator for multiplication
'~

8 -ABSA + * VALID or the location counter
INVALID reference

~ ~----------------~

I Leftmost ~per.ator betwe~~
two terms IS binary I

x' FF' (10 ~:, A) INVALID -- --...--'0--
/"")

15B'101' INVALID

Section C: Assembler Language Structure 59

60

o

• •

Evaluation of Expressions

The assembler reduces a multi term
expression to a single value as
follows:

1. It evaluates each term.

2. It performs arithmetic operations
from left tc right. Hcwever:

a. It performs unary operations
before binary cferations, and

b. It performs the binary
operaticns of IT:ultiflication
and division befcre the b1nary
operations of addition and
subtraction.

O 3. In division, it gives an integer
, resul ti any fractional portion is

dropped. rivision by zero gives
o.

4. In parenthesized eXfressions, o the assembler evaluates the inner
most expressicns first and then

A considers them as terms in the next
..,outer level of eXfressions. It •

continues this process until the
ou te rmo st e xpres s ion is ev alu at ed •

5. A term or expression's
intermediate value and computed
result must lie in the range of
-2 31 through +231_1.

NOiE: It is assurred that the
assemtler evaluates paired
relccatatle terrrs at each level
of expression nesting.

Value of
Absolute Expressions Expression

A=5

A,:,--X'A' ~ 5':' + 10 3! +50

~.

" A~10 {A+10/B ~ 10+10/2) 15

B=2 (A+I0) /E ~ (10+10) /2920/2 s III

A=10 A/2 ;; 5

A=11 A/2 }e) 5

A=1) 0

{1:~2A/2 ~ 10 * 1/29 10/2=, 5

Part II: Functions and Coding of Machine Instructions

SECTION 0: MACHINE INSTRUCTIONS

61

Section D: Machine Instructions

This section introduces the main functions of the machine
instructions and provides general rules for coding them
in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

• IBM System/360 Principles of Operation, Order NOQ GA22-
6821

• IB~ System/370 principles of Operation, Order No. GA22-
7000

Dl - Functions

At assembly time, the assembler converts the symbolic
assembler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Also at assembly time, the assembler creates the object
code of the data constants and reserves storage for the
areas you specify in your DC and CS assembler instructions
~ee G3). At execution time, the machine instructions

can refer to these constants and areas, but the constants
themselves are not executed.

section D: Machine Instructions GJ

B1A -- FIXED-POINT ARI7HMETIC

64

Purpose

You use fixed-point instructions
when you wish to perform arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.
If they are to operate upon data
representing mixed numbers (such
as 3.14 and 0.235) you must keep
track of the decimal point yourself.
For your constants you must provide
the necessary number of binary
positions to represent the fractional
portion of the number specified
by using the scale mcdifier (see
G3B) •

Operations Performed

Fixed-point instructicns allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer to the constants listed
in the figure to the right.

O NOTE: Except for the conversion
operations, fixed-point arithmetic
is performed on signed binary values.

Fixed - Point Mnemonic
Operations Operation Codes

Add AR , A, AH, ALR, AL

Subtract SR,S,SH,SLR,SL

Multiply MR,M,MH

Divide DR,D

Arithmetic Compare CR, C,CH
(taking sign into
account)

Load into registers LR,L,LH,LTR,LCR,LPR,LNR,LM

Store into areas ST, STH,STM

Arithmetic Shift of SLA,SRA,SLDA,SRDA
binary contents of
registers to left or
right (retaining
sign)

Convert (packed) CVB
decimal data to
binary

Convert binary data .. CVD
to (packed) decimal
data

Constants Used Type

Fixed-Point Hand F

Binary B

Hexadecimal X

Character C

Decimal (packed) P

Address Y, A, S, V and Q

J:1E -- rECI~lIL lIRITEME'IIC

Purpose

You use the decirral instructions
when you wish to perform arithITetic
eperations en data that has the
binary equivalent of decimal
representatien, either in packed
or zoned form. These instructions
treat all nurrbers as integers.
For example, 3.14, 31.4, and 314
are all processed as 314. You rrust
keep track cf the decirral peint
yourself.

J:ecirral instructiens allo~ you to
perform the operations listed in
the figure te the right.

rata Constants Used

In decimal instructions yeu can
refer tc the ccnstants listed in
the figure to the right.

O NO'IE: Exceft fer the ccnversion
operations, decimal arithrretic is
performed on signed packed decirral .. -, .. ~~
VCl.J..UO:;;;:'.

Decimal Mnemonic Operation
Operations Codes

Add AP

Subtract SP

Multiply MP

Divide DP

Arithmetic Compare

I
CP

(taking sign into
accountj

Move decimal data I MVO
with a 4-bit offset I
Shift decimal data I SRP
in fields to left or

I right

Set a field to zero

I
ZAP

and add contents
of another field I
Convert zoned to \ I PACK
packed decimal
data • Convert packed to UNPK
zoned decimal

J data

Constants Used Type

Decimal (packed) P

(zoned) I Z

Section D: Machine Instructions 65

r1 C -- FLCA'IING-FOINT ARI'IHME'IIC

66

Purpose

You use floating-point instructiens
when yeu wish tc ferferrr arithmetic
operations on binary data that
represents rcth integers and
fractions. Thus, you do nct have
to keep track cf the decirral point
in ycur ccrrfutaticns. Flcating­
point instructions also allow yeu
to perfcrrr arithrretic cferations
on both very large numters and very
small nurrrers, with greater precision
than with fixed-point instructions.

Fleating-fcint instructicns allow
you to perform the operations listed
in tbe figure tc the right.

rata Constants Used

In floating-point instructions,
you can refer tc the ccnstants
listed in the figure to the right.

~O'IE: Flcating-feint arithmetic
is performed on signed values that
rrust have a special floating-point
forrrat. 'Ihe fracticnal pcrtion

O
Of floating-point numters, when
used in additien and subtraction,
can have a normalized (no leading
zercs) cr ur:ncrrralized format.

Floating· Point
Operations

Add ..
Subtract J

Multiply

Divide

Halve
(division by 2)

Arithmetic Compare
(taking sign into
account)

Load into floating -
point registers

Store into areas

Constants Used

Floating - Point

Mnemonic Operation
Codes

AOR,AO,AER,AE,AWR
AW, AUR, AU, AXR

SOR, SO, SER, SE, SWR,
SW, SUR, SU, SXR

MOR, MO, MER, ME, MXR,
MXOR,MXO

OOR,OO,OER,OE

HOR,HER

CDR, CD, CER, CE

LOR, LO, LER, LE, LTOR,
LTER, LCOR, LCER, LPOR,
LPER,LNOR,LDER,LROR,
LRER

STO, STE

Type

E,O,andL

D1D -- LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, move data, or
inspect and change data.

Operations Performed

The logical instructions allow you
to perform the operations listed
in the figure to the right.

I

Logical Mnemonic Operation
Operations Codes

Move MVI, MVC, MVN, MVZ, MVCL

Logicai Compare CLR, CL, CU, CLC, CLCL,
(unsigned binary CLM
values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR,O, 01, OC
addition)

Exclusive OR I XR, X, XI, XC
(either or,
but not both)

Testing binary TM
bit patterns I

I nserting characters IC,ICM
into registers

Store characters i STC,STCM
into areas I

Load address into LA
register

Logical Shift of SLL, SRL, SLDL, SRDL
unsigned binary
contents of I registers to left or
right I
Replace argument TR,TRT
values by corresponding
function values from
table (translate)

Edit (packed and ED, EDMK
zoned decimal data)
values in preparation
for printing

Section D: Machine Instructions 67

C1E -- BRANCHING

68

Purpose

You can use several tYfes of
branching instructions, comcined
with the logical instructions listed
in D1D, to code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Perforrred

The branching instructions allow
you to perform the operations listed
in the figure to the right.

NOTE: Additional mnemonics for
• branching on condition are described

in section C1H below.

Branching Mnemonic Operation
Operations Codes

B"nch depend;n.) BCR, BC
on the results of

the preceding •
operation (that
sets the condition
code)

Branch to a BALR, BAL
subroutine with a

return link to
current code

Branch according BCTR,BCT
to a count con-
tained in a register
(count is decremented
by one before deter-
mining course of
action)

Branch by comparing
BXH,BXLE • index value to fixed

comparand, (index
incremented or de- I
cremented before I
determining course I
of action)

Temporary Branch in EX
order to execute a

specific machine
instruction

D1F -- STATUS SWITCHING

Purpose

You can use the status switching
instructions to communicate between
your prograrr and the system control
program. However, some of these
instructions are privileged
instructions and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the problem state. The
privileged instructions are marked
with a a p= in the figure to the
right.

Operations Performed

The status switching instructions
allow you to perform the operations
listed in the figure to the right.

-- --

Status Switching

-+-
Mnemonic Operation

_ Opera_tions __ - -- - _ ___ Codes _____

i

Load program status information I p LPSW

Load sequence of control registers P LCTL

Set bit patterns for condition code SPM
and interrupts for program

Set bit patterns for channel usage

I
P SSM

by system

~ protection ~ for a block of

I
P SSK

storage

Set time-of-day clock I P SCK

Insert protection !s.gy for storage P ISK
into a register

Store time=of-day clock I STCK

I Store identification of channel I P STI DC, STIDP
or CPU

I P

I
Store (save) sequence of control STCTL

registers

Call supervisor for system I SVC
interrupt I

I Call monitor for interrupts de- MC
pending on contents of
control register

Test bit which is subsequently

I
TS

set to 1

Write or Read directl~ to or I P WRD, RDD
from other CPU's I

Set Clock Comparator I P SCKC I
Store Clock Comparator ' P STCKC

I p Set CPU Ti mer SPT

Store CPU Timer I P STPT

Store Then AN D System Mask Tp
I STNSM
i

Store Then OR System Mask
I P STOSM I

Section D: Machine Instructions 69

D1G -- INPUT/OUTPUT

Purpose

You can use the input/output
instructions, instead of the IBM­
supplied system macro instructions,
when you wish to control your input
and output cperations rrore closely.

Operations Ferformed

The input or output instructions
allow you to identify the channel,
or the device on which the input
or output operation is to be
performed. The operations performed
are listed in the figure to the
right. However, these are privileged
instructions, and yeu can only use
them when the CPU is in the
supervisor state, but not when it
is in the problem state.

Input or Output
Operations

Start I/O

Halt I/O

Test state of channel
or device being used

Halt Device

I
I

Mnemonic Operation
Codes

SIO, SIOF

HIO

T!O,TCH

HDV

Section D: Machine Instructions 71

Page of GC33-4010-0

Rev ised September 29, 1972

By T:-.IL GN33-8148

C1H -- BRANCHING WITH EXTENDED MNEMONIC CODES

72

Purpose

The branching instructions described below allow you to
specify a mnemonic code for the condition on which a branch
is to occur. 'Thus, you avoid having to specify the mask
value required by the EC and ECR branching instructions.
The assembler translates the mnemonic code that represents
the condition into the mask value, which is then asserrbled
in the object code of the machine instruction.

Specifications

The extended mnemonic codes are given in the figure on the
opposite page.

They can be used as operation codes for branching
~ instructions, replacing the BC and BCR machine instruction.

codes. Note that the first operand of the BC and BCR

•
instructions must not be present in the operand field of
the extended mnemonic branching instructions.

~NOTE: The addresses represented are explicit addresses;
however, implicit addresses can also be used in this type
of instruction.

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

•• • ---------- • '~b2 (X; , B2l } B Unconditional Branch RX BC 15,D2(X2,B2)
BR R2 RR BCR 15,R2
NOP D2(X2,B2) } No Operation RX BC O,D2(X2,B2)
NOPR R2 RR BCR O,R2

Used After Compare Instructions

BH D2(X2,B2) } Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2(X2,B2) } Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2(X2,B2)) Branch on Equal RX Be o T"'\""') "7') T'"'I'"'I \

f
U,J.Ji!.~Ai!.,OL.J

BER R2 RR BCR 8,R2
BNH D2(X2,B2) } Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 RR BCR 13,R2
BNL D2(X2,B2) } Branch on Not Low RX BC II,D2(X2,B2)
BNLR R2 RR BCR II,R2
BNE D2(X2,B2) } Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 RR BCR '7 D')

I ,.1.\"L.

Used After Arithmetic Instructions

BO D2 (X2 ,B2) ~ Branch on Overflow RX BC I,D2(X2,B2)
BOR R2 J RR BCR I,R2
BP D2 (X2 ,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2(X2,B2) } Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BNP D2(X2,B2) } Branch on Not Plus RX BC 13,D2(X2,B2)
BNPR R2 RR BCR 13,R2
BNM D2(X2,B2) } Branch on Not Minus RX BC II,D2(X2,B2)
BNMR R2 RR BCR II,R2
BNZ D2(X2,B2) } Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 RR Df""D 8,R2

}
..L...J\"..o.L"

BNO D2(X2,B2) Branch on No Overflow RX BC 14,D2(X2,B2)
BNOR R2 RR BCR 14,R2

Used After Test Under Mask Instructions

BO D2(X2,B2) } Branch if Ones RX BC I,D2(X2,B2)
BOR R2 RR BCR I,R2
BM D2(X2,B2} } Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2(X2,B2) } Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2
BNO D2(X2,B2) } Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2 RR BCR 14,R2
BNM D2 (X2,B2) } Branch if Not Mixed RX BC II,D2(X2,B2)
BNMR R2 RR BCR II,R2
BNZ D2(X2 / B2) } Branch if Not Zeros RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2

D2=displacement,X2=index register,B2=base register,R2=register containing
branch address

Section D: Machine Instructions 73

D1I -- RELOCATION HANrLING

74

Purpose

You use the relocation instructions
in connnection with the relocate
feature of IBM Systemj370.

Operations Performed

The relocation instructions allow
you to perforrr the of:erations listed
in the figure to the right. However
~hese in~tructions are f:rivileged '
1nstruct1ons, and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the probleIT' state.

Relocation Mnemonic Operation
Operations Code

Load Real Address LRA

Purge Translation
Lookaside Buffer PTLB

Reset Reference Bit RRB

Set Clock Comparator SCKC

Store Clock Comparator STCKC

Set CPU Timer SPT

Store CPU Timer STPT

Store and AN D System STNSM
Mask

Store and OR System
Mask

STOSM

D2 - Alignment

purpose

The assemcler automatically aligns the object code of all
machine instructions on halfword toundaries. For execution
of the IBM Systerr/370 machines, the constants and areas
do not have to lie on specific boundaries to be addressed
by the machine instructions.

However, if the assembler option ALIGN is set, you can
cause the assembler to align constants and areas; for
example, on fullword boundaries. This allows faster
~~ecution of the fullwcrd machine instructions.

If the NOALIGN option is set, you do not need to align
constants and areas. They will ce assemcled at the next
available byte, which allows you to save space ~o bytes
are skipped for alignment).

Section D: Machine Instructions 75

76

Specifications

MACHINE INSTRUCTIONS: When the
assembler aligns machine instructions

•
on halfword boundaries, it sets
any bytes skipped to zero.

CONSTANTS AND AREAS: One of the
assembler options that can be set
in the job control language (that
initiates execution of the assembler
program) concerns the alignment
of constants and areas; it can
be specified as ALIGN or NOALIGN.

If ALIGN is specified, the following
applies:

•
• The assembler aligns constants
and areas on the boundaries implicit
in their type, if no length
specification is supplied.

• The assembler checks all
~ expressions that represent storage

addresses to ensure that they are
aligned on the boundaries required
by the instructions. If they are
not, the assembler issues a warning
message.

If NCALIGN is specified, the
following applies:

•
• The assembler does not align

, constants and areas on special
boundaries, even if the length
specification is emitted. Note
that the CCW instruction, however,
always causes the alignment of the
channel command word on a doubleword
boundary.

•
• The assembler does not check
storage addresses for boundary
alignment.

NOTE 1: The asserrbler always forces
alignment if a duplication factor
of 0 is specified in a constant
or area without a length modifier
(for an example, see G3N). Alignment
occurs when either ALIGN or NOALIGN
is set.

Sou ree Statements

L

A

3'AREA~

3'CONS~

AREA DS F

CONST DC F I 200 I

L

A

3IAREA~

3ICONST~

AREA DS

DS

Object Code

Full Word
Boundary

CONST

xxxxxxxx

000000C8

CONST

xxxxxxxx

CONST DC F I 200 I} 000000C8
DC FL4 I 200 I Equiv.

NOTE 2: When NOALIGN is sfecified,
the CNOP assembler instruction can
be used to ensure the correct
alignment of data referred to ty
the privileged instructions that
require specific boundary alignment.
The mnemonic operaticn codes for
these instructions are listed in
the figure to the right.

I Mnemonic Operation Codes
for Privi leged Operations

LPSW

ISK

SSK

LCTL

SCK

STIDP

STCTL

Meaning

Load program status word.

I nsert Storage Key.

Set Storage Key.

Load Control registers.

Set Clock.

Store CPU Identification

Store Control registers.

(Diagnose· not handled by assembler)

Section D: Machine Instructions 77

D3 -- Statement Formats

78

Machine instructions are assembled
into object code according to one
of the six formats given in the
figure to the right.

When you code machine instructions
you use symbolic formats that
correspond to the actual rrachine
language formats. within each tasic
format, you can also cede variations
of the symbolic representation
(Examples of coded rrachine
instructions, divided into groups
according to the six basic formats,
are illustrated in [6 below).

The assembler converts only the

O operation code and the operand
entries of the assembler language
statement into object code. The

•
assemtler assigns te the symbol
you code as a name entry the value

•
of the address of the leftmost
byte of the assembled lnstruction.
When you use this sarre symbol in
the operand of an assembler language
statement, the asserrbler uses this
address value in converting the

•
symboliG operand inte its object

, code form. The length attribute
assigned to the syrrbel de~ends on
the basic machine language format
of the instruction in which the
symbol appears as a name entry
(for details on the length attribute
see C4C) •

• A remarks entry is net converted
into object code.

Format

RR

RX

R8

8I

8

88

Length of Object Code
Reguired for the Assembled
I nstruction in Bytes

2

4

4

4

4

6

• (L'LABEL=4)

Example:

Assembler Language Statement

LABEL L 4,256(5,10) •
~ ~-----------------
Operation Register
Code Operand

Storage
Operand

/-.. ...----- 4 bytes -----

Object Code

(machine language) ot
Assembled Instruction
in Hex

•
RX Format 4

D4 - Mnemonic Operation Codes

Furpose

You rrust sfecify an cferation code
for each machine instruction
staterrent. 'Ihe rrnerrcnic cperation
code indicates the type of oferaticn
to te perforrred; fcr e~am~le, nAn
indicates the "addition" operaticn.
Appendix IV ccntains a corrplete
list of mnemonic operation codes
and the fcrrrats of the corresponding
machine instructions.

Specificaticns

'Ihe general format of the machine
instructicn cferation ccde is sho~n
in the figure to the right.

o 'Ihe vert rrust always be fresent.
It usually consists of one or two
characters and specifies the
operation to te performed. 'Ihe
other iterrs in the cferation code
are not always present. 'Ihey
include:

e. 'Ihe modifier which further defines
the c~eraticn

•• The type qualifier, which
indicates the type of data used
ty the instructicn in its oferation,
and

•

@ rrl-.e ~,... <t'ra+- ""'a'~~~e'" R T J1..; ..L.""" ... J.l '- "='L...L...L..L ...1"",,J..,...L.,
which indicates that an RR or SI
rrachine instructicn fcrrrat is
assemtled.

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT]

Examples:

o{
e{

•

•

A:L
I"'--'o-gj-ca-'-'

eYB
1'"""1 -bj-na-r-y-'

WC

section D: Machine Instructions 79

DB -- Operand Entries

80

Furpose

You rrust srecify ene cr mere orerands
in eaeh machine instructien staterrent
to ~revide the data er the location
of the data upon which the rracbine
operatien is te be rerferrred. The
operand entries consist of ene or
ITore fields er subfields de~ending
on the format of the instruction
teing ceded. They can s~ecify a
register, an address, a length,
and irrrr.ediate data.

You can code an operand entry either
with syrrbels er ~ith self-defining
terms. You can omit length fields
or sutfields, which the assembler
will compute for you from the otter
operand entries.

General Specifications for Coding
Operand Entries

The rules for coding operand entries
are as felle~s:

• A comma must separate operands.

~Farentheses rrust enclese subfields.

8 A eonna rrust serarate subfields
enclosed in parentheses.

If a subfield is erritted because
it is in implicit in a syrrtclic
address, the Earentheses that ~ould

~have enclosed the sutfield rrust
te erritted.

LM

MVI

MVC

MVC

MVI

MVI

•
4, ~/SAVE5
4 (12), C 'F'

'e ,/
TO (80), FROM • o (80:S), 240(8)

~ II
4 (12), C'F'

KEY C 'F' / '

Implicit
Address
See 058

If twc sutfields are enclcsed in
parentheses and separated ty corrrras,
tbe fcllcwing afflies: ~ ---- - ------------------------------- t--------------------j+----</e---\-,----------------- 1---

If both sutfields are orritted tecaus€ L 2,48(4,5)
they are irrflici t in a syItbclic --

•
entry, the separating comrra and
the farentheses that ~culd have
been needed must also re omitted.

If the first subfield is cmitted,

•
the comma that separates it frorr
the second sutfield rrust be written
as well as the enclosing parentheses.

If tte seccnd subfield is omitted,

•
the comma that separates it frorr
the first subfield rrust be omitted,
however, the enclosing parentheses
rrust te written.

~OTE: Elanks must not appear within
the cferand field, exceft as fart

~ of a character self-defining terrr
or in tbe sfecificaticn cf a

• character literal.

L

L

L

MVC

MVC

MVC

MVC

MVC

2,FIELD_
--.......... Implicit I

Address

See D5B I
2,48(4,5) I I

I ndex Register
2,48 (r:s;-- is omitted

~ / I Length I
3 2 (,,1 0) , 4 0 (1 0) Specification I

I I is omitted I
32 (8,10) ,40 (10)

32(16,6) ,48(6)

8\
TO (1;) , ,....F_RO_M ___ ---.

Base Register
implicit in symbolic
address TO

32 (C' I' ,5) ,=CL64' AI B'

~ .

Section D: Machine Instructions 81

~5A -- REGISTERS

82

Purpose and Usage

You can specify a register in an
operand for use as an arithmetic
accumulator, a base register, an
index register, and as a general
depository for data to which you
wish to refer over and ever.

You must be careful when specifying
a register whose contents have been
affected by the execution of another
machine instruction, the control
program, or an IEM-supplied system
macro instruction.

For some machine instructions you
are limited in which registers you
can specify in an operand.

Specifications

~he expressions used to specify
registers must have absolute values;
in general, registers 0 through
15 can be specified for machine
instructions. However, the following
restrictions on register usage
apply:

1. The floating-point registers
(0, 2, 4, or 6) must be specified

~ for floating-point instructions:

• • •

2. The even numbered registers (0,
2, 4, 6, 8, 10, 12, 14) must be
specified for the following groups
of instructions:

a. The double-shift instructions

b. The fullword multiply and
divide instructions

c. The move long and compare
logical long instructicns.

3. The floating-point registers
o and 4 must be specified for the

•
instructions that use extended
floating-point data:

AXR, SXR, LRDR, MXR, MXDR, MX~.

NO~E: The assembler checks the
registers specified in the
instruction statements of the above
groups. If the specified register
does not comply with the stated
restrictions, the asserrbler issues
a diagnostic message and does not
assemtle the instructicn~

Registers

3,AREA

4, FLTAREA

4,1

6,2

8,3

12,3

Both register operands
must be even-numbered

REGISTER USAGE BY MACHINE
INSTRUCTIONS: Registers that are
not explicitly coded in the symbolic
assembler language l:epl:esent-at-ien---­
of machine instructions, but are
nevertheless used by the assembled
machine instructions, are divided
into two categories:

1. The base registers that are
implicit in the symbolic addresses
specified. These implicit addresses
are described in detail in D5B •

•
The registers can be identified
by examining the object cede of
the assembled machine instruction Oor the USING in~t:ruction(s) that
assigns base registers for the
source module.

•
•

o

•

2. The registers that are used by
machine instructions in their
operations, but do not appear even
L~ the asserrbled object code. They
are as follows:

a. For the double shift and
fullword multiply and divide
instructions, the odd-numbered
register whose number is one
greater than the even-numbered
register specified as the first
operand.

b. For the Move Long and Compare
Logical Long instructions, the
odd-numbered registers whose
number is one greater than the
even numbered registers specified
in the two operands.

c. For the Branch on Index High
(BXH) and the Branch on Index

Low or Equal (EXLE) instructions;
if the register specified for
the second operand is an even­
numbered register, the next
higher odd-numbered register
is used to contain the value
to be used for coreparison.

d. For the Translate and Test
(TRT) instruction, registers
1 and 2 are also used.

e • For the Load Multi pI e (LM)
and Store Multiple (STM)
instructions, the registers that
lie between the registers
specified in the first two
operands.

REGISTER--USA~ BY SYS'IEM:- The-­
control program of the IEM System/370
uses registers 0, 1, 13, 14, and
15.

Source Module

- --------- ---~-­
START 0

I
BALR 12,0

USING >!< ,12 •

Object Code
in Hex

• L 3, IS81310lclxxxi

M

..
MVCL

e.
Register 5 and 7
are also used

I SC 14 I 0 I C I xxxi

BXH 18613141c(xxxl

TRT ARGUMENT(10),TABLE
I

LM 3,7,AREA I 98 r 3 17 1 C 1 xxxi

• L-____ --I

Section D: Machine Instructions 83

D5B -- ADDRESSES

84

Purpose and Definition

You can code a symbol in the name
field of a rr.achine instruction
statement to represent the address
of that instruction. You can then
refer to the symbol in the operands
of other machine instruction
statements. The object code for
the IBM Systero/370 requires that
all addresses be assembled in a
numeric base-displacement format.
This format allows you to specify
addresses that are relocatable or
absolute.

You must not confuse the concept
of relocatability with the actual
addresses that are coded as
relocatable, nor with the format
of the addresses that are assembled.

DEFINING SY~BOLIC ADDRESSES: You
define symbols to represent either
relocatable or absolute addresses.
You can define relocatable addresses
in two ways:

o By using a symbol as the label in
the name field of an assembler
language statement or

•
By equa ~ing a symbol to a relocatatle
express l.on.

You can define absolute addresses

•
(or values) by equating a symbol
to an absolute expression.

REFERRING TC ADtRESSES: You can
refer to relocatable and absolute
addresses in the operands of machine
instruction statements. Such address
references are also called addresses
in this manual. The two ways of
coding addresses are:

~ Implicitly: that is, in a form
that the assembler must first convert
into an explicit base-displacement
form before it can be assembled
into object code.

• Explici tly: that is, in a form
that can be directly assembled into
object code.

Symbolic
Addresses
(Defined)

DC

EQU

L

L

L

B

EQU

LA

LA

LA

3F'370'

lIR~iit'4

Address
References

3 ·.)h., ... , .. :','.D:.·.· ... · ... ti.·".,.".~·.· .. ·.,.,.,.,~
,Gl\~: J'
4/~.

4 , ?''4.jlEfj/Jil1.;'"

gMDF~

Relocatable

Addresses

Absolute
Addresses

Relocatability of Addresses

Addresses.ill the base displ-acement
form are relocatable, because:

• Each relocatable address is

8 assembled as a displacement from
a base address and a base register.

•
• The base register contains the
base address.

• If the object module assembled
from your source module is relocated,
only the contents of the base
register need reflect this
relocation. This Reans that the
location in virtual storage of your
base has changed and that your base
register must contain this new base
address.

• Your addresses have been assembled
as relative to the base address;
therefore, the sum of the .
displacement and the contents of
the base register will ~oint to
the correct address after relocation.

NOTE: Absolute addresses are also
assembled in the base-displacement
form, but always indicate a fixed
location in virtual storage. This

•
means that the contents of the base

· register must always be a fixed
absolute address value regardless
of relocation.,

~-
00
10
()

X
" ...
c
Q)

E
~ co

~
is

II ...
c
Q)

E
Q)
u co
Q.

01)

is

Source Module

START a
BALR
USING

DS CL80
CL240

LA

END

Object Code
---- 10 Hex -~

I Displacement I

Register 0 as a base
register is always
considered to contain
the absolute address
location 0

Section D: Machine Instructions 85

Page of GC33-4010-4
Re'iised July 31, 1976
By T:-.JL: GN33-8207

86

Specifications

~ACHINE OR OBJECT COrE FORMAT: All addresses asserrbled
into the object code of the IBM Systemj370 machine
instructions have the format given in the figure below.

Format

RS

SI

SS

RX

Coded or Symbolic
Representation of
Explicit Addresses

D2(B2)

DI(BI)

DI (,BI) ,D2 (B2)

D2(X2,B2)

S DI (BI}

R 1 and R3 represent registers
12 represents an immediate value
L represents a length value

8 bits 4 bits 4 bits
Operation
Code

Object Code
Representation
of Addresses

4 bits 112 bits 4 bits
Base . Displacement Base
Reg- I Reg-

I
ister ' ister

l ______ J ________ ~~
:'OP CODE! R1 : R3
,. - .. - _I __ .. _'.. _

The addresses represented have a value which is the sum
of:

O. A displacereent and

8. The contents of a base register.

NOTE: In RX instructions, the address represented has
a value which is the sum of a displacement, the contents 4Et of a base register, and the contents of an index register.

12 bits
Displacement

Addresses

Implicit Address

An implicit address is specified

1
---l3Y-Cbd1ng one expres s icn~------nre-­

expression can be relocatable or
absolute. The assembler converts
all implicit addresses into their

• tase-displacement form before it
assembles them into object code.
The assembler converts im~licit
addresses into explicit addresses
only if a USING instruction has
been specified. The USING
instruction assigns both a base
address, from which the assembler
computes displacements, and a base
register, to contain the base
address. The base register must
be loaded with the correct base
address at execution time. For
details on how the USING instruction
is used when establishing
addressability, thus allowing
implicit references. see F1e

Explicit Address

An explicit address is specified
by coding two absolute expressions
as follows:

O
The first is an absolute expression
for the displacement, whose value
must lie in the range 0 through
4095 (4095 is the maximum value
that can be represented by the 12
binary bits available for the
displacement in the object code) •

The second (enclosed in parentheses)

•

is an absol ute expression for the
base register, whose value must
lie in the range 0 through 15.

If the base register contains a
value that changes when the program
is relocated, the assembled address
is relocatatle. If the base register
contains a fixed absolute value
that is unaffected by program
relocation, the assembled address
is atsolute.

NOTES (for implicit and explicit
addr ess es) :
1. An explicit base register
designation must not accorepany an
implicit address.
2. However, in RX instructions an

• index register can be coded with
an implicit address as well as with
an explici t---a:adress.
3. When two addresses are required,
one address can be coded as an

I explicit address and the ether as
an implicit address.

I

AREA

Source Module

START 0
BALR 12,0
USING >!<,12

!r··
L 3,AREA

I

I

Object Code
in Hex

/58 I 3 I 0 I c I xxx I

DS
~/\~

F I Base Registerl I Displacement 1

!>I·No:
LA 4,1500 14114IoI0Ij~~1

.-------_...1.....-1_"" ~
Always used as 11 1
base register for I I
absolute add. ress Displacement
between 0 and

/4095 I I I

END

Source Statement Object Code
in Hex

LA 4,X'400' (,10) •
L 158 I 3 14 I c I xxx 1

MVC

Section D: Machine Instructions 87

D5C -- LENGTHS

88

Purpose

You can specify the length field in an SS-type instruction.
This allows you to indicate ex~licitly the number of bytes
of data at a virtual storaqe location that is to be used
ty the instruction. However, you can omit the length
specification, because the assembler computes the number
of bytes of data to be used from the expression that
represents the address of the data.

Specifications

IMPLICIT LENGTH: When a length subfield is omitted from
an SS-type machine instruction an implicit length is
assembled into the object code of the instruction. The
implicit length is either of the following:

1. For an implicit address (see D5B above), it is the

O length attribute of the first or only term in the ex~ression
representing the implicit address.

2. For an explicit address (see D5B above), it is the

•
length attribute of the first or only term in the expression
that represents the displacement.

For details on the length attribute of symbols and other
terms see C4C.

EXPLICIT LENGTH: When a length subfield is specified in

e an SS-type machine instruction, the explicit length thus
defined always overrides the implicit length.

NOTES:

•
1. An implicit or ex~licit length is the effective length.

I The length value assembled is always one less than the

•

effective length. If an assembled length value of 0 is
desired, an explicit length of 0 or 1 can be specified.

2. In the SS instructicns requiring one length value, the
allowable range for explicit lengths is 0 through 256.
In the SS instructions requiring two length values, the
allowable range for explicit lengths is 0 through 16.

c

Length Attribute
of term (symbols)

Object Code
in Hex

Assembler
Language
Statement

L= Length Value

~-------------+-----------+---ct--------~
• Address

; L TO FROM

[I ~~J4FI xxxx I xxxx]

Implicit Lengths

MVC TO,FROM LITO

r

1

,1,.

I D214F1 xxxx I xxxx I
L'AREA = 1~ ____ -tI~~L~i1~L_2~ __ -. __ -.

L I TWO :~L~' __ 1-1 ~1=FA=I~7=[:f?..J...I.:.:x::..:::xx=x..:.Jl...:.x:.:.:x=x;;;.;Jxl

II D210~IAooo1A0501

o

MVC TO+80,FROM

AP AREA, TWO

o

L

L I TO =8;0

I

L

MV~('lOl'80(lOl I
'" MVC FROM-TO(,10) ,80(10) L'FROM I D21 EF I AOAO TA050 I

~

Explicit Lengths

, ... ::<

MVC TO E;l~:G) , FROM

MVC 0 (::$() , 10) , 8 0 (10)

I
CLC 0 (1 , 10) , 256 (10)

I
CLC 0(0,10) ,256(10)

TO DS
FROM DS
AREA DS
TWO DC

CL80
CL240
PL8
PL4 1 2 1

I

LITO
•

= 80 .' 1

• 1

• 1

I

Address
TO FROM

.-, D-2-' 9 F'-r'-X-X-xx-[XXXXJ

L

'D2f~iIAOooIA0501

+

•
ID5100l AoooIA1001

Section D: Machine Instructions 89

D5D -- IMMEDIATE CATA

90

Purpose

In addition to addresses, registers, and lengths, sorre
machine instruction operands require immediate data. Such
data is assembled directly into the object code of the
machine instructions. You use immediate data to specify
the bit patterns for masks or other absolute values you
need.

You should be careful to specify immediate data only where
it is required. Co not confuse it with address references
to constants and areas or with any literals you specify
as the operands of machine instruction (for a compariscn
between constants, literals, and immediate data, see C5).

Specifications

Immediate data must be specified as absolute expressions
whose range of values depends on the machine instruction
for which the data is required. The immediate data is o assembled into its 4-bi t or 8-bit tinary representaticn •
according to the figure on the opposite page.

Machine Instructions
in which immediate
data is required
(Op codes in

Appendix IV)

SRP

All BCR
All BC

ICM

CLM

NI
CLI

XI
MVI

01
TM

RDD
WRD

svc

(SS)

(RR)
(RX)

(RS)

(S1)

(RR)

Range of Values
allowed for
immediate data

o through 9

o through 15
o through 15

o through 15

o through 255

o through 255

Examples Object Code
in Hex

SRP A,B/~
~ '"

•
BC 11,AAA 1471Blolxxxxi , ~

~--------~- AAA
Address

18 •
STCM 3,~BBB IBE131Flxxxxi

CLI

TM KEY,

SVC

~
Address

Address
SLOT

------­Address
KEY

Immed. Data

- ~

Section D: Machine Instructions 91

D6 - Examples of Coded Machine Instructions

o

-

The examples in this sucsection
are grou~ed according to rrachine
instruction format. They illustrate
the various ways in which you can
code the operands of machine
instructions. Both syrrbolic and
numeric representation of fields
and subfields are shown in the
examples. You must therefore assurre
that all symbels used are defined
elsewhere in the same source module.

'lhe ol:ject cede assembled from at
least one coded statement per group
is also included. A. cem~lete summary
of machine instruction formats with
the coded assembler language variants
can be found in Appendix III and
IV.

RR Format

You use the instructiens with the
RR format mainly to move data tetween
registers. 'Ihe o~erand fields mus.t
thus designate registers, with the
following exceptions:

In BCB branching instructions when
a 4-cit tranching rrask re~laces
the first register specification

In SVC instructiens, where an
immediate .value (between 0 and 255)
replaces both registers •

•
NOTE: Syrrbcls used in RR
instructions are assumed to be
equated te absolute values tetween
o and 15.

92

Name Operation Operand

ALPHAI LR 1,2

ALPHA2 LR INDEX,REG2

¥
GAMMA 1 BCR 0 8 ,12

DELTAI SVC 20Q-

DELTA2 SVC ~.

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction

in Hex

ALPHAI LR 1,2

==

RR Format

I
operationl Register I

Code Operands

2 bytes

C

RX Format

You use tne· instructions with the--­
RX format mainly to move data between
a register and virtual storage.
By adjusting the contents of the
index register in the RX-instructions
you can change the location in
virtual storage being addressed.
The operand fields must therefore
designate registers, including index
registers, and virtual storage
addresses, with the following
exception:

O
L~ Be branching instructions a 4-
bit branching roask, with a value
between 0 and 15, replaces the first
register specification.

NOTES:

1_ Svrnbols used tc re~resent
• ~~gi~t~~~ are assumed to be equated

to absolute values between 0 and
15.

•
2. Symbols used to represent implicit
addresses can be either relocatable
or absolute.

3. Symbols used to represent o displacements in explicit addresses
are assumed to be equated to absolute
values between 0 and 4095.

Name Operation Operand

ALPHA1 L 1,200(4,10)
--;--------1---~--~-~--~---------------~-

ALPHA2 L

BETA1 L

BETA2 L

GAMMA1 L

GAMMA 2 L

DELTA1 L

LAMDA1 BC

LAMDA2 BC

REG1,200(INDEX,BASE)

~.~
2,200(,10)

4,
Literal Specification
See C5

ADDRESS

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instructio

in Hex

ALPHA1

RX Format

GAMMA 1

Section D: Machine Instructions 93

94

RS Format

You use the instructions with the
RS format mainly to move data between
one or more registers and virtual
storage or to compare data in one
or more registers (see the BXH and
BXLE operations in Appendix IV).

In the Insert Characters under Mask
(ICM) and the Store Characters Under

O
~ask (STCM) instructions, when a
4-bit mask, with a value between

· 0 and 15, replaces the second
register specification.

NOTES:

1. Symbols used to represent
• registers are assumed to be equated

to absolute values between 0 and
15 •

•
2. Symbols used to represent imFlici t
addresses can be either relocatable
or absolute.

3. Symbols used to represent
• displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation

ALPHAI LM

ALPHA2 LM

BETA1 STM

BETA2 STM

GAMMA 1 SLL

GAMMA 2 SLL

DELTA1 ICM

DELTA2 ICM

Assembly Examples:

Assembler language Statement

Operand

4,6,20(12)

REG4,REG6,20(BASE)

~.~

4,6,AREA.

4,6,DISPL(BASE)

2,15

2,0(15)

•
IMPLICIT.

Object Code of
Machine Instruction

In Hex

ALPHA1 LM 4,6,20(12)

RS Format
Operation
Code

DELTA1 ICM 3,X'E' ,1024(10)

1 4

Displacement
from Base

o 0

SI Format

You use the--lnstructT6ns-wI'tn-ffie
SI format mainly to move immediate
data into virtual stcrage. The
operand fields must therefore
designate irrmediate data and virtual
storage addresses, with the following
exception:

o An immediate field is not needed
in the statements whcse oferation
codes are: LPSW, SSM, TS, TeE, and
TIO.

NOTES:

1. Symbols used tc refresent
_ immediate data are assumed to be

equated to absolute values between
o and 255.

•
2. Symbols used to represent imp1 i cit
addresses can be either relocatable
or absolute.

3. Symbols used to refresent
~ displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation

Page of GC33-40tO-O

Revised September 29, 1972

By TNL GN33-8148

I Operand

ALPHAl CLI __ +--____ -----1-1 ___ 40 (9) I X _' 4_0_' ____ --II--

i ODISPL40 (NINE) , Jisiil:Q.·.·· .. · ..•.. ALPHA2 CLI

BETAl CLI

BETA2 CLI

rMMA1 LPSW

o GAMMA2 I LPSW

Assembly Examples:

Assembler Language Statement

ALP HAl

SI Format

If···
.-IMPLICIT ,.---

"'KEY, C ' E '

o (9)

NEWSTATE-...

Object Code of
Machine Instruction

In Hex

Section D: Machine Instructions 95

Page of GC33-401O-0

Revised September 29, 1972
By T1';L GN33-8148

96

S Format

You use the instructions with the
S format to perform I/O and other
system operations and not to move
data in virtual storage.

The operation codes for these
instructions are given in the figure
to the right. They are assembled
into two bytes.

Mnemonic
Operation
Codes

SIO

SIOF

HIO

HDV

STIDP

STIDC

SCK

STCK

SCKC

STCKC

SPT

STPT

PTLB

RRB

Assembled Description
Operation
Code in
Hex

9COO Start I/O

9COl Start I/O fast
release

9EOO Halt I/O

9EOl Halt Device

B202 Store CPU ID

B203 Store Channel

ID

B204 Set Clock

B205 Store Clock

B206 Set Clock Comparator

B207 Store Clock Comparator

B208 Set CPU Timer

B209 Store CPU Timer

B20D Purge Translation

Lookaside Buffer

B213 Reset Reference Bit

SS Format

You use the instructions with the
SS format mainly to move data between
two virtual storage locations.
The operand fields and subfields
must therefore designate virtual
storage addresses and the explicit
data lengths you wish to include.
However, note the following
exception:

•
In the Shift and Round r:ecimal (SRP)
instruction a 4-bit irrmediate data
field, with a value between 0 and
9, is specified as a third operand.

NOTES:

•
1. Symbols used to represent base
registers in explicit addresses
are assumed to be equated to absolute
values between 0 and i5.

•
2~ Symbols used to represent explicit
lengths are assumed to be equated
to absolute values between 0 and
256 for SS instructions with one
length specification and between
o and 16 for SS instructicns with
two length specifications.

8 3. Symbols used to represent implicit
· addresses can be either relocatatle

or atsolute.

4. Symbols used to represent
• displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation Operand

ALPHAl AP 40(9,8) ,30(6,7)

ALPHA2 AP 40 (NINE,BASE8) ,30(SIX,BASE7)

".::><j~
ALPHA3 AP FIELDl,FIEL~8

ALPHA4 AP AREA(9) ,AREA2 (6)

ALPHAS AP DISP40 (,8) ,DISP30 (,7)

~.~
BETAl Mve 0(80,8) ,0(7)

BETA2 Mve DISPO (,8) ,DISPO (7)

BETA3 Mve TO ,FROM

SRP FIELPl x' 8 "r.
"8/ "

Assembly Examples:

Assembler Language Statement

ALPHAl AP 40(9,8) ,30(6,7)

Lengths

Object Code of
Machine Instruction

in Hex

SS Format Operation L 1 L2 Base Displacement Base Displacement
Code 1 from Base 1 2 from Base 2

L

BETAl MVe 0 (8 0 , 8) ,0 (7)

Section D: Machine Instructions 97

Part III: Functions of Assembler Instructions

SECTION E: PROGRAM SECTIONING

SECTION F: ADDRESSING

SECTION G: SYMBOL AND DATA DEFINITION

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM

99

This page left blank intentionally.

Section E: Program Sectioning

Tbj S section expl ains --1lmoL-¥Oll can
subdivide a large ~rcgrarr into
smaller parts that are easier to
understand and maintain. It also
explains how you can divide these
smaller parts into convenient
sections: for example, one section
to contain your executable
instructions and another section
to contain your data ccnstants and
areas.

You should consider two different
subdivisions when writing an
assembler language prograrr:

1. The source module

2. The control section.

You can divide a program into two

O or more source modules. Each source
module is assembled into a separate

• object module. The object modules
can then be combined into load

•
modules to form an executable
program.

You can also divide a source module

O
into two or more control sections.
Each control section is assembled
as part of an object module. By
writing the proper linkage edit

•
control staterr:ents, you can select
a complete object module or any •
individual control section of the
object module to be linkage edited
and later loaded as an executable
program.

SIZE OF PROGRAM PARTS: If a source
module becomes so large that its
logic is not easily comprehensible,
break it up into smaller,modules.

Unless you have sFecial programming
reasons, you should write each
control section so that the resulting
object code is not larger than 4096
bytes. This is the largest number
of bytes that can be covered by
one base register (for the assignment
of base registers to control
sections, see F1A) •

COMMUNICATION BETWEEN PROGRAM PARTS:
You must be able to communicate
between the parts of your program:
that is, be able to refer to data
in a different part or be able to
branch to another Fart.

I

·Assembly
Time

-------e- •

Source
Program

Source
Modules

Source
Modules

c9 [:J
END ,

Object
Modules

A

Assembly
Time

Control Object
Sections Modules

AI~~l
U

B

H 3

Source 4
Program

Q

5 5

Linkage
Edit

Program
Fetch
Time

Program
Fetch

Time Time

~
1

2

~

-I
Executable
Program

Executable

program

I

Section E: Program Sectioning 101

To communicate between two or more
source modules, you must symbolically
link them together; symbolic linkage
is described in F2.

To communicate between two or more
control sections within a source
module, you must establish the
address ability of each control
section; establishing address ability
is described in F1.

EI - The Source Module

A source module is com~osed of
source statements in the assembler
language. You can include these
statements in the source module
in two ways:

1. You write them on a coding form
~ and then enter them as inEut, for

example, through a terminal or,
using punched cards, through a card
reader.

2. You specify one or more COpy
instructions among the source
statements being entered. When
the assembler encounters a COpy
instruction, it replaces the COpy
instruction with a ~redetermined

•
set of source statements from a
library. These staterrents then
become a part of the source module.

102

The Beginning of a Source Module

~he first statement of a source
module can be any asserrbler language
statement, except MEXIT and MENt,
that is described in this manual.
You can initiate the first control
section of a source module by using
the S~ART instruction. However,
ybu can or must write some source
statements before the beginning
of the first control section (for
a list of these statements see E2t).

Punched cards

or

Source Module

START

END

END

The
Assembler
Program

Source Mod.

Library

processed as comments
statements if the
LlBMAC option is
set (see J8A)

Ef:.Conditional assembly processing
can determine which of several
soost.itu:ted END instructions is to be

--ptb¢€!ssed_ 'fhe . cOlldi Lional assembly
*~nguage is described in Section L •

• ~~.~ ~~D;i.n~tl:'UQt~(j~ ~s·~~lowed.
~~~Ir!~+fJ7;.~P~s .DQt· .proc~ss/any 
l,.l?~~9:r;t. that follows the· ·END 

·ruct:ion .. 

E1A -- ~HE CCFY INSTFUCTICN 

Purpose 

I 
The CCPY instruction allows you 
to copy predefined source statements 
from a library and include them 
in a source modulea Ycu thereby 
avoid: 

1. Writing the same, often-used 
sequence of code over and over 

2. Keypunching and handling the 
punched cards for that code. 

I 

Source Statement 

START 
I 

COpy EQUATES 1+ 

END 

First Input 
to Assembler 
Program 

Page of GC33-401Q-4 
Revised July 31, 1976 
By TNL: GN33-8207 

COpy 

Source Module 

END 

J 
Effective l' 
Input to 
Assembler 
Program 

V I 

Section E: Program Sectioning 103 



Specifications 

The format of the copy instruction 
statement is shown in the figure 
to the right. 

Tne symbol in the operand field 
must identify a part of a library 
called: 

A memter of a partitioned data 
set 

This member (or book) contains the 
coded source statements to be copied. 

The source coding that is copied 
into a source module: 

O. Is inserted immediately after 
the CCPY instruction 

• Is inserted and prccessed 

• 
according to the standard instruction 
statement coding forrrat (described 
in B1D) , even if an ICTL instruction 
has teen specified 

• Must not contain either an ICTL 
or ISEQ instruction 

•• Can contain a COpy instruction. 
Up to 5 levels of nesting of the 
COpy instruction are allowed. 

oos Op>to 3 levels of nesting are 
al.l()wed.~ 

•• Can contain macro definitions 
(see Section J) • 

104 

If a source macro definition is 
copied into the beginning of a 
source module, both the MACRO and 
MEND statements that delimit the 
definition must be contained in 
the same level of copied code. 

NOTES: 

1. The COpy instruction can also 
be used to copy statements into 
source macro definiticns (see J5C). 

2. The rules that govern the 
occurrence of assembler language 
statements in a source module 
also govern the statements copied 
into the source module. 

Narre Operation Operam 

Blank COpy 

Source Module • begin 
1 10 

One ordinary 
Symbol 

continue 
16 

end 
71 Columns 

COpy CODE2 

END 

Library 
(Partitioned 
data set) 



E1B -- THE END INSTRUC~ION 

• 

Purpose 

You use the END instruction to mark 
the end of a source module. It 
indicates to the asserrbler where 
to stop assembly processing. You 
can also supply an address in the 
operand field to which control can 
be passed when your program is 
loaded. This is usually the address 
of the first executable instruction 
in a source module. 

Specifications 

The format of the ENr instruction 
statement is shown -L.4,t the figure 
to the right. 

If specified, the operand entry 
can be generated by substitution 
into variable symbols. However, 
after substitution, that is, at 
assembly time: 

1. It must be a relocatable 
expression representing an address 
in the source module delimited 
by the END instruction, or 

4It 2. If it contains an external symbol, 
the external symbol must be the 
only term in the expressicn, or 

• 
the remaining terms in the expression 
must reduce to zero. 

3. It must not be a literal. 

Name 

A sequence 
symbol or 
blank 

Operation 

END 

,
I 

Operand 

I 
A relocc:tablel 
express loon or 
blank 

i i 

Source Module A 

A START 
ENTERA BALR 

USING 
ENTRY 

END 

o 
12,0 

,:<,12 
ENTERA 

0 
ENTERA 

Source Module B 

IB START 0 
BALR 11,0 
USING ",::,11 I 
EXTRN ENTERA 

• • END ENTERA + (Subexpression) 

Section E: Program Sectioning 105 



This page left blank intentionally. 



E2 - General Information About Control Sections 

A control section is the smallest subdivision of a prcgrarr 
that can be relocated as a unit. The assembled control 
sections contain the object code for machine instructicns, 
data constants, and areas. 

Section E: Program Sectioning 107 



E2A -- AT DIFFERENT PROCESSING TIMES 

Consider the concept of a control section at different 
processing times. 

~AT CODING TIME: You create a control section when you 
write the instructions it contains. In addition, you 
establish the addressability of each control section within 
the source module, and provide any symbolic linkages between 
control sections that lie in different source modules. 
You also write the linkage editor control statements to 
combine the desired control sections into a load n,odule, 
and to provide an entry point address for the beginning 
of program execution. 

4BtAT ASSEMBLY TIME: The assembler translates the source 
statements in the control section into object code. Each 
source module is assembled into one object module. The 
entire object module and each of the control sections it 
contains is relocatable • 

• 
AT LINKAGE EDITING TIME: According to linkage editor centrol 
statements, the linkage editor combines the object code 
of one or more control sections into one load module. 
It also calculates the linkage addresses necessary for 
communication between two or more control sections fren 
different ocject modules. In addition, it calculates the 
space needed to accommodate external dummy sections (see 
E4) • 

e AT PROGRAM FETCH TIME: The control program loads the load 
module into virtual storage. All the relocatable addresses 
are converted to fixed locations in storage • 

• 
AT EXECUTION TIME: 'Ihe control program passes control 
to the load module now in virtual storage and your program 
is executed. 

108 

NOTE: You can specify the relocatacle address of the 
starting point for program execution in a linkage editor 
control statement or in the operand field of an END 
statement. 

c 



CODiNG 
_ IlME __ 

Source 
Modules 

Section C 
I 

IIII { 
i 

I 
I 

ASSEMBLY 
_ __IIAtE _______ _ 

~III 

LINKAGE PROGRAM EXECUTION 
_ _______ EOlL ___________ EEICH-___ ___ .IlME __________ _ 

Object 
Modules 

TIME 

Load 
Modules 

TIME 

X'23000' 

First 
Program 

X'40000' 

Second 
Program 

Section E: Program Sectioning 109 



E2B -- TYPES 

Executable Contrel Sections 

An executable control section is 
one you initiate by using the START 
or CSECT instructions and is o assembled into object code. At 
execution time, an executable control 
section contains the binary data 
assembled from your coded 
instructions and constants and is 
therefore executable. 

An executable contrel section can 
also be initiated as "private code-, 
without using the START or CSECT 
instruction (see E2E) • 

Reference Control Sections 

A reference control section is one 
.. ~~:'i you initiate by using the DSEC'I, 
OOW·! COM, orDXD instruction and is not 
~ assembled into object code. You 

• 

can use a reference control section 
either to reserve storage areas 
or to describe data to which you 
can refer from executable centrol 
sections. These reference control 
sections are considered to be empty 

• 

at assembly time, and the actual 
, binary data to which they refer 

is not entered until execution time. 

110 

Assembly 
Time 

Source Module Object Module 

EXEC START 

REFER COM 

Execution 
Time 

Load Module 



E2C -- LOCATION COUNTER SETTING 

The assembler maintains a separate 
location counter for each control 
section. The location counter 
setting for each control section 
starts at O. The location values 
assigned to the instructions and 
other data in a control section 
are therefore relative to the 
location counter setting at the 
beginning of that control section. 

O However, for executable control 
sections, the location values that 

• 
appear in the listings do not restart 
at 0 for each subsequent executable 
control section. They carryon 
from the end of the previous control 
section. Your executable control 
sections are usually loaded into 
storage in the order you write them~ 
You can therefore match the source 
statements and object code produced 
from them with the contents of a 
dump of your program. 

aoSFor exeetitable control sections, 
theloeation values that appear 
in1:.h~l~s1:.ings.alw~ys7i:art.frolll 
O..~xcept the controlse~tion 
initiated ··by a STAR.T instrllGtion 
withanon--zero operand entry.;.; 

• For reference control sections, 
the location values that appear 

O in the listings always start from 
. Q. 

Listed Location 
in hex 

Source IVkx:Iule 

END 

Section E: Program Sectioning III 



o 

• 
os 

You can continue a control section 
that has been discontinued by another 
control section and thereby 
intersperse code sequences from 
different control sections. Note 
that the location values that appear 
in the listings for a control 
section, divided into segments, 
follow from the end of cne segment 
to the beginning of the subsequent 
segment. 

'Q~ly ''fll~l~Cati()l1value $ ·.lis ted.f9l: •. ·th~ 
•• ' .'. Llle:x:t.·q?nt.r0l.~ectiondefined.l:f.:9j.n 

·i. ....~f~e:r;thela~t looa :t.i cnVa 1 u~ 
aS9~gH€;d tq .• the .preceding. control 
$ect:ion~ 

112 

Location 
in Hex 

Source Module 



E2D -- FIRST CONTROL SECTION -
SPECIFICATIONS 

'The specifications below apply to 
the first executable centrol section, 
and not to a reference control 
section. 

INSTRUCTICNS THAT ESTAELISH THE 
FIRST CONTRCL SECTION: Any 
instruction that affects the location 
counter or uses its current value 
establishes the beginning of the 
first executable control section. 
The instructions that establish 
the first control section are listed 
in the figure to the right. 

The statements copied into a source o module by a COpy instruction, if 
specified, determine whether or 
not it will initiate the first 
control section. 

NOTE: The CSECT, COM, and txt 
instructions initiate reference 
control sections and do net establish 
the first executable control section. 

WHAT MUST CCME BEFORE THE FIRST 
CO N'T' ROT. SFC'IION: The followina 
instructions or groups of -
instructions, if s~ecified, must 
appear before the first control 
section, as shown in the figure 
to the right. 

• The ICTL instruction, which, 
if specified, must be the first 
statement in a source module 

O . Any source macro definitions 
(see J1 B) 

• The COpy instruction, if the 
code to be copied contains only 
OPSYN instructions or com~lete macro 
definitions. 

I A M h' I I 

+-. ny ac me nstruction i 
- c--___ .__ --------.--- .. --;-------------------t 

I The Followmg Assembler Instructions: ! 
I ! 
I ccw ,I 

I • 
CNOP Ii' 

(COpy) 

I 
~~~CT I 
DC I

I DROP I

'

I i~D ,i

EQU
LTORG

I ORG

l,

l START
USING

\ /
!I These instructions are always

considered a part of the control
section in which they appear.

i

1
+-

First Contrl Sect.

Sou rce Modu Ie

ICTL

OPSYN

MACRO
MAC 1

MEND

MACRO
fv1AC2

MEND

MACRO
MAC 3

MEND

~ \---T-h-es-e-in-s-tr-u-ct-io-n-s-o-r-­

macro definitions belong
to a Source Module, but
must appear before the
first control section.

Section E: Program Sectioning 113

wHAT CAN CFTICNALLY CO~:E EEFORE
THE FIRST CONTROL SECTION: The
instructions or groups of
instructions that can cftionally
be sfecified tefore the first control
section are shown in the figure
to the right •

•
Any instructions cOfied by a COpy
instruction or generated by the

114

•
process ing of a macro instruction
before the first control section
must belong exclusively to one of
the groups of instructions shown
in the figure to the right.

NOTES:

1. The EJECT, ISEQ, PRINT, SPACE,
or TITLE instructions and comments

• statements must follow the ICTL
instruction, if sfecified. However,

•
they can precede or appear between

· source macro definitions. The OPSYN
instruction must (1) follow the
ICTL instruction, if Sfecified,
and (2) precede any source macro
definition specified.

2. All the other instructions of
the assemtler language must follow
any source macro definitions
specified.

3. All the instructions or groups
of instructions listed in the figure
to the right can also appear as

• part of a control section.

Source Moduie

ENTRY
EXTRN
ISEQ
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

Comments Statements I
Common Control Sections I
Dummy Control Sections I
External Dummy Control Sections I
Any Conditional Assembly Instru~~

These instruc­
tions or groups
of instructions
belong to a
Source
Module, but
are not con­
sidered as part
of an exe.­
cutable
control

E2E -- THE UNNAMED CONTROL SECTION

The uru!amed contrel secticn is an
executable control section that
can be l.nl.tl.ated l.n ene Of--ure--u

-

following two ways:

~ 1. By coding a START or CSECT
instruction without a name entry

2. By coding any instruction, other
than the START or CSEC! instruction,

O
that initiates the first executable
control section.

The unnamed control section is
sometimes referred to as private
code ..

All control sections ought to be
provided with names so that they
can be referred to symbolically:

1. within a source module

2. In EXTRN and WXTRN instructions
and linkage editor centrol statements
for linkage between source modules.

NOTE: Unnamed common centro I sections
or dummv control sections can be
defined~if the name entry is omitted
from a COM or DSECT instruction.

~(.)~~J;) .. co~~:rol.$~<zt:lonj
.. ~.b~'C9f1· in,~tl:'p;otion)

.cotrtrol sectiol'l.$:
:~'! :;:t~~~;: :!t'9ECT :lM~P.qt:lQn,)

E2F -- LITERAL POOLS IN CONTROL
SECTIONS

Literals, collected into pools by
the assembler, are asserobled as

.. part of the executable control

.. section to which the pools belong.
If a LTCRG instruction is specified
at the end of each control sectien,
the literals specified for that
section will be assembled into the

OpoOI starting at the LTORG
instruction. If no LTORG instruction
is specified, a literal pool
containing all the literals used
in the entire source module is
assembled at the end ef the first
control section. This literal pool

•
appears in the listings after the
END instruction.

NOTE: If any control section is
divided into segments, a LTORG
instruction should be specified
at the end of each segrrent to crea te
a separate literal pool for that
segment. (For a complete discussion
of the literal pool see H1B.)

Type Code I Unnamed Control .1

~:~~r~~ ~o~bOI i :~;~;~i~S~ie:rate i
Notes

----~----I-----------__r------ --- - ---- f-

Dictionary i i

PC

PC

PC

I I
I /S~ART I

•A, E~D I Unnecessary unless

1
dictated by specific

. I programming pur-

l' C~ECT II ~se

II END II J

I I
i I

~~~~=~~G~=~~{~"""""""'IIII\ 
I E~D 
I I 

Inadvertent and in .. 
advisable initiation 
of first control sec" 
tion: instead, precede 
with a named 
START instruction 

PC signifies "private code" 

Location 
in hex 

Source Modul~ 

=A(ADR) 

END 

Section E: Program Sectioning 115 



E2G -- EXTERNAL SYMBOL DICTIONARY 
ENTRIES 

The assembler keeps a record of 
each control section and prints 
the following information about 
it in an External Symbol rictionary. 

1. Its symbolic name, if one is 
specified 

2. Its type code 

3. Its individual identification 

4. Its starting address. 

The figure to the right lists: 

1. The assembler instructions that 

• 
define control sections and dummy 
control sections or identify entry. 
and external symbols, 

2. The type code that the assembler 
assigns to the control sections or 
dummy control sections and to the 
entry and external symbols. 

NOTE: The total number of entries 
identifying separate control 
sections, dummy control sections, 
entry symbols, and external symbols 
in the external symbol dictionary 
must not exceed 399. External 
symbols identified in a Q-type 
address constant and specified as the 

• 
name entry of a DSECT instruction are 
counted twice in determining this 
total. 

QOS The·1llaximum. n~rof·external$yinbol 
dictionaryentriesfcontrolsectiQns, 
clwnm:l controlseqtions, and externa~ 
SiyrabolsJ .. allowedis;311 •... ·Themaxilllum 
a~lQwablen~rof. syntbols 
.i;<f~l1;'t;i~ied bythe~TRY ... instr\lct~.()t:l 
is<2QO. 

116 

Name 
Entry 

optional 

optional 

0 

• 

Instruction Type code en-
tered into external 
symbol dictionary 

START SD} ifna~ 
entry IS 

CSECT SD present 

START PC } if name 
entry is 

CSECT PC omitted 
Any instruction that 
initiates the unnamed PC 
control section 

COM CM 

DSECT none 

EXTRN ER 

DC(V-type ad- ER 
dress constant) 

WXTRN WX 

~ 



E3 - Defining a Control Section 

You must use the instructions described telow to indicate 
to the assembler: 

• Where a control section begins and 

• Which type of control section is ceing defined. 

E3A -- THE STk~T INSTRUCTION 

Purpose 

The START instruction can be used only to initiate the 
first or only executable control section of a source rrcdule. 
You should use the S~AR~ instruction fer this purpose, 
because it allows you: 

1. To determine exactly where the first control sectien 
is to begin; you thereby avoid the accidental initiation 
of the first control section by some other instruction. 

2. To give a symbolic name to the first control section, 
which can then be distinguished from the'other contrel 
sections listed in the external symcol dictionary. 

3. To specify the initial setting of the location counter 
for the first or only control section. 

Specifications 

The START instruction rrust be the 
first instruction of the first 
executable control section of a 
source module. It must not be 
preceded cy any instruction that 
affects the location counter and 
thereby causes the first control 
section to be initiated. 

The format of the START instruction 
statement is given in the figure 
to the right. 

Name Operation 

Any Symboi 

I or blank START 

START 

Operand 

I A self-defining 

I term, or blank 

Section E: Program Sectioning 117 



• • 

• 
o 
• 

118 

The symbol in the name field, if 
specified, identifies the first 
control section. It must be used 
in the name field of any CSECT 
instruction that indicates the 
continuation of the first control 
section. This symbcl represents 
the address of the first tyte of 
the control section and has a length 
attribute value of 1. 

The assembler uses the value of 
the self-defining term in the operand 
field, if specified, to set the 
location counter to an initial value 
for the source module. All control 
sections are aligned on a doubleword 
boundary. Therefore, if the value 
specified in the operand is not 
divisible by eight, the assembler 
sets the initial value of the 
location counter to the next higher 
doubleword boundary. If the operand 
entry is omitted, the assembler 
sets the initial value to O. 

Location In 
Hex 

000000 

OOODOO 

000D04 
000D04 

Further Examples: 

• 001000 A 
001000 B 
000020 C • • 000000 D 

Source Module 

START a 

BREAK DS F 

END 

START X'lOOO' 
START 4096 
START 30 

START 



I 
Source Module 

-- --------~===-=---i 

FIRST START 

O The source statements that follow 
the START instruction are assembled 
into the first control section. 
If a CSECT instruction indicates 
the continuation of the first control 

• 
section, the source staterr.ents that 
follow this CSECT instruction are 
also assembled into the first control 
section. 

Any instruction that defines a new 

• 
or continued control section marks 
the end of the preceding control 
section or portion of a control 
section. The END instruction marks 
the end of the control section in 
effect. 

E3B -- THE CSECT INS!RUCTION 

Furpose 

FIRST 

The CSECT instruction allows you to initiate an executable 
control section or indicate the continuation of an 
executable control section. 

Specifications 

The CSECT instruction can be used anywhere in a source 
module after any source macro definitions that are 
specified. If it is used to initiate the first executable 
control section, it must not be preceded ty any instructicn 
that affects the location counter and thereby causes the 
first control section to be initiated. 

The format of the CSEC! instruction 
statement is shown in the figure 
to the right. 

Name 

Any Symbol 

OJ blank 

Operation 

CSECT 
_.-

CSECT 

END 

o 

CSECT 

Operand 

Not required 

I 

- -

Section E: Program Sectioning 119 



Page of GC33-4010-0 

Re .. -iscG September 29, 1972 

By n';L GN33-8148 

• • 
• 

The symbol in the name field, if 
specified, identifies the control 
section. If several CSEC! 
instructions within a source module 
have the same symbol in the name 
field, the first occurrence initiates 
the control section and the rest 
indicate the continuation of the 
control section. If the first 
control section is initiated by 
a START instruction, the symbol 
in the name field must be used to 
indicate any continuation of the 
first control section. 

NOTE: A CSECT instruction with 
a blank name field either initiates 
or indicates the continuation of 
the unnamed control section (see 
E2E) • 

The symbol in the naroe field 
• represents the address of the first 

tyte of the control section and 
has a length attribute value of 
1 • 

• 
The beginning of a control section 
is aligned on a doubleword boundary. 
However, the continuation of a 

• 
control section begins at the ~ 
available location in that control 
section. 

• The source statements that follow 
a CSECT instruction that either 
initiates or indicates the 
continuation of a control section 
are assembled into the object code 
of the control section identified 
by that CSECT instruction. 

NOTES: 

1. The end of a control section or 
portion of a control section is 
marked by: 

a. Any instruction that defines a 
new or continued control section 
or 

b. The END instruction. 

O()$2..t~~1.()¢!t#i()l'i;¢(;)u,n~~r·+~ .. res~t ·.tQ 
~~~·.()·~'a¢~i·· •• t*m bEr·····P9SIyS .. ·.·.·.·.·a$~eInbl~r 

120

enOQunte~s(a. ••........•.... ~,st~U,P~~8l)f.(TJle
?t.l .. Fl:le :r:f~.~ •. ~ •.. ··.·.·.j;~;us~a~~i$

c>rti·co~nt~l!'~~~tin<J$ 'wtienusin9
theOS1VS" ··assemb1er ••)

Locin
Hex

• 000

Source Module

FIRST START a

END

Source f,1odule Object Module

FIRST START a

END

E3C -- THE DSECT INSTRUCTION

Purpose

You can use the DSECT instruction
to initiate a dummy centrel section
or to indicate its continuation.

A dummy control secticn is a
reference control section that
allows you to describe the layout
of data in a storage area without
actually reserving any virtual
storage.

How to Use a Dummy Control Section
Loc
in

Source Modu!e Object Module

~he figure to the right illustrates Dec
a du~~ control secticn.

A dummy control section (dummy
section) allows you to write a

~ sequence of assembler language
statements to describe the layout of

•
unformatted data located elsewhere in
your program. The assembler produces
no object code for statements in a
dummy control section and it reserves
no storage for the dummy section.
Rather, the dummy section provides a
symbolic format that is empty of

•
data. However, the assembler assigns
location values to the symbols you
define in a dummy section, relative
to the beginning of that durr®y
section.

Therefore, to use a dummy section
you must:

~. Reserve a storage area for the
unformatted data

• Ensure that this data is loaded
into the area at execution time

• Ensure that the locations of
the symcols in the dumrry section
actually correspond to the locations
of the data being described

•• Establish the addressabili ty
of the dummy section in combination
with the storage area (see F1A) •

A You can then refer to the unformatted
V data symbolically by using the

symbols defined in the durrmy section.

FIRST START 0

~{LA lO,BUFFER
., US~N~MMY, lO

CLI KEY,C'X'

.I<a~~~~~~< •.•• ••· ..• ·.·~~~ •• · •• ···• •. ·· •• ·•··· ••.•• · •• :. ~*~~E;~00IJ.f
~2~~_1 ~~~Y ~~ECT C // ,.. •.•. : •...•.....•. 1". "--,t..."'_

CODE DS CL3 // -
NAME DS Ct20
ADDE DS //-cL20

4 4 ~ WAGES D§,./ CLlO
54 HRS 11S CL8
62 DEDD.eT DS CL6
68 P~Y DS CLl2 ~ ____________________________ J

END •

Section E: Program Sectioning 121

Specifications

The DSECT instruction identifies
the ceginning or continuation of
a dummy control section (dummy
section). One or more dummy sections
can be defined in a source module.

The DSECT instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
ce specified.

The format of the rSECT instruction
statement is given in the figure
to the right.

The symbol in the name field, if
specified, identifies the dummy
section. If several rSECT
instructions within a source module
have the same symbol in the name o field, the first occurrence ini tia tes
the dummy section and the rest

• indicate the continuation of the
dummy section.

NOTE: A DSECT instruction with
a blank name field either initiates
or indicates the continuation of
the unnamed dummy section.

The symcol in the name field
represents the first location in
the dummy section and has a length
attribute value of 1.

The location counter for a dummy

•
section is always set to an initial
value of O. However, the
continuation of a dummy section

• begins at the next available location
in that dummy section.

122

Name

Any Symbol
or blank

.il)()$

9~'~~i:Y
:SYt(I~<?r
Vi'i$lle
.Sy~.

Location in
Hex

DSECT

Operation Operand

Not required

DSECT

Source Module

FIRST START 0

END

O The source statements that follow
a DSECT instruction belong to the
dummy section identified by that
DSECT instruction.

NOTES:

i. The assembler language statements
that appear in a dummy control
section are not assembled into
object code.

2. When establishing the

•
addressabili ty of a dummy section,
the symbol in the name field of

•
the DSECT instruction or any symbol
defined in the dummy section can
be specified in a USING instruction.

3. A symbol defined in a dummy
section can be specified in an

•
address constant only if the symbol

. is paired with another symbol from
the same durrmy secticn, and if the
symbols have the opposite sign.

USING DUMMY1,10 or USING A,10 • •

SECOND CSECT

~
ADCON DC A (FROlv1-TO

Section E: Program Sectioning 123

E3~ THE COM INSTRUCTION

purpose

You can use the COM instruction
to initiate a common control section
or to indicate its continuation.
A common control section is a
reference control section that
allows you to reserve a storage
area that can be used by twe or
more source modules.

How to Use a Corrmon Centrel Section

The figure to the right illustrates
a common control sectien.

A common control section (common

O
section) allows you to describe
a common storage area in one or
more source modules.

When the separately assembled object

•
modules are linked as one program,
the required storage space is
reserved for the corrrren control
section. Thus, two or more modules
share the common area.

Only the storage area is provided;
the assembler does not assemble
the source statements that rrake
up a common control section into
object. code. You must previde the
data for the common area at execution
time.

• The assembler assigns locations
to the symbols you define in a
common section relative to the
beginning of that cerr-men section.

•
This allows you to refer symbolically
to the data that will be loaded

124

at execution time. Note that you
• must establish the addressability

of a common control section in every
source module in which it is
specified (see F1A). If you code
identical common sections in two
or more source modules, you can
communicate data symbolically between
these modules through this common
section.

NOTE: You can also code a common
control section in a source module
written in the FORTRAN language.
This allows you to communicate
between assembler language roodules
and FCRTRAN modules.

Loc
in
Dec

~o
60

~o
60

A

Source Modules

START 0

8{ L lO,=A(AREA)
USING AREA,lO • ST 3,SUM

B START 0

8{L 8,=A(AREA}
USING AREA,8 • L 3,SUM

END

Object Modules

B

•

Specifications

The COM instruction identifies the
beginning or continuation of a
common control section (common
section) •

One or more corr~cn sections can
be defined in a source module.

The COM instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
be specified.

The format of the COM instruction
statement is given in the figure
to the right.

NOTE: A COM instruction with a
blank name field either initiates
or indicates the continuation of
the unnamed common section.

The symbol in the name field
represents the address of the first
byte in the common section and has
a length attribute value of 1.

The location counter for a common
section is always set to an initial
value of O. However, the
continuation of a corrmon section
begins at the next availacle location
in that common secticn.

If a common section with the same
name (or unnamed] is specified in
two or more source modules, the 4Et amount of storage reserved for this
common section is equal to that
required by the longest common
section specified.

Name

Any Symbol

or blank

Location in
Decimal

Operation

COM

Source Modules

A START 0

B START 0 • 0 COM
0 DS CL80

80 DS CL240

?age of GC33-4010-1)

Revised September 29, 1972

By TNL GN33-8148

Operand

Not required

Reserved Storage
for common control
section XYZ when
modules A and B
are linkage edited

1200
bytes

•
Section E: Program Sectioning 125

O The source statements that follow
a CO~ instruction belong to the
common section identified by that
COM instruction.

NOTES:

1. The assembler language statements
that appear in a common control
section are not assembled into
object code.

2. When establishing the

e addressability of a common section.
the symbol in the name field of
the COM instruction or any symbol
defined in the common section can
be specified in a USING instruction •

. ~~~1i:·i(i~t.tui\COM· ,
..•....••..•. · ... · ... · ... · .. · .. ·•.. · ·•.... in ... · .•.....•.•. 5.··. t 1:.................. ." ' 0 ..•.... e i .b l. a n k .. , · ...•... Cl $:t~Ol, .defin llUllOns tionmllst.~

'· ••. · •. ·.·.··~Usf3'C1 .. Cistbeba~e addreS$iin-a
.. USING instruction.;

126

Source Module

FIRST START 0&
COMMON,ll • or USING A,ll USING

END

E4· EXt.#l;~~mm..,·
Q~

. only·

Purpose

An external dummy section is a reference control section
that allows you to describe storage areas for one or rrere
source modules, to be used as:

1. Work areas for each source module or

2e Communication areas between two or more source modules.

when the assembled object modules are linked and leaded,
you can dynamically allocate the storage required for all
your external dummy sections at one time froIT one source
module (for example, by using the GETMAIN macro
instruction). This is not only convenient but you save
space and prevent fragmentation of virtual storage.

To generate and use external dummy sections, you need to
specify a combination of the following:

1. The DXD or DSECT instruction

2. The Q-type address constant Source Module

3. The CXC instruction. FIRST START 0

O{~IAB=====D=XD====3D==~
DXD 2FL4

Generating an External rummy Section

I
An external dummy section is
generated when you specify a rxc
instruction or a DSEC~ instruction
in combination with a Q-type address

•
constant that contains the name
of the DSECT instruction.

S You use the Q-type address constant
to reserve storage for the offset
to the external dummy section whose
name is specified in the operand.
This offset is the distance in bytes
from the beginning of the area
allocated for all the external dummy
sections to the beginning of the
external durrmy section specified.
You can use this offset value to
address the external durrroy section.
The Q-type address constant is
described in G3M.

• I EXTbsECT

II
~~ ~~ i~
E3 DS lOR

I E4 DS 20F

I

G11
1

{ g~ ~~
QEXT DC

IDUMMY DSECT
Dl DS
D2 DS

F
2D

11

I

Area allocated to
contain external
dummy sections • offset to A

o

offset to
EXT

LJ
I Not an external

~------,fll dummy section

END .

Section E: Program Sectioning 127

How to Use External Lunny Section~

~o use an external dummy section, you rrust do the fcllcwi~g
(as illustrated in the figure telow) :

o Identify and define the external dUIrroy section. ~he
asserrbler will ccm~ute the length and alignrrent required.

4ItProvide a Q-type constant fcr each external durrmy section
defined.

Use the CXL instructicn tc reserve a fullword area intc

•
wt ;.ch the linkage editor or loader will insert the tctal
length of all the external durrrry secticns that are s~ecified
in the source modules of your program. ~he linkage editcr
coroputes this length froro the lengths of the individual
external durrroy sections supplied ty the asserrtler.

~Allocate a storage area using the com~uted total length.

4mtroad the address of the allocated area into a register
(for this exarrple, register 11). Note that register 11

ffUst contain this address throughout tr.e whole ~rcgrarr.

~Add, to the address in register 11, the offset into the
allocated area of the desired external dunny secticn.
The linkage editor inserts this offset into the fullword
area reserved by the a~propriate Q-type address ccnsta~t.

4ItEstatlish the addressatility ef the external durr~y section
in cerrbination with the portion of the allocated area
reserved fer the external durrrry section.

~yoU can now refer symtolically to the lecaticns in tbE
external durrrry secticn.

128

Note that the source statements in an external durrny sEcticn
are net asserrtled intc object cede. 7hus, at executien
time you rrust insert the data descrited into the area
reserved fer the external durrrry sections.

-I
B DSECT
ITEM DS
NO DS
SUIvl DS

TWO START

O{~R • USING

• BOFFS DC

ST

END

•

F
F
F

0
/

3,BOFFS
3,11
B,3 __ /

/ ,
Q(B) •

9,SUM

~/
II I
~I

::::81/
0/
/

Area to contain
external dummy

/

100
bytes

Boundary

200
bytes

Section E: Program Sectioning 129

£6 ~ .. Definmg anEXtemalDummygec1:ion
as

qnfy

E5A THE DXD INS~RUCTION

Purpose

~he DXD instruction allows you to
identify and define an external
dummy section.

Specifications

The DXD instruction defines an
external durrmy secticn. ~he DXD
instruction can be used anywhere
in a source module, after the ICTL
instruction or after any source
macro definitions that way be
specified.

NOTE: The DSECT instructicn also
defines an external dummy section,
but only if the symbol in the name
field appears in a Q-type address
constant in the same source module.
Otherwise, a DSEC~ instruction
defines a dummy section.

The format of the tXt instruction
is given in the figure to the right.

o 'Ihe symbol in the name field must
appear in the operand of a Q-type
address constant. This symtol
represents the address of the first
byte of the external dummy section
defined and has a length attribute
value of 1 •

• The subfields in the cEerand field
are specified in the same way as

130

in the DS instruction. ~he assembler
computes the amount of storage and
the alignment required for an
external dummy section from the
area specified in the operand field.

The linkage editor or loader uses
the inforroation provided by the
assembler to compute the total
length of storage required for all
external dummy sections specified
in a program.

NOTE: If two or more external dummy
sections for different source modules
have the same name, the linkage
editor uses the most restrictive
alignment and the largest section
to compute the total length.

Name

A symbol

Example:

A
l
AOFFSET

Operation

DXD

DXD

DC

Operand

Same format as the operand
of a OS instruction

IOFL3

8.
Q(A)

ESE -- THE CXD INSTRUCTION

Purpose

The CXD instruction allows you to
reserve a fullword area in storage.
The linkage editor or loader will
insert into this area the total
length of all external dummy sections
specified in the source modules
that are assembled and linked
together into one ~rcgram~

Specifications

The CXD instruction reserves a
fullword area in storage, and it
can appear in one or more of the
source modules assembled and combined
by the linkage editor into one
program.

The format of the ext instruction
statement is given in the figure
to the right.

The symbol in the name field, if

O specified, represents the address
of a fullword area aligned on a
fullword boundary. This symbol
has a length attribute value of

•
4. The linkage editor or loader
inserts into this area the total
length of storage required for all
the external dummy sections specified
in a program.

Name

Asymboi
or blank

Example:

LENGTH

Operation

CXD

Operand

Not required

Object Code
in Hex

I

O I 4 bytes
4 ~I --..

CXD I XXXXXXXX I

.~
Section E: Program Sectioning 131

This page left blank intentionally.

Section F: Addressing

This section describes the techniques and instructions
that allow you to use symbolic addresses when referring
to data. You can address data that is defined within the
same source module or data that is defined in another
source module. Symbolic addresses are more rreaningful
and easier to use than the oorresponding object code
addresses required for machine instructions. Also, the
asserotler can convert the symbolic addresses you specify
into their object code form.

Fl - Addressing Within Source Modules: Establishing Addressability

By establishing the address ability
of a control section, you can refer
to the symbolic addresses defined
in it in the operands of rrachine
instructions. This is much easier
than coding the addresses in the
tase-displacement ferm required
by the Systemj370. The symbolic
addresses you code in the instruction

O operands are called implicit
addresses, and the addresses in
the base-displacement form are

• called explicit addresses, both
of which are fully described in
:eSB.

The assembler will convert these
implicit addresses for you into
the explicit addresses required
for the assembled object code of
the machine instruction. However,
you must supply the assembler with:

• 1. A base address from which it
can compute displaceroents to the

• addresses wi thin a control section
and

•
2. A base register to hold this
tase address.

.--~ o /FIRST START 0

10 ,ADDRESS

I
LA

Equivalent ~

I

I • 40 11DDRESS DC C 'SAMPLE ,

END

/411 A/ 0 rco401 ,

• \

Section F: Addressing 133

How to Establish Addressability
Location Source Module

To establish the addressability
of a control section, you must,
at coding time:

O. Specify a base address from which
the assembler can corofute
displacements

•
• Assign a base register to contain
this base address

•• Write the instruction that loads
the base register with the base
address.

At assembly time, the implicit
addresses you code are converted

•
into their eXFlicit base-displaceroent
formi then, they are assenbled intc
the object code of the machine
instructicns in which they have
been coded •

•
At execution tine, the base address
is loaded into the base register
and should renain there thrcughcut
the execution of your ~rogram.

FIA - THE USING INSTRUCTION

Purpose

in Hex

FIRST START
BALR
USING

BEGIN

ment

22 CONADR DC

L

END

The USING instruction allows you to specify a base address
and assign one or more base registers. If you also load
the base register with the base address, you have
established addressability in a control section.

134

To use the USING instruction correctly you should:

1. I<now which locations in a control section are Irade
addressable by the USING instruction

2. Know where in a source module you can use these
established addresses as imflicit addresses in instruction
operands.

0

Object Code 4
in Hex

BE~IN ,11

•
F'22'

c

The Range of a USING Instruction

______ 'The ra_nge o~ USING inst_rucJ:_inD __
{called the USING ranqe} is the

0 4-,096 bytes beginning -at the ~
address specified in the USING
instruction. Addresses that lie
within the USING range can be

• converted froIT their implicit to
their explicit form; those outside

• the USING range cannot be converted.

'The USING range does not depend
upon the position of the USING
instruction in the source module;
rather, it depends upon the location
of the base address specified in
the USING instruction.

NOTE: The USING range is the range
of addresses in a control section

•
that is associated with the base

• register specified in the USING
lnstruction. If the USING
instruction assigns ITore than one
base register, the composite USING
range is the sum of the USING ranges
that would apply if the base
registers were specified in separate
USING instructions.

The Domain of a USING Instruction

'The domain of a USING instruction
(called the USING domain) begins

where the USING instruction appears
in a source module and continues
to the end of the source module.
(Exceptions are discussed later
in this subsection, under NOTES
ABOUT THE USING DOMAIN.) The

~assembler converts implicit address
references into their explicit form:

1. If the address reference appears
in the domain of a USING instruction
and

2~ If the addresses referred to
lie within the range of the same
USING instruction.

~ The assembler does not convert
address references that are outside
the USING domain. The USING domain
depends on the position of the USING
instruction in the source module
after conditional asserrbly, if any,
has been performed.

Source Module I
FIRST START

L 5 , INS IDE.';:
~--.--

USING BASADR,BASREG ~

L

L

• OUTSIDE DS

END

Section F: Addressing 135

This page left blank intentionally.

How to Use the USING Instruction

Y-6tl--sOOu±d---spec-i-fy-y-ou-r---B-Sl-NG---­
instructions so that:

1. All the addresses in each control
section lie within a USING range
and

2. All the references for these
addresses lie within the
corresponding USING domain.

You should therefore place all USING
instructions at the beginning of
the source module and specify a
base address in each USING
instruction that lies at the
beginning of each control section.

FOR EXECUTABLE CONTROL SECTIONS:
The figure to the right illustrates
a way of establishing the
addressability of an executable
control section (defined by a START
or CSECT instruction). You specify o a base address and assign a base
register in the USING instruction •

• At execution time the base register
is loaded with the correct base
address.

Note that for this particular
combination of the BALR and USING
instructions, you should code them
exactly as shown in the figure to
the right.

Location
in Decimal

USING
range

o
a
2

p

~97

Source Module

FIRST START
BALR
USING

BEGIN L 3
A 3
ST 3

A DS
B DS
C DS

END

Section F: Addressing 137

If a control section is longer than
assign more than one base register.
establish the addressability of the
with one USING instruction as shown
opposite page.

4096 bytes, you must
This allows you te

entire control section
in the figure on the

The assembler assumes that the base registers that you

O
assign contain the correct base addresses. The address
of HERE is loaded into the first base register. ~he
addresses HERE+4096 and HERE+8192 are loaded into the
second and third base registers respectively.

~Note that you must define the address, EASES, within the
first part of the total USING range, that is, the addresses
covered by base register 9. This is because the explicit

~address converted from the implicit address reference,
is assembled into the LM instruction. At execution time,
the assembled address must have a base register which
already contains a base address at this point; the only
base register loaded with its base address is register
9.

O The addressability of addresses in the USING range covered
, by the second and third base registers is not completely

established until after the LM instruction.

138

NOTE: Addresses specified in address constants (exce~t
the S-type) are net cenverted to their base-displacement
form.

USING
range

I LONG

:0
~ERE

.BASES
BEGIN

9

START
BALR
USING
LM
B
DC
DS

HERE+4095

HERE+4096

HERE+8192

14---1 HERE+12187

Source Module

-----0---------------+---11-

I
HERE+8192)1

END

Section F: Addressing 139

FOR REFERENCE CONTROL SECTIONS:
The figure to the right illustrates
how to estatlish the addressability
of a dummy section. A dummy section
is a reference control section
defined by the DSEC~ instructions.
Examples of establishing
address ability for the other
reference control sections are given
in E3C and E4.

• As the tase address, yeu sheuld
specify the address of the first
tyte of the durrrry sectien, se that
all its addresses lie within the

• I=ertinent USING range.

•
The address you load into the base
register must be the address of
the storage area being formatted
by the dummy section.

Note that the assembler assumes
that you are referring to the

• symbolic addresses of the dummy
section, and it computes
displacements accordingly. However,
at execution time, the assembled

•
addresses refer to the location.
of real data in the storage area.

140

Source Module

FIRST START 0
BALR 12,0
USING >''<,12
LA 11,INPUT--+-K.
~SING /INDATA,ll

:8
INPUT DS

L

INDATA DSECT
A DS

F DS

END

Specifications for the USING Instruction

'l'fie OSI NG 1nstructl.on must fe coded
as shown in the figure to the right.

The operand, EASE, specifies a base
address, which can be a relocatable
or absolute expression. !he value
of the expression must lie between
-2 2 '" and 2 2 "'-1.

The remaining operands specify from
1 to 16 base registers. !he operands
must be absolute expressions whose
values lie in the range 0 through
15=

•
The ass embler assuroes that the first
base register (EASREG1) contains

A the base address BASE at executicn
.., time. If present, the subsequent

operands, BASREG2, BASREG3, ••• ,
represent registers that the
assembler assumes will contain the
address values, EASE+4096,
BASE+8192, ••• , respectively.

NOTES ABOUT THE USING DOMAIN: The
domain of a USING instruction
continues until the end of a source
module except when:

•• A subsequent I:ROP instruction
specifies the same base register
or registers assigned by the
preceding USING instruction.

•• A subsequent USING instruction
specifies the same register or
registers assigned by the preceding
USING instruction.

Name Operation Operand

Sequence USING
symbol or

BASE, BASREGl G BASEREG2] •• blank

Example:

First and
second
USING
range

Third
USING
range

USING BASE,9,lO,11

Logical Equivalent

USING
USING
USING

BASE,9
BASE+4096,lO
BASE+8192,11

Source Module

BREAK START o

USING

BASEl DS

• DROP

BASE2 DS

USING

.USING BASE2~~~~

END

Third
USING
domain

Section F: Addressing 141

NOTES AEOU! !EE USING RANGE: !wc
USI~G ranges coincide when the same
tase address is s~ecified in twc
different USI~G instructions, even
though the tase registers used are
different. When two USING ranges
coincide, tte assentler uses the o higher numbered register for
asserrtling the addresses within

• the ccmrrcn USING range. In the
example, this a~~l~es cnly tc the

~implicit addresses that a~pear after
the second USING instruction. In
effect, the first USI~G domain is

•
terminated after the seccnd USING
instructicn.

142

common

USING

range

•

Source Module

CONFLICT START 0

USING

A DS

B DS

USING •
(A+4095)

L •
END

~wo USI~G ranges overlap when the
tase address ef cne USING instructicn
lies ~ithin the range of another

~ USING instructicn. ~hen twc ranges
overlap, the assembler computes

4It displacements frcrr the base address
that gives the smallest displacement;

•
it uses the ccrres~ending ~ase
register when it asserntles the
addresses within the range everlaf •

•
~his apflies only to implicit
addresses ttat affear after the
second USING instruction.

EASE REGISTERS FOR AESOLU~E
ADLRESSES: Atsclute addresses used
in a source medule rrust alse be
rrade addressable. Atsolute addresses
require a base register ether than
the base register assigned to
relocatable addresses (as described
above) •

However, the asserrtler does net
~ need a USING instruction to convert
~ absolute irrElicit addresses in the

range 0 through 4,095 to their
A explicit forrr. 'Ihe asserrtler uses
~register 0 as a base register.

•
Lisplacerr:ents are ccrrfuted frcrr
the base address 0, because the
asserrtler assumes that a tase cr
inde~ of 0 imflies that a zero
quantity is te be used in ferrring
the address, regardless of the

•
cont:nts cf r:gister 0 •. ~he ~

· dorra1n for th1s autbmat1c base
register assignzr-ent is the whcl-e
ef a source module.

second
USING
range

Source Module

OVERLAP START o

L

! (RANGE2+4095)

END

Source Module Object Code
in Hex

ABS START

USING
range
0-4095

LA

END

/ • •

Section F: Addressing 143

Source Module

ABS START

LA

LA

o

For at solute implicit addresses
greater than 4095, a USING
instruction must be specified
according tc the fcllcwing:

~. with a base address representing
an atsolute expressicn, and

USING
range
4096-8191

US~NG.4096'

•• With a base register that has
not been assigned by a USING
instruction iT; which a relocatable
base address is specified •

LA

• This tase reg ister rrust be leaded
~ith the base address specified.

END

FlB - THE DROP INSTRUCTION

144

Purpose

You can use the tRCP instruction to indicate to the
assembler that one or more registers are no longer available
as base registers. This allows you:

1. To free tase registers for other programming purposes

2. To ensure that the assembler uses the base register
you wish in a particular coding situation, for exarople,
when two USING ranges overlap or coincide (as described
above in F1A, Notes about the USING range).

Object Code
in Hex

-4096

1024

o

•

Specifications

Up to 16 operands can be specified.
They must be absolute expressions
whose values represent the general
registers 0 through 15. A tROP
instruction with a blank operand
field causes all currently active
base registers assigned by USING
instructions to be dropped.

After a DROP instruction, the
assembler will not use the registers
specified in a DROP instruction
as base registers. A register made
unavailable as a base register by
a DROP instruction can be reassigned
as a base register by a subsequent
USING instruction.

Sequence
symbol
or blank

USING
range

DROP BASREGI [BASREG~ ...
or blank

Source Module

DROPS START o

USING BASE,IO

BASE DS

END

.., "
restored
USING
domain

Register 10
unavailable
as a base
register

Section F: Addressing 145

o

• • •

146

A [ROP instructicn is nct needed:

• If the base address is being
changed ty a new USING instructicn,
and the same base register is
assigned. Ecwever, the new tase
address must be loaded into the
tase register. Ncte that the
implicit address "E" lies within
the first USING dcrrain, and that
the base address to which it refers
lies within tte first USING range.

• At the end of a source module.

first
USING
range

second
USING
range

CHANGE

A

Source Module

START

USING

DS

END

o

A,9

first
USING
domain

~·.·j,~22 .•
B,9

second
USING
domain

F2 - Addressing Between Source Modules: Symbolic Linkage

•

This section describes sYff~clic
linkage, that is, using symtols
to communicate between different
source modules that are separately
assembled and then linked together
ty the linkage editor.

How to Establish Symbolic IJinkage

You must establish symbolic linkage
between source modules so that you
can refer or branch tc symbolic
locations defined in the control
sections of external source modules.
To establish symbolic linkage with
an external source module you must
do the following:

1. In the current source module,
you must identify the symbols that
are not defined in that source
module, if you wish to use them
in instruction operands. These
symbols are called external symbols,
tecause they are defined in another
(external) source module. You
identify external symbols in the
EXTRN or WXTRN instruction or the
V-type address constant.

2. In the external source modules,
you must identify the symbols that
are defined in those source modules
and to which you refer from the

•
o~rrent source module. These symbols
are called entry symbols tecause
they provide points of entry to
a control section in a source module.
You identify entry symbols with
the ENTRY instruction.

3. You must provide the A-type or
y-type address constants needed
by the assembler tc reserve storage
for the addresses represented by
the external symbols.

The assembler places information
about entry and external symbols
in the External Symbol Cictionary.
The linkage editor uses this

•
informa tion to resolve the linkaae
addresses identified by the entry
and external symbols.

Current Source
Module

A START I

Linked Object
Modules

tfB1

'Cl ~ A

B1

B1

8\ C START
\

1\1

Section F: Addressing 147

~o REFER ~C EXTERNAL rATA: You

•
should use the EX'IRN instructicn
to identify the external symcol
that represents data in an external
source module, if you wish to refer
to this data syrr.tclically.

For example, you can identify the

•
address of a data area as an external
symtol and load the address constant
specifying this symbol into a case
register. ~hen, ycu use this tase
register when establishing the

• addressatility of a dunny sect10n
that formats this external data.
You can new refer syncclically tc
the data that the external area
contains.

You nust also identify, in the
source module that contains the

•
data area, the address of the da ta

· as an entry symbol.

148

~----------------~GI~ Source Modules Linked
Object Modu les

CURRENT START 0 •
EXTRN BUFFER

8{L lO,ADBUFF
USING DATA,IO

• CURRENT
ADBUFF DC A (BUFFER)

" D~TA DSECT .
KEY"" DS C
CODE "'- DS CL3
NAME DS CL20
ADDR DS" '" CL2 0
WAGES DS CLIO
HRS DS cba
DEDUCT DS CL6 "'- ~
PAY DS CLl2 " "'-

END

OTHER

START o-'-'-, ____ '-~
ENTRY BUFFER l---------

• I "~~
""'+'-......... ~~~.l'4

I

laTHER

END

~o BRANCH ~C AN EXTERNAL ArrRESS:
41tYOU should use tbe V-tYfe address

constant to i-dent±-fy the external
symtol that represents the address
in an external source module to
whicb you wish tc tranch. Fer the
specifications of the v-type address
constant, see G3L.

For example, you can lcad intc a 4It register the v-type address constant
that identifies tbe external syrrbcl.

•
Using this register, you can then
tranch to the external address
represented by the symtol.

If the syrrtel is the narre entry
cf a START or CSECT instruction
in the other source rrcdule, and
thus names an executatle control

•
section, it is autcrratically

· identified as an entry symbOl.
If the syrrtel refresents an address
in the middle of a control section,

•
you II'ust, bcwever, identify it as.
an entry syrobol for the external
source rrodule.

You can alsc use a comtination of
an EXTRN instructicn tc identify
and an A-tYfe address constant to
contain the external tranch address.
However, the V-tyfe address constant
is more ccnvenient tecause:

1. Ycu do net have to use an EXTRN
instructicn.

2. The syrr.bcl identified is not
considered as defined in the source
module and can te used as the narre
entry for any other statement ~n
the same source rredule.

Source Modules

1 CURRENT START 0

L 3,EXTADR

.B~ 3

• • EXTADR DC V(OTHER)

END

GaTHER START 0

I
ENTRY SUBRTN8

I I

I

SUBRTN DS OH

I

I END

-1----­
I

I

Section F: Addressing 149

F2A - THE E~TRY INSTRUCTICN

Purpose

The entry instruction allows you
to identify symtels defined in a
source module so that they can te
referred to in anether seurce rredule.
These symbols are entry symtols.

Specificatiens

The ferrrat ef the ENTRY instructien
is shewn in the figure to the right.

ENTRY SY~ECIS: The fcllo~ing applies
to the entry syrrtels identified
in the operand field:

• They must te valid syrrtels.

• They must be defined in an
• ex~cutable control section.

• They must not te defined in a
• dummy contrel secticn, a corrrron

contrel section, or an external
contrel section.

• The length attribute value cf
entry symtols is the sarre as the
length attribute value of the symtol
at its point ef definition.

A syrrtol used as the name entry
of a START cr CSECT instruction
is also autematically censidered

• an entry syrrtel and dces not have
to be identified by an ENTRY
instruction.

The assembler lists each entry
symtol of a scurce rrcdule in an

• External Syrrbol Cictionary along
wlth entries for external syrrtcls,
corrmon control sections, and external
contrel sections. The maximum
numter of External Syrrtcl Dictionary
entries for each source module is
399.

00& ThemaxinnJIIIriumber of. external
symbol .dictlol)(:1r:y- entries·· . {contrcl
~ec'1::;cn~ •. · .<3.nCl.~xtern~~ i sl'1llbo1s}
(:111()~:E;~.i~.$;~~ •..... 'Ille~,ax~~,~J[\
~ll¢~~bleJllllll~~r· of entrY .~ytntols
ide~:tifi e<J .tytheEN'I~!• instructi cn.
15.20.'0.

• NOTE: A syrrtcl identified in an
ENTRY instruction counts towards
~rraxirrurr, even theugh it rray
not be used in the name field of

150

a staterr.ent in the seurce medule
nor censtitute a valid entry point.

Name Operation

A sequence ENTRY
symbol or
blank

Source Module

ENTRY

Operand

One or more
relocatable
symbols separated
by commas

Entry in External.
Symbol Dictionary

~ ___________________________ rS_y_m_b_O_I~~T_y_pe __ C_Od __ e

FIRST

o
SUBRTN

DUMMY

•

START a FIRST

ENTRY SUBRTN,INVALID SUBRTN
INVALID

DS OH •
SD

LD
LD

DSECT I DUMMY I none

I I
INVALID DS F I INVALID

END l

F2B - THE EXTRN INSTRUCTICN

Purpose

The EXTRN instruction allows you
to identify symtels referred te
in a source module tut defined in
another seurce rredule. These syrrbcls
are external symbols.

Specificatiens

The fermat cf the EXTRN instructien
staterrent is shown in the figure
to the right.

EXTERNAL SYMEOLS: The follewing
applies to the external symtols
identified in the cferand field:

O. They must te valid symtols.

• They must not be used as the
name entry ef a scurce staterrent
in the source module in which they
are identified.

• They have a length attritute
value of 1.

•
• T'hey must te used alene and
cannct be paired when used in an
expression (fer fairing ef terrrs
see C6) •

The asserrtler lists each external

•
symbel identified in a source module
in the External Syrrtcl Cicticnary
along with entries for entry symtols,
commen contrel secticns, and external
contrcl sectiens. The maximum
numter ef External Syrrtcl Dictienary
entries for each source module is
399.

·om1h~lli~J<i~\lm .. p~mb~; ... of~~ternal
~Y~P{J;tg~~~i ()nary..ent;r: ~E;.s. .(cc:ptr:pl

·····~~ct,i~ms··a:p?: .•••. · .Ea~~t:nal~ytntols)
~l;t()~eC! i~ ··'51.1. '.' Th e . Ita.x iltUlr
al1p'W.ab~f!number 'of .' entrysYJIlbol~
identified l::y the EN-:fRY instructicn
is2;O()i

NOTE: ~hE syrrcol sfecified in a
. v-tyt:"e address'cens-t-a-nt--is imf)lici t.ly

• identified as an external syrrtcl
and ccunts tOwards this maximum.

EXTRN

Name Operation Operand

Sequence EXTRN One or more relocatable
symbol symbols separated by
or blank commas

Source Modules Entry in External.
Symbol Dictionary

Symbol Type Code

CURRENT START a CURRENT SD

EXTRN OTHER OTHER ER

· • L 3,EXTAD
BR 3

·
L 4,ADSUBRT

I I BR 4

· • ISUBRTN

I
EXTAD DC A(OTHER) I ADSUBRT DC v (SUBRTN) ER

· e I
END I

I I

OTHER START a OTHER SD

ENTRY SUBRTN SUBRTN LD

·

I
I I

SUBRTN DS OH
I I · I I I

.. - --I 1 _.
END I I

Section F: Addressing 151

F2C - THE WXTRN INSTRUCTICN

Purpose

The WXTRN instruction allows you
to identify sym~cls referred tc
in a source module but defined in
another scurce ncdule.

The ~XTR6 instruction differs from
the EXTRN instructicn as follc~s:

~he EXTRN instruction causes the
linkage editor to rrake an autorratic
search of libraries to find the
module that ccntains the external
symbcls that you identify in its
operand field. If tr:e rrodule is
found, linkage addresses are
resolved; then the rrcdule is linked
to your module, which contains the
EXTR~ instruction.

~he ~XTRN instructicn su~~resses
this autcmatic search cf li~raries.
The linkage editor will only resolve
the linkage addresses if the external
symbcls that you identify in the
WXTRN operand field are defined:

1. In a module that is linked and
loaded along with the cbject rrcdule
asserrbled fro~ your source module
or

2. In a module brought in from a
library due tc the ~resence cf an
EX~R~ instruction in another module
linked and loaded with yours.

Specifications

The format cf the WX~RN instructicn
staterr.ent is shown in the figure
to the right.

EXTERNAL SYMEOLS: The external
• symbols identified by a wXTRN

instruction have the sarre ~rc~erties
as the external symbols identified

• by the EXTRN instructicn. However,
the type code assigned to these
external syrrtcls differs.

~O~E: If a symbol, specified in
~ a V-type address constant, is also

identified by a wXTRN instruction
in the sane scurce rrcdule, it is
assigned the same type code as the
symtol in the WXTRN instructicn.

If an external symbol is identified
ty both an EXTRN and WXTRN
instruction in the same source

•
module, the first declaration takes

I Erecedence, and subsequent
declarations are flagged with warning
messages.

152

WXTRN

Name Operation Operand

Sequence WXTRN One or more relocatable
symbol symbols separated by
or blank commas

Source Module. Entry in External
Symbol Dictionary

Symbol Type Code

FIRST START 0 FIRST SD

8 EX:RN OUT,A--e OUT ER
, '~ -- :p. ER

8WXTRN WOUT,~ WOUT WX
..,.".WARNING ...

• VCON DC V(WOUT) WOUT WX .

END

Section G: Symbol and Data Definition

This section describes the assemcly time facilities which
you can use to:

1. Assign values to symbols

2. Define constants and storage areas

3. Define channel command words.

By assigning an absolute value to a symbol and then using
that symbol to represent, for example, a register or a
length, you can code machine instructions entirely in
symbolic form.

Gl - Establishing Symbolic Representation

o •
You define symbols tc be used as
elements in your programs. This
symtolic representaticn is superior
to numeric representation because:

• You can give meaningful names
to the elements;

• You can debug a program more
easily, because the symbols are
cross-referenced to where they are
defined and used in your program.
The cross-referenced statement
numbers containing the symbols are
printed in your assembly listing.

Source Module

• • •

• You can maintain a proqram more
easily, because you can change a
symbolic value in one place and
its value will be changed throughout
a program.

Some symbols represent absolute
values, while others represent
relocatable address values. The
relocatable addresses are of:

instructions

o constants

o storage areas.

You can use these defined symbols
in the operand fields of instruction
statements to refer to the

• instructions, constants, or areas
represented by the symbol. . - ..

FIRST START

·
DATAREG EQU 10
EIGHTY EQU 80

• TW040 EQU 240
BASREG EQU 12

• RELOC EQU *
· • BALR 12,0 • USING *,BASREG

·
B

INSTR _____ '. · • INSTR MVC TO'FROM~ ,

L DATAREG,DATACON

· • DATACON DC F'3' I

I • TO DS CL(EIGHTY) I

FROM DS CL{TW040)

· · END

Section G: Symbol and Data Definition 153

Assigning Values

You can create symbols and assign
them absolute or relocatable values
anywhere in a source module with
an EQU instruction (see G2A). You
can use these symbols instead of
the numeric value they represent
in the operand of an instruction.

Defining and Naming Data

DATA CONSTANTS: You can define
a data constant at assembly time
that will be used by the machine
instructions in their operations
at execution ti.me. The three steps
for creating a data constant and
introducing it into your program
in symbolic form are:

O. define the data

•• provide a label for the data

•• refer to the data by its label.

•
The symbol used as a label represents

· the address of the ccnstant; it
is not to be confused with the

•
assembled ol:ject code of the actual
constant.

Defining data constants is discussed
in G3.

LITERALS: You can also define data
at its point of reference in the
operand of a rrachine instruction

~ by specifying a literal.

Literal constants are discussed
in G3C.

STORAGE AREAS: You rrust usually
reserve space in virtual storage
at assembly time for insertion and
manipulation of data at execution
time. The three steps for reserving
virtual storage and using it in
your prograro are:

o. define the space

8. provide a label for the space

e. refer to the space by its label.

154

Cefining storage areas is discussed
in G3N.

Source Code Object Code

• in Hex

Equivalent {:
5,LABEL IOOOOOOCAI

5,=F'202'
"-"'""

0

.LABEL • DC F'202' -JOOOOOOOCA
"-"'"" , ,

0 • •

• ST 5,SPACE

DS
o

F .SPACE

CHANNEL COM~AND WORDS: When you
define a channel command word at
assembly time you create a command
for aainp~t __ Qr_Quj;~t __ o-¥-e_~atiOl'L __
to be performed at execution time.
You should:

• define the channel command word

• provide a label fer the word.

Channel corrrrand words are discussed
in subsection G3C.

G2 -- Defining Symbols

G2A -- 'lEE E~U INS'IFUC'I'ION

Purpose

'Ihe E~U instruction allows you to
assign arsolute or relecatable
values to symbols. You can use
it for the following furFeses:

o 1. To assign single a1:solute values
to syrr,1:ols

8 2. '10 assign the values of previously
defined syrrtols or eXfressiens tc
new symbols, thus allowing you to
use different rnnerrenics fer different
purpeses.

~3. To comFute eXFressicns whcse
values are unknown at codinq time
or difficult to calculate. -'Ihe

•
value of the expression is then

I assigned to a syrr1:el.

INSTR BALR

• • .--____ ~ ABS EQU X' A2 1

HEXA2

BEGIN

EQU
ABS]

INSTR •

8 EXPR EQU ,A- (B+C) /33-0

•

Section G: Symbol and Data Definition 155

Specifications

The EQU instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
be specified. Note, however, that
the EQU instruction can initiate
an unnamed control section (private
code) if it is specified before
the first control section (initiated
by a START or CSECT instruction).

The format of the EQU instruction
statement is given in the figure
to the right.

Expression 1 represents a value. It
must always be specified and can have
a relocatable or absolute value. The
assembler carries this value as a
signed four-byte (32-bit) number:
all four bytes are printed in the
program listings opposite the symbol.

os ExpJ:':ess.ion·. 2r~presentsa. 1~p.9'~h,
only attl:";ibU te..It is option~l ; but, f~

~p~cifted, •. itmu$t haveanat))s81ut~
value.intJ::l,eratlgeof0th.rou<.;h
6~~53S .•... EltP~E:l~siolf·3ffapref3ent$..••. (;i

156

i:,ype at, tripu .. te •... It ·is optiotl~l,.~ut..,
~Ctft~dust f"'d~ftffl;j;~g
tlj;~:Q.L~....Er·i 'of'O
gh,/~~5.~

Any symbols appearing in these three
expressions must have been previously
defined.

EXPRESSION 1 (VALUE): The assembler
assigns the relocatable or absolute
value of expression 1 to the symbol
in the name field at assembly time.

Name Operation

An ordinary EQU
symbol or
a variable
symbol

Operand

4 options:

I ndicates the
absence of
Expression 2

EQU

If expression 2 is omitted, the assembler also assigns
a length attribute value to the symbol in the name field
according to the length attribute value of the leftmost
(or only) term of expression 1. The length attribute value
(described in C4C) thus assigned is as follows (see figure

on following page) :

1. If the leftmost term is a lccation ccunter reference
(*), a self-defining term or a symtol length attritute

~value reference, the length attribute value is 1. Note
that this also applies if the leftmost terrr is a syrrtcl
that is equated tc any cf these values.

2. If the leftmost term is a symbol that is used ~n the name
field of a DC or US instruction, the length attr~bute value

•
is equal to the implicit or explicit length of the first (or
only) constant specified in the DC or DS operand tield.

3. If the leftmost term is a symbol that is used in the
name field of a machine instruction, the length attribute

~value is equal to the length of the assembled instructione

4. Symbols that name assembler instructions, except the DC
and DS instructions, have a length attribute value of one.

O
However, the name of a CCW instruction has a length

· attribute value of eight.

NOTE: The length attribute value assigned in cases 2-4 only

8 applies to the assembly-time value of the attribute. Its
value at pre-assembly time, during conditional assembly

I processing, ~s always 1.

Further, if expression 3 is omitted, the asserrtler assigns
a type attritute value cf nUn tc the syrrtcl in the narre
field.

Section G: Symbol and Data Definition 157

Value I
assigned I to Source Module Length Attribute Value

symbol assigned to symbol

is: in name field:

SECTA START 0 At Assembly Time At Pre-assembly Time

· • 0
RR LR 3,4
RX A 3,FULL
SS MVC TO,FROM

·
FULL DC F'33'
AREA DS XL2000
TO DS CL240
FROM DS CL80

·
ADCONS DC ALI (A) ,AL2(B) ,AL3(C)

·
ADCCW CCW 2,READER,X'48' ,80

·
Absolute A EQU X'FF' 1 1
Absolute B EQU L'FROM 0 1 1
Relocatable C EQU *+4 1 1
Absolute D EQU A*lO 1 1

Relocatable E EQU FULL j. 4 1
Relocatable F EQU AREA+IOOO 2000

I
1

Relocatable G EQU TO 240 1
Absolute H EQU FROM-TO 80 1
Relocatable I EQU ADCONS 1 1

Relocatable J EQU RR Ie 2 1
Relocatable K EQU RX 4 1
Relocatable L EQU SS 6 1

Relocatable M EQU SECTA 1 1

Relocatable N EQU ADCCW • 8 1
I

158

•
value implicitly

If expression 2 is a self-defining term, the assembler also
assigns the length attribute value to the symbol at
pre-assembly time (during conditional assembly processing) •

If~llel"a~···"~;"'~""'i~·'····'~tl.""lmllil"sl,., ~lellallls,lelllfl"_'ell.~n~l.';in~;'g!;:;:~i;f'~"el~r;i~~ml.~~~T~h~le~lai~s~s;e·>;m~~b· i:r

•
"assigns its EBCDIC value as a type attribute value to the
symbol in the name field. This value overrides the normal
type attribute value implicitly assigned from expression 1.
Note that the type attribute value is the EBCDIC character

~ equivalent of the value of expression 3.

Value Source Module Length Attribute Type Attribute
assigned Value assigned Value assigned

At TAt Pre-

I
I Assembly I assembly
Time Time

I "H<S'r START
I Ie ·
12000 2000 AREA DS XL2000 x

, · Implicit I I
SDT EQU X'FF ' Attribute 1 1 U

· Values
1 1 U

ASTERISK EQU *

Value of } A EQU AREA,1000 e{ 1000 1000 U
AREA

255 B EQU SDT,4 4 4 U
Value of }
Location C EQU ASTERISK, 4 4 4 U
Counter at
ASTERISK

D EQU AREA"C 'F I 1200~ I 1
1 ~}. E EQU SDT, ,c I N I 1

F EQU ASTERISK, ,C I A I 1 I 1

G EQU AREA,1000,C ' 1' 1000 1000 1
H EQU SDT,4,C ' F' 4 4 F
I EQU ASTERISK,4,C ' A' 4 4 A

AREA,lOO ,l~e./
V-- ~D~ ""F J EQD 100 I 100

Section G: Symbol and Data Definition 159

160

using Preassembly Values

You can use the preassembly values assigned by the assembler
in conditional assembly processing.

If only expression 1 is specified, the assembler assigns a
preassembly value of 1 to the length attribute and a
preassembly value of U to the type attribute of the symbol.
These values can be used in conditional assembly (although
references to the length attribute of the symbol will be
flagged). The absolute or relocatable value of the symbol,
however, is not assigned until assembly, and thus may not be
used at preassembly.

THE SYMECL IN THE NAME FIEL[: The asserrtler assigns a~
absolute cr relccatatle value~ a length attritute valuE,
and a ty~e attritute value to the symbol in the name field.

The absolute or relocatable value of the syrntol is assigned
at asserntly time, and is therefore not available for
conditional assembly processing at pre-asserr:tly tirre.

G3 - Defining Data

This section descrites the [C, [5, and CCW instructicns;
these instructions are used to define constants, reserve
storage and specify the contents of channel corrrrand wcrds
respectively. You can also frcvide a latel for these
instructions and then refer to the data syrrJ:clically in
the oferands of rrachine and asserrbler instructions. 1his
data is generated and storage is reserved at asserrtly tirre,
and used by the machine instructions at execution tirre.

Section G: Symbol and Data Definition 161

G3A -- THE CC INSTRUCTION

Purpose

You specify the DC instruction to
define the data constants you need
for program execution. The CC
instruction causes the assembler
to generate the binary representation
of the data constant you specify,
into a particular location in the
assembled source module; this is
done at assembly time.

TYPES OF CONSTANTS: The rc
instruction can generate the
following types of constants:

4Dt Binary constants -- to define bit
patterns

162

•
Character constants -- to define
character strings or messages

•
Hexadecimal constants -- to define
large bit patterns

•
Fixed-Point constants -- for use
by the fixed-point and other
instructions of the standard set

•
Decimal constants -- for use by
the decimal instructions

•
Floating-Foint constants -- for
use by the floating-~oint instruction
set

• Address constants -- to define
addresses mainly for the use of
the fixed-point and ether
instructions in the standard
instruction set.

0 FLAG

• CHAR

• PATTERN

• {FCON

• {peON
AREA

0 { ECON

• {ADCON

DC B'OOO10000'

DC C'STRING OF CHARACTERS'

DC X'FFOOFFOO'

L 3,FCON
DC F'IOO'

AP AREA,PCON
DC P'IOO'
DS P

LE 2,ECON
DC E'IOO.50'

L 5,ADCON
DC A (SOMWHERE)

G3B -- GENERAL SFECIFICATIONS FOR
CONSTANT S

~he general format of the tC
instructions staterrents is shc~n
in the figure to the right.

The symbol in the name field
represents the address cf the first
byte of the assembled constant. 4mt If several o~erands are sFecified,
the first constant defined is

~ addressable by the syrrbcl in the
name field. ~he other constants

•
can be reached by relative
addressing.

Each operand in a rc instruction
staterrent censists ef feur subfields.
~he fermat of a rc instruction
operand is given in the figure te
the right.

The first three subfields describe
the constant, and the fourth sutfield
specifies the norrinal value of the
constant to be generated.

Name

Any Symbol
or blank

!FIRSTCON

8FIRSTCON

Operation

DC

DC

D
DC
DC
DC

LA

CLI

Operand

One or more

In the format
described in the

next figure

o r \
F'2',X'Al',C'HUM'

Logical Equivalent

F'2'
X'Al'
C'HUM'

3,FIRSTCON

5,4(3)

•

Required Order
if all subfields
are specified

Section G: Symbol and Data Definition 163

Rules for the DC Operand

o 1. The type subfield and the nominal
~ value must always be s~ecified.

2. The duplication factor and
modifier subfields are optional •

• 3. When multiple operands are
specified, they can be of different
types.

•
4. When multiple noroinal values
are specified in the fourth subfield,
they must be separated by commas
and be of the same type.

• 5. The descriptive subfields a~ply
to all the nominal values.

NOTE: Separate constants axe
generated for each separate operand
and nominal value specified.

6. No blanks are allowed:

o a. Between subfields

~ b. Between multiple operands

c. Within any subfields -­
unless they occur as part of

• o

164

the nominal value cf a character
constant or as part of a character
self-defining term in a mcdifier
express10n or in the duplication
factor subfield.

f
MUST

OPRNDS

SEVERAL

IVALUES

SEVERAL

VALUES

IMIXED

MIXED

RETWEEN

SEVERAL

WITHIN

0
DC F'200'

"--' • ~~~
DC C'FIRST' ,H'99' ,FL3'lOl'

DC A(FIRST,SECOND,THIRD)

DC F'lOO,200,300' I • D Logical Equivalent
Multiple
nominal
values not

DC A(FIRST)
allowed for
character

DC A(SECOND) constant
DC A(THIRD)
DC F'lOO'
DC F'200'
DC F'300'

~~
DC AL3(ONE,TWO) ,2F'l,2,3'1

D Logical Equivalent

DC AL3(ONE)
DC AL3 (TWO)
DC F'l'
DC F'2'
DC F'3'
DC FIl'
DC F'2'
DC F I 3'

DC lOFL3'+456 1

II I 0
DC C'BOO HOO' , F ' 95 ' , H ' 2 '

LL Li •
p\

DC C'MESSAGE HAS BLANKS'

DC XL(A+B-C'N 0'+3) 'FO'

L •

Information about Constants

SYMBOI.IC ADrRESSES OF CONSTANTS:
-Constants defined by the DC

instruction are assembled into an
object module at the location where
the instruction is specified.
Bowever, the type of ccnstant being
defined will determine whether
the constant is to be aligned on
a particular storage boundary or
not. (see below under Alignment o of Constants) • The value of the
symbol that names the DC instruction

4Itis the address of the leftmost byte
(after alignment) of the first or
only constant.

THE LENGTH ATTRIBUTE VALUE OF SYMBOLS
NAMTNG CONSTANTS: The length
attribute value assigned to the
symbols in the name field of
constants is equal to:

o The implicit length of the constant
when no explicit length is specified
in the operand of the ccnstant,
or

4ItThe explicitly specified length
of the constant.

NOTE: If more than cne operand
is present, the length attribute
value of the symbol is the length
in bytes of the first constant
specified, according to its
implicitly or explicitly specified
length.

Source Code Object Code
in Hex

DC XL7'AD'

FULLCON DC F'8'

\
\MANYCONS DC

Type of Implicit
Examples

Value of Length
constant Length 1 Attribute 2 • B as needed DC B'lOOlOOOO' 1

C as needed DC C'WOW' 3
DC CL8'WOW' 8

X as needed DC X'FFEEO~~ 3
DC XL2'FFEE' 2

H 2 DC H'32' ~I 2
F 4 DC

FL3' 32' -::f 3

P as needed DC P'123' 2
DC PL4'123' 4

Z as needed DC Z'123' 3
DC ZLI0'123' 10

E 4 I
D 8
L 16

Y 2 DC Y(HERE) 2
A 4 DC ALl (THERE) 1

S 2
V 4
Q 4

, I

1 Depends on type

2 Depends on whether or not an explicit length is specified in constant

Section G: Symbol and Data Definition 165

166

ALIGNMENT OF CONSTAN'lS: 'Ihe
assemtler aligns constants on
different boundaries according to
the following:

~ On boundaries implicit to the type
of constant, when no length
specification is supplied.

•
On byte boundaries when an eXflici t
length spec1f1cat10n is made.

Bytes that are skipped to align
a constant at the frofer boundary
are not considered part of the
constant. They are filled with
zeros. Note that the automatic
alignment of constants and areas
does not occur if the NOALIGN
assemt·ler oft ion has been sfecified
in the job control language which
invoked the assembler.

NOTE: Alignment can be forced to
any boundary by a freceding DS (or
DC) instruction with a zero
duplication factor (see G3N). 'Ihis
occurs when either the ALIGN or
NOALIGN option is set.

Type of
Constant

B

C

X

H

F

p

Z

E

D

L

y

A

S

V

Q

Implicit Examples
Boundary
Alignment1

byte

byte

byte

halfword
DC H'25'
DC HL3' 25'

~ fullword DC P'225'

DC FL7'225'

byte DC P'2934'

~ Z'1235' byte DC

ZL2'123S' ~ DC

fullword DC E'1.2S' 1;
DC EL5'1.25'

doubleword DC SD '95'

DC SDL7'95'

doubleword DC L'2.57E65'

halfword DC Y (HERE) /

fullword DC AL3 (THERE)-./

halfword

fullword

fullword

I 1 Depends ontype D

Boundary
Alignment

halfword
byte

fu II word

byte

byte

byte

byte

fullword

byte

doubleword

byte

doubleword

halfword

byte

I

Fadding and ~runcation of Values

The nomjnal JLalQ~ecjfjed fCLccnstantsuare-assembled
into storage. The amount of space availatle for the ~crri~al
value of a constant is deterrrined:

1. By the e~plicit length specified in tbe second c~erand
sutfield, or

2. If no e~~licit lengtb is sfecified, by the implicit
length according to the type of constant defined (see
Appendix VI) •

PADDING: If rrore sface is available
than is needed to accommodate the
binary representation of the nominal
value, the extra space is padded:
17

~ with binary zeros on the left for
the tinary (B), hexadecimal (X),
fixed-point (H,F), packed decimal
(~, and all address ~,y,S,V,Q)
constants

~With EBCDIC zeros on the left
~'11110000') for the zoned decimal
(Z) constants

4EtWith EBCDIC blanks on the right
~'01000000') for the character
(C) constant

NOTE: Floating-point constants
~,D,~ are also padded on the right

with zeros (see G3I) •

Source Code

DC BL2'lOl'

DC XL3'FFA1'

DC X'FFA'

DC H'255'

DC FL3'255'

DC P'1234'

DC PL4'123'

DC AL3(512)

DC ZL4'123'

DC ZL4'3'

DC C'FOUR'

DC CL5'FOUR

DC CL5'A'

0

}e

Padding

-- - - - - -

Object Code

2 bytes

Hexadecimal

Section G: Symbol and Data Deiinition 167

Page of GC33-401o-4
Revised July 31, 1976
By TNL: GN33-8207

TRUNCATION: If less sface is
available than is needed to
accomodate the nominal value, the
nominal value is truncated and part
of the constant is lost. Truncation
of the nominal value is:

o On the left for the binary (B),
hexadecimal (X), decimal (P and
Z), and address (A and Y) constants.

•
On the right for the character (e)
constant •

•
However, the fixed-point constants
(H and F) will not be truncated,
but flagged if significant bits
would be lost through truncation.

NOTE: Floating-point constants
(E,~,L) are not truncated; they
are rounded (see G3I) •

NOTE: The above rules for padding
and truncation also apply when the
bit-length specification is used
(see below under Subfield 3:

Modifiers) •

Subfield 1: Duplication Factor

The duplication factcr, if specified,
causes the nottinal value cr multiple
nominal values specified in a o constant to be generated the number
of times indicated by the factor.

•
It is applied after the nominal
value or values are assembled into
the constant.

168

The factor can be specified by a
.unsigned decirr.al self-defining term

•
or by an absolute expreSSl.on enclosed

. in parentheses.

The expression should have a positive
value or be equal tc zero.

Any symbols used in the expression
must be previcusly defined.

Source Code

DC BL1'00010000101~

DC XL3'FFIIFOFO'

DC PL2'1234S' • DC ZL3'1234S'

DC AL2(131072)

DC CL2'FOUR' }. DC CLl'ABCDE'

DC H'65536' }e DC FLl'l;2S'

Nominal Values
too large for
space provided

SINGLE DC~'240'

TIPLE DC 3FLl'3,4,S'

•

•

Truncation

Object Code

1 byte

i< * ERROR* *

* * ERROR* *

Binary
Digits

Hexadecimal
Digits

@]
~ I ..

1 byte

Duplication

Object Code
in hex

EXPR DC (A-B+IO-3)A(ADDR)

o

•

a. No value is assembled.

c. Alignment is fcrced according
to the type of constant s~ecified,
if no length attribute is present
(see above under Alignment of

Constants) •

c. The length attribute of the
symbol naming the constant is •
established according to the
implicitly or explicitly specified
length.

2. If duplication is specified for
an address constant containing a
location counter reference, the
value of the location counter
reference is increroented by the
length of the constant before each
duplication is performed (for
examples, see G3J) •

Subfield 2: Type

The type subfield must be specified.
It defines the type cf constant
to be generated and is specified
by a single letter ccde as in the
figure to the right.

The type specificaticn indicates
to the assembler:

1. How the no~inal value(s) specified
in subfield 4 is to be assembled;
that is, which binary representation

O or machine format the object code
of the constant must have.

2. At what boundary the assembler
aligns the constant, if no length
specification is present.

3. How much storage the constant
is to occupy, according to the
implicit length of the constant,
if no explicit length specification
is present (for details see above,
under Padding and Truncation of
Constants) •

ZERODUP

NOALIGN DC OHL3'3'

':'NOALIGN=3

Type

C Character 8-bit code for each Character
X Hexadecimal 4-bit code for each hexadecimal digit
B Binary Binary format
F Fixed-point Signed, fixed-point binary format;

normally a fullword
H Fixed-point Signed, fixed-point binary format;

normally a halfword
E Floating-point Short floating-point format; normally a

fullword
D Floating-point Long floating-point format; normally a

doubleword
L Floating-point Extended floating-point format; normally

two doublewords
P Decimal Packed decimal format
Z Decimal Zoned decimal format
A Address Value of address; normally a fullword
y Address Value of address; normally a halfword
S Address Base register and displacement value;

a halfword
V Address Space reserved for external symbol

addresses; each address normally a
fullword

0
+

Object Code
in hex

Examples: DC P'+234' 1234C!

DC CrABe' fClC-2C3j

DC X'PO' [!2J
DC H'2' 100021

-

Section G: Symbol and Data Definition 169

Subfield 3: Modifiers

The three modifiers that can be
specified to describe a constant
are:

4It The length modifier (L), which
explicitly defines the length in
bytes desired for a ccnstant.

• 'Ihe scale modifier (S), which is
only used with the fixed-point or
floatingpoint constants (for details
see below under Scale Modifier) •

• The exponent Ir.odifier (E), that
is only used with fixed-point or
floating-point constants, and which
indicates the power of 10 by which
the constant is to be roulti~lied
before conversion to its internal
binary format.

e If multiple modifiers are used,
they must appear in the sequence:
length, scale, exponent.

LENGTH MODIF'IER: The length modifier
indicates the number of bytes of
storage into which the constant
is to be assembled. It is written
as Ln, where n is either of the
following:

4It A decimal self-defining term

•
An absolute expressicn enclosed
in parentheses. It must have a
positive value and any syrrbols it

• contains must be previously def1ned.

170

LENGTH

SCALE

EXPON

~LL3

DECSDT

EXPR

• ,.---.
DC XL10'FF'

DC FS8'35.92' .-• DC EE3'3.414'
'--' • DC D.hl'§]~' 2.7182'

•
Length

DC

• DC XL(SYMBO~D) 'F7A'

When the length ffiodifier is
specified:

o Its value determines the number
of bytes of storage allocated to
a constant. It therefore determines
whether the nominal value of a
constant must be radded or truncated
to fit into the space allocated
(see above under Padding and
Truncation of Constants).

• No boundary alignment, according
to constant type, is provided (see
above under Alignment of Constants).

~Its value must not exceed the maximum
length allowed for the various types
of constant defined. (For the
allowable range of length modifiers,
see the specifications for the
individual constants and areas from
G3C through G3N.)

Source Code

---- ---------0-----
PADTRUNC DC CL3'ABCDE'

IMPLICIT DC C'·~··~~ri~'

For character constant: when no
length is specified, the whole con­
stant is assembled into its implicit
iength

NOALIGN DC FL3'S13'

Assembled at the next
available (byte) boundary

Object Code
in hex

...... Fullword

~ ... bo u ... n .. d ... a.r Y I 000201

TOOLONG DC FL9'10' **LENGTH ERROR**

•

Section G: Symbol and Data Definition 171

BI~-IENG~H SFECIFICATICN: ~he length rrodifier can ce
specified tc indicate the number cf bits intc which a
constant is to be assembled. ~he cit-length specificaticn
is written as L.n, where n is either of the follo~ing:

A decimal self-defining term

An absolute expression enclosed in parentheses. It rrust
have a positive value and any syrrbcls it ccntains must
be previously defined.

The value of n Rust lie bet~een 1 and the nurrber cf bits
(a multiple of 8) that are required to rrake up the rraxirrurr

number of bytes allowed in the type of ccnstant ceing
defined. The bit length-specification cannot be used ~ith
the S, V, and ~-type ccnstants.

Source Code

HEXCHAR DC XL.41F'

When only one operand and one nominal
value are specified in a rc
instruction, the follcwing rules
apply:

•
1. The bit-length specification
allocates a field intc which a
constant is to be assembled •

• The field starts at a byte boundary,

•
and can run over one or more Eyte
boundaries, if the bit-length

• specified is greater than 8. •

Object Code
Binary digits

byte byte

1111()t)QQ
"-----' ·'~rUi.

F

,~';. • Ifii~l.

If the field does not end at a byte HEX3CHAR DC XL.121FFF'
boundary, if the bit-length specified

•
is not a multiple of 8, the remainder
of the last byte is filled with
zeros.

172

byte byte

FFF •
byte

o

•
2. The nominal value cf the constant
is assembled into the field:

Starting at the high order end for
the C, E, C, and L type ccnstants.

• Starting at the low crder end for
the remaining types of constants
that allow cit-length Sfecification.

The nominal value is padded or
truncated to fit the field (see
above under Padding or Truncation
of Constants) •

~ Padding of character constants is
with hexadecimal blanks, X'40'i
other constant types are fadded
wi th zeros.

NOTE: The length attribute value
of the symbol naming a DC instruction
with a specified bit-length is equal
to the minirrum number of integral
bytes needed to contain the bit­
length specified for the constant.
L'TRUNCF is equal to 2. Thus, a

Source Code

PADe DC

PADF DC FL.13'S79'

zeros at left

Object code
binary digits

• r~feren<?e to TRUNCF would address •
tne entire two bytes that are
assemtled.

Section G: Symbol and Data Definition 173

When rrore than cne c~erand is
specified in a rc instruction or
more than cne ncrrinal value in a
rc o~erand, the above rules atout
tit-length s~ecificaticns alsc
ap~ly, exce~t:

O
1. !he first field allccated starts
at a byte bcundary, but the

•
succeeding fields start at the next
available bit.

2. After all the constants have
teen asserrbled intc their res~ective
fields, the bits remaining to make

•
up the last byte are filled Vii th
zeros.

•

174

NO!E: If dUflicaticn is specified,
filling with zeros occurs once at
the end of all the fields occu~ied
by the dUflicated ccnstants.

3. !he length attribute value cf
the symbol naming the rc instruction
is equal tc the nurrber cf integral
bytes that Viould be needed tc ccntain
the bit-length specified for the
first constant tc te asserrbled.

o L 'VALUES=2

Source
Code VALUES DC FL.10'161,21,57'

Object
Code

OL'OPERANDS=l

Source OPERANDS DC FL.7'B' ,CL.10'AB' ,XL.14'C4'
Code

byte byte byte byte byte

Object ~:::;::;::~~::;:e:t:t1==~~=~~.
Code

o

• •
8

STORAGE REQUIFEMENT FOR CONS~ANTS:
~he total aIT;ount of storage required
to assemble a DC instruction is
the sum of:

1. The requireIT;ents for the
individual DC operands specified
in the instruction.

The requirement of a DC operand
is the product of:

a. The length (implicit or
explicit) ,

b. The number of ncrr-inal values,
and

c. The duplication factor, if
specified •

•
2. ~he number of bytes skipped
for the toundary a11gnrrent between
different operands.

SCALE MODIFIER: The scale modifier
specifies the amount cf internal
scaling that is desired:

Binary digits for fixed-point (H,F)
constants

Hexadecimal digits for floating­
point (E,D,l) constants

It can only be used with the above
types of constant.

The scale modifier is written as
Sn, where n is either:

o A decimal self-defining term or

•
An absolute expression enclosed
in parentheses.

. ···~Q$·····.·.M~·······~~B+i~····.·i~~.~{.~~
~1;;~ij}~·~"P~;;Otl$"*;Y;"··

Both types of specification can
te preceded by a sign; if no sign
is present, a plus sign is assumed.

I SPACE DC 10H'3,4,5' ,10FL3'6,7,8'

Space for I--Storage Requirements

er
OPERAND 1 I

•

lOPERAND 2 I
ALIGNMENT

x x

x x

Second operand not
al igned due to presence
of length specification

TOTAL

60

90

o

11501
Bytes

ALIGN DC C'ABC' ,F'9,10,11'

e/OPERAND 1
lOPERAND 2

•
7\T'I""'lI.Tl\/'ENm rtJ.J.L \':H~J. J. J. .I.

Examples:

e
DC HS-132'5.55'

DC

First operand can
end on any byte
boundary

3

12

0-3

TOTAL 115-181
Bytes

Scale

Allowable Range for
Scale Modifier

Fixed-point I -187
Constants through

I
--I-

--

HS3~
(H,F) +346

DC FS (A+B-C~~3) , 2.3'

Floating-point
Constants

DC ESl2'19.3 i
) I (E,D) a through 14 I I

l
DC LS22'3.4l4' j I (L) o through 28

Section G: Symbol and Data Definition 175

176

SCALE MODIFIER FOR FIXED-POINT
CONS'IANTS: The scale modifier for
fixed-point constants sFecifies
the power of two by which the fixed­
point constant must be multiplied
after its nominal value has been

• converted to its binary

•
representation, but before it is
assemtled in its final "scaled"

•
form. Scaling causes the binary
point to move from its assumed f~xed
position at the right of the
rightmost bit positicn.

DC H'2'

Object Code

Binary digits

OOOOOOO+OOOl~

000000001000010.011

t\O'IES:

1. when the scale rrcdifier has a
~ositive value, it indicates the

o ~~~~~~e~f l:~i~~~Y fi~~~I~~~~ ~~r~~cn

•
of the binary number.

2. When the scale rrcdifier has a
negative value, it indicates the
number of binary positions to te
deletEd fraIT the intEger Eorticn
of the binary number.

3. When fesitiens are lest tecause
of scaling (or lack of scaling) ,

~ rounding eccurs in the leftmost­
tit of tte lest ~crticn. ~he
rounding is reflected in the

~ rightrrost pcsiticn saved.

I Source Code

DC

DC

Object Code ,

Converted to Binary - si,;;", dk,i,;----+-
. - Binary

Converted to Binary representation

Converted to Binary representation

Converted to Binary representation

point

Binary
point

Binary
point

1

Section G: Symbol and Data Definition 177

SCALE MODIFIER FOR FLOATING-POINT
CONS'IANTS: The scale modifier for
floating-point constants must have

•
a positive value. It specifies
the number of hexadecimal positions
that the fractional portion of the
binary representation of a floating­
point constant is to be shifted

~to the right. The hexadecimal point
is assumed to be fixed at the left
of the leftmost position in the
fractional field. When scaling
is specified, it causes an
unnormalized hexadecimal fraction
to be assembled (unnormalized is
when the leftmost positions of the
fraction contain hexadecimal zeros).
The magnitude of the constant is

•
retained because the eXfonent in
the characteristic portlon of the
constant is adjusted ufward
accordingly. When hexadecimal

•
positions are lost, rounding occurs
in the leftmost hexadecimal position
of the lost portion. The rounding

a iS reflected in the rightmost
position saved.

EXPONENT MODIFIER: The exponent
modifier specifies the power of
10 by which the noroinal value of
a constant is to be multiplied
before it is converted to its
internal binary representation.
It can only be used with the fixed­
point (H,F) and floating-point
(E,D,~ constants. The exponent

modifier is written as En, where
n can be either of the following:

• A decimal self-defining term.

A An absolute expression enclosed
V in parentheses.

178

QO$Any symbols usedint~e~xpre.s.s:iori
l,llUst,be pteviously defined.

The decimal self-defining term or

•
the expression can be freceded by
a sign: if no sign is present, a
plus sign is assumed. The range
for the exponent modifier is -85
through + 75.

Source Code

DC E'4'

DC ES2'4'

DC E'3.3'

1-4 31010@ 0 0 0 I
I

Object Code
in Hex

• Unnormalized
Fraction

14l[34CCCDI

ROUND DC ES2'3.3'

. Exponent

Source Decimal Value Object Code
Code before conver-

sion to binary Binary digits

form

DC H'4' 4 1000000001000001001

• DC HE2'4' 400 100000001~00100001

• ,..-..
DC FE (A-B~'3) , 4 -

• DC HE-2'400' 4 10000OOOO~00001001

NOTES:

4a; 1. the exponent modifier is not
-------:tG--b€- confused with the expcnent

•
that can be specified in the nominal
value subfield of fixed-point and
floating-point constants (see
sections G3G and G3I) •

•
'l"he exponent modifier affects each

nominal value specified in the
operand, whereas the exponent written
as part of the nominal value subfield

•
only affects the norrinal value it

. follows.. If both types of exponent
specification are present in a DC
operand, their values are

• algebraically added together before
the nominal value is converted to
binary form. However, this sum
must lie within the permissible o range -85 through +75.

O 2. The value of the consta~:l'~, after
any exponents have been applied,
must be contained in the implicitly
or explicitly specified length of
the constant to be assembled.

Subfield q: Noroinal Value

The nominal value subfield must
always be specified. It defines
the value of the constant (or
constants) described and affected
by the subfields that ~recede it.
It is this value that is assembled
into the internal binary
representation of the constant.
The formats for specifying nominal
values are described in the figure
to the right.

DOS Only one nominal value is allowed
in binary (B) and hexadecimal. (X)
constants.

How -nomiricil ,ialue-s arespecTfied
and interpreted by the asserobler
is explained in the subsections
that describe each individual
constant, beginning at G3t.

• I Values Assembled
I in decimal 1==-- ---------
I 225,2.25,2.25

I 225,225,22500

DC
~~'2'25'~

EE+2'2.25,2.25,225' DC

DC

225

o
DC FE-20'2.25E+80'

Nom. Value

r-------~------- ---- ------Formats of Nominal

Constant
Type

C

B'

X
H
F

P
Z
E
D

L.J I

Value Subfields

Single
Nominal
Values

'Value'

'Value'

A} I Y- A-ddress I

S constants/ (Value)

Q i
V I

I

Multiple
Nominal
Values

Not allowed

'~' value, val ue:

I multiple values must I
be separated by commas

\
\

\ \ - -- ---

(Value~ value,• value)

Section G: Symbol and Data Definition 179

Page of GC33-4010-4
Revised Feb. 25,1975
By TNL: GN33-8193

G3C -- LITERAL CONSTANTS

Purpose

Literal constants allow you to
define and refer to data directly
in machine instruction operands.
You do not need to define a constant
separately in another part of your
source module. The difference
between a literal, a data constant,
and a self-defining term is described
in CS.

Specifications

A literal constant is specified
in the same way as the operand of
a DC instruction. The general rules
for the operand subfields of a DC
instruction (as described in G3E
abov~ also apply tc the subfield
of a literal constant. Moreover,
the rules that apply to the
individual types of constants, as
described in G3D through G3M, apply
to literal constants.

However, literal ccnstants differ
from DC operands in the fcllowing
ways:

o · Literals must be preceded by an
equal sign.

•• Multiple operands are not allowed •

•
• 'Ihe duplicaticn factcr Ifiust not
be zero.

180

• L 3,=F'32'

G3C EINARY CONS!AN! {El

Fur~cse

The tinary constant allcws ycu tc sfecify the ~recise bit
~attern ycu want assembled into storage.

Specificaticns

The ccnstants of the subfields defining a binary ccnstant
are described in the figure telow.

O NOTE: Each binary ccnstant is asserrbled into the inteqral
number of bytes required to contain the tits s~ecified.

Binary Constants

Subfield 3. Constant Type

Binary (B)

1. Duplication Factor Yes

2. Modifiers As needed

Implicit Length: (Length
Modifier not present)

B DC B'lOlOllll' L'B

C DC B'lOl' L'C

Alignment:
(length Modifier not present) Byte

Range for Length: 1 through 256 (byte length)
.1 through .2048 (bit length)

Range for Scale: Not allowed

Range for Exponent: Not allowed

4. Nominal Value Binary digits
(0 or 1)

Represented by:

Enclosed by:

Exponent allowed:

Number of Values per
Operand:

Padding:

Truncation of
Assembled Value:

Apostrophes

No

Multiple

With zeros
at left

At left

section G: Symbol and Data Definition 181

G3E -- CHARAC!ER CONS!AN! (C)

The ctaracter constant allows you tc sfecify character
strings such as error messages, identifiers, or cther text,
that the asserrbler will convert into their tinary (EECtIC)
representation.

Specificaticns

!he ccntents of the sutfields defining a ctaracter ccr.stant
are descrited in the figure en the CfPcsite fage.

~ Each character specified in the ncrrinal value subfield
is assembled into one tyte.

Multiple norrinal values are not allcwed, because if a comma
is specified in the nominal value sutfield, the asserrtler

~considers the comma a valid character and therefore
asserrtles it intc its tinary (EBCDIC) representation.

NOTE: When apostrophes or ampersands are to be included
in the asserrbled ccnstant, doutle apostrophes or dcutle

•
ampersands rrust te Sfecified. !hey are asserrbled as single
apostrophes and ampersands.

182

Subfield

1. Duplication Factor
allowed

2. Modifiers

I mplicit Length: (Length
Modifier not present)

Character Constants

3. Constant Type

Character (C)

Yes

As needed

C DC C'LENGTH '
T I,...
J.J ~ 6 o

Alignment: Byte
(length Modifier not '<;t)

present)

Range for length:

Range for Scale:

Range for Exponent:

4. Nominal Value
Represented by:

Enclosed by:

Exponent allowed:

Number of values per
Operand:

Padding:

Truncation of
Assembled value:

1 through 256 (byte length)

.1 through .2048 (bit length)

Not allowed

Not allowed

Characters (All 256
8-bit combinations)

Apost rophes

No

One

With blanks at right
(X 140 I)

At right

DC C'A' 'B'

Assembled
AlB
A&B

DC C'A&&B '

DC C'A,B '

Object Code (hex).

I cll6BI c21

Section G: Symbol and Data Definition 183

G3F -- HEXArECIMAI CCN5lA~l (X)

Fur~ese

You can use hexadecirral ccnstants to generate large bit
~atterns rrore conveniently than ~ith binary constants.
Also, the hexadecimal values you specify in a seurce rrcdule
allow yeu te corr~are therr directly ~ith the hexadecimal
values generated for the otject code and address lecaticns
printed in the ~rcgrarr listing.

Specificaticns

lhe centents cf the subfields defining a hexadecirral
constant are described in the figure on the c~pesite fage.

~ Each hexadecimal digit specified in the norrinal value

•
subfield is asserrl::led intc feur bits (their binary ~a tterns
can be found in C4E) • lhe implicit length in bytes cf a
hexadecimal ccnstant is then half the nurrber of hexadecimal

184

•
digits specified (assuming that a hexadecirral zerc is added
to an odd nurrter cf digits).

Subfield

1.D.!-Iplication Factor
allowed

2.~
Implicit Length: (Length
!\~cdifier not present)

Alignment:
(Length Modifier not present)

Range for Length:

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of Values
per Operand:

Padding:

Truncation of
Assembled value:

x

Hexadecimal Constants

3. Constant Type

Hexadecimal (X)

Yes

I
" As needed

X DC X'FFOOA2'
Y DC X 1 POOA2'

Byte

1 through 256 (byte length)

I .1 through .2048 (bit length)1

Not allowed

Not allowed I

Hexadecimal digits (0
through 9 and A through
F)

Apostrophes

I No

Multiple

With zeros at left

I
At left

L'X
L'Y

DC

DC

X'lF'

.. ,. ····6bi~~"~~~t.(hex)

i 10001111111

X' 91P' 10000 100110001111111
.• ••.. 14-1 byte~1

Section G: Symbol and Data Definition 185

G3G -- FIXEr-FOINT CCNSTANTS (B ANr F)

Purpose

Fixed-point constants allow you to introduce data that
is in a forrr suitatle fcr the cperaticns of the fixed-point
rr-achine instructions of the standard instruction set.
The ccnstanots you define can alsc be autcmatically aligned
to the proper fullword or halfword toundary for tte
instructions that refer tc addresses on these boundaries
(unless the NCALGN option has teen specified; see (2) •

You can perform algetraic functicns using this type of
constant because they can have positive or negative values.

Specificaticns

The contents cf the sutfields defining fixed-point constants
are described in the figure on the oPPosite page.

~ The nominal value can te a signed (fluS is assumed if the

•
number is unsigned) integer, fraction, or rrixed number.
follc~ed by an exponent (positive or negative). The

~ exponent must lie within the perrrissitle range. If an
~ exponent rrcdifier (see G3E) is alsc specified, the algetraic

§YE cf the exponent and the exponent modifier rrust liE •
within the perrrissitle range.

186

Subfield

1. Duplication Factor
Allowed

2. Modifiers

! mp lie it Length: (Length

Modifier not present)

Alignment:
(Length Modifer not present)

Range for Length:

Range for Scale:

Range for Exponent:

4. Nominal Value
Represented by:

Enclosed by:

Exponent allowed:

Number of Values
per Operand:

Padding:

Truncation of
Assembled value:

3. Constant Type

Fuliword(F)

Yes

4 bytes

Full word

1 through 8 (byte length)
.1 through .64 (bit length)

- 187 through + 346

Fixed-Point Constants

Halfword (H)

Yes

2 bytes

Half word

1 through 8 (byte length)
.1 through .64 (bit length)

- 187 through + 346

- 85 through + 75 • - 85 through + 75

Decimal digits (0 through 9) Decimal digits (0 through 9)

DC F'-200'

DC FS4'2.25'

Apostrophes

Yes

DC F'2E6'

Multiple

With zeros at left

Not allowed

(error

DC H'+200'

DC HS4'. 25'

Apostrophes

Yes

DC H '2E-6'

Multiple

With zeros at left

Not allowed

issued)

Section G: Symbol and Data Definition 187

Some examples of the range of values
that can be assembled into fixed­
point constants are given in the
figure to the right.

Length Range of Values that • can be Assembled

The range of values depends on the _
implicitly or explicitly specified
length (if scaling is disregarded) •
If the value specified for a
particular constant does not lie
within the allowable range for a
given length, the constant is not
assembled but flagged as an error.

A fixed-pcint constant is assenbled as fcllo~s:

8

4

2

1

1. ~he specified number, multiplied by any expcnents,
is converted to a binary number.

2. Scaling (see G3E) is perfcrned, if specified. If a
scale modifier is not provided the fracticnal portion cf
the number is lost.

3. The binary value is rcunded, if necessary. ~he
resulting number will not differ from the exact nunber
specified by nere than cne in the least significant bit
position at the right.

4. A negative nunber is carried in 2's cerrplement forn.

5. Luplication is afflied after the constant has been
assenbled.

G3H -- r~CIMAL CONS~AN~S (P AND Z)

Furpcse

The decimal ccnstants allcw ycu tc intrcduce data that

_2 63

_2 31

_2 15

_2 7

is in a forre suitable for the operations ef the decinal
feature rnacbine instructicns. ~he packed decimal constants
(p-tyfe) are used fer processing by the decinal instructicn

188

set. The zcned decinal ccnstants (Z-type) are in the form
~BCrIC representation) that you can use as a print inage
(except the digits in the rightmost byte).

Specificaticns

The contents cf the subfields defining decimal constants
are described in the figure on the opposite page.

~he ncminal value can be a signed (plus is assumed if the
number is unsigned) decimal number. A decinal point can
be written anywhere in the number, but it does nct affect
the assembly of the constant in any way. ~he specified

~ digits are assumed tc ccnstitute an integer. Decimal
constants are assembled as follows:

•
FACK~t L~CI~AI CCNS~AN~S: Each digit is ccnverted intc.
its 4-bit binary eguivalent. ~he sign indicator is
asserrbled intc the rightmost four bits of the ccnstant.

O
ZON~r :C~CIMAL CONS'IAN~S: Each digit is ccnverted intc •

. its 8-bit EECtIC representation. The sign indicatcr
replaces the first fcur bits cf the lo~-crder byte of the
constant.

through

II

II

II

263 _1

231 _1

215_1

27_1

P or Z

Decimal Constants

Subfield

1. Duplication Factor
Allowed

2. Modifiers

I mplicit Length: (Length
Modifier not present

3. Constant Type

Packed (P)

Yes

lAs needed
P DC Pi+593 i
LIP = 2

Alignment: i

(Length Modifer not present)1 Byte

Range for Length: '1 1 through 16 (byte length)
.1 through .128 (bit length)

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of Values
per Operand:

Padding:

Truncation of
Assembled value:

Not allowed

I Not allowed

I Decimal digits (0 through 9)

• DC .~;.;~.~.s '
Is(slIIcl8

Apostrophes

No

Multiple

With Binary zeros
at left

At left

Zoned (Z)

Yes

As needed
Z DC Zi-593 i

LIZ = 3

Byte

1 through 16 (byte length)

.1 through. 128 (bit length)

Not allowed

Not allowed

Decimal digits (0 through 9)

Apostrophes

I Mult;pl.

I With EBCDIC zeros
I (X IFO I)

I at left

At left

DC P 1 5.5 1

DC P 155 1

Section G: Symbol and Data Definition 189

~he range of values that can be
assembled into a decirral constant
is shown in the figure to the right.

Type of Decimal
Constant

PACKED

Range of Values that
can be Specified

31 10 -1 through _10 31

ZONED 1016 _1 through -10 16

G31 -- FLOA~ING-POIN~ CONS~AN~S (E, D, and L)

Floating-foint constants allow you to intrcduce data trat
is in a forrr suitatle fer the eferations of the fleating­
~oint feature instruction set. These constants have tte
following advantages cver fixed-~eint censtants.

1. You do not have to consider the fractional fertien cf
a value yeu s~ecify, ncr ~orry ateut the fesitien ef the
decirr,al ~oint when algetraic o~erations are to be ferformed.

2. You can specify both much larger and rruch smaller values.

3. You retain greater ~rocessing ~recision, that is, yeur
values are carried in more significant figures.

Specificatiens

~he centents of the sutfields defining floating-~cint
constants are descrited in the figure en the o~~osite ~age.

4mt ~he nominal value can be a signed (plus is assurred if the
numter is unsigned) integer, fracticn, or rrixed number ~
follo~ed by an exponent (fOsitive or negative). ~be ..,

Ctexponent must lie within the perITtissitle range. If ar.
exponent rrodifier (see G3E under ~edifiers) is also
specified, the algebraic sum of the exponent and the
exponent modifier must lie within the perrrissitle range.

190

Df E or L

--- --

Floating Point Constants

Subfield 3. Constant Txee

SHORT (E) LONG (D) EXTENDED (L)

1. Duelication Factor Yes Yes Yes
Allowed

2. Modifiers

Implicit Length: 4 Bytes
(Length Modifier Not

8 Bytes 16 Bytes

Precent)

Alignment:
(Length Modifier Not Full Word Double Word Double Word

Present)

Range for Length: 1 through 8 (byte length) 1 through 8 (byte length) 1 through 16 (byte length)

.1 through .64 (bit length) .1 through .64 (bit length) .1 through .128 (bit length)

Range for Scale: o through 14 o through 14 o through 28

Range for Exponent: - 85 through + 15 - 85 through + 15 - 85 through + 7.5

4. Nominal Value Decimal Digits
-~

Decimal Digits Decimal Digits
(0 through 9) (0 through 9) (0 through 9)

Represented by: DC E' 525'''- DC D-.-:r.525 , DC L'525'
DC E'5.25'. DC D'+.OOl' • DC L'3.414' •

Enclosed by: Apostrophes Apostrophes Apostrophes

Exponent Allowed: Yes Yes

D'-2.5El0'e
Yes

L' 3. 712E-3' DC E'lE+60'. DC DC

Number of Values per Multiple Multiple Multiple
Operand:

Padding: With hexadecimal zeros at With hexadecimal zeros at With hexadecimal zeros at
right right right

Truncation of Assembled Not applicable Not Applicable Not applicable
Value: (Values are rounded) IValues are Rounded) (Values are Rounded)

Section G: Symbol and Data Definition 191

The range of values that can be
assembled into floating-point
constants is given in the figure
to the right.

If the value specified for a
particular constant does not lie
within these ranges, the constant
is not assembled but flagged as
an error.

FORMAT: The format of the floating­
point constants is descrited below.
The value of the constant is
represented by two parts:

~ 1. An exponent portion, followed
by

• 2. A fractional portion.

192

• A sign bit indicates whether a
positive or negative number has
been specified. The number specified
must first be converted into a
hexadecimal fraction, before it
can be assembled into the proper
internal format. The quantity
expressed is the product of the o fraction and the number 16 raised.
to a power.

Type of Range of Magnitude (M)
Constant of Values (Positive and

E

D

L

Type

E

D

L

Called

Short
Floating-
Point
Number

Long
Floating­
Point
Number

Extended
Floating­
Point
Number

Negative)

16-65 ~M '$ (1-16-6) x 16
63

16-65 ~M ~ Cl-16-14) x 16 63

16-65 S.M S.(1-16-28) x 16 63

(For all Three)
Approximately

5.4 X 10-79 <;M ~7.2 X 10 75

Format

Bits 0 1 78

7-bit 56-bit
+ Characteristic-__ ...,.:.F..:.;rac~~t;;.;io;,:,n:....,....,..",..,...,...,....,."..,
Itwili~1 <f

Bits 0 1 78

7-bit
+ Characteristic

Bits 0 1 78

7-bit

Bits 0 1

High-order half of
112-bit Fraction

Low-order half of
112-bit Fraction

~_er_i_st_iC~~ ____________ __

16E [~+E..+~+ ••••]
16 162 163

where a,b,c are hexadecimal digits, and E is

an exponent that has a positive or negative value

indicated by the characteristic

31

63

63

BINARY REPRESENTATION: The assewbler r---,
assembles a floating-point constant I
~~i~o!~~ loinary reFresentation as_ I_. ___ Bi:-ry ~."""":tat~ ____ I _

Source Code Object Code The specified number, multiplied
by any exponents, is converted to
the required two-part format. The
value is translated into:

o 1. A fractional portion represented

•

by hexadecimal digits and the sign
indicator. The fraction is then
entered into the leftmost part of
the fraction field of the constant
(after rounding) •

4Et 2. An exponent portion represented

•
b y the excess 64 binary notation,
which is then entered into the
characteristic field of the constant.

The excess 64 binary notation is
wnen the value of the characteristic
between +127 and +64 refresents
the exponents of 16 between +63
and 0 (by subtracting 64) and the
value of the characteristic between
+63 and 0 represents the exponents
of 16 between -1 and -64.

NOTES:

1. The L-type floating-point constant
resembles two contiguous D-type
constants. The sign of the second
doubleword is assurr.ed to be the
same as the sign of the first.

The characteristic for the second
doubleword is equal to the
characteristic of the first
doubleword minus 14 (the number
of hexadecimal digits in the
fractional portion of the first
doubleword) •

2. If scaling has been specified,
hexadecimal zeros are added to the
left of the normalized fraction
(causing it to become unnormalized)

and the exponent in the
characteristic field is adjusted
accordingly. (For further details
on scaling see G3E under Modifiers).

3. Rounding of the fraction is
performed according to the implicit
or explicit length of the constant.
The resulting numLer will not differ
from the exact number specified
ty more than one in the last place.

4. Nega·ti ve fractions are carried
in true representation, not in the
2's complement form.

5. Duplication is applied after
the constant has been assembled.

DC D'-9.7S '

• 3F
3E

00

Values Expressed
in Characteristic

Decimal

127
126

65
64
63
62

o

Excess 64 Binary Notation

in Hex

= - 9.75

I

-641
I 0

-1
- 2

-64

Exponent of 16
expressed by
Characteristic

section G: Symbol and Data Definition 193

~3J -- THE A-!YPE AND Y-!YPE ADDRESS CC~S!AN!S

!his subsection and the three following sutsections describe
how the different tYfes of address constants are asserrbled
from expressions that usually represent storage addresses,
and hew the constants are used for addressing wittin a~d
tetween scurce ncdules.

Furpcse

In the A-type and Y-tYfe address ccnstant, ycu can specify
any of the three types of assemtly-time expressicns (see
C6) , whose value the assenbler then confutes and asserrbles
into cbject code. You use this expressicn ccrrputaticr:
as follows:

1. Relocatable expressions for addressing

2. Absolute expressions for addressing and value
computation.

3. Ccrrplex relocatable expressions to relate addresses
in different scurce ncdules.

Specificaticns

!he ccntents cf the subfields defining tte A-type and Y­
type address constants are described in the figure on the
opposite page.

NOTES:

• 1. Nc bit-length specification is allowed when a relccata1:le

e or conplex relocatable ex~ression is specified. lhe cnly
explicit lengths that can be specified with these addresses
are:

194

a. 3 cr 4 bytes for A-type constants

b. 2 bytes for Y-type constants.

2. The value of the lccaticn ccunter reference (*) ~hen
specified in an address constant varies frcn ccnstant tc
constant, if any cf the fcllc~ing cr a ccrrbination of the
follcwing are specified:

a. ~ultiple cperands

~ 1:. Multiple ncninal values

• c. A duplication factor.

lhe lccation counter is incremented ~ith the length cf
the previously assenbled constant.

3. ~hen the location counter reference cccurs in a literal
address ccnstant, the value cf the locaticn counter is
the address of the first tyte of the instruction.

AorY

Address Constants (A and Y)

Subfield 3. Constant Type

I
A - Type Y - Type • 1. Duplication Factor Yes Yes A DC 5AL1 (':<-A)

allowed Object Code in Hex _ 0001020304

2. Modifiers

I I
Implicit Length: (Length 4 bytes 2 bytes

Modifer not present) I
Alignment:
(Length Modifier not present) Full word Half word

1 through 4 (byte length) 0
Range for Length:

1 through 2 (byte length)

.1 through .32 (bit length) , .1 through .16 (bit length)

Range for Scale: Not allowed Not allowed

Range for Exponent: Not allowed Not allowed

4. Nominal Value Absolute. "Io'''tabl,. o,} I { Absolute. "Iocatabl,. 0' • Represented by: comple~ relocatable • comple~ relocatable A DC Y (':< -A ,':< +4)
expressions I expressions

0 :A+E nr ~(~DcnT+'A\ n~ y/~~T~~'~~'

I ~~ =\=~wv~ ~VJ I U~ \~~~V~T~~) I values

Enclosed by: Parentheses Parentheses

Exponent allowed: No No

Number of Values

I I I per Operand: Multiple Multiple

With zeros at left
1

With zeros at left
1--PadClTng:

Truncation of At left At left

Assembled value:

section G: Symbol and Data Definition 195

CAUiION: S~ecificaticn of y-ty~e address constants ~ith
relocatible expressions should te avoided in ~rograms that
are to be executed en rrachines having rrore than 32,767
tytes of sterage ca~acity. In any case, y-type relecatatle
address constants should not te used in ~rograrrs te te
executed under IEM Systerr/370 centrel.

ihe A-ty~e and y-type address constants are ~rocessed
as follows: If the ncrrinal value is an atsolute ex~ressicn,
it is com~uted to its 32-tit value and then truncated en
the left to fit the implicit or ex~licit length of tte
constant. If the nerrinal value is a relecatable er cerr.flex
relocatable expression, it is not completely evaluated
until linkage edit tine when the etject rrcdules are
transformed into load modules. ihe 24-tit (er srraller)
relocated address values are then placed in the fields
set aside fer therr at asserntly tine by the A-tYfe and y­
type constants.

G3K -- iHE S-iYPE A~~RESS CONSiANi

Furfose

You can use the S-ty~e address ccnstant tc asserrble an
explicit address (that is, an address in tase-dis~laeenent
form). You can sfecify the ex~licit address yourself cr
allo~ the assembler to compute it from an imflicit address,
using the current tase register and address in its
computation (for details en irr~licit and explicit addresses,
see ~5B) •

Specificaticns

ihe contents cf the sutfields defining the S-tYfe address
constants are descrited in the figure en tte offesite fage.

The ncminal values can te s~ecified in t~c ~ays:

4Dt 1. As one atsolute or relocatatle expressien representing
an imflicit address

~2. As t~o atsolute eXfressions, the first of which

•
represents the displacement and the secend, the tase.
register.

196

Address Constants (S)

Subfield 3. Constant Type

S - Type

1. Duplication Factor
Allowed Yes

2. Modifiers

Implicit Length:
(Length Modifier not

present)

Alignment:
(Length Modifier not

present)

Range fer length:
(in bytes)

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of Values
per operand:

Padding:

Truncation of
Assembled value:

2 bytes

Half word

2 only (no bit length)

Not allowed

Not allowed

Absolute or } 0
relocatable expression

Two absolute
expressions

Parentheses

No

Multiple

Not applicable

Not applicable

}8
DC
DC

DC

S(RELOC)

S(10/8~
S(512(12»

Section G: Symbol and Data Definition 197

G3L -- THE V-TYPE A[[RESS CONSTANT

Pur~cse

The V-ty~e address constant allows you te reserve stcrage
for the address cf a lccaticn in a centrcl secticn that
lies in another source module. You shculd use the V-tYfe
address ccnstant cnly tc tranch tc the e~ternal addre~s
specified. This use is contrasted with another rrethcd,
that is: of specifying an external syrrtcl, identified
by an EXTR~ instruction, in an A-type address ccnstant
(for a corrparison, see F2).

Because you specify a symbol in
a V-type address constant, the
assembler assumes that it is an

Source Object Module
Module in Hex

• external symbol. A value of zero
is assembled into the space reserved A

198

a for the V-type constant; the correct
relocated value of the address is
inserted into this sface by the
linkage editor before your object
program is loaded.

Specificaticns

A START 0

DC V(OUTSIDE)

END

• '0000000

B

OUTSIDE

The ccntents cf the sutfields defining the V-type address
constants are descrited in the figure cn the cppcsite fage .

• The symtcl s~ecified in the ncrrinal value subfield dces
not ccnstltute a deflnition of the symtol for the scurce
module in which the V-type address constant appears.

The symbcl specified in a V-type constant rrust nct re~resent
external data in an cverlay prcgrarr.

Load Module
in Hex

A

00003000

• B
X'3000' OUTSIDE

Address Constants (V)

Subfield 3. Constant Type

v - Type

1. Duplication Factor
allowed Yes

2. Modifiers

Implicit l.ength: (Length
Modifier not present)

Alignment: (Length
Modifier not present)

Range for Length:
(in bytes)

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of values
per Operand:

P~ding: _

Truncation of
assembled value:

4 bytes

Full word

40r 3 only
(no bit length)

Not allowed

Not allowed

A single relocatable
symbol

Parentheses

No

Multiple

With zeros at left

Not applicable

DC V(MODA) • DC V(EXTADR)

Section G: Symbol and Data Definition 199

Page of GC33-4010-0

Rev ised S:'ptember 29, 1972

By T~L G~33-81·13

200

'I

Furpose

You use this constant tc reserve sterage fer the cffset
into a storage area of an external durrrry section. ThE
offset is entered intc this sface ty the linkage editer.
~hen the offset is added to the address of an overall tleck
of storage set aside fer external durrmy sections, it allows
you tc address the desired section. (For a descrifticr.
of the use cf the Q-tYfe address ccnstant in combinaticn
with an external dummy section, see E4.)

Specificatiens

The contents cf the sutfields defining the Q-tYfe address
constant are descrited in the figure telcw.

4at'Ihe symtcl specified in the ncrrinal value subfield must
be previously defined as the latel of a rxr or rSECT
staterrent.

Subfield

1. Duplication Factor
allowed

2. Modifiers

Implicit Length: (Length
Modifier not present)

Alignment: (Length
Modifier not present)

Range for Length:
(in bytes)

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by

Enclosed by:

Exponent allowed:

Number of Values per
Operand:

Padding:

Truncation of
Assembled Value

3. Constant Type

a-Type

Yes

4 bytes

Fullword

1-4 bytes
(no bit length)

Not allowed

Not allowed

A single relocatable
symbol

Parentheses

No

Multiple

With zeros at left

At left

Address Constants (a)

DC Q(DUMM~EXT1.
DC Q(DXDEXT}

G3N -- TEE rs INSTRUCTICN

PurI,:cse

The rs instruction allows you to:

1. Reserve areas ef sterage

2. Previde latels fer these areas

3. Use these areas ty referring to the syrr.tols defined
as latels.

The rs instruction causes no data te be asserrbled. Unlike
the rc instruction (see G3E) , you do net have te s~ecify
the nominal value (feurth sutfield) of a CS instructien
operand. Therefore, the rs instruction is the test way
of syrrbolically defining storage for work areas,
input/out~ut buffers, etc.

How to Use the DS Instruction

TO RESERVE STORAGE; If yeu wish

O
to take advantage of automatic
toundary alignment (if the ALIGN
option is specified) and implicit 4It lenath calculation~ you should not
supply a length modifier in your
operand specifications. You should
specify a type subfield that
corresponds to the type of area
you need for your instructions
(See individual types in sections

G3D through G3~ •

Named (Mnemonic)
Areas for F ixed-
Point Instructions

FAREA DS F

HAREA DS H

AAREA DS A

DUPF DS lOP

I I
110 full words of

storage reserved

Named Areas for
Floating-Point
Instructions

EAREA DS 3E

DEAREAS~i~<;~?
.'.:. m:.:.:· ""<., .. :i:

I 9 double words
reserved

LAREA DS L

Areas AI igned on
Boundary

• I
Full word

I
Half word

Full word

t:ull word

Fuii word

Double word

Double word

Length Attribute of
Symbols Naming Areas
same as Implicit
Length of Areas • 4

2

4

L'DUPF=4

I i
/

1

Juplication has no
effect on implicit
length

\
\.

I it

8

16

Section G: Symbol and Data Definition 201

•
Using a length modifier can give
you the advantage of explicitly 4It specifying the length attribute
value assigned to the label naming
the area reserved. However, your
areas will not be aligned
automatically according to their 4It type. If you omit the nominal value
in the operand, you should use a
length modifier for the binary (E),
character (C), hexadecimal (X),

202

and decimal (F and Z) type areas;

•
otherwise their labels will be given

, a length attribute value of 1.

Area Specified Area Length

• Reserved in Attribute
in Bytes • TEN DS CLIO 10 10

TW056 DS XL256 256 256

F3

D7

A2

Cl

C2

C3

Xl

X2

X3

DS

DS

DS

DS

DS

DS···.

DS

DS

DS

FL3 3 3

DL7 7 7

AL2 2 2

• cLjj5 16 16

~~ l~ I/l!l}e
x!o L 200

.~.~~ ::~ __ ~}e
Duplication factor
has no effect on

length attribute

O When you need to reserve large areas you can use a
duplication factor. However, you can only refer tc tte

•
first area ty the latel in this case. Yeu can also use

_______ tQe_c_ba_r~_cJ:_ex_____L4_____anQ~exad~cimal-____04_ f j € 1 d qq:es-tc-st:€ci-f¥
~ large areas using the length rrcdifier,

Area Specified

LARGEC DS 1000C

C2 DS

XLARGE DS

Area Reserved I Automatic
in Bytes Boundary

Alignment I
Length Attribute
of symbol used

I as Label

3

8

4

Duplication has
no effect

1000 NONE 1

1000

2000

LARGERX DS 2XL2000 4000 NONE 2000

Section G: Symbol and Data Definition 203

Although the nominal value is
optional for a DS instruction, you
can put it to good use by letting

~ the assembler ccmEute the length
for areas of the E, C, X, and decimal
(P or Z) type areas. You achieve
this by specifying the general

• format of the nominal value that
will be placed in the area at
execution time.

TO FORCE ALIGNMENT: You can use
the DS instruction to force alignment
to a boundary that otherwise would
not be provided. You do this by

~ using a duplication factor of zero.
No space is reserved for such an

204

•
instruction, yet the data that
follows is aligned on the desired

• boundary.

NOTE: Alignment is forced when
either the ALIGN or NOALIGN assembler
option is set ~ee r2) •

Area Specified

Cl os

Xl os X

X2 os

PI os

P2 os

Zl os

• 0
OS 00 • AREA OS CL128

0
OS OF

KEY OC CIA'

ADCON OC AL3(SOMWHERE)

0
HERE OS OH

3,SUM

3,CONST

3,RESULT

HER E addresses
same location as
following
instruction (LH)

Length Atribute ~ or computed

Area
implicit length
of area

Reserved (duplication
in bytes disregarded)

0
16 16

2 2

60 2

3 3

15 3

5 5

Double word J

AREA JD

• Full word

• C

•
A Address of

SOMWHERE

Half word

LH

AH

STH

TO N~..ME FIELCS OF AN AREA: Using a dUflication factor
of zero in a rs instruction also allows you to frcvide
a latel for an area cf stcrage ~ithout actually reserving

----A-th_e __ aJ:_e_a_L __ YJ:'-u_c_a_n_Jl_s_e_LS __ OJ::_J:J:~s_t~uct:ion~_~o r €s e rv~
~~torage for and assign labels to fields ~ithin the area.

~hese fields can then be addressed symbolically. (Ancther

•
way of accorrflishing this is described in E3C.) The whcle
area is addressable by its label. In addition, tr.e syrrtclic

O label will have the length attritute value of the whcle
area. Within the area each field is addressable by its
label. The rATE field has the same address as the sutfield

4EtCAY. However, CA~E addresses 6 bytes, while DAY addresses
only 2 bytes.

Format of 80
Character Record

Symbol Length
Attribute • • 8

80 RECAREA DS OCL80

DS CL4

6 PAYNO DS CL6

20 NAME DS CL20

86 DATE DS OCL6

2 DAY DS eL2}
2 MONTH DS CL2

2 YEAR DS f""'T"'l
"",",-,.:oJ

DS CLIO

8 GROSS DS CL8

8 TAXES DS CL8

DS CL18

Area not
Aligned

• 80
bytes
long

Section G: Symbol and Data Definition 205

Specificaticns

~he format of the rs instruction
staterrent is given in the figure
to the right •

•
The format cf the c~erand of a DS
instruct10n 1S 1dent1cal to that
of the CC o~erand (see G3E).

The two differences in the
specificaticn of subfields are:

The nominal value subfield is
• optional in a CS operand, but it

is mandatory in a CC cEerand. If 4Et a noreinal value is specified in
a CS operand, it rrust be valid •

•

206

The rraximum length that can be
specified in a rs operand for the
character (C) and hexadecimal (X)
type areas is 65,535 bytes, rather
than 256 bytes for the same rc
operands.

Name

Any Symbol
or blank

Operation

DS

OPTIONl DS

OPTION2 DS

AMUST DC

LONGC DS

LONGX DS

LIMITEDC DC

Operand

One or more

3FL3 "-A
3FL3~~;,3'!:"""'"
3FL31rlll, •
CL655358

XL65535

CL256'A'

LIMITEDX DC XL256'00'

~he label used in the name entry of a rs instructicn, like
the label fcr a CC instructicn (see G3E) :

~ 1. Has an address value of the leftrrost by~e of the area
- reserved; after any Ecundary aI1gnroent 1S perforrred

8 2. Bas a length attritute value, deFending on the implicit
or e~Flicit length of the type of area reserved.

If the ~s instructicn is specified ~ith rrore than one
operand or rrore than one nominal value in the operand,

•
the label addresses the area reserved for the field ttat
corresponds tc the first norrinal value cf the first oFerand •

•
~he length attribute value is equal to the length eXFlicitly

. specified or implicit in the first operand.

Boundary
Alignment

Symbol
Length
Attribute

f D'. I
hon has

Implicit Length • 1<
I
i

III . upllca- I

~ ____ ~I' noe~
I 1

I
C DS 3C Byte

H DS 2H Halfword 2

F DS F Fullword 4

D DS D Double word 8

A DS 3A II Full word 4

Explicit Length

EXPL DS FL3 None

DS 3DL5 !--______ -...J1c:::3,c::JC1c::J None

3

5

7000 DS XL7000 ~ ____ ----,\< None

n--'OO
~

OPRNDS DS 3F,3C ~t------~It~------~!I'~------~~
I

DS FL 3 , 2HL 5 ~I ____ " _______ ,11 .. ______ ----.'
I

VALUES DS A{P,Q,R)i ~ ______ -A _______ ,1I .. ______ ~

MORE

I
I

DS H'7.881

Full word

None

Full word

Half word

• 4

3

4

2

Section G: Symbol and Data Definition 207

NOTE: Unlike the DC instruction,

O bytes skipped for alignment ~re
not set to zero. Also, ncth~ng

• is assembled into the storage area
reserved by a DS instruction. No
assumption should be made as to
the contents of the reserved area.

208

The size of a storage area that
can te reserved by a DS instruction
is limited only by the size of
virtual storage or by the maxilrum
value of the location counter,
whichever is smaller.

_-----1 End of Last
Data Entry

(;30 -- 'IHE CCw INS'IRUC'IION

-----Pu:q:cse

You can use the CCW instruction to define and generate
an eight-tyte channel ccrrrrand ~crd for in~ut/out~ut
operations.

Doubleword
Boundary

bits 0 7

bits

Command
Code

8

Byte

31

Address of data to operate upon

The channel command word is an
eight-byte field aligned at a
doubleword roundary, and contains
the information described in the
figure to the right.

Specifications

The format of the CCW instruction
statement is given in the figure
to the right.

bits

bits

bits

Name

Any symbol
or blank

40 47

Must be Specified
as Zeros

5

6

Byte Count or Length of Data 7-8

Operation

ccw

Operand

Four operands separated
by commas

Section G: Symbol and Data Definition 209

O All fcur operands must ce specified
in the order descriced in the figure
to the right. The generated channel
command word is aligned on a 4It doubleword boundary. Any bytes

"skipped are set tc zerc.

•

210

The symbol in the name field, if
~resent, is assigned the value of
the address of the leftmost tyte
of the channel ccrrrrand wcrd
generated. The length attritute
value of the syrrbcl is 8.

• WRITE CCW 1,DATADR,X'48' ,X'50'

Values are
right justified
in fields

Assembled
into

Double Word
Boundary

Treated as
as 3-byte
A-Type
address
constant

bits

Must be Specified
as Zeros

L'WRITE=8

Section H: Controlling the Assembler· Program

This section describes the assembler instructions that
request the assembler to perform certain functions that
it would otherwise perform in a standard predetermined
way. You can use these instructions to:

1. Change the standard coding format for writing your
source statements

2. Control the final structure of your assembled program

3. Alter the format of the source module and object code
printed on the assembler listing

4. Produce punched card output in addition to the object
deck

5. Substitute your cwn mnemonic operation codes for the
standard codes of the assembler language

6. Save and restore programming environments, such as the
status of the PRINT options and the USING base register
assignment.

HI -- Structuring a Program

The instructions described in this subsection affect the
location counter and thereby the structure of a control
section. You can use them to interrupt the normal flew
of assembly and redefine portions of a control section
or to reserve space to receive literal constants. Alsc,
you can use them to align data on any desired boundary.

Section H: Controlling the Assembler Program 211

H1A -- THE ORG INS'IRUCTION

212

Purpose

You use the ORG instruction to alter
the setting of the location counter
and thus control the structure of
the current control section. This
allows you to redefine portions
of a control section.

For example, if you wish to build
a translate table ~o convert EEC~IC
character code into soree other
internal code) :

o 1. You define the table as being
filled with zeros.

2. You use the ORG instruction to
alter the location counter so that

•
its counter value indicates a desired
location within the table.

• 3. You redefine the data to be
assembled into that location •

•
4. After repeating the first three
steps until your translate table
is complete, you use an ORG
instruction with a blank operand
field to alter the location counter

O
so that the counter value indicates
the next available location in the
current control section (after the
end of the translate table).

Both the assembled object code for
the whole table filled with zeros
and the object code for the portions
of the table you redefined are
printed in the program listings.
However, the data defined later
is loaded over the previously defined
zeros and becomes part of your
object prograIT, instead of the
zeros.

In other words, the ORG instruction
can cause the location counter to
point to any part of a control
section, even the middle of an
instruction, into which you can
assemble desired data. It can also
cause the location counter to point
to the next available location so
that your program can continue to
be assembled in a sequential fashion.

FIRST

TABLE

•

GOON

INPUT

Source Module

START

DC
ORG
DC
DC

ORG

DC
DC

ORG
DC
DC

ORG
DC
DC

ORG
DS

0

0
XL256'00'
TABLE+O
ClOt.
C'l'

TABLE+13

C'D'
C'E'

TABLE+C'D'
ALl(13}
ALI (14)

TABLE+C'O'
ALl(O)
ALI (1)

OH

Object Code

TABLE
(in Hex)

+0

+13

+196

+240

+255

FO
Fl

C4
C5

OD
OE

00
01

TR INPUT, TABLE

DS CL20

END

Specifications

The format of the ORG instruction
is shown in the figure to the right.

The symbols in the eXfression in
the operand field must be previously
defined. The unpaired relocatable
term of the expression (see C6E)
must be defined in the sarre control
section in which the ORG statement
appears.

0 The location counter is set to the
• value of the expression in the

operand. If the operand is omitted,
the location counter is set to the

~ next available location for the
current control section.

The expression in the operand of
an ORG instruction must not specify
a location cefore the beginning
of the control section in which
it appears. In the example to the o right, the ORG instruction is invalid
if it appears between the beginning
of the current control section and
500 cytes fro~ the beginning of
the same control section. This

•
is because the expression specified

- is thennegatiy_e __ a_nd ow_ill set the
location counter to a value larger
than the assembler can process.
The location counter will ·wrap
around· (the location counter is
discussed in detail in section C4B) •

Name

as
Any symbol
or blank

SECTA

OC08 HERE
OCOC •
OD80

IOD80\ •

o FIRST

Operation

ORG

Page of GC33-40tO-O

Revised September 29, 1972

By TNL GN33-8148

Operand

A relocatable
expression
or blank

Source Module

START

L 3,ADDR
MVe

•
ORG

• L 4,AREA
A 4,TWO
ST 4,SUM

END

Source Module
• Negative

START

.ORG :' .. -500

END

Section H: Controlling the Assembler Program 213

NOTE: Using the ORG instruction
to insert data assembled later at
the same location as earlier data
will not always work.

In the example to ~he right, it
• appears as if the character constant

•
will be loaded over the address
constant. However, after the

•
character constant is loaded into
the same location as the address
constant, the relocation factor
required for the address constant

• is added to the value of the
constant. This sum then constitutes
the object code that resides in
the four bytes with the address
ADDR.

H1B -- THE LTORG INSTRUCTION

214

Purpose

You use the LTORG statement so that
the assembler can collect and
assemble literals into a literal
pool. A literal pool contains the
literals you specify in a source
module either:

• After the preceding L/IORG instruction
or

•
After the beginning of the source
module.

The assembler ignores the borders
between control sections when it
collects literals into pools.
Therefore, you must be careful to
include the literal pools in the
control sections to which they
belong (for details see Addressing
Considerations belcw) •

The creation of a literal pool gives
the following advantages:

1. Automatic organization of the
literal data into sections that
are properly aligned and arranged
so that no space is wasted

2. Assembling of duplicate data
into the same area

3. Because all literals are cross­
referenced, you can find the literal
constant in the pool into which
it has been assembled.

ADDR

CHAR

Assembled

ADDR

1
IX X x XI

*--4
(ADDR)

1 BETA

IC2C5E3C11

DC

ORG

DC
Processing Sequence

~

Loaded

ADDRe

1
IC2C5E3C11

Source Module

A START o

=lit1

=lit5

• A(LOC)

* -4

C'BETA' •

Relocation factor
added to value
of constant CHAR
ADDR

UL

The Literal Pool

A literal peol is created immediately
after a LTORG instruction or, if
no LTCRG instruction is specified,
at the end of the first control
section.

Each literal pool has four segments
into which the literals are stored
(1) in the order that the literals
are specified and (2) according
to their assembled lenqths, which,
for each literal, is the total -
explicit or implicit length, as
described below.

o The first segment contains all
literal constants whose assembled
lengths are a multiple of eight.

• The second segment contains those
whose assembled lengths are a
multiple of four, but not of eight.

• The third segment contains those
whose assembled lengths are even,
but not a multiple of four.

• 'The fourth segment contains all
the remaining literal constants
whose assembled lengths are odd.

The beginning of each literal pool
• is aligned on a doubleword boundary.

Therefore, the literals in the first
segment are always aligned on a
doubleword boundary, those in the

•
second segment on a fullword

I boundary, and those in the third o segment on a halfword boundary.

Source Module

IRST ------STAR'I'-- -----0---- Assembled in
Segment

MVC TO,=3F ' 9' • AD 2,=D'7' 0
IC 2,=XLI'8' • ,=CL3'JAN' • ,=2F'I,2' 0
0 ,=:r:'33' • • ,=~(ADDR) • Literal Pool

I • Start ,=XL8'05'

LTpRG

o

Section H: Controlling the Assembler Program 215

Addressing Considerations

If you specify literals in source
modules with multiFle contrel
sections, you should:

1. write a LTORG instruction at
the end of each control section,
so that all the literals specified

O
in the section are assembled into
the one literal pool for that
section. If a contrel section is
divided and interspersed among other
control sections, yeu should write
a LTCRG instruction at the end of
each segment of the interspersed
control section.

2. When establishing the
addressability of each control
section, make sure (a) that the
entire literal pool for that section

•
is also addressable, by including
it within a USING range, and (b)
that the literal specifications

•
are within the correspending USING
domain. The USING range and domain
are described in F1A.

216

NOTE: All the literals specified
after the last LTORG instruction,
or, if no L'IORG instruction is
specified, all the literals in a
source module are assembled into
a literal peol at the end of the
first control section. You must
then make this literal Feel
addressable along with the addresses
in the first control section. This
literal pool is printed in the
program listing after the END
instruction.

USING
range
ONE

USING
range
TWO

ONE

Source Module

START 0

Luplicate Literals

If you specify duplicate literals
-------Ylit~ne--P~r~ __ o_f_tb_e __ sourc~rnodJll~

O that is controlled bv a LTORG
instruction, only one literal
constant is assembled into the
pertinent literal peel. This also
applies to literals assembled into
the literal pool at the end of the
first or only control section of
a source module that contains no
LTORG instructions.

•
Literals are duplicates only if
their specifications are identical,

e not if the object code assembled
happens to be identical.

When two literals specifying

•
identical A-type (or y-type) address

· constants contain a reference to
the value of the location counter
(*), roth literals are assembled
into the literal pool. This is
because the value of the location
counter is different in the two
literals.

Specifications

1he format of the LTORG instruction
is given in the figure to the right~

If an ordinary symbol is specified
in the name field, it represents
the first byte of the literal pool;
this symbol is aligned on a
doubleword boundary and has a length
attribute value of one. If bytes
are skipped after the end of a
literal pool to achieve alignment
for the next instructien, constant,
or area, the bytes are not filled
wi th zeros.

Source Module

BEGIN

SECOND

Literal pool 2

END

Name

Any symbol
or blank

Action

both are stored

first is stored

both are stored, each
into a separate literal
pool

both are stored

both are stored

LTORG

Operation Operand

LTORG Not required

Section H: Controlling the Assembler Program 217

H1C -- THE CNOP INSTRUCTION

Purpose

You can use the CNOP instruction
to align any instructien er other

• data on a specific halfword toundary.
The CNOP instructien ensures an
unbroken flow of executable
instructiens by generating no-

4It0peration instructions to fill the
bytes skiffed to ferforrr. the
alignment that you specified.

For examfle, when ycu cede the

•

linkage to a subroutine, you may
wish to pass parameters to the

. subroutine in fields irrroediately
following the branch and link

~instruction. These parameters,
for instance, channel command words
(see G30) , can require alignment

on a specific boundary.

The subroutine can then address
• the parameters you pass through

the register with the return address.

218

Specificaticns

~he C~OF instruction forces the
alignrr.ent ef the lecation counter
to a halfword, fullword, or
doubleword teundary. It does not
affect the location counter if the
counter is already freferly aligned.
If the specified alignment requires
the locatien counter tc be
incremented, one to three no­
operation instructicns (BCR 0,0
occupying two bytes each) are
generated to fill the skipped tytes.
Any single tyte skif~ed to achieve
alignment to the first no-operation
instructicn is filled ~ith zeros.

Assume location
counter is at
doubleword
boundary

CNOP

LINK BALR

CCW

CCW

CCW

rCR

8 BCR

BCR

LINK BALR

CCW

CCW

CCW

Register
2

10 • ,..--.
6,8

2,10

lONE

I TWO

I THREE I

double half
word word

0,0 BCR

0,0

0,0 •

Contents
Return address
(LINK t 2)
Address of sub-

routine

Layout of
Object Code

half double
word

BCR

BALR

CCW ONE

{

0(2

• 8(2

16(2

CCW

CCW

TWO

THREE

The format of the CNOP instruction
statement is given in the figure
~2_!-11_~_ r igJ1~~ _________ _

The operands must be absolute
expressions, and any symbols must

Name

O
have been previously defined.
The first operand, b, s~ecifies
at which even-numbered byte in a

Any symbol
OS or blank

•
fullword or doubleword the location
counter is set. The second operand,
w , specifies whether the byte is
in a fullword (w=4) or a doubleword
(w=8). Valid pairs of b and ware
as indicated in the figure to the
right.

NO"IE: Both 0,4 and 2,4 speci fy
two locations in a doubleword.

H2 -- Determining Statement Format and Sequence

You can change the standard coding conventions for the
assembler language statements or check the sequence of
source statements by using the fcllowing instructions.

H2A -- THE ICTL INSTRUCTION

Pu.rpose

~he ICTL instruction allows you to change the begin, end i

and continue columns that establish the coding forroat cf
the assembler language source statements.

For example, with the ICTL instruction, you can increase
the number of columns to be used for the identificaticn
or sequence checking of your source statements. By changing
the begin column, you can even create a field before the
begin column to contain identification or sequence numbers.

Operation

CNOP

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

2,4

• FULLWORD

Section H: Controlling the Assembler Program 219

You can use the ICTL instruction
only once, at the very beginning
of a source module. If you do not
use it, the assembler recognizes
the standard values for th~ begin,
end, and continue columns.

Specifications

The ICTL instructicn, if specified,
roust be the first statement in a
source module.

The format of the IC~L instruction
statement is shown in the figure
to the right.

The operand entry must be one to

•
three decimal self-defining terms.
There are only three Ecssible ways
of specifying the operand entry.

~ The operand b must always be
~ specified. ~he operand e, when not

specified, is assumed to be 71.
~ If the operand c is not specified,

or if e is specified as 80, the
assembler assumes that continuation
lines are not allowed. The values

•
specified for the three operands
depend on each other.

220

NOTE: The ICTL instructicn does
not affect the format of statements
trought in by a COpy instruction
or generated from a library macro
definition. The asserobler processes
these statements according to the
standard begin, end, and continue
columns described in Section E1A.

BEGIN

I

1
1

Columns

Standard values for Columns I

CONTINUE

I
o~ ,
16

ICTL

Format 1
Name Operation Operand

Blank ICTL b or \

b,e or •
b,e,c

Operands I
Specifies Allowable range

• b Begin column 1 through 40

8 e End column 41 through 80

8 c Continue column 2 through 40

• Rules for interaction of b, e and c

The position of the End column must
not be less than the position of the Begin e ~b+5
column + 5, but must be greater than the
position of the Continue column e > c

The position of the Continue column
must be greater than that of the Begin c>b
column

H2B -- THE ISEQ INSTRUCTION e
Purpose ------------n-- ---00- -- --eulllpal es liIade

You can use the ISEQ instruction
to cause the assembler to check
if the statements in a source module
are in sequential order. In the
ISEQ instruction you specify the

O columns between which the assembler
is to check for sequence nu~bers.

The assembler begins sequence

ISEQ

8 L

A

ST

• checking with the first statement •

;~~ea!~!!~~!~gai~~ ~~!~k~nstruction. r ~
• continuation lines. ~

Sequence numbers on adjacent
• statements or lines are compared

according to the 8-bit internal

• ONE ONE with TI''IO

TWO TWO with THREE

THREE THREE with FOUR

FOUR FOUR with FIVE

CARD
FIVE

and so on

EBCDIC collating sequence. When I I
the sequence number on one line
is not greater than the sequence
number on the preceding line, a
sequence error is flagged, and a .. ~

1

warning message is issued, but the
assembly is not terminated.

NOTE: If the sequence field in the
preceding line is blank, the
assembler uses the last preceding
line with a non-blank sequence field
to make its comparison.

Specifications

The ISEQ instruction initiates or
terminates the checking of the
sequence of statements in a source
module.

The format of the ISEQ instruction
is shown in the figure to the right.

o The first option in the operand
entry must be two decimal self­
defining terms. This format of
the ISEQ instruction initiates
sequence checking, beginning at

•
the statement or line following
the ISEQ instruction. Checking
begins at the column re~resented

• by land ends at the column
represented by r. The second

•
option of the ISEQ format terminates
the sequence checking operation.

ISEQ

I Name I Operation I Operand I

I

Blank

I

ISEQ

I

I,' e}1
or blank •.

Column Specifies Rules for interaction

I 8 I I

I~ leftmost column of ISr I must not be
field to be checked greater than r

r--......

I and r not allowed
to lie between begin
and end columns

\,.....-

J • r ..---- rightmost column r~1 r must not be
of field to be checked less than I

Section H: Controlling the Assembler Program 221

NOTE: The assembler checks only
those statements that are specified
in the coding of a source module.
This includes any COpy instruction
statement or macro instruction.

However, the assembler does not
check:

1. Statements inserted by a COpy
instruction

2. Statements generated from model
statements inside macro definitions
or from model statements in open
code (staterrent generation is
discussed in detail in section J)

3. Statements in library macro
definitions.

H3 .. Listing Format and Output

The instructions described in this
section request the assembler to
produce listings and identify output
cards in the object deck according
to your special needs. They allow
you to determine printing and page
formatting options other than the
ones the assembler program assumes
by default. Among other things,
you can introduce your own page
headings, control line spacing,
and suppress unwanted detail.

H3A -- THE PRINT INSTRUCTION

222

Purpose

The FRINT instruction allows you
to control the amount of detail
you wish printed in the listing
of your programs. The three options
that you can set are given in the
figure to the right.

They are listed in hierarchic order;
if OFF is specified, GEN and rATA
will not apply. If NOGEN is
specified, CATA will not apply to
constants that are generated. The
standard options inherent in the
assembler program are ON, GEN, and
NODATA.

Source Module

FIRST START 0

ISEQ 73,80

T
checking
occurs

ISEQ +
T

checking
does not
occur

ISEQ 73,80 +
T

checking
resumed

END !

Hierarchy Description PR I NT options

1 A listing is printed ON

No listing,.is printed OFF

2 All statements generated by the
processing of a macro instruction GEN
are. p'ri nted

Statements generated by the
processing of a macro instruction NOGEN
are not Rrinted (Note: The
MNOTE instruction always causes
a message to be printed)

3 Constants are printed in full in DATA
the listing

Only the leftmost eight byjes of
NODATA constants are printed in the

listing

Specifications

~he format of the PRINT instruction
statement is shown in the figure
to the right.

o At least one of the operands must
be specified, and at most one of
the options from each group. The
PRINT instruction can be specified
any number of times in a source
module, but only those print options
actually specified in the instruction
change the current print status.

PRINT options can be generated by
macro processing, at pre-assembly
time6 However, at assembly time,
all options are in force until the
assembler encounters a new and
opposite option in a PRINT
instruction.

NOiE: The opt1on specified in a
PRINT instruction takes effect after
the PRINT instruction. If PRINT
OFF is specified, the PRINT
instruction itself is printed, but
not the statements that follow it.
If the NOLIST asse~bler oftion is
specified in the job control
language, the entire listing fer
the assembly is suppressed.

Name

A sequence
symbol or

blank

Operation

PRINT

Section H: Contro1ling the Assembler Program 223

H3B -- THE TITLE INS~RUCTION

purpose

The TITLE instruction allcws you
to:

~ 1. provide headings for each page
of the assembly listing of your
source modules.

2. Identify the assembly output
cards of your ocject roodules. You

•
can specify up to 8 identification
characters that the assembler will

•
punch into all the output cards,
ceginninq at column 73.

DO$t.lpto4 identification
cu: e allowed.

O ~he assembler punches sequence
numbers into the columns that are
left, up to column 80.

Specifications

The format of the TITLE instruction
statement is given in the figure
to the right.

Any of the five options can ce
specified in the name field.

~ ~he first three options for the
name field have a special
significance only for the first
TITLE instruction in which they

224

are specified. For subsequent TITLE
instructions, the first three opticns
do not apply.

TITLE 'THIS IS A HEADING'

Program Listing

• THIS IS A HEADING

PROG TITLE ' heading' •
PROG 0003

PROG 0002
73 80 Object Deck
PROG 0001 ••

TITLE

Name Operation Operand

.2ption

.{~
A string of alpha- TITLE A character
meric characters string up to
A variable symbol 100 charac-
A combination of ters, en-
1 and 2 closed in

4 A sequence symbol I apostrophes
5 blank I

For the first TITLE instruction
of a source module that has a non­
blank name entrL that is not a
sequence:symcol, the follcwing
applies:

o Up to eight alphameric characters
can te specified in any combination
in the name field.

These characters are punched as
identification, beginning at column
73, into all the out~ut cards from
the assembly, except those produced
by the PUNCH and REPRO instructions •

•
The assemtler substitutes the current
value into a variable symbol and
uses the generated result as
identification characters •

• If a valid ordinary symbol is
specified, its appearance in the
name field does not constitute a
definition of that symbol for the
source module. It can therefore
be used in the name field of any
other statement in the same source
module.

Object
Deck

Examples of TITLE instructions
in separate source modules:

Source Statement Value of
variabie symboi

Punched into cards
beginning at coL 73

&ID~~T_I_T_L_E __ -+ ___ M_O_D_9_9_A ____ +-___ M_O_D_9_9_A ____ --I

PGM&N1 TITLE 200 PGM200

1234 TITLE 1234

SYMBOL TITLE SYMBOL •

Section H: Controilling the Assembler Program 225

o The character string in the operand
field is printed as a heading at
the top of each page of the assembly
listing. The heading is printed
beginning on the page in the listing
following the page on which the
TITLE instruction is specified.
A new heading is printed when a
subsequent TITLE instruction appears
in the source module.

Each TITLE statement causes the
listing to be advanced to a new page
(before the heading is printed)

except when PRINT NOGEN is in use.

Any printable character specified
will appear in the heading, including
blanks. Variable symbols are allowed.
However, the following rules apply
to ampersands and apostrophes:

• A single ampersand initiates
an attempt to identify a variable

~ symbol and to substitute its current
value.

4It. Double ampersands or apostrophes
specified, print as single ampersands
or apostrophes in the heading.

~. A single apostrophe followed
by one or more blanks simply
terminates the heading prematurely.
If a non-blank character follows

226

a single apostrophe, the assembler
issues an error message and prints
no heading.

Only the characters printed in the
heading count toward the maximum
of 100 characters allowed.

NOTE: The TITLE statement itself
is not printed in an assembly
listing.

TITLE 'HEADING ONE~

~ADING oiffi----

V
Examples of headings:

Source Statement Value Printed Heading
of
Variable

• Symbol

TITLE 'HEADING liN' TWO HEADING TWO

TITLE 'HEADING &zti' HEADING & ,

TITLE 'HEADING
FOUi FIVE ' HEADING FOUR

TITLE 'HEADING FOUR'REMARKS

~ **ERROR**

H3C -- THE EJECT INSTRUCTION

Purpose

The EJECT instruction allows you
to stop the printing of the assembly
listing on the current page and
continue the printing on the next
page.

Specifications

The format of the EJECT instruction
statement is shown in the figure
to the right.

The EJECT instruction causes the
next line of the assembly listing
to be printed at the top of a new o page. If the line before the EJECT
L~struction appears at the bottom

•
of a page, the EJECT instruction
has no effect. An EJECT instruction
immediately following another EJECT
instruction causes a blank page
in the listing.

NOTE: The EJECT instruction
statement itself is not printed
in the listing.

Name

A sequence
symbol or

blank

Page
Boundary

Operation

EJECT

Source Module

Operand

Not required

Listing

EJECT

Page
Boundary

_ _ _ _ _ _ _ _ Page

Boundary

Section H: Controlling the Assembler Program 227

H3D -- THE SPACE INS~RUCTION

purpose

You can use the SPACE instruction
to insert one or more blank lines
in the listing of a source module.
This allows you to separate sections
of code on the listing ~age.

Specifications

~'he format of the SPACE instruction
statement is given in the figure
to the right.

The operand entry s~ecifies the
number of lines to be left blank.
A blank operand entry causes one
blank line to be inserted. If the
operand specified has a value greater
than the number of lines rerraining
on the listing page, the instruction
will have the same effect as an
EJECT statement.

NOTE: The SPACE instruction itself
is not listed.

Name Operation

A sequence
symbol or SPACE
blank

H4 - Punching Output Cards

The instructions described in this section produce punched
cards as output from the assembly in addition to those
produced for the object module (object deck) •

H4A -- THE PUNCH INSTRUCTION

228

Purpose

The PUNCH instruction allows you to punch source or other
statements into a single card. With this feature you can:

1. Code PUNCH statements in a source module to produce
control statements for the linkage editor. The linkage
editor uses these control statements to process the otject
module.

2. Code PUNCH statements in macro definitions to ~roduce,
for example, source statements in other computer languages
or for other processing phases.

~he card that is punched has a physical position irrmediately
after the PUNCH instruction and before any other TXT cards
of the object decks that are to follow.

SPACE

Operand

A decimal
self-defining term
or blank

Specifications

The PUNCH instruction causes the
data in its o~erand to be punched
into a card. One PUNCH instruction
produces one punched card, but as
many PUNCH instructions as necessary
can be used.

The PUNCH instruction statement
can appear anywhere in a source

O module except before and 1::etween
source macro definitionse If a

•
PUNCH instruction occurs before
the first control section, the

•
resultant card punched will precede
all other cards in the object deck.

OThe cards punched as a result of
a PUNCH instruction are not a logical
part of the object deck, even though
they can 1::e physically interspersed
in the object deck.

The format of the PUNCH instruction
statement is shown in the figure
to the right.

All 256 punch combinations of the
IBM System/310 character set are
allowed in the character string
of the operand field. Varia1::le
symbols are also allowed.

F ,

I I
I

I •

I ~~~~~
.t ..l..Ki::n:

Source Modu!e

•
MACRO
MACDEFl

MEND
4

MACRO
MACDEF2

MEND

PUNCH

START a

PUNCH

PUNCH

END

Name

A sequence
symbol or
blank

Operation

PUNCH

Object Module
(Card Deck)

PUNCH

Operand

A character string of
up to 80 characters,
enclosed in apostrophes

Section H: Controlling the Assembler Program 229

230

•
The position of each character
specified in the PUNCH statement

•
corresponds to a column in the card
to be punched. However, the
following rules apply to ampersands
and apostro{:hes:

1. A single ampersand initiates

•
an attempt to identify a variable
symbol and to substitute its current
value.

0 2. Double ampersands or apostrophes
· are punched as single ampersands

or apostrophes.

8 3. A single aEostrophe followed
by one or more blanks simply
terminates the string of characters
punched. If a non-blank character
follows a single apostrophe, an
error message is issued and nothing
is punched.

Only the characters punched,
including blanks, count toward the
maximum of 80 allowed.

NO'l'ES:

1. No sequence number or
identification is punched into the
card produced.

2. If the NCCECK option is specified
in the EXEC statement of the job
control language for the assemtler
program, no cards are punched:
neither for the PUNCH or REPRO
instructions, nor for the object
deck of the assembly.

• Position 1 2 3 4 5 6 7

21

Examples:

Source
Statement

• PUNCH 'CHARS &VAR'

• PUNCH 'CHARS
/\ && II,

PUNCH 'CHARS A' B'

! • PUNCH 'CHARS A'REMARKS
* * >'" ERROR ::< ~:< *

PUNCH 'CHARS AI REMARKS

13 15 21

• Column

Value of Characters
Variable Punched
Symbol

ABC CHARS ABC

CHARS &'

CHARS A

CHARS A ~

Il4B -- THE REPRO INS'IRUCTION

Purpose

~he REPRO instruction causes the
data specified in the statement
that follows to be punched into
a card. Unlike the PUNCH
instruction, the REPRO instruction
does not allow values to be
sUbstituted into variable symbols
tefore the card is punched.

Source Module~~,Z,ii,;~;~rt;.=~
I.~•.. v, .. : ... ,.?\., .. : .•.. :.,.,: .••. : .. c•.•. ,.D ...•.•. " .• ,•. E .•.•. ,., ...•...•...•. ~., .•.•... , ...•.• , ...•.. l.: , .•....•.•. J ... #i" " Z/ II
I MA;~;;:(II rt-:-e-~-r~-fa-~-i'::-:-~:-~-t-:~-~e---.

REPRO
data 1 ..
FIRST START a

section; punched card
will precede object
deck

REPRO I
data 2 ~~r---~------LJ~I~n~m~id~d~le~o~f~o~b~~e~ct~d~e~c~kl

REPRO
data 3 ~~r-__ ~ ______ 11~I~n~m~i~dd~l~e~of~O~b~je=c~t~de=c~kl

Specifications

~he REPRO instruction
on the statement line
it to be punched into
corresponding columns
One REPRO instruction
punched card.

causes data
that follows
the
of a card.
produces one

The REPRO instruction can appear
anywhere in a source module except o before and between source macro •
definitions. The punched cards
are not part of the object deck,
even though they can be physically
interspersed in the object deck.

The format of the REPRO instruction
statement is shown in the figure
to the right.

The line to be reproduced can contain
any of the 256 punch characters,
including blanks, ampersands, and
apostrophes. No substitution is
performed for variable symbols.

NOTES:

END

Name

A sequence
symbol or
blank

1. No sequence numbers or identification is punched in
the card.

2. If the NODECK o~tion is specified in the job control
language for the assembler program, no cards are ~unched:
neither for the PUNCH or REPRO instructions, nor for the
object deck of the assembly.

REPRO

Operation Operand

I
REPRO Not required

Section H: Controlling the Assembler Program 231

H5A -- THE OPSYN INSTRUCTION

Purpose

The OPSYN instruction allows you
to define your own set of symbols
to represent operation codes for:

1. ~achine and extended mnemonic
cranch instructions.

2. Assembler instructions including
conditional assembly instructions.

You can also prevent the assembler
from recognizing a symbol that
represents a current operation code.

Specifications

The OPSYN instruction wust be written
after the ICTL instruction and can
be preceded only by the EJECI, ISEQ,
PRINT, SPACE, and TITLE instructions.
The CFSYN instruction must precede
any source macro definitions that
may be specified.

The OPSYN instruction has two basic
formats as shown in the figure to
the right.

The operation code specified in
• the name field or the operand field •

must represent either:

1. The operation code of cne of
the machine or assembler instructions
as described in PARIS II, III, and
PART IV of this manual, or

2. The operation code defined by
a previous OFSYN instruction.

•
The OPSYN instruction assigns the
properties of the operation code
specified in the operand field to
the symbol in the name field. A

~ clank in the operand field causes
the operation code in the name field
to lose its properties as an
operation code.

232

Name

Any

8SymbO!Or
operation
code

An
operation
code

NEW

OPSYN

Operation Operand

QPSYN An operation

Code.

or

QPSYN blank

OPSYN

OPSYN •

No longer recognized
by the assembler as
a valid operation code

MVe

in current source module

~

~ ~~~E;€~~:~:£~b~lV~~i~h~~~~~i~~eld
code. It loses its current
properties as if it had been defined
in an OPSYN instruction with a blank
operand field. Further, when the
same symbol appears in the name

• field of two OPSYN instructions
Th~ lATOQT Ao~;n;~;~~ ~~~~s • p~;c;d;~~;. ~~ •• ~ • '-~vu ,-ah~

• LR

Both now possess the
properties of the LR
machine instruction
operation code

ST

STH •

Now represents
STH machine
operation

Section H: Controlling the Assembler Program 233

The instructions described in this subsection can save
and restore the status of PRINT options and the base
register assignment of your program.

H6A -- THE FUSH INSTRUC'rION

Purpose

The PUSH instruction allows you to save the current PRINT
or USING status in "push-down" storage on a last-in, first­
out basis. You can restore this PRINT and USING status
later, also on a last-in, first-out basis, by using a
corresponding POP instruction.

Specifications

The format of the PUSH instruction
statement is shown in the figure
to the right.

One of the four options for the
operand entry must be specified.
The PUSH instruction does not change
the status of the current PRINT
or USING instructions; the status
is only saved.

NOTE: When the PUSH instruction
is used in co~bination with the
POP instruction, a maximum of four
nests of PUSH PRINT - POP PRINT
or PUSH USING - POP USING are
allowed.

Name

A sequence
symbol or
blank

Operation

PUSH

H6B -- THE FOF INSTRUCTION

234

PUrpose

The POP instruction allows you to restore the PRINT or
USING status saved by the most recent PUSH instruction.

Specifications

The format of the POF instruction
is given in the figure to the right.

One of the four options for the
operand entry must be sr;ecified.
The FCP instruction causes the
status of the current PRINT or USING
instruction to be overridden by
the PRINT or USING status saved
by the last PUSH instruction.

NOTE: When the POP instruction
is used in combination with the
PUSH instruction, a maximum of four
nests of PUSH PRINT - POP PRINT
or PUSH USING - POP USING are
allowed.

Name

A sequence
symbol or
blank

Operation

POP

PUSH

Operand

Options

PRINT 1
USING 2
PRINT,USING 3
USING,PRINT 4

Operand

PRINT
USING 2
PRINT,USING 3
USING,PRINT 4

In the Offosite exarofle, you can.

O
see how the USING environment i.s
saved and restored by a combination
of PUSH and PCP instructions.

NO'I'E: The PUSH instruction does
not change the current USING status;

• you must do this yourself.

Source Module

MACRO

NEW
PUSH

USING

POP

MEND

FIRST START

USING

USING

BASENEW, 12

USING

BASE,12

BASENEW,12

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

I

Storage Stack
for saved
USING status

Section H: Controlling the Assembler Program 235

236

Part IV: The Macro Facility

SECTION I: INTRODUCING MACROS

SECTION J: THE MACRO DEFINITION

SECTION K: THE MACRO INSTRUCTION

SECTION L: THE CONDITIONAL ASSEMBLY LANGUAGE

237

This page left blank intentionally.

Section I: Introducing Macros

This section introduces the basic macro concept; what you
can use the macro facility for, how you can prepare yeur
own macro definitions, and how you call these macro
definitions for processing by the assemtler.

Read this section straight through before referring to
the detailed descriptions identified by the cross-reference
arrows ..

NOTE: IBM supplies macro definitions in system libraries
for input/output and other control program services, such
as the dynamic allocation of main storage areas. ~o rrocess
these macro definitions yeu only have to write the macro
instruction that calls the definition.

Section I: Introducing Macros 239

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Using Macros

FOR TEXT INSERTION: The main use of macros is to insert
assembler language statements into a source program.

Source Module

BEFORE

J

K

L

Pre-assembly
or macro pro­
cessing time

Macro Definition

Name=TEXTIN

D

E

F

G

H

I

You call a named sequence of statements (the macro
4Itdefinition) by using a macro instruction, or macro call.

'Ihe assembler replaces the macro call by the statelr:ents

a from the macro definition and inserts them into the source
module at the point of call. The process of inserting
the text of the macro definition is called macro generation
or macro expansion. The assembler expands a macro at pre­
ass embly t iroe.

240

The expanded stream of code then becomes the input for
processing at assembly time, that is, the time at which
the assembler translates the machine instructions intc
object code.

Source Module

AFTER

K

L

FOR TEXT MODIFICATION: Yeu may want to modify the
statements in a macro definition before they are generated.

-~--€-an--Ge-~--by- supplying charac~ stri~g values---a-s----
~~perands in a macro call. These values rep~ace parameters

in the statement te be generated. This means that you
can change the content of the generated statements each
time you call the macro definition.

Source Module Macro Definition Generated Result

A

~ 0 C ___

11'.iliJ;li' 1!'.~:~i*i:li;H

I ;
i H
I I

1:;:[<jl!l!lllt
I ~

I·
K

I I

section I: Introducing Macros 241

242

FOR TEXT MANIPULATION: You can also select and reorder
the statements to be generated from a macro definition
by using the conditional assembly language described later
in this section.

p

Source
Module

Macro
Definition

Name = SELECT
Parameter: X

If X=O, then generate

A
B
C

~.
F~ ___ -I-__

Generated
Result

R
S
D
E
F

~The conditional assembly language allows you to manipulate
text generation, for example, by branching upon the result
of a condition test. You can choose exactly which

~statements will or will not be generated by varying the
values you specify in the macro call.

o I See SECTION L >

The Basic Macro ConceEt

'J'~\lEiLjj1e c~mQle~~I'(1ctcrQ f~c~~itr HQyj·9_ed _J:>y_theass~IR~.L~L
you must:

• prepare a macro definition and

• Call this definition using a macro instruction.

These statements
establish limits of
a macro definition

Prototype -7""------...........

Bodyofa r
macro
definition)

Sequence of
Statements

MEND

Macro Instruction La MAC NAME

You can create a macro definition ty enclosing any sequence

O
Of assembler language statements between the MACRO and
MEND statements, and by writing a prototype statereent in
which you give your definition a name. This name is then

~the operation code that you must use in the macro
instruction to call the definition.

o I SeeJ2C >
~ISeeK2B>

Section I: Introducing Macros 243

~When you write a macro instruction in your source rrodule,
you tell the assembler to process a particular ~

4&tdefinition. The assembler produces assemcler language
statements from this macro definition for each macro
instruction that calls the definition.

244

Source Module

I MANY I

Definition

Generation of

assembler

language statements

By using the macro facility you reduce programming effort,
because:

1. You write and test the code a macro definition contains
once. You and other programmers can then use the sarre
code as often as you like by calling the definition; which
means that you do not have to reconstruct the coding logic
each time you use the code.

2. You need write only one macro instruction to call for
the generation of many assembler language statements froIT
the macro definition.

When you are designing and writing large assembler language
programs, the above features allow you to:

• Prepare macro definitions, containing difficult code,
for your less experienced colleagues. They can then call
your definitions to generate the a~pro~riate statements,
without having to learn the code in the definition.

• Change the code in one place when updating or making
corrections, that is, in the macro definition. Each call
gets the latest version automatically, thus providing
standard coding conventions and interfaces.

• Describe the functions of a complete macro definition
rather than the function of each individual statement it
contains, thus providing more comprehensicle docurrentation
for your source module.

o I See SECTION K >
81 See SECTION J >

Defining a Macro

Defining a macro means preparl.ng the statements that
constitute a macro definition. To define a macro you must:

1. Give it a name

2. Declare any parameters to be used

3. Write the stateroents it contains.

4. Establish its boundaries

...

... MACRO

Prototype MACID &PARAMl,&PARAM2
... ' 'II

,

-II • • • Body of Macro I I
I • MEND

• Macro Instruction MACID OPERANDI,OPERAND2

~The MACRO and MENC instructions establish the boundaries
of a macro definition.

I YOU use the prototype statement to name the macro and to
declare its parameters. In the operand field of the macro

· instruction, you can assign values to the parameters
declared for the called macro definition.

4ItThe body of a macro definition contains the staterrents
that will be generated when you call the macro. These
statements are called model statements; they are usually
interspersed with conditional assembly statements or ether
processing statements.

• See J2D > • SeeJ3 > • SeeK2C > - See J2 E >

Section I: Introducing Macros 245

WHERE YOU CAN PLACE A MACRO DEFINITION: You can include
a macro definition at the beginning of a source module. 0

1 ~ This type of definition is called a source macro definition. ~eJ1B

•
You can also insert a macro definition in a systerr or user
library (located, for example, on disk) by using the
appropriate utility program. This type of definition is
called a library macro definition. The IBM-supplied macro
definitions mentioned earlier are examples of library rracro
definitions.

Source Module

LIB2

LIB2

Source
Module I

MACRO o
MEND

Calling a Macro

Macro Library

Source
Module II

Generated Result

LIB2

Source
Module III

MACRO o
MEND

~YOu can call a source macro definition only from the source

•
module in which it is included. You can call a library

· macro definition from any source module.

246

>

WHERE YOU CAN CALL A MACRO CEFINITION: You can call a

O macro definition by specifying a macro instruction anywhere
in a source module, except before or between any source
macro definitions that may be specified.

Source
Module

Macro Definitions

!'A.ACRO !'AJ\CRO

Generated
Result

You can also call a macro definition from within another

•
macro definition. This type of call is an inner macro
call; it is said to be nested in the macro definition.

0 1 SeeK1B >

8' seeK6A)

Section I: Introducing Macros 247

The Contents of a Macro Cefinition

The body of a macro definition can contain a combination
of model statements, processing statements, and corements
st at ements.

Model Statements •
A

• X=A
Y=B
z=c

Generated Statements

A

1m rn ml

MODEL STATE~ENTS: You can write assemtler language • o statements as model statements. The assemtler copies there I See J4
exactly as they are written when it expands the macro.

I You can also use variable symbols as points of sutstituticn
in a model statement. The assembler will enter values
in place of these points of substitution each time the
macro is called.

248

>

The three types of variable symbol in the assembler language
are

-t-.--5-ymbo-l-ic---par-amet-er--s-,--deci-ared--in--the--p-rototype sta temellt

2. System variable symbols (see J7)

3. SET symbols, which are part of the conditional assembly
language (see L1A).

The assembler processes the generated statements, with
or without value substitution, at asseml:ly time.

PROCESSING STATEMENTS: Processing statements perform
functions at pre-assembly time when macros are expanded,
but they are not themselves generated for further processing
at assembly time. The processing statements are:

1. Conditional assembly instructions

2. Inner macro calls

3. The MNOTE instruction

4. The MEXIT instruction.

Pre-Assembly Time Assembly Time

~. ~essage printed
~ mprogram

listings

o The MNOTE instruction allows you to generate an error 0 I SeeJ50 >
message with an error condition code attached, or to
generate comments in which you can display the results
of pre-assembly computation •

• The MEXIT instruction tells the assembler to stop processing • I See J 5 E >
a macro definition. The MEXIT instruction therefore

•
provides an exit from t.h.e ml.'ddle ... o.f.a m. aero defin.ition.
The MEND instruction not only delimits the contents of
a macro definition but also provides an exit from the
definit ion.

Section I: Introducing Macros 249

250

COM~ENTS STATEMENTS: One type of comments statement
describes pre-assembly operations and is not generated.
The other type describes assembly-time operations and is
therefore generated (for details see J6).

The Conditional Assembly Language

The conditional assembly language is a programming language
with most of the features that characterize such a language.
For example, it provides:

1. Variables

2. Data attributes

3. Expression computation

4. Assignment instructions

5. Labels for branching

6. Branching instructions

7. Sul:;string operators that select characters from a string.

You can use the conditional assembly language in a macro
definition to receive input from a calling macro
instruction. You can produce output from the conditional
assembly language by using the MNOTE instruction.

You can use the functions of the conditional assembly
language to select statements for generation, to determine
their order of generation, and to perform computations
that affect the content of the generated statements.

The conditional assembly language is fully described in
Section L.

Section J: The Macro Definition

This section describes macro definitions: where they can
be placed in order to be available to call, how they are
specified, and what they can contain.

Jl -- Using a Macro Definition

J1A -- PURPOSE

A macro definition is a named sequence of statements which
you can call with a macro instruction. When it is called,
the assembler processes and usually generates assembler
language statements from the definition into the source
module. The statements generated can te:

1. Copied directly from the definition,

2. Modified by parameter values before generation, or

3. Manipulated by internal macro processing to change
the sequence in which they are generated.

You can define your own macro definitions in which any
combination of these three processes can occur. Some rracro
definitions do not generate assembler language statements,
but perform only internal processing, like some of the
macro definitions used for system generation 0

Section J: The Macro Definition 251

J1B -- SPECIFICATIONS

Where to Define a Macro In a Source
Module

A macro definition within a source
module must be specified at the
beginning of that source module.
This type of macro definition is
called a source macro definition.
A macro definition can also reside
in a system library; this type
of macro is called a library macro
definition. Either ty~e can be
called from the source module by
the appropriate macro instruction.

NOTE: A source macro definition
can be entered into a library and
thereby become a library macro
definition. A library macro
definition can be included at the
beginning of a source module and
thereby become a source macro
definition.

Some control and comments statements
can appear at the beginning of a
source module along with the source
macro definitions. They can be
used:

• Eefore all macro definitions.

• Between macro definitions.

• After macro definitions and before
open code

All other statements of the assemcler
language must appear after any
source macro definitions that are
specified.

Open Code

• Open code is that ~art of a source
module that lies outside of and
after any source macro definition.
Open code is initiated by any
statement of the assembler language
that appears outside of a macro
definition, except the ICTL, OPSYN,
ISEQ, EJECT, FRINT, SPACE, or TITLE
instruction, or a comments statement.

252

Source Module

B
C

Open Code

Conunents

Conunents

•

At coding time, it is important
to distinguish between source
statements that lie in open code

--and those-tnat-----n:e----ulsT<Ie-macro ---
definitions.

NOTES:

1. The ISEQ, EJECT, PRINT, SPACE,
and TITLE instructions, and one
or more comments statements, can
appear between source macro
definitions and the start of open
code. However, in this position,
the above instructions must not
contain any variable symbols.

2. After the start of open code,
variable symbols are allowed in
any statement.

3. A macro definition must not be
specified after the start of open
code.

The Format of a Macro Definition

The general format of a macro
definition is shown in the figure
to the right.

The four parts are described in
detail below.

Macro Defn

- -- ~ -

~------------------------~I

.---__ ~_N_:_:_:_E ____ (:_r:_:_:_:_:_ta_:t_eam_t:_:_:_nt_)_ 1

Body of Macro

MEND (Trailer Statement)

Section J: The Macro Definition 253

J2 -- Parts of a Macro Definition

J2A -- THE MACRO DEF'INITION HEADER

Purpose

The macro definition header
instruction indicates the beginning
of a macro definition.

Specifications

The MACRO instruction is the macro
definition header; it must be the
first statement of every macro
definition. Its format is given
in the figure to the right.

J2B -- THE MACRO DEFINITION TRAILER

254

Purpose

The macro definition trailer
instruction indicates the end of
a macro definition. It also provides
an exit when it is processed during
macro expansion.

Specifications

The MEND instruction statement is
the macro definition trailer; it
must be the last staterr:ent of every
macro definition. Its format is
given in the figure to the right.

Header

Name Operation Operand

Not used, MACRO Not required

must not be
present

Trailer

Name Operation Operand

A sequence MEND Not required
symbol, or
not used

J2C -- THE MACRO PROTOTYPE STATEMENT: CODING

Purpose

'The prototype statement in a macro
definition serves as a model
(prototype) of the macro instruction

you use to call the macro definition.

Specifications

The prototype statement must be
the second statement in every macro
definition. It comes immediately
after the MACRO instruction.

The format of the prctotype statement
statement is given in the figure
to the right.

The maximum number of symbolic
parameters allowed in the operand
field is not fixed. It depends
on the amount of virtual storage
available to the program.

If no parameters are specified in
the operand field, remarks are
allowed, if the absence of the
operand entry is indicated by a
comma preceded and fcllowed by one
or more blanks.

Name

A name
field
parameter
or blank

Operation

Prototype

Operand

Zero or more
symbolic
parameters
separated by

commas

Section J: The Macro Definition 255

Alternate Ways of Coding the
prototype Statement

The prototype statement can be
specified in one of the following
three ways:

• The normal way, with all the syml:olic
parameters preceding any remarks.

4Bt An alternate way, allowing remarks
for each parameter.

• A combination of the first two ways.

NOTES:

1. Any number of continuation lines
is allowed. However, each

•
continuation line must be indicated
by a nonblank character in the column
after the end column on the preceding
card.

2. For each continuation line, the
operand field entries (symbolic

•
parameters) must begin in the continue
column otherwise the whole line and
any lines that follow will be

• considered to contain remarks.

J2D -- THE MACRO PROTOTYPE STATEMENT: ENTRIES

The Name Entry

PUrpose

Prototype Statements (

Standard value for
column after End
column is 72

16 7172

_{
MOVE ~TO'&FROM'&LENGTH' '&PARAM'X

PARAM2,&PARAM3,•• &PARx
~ 1 , .•.•. ,PARAMl5 REMARKS

• Comma required
after each parameter

MOVE

•
o

Column 16

\
• MOVE

Comma required
after each
parameter

except last . , I
1'-----7

o

except last

FIELD TO WHICH DATA MOVE
FLD. FROM WHICH DATA MVD

MOVE LENGTH

INDEXl

!
INDEX2

PARAMl5 REMARKS CONTINUED
ON NEXT LINE,
AND THE NEXT

One or more
blanks required

TO, ATA MOVED TO
FROM, DATA MOVED FROM •

I

x
X

LENGTH, NO OF BYTES x
PARAMl,&PARAM2,&PARAM3,

ARAMl5 REMARKS CONTINUED
N LAST LINE

You can write a name-field parameter similar to the syrrbclic
parameter, as the name entry of a macro prototype statement.
You can then assign a value to this parameter from the
name entry in the calling macro instruction.

256

Specifications

-- . If used, the name entry must be

I a variable symbol. If this parameter
also appears in the body of a macro,
it will be given the value assigned
to the parameter in the name field
of the corresponding rnacrc
instruction. Note that the value
assigned to the name field parameter
has special restrictions that are
listed in K2A.

The Operation Entry

Purpose

~he operation entry is a symbol
that identifies the macro definition.
When you specify it in the operation
field of a macro instruction, the
appropriate macro definition is
called and processed by the
assembler.

Specifications

• The symbol in the operation field
of the prototype statement
establishes the name by which a
macro definition must be called •

•
This name becomes the operation
code required in any macro instruc­
tion that calls the macro.

on, the operation code
specified in the prototype statement
must not be the same as that
specified in:

1. A machine instructionc

2. An assemtler instruction.

3. The prototype statement of another
source (or library) macro definition.

Source Module /8
~-j~-------------~~--------~ _ MACRO /'

&NAM MOVE./" &TO,&FROM

MVC &TO, &FROM

MEND

~ START a
I HERE MO~E FIELDA,FIELDB/

,
HERE MVC FIELDA,FIELDB

END

Section J: The Macro Definition 257

258

The Cperand Entry

Purpose

The operand entry in a prototype statement allows you to
specify positional or keyword parameters. These parameters
represent the values you can pass from the calling macro
instruction to the statements within the body of a macro
definition.

Specifications

The operands of the macro prototype statement must be
symbolic parameters separated by commas. They can be
positional parameters or keyword parameters or both (see
J3) •

NOTE: The operands must be symbolic parameters; parameters
in sublists are not allowed. For a discussion of sublists
in macro instruction operands, see K4.

J2E -- THE BODY OF A MACRO DEFINITION

Purpose

The body of a macro definition
contains the sequence of statements
that constitutes the working part
of a macro. You can specify:

1. Model statements to be generated.

2. processing staterrents that, for
example, can alter the content and
sequence of the statements qenerated
or issue error messages. -

3. Comments statements, some of
which are generated and others which
are not.

4. Conditional assembly instructions
to compute results tc be displayed
in the message created by the MNOTE
instruction; without causing any
assembler language statements to
be generated.

Specifications

The statements in the body of a
macro definition must appear between
the macro prototype statement and
the MEND statement of the definition.
The three main types of statements
allowed in the body of a macro are:

~ • Model statements (see J4j ,

•• Processing statements (see J5) ,
and

4It • Comments statements (see J6) •

NOTE: The body of a macro definition
can be empty, that is, contain no
st at ements •

•
Machine
Instructions

Assembler
Instructions

Statements with
variable symbols
in

Name,Operation
and/or Operand
Fields

Conditional
Assembly
Instructions

Macro (! nner)
Instructions

MNOTE
Instruction

MEXIT
Instruction

Internal

Ordinary

Result of Macro
Expansion

Section J: The Macro Definition 259

J3 -- Symbolic Parameters

Purpose

•
Symbolic parameters allow you to
pass values into the body of a macro
definition from the calling macro

•
instruction. You declare these
parameters in the macro prototype

•
statement. They can serve as points
of substitution in the body of the

•
macro definition and are replaced

· by the values assigned to them by
the calling macro instruction.

By using symbolic parameters with
meaningful names you can indicate
the purpose for which the parameters
(or substituted values) are used.

General Specifications

Symbolic parameters reust be valid
variable syrr.bols, as shown in the
figure to the right •

• They have a local scope: that is,
the value they are assigned only

•
applies to the macro definition
in which they have been declared.
The value of the parameter remains
constant throughout the processing
of the containing macro definition
for every calIon that definition.

NOTE: Symbolic parameters must

•
not be multiply defined or identical
to any other variable symbols within
the given local scope. This applies
to the system variable symbols

260

described in J7, and local and
global SET symbols described in
L1A.

Source Module

MVC

MEND

OPEN START

MVC

END

d
Ampersand

.r /----Alphabetic character
~ 0 to 6 alphameric character

1&lplA RAMI

prototype

\ MACRO

Generated
Result

~DEFINE &PARAMll&PARAM2,&PARAM3~

~~~ :~I~iII! 

D 
MEND 



The two kinds of symbolic parameters 
are: 

o. positional parameters 

• • Keyword parameters • 

• 
Each positional or keyword parameter 
used in the body of a roacro 
definition must be declared in the 

• prototype statement. 

Subscripted Symbolic Parameters 

Subscripted symbolic parameters 
must be coded in the format shown 
in the figure to the right. 

O 'Ihe subscript can be any arithmetic 
expression allowed in the operand 
field of a SETA instruction 
(arithmetic expressions are discussed 
in L4A). The arithmetic expression 
can contain subscripted variable 
symbols. Subscripts can be nested 
up to 5 levels of nesting. 

The value of the subscript must 
be greater than or equal to one. 

• ~he subscript indicates the position 
of the entry in the sublist that 
is specified as the value of the 

• subscripted parameter (sublists 
as values in macro instruction 
operands are fully described in 
K4) • 

MACRO • • Prototype DEFINED &TO,&FROM= 

MVC 
~ 

&TO,&FROM 

MEND 
START 0 

DEFINED FIELDA,FROM=FIELDB 

FIELDA,FIELDB 

END 

Source Module 

Format: 

MACRO 

I S~BLISTS &POS,&KEY= 

MVC &POS(3),&KEY(3) 

MEND 

• START o 

I 
SUBLISTS (A,B,C,D),KEY=(E,F,G,H) 

• 
MVC C,G 

END 

Section J: The Macro Definition 261 



J3A -- POSITIONAL PARAMETERS 

Purpose 

You should use a positional parameter 
in a macro definition if you wish 
to change the value of the parameter 
each time you call the macro 
definition. This is because it 
is easier to supply the value for 
a positional parameter than for 
a keyword parameter. You only have 
to write the value you wish the 
parameter to have in the proper 
position in the operand of the 
calling macro instruction. 

For keyword ~escribed below) 
parameters, you must write the 
entire keyword and the equal sign 
that precedes the value to be passed. 
However, if you need a large number 
of parameters, you should use keyword 
parameters. The keywords make it 
easier to keep track of the 
individual values you must specify 
at each call, by reminding you which 
parameters are being given values. 

Specifications 

The general specifications for 
symbolic parameters described in 
J3 also apply to positional 
parameters. Note that the 
specification for each positional 
parameter declared in the prototype 

• 
statement definition must be a valid 
variable symbol. Values are assigned 
to the positional parameters by 

• the corresponding positional operands 
specified in the macro instruction 
that calls the definition. 

262 

Macro 
Definition 

Macro 
Instruction 

Pos. Paramo 

Source Module 

MACRO 

POSPAR &PI,&P2,&P3 

I---MEN_D -O-O-Q----. 
START 

POSPAR ONE, TWO, THREE • 
END 



J3B -- KEYWCRD PARAMETERS 

Purpose 

You should use a keyword parameter 
in a macro definition for a value 
that changes infrequently. Ey 
specifying a standard default value 
to be assigned to the keyword 
parameter, you can owit the 
corresponding keyword operand in 
the calling macro instruction. 

Keyword parameters are also 
convenient because: 

1. You can specify the corresponding 
keyword operands in any order in 
the calling macro instruction. 

2~ The keyword, rereated in the 
operand, reminds you which parameter 
is being given a value and for which 
purpose the parameters is being 
used. 

Specifications 

~he general specifications for 
symbolic pararreters described in 
J3 also apply to keyword parameters. 
Each keyword parameter must be 
in the format shown in the figure 
to the right. 

OThe actual parameter must be a valid 
variable symbol. 

A value is assigned to a keyword 

• 
parameter by the corresponding 
keyword operand through the naITe 
of the keyword as follows: 

4Et1. If the corresponding keyword 
operand is omitted, the standard 

• value specified in the prototype 
statement becomes the value of the 
parameter for that call (for full 
details on values rassed see KS) • 

• 
2. If the corresponding keyword 
operand is specified, the value 
after the equal sign cverrides the 
standard value in the prototype 

O and becomes the va lue of the 
• parameter for that call (see KS) • 

/ Variable Symbol 

/0 / Equal Sign 

a----"----. L-/ Sta,ndard Value 

~EYWORDI= DEFAULT 

Format: 

JKEYWORDf= VALUE • Example: 
Source Module 

~..ACRO 

Key. Paramo 

Keyword Parameter 
Specification 

Keyword Operand 
Specification 

Prototype KEYS &KEYWORD=ABC,&KEY2=(A,B,C) 

MEND 

START o 
Standard value of 
KEYWORD 

Standard value of 

Section J: The Macro Definition 263 



o NO'I'E: A null character string can 
be specified as the standard value 
of a keyword parameter, and will 
be generated if the corresponding 

• keyword operanj is omitted. 

264 

OPEN 

Source Module 
Null character 
string 

MACRO 

FXDPT 

L&TYPE &REG,AREA 
A&TYPE &REG,CONST 
ST&TYPE &REG,SUM 

MEND 

END 

LH 3,AREA 
AH 3,CONST 
STH 3,SUM 



J3C -- COMBINING POSITIONAL AND 
KEYWORD PARA~ETERS 

Purpose 

By using positional and keyword 
parameters in a prototype statement, 
you combine the benefits of both. 
You can use positional parameters 
in a macro definition for passing 
values that change frequently and 
keyword parameters for passing 
values that do not change often. 

Specifications 

positional and keyword parameters 

O ""::.n he m; V'oA -t=vee 1 ,. ~ ........ 'he "'a~""o 
'-'\.4.&. ... ~ ............... .rt..'-'-A.J.,.... 4:1 ~.L" \...J.J ~ 

prototype statement. The same 
applies to the positional and keyword 

• operands of the macro instruction 
(s ee K3C). Note, however, that 

• 
the order in which the positional 
parameters appear determines the 
order in which the positional 

O 
operands must appear. Interspersed 

I keyword parameters or operands do 
not affect this order. 

MEND 

START 

MIX • 
END 

Section J: The Macro Definition 265 



14 - Model Statements 

J4A -- PURPCSE 

Model statements are statements from which assembler 
language statements are generated at pre-assembly time. 
They allow you to determine the form of the statements 
to be generated. Ey specifying variable symbols as pcints 
of substitution in a model statement, you can vary the 
content of the statements generated from that model 
statement. You can also use model statements into which 
you substitute values in open code. 

J4B -- SPECIFICATIONS 

The following specifications also apply to model staterrents 
in open code. Exceptions are noted where applicable. 

Format of Model Statements 

Model Stmnt 

A model statement consists of one 
or more fields separated by one 
or more blanks. 

~~MOdel Statement ~1 4 

Each field or subfield can consist 
of: 

~ An ordinary character string 

• A variable symbol as a point of 
substitution 

266 

• Any combination of ordinary 
character strings and variable 
symbols to form a concatenated 
string. 

The statements generated at pre­
assembly time from model statements 
must be valid machine or assembler 
instructions, but must not be 
conditional assembly instructions. 
They must obey the coding rules 
described in section E or they will 
be flagged as an error at assembly 
time. 

I I I I I I I I 
Fields: 

Name Operation Operand Remarks 

Examples: 

LABEL L 3,AREA 

LABEL L 3,20(4,5) 

&LABEL L 3, &AREA 

FIELD&A L 3,AREA&C 



Variable Syrrbols as Points of 
Substitution 

Values can be substituted for 
variable symbols that appear in 
the name, operation, and operand 
fields of model statements; thus, 
variable symbols represent points 
of substitution. The three main 
types of variable symbol are: 

e Symbolic parameters (described in 
J3 above) , 

~system variable symbols (described 
in J7 below) : and 

~SET symbols (described in L1A) • 

NOTES: 

1. Symbolic parameters, SET symbols, 
and the system variable symbol, 
&SYSLIST, can all be subscripted. 
The remaining system variable symbols 
&SYSNCX, &SYSECT, &SYSPARM, &SYSDATE, 
and &SYSTIME cannot be subscripted. 

2. The fields in a statement 
generated frorr a model statement 

e appear in the listings in the same 
columns as in the model statement. 

~However, when values are substituted 
for variable symbols the generated 

A fields can be displaced to the 
Wright. 

Examples of 
Subscripted 
Variable 
Symbols: 

&PARAM(3) 

Name 

0 

.BEL 

I \ 
+LABEL 

I 
• NAME 

\LABEL) I 

+LABEL 

&SYSLIST(l,3) 

&SYSLIST(2) 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

Giobai 
SETA 
SETB 
SETC 

Local 
SETA 
SETB 
SErC 

&SETA (10) 

&SETC(15) 

Operation Operand 

10 16 

MVC AREA1,AREA2 model 

MVe AREA1,AREA2 generate 

&OP &TO,&FROM model 

I (MVC) 

I 

(AREAl) (AREA2) values 

generated MVC AREA1,AREA2 

I t I At least one blank between fields J 
I 

&A &B &C,&D model 

•• (AREAl) I (AREA2 ) }8 . .\ values to be 

~ su bstituted 
(LABEL) 

+LABEL FC fREA1 ,AREA2 generated 

Section J: The Macro Definition 267 



• • 
I 

• o 

• 
o 

268 

nules for Concatenation 

When variable symbols are 
concatenated to ordinary character 
strings, the following rules apply 
to the use of the concatenation 
character (a period): 

The concatenation character is 
mandatory when: 

• An alphameric character is to 
follow a variable symbol. 

• A left parenthesis that does not 
enclose a subscript is to follow 
a variable symbOl. 

• A period (.) is to be generated. 
Two periods must be specified in 
the concatenated string following 
a variable symbol. 

The concatenation character is not 
necessary when: 

• An ordinary character string 
precedes a variable symbol. 

• A special character, except left 
parenthesis or period, is to follow 
a variable symbol. 

• A variable symbol follows another 
variable symbol. 

The concatenation character must 
not be used between a variable 
symbol and its subscript; otherwise, 
the characters will be considered 
a concatenated string and not a 
subscripted variable symbol. 

Concatenated Values to be Generated 

~ String Substituted Result 

Variable Value 
symbol 

&FIELD.A8 &FIELD AREA AREAA 
&FIELDA &FIELDA SUM SUM 

• &DISP. (&BASE) &DISP 100 100(10) 
&BASE 10 

I Concatenation character is not generated 1 

DC D ' & INT .. &FRACT &INT 99 DC D I 99 r88 
~ 

88 • &FRACT • 
DC D' & INT&FRACT' DC D I 9988' • 
DC D' & INT. &FRACT ' DC D'9988' 

optional 

1 Concatenation character is not generated 1 

• ~ FIELD&A &A A FIELDA 

&A+&B.3-Dj &A A rB
.
3
-
D 

'0 &B B 

&A&B AB • 
&SYM (,& SUBSCR)} &SUBSCR 10 

{ENTRY 

0 
&SYM (10) ENTRY 



Rules for Model Statement Fields 

The fields that can be specified ~~- -----­
in model statements are the same 
fields that can be specified in 
an ordinary assembler language 
statement. They are the name, 
operation, operand and rerrarks 
fields. It is also possible to 
specify a continuation - indicator 
field, an identification - sequence 
field, and a field before the begin 
column, if the appropriate ICTL 
instruction has been specified. 
Character strings in the last three 
fields (in the standard format only 
columns 72 through 80) are generated 
exactly as they appear in the model 
statement, and no values are 
substituted for variable symbols. 

Model statements must have an entry 
in the operation field, and, in 
most cases, an entry in the operand 
field in order to generate valid 
assembler language instructions~ 

THE NAME FIELD: The entries allowed 
in the name field of a model 
statement are given in the figure 
to the right, including the allowable 
results of generation. 

Variacle syrrbols must not be used 

O to generate comments statement 
indicators. 

Name 
Field 

In Model 
Statements 

(before 
generation) 

I 
Allowed 

I 
Not AUo\,ved 

I • blank 
• ordinary symbol 

I • sequence symbol 

I 

• variable symbol 
• any combination 

of variable symbols 
and other character 
stri ngs concatenated 
together 

In Generated • blank :*}O NOTE: Restrictions on the name 
entry are further specified where 
each individual assembler language 
instruction is described in this 
manual. 

Statements 

(generated 
results) 

.. valid ordinary 
symbol 

Section J: The Macro Definition 269 



THE OPERATION FIELr: The entries 
allowed in the operation field of 
a model statement are given in the 
figure to the right, including the 
allowable results of generation. 

o The operation codes ICTL and OPSYN 
are not allowed inside a macro 

• definition. The MACRO and MENr 
operation codes are not allowed 
in model statements; they are used 
only for delirriting macro 
definitions. 

• If the REPRO operation code is 
specified in a model statement, 
no substitution is perforrr.ed for 

• the variable symbols in the statement 
line following the REPRO statement. 
Variable symbols can be used alone 
or as part of a concatenated string 
to generate operation codes for: 

o · Any machine instruction, or 

8 - The assembler instructions listed. 

• NOTE: The MNOTE and MEXIT statements 
are not model staterrents; they are 
described in J5D and J5E 
respect ively. 

The generated operation code must 
not be an operation code for the 
following (or their OPSYN 
equivalents) : 

• - A macro instruction, 

~- A conditional assembly instruction, 
or 

41)- The assembler instructions listed. 

2 ""'(\ I v 

peration 
!iiField 

In Model 
Statements 

(Before 
Generation) 

• 

Allowed 

• An ordinarY..3Ymbol that 
represents the operation 
code for: 
- any machine instruction 
- a macro instruction 
- the following Assembler 

instructions: 

EJECT itll;$I;' 

'~~RY • ~~i~~ 
EQU START 
EXTRN TITLE 
ISEQ USING 
LTORG WXTRN 

Not Allowed 

• blank 

• The assembler 
operation codes: 

8{ICTL 
OPSYN 

.{
MACRO 
MEND CCW 

CNOP 
COM 
COpy 
CSECT 
CXD 
DC 
DROP 
DS 
DSECT 
DXD 

~~~ ~~;i~}~ 
PRINT
PUNCH

• A variable symbol.

• A combination of ~
variable symbols and
other character strings
concatenated together

In Generated • An ordinary_symbol that ft. blank V • a macro instruction
operation code

Statements represents the operation

(Generated. code for:
Results) I - any machine instruction

I - the following assembler
instructions:

•
CCW
CNOP
COM
CSECT
;CXD
DC
DROP
DS
DSECT
DXD

EJECT
END
ENTRY
EQU
EXTRN
LTORG
ORG
POP
PRINT
PUNCH
PUSH

• a conditional
assembly operation
code:

SPACE IACTR TITLE AGO
USING AGOB
WXTRN AIF

AIFB
(MNOTE) ANOP

°CD
operation codes:

{

COpy
~ ICTL
.., ISEQ

MACRO
MEND

~=

THE OPERAND FIELD: The entries
allowed in the operand field of
a model statement are given in the
figure to the right, including the
allowable results of generation.

O
NOTE: Variable symbols must not
be used in the operand field of
a COPY, ICTL, ISEQ, or OPSYN
instruction.

THE REMARKS FIELD: Any combination
of characters can be specified in
the remarks field of a model o statement. No values are substituted
into variable symbols in this field.

NOTE: One or more blanks must be
used in a model statement to separate

4itthe name, operation, cEerand, and
remarks fields from each other.
Blanks cannot be generated between
fields in order to create a complete
assembler language statement.

Operand

I
Allowed I Not Allowed

Field I

!n Mode!

I
.- B!ank (ifyalid) I

Statements • An ordinary_symbol
I

(Before
I

• A character string. I
Generation) combining alphameric

and special charac-

ters (but not variable

symbols)

I

• A variable symbol

I • A combination of
variable symbols and

other character

strings concatenated

together

In Generated

I
• blank (if valid) • operand field of a:

Statements COPY, ICTL,

I
• Character String_

I
ISEQ or OPSYN

(Generated that represents a statement
I I

Results)

I
valid assembler or

I. machine instruction

operand field

Remarks Field

MO~~AME ~ REMARKS ABOOT &TO sa
Generated

LABEL MVC FIELDA,FIELDB REMARKS ABOUT &TO

Examp!e !: LCLC &7\T"\T"\n
,

.l""l.J.JJ.J£\ } Conditional
Assembly

&ADDR SETC 'lOa ERCENT BASE' Statements

Model LA

Generated LA

• Example II: LCLA &A
LCLC &C

&A SETA 100
&C SETC '&A &A NOW IN REGISTER'

Model LA

Generated LA 3

Section J: The Macro Definition 271

IS -- Processing Statements Conditional Assembly
I nstructioJ)

J5A -- CONDITIONAL ASSEMBLY
INSTRUCTIONS

GBLA,GBLB,GBLC
LCLA,LCLB,LCLC

Conditional assembly instructions
allow you to deterrrine at pre­
assembly time the content of the
generated statements and the sequence
in which they are generated. The
instructions and their functions
are given in the figure to the
right.

Conditional assembly instructions
can be used both inside macro
definitions and in open code. They
are fully described in Section L.

SETA,SETB,SETC

AlP

AGO

ANOP

'~CTR

J5B -- INNER MACRO INSlRUCTIONS

Macro instructions can be nested inside macro definitions,
allowing you to call other macros from within your own
definitions. Nesting of rracro instructions is fully
described in K6.

J5C -- THE COpy INSTRUCTION

272

purpose

The COpy instruction, inside macro definitions, allows
yo~ to copy into the macro definition any sequence of
statements allowed in the body of a macro definition.
These statements become part of the body of the macro
before macro processing takes place. You can also use
the CCPY instruction to copy complete macro definitions
into the beginning of a scurce module.

The specifications for the COpy instruction, which can
also be used in open code, are described in E1A.

Function Performed

Declaration of initial values
of variable symbols (global
and local SET symbols)

Assignment of values to
variable symbols (SET
symbols)

Branching

- Conditional (based on
logical test)

- Unconditional

- To next Sequential
instruction (No
operation)

Setting Loop' Counter

J5D -- THE MNOTE INSTRUCTION

Purpose

You can use the MNOTE instruction
to generate your own error messages
or display intermediate values of
variable symbols computed at pre­
assembly time.

Specifications

The MNOTE instruction can be used
inside macro definitions ~~~j:i~~B;iflj~~1

!1 •• ~lllf and its operation can
created by substitution. The

MNOTE instruction causes the
generation of a message which is
given a statement number in the
printed listing.

'Ihe format of the MNOTE instruction
statement is given in the figure
to the right.

o The n stands for a severity code.
The rules for specifying the contents
of the severity code subfield are
as follows:

• as
1.. The severity code can be specified

any arithmetic expression allowed
1n the operand field of a SETA
instruction. The expression must

•
•
•

have a value in the range 0 through
"lC C
£oJ -'.

2. If the severity code is omitted,
but the comma separating it from
the message is present, the assembler
assigns a default value of 1 as
the severity code.

3. An asterisk in the severity code
subfield causes the message and
the asterisk to be generated as
a comments statement.

4. If the entire severity cede
subfield is omitted, including the
comma separating it from the message,
the assembler generates the message
as a comments staterrent.

Name

A sequence
symbol or
blank

Examples:

Source Statements

•

Operation

MNOTE

MNOTE

Operand

One of four options allowed:

O n, 'message' } error
, , message' message

>:', , message' }
'message' comments

Generated Result

MNOTE 2, I ERROR IN SYNTAX' 2,ERROR IN SYNTAX

• MNOTE , I ERROR, SEV 11 ,ERROR, SEV 1

• MNOTE ~~, I NO ERROR I ",NO ERROR

• MNOTE 'NO ERROR'

I

section J: The Macro Definition 273

274

NOTES:

1. An MNOTE instruction causes a message to be printed,
if the current PRINT option is ON, even if the PRIN'I NOGEN
option is specified.

2. The statement number of the message generated from an
MNOTE instruction with a severity code is listed among
any other error messages for the current source module.
However, the message is printed only if the severity code
specified is greater than or equal to the severity code
"nnn" in the assembler option, FLAG (nnn) , contained in
the EXEC statement that invokes the assembler.

3. The statement number of the comments generated fron
an MNOTE instruction without a severity code is not listed
among other error messages.

Any combination of up to 256 characters enclosed in
apostrophes can be specified in the message subfield.
The rules that apply to this character string are as
follows:

4It. Variable symbols are allowed (NOTE: variable symbols
can have a value that includes even the enclosing
apostrophes) •

~. Double ampersands and double apostrophes are needed ~
to generate one ampersand or one apostrophe. If variable
symbols have ampersands or apostrophes as values, the

~ values must have double ampersands or apostrophes.

NOTE:

Any remarks for the MNOTE instruction statement must
be separated from the apostrophe that ends the message
by one or more blanks.

ISeveritv Code I / . ,

MNOTE Operand
Value of
Variable Symbol

I ,

3, 'THIS IS A MESSAGE' I

3'&PA~ I &PARAM~ERROR
~~I

3, 'VALUE OF &&A IS &A' I &A=lO

3, 'L If &AREA ' •

3, 'DOUBLE &S'

3)DOUBLE L&APOS&AREA'

3, 'MESSAGE STOP'

3 'MESSAGE

i nvaiid remarks,
must be separated
from operand by
one or more blanks

I

, &AREA=FIELD1

&S,

&APOS="
&AREA=FIELD1

Generated
Result

1

3 ,THISIS

3,ERROR

A MESSAGE

I
3,VALUE OF &A IS 10

3,L'FIELD1

3,DOUBLE &

3,DOUBLE L'FIELD1

3,MESSAGE STOP RMRKS

Section J: The Macro Definition 275

J5E -~ THE MEXIT INSTRUCTION

Purpose

The MEXIT instruction allows you
to provide an exit for the assembler
from any point in the body of a
macro definition. The MEND
instruction provides an exit only
from the end of a roacro definition
(see J2B) •

Specifications

The MEXIT instruction stateroent
can be used only inside macro
definitions. It has the format
given in the figure to the right.

The MEXIT instruction causes the
assembler to exit from a macro

•
definition to the next seguential
instruction after the macro
instruction that calls the

276

definition. (This also applies
to nested macro instructions, which
are described in K6.)

Name

Sequence
symbol
or blank

MEXIT

Operation Operand

MEXIT Not required

MACRO

EXITS

A
B
C

MEXIT

D
E
F

MEND

START 0

J6 - Comments Statements

J6A -- INTERNAL MACRO COMMENTS STATEMENTS

purpose

You write internal macro comments in the body of a rracro
definition, to describe the operations performed at pre­
assembly time when the macro is processed.

Specifications

Internal macro comments statements
can be used only inside macro
definitions. An example of their
correct use is given in the figure
to the right.

No values are substituted for any
variable symbols that are specified
in macro corr.ments statements.

J6B -- ORDINARY COMMEN~S STATEMENTS

PUrpose

Ordinary COIr.ments sta terr.ents
(described in E1 C) allow you to

make descriptive remarks about the
generated output from a macro
definit ion.

Specifications

Ordinary comments statements can
be used in macro definitions and
in open code. An exam~le of their
correct use is shown in the figure
to the right.

Even though this type of-statement
is generated along with the model
statements of a macro definition,
values are not substituted for any
variable symbols specified.

Coiumns

Columns

I
t

Begin column
(standard

value)

1(2) (3)

I

I

I

:1

Begin column

(standard
value)

(1) (2)

Peiiod,

WILL NOT BE

! ~AstedSk IFo,mat Y L AnY Character Str!n"

* I ~NT WILL BE GENEAATED
i

Section J: The Macro Definition 277

Page of GC33-401Q-4
Revised July 31,1976
By Tl\'L: GN33-8207

J7 -- System Variable Symbols

278

Purpose

System variable symbols are variable symbols whose values
are set by the assembler according to specific rules.
You can use these symbols as points of substitution in
model statements and conditional assemtly instructions.

General Specifications for System Variable Symbols

tern variable symbols:~~~~llllii &SYSPARM, and
'illlll,ltll!lli can be used as points 'of substitution both inside
macro definitions and in open code. The remaining system
variable symbols: &SYSECT, &SYSLIST, and &SYSNDX, can ce
used only inside macro definitions. All system variable
symbols are subject to the same rules of concatenation
and substitution as other variable symbols (see J4B) •

System variable symbols must not be used as symbolic
parameters in the macro prototype statement. Also, they
must not be declared as SET symbols (see L2) •

The assembler assigns read-only values to system variable
symbols; they cannot be changed by using the SETA, SE1B,
or SETC instructions (see L3).

SCOPE OF SYSTEM VARIAELE SYMBOLS:
tern variable symbols:

;1~~,~~!~ji~11~1. & SYSPARM, and :1.~~·~I.~,i.
have a global scope. !hisroeans
that they are assigned a read-only
value for an entire source module;

8
a value that is the same throughout
open code and inside any rracro
definitions called. The system
variable symbols: &SYSECi, &SYSLIST,
and &SYSNDX, have a local scope.
They are assigned a read-only value
each time a macro is called, and
have that value only within the

~ expansion of the called macro.

Purpose

You can use &SYSDATE to obtain the
date on which your source module
is assembled.

Specifications

The global system variable symbol
&SYSDATE is assigned a read-only
value of the format given in the
figure to the right.

NOTE: The value of the type attribute
-nf- &SYSDATE (T'&SYSr:ATEJ is always
U and the value of the count
attribute (K'&SYSDATE) is always
eight. (Attributes are fully
descr ibed in L 1 B.)

Source Module

OPEN

Format:

Where:

Example:

NOTE:

&SYSECT
&SYSLIST
&SYSNDX
are only allowed
inside macro
definitions

. .

8 - Character String

/
(mm/dd/yyl

mm gives the month

dd gives the day

yy gives the year

&SYSDATE

11/25/72 4-- _ Corresponds to date
printed in the page
heading of listings,
remains constant for
each assembly

Section J: The Macro Definition 279

J1B -- &SYSECT

purpose

You can use &SYSECT in a ~acro
definition to generate the name
of the current control section.
The current control section is the
control section in which the macro
instruction that calls the definition
appears.

Specifications

The local system variable symbol
&SYSECT is assigned a read-only
value each time a macro definition
is called •

• The value assigned is the symbol
that represents the name of the 4It current control section from which
the macro definition is called.
Note that it is the centrol section
in effect when the macro is called.
A control section that has been

•
initiated or continued by
substitution does not affect the
value of &SYSECT for the expansion

280

of the current macro. However,
it does affect &SYSECT for a o subsequent macro call. Nested
macros cause the asserobler to assign

• a value to &SYSECT that depends
on the control section in force
inside the outer macro when the
inner macro is called (see K6).

NOTES:

1. The control section whose name
is assigned to &SYSECT can be defined
by a START, CSECT, DSECT, or COM
instruction.

2. The value of the tYfe attribute
of &SYSECT, T'&SYSECT, is always
U, and the value of the count
attribute (K'&SYSECT) is equal to
the number of characters assigned
as a value to &SYSECT. (Attributes
are fully described in L1E.)

&SYSECT

Source Module

MACRO MACRO

OUTER & NAME INNER

& NAME CSECT DC A(&SYSECT)

DC A(&SYSECT)
MEND

INNER

END

J7C -- &SYSLIST

Purpose

You can use &SYSLIST instead of
a positional parameter inside a
macro definition, for example, as
a point of substitution. Ey varying
the subscripts attached to &SYSLIST,
you can refer to any positional
operand or sublist entry in a macro
call. &SYSLIST allows you to refer
to positional operands for which
no corresponding positional parameter
is specified in the macro prototy~e
statement.

Specifications

The local system variable symbol
&SYSLIST is assigned a read-only
value each time a macro definition
is. called.

&SYSLIST refers to the complete
list of positional operands specified
in a macro instruction. &SYSLIST
does not refer to keyword operands.

However, &SYSLIST cannot be specified
as &SYSLIST alone. One of the two
forms given in the figure to the
right must be used as a point of
substitution:

~ 1. To refer to a positional operand

• 2. To refer to a sublist entry of
a positional operand (sublists are
fully described in K4 below).

• The subscript n indicates the

•
position of the operand referred

· to. The subscript IIi, if specified,
indicates the position of an entry
in the sublist specified in the
operand whose position is indicated
by the first subscri~t n.

Macro
Instruction

CLST

&SYSLIST

,

I &SYSLIST I

C1 2 3 pn---------' P ,P ,P ,

Point of substitution
in macro definition } I &SYSLIST (nl:] •

Macro
Instruction

&SYSLIST

7\CSUB

rr;;1 &SYSLI~I
Pl,P2, , (SEl,SE2, ... ~SE~, ...) , ...•

Point of substitution
in macro definition } &SYSLIST(n,m)

8-8

Section J: The Macro Definition 281

The subscripts nand m can be any
arithmetic expression allowed in
the operand of a SE~A instruction
~ee L3A). The subscript n must

be greater than or equal to O.
The subscript m must be greater
than or equal to 1.

The figure to the right shows
examples of the values assigned
to &SYSLIST according tc the value
of its subscript, m and n.

If the position indicated by n
• refers to an omitted operand or

•
refers past the end of the list
of positional operands specified,
the null character string is
substituted for &SYSLIST(n). If
the position (in a sublist) indicated

I
by the second subscript, m, refers
to an omitted entry or refers past

, the end of the list of entries
specified in the sublist referred
to by the first subscript, n, the
null character string is substituted
for &SYSLIS~(n,~. Further, if
the nth positional operand is not

•
a sublist, &SYSLIST (n, 1) refers
to the operand but &SYSLIST(n,m),
where m is greater than 1, will
cause the null character string
to be substituted.

•
NOTE: If the value of subscript

, n is zero, then &SYSLIS!(n) is
assigned the value specified in

282

the name field of the macro
instruction, except when it is a
sequence symbol.

Macro Instruction:

~~AME MACALL ONE, TWO, (3,4, ,6) , ,EIGH'I

Point of substitution Value
in macro definition Substituted

&SYSLIST(2) TWO
&SYSLIST(3,2) 4

0
&SYSLIST(4) Null

• &SYSLIST(9) Null

• &SYSLIST(3,3) Null

• &SYSLIST(3,5) Null

• &SYSLIST(2,l) TWO
&SYSLIST(2,2) Null

0 4
&SYSLIST(O) NAME
&SYSLIST(3) (3,4,,6)

I

Attribute references can be made
to the previously described forms
of SSYSLIST. The attributes will
be the attributes inherent in the
positional operands or sublist
entries to which you refer.
(Attributes are fully described
in L1B.) However, the number
attribute of SSYSLIST, N'&SYSLIST,
is different from the number
attribute described in L1B. One
of the two forms given in the figure
to the right can be used for the
number attribute:

O • To indicate the number of
positional operands specified in
a call

•
• To indicate the number of sublist
entries that have been specified

•

in a positional operand indicated
by the subscript.

NOTES:

1. For N'&SYSLIST, positicnal
• operands are counted if specifically

omitted by specifying the comma
that would normally have followed
the operand.

A 2. For N' &SYSLIST (n) , sublist entries
~are counted if specifically omitted

by specifying the comma that would
normally have followed the entry.

8
3. If the operand indicated by n

I is not a sublist, N'SSYSLIST(n)
is 1. If it is omitted,
N'&SYSLIST(n) is zero.

ON'&SYSLIST
Macro Value of
Instruction N'&SYSLiST

MACLST 1,2,3,4 4
MACLST A,B, ,D,E ~}. MACLST ,A,B,C,D
MACLST (A,B,C), (D,E,F)

21
Counts sublists I as one operand

MACLST 0
MACLST KEYl=A,KEY2=B ~I Keyword operands I
MACLST A,B,KEY1=C 2 are not counted

~N'&SYSLIST(n)
Macro • Value of
Instruction N'&SYSLIST (2)

(n=2)

MAC SUB A, (1,2,3,4,5),B 5
MACSUB A,(1,,3,,5),B ~}. MAC SUB A, (,2,3,4,5) IB
MAC SUB A,B,C 1 • • r,,'LJ\CSUB A);C 0
MACSUB A,KEY=(A,B,C) 0

MAC SUB ~ ,I Keyword sublists ~
o are not counted

Section J: The Macro Definition 283

J1D -- &SYSNDX

Purpose

You can attach &SYSNDX to the end of a symbol inside a
macro definition to generate a unique suffix for that
symbol each time you call the definition. Although the
same symbol is generated by two or more calls to the same
definition, the suffix provided by &SYSNDX produces two
or more unique symbols. ihus you avoid an error being
flagged for multiply defined symbcls.

&SYSNDX

Specifications

The local system variable symbol
&SYSNDX is assigned a read-only
value each time a macro definition
is called from a source module.

4It The value assigned to &SYSNtX is
a 4-digit number, starting at 0001
for the first macro called by a

&Pl&SYSNDX

• AREA&SYSNDX

Source Module

MACRO
CONST &Pl,&P2

DC F'&P2'

DS F

Assume
&SYSN DX=OOO9 MEND • program. It is incremented by one

for each subsequent macro call
(including nested macro calls,

described in K6) •
~ ________________________________ ~~~ __ re _____ ~

START /

•
•

NOTES.:

1. &SYSNDX does not generate a valid
symbol, and it must:

a. Follow the symbol to which
it is concatenated

b. Be concatenated to a symbol
containing four characters or
less.

2. The value of the type attribute
of &SYSNDX (T'&SYSNDX) is always
N, and the value of the count
attribute (K'&SYSNtX) is always
four.

~ttributes are fully described
in L lB.)

OPEN

CONST TWO.2

~~TWOOOl() ~
~N-O-TE-:----~ AREAOOIO DS F

TW00010 and 1\ TWO 0011 are
two different CONST TWO, 200
symbols and ~
thus not mul-
tiply defined \ - TWOOOll DC F'200'

AREAOOll DS F

ERROR I F'300'
J1E -- &SYSPARM

CONST THREE, 30

~'THREE00121 DC:

• AREA0012 DS

284

Purpose

You can use &SYSPARM to communicate with an assembler
source module through the job control language. Through
&SYSPARM, you pass a character string into the source
module to be assembled from a job control language state~ent
or from a program that dynamically invokes the assembler.
Thus, you can set a character value from outside a source
module and then examine it as part of the source module
at pre-assembly time, during conditional assembly
process ing.

F

Specifications

The global system varia15Te-symBO-r-

O &SYSFARM is assigned a read-only
value in a job contrel statement
or in a field set up by a program
that dynamically invokes the
assembler. It is treated as a
global SETC symbol in a source
module except that its value cannot
be changed.

The largest value that &SYSPARM
can hold is 255 characters, which
can be specified by an invoking
program~ However, if the PAF_~ field
of the EXEC statement is used to
specify its value, the PARM field
restrictions reduce its maximum
possitle length to 56 characters.

NOTES:

1. No values are substituted for
variable symbols in the specified
value, however double ampersands
must be used to represent single
ampersands in the value.

2. Double apostrophes are needed
to represent single apostrophes
because the entire PARM field
specification is enclosed in
apostrophes.

Page of GC33-401G-4
Revised July 31, 1976
By TNL: GN33-8207

Example: Job Control Statement

//STEP EXEC ASMFC,PARM=(SYSPARM(DEBUG»

OPEN

Source Module

START

AIF

END

Branch to normal
conditional assembly
processing if &SYSPARM
is not equal to DEBUG

Section J: The Macro Definition 285

286

3. If SYSPARM is not s~ecified in
a job control statement outside
the source module, &SYSPARM is
assigned a default value of the
null character string.

enter aI),yctlla:z:~a:C:tE~r$
the
chara ... " ,;,l.;;;:)
ariexample
symb61 in· the

assemble te~t(l~ddeck sysparm (?)
ENTER SYSPAru!:
&&am~' be) • £y

Purpose

You can use &SYSTIME to obtain the
time at which your source module
is assembled.

Specifications

The qlobal system variable symbol
&SYSiIME is ~ssigned a read-~nly
value of the format given in the
figure to the right.

Format: 5 - Character String

'--hh ~ mm

Where: hh gives the hours
mm gives the minutes

&SYSTIME

NOTES:

1. The value of the type attribute
of &SYSTIME (T'&SYSTIME) is always
U and the value of the count
attribute (K'&SYSTIME) is always
5.

Example: 22.15 ~

~

1n 1h n ~ .-.. .., ...,

2. For systems without the internal
timer feature, &SYSTIME is a 5-
character string of blanks.

Corresponds to the
time printed in the
page heading of
listings, remains
constant for each
assembly

In addition to the PRINT options that you can set fraIT
inside a source module, you can set other listing options
from outside a source module by using the jot control
language. These options can be specified in the FARM field
of the EXEC statement or by a program that dynamically
invokes the assembler.

J8A -- LIEMAC

Purpose

The LIBMAC option allows you to print in the program
listings the library macro definitions called from your
source module, and any statements in open code following
the first END stateIDent (coded or generated) that is
processed by the assembler.

Section J: The Macro Definition 287

The LIBMAC option, when set, causes:

• Any statements in open code that
follow the first END statement and

• All library macro definitions called
to be printed in the program listings
after the first (or only) END
statement of the source module.

• NOTE: IJJultiple END statements can
be coded or generated and are
printed, but the first EN!:: statement
processed ends the asserobly.

The option NOLIEMAC suppresses the
listing of the iterrs mentioned
above. It is the default option
that applies to the assembling of
source module s •

J8B -- MCALL

288

Purpose

The MCALL option allows you to list
all the inner macro instructions
that the asserebler processes.

Specifications

The MCALL option, when set, causes
all inner macro instructions
processed by the assembler to be
listed. The NOMCALL option
suppresses the listing of inner
macro instructions. It is the
default option that applies to the
assembling of source modules.

NOTE: The MLOGIC and ALOGIC options
concern the listing of conditional
assembly statements. They are
discussed in L8.

OPEN

MACRO

MACl

MEND Source
Macro

MACRO Definitions

MAC 2

MEND

START

LINK

END

MACRO
LINK

MEND • MACRO
OPEN

MEND

Section K: The Macro Instruction

~his section describes macro instructions: where they
can be used and how they are specified, including details
on the name, operation, and operand entries, and what will
be generated as a result of that macro call.

After studying this section, you should be able to use
the macro instructions correctly to call the macro
definitions that yeu write. You will also have a better
understanding of what to specify when you call a macro
and what will be generated as a result of t·hat call.

KI -- Using a Macro Instruction

I<lA -- PURPCSE

The macro instruction provides the assembler with:

1. The name of the macro definition to te processed.

2. The information or values to be passed to the macro
definition. This information is the input to a macro
definition. The assembler uses the information either
in processing the macro definition or for substituting
values into a model statement in the definition.

The output from a macro definition, called by a macro
instruction, can be:

1. A sequence of stateroents generated from the model
statements of the macro for further processing at asserrbly
time.

2. Values assigned to global SET symbols. These values
can be used in other macro definitions and in open code
(see L 1A) •

Section K: The Macro Instruction 289

Page of GC33-4010-0

Revised September 29, 1972

By n~L GN33-8148

K1B -- SPECIFICATIONS

Where Macro Instructions Can Appear

O
A macro instruction can be written
anywhere in the open code portion
of a source module. However, the
statements generated from the called
macro definition must be valid
assembler language instructions

•
and allowed where the calling macro
instruction appears. A macro

•
instruction is not allowed before
or between any source macro
definitions, if specified, but it

•
can be nested inside a macro

· definition (see K6) •

290

Macro Instruction Format

The format of a macro instruction
statement is given in the figure
to the right.

The maximum number of operands
allowed is not fixed. It depends
on the amount of virtual storage
available to the program.

OQ$O~fl.~.~O~·.?~X:f:lJ:l<l~.iat~ allowed in;
t::~~ .. Q~~~<:lf:i.~lp.~

If no operands are specified in
the operand field, remarks are
allowed if the absence of the operand
entry is indicated by a comma
preceded and followed by one or
more blanks.

The entries in the name, operation,
and operand fields correspond to
entries in the prototype statement
of the called macro definition (see
K2) • -

Source Module

Name

Any symbol
or blank

MACRO
MACl

MACRO
MAC 3

MAC CALL

MACCALL

END

Operation

Symbolic
Operation
Code

Source
Macro
Definitions

Must not cause generation
of instructions that are not
allowed before the START
instruction

Macro I nst.

Operand

Zero or more operands

separated by commas

4

o

Alternate Ways of Coding a Macro
Instruction

A macro instruction can be specified
in one of the three following ways:

The normal way, with the operands
preceding any remarks.

4It The alternate way, allowing remarks
for each operand.

4It A combination of the first two
ways.

•
NO'lES:

1. Any number of continuation lines
are allowed. However, each
continuation line must ~ndicated
ty a non-blank character in the
column after the end column of the
previous statement line (see B1B).

•
2. Operands on continuation lines
must begin in the continue column,
or

•
3. Otherwise, the assembler assumes
that any lines that follow contain
remarks.

NOTE: If any entries are made in
the columns before the continue
column in continuation lines, the
assembler issues an error message
and the whole statement is not
processed.

_____ --COl 16 7 col 72 -----\-

~N-RM I ;mo ----- -------- _. p- 6 ~
MAc U 11 ,t'!{UM,Lt.a'JG'l'.ti,.I:'4, ~, ••••••••••• P ,x

• MACALT

P7,P8, ••••• ,PEND REMARKS

Begin Continuation One or More
Line Here Blanks

I Commas indicate I
more operands
to follow

TO , ~IELD INTO WHICH DATA MOVED
FROM,~ FIELD FROM WHICH DATA MOVED

~or~ LENGTH, T NUMBER OF BYTES TO MOVE

P4, REMARKS ~I
._~IP~' REMARKS

l

ip 6 , REMARKS
P7, REMARKS
P8, REMARKS
KEY=VALUE EVEN KEYWORD OPERANDS

Last Operand
requires no
comma

x
X

~I
X

X

X

• MACOMB I TO, FROM, LENGTH, J REMARKS X

•
~~4, REMARKS X

Fu 5 , REMARKS X

1P6,P7., •••••••••••••••••••••••• P8,P9,x
I --J;PIO ,PEND

Section K: The Macro Instruction 291

K2 -- Entries

K2A -- THE NAME ENTRY

Purpose

You can use the name entry of a
macro instruction:

1. Either to generate an assembly­
time label for a machine or assembler
instruction.

2. Or to provide a conditional
assembly label (see sequence symbol
in L1q so that you can branch to
the macro instruction at pre-assembly
time if you want the called macro
definition expanded.

Specifications

The name entry of a macro instruction
can be:

• an ordinary symbol

• a variable symbol

•
a character string in which a
variable symbol is concatenated
to other characters

292

8a blank

e a sequence symbol, which is never
generated.

,

MEND

OPEN START o

END

Parameter must be 1 ~
coded if anything
is to be generated

In Two Places

I n name field
of prototype

I n name field of
statement within
body of macro

Generated result

HERE LR 3,4

LR 3,4

LR 3,4

Nothing will be generated
by sequence symbol

LR 3,4

1<2 B -- THE CPERAT ION EN'I'RY

purpose

The symbolic operation code you
specify identifies the rracro
definition you wish the assembler
to process.

Specifications

The operation entry for a macro

•
; Tl c::t-rlll""t-; I"'ITl mllct- he '" ~T",l; rl C'v l-- , &.------~-,&. .&.Ll __ ~ ~ vU..&....L>....A. ~.lJ.ll~'--'-L

that is identical to the symbolic
operation code specified in the
prototype staterr.ent cf the rracro
definition called.

NOTE: If a source rracro definition
• with the same operation code as

a library macro definition is called,

•
the assembler processes the source
macro definition.

1<2C -- THE CPERANr: ENTRY

Purpose

You can use the operand entry of
a macro instruction to pass values
into the called macro definition.
These values can be passed through:

1. The symbolic parameters you have
specified in the macrc prctotype,
or

2. The systero variable symbol
&SYSLIST if it is specified in the
body of the macro definition (see
J7C) •

The two types of operands allowed
in a macro instruction are the
positional c~erand and the keyword
operand (see K3). You can specify
a sublist with multiple values in
both types of operands (see K4) •
Special rules for the various values
you can specify in operands are
given in K5.

Source Moduie

END

System Library

Containing Library Macros

"CALLED"
expanded

Section K: The Macro Instruction 293

K3-- Operands

K3A -- POSITIONAL OPERANDS

294

Purpose

You can use a positional operand to pass a value into a
macro definition through the corresponding positional
parameter declared for the definition. You should declare
a positional parameter in a macro definition when you wish
to change the value ~assed at every call to that macro
definition.

You can also use a positional operand to pass a value to
the system variable symbol &SYSLIST. If &SYSLIST, with
the appropriate subscripts, is specified in a macro
definition, you do not need to declare positional pararreters
in the prototype statement of the macro definition. You
can thus use &SYSLIS~ to refer to any positional operand.
This allows you to vary the number of operands you specify
each time you call the same macro definition. The use
of &SYSLIST is described in J7C.

Specifications

O,!he positional operands of a macro
lnstructl0n must be specified in
the same order as the positional

~ parameters declared in the called
~macro definition.

O

Each positional operand constitutes
a character string. It is this
character string that is the value
passed through a positional parameter
into a macro definition.

Source Module

MACRO

Page of GC33-4010-4
Revised April 29, 1977
By TNL: GN33-8226

ORDER &Pl,&P2,&P3

OPEN

DC
DC
DC

MEND

START

END

C'&Pl'
C'&P2'
C '&P3'

o

o

Examples of Macro Instructions:

MACCALL

MACCALL

MAC CALL

MAC CALL

o
,SYMBOL

Omitted operand
has null character
value

DC C'A'
DC C'B'
DC C'C'

Each positional
operand can be
up to 255
characters long

Sub/ists
described in
L4

Section K: The Macro Instruction 295

The figure to the right illustrates
what happens when the number of
positional operands in the macro
instruction differs from the number
of positional parameters declared
in the prototype statement of the
called macro definition.

Number of
positional
parameters
in ProtOtYPE
of macro
definition

Number of Positional
Operands in macro
instruction

EQUAL GREATER
THAN

Valid, if
Operands
are correctly
specified

Meaningless,
unless &SYSLIST
is specified in
definition to
refer to excess
operands

K3B ~- KEYWORD OPERANDS

296

Purpose

You can use a keyword operand to pass a value through a
keyword parameter into a macro definition. The values
you specify in keyword operands override the default values
assigned to the keyword parameters. The default value
should be a value you use frequently. Thus, you avoid
having to write this value every time you code the calling
macro instruction.

When you need to change the default value, you must use
the corresponding keyword operand in the macro instruction.
The keyword can indicate the purpose for which the passed
value is used.

LESS
THAN

Omitted operands
give null character
values to correspond-
ing parameters (or
&SYSLIST specifi-
cation)

Specifications

- ---Any- keyword operand spee-ified in
a macro instruction must correspond
to a keyword parameter in the macro
definition called. However, keyword
operands do not have to be specified
in any particular order.

A keyword operand must be coded
in the format shown in the figure
to the right. If a keyword operand

~iS specified, its value overrides

•
. the default value specified for

the keyword parameter.

The standard default value obeys
the same rules as the value specified
in the keyword operand (see KS) •

Page of GC33-4010-0

Revised September 29, 1972

By TNL GN33-8148

Key Opnd

Keyword
Operand

Corresponding
Keyword
Parameter

Examples of Keyword Operands: Sublist
described
in L4

MACKEY KEYWORD=

MACKEY KEYl=1,KEY2=2,KEY3=3

MACKEY KEY3=2000,KEYl=O,KEYWORD=HALLO

Section K: The Macro Instruction 297

The following examples describe
the relationship between keyword
operands and keyword parameters
and the values that the assembler
assigns to these parameters under
different conditions.

•
The keyword of the operand
corresponds to a keyword parameter.
The value in the operand overrides
the default value of the parameter •

•
The keyword operand is not specified.
The default value of the parameter
is used.

•
The keyword of the operand does
not correspond to any keyword
parameter. The assembler issues
an error message, but the macro
is generated using the default
values of the other parameters.

NO'I'E: The default value specified
for a keyword parameter can be the o null character string. The null
character string is a character
string with a length of zero; it
is not a blank, because a blank
occupies one character position.

298

Source Module

MACRO

• Null character
string is default
value

MACCORR &KEYl=DEFAULT,&KEY2=,&KEY3=123

SHOW DC C'&KEYl&KEY2&KEY3'

MEND

OPEN START 0 • •• MACCORR KEYl=OVERRIpE,KEY2=O,KEY3=456

MACCORR

~SHOW DC

MACCORR KEY4=SYMBOL, KEY2=O * *ERROR~' ~:,

SHOW DC C'DEFAULT0123'

MACCORR KEYl=,KEY3=456

END

Null default
value of KEY 2

K3C -- COMBINING POSITIONAL ANC KEYWORC OPERANDS

___ ---Purpose

You can use positional and keyword operands in the sarre
macro instruction: use a ~ositional operand for a value
that you change often and a keyword operand for a value
that you change infrequently.

MACRO 2 3 4 5

Page of GC33-4010-0

Revised September 29, 1972

By TNL GN33-8148

MIXED &Pl,&P2,&P3,&P4,&PS,&KEYl=lO,&KEY2=A

Specifications

Positional and keyword operands
can be mixed in the macro instruction
operand field. However, the

~ positional operands must be in the
same order as the corresponding

•
positional parameters in the macro
prototype statement.

OO$ldl ~~~t,~9~<ilqJ!~t~~9~J1t~.s~,P~~~,~<f·~
anY Keywo~d 'operandSi·:ifspecif.i~d: .. ·

&KEYl

END

O
N,OTE,,:, ,Th,e" system, variable Symbol
&SYSLIST(n) refers only to the

•
positional operands in a macro
instruction.

00SA11 ~e¥\tlot(loperandsmust tOlloW.
any positional operands specified ..

• lViEND

START 0

MIXED A,B,KEY1=20,C,KEY2=SR,D,E

1 2 3 4 5

END

AREA2 DC lOFLS'2024'

Section K: The Macro Instruction 299

K4 -- Sublists in Operands

• • •

300

Purpose

You can use a sublist in a positional
or keyword operand to specify several
values. A sublist is one or more
entries separated by commas and
enclosed in parentheses. Each entry
is a value to which you can refer
in a macro definition by coding:

1. The corresponding symbolic
parameter with an appropriate
subscript or

2. The system variable symbol
&SYSLIST with appropriate subscripts,
the first to refer to the positional
operand and the second to refer
to the sublist entry in the operand.

&SYSLIST can refer only to sublists
in positional operands.

Specifications

The value specified in a positional
or keyword operand can be a sublist.

A symbolic parameter can refer to
the entire sublist or to an
individual entry of the sublist.
To refer to an individual entry,
the symbolic parameter must have
a subscript whose value indicates
the position of the entry in the
sublist. The subscript must have
a value greater than or equal to
one.

&KEY (1)

&Pl(l}

OPEN

Sublist

Source Module

DC
value in

DC keyword

DC operand

MEND

START 0

(H20,H,200), (A,B,C)

FO DC FIOI

H20 DC HI 200 I

DC A(A,B,C)

END

The format of a sublist is given
in the figure to the right. A
sublist, including the enclosing
parentheses, must not contain more
than 255 characters.

The figure to the right shows the
relationship between subscripted
parameters and sublist entries if:

• A sublist entry is omitted,

•
The subscript refers past the end
of the sublist,

•
The value of the operand is not
a sublist,

• The parameter is not subscripted.

NOTE: The system variable symbol,
&SYSLIST(n,m), can also refer to
sublist entries, but only if the
sublist is specified in a positional
operand.

Parameter

&PAR(3)

&PAR(5)

& PAR

&PAR(l)

&PAR(2}

&PAR

&PAR(l)

&PAR(2}

&PAR

&PAR(l)

&PAR(3)

&PAR(2)

&PAR(l)

&POSPAR(3}

One or more entries

Examples:

Subl ist specified
in corresponding
operand (or as
default value of
keyword parameter)

Valid sublist with the
null character string
as the only entry

Value generated
(or used in
computation)

0(1,2,,4) Null character string

8(1,2,3,4) Null character string

J(A A

8 1
A I A

lA I Null character string

• (A)" (A)

(A) A

8
(A) Null character string

~ Considered as I
() Sublists ()

I I
()

I
Null character string

() J Null character string

(A'jI , C, D) Nothing

I This blank indioates I 1 oER ROR.

I
end of operand field I J Unmatched left

(') I par~ntheses
i Nothmg

posJtjonat Operands

A, (1,2,3,4) 3

&SYSLIST(2,3) A,(l,2,3,4)
I

3

Section K: The Macro Instruction 301

K5 -- Values in Operands

302

Purpose

You can use a macro instruction operand to pass a value
into the called macro definition. The two types of value
you can pass are:

1. Explicit values or the actual character strings you
specify in the operand.

2. Implicit values, or the attributes inherent in the data
represented by the explicit values.

Attributes are fully described in L1B.

Specifications

The explicit value specified in a macro instruction oferand
is a character string that can contain one or more variable
symbols.

The character string must not be
greater than 255 characters after
substitution of values for any
variable symbols. This includes
a character string that constitutes
a sublist (see K4).

The character string values, including sublist entries,
in the operands are assigned to the corresponding pararreters
declared in the prototype statement of the called macro
definition. A sublist entry is assigned to the
corresponding subscripted parameter.

OMITTED OPERANDS: When a keyword
operand is omitted, the default
value specified for the corresponding
keyword parameter is the value
assigned to the parameter. When 4It a positional operand or sublist

•

entry is omltted, the null character
string is assigned to the parameter.

• NOTE: Blanks appearing between
commas do not signify an omitted
positional operand or an omitted
sublist entry.

SPECIAL CHARACTERS: Any of the
256 characters of the System/370
character set can appear in the
value of a macro instruction operand
(or sublist entry). However, the
following characters require special
consideration:

AMPERSANDS: A single ampersand
indicates the presence of a variable
symbol. The assembler substitutes 4It the value of the variable symbol
into the character string specified
in a macro instruction operand.

4EtThe resultant string is then the
value passed into the macro
definition. If the variable symbol
is undefined, an error message is
issued •

• Double ampersands must be specified
if they are to be passed to the
macro definition.

I Source Module I
'-1 --fv-tA-C-RO---------------,l ~
I OMIT &Pl,&P2,&P3,&KEYl=DC,&KEY2=C I

&KEYI &Pl&KEY2&P2 I ALWAYS &P3 1

MEND

OPEN START 0 Commas indicate
omission of first
two positional

OMIT , ,HERE

~""'D-C-C-I-A-L-W-A-YS-+~'-~ --...,

OMIT

END

i \/",1,,,, ,""'

Specified
In Operand

&VAR

&A+&B+3+&C>:,10

10,LI0~~--------~

I \I I value VI

Variable
Symbols

I XYZ

&A=2

&B=X

Last positional
operand omitted,
no comma needed

DC 10CLI0 ' ALWAYS I

I Character
String

0 Value • Passed

XYZ

2+X+3+COUNT>!<10

I &C=CQUNT I

i

• &MESSAGE'~ I BLANK BETWEEN I BLANK BETWEEN I

l Quoted string ,I
described below

I I
i !

&®ISTR I j&®ISTER

N~'
I

NOTE&&&&

Section K: The Macro Instruction 303

Page of GC33-401Q-4
Revised April 29, 1977
By TNL: GN33-8226

APOSTROPHES: A single apostrophe is used: (1) to indicate
the beginning and end of a quoted string, and (2) in a
length attribute notation that is not within a quoted
string.

QUOTED STRINGS: A quoted string is any sequence of
~ characters that be~ins and ends with a single apostrophe

(compare with condltional assembly character expressions 4It described in L4B). ~ouble apostrophes must ce specified
inside each quoted string. 'Ihis includes substituted

• apostrophes.

Macro instruction operands can have values that include
one or more quoted strings. Each quoted string can be
separated from the following quoted string by one or more

•
character~, and each must contain an even number of
apostrophes.

304

/o~
'QUOTED STRING'

Value specified
in Operand

'&&NOTATION'

'&MESSAGE'

, ,

• {'L' 'SYMBOL'

'L' '&VAR'

'"ES'

, Lj SYMBOL' \

1,..-----'--.,

I Indicates end I Indicates beginning
of quoted string of a new quoted

string

'QUOTEl' D'QUOTE2'

No apostroph~single ampersands,
commas, blanks, or equal signs
allowed between quoted strings in
one operand

: AB' 'CD ~ E ' fGH& & I
" \ Quoted strings

Value of
Variable
Symbol

Value Passed

'&&NOTATION'

BLANKS OK 'BLANKS OK'

, ,

, L' , S yr1BOL '

SYMBOL 'L' 'SYMBOL'

.,/-~--l.t".".. , ,

INVALID
OPERAND
VALUE

'QUOTEl'AND'QUOTE2

'AB"CD'E'FGH&&'

LENGTH ATTRIBUTE NOTATION: In macro
instruction operand values, the

~ length attribute notation with
____ ord~nary symbols can be used outside

of quoted strings, if the length
attribute notation is preceded by

•
any special character except the
ampersand.

PARENTHESES: In macro instruction
operand values, there must be an
equal number of left and right

.. parentheses. They must be paired,
~that is, to each left parenthesis

•
belongs a following right parenthesis
at the same level of nesting. An
unpaired (single) left or right

~parenthesis can appear only in a 8 quoted string.

I Does not initiate I
I or end a quoted i

I string I

1= ~~
OUTERCAL!af , 1 0 +i4~~~~"r+f'.f.llli~·

~.~ .

f ,
(PAIRED PARENTHESES)

Examples: These parentheses
could be enclosing
a sublist

~ ~ ./
(A,B,C,D,E) I (A, (B) ,C,D)

}UNPAIRED PARENTHESES(Invalid
operand
value

(A(B)C)D(E)
L-J

Level 1

I I L-J
I _ .. _1 " Level 2 L-t::Vt::1 L

Paired

• {;IN. ('STRING']

~
(THESE' ('ARE') 'UNPAIRED)

I Paired I

Section K: The Macro Instruction 305

o

o •

BLANKS: One or more blanks outside
a quoted string indicates the end
of the entire operand field of
a macro instruction. Thus blanks
should only be used inside quoted
strings.

COMMAS: A comma outside a quoted
string indicates the end of an
operand value or sublist entry.
Commas that do not delimit values
can appear inside quoted strings
or paired parentheses that do not
enclose sublists.

EQUAL SIGNS: An equal sign can
appear in the value of a macro
instruction operand or sublist
entry:

O. As the first character,

8 Inside quoted strings,

8 Between paired parentheses, or

• In a posi tional parameter,
provided that the parameter does
not resemble a keyword parameter.

306

Examples of Macro Instructions: •

MACCALL 'BLANKS r:::: ,OR)

MAC CALL

MAC CALL

MACCALL

MAC CALL (A, (B,C,D) ,E, (F,

J Remarks

,.G~ ,1U

Examples of Macro Instructions:

MAC CALL A,B,C,D

MAC CALL (A,B,C,D)

MACCALL 'IN CASE 1, MESSAGE N03 IS ISSUED'

J
paired J

MACCALL ~3'5,6'

I
•

Also part of character
string if parentheses
do not enclose sublist

Examples of Macro Instructions:

l Could be literal specifications I

MAC CALL (~/--) KEY==F'201', =~' ,<2~~=H'3'

~ Character string ---------v ---MAC CALL AiB,C(i)

MACCALL (A(B=I) ,C,D,E)

MAC CALL 2X=B
2X is not a valid keyword

•

PERIODS: A period (.) can be used
in the value of an operand or sublist
entry. It will be passed as a period.

O However, if it is used immediately
after a variable symbol it becomes

•
a conca~enation char~ct~r: _ Then,
two periods are required it one

• is to be passed as a character.

K6 - Nesting in Macro Definitions

K6A -- PURPOSE

A nested macro instruction is a
macro instruction that you specify
as one of the statements in the
body of a macro definition. This
allows you to call for the expansion
of a macro definition from within
another macro definition.

Inner and Outer Macro Instructions

Any macro instruction you write

O
in the open code of a source module
is an outer macro instruction or
call. Any macro instruction that
appears within a macro definition

• is an inner macro instruction or
call.

Character String I
specified as value ;, Value of !

_ r- of Operand or . . I Variable __ I Value .. -t-----.--..
Sub!ist Entry i Symbol

3.4 I
I

(3.4,3.5,3.6)1
i

FIELD

3
&Afl-O "II

&A.l •

&A~ I 3

:~i:B 0 I &::::~~)
I

&DISP. (&BASE) I &DISP=1000

i &BASE=10
I

Source Module

I r----I :-~:~ -J
I • I "'----------'

MEND

MACRO

1c=J
MEND

OPEN START 0

1 Passed

II'

3.4

3.4 3.5 3.6

FIELDI

31 •
3~

AREA200

AREA200

1000(10)

These are prototype
statements

Section K: The Macro Instruction 307

Levels of Nesting

O The code generated by a macro definition called by an inner
macro call is nested inside the code generated by the macro
definition that contains the inner macro call. In the
macro definition called by an inner macro call, you can
include a macro call to another macro definition. Thus,
you can nest macro calls at different levels.

8The zero level includes outer macro calls, calls that

•
appear in open code; the first level of nesting includes
inner macro calls that appear inside macro definitions

•
called from the zerc level; the second level of nesting
includes inner macro calls inside macro definitions that
are called from the first level, etc.

308

Source Module

LE\lEL 0

START 0

MEND

Macro Definitions

MACRO

MEND

LEVEL 1 LEVEL 2

MACRO

MEND

LEVEL 3

Section K: The Macro Instruction 309

310

Recursion

You can also call a macro definition
recursively, that is, you can write

~macro instructions inside macro

•
definitions that are calls to the
containing definition. This allows
you to define macros to process
recursive functions.

Source Module

MACRO

RECURSE
~--------------------~

RECURSE •
~---

MEND

OPEN START 0

RECURSE

END

prototype statement

Test here to
escape from
recursive loop

macro instruction

K6B -- SPECIFICATIONS

General Rules and Restrictions

Macro instruction statements can
be written inside macro definitions.
Values are substituted in the same
way as they are for the model
statements of the containing macro
definition. The assembler processes
the called macro definition, passing
to it the operand values (after
substitution) from the inner macro
instruction. In addition to the
operand values described in K5
above, nested macro calls can specify
values that include:

o Any of the symbolic parameters
specified in the prototype statement
of the containing macro definition

• Any SET symbols declared in the
containing macro definition

8 Any of the ~xst~IIlyariable s}'ffi]:)ols
;('~~~.tj~TE; ~$'l$TtMEJ.

The number of nesting levels
permitted depends on the complexity
and size of the macros at the
different levels, that is: the
number of operands specified, the
number of local and global SET
symbols declared (see L1A) and the
number of sequence symbols used.

Exits taken from the different
levels of nesting when a MEXIT or
MEND instruction is encountered
are as follows:

1. From the expansion of a macro
definition called by an inner macro
call, an exit is taken to the next

O
sequential instruction that appears
after the inner macro call in the
containing macro definition.

2. From the expansion of a macro
definition called by an outer macro!
an exit is taken to the next

•
sequential instruction that appears
after the outer macro call in the

.. open code of a source module.

I

I

Macro Definitions

Prototype

Inner call

MACRO
Prototype

Inner call IN

Source Module

OPEN START 0

OUTER

~~ ~

• INNERI

7---~~

.... MEND

.......•
MEXIT

END

Section K: The Macro Instruction 311

312

Passing Values thrcugh Nesting
Levels

The value ccntained in an outer
macro instruction operand can te
passed through one cr rrcre levels

•
of nesting. However, the value
specified in the inner rracrc
instruction operand must te identical

•
to the corresfonding symbolic
parameter declared in the prototype
of the containing rracrc definition •

• 'Thus, a sublist can 1::e passed and
• referred to as a su1::list in the

•
macro definition called by the inner
macro call. Also, any symbol that
is passed will carry its inherent
attribute values through the nesting
levels.

Values can be passed from open code
through several levels cf macro
nesting if inner macro calls at
each level are sfecified with
symbolic parameters as operand
va lues.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER

MEND

MACRO

INNER

L
A
ST

MVC

MEND

START

END

0

&Q,&R,&S

3,&Q(1)j
3,&Q(2) •
3,&Q(3)

&R,&S

&Q &R

L 3,AREA
A 3,F200
ST 3,SUM

MVC TO,FROM

O NOTE: If a symbolic parameter is
only a part of the value specified
in an inner rracre instruction

•
operand, only the character string
value given te the fararoeter by
an outer call is passed through

•
the nesting level. Inner SUblist.
entries and attributes of symtols ·
are net available fer reference
in the inner macro.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER

INNER

MEND

MACRO

INNER &R,&S

DC A&R (2)

DS XL(&S)

MEND

START 0

ND

Attributes for these
symbols not available
in macro definition
called by INNER

A (ADX ,ADY ,ADZ)

XL (TWOO+3)

Section K: The Macro Instruction 313

System Variable Symbols in Nested
Macros

The global read-only system variable
?y~()~~: &SYSPARM,i$Y'SDATE, and

only'S~$l!'_ are not affected by the
nesting of macros. The remaining
system variable symbols are given
local read-only values that depend
on the position of a macro
instruction in code and the operand
value specified in the macro
instruction.

314

If &SYSLIST is specified in a macro
definition called by an inner macro
instruction, then &SYSLIST refers

e to the positional operands of the
inner macro 1nstruction.

Prototype

Call

Prototype

Call

Prototype

Call

Source Module

MACRO

OUT

INl

MEND

MACRO

INl
DC A(&SYSLIST(2))

IN2 D,E,F

MEND

MACRO

IN2

, ,
DC Y(&SYSLIST(3))

MEND

START a

o
•

The assembler increrrents &SYSNDX by one each time it
encounters a macro call. It retains the incremented value 4It
throughout the expansion of the macro definition that is
ca 11 ~tllat~s ___ within_the_Lo_ca_l~J:_o-D-~~f __ th~ne sti_Il9 ____ _
level.

Source
Module

LEVEL 0

START 0

END

MACRO

OUTER

INNER1

MEND

LEVEL 1

Macro Definitions

MACRO

INNER1

IINNER2

I
MEND

LEVEL 2

MACRO

U
MEND

LEVEL 3

Section K: The Macro Instruction 315

O The assembler gives &SYSEC'I' the character string value
of the name of the control section in force at the point

~where a macro call is made. For a macro definition called
by an inner macro call, the assembler will assign &SYSEC'I 4It
the name of the control section generated in the nacre
definition that contains the inner macro call. The control

•
section must be generated before the inner macro call is
processed.

If no control section is generated within a reacro

•
definition, the value assigned to &SYSECT does not change.
It is the same for the next level of macro definition
called by an inner macro instruction.~

4It&SYSECT has a local scope; its read-only value rerrains
constant throughout the expansion of the called macro
definition.

Source Module Macro Definitions

MACRO MACRO MACRO

OUTER INNERl INNER2

DC A(&SYSECT)

• DC A (&SYSECT)
INNER2

. MEND MEND
INNERl

MEND

LEVEL 0 LEVELl LEVEL2 LEVEL3

• A START 0

316

Section L: The Conditional Assembly Language

This section describes the conditional assembly language.
with the conditional assembly language, you can perforrr
general arithmetic and logical computations as well as
many of the other functions you can perform with any ether
programming language. In addition, by writing conditional
assembly instructions in combination with other assembler
language statements you can:

1. Select sequences of these source statements, called
model statements, from which machine and assembler
instructions are generated

2. Vary the contents of these model statements during
generation

The assembler processes the instructions and expressions
of the conditional assembly language at pre-assembly time.
Then, at assembly time, it processes the generated
instructions. Conditional assembly instructions, however,
are not processed after pre-assembly time.

The conditional assembly language is more versatile when
used to interact with symbolic parameters and the system
variable sy~bols inside a macro definition. However, you
can also use the conditional assembly language in open
code as described in L7 below.

Ll - Elements and Functions

The elements of the conditional assembly language are

1. SET symbols that re~resent data (see L1A)

2. Attributes that represent different characteristics
of data (see L1B)

3Q Sequence symbols that act as labels for branching to
statements at pre-assembly time (see L1C) •

The functions of the conditional assembly language are:

Section L: The Conditional Assembly Language 317

1. Declaring SET symbols as variables for use by the
conditional assembly language in its computa tions (see
L2)

2. Assigning values to the declared SET symbols (see L3)

3. Evaluating conditional assembly expressions used as
values for substitution, as subscripts for variable syrrbols,
or as condition tests for branch instructions (see L4)

4. Selecting characters from strings for substitution in
and concatenation to other strings, or for inspection in
condition tests (see LS)

5. Branching and exiting from conditional assembly loops
(see L6) •

L1A - SET SYMBOLS

318

Purpose

SET symbols are variable symbols that provide you with
arithmetic, binary, or character data, whose values you
can vary at pre-assembly time.

You can use SET symbols as:

1. Terms in conditional assembly expressions

2. Counters, switches, and character strings

3. Subscripts for variable symbols

4. Values for substitution.

Thus, SET symbols allow you to control your conditional
assembly logic and to generate many different statements
from the same model statement.

SUBSCRIPTED SET SYMBOLS: You can use a SET symbol to
represent an array of many values. You can then refer
to anyone of the values of this array by subscripting
the SET symbo 1 .

The Scope of SET Symbols

You must declare a SET symbol before
you can use it. ------'Phe--scope----o£-------­
SET symbol is that part of a program
for which the SET symbol has been
declared.

O
If you declare a SET symbol to have
a local scope, you can use it only
in the statements that are part
of:

•• The same macro definition or

•• Open code.

•
If you declare a SET symbol to have

, a global scope, you can use it in
the statements that are part of:

• The same macro definition, and

• A different macro definition,
and

• Open code.

You must, however, declare the SET

•
symbol as global for each part of
the program (a macro definition
or open code) in which you use it.

You can change the value assigned
to a SET symbol without affecting
the scope of this symbol.

THE SCOPE OF OTHER VARIABLE SYMBOLS:
A symbolic parameter has a local
scope. You can use it only in the
statements that are part of the
macro definition for which the
parameter is declared. You declare
a symbolic parameter in the prototype
statement of a macro definition.

The syste~ variable symbols,
&SYSLIST, &SYSECT, and &SYSNCX have
a local scope; you can use them
only inside macro definitions.

,()$ However, the system variable symbols,
9!1lv & S Y S FARM, ,,~SX-?P!\,';J:~i<,?mQ;:iSI~'I~;t!:

"have a global scope; you can use
them in both open code and inside
any macro defi~ition.

L

• o

c
•

A

L

Source Module

o

Macro Definitions
Called

-+---

Section L: The Conditional Assembly Language 319

•
•

•
•

320

Specifications

SET symbols can be used in model
statements from which assembler
language statements are generated,
and in conditional assembly
instructions. The three types of
SET symbols are: SETA, SETE, and
SETC. A SET symbol must be a valid
variable symbol, as shown in the
figure to the right.

A SET symbol must be declared before
it can be used. The instruction
that declares a SET symbol determines
its scope and type (see L2).

The features of SET symbols and
other types of variable symbol are
compared in the figure to the right.

The value assigned to a SET symbol
can be changed by using the SETA,
SETB, or SETC instruction within
the declared scope of the SET symbol.
However, a symbolic parameter and
the system variable symbols are
assigned values that remain fixed
throughout their scope. Wherever
a SET symbol appears in a statement,
the assembler replaces the symbol
with the last value assigned to
the symbol.

SET Symbols

ampersand
alphabetic character
~ 6 alphamede eh"acte"

Format: & 'S1 IE T S Y M BI

• Declaration:

Instruction ..
Operation Operand

Type Scope

LCLA
LCLB
LCLC

GBLA
GBLB
GBLC

Feature

Can be used:
In open code

In macro
definitions

Scope:
Local or

Global

Values can
be changed
within scope
of symbol

&ARITH SETA
& BOOLEAN SETB
&CHAR SETC

&A SETA
&B SETB
&C SETC

Types of Variable Symbol

SETA, SETB,
orSETC
Symbols

YES

YES

YES

YES

• YES

Symbolic
Parameters

NO

YES

YES

NO

• NO:
read only

value

local
local
local

global
global
global

System
Variable
Symbols

All

&SYSLIST
&SYSECT
&8YSNDX

&SYSPARM

• NO:
read only
value

~

O
NOTE: . SET symbols can be used in •
the ~ and operand field of macro
instructions. However, the value

• thus passed through a symbolrc-­
parameter 1nto a macro definition

Gis considered as.a character string
and is generated as such.

Source Module

LCLC

SETC
SETC

MAC CALL

END

&LIST,&LABEL

MCCALL

DC

MEND

Q

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Macro
Instruction

Macro

Definition

Called

Can only refer
to whole string

STRING DC A(X,Y,Zl Generated
result

section L: The Conditional Assembly Language 321

322

Subscripted SET Symbols -
Specifications

A subscripted SET symbol must be
specified as shown in the figure
to the righte

~he subscript can be any arithmetic
expression allowed in the operand
field of a SETA instruction (see
L4A) •

A subscripted SET symbol can be
used anywhere an unsubscripted SET
symbol is allowed. However,
subscripted SET symbols must be
declared as subscripted by a previous
local or global declaration
instruction.

~ The subscript refers to one of the

•
many ~o~itions in an array of values
ident1f1ed by the SET symbol. The
value of the subscri~t must not

• exceed the dimension declared for
the array in the corresponding LCLA,
LCLB, LCLC, GELA, GELE, or GELC
instruction.

NOTE: The subscri~t can be a
~subscripted SET symbcl. Five levels

of subscript nesting are allowed.

Format:

Example LeLA

&ARRAY (10) = 5

Arithmetic Expression

whose value must not

be 0 or negative

1»
&ARRAY (20)

• ARRAY

~.=----

{

&ARRAY (5).~.~ .. "'J<·

&ARRAY (&ARRAY (10)') ~~ quivalent .· •.. ·../t{...............'

•

L1B - DATA ATTRIBUTES

What Attributes Are

The data, such as instructions, constants, and areas, which
you define in a source module can be described in terrrs
of:

1. Type, which distinguishes one form of data frorr ancther:
for example, fixed-point constants from floating-~oint
constants, or machine instructions from macro instructionse

2. Length, which gives the number of bytes occupied by
the object code of the data.

3. Scaling, which indicates the number of positions occu~ied
by the fractional portion of fixed-~oint and decimal
constants in their object code form.

4. Integer, which indicates the number of positions occupied
by the integer portion of fixed-point and decimal constants
~n their object code form.

5. Count, which gives the number of characters that wculd
be required to represent the data, such as a macro
instruction operand, as a character string.

6. Number, which gives the number of sublist entries in
a macro instruction operand.

These six characteristics are called the attributes of
the data. The assembler assigns attribute values to the
ordinary symbols and variable symbols that represent the
data.

Section L: The Conditional Assembly Language 323

324

Purpose

Specifying attributes in conditional
assembly instructions allows you
to control conditional assembly
logic, which in turn can control
the sequence and contents of the
statements generated from model
statements. The specific purpose
for which you use an attribute
depends on the kind of attribute
being considered. The attributes
and their main uses are shown in
the figure to the right.

NOTE: The number attribute of
8&SYSLIST (m) and &SYSLIST (m,n) is

described in J7C.

Specifications

FORMA'!-: '!he format for an attribute
reference is shown in the figure
to the right.

8 The attribute notation indicates

•
the attribute whose value is desired.
The ordinary or variable symbol
represents the data which possesses
the attribute. The assembler
substitutes the value of the

•
attribute for the attribute
reference.

WHERE ALLOWED: An attribute
reference to the type, scaling,
integer, count, and number attributes
can be used only in a conditional
assembly instruction. The length
attribute reference can be used
both in a conditional assembly
instruction and in a machine or
assembler instruction (for details
on this use see C4C) •

Attribute

Type

Length

Scaling

Integer

Count

Number

•

Purpose

Gives a letter that
identifies type of
data represented

Gives number of
bytes that data
occupies in storage

Refers to the
position of the
decimal point in
decimal, fixed-point
and floating-point
constants

Is a function of
the length and
scaling attributes
of decimal, fixed-
point, and floating-
point constants

Gives the number
of characters
required to repre-
sent data

Gives the number
of sublist entries
in a macro
instruction operand
sublist

Format: Attribute
Notation

Main Uses

- In tests to distinguish
between different data
types

- For value substitution
- I n macros to discover

missing operands

- For substitution into
length fields

- For computation of
storage requirements

- For testing and regulating
the position of decimal
points

- For substitution into a
scale modifier

- To keep track of
significant digits (integers)

- For scanning and
decomposing of
character strings

- As indexes in sub-
string notation

- For scanning sublists
- As counter to test for

end of sublist

Attributes

Apostrophe

/
Ordinary or

Symbol • _-_ Variable •

Examples:

• Attribute Reference

T'SYMBOL
L' &VAR
K' &PARAM

COMBINATION WITH SYMBOLS: The figure below shows the six
kinds of attributes and the type of symbol with which the
attributes can be corr.bined.

NOTE: Whether or not an attribute reference is allowed
in open code, in macro definitions, or in toth, depends
on the type of symbol specified.

ATTRIBUTES SPECIFIED

Symbols Type Length Scaling Integer
Specified T' L' S' I'

I IN OPEN CODE I (

Ordinary Symbols YES YES YES YES

SET Symbols YES NO NO NO

System Variable Symbols: YES NO NO NO

&SYSPAR~,&SYSDATE,
L &SYSTIME

Ordinary Symbols YES YES YES YES

SET Symbols YES NO NO NO

Symbolic Parameters YES YES YES YES

System Variable Symbols. YES YES YES YES
&SYSLIST

&SYSNDX,&SYSPARM, NO NO

&SYSDATE, &SYSECT I

&SYSTIME

Count Number
K' N'

YES YES

YES NO

YES NO

NO NO

YES NO

YES YES

YES YES

Section L: The Conditional Assembly Language 325

ORIGIN OF VALUES: The value of

O an attribute for an ordinary symbol
specified in an attribute reference
comes from the data represented

326

by the symbol, as shown in the
figure to the right.

The symbol must appear in the name
field of an assembler or machine
instruction, or in the operand field
of an EXTRN or WXTRN instruction.
'Ihe instruction in which the symbol
is specified:

1. Must appear in open code

2. Must not contain any variable
symbols, and

3. Must not be a generated
instruction.

I
Attribute

I Notation

I

I

I
Ordinary 1. Symbol

I
1 J

Statement

I Operand TI
Label

of LI
EXTRN or

SI
WXTRN
Instruction II

The value of an attriDute for a o variable symbol specified in an
attribute reference comes from the
value substituted for the variable
symbol as folloviS (see a±-se---the-­
figure to the right) ~

QS 1;. For ',' SE'j? symbOls al};d tn~syst~Ill
only v.a:rtable .·symbols: .. &SY~ECT,&SY$NDXi

&§~~~~, .. ~SY SD~T~, .. Cll1?&~YS'l't~:F;,:.
the··~ttri.bute 'vailles .come .. ·from ··the

• Current . data . valueOfthe$e .. S~Ql~~

2. For symbolic parameters and thp
system variable symbol, &SYSLIST,
the values of the count and number

•
attriDutes come .. from the operands
of macro instructions.

o

•

o

The values of the type, length,
scaling and integer attributes,
however, come from the values
represented by the reacro instruction
operands, as follows:

a. If the operand is a sublist,
the sublist as a whole has
attributes; all the individual
entries and the whole sublist
have the same attributes as those
of the first suboperand in the
sublist (except for 'count',
which can be different, and
'number', which is relevant only
for the whole sublist).

b. If the first character or
characters of the operand (or
sUblist entry) constitute an
ordinary symbol, and this symbol
is followed by either an
arithmetic operator (+,-,*, or
/) , a left parenthesis, a comma,
or a blank, then the values of
the attributes for the operand
are the same as for the ordinary
symbol.

c~ If the operand (or sublist
entr~ is a character string
other than a sublist or the
character string described in
b. above, the type attribute
is undefinel (U) and the length,
scaling and integer attributes
are invalid.

Attribute
Notation

Symbolic
parameter
or
&SYSLIST

Macro Instruc­
tion Operand .------------1

N '&SYSLIST
N '&SYSLIST (n)

• Ordinary
Symbol o

Operand

Character string
not beginning
with a symbol

Symbolic
parameter
as inner
macro
instruction
operand

Section L: The Conditional Assembly Language 327

VALUES: Because attribute references
are allowed only in conditional
assembly instructions, their values
are available only at ~re-assembly
time, except for the length attribute
which can be referred to outside
conditional assembly instructions,
and is therefore also available
at assembly time (see C4C).

NOTE: The system variable symbol,
&SYSLIST, can be used in an attribute
reference to refer to a macro
instruction operand, and, in turn,
to an ordinary symbol. Thus, any
of the attribute values for macro
instruction operands and ordinary
symbols listed below can also be
substituted for an attribute
reference containing &SYSLIST.

THE TYPE ATTRIBUTE (T'): The type
attribute has a value of a single
alphabetic character that indicates
the type of data represented by:

O. An ordinary symbol

OOS NOTE: An ordinary symbol outside a
onfy macro cannot be used as the operand

of Tt inside a macro in DOS assembler.

328

A macro instruction operand

Aj:~j~:';~~~t:4;: •
The type attribute reference can
be used only in the o~erand field
of the SETC instruction or as one
of the values used for comparison
in the operand field of a SETE or
AIF instruction.

NOTE: Ordinary symbols used in
the name field of an EQU instruction
have the type attribute value nun.

J:I<>~V~~~ .. til,~,tt1i~tip~~;:~~>Qf an
J::9"~tl~t:1'~ctiOJ)/~;~'.·.'.~'~'.\l~~d
.~p;~citly .' ~~~,~9P\~ .,~1'1?~ . attr:ibu~e

'9~, .. ,~~pli~'.,t.~~ name
f Id. . .

Type
Attribute

A

B
C
o
E
F
G
H
K
L
P

R
S
V
X
Y
Z

M
W

J

T
$

o

o
Data Characterized

For ordinary symbols and outer macro instructions
that are symbols

: Defined as labels for DC and OS instructions

A-type constant, implicit length, aligned (al
instruction label)
Binary Constant
Character Constant
Long floating-point constant, implicit length, aligned
Short floating-point constant, implicit length, aligned
Full-word fixed-point constant, implicit length, aligned
Fixed-point constant, explicit length
Half-word fixed-point constant, implicit length, aligned
Floating-point constant, explicit length
Extended floating-point constant, implicit length, aligned
Packed decimal constant

A-, So, Q-, V- or V-type address constant, explicit length
5-type address constant, implicit length, aligned
V-type address constant, implicit length, aligned
Hexadecimal constant
V-type address constant, implicit length, aligned
Zoned decimal constant

: Defined as labels for assembler language statements

Machine instruction
Macro Instruction
CCW instruction

: Identified as control section name

: Identified as external symbol by EXTRN or
WXTRN instruction

A macro I nstruction Operand that is:
A self-defining term
Omitted (has a value of a null character string)

When a symbol or macro instruction
operand cannot be assiqned any of
the type attribute values listed
in the preceding figure, the data
represented is considered to be
undefined and its type attribute
is U. Specific cases of where U
is assigned as a type attribute
value are given in the figure to
the right.

THE LENGTH ATTRIBUTE (L'): The
~ length attribute has a numeric value

equal to the number of bytes occupied
by the data that is represented
by the symbol specified in the
attribute reference.

If the length attribute value is
desired for pre-assembly processing,
the symbol specified in the attribute
reference must ultimately represent

•
the name entry of a statement in
open code. In such a statement,
the length modifier (for rc and
DS instructions) or the length field
(for a machine instruction) , if
specified, must be a self-defining

• term. The length modifier or length
field must not be coded as a
multi term expression, because the
assemcler does not evaluate this
expression until assembly time.

The length attribute can also be
specified outside conditional
assembly instructions. Then, the
length attribute value is not
available for conditional assembly

•
processing, b':lt is used as a value

· at assembly time.

At pre-assembly time, an ordinary
symbol used in the name field of
an EQU instruction has a length
attribute value of 1. At assembly
time, the symbol has the same length
attribute value as the first symbol
of the expression in the first
operand of the EQU instruction.

•

Ordinary symbols that are used as iabeis:

~ for the L TORG instruction

~ for the EQU instruction without a third operand

~ for DC and DS statements that contain variable symbols

Example: UI DC &X'l '

~~pfity
~ fQrI?9·i:tlld ()S$tatementsthat~cQntainexpreSsipnsas

dQPHcationfactQrs

The SETC variable symbol

Source Module

LENGTHS &PI,&P2

AlP (L'&PI LE 8) .MOVE

. MOVE ANOP
IvlVC &P2,&Pl

MEND

OPEN START

• DATA DC FL7 1 7E+9 1

• AREA DS XL (L'DATA)

LENGTHS DATA,

MVC AREA ,DATA

END

Section L: The Conditional Assembly Language 329

330

NOTES:

1. The length attribute reference,
when used in conditional assembly
processing, can be specified only in
arithmetic expressions (see L4).

2. A length attribute reference to a
symbol with the type attribute value
of M, N, 0, T, U, or $ will be
flagged. The length attribute for the
symbol will be given the default
value of 1.

THE SCALING ATTRIBUTE (51): The
scaling attribute can be used only
when referring to fixed-point,
floating-point, or decimal,
constants. It has a numeric value
that is assigned as shown in the
figure to the right.

NOTES:

1. The scaling attribute reference
can be used only in arithmetic
expressions (see L4).

2. When no scaling attribute value
can be determined, the reference is
flagged and the scaling attribute is
given the value of 1.

Constant
Types
Allowed

Fixed-Point

Floating­
Point

Decimal

Examples:

Type
Attributes
Allowed

H,F, and G

D,E,L, and K

Pand Z

Value of Scaling
Attribute Assigned

Equal to the value of the
scale modifier
(-187 through +346

Equal to the value of the
scale modifer
(0 through 14 - D,E)
(0 through 28 - L)

Equal to the number
of decimal digits
specified to the right
of the decimal point
(0 through 31 - P)
(0 through 16 - Z)

PACKED DC P'+12.34S'

ZONED DC Z'+12.34S'

S'PACKED=3

S'ZONED=3

THE INTEGER ATTRIBUTE (I'): The integer attribute has

O a numeric value that is a function of (depends on) the
length and scaling attribute values of the data being

m __ --Le£erred to----h¥ the attr; bnte reference. ----The-foTIDn] as
relating the integer attribute to the length and scaling
attritutes are given in the figure below.

NOTE: The integer attribute reference can be used only
in arithmetic expressicns (see L4) •

Constant
Type
Allowed
(attribute
value)

Fixed-point
(H,F, and G)

FI nt
(D,E,L, and K)

Only for L-Type

Decimal equal to the
number of decimal
digits to the left of
the assumed decimal
point after the
number is assembled

Packed (P)

Formula
Relating the
! nteger to the
Length and
Scaling
Attributes

I'=8*L'-S'-1

•
I' =2 ~':- (L' -I) -S '

when L' > 8
1'=2 >:«L' -11-S'-2

I'=2*L'-S'-1

Examples

HALFCON DC HS6'-25.93' }
8*2-6-1

ONECON DC FS8'100.3E-2'
8*4-8-1

SHORT DC ES2 46.415'
2':«4-1J-2

LONG DC DS5'-3.729'

EXTEND DC'LS10'5.312'
2*(16-1) -10 -2

PACK DC P'+3.513'

Values
Of the
Integer
Attribute

23

4

9

18

2

2*3-3-l __ ----------~

Zoned (Z) IJ=L'-S' ZONE DC Z1 3.5l3'
4-3

1

Section L: The Conditional Assembly Language 331

332

THE COUNT A~TRIBUTE (K'): The count
attribute applies only to macro
instruction operands, to SET symbols,
and to the system variable symbols.
It has a numeric value that is equal
to the number of characters:

•
• That constitute the macro
instruction operand, or

NOTES:

1. The count attribute reference
can be used only in arithmetic
expressions (see L4).

2. The count attribute of an omitted
macro instruction operand has a
default value of O.

Macro Instruction •
Operands

All characters of operand
are included

ALPHA
(SUB,LIST,ALL)
2(10,12)
'A' 'B' , ,
, ,

&C
&C
&C

&B
&B

&A
&A

&A

blank
null character string
(omitted 0 erand)

SET Symbols •

Delimiting apostrophes
not included

SETC
SETC , ,
SETC ' ,

SETB 1
SETB 0

SETA 399
SETA

SETA 0100

&SYSNDX=

Value of Count
Attribute

5
14

8
6
3
2
o

THE NUMBER ATTRIBUTE (N'): The
number attribute applies only to
the operands of macro instructions •

•
It has a numeric value that is equal
to the number of sublist entries
in the operand.

NOTES:

1. The number attribute reference
can be used only in arithmetic
expressions (see L4) •

2. N'&SYSLIST refers to the number
of positional operands in a macro
instruction, and N'&SYSLIST(m)
refers to the number of 5ublist
entries in the m-th cferand (for
further details on the number
attribute of &SYSLIST see J7C).

Macro Instruction
Operand Sublist

(A,B,C,D,E)

(A)

A When operand is
not a sublist

(No operands)

Value of
Number Attribute

1 + number of commas
separating the entries

• 5

6

4

1

1

a

section L: The Conditional Assembly Language 333

L1C - SEQUENCE SYMBOLS

334

Purpose

You can use a sequence symbol in the name field of a
statement to branch to that statement at pre-assembly time,
thus altering the sequence in which the assembler processes
your conditional assembly and macro instructions. You
can thereby select the model statements from which the
assembler generates assembler language statements for
processing at assembly time.

Se9' Sym.

period (or dot)

Specifications

Sequence symbols must be specified
as shown in the figure to the right.

Sequence symbols can be specified
in the name field of asseffbler
language statements and model
statements, except as noted in the
figure to the right.

Format: ~alPhabetiC character

~o to 6 alphameric charncters

·SEQUENC

Examples: • SEQ

• A1234

• #924

Statements in which
sequence symbols must not
be used as name entries

The following assembler instructions:

ACTR
COpy
EQU
GBLA
GBLB
GBLC
ICTL
ISEQ
LCLA
LCLB
LCLC
MACRO
OPSYN

:Pfj's.:):1ij~i'

The Macro prototype
instruction

Any instruction that already
contains an ordinary symbol
or variable symbol

o

Sequence symbols can be specified
in the operand field of an AIF or
AGO instruction to branch to a
statement with the same sequence
symbol as a label.

A sequence symbol has a local scope.
Thus, if a sequence symbol is used
in an AIF or AGO instruction, the
sequence symbol must be defined
as a label in the same part of the
program in which the AIF or AGO

•
instruction appears; that is, in
the same macro definition or in e' open code.

•
NOTE: A sequence symbol in the
name field of a macro instruction
is not substituted for the parameter,
if specified, in the name field
of the corresponding prototype
statement (for specifications about
the name entry of macro instructions
see K2A) •

pen.
ode

Source Module

MACRO

IvT..ACONE

~ERAT

T ANOP

DS

MEND
MACRO

MAC TWO

.~II~T ANOP
'~

OH

:~
AGO . GENE RAT

MEND

Section L: The Conditional Assembly Language 335

L2 -- Declaring Set Symbols

You must declare a SET symbol tefore
you can use it. In the declaration,
you specify whether it is to have
a glotal or local scope. The
assembler assigns an initial value
to a SET symbol at its point of
declaration.

L2A -- THE LCLA, LCLB, AND LCLC
INSTRUCTIONS

Purpose

You use the LCLA, LCLB, and LCLC
instructions to declare the local
SETA, SETB, and SETC symbols you
need.

Specifications

The format of the LCLA, LCLB, and
LCLC instruction statements is given
in the figure to the right.

These instructions can be used
anywhere in the body of a macro
definition or in the open code
portion of a source module.

oos The LCLAiLC.LB, .and LCLC
itistruct.;iol'ls, if specified, must
~ppearimmedi,atelY foll<?wing any
qBr,A'f Gl3LB, ,crGBLe inst.ruction$
t:batmay be specified ..

336

I~~,~,elf~edinsi-de it. macro
t1~fin~:t~5>n, :the .. 91o~aldecla:ration
~l')st~~~i?ns~llstappear.imm~diatelY
~911~il};qt lile llIacro .FrototYJ?~
~t.a;~llt,. ~fspe~ifi~d ()uJ::s~de
a~,~()~~fi1}1t.ipfl ithe .g~9~;
~~Cffi~~ti<?l)Si .1tIu~~·ap~ar. ·f~'Bst.·~Jl
~~~ioo~e,: ·tbCitis.irtt}e:y .Ilj~~tfoll:()w 
al)~.ource. c~qd~f~n1t;q!ls 

j;~:~eq~ ....... pr~9~qe .11P~·~~.g.i.tiij.i.~9 
Qiij~first·con.trolsectiQn .. 

Name 

Blank 

Operation 

LCLA, 
LCLB,or 
LCLC 

One or more variable 
symbols separated 
by commas 



Any variable symbols declared in 
the operand field have a local 
scope. They can be used as SET tt symbols anywhere after the pertinent 
LeLA, LCLB, or LCLC instructions, 

• 
but only within the declared local 
scope. 

Ie 

MACRO 

&A2 cannot be used 

Section L: The Conditional Assembly Language 337 



The assembler assigns initial values 
to these SET symbols as shown in 
the figure to the right. 

LOCAL VARIABLE SYMBOLS MUST NOT 
BE MULTIPLY DEFINED: A local SET 
variable symbol declared by the 
LeLA, LCLB, or LCLC instruction 
must not be identical to any other 
variable symbol used within the 
same local scope. The following 
rules apply to a local SET variable 
symbol: 

1. within a macro definition, it 
must not be the same as any symbolic 

• parameter declared in the prototy{:e 
statement. 

. 2. It must not be the same as any 

• 
global variable symbol (see L2E) 
declared within the same local 
scope. 

3. The same variable symbol must 
not be declared or used as two 

• different types of SET symbols, 
for example, as a SETA and a SETB 
symbol, within the same local scope. 

338 

NOTE 1: A local SET symbol should 
not begin with the four characters 
&SYS, which are reserved for system 
variable symbols (see J7) • 

2~T:h~'ilohal' .decl~rClti()n$ 
pr~~~de t~.e);oqc:lJ. ·.d~qlar;~ti9~~~ 

Instruction 

LCLA 
LCLB 
LCLC 

MEND 

START 

LCLA 

LCLB 

END 

a 
&MAINA 

&MAINB 

&MAINC 

Initial Value assigned 
to SET variable symbols 
in operand fields 

a 
0 
Null character 
string 

defined because 
they are used in 
different local 

Correct definition 
of SETC symbol 
(no symbolic 
parameters 
allowed in 
open code) 



SUBSCRIPTED LOCAL SET SYMBOLS: 
A local subscripted SET symbol is 
declared by the LCLA, LCLB, or LCLC 
i nstr~ti~ ___ This __ d_e_c_Lax_ation must 
be specified as shown in the figure 
to the right. 

4Dt The maximum dimension allowed is 
32,767. 

The dimension indicates the number 

• 
of SE'I variables associated with 
the subscripted SET symbol. The 

• assembler assigns an initial value 
to every variable in the array thus 
declared. 

NOTE: A subscripted local SET 
symbol can be used only if the 
declaration has a subscript, which 
represents a dimension; a 
nonsubscripted local SET symbol 
can be used only if the declaration 
had no subscript. 

I Format: I 
LCLA 
LCLB, 

or LCLC 

Format: 

Instruction Array Defined 

LCLA 

LCLB 

LCLC null I i 

Example: 

LCLB & B ( lO ) 10 10 10 I 0 I 0 I 0 I 0 10 I 0 I 0 I 

Section L: The Conditional Assembly Language 339 



L2B -- THE GBLA, GELE, ANt GELC 
INSTRUCTIONS 

Purpose 

You use the GELA, GELE, and GBLC 
instructions to declare the global 
SETA, SETB, and SETC symbols you 
need. 

Specifications 

The format of the GBLA, GELE, and 
GBLC instruction staterrents is given 
in the figure to the right. 

These instructions can be used 
anywhere in the body of a macro 
definition or in the open code 
portion of a source module. 

Any variable symbols declared in 
the operand field have a global 
scope. They can be used as SET 

• 
symbols anywhere after the pertinent 
GBLA, GBLB, or GBLC instructions. 
However, they can be used only 

340 

within those parts of a program 
in which they have been declared 

• 
as global SET symbols, that is in 
any macro definition and in open. 
code. 

NOTE: Values can be passed between: 

•
• The macro definitions, MAC1, 
and MAC2, only by using the variable 
symbols SB and SC • 

•
• The macro definition, MAC2, and 
open code, only by using the variatle 
symbol SC. 

O
. The macro definition, MAC 1 , and 

I open code, only by using the variatle 
symbol SC. 

Open 
Code 

Name Operation 

Blank GBLA, 

GBLB, or 

GBLC 

Source Module 

&A 
&B 

Operand 

One or more variable 
symbols separated 
by commas 

&Bcannot be used ~ 
here, before its 

here, because it 
has not been de . 
clared in open 
code ~ 
~---....J •• 



The assembler assigns initial values I 
to these SE'I symbols as shown in Instruction Initial Value assigned 
the figure to the right. i to SET variable symbols 

-------------------------------------------------- r----------- --------------t------Hin'l-aoopeetrarannad--'l'f*iellild~---- -----------------

The assembler assigns this initial 
value to the SET symbol only when 

O 
it processes the first GBLA, GBLB, 
or GBL~ instruction in which the 
symbol appears. Subsequent GBLA, 

•
GSLS, or GBLC instructions do not 
reassign an initial value to the 
SET symbol. 

• '~~~ ••• ··· •••• ·~.~~i4.-&i\.~ ... ··.·ii$tf'ijetilQn 
P:r~9'~~, •• ··~p,~S'fj.T········.Insti'U~i9~~ 

I 

GBLA 
GELE 
GBLC 

I 

I 
o 
o 
Null character string 

Source Module 

MACRO 

I 
FIRST 

GBLA 

MEND 

OPEN START 

'---"'.GBLA 

END 

&A 

o 

value of &A 
can be changed 

in expansion of 
macro FIRST 

Processing 

Sequence 

&A • &A= assigned value 

~ 
UU~he~ II 

Section L: The Conditional Assembly Language 341 



GLOBAL VARIABLE SYMEOLS MUST NOT 
BE MULTIPLY DEFINED: A global SET 
variable symbol declared by the 
GBLA, GBLB, or GBLe instruction 
must not be identical to any other 
variable symbol used in open code 
or within the same macro definition. 
The following rules apply to a 
global SET variable symbol: 

1. within a macro definition, it 
must not be the same as any symbolic 4Dt parameter declared in the prototype 

. statement. 

2. It must not be the same as any 
• local variable symbol (see L2A) 

declared within the same local 
scope. 

3. The same variable symbol must 
not be declared or used as two 

• different types of global SET symbol, 
for example, as a SETA or SETB 
symbol. 

NOTE 1: A global SET symbol should 
not begin with the fcur characters 
&SYS, which are reserved for system 
variable symbols (see J7). 

·~:~E ~l' .~~!I·iObai· q~¢ii1ti1ti~n$ 
OJIIUf;~pre~~~ the l()(fal declaration$. 

SUBSCRIPTED GLOBAL SET SYMBOLS: 
A global subscripted SET symbol 
is declared by the GELA, GBLB, or 
GBI,C instruction. This declaration 
must be specified as shown in the 
figure to the right. 

4Dt The maximum dimension allowed is 
32,767. 

The dimension indicates the number 
of SET variables associated with 

• the subscripted SET symbol. The 

• 
assembler assigns an initial value 
to every variable in the array thus 
declared. 

342 

LCLA 

LCLB 

LCLC 

LCLA 

LCLC 

START 

END 

GBLA} 
GBLB 

GBLC 

Instruction 

GBLA 

GBLB 

GBLC 

• 
Array Defined 

Same initial values as 

for non-subscripted SET symbols 

Global arrays are assigned initial 
values only by the first global 
declaration processed, in which 
a global subscripted SET symbol 

. appears 

Format: 



Source Module 

NOTES: 

~ 1. A subscripted global SET symbol 
can be used only if the declaration 
has a subscript, which represents 

8 a dimension; a nonsubscripted global 
SET symbol can be used only if the 
declaration had no subscript. 

2. Wherever a particular global 
SE'!' symbol is declared with a 
dimension as a subscript, the 

~dimension must be the same in each 
declaration. 

L3 -- Assigning Values to Set Symbols 

L3A -- THE SETA INSTRUCTION 

Purpose 

--f, MACRO 

II MAC 1 

GBLA 

GBLB 

GBLC 

/8 
SETA 

&C SETC 

MEND 
MACRO 

I NAC2 

II GBLB 

I 
MEND 

OPEN START 
( 

=\ 4 GBLB 

END 

The SETA instruction allows you to assign an arithlretic 
value to a SETA symbcl. You can specify a single value 
or an arithmetic expression from which the assembler will 
compute the value tc assign. 

You can change the values assigned to an arithmetic or 
SETA symbol. This allows you to use SETA symbols as 
counters, indexes, or for other repeated computations that 
require varying values. 

&Al'&A2(4~4Et 
&SWITCH (50) 

&CHAR(lO) ,&C 

/8 
8 

• &SWITCH (50) 

0 

4Et 
&SWITCH (50) 

I I 
II 

II 

I 

II 

Section L: The Conditional Assembly Language 343 



Specifications 

The format of the SETA instruction 
statement is given in the figure 
to the right. 

o 
The variable symbol in the name 
field must have been previously 
declared as a SETA symbol in a GBLA 
or LCLA instruction. 

344 

The assembler evaluates the 
arithmetic expression in the operand 

• 
field as a signed 32-bit arithmetic 
value and assigns this value to 
the SETA symbol in the name field. 
An arithmetic expression is descrited 
in L4A. 

O SUBSCRIPTED SETA SYMBOLS: The SETA 
symbol in the name field can be 
subscripted, but only if the same 

• 
SETA symbol has been previously 
declared in a GBLA or LCLA 
instruction with an allowable 
dimension. 

The assembler assigns the value 
of the expression in the operand 

• 
field to the position in the declared 
array given by the value of the 
subscript. The subscript expression 
must not be 0, or have a negative 

• 
value, or exceed the dimension 
actually specified in the 
declaration. 

• 

Name Operation Operand 

A variable 

SymbOl. 

SETA 

LCLA 

LCLA 

&Al,&A2 

• &SUBSCRA(lQO) 

SETA 

&SUBSCRA(20) SETA 2000 

Must be an arithmetic 
expression allowed in 
operand of SETA 
instruction 

&SUBSCRA Array 

L.....I --L.----L_.l..-_~}, ~ 12000 1 ... { 0 
1 t t t 

2 20 100 

&SUBSCRA (200) SETA 2000 *ERROR~~ NO 
VALUE ASSIGNED 

&Al SETA &SUBSCRA(20) 
I Value assigned 

&Al=2000 



L3B -- THE SETC INSTRUCTION 

Purpose 

The SETC instruction allows you to assign a character 
string value to a SETC symbol. You can assign whole 
character strings or concatenate several smaller strings 
together. The assembler will assign the composite string 
to your SETC symbol. You can also assign parts of a 
character string to a SETC symbol by using the substring 
notation (see L5) • 

You can change the character value assigned to a SETC 
symbol. This allows you to use the same SETC symbol with 
different values for character comparisons in several 
places or for substituting different values into the same 
model statement. 

Specifications 

The format of the SETC instruction 
statement is given in the figure 
to the right. 

The variable symbol in the name 
field must have been previously 
declared as a SETC symbol in a GBLC 
or LCLC instruction. 

The four options that can be 
specified in the operand field are: 

A type attribute reference 

A character expression (see L4B) 

A substring notation (see L5) 

A concatenation of substring 
notations, or character expressions, 
or both. 

41tThe assembler assigns the character 
string value represented in the 
operand field to the SETC symbol 
in the name field. The string 
length must be in the range 0 (null 
character string) through 255 
characters. 

Format: 

Name 
A variable 

symbols 

Value Examples: 

&Cl 

BC I&C2 

BC &C3 

BCDEF &C4 

Operation 
SETC 

SETC 

SETC 

SETC 

- - -- -- - -

SETC 

Operand 
One of four options, 

exemplified below 

T' &DATA 
or 

T'SYMBOL 
Must appear alone 

and must not be 

enclosed in 
apostrophes 

Up to 255 characters 
enclosed in apostrophes 

(1,3) • 

Up to 255 characters 
I enclosed in apostrophes J 

I I 

SETC I' ABC' • 'DEF' 
• or 

, ABC' • 'ABCDEF' (4, 3 ) 

Section L: The Conditional Assembly Language 345 



NOTE: When a SETA or SETB symbol 
is specified in a character 

~ expression, the unsigned decimal 
value of the symbol (with leading 

• 
zeros removed) is the character 
value given to the symbol. 

• • 

346 

&Cl 
&C2 
&C3 

&C4 
&CS 

&C6 

&C7 
&C8 

Examples: 

SETC 
SETC 
SETC 

SETC 
SETC 

SETC 

SETC 
SETC 

Format: 

Examples: 

&Cl SE.TC 

'&Al' 
'&Al' 
'&Al' 

'-200' 
'&Al' 

'&Al+l' 
'l-&Al' 

&C2 SETC (3) 'ABC' 

Value of &A1 

200 
00200 

-200 

0 

30 
-30 

• 
&C3 SETC (3} 'ABCDE'(1,31 

&C4A SETC (31'ABC'.'DEF' • &C4B SETC 'ABC'. (31 'ABCDEF I (4,3 

Character 
Value Assigned 
to SETC symbols 

e{200 
200 
200 

-200 
0 

00200 

30+1 
1-30 

Value Assigned 
to SETC symbol 

Must be in the 
range 1 through 
255 

FFF 

• 

~ 



o 

• 
SUBSCRIPTED SETC SYMBOLS: The SETC 
symbol in the name field can be---­
subscripted, but only if the same 
SETC symbol ~~~~-pIerio-us4---­
declared in a GBLC or LCLC 
instruction with an allowable 
dimension. 

The assembler assigns the character 
value represented in the operand 4Et field to the position in the declared 
array given by the value of the 
subscript. The subscript expression 

• 
must not be 0, or have a nega ti ve 

. value, or exceed the dimension 
actually specified in the 
declaration. 

LCLC 
LCLC 

- ---------- -- ~--------~---__cC 

• &SUBSC~C{lO) SETC 

Must be an arithmetic 
expression allowed in 
the operand of a SET A 
instruction 

'ABCDE' 

10 20 

& SUBSCRC {2 5 } SETC 'ABCDEF' >::>:<ERROR:'r>:< No 
Value Assigned 

&Cl SETC 

L3C -- THE SETB INSTRUCTION 

Purpose 

The SETB instruction allows you to assign a binary bit 
value to a SETB symbol. You can assign the bit values, 

: &SUBSCRC (IO) : 

o or 1, to a SETB symbol directly and use it as a switch. 

If you specify a logical expression (see L4C) in the operand 
field, the assembler evaluates this expression to determine 
whether it is true or false and then assigns the valuEs 
1 or 0 respectively to the SETB symbol. You can use this 
computed value in condition tests or for substitution. 

Value assigned 

&Cl=ABCD 

Section L: The Conditional Assembly Language 347 



Specifications 

The format of the SETB instruction 
statement is given in the figure 
to the right. 

The variable symbol in the name 
field must have been ~reviously 
declared as a SETE symbol in a GBLB 
or LCLB instruction. 

The three options that can be 
specified in the operand field are: 

• 1. A binary value (0 or 1) 

8 2. A binary value enclosed in 
parentheses 

~N()TE: .... A:r:la;:it~e£icy~ll,;l~en91o$ed 
~~ •. ' .• 1IlP<lreIlt:A~s~sis ... allo~ed.. . T~is 
. Y'Q11U~ca:~.p~represented by an 

un~i9ne.(l.R~ciIlla1 self.-def in1119·. t:~rtn, 
a~l?!TA$~t>ol,or an . <tttribute 
r'eferenceotherthan .• ·tlletype. .. 
<st.~iblte.reference.. .1:.f ·the V,a~ue 
}.;sO,·the.as~emblerassigns a·value 
of Oto the symbolinthe.Da1tiE! 
field. lithe value is not 0, the 
assembler ass igns a value of 1 "! 

• 
3. A logical expression enclosed 
in parentheses (see L4C) • 

The assembler evaluates the logical 
expression, if specified, to 
determine if it is true or false. 
If it is true, it is given a value 
of 1; if it is false, a value of 

O 
O. The assembler assigns the 
explicitly specified binary value 
(0 or 1) or the computed logical 

value (0 or 1) to the SETB symbol 
in the name field. 

• SUBSCRIPTED SETB SYMBOLS: The SETB 
symbol in the name field can be 
subscripted, but only if the-same 

8 
SE'l'B symbol has been previously 
declared in a GBLE or LCLE 
instruction with an allowable 
dimension. 

348 

The assembler assigns the binary 
value explicitly specified or 
implicit in the logical expression 

• 
present in the operand field to 
the position in the declared array 
given by the value of the subscript. 
The subscript expression must not 
be 0, or have a negative value, 

Oor e~c~ed ~he dimension a:tually 
spec1f1ed lD the declarat10n. 

Format: 

Name 

A variable 
symbol 

Examples: 

&BI 

&B2 

&B3A 

&B3B 

• 

Operation 

SETB 

SETH 

SETB 

SETB 

SETB 

LCLB 
LCLB 

SETB 

Operand 

One of three options, 
exemplified below .-

Values 
Assigned 

0 • 0 

(1) • 1 

(2, GT 

3r~ 
0 

Greater • 
than 

(2 LT 3) true I 
I Less thanl 

&SUBSCRB(10) SETB 1 

Must be an arithmetic 
expression allowed 
in operand of a SETA 
instruction 

Array: 

&SUBSCRB 

L--___ --L:::.L....~\ i"--_----" 
t f 
2 10 50 

&SUBSCRB(72) SETB 1 " .* ERROR** No VALUE ASSIGNED 

&B1 SETB &SUBSCRB{lO) 
Value assigned 

&Bl==l 



L4 - Using Expressions 

------~--'I'here--are-tbr_ee_ types of e--xpx€ssioDS---tbat you can -u-se only 
in conditional assembly instructions: arithmetic, character, 
and logical. The assembler evaluates these conditional 
assembly expressions at pre-assembly time. 

Do not confuse the conditional assembly expressions with 
the absolute or relocatable expressions used in other 
assembler language instructions and descrited in C6. ~he 
assembler evaluates absolute and relocatable expressions 
at assembly time. 

L4A -- ARITHMETIC (SE~·A) EXPRESSIONS 

PUrpose 

You can use an arithmetic expression for assigning an 
arithmetic value to a SETA symbol, or for computing a value 
used during conditional assembly processing. 

An arithmetic expression can contain one or more SE~ 
symbols, which allows you to use arithmetic expressions 
wherever you wish to specify varying values, for exam~le 
as: 

1. Subscripts for SET symbols, symbolic parameters, and 
&SYSLIST, and in substring notation. 

You can then control loops, vary the results of 
computations, and produce different values for sutstituticn 
into the same model statement. 

Section L: The Conditional Assembly Language 349 



350 

Specifications 

Arithmetic expressions can be used 
as shown in the figure to the right. 

NOTE: When an arithmetic expression 
is used in the operand field of 

• a SETC instruction, the assembler 
assigns the character value 
representing the arithmetic 
expression to the SETC symbol, after 

• 
substituting values into any variable 
symbols. It does not evaluate the 
arithmetic expression. 

Can be Used In 

SETA instruction 

AI F instruction 
or 
SETB instruction 

Subscripted SET 
symbols 

Substring notation 
(See L6) 

Sublist notation 

&SYSLlST 

SETC instruction 

Used As 

operand 

comparand 
in arithmetic 
relation 

subscript 

subscript 

subscript 

subscript 

character 
string in 
operand 

Example 

&Al SETA &Al+2 

AlF (&A>::lO GT 30) .A 

&SETSYM{&A+IO-&C) 

'&STRlNG' (&A*2,&A-l) 

sublist (A,B,C,D) 

when &A=1 

&PARAM (&A+ 1) =B 

&SYSLlST(&M+l,&N-2) 

&SYSLlST(N'&SYSLlST) 

• &C SETC '5-10~'&A ' 
if &A=l0--;8 
then &C=5-10*1 



The figure below defines an arithmetic expression (self­
defining terms are described in C4E). 

Arithmetic 
Expression 

Length 
Scaling 
Integer 
Count 

or 
Number 

Operators Aiiowed 

Unary: + positive 

- negative 

Binary: + addition 

- subtraction 

* multiplication 
/ division 

Arith. Exp = Arithmetic Expression 

Section L: The Conditional Assembly Language 351 



352 

The variable symbols that are allowed 
as terms in an arithrretic expression 
are given in the figure to the 
right. 

Variable 

Symbol 

SETA 

SETB 

SETC } 

&SYSPARM 

Restrictions 

none 

none 

value must be an 
unsigned decimal 

self-defining term 

in the range a 
through 

2,147,483,647 

'jf,ll:lil ••• iii;: 
Symbolic 

Parameters 
value must be a 

self-defining term 

&SYSLIST (n) ~corresPOnding. 
operand or sublist 

&SYSLIST (n , m ) entry must be 

&SYSNDX 

a self-defining 
term 

none 

Example Value 

&C 123 

&SYSPARM 2000 

&PARAM X'AI' 

&SUBLIST(3) C'Z' 

&SYSLIST(3) 24 

&SYSLIST(3,2) B'lOl' 



RULES FOR CODING ARITHMETIC 
EXPRESSIONS: The following is a 
summary of coding rules for 
arithmetic expressions: 

1. Both unary (operating cn one 
value) and binary (operating on 
two values) operators are allowed 
in arithmetic expressions. 

O 
2. An arithrretic expressicn can 
have one or more unary operators 
preceding any term in the expression 
or at the beginning of the 
expression. 

• 
3. An arithmetic expression must 
not begin with a binary operator, 

• 
and it must not contain two binary 
operators in succession. 

4. An arithmetic expression must 
• not contain two terms in succession. 

5. An arithmetic expression must 
not contain blanks between an 
operator and a term nor between 
two successive operators. 

6. An arithmetic expression can 
contain up to 24 unary and binary 
operators and up to 11 levels of 
parentheses. 

Note that the parentheses required 
for sublist notation, substring 
notation, and subscript notation 
count toward this limit. 

I 
t 

Examples 

Operators 

Unary +,-

Binary +, -, * ,/ 

&A 
&A 
&B 

A ;\ii' &B 'I '\. 
j
'A. '0,. .. 

&A 11& B ;1 

&C~ - &D 

&C 1~':- &D 

·C:A 

c:::::> -&A 
&A 

r:::=::::> &A - & B 

Context determines whether a 
+ or - is a Unary or 
Binary operator 

r:=:::> &A-&B 

100 ~ &A/&B+lOO 

c:=::;> &C-&D 

c::=:> &C * (-&D) 

INVALID 

INVALID 

INVALID 
INVALID 1

(&C */&D 
• &C + *&D 'r---I -------"1, ~ Leftmost operator between I two terms is Binary 

X'FF' (lO::'&x) '8/ 
/' \ 

trB '101' 

INVALID 

INVALID 

Section L: The Conditional Assembly Language 353 



• 
• • 

EVALUATION OF ARITHMETIC EXPRESSIONS: 
The assembler evaluates arithmetic 
expressions at pre-assembly time 
as follows: 

1. It evaluates each arithmetic 
term. 

2. It performs arithmetic operations 
from left to right. However: 

a. It performs unary operations 
before binary operations, and 

b. It performs the binary 
operations of multiplication 
and division before the binary 
operations of addition and 
suCtraction. .3. In division, it gives an integer 

result; any fractional portion is 
dropped. Division by zero gives 
a 0 result. 

4. In parenthesized arithroetic 

• 

expressions, the assembler evaluates 
the innermost expressions first 

•

and then considers them as arithmetic 
terms in the next outer level of 0 

354 

expressions. It continues this 
process until the outermost 
expression is evaluated. 

5. The computed result, including 
intermediate values, must lie in 
the range -2 31 through +2 31 -1. 

Examples of Arithmetic Expressions Value of Arithmetic 
Expression 

&A*--X'A' ==t> 
&A=~ 
5~~+10 +50 

J' 

&A=10,&B=2 

fA+lO/&B ~ 10+(10/2} =9> 15 

20/))·~ (&A+IO) /&B ==:> 10 

&A=10 

&A/2 ===t> 10/2 5 

&A=ll 

&A/2 ~ 11/2 5 

• &A=l 

&A/2 =t> 1/2 0 

&A=l 

10-r.-&A/2 ===;> 10/2 5 

&A + 

Final evaluation 

~----------------~~ 



L4B -- CHARACTER (SETC) EXPRESSIONS 

PULpose 

The main purpose of a character expression is to assign 
a character value to a SETC symbol. You can then use the 
S'ETC symbol to substitute the character string into a model 
statement. 

You can also use a character expression as a value for 
comparison in condition tests and logical expressions (see 
L4q. In addition, a character expression provides the 
string from which characters can be selected by the 
substring notation (see L5). 

Substitution of one or more character values into a 
character expression allows you to use the character 
expression wherever you need to vary values for substitution 
or to control loops. 

Char. Exp. 

Can be Used in Used As Example 

Specifications 

Character (SETC) expressions can 
be used only in conditional assemtly 
instructions as shown in the figure 
to the right. 

SETC instruction operand &C SETC 'STRINGO' 

AIF instruction character AIF (I &C I EQ 'STRINGl') .B 
or string in 
SETB instruction character 

relation 

Substring notation first part I (2,5)=ELECT 
(See L5 I of notation 

Section L: The Conditional Assembly Language 355 



356 

A character expression consists of any combination of 
characters enclosed in apostrophes. Variable symbols 

• 
allowed. The assembler substitutes the representation 
their values as character strings into the character 
expression before evaluating the expression. 

are 
of 

Up to 255 characters are allowed in a character expression. 

NOTE: Attribute references are not allowed in character 
expressions. 

Must not contain more than 
255 characters 
(including blariks) • V.iable Restrictions Example Value 

Symbol Substituted 

&A SETA -0201 
SETA sign and leading &C SETC '&A' 201 

zeros are suppressed 
sta'nd alone zero &ZERO SETA 0 
is used &C SETC '&ZERO' 0 

SETS none &B SETB 1 1 

SETC none &C1 SETC 'ABC' 

&C2 SETC '&C1' ABC 

Symbolic none &PARAM=(ABC} 
Parameters 

&C1 SETC '&PARAM' (ABC} 

System none &NUM SETC ' &SYSNDX ' 0201 
Variable 

if &SYSNDX= 201 
symbols 



-----

EVALUATION OF CHARACTER EXPRESSIONS: 

• 
The value of a character expression 
is the character string within the 
enclosing apostrophes, after the 
assembler performs any substitution 
for variatle symbols. 

• 
Character strings, including variatle 
symbols, can be concatenated to 
each other within a character 

• expression. The resultant string 
is the value of the expression used 
in conditional assembly operations: 
for example, the value assigned 

• 
to a SETC symtol. 

A double apostrophe must be used to 
generate a single apostrophe as part 
of the value of a character 
expression. 

A double ampersand will generate a 
double ampersand as part of the value 
of a character expression. To 
generate a single ampersand in a 
character expression, use the 
substring notation~ for example, 
(' && I (1,1) ) • 

NOTE: To generate a period, two 
~ periods must be specified after a 

var~able symbol, or the variable 
symbol must have a period as part of 
its value. -

I Examples I 
Concatenation i 
a period 1\ I 

\./ 

'ABC' 

, &PARAM' 

'&A+IO' 

'&A&A' 

~ mandatory I 
'&C ~ABC' 

doPtion~11 
1 R.r. _ &C I:;>' 

,,:~r::*&A' I 
'ABC&C ' 

'&C' 

'ABC&C.DEP' 

.'LIISYMBOL' 

'&C~5051 
I&C.505 ' 

Value of 
Variable 

_5¥-ra~oJ~ 
Used 

SYMBOL 

10 

15 

DEF 

DEF 

&A=200 

&C=AREA 
&C=. 

null 

&C=null 

2 

2. 

I 

Value of 
Character 
Expression 

o 
ABC 

SYMBOL 

10+10 
(Not 20) 
1515 

nl= I=nl= 1= 

OEFABCI • 

If ::~:-~ 10*200 

ABC . 

null character 
string 

ABCDEF 

L'SYMBOL 

2.505 

2.505 

Resultant Value 
must be in the 
range 0 through 

255 characters 

I 

Section L: The Conditional Assembly Language 357 





CONCATENATION OF CHARACTER STRING 
VALUES: Character eXfressions can 
be concatenated to each other or 
to substring notations in any order. 
This concatenated string can then 
be used in the operand field of 
a SETC instruction or as a value 
for comparison in a logical 
expr ess ion. 

tt~he resultant value is a character 
string composed of the concatenated 
parts • 

• NOTE: The concatenation character 
(a period) is needed to separate 
the apostrophe that ends one 
character expression from the 
apostropbe that begins the next. 

L4C -- LOGICAL (SETE) EXPRESSIONS 

Purpose 

You can use a logical (BOolean) 
expression to assign the binary 
value 1 or 0 to a SETB syrrbol. 

You can also use a logical expression 
to represent the condition test 
in an AlF instruction. This use 
allows you to code a logical 
expression whose value (0 or 1) 
will vary according to the values 
substituted into the expression 
and thereby determine whether or 
not a branch is to be taken. 

Specifications 

Logical (SETB) expressions can be 
used only in conditional assembly 
instructions as shown in the figure. 
to the right. 

Concatenated 
String 

'ABC'.'ABCDEF' (4,3) 

, &C' (4, 3) • 'DEF ' 

t'ion"1 
, &C' (l, 3) • I &C I (4,3) 

17\ '0("'1' I 0 ("'I I (A ") \ I ("'IUT I 
.cl.,u,- • (,X '- \ "":I: I ...J I \..J' J..L..L. 

, ABC I • ' &C ' • 'GHl' 

, ABC' • ' , • 'GHl ' 

null character string 

Can be Used As Example 
used in 

! 
SETB 

I&Bl instruction operand 

AIF 

SETB 

instruction condition AlF (NOT 
test part 
of operand 

Page of GC33-<!010-0 

Rev ised Septen::ber 29, 1972 

By TNL GN33-8148 

Resultant 
Character 
String 
Value 

ABCDEF 0 

ABCDEF 

AB~GHI 

ABCGHI 

Value must be 
in the range 0 
through 255 
characters 

Logical Exp. 

(&B2 OR 8 GT 3) 

&Bl OR 8 EQ 3).A 

Section L: The Conditional Assembly Language 359 



360 

The figure on the o~~osite page defines a logical 
expression. 

NOTE: An arithmetic relation is two arithmetic ex~ressions 
separated by a relational operator. A character relation 
is two character strings (for example, a character 
expression and a type attribute reference) separated ty 
a relational operator. The relational operators are: 

EQ (equal) 

NE (not equal) 

LE (less than or equal) 

LT (less than) 

GE (greater than or equal) 

GT (greater than) 



Arithmetic 
Expression 

(defined in 
L4A) 

Logical 

must be enclosed in 
parentheses in SETB 
and AI F instructions 

Logical Operators Allowed 

addition 
multiplication 
negation 

Page of GC33-4010-0 

Revised September 29, 1972 

By TNL GN33-8148 

+--

Optional parentheses 

expressions at this level 

Items optionally 
enclosed in 
parentheses 

Relational Operators Allowed 

equal 

not equal 

less than or equal 

less than 

greater than or equal 

greater than 

Must be in the 
range a through 
255 characters 

and not be enclosed 
in apostrophes 

i 

Section L: The Conditional Assembly Language 361 



RULES FOR CODING LOGICAL EXPRESSIONS: 
The following is a summary of coding 
rules for logical expressions: 

1. A logical expression must not 
contain two logical terms in 
success ion. 

2. A logical expression can begin o with the logical operator NOT. 

3. A logical expression can contain 
two logical operators in succession; 

• 
however, the only cO!£lbina tions 
allowed are: OR NOT or ANt NOT. 
The two operators must be separated 
from each other by one or more 
blanks. 

4. Any logical term, relation, or 
inner logical expression can be 
optionally enclosed in parentheses. 

5. The relational and logical 
operators must be irrmediately 
preceded and followed by at least • 

• one blank or other special character. · 

362 

6. A logical expression can contain 
up to 18 logical operators and up 
to 17 levels of parentheses. 

·al..~:xp:r~$~ip~c;).n..~1:~~: 
$~?~>ic~l ... ·.()p:~:t:(lt.0r~ia~ 

l$.iQf··:.pa~eatbeSes. 

Note that the relational and other 
operators used by the arithmetic 
and character expressicns in 
relations do not count toward this 
total. 

Examples of Logical Expressions 

(&A GT 100 OR '&C' EQ F) 

NOT &8 OR NOT 

o .-

(NOT ( 

(NOT &B OR &A GE 10 AND &A LE 0) 

~ 
('&e' EO 'ALLOe') 

~ 
(' &e'EQ'ALLOe') 

(&A\i 10) 

I blank mandatory I 



o 

• 

• 
• 
• 

EVALUATION OF LOGICAL EXPRESSIONS: 
The assembler evaluates lcgical 
expressions as follows: 

i. It evaluates each logical term, 
which is given a binary value of 
o or 1. 

2. If the logical term is an 
arithmetic or character relation, 
the assembler evaluates: 

a. The arithmetic or character 
expression specified as values 
for comparison in these relations, 
and then 

b. The arithmetic or character 
relation, and finally 

c. The logical terrr" which is 
the result of the relation. 
If the relation is true, the 
logical term it represents is 
given a value of 1; if the 
relation is false, the term is 
given a value of O. 

NO'IE: If two comparands in a 
character relation have character 
values of unequal length, the 
assembler always takes the shorter 
character value to be less than 
the longer one. 

3. The assembler performs logical 
operations from left to right. 
However: 

a. It performs logical NOTs 
before logical ANDs and ORs, 
and 

b. It performs logical ANDs 
before logical ORs. 

4. In parenthesized logical 
expressions, the assembler evaluates o the innermost expressions first 

• 
and then considers theIr as lOgiCal. 
terms in the next outer level of 
expressions. It continues this 
process until the outermost 
expression is evaluated. 

Examples of Logical Expressions 

/.~.-
OR ... T I &AREA EQ I & PARAM' (3, 4) ) 

• ('ABC' LT 'ABCD') Always true 

• (given a value of 1) 

(&B AND NOT (5 GT 3) ) 

V 
(&B AND (NOT (5 GT 3)) ) • 
(&B OR &A AND ('&C' EQ 'B')) 

(&B OR (&A AND ('&C' EQ 'B'))) • 
(NOT (&Bl 

I • 
~~ 

OR (&B2 AND (~~~~iiilijiii0 

Section L: The Conditional Assembly Language 363 



LS -- Selecting Characters from a String 

L5A -- SUBSTRING NOTATION 

364 

Purpose 

The substring notation allows you to refer to one or Rere 
characters within a character string. You can therefore 
either select characters from the string and use them fer 
substitution or testing, or scan through a complete string, 
inspecting each character. By concatenating substrings 
with other substrings or character strings, you can 
rearrange and build your own strings. 

Specifications 

The substring notation can be used only in conditional 
assembly instructions as shown in the figure below. 

Can be Used as Example 
Used in 

SETC operand &C1 SETC 'ABC' (1,3) 
instruction 

part of 
operand 

operand &C2 SETC ' &C1 ' (1,2) • 'DEF' 

SETB or Character 
AIF value in AIF ( , & STRING' (1, 4 ) EQ ' AREA' ) • SEQ 
instruction comparand 
operand of character &B SETB ( , &STRING' (1,4) • '9 ' EQ 'FULL9' ) 
(logical relation 
expression) 

Value Assigned 
to SETC symbol 

ABC 

ABDEF 



o 

• • 
o 

The substring notation must be 
specified as shoWn in the figure 
to the right. 

The character string is a character 
expression from which the substring 
is to be extracted. The first 
subscript indicates the first 
character that is to be extracted 
from the character string_ The 
second subscript indicates the 
number of characters to be extracted 
from the character string, starting 
with the character indicated by 
the first subscript. Thus the 
second subscript specifies the 
length of the resulting substring_ 

Examples 

I ABCDE I (1, 5 ) 

I ABCDE I (2, 3 ) 

I &C I (3,3) 

'&PARAM ' (3,3} 

Value of Variable Character Value 
Symbol of Substring 

ABCOE 

BCD 

ABCDE COE 

.( (A+3)*lO) A+3 

Section L: The Conditional Assembly Language 365 



The character string must be a valid 
character expression with a length, 
N, in the range 1 through 255 characters. 

The length of the resulting substring 
must be within the range 0-255. 

The subscripts, e1, and e2, must be 
arithmetic expressions. The substring 
notation is replaced by a value that 
depends on the three elements: N, e1, 
and e2, as summarized below: 

o In the usual case, the assembler 
generates a correct substring of 
the specified length. 

• 
When e1 has a value of zero or a 
negative value, the assembler issues 
an error message • 

• 
When the value of e1 exceeds N, the 
assembler issues a warning message, 
and a null string is generated. 

• 
When e2 has a value of 0, the 
assembler generates the null 
character string. Note that if e2 
is negative, the assembler issues 
an error message. 

~When e2 indexes past the end of the 
character expression (that is, 
e1.+~~~:>9r~~t:~rt~anN+1) .~. ~~~;d •.. ' 

OS (l$seIJiPle~< .. i$$U~$a7Warning ·tne$$ag~ 
qtlfyand generates a substring which 

includes only the characters up 

366 

to the end of the character expres­
sion specified. 

Examples: Assume O<NS255 

.o<elSN, O<e2SN, and 
eHe2SN+l 

, ABCDEF' (2 , 5 ) 

.elS0 

'ABCDEF' (0 

8 el >N 

'ABCDEF' (7 ,~') 

N=6 

N=€: *WARNING* 

G~i~CDEF 'J~' 0) 
t"f.IV~a-lu-e-o-f -el-d-j-sr-ega-rd-ed-'I 

AO<elSN, O<e2SN, but 
V eHe2>N+l 

Character Value 
of Substring 

BCDEF 

null 

null 

null 

"ABCDEF' (3,5) N=6 *WARNING* CDEF 

'ABCDEF' (3,4) CDEF 



L6 - Branching 

L6A -- The AIF INSTRUCTION 

Purpose 

The AIF instruction allows you to branch according to the 
result of a condition test. You can thus alter the sequence 
in which your assembler language statements are processed. 

The AIF instruction also provides loop control for 
conditional assembly processing, which allows you to control 
the sequence of statements to be generated. 

It also allows you to check for error conditions and thereby 
to branch to the appropriate MNOTE instruction to issue an 
error message. 

Specifications 

The AIF instruction statement must 
be specified as shown in the figure 
to the right. 

Name 

A sequence 
Symbol or 
Blank 

Operation 

AIF 

symbol 
described 
in L1C 

No blanks 
allowed between 
right parenthesis 
and sequence 
symbol 

Section L: The Conditional Assembly Language 367 



The assembler evaluates the logical 
expression in the operand field o at pre-assembly time. If the logical 
expression is true (logical value-1) , 
the next statement processed by 

• the ass embler is the statement named 
by the sequence symbol. If it is 

• false (logical value -0) , the ~. 
sequential statement is processed. I 

368 

• CONTINU ANOP 

• ERROR 

.OUT 

processing continues here 

AIF 

ANOP 

processing continues here 

to 



The sequence symbol in the operand 
field is a conditional assembly 
label that represents an address 

-- -----at pre":-as-sembly time:---It-rs-tne---
address of the statement to which 
a branch is taken if the logical 
expression preceding the sequence 
symbol is true. 

The statement identi f iedby the 
sequence syrebol referred to in the 
AIF instruction can appear before 
or after the AIF instruction. 
However, the statement must appear o within the local scope of the 
sequence symbol. Thus, the statement 
identified by the sequence symbol 
must appear: 

4It. In open code, if the corresponding 
AIF instruct10n does or 

4It. In the same macro definition 
in which the corresponding A!F 
instruction appears. 

The sequence symbols .EACK and 
.FORWARD are not multiply defined. 
No branch can be taken from open 
code into a macro definition or 
between macro definitions, regardless 
of nested calls to other macro 
definitions. 

NOTE: For compatibility, the 
assemblers described in this manual 
will process the AIFB instruction 
(BOS/360) in the same way they 
process the AIF instruction. 

L6B -- THE AGO INSTRUCTION 

Purpose 

open 

code 

Source Module 

AIF ('&C' EQ 'F') .FORWARD 

AIF (&A GT 5) . BACK 

ANOP 

MEND 

START a 

AlF (&D NE 200) .FORWARD 

AlF (I&CHARI NE I) I) .BACK 

ANOP 

END 

The AGO instruction allows you to tranch unconditionally. 
You can thus alter the S"eCiJueHe in which your assembler 
language statements are processed. This provides you with 
final exits from conditional assembly loops. 

Section L: The Conditional Assembly Language 369 



Specifications 

The AGO instruction statement must 
be specified as shown in the figure 
to the right. Name Operation 

A sequence AGO 
symbol or 

The statement identified by a 
sequence symbol referred to in the 
AGO instruction can affear before 
or after the AGO instruction. 
However, the statement must appear o within the local scope of the 
sequence symbol. Thus, the statement 
identified by the sequence symbol 
must appear 

•
• In open code, if the corresponding 
AGO instruction does or 

•• In the same macro definition 
in which the corresponding AGO 
instruction appears. 

NOTE: For compatibility, the 
assemblers described in this manual 
will process the AGOB instruction 
(BOS/360) in the same way they 
process the AGO instruction. 

L6C -- THE ACTR INSTRUCTION 

Purpose 

blank 

OPEN;: 

D 

The ACTR instruction allows you to set a conditional 
assembly loop counter either within a macro definition 
or in open code. 

370 

Each time the assembler processes an AIF or AGO branching 
instruction in a macro definition or in open code, the 
loop counter for that part of the program is decremented 
by one. When the number of conditional assembly branches 
taken reaches the value assigned by the ACTR instructicn 
to the loop counter, the assembler exits from the macro 
definition or stops processing statements in open code. 

Source Module 

MACRO 
MACAGO 

AGO . FORWARD 

ANOP 

AGO . BACK 

ANOP 

MEND 

START o 

AGO . FORWARD 

ANOP 

END 



By ~sing the.ACTR in~tructi~n, you 
avo1d exceSS1ve loop1ng dur1ng 
conditional assembly processing 

.. at pre-assernoly 1:Trrie--:------ m

------ ---

Specifications 

The format of the ACTR instruction 
statement is given in the figure 
to the right. 

The ACTR instruction can appear 
anywhere in open code or within 
a macro definition. 

A conditional assembly loop counter 
is set (or reset) to the value of 

~the arithmetic expression in the 
operand field. The loop counter 

• 
has a local scope; its value is 
decremented only by AGO and AIF 
instructions and reassigned only 
by AC'l.'R instructions that appear 
within the same scope. Thus, the 
nesting of macros has no effect 
on the setting of individual loop 
counters. 

The assembler sets its own internal 
loop counter both for open code 
and for each macro definition, if 
neither contains an ACTR instruction. 
The assembler assigns a standard 
value of 4096 to each of these 
internal loop counters. 

Open 
Code 

Name 

Sequence 
symbol or 
blank 

ACTR 

END 

Operation 

ACTR 

MACRO 
OUTER 

ACTR 

ACTR 

ACTR 

Operand 

Section L: The Conditional Assembly Language 371 



,LOOP COUNTER OPERATIONS: Within 
the local scope of a particular 
loop counter (including the internal 
counters run by the assembler) , 
the following occurs: 

1. Each time an AGO or AIF' (also 
AGOB or AIFB) branch is executed, 
the assembler check~ the loop counter 
for zero or a negative value. 

2. If the count is not zero or 
negative, it is decremented by one. 

4Ut 3. If the count is zero, before 
decrementing, the assembler will 
take one of two actions: 

• 

• 
• 

372 

a. If it is processing 
instructions in open code, the 
assembler will process the 
remainder of the instructions in 
the source module as comments. 
Errors discovered in these 
instructions during previous 
passes are flagged. 

b. If it is processing 
instructions inside a macro 
definition, the assembler 
terminates the expansion of that 
macro definition and processes 
the next sequential instruction 
after the call1ng macro 
instruction. If the macro 
definition is called by an inner 
macro instruction, the assembler 
processes the next sequential 
instruction after this inner 
call, that is, continues 
processing at the next outer 
level of nested macros (for 
levels of nesting see K6A). 

NOTE: The assembler halves the 
ACTR counter value when it encounters 
serious syntax errors in conditional 
assembly instructions. 

START 0 

MACRO 

OUTER 

INNER 

AIF (&A EQ 5) .OUT 

MEND 

Counter for 

"OUTER". 
=0 

MACRO 

INNER 

AGO .OUT 

MEND 

• Counter for 

"INNER" 
=0 



L6D -- THE ANOP INSTRUCTION 

o 
• 

Purpose 

You can specify a sequence symbol 
in the name field of an ANOP 
instruction, and use the symbol 
as a label for branching purposes. 

The ANOP instruction performs no 
operation itself, but you can use 
it to branch to instructions that 
already have symbols in their name 
fields. For example, if you wanted 
to branch to a SETA, SETB, or SETC 
assignment instruction, which 
requires a variable symbol in the 
name field, you could insert a 
labeled ANOF instruction immediately 
before the assignment instruction. 
By branching to the ANOP instruction 
with an AIF or AGO instruction, 
you would, in effect, be branching 
to the assignment instruction. 

Specifications 

The format of the ANOP instruction 
statement is given in the figure 
to the right. 

No operation is performed by an 
ANOP instruction. Instead, if a 
branch is taken to the ANOP 
instruction, the assembler processes 
the next seguential instruction. 

ANOP 

Name Operation Operand 

A sequence ANOP Not required 

symbol or 

I I blank 

Example 

AGO .SEQ. 

~SEQ ANOP 

SETA 10 &A 

Section L: The Conditional Assembly Language 373 



L 7 -- In Open Code 

L7A -- PURPOSE 

Conditional assembly instructions in open code allow ycu: 

1. To select at pre-assembly time statements or groups 
of statements from the open code portion of a source rrcdule 
according to a pre-determined set of conditions. The 
assembler further processes the selected statements at 
assembly time. 

2. To pass local variable information from open code through 
parameters into macro definitions. 

3. To control the corofutation in and generation of rracrc 
definitions using global SET symbols. 

4. To substitute values into the model statements in the 
open code of a source module and centrol the sequence of 
their generation. 

L7B -- SPECIFICATIONS 

All the conditional assembly elements 
and instructions can be specified 
in open code. 

Conditional assembly instructions o can appear anywhere in open code, 
. but they must appear after any 

• source macro definitions that are 
specified. 

oos T:lieglob~l and localdeclaratiop 
wstructions . (see . 'L2) .. must appear 
~~~s;t in9~ep coq~;tha tis, they 
mu$t: foll0'ifany. s():ur~t; macro
definitiQllP ... spec:i.f iecl .. anq p~eced~
thebeS.linll:i.l'l9 of . the f·irst control
section.

374

Source Module

END

The specifications for the
conditional assembly language
described in L1 through L6 also
--ap-ply~o-p-e~_c_ode _____ ~OJ .. LeyeZ-i:he_.
following restrictions apply:

1. To attributes in open code: For
ordinary symbols, only references
to the type, length, scaling, and
integer attributes are allowed.

NO!E: References to the number
attribute have no meaning in
open code, because &SYSLIST is
not allowed in open code and
symbolic parameters have no
meaning in open code.

2. To conditional assembly
expressions in open code, as shown
in the figure to the right.

Expression Must not contain

I
Arithmetic

I
~ &SYSLIST

(SETA)
~ Symbolic parameters

• Any attribute references to symbolic parameters,
or &SYSLIST, &SYSECT, &SYSNDX

Character

I

~ &SYSLIST,&SYSECT,&SYSNDX
(SETC)

~ Attribute references to &SYSLIST, &SYSECT,
& SYSNDX, or to symbolic parameters

.. Symbolic parameters

Logical I • Arithmetic expressions "..,ith the items listed above
(SETB)

I • Character expressions with the items listed above

Section L: The Conditional Assembly Language 375

l;S
OS

·()riIY

376

Purpose •

The listing options allow you to
print the conditional assembly
statements in the sequence they
are processed. You can thus follow
the conditional assembly logic in
open code or in the code within
any macro definition.

Specifications

Conditional assembly statements
in the open code of a source module
or in a macro definition can be
printed in the program listings
in the order in which they are
processed, including iterations.
This must be requested by specifying
the desired options in the FARM
field of the EXEC statement for
the assembler program (job control
language), or by specifying the
options in fields set up by a program
that dynamically invokes the
assembler. The options are listed
in the figure to the right.

NOTE: For other listing options
see J8.

Option Action

NOALOGIC No conditional assembly statements in open code
are printed

ALOGIC All conditional assembly statements in open code
that are processed are printed, including iterations

NOMLOGIC No conditional assembly statements inside macro
definitions, called from your program, are printed.
NOTE: Conditional assembly statements in source
macro definitions are always printed along with the
rest of the code in a source module (assuming the
PRI NT option LIST)

MLOGIC All conditional assembly statements inside macro
definitions, that are processed when you call the
macro, are printed, including iterations

Appendix I: Character Codes

r------------T-----------------T---------T---------T-----------------1
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I

~------------+-----------------+---------+---------+-----------------~
00000000 12,0,9,8,1 , 0 00 I
00000001 12,9,1 1 01 I
00000010 12,9,2 2 02 I
00000011 12,9,3 3 03 I
00000100 12,9,4 4 04 I
00000101 12,9,5 5 05 i
00000110 12,9,6 6 06 t
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 OC
00001101 12,9,8,5 13 OD
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,1 23 11
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11~9,8,2 26 lA
00011011 11,9,8,3 27 1B
00011100 11,9,8,4 28 lC
00011101 11,9~8,5 29 lD
00011110 11,9,8,6 30 lE
00011111 11,9,8,7 31 1F
00100000 11,0,9,8,1 32 20
00100001 0,9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 38 26
00100111 0.9,7 39 27
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9.8.2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 45 2D
00101110 0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31

I 00110010 I 9,2 I 50 32 L ____________ ~ _________________ ~ _________ ~ _________ ~ __ - ______________ J

Append~x I: Character Codes 377

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I i
I EBCDIC I Punch I I Hexa- I Pr inter i
I Code I combination I Decimal I Decimal I GrapLics I
~------------+-----------------+---------+---------+-------------.----~

00110011 9,3 51 I 33 I I
00110100 9,Q 52 I 34 I I
00110101 9,5 53 I 35 I I
00110110 9,6 5Q I 36 I I
00110111 9,7 55 I 37 I I
00111000 9,8 56 I 38 I
0~111001 9,8,1 57 I 39 I
00111010 9,8,2 58 I 3A
00111011 9,8,3 59 t 3B
00111100 9,8,4 60 I 3C
00111101 9,8,5 61 I 3D
00111110 9,8,6 62 I 3E
00111111 9,8,7 63 I 3F
01000000 64 I 40 blank
01000001 12,0,9,1 65 41
01000010 12,0,9,2 66 42
01000011 12,0,9,3 67 43
01000100 12,0,9,4 68 44
01000101 12,0,9,5 69 45
01000110 12,0,9,6 70 46
01000111 12,0,9,7 71 47
01001000 12,0,9,8 72 48
01001001 12,8,1 73 49
01001010 12,8,2 74 4A
01001011 12,8,3 75 4B (period)
01001100 12,8,4 76 4C I <
01001101 12,8,5 77 4D I
01001110 12,8,6 78 4E I +
01001111 12,8,7 79 4F I
01010000 12 80 I 50 I f,

01010001 12,11,9,1 81 I 51 I
01010010 12,11,9,2 82 I 52 I
01010011 12,11,9,3 83 I 53 I
01010100 12,11,9,4 84 I 54 I
01010101 12,11,9,5 85 I 55 I
01010110 12,11,9,6 86 I 56 I
01010111 12,11,9,7 87 I 57 I
01011000 12,11,9,8 88 I 58 I
01011001 11,8,1 89 I 59 I
01011010 11,8,2 90 I 5A I
01011011 11,8,3 91 I 5B I $
01011100 11,8,4 92 I 5C I *
01011101 11,8,5 93 I 5D I
01011110 11,8,6 94 I 5E I
01011111 11,8,7 95 I 5¥ I
01100000 11 96 I 60 I
01100001 0,1 97 I 61 I /
01100010 11,0,9,2 98 I 62 I
01100011 11,0,9,3 99 I 63 I
01100100 11,0,9,4 100 I 64 I
01100101 11,0,9,5 101 I 65 I
01100110 11,0,9,6 102 I 66 I
01100111 11,0,9,7 103 I 67 I
01101000 11,0,9,8 104 I 68 I
01101001 0,8,1 105 I 69 I
01101010 12,11 106 I 6A I

I 01101011 0,8,3 107 I 6B I, (comma) L ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ _

378

---------------T-----------------T---------T---------T----------------,
8-Bit I Character Set I I I I

EBCDIC i Punch ! I Hexa~ I Printer I
Code I Combination I Decimal I Decimal I Graphics I

-------------+-----------------+---------+-------0--=::-.:-;::--~=;::-==;::.:..==l
01101100 i 0,8,4 I 108 6C %
01101101 I 0,8,5 I 109 6D
01101110 0,8,6 110 6E
01101111 0,8,1 111 6F
01110000 12,11,0 112 70
01110001 12,11,0,9,1 113 71
01110010 12,11,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 14
01110101 12,11.0,9,5 117 75
01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,7 119 71
01111000 12,11~O,9,8 120 78
01111001 8,1 121 19
01111010 8,2 122 7A
01111011 8,3 123 7B #
01111100 8,4 124 1C -
01111101 8,5 125 7D • (apostrophe)
01111110 8,6 126 1E
01111111 8,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 8D
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,8,1 144 90
10010001 12,11.1 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 148 94
10010101 12,11,5 149 95
10010110 12,11,6 150 96
10010111 12,11,1 151 91
10011000 12,11,8 152 98
10011001 12,11,9 153 99
10011010 12,11,8,2 154 9A
10011011 12,11,8,3 155 9B
10011100 12,11,8,4 156 9C
10011101 12,11,8,5 157 9D
10011110 12,11,8,6 158 9E
10011111 12,11,8,7 159 9F
10100000 11,0,8,1 160 AO
10100001 11,0,1 161 Al
10100010 11,0,2 162 A2
10100011 11,0,3 163 A3

i 10100100 11,0,4 164 I A4
~ ____________ i _________________ i _________ i _________ i _________________ J

Appendix I: Character Codes 379

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+--------+-----------------·1
I 10100101 11,0,5 165 A5
I 10100110 11,0,6 166 A6
I 10100111 11,0,1 161 A1
I 10101000 11,0,8 168 A8

10101001 11,0,9 169 A9
10101010 11,0,8,2 110 AA
10101011 11,0,8,3 111 AB
10101100 11,0,8,4 112 AC
10101101 11,0,8,5 113 AD
10101110 11,0,8,6 174 AE
10101111 11,0,8,7 115 AF
10110000 12,11,0,8,1 116 BO
10110001 12,11~0,1 111 Bl
10110010 12,11,0,2 118 B2
10110011 12,11,0,3 119 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
10110110 12,11,0,6 182 B6
10110111 12,11,0,1 183 B7
10111000 12,11,0,8 184 B8
10111001 12,11,0,9 185 B9
10111010 12,11,0,8,2 186 BA
10111011 12,11,0,8,3 181 BB
10111100 12,11,0,8,4 188 BC
10111101 12,11,0,8,5 189 BO
10111110 12,11,0,8,6 190 BE
10111111 12,11,0,8,7 191 BF
11000000 12,0 192 CO
11000001 12,1 193 C1 A
11000010 12,2 194 C2 B
11000011 12,3 195 C3 C
11000100 12,4 196 C4 0
11000101 12,5 191 C5 E
11000110 12,6 198 C6 F
11000111 12,7 199 C1 G
11001000 12,8 200 C8 H
11001001 12,9 201 C9 I
11001010 12,0,9,8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CD
11001110 12,0,9,8,6 206 CE
11001111 12rOr9,~,1 201 CF
11010000 11,0 208 DO
11010001 11,1 209 01 J
11010010 11,2 210 02 K
11010011 11,3 211 03 L
11010100 11,4 212 04 M
11010101 11,5 213 05 N
11010110 11,6 214 06 0
11010111 11,1 215 01 P
11011000 11,8 216 08 Q
11011001 11,9 211 09 R
11011010 12,11,9,8,2 218 OA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC

I 11011101 I 12,11,9,8,5 221 DO L ____________ ~ _________________ ~ _________ L _________ ~ _________________ J,

380

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I I
I EBCDIC I Punch j i Hexa- i Printer I
-L _____ C_Qde _____ l __ ~ombillC!~t~IL .. __ l._~_ecl...JII.~!_L'Q.ec:lIl§!l...§raphics I
~------------+-----------------+---------+---------+---~-~-~========l

11011110 12,11,9,8,6 I 222 DE I I
11011111 12,11,9,8,7 I 223 DF I I
11100000 0,8,2 I 224 EO· I
11100001 11,0,9,1 I 225 El I
11100010 0,2 I 226 E2 S I
11100011 0,3 227 E3 T I
11100100 0,4 228 E4 U
11100101 0,5 229 E5 V
11100110 0,6 230 E6 W
11100111 0,7 231 E7 X
11101000 0,8 232 E8 Y
11101001 0,9 233 E9 Z
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9.,8,4 236 EC
11101101 11,0,9,8,5 237 ED
11101110 11,0,,9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 0 240 FO 0
11110001 1 241 Fi 1 .L

11110010 2 242 F2 2
11110011 3 243 F3 3
11110100 4 244 F4 4
11110101 5 245 F5 5
11110110 6 246 F6 6
11110111 7 247 F7 7
11111000 8 248 F8 8
11111001 9 249 F9 9
11111010 12,11,0,9,8,2 250 FA
11111011 12,11,0,9,8,3 251 FB
11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8,,7 255 FF L ____________ ~ _________________ ~ _________ ~ _________ ~ _________________

Special Graphic Characters

C Cent Sign
Period, Decimal Point

< less-than Sign
(left Parenthesis
+ Plus Sign
I Vertical Bor, logical OR
& Ampersand

Exclamation Point
Dollar Sign

Examples Type

PF Control Character
% I Special Graphic I

R Upper Case

a lower Case

Control Character ,

L

I function not yet

i assigned

* Asterisk
) Right Parenthesis
; Semicolon

---, logical NOT
- Minus Sign, Hyphen
/ Slash
, Comma

% Percent
Underscore

Bit Pattern
Bit Positions
01 234567

00000100
01 1011 00

11 01 1-001

10000001

00 11 0000

> Greater-than Sign
? Question Mark

Colon
Number Sign

@ At Sign
I Prime, Apostrophe

Equal Sign
" Quotation Mark

Hole Pattern

Zooe ',",he' ! Dig;' .,",he.

12 -9 - 4

0,,:,8-4

11 - 9

12 -0 - 1
12-11-0 -9 - 8 - 1

I
I

I

Appendix I: Character Codes 381

This page left blank intentionally.

Appendix II: Hexadecimal-Decimal Conversion Table

The table in this appendix provides for direct conversion of decimal and hexadecimal
numbers in these ranges:

r--------------T---------------,
I Hexadecimal I Decimal I
~--------------+---------------~
I 000 to FFF I 0000 to 4095 I L ______________ i _______________ J

Decimal numbers (0000-4095) are given within the 5-part table. The first two characters
(high-order) of hexadecimal numbers (OOO-FFF) are given in the lefthand column of the
table; the third character (xl is arranged across the top of each part of the table.

To find the decimal equivalent of the hexadecimal number OC9, look for OC in the left
colum j and across that row under the column for x = 9. The decimal nQ~ber is 0201.

To convert from decimal to hexadecimal, look up the decimal number within the table
and read the hexadecimal number by a combination of the hex characters in the left
column, and the value for x at the top of the column containing the decimal number. For
example, the decimal number 123 has the hexadecimal equivalent of 07B; the decimal
number 1478 has the hexadecimal equivalent of 5C6.

For numbers outside the range of the table, add the-following values to the table

r--------------T-----------,
I Hexadecimal I Decimal I
~--------------+-----------~

1000
2000
3000
4000
5000
6000
7000
8000
9000
AOOO
BOOO
COOO
DOOO
EOOO
FOOO

4096
8192

12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440 ______________ i ___________ J

Appendix II: Hexadecimal-Decimal Conversion Table 383

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 001~
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 00u7
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 OOO~

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 007~
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 009::i
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124. 0125 0126 0127

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 015)
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
OOx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

lOx 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
l1x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAx 0416 0417 0418 041~ 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
lBx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lex 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 OIiP
lDx 0464 0465 0466 0467 0468 0469 0470 0471 ')472 0473 0474 0475 0476 0477 0478 OijH
lEx 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 04~5
lFx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0~10 0511

20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22x 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 05~8 0559
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24x 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28x 0640 0641 0642 06113 0644 06115 0646 0647 06118 0649 0650 0651 0652 0653 06511 0655
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 06711 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2ex 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
20x 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 07119 0750 0751
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30x 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33x 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 08112 0843 0844 08115 0846 0847
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36x 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37x 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38x 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3ex 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 09711 0975
30x 0976 0971 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

384

140 i 1024 1025
141= I 1040 1041
t---IJ2x--t- -1-656--1-65-1-
I ~3~ : 1072 1073

/
44X I 10.88 1089
45x 1104 1105

1

46X 1120 1121
47x 1136 1137

48x
49x
4Ax
4Bx

I
I :~: I 4Fx

SOx
S1x
52x
53x

54x
55x
56x
57x

!58X /
59x

I
I ~~I

5ex
SDx

I 5EX!
5Fx

60x
61x
62x
63x

64x
65x
66x
67x

68x
69x

~~~ I 
6Cx 
6Dx 
6Ex 
6Fx 

70x 
71x 
72:x 
73x 

! 74x I 
75x 
76x 
77x 

78x 
79x 
7Ax 
7Bx 

il 7CX I 7Dx 
17Ex 
I 7Fx I 
! I 

1152 
1168 
1184 
1200 

1216 
1232 
1248 
1264 

1280 
1296 
1312 
1328 

13114 
1360 
1376 
1392 

1408 
1424 
1440 
1456 

"'72 
1488 
1504 
1520 

1536 
1552 
1568 
1584 

1600 
1616 
1632 
1648 

1664 
1680 
1696 
1712 

1728 
1744 
1760 
1776 

1792 
1808 
1824 
1840 

1856 
1812 
1888 
1904 

1920 
1936 
1952 
1968 

1984 
2000 
2016 
2032 

1153 
1169 
1185 
1201 

1217 
1233 
1249 
1265 

1281 
1297 
1313 
1329 

1345 
1361 
1377 
1393 

1409 
1425 
1441 
1457 

1473 
1489 
1505 
1521 

1537 
1553 
1569 
1585 

1601 
1617 
1633 
1649 

1665 
1681 
1697 
1713 

1729 
1745 
1761 
1777 

1793 
1809 
1825 
1841 

1857 
1873 
1889 
1905 

1921 
1937 
1953 
1969 

1985 
2001 
2017 
2033 

2 

1026 
1042 
1058 
1074 

1090 
1106 
1122 
1138 

1154 
1170 
1186 
1202 

1218 
1234 
1250 
1266 

1282 
1298 
13111 
1330 

1346 
1362 
1378 
1394 

1410 
1426 
1442 
1458 

1474 
1490 
1506 
1522 

1538 
1554 
1570 
1586 

1602 
1618 
1634 
1650 

1666 
1682 
1698 
1714 

1730 
1746 
1762 
1718 

1794 
1810 
1826 
1842 

1858 
1874 
1890 
1906 

1922 
1938 
1954 
1970 

1986 
2002 
2018 
2034 

3 

1027 
1043 
1059 
1075 

1091 
"07 
1123 
1139 

1155 
1171 
1 1 87 
1203 

1219 
1235 
1251 
1267 

1283 
1299 
1315 
1331 

13117 
1363 
1379 
1395 

1411 
1427 
1443 
1459 

1475 
1491 
1507 
1523 

1539 
1555 
1571 
1587 

1603 
1619 
1635 
1651 

1667 
1683 
1699 
1715 

1731 
1747 
1763 
1779 

1795 
1811 
1827 
1843 

1859 
1875 
1891 
1907 

1923 
1939 
1955 
1971 

1987 
2003 
2019 
2035 

4 

1028 
1044 
1060 
1076 

1092 
1108 
1124 
1140 

1156 
1172 
1188 
1204 

1220 
1236 
1252 
1268 

1284 
1300 
1316 
1332 

1348 
1364 
1380 
1396 

1412 
1428 
1444 
1460 

1476 
1492 
1508 
1524 

1540 
1556 
1512 
1588 

1604 
1620 
1636 
1652 

1668 
1684 
1700 
1716 

1732 
1748 
1764 
1780 

179 6 
1812 
1828 
1844 

1860 
1876 
1892 
1908 

1924 
1940 
1956 
1972 

1988 
2004 
2020 
2036 

5 

1029 
1045 
1061 
1077 

1093 
1109 
1125 
1141 

1157 
1173 
1189 
1205 

1221 
1237 
1253 
1269 

1285 
1301 
1317 
1333 

1349 
1365 
1381 
1397 

1413 
1429 
1445 
1461 

1477 
1493 
1509 
1525 

1541 
1557 
1573 
1589 

1605 
1621 
1637 
1653 

1669 
1685 
1701 
1717 

1733 
1749 
1765 
1781 

1797 
1813 
1829 
1845 

1861 
1877 
1893 
1909 

1925 
1941 
1957 
1973 

1989 
2005 
2021 
2037 

6 

1030 
1046 
1062 
1078 

1094 
1110 
1126 
1142 

1158 
1174 
1190 
1206 

1222 
1238 
1254 
1270 

1286 
1302 
1318 
1334 

1350 
1366 
1382 
1398 

1414 
1430 
1446 
1462 

1478 
1494 
1510 
1526 

1542 
1558 
1574 
1590 

1606 
1622 
1638 
1654 

1670 
1686 
1702 
1718 

1734 
1750 
1766 
1782 

1798 
1814 
1830 
1846 

i862 
1878 
1894 
1910 

1926 
1942 
1958 
1974 

1990 
2006 
2022 
2038 

7 

1031 
1047 
1063 
1079 

1095 
1111 
1127 
1143 

1159 
1175 
1191 
1207 

1223 
1239 
1255 
1271 

1287 
1303 
1319 
1335 

1351 
1367 
1383 
1399 

1415 
1431 
1447 
1463 

1479 
1495 
1511 
1527 

1543 
1559 
1575 
1591 

1607 
1623 
1639 
1655 

1671 
1687 
1703 
1719 

1735 
1751 
1767 
1783 

1799 
1815 
1831 
1847 

i 863 
1879 
1895 
1911 

1927 
1943 
1959 
1975 

1991 
2007 
2023 
2039 

8 

1032 
1048 
1064 
1080 

1096 
1112 
1128 
1144 

1160 
1176 
1192 
1208 

1224 
1240 
1256 
1212 

1288 
1304 
1320 
1336 

1352 
1368 
1384 
1400 

1416 
1432 
1448 
1464 

1480 
1496 
1512 
1528 

1544 
1560 
1576 
1592 

1608 
1624 
1640 
1656 

1672 
1688 
1704 
1720 

1736 
1752 
1768 
1784 

1800 
1816 
1832 
1848 

1864 
1880 
1896 
1912 

1928 
1944 
1960 
1976 

1992 
2008 
2024 
2040 

9 

1033 
1049 
1065 
1081 

1097 
1113 
1129 
1145 

1161 
1177 
1193 
1209 

1225 
1241 
1257 
121.3 

1289 
1305 
1321 
1337 

1353 
1369 
1385 
1401 

1417 
1433 
1449 
1465 

1481 
1497 
1513 
1529 

1545 
1561 
1577 
1593 

1609 
1625 
1641 
1657 

1673 
1689 
1705 
1721 

1737 
1753 
1769 
1785 

1801 
1817 
1833 
1849 

1865 
1881 
1897 
1913 

1929 
1945 
1961 
1977 

1993 
2009 
2025 
2041 

A 

1034 
1050 
1066 
1082 

1098 
1114 
1130 
1146 

1162 
1178 
1194 
1210 

1226 
1242 
1258 
1274 

1290 
1306 
1322 
1338 

1354 
1370 
1386 
1402 

1418 
1434 
1450 
1466 

1482 
1498 
1514 
1530 

1546 
1562 
1578 
1594 

1610 
1626 
1642 
1658 

1674 
1690 
1706 
1722 

1738 
1754 
1770 
1786 

1802 
1818 
1834 
1850 

1866 
1882 
1898 
1914 

1930 
1946 
1962 
1978 

1994 
2010 
2026 
2042 

B 

1035 
1051 
1067 
1083 

1099 
1115 
1131 
1147 

1163 
1179 
1195 
1211 

1221 
1243 
1259 
1275 

1291 
1307 
1323 
1339 

1355 
1371 
1387 
1403 

1419 
1435 
1451 
1467 

1483 
1499 
1515 
1531 

1547 
1563 
1579 
1595 

1611 
1627 
1643 
1659 

1675 
1691 
1707 
1723 

1739 
1755 
1771 
1787 

1803 
1819 
1835 
1851 

1867 
1883 
1899 
1915 

1931 
1947 
1963 
1979 

1995 
2011 
2027 
2043 

C D 

1036 1037 
----.1",0,.5",,2 _---;1 053 

1068 1069 
1084 10a5 

1100 
1116 
1132 
1148 

1164 
1180 
1196 
1212 

1228 
1244 
1260 
1276 

1292 
1308 
1324 
1340 

1356 
1312 
1388 
1404 

1420 
1436 
1452 
1468 

1484 
1500 
1516 
1532 

1548 
1564 
1580 
1596 

1612 
1628 
1644 
1660 

1676 
1692 
1708 
1724 

1740 
1756 
1772 
1788 

1804 
1820 
1836 
1852 

1868 
1884 
1900 
1916 

1932 
1948 
1964 
1980 

1996 
2012 
2028 
2044 

1101 
1117 
1133 
1149 

1165 
1181 
1197 
1213 

1229 
1245 
1261 
1277 

1293 
1309 
1325 
1341 

1357 
1373 
1389 
1405 

1421 
1437 
1453 
1469 

1485 
1501 
1517 
1533 

1549 
1565 
1581 
1597 

1613 
1629 
1645 
1661 

1677 
1693 
1709 
1725 

1741 
1757 
1773 
1789 

1805 
1821 
1837 
1853 

1869 
1885 
1901 
1917 

1933 
1949 
1965 
1981 

1997 
2013 
2029 
2045 

E 

1038 
1054 
1070 
10&6 

1102 
11 i8 
1134 
1150 

1166 
1182 
1198 
1214 

1230 
1246 
1262 
1278 

1294 
1310 
1326 
1342 

1358 
1374 
1390 
1406 

1422 
1438 
1454 
1470 

1486 
1502 
1518 
1534 

1550 
1566 
1582 
1598 

1614 
1630 
1646 
1662 

1678 
1694 
1710 
1726 

1742 
1758 
1774 
1790 

1806 
1822 
1838 
1854 

1870 
181:l6 
1902 
1918 

1934 
1950 
1966 
1982 

1998 
2014 
2030 
2046 

1039
1 1055 I . 

1071 I 

1087 i 
1103

1 
1119\ 1135 
1151 

I 
1167 
1183 
1199 
1215 

1231 I 
1247 
1263

1

' 
1279 

1295 
1311 
1327 
1343 

1359

1

1 

1375 
1391 
1407 

1423/ 
1439 
1455 I 

1471 I 
1487 
1503 I 
1519 
1535 

1 ~~1 
1567 
1583 
1599 

1615 
1631 
1647 
1663 

1679 
1695 
1711 
1727 

1743 
1759 
1775 
1791 

1807 
1823 
1839 
1855 

1871 
1887 
1903 
1919 

1935 
1951 
1967 
1983 

1999 
2015 
2031 
2047 

Appendix II: Hexadecimal-Decimal Conversion Table 385 



x = \) 1 2 3 4 5 6 7 8 9 A B C D E F 

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82x 2080 2081 2082 2083 2084 2085 2086 2081 2088 2089 2090 2091 2092 2093 2094 2095 
83x 2096 2091 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84x 2112 2113 2114 2115 2116 2111 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2131 2138 2139 2140 2141 2142 2143 
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
81x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2115 

88x 2176 2171 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8Dx 2256 2251 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8Ex 2272 2273 2274 2275 2216 2277 2278 2219 2280 2281 2282 2283 2284 2285 2286 2267 
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90x 2304 2305 2306 2301 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318· 2319 
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92x 2336 2331 2338 2339 2340 2341 2342 2343 2344 2345 2346 2341 2348 2349 2350 2351 
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
91x 2416 2411 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9Ax 2464 2465 2466 2461 2468 2469 2470 2471 2472 2473 2474 2475 2416 2477 2478 2479 
9Bx 2480 2481 2482 2483 2484 2485 2486 2481 2488 2489 2490 2491 2492 2493 2494 2495 

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9Dx 2512 2513 2514 2515 2516 2511 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9Fx 2544 2545 2546 2541 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2b23 

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2b39 
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A1x 2672 2673 2674 2675 2616 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9x 27014 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276" '"'765 2766 2767 
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFx 2800 2801 2802 2803 2804 -2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOx 2816 281 7 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bh 2832 2833 2834 2835 2836 2831 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 21)79 

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2971.1 2975 
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 302 •. 3023 
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

386 



C8x 
C9x 
CAx 
CBx 

CCx I CDx 

I CEx I I CFx 

DOx 
Dlx 
D2x 
D3x 

D4x 
D5x 
D6x 
D1x 

I D8x I 
D9x 

1=1 DDx 
DEx I 
DFx 

EOx 
Elx 
E2x 
E3x 

E4x 
E5x 
E6x 
E1x 

E8x 
E9x 
EAx 
EBx 

ECx 
EDx 
EEx 
EFx 

FOx 
Flx 
F2x 
F3x 

F4x I 
F5x 
F6x 
F7x 

F8x 
F9x 
FAx 
FBx 

1 

FCx I" FDx 
FEx 
FFx 

3136 
l152 
3168 
3184 

3200 
3216 
3232 
3248 

3264 
3280 
3296 
3312 

3328 
3344 
3360 
3376 

3392 
3408 
3424 
3440 

3456 
3412 
3488 
3504 

3520 
3536 
3552 
3568 

3584 
3600 
3616 
3632 

3648 
3664 
3680 
3696 

3712 
3728 
3744 
3760 

3176 
3792 
3808 
3824 

3840 
3856 
3872 
3888 

3904 
3920 
3936 
3952 

3968 
3984 
4000 
4016 

4032 
4048 
4064 
4080 

3137 
3153 
3169 
3185 

3201 
3217 
3233 
3249 

3265 
3281 
3291 
3313 

3329 
3345 
3361 
3377 

3393 
3409 
3425 
3441 

3451 
3413 
3489 
3505 

3521 
3537 
3553 
3569 

3585 
3601 
3617 
3633 

3649 
3665 
3681 
3697 

3713 
3729 
3745 
3761 

3777 
3793 
3809 
3825 

3841 
3857 
3873 
3889 

3905 
3921 
3937 
3953 

3969 
3985 
4001 
4017 

4033 
4049 
4065 
4081 

3138 
3154 
3170 
3186 

3202 
3218 
3234 
3250 

3266 
3282 
3298 
3314 

3330 
3346 
3362 
3378 

3394 
3410 
3426 
3442 

3458 
3474 
3490 
3506 

3522 
3538 
3554 
3570 

3586 
3602 
3618 
3634 

3650 
3666 
3682 
3698 

3714 
3730 
3746 
3762 

3718 
3794 
3810 
3826 

3842 
3858 
3874 
3890 

3906 
3922 
3938 
3954 

3970 
3986 
4002 
4018 

4034 
4050 
4066 
4082 

3 

3075 
3091 
3107 
3123 

3139 
3155 
3171 
3187 

3203 
3219 
3235 
3251 

3267 
3283 
3299 
3315 

3331 
3347 
3363 
3319 

3395 
3411 
3427 
3443 

3459 
3475 
3491 
3507 

3523 
3539 
3555 
3571 

3587 
3603 
3619 
3635 

31;51 
3661 
3683 
3699 

3715 
3731 
3747 
3763 

3779 
3795 
3811 
3827 

3843 
3859 
3875 
3891 

3907 
3923 
3939 
3955 

3971 
3987 
4003 
4019 

4035 
4051 
4067 
4083 

4 

3076 
3092 
3108 
3i24 

3140 
3156 
3112 
3188 

3204 
3220 
3236 
3252 

3268 
3284 
3300 
3316 

3332 
3348 
3364 
3380 

3396 
3412 
3428 
3444 

3460 
3416 
3492 
3508 

3524 
3540 
3556 
3512 

3588 
3604 
3620 
3636 

3652 
3668 
3684 
3700 

3716 
3132 
3148 
3764 

3780 
3196 
3812 
3828 

3844 
3860 
3876 
3892 

3908 
3924 
3940 
3956 

3912 
3988 
4004 
4020 

4036 
4052 
4068 
4084 

5 

3077 
3093 
3109 
3i25 

3141 
3151 
3113 
3189 

3205 
3221 
3237 
3253 

3269 
3285 
3301 
3317 

3333 
3349 
3365 
3381 

3391 
3413 
3429 
3445 

3461 
3471 
3493 
3509 

3525 
3541 
3551 
3573 

3589 
3605 
3621 
3631 

3653 
3669 
3685 
3101 

3717 
3733 
3149 
3765 

3781 
3797 
3813 
3829 

3845 
3861 
3817 
3893 

3909 
3925 
3941 
3957 

3973 
3989 
4005 
4021 

4031 
4053 
4069 
4085 

6 

3018 
3094 
3110 
3126 

3142 
3158 
3174 
3190 

3206 
3222 
3238 
3254 

3270 
3286 
3302 
3318 

3334 
3350 
3366 
3382 

3398 
3414 
3430 
3446 

3462 
3418 
3494 
3510 

3526 
3542 
3558 
3514 

3590 
3606 
3622 
3638 

3654 
3670 
3686 
3702 

3118 
3734 
375Q 
3166 

3782 
3198 
3814 
3830 

3846 
3862 
3818 
3894 

3910 
3926 
3942 
3958 

3914 
3990 
4006 
4022 

4038 
4054 
4070 
4086 

7 

3019 
3095 
3111 
3127 

3143 
3159 
3175 
3191 

3201 
3223 
3239 
3255 

3211 
3281 
3303 
3319 

3335 
3351 
3361 
3383 

3399 
3415 
3431 
3441 

3463 
3419 
3495 
3511 

3521 
3543 
3559 
3515 

3591 
3601 
3623 
3639 

3655 
3671 
3681 
3103 

3119 
3135 
3751 
3167 

3183 
3199 
3815 
3831 

3841 
3863 
3879 
3895 

3911 
3"927 
3943 
3959 

3915 
3991 
4001 
4023 

4039 
4055 
4071 
4087 

8 9 A B C D E F 

3080 3081 3082 3083 3084 ~vo~ 3086 3087 
3Q~6 ___ ~Q9J~~O~98~~3uo~9~9 ___ 3~luO~0~-4J+l~O+1--~J~1~O~2---~~~-- -
3112 3113 3114 3115 3116 3117 3118 3119 
3128 3129 3130 3131 3132 3133 3134 31351 

3144 3145 3146 3147 3148 3149 3150 3151 
3160 3161 3162 3163 3164 3165 3166 3161 
3176 3177 3178 3119 3180 3181 3182 3183 
3192 3193 3194 3195 3196 3191 3198 3199 

3208 3209 3210 3211 3212 3213 3214 
3224 3225 3226 3227 3228 3229 3230 
3240 3241 3242 3243 3244 3245 3246 
3256 3257 3258 3259 3260 3261 3262 

3212 
3288 
33{)4 
3320 

3336 
3352 
3368 
3384 

3400 
3416 
3432 
3448 

3464 
3480 
3496 
3512 

3528 
3544 
3560 
3516 

3592 
3608 
3624 
3640 

3656 
3672 
3688 
3104 

3120 
3736 
3752 
3768 

3784 
3800 
3816 
3832 

3848 
3864 
3880 
3896 

3912 
3928 
3944 
3960 

3976 
3992 
4008 
4024 

4040 
4056 
4072 
4088 

3213 3214 3215 3216 3277 3278 
3289 3290 3291 3292 3293 3294 
3305 3306 3307 3308 3309 3310 
3321 3322 3323 3324 3325 3326 

3337 
3353 
3369 
3385 

3401 
3417 
3433 
3449 

3465 
3481 
3497 
3513 

3529 
3545 
3561 
3571 

3593 
3609 
3625 
3641 

3657 
3673 
3689 
3705 

3121 
3737 
3753 
3769 

3785 
3801 
3817 
3833 

3849 
3865 
3881 
3897 

3913 
3929 
3945 
3961 

3917 
3993 
4009 
4025 

4041 
4057 
4073 
4089 

3338 
3354 
3370 
3386 

3402 
3418 
3434 
3450 

3466 
3482 
3498 
3514 

3530 
3546 
3562 
3578 

3594 
3610 
3626 
3642 

3658 
3674 
3690 
3706 

3122 
3738 
3754 
3770 

3786 
3802 
3818 
3834 

3850 
3866 
3882 
3898 

3914 
3930 
3946 
3962 

3978 
3994 
4010 
4026 

4042 
4058 
4074 
4090 

3339 
3355 
3371 
3387 

3403 
3419 
3435 
3451 

3467 
3483 
3499 
3515 

3531 
3547 
3563 
3579 

3595 
3611 
3627 
3643 

3659 
3675 
3691 
3707 

3723 
3739 
3755 
3771 

3787 
3803 
3819 
3835 

3851 
3867 
3883 
3899 

3915 
3931 
3947 
3963 

3979 
3995 
4011 
4027 

4043 
4059 
4075 
4091 

3340 
3356 
3312 
3388 

3404 
3420 
3436 
3452 

3468 
3484 
3500 
3516 

3532 
3548 
3564 
3580 

3596 
3612 
3628 
3644 

3660 
3676 
3692 
3708 

3724 
3740 
3756 
3772 

3788 
3804 
3820 
3836 

3352 
3868 
3884 
3900 

3916 
3932 
3948 
3964 

3980 
3996 
4012 
4028 

4044 
4060 
4076 
4092 

3341 
3357 
3373 
3389 

3405 
3421 
3437 
3453 

3469 
3485 
3501 
3517 

3533 
3549 
3565 
3581 

3597 
3613 
3629 
3645 

3661 
3677 
3693 
370'} 

3725 
3741 
3757 
3773 

3789 
3805 
3821 
3837 

3853 
3869 
3885 
3901 

3917 
3933 
3949 
3965 

3981 
3997 
4013 
4029 

4045 
4061 
4077 
4093 

3342 
3358 
3374 
3390 

3406 
3422 
3438 
3454 

3470 
3486 
3502 
3518 

3534 
3550 
3566 
3582 

3598 
3614 
3630 
3646 

3662 
3678 
3694 
1710 

J7::.t. 
3742 
3758 
3774 

3790 
3806 
3822 
3838 

3854 
3870 
3886 
3902 

3918 
3934 
3950 
3966 

39&2 
3998 
4014 
4030 

4046 
4062 
4078 
4094 

3215 
3231 
3247 
3263 

3279 

3295 I 3311 
3327 

3343 
3359 
3375 
3391 

3407 
3423 
3439 
3455 

3471 I 
3487 I 
3503

1 

3519 

3535 
3551 I 
3567 
3583 

3599 
3615 
3631 
3647 

3663 
3679 
3695 
3711 

3727 
3743 
3759 
3775 

3791 
3ts07 
3823 
3ts39 

3855 
3ts71 
3687 
3903 

3919 
3935 
3951 
3967 

3983 
3999 
4015 
4031 

4047 
4063 
4079 
4095 

Appendix II: Hexadecimal-Decimal Conversion Table 387 



This page left blank intentionally. 



Appendix III: Machine Instruction Format 

I I ASSEMBLER OPERAND 
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS 

8 4 4 Rl,R2 All RR instructions 
Operation except BCR,SPM, 

Code Rl R2 and SVC 

RR 
i 

I I 8 4 4 Ml1R2 BCR 
Operation 

Code Ml R2 

lope~;~!on 1:1 I I Rl SPM 

I I I 
I 

I 
I 8 8 

Operation I SVC 
Code I (See Notes 1,6,8, 

and 9) 

8 4 4 4 12 Rl,D2(X2,B2) 
RX Operation Rl,D4 (,B2) All RX instructions 

Code Rl X2 B2 D2 Rl,S2(X2) except BC Rl,S2 

I 8 4 4 4 12 Ml,D2(X2,B2) 
Operation Ml,D2(,B2) 

Code Ml X2 B2 D2 Ml,S2(X2) BC 
Ml,S2 

(See Notes 1,6,8, 
and 9) 

I 
8 4 4 4 12 

Operation Rl,R3,D2{B2} BXH,BXLE,CDS,CS,LM,SIGP, 
Code R1 IU B2 D2 R1,R3,S2 STM,LCTL,STCTL 

RS 

8 4 4 4 12 

I I 
Operation R1,D2(B2) All shift instructions 

Code R1 B2 D2 R1,S2 

8 4 4 4 12 R1,M3,D2(B2) ICM,STCM,CLM 
Operation R1,M3,S2 

Code R1 M3 B2 D2 (See Notes 1-3,7, 
8,and 9) 

Appendix III: Machine Instruction Format 389 



390 

ASSEMBLER OPERAND 
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS 

a 8 4 12 All SI instructions except 
Operation Ol(Bl} ,12 those listed for the other 

Code 12 Bl 01 Sl,I2 SI format. 

SI 

8 4 12 01 (Bl) LPSW,SSM,TIO,TCH,TS 
Operation Sl 

Code Bl 01 (See Notes 2,3,6, 

7,8 and 10} 

16 4 12 01 (Bl) SCK,STCK,STIDP,SIOF,STIOC, 

Two-byte Sl SIO,HIO,HOV 
S Operation 

SCKC,STCKC,SPT,STPT,PTLB, 

Code Bl 01 
RRB 

(See Notes 2, CLRIO,IPK,SPKA,SPX,STAP, 

3, and 7} STPX 

8 4 4 4 12 4 12 Ol(Ll,Bl) ,D2(L2,B2) PACK,UNPK,MVO,AP, 
Operatior 

L2 Bl 01 B2 D2 
Sl(Ll),S2(L2) CP,OP,MP,SP,ZAP 

Code Ll 

SS 

8 8 4 12 4 12 Dl(L,Bl) ,02(B2) NC,OC,XC,CLC,MVC,MVN, 
Operation MVZ,TR,TRT,ED,EOMK 
Code L Bl Dl B2 D2 Sl(L),S2 

8 4 4 4 12 4 12 Dl(Ll,Bl) ,02(B2) ,I3 SRP 
Operation Sl(Ll) ,S2, I3 
Code LI I3 Bl Dl B2 02 Sl,S2,I3 

(See Notes 2,3,5,6, 
7 and 10) 

Notes for Appendix III: 

1. Rl, R2, and R3 are absolute expressions that specify general or floating-point reg­
isters. The general register numbers are 0 through 15; floating-point register num­
bers are 0, 2, 4, and 6. 

2. 01 and 02 are absolute expressions that specify displacements. A value of 0 - 4095 
may be specified. 

3. Bl and B2 are absolute expressions that specify base registers. Register numbers are 
o - 15. 

4. X2 is an absolute expression that specifies an index register. Register numbers 'are 
o - 15. 

5. L, Ll, and L2 are absolute expressions that specify field lengths. An L expression 
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16. 
In all cases, the assembled value will be one less than the specified value. 

6. I, 12, and 13 are absolute expressions that provide immediate data. The value of I 
and 12 may be 0 - 255. The value of 13 may be 0 - 9. 

7. Sl and S2 are absolute or relocatable expressions that specify an address. 

8. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not 
examined during instruction execution. The fields are not written in the symbolic 
operand, but are assembled as binary zeros. 

9. Ml and M3 specify a 4-bit mask. 

10. In IBM System/370 the SIO, HIO, HOV and SIOF operation codes occupy one byte and the 
low order bit of the second byte. In all other systems the HIO and SIO operation 
codes occupy only the first byte of the instruction. 



Appendix IV: Machine Instruction Mnemonic Codes 

This appendix contains two tables of the mnemonic operation codes for all machine 
instructions that can be represented in assembler language, including extended mnemonic 
operation codes. 

The first table is in alphabetic order by instruction. The second table is in numeric 
order by operation code. 

In the first table is indicated: both the mnemonic and machine operation codes, explicit 
and implicit operand formats, program interruptions possible, and condition code set. 

The column headings in the fir,st table and the information each column provides follow: 

Instruction: This column contains the name of the instruction associated with the 
mnemonic operation code. 

Mnemonic Operation Code: This column contains the mnemonic operation code for the 
instruction. This is written in the operation field when coding the instruction. 

Machine Operation Code: This column contains the hexadecimal equivalent of the actual 
machine operation code. The operation code will apppear in this form in most storage 
dumps and when displayed on the system control panel. For extended mnemonics, this 
column also contains the mnemonic code of the instruction from which the extended 
mnemonic is derived. 

Operand Format: This column shows the symbolic format of the operand field in both 
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers in 
operand one, two, and three respectively. x2 indicates a general register used as an 
index register in the second operand. Instructions which require an index register (X2) 
but are not to be indexed are shown with a 0 replacing X2. L, L1, and L2 indicate 
lengths for either operand, operand one, or operand two respectively. M1 and M3 indicate 
a 4-bit mask in operands one and three respectively. I, 12, and 13 indicate immediate 
data eight bits long (I and 12) or four bits long (I3). 

For the explicit format, D1 and D2 indicate a displacement and B1 and B2 indicate a base 
register for operands one and two. 

For the implicit format, D1, B1, and D2, B2 are replaced by 51, and S2 which indicate a 
storage address in operands one and two. 

Type of Instruction: This column gives the basic machine format of the instruction (RR, 
RX, SI, or SS). If an instruction is included in a special feature or is an extended 
mnemonic, this is also indicated. 

Program Interruptions possible: This column indicates the possible program interruptions 
for this instruction. The abreviations used are: A - Addressing, S - Specification, Ov -
Overflow, P - Protection, Op - Operation (if feature is not installed), and Other - other 
interruptions which are listed. The type of overflow is indicated by: D - Decimal, E -
Exponent, or F - Fixed Point. 

Condition code set: The condition codes set as a result of this instruction are indicated 
in this column. (See legend following the table.) 

Appendix IV: Machine Instruction Mnemonic Operation Codes 391 



Instruction Mnemonic Machine Operand Format 
Operation Operation 

Code Code Explicit Implicit 

Add A 5A R I, D2(X2, B2) or RI, D2(, B2) RI, 52(X2) or RI, 52 
Add AR IA RI,R2 
Add Decimal AP FA D I (LI , B 1), D2(L2, B2) 51(L1), 52(L2)ar 51,52 
Add Halfword AH 4A R I, D2(X2, B2)or R I, D2(, B2) RI, 52 (X2)ar RI, 52 
Add Logical AL 5E RI, D2(X2, B2)or RI, D2(,B2) R I, 52(X2)or RI, 52 
-Add Logical ALR IE RI,R2 

Add Normalized, Extended AXR 36 RI,R2 
Add Normalized, Long AD 6A RI,D2(X2,B2)or RI,D2(,B2) RI, 52 (X2)or RI, 52 
Add Normalized, Long ADR 2A RI,R2 
Add Normal ized, Short AE 7A R I, D2(X2, B2)or R I, D2(, B2) RI, 52 (X2)or RI, 52 
Add Normalized, Short AER 3A RI,R2 

Add Unnormal ized, Long AW 6E RI, D2(X2, B2)or R I, D2(, B2) RI, 52(X2)or RI, 52 
Add Unnormalized,Long AWR 2E RI,R2 
Add Unnormalized,5hort AU 7E RI, D2(X2, B2)or RI, D2(, B2) RI, 52 (X2)or RI, 52 
Add Unnormalized,5hort AUR 3E RI,R2 

And Logical N 54 R I, D2(X2, B2)or R I, D2(, B2) RI,52(X2)or RI,52 
And Logical NC D4 DI (L, BI), D2(B2) 51(L),52 or 51,52 
And Logical NR 14 RI,R2 
And Logical Immediate NI 94 DI(Bl),12 51,12 

Bra nch and Li nk BAL 45 Rl, D2(X2, B2)or RI, D2(, B2) Rl, 52 (X2)or Rl, 52 
Branch and Link BALR 05 Rl,R2 
Branch and 5ave BA5 4D Rl, D2(X2, B2) or Rl, D2(, B2) Rl,52(X2)or Rl,52 
Branch and 5ave BA5R OD Rl, R2 

Branch on Condition BC 47 Ml,D2(X2,B2)or MI,D2(,B2) Ml ,52(X2)or Ml,52 
Branch on Condition BCR 07 Ml,R2 
Branch on Count BCT 46 Rl, D2(X2, B2) or Rl, 02(, B2) Rl,52(X2)or Rl,52 
Bronch on Count BCTR 06 RI,R2 
Bronch on Equal BE 47(BC 8) D2(X2, B2) or D2(, B2) 52(X2) or 52 
Branch on Eq ua I BER 07(BCR 8) R2 

Bronch on High BH 47(BC 2) D2(X2, B2) or D2(, B2) 52(X2) or 52 
Branch on High BHR 07(BCR 2) R2 
Branch on Index High BXH 86 Rl,R3,D2(B2) Rl,R3,52 
Branch on Index Low or Equa I BXLE 87 RI,R3,D2(B2) Rl, R3, 52 
Branch on Low BL 47(BC 4) 02(X2, B2) or 02{, B2) 52(X2) or 52 
Branch on Low BLR 07(BCR 4) R2 
Branch if Mixed BM 47(BC 4) 02(X2, B2) or D2(, B2) 52(X2) or 52 
Branch if Mixed BMR 07(BCR 4) R2 

Branch on Minus BM 47(BC 4) D2(X2, B2) or D2(, B2) 52(X2) or 52 
Branch on Minus BMR 07(BCR 4) R2 
Branch on Not Equal BNE 47(BC 7) 02(X2, B2) or 02(, B2) 52(X2) or 52 
Branch on Not Equal BNER 07(BCR 7) R2 
Bronch on Not High BNH 47(BC 13) D2(X2, B2) or D2{, B2) 52(X2) or 52 
Branch on Not High BNHR 07(BCR 13) R2 
Branch on Not Low BNL 47(BC 11) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Bronch on Not Low BNLR 07(BCR 11) R2 
Branch if Not Mixed BNM 47(BC 11) D2(X2,B2) or 02('B2) 52(X2) or 52 
Branch if Not Mixed BNMR 07(BCR 11) R2 
Branch on Not Minus BNM 47(BC 11) D2(X2,B2)or 02(,B2) 52(X2) or 52 
Branch on Not Minus BNMR 07(BCR 11) R2 

Branch if Not Ones BNO 47(BC 14) 02(X2, B2) or 02(, B2) 52(X2) or 52 
Branch if Not Ones BNOR 07(BCR 14) R2 
Branch on No Overflow BNO 47(BC 14) 02(X2,B2) or 02(,B2) 52(X2) or 52 
Branch on No Overflow BNOR 07(BCR 14) R2 
Branch on Not Plus BNP 47(BC 13) 02(X2, B2) or 02(, B2) 52(X2) or 52 
Branch on Not Plus BNPR 07(BCR 13) R2 
Branch if Not Zeros BNZ 47(BC 7) 02(X2,B2) or 02(,B2) 52(X2) or 52 
Branch if Not Zeros BNZR 07(BCR 7) R2 
Branch on Not Zero BNZ 47(BC 7) 02(X2, B2) or 02(, B2) 52(X2) or 52 
Branch on Not Zero BNZR 07(BCR 7) R2 
Branch if Ones BO 47(BC I) 02(X2, B2) or 02{, B2) 52(X2) or 52 
Branch if Ones BOR 07(BCR 1) R2 
Branch on Overflow BO 47(BC 1) 02(X2, B2) or 02(, B2) 52{X2) or 52 
Branch on Overflow BOR 07{BCR 1) R2 

Bra nch on PI us BP 47{BC 2) 02(X2,B2)or 02{,B2) 52(X2) or 52 
Branch on Plus BPR 07{BCR 2) R2 
Branch if Zeros BZ 47{BC 8) D2(X2, B2) or D2{, B2) 52{X2) or 52 
Branch if Zeros BZR 07{BCR 8) R2 

i 
Branch on Zero BZ 47{BC 8) 02(X2, B2) or 02{, B2) 52(X2) or 52 
Branch on Zero BZR 07{BCR 8) R2 
Bran"ch Unconditional B 47(BC 15) 02{X2, B2) or 02(, B2) 52(X2) or 52 
Branch Unconditional BR 07(BCR 15) R2 

Clear I/O CLRIO 9DOI D2(B2) 52 
CleQrStor0gePa~ CLRP 8215 ()2(B2) 52 ;'; 

Compare Algebraic C 59 R I, D2(X2, B2)or Rl, 02(, B2) RI,52(X20rRI,52 
Compare Algebraic CR 19 RI, R2 

Compare and 5wap C5 BA RI, R3, 02, (B2) RI,R3,52 
Compare Decimal CP F9 DI (L I, BI), D2(L2, B2) 5HU), 52 {L2)or 51,52 
Compare Double and Swap CD5 BB Rl, R3, D2(B2) RI, R3, 52 

I 
Compare Halfword CH 49 R I, 02(X2, B2}or R I, D2(, B2) RI,52(X2)or RI,52 
Compare Logical CL 55 Rl,D2(X2,B2)or RI,D2('B2) R I, 52(X2)or Rl, 52 I 
Compare Logical CLC I D5 I 01 (l, 81), 02(82) 51(L),52 or 51,52 I 

392 



Instruction 

Add 
Add 
Add Decimal 
Add Ho I fword 
Add Logical 
Add Logical 

Add Normalized, Extended 
Add Normalized, Long 

I
I ~~ 

SS,Decimal 

I 
~~ 
RR 

RR,Floating Pt. 
RX, Floating PI. 
RR,Floating PI. 
RX,Floating Pt. 
RR, Floating Pt. 

IJI~I, 1,1 
I x I x I 

Add Normal ized, Long 
Add Normalized, Short 
Add Normalized, Short 

Add Unnormalized,Long 
Add Unnormalized, Long 
Add Unnormalized, Short 
Add Unnormalized, Short 

And Logical 
And Logical 
And Logical 
And Logical Immediate 

I RX, Floating PI. 
RR,Floating PI. 

I
' RX, Floating PI. 

RR,Floating PI. 

I
· ~~ 

RR 
SI 

I x I E 
E 

x E 
E 

x E 

Bronch and Link 
Branch and link 
Branch and Save 
Bronch and Save I~ III 
:~~~~ ~~ ~~~~;~;~~ ,i R~~R , , I I 
Branch on Count 
Bronch on Count 
Bronch on Equal I RX,Ext.Mnemonic 
Bronch on Equal I RR, Ext.Mnemonic 

Bronch on High RX, Ext.Mnemonic; 
Branch on High. RR, Ext .Mnemonic 
Branch on Index High I RS 
Bronch on Index Low or Eqvol i RS 
Bronch on Low I RX, Ext .Mnemonic 
Bronch on Low RR, Ext. Mnemonic 
Branch if Mixed RX, Ext .Mnemonic 
Branch if Mixed RR, Ext. Mnemonic 

Bronch on Minus 
Bronch on Minus 
Bronch on Not Equal 
Bronch on Not Equal 
Bronch on Not High 
Bronch on Not High 
Branch on Not Low 
Branch on Not Low 
Branch if Not Mixed 
Branch if Not Mixed 
Branch on Not Minus 
Branch on Not Minus 

Branch if Not Ones 
Branch if Not Ones 
Branch on No Overflow 
Branch on No Overflow 
Branch on Not Plus 
Branch on Not Plus 
Branch if Not Zeros 
Branch if Not Zeros 
Branch on Not Zeros 
Branch on Not Zeros 
Bronch if Ones 
Branch if Ones· 
Bronch on Overflow 
Bronch on Overflow 

I Branch on ~I us 
Bronch on Plus 
Branch if Zeros 
Branch if Zeros 
Branch on Zero 
Branch on Zero 
Bronch Unconditional 
Branch Unconditional 

RX, Ext.Mnemonic 
RR, Ext .Mnemonic 
RX, Ext .Mnemonic 
RR, Ext .Mnemonic 
RX, Ext .Mnemonic 
RR, Ext .Mnemonic 
RX, Ext .Mnemonic 
RR, Ext .Mnemonic 
RX,Ext.Mnemonic 
RR,Ext.Mnemonic 
RX, Ext.Mnemonic 
RR, Ext. Mnemon ic 

RX; Ext .Mnemonic 
RR, Ext. Mnemonic 
RX,Ext.Mnemonic 
RR,Ext.Mnemonic 
RX, Ext.Mnemonic 
RR, Ext .Mnemonic 
RX,Ext.Mnemonic 
RR,Ext.Mnemonic 
RX, Ext.Mnemonic 
RR, Ext.Mnemonic 
RX, Ext.Mnemonic 
RR, Ext .Mnemonic 
RX, Ext.Mnemonic 
RR, Ext .Mnemonic 

I~, Ext .Mnemonic I 
RR, Ext .Mnemon ic 
RX, Ext.Mnemonic 
RR, Ext. Mnemon ic 
RX, Ext .Mnemonic 
RR, Ext .Mnemonic 
RX, Ext .Mnemonic 
RR, Ext .Mnemonic 

5 

i Sum=(} 

I 
Sum=O 

Dote: Sum=O 
Sum=O 
Sum=O® 

Sum~O® 

B,C R 
S,C R 
B,C R 
S,C 
S,C 

A 

N 

I~ 
I~ 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

X I Clear I/O 
.DQ$lY$E only Cleer S~~age Page 

. Compare AlgebraIc 
S 
RX 

x A,GS 

I 
Compare Algebraic 
Compare and Swap 
rD' I 

I C::::~: D::~~:'and Swap 
Compare Halfword 
Compare Logical 

Compare Logical 

1 RS' 
eCH!"!C. 

RX 

I" 55 

I
I ~~ 

C;C; D 
: Ix 

I 
x _.0 ""-

x x Z 
x x Z 
x x Z 

x x I z 

I: I: 1 ~ 1 1 J~ 
I 

I 

Sum<O i 
Sum<O I 
Sum<O 

Sum O® I 
Sum= O® 

L 
L 
L 
L 
L 

K 
K 
K 
K 

N 
N 
N 
N 

N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

CC 

AA 
AA 
AAW 

I AAW I 
AA 

I 
AA 

AA 

AA 

Sum >0 I 
Sum>O 
Sum >0 

Sum= oCD I 
Sum= oCD 
M 
M 
M 
M 
M 

M 
M 
M 
M 

N 
N 
N 
N 

N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

EE 

BS 
BB 

RR --
I 

I BB 
SB 

SB I 

Overflow 
Overflow 
Overflow 
Overflow 
Sum 0 CD 
Sum 0 CD 

N 
N 
N 
N 

N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
N 

KK 

I 
I 

I 

I 

Appendix IV: Machine Instruction Mnemonic Operation Codes 393 



10000VSE only 

I 'ilQs .. ·' .. lV~E 0.·.'0.·. '. V,· 
OOSlVSE <HlIy 

I DOS/VSe onlv 

I DOS/VSe only 

tNotOOSIVSE 

I D.0. S/VSE oOlv 
DOS/VSEoniv 

394 

Instruction 

Compare Logical 

Compare Logical Characters 
under Mask 

Compare Logical Immediate 

Compare Logi ca I Long 

Compare, Long 
Compare, Long 
Compare, Short 
Comp~re ,Short 

"Connect Page ....... 

Convert to Binary 
Convert to Dec imal 

Deconfi~rePage 
Di5col'in~ct Page 

.. 

Divide 
Divide 
Divide Decimal 
Divide, Long 
Oivide, Long 
Divide, Short 
Oivide, Short 

Edit 
Edit and Mark 
Exclusive Or 
Exclusive Or 
Exclusive Or 
Exclusive Or Immediate 
Execute 

Halve, Long 
Halve, Short 
Halt Device 

Halt I/o 
In~rt Page. 8il'$ 
Insert Character 
Insert Characters under Mask 
Insert PSW Key 
I nsert Storage Key 

Load 
Load 
Load Address 
Load and Test 
Load and Test, Long 
Load and Test, 5hart 

Load Complement 
Load Complement, Lang 
Load Complement, Short 

Load Control 
Load Frame Index. 
Load Halfword 
Load, Long 
Load, Long 
Lead Multiple 
Load Negative 
Load Negative, Long 
Load Negative, Short 

Load Positive 
Load Positive, Long 
Load Positive, Short 
Load PSW 
Load Reed Address 
Load Rounded, Extended 
to Long 
Load Rounded, Long to Short 
Load, Short 
Load, 5hort 

Make Addr~QbI. .: .. 

Makelk1:addressable 
Monitor Call 
Move Characters 
Move Immediate 

Mnemonic 
Operation 

Code 

CLR 

CLM 

CLI 

CLCL 

CD 
CDR 
CE 
CER 
Clf 
CVB 
CVD 

OEf> 
OClP 
D 
DR 
OP 
DO 
OOR 
DE 
OER 

ED 
EDMK 
X 
XC 
XR 
XI 
EX 

HOR 
HER 
HDV 

HIO 

IPS 
IC 
ICM 
IPK 
ISK 
L 
LR 
LA 
LTR 
LTDR 
L TER 

LCR 
LCDR 
LCER 

LCTL 
lFI 
LH 
LO 
LOR 
LM 
LNR 
LNOR 
LNER 

LPR 
LPOR 
LPER 
LPSW 
LRA 
LRDR 

LRER 
LE 
LER 
MAD 
MUN .. 

MC 
MVC 
MVI 

Mochlne Operand Format 
Operation 

Code Explicit Implicit 

15 RI,R2 

BD ~1, M3, D2(B2) Rl,M3,52 

95 D1 (Bl),12 51,12 

OF Rl, R2 

69 Rl,D2(X2, B2)or R1, D2('B2) Rl, 52(X2)or Rl, 52 
29 ~l,R2 
79 ~ I, D2(X2, B2)or R I, D2(, B2) Rl, 52(X2)or Rl, 52 
39 RI,R2 
SO 1(1,02(B2) R1IS2 
4F R I, D2(X2, B2}or R I, D2(, B2) Rl,52(X2)or Rl,52 
4E ~ I, D2(X2, B2)or R I, D2(, B2) R I, 52(X2)or Rl, 52 

821B p~{tm, IS~ 
82lC PZ{S2} 52 
5D ~ I, D2(X2, B2) or Rl, D2(, B2) RI, 52(X2) or RI,52 
lD Rl,R2 
FO 01, (L I, BI), 02(L2, B2) 51(Ll),52(L2)or 51,52 
60 RI,02(X2, B2),or Rl, 02(, B2) RI,52(X2) or Rl, 52 
20 Rl,R2 
70 R I, 02(X2, B2}or R 1,02(, B2) Rl,52(X2) or Rl,52 
30 Rl,R2 

DE 01 (L, B1), 02(B2) 51(L),52 or 51,52 
OF 01 (L, BI), 02(B2) 51(L),52 or 51,52 
57 R I, 02(X2, B2) or R I, 02(, B2) RI,52(X2) or RI, 52 
07 01 (L, Bl), 02(B2) 51(L),52 or 51,52 
17 Rl,R2 
97 01(B1),12 51,12 
44 R I, 02(X2, B2) or RI, 02(, B2) RI,52(X2) RI,52 
24 RI,R2 
34 Rl,R2 
9EOI I 01,Bl 51 

9EOOI 01 (B1) 

84 Rl,02.(82) Rl,S2 
43 R J, 02(X2, B2) or Rl, 02(, B2) Rl,52(X2) or RI, 52 
BF 
B20B 

Rl. M3. D2(B2) Rl,M3,52 

09 RJ .R2 
58 R I, 02(X2, B2) or RI, 02(, B2) RI, S2(X2) or RI,S2 
18 Rl,R2 
41 R I, 02(X2, B2) or RI , 02(, B2) RI, S2(X2) or Rl, 52 
12 Rl,R2 
22 Rl,R2 
32 R 1, R2 

13 Rl,R2 
23 Rl,R2 
33 Rl,R2 

B7 Rl, R3, D2(B2) Rl, R3, 52 
BS Rl.D2(B2} Rl,S2 
48 R I, 02(X2, B2) or RI, 02(, B2) Rl,S2(X2) or Rl, 52 
68 Rl, 02(X2, B2) or Rl, 02(,B2) R I, 52(X2) or Rl, 52 
28 Rl,R2 
98 RI,R3,02(B2) Rl,R3,52 
11 Rl,R2 
21 Rl,R2 
31 Rl,R2 

10 Rl,R2 
20 Rl,R2 
30 Rl,R2 
82 01(Bl) 51 
Bl Rl,D2(X2,B2) or Rl,D2(,B2) Rl,S2(Xl) or Rl,S2 
25 Rl, R2 

35 Rl, R2 
78 Rl, 02(X2, B2) or R1, 02(, B2) R1,52(X2) or R1, 52 
38 RI.R2 
8210 92(82) 52 
&21E .. ,·02(82) 52 
AF Dl~,),12 51,12 
02 01 L, B1), 02(B2) SI(L),52 or SI,52 
92 01 (B1), 12 51,12 

.... 

1 See Note 1 at end of 
this appendix 



Instruction 

CO~tlI"e--'--~~~a_I ___ _ 
I Compare logical Characters 

I 
under Mask 
Compare Logical Immediate 

I 
Compare logical long 

Compare, Long 
Compare, Long 
Compare, Short 
Compare, Short 

~\(SJE only fqonn~cf.P(tge 
Convert to Binary 
Convert to Dec imal 

~JY~~~f\lY 

~ -, E::: Ded~' 
Divide, Long 
Divide, Long 
Divide, Short 
Divide, Short 

Edit 
Edit and Mark 
Exclusive Or 
Exclusive Or 

Exclusive Or Immediate 

RX 
RR 
5S, Decimal 
RX,Floating Pt. 
RR, Floating Pt. 
RX, Floating Pt. 
RR, Floating Pt. 

1:1: 
E 

x E 
x x E 

x E 

x 

x 

I

i SS,Decimal i

l 

x xl 'I' x: Xxii SS, Decimal 
RX 
SS x 

D,J ~ N 
N 

B,E N N 
B,E N N 
B,E N N 
B,E N N 

Data 
Data Il I ~ 

N 
N 

N 
N 
N 
N 

U 
U 

I Exclusive Or I Rf'S'Xf'I' I : I xl I x I I 
Execute G I 

~ I ~ 
(May be set by this instruction) 

I~ ~c ~l 
I DD CC GG I

I Halve, Long I RR,Floating Pt'll I' Xxi' I' Xx I 
Halve, Short RR, Floating Pt. 
Halt Device S A 

I Halt I/O IS! I j J A 

)OSIVSE only II"*rf ~ Bits I itS I x, .;X<I A Insert Character RX 
Insert Characters under Mask RS x I x 
Insert PSW Key S A 

I Insert Storage Key I RR I x xl I A 

I 
~:~ RRRRRRXX Ii x x II I' Load Address 
Load and Test 
Load and Test, Long RR, Floating Pt. x 
Load and Test, Short RR, Floating Pt. x I 
Load Complement RR F 
Load Complement, Long RR, Floating Pt. x I 
Load Complement, s,ort RR, Floating Pt. x 

~-h;§~ It",;~~.IJI r :1 ~ 
I Load, Long I :RR~' Floating Pt. I Xxi I x I 

Load Multiple x 

'I Load Negative I I I 
Load Negative, Long RR, Floating Pt, XI x 
Load Negative, Short RR, Floating Pt. XI x 

Load Positive RR 
Load Positive, Long RR,Floating Pt, x x 
Load Positive, Short I RR, Floating Pt. I xl I I I 

..,.~ ~ ::~,eoded I:. FlOOII"9 p, , ~ ~.1 ,; j ~ 

I~ 
N 
N 
J 
R 
R 

N 
N 
N __ . ~:~ogl'~ml~F~~;~,~ .. : j']1 

~.q<; .. .. Al!)1) 

~oclr >OSIVSE only,· E:: ~={:f::ble i,1 !,s I: I I f I 
I I I I I I 

N 
TT 

N 

N 
N 
N 
L 

N 
ABG 
N 
N 
N 
N 
L 
L 
L 

L 
L 
QQ 
AAU 
N 

N 
N 
N 
ABJ 
A8L 
N 
N 

N 
SS 

N 

N 

N 
N 
M 
M 
M 

M 
M 
M 
N 
ABH 
N 
N 
N 
N 

M 
M 
M 
QQ 
AAP 
N 

N 
N 
N 

N 
N 

N 
N 

N 
N 
N 
N 

N 
N 

KK 

N 

N 

N 

N 
N 

o 

N 
ASI 
N 
N 
N 
N 

o 

I 

I 
QQ ··1 AAO 
N 

N 
N 
N 

N 
N 

I 

Appendix IV: Machine Instruction Mnemonic Operation Codes 395 



Mnemonic. 
Instruction Operation 

Code 

Move Long MVCL 
Move Numerics MVN 
Move with Offset MVO 

Move Zones MVZ 
Multiply M 
Multiply MR 
Multiply Decimal MP 
Multiply Extended MXR 
Multiply Halfword MH 

Multiply, Long MO 
Multiply, Long MOR 
Multiply, Long to 
Extended 

MXO 

Multiply, Long to 
Extended 

MXOR 

Multiply, Short ME 
Multiply, Short MER 
No Operation NOP 
No Operation NOPR 
Or Logical 0 
Or Logical OC 
Or Logical OR 
Or Logical Immediate 01 
Pack PACK 

Purge Translation Lookaside PTL8 
8uffer 

I Ni:)tDOS/VSe Read Direct ROD 
Reset Reference 8it RR8 

IPOS .••...••.. lVSE~ 

DOSlVSEonl 

Retrieve StatVs ondPag$ RSP 

y Set Page Bin SPB 
Set Clock 5CK 
Set Clock Comparator 5CKC 
Set CPU Timer SPT 
Set Prefix SPX 
Set Program Mask SPM 
Set PSW Key from Address SPKA 
Set Storage Key SSK 
Set System Mask SSM 
Shift and Round Decimal 5RP 
Shift Left Double Algebraic SLOA 
Shift Left Double Logical SLOL 
Shift Left Single Algebraic SLA 
Shift Left Single Logical SLL 
Shift Right Double Algebraic SROA 
Shift Right Double Logical SRDL 
Shift Right Single Algebraic SRA 
Shift Right Single Logical 5RL 

Signal Processor SIGP 

Start I/O SIO 
Start I/O Fast Release SIOF 

I DOS/WE onlY 
Store ST 
Store <:Qpqcity C6iJnts $leAP 
Store Channel 10 STIOC 
Store Character STC 

Store Characters under STCM 
Mask 
Store Clock STCK 
Store Clock Comparator STCKC 
5tore Control STCTL 
Store CPU address STAP 
Store CPU 10 STIDP 
Store CPU Timer STPT 
Store Halfword STH 
Store Long 5TD 
Store Multiple STM 
Store Prefi x STPX 
Store Short STE 

Store Then AND System Mask STNSM 
Store Then OR System Mask STOSM 
Subtract 5 

Subtract SR 
5ubtract Decimal SP 
Subtract Halfword SH 
Subtract Logical SL 
Subtract Logical SLR 

396 

Machine 
Operation 

Code 

OE 
01 
Fl 

03 
5C 
1C 
FC 
26 
4C 

6C 
2C 
67 

27 

7C 
3C 

47(8C 0) 
07(8C 0) 

56 
06 
16 
96 
F2 

8200 

85 
8213 
08 

B5 
8204 
8206 
8208 
8210 
04 
820A 
08 
80 
FO 
8F 
80 
88 
89 
8E 
8C 
8A 
88 

AE 

9COOI 

9C01 1 

50 
821F 
B203 
42 

8E 

8205 
B207 
86 
B212 
8202 
B209 
40 
60 
90 
B211 
70 

AC 
AD 
58 

18 
FB 
48 
5F 
IF 

Operand Format 

Explicit Implicit 

Rl,R2 
01(L,81),02(82) SI (L), S2 or SI,52 
01 (Ll, 81), 02(L2, 82) SI(Ll),S2(L2) or SI ,52 

01 (L, 81),02(82) S1(l), S2 or SI, S2 
Rl, 02(X2, 82) or Rl, 02(, 82) Rl,52(X2) or Rl,S2 
Rl,R2 
01 (L 1,81), 02(L2, 82) 
Rl,R2 

S1(Ll),S2(L2) or SI,S2 

Rl,02(X2,82)or Rl,02(,82) Rl,52(X2) or Rl, S2 

Rl,02(X2,82)or Rl, 02(, 82) Rl,S2(X2) or Rl,S2 
Rl,R2 
Rl, 02(X2, 82) or Rl, 02(, 82) Rt,S2(X2) or Rl, S2 

Rt,R2 

Rl,02(X2,82)or Rl,02(,82) 
Rl,R2 

Rl,S2(X2) or Rl, S2 

02(X2,82) or 02(,82) S2(X2) or S2 
R2 
Rl,02(X2,82)or Rl,02(,82) Rl,S2(X2) orRl,S2 
01(L,81),02(82) 51(l),52 or 51,52 
Rl,R2 
01(81),12 S1,I2 
o 1(Ll, 81), 02(L2, 82) 51(Ll),S2(l2) or SI ,S2 

- -

01(81),12 51,12 
01(81) Sl 
01(,Bl),02(B2} 51,52 

or 
Dl (Bl), 02(B2) 
Rl,02(82) Rl,S2 
01(81) 51 
01(81) SI 
01(81) SI 
02(82) S2 
Rl 
0, (8,) 51 
Rl,R2 
01(81) SI 
t?1 (Ll, 81),02(82),13 S1(Ll),S2,13 or SI,S2,13 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 
Rl,02(82) Rl,S2 

Rl , R3, 02(82) Rl, R3, S2 

01(81) SI 
01(81) SI 

Rl,02(X2,B2)or Rl,02(,82) Rl,S2(X2) ~r Rl, S2 
02(82) 52i 
01(81) SI 
Rl,02(X2,B2)or Rl,02(,82) Rl,02(X2) or Rl, S2 

Rl,M3,02(82) Rl,M3,S2 

01(81) SI 
01(81) SI 
Rl,R3,02(82) 
02(82) 

Rl, R3, S2 
S2 

01(81) SI 
01(81) SI 
Rl, 02(X2, B2) or Rl, 02 (, 82) Rl,S2(X2) or Rl,S2 
Rl, 02(X2, B2) Rl,S2(X2) or Rl,S2 
Rl, R2, 02(82) Rl,R2,S2 
02 (B2) S2 
Rl,02(X2,B2)or Rl,02(,B2) Rl,52(X2) or Rl,S2 

01(81),12 51,12 
01(81),12 SI,12 
Rl,02(X2) Rl,S2(X2) or Rl, S2 

Rl,R2 
01(Ll,Bl),02(L2,B2) S1(Ll)(;S2(L2)or SI,S2 
Rl, 02(X2, 82) or Rl, 02(, 82) Rl,S2 X2) or Rl,S2 
Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2) or Rl,S2 
Rl,R2 

1 See Note 2 at end of 
this appendix 



I 
Program Interruptions 

I' Type of Possible 
! nstructlon Instruction AI ( 0\ pi Op Other' 00 1 01 iO Iii I 

Condition Code Set 

t-E0v:e Long RR x x x x AAA AAB AAC AAD 
ove-Nlu~m~e~n~cs~-------~~~~~--------~~X~~~~X!~-t-----+~N~~'!--~N~--~1~-iN~~-JI~--~N~I!.--

I :: ::OffW. I :: 1;.1:1 I I: I: I: I : I 
I E~m~if Deci~1 I ~, Deci~1 I ~ x=1 E xl Xx Data I ~ I ~ I ~ ~N' I 

Multiply Extended RR,Floating Pt. B N N N 
Multiply Holfword RX x x N N N N 

Multiply, Long RX,Floating Pt. x x E x B N N N N 
Multiply, Long RR,Floating Pt. x E x B N N N N 
Multiply, Lon9/ RX,Floating Pt. x x E x x B N N N N 
Extended 
Multiply, Long! RR,Floating Pt. x E x BIN N N N 
Ex~~ I 

I 
Multiply, Short Iii Xx I BB I' N N N Multiply, Short N N N 
No Operation N N N 
No Operation 
Or Logical 

I 

RX,FI~t",g Pt. J x Ix ~ 

RR,Floating Pt. x 
RX,Ext.Mnemoni 
RR, Ext .!v\nerr.onic ''I ''I 1'1 

Or Logical 
Or Logical 
Or Logical Immediate 
Pack 

I Purge Translation Lookaside 

krt.·.·.·.· .•..... DOS ......•.••... r4F; .•• ' ..•..• 8Iiff .........•.•... '.......... . " lOI.oosiVSER 
Reset ::l "':: 
Set CiOCk

u

: 

I 
Set Clock Comparator 
Set CPU Timer 
Set Prefix 
Set Program Mask 

I Set PSW Key from Address 
Set Storage Key 
Set System Mask 
Shift Left Double Algebraic 
Shift and Round Deci~1 

RX 
SS 
RR 
SI 
SS 

Sf 
S 

.) •. 5 .... 5 .•....• 
.,>RS 

S 
S 
S 
S 
RR 
S 
RR 
SI 
RS 
SS 

Shift Left Double Logical RS 
Shift Left Single Algebraic RS 
Shift Left Single Logical I RS 
Shift Right Double Algebraic RS 
Shift Right Double Logical RS 

Shift Right Single Algebraic RS 
Shift Right Single Logical RS 
Signal Processor RS 
Start I/O S 
Start I/O Fast Release S 

x 
x 

x 
x 

x 

x 
x 

x 

x 

x 
x 
x 

t re X 

~IVSSOOiI·~~fli,~~.Bl~f;;1!j71ji,l.*;;~{1\;Jj;';ifll;llfi;l!:;!:;i;::)·];ti;;i:il~~.:1'1;!4~ii;);\Jt;. 
Store anne 
Store Character RX Ix x 

I 
Store Characters under I RS Ix 
Mask 
Store Clock I S Ix 
Store Clock Comparator S x x 

Store Control RS IIX~' x 
Store CPU Address S 
Store CPU 10 S 
Store CPU Timer S 

I 
Store He If word RX IX 

Store Multiple RS 
Store Prefix S 

x 

x 
x 
x 

x 
x 

I 

I~ 
1= 

I ~ 
Ix 
x 

x 

x 

x 

x 

x 
x 
x 
x 
x 
x 

x 

Store long I RX,Flooting Pt. [x" 

Store Short RX,F loating Pt. x x 

A 

A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 

Data 

A 
A 
A 

[A 

A 
A 
A 
A 
A 

A 

f F ~ ~ ~ Store Then AND System Mask SI 
Store Then OR System Mask SI 
Subtract RX 

Subtract RR 

I 

I
Subtract Deci~1 
Subtract Ha If word 
Subtract Logical 
Subtract Logical 

I~Deci~1 

RR 

~ ~ Ix x ram I 
I I I 

J K 
J K 
J K 
J K 
N N N 

N N N 

N N N 
AAQ AAR 

1 
AAS 

ARM 
MQ ... MR AAS 
AAE AAF I 
N N 

I 
N 

N N N 

RR RR I RR 

N N 

I 

N 
N N N 
J L M 
J L M 

N N N 
J L M 
N N N 
J L M 
N N N 

J L M 
N N N 
AAY AAZ EE 
MM CC EE 
MM CC EE 

N N N 

AAH CC AAI 
N N N 

N N N 

AAJ AAK AAN 
N N N 
N N N 

N N N 
N N N 
N N N 
N N N 
N N N 

N N N 

N N N 
N N N 
V X Y 

V X 
V X 
V X 

W,H 
W,H 

t 
I 

I 
I 

N 
N 
N 
N 

N 

N 

N' 
AAi 

ABN 
AAT 
AAG 
N 
N 

RR 

N 
N 
0 
0 

N 
0 
N 

N 

N 
HH 
KK 
KK 

N 

KK 
N 

N 

AAG 
N 
N 

N 
N 
N 
N 
N 

N 

N 
N 
0 

0 
0 
0 
W,I 
W/I 

I 

Appendix IV: Machine Instruction Mnemonic Operation Codes 397 



Mnemonic Machine Operand Format 
Instruction Operation Operation 

Code Code Explicit Implicit 

Subtract Normalized, SXR 37 Rl,R2 
Extended 
Subtract Normalized, Long SD 6B Rl,D2(X2,B2)or Rl,D2(,B2) Rl,S2(X2) or Rl, S2 
Subtract Normalized, Long SDR 2B Rl,R2 
Subtract Normalized, Short SE 7B Rl,D2(X2,B2)or Rl,D2(,B2) Rl,S2(X2) or Rl,S2 
Subtract Normalized, Short SER 3B Rl,R2 
Subtract Unnormalized, Long SW 6F Rl,D2(X2,B2)or Rl,D2(,B2) Rl, S2(X2) or Rl,S2 

Subtract Unnormalized, Long SWR 2F Rl,R2 
Subtract Unnormalized, Short SU 7F Rl, D2(X2, B2) or Rl, D2(, B2) Rl,S2(X2) or Rl, S2 
Subtract Unnormalized, Short SUR 3F Rl,R2 
Supervisor Call SVC OA I 
Test and Set TS 93 D1(B 1) SI 

T est Channel TCH 9F Dl(Bl) SI 
Test I/O TlO 9D Dl(Bl) 51 
T est Under Mask TM 91 D 1(B 1),12 51,12 
Translate TR DC D1(L,B1),D2(B2) 51(L),52 or SI,52 
Translate and Test TRT DD D 1 (L, B 1), D2(B2) SI (L),S2 or SI,52 

Unpack UNPK F3 D 1(Ll, B 1), D2(L2, B2) SI (Ll), S2(L2) or 51,52 
Write Direct WRD 84 Dl (Bl), 12 SI,12 
Zero and Add Decimal ZAP F8 D 1 (L 1, B 1), D2(L2, B2) S1(Ll), 52(L2) or 51, S2 

398 



I 

I 
I 
I 

I 

I 

i 

I 
I 

Instruction 

Subtract Normalized, Extended I 
Subtract Normalized, Long I Subtract Normalized, Long 
Subtract Normalized, Short 

I Subtract Normalized, Short 
Subtract Unnormaliezd, Long 
Subtract Unnormailezd, Long 

I 

Subtroct Unnormolized, Short 
Subtract Unnormalized, Short 
SupelVlsor Call 

Test and Set I Test Channel 
Test I/O l Test under Mask 
Translate I 
Translate and Test 

Unpack 
Write Direct 
Zero and Add Decimal 

Program Interruptions Possible 

Under Ov: D = Decimal 

Type of 
Instruction 

RR, Floating Pt. 
RX, Floating Pt. 
RR, Floating Pt. 
RX, Floating Pt. 
RR, Floating Pt. 
RX, Floating Pt. 
RR, Floating Pt. 
RX, Floating Pt. 
RR, Floating Pt. 
RR 

Sl 
51 
SI 
51 
SS 
SS 

SS 
SI 
SS, Decimal 

E = Exponent 
F = Fixed Point 

I x I: E 

I 
x B,C 

I 
R 

E x B,C R 
E x B,C R 

I: x E 

I 
x B,C 

1 

R 
x E X B,C R 
x E x C R 
x E x C R 

x x E x C R 
x E x C R 

N 

x I x 
SS 

A JJ 
; 

I x I 
I 

A LL 

I I UU 
I x I I I x I I I N 

x PP 

x x N 
x x A N 
x D x x Data J 

Under Other: A 

C 
D 

Privileged Operation 
Exponent Underflow 
Significance 
Decimal Divide 

I 

I 

Condition Code Set 

01 

L 
L 
L 
L 
L 
L 
L 
L 
L 
N 

TT 
II 
CC 
VV 
N 
NN 

N 
N 
L 

10 

I 
M 
M Q 

M Q 

M Q 

M Q 

M Q 

M Q 

M Q 

M Q 

N N 

I FF HH 
I 

EE KK 
I WW 

I N N 
00 

N N 
N N 
M 0 

Floating Point Divide 
Fixed Point Divide 

G Execute 
GA Monitoring 

I 
I 
I 

I 
I 

I 

I 

I Condition Code Set 

No carry 
Carry 
Result = 0 
Result is not equal to zero 
Result is less than zero 
Result is greater than zero 
Not changed 
Overflow 
Result exponent underflows 
Resu!t exponent overflows 
Result fraction = 0 
Result field equals to zero 
Result field is less than zero 
Result field is greater than zero 
Difference = 0 
Difference is nor euqal to zero 
Difference is less than zero 
Difference is greater than zero 
First operand equals second operand 
First operand is less than second operand 
First operand is greater than second operand 
CSW stored 
Channel and subchannel not working 
Channel or subchannel busy 
Channel operating in burst mode 
Page state 
Page transision 
Burst operation terminated 
Channel not operational 
Interruption pending on channel 
Channel available 
Not operational 
Available 
I/O operation initiated and channel 
proceeding with its execution 

NN 

00 
PP 
QQ 

RR 

SS 
IT 
UU 
VV 
WW 
XX 
YY 
ZZ 

AAA 

AAB 
AAC 
AAD 
AAE 
AAF 
AAG 
AAH 
AAI 
AAJ 
AAK 
AAL 
AAM 
AAN 
AAO 
AAP 
AAQ 
AAR 

Nonzero function byte found before 
the first operand field is exhausted 

Last function bytes are zero 
All function bytes are zero 
Set according to bits 34 and 35 of the 
new PSW loaded 
Set according to bits 2 and 3 of the 
register specified by R1 
Leftmost bit of byte specified = 0 

AAS 
AAT 
AAU 
AAV 
AAW 

AAX 

Leftmost bit of byte specified = 1 AA Y 
Selected bits ore all zeros; mask is all zeros AAZ 
Selected bits are mixed (zeros and ones) ABA 
Selected bits are all ones 
Selected bytes are equal, or mask in zero ABB 
Selected field of first operand is low 
Selected fieid of first operand is high MO\... 

First operand and second operand counts ABD 
are equal ABE 
First operand count is lower ABF 
First operand count is higher ABG 
No movement because of destructive overlap ABH 
Clock value set 
Clock value secure 
Clock not operational 
Channel ID correctly stored 
Channel activity prohibited during I D 
Clock value is valid 
Clock value liot necessarily valid 
Channel working with another device 
Subchannel busy or interruption pending 
Clock in error state 
Segment- or page-table length violation 
Page-table entry invalid (I-bit one) 
Reference bit zero, change bit zero 
Reference bit zero, change bit one 

ASI 
ABJ 
ABK 
ABL 
ABM 
ABN 

Reference bit one, change bit zero Ii 

Reference bit one, change bit one t 
Segment table entry inval id {I-bit one)1 
Translation available ; 
First and second hand operands equal, 
second operand replaced by 
the third operand 
No operation is in progress for 
the addressed device 
Order code accepted 
Status stored 
Successful, block was disconnected, 
index returned 
Page was already disconnected, 
index returned 
Not successful, index returned 
Page was connected 
Page was already disconnected 
Index returned, page is addressable 
Index returned, page is connected 
Index not returned, page is 
disconnected 
Index not returned, address is invalid 
Page was already addressable 
Page was addressable 
Page was already connected 
Save valid 
Save invalid 

Appendix IV: Machine Instruction Mnemonic Operation Codes 399 





: operation=t~N~am-e-­
i I Code 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 

OE 
OF 
, (\ 
-,-v 

11 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
lB 
lC 
lD 
lE 
lF 

20 
21 

23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 

30 
31 
32 
33 
34 
35 
36 
37 
38 

Set Program Mask 
Branch and Link 
Branch on Count 
Branch on Condition 
Set Storage Key 
Insert Storage Key 
Supervisor Call 

Move Long 
Compare Logical Long 

Load Posi ti \Te 

Load Negative 
Load and Test 
Load Complement 
AND 
Compare Logical 
OR 
Exclusive OR 
Load 
Compare 
Add 
Subtract 
Multiply 
Divide 
Add Logical 
Subtract Logical 

Load Positive (Long) 
Load Negative (Long) 
Load and Test (Long) 
Load Complement (Long) 
Halve (Long) 
Load Rounded (Extended to Long) 
Multiply (Extended) 
Multiply (Long to Extended) 
Load (Long) 
Compare (Long) 
Add Normalized (Long) 
Subtract Normalized 
Multiply (Long) 
Divide (Long) 
Add Unnormalized (Long) 
Subtract Unnormalized (Long) 

Load Positive (Short) 
Load Negative (Short) 
Load and Test (Short) 
Load Complement (Short) 
Halve (Short) 
Load Rounded (Long or Short) 
Add Normalized (Extended) 
Subtract Normalized (Extended) 
Load (Short) 

--F------lVIn8rrrorrlC---+---Remarks 

SPM 
BALR 
BCTR 
BCR 
SSK 
ISK 
SVC 

MVCL 
CLCL 

LPR 
LNR 
LTR 
LCR 
NR 
CLR 
OR 
XR 
LR 
CR 
AR 
SR 
MR 
DR 
ALR 
SLR 

LPDR 
LNDR 
LTDR 
LCDR 
HDR 
LRDR 
MXR 
MXDR 
LDR 
CDR 
ADR 
SDR 
IvlDR 
DDR 
AWR 
SWR 

LPER 
LNER 
LTER 
LCER 
HER 
LRER 
AXR 
SXR 
LER 

~ uu __ 

Appendix IV: Machine Instruction Mnemonic Operation Codes 401 



RR Format 

Operation 

Code 

39 
3A 
3B 
3C 
3D 
3E 
3F 

RX Format 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 

4E 
4F 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
SA 
5B 
5C 
5D 
5E 
SF 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 

402 

Name 

Compare (Short) 
Add Normalized (Short) 
Subtract Normalized (Short) 
Multiply (Short) 
Divide (Short) 
Add Unnormalized (Short) 
Subtract Unnormalized (Short) 

Store Halfword 
Load Address 
Store Character 
Insert Character 
Execute 
Branch and Link 
Branch on Count 
Branch on Condition 
Load Halfword 
Compare Halfword 
Add Halfword 
Subtract Halfword 
Multiply Halfword 

Convert to Decimal 
Convert to Binary 

Store 

AND 
Compare Logical 
OR 
Exclusive OR 
Load 
Compare 
Add 
Subtract 
Multiply 
Divide 
Add Logical 
Subtract Logical 

Store (Long) 

Multiply (Long to Extended) 
Load (Long) 
Compare (Long) 
Add Normalized (Long) 
Subtract Normalized (Long) 
Multiply (Long) 
Divide (Long) 
Add Unnormalized (Long) 
Subtract Unnormalized (Long) 

Mnemonic 

CER 
AER 
SER 
MER 
DER 
AUR 
SUR 

STH 
LA 
STC 
IC 
EX 
BAL 
BCT 
BC 
LH 
CH 
AH 
SH 
MH 

CVD 
CVB 

ST 

N 
CL 
o 
X 
L 
C 
A 
S 
M 
D 
AL 
SL 

STD 

MXD 
LD 
CD 
AD 
SD 
MD 
DD 
AW 
SW 

! ~ 
Remarks 



I rue Format 

~op~ratio~ ~Name~ __________________ _ 

I Coae 

I 

I 

I 
I 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 
7F 

Store (Short) 

Load (Short) 
Compare (Short) 
Add Normalized (Short) 
Subtract Normalized (Short) 
Multiply (Short) 
Divide (Short) 
Add Unnormalized (Short) 
Subtract Unnormalized (Short) 

RS,SI, and S Format 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
8A 
8B 
8C 
8D 
8E 
8F 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 

AO 
Al 
A2 
A3 
A4 
AS 
A6 

Set System Mask 

Load PSW 
Diagnose L 
Wr"i te Direct 
Read Direct 
Branch on Index High 
Branch on Index Low or Equal 
Shift Right Single Logical 
Shift Left Single Logical 
Shift Right Single 
Shift Left Single 
Shift Right Double Logical 
Shift Left Double Logical 
Shift Right Double 
Shift Left Double 

Store Multiple 
Test under Mask 
Move (Immediate) 
Test and Set 
AND (Immediate) 
Compare Logical (Immediate) 
OR (Immediate) 
Exclusive OR (Immediate) 
Load Multiple 

Start I/O, Start I/O Fast Release 
Test I/O 
Halt I/O, Halt Device 
Test Channel 

+_____~l:l_e_~()_rli~u __ f--~~~a-r-k-s-----------+ 
I 

STE 

LE 
CE 
AE 
SE 
ME 
DE 
AU 
SU 

SSM 

LPSW 

WRD 
RDD 
BXH 
BXLE 
SRL 
SLL 
SRA 
SLA 
SRDL 
SLDL 
SRDA 
SLDA 

STM 
TM 
MVI 
TS 
NI 
CLI 
OI 
XI 
LM 

SIO,SIOF 
TIO 
HIO,HDV 
TCH 

I 

I 

See Note 2 

See Note 1 

Appendix IV: Machine Instruction Mnemonic Operation Codes 403 



I 
RS,SI, and S Format 

Operation Name Mnemonic Remarks 

Code 

A7 
A8 
A9 
AA 
AB 
AC store Then AND System Mask STNSM 
AD Store Then OR system Mask STOSM 
AE 
AF 

BO Connect Page CTP 
Bl Load Real Address LRA 
B2 (First byte of two-byte operation codes) 
B3 
B4 Insert Page Bits IPB 
B5 Set Page Bits SPB 
B6 Store Control STCTL 
B7 Load Control LCTL 
B8 Load Frame Index LFI 
B9 
BA 
BB 
BC 
BD Compare Logical Characters under Mask CLM 
BE Store Characters under Mask STCM 
BF Insert Characters under Mask ICM 

SS Format 

CO 
Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CA 
CB 
CC 
CD 
CE 
CF 

DO 
Dl Move Numerics MVN 
D2 Move (Characters) MVC 
D3 Move Zones MVZ 
D4 AND (Characters) NC 
D5 Compare Logical (Characters) CLC 
D6 OR (Characters) OC 
D7 Exclusive OR (Characters) XC 
D8 Retrieve status and Page RSP 
D9 
DA 
DB 
DC Translate TR 

404 



I SS Format 

tOpera~-~---------~---------------------
I Code 

DD 
DE 
DF 

EO 
El 
E2 
E3 
E4 
E5 
E6 
E7 
W8 
E9 
EA 
EB 
EC 
ED 

I: 
I 

FO 
Fl 
F2 

I
I ~~ 

F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

NOTES 

Translate and Test 
Edit 
Edit and Mark 

Shift and Round Decimal 
Move with Offset 
Pack 
Unpack 

Zero and Add Decimal 
Compare Decimal 
Add Decimal 
Subtract Decimal 
Multiply Decimal 
Divide Decimal 

TRT 
ED 
EDMK 

SRP 
MVO 
PACK 
UNPK 

ZAP 
CP 
AP 
SP 
MP 
DP 

Remarks 
-----

1. Under the System/370 architecture, the machine operations for Halt Device and Halt 
I/O ar.e as follows: 

\1001 1110 XXXX xxxol Halt I/O HIO 

\1001 1110 XXXX XXXII Halt Device HDV 

(X denotes an ignored bit position) 

Appendix IV: Machine Instruction Mnemonic Operation Codes 405 



2. Under the System/370 architecture, the machine operations for Start I/O and Start 
I/O Fast Release are as follows: 

1001 1100 XXXX XXXO Start I/O 

1001 1100 XXXX XXX1 Start I/O Fast Release 

(X denotes an ignored bit position) 

406 

Operation 
Code 

AE 
BA 
BB 
9DOl 
B202 
B203 
B204 
B205 
B206 
B207 
B208 
B209 
B20A 
B20B 
B20D 

B210 
B211 
B212 
B213 
B2l5 
B2lB 
B2lC 
B21D 
B2lE 
B2lF 

Name 

Signal Processor 
Compare and Swap 
Compare Double and Swap 
Clear I/O 
Store CPU ID 
Store Channel ID 
Set Clock 
Store Clock 
Set Clock Comparator 
Store Clock Comparator 
Set CPU Timer 
Store CPU Timer 
Set PSW Key from Address 
Insert PSW Key 
Purge Translation 

Lookaside Buffer 
Set Prefix 
Store Prefix 
Store CPU Address 
Reset Reference Bit 
Clear Page 
Deconfigure Page 
Disconnect Page 
Make Addressable 
Make Unaddressable 
Store Capacity Counts 

SIO 

SIOF 

Mnemonic 

SIGP 
CS 
CDS 
CLRIO 
STIDP 
S'IIDC 
SCK 
STCK 
SCKC 
STCKC 
SPT 
STPT 
SPKA 
IPK 

PTLB 
SPX 
STPX 
STAP 
RRB 
CLRP 
DEP 
DCTP 
MAD 
MUN 
STCAP 



Operation 

ACTR 

ASO 

AIF 

ANOP 

ccw 

CNOP 

COM 

COpy 

CSECT 

DC 

DROP 

DS 

EJECT 

END 

ENTRY 

Name Ent!:Y 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

Any symbol or 
blank 

Any symbol or 
blank 

or 

Must not be present 

Any symbol or 
blank 

Any symbol or 
blank 

A sequence symbol 
or blank 

Any symbol or 
blank 

A sequence symbol 
or blank 

A sequence symool 
or blank 

A sequence symbol 
or blank 

Page of GC33-4010-0 

Rev ised September 29, 1972 

By TNL GN33-8148 

Appendix V: Assembler Instructions 

Operand Entry 

A SETA expression 

A sequence symbol 

A logical expression enclosed 
in parentheses, immediately 
followed by a sequence symbol 

Must not be present 

Four operands, separated by 
commas 

TWo absolute expressions, 
separated by a comma 

Must not be present 

Not required 

One ordinary symbol 

Must not be present 

One or more operands, separated 
by commas 

One to sixteen absolute 
expressions, separated by 
corrunas; or blank 

One or more operands, separated 
by commas 

Must not be present 

Must not be present 

A relocatable expression or 
blank 

One or more relocatable symbols, 
separated by commas 

Appendix V: Assembler Instructions 407 



408 

Operation 

EQIJ 

EX'IRN 

GSLA 

GBLC 

IC'I'L 

ISE'Q 

LCLA 

LCLB 

LCLC 

LTORG 

MACR01 

t1END" 

MEXIT1 

MNO'I'E 

Name Entry Operand Entry 

An ordinary symbol One to operands, 
or a variable 
symbol 

A sequence symbol 
or blank 

One or more relocatable symbols, 
separated by commas 

~ust not be present One or more variable symbols 
that are to be used as SErf 
symbols, separated by commas 2 

~ust not be present One or more variable symbols 
tha tare to be used as S El' 
symbols, separated by corrmas2 

~ust not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas 2 

Must not be present One to three decimal values, 
separated cy commas 

~ust not be present Two decimal values, separated 
by commas 

Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by com~as2 

Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by corrmas2 

~ust not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas 2 

Any symbol or 
blank 

Not required 

Must not be present Not required 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

Not required 

Not required 

A severity code followed by a 
comma (this much is optional) 
followed by any combination of 
characters enclosed in 
apostrophe s 

lean be used only as part of a macro definition. 

2SET symbols can be defined as subscripted SET symbols. 



ORG 

PRINT 

PUNCH 

REPRO 

SETA 

SETB 

SETC 

SPACE 

START 

TITLE 

OS Any symbol or 
only blank 
DOS A sequence symbol 
only or blank 

~ .•• i~eq~~~qe symool 
o:r:blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A sequence symbol 
or blank 

A SErA symbol 

A SETB symbol 

A SErC symbol 

A sequence symbol 
or blank 

Any symbol or 
blank 

A string of alpha­
meric characters. 
A variable symbol. 
A combination of 
the above. 
A sequence symbol. 
A blank 

A relocatable expression or 
blank 
A relocatable expression or 
blank 

One or more 
byace_ 

One to three operands 

One to eighty characters, 
enclosed in apostrophes 

One or more operands ,separated 
by a comma 

Not required 

An arithmetic expression 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

A 0 or a 1, a SETB symbol, or a logical 
expression enclosed in parentheses 

A type attribute, a character 
expression, a substring 
notation, or a concatenation 
of character expressions 
and substring notations. 

A decimal self-defining 
te rm or blank 

A self-defining term or blank 

One to 100 characters, enclosed 
in apostrophes 

Appendix V: Assembler Instructions 409 



410 

USING 

WXTRN 

Model Statements3 

Prototype Statement2 

Macro-Instruction 
Statement 2 

Assembler Language 
Statement3 

A sequence symbol 
or blank 

A sequence syrobol 
or blank 

Name Entry 

An ordinary symbol, 
a variable symbol, 
a sequence 
symbol, a combina­
tion of variable 
symbols and other 
characters that is 
equivalent to a 
symbol, or blank 

A symbolic para­
meter or blank 

An ordinary symbol, 
a variable symbol, 
a sequence symbol, 
a combination of 
variable symbols 
and other charac­
ters that is equiv­
a lent to a symbol, 2 

or blank 

An ordinary symbol, 
a variable symbol, 
& sequence symbol, 
a combination of 
variable symbols 
and other charac­
ters that is equiv­
alent to a symbol, 
or blank 

1 Can only be used as part of a macro definition. 

Operand Entry 

An absolute or relocatable 
expression followed by 1 to 16 
absolute expressions, separated 
by commas 

One or more relocatable 
symbols, separated by commas 

Operand Entry 

Any combination of char­
acters (including 
variable symbols) 

Zero or more operands 
that are symbolic parameters, 
separated by commas 

Zero or more positional 
operands and/or zero 
or more keyword operands 
separated by commas 2 

Any combination of charac­
ters (including variable 
symbols) 

2 Variable symbols appearing in a macro instruction are replaced 
by t.heir values before the macro instruction is processed. 

3 Restrictions on the use of variable symbols 
in statement fields are included in the descriptions 
for each individual statement and in nRules 
for Model Statement Fields" (See J4B) • 



Appendix VI: Summary of Constants 

r------T---------T--------T--------T--------------T---------T---------T--------T---------, 
iii I I I NUfvt..BER I I I I 
I I I I LENGTH I I OF CON- I I I TRUN- I 
I I IMPLICIT I ,MODI-, ,STANTS ,RANGE ,RANGE ,CATION/ I 
I I LENGTH I ALIGN-, FIER I SPECIFIED I PER I FOR EX- I FOR I PADDING I 
I TYPE I (BYTES) I MENT I RANGE I BY I OPERAND I PONENTS I SCALE , SIDE I 

r------+---------+--------+--------+--------------+---------+---------t--------t---------~ 
I C 'as I byte ,.1 to I characters ,one, I I right I 
I 'needed I I 256 (1), "I I I 
t------+---------+--------+--------t--------------+---------+---------t--------+---------~ 
I X 'as ,byte, .1 to ,hexadecimal ,multi- , 1 ,left I 
I ,needed, , 256 (1), digits I ple' I I , 
t------+---------+--------+--------+--------------+---------+---------+--------+---------i 
I B I as I byte ,.1 to I binary I multi- , I I left I 
, I needed I I 256 ,digits 'pIe I I I I 
t------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
,F I 4 I word 1.1 to I decimal I multi- I -85 to I -187 tol left (3) I 
I I , , 8 , digits I pIe , +75 I +346 I I 
t------+---------+--------+--------+--------------+---------+---------t--------+---------~ 
i H i 2 i half i· 1 to i decimal I multi- I -85 to I -187 I left (3) I 
I I I word ,8 , digits I pIe , +75 ,+346, . I 
t------+---------+--------+--------+--------------t---------t---======+==-====-+=--------1 
I E I 4 I word 1.1 to I decimal I multi- I -85 to I ,right (3) I 
I I I I 8 I digits I pIe I +75 ,0-14 I I 
r------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
I D 18 I double 1 .. 1 to I decimal ! multi- I -85 to I I right (3) I 
I I ,word I 8 , digits , pIe , +75 ,0-14 I , 
~------+---------+--------+--------+--------------+---------t---------t--------+---------i 
I L 116 I double 1. 1 to I decimal I mUlti- 1-85 to 10-28 I right (3) I 
I I I word I 16 ,digi ts I ple I +75 I I I 
~------4---------+_-------t_------_+------------_+---------+---------+--------t---------1 
I P I as I byte 1.1 to ,decimal 'multi- I I ,left I 
I I needed I I 16 I digits I pIe I I I I 

r------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
I Z I as ,byte 1·1 to I decimal I multi- I I I left I 
I 'needed I , 16 , digits I pIe I , I I 
t------+---------+--------+--------+--------------+---------+---------+--------t---------~ 
I A I 4 ,word, .1 to I any 'multi- I I ,left I 

I 4 (2) I expression I pIe I ! ! ! 

I V I 4 I word I 3,4 I relocatable 'multi- , I left I 
, , I I I symbol I pIe I I , I 
t------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
,S I 2 I half I 2 only lone absolute I multi- I , I I 
! I I word I I or relocatab-I pIe I I I I 
I I I I I Ie expression I I I I I 
, I I I I or two absol-I I I I I 
I I I I I ute express- I I , , I 
, I , I I ions: I I I I I 
I , I I I exp ( exp) I I I I I 

t------+---------+--------+--------+--------------+---------+---------t--------+--------~~ 
I Y I 2 I half 1·1 to I any I multi- I I I left I 
I I I word I 2 (2) I expression I pIe I I ! I 

~------~---------~--------~--------~--------------~---------~---------~--------~---------~ I (1) In a DS assembler instruction C and X type constants can have length specification I 
I to 65535. I 
I (2) Bit length specification permitted with absolute expressions only. Relocatable A- I 
I type constants, 3 or 4 bytes only; relocatable y-type constants, 2 bytes only. I 
I (3) Errors will be flagged if significant bits are truncated or if the value specified t 
I cannot be contained in the implicit length of the constant. I 
L ____________________________________________________________________ J 

Appendix VI: Summary of Constants 411 



This page left blank intentionally. 



Appendix VII: Summary of Macro Facility 

The four charts in this Appendix summarize the macro facility described in Part IV of 
this publication. 

Chart 1 indicates which macro language elements can be used in the name and operand 
entries of each statement. 

Chart 2 is a summary of the expressions that can be used in macro instruction statements. 

Chart 3 is a summary of the attributes that may be used in each expression. 

Chart 4 ~s a s~~mary of the variablesyrobols· that can be used in each expression. 

Appendix VII: Summary of Macro Facility 413 



~ 

I-' 

"'" 
Variable Symbal. 

Global SET Symbals local SET Symbol. System Variable Symbols 
Attributes 

Symbolic \ ···r---·--,-----·-

&SYSLI ST I &SYSPARM 1 &SYSDATE 1 &SYSTIME 
Sequence 

Statement Parameter r----+----+---+------I----+----+--- 1 I length I Scaling llnteg~:~~ seTA Type seTB SETC &SYSNDX 1 &SYSECT seTC SETA SETB Nu'."~_--=:_~~~ .. 
MACRO 

t- -+---+-----+------+----+------1- - 1-1--------1----1------1-----
Pratotype 
Statement 

Name 
Operand 

.. - 1 --+-------1-----

----+------4----

._- -+---- - -I-- --.... --+.-.-GBLA ± I 0, •• 0' 
~~lB --_-4IrO_pe __ ran_d-rI ____ -+ ____ -r __ __ 

GBlC Operand 

t- I I-+----I-- 1 1 1----+----1=----1 I I I 

t- II-+---- I I I r--r--tl· I I l-.... :[=l=t~~:~~~=~~~~-=: 
--.--.~-.--.-.. -... ---4--------

lClA Operand 
--t------t------t-----+---+---+----+------

lClB Operand 
-_.--+--+- --------+-----.-.-.~ .. .. _ .. _._----+---_. -> - ---"._-+----
lClC 

Model 
Statement 

SETA 

Nome I Nome 
Operation Operation 
Operand Operand 

Operand2 I ~;:nd 

Name I Name 
Operation Operation 
Operand Operand 

Operand3 I Operand9 

Name Name 
Operation Operation 
Operand Operand 

Name 
Operand3 Operand 

f------t- --+-----
Nome I I I Nome SETB 

Operand6 I Operan~ Operand Operand6 Operand6 Operand 

Name Name 
Operation Operation 
Operand Operand 

Operanl Operand 

Operand6 Operand6 

f--SETC --+-. Name 
Operand 

Name 
Operand7 I OperandS OperandS r-_------r0pe".n~~~eran~~-+--- Operand I Operand _._ .. _-+---"----_ ....... -._."----------......... . 

f--- f--
Nome Name Name Name 

Operation Operation Operation 
Operand Operand Operand I Operand I Operand 

-+-----+----~----t-----+---- ... ---+__----I--- .... --_J 

Operand I Operand --t- r operan:-+~~~:_:_~p"r:-~ 
Operand5 Operand5 Operand5 

.--1=----.-.---.-- ----.---1---... -- .. --

Operon; Operanl 

I Operand4 10perand6 I Operani Operand4 Operand5 I Operand5 

Operand Operand Operand 

Operand6 I Operand6 
AIF 

Operand 

Operand lOperand 1 Op~~ +--7:-~;-t;::~m;::~-~....... . ---.-.. -.. -..... -+-- Operand
5 

Ie peran 

~ _ I I Operand61 Operand61 a..~~~ __ 1<?~~~:1~~":'_~_~rand4Iopera~_~p=~a_nd_~_+ ______ +--- Ope rand4 Operand5 I Operand5 

AGO 

~.-----t--t- 1 

ACTR I Operand2 I Operand operand31 Operand
2 

IOperand I operandJ.~pera~_~~lc:~~~~: 
ANOP 

f---------+----+----+--_+__-+--------I-------I-----.---l-

MNOTE Operand Operand Operand Operand Operand 1 Operand Operand Operand 

MEND 

Operand2 I Operani 

------+------I--------_+___ ·1 
Operand I Operand Operand I Operand IOperand 

Name 
Operand 

.----+- ----+ --------+----- 1 --i------+-----+---
Name 

t-··-·· +--------+ .. --------- 1 +.-----t-----_+__-l 
Name 

.--~ ... ---.---... ---------+----_+_______l_---

~_~~~~_F~~a;~-}-~~~r~n-~ O!~and I Opera~~-L-_-t- L-.-L----.--J------1 
Nome 
Name ~

MEXIT _-1-- ____ . 

j::: ~:,:: I ~::l~;~~,r~~[=-r--r~::: r--+---+---+-- I -}------l----.. --
Operand I Operand 

Name 

I nner I Name I Name 
Macro Operand Operand 

Name Name 
Operand Operand 

Assembler Name 

Name 
Operand 

Nome 
Operand 

Name lName 1 Nome 

~~r~~~. c:~~:~__~perand 
Name 

LangUaue ~peratian 
Stat~ment Operand 
~- --.. -

Name Nome I ~::e J Name 1 Name 

g~:~~~n g~:~~i:~~~;~i:n _~;~~~g:::;i~_~_L_ .L__ __ J ____ .1. _____ .1 ___ ----1-____ _, L ___ --..L..... __ --'-___ -'--__ ----j 

1. Variable symbols in macro-instructions are replaced by their values before processing. 
2. Only if value is self-defining term. 
3. Converted to arithmetic +1 or +0. 
4. Only in character relations. 
5. Only in arithmetic relations. 
6. Only in arithmetic or character relations. 
7. Converted to unsigned number. 
8 . Converted to charac ter 1 or O. 
9. Only if one to ten decimal digits :!Jr9!'!lR!!l! 

...-.. ....... 



Page of GC33-401O-0 

Revised September 29,1972 

By TKT. GN33-8148 

Chart 2. Conditional Assembly Expressions 

Expression Arithmetic Expressions Character Expressions Logical Expressions 

Ican contain • Self-defining terms • Any combination of 
characters enclosed 
in apostrophes 

• A 0 or a 1 

• Length, scaling, 
integer, count, and 
number attributes 

• SETA and SETB 
symbols1 

• SETC symbols whose 
values are a decimal 
self-defining term~ 

• &SYSPARM if its 
value is a deciwal 
self-defining term 

• Symbolic parameters 
if the corresponding 
operand is a decimal 
self-defining term 

• &SYSLIST~) if the 
corresponding 
operand is a decimal 
self-defining term 

• &SYSLIST ~,m) if the 
corresponding operand 
is a decimal self­
defining term 

• &SYSNDX 

• Any variable symbol 
enclosed in 
apostrophes 

• A concatenation of 
variable symbols and 
other characters 
enclosed in 
apostrophes 

• A type attribute 
reference 

• SETB symbols 

• Arithmetic 
relations 1 

• Character 
relations 2 

It Values must be: 

I 
I 
I 
12 

I 

DOS from 0 throuqh 99,999,999 

A character relation consists of two character expressions 
related by the operator GT, LT, EQ, NE, GE, or LE. Type 
attribute notation and Substring notation may also be 
used in character relations. The maximum size of the character 
expressions that can be compared is 255 characters. If the two 
character expressions are of unequal size, the the smaller one 
will always compare less than the larger. 

Appendix VII: Summary of Macro Facility 415 



Page of GC33-4010-0 

Revised September 29, 1972 

By T!\iJ CN33-8148 

416 

Expression 

Operations 
are 

Range 
of values 

May be 
used in 

Arithmetic Expressions 

+, - ~nary and bi­
nary), *, and Ii 
parentheses per­
mitted 

• SETA operands 

Character Expressions 

Concatenation, with a 
period (.) 

o through 255 
characters 

• SETC operands 

• Arithmetic relations • Character relations 2 

• Subscripted SET 
symbols 

• &SYSLIST subscript (s) 

• Substring notation 

• Sublist notation 

Logical Expressions 

AND, OR, and NOT 
parentheses per­
mitted 

o (false) or 
1 (true) 

• SETB operands 

• AIF operands 

1 An arithmetic relation consists of two arithmetic expressions 
related by the operators GT, LT, EQ, NE, GE, or LE. 

2 A character relation consists of two character expressions 
related by the operator GT, LT, EQ, NE, GE, or LE. Type 
attribute notation and Substring notation may also be 
used in character relations. The maximum size of the character 
expressions that can be compared is 255 characters. If the two 
character expressions are of unequal size, the the smaller one 
will always compare less than the larger. 



Chart 3. Attributes 

Attribute Notation 

Type T' 

ngth L' 

Scaling S' 

Integer I' 

K' 

er N' 

Can be used ~~th: 

Ordinary Symbols de­
fined in open code; 
symbolic parameters 
insije macro defini­
tions; &SYSLIST(m), 
&SYSLIST 

Ordinary Symbols de-
fined in open code; 
symbolic pa rame te r s 
inside macro defini-
tions; &SYSLIST (rn) , 
and &SYSL 1ST (m, n) in-
side macro definitions 

Ordinary Symbols de-
fined in open code; 
symbolic parameters 
insije macro defini-
tions; &SYSL 1ST (m) , 
and &SYSLIST (m,n) in-
side macro definitions 

Ordinary Symbols de-
fined in C?pen code; 
symbolic parameters 
insije macro defini-
tions; &SYSLIST(m) , 
and &SYSLIST (m, n) in-
side macro definitions 

Symbolic parameters, 
&SYSL 1ST (m) ru"id 
&SYSL 1ST (m,n) inside 
macro definitions 

Symbolic parameters, 
&SYSLIST and 
&SYSLIST(m) inside 
macro definitions 

Can be used only if 
type attribute is: 

Can be used in 

~ay always be used) 1. SETC operand 
fields 

Any letter except 
M,N,O,T and U 

H,F,G,D,E,L,K,P, 
and Z 

H,F,G,D,E,L,K,P, 
and Z 

Any letter 

2. Character 
relations 

Arithmetic 
expressions 

Arithmetic 
expressions 

Arithmetic 
expressions 

Arithmetic 
ex-pressions 

Any letter Arithmetic 
expressions 

NOTE: There are definite restrictions in the use of these attributes (see L1~ • 

Appendix VII: Summary of Macro Facility 417 



Chart 4. Variable Symbols (Part I of 2) 

iVariable 
!Symbol 

Symbolic 1 

parameter 

! 
!SETA 

SETB 

SETC 

&SYSNDX' 

&SYSECT' 

&SYSLIST' 

&SYSLIST 
(n) , 

&SYSLIST 
(n, m) 1 

Declared by: Initialized, 
or set to: 

Value changed 
by: 

prototype 
statement 

Corresponding (Constant 
macro instruc- throughout 
tion operand definition) 

LCLA or GBLA 
instruction 

LCLB or GBLB 
instruction 

LCT ... C or GBLC 
instruction 

o 

o 

String of 
length 0 
(null) 

The assembler Macro 
instruction 
index 

The assembler Control 
section in 
which macro 
instruct ion 
appears 

SE'IA 
instruction 

SETB 
instruction 

SETC 
instruction 

(Constant 
throughout 
defini tion i 
unique for 
each macro 
instruct ion) 

(Constant 
throughout 
definition; 
set by CSECT, 
DSECT, START, 
and COM) 

The assembler Not applicable Not applicable 

The assembler Corresponding (Constant 
macro instruc- throughout 
tion operand definition) 

1Can te used only in macro definitions. 

418 

May be used in: 

• Arithmetic 
expressions 
if operand 
is decimal 
.self-defining term 

• Character 
expressions 

• Arithmetic 
expressions 

• Character 
expressions 

• Arithmetic 
expressions 

• Character 
expressions 

• Logical 
expressions 

• Arithmetic 
expressions 
if value is 
decimal self­
defining term 

• Character 
expressions 

• Arithmetic 
expressions 

• Character 
expressions 

• Character 
expressions 

• N'&SYSLIS'I in 
ari thmetic 
expressions 

It Arithmetic 
expressions 
if operand 
is decimal 
se If-de fining 
term 

• Character 
expre s sions 



Chart 4. Variable Symbols cont. (Part 2 of 2) 

I&SYSPARM 

I 

I&SYSTIME 

I 
&SYSDATE 

Declared by: 

PARN field 

I Initialized, 
lor set to: 

User defl.ned 
lor null 

I 

The assembler System time 

The assembler System date 

1Can be used only in macro definitions. 

Value changed 
by: 

Constant 
throughout 
assembly 

I Constant 

I
i throughout 
assembly 

I Constant 
throughout 

I assembly 

! May be used in: I 

I I 
i • Arithmetic I 

I 
expression 
if value is 
decimal self- I 
defining term I 

• Character 
expression 

I • Character I expression 

• Character 
expression 

Appendix VII: Sununary of Bacro Facility 419 



This page left blank intentionally. 



This glossary has three rrain types cf definitions that 
affly: 

• TO the assembler language in ~articular (usually 
distinguished by reference to the words -assemcler-, 
- ass em1:ly -, etc.) 

• To programming in general 

• To data processing as a whole 

If you do not understand the meaning of a data processing 
term used in any of the definitions below, refer to the IE~ 
Data processing Glossary, Order No. GC20-1699. 

IBM is grateful to the American National Standards Institute 
(ANSI) fer permission to re~rint its definitions from the 

American National Standard Vocabulary for Information 
processing, which was prepared by Subcommittee X3~5 on 
Terminology and Glossary of Arrerican National Standards 
Commi ttee X3. 

ANSI definitions are preceded by an asterisk C*>. 

Glossary 

Glossary 421 



*absolute address: A pattern of characters 
that identifies a unique storage location 
without further modification. 

acsolute expression: An asserrbly-tirne 
expression whose value is not affected by 
program relocation. An absolute expression 
can represent an absolute address. 

absolute term: A term whose value is not 
affected cy relocation. 

*address: 
1. An identification, as refresented by a 

name, label, or number, for a register, 
location in storage, or any ether data 
source or destination such as the 
location of a station in a 
communication network. 

2. Loosely, any part of an instruction 
that specifies the location of an 
operand for the instruction. Synonymous 
with address reference. 

3. See absolute address, base address, 
explicit address, implicit address, 
symbolic address. 

address constant: A value, or an expression 
representing a value, used in the 
calculation of storage addresses. 

address reference: Same as address (2). 

alignment: The positioning of the beginning 
of a machine instruction, data constant, or 
area on a proper boundary in virtual 
s'torage. 

alphabetic character: In assembler 
programming, the letters A through Z and $, 
" 0). 

*alphameric: Same as alphanumeric. 

*alphanumeric: Pertaining to a character set 
that contains letters, digits, and usually, 
other characters, such as punctuation 
marks. Synonymous with alphameric. 

*AND: A logic operator having the property 
that if P is a statement, Q is a statement, 
R is a statement, ••• , then the AND of P, Q, 
R, ••• is true if all statements are true, 
false if any staterrent is false. 

arithmetic expression: A conditienal 
assembly expression that is a combination 
of arithmetic terms, arithmetic e~erators, 
and paired parentheses. 

arithmetic operator: 
1. In assembler programming, an eferator 

that can be used in an absolute or 
relocatable expression, cr iI: an 
arithmetic expression to indicate the 

422 

actions to be ferformed on the terns in 
the expression. the arithmetic 
operators allowed are: +, -, *, I. 

2. See binary operator, unary operator. 

arithmetic relation: Two arithmetic 
~pressions separated by a relational 
operator. 

*arithmetic shift: 
1. A shift that does not affect the sign 

position. 
2. A shift that is equivalent to the 

multiplication of a number by a 
positive or negative integral power of 
the radix. 

arithmetic term: A term that can be used 
only in an arithmeitc expression. 

array: In assembler frogramming, a series 
of one or more values represented by a SET 
symbol. 

*assemble: To prepare a machine language 
program from a symbolic language program by 
substituting absolute operation codes for 
symbolic operation codes and absolute or 
relocatable addresses for symbolic 
addresses. 

*assembler: A computer program that 
assembles. 

assembler instruction: 
1. An assembler language sta tement that 

causes the assembler to perform a 
specific operation. Unlike the machine 
instructions, the assembler 
instructions are not translated into 
machine language. 

2. See also conditional assembly 
instruction, macro processing 
instruction. 

assembler language: A source language that 
includes symbolic machine language 
statements in which there is a one-to-one 
correspondence with the instruction formats 
and data formats of the computer. The 
assembler language also includes statements 
that represent assembler instructions and 
macro instructions. 

~~mb1Y-.iim~: The time at which the 
assembler translates the symbolic machine 
language statements into their object code 
form ~achine instructions). The assemtler 
also processes the assembler instructions 
at this time, with the exception of the 
conditional assembly and macro processing 
instructions, which it processes at 
pre-assembly time. 



attribute: A characteristic of the data 
defined in a source module. The assembler 
assigns the value of an attribute to the 

. §yrnJ:p_l_~_ITI_g~J:'Q._iQs_t.J:'.lJ~1:_ion _Q~J:LJ:'.a_OO_'th_a_t_. 
represents the data. Synonymous with data 
attri1::ute. 

*base: 
-1-.--A number that is multiplied by itself 

as many times as indicated by an 
exponent. 

2. See floating-point base. 

*base address: A given address frorr which an 
absolute address is derived by corrbination 
with a relative address. NOTE: In 
assembler programming, the relative address 
is synonymous with displacement. 

base register: A register that contains the 
base address. 

*binary: Pertaining to the number 
representation system with a radix of two. 

*binary digit: In binary notation, either of 
the characters, 0 or 1. 

binary operator: An arithmetic o~erator 
having two terms. The binary o~erators 
that can be used in absolute or relocatable 
expressions and arithmetic ex~ressions are: 
addition (+), subtraction (-), 
mul tiplica tion (*), and division (j). 
Contrast with unary operator. 

*bit: A binary digit. 

bit-length modifier: A subfield in the DC 
assembler instruction that determines the 
length in bits of the area into which the 
defined data constant is to be assembled. 

bit string: A string of binary digits in 
which the position of each binary digit is 
considered as an independent unit. 

blank: In assembler programming, the same 
as space character. 

*blank character: Same as space character. 

boundary: In assembler prograrr,rring, a 
location in storage that marks the 
beginning of an area into which data is 
assembled. For example, a fullword boundary 
is a location in storage whose address is 
divisible by four. The other boundaries 
are: doubleword (location divisible by 
eight), halfword (location divisible by 
two), and byte (location can be any 
number). See also alignment. 

*branch: Loosely, a conditional jump. 

buffe!: An area of storage that is 
. .t_e.In-p_ox_aril-¥--I-e.s_eLv.ed_..Lor....us.e..in...-pe.rf.o.rming 
an input/output operation, and into which 
data is read or from which data is written. 

*bug: A mistake or malfunction. 

byte: 
1. A sequence of adjacent binary digits 

operated upon as a unit and usually 
shorter than a computer word. 

2. The representation of a character; 
eight binary digits (bits) in 
System/37 o. 

call; 
*-1-.--To transfer control to a specified 

closed subroutine. 
2. See also macro call. 

* character: 
~~-letter, digit, or other symbol that 

is used as part of the organization, 
control, or representation of data. A 
character is often in the form of a 
spatial arrangement of adjacent or 
connected strokes. 

2. See blank character, character set, 
special character. 

char~£!er e~!~ssion: A character string 
enclosed by apostrophes. It can be used 
only in conditional assembly instructions. 
~he enclosing apostrophes are not part of 
the value represented. Contrast with quoted 
string. 

character relation: Two character strings 
separated by a relational operator. 

character set: 
*1. A set of unique representations called 

characters, for example, the 26 letters 
of the English alphabet, 0 and 1 of the 
Boolean alphabet, the set of signals in 
the Morse code alphabet, the 128 
characters of the A~II alphabet. 

2. In assembler progr&LlIIling, the 
alphabetic characters A through Z and 
$, #, @i the digits, 0 through 9. and 
the special characters + - * / , ( ) = 
• • & and the blank character. 

*character~triQq: A string consisting 
solely of characters. 

closed subroutine: A subroutine that can be 
store~at one place and can be linked to 
one or more calling routines. Contrast with 
open subroutine. 

Glossary 423 



*code: 
-l-.--A set of unambigous rules specifying 

the way in which data ~ay be 
represented, for example, the set of 
correspondences in the standard code 
for information interchange. 

2. In data processing, to represent data 
or a computer program in a symbolic 
form that can be accepted by a data 
processor. 

3. To write a routine. 
4. See condition code, object code, 

operation code. 

*coding: See symbolic coding. 

collating sequence: An ordering assigned to 
a set of items, such that any twc sets in 
that assigned order can be collated. 

*column: A vertical arrangerrent of 
characters or other expressions. 

comments statement: A statement used to 
include information that may be helpful in 
running a job or reviewing an output 
listing. 

*complernent: 
1. A number that can be derived from a 

specified number by subtracting it from 
a second specified number. For 
example, in radix notaticn, the second 
specified number may be given power of 
the radix or one less than the given 
power of the radix. The negative of the 
number is often represented by its 
complement. 

2. See radix complement, twos complement. 

complex relocatable expression: A 
relocatable expression that contains two or 
more unpaired relocatable terms or an 
unpaired relocatable term preceded by a 
minus sign, after all unary operators have 
been resolved. A complex relccatable 
expression is not fully evaluated until 
program fetch time. 

*computer program: A series of instructions 
or statements, in a form acceptable to a 
computer, prepared in order to achieve a 
cert ain result. 

*computer word: A sequence of bits or 
characters treated as a unit and capable of 
being stored in one computer location. 

concatenation character: The period (.) 
that is used to separate character strings 
that are to be joined together in 
conditional assembly processing. 

424 

condition code: A code that reflects the ~ 
result of a previous input/output, ~ 
arithmetic, or logical operation. 

conditio~~~embly: An assembler facility 
for altering at pre-assembly time the 
content and sequence of source statements 
that are to be assembled. 

~nditiona1-~~~bl~E!ession: An 
expression that the assembler evaluates at 
pre-assembly time. 

conditional assembly instruction: An 
assembler instruction that performs a 
conditional assembly operation. Conditional 
assembly instructions are processed at 
pre-assembly time. They include: the LCLA, 
LCLB, LCLC, GBLA, GBLB, and the GBLC 
declara tion instructions; the SETA, SE'IB, 
and SETC assignment instructions; the AIF, 
AGO, ANOP, and ACTR branching instructions. 

* condi tional j!!!!!2: A jump tha t occurs if 
specified criteria are met. 

*~onstant: See figurative constant. 

continuation line: A line of a source 
statement into which characters are entered 
when the source statement cannot be 
contained on the preceding line or lines. 

control progf~~: A program that is designed ~ 
to schedule and supervise the performance 
of data processing work by a computing 
system. 

~ntrol secti2!!: That part of a program 
specified by the programmer to be a 
relocatable unit, all elements of which are 
to be loaded into adjoining virtual storage 
locations. Abbreviated C~~CT. 

control statement: See linkage editor 
control stateroent~ 

2QEY: To reproduce data in a new location 
or other destination, leaving the source 
data unchanged, although the physical forrr 
of the result ~ay differ from that of the 
source. For example, to copy a deck of 
cards onto a magnetic tape. 

count attribute (K'): ~n attribute that 
gives the number of characters that would 
be required to represent the data as a 
character string. 

* counter: 
~--A-device such as a register or storage 

location used to represent the numter 
of occurrences of an event. 

2. See instruction counter, location 
counter. 



CPU: Central processing unit. 

CSECT: See control section. 

data attribute: Same as attribute. 

data constant: See figurative constant. 

~debuq: To detect, locate, and remove 
mistakes from a routine or malfunctions 
f rOrn a comput er • 

~decimal: pertaining to the nurrber 
representation systere with a radix of ten. 

declare: To identify the variable syrebols 
to be used by the asserrbler at pre-assembly 
time. 

~delimiter: A flag that separates and 
organizes items of data. 

~device: See s,torage device. 

~dictionary: See external syrr.bcl dictionary. 

dimension: The maximum number of values 
that can be assigned to a SET symbol 
representing an array. 

dimensioned SET symbol: A SET syrebcl, 
representing an array, followed by a 
decimal number enclosed in parentheses. A 
dimensioned SET symbol must be declared in 
a global (GBLA, GBLB, or GBLC) or local 
~CLA, LCLB, LCLC) declaration instruction. 

displacement: 
.1. Same as relative address. 
2. In assembler programming, the 

difference in bytes between a symbolic 
address and a specified base address. 

doubleword: A contiguous sequence cf bits 
or characters which comprises two computer 
words and is capable of being addressed as 
a unit. 
NOTE: In assembler programming, the 
doubleword has a length of eight bytes and 
can be aligned on a doubleword boundary (a 
location whose address is divisible by 
eight). Contrast with fullword, halfword. 

tdummy: Pertaining to the characteristic of 
having the appearance of a specified thing 
but not having the capacity to function as 
such. For example, a dummy control 
section. 

dummy control section: A control section 
that the assembler can use to format an 

area of storage without producing any 
object code. Synonymous with dummy section. 

aummV-sect."lon:-S-ame-as--aummy-contro r­
section. 

duplication factor: In assembler 
programming, a value that indicates the 
number of times that the data specified 
immediately following the duplication 
factor is to be generated. For example, the 
first subfield of a DC or DS instruction is 
a duplication factor. 

*dynamic storage allocation: A storage 
allocation technique in which the location 
of computer progr~~s and data is determined 
by criteria applied at the moment of need. 

EBCDIC: Extended binary coded decimal 
interchange code. 

entry name: A name within a control section 
that defines an entry point and can be 
referred to by any control section. 

.entry point: In a routine, any place to 
which control can be passed. 

entry symbol: 
1. An ordinary symbol that represents an 

entry naroe (identified by the ENTRY 
assembler instruction) or control 
section name (defined by the CSECT or 
START assembler instruction) • 

2. See also external symbol. 

~: (equal to) See relational operator .. 

~error message: An indication that an error 
has been detected. Contrast with warning 
message. 

ESD: External syrobol dictionary. 

excess sixty-four binary notation: In 
assembler prograrrming, a binary notation in 
which each exponent of a floating-point 
number E is represented by the binary 
equivalent of E plus sixty-four. 

execution time: The time at which the 
machine instructions in object code form 
are processed by the central processing 
unit of the computer. 

explicit address: ~n address reference 
which is specified as two absolute 
expressions. One expression supplies the 
val ue of a base register, and the other 
supplies the value'of a displacement. The 
assembler assembles both values into the 
object code of a machine instruction. 

Glossary 425 



exponent: 
*1. In a floating-point representation, the 

numeral, of a pair of numerals 
representing a number, that indicates 
the power to which the base is raised. 

2. See also excess sixty-four binary 
notation. 

exponent modifier: A subfield in the 
operand of the DC assembler instruction 
that indicates the power of ten by which a 
number is to be multiplied before being 
assembled as a data constant. 

expr es s ion: 
1. One or more operations represented by a 

combination of terms, and paired 
parentheses. 

2. See absolute expression, arithmetic 
expression, complex relocatable 
expression, relocatable expression. 

3. See also character expression. 

extended binary coded decimal interchange 
code: A set of 256 characters, each 
represented by eight bits. 

external name: A name that can be referred 
to by any control section or separately 
assembled module; that is, a control 
section name or an entry name in another 
module. 

external reference: A reference to a symbol 
that is defined as an external name in 
another module. 

external symbol: 
1. An ordinary symbol that represents an 

external reference. An external symbol 
is identified in a source module by the 
EXTRN or WXTRN assembler instruction, 
or by the V-type address constant. 

2. Loosely, a symbol contained in the 
external symbol dictionary. 

3. See also entry symbol. 

external symbol dictionary: Contrel 
information associated with an object or 
load module which identifies the external 
symbols in the module. Abbreviated ESD. 

EXTRN: External reference. 

fetch: 
*~o locate and load a quantity of data 

from storage. 
2. In the Operating System (OS), to obtain 

load modules from auxiliary storage and 
load them into virtual storage. See 
also loader (1). 

426 

3. 

4. 

5. 

In the Cisk Operating System (COS), to ~ 
bring a program phase into virtual ~ 
storage from the core image library for 
immediate execution. 
A control program routine that 
accompli shes (1), (2), or (3). See alsc 
loader (2). 
The name of the system macro 
instruction (FETCH) use1 to accomplish 
(1), (2), or (3). 

* figE!~ ti ve~2!!~!~!!!: A preassigned, fixed, 
character string with a preassigned, fixed, 
data name in a particular programming 
language. 
NCTE: In assembler programming, the two 
types of figurative constant are: 

a. data and address constants defined 
by the DC assembler instruction. 

b. symbols assigned values by the EQU 
assembler instruction. 

flag: 
*1. Any of various types of indicators used 

for identification. For example, in 
assembler programming, the paired 
apostrophes that enclose a character 
expression of a quoted string. 

2. In assembler programming, to indicate 
the occurrence of an error. 

* floating-point base: In floating-point 
representation, the fixed positive integer ~ 
that is the base of the power. NOTE: In ~ 
assembler programming, this base is 16. 

fullword: A contiguous sequence of tits or 
characters which comprises a computer word 
and is capable of being addressed as a 
unit. 
NCTE: In assembler programming, the 
fullword has a length of four bytes and can 
be aligned on a fullword boundary (a 
location whose address is divisible by 
four). Contrast with doubleword, halfword. 

GE: (greater than or equal to) See 
relational operator. 

gene!~t~: 
*1. To produce a program by selection of 

subsets from a set of skeletal coding 
under the control of parameters. 

2. In assembler programming, to produce 
assembler language statements from the 
model statements of a macro definition 
when the definition is called by a 
macro instruction. 

global scope: Pertaining to that part of an 
assembler program that includes the body of 
any macro definition called from a source 



rood ule and t.1-)e open code portion of the 
source module. Contrast with local scope. 

qlobal variai:le symbol: 
1. A variable symbol that can be used to 

communicate values between macro 
definitions and between a macro 
defini tion and open code. 

2. Contrast'with local variable symbol. 

§1: (greater than) See relational operator. 

~halfword: A contiguous sequence of bits or 
characters which comprises half a com~uter 
word and is capable of being addressed as a 
unit. 
NOTE: In assembler programming, the 
halfword has a length of two bytes and can 
be aligned on a halfword boundary (a 
location whose address is divisible by 
twO). Contrast with doubleword, fullword. 

hexadecimal: Pertaining to a number system 
with a radix of sixteen; valid digits range 
from 0 through F, where F represents the 
highest units position (15). 

immediate data: Data specified in an SI 
type machine instruction that represents a 
value to be assembled into the object code 
of the machine instruction. 

implicit address: An address reference 
which is specified as one absclute or 
relocatable expression. An implicit address 
must be converted into its explicit 
base-displacement form before it can be 
assembled into the object code of a machine 
instruction. 

index register: 
*1. A register whose content rray be added 

to or subtracted from the operand 
address prior to or during the 
execution of a cOff;puter instruction. 

2. In assembler programming, a register 
whose content is added to the cperand 
or absolute address derived frcm a 
combination of a base address with a 
displacement. 

inner macro instruction: A macro 
instruction that is specified, that is, 
nested inside a macro definition. Contrast 
with outer macro instruction. 

*instruction: 
1. A statement that specif-ies an cpera tion 

and the values or locations of its 
operands. 

2. See assembler instruction, conditional 
assembly instruction, rrachine 
instruction, macro ;nst~ctJLo~~ 

* instruction counter: 'A counter that 
indicates the location of the next computer 
instruction to be interpreted. 

instruction statement: See instruction (1). 

integ~r attribute J!..2.: An attribute that 
indicates the number of digit positions 
occupied by the integer portion of 
fixed-point, decimal, and floating-point 
constants in their object code form. 

* inter~E!: To stop a process in such a Yay 
it can be resumed. 

* I/O: An abbreviation for input/output. 

* jQb cQn!rol-2ta!§!:~!: A statement in a job 
that is used in identifying the job or 
describing its requirements to the 
operating system. 

* jump: 
1. A departure fram the normal sequencE of 

executing instructions in a computer. 
2. See conditional jump. 

keyword: In asserobler programming, an 
ordinary symbOl containing up to seven 
characters. A keyword is used to identify a 
parameter, called a keyword parameter, in a 
macro prototype statement and the 
corresponding rracro instruction ope rand. 

keyword operand; An operand in a macro 
instruction that assigns a value to the 
corresponding keyword parameter declared in 
the prototype statement of the called macro 
definition. Keyword operands can be 
specified in any order, because they 
identify the corresponding parameter by 
keyword and not by their position. 
NOTE: In assembler programming, the 
specification of a keyword operand has the 
format: a keyword followed by an equal sign 
which, in turn, is followed by the value to 
be assigned to the keyword parameter. 

keywoE9_E~!~~!~!: A symbolic parameter in 
'Which the symbol fcllowing the ampersand 
represents a keyword. 
NOTE: In assembler programming, the 
declaration of keyword parameter has the 
format: a keyword parameter followed ty an 
equal sign which, in turn, is followed by a 
standard @efault) value. 

Glossary 427 



label: 
*~One or more characters used to identify 

a statement or an item of data in a 
computer program. 

2. In assembler programming, the entry in 
the name field of an assembler language 
statement. The three main types of name 
entry are: 
a. the ordinary symbol which 

represents a label at assembly 
time. 

t. the sequence symbol which 
represents a label at pre-assembly 
time and is used as a conditional 
assembly branching destination. 

c. the variable symbol that 
represents a pre-assembly time 
label for conditional assembly 
processing and from which ordinary 
symbols can be generated to create 
assembly-time labels. 

* language: 
1. A set of representations, conventions, 

and rules used to convey infcrwation. 
2. See machine language, object language, 

source language. 

~g: (less than or equal to) See relational 
operator. 

* l"ength: See word length. 

length attribute (L'): An attribute that 
gives the number of bytes to be cccupied by 
the object code for the data represented, 
such as machine instructions, constants, or 
areas. 

length field: The operand entry cr subentry 
in machine instructions that specifies the 
number of bytes at a specific address that 
are affected by the execution of the 
instruction. 

length modifier: A subfield in the operand 
of the DS Gr DC assembler instruction that 
determines the length in bytes of the area 
to be reserved or of the area intc which 
the data defined is to be assembled. 

*level: The degree of subordination in a 
hierarchy. 

library macro definition: A macro 
definition stored in a program library. 
The IBM-supplied supervisor and data 
management macro definitions ~uch as those 
called by GET or PUT) are examples of 
library macro definitions. A library macro 
definition can be included at the beginning 
of a source module: it then becomes a 
source macro definition. . 

428 

* link~g~: In programming, coding that 
connects two separately ceded routines. 

linkage editor: A processing program that 
prepares the output of language translators 
for execution. It combines separately 
produced object or load mcdules; resolves 
symbolic cross references among them; 
replaces, deletes, and adds control 
sections, and generates overlay structures 
on request; and produces executable code (a 
load module) that is ready to be fetched 
into virtual storage. 

linkage editor control statement: An 
instruction for the linkage editor. 

literal: A symbol or a quantity in a source 
program that is itself data, rather than a 
reference to data. Contrast with figurative 
constant. 

literal pool: An area in storage into which 
the assembler assembles the values of the 
literals specified in a source module. 

* load: In programming, to enter data into 
storage or working registers. 

!2gg-IDQdule: The outFut of the linkage 
editor; a program in a format suitable for 
loading into virtual storage for execution. 

loader: 
1. Under the Operating System (OS), a 

processing program that combines the 
basic editing and loading functions of 
the linkage editor and program fetch in 
one job step. It acceFts object modules 
and load modules created by the linkage 
editor and generates executable code 
directly in virtual storage. The loader 
does not produce load modules for 
program libraries. 

2. Under the Disk Operating System (rOS), 
a supervisor routine that retrieves 
program phases from the core image 
library and leadstherr into virtual 
storage. 

local scoee: Fertaining to that part of an 
assembler program that is either the body 
of any macro definition called from a 
source module or the open code portion of 
the source module. Contrast with global 
scope. 

!2ill variable symbol: 
1. A variable symbol that can be used to 

communicate values inside a macro 
definition or in the open code portion 
of a source module. 



2. Contrast with global variable symbol. 

~location: Any place in which data rray be 
stored. 

location counter: A counter whose value 
indicates the address of data assembled 
from a machine instruction or a ccnstant, 
or the address of an area of reserved 
storage, relative to the beginning of a 
control section. 

~logic shift: A shift that affects all 
positions. 

logical expression: A conditional assembly 
expression that is combination of lcgical 
terms, logical operators, and paired 
parentheses. 

logical operator: In assembler programming, 
an operator or pair of operators that can 
be used in a logical expression tc indicate 
the action to be performed on the terms in 
the expression. The logical operatcrs 
allowed are: A~u, OR, NOT, ANC NOT, fuld OR 
NOT. 

logical relation: 
1. A logical term in which two expressions 

are separated by a relational operator. 
The relational operators allowed are: 
EQ, GE, GT, LE, LT, and NE. 

2. See arithmetic relation, character 
relation. 

logical term: A term that can be used only 
in a logical expression. 

loop: 
~1. A sequence of instructions that is 

executed repeatedly until a terminal 
condition prevails. 

2. See loop counter. 

loop counter: In assembler prcgrarrrring, a 
counter to prevent excessive looping during 
conditional assembly processing. 

LT: (less than) See relational operatcr. 

rmachine code: An operation code that a 
machine is designed to recognize. 

machine instruction: 
r1. An instruction that a machine can 

recogni ze and execute. 
2. In assembler prograrmring, (locsely) the 

sYmbOlic macbine larigua-ge sta tements 
which the assembler translates into 
machine language instructions. 

*machine language: A language that is used 
directly by a machine. 

macro: 
~oosely, a macro definition. 
2. See also macro definition, macro 

generation, rracro instruction, macro 
prototype statement. 

~~all: Same as reacro instruction. 

macro definition: A set of assembler 
language statements that defines the name 
of, format of, and conditions for 
generating a sequence of assembler language 
statements from a single source statement. 

* macro expansion: Same as macro genera tiona 

macro generation: An operation in which the 
assembler produces a sequence of assemtler 
language statements by processing a macro 
definition called by a macro instruction. 
Macro generation takes place at 
pre-assembly time. Synonymous with macro 
expansion. 

macro instruction: 
1. An instruction in a source language 

that is equivalent to a specified 
sequence of machine instructions. 

2. In assembler programming, an assemtler 
language statement that causes the 
assembler to process a predefined set 
of statements (called a macro 
definition) • The staterrents normally 
produced from the macro definition 
replace the macro instruction in the 
source program. Synonymous with macro 
call. 

!!!acro . in~:!:!21L~2f~rand: An operand that 
supplies a value to be assigned to the 
corresponding symbolic parameter of the 
macro definition called by the macro 
instruction. This value is passed into the 
macro definition to be used"' in its 
processing. 

macro libraEY: See program library. 

macro prore~~ing instruction: An assembler 
instruction that is used inside macro 
definitions and processed at pre-assemtly 
time. These instructions are: MACRO, MENt, 
MEXIT, and MNOTE. 

macro prototype: Same as macro prototype 
statement. 

macro prototype statement: An assemtler 
language statement that is used to give a 
name to a macro definition aria: to provide a 
model (prototype) for the macro instruction 
that is to call the macro definition. 

Glossary 429 



main storage: 
* 1. 'The general purpose storage cf a 

computer. 
Usually, main storage can be accessed 
directly by the operating registers. 

2. See-also real storage, virtual storage. 

* mask: A pattern of characters that is used 
to control the retention or elimination of 
portions of another pattern cf characters. 

mnemonic operation code: An operation code 
consisting of mnemonic symbols that 
indicate the nature of the operaticn to be 
performed, the type of data used, or the 
format of the instruction perforrring the 
operation. 

mnemonic symtol: 
* 1. A symtol chosen to assist the human 

memory, for example, an abbreviation 
such as "mpy" for "multiply". 

2. See also mnemonic operation ccde. 

value from the entry in the name field of ~ 
the macro instruction that corresponds to ~ 
the macro prototype staterrent. 

NE: (not equal to) See relational operator. 

* nest: To imbed subroutines or data in other 
sutroutines or data at a different 
hierarchical level such that the different 
levels of routines or data can be executed 
or accessed recursively. 

nesting level: In assembler programming, 
the level at which a term (or 
subexpression) appears in an expression, or 
the level at which a macro definition 
containing an inner macro instruction is 
processed by the assembler. 

* no OP: An instruction that specifically 
instructs the computer to do nothing, 
except to proceed to the next instruction 
in sequence. 

model statement: A statement in the body of * NO!: A logic operator having the property 
a macro definition or in open code from that if P is a statement, then the NOT of F 
which an ass embler language sta terrent can is true if P is false, fa lse if F is true. 
be generated at pre-assembly time. Values 
can be substituted at one or more points in 
a model statement; one or more identical or 
different statements can be generated from 
the same model statement under the control 
of a conditional assembly loop. 

* module: 
1. A program unit that is discrete and 

identifiable with respect to compiling, 
combining with other units, and 
loading, for example, the inFut to, or 
output from, an asserrbler, ccrrpiler, 
linkage editor, or executive routine. 

2. See lOad module, object rrodule, source 
module. 

name:. 
-1-.--A 1- to 8-character alphameric term 

that identifies a data set, a control 
statement, an instruction statement, a 
program, or a cataloged procedure. The 
first character of the name rrust be 
alphabetic. 

2. See entry name, external name. 
3. See also name entry, label. 

name entry: Usually synonymous with label 
(2). However, the name entry of a model 

statement can be any string cf characters 
at pre-asseml:ly tirre. 

name field parameter: A symbolic parameter 
that is declared in the name field of a 
macro prototype staterrent. It is assigned a 

430 

* null character: A control character that 
serves to accomplish wedia fill or time 
fill, for example, in A~ClIthe all zeros 
character (not numeric zero). Null 
characters may be inserted into or removed ~ 
from a sequence of characters without , 
affecting the meaning of the sequence, tut 
control of equipment or the format may te 
affected. Abbreviated NUL. Contrast with 
space character. 

null character strirrg: Same as null string. 

null string,: 
* 1. The notion of a string depleted of its 

entities, or the notion of a string 
prior to establishing its entities. 

2. In assembler programming, synonymous 
with the null character string. 

number attrig!!te (N~: 
1. An at~ribute of a symbolic parameter 

that gives the number of sutlist 
entries in the corresponding macro 
instruction operand. 

2. An attribute that gives the number of 
positional operands in a macro 
instruction (specified as N'&SYSLIST) 
or an attribute that gives the numter 
of sublist entries in a specific 
positional operand (specified as 
N' &SYSLIST (TI) ) • 

* obje£~£ode: Output from an assembler which 
is itself executable rrachine code or is ~ 



suitable for processing to produce 
executatle machine code. 

* object language: The language to which a 
statement is translated. The macnlne 
language for the IBM Systern/370 is an 
cbject language. 

* object module: A module that is the output 
of an'assembler or compiler and is input to 
a linkage editor. 

* Object program: A fully compiled cr 
assemtled program that is ready tc be 
loaded into the computer. Contrast with 
source program. 

open code: That portion cf a source mcdule 
that lies outside of and after any source 
macro definitions that may be specified. 

ocen subroutine: A subroutine that is 
inserted into a routine at each place it is 

the assembler language. Ordinary syrntols 
are also used to represent operation codes 
for assembler language instructions. An 
ordinary symbol has one alphabetic 
-characterT6TIow-eaoy--zero to- seveii-----
alphameric characters. 

outer macro instruction: A macro 
instruction that is specified in open code. 
Contrast with inner macro instruction. 

* overflow: That portion of the result of an 
operation that exceeds the capacity of the 
intended unit of storage. 

* overlay: The technique of repeatedly using 
the same blocks of internal storage during 
different stages of a progzam. When one 
routine is no longer needed in storage, 
another routine can replace all part of it. 

used. Contrast with closed subroutine. * padding: A technique used to fill a tlock 
NOTE: In assewbler progra~~ing, a macro with dummy data. 
definition is an open subroutine, tecause 
the statements generated from the 
definition are inserted into the source 
module at the point of call. 

* operand: 
1. That which is operated upon. 
2. See keyword operand, positional 

operand. 

* oFerating system: Software which controls 
the executi·on of computer programs and 
which may provide scheduling, debugging, 
input/output control, accounting, 
compilation. storage assignrr.ent, data 
management, and related services. 

* oFeration code: A code that represents 
specific opera tions. 

* operator: 
1. In the description of a process, that 

which indicates the action to be 
performed on the operands. 
NOTE: In assembler prograrrrring, 
operands are referred to as terms. 

2. See arithmetic operator, binary 
operator, logical operator, unary 
operator. 

3. See also concatenation character. 

* OR: A logic operatur having the property 
that if P is a staterrent, Q is a statement, 
R is a statement, ••• , then the OR of P, Q, 
R ••• is true if at least one staterrent is 
true, false if all statements are false. 

ordinary symbOl: A symbol that represents 
an asserntly-timevalue when used in the 
name or operand field of an instruction in 

paired parentheses: A left parenthesis and 
a right parenthesis that belong to the sarre 
level of nesting in an expression; the left 
parenthesis must appear before its matching 
right parenthesis. If parentheses are 
nested within paired parentheses, the 
nested parentheses must be paired. 

paired relocatable terms: 'l'wo relocatatle 
terms in an expressicn with the same 
relocatability attribute that have 
different signs after all unary operations 
have teen performed. Paired relocatable 
terms have an absolute value. 

* parameter: 
1. A variable that is given a constant 

value for a specific purpose or 
process. 

2. See keyword parameter, name field 
parameter, positional parameter, 
symbolic parameter. 

point of substitution: Any place in an 
assembler language statement, particularly 
a model statement, into which values can be 
substituted at pre-assembly timeQ Variatle 
symbols represent points of substitution. 

positi2naLopeE~nd: An operand in a macro 
instruction that assigns a value to the 
corresponding positional parameter declared 
in the prototype statement of the called 
macro definition. 

positi2~par~me!~E: A symbolic parameter 
that occupies a fixed position relative to 
the other positional parameters decleir-Ed in 
the same macro prototype statement. 

Glossary 431 



pre-assemtly time: The time at which the 
assembler process reacro definiti0ns and 
performs conditional assembly orerations. 

private code: An unnamed control section. 

* program: 
1. A series of actions propcsed in order 

to achieve a certain result. 
2. Loosely, a routine. 
3. To design, write, and test a program as 

in (1). 
4. Loosely, to write a routine. 
S. See computer program, object rrogram, 

sour ce progr am. 

program fetch time: 
1. The time at which a program (in the 

form of load modules or rhases) is 
loaded into virtual storage for 
execution. 

2. See also fetch (2), fetch (3). 

* Frogram library: A collection of available 
computer programs and routines. 

programmer macro definition: Loosely, a 
source macro definition. 

prototype statement: Sarre as rracrc 
prototype statement. 

* pushdown list: A list that is constructed 
and maintained so that the next iterr to be 
retrieved and removed is the most recently 
stored item in the list, that is, last in, 
first out. Synonymous with pushdown stack. 

pushdown stack: SaITe as pushdown list. 

guoted string: A character string enclosed 
by apostrophes that is used in a macro 
instruction operand to represent a value 
that can include clanks. The enclcsing 
apostrophes are part of the value 
represented. Contrast with character 
expression. 

* radix: In positional re~resentation, that 
integer, if it exists, by which the 
significance of the digit place must be 
multiplied to give the significance of the 
next higher digit place. For example, in 
decimal notation, the radix of each place 
is ten. 

* radix complement: A complerrent obtained by 
sut:tracting each digit froIT, one less than 
its radix, then adding one to the least 
significant digit, executing all carries 

432 

required. For exarople, tens complement in ~ 
decimal notati0~. +w~s ccrrplement in binary ~ 
notation. 

read-Qnly: A type of access to data that 
allows it to read but not modified. 

real storage: The storage of a IB~ 

Systemj370 computer from which the central 
processing unit can directly obtain 
instructions and data and to which it can 
directly return results. Real storage can 
occupy all or part of main storage. 
Contrast with virtual storage. 

recursive: Fertaining to a process in which 
each step makes use of the results of 
earlier steps. 
NOTE: In assembler prograrrming, the inner 
macro instruction that calls the macro 
definition within which it is nested 
performs a recursive call. 

* register: 
1. A device capable of storing a specified 

amount of data such as one word. 
2. See base register, index register. 

relation: The comparison of two expressions 
to see if the value cf one is equal to, 
less than, or greater than the value of the 
other. 

relational operator: An operator that can ~ 
be used in an arithmetic or character 
relation to indicate the comparison to be 
performed between the terms in the 
relation. The relaticnal cperators are: EQ 
(equal) , GE (greater than or equal to), GT 
(9 rea ter than) I LE (less to or equ al to) , 

LT (less than) , NE (not equa I to). 

* relati ve address: The number that specifies 
the-difference-between the absolute address 
and the base address. Synonymous with 
displacement. 

relo'£2!.abili!Y_~tt!:ib!!te: An attribute that 
identifies the control section to which a 
relocatable expression belongs. Two 
relocatable expressions have the same 
relocatability attribute if the unpaired 
term in each of them belongs to the same 
control section. 

!:eloc2table e?fEression: An assembly-time 
express~on whose value is affected by 
program reloc~tion. A relocatat:le 
expression can represent a relocatable 
address. 

relocatable term: A term whose value is 
affected by progra.m relocation. 





* §tr=-: 
1. 

2 • 

.§Rb:W 'wi 

con~.~~~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; .............................................. .. COffir_ 

2. 

sub in E; 
aft • 
exp::t::=: _ 

ind":::::;:~-:·:;::::::::::::::::::::::::~~~~~~~~ ____________________ :::::::::::::::::::::::: o f '--"""'= 
syml: 

sub 

S~}L~~~~~;=================== ____ ============::::::::::::::::::: eit~1~.~~~~;;~~ ........................................ ~~~~~~~~~~~~::::::::::::::: sepcc~:::;;;;;;;;;;;;;~~;;;;~~~~~~~~~==============================::::::::::::::::::::: par~~~~~~~~::~~~~~~~~~================================== sUC:= posj,.i:=-=-=-__________________________________________________________________________ __ 
and 
ind~,.L-________________________________________________________________________________ _=== 
SOO~lI~ ________________________________________ =================================; 
cy t== 

sub 
1. 

2. 

su b:::::: 

su 

assee=~~::~~;;;;~~;;;;;;;;;;;;;;;;;;;;;;;;~~===================================================== syml:: 
the 

434 



* relocate: In computer programming, to move 
a routine from one portion of storage to 
another and to adjust the necessary address 
references so that the routine, in its new 
10catTon;-can-te -executea.----------------

relocation: The modification cf address 
constants to compensate for a change in 
origin of a module, program, or control 
section. 

* rounding: Same as roundoff. 

roundoff: To delete the least significant 
digit or digits of a numeral and to adjust 
the part retained in accordance with some 
rule. 

*routine: 
1. An ordered set of instructions that may 

have some general or frequent use. 
2. See sutroutine. 

scale modifier: A sutfield in the cperand 
of the DC asserrbler instruction that 
indicates the number of digits in the 
object code to be occupied by the 
fractional portion of a fixed-point or 
floating-point constant. 

scaling attribute: An attribute that 
indicates the number of digit positions 
occupied ty the fractional portion of 
fixed-point, decimal, and floating-point 
constants in their object ccde fcrrr. 

scope: 
1. In assembler programming, that part of 

a source prograrr in which a variable 
symbol can communicate its value. 

2. See global scope, local scope. 

self-defining term: An absolute term whose 
value is implicit in the specification of 
the term itself. 

sequence symbOl: A syrrbol used as a 
branching label for conditional asserobly 
instructions. It consists of a period 
followed by one to seven alphaffieric 
characters, the first of which must be 
alphabetic. 

SET symtol: A variable symbol used tc 
communicate values during conditional 
assembly processing. It must be declared to 
have either a global or local sccpe. 

severity code: A code assigned by the 
assemtler to an error detected in a source 
module. A severity code can also be 
specified and-assigned to an error ffiessage 
generated by the MNOTE instruction. 

* sign_Ei~: A binary digit occupying the sign 
position. 

sig~position: A position, normally located 
a:t.one enaor-a--nUIDet'a:l, enete -con"i:ai"frsan 
indication of the algebraic sign of the 
number. 

* significant digit: A digit that is needed 
for a certain purpose, particularly one 
that must be kept to preserve a specific 
accuracy or precision. 

* so~rc~ languag~: The language from which a 
statement is translated. 

source macro definition: A macro definition 
Included in a-source module. A source 
macro definition can be entered into a 
program library; it then becomes a library 
macro definition. 

source module: A sequence cf statements in 
the assembler language that constitutes the 
input to a single execution of the 
assembler. 

* sour~~_PfQgf~~: A computer program written 
in a source language. Contrast with object 
program. 

* space_£nara£!~f: A normally nonprinting 
graphic character used to separate words. 
Synonymous with blank character. Contrast 
with null character. 

* sEeci~l_fharaf!~f: A graphic character that 
is neither a letter, ncr a digit, nor a 
space character. 

* statement: 
~-In-computer prograrr.ming, a meaningful 

expression or generalized instruction 
in a source language. 

2. See job control statement, linkage 
editor control statement, comments 
statement, model statement. 

* storage: 
1. Fertaining to a device into which data 

can be entered, in which they can be 
held, and from which they can te 
retrieved at a later time. 

2. Loosely, any device that can store 
data. 

3. See main storage, real storage, virtual 
storage. 

* storage allocaticn: 
~ The-assignment of blocks of data to 

specified blocks of storage. 
2. See dynamic stcrage allocatione 

Glossary 433 



* storage protection: An arrangement for 
preventing access to storage for either 
reading, or writing, or both. 

storage stack: Loosely, a pushdown list. 

* string: 
1. A linear sequence of entities such as 

characters or physical elements. 
2. See bit string, character string, null 

string. 

sublist: A macro instruction o~erand that 
contains one or more entries se~arated by 
commas and enclosed in parentheses. 

* subroutine: 
1. A routine that can be part of another 

routine. 

substring: 

1. A character string that has teen 
extracted from a character expression. 

2. See also substring notation. 

substring notation: P. character expression 
immediately followed by two subscripts, 
separated by a co~ma, and enclosed in 
parentheses. It can be used only in 
conditional assembly instructions. The 
value of the first subscript indicates the 
position of the character within the 
character expression that begins the 
substring. The value of the second 
subscript represents the number of 
characters to be extracted from the 
character expression. 

2. See closed subroutine, o~en subroutine. *~ch: A device or ~rogramming technique 
for making a selection, for example, a 
conditional jump. subscript: One or more elements, enclosed 

in parentheses, that appear immediately 
after a variable syrrbol or character 
expression. The value of a subscri~t 
indica tes a position in the array or string 
of values represented by the variable 
symbol or character expression. 

subscripted £SYSLIST: The system variable 
symbol &SYSLIST immediately followed by 
either one subscri~t or two subscri~ts 
sefa,rated by commas, and enclosed in 
parentheses. The value of the first 
subscript indicates the position cf a 
positional operand in a macro instruction 
and the value of the second subscript 
indicates the position of the entry in the 
sublist of the positional operand indicated 
by the first subscript. 

subscripted SET symbol: 
1. A SET syrnbQI that is immediately 

followed by a subscript. A subscripted 
SET symbol must be declared with an 
allowable dimension before it can be 
used. The value of the subscri~t 
indicates the position of the value 
given to the subscripted symbcl in the 
array represented by the SET symbol. 

2. See also dimensioned SET symbcl. 

subscripted symbolic parameter: A symbolic 
~arameter that is irrmediately followed by a 
subscript. The value of the subscript 
indicates the position of the entry in the 
sublist in the macro instruction c~erand 
referred to by the symbolic parameter. 

substitution: The action taken by the 
assembler when it replaces a variable 
symbol wi th a val ue, for example, during 
the expansion of a rracro definiticn. 

434 

* symbol: 
1. A representation cf something ty reason 

of relationshi~, association, or 
convention. 

2. See mnemonic symbol, crdinary symbol, 
sequence symbol, SET symbol, variatle 
symbol. 

* symbolic address: An address expressed in 
symbols convenient to the computer 
programmer. 

* ~mboli£-£29.!!!9: Coding tha t use s machine 
instructions with symbolic addresses. 
NCTE: In assembler programming, any 
instruction can contain symbolic addresses. 
In addition, any other portion of an 
instruction may be represented with 
symbols, for example, labels, registers, 
lengths and immediate data. 

~~bolic-par~~~!~!: 
1. A variable symbol declared in the 

prototype statement of a macro 
definition. A symbolic parameter is 
usually assigned a value from the 
corresponding cperand in the macro 
instruction that calls the macro 
definition. 

2. See also keyword parameter, name field 
parameter, positional parameter. 

system loader: See loader (2) • 

syst~.l!1~!2_gefin.!ti2!!: Loosely, a library 
macro definition supplied by IB~. 

system_~~!2_!!!§!!~£tion: Loosely, a macro 
instruction that calls for the processing 
of an IEM-supplied library macro 
definition, fer example, the ATT'ACH macro. 

~~~~_yar.!~£.!e sYmbo.!: A variable symbol ~ 
that always begins with the characters

&SYS. The system variable symbols do not
have to be declared, because the asserrbler
assigns them read-only values autcrratically
according to specific rules.

term:
-1-.--The smallest part of an expression that

can te assigned a value.
2. See absolute term, arithmetic term,

logical term, relocatable terrr.

*translate: To transform statements from one
language to another without significantly
changing the meaning.

*truncate: To terminate a co~putaticnal
process in accordance with sorre rule, for
example, to end the evaluation of a power
series at a specified term.
NOTE: In assembler programming, the object
code for data constants can be truncated by
the a ssem1:le r •

*twos complement: The radix complement in
binary notation.

tYEe attribute (T'): An attribute that
distinguishes one form of data from
another, for example, fixed-pcint ccnstants
from floating-point constants or machine
instructions from macro instructicns.

unary operator: An arithrretic operator
having only one term. The unary operators
that can 1:e used in absolute cr
relocatable, and arithmetic expressions
are: positive (+) and negative (-).

unnamed control section: A control section
that is initiated in one of the following
three ways:
1. By an unnamed START instructicn.
2. By an unnamed CSECT instruction, if no

unnamed START instruction appears
bef ore the CSECT instruction.

3. By any instruction that affects the
setting of the location ccunter.

* variable: A quantity that can assume any of
a given-set of values.

variable symbol: In assembler programming,
a .. -syml:o±, -ug-ed-··in··macre- ~·ndconditional­
assembly processing, that can assume any of
a given set of values. It consists of an
ampersand (&) followed by one to seven
alphameric characters, the first of which
must be alphabetic.
NOTE: All variable symbols must be declared
except the system variable symbols.

virt!!~.!_~!.9!:!!9~: Address srace appearing to
the user as real storage from which
instructions and data are mapped into real
storage locations. The size of virtual
storage is limited only by the addressing
scheme of the computing system rather than
by the actual number of real storage
locations. Contrast with real storage.

warning message: An indication that a
possible error has been detected. The
assembler does not assign a severity code
to this type of error. Contrast with error
message.

word:
* -1-.--A character string or bit string

considered as an entity.
* 2. See computer word.

3. See doubleword, fullword, halfword.

* word length: A measure of the size of a
word, usually specified in units such as
characters or binary digitss
NOTE: In assembler programming, the word,
or fullword, contains 32 bits (binary
digits) or 4 bytes.

wrap-~~nd: Loosely, the overr~ow of the
location counter when the value assigned to
it exceeds 224-1

Glossary 435

This page left blank intentionally.

(see period)
+ (see plus sign)
& (see ampersand)
&SYSDATE (system variable symbol) 279

attributes of 279,325
global scope of 279

&SYSECT (system variable symbol) 280
attributes of 280,325
local scope of 279
in nested macros 316

&SYSLIST (system variable symbol) 281
attributes of 283,325
local scope of 279
in nested macros 314
notation allowed 281
number attribute of 283
subscripts for 281,282

&SYSNDX (system variable symbol) 284
attributes of 284,325
local scope of 279
in nested macros 315

&SYSPARM (system variable symbol) 284
attributes of 285,325
global scope of 279
specified in job control

language 285
under CMS 285-286

&SYSTIME (system variable symbol) 286
attributes of 287,325
global scope of 279

$ (see dollar sign)
* (see asterisk)

(see minus sign)
/ (see slash)
, (see comma)
t (see number sign)
Q) (see at sign)

(see apostrophe)
= (see equal sign)

absolute address 84
absolute expression 57,56
A-con (see address constant,

A-type)
ACTR instruction 370
address

absolute 84
base 85,133
base displacement format of 86
definition 84
explicit 87
implicit--87
reference 84
relocatable 84
relocatability of 85

address constant

A-type 194
location counter
. reference in 194

defined by DC instruction 162
External Symbol Dictionary
entry for 116

location counter reference in
Q-type 200

for external dummy section
S-type 196
V-type 198
Y-type 194

location counter
reference in 194

address reference 84
(see also explicit address;
implicit address; symbolic
address)

addressinq
between source modules 147
within source modules 133

AGO instruction 369
AIF instruction 367
alignment 75

ALIGN option 75
boundary 76,166
of constants and areas 166,76
forcing of 204,76
of machine instructions 75

ALIGN option 75,204
ALOGIC option 376
alphabetic character

of character set 34
in symbols 37,35

alphameric (see character)
alternate statement format

for macro instruction
statement 291

for macro prototype statement 256
number of continuation lines

allowed 18
ampersand (&) 35

(see also double ampersand)
as variable symbol indicator

AND operator 361
ANOP instruction 373
apostrophe (')

(see also dOUble apostrophe)
in attribute notation 324
to delimit character strings 35
to delimit quoted strings 304

area (see data area)
arithmetic expression 349
arithmetic operator

binary operator
addition (+) 55,351
division V) 55,351
multiplicat.ion (*} 5-5,351
subtraction (-) 55,351

unary operator
negative (-) 55,351
positive (+) 55,351

Index

Index 437

arithmetic relation 361
arithmetic term

attribute reference 55,351
self-defining 46
SET symbol 318,351
symbolic parameter 260,351
system variable symbol 278,351

array
dimensioned SET symbol 322

assembler instruction 30
conditional assembly 32,317
macro processing 32
ordinary 30

addressing 133
controlling the assembler

program 211
program sectioning 101
symbol and data definition 153

assembler language 2
character set 34
comments statement 19
expressions 53

(see also expression)
assembly time 54,6
conditional assembly 349

instruction statement 20
assembler instructions 99,407
machine instructions 63
macro instructions 244,289

literals 50
option

ALIGN 75
ALOGIC 376
FLAG 274
LIBMAC 286
MCALL 287
MLOGIC 376

program 3
source module 26,102
statement coding 15
structure 25
terms 36

assembler processing sequence 4
assembly time 6
pre-assembly time 7,8

assembly time
assembly into object code 5,108
expression 54,6

absolute 57
complex relocatable 58

instructions processed during 5,6
assignment instructions

arithmetic 343
character 345
logical 347

asterisk (*)
(see also binary opera tor)
as comments statement
indicator 19

as location counter reference
indicator 43

as multiplication operator 55,351
with period, as internal macro

comments statement indicator 277
at sign (Ql)

as alphabetic character 34
attribute

438

(see also relocatability
attribute)

count (K') 332
integer (I ') 331
length (L') 329
notation 324
number (N') 333
reference 324
scaling (S') 330
symbol length 44
type (T') 328

in character relation 361
in SETC operand 345

attribute notation 324
attribute reference

(see attribute)
assembler processing sequence 4

assembler instructions 6,7
machine instructions 5
macro instructions 8

B-con (see data constant, binary)
base address 85

assigned by USING 134
base-displacement form 84

allowing relocatability of
addresses 85

assembled into machine
instruction 86

converted from implicit
address 87,134

base register
assigned by USING 134
loading 134

begin column 16
binary constant (B) 181
binary operator (+,-,*,/)

in absolute and relocatable
expressions 55

in arithmetic expressions 351,353
bit string

in binary self-defining term 48
bit-length modifier 8,172
blank

character 35
in operands 22
opposed to null character
string 298

in self-defining term 50
as special character 34

Boolean
expression (see logical
expression)

operator (see logical
operator)

boundary (see also alignment) 166
boundary alignment (see
alignment)

branching
conditional assembly 367
extended mnemonic for 72
machine instruction for 68

buffer area
formatted by a dummy section 121

C-con (see data constant~
character)

call (see macro instruction)
card (see punched card)
card deck (see deck)
CCW instruction 209
central processing unit 4
channel command word 209
character

alphameric (alphanumeric) 34
digit 34
expression 355
letter 34
relation 360
set 34
special 34
string, null 298,303

character constant (C) 182
character expression 355

concatenation operator 281
between 357,359

in SETC operand 345
in substring notation 365

character relation
in logical expression 361,363

character set 34,35
character string

(see also null character
string)

character constant (C~type) 182
in character relations 360,361
character self-defining term 50
concatenation of character
strings 359,268

in macro instruction operands 302
in MNOTE instruction 274
in PUNCH instruction 229
SETC operand 345
in TITLE instruction 226
type attribute

CNOP instruction
code

condition 391
machine 1
mnemonic 79
object 2

327
218

open 252
operation 22,79
source 2

coding
conventions 15
form 15
time 4- 8,108

column
begin 16
continuation-indicator 16
continue 16
end 16

COM instruction 12U
to continue common section 124
to initiate common section 124

comma (,) 35
in character constants 182

to indicate omitted
operand field 80
subfield 81

~~'t\\1~E~J1 __ nQJ1lin~J .. __ YC!ll.!~§ in
constants 179

between operands 35
command

(see channel command word)
comments statement 19,27

format 19,27
in macro definitions 277

common control section
COM instruction for 124
definition of 124
establishing addressability of 124

complex relocatable expression 58
only in A-type and y-type

address constants 194,58
concatenation character (.)

between character expressions 359
in model statements 268

concatenation operator (see
concatenation character)

condition code 391
conditional assembly

branching instructions
ACTR 370
AGO 369
AIF 367
ANOP 373

elements 317
data attributes 323
sequence symbol 334
SET symbols 318

expression 349
arithmetic 349
character 355
logical 359

functions of 318
instructions

ACTR 370
AGO 369
AIF 367
ANOP 373
GBLA, GBLB, GBLC 340
LCLA, LCLB, LCLC 336
SETA 343
SETB 347
SETC 345

loop counter 370,372
in open code 374
pre-assembly time 374,7
processing 7
substring notation in 364

constant
address 194-200
data 154,161
defined by DC instruction 161
duplication factor sUbfield 168,163
literal 180
modifier subfield 163,170
nominal value subfield 163,179
padding of value 167
trunca~ion of value -168
type subfield 163,169

continue column 16

Index 439

continuation
indicator field 17
line 9,18

control program 107
control section 107

conunon 124
dummy 121
executable, defined by

CSECT 110,119
START 110,117

external symbol dictionary
entries for 116

first 113
literal pools in 115
location counter setting 111
processing times 108
reference, defined by

COM 110,124
DSECT 110,121
DXD 110,130

unnamed 115
COpy instruction 103

input to source module 102
inside macro definitions 272

counter
instruction 41
location 41,111

loop

(see also location
counter)

ACTR instruction 370
count attribute CK') 332
CPU (see central processing unit)
CSECT instruction 119

to continue control section 119,120
external symbol dictionary
entry for 116

to initiate executable control
section 119,120

CXD instruction 131
cumulative length of external

dummy sections 131,128
for linkage editor 131,128

m
D-con (see floating point
constant, long)

data
area 154,201
attribute 323
constant 154,162

data attribute (see attribute)
data constant

binary (B) 181
character (C) 182
decimal ~,Z) 188
defined by DC instruction 162
fixed-point (H,F) 186
floating-point (E,D ,L) 190
hexadecimal (X) 184

data definition 154,161
DC instruction

440

defining data 162
operand 163

subfields in operand 163
arithmetic 65
constants (P and Z) 188
instructions 65
self-defining term 47

decimal constant
integer attribute of 331
packed (P) 188
scaling attribute of 330
zoned (Z) 188

decimal point (.)
for decimal arithmetic 65
in decimal (P,Z) constants 188
for fixed-point arithmetic 64
in fixed-point (H,F) constants 187,176
for floating-point arithmetic 66
in floating-point (E,D,L)
constants 191,178

deck
object 1
source 1

declaration instructions
global 340
local 336

dictionary, external symbol 116,150
dimensioned SET symbol

declaration of 339,342
displacement

assembled into machine
instruction 86

computed from base address 87,133
dollar sign ($)

as alphabetical character 34
double ampersand

in character expression 357
in MNOTE instruction 274
in PUNCH instruction 230
in TITLE instruction 226

double apostrophe
in character expression 357
in MNOTE instruction 274
in PUNCH instruction 230
in TITLE instruction 226

1oubleword
boundary 166
data constants 166,191

DROP instruction 144
for freeing base registers 144
not needed 146
with USING 145,146

DS instruction 201
defining areas 201
operand 206
subfields in operand 206
with 0 duplication factor 204,76

DSECT instruction 121
to continue dummy section 121
external symbol dictionary
entry for 116

to generate external dummy
section 127

to initiate dummy section 121
name in Q-type address
constant 127,200

with USING 140
dummy control section

definition of 121
DSECT instruction for 121

DXD instruction for 130
establishing addressability of 121,140
opposed to external dummy
section 130

dupltcation-factor-
in SETC operand 346
subfield of DC/DS operand 168

DXD instruction 130
external symbol dictionary
entry for 116

to generate external dummy
section 127

name in Q-type address
constant 200

EBCDIC (see extended binary
decimal interchange code)

E-con (see floating-point
constant, short)

EJECT instruction 227
end column 16
END instruction 105

coded
377

to end source module 102
multiple 103

entry symbol
identified by ENTRY 150

entry (see instruction statement
entry; external symbol
dictionary, entries)

ENTRY instruction 150
external symbol dictionary
entry for 150,116

identifying entry symbol 150
for symbolic linkage 147

EQ -- equal to 360
(see also relational opera tor)

I EQU instruction 156
equal sign (=)

to indicate literal 53,180
in macro instruction operand 306

ESD (see external symbol
dictionary)

establishing addressability 133
of common section 124
of dummy section 121,140
of executable control section 120,137
of external dummy section 128
of large control section 138
of reference control section 140

excess-64 binary notation
for exponent in floating-point
constant 193

executable control section 110
establishing addressability of 137
initiated by CSECT 119
initiated by START 117

execution time 4-8,108
explicit address

(see also base-displacement
form)

converted from implicit
address 87,134

in machine instruction 87

exponent
in excess-64 binary notation 193
modifier 170,178
in nominal value of constant 179

-po-rti-onof ·£i-oating~point
constant 192

expression
(see also assembly time
expression; conditional
assembly expression)

absolute 57
arithmetic 349
Boolean (see expression,
logical)

character 355
complex relocatable 58
logical 359

arithmetic relation in 361
character relation in 361

operators
arithmetic 55,351
concatenation 357
logical 361

relocatable 58
terms in

arithmetic 351
loqical 361

extended floating-point constant 190
extended mnemonic branching
instruction 72,73

external dummy control section
allocation of storage for 127
CXD instruction for 131
DSECT instruction for 127
DXD instruction for 130
establishing addressability of 128
generation of 127
offset to 127

external symbol
identified by EXTRN 151
identified in v-type address
constant 149,198

identified by WXTRN 152
external symbol dictionary 116

entries for 150,151
EXTRN instruction 151

II

for data reference 148
external symbol dictionary
entry for 151

identifying external symbol 151
opposed to V-type address
constant 149

opposed to WXTRN instruction 152
for symbolic linkage 147

F-con (see fixed-point constant,
fullword)

fe·t.ch (see program f-etch·ti·me}
first control section

initiated by 113
literal pool in 115,216
statements allowed before 114

Index 441

fixed-point
arithmetic 64
constant 186
instruction 64

fixed-point constant
exponent modifier 178
fullword (F) 186
halfword (H) 186
integer attribute of 331
scale modifier 176
scaling attribute of 330

FLAG option 274
floating- point

arithmetic 66
constant 190
instruction 66

floating-point constant
base for
exponent

excess-64 binary notation
for 193

modifier 178
in nominal value 179

extended precision (L) 190
fractional portion 192
integer attribute of 331
long (D) 190
scale modifier 178
scaling attribute of 330
short (E) 190

format
machine language 78,92
source statement 20

formatting
COM instruction for 124
data area using dummy section 121
DSECT instruction for 121

fraction
in fixed-point constants 186
in floating-point constants 192
scale modifi~r to provide
digits for 175-178

scaling attribute to indicate 330
number of digits occupied by

fraction bar (/ -- see slash)
fractional portion

of floating-point constants 192
fullword

boundary (see boundary)
constant 186

GBLA instruction 340
GBLB instruction 340
GBLC instruction 340
GE -- greater than or equal to 360

(see also relational opera tor)
generation (see macro generation)
global

(see also global scope, global
variable symbol)

declaration 340
global scope

of SET symbol 319
of system variable symbols

442

&SYSDATE 279
&SYSPARM 284
&SYSTIME 287

global variable symbol
SET symbol 319
system variable symbols

&SYSDATE 279
&SYSPARM 284
&SYSTIME 287

GT greater than 360
(see also relational opera tor)

m
H-con (see fixed-point constant,
halfword)

halfword
boundary (see boundary)
constant 186
instructions

hexadecimal
constant (X) 184
digit 49
notation in floating-point
constants 193

self-defining term 49

o
II (see integer attribute)
ICTL instruction 219
identification-sequence field 17
immediate data 90
implicit address

converted to explicit address 87,134
in machine instruction 87
in USING domain 125

index register
in address reference 86
in machine instruction operand 87

I inner macro instruction 307
input

to assembler program 2,102
buffer 121
to linkage editor 2,108
to source module 102

input/output instructions 70
instruction

assembler 3,30
conditional assembly 32,317
entry 21
format (see machine
instruction forma~

machine 2,29
macro 33,289
statement 16
statement format 20

instruction counter 41
instruction entry (see
instruction statement entry)

instruction statement 2,26

instruction statement entry
name 21
operand 22
operation 22
LelLlarks --r3---- - --------

instruction statement format 20
integer attribute (I') 331

formula for 331
I/O (see input/output)
ISEQ instruction 221

KI (see count attribute)
keyword operand 296

combining with positional
parameters 299

keyword parameter 263
combining with positional
parameters 265

II
L' (see length attribute)
label

ordinary symbol as 38
sequence symbol as 335
variable symbol as 344,345,348

language (see assembler language)
LCLA instruction 336
LCLB instruction 336
LCLC instruction 336
L-con (see floating-point
constant, extended precision)

LE -- less than or equal to 360
(see also relational operator)

length
attribute 329
explicit 88
implicit 88
modifier 159

length attribute (LI) 329
in arithmetic expression 351
in assembler language
statement 45

assembly time 158,159
pre-assembly time 158,159
value

length field
in machine instructions 88
length modifier 170
letter 34
level (see nesting level)

LIBMAC option 286
library

macro definition 252
for statement to-be.co-pied 10_3_

library macro definition
IBM supplied 239
opposed to source macro
definition 252

printing of (option LIBMAC)
linkage (see linkage edit
orocessinq)

linkage edit processing
----~f()l.:-seeH_ens_- --+&8-------­

ESD entries for 116
external dummy section

CXD instruction 131

287

Q-type address constant 200
load module 1,108
object module 1,108
symbolic linkage information

ENTRY 150
EXTRN 151
V-type address constant 198
WXTRN 152

linkage-edit time 4-8,108
linkaqe editor

address constants for
A-type 194
Q-type 200
V-type 198
y-type 194

control statement
created by PUNCH 228
created by REPRO 231

external symbol dictionary 116
instruction for

CXD 131
listing control instructions

EJECT 227
PRINT 222
SPACE 228
TITLE 224

listing options
ALOGIC 376
LIBMAC 286
MCALL 287
MLOGIC 376

literal 50
compared to data constants

and self-defining terms 51
constant 180
duplicate 217
pool 51,215
specification 53
subfields 53

literal pool 215
in control section 115
initiated by LTORG 215

load
instruction

fixed-point aritlli~etic 64
floating-point arithmetic 66
logical operations 67

module 2,108
time (see program fetch time)

load module
combined from object modules 2,108
loaded by loader 4
loaded at program fetch time 4,108
produced by linkage editor 2,108

load time (see program fetch
time)

loader 4
local

(see also local scope, local
variable symbol)

declaration 336

Index 443

local scope
of ACTR instruction 371
of sequence symbol 325
of SET symbol 319
of symbolic parameter 260,319
of system variable symbols

&SYSECT 319
&SYSL1ST 319
&SYSNDX 319

local variable symbol
SET symbol 318

declaration of 336
symbolic parameter 260
system variable symbols

&SYSECT 280
&SYSL1ST 281
&SYSNDX 284

location counter 41
printed values 42
setting for control sections 111

location counter reference (*) 41
in address constants (A and
Y-type) 194

in expressions 55
in literals 43
in ORG operand 213

logical expression 359
in A1F operand 367
coding rules for 362
definition of 361
evaluation of 363
operators for 361
in SETB operand 340
terms in 361

logical operator
AND, NOT, OR 361
in logical expression 361

logical relation
(see also arithmetic relation,
character relation)

in logical expression 360
operators for 360

(see also relational
operator)

logical term
in logical expression 361

loop
conditional assembly 370
counter 370

loop counter 370
ACTR instruction for 370

LT -- less than 360
(see also relational operator)

LTORG instruction 214
for literal pool 215

machine instruction
address in 84

explicit 87,133
implicit 87,133

alignment of 75
coding examples 92
format of 78
immediate data in 90

444

mnemonic operation code for 79
object code from 78,92-97
operand entry 80
processing 5
register usage in 83
statement format 29,78
types 64-74

machine instruction format
RR 92
RS 94
RX 93
S 96
S1 95
SS 97

machine language 1
macro (see macro definition,

macro instruction)
MACRO assembler instruction 254

(see also macro definition,
header)

macro call (see macro
instruction)

macro definition 245,251
body of 248,259
format 253
header (MACRO) 254
internal comments for 277
library macro definition 246,252

287 printing of (L1BMAC)
as opposed to open code
prototype statement of
source macro definition
statements in

252
243,255
246,252

comments statements 248,277
model statements 248,266
processing statements 249,272

symbolic parameters in 260
trailer (MEND) 254
where to specify 246,252

macro expansion 240
~ee also macro generatio~

macro generation 240
of comments 277
controlled by conditional

assembly language 242,317
message produced by MNOTE 274,275
model statement for 248,266
of operation codes 270
output from macro definition 240-242
at pre-assembly time

macro instruction 33,289
alternate statement format 291
call to a macro definition 240
entry

name 292
operand 293
operation 293

format of 290
inner 307
nesting of 247,307

levels 308
operand 294

&SYSL1ST 281,301
keyword 296
positional 294
sublist 300

outer 307
printing of nested (MCALL) 288

processing 8
recursive call 310
statement format 290
values in operands 302
Wliere-e-o--Specl.fy-2t+~

macro instruction operand
combining keyword and
positional 299

keyword 296
positional 294
sublist as value 300
value of 302

macro library 246,252
macro definition in 246

macro prototype statement 255
alternate format 256
entry

name 256
operand 258
operation 257

format of 255
name field parameter in
symbolic parameters in

mask

keyword 263
positional 262

for branching 90
as immediate data 92,94

MCALL option 287
MEND instruction 254

257
258,260

(see also macro definition,
trailer)

as exit from macro definitions 249
MEXIT instruction 276
minus sign (-)

(see also binary operator,
unary operator)

as subtraction operator 355,351
MLOGIC option 376
mnemonic operation code

changing of (OPSYN) 232
creating of, for macros 257
generation of 270
for machine instructions 79
naming a macro definition 243,257
structure of 79
used in macro instruction to
call a macro definition 243

MNOTE instruction 273
model statement 266

concatenation in 268
fields in 267
format of 266
points of sUbstitution in 267
rules for field contents 269
variable symbols in 267

modifier
exponent 178
bit-length 172
length 170
scale 175
subfield in DC/DS operand 170

module (see load module, object
module, source module)

N! (see number attribute)
name entry

in assembler language
instruction 21

in conditional assembly
instruction 32

in EQU instruction 156,160
in machine instruction 29
in macro instruction 292
in macro prototype statement
in model statement 269
in OPSYN instruction 232
in TITLE instruction 224

name field parameter
assigning a value to 292
of macro prototype statement
opposed to symbolic parameter

NE -- not equal to
(see relational operator)

nested macro instruction 247,307
nesting level

for COpy instructions 104
for macro instructions 308

no op (see no operation
instruction)

no operation instruction
extended mnemonic for 73
generated by CNOP instruction

NOALIGN (opposite of ALIGN) 6
NOALOGIC (o~posite of ALOGIC)
NOLIBMAC (opposite of LIBMAC)
NOMCALL (opposite of MCALL)
nominal value

subfield in DC/OS operand 179
NOMLOGIC (opposite of MLOGIC)
NOT operator 361
notation (see attribute notation,
excess-64 binary notation,
substring notation)

null character string
as default value of keyword
parameter 264,298

generation of 298,303
in model statement 298,303
opposed to blank 298
as sublist entry 301
as value in macro instruction
operand 303

number attribute (N') 333
of &SYSLIST 283
in arithmetic expression 351

number representation
for decimal constants 188
for floating-point constants

number sign (#)
as alphabetic character 34

256

256
256,257

218

192

Index 445

object code
of addresses 86
of channel command words (CC~ 210
of data constants (DC)

padding 167
truncation 168

entered into
common control section 124
external dummy control
section 128

formats for machine
instructions 78

of lengths
effective 88
explicit 88
implicit 88

of machine instructions 92-97
alignment 75

registers assembled into 83
registers not apparent in 83
representation of decimal
constants 188

representation of floating­
point constants 193

(see also excess-64 binary
notation)

fraction 193
exponent 193

object language (see object code)
object module

area reserved in, by OS 201
assembled from source module 2,108
automatic call for (EXTRN) 152
combined into load module 2,108
common control section in 124
constant assembled into, from

DC instruction 161
as opposed to source module 101

open code
conditional assembly in 374
opposed to code inside macro
definitions 252

operand
(see also operand entry, term)
alternate format for 256,291
combined with remarks in
model statement 271

cOmbining keyword and
positional 299

in DC/OS instruction 163,206
entry in assembler language
instruction 22

field 20
format of 22,80
keyword 296
of macro definition 258
of macro instruction 294
positional 294
sUbfield in DC/DS instruction 163,206
symbolic parameter as 258,260

operand entry 22
address 84

446

in assembler instruction 31
combined with remarks in
model statement 271

in conditional assembly
instruction 32

immediate data 90
length 88
in machine instruction 29
in macro instruction 33,293
in macro prototype instruction 258
in model statement 271
register 82

operation code (see mnemonic
operation code)

operation entry 22
in assembler instruction 21
in conditional assembly
instruction 32

in machine instruction 29
in macro instruction 293
in macro prototype statement 251
in model statement 270

operator
arithmetic

binary 55,351
unary 55,351

concatenation (see
concatenation character)

logical 361
relational 360

OPSYN instruction 232
option (see assembler, option)
OR operator 361
ordinary symbol 37

as operation code for macro
prototype statement 257

opposed to sequence symbol,
variable symbol 37,38

ORG instruction 212
outer macro instruction 307
output

from assembler program 2,108
buffer 121
from linkage editor 2,108
from source module 2,108

overflow
of location counter 42

padding of constants 167
paired relocatable terms 56

in absolute and relocatable
expressions 57,58

from dummy section, allowed in
address constants 123

parameter
name field 256
symbolic 260

P-con (see decimal constant,
packed)

period (.)
(see also concatention
character, decimal point)

with asterisk as internal
macro comments statement
indicator 19,277

as bit-length indicator 172

in macro instruction operand
value 307

as sequence symbol indicator 38,334
plus-sign--C ... +----- ---------------

(see also binary operator~
unary operator)

as addition operator 55,351
point of substitution

in model statement 269-271
variable symbol as 261

POP instruction 234
position

of character in line after
REPRO 231

of character in PUNCH operand 230
corresponding to coding sheet
column 15

positional operand 294
combining with keyword
operands 299

in macro instruction 294
positional parameter 262

combining with keyword
parameters 265

pre-assembly time 4-8
expression

arithmetic 349
character 355
logical 359

instructions processed during 7
operation

precision
extended, floating-point
constant (L-con) 190

PRINT instruction 222
private code 115

(see also unnamed control
section)

processing sequence
(see processing time)

processing statements in macro
definitions 272

conditional assembly
instructions 272-317

COpy instruction 272
inner macro instruction 272-307
MEXIT 276
MNOTE 273

processing time
(see also assembler processing
sequence)

assembly 4-8,108
coding 4- 8,108
execution 4-8,108
linkage edit 4-8,108
pre-assembly 4-8
program fetch 4-8,108

program
(see also object program,
source program)

execution 108
linkage 101,108
sectioning 101

~rogram fetch time 4,108
program library (see library)

program relocation
affect on absolute terms 36

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

affect on address references 85
affect---On- relocata-hl.e--"teEnS l4~~-------

progra~~er macro
{see source macro definitio~

prototype statement (see macro
prototype statement)

PUNCH instruction 228
punched card

containing assembler language
statements 1,15

as input to assembler 102
PUSH instruction 234
pushdown list 234

(see also in GLOSSARY)

Q-con (see address constant,
Q-type)

quoted string 304

m
read-only storage (see literal
pool)

read-only value
of literals 53
of symbolic parameters 260
of system variable symbols 270

recursion
of nested macro calls 310

reference control section 110
cornmon section 124
dUITmy section 121
establishing addressability of 140
external dwT~Y section 127
initiated by COM 124
initiated by DSECT 21
initiated by DXD 130

register 82
base 85,133
index 86
as operand in machine
instruction 82

usage in machine instruction
operations 83

relation (see arithmetic
relation, character relation,
logical relation)

relational operator (EQ, GE, GT,
LE, and NE) 360

between arithmetic expressions 361
between character strings 361

relative address (see
displacement)

relGCatabil-ity
of addresses 85
attribute 58

Index 447

relocatable address 84
relocatable expression 58,56

complex relocatable
expression 58

processed at assembly time 6
relocatable term 36
relocate

(see also program reloca tion)
instructions 74

REPRO instruction 231
rounding

of fixed-point constants 177
of floating-point constants 178

RR format 92
RS format 94
RX format 93

S format 96
S· (see scaling attribute)

SI format 95
SS format 97
scale modifier

for fixed-point constants 176
for floating-point constants 178

scaling attribute (S') 330
in formula for integer
attribute 331

S-con (see address constant,
S-type)

scope (see global scope, local
scope)

self-defining term 46
in assembly-time expressions 55
binary 48
character 50
in conditional assembly
expressions 351,361

decimal 47
in EQU operands 156-160
hexadecimal 49

sequence symbol 38
as conditional assembly label 334
format of 334
local scope of 35

SET symbol 318
in arithmetic expression 349
assigning value to 349
in character expression 356
declaration of 336
in logical expression 361
scope of 319
as subscript 318
subscripted 322

SETA instruction 343
SETB instruction 347
SETC instruction 345
severity code

in MNOTE operand 273
sign

448

(see also sign bit)
for decimal numbers 188
for fixed-point numbers 186
for floating-point nmnbers 190

sign bit
in fixed-point constants 186
in floating-point constants 192
in self-defining terms 47-49

slash (I)
(see also binary opera tor)
as division operator 55,351

source language (see assembler
language)

source macro definition
opposed to library macro
definition 252

where to specify in source
module 246,252

source module 26,102
addressing within (USING) 133
assembled into object module 101
beginning of 102
control sections in 101
copying statements into ~OPY) 103
end of (END) 102
input to assembler program 102
literals in 214
number of external symbol
dictionary entries allowed in 116

open code of 252
as opposed to object module 101
size of 101
source macro definition in 246,252
statements in

comments 27,19
instruction 26,20

structure of 26
symbolic linkage between 147

source program 101
SPACE instruction 228
special character 34

before attribute notation 305
between operator and term 362

START instruction 117
external symbol dictionary
entry for 116

to initiate first (executable)
control section 113

statements allowed before 113,114
statement

assembler language 2,15
comments 19
field 16
format

fixed 20
free 20

instruction 20
macro prototype 255
model 266,8

status switching instructions 69
storage (see virtual storage,

pushdown list)
storage allocation

for external dummy sections 128
store

not allowed with literal 53
operation

string (see bit string, character
string)

sublist
in macro instruction operand 300
in nested wacros 312,313

referred to by
subscripted &SYSLIST
subscripted parameter

300,281
300,261

$u.b~Q~i2t ___ _
in &SYSLIST notation 281
to indicate sublist entry
nesting of 322

261,281

for parameter 261
for SET symbol 322
in substring notation 365
for variable 267

subscripted &SYSLIST
in nested macros 314
reference to positional
operand 281,282

reference to sublist entry
subscripts for 282

281,282

subscripted character expression
(see substring notation)

subscripted parameter 261
in nested macros 312,313
reference to sublist entry 261
subscript for 261

subscripted SET symbol 318,322
nesting of subscripts 322
for SETA symbols 344
for SETB symbols 348
for SETC symbols 347

subscripted variable symbol 267
(see also subscripted
&SYSLIST, subscripted
character expression,
subscripted parameter,
subscripted SET symbol)

substitution
point of 267
at pre-assembly time 7,8

substring notation 364
character expression in 366
concatenated to character
expression 359

in SETC operand 345
subscripts for 366

suppression (see zero
suppression)

symbol
definition of 38
entry 150
external 151

dictionary (ESD) 116
length attribute reference 44
ordinary 37
previously defined 40
sequence 38,334
system variable symbol 278
table 37
variable 38

SET 318
symbolic parameter 260

symbol definition
in assembler language
instruction 38

mnemonic operation code by
OPSYN 232

using EQU instruction 155
symbol length attribute reference 44

(see also attribute)
symbolic address reference 84

symbolic linkage 147
symbolic parameter 260

attributes of 325,327
_inbod-yofmacrodefinition 260,261
as macro instruction operand
value 311,312

in macro prototype statement
operand 255,200

in model statement 266,267
in nested macro instruction 311-313
opposed to name field

parameter 256,292
symbolic representation 36,153
system macro

(see library macro definition)
system variable symbol 278

&SYSDATE 279
&SYSECT 280
&SYSLIST 281
&SYSNDX 284
&SYSPARM 284
&SYSTIME 287

II
T' (see type attribute)
term (sometimes called operand)

absolute 36
ordinary symbol 37
self-defining 46
symbol length attribute
reference 44

arithmetic
attribute reference 46,351
self-defining 46,351
variable symbol 38,352

logical 361
relocatable

location counter reference 41
ordinary symbol 27

terminal
to enter statements 1
input to the assembler 102

TITLE instruction 224
translation (see assembly)
truncation of constants 168
type attribute (T') 328

in logical expression 361
in SETC operand 345
value 328

type subfield in DC/DS operand 169
twos complement

representation for negative
numbers 188

I!I
unary operator (+,-)

in absolute and relocatable
expressions 55

in arithmetic expressions 351,353

Index 449

unnamed control section 115
external symbol dictionary
entry for 116

initiation of 115
USING domain

address reference within 135
corresponding USING range 135
definition of 135
rules for 141

USING instruction 134-144
for assigning base address 134
for assigning base registers 134
domain of 135
for establishing
addressability 134,137

range of 135
USING range

address within 135
corresponding USING domain 135
definition of 135
overlapping of 143
rules for 142

variable symbol 38
(see also global variable
symbol, local variable
symbol)

as point of substitution 267
SET symbol 318
symbolic parameter 260
system variable symbol 278

&SYSDATE 279
&SYSECT 280
&SYSLIST 281
&SYSNDX 284
&SYSPARM 284
&SYSTIME 287

V-con (see V-type address
constant)

virtual storage
(see also in GLOSSARY)
allocation of
program loaded into 108

VM/370
service provided by 9

V-type address constant 198
for branching to external
control section 198,149

external symbol dictionary

450

entry for 116
identifying external symbol
opposed to EXTRN instruction
for symbolic linkage 147

198
149

warning message 76
word

(see also full word)
alignment 166,75
boundary 166
length

wrap-around
(see also overflow)
of location counter 42

WXTRN instruction 152
external symbol dictionary
entry for 116

identifying external symbol
opposed to EXTRN instruction
for symbolic linkage 147

13
X-con (see data constant,

hexadecima 1)

Y-con (see address constant,
Y-type)

Z-con (see decimal constant,
zoned)

zero suppression
in address values in listing
in SETA symbol values 346

147,152
152

42

This page left blank intentionally.

GC33-401()"5

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Intematlonal)

0 C en -< en
I
0
0 en
'-.

<
CJ)

I
< s:
'-.
W
'-l
0

» en en
(!)

3
C'"
CD
""'I

r-
Q)
:3,
to
c:
Q)'

to
(!)

"T1

(i'

z
?
en w
'-l
0
N

(3
CJ)

<:,
_CJ)

4 0
0 en
"<
_CJ)

< s:: -W
'-l
9

"'tJ
~.
:3
r+
(!)
a.
:3

C
en »
C)
(')
w
ctl
~
0
0 u,

()
C
-of
»
r o
Z
G)

o o
-of
-of
m
o
C
Z
m

OS/VS-DOS/VSE-VM/370
Assembler Language
GC33-4010-5

Yau'-_~ie_' •• l.SJlb_oJ!,_Lthis_puhli~atiQ-"Lmay- helllimpJ'SJ)JJ: itSlJ~ejiJ.ln(!s~; this form
will be sent to the author's department for appropriate action. Using Lhjs
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes 0
No 0

Job Title: ___________________ _

Address: __ ~---:'~--------------~~ __________________ Zip ________ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC33-4010-5

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

Fold

Fold

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

Intematlonal Business Machines Corporation
Data Proceaalng Division
1133 Weatcheater Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza,New York, New York 10017
(lntematlonal)

Fold

First Class
Permit 40
Armonk
New York

Fold

4
0
~
<
Cf)

I
0
0

~
Cf)
m

0 I
c < -t s:
0 '"' W ::0 --.J
"T1 0
0 » I en
0 ~ » 3
I c-o c;;-
Z '""I
G) r
!: C»

::J
Z co
m c:

C» co
(1)

.."
c;;-
z
?
Cf)
W
--.J

j
Cf) -<
~
0
0
Cf) -<
Cf)

!"
< s:: -W
--.J
9

"'tJ
'""I

5'
.-+
(1)
Co

::J

C
en
~
G)
("')
w
ctJ
~
0
9
U'1

