Program Product

“Restricted M aterials of IBM”
All Rights Reserved

Licensed M aterials - Property of IBM
©Copyright IBM Com. 1987

LY28-1735-0

File No. S370-36

MVS/Extended Architecture
System Logic Library:
Recovery Termination

M anagement

MVS/System Product:

JES3 Version 2 5665-291
JES3 Version 2 5740-XC6

(]
'llllll'
II||||||
c‘ll

||||||||

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

This publication supports MVS/System Product
Version 2 Release 2.0, and contains information

. that was formerly presented in .
MVS/Extended Architecture System lLogic Llibrary
Volume 11, LY28-12646~2, which applies to
MVS/System Product Version 2 Release 1.7. .
See the Summary of Amendments for more information.

First Edition (June, 1987)

This edition applies to Version 2 Release 2.0 of MVS/Systenm
Product 5665-291 or 5740-XCé and to all subsequent releases
until otherwise indicated in new editions or technical
newsletters. Changes are made periodically to the information
herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below.

Requests for IBM publications should be made to your IBM
{eprfgintative or to the IBM branch office serving your
ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development,
Department D58, Building Y21-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you. '

(c) Copyright International Business Machines Corporation 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

PREFACE

The MVS/Extended Architecture Svstem Logic Library is intended
for people who debug or modify the MVS control program. It
describes the logic of most MVS control program functions that
are performed after master scheduler initialization completes.
For detailed information about the MVS control program prior to
this point, refer to MVS/Extended Architecture System
Initialization Logic. For general information about the MVS
control program and the relationships among the components that
make up the MVS control program, refer to the MVS/Extended
Architecture Overview. To obtain the names of publications that
describe some of the components not in the System logic Library,
refer to the section Corequisite Reading in the Master Preface

in /Extende c ure Syst L : Maste
of Conte g:g and Index.
IB S ORGANIZE
SET OF BOOKS
The i i consists of a set of books. Two of the

ORGANIZATION OF THE

System logic Library
toots provide information that is relevant to the entire set of
ooks:

1. }gglgyS/Exteggeg Acg%;]ggig:e S¥§$gm %agig L%bggnxsz§s:g¥h

o ontents an ex contains e master preface e
master table of contents, and the master index for the 3ther
books in the set.

2. The MVS/E ed | ect i ib
Descriptions contains module descrxpt:.ons for all of the
modules in the components documented in the System logic

Library and an index.

Each of the other books (referred to as component books) in the
set contains its own table of contents and index, and describes
the logic of one of the components in the MVS control program.

COMPONENTS

Most component books contain information about one component in
the MVS control program. However, some component books (such as
System Logic Librarvy: Initiator/Terminator) contain more than
one component if the components are closely related, frequently
referenced at the same time, and not so large that they require
a book of their own.

A three or four character mnemonic is associated with each
component book and is used in all diagram and page numbers in
that book. For example, the mnemonic ASM is associated with the
book S/ e chi System Logic Library: Auxilia

All diagrams in this book are identified as

mgs_tia.ngagmu.
Diagram ASM-n, and all pages as ASM-n, where n represents the

specific diagram or page number. Whenever possible, the
existing component acronym is used as the mnemonic for the
component book. The Table of Book Titles in the Master Preface

in MVS/Extended Architecture System logic lLibrary: Master Table
of Contents and Index lists the book titles, the components

included in each book (if a book contains more than one
component), the mnemonics for the books, and the order number
for each book.

LY28-1735-0 (c¢) Copyright IBM Corp. 1987 Preface iii

0 SE B

FINDING INFORMATION

FINDING INFORMATION

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

To help vou use this library efficiently, the following topics
cover

° ﬂog to find information using book titles and the master
index
[HWhat types of information are provided for each component
J gow to obta:n fgrther information about other books in the
S 0 rar

USING THE BOOK TITLES

As you become familiar with the book titles, MVS component names
and mnemonics, and the book contents, you will be able to use
the System lLogic Libraﬁx as you would an encyclopedia and go
directly to the book that you need. MWe recommend that you group
the books in alphabetical order for easy reference, or, if you

are familiar with MVS, that you to group the books by related
functions.

The Table of Book T1t1es in_the Master Preface in H!§£§xignggg

c ogi o tents and
Lﬂ~g5 conta1ns a las of book t:tles and mnemonics. It provides
a quick reference to all the books, and their corresponding

components, in the System logic Library.

USING THE MASTER INDEX

If you are not sure which book contains the information you are
looking for, you can locate the book and_the page on which the

1nformat1on appears by using the master index in System logic
: t le o tents dex. For the component

books, the page number in an index entry consists of the
mnemon1c for the component and the page number; for System logic

ib odule criptions, the page number consists of the
mnemon1c “MOD"™ and the page number.

For example:

ASM-12 refers 'to MVS/Extended Architecture System lLogic
ibr uxi Sto ana ent, page ASM-12.

MOD-245 refers to MVS/Extended Architecture System Logic
Library: Module Descriptions, page MOD-245.

INFORMATION PROVIDED FOR MOST COMPONENTS

The following information is provided for most of the components
described in the System Logic Library.

1. An introduction that summarizes the component's function

2. C~ntrol block overview figures that show significant fields
and the chaining structure of the component's control blocks

3. Process flow figures that show control flow between the
component's object modules

4. Module information that describes the functional
:rganiiation of a program. This information can be in the
orm of: .

. Method-of-Operation diagrams and extended descriptions.

] Automatically-generated prose. The automated module
information is generated from the module prologue and
the code itself. It consists of three parts: module
dggcription, module operation summary, and diagnostic
aids.

iv MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

5. Module descriptions that describe the operation of the
modules (the moﬁuse descriptions a;e contained in System
a ule Des o

Some component books also include diagnostic techniques
information following the Introduction.

FURTHER INFORMATION

For more information about the System lLogic Library, including

the order numbers of the books 1n the §x_3gm_L_g;ngﬂ§na;x, see
the Master Preface in MVS/ ed te ngic

Library: Master Tab

LY28-1735-0 (c) Copyright IBM Corp. 1987 Preface v

"Restricted Materials of IBW"
Licensed Materials — Property of IBM

vi MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

CONTENTS
RTM — Recovery Termination Management RTM-1
Introduction RTM-3
Addressing and Residency of RTM Modules RTM-3
RTM1 Functions RTM-3
SLIH Mode Processing RTM-4
Service Mode Processing RTM-4
Hardware Error Mode RTM-5
RTM2 Functions RTM-5
Normal Termination RTM-6
Abnormal Termination RTM-6
Address Space Termination RTM-7
RTM Support Functions RTM-8
STAE Services RTM-8
SETFRR RTM-8
Initializing FRR Stacks RTM-8
Recording Services RTM-9
The SLIP Command RTM-9
SPIE/ESPIE Processing RTM-10
RTHM Diagnostic Techniques RTM-11
SLIP Processor Debugging Aids RTM-1l1
SLIP Command Processor Recovery RTM-11
SLIP Processor Recovery RTM-11
PER Activation/Deactivation Recovery RTM-12
control Block Overview RTM-17
Process Flow RTM-21
Method of Operation RTM-53
RTM1 Overview RTM-57
RTM2 Overview RTM-59
IEAVESPI - SPIE/ESPIE Processing RTM-64
IEAVSTAO - STAE/ESTAE Service Routine RTM-70
IEAVTAS1 - Recover Task Processing RTM-76
IEAVTESP -~ SPIE/ESPIE Processing RTM-80
IEAVTFMT - RTM Control Block Formatter RTM-94
IEAVTGLB - SLIP Global PER Activation/Deactivation
Routine RTM-106
IEAVTJBN - SLIP PER Select Interface Routine RTM-114
IEAVTLCL - SLIP Local PER Activation/Deactivation
Routine RTM-116
IEAVTMMT - Address Space Purge Processing RTM-126
IEAVTMMT - Address Space Purge Resource Managers RTM-128
IEAVTMTC - Address Space Termination Processing RTM-138
IEAVTPER - PFLIH/SLIP and PFLIH/Space Switch Handler
Interface RTM-142
IEAVTPVT - SLIP PVTMOD Load/Delete Exit Routine RTM~-146
IEAVTREF - LOGREC Recording Buffer Formatter RTM-166
IEAVTREM - Record Resource Manager RTM-176
IEAVTRER - Record Request Routine RTM-181
IEAVTRET - Recording Task RTM-193
IEAVTRMC - CALLRTM TYPE=RMGRCML Processor RTM-204
IEAVTRRR - RTM1 FRR Routines RTM-206
IEAVTRS0 - RTM1 Service Routines RTM-218
IEAVTRTC - Synchronize Failing Tasks RTM-224
TIEAVTRTD - RTM1 ASID Service Routine RTM-226
JEAVTRTE - Recursion Processor 2 RTM-232
IEAVTRTE - RTM2 Exit Processing RTM-234
IEAVTRTF - RTM1 Super FRR Retry Routine RTM-240
IEAVTRTM - Processing SLIH Requests RTM-244
JEAVTRTM - Reschedule RTM1 RTM-248
IEAVTRTM - System Directed Task Termination RTM-252
IEAVTRTM - Reschedule Locally Locked Task or SRB RTM-254
IEAVTRTM -~ RTM1 Clean—-up Processing RTM-256
IEAVTRTR - RTM1 Recursion Processing RTM-258
IEAVTRTS - RTM FRR Processing Module RTM-262
LY28~-1735-0 (c¢) Copyright IBM Corp. 1987 Contents

viii

MVS/XA SLL:

IEAVTRTV
IEAVTRT1
IEAVTRT1
IEAVTRT1
IEAVTRT2
IEAVTRT2
IEAVTR1A
IEAVTR1C
IEAVTRIF
IEAVTRI1G
IEAVTR1I
IEAVTRIN
IEAVTRIR
IEAVTR1S
IEAVTR1X
IEAVTRI10
IEAVTR2A
IEAVTSCB
IEAVTSFR
IEAVTSIG
IEAVTSKT
IEAVTSKT
IEAVTSLB
IEAVTSLB -
Checking
IEAVTSLC -
IEAVTSLE
IEAVTSLP
IEAVTSLR
IEAVTSLS
IEAVTSL1
IEAVTSL2
IEAVTSL2

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RTM PSACSTK Verfication Module RTM-268
RTM1 Initialization RTM-274

Address Termination on a DAT Error RTM-280
RTM1 Exit Processing RTM-284

RTM2 Initialization RTM-286

Recursion Processor 1 RTM-288

RTM1 Failing Instruction Processor RTM-290
Service Module for IEAVTRTS RTM-301

RTM1 FRR Routing Pre-Processor nTM-312
RTM1 GTF Processing Module RTM-318

RTM1 General SDWA Initialization Module RTM-322
FRR Stack Initialization RTM-332

RTM1 RECORD Interface Module RTM-336

RTM1 SDWA Allocation Module RTM-342

RTM1 CMSET Interface Module RTM-349

RTM Mainline SLIH Mode Processing RTM-354
RTM2 Failing Instruction Processor RTM-370
SCB FREEMAIN Routine RTM-374

SETFRR RTM-378

SLIP PER RISGNL Routine RTM-380

Task Purge Processing RTM-382

Task Purge Resource Managers RTM-386

SLIP Action Processor - Part 2 RTM-394
SLIP Action Processor - Part 2 - Trap
RTM-396

SLIP/CMSET Intercept Interface Routine RTM-404
SLIP Action Processor - Part 3 RTM-406
SLIP Action Processor - Part 1 RTM-408
SLIP Processor Recovery Routine RTM-414
SLIP Processor Service Routine RTM-420
SLIP Trap Matching Routine Part 1 RTM-624
SLIP Trap Matching Routine Part 2 RTM-434
SLIP Trap Matching Routine - Action Keyword

Processing RTM-440

IEAVTSR1 -
IEAVTSSH -
IEAVTSSX -

Index I-1

ITERM Processor RTM-646
SLIP Space Switch Handler RTM-450
Space Switch Extension RTM-454

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials - Property of IBM

IGU

LY28-1735-0

Yt ot ot e ot
UVIDWWNHOOVURONAUIAWKWN =

P ok G
VOO~
o e o o

NN
N=HO

Recovery Termination Management Control Block
Overview RTM-17

SPIE/ESPIE Control Block Overview RTM-19

STERM Error Processing RTM-23

Hardware Error Processing RTM-25

The Process of Normal Task Termination RTM-27
Abnormal End-of-Task RTM-29

Retry RTM-31

Cancel RTM-33

The Process of Terminating an Address Space RTM-34
SRB to Task Percolation RTM-36

Removal of a SPI RTM-38

RTM1 Module Flow and Basic Functions Performed RTM-39
RTM2 Module Flow and Basic Functions Performed RTM-40
Address Space Termination Module Flow RTM-42

RTM Services Module Flow RTM-43

SLIP Action Processing Module Flow RTM-46
SPIE/ESPIE Module Flow RTM-47

RTM Control Block Formatter RTM-49

Key to Hipo Logic Diagrams RTM-53

Key to Logic Diagrams RTM-55

RTM1 Overview RTM-57

RTM2 Overview RTM-59

(¢c) Copyright IBM Corp. 1987 Figures

ix

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

x MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

b1)1] S

Summary of Amendments
for LYZ28-1735-0
for MVS/System Product Version 2 Release 2.0

This publication is new for MVS System Product Version 2 Release
2.0. It contains information that was reorganized from the

Recovery Termination Management (RTM) section in ﬂ!§_XA_§x§$§?
% gic Library gslgmg 11 , LY28-1266-2, which applies to MVS/

vstem Product Version 2 Release 1.7.

This publication contains changes to support MVS/System Product
Version 2 Release 2.0. The changes include:

° Method of Operation diagrams for the following new modules:

IEAVTREF
IEAVTRRR
IEAVTRIF
IEAVTR1G
IEAVTR1I
IEAVTRIN
IEAVTRIR
IEAVTR1S
IEAVTRIX
IEAVTR1O

. The following changed modules:

IEAVTREM
IEAVTRER
IEAVTRET
IEAVTRTD
IEAVTRTS
IEAVTRTV
IEAVTRIA
IEAVTR2A

° Module IEAVTSIN has been changed to module IEAVTRIN.

[Minor technical and editorial changes throughout the
publication.

LY28-1735~0 (c¢) Copyright IBM Corp. 1987 Summary of Amendments xi

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

MVS/XA SLL: Recov Term Mgmt LY28-1735~0 (c) Copyright IBM Corp. 1987

(20
(20

X

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RTM _— RECOVE ERMINATIO E T

LY28-1735-0 (c) Copyright IBM Corp. 19RTM — Recovery Termination Management RTM-1

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

RTM-2 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

Restricted Materia's of IBM"
Licensed Materials -~ Property of IBM

INTRODUCTION

Recovery termination management (RTM) cleans up systems
resources when a task or address space terminates.

Specifically, RTM performs normal and abnormal task termination,
performs normal and abnormal address space termination, causes
dumps to be written, records errors, and provides for recovery
of supervisory routines by routing control to functional
recovery routines. RTM provides these functions for both system
and problem program routines.

Logically, RTM consists of four interrelated groups of functions
that perform RTM services:

o RTMl: Attempts recovery after a request for an RTM service
from supervisory routines. The CALLRTM macro instruction
giv:s control to RTMl. RTM] resides in the extended
nucleus.

° RTM2: Performs normal and abnormal task termination for
both system and problem program routines. The ABEND macro
instruction (SVC 13) requests these RTM2 services. RTM2
resides in the extended link pack area (ELPA).

. Address space termination: Provides normal and abnormal
address space termination for supervisory routines. The
CALLRTM macro instruction is used to request this service.
Adgrgngspace termination resides in the extended nucleus
an .

. RTM support functions: Provides error recording SLIP
(serviceability level indication processing), and SPIE/ESPIE
(specify program interruption exit/extended specify program
interruption exit) processing.

ADDRESSING AND RESIDENCY OF RTM MODULES

UNCTIONS

LY28-1735-0 (c) Copyright IBM Corp. 1987

All RTM modules execute in 31-bit addressing mode and reside
above the 16mb line except:

IEAVNPA6 AMODE 24, RMODE 24
IEAVNPD6 AMODE 31, RMODE 24
IEAVTESé6 AMODE 24, RMODE 24
IEAVTRGR AMODE ANY, RMODE 24
IEAVTRGS AMODE ANY, RMODE 24
IEAVTRG1 AMODE ANY, RMODE 24
IEAVTRG2 AMODE 24, RMODE 24
IEAVTRML AMODE 24, RMODE 24
IEAVTSFR AMODE ANY, RMODE 24
IEAVTSLC AMODE ANY, RMODE 24

RTM1, which is part of the nucleus, consists of the following
modules:

JEAVTRG1 Addressing mode interface routine
IEAVTRMC RMGRCML preprocessor

IEAVTRRR RTM1 FRR routines

IEAVTRI1F RTM1 FRR routing pre-processor
IEAVTRI1G RTM1 GTF processing module
IEAVTRI1I RTM1 general SDWA initialization
IEAVTRIN RTM1 FRR stack initialization
IEAVTRIR RTM1 record interface module
IEAVTR1S RTM1 SDWA allocation module
IEAVTR1X RTM1 CMSET interface module
JEAVTRSO RTM1 mainline SLIH mode processing
IEAVTRTD RTM1 subroutines

Introduction RTM-3

"Restricted Materials of IBM"
Licensed Materials — Property of 1BM

IEAVTRTF RTM1 super FRR retry routine
IEAVTRTM RTM1 mainline

TEAVTRTR RTM1 recovery routines

IEAVTRTS FRR control router

IEAVTRI1C Routing to FRRs

IEAVTRTV RTM PSACSTK verification module
IEAVTRT1 RTM1 entry point and exit processor
IEAVTR1A RTM1l failing instruction processor
IEAVTSR1 ITERM processor

RTM1 attempts recovery from hardware and software errors for
routines protected by FRRs (functional recovery routines)
defined by the routine to terminate those tasks or address
spaces, via SVC 13, that cannot recover). To achieve recovery,
RTM1 routes control to the FRRs when program checks, machine
checks, STERM errors (paging I/0 errors), invalid SVCs, or
restarts occur.

RTM1 functions are divided into three logical categories:

] Second level interruption handler (SLIH) mode. RTMl acts as
second level interruption handler for the interrupt handlers
when they detect errors. (See the section "Supervisor
gonziol")for a description of the five interruption

andlers).

[Service mode. RTM1l provides the interface for address space
or task termination when entered in service mode.

. Hardware error mode. RTMl functions as an extension of MCH
(machine check handler) after a hardware-type error occurs.

SLIH MODE PROCESSING

RTM1, when in SLIH mode, schedules recovery for errors in
system-mode functions, and initiates recovery for errors in
task-mode processing. System mode recovery involves routing
control to functional recovery routines (FRRs) and requesting
error recording.

To implement recovery for system—-mode functions, RTM1 routes
control to the FRRs defined on FRR stacks for specific paths
through the supervisor. (The M.0. diagram in "IEAVTRIC -
Service Module for IEAVTRTS"™ on page RTM-301 fully defines the
FRR stacks and the paths through the supervisor that they
protect.) The system—-mode functions use the SETFRR macro
instruction (a macro instruction that places the address of the
FRR on the stack) to make the FRR known to the system at
initialization time. MWhen an error occurs, RTMl routes control
20 t29 FRRs, thus allowing a recovery path through system—-mode
unctions.

SERVICE MODE PROCESSING

RTM-6 MVS/XA SLL:

RTM1, when in service-mode processing, directs RTM's recovery
and/or termination processing to a specific event, progran,
task, or address space other than the currently executing path.
(Service requests often consist of scheduling entries into other
services of RTM to complete the request.) Address space
termination, requested via a CALLRTM TYPE=MEMTERM macro
instruction, activates the resident address space termination
controller and queues the ASCB of the address space to be
terminated on a termination queue.

For task termination, requested by a CALLRTM TYPE=ABTERM macro
instruction, RTMl establishes an interface to RTM2. This
interface differs for tasks in the current, or executing,
address space, or for tasks in another address space. For
ABTERM of a task in the current address space, RTM1 sets the
request block (RB) resume PSW to point to the address of an SVC
13 instruction, which will be executed first when the task is
redispatched. For ABTERM of a task in another address space,

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

HARDWARE ERRUR MOME

UN

LY28~1735-0

ONS

RTM1 first reschedules itself as an SRB (service request block)
in the address space executing the task to be terminated. Thus
it appears that the CALLRTM TYPE=ABTERM request was issued by a
task in the same address space. RTMl uses this interface to
give control to RTM2 as an RB issuing an SVC 13 instruction.
RTM2 performs the actual recovery termination processing.

CALLRTM TYPE=ABTERM can also cause reentry into RTM1l if an EUT
FRR is on the stack.

The STERM service (for page I/0 errors) differs for unlocked
tasks or for locked tasks and SRBs. For unlocked tasks, RTM1
sets an RB to point to an SVC 13 instruction, thereby giving
control to RTM2 to execute a task termination. For locked tasks
or SRBS, RTMl establishes an interface to allow FRRS to gain
control. RTM1 does this by causing the task or SRB to
invalidly issue an SVC. This effects a re-entry into RTMl in
SLIH mode: RTMl then routes control to FRRs defined for the
path that failed. Figure 3 on page RTM-23 illustrates STERM
processing, and refers to method of operation diagrams that
describe the processing.

RTM1, when in hardware error mode, logically operates as a
subroutine of the machine check handler (MCH). RTMl1 performs
software repair, gathers data about the error, and records the
error. When MCH cannot recover from the error, RTMl sets up an
MCH re-entry to attempt software repair. Figure 4 on

page RTM-25 illustrates how RTM1l handles a hardware error.

RTM2, which resides in the extended link pack area (ELPA), is
entered via SVC 13. Mainline processing for RTM2 comprises the
following modules:

IEAVTRTC — controller
IEAVTRTE — exit handler
IEAVTRT2 — initialization
Other important RTM2 modules are:

IEAVTAS1 — pre—-exit processing

IEAVTAS2 — post~exit processing

TEAVTAS3 — control recovery

IEAVTMMT -— address space purge

IEAVTMRM — RTM's address space termination resource manager
TEAVTRML — installation resource manager list

JEAVTR2A — RTM2 failing instruction processor

IEAVTSKT — task termination purges

RTM2 terminates tasks and controls the cleanup of their
associated resources and control blocks. RTM2 handles normal
task termination and termination of tasks that cannot complete
their processing because of an error. Resource managers,
routines called by RTM2, clean up the resources and control
blocks associated with a task or address space to complete
termination. The component owning the resource provides the
resource manager.

RTM2 performs abnormal termination, which can be requested
directly or indirectly. The request is direct when a system or
user program issues an ABEND macro instruction to terminate the
current task. The request is indirect when scheduled by RTM1.
The SVC 13 instruction, which is executed the next time the task
to be terminated is dispatched, causes supervisor-assisted
linkage to ABEND.

(c) Copyright IBM Corp. 1987 Introduction RTM-5

NORMAL TERMINATION

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

When the last program to be executed for a task ends, it returns
control to the EXIT routine. EXIT gives control to RTM2 to
perform normal end-of-task processing. Figure 5 on page RTM-27
shows the steps that occur for normal task termination. (The
Task Management section describes EXIT and EXIT prolog
processing in detail.)

ABNORMAL TERMINATION

Abnormal termination occurs because of an unrecoverable error,
such as an 170 error or program check. It can also be initiated
by a system or user program that detects an abnormal condition
that could cause program damage or incorrect results. The task
whose program or I/0 operation has malfunctioned is abnormally
terminated because continued execution would waste system
resources. Abnormal termination frees the resources for use by
other tasks.

Abnormal termination allows two options: task and step
termination. These are normally user options, specified by an
operand of the ABEND macro instruction.

For abnormal termination, RTM2 provides the following services:

Retry of a terminating task, if possible.

Allow tasks that cannot retry to process special exits.
Display a snapshot of storage.

Wait for subtask termination to complete.

Purge subtask resources.

Convert ABEND requests to the jobstep level.

Figure 6 on page RTM-29 shows how RTM2 handles an abnormal
termination.

Retry Terminating Tasks

Term Exits

RTM-6 MVS/XA SLL:

RTM2 permits tasks scheduled for termination to bypass
termination and resume processing if they have created exits for
this function.

These exits receive control from RTM2 prior to termination
completing. (This facility complements the FRR facility in
RTM1.) The exits might attempt to recover the task being
terminated; if successful, RTM2 does not terminate the task. If
the exit does not recover the task, task termination continues.
Figure 7 on page RTM-31 shows retry.

Whereas RTM2 allows retry during most task terminations, certain
conditions (for example, CANCEL requests, ancestor task
abnormally terminating, and timer expiration) cannot be retried.
However, a special feature of ESTAE/ESTAI exits, called the TERM
option, can be used to give control to an ESTAE or ESTAI exit
during these situations. (The user indicates this by specifying
TERM=YES when the ESTAE or ESTAI is issued.) During normal
error recovery processing for a task, these exits function in
exactly the same way as exits created without the TERM option.
But for a situation that cannot be retried, these specially
marked exits are given control so that a user can clean up
resources, write records, print messages, or perform any other
function before RTM2 completes the termination. Retry, even
though requested, is not permitted by RTM2. Figure 8 on

page RTM-33 shows how RTM2 processes a CANCEL request and routes
control to term exits.

It.is now possible to issue the DETACH macro from within a term
exit.

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Storage Dump

When the DUMP option is specified on the ABEND, CALLRTM, or
SETRP macro, RTM2 will create an ABEND dump, via SNAP, for all
tasks in the failing task tree.

control Block Formatter

IEAVTFMT formats the available RTM control blocks associated
with the TCB. Print dump (PRDMP), interactive problem control
system (IPCS), and SNAP call the RTM control block formatter as
a TCB exit in the following manner:

. PRDMP specifies the SUMMARY control statement with the
FORMAT parameter.

. IPCS specifies the SUMMARY subcommand with the FORMAT
keyword.

U SNAP specifies the SUM or ERR option.

Wait for Subtask Termination

Purge Subtasks

Convert to Step

RTM2 waits for subtasks within RTM2 processing to complete
before terminating all the other subtasks in the task tree.

RTM2 can stack, or wait, for up to four subtasks to be processed
at one time. (This does not apply to CANCEL requests.)

To terminate the tasks in a failing task tree, RTM2 removes, via
DETACH, each subtask. DETACH then abnormally terminates, via
CALLRTM TYPE=ABTERM, any that has not yet completed processing.

When a caller requests ABEND (SVC 13) with the STEP option, RTM2
completely terminates the failing task and any of its subtasks.
Then before giving control to EXIT prolog, RTM2 issues a CALLRTM
TYPE=ABTERM request for the job step task.

ADDRESS SPACE TERMINATION

Address space termination can be requested by certain system
functions. For axample, real storage management might decide to
terminate an address space because of a swap-in failure for the
LSQA. Normally, however, RTM2 requests address space
termination after task termination of the region control task.

Address space termination begins after RTM1l invokes the address
space termination controller by scheduling the address space
termination SRB to post it. The address space termination
controller determines the address space being terminated and
dequeues the ASCB. The address space termination controller
then attaches the address space termination task to complete the
termination. The termination will be complete after all the
resources associated with the address space have been purged by
the address space termination controller and RTM2. Figure 9 on
page RTM-34 shows the control flow of an address space
termination. ‘

LY28-1735-0 (c) Copyright IBM Corp. 1987 Introduction RTM-7

SUPPO UNC

STAE SERVICES

SETFRR

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RTM provides functions that allow users to establish their own
recovery protection, and system functions that enhance system
serviceability and reliability. RTM gives control to these
services as part of its main processing, but none of these are
integral to RTM.

RTM support services consist of the following:

. STAE (specify task abnormal conditions) and ESTAE (extended
STAE) services. STAE and ESTAE services create SCBs (STAE
control blocks) to represent user-written abnormal condition
exits. RTM will give control to these exits during
§frgizatign processing. STAE services are not supported in

-bit mode.

] SETFRR. This is a macro instruction that places an FRR
(functional recovery routine) on the correct FRR stack. RTM
routines route control to FRRs after an error occurs.

U Initializing FRR stacks. This service creates FRR stacks
during system initialization, and changes FRR stacks in
response to CONFIG processor commands.

] Recording. RTM uses recording to record errors and records
created during recovery or termination processing.

] SLIP command. To obtain diagnostic information, SLIP
1ntercepts software errors prior to recovery routines
receiving control.

The STAE services create SCBs that represent caller-requested
abnormal exits. STAE services, requested via an SVC 60
instruction, create four types of SCBs:

ESTAE SCBs.
ESTAI SCBs.
STAE SCBs.
STAI SCBs.

The SETFRR macro instruction places an FRR on the appropriate
FRR stack. This is the mechanism used by routines requiring
recovery protection.

INITIALIZING FRR STACKS

RTM-8 MVS/XA SLL:

During initialization, this function initializes the FRR stacks
used by the system, and places pointers to these stacks in the
recovery stack vector table (RSVT) of the PSA. The RSVT does
not have sufficient room for the RTM and ACR stacks. Therefore,
the addresses of these stacks are placed in other PSA fields.
The CONFIG processor command can use this function. The FRR
stacks initialized by this function are:

] SVC-1/0-dispatcher stack, used by supervisor control
routines.

] Machine check stack, used by the machine check handler after
a machine check occurs.

] Program check stack, used by the program check handler after
a program check occurs.

. The three external interrupt handler stacks, used by the

external interrupt handler to process three levels of
recursion. (See the section "Supervisor Control™ for a

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBWM"
Licensed Materials - Property of IBM

RECORDING SERVICES

THE SLIP COMMAND

description of the external interrupt handler and its use of
the FRR stacks.)

J Restart interrupt handler stack, used by the restart
interrupt handler.

. RTM stack, used by the RTM function when it uses FRR
recovery.

° ACR stack, used by the ACR function during CPU recovery
processing.

¢ Normal stack, used by supervisor control routines processing
on behalf of problem programs that use supervisor services.

The recording facility schedules asynchronous 170 either to
SYS1.LOGREC or to the operator. The facility consists of two
principal routines — the nucleus-resident recording request
routine (IEAVTRER) and the recording task (IEAVTRET) in the
master scheduler address space. Requests for recording by
disabled routines are accepted and buffered by the nucleus
routine, which in turn posts the recording task via an SRB. The
recording tasks write the queued records to SYS1.LOGREC by
issuing SVC 76 or to the operator by issuing SVC 35.

Serviceability level indication processing (SLIP) is a debugging
facility used for obtaining diagnostic information. There are
times when an SVC dump or ABEND dump does not give the user
adequate information about an error. For example, the recovery
process or independent system activity might alter the failing
environment before the dump can be scheduled. To avoid this
situation, SLIP can be used to selectively intercept software
errors that are handled by RTM. However, many MVS/XA problems
cannot be resolved using only data collected at the time of the
error. Therefore, SLIP also provides program event recording
(PER) support to allow the user to obtain diagnostic information
only when a situation of interest occurs. Thus, a system
operator or authorized TS0 user can issue the SLIP command to
establish one of two types of SLIP traps, non-PER and PER:

o Non-PER traps specify error conditions which the action
specified on the trap is to be taken.

. By using the PER hardware, PER traps specify instruction
fetch, storage alteration, or successful branch events that
are to be monitored within a range of virtual addresses.
When events of the selected type occur, system conditions
specified on the trap are compared with current system
gongi:ions. If they match, the action specified on the trap
is taken.

Possible actions include scheduling an SVC dump, placing the
system in a wait state, suppressing dumps, writing a GTF trace
record, or opting to take no action (the IGNORE option). After
taking the specified action, PER traps may also specify that
recovery processing be forced in the interrupted program. The
SLIP command allows the user to establish more than one SLIP
trap, and to selectively enable and disable the traps. However,
only one PER trap with an action other than IGNORE can be
enabled at a time. Controls may be specified with the trap that
automatically disable it when user-specified conditions exist.

The SLIP command processor (IEECB905) sets, modifies, or deletes
one or all of the SLIP control element (SCE) SLIP traps. It
receives control via the ATTACH macro when IEEVWAIT processes
the CSCB entry built by SVC 34 as a result of a SLIP command.
(The section "Command Processing™ contains more details on the
SLIP command processor.)

LY28-1735-0 (c) Copyright IBM Corp. 1987 Introduction RTM-9

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

The user can display detailed information or summary information
about all the SLIP traps by using the DISPLAY SLIP command. The
DISPLAY SLIP command processor (IEECB907) receives control via
the ATTACH macro when IEEVWAIT processes the CSCB entry built by
the DISPLAY command as a result of a DISPLAY SLIP request. The
DISPLAY SLIP command processor also receives control via BALR
from the SLIP command processor (IEECB905) to display the
requested options and any defaults for an incomplete (that is,
no END parameter) SLIP command. (The section "Command
Processing™ contains more details on the DISPLAY SLIP command.)

SPIE/ESPIE PROCESSING

RTM-10 MVS/XA SLL:

Requestors can use the SPIE/ESPIE service to allow a task to
regain control after certain program interruptions.

SPIE/ESPIE service routine receives control from the SVC FLIH
after a SPIE or ESPIE request occurs. SPIE/ESPIE constructs an
SCA (SPIE control area) that contains information that enables a
task to regain control after a program interruption. (See the
section "Supervisor Control®” for a description of the
interruption types.) SPIE/ESPIE constructs the SCA and sets
indicators in the TCB of the requestor.

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RTM DIAGNOSTIC TECHNIQUES

RTM work areas can be valuable in identifying failing components
when the system malfunctions.

RTM work areas and suggestions for using them to diagnose
failures appear in the Diagnostic Techniques publication under
the topic "Use of Recovery Work Areas for Problem Analysis.®

The following section contains d1agnost1c information for the
SLIP portion of RTM.

SLI CESSOR DEBUGGING

A considerable amount of recovery processing is built into the
SLIP function, some portion of that recovery is executed if an
error occurs during SLIP processing. Consequently, when trying
to debug the SLIP function, you should have an idea of what the
recovery processing is attempting to do. This section discusses
;he ;9covery philosophy and provides details for the major SLIP
unctions.

SLIP COMMAND PROCESSOR RECOVERY

Module IEECB906 provides recovery processing for the SLIP
command processor (primarily IEECB905). Most errors encountered
in the command processor affect only the command that is issued
and not the rest of the system. However, if a PER trap is
involved, an error in the command processor could potentially
affect the system.

If a PER trap is being disabled or deleted and an error is
encountered, IEECB906 disables the non—-IGNORE PER trap and
schedules IEAVTGLB to deactivate PER. If a PER trap is being
set or enabled and error occurs after SHDRPER has been updated
but before IEAVTGLB has been scheduled, IEECB906 tries to
schedule IEAVTGLB to activate PER. Additionally, whenever an
error occurs, the command processor recovery routine checks to
make sure the double-threaded SCE chain is properly chained.
Forward and backward pointers found to be in error are repaired
if possible. If an error occurs during recovery for the SLIP
command processor, SLIP recovery does not return to mainline
processing but requests percolation in the event of an error.

Diagnostic information concerning errors that occur in the
command processor is available in a software LOGREC record and a
dump. The ESTAE parameter list (mapped by IEEZB906) is part of
the LOGREC record. The ESTAE parameter list and the SHDR data
area along with other information are available in a dump for
the error.

SLIP PROCESSOR RECOVERY

Recovery for the SLIP processor is designed to handle both
expected and unexpected errors.

Errors which are considered "expected” are:

L A page fault occurs while examining or retrieving the
instruction that caused a PER interrupt.

L A page fault occurs while retrieving user-defined data.
. A page fault occurs while processing in IEAVTADR.
Khen the above error conditions are recognized, the SLIP

processor attempts to retry at an appropriate point. 1In

LY28-1735-0 (c¢) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-11

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

general, the retry allows normal trap processing to continue.
You may eventually receive an indication that an error has
occurred while examining a trap (for example, the data
unavailable counter has been increased.) SYS1.LOGREC recording
does not occur for these expected errors.

When an unexpected error occurs, SLIP processor recovery gathers
information concerning the error, cleans up any resources being
used by the SLIP processor, and then retries at a point that
will terminate processing for the event that caused the SLIP
processor to receive control. Diagnostic information concerning
the error can be found in the dump taken by the SLIP processor
recovery routine (IEAVTSLR). The summary dump usually contains:

] The FRR parameter list (mapped by IHASLIP in module IEAVTSLP
or IEAVTSLR).

Note: The FRR parameter list is also recorded as part of

the software LOGREC record for the error. Bits in the

AUDITWRD portion of the FRR parameter list provide an

igdication of what portion of the SLIP processor encountered
e error.

. The SHDR data area.

. The SCE/SCVA data areas being processed at the time of the
error.

° The SLIP parameter list (IHASLPL).
. SLIP work areas.
L The SLIP register save area.

. The SCE/SCVA data areas representing the enabled non—-IGNORE
PER trap (if they exist).

Further information concerning the error is included in the
software LOGREC record for the error.

PER ACTIVATION/DEACTIVATION RECOVERY

IEAVTGLB Recovery

RTM-12 MVS/XA SLL:

The PER activation/deactivation function is performed primarily
by SLIP modules IEAVTGLB, IEAVTSIG, IEAVTLCL, and IEAVTJBN. In
general, if an error is encountered at any point in the PER
activation/deactivation process, these modules try to deactivate
PER completely. Recovery processing for these modules is
described in the following topics.

If an error is encountered by IEAVTGLB, the recovery for this
module gathers information concerning the error, frees the
resources held by the mainline code, disables the non-IGNORE PER
trap, and then retries at a point in the module that attempts to
completely deactivate PER. Diagnostic information concerning
the error is recorded in a software LOGREC record and a dump.
The information available in the summary dump includes some or
all of the following (depending on when the error occurred).

. The FRR parameter list (mapped by FRRWA in module IEAVTGLB).

Note: The FRR parameter list is also recorded as part of
the software LOGREC record for the error.

¢ The CVT data area.

° The SHDR data area.

e The SCE/SCVA data areas for the non-IGNORE PER trap.
¢ The model PSA data area.

Recov Term Mgmt 1LY28-1735-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

IEAVTLCL Recovery

IEAVTJBN Recovery

control Blocks Used

. The PCCAVT data area.
° The ASCB being processed by IEAVTGLB.

J The name of the job running in the address space being
processed by IEAVTGLB.

. The PCCA data area.
. The PER control registers (9, 10 and 11).

If a recursive error is encountered by IEAVTGLB, message IEA414I
is sent to the operator and percolation is requested.

If an error is encountered by IEAVTLCL, the recovery for this
module sets tasks dispatchable in the address space, gathers
information concerning the error, frees the resources held by
the mainline code, and then percolates the error. Diagnostic
information concerning the error is available in a software
LOGREC record and a dump. The information in the summary dump
includes some or all of the following (depending on when the
error occurred).

. The FRR parameter list (mapped by FRRPARMS in module
IEAVTLCL).

. The CVT data area.
. The SHDR data area.
. The SCE/SCVA data areas for the non-IGNORE PER trap.

] The ASCB for the address space in which IEAVTLCL was running
when the error occurred.

] The name of the job in the address space.

If an error is encountered by IEAVTJBN, the recovery for this
module gathers information concerning the error, notifies the
SLIP user that the status of PER in the system is uncertain (via
message 1EA4221), and then returns to mainline processing where
control is returned to the caller of IEAVTJBN. Diagnostic
information concerning the error is available in a software
LOGREC record and a dump.

by SLIP

The following control blocks contain key information that can be
used to debug problems in SLIP routines.

. System Control Blocks

Address space control block (ASCB)

Logical configuration communication area (LCCA)
Prefixed save area (PSA)

Request block (RB)

Task control block (TCB)

e SLIP Control Blocks

SLIP control element (SCE)

"SLIP control element variable area (SCVA)
SLIP header (SHDR)

SLIP TSO element (STE)

LY28-1735-0 (¢) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-13

Y"Restricted Materials of IBM"
Licensed Materials = Property of IBM

Control Block Information for Debugging SLIP
ASCB ASCBPER bit:
1—PER is active in the address space.
0—PER is inactive.
LCCA LCCAPPSH field: PSHW
LCCAPERC field: Interruption code
LCCASLIP field: Pointer to SLIP storage area
IEAVTPER splits this area into:

a parameter list,

work area,

and register save area
before calling SLIP.

PSA External, SVC, I/0 new PSH'st each has a bit that
reflects PER status.

PSASLIP bit: SLIP recursion control.

RB RBOPSW field: PSW save area. PSW has a bit that
reflects PER status.

TCB Non~dispatchability bit for SLIP: used when PER
is being activated or deactivated.

SCE SCEDSABL bit:

1—SLIP is disabled.
0—SLIP trap is enabled.

SCEMATCH bit: .
1—Trap method specified conditions at least
once since it was enabled.

SVCA SCVAMLNO field: If MATCHLIM was specified or
defaulted, indicates the number of times the
trap matched specified conditions sincc it
was enabled.

SCVADAUN field: If data was specified, indicates
the number of times data was unavailable for
comparison for the trap.

SHDR The SHDR provides the anchor for the chain of
SCE/SCVA control blocks. It is pointed to by
CVTRMS. The SHDRFWD field points to the first SCE
:n thgcghain and the SHDRBKWD field points to the
as .

SHDRPFC field:
0—No enabled SLIP traps.
1—SLIP and associated routines are page
fixed ; no processing is taking place on
behalf of any trap.
2 or more—SLIP or portions of IEVTGLB are
running.

RTM-14 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

control Block Information for Debugging SLIP

SHDR SHDRSRBR bit:

1—IEVTGLB needs to be scheduled. This bit
is usually turned on when IEAVGLB
tries to get a resource (primarily
SHDRSEQ) to perfrom some service but
the resource is not available. When
on, it indicates that IEABTGLB will be
scheduled to perform the service
later. The SLIP command processor
(IEEBC905) may also set this bit and
exanine this bit when the sequence
word is released.

SHDRPER field: Points to enabled non—-IGNORE PER
trap or is zero.

SHDRSEQ word: Used as a lock to serialize access
to the SCE chain for:

. The SLIP command processor (IEECB905).

. PER activation/deactivation routine
(IEAVTGLB). :

° Local PER activation/deactivation (IEECB907).

The contents of the word indicate the owner of the
word as follows:

*CMD'— IEECB905

*DSP'— IEECB907

YGLB'— IEAVTGLB

"Lxx'— IEAVTCLC (where xx indicates the ASID
in which IEAVTLCL is running.)

STE The STE is used to communicate between the SLIP
command processor running in the master scheduler
address space and a TS0 user who issued the SLIP
command. The STE is created when the TS0 user
issues the SL1P command and is deleted when SLIP
command processing is completed. The STE chain is
pointed to by the RTCTSTE field in the RTCT.

[3K BN BN

LY28-1735-0 (c¢) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-15

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

RTM-16 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Cco oL _BLOC IE!
Loc 10{16)
RTCT A
{Note 1)
Contains
dump
options
RCB
PCCAVT LCCAVT Contains
recording
information
PCCAs LCCA
WSAC
PSA
Dynamic
storage
] area for
This area below 16M RTM1
modules
svC, /0 Program
disp check
Pointers |
RSVT to FRR External Externa
stacks 1 2
:::I:‘al External Normal
3 stack
SDWA
“*SDWA
* There is one RTM1 work
area for each FRR stack.
Each FRR stack points to
This area above 16M its associated work area.
Note: Any one of these ee There
are 2 types of SDWAs:
FRR stacks can'::e \ ACR RTM 1. Global
the current stack. 2. GETMAIN
MCH Restart The global SDWA for each FRR
stack immediately follows the
. FRR stack, except for the normal
*10 RTM1 ***Global stacks SDWA,
work checkpoint - o
areas SDWAs *** The global check point SDWAs
are used to support retry from
nested FRRs.

Figure 1 (Part 1 of 2). Recovery Termination Management Control Block Overview

LY28-1735-0 (c) Copyright IBM Corp. 1987 Control Block Overview RTM-17

"Restricted Materials of IBMY
Licensed Materials — Property of IBM

{Continued

CcVvT from Part 1)

\
ASVT
ASCB
ASXB IHSA LRB (Pointed to by a
Error fegister; located
A J information] ' the PSA)
y for
machine
checks
TCB
_—\SNAP SVRB RTM2 SVRB
. RB
\ 1 Contains |
control]
information
for RTM2
ESA
ESA J
- XSsB
. ESTAE RTM2WA
EED (Note 1) (Pointed to by SCB (Note 1)
- either RTM1WA ABDAREA -
Contains or TCB; resides Contains ESTAE/STAE (Note 1) Contains:
:"°" n- in quick cell pools) |- ESTAE exit | SCB hd .(icfm:rolt. n
ormation, routine ESTAUSTAI | contains osnap ¢
registers, control SCB dump arameters SDWA*
control information o options 2
registers, or SCBX \ e rfror .
dump op- lfl'\ Ol'ﬂ'EiaEtg)ﬂ Contains
tions Fn;om ' error
i m:;oa::::ent information
information
RMPL {
*There are 3 types of SDWAs:
1. Local
2. Global
3. GETMAIN
Notes: Each is in a different area. This illustrates a

1. The RTCT, EED, and ABDAREA contain information
that is moved into the RTM2WA. Information in the

GETMAIN SDWA. The FRR stacks contain the
global SDWA, and the ASXB points to the local

RTM2WA is moved into the SDWA. SDWA.

Figure 1 (Part 2 of 2). Recovery Termination Management Control Block Overview

RTM-18 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

Restricted Materials of IBM"
Licensed Materials — Property of IBM

PSA CVT
CVTPTR CVTASVT
ASVT

Identifies the active address
spaces in the system; contains
pointers into the ASCB chain. *

ASCB chain
—

Contains information
related to a gpecific

address space.
ASCBASXB
ASXB TCB queue
| 1 . -
L - Contains information
-ASXBFTCB 4 | related to a specific task.
TCBRBP] RB queue
|} TCBPIE -
] Identifies a request for
TCBPIE17 on if code to be executed.
SPIE/ESPIE is to -
handle page fauits. RBXSB
SCA —J
Contains SPIE/
ESPIE information. Xs8
Contains the cross
SCARPTR memory status for the
SCAPIE interrupted suspended RB.
PIE/EPIE
Contains SPIE/ESPIE
exit data.
PIEPICA
RPIEPICA PICA
Contains recovery and control information Contains the program
such as the user exit address and list of mask, SPIE exit address,
proposed interrupts to be handled. and interruption mask.
RPPPICA

Figure 2. SPIE/ESPIE Control Block Overview

LY28-1735-0 (c) Copyright IBM Corp. 1987 Control Block Overview RTM-19

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RTM-20 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

PROCESS FLOW

LY28~1735-0

This section contains the following figures:
Figure 3 on page RTM-23: STERM Error Processing

This figure shows the scope of supervisor control, I0S, RSM and
RTM involvement in processing an STERM error. The double error
{SVCERR) caused by RTM1l shows how an RTMl service request
(STERM) establishes the proper RTMl re-entry interface so that
recovery routines can be processed.

The figure shows how an I/0 error during a page-in request is
processed by RTM. For this example an SRB routine has been
used. However, similar action is given for locally locked tasks
and normal tasks.

Data flow is as follows. The operating environment of program A
— that is, the registers, control registers 3 and 4, PSW and
recovery stack (step 1) is stored into an SSRB on page
interrupts (step 2). When the error is detected by the paging
supervisor (step 4) the SSRB is passed to RTM. RTM copies the
registers, control registers 3 and 4, and the PSW from the SSRB
into its own data area — the EED (step 5) and alters the SSRB
fields so that it will issue an ABEND when redispatched. The
page reset routine puts the SSRB on the dispatching queue (step
4). The dispatcher dequeues the SSRB (step 6), copies the stack
contents (saved in step 1) into the normal stack
(re-establishing program A's recovery) and loads the registers
and PSW from the SSRB (modified by RTM in step 5 to cause an
ABEND). As a result of the ABEND, RTM is re—-entered (step 8)
and passes the original register, control registers 3 and 4, and
PSH from the EED into an SDWA (step 10) so that the FRR for
program A is presented with the environmental information at the
time it was first interrupted for a page fault.

Figure 4 on page RTM-25: Hardware Error Processing

This figure depicts the processing for a hard type machine check
in a global routine that has FRR recovery. It shows the
interfaces and control flow between the machine check handler
and RTM1 for both hardware error processing and the resulting
software recovery attempt by the FRR. It alludes to the fact
that software recovery will continue in task mode, because in
this example the FRR does not recover the error.

The use of EEDs allows the LOGREC buffer to be available for
further possible machine checks and is the mechanism of passing
information to RTM1 and RTM2. The information in the global
SDWA used by RTM1l recovery was obtained from the EEDs. RTM2
will obtain an SDWA but will also use EEDs as its source of
error data to be passed to the recovery routines.

The RTM processor related work save area (WSACRTMK) is used by
RTM1 to alter the general purpose registers and the PSW that MCH
will reload — thereby determining whether MCH will resume the
interrupted process (soft error), or re-enter RTM1 for software
recovery (hard error).

Figure 5 on page RTM~-27: The Prbcess of Normal Task Termination
EXIT and parts of RTM2 comprise this function. The figure
indicates how EXIT is entered and re-entered to complete task
termination. It also provides a perspective of RTM2 functions
related to normal termination of a task.

Figure 6 on page RTM-29: Abnormal End-of-Task

This figure shows the logic flow during abnormal termination of
a non-critical nature. If the error is not recoverable at a

(c) Copyright IBM Corp. 1987 Process Flow RTM-21

RTM~-22 MVS/XA SLL:

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

particular task level, that task and its subtasks are removed.
If the scope of the ABEND is step, then the entire job step is
removed. Optionally, serviceability information (dumps and
software error records) is supplied to the user.

Figure 7 on page RTM-31: Retry

This figure shows the flow through RTM2 when processing a
potentially recoverable error. The recovery exit is supplied
environmental data that describes the error (for example, the
completion code, register contents, PSW, and system state at the
time of the error), to aid in diagnosing the error. To effect
retry, the resume PSW in each RB up to and including the retry
RB is modified. The retry address supplied by the exit is
placed in the resume PSW field of the retrying RB. All the RBs
between the retry RB and the RTM2 RB have their resume PSW set
to either EXIT prolog or SVC 3. To ensure running in the home
address space, the RBOPSW S-bit is set to 0, and the primary and
secondary address spaces in the XSB are set to the home address
space. When RTM2 eventually returns to the system, supervisor
assisted linkage will cause the retry address in the retry RB to
be given control.

Figure 8 on page RTM-33: Cancel

This figure illustrates the flow of control through RTM when a
job is cancelled. The CANCEL request is indicated by specific
completion codes set in the TCB by RTMl (code=X'x22' where x is
any value). The CANCEL process is distinctive in that it is
considered a strictly unrecoverable situation. Normal
termination procedures are abandoned in favor of creating an
express path through termination. However, termination exits
are given control.

gigure 9 on page RTM-34: The Process of Terminating an Address
pace

The process of terminating an address space (memory) is one
which cannot be isolated to one task, module or logical unit of
code. This figure shows the control flow and data flow of this
process. The multiple dispatches, tasks, and address spaces
involved would otherwise be hidden elements.

Figure 10 on page RTM-36: SRB to Task Percslation

This figure shows the flow of control through RTM when
rescheduling an SRB. Error information is saved in EEDs or SPIs
before the SRB is rescheduled. An SVC 13 (ABEND) placed in the
RBOPSW identifies this SRB as a re-entry function to RTMIl.

Figure 11 on page RTM-38: Removal of a SPI

This figure shows the process of removing a SPI (serial
percolation information) control block from the SPI queue. Each
SPI queued from a TCB represents a percolation from an SRB's
recovery. At the time of the percolation, the related task was
in recovery and the last FRR to get control for the SRB
requested serialization. (See Figure 10 on page RTM-36).

Figures 12 and 13 show the flow and basic functions of RTMl1 and
RTM2.

Figures 16, 15, 16, and 17 show the module flow for address _
space termination, RTM service routines, SLIP action processing,
and SPIE/ESPIE.

Figure 18 shows the module flow for formatting RTM's control
blocks.

Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

0-9€L1-82A1

L86T °dJ03 WAI IY6TIAdO) (D)

€2-WlYy MoT4 ssed04y

storage.
+
SRB
dispatcher
{IEAVEDSO)
Page Reset

)

Any SRB routine
{Program A)

Establish a recovery
via SETFRR.

reference an address
that is not in real

FRR stack

—

b — - —

FRR for
SR8

@ Detect an |/O error,
issue CALLRTM
TYPE=STERM.
Put the SRB of
program A back on
the dispatching
queue.

|¢em———

Program intervuption routines SSRB
Suspend the SRB Regs
(Program A) —
save the current status, PSW
and schedule
paging 1/O. FRR

stack

Program
interrupt code 17

RTMt

Exit to the dispatcher

@ IEAVTRTI

Set up a register
interface for
mainline.

«

Exit to the dispatcher

(IEAVEDSO)

Figure 3 (Part 1 of 2).

l_______> and 4, and the PSW

(IEAVTRTM

Save the registers,
control registers 3

from the SSRB in the

1/0 error occurs

10S

@ Schedule page
reset process.

Exit to the dispatcher

EED. Set up an SRB
to issue an ABEND.

(IEAVEDSO) {(IEAVEDSO0)
EED Dispatcher
reaces, | N
control
registers 3 P:D Dequeue the SRB
and 4, and for program A.
' the PSWat | (o Reinstate the FRR
the time of part 2) stack.
the page Load the registers
——> fault. and the PSW. FRR
stack
SSAB
V] Psw
Asvc13 -]
- FRR for
Py (To part 2) i)
stack

STERM Error Processing

SVC interruption
(IEAVESVC)

SVC IH

Detect if the SVC
was issued by an
SRB routine.
issue CALLRTM
TYPE-=SVCERR,

{To part 2}

uHEI 30 STETJOIEH Pa3dTJISay,

WEI J0 Ajusdoud — STeTJalel pPasuaaT

JWBK wWJad] A029Y :71S VX/SAW He-WlY

0-SSLTI-82A1

1861 °d40) WEI IYSTJAdO] (D)

(From
part 1)

RTMI

(From part 1) (From part 1)

IEAVTRT1

©®

IEAVTR10

Set up a register
interface for the
mainline. BALR
to RTM.

@!

H Determine if the system

mode is a non-TCB
mode.
Call IEAVTRTS.

Take the exit to the
dispatcher.

Retry if requested
by the FRR.

RN

IEAVTRTS

!

Route control to

(Established in
step 1).

IEAVTRTMI

program A’s FRR.

SDWA

Registers,
control
registers
3 and 4,
and the
PSW from

EED

Percolate if requested
by the FRR.

Figure 3 (Part 2 of 2).

STERM Error Processing

WEI 30 Ajuadodd — STETJ33}EN Pasusasati

uHdI 30 STETJOIEN PAJITJISAY,

0-S€LT-82A1

L86T °duo) WAI IYSTIAdO] (D)

§2-WiY¥ MoOT4 ssedouy

@ LOGREC buffer

MCH Information
e Processing a storage :> sbout
check in a'global routine :::::N are
that has established
an FRA.
e Invoke RTM1 for @ EED
software repair: IGFPMRTH General purpose |EED
CALLRTM registers, con-
TYPE=MACHCK ® Preserve thehard. |———"N 1) registers 3 | Repair
ware data in‘tlza and 4, and PSW status
EEDs {(RTM's inter- at time of informa-
nal controtl blocks). MACHCK tion
e Call the appropriate L____
repair routine.
o Record the hardware WSACRTMK
error to LOGREC.
General pur-
o Establish the pose registers
environment for and PSW for
re-entry to RTM in :) rg-entry to
WSACRTMK. RTM1

Figure 4 (Part 1 of 2).

(To pant 2)

Hardware Error Processing

WEI 40 Ajuododd — STETJO3el PosuaaTl
uHdI 30 STETJe3el PajdTJISaUy

JUBK w49 A0y 11§ YX/SAW 92-WLIY

0-SELT-82A1

1861 °d40) WEI IYSTJIADO] (2)

{(From
part 1)

WSACRTMK

EEDs
MCH SDWA
registers
and the
PSW altered MACHCK
by RTM1 information
U‘ @ MCH RTM1 ,
IEAVTRT1 @ IEAVTR10 @ IEAVTRTS/IEAVTR1C FRR U

Load the registers and -

PSW from WSACRTMK Set up the Attempt a system Route to the FRR

to cause a re-entry to environment for recovery since the to attempt recovery

RTM1 (type MACHCK — MACHCK error (MACHCK) for the routine that Percolate

RE-ENTRY) for a re-entry. occurred in a global suffered the

software recovery. routine. MACHCK error.

IEAVTRTM Record the error.
Exit to the Set up the task for Return will.i 8
dispatcher. entry to RTM2 by continue-with-
altering the RBOPSW. termination
indicator,
DISPATCHER

When the task is dis-

patched, it executes the TCB SDWA

SVC 13, which causes <

RTM2 task recovery N Continue-with-

termination services to ’ EEDs i

be invoked. termination

RB indicator

Figure 6 (Part 2 of 2).

Hardware Error Processing

§ svc3

WEI 30 A3Jadodd — STETJa3lel Pasuadry

ulgI 30 STETJIIe|l PAJITJISAY,

0-SELT-82A1

"d40) WET IY6TJAdO) (2)

L861

L2-W1Y MOT4 SS9d04y

Tes Task issues SVC 3
TCBEOT =0
Dispatcher (IEAVEDSO) PRB SVRB
TCB
- J L4
PRB 1GC003 — EXIT TCBEOT = 0 ASXB
1 Determine the task’s eligi- :> ASCB
bility for normal task ASXBTCBS G
termination. I
o EXIT was issued by the
\ last RB on the RB queue.
bi N e TCBEOT = Zero.
ispatcher (IEAVEDSO0) 2 Issue SVC 13 to pass
control 1o RTM2.
RTM2 RTM2WA
Communications area
o IEAVTRT2 for processing within
Get and initiglize the RTM2 the RTM2 load
work area (SP255) module
&RANCH RMPL
IEAVTRTE IEAVTSKT _J
BALR
1 Pass control to the task termination H 1 Freetheresourcesviaalinkto RTM2and | - U
o processor. the user defined resource managers, passing LINK
X 2 If the ASXBTCBS indicates that one task the resource managers parameter list (RMPL) ~ To all resource managers
is left in the address space, then address 2 Set the PRB resume PSW to point to an defined in IEAVTRML
space termination is required. Issue the SVC 3 instruction. BALR T
CALLRTM TYPE=MEMTERM macro to b " § - _ 0 system resource
schedule an SR8 that will initiate address 3 Set 2‘38°"'.‘r'g;é‘g'1‘.,i"d'°“'°' or exitin managers
space termination processing. : Tcs
PRB
TCBEOT=1
3 Free the RTM2 work area. Resume PSW
4 [f this is only normal task termination, dsvcs
branch to EXIT prolog to get rid of the
SVRB.
SVC 13 SVRB
BRANCH
{To part 2)

Figure 5 (Part 1 of 2).

The Process of Normal Task Termination

uwHgl 30 STETJa3EH PajITJIsaY,

HEI 30 AjJadoud — SIETJI}el pIsuaddL’

0-9SLT1-82A1 JuWS Wa9] A0O9Y TS VX/SAW 82-WLY

1861 °d40) WAI IY6TJAdO] (D)

-
If address space termination |

is necessary, go to
Figure RTM-9,

IEVOSPET in IGVSTSKT

Free storage

IGC062R1—-IEAVEEDO

o Free the RB storage.

e Dequeue the TCB.

EITHER

o Schedule the end-of-task exit
routine for the task

OR

@ Post the mother task if
attached with an ECB
operand.

Figure 5 (Part 2 of 2).

- —d

BALR

BALR

(From part 1)

BRANCH

IEAVEEXP — EXIT prolog

EXIT prolog deletes the SVRB.

P — o —— —
I

TCB

- PRB

If task termination, TCBEOT=1) Resume PSW

e e e e e . — — _ _ 1 rodispatch of the task
SVC FLIH T causes EXIT to receive 1SVes3

control again.

IGC003 — EXIT

Since the end-of-task endicator has
been set (TCBEOT) BALR to the
resource manager for cleanup of the
task.

TRRM

WPRM

VSM

PGM

DET

2 Exit to the dispatcher (IEAVEDSO)

| N

CSVEXIT
BALR Dequeue/free the SCBs owned by the
RB or the task,
BALR
IEAVSYS5R
Cleanup the RB entries for the task.
BALR

CSVEXIT

Free the programs.

BR 14

Normal task termination
is complete

The Process of Normal Task Termination

WEI 30 Ajvadodd — STETJSIBW Pasuadtl

uHEI JO STeTJdalel P31ITJISaY,,

0-GELT-82A1

"d40) WEI 3YBTJADOY (D)

L861

6Z2-Wld MOT4 ssads04y

ABEND "Entered by
SvC 13
TCB
TCB t
f (inRTM2) TCB
1B .
TCB SCB
TCB
(in RTM2)
RB &~
\4;;

Figure 6 (Part 1 of 2).

®

IEAVTRT2 I

o Obtain, initialize, and queue
the RTM2 work area.
e Save a copy of the trace table.

Teaviatc] W

e Validity check and process

(Recovery processing
for failing task)

——

RTM2WA

IEAVTR2A I

Put the failing instruction
stream in RTM2FAIN

Tce N8

®

the dump options.

@

Exit

requested

®

IEAVTAS1

SYNCH '

e Track the SDWA.
® Record, if requested.
e Save the dump options.

Ceaviass |~ |

e Free the SDWA.

@ Select an exit (SCB). :>
e Obtain and initialize the SDWA. <,_ SOWA
e Perform the 1/0 requusts and

block asynchronous exits,

if requested.
e Issuc o SYNCH macro BR 14
|_to EXIT. —

IEAVTAS2

=]

IEAVTRTC I

@ Determine the scope of the
ABEND.
o Purge the resources & halt 1/0.

 —

®

User exit
o Diagnose
the error.

o Scelect the
options.

SYSABEND/SYSUDUMP

IEAVTABD l

IEAVTRTC I

ﬁ e Start ABDUMP processing.

Ny

e Indicate ABEND in
progress.

@

(Term exit processing
for subtasks of failing task)

SYSMDUMP
sbump

SYNCH

RTM2WA

SCB
SCBTERMI

Abnormal End-of-Task

SCB 4 7cB

IEAVTASI1
e Select a TERM exit.
& Obtain and initialize the

IEAVTASZ—J-

TCBBA

e Track the SDWA.
e Record, if requested.
® Save the dump options.

IEAVTAS3
o Free the SDWA.

=
=

SDWA

il

User exit

o Diagnose
the error.

@ Select the
options.

Recorder

—

¥

WII 30 AjJdadodd — STETJIIEW PasuasTi]

uldI 30 STETJ33BH P83ITJISAY,

JWB wad] A0d9Y :711S VX/SAW 0£-WLIY

0-SSLT1-82A1

L2861 °d40) WAI IYBTJAdO] (2)

Control is
returned from
IEAVTAS1

Abnormal
exit

Branch to the
dispatcher

jol 1EAVTRT? |

wStacking)
IEAVTRTC l

® Terminate the SMC subtasks
with an abend code of X‘10D°.

o Wait for the subtasks in RTM2,
to complete.

o Set the subtasks non-
dispatchable.

e Purge the rescurces.

IEAVTRT2 l

o Continues processing.

IEAVTRTE

o Free the copied trace table,
o Free the RTM2 work areas.
e Clear the TCB flags.

Figure 6 (Part 2 of 2). Abnormal End-of-Task

_EXIT
prolog
{IEAVEEXP)

normal exit

@

‘ IEAVTSKT l

® Find and detach all subtasks
beginning with the deepest
subtask.

e Purge the resources via the
resource managers.

o Update the RB queue for exit.

HEI 30 Ajuadoud — STETJa3el Pasuadri

a9l 30 STETJOlel PBIOTJIISAY,,

0-SELT-82A1

"d40) WEI IYBTJADOY (9)

L861

T€-W1Y MoT4 sSS8d04d

Entered via
Tcs SvC 13
\)
RB
. —
SCB
RTM2WA TCB :\:>
£
SCB
RB

IEAVTRT2 l

e Obtain,initialize and queue the RTM2
work area and RTM2's copy of the

SDWA.
IEAVTRTC |]

e Process and validity check the dump

RTM2WA

TCB

options.

P——

IEAVTAS1 l

e Select an exit (SCB).

o Obtain and initialize the user’s copy of the
SDWA.

o Perform the 1/0 requests and block
abnormal exits if requested.

e SYNCH to EXIT.

o Track the SDWA.
e Record, if requested.
® Save the dump options.

IEAV—TAEB — l —————————

e Select the retry RB.

o Modify the RB’s for retry.

e Free the user’'s copy of the SDWA, if
requested.

e Reset the SCB flag.

User's
:> copy of
— o
| SDWA

Figure 7 (Part 1 of 2).

Retry

jus— * Oivsnose
the

il

User exit

error

o Select
the
options

GTF

Recorder

i l RTM2WA
RTM2RCDE

RTM2RTYA

jﬁ RTM2DREQ

TCB

SCB

RB
(Retry (RB)

RBWCF=0
RBOPSW=
user retry
" address

XSB

XSBSASID=
home address
space
XSBPASID=
home address
space

SCBINUSE=0"

RB (RB to
be purged)

RBWCF=0

RBOPSW=
CVTEXIT

XSB

XSBSASID=
home address
space
XSBPASID=
home address
space

WEI 40 Ajuadodd —~ STETIJal}El pasuaati
uWgI 3O STeFJaIeH P33IJTJISANY,,

0-SELT-82A1 Juby wao) Aco9y :71S VYX/SAH 2E-WLY

1861 °d40) WEI IYBTIJAdO] (2)

Control is returned
from IEAVTAS1

IEAVTRTC

IEAVTABD |

RTM2WA
RTM2DREQ
RTM2WA
RTM2CLUP
IEAVTRT2 l .

o Dump the current task if requested.

IEAVTRTC |

TCB

Figure 7 (Part 2 of 2). Retry

o Determine if retry is permitted.

e Free the RTM2 work area and
RTM2’s copy of the SDWA,
o Clear the TCB flags.

e Branch to EXIT prolog.

SYSMDUMP
SDUMP
SNAP
SYSABEND/SYSUDUMP RB
{Retry RB)
TCB v

RB
e e — e e e — (RB to be purged)
[Deavrrre]

SCB

Exit
Prolog
(IEAVEEXP)

Abnormal exit
IEAVTRT2

normal exit

Branch to the
dispatcher

WGl $0 Ajuadodd — STETJ91RH Pasuasti

ulgI JO STETJ83el PajaTJISaY,,

0-9€.T1-82A1

L86T °dJ40o] WAI IYBTIADO) (D)

€€-WLY MoT4 ssed0J4y

RTM1

Figure 8.

1EAVTRT2 l
” e Obtain, initialize and queue the

work area.

® Save a copy of the trace table
if available.

e Process the EEDs.

o SDUMP/SLIP considerations.

IEAVTRTC

® Process the subtasks and current
tasks setting ABEND bits, halting
1/0 and purging the resources.

e Set the subtasks non-dispatchable.

1EAVTRTC |

® Initialize term exit processing
until all the term exits have
been entered.

IEAVTRT2

IEAVTRTE l

@ Initiate task termination until
each subtask has gone through
EXIT.

e Free the RTM2 work area and
RTM2’s copy of the SDWA.,
o Clear the TCB flags.

IEAVTRT2

Cancel

TCB

RTM2WA

IEAVTABD l

e Determine the type of dump
(SYSABEND, SYSUDUMP, or
SYSMDUMP).

e Process the dump data set for the
current dump, and SNAP or
SDUMP.

o Find the attached tasks and
SNAP if not a SYSMDUMP,

e Reset the TCB flags in the
current and the daughters.

SNAP

SYSABEND or
SYSUDUMP

Sbump
SYSMODUMP

{Termination exit processing)

User exit

IEAVTAS1 |

»

RTM2WA

SCBTERMI

EXIT prolog (IEAVEEXP)
normal exit

Abnormal exit
branch to the dispatcher.

e Select a term exit (term SCB).
o Obtain and iniitalize the user’s
copy of the SDWA,

® Track the SDWA.
e Record, if requested.
e Save the dump options.

0

e Free the user’s copy of the
SDWA.

e Free the
resources

User’s copy
of the
G——] sowA
GTF
Recorder

— =

(Task termination)

Resource managers

IEAVTSKT |

Find the last attached subtask.
Detach the subtask.

Purge the resources.
Update the RB queue for exit.

e Installation resource
managers

H e [BM resource

managers

ulHgl 30 STeTJajel pa3atJlsay,,

WEI 30 A3uadodd — STETJa3BW PasuasT]

JUSK wI9] A0d9Y 1S VX/SAH HE-WLY

0-G€LT-82A1

L861 °d40) WAI IYBTJAdO] (D)

®

Since the MEMTERM process circumvents
all TASK recovery and TASK resource
manager processing, its use is restricted to
a select group of routines which can
determine that task recovery and
resource manager cleanup is either not
warranted or will not successfully operate
in the address space being terminated.
It therefore is restricted to the following
users:
1) Paging supervisor when it determines
that it cannot swap in the LSQA for
an address space,
Address space create when it
determines that an address space
cannot be initialized,
RTM or the supervisor control
FRR when they determine that
uncorrectable translation errors are
occuring in the address space,
4) RTM2 when it determines that
task recovery and termination cannot
take place in the current address
space;
5) The RCT when it determines that the
address space is permanently
deadlocked,
RTM2 when all tasks in the
address space have terminated
(IEAVTRTE). Thisis the only
requestor of normal address space
termination (COMPCOD=0).
Auxiliary storage management recovery
routine, when it suffers an indeterminate
error from which it cannot recover,
while handling a swap-in or a swap-out
request.
Auxiliary storage management
recovery routine, when it determines
that uncorrectable translation errors
are occurring while ASM is using the
control register of another address
space to update that address space’s
LSQA.
9) SVC 34 in response to a FORCE
command.

2

3

6!

7

—

8

-

10} VTIOC in response to FSTOP reply.

®

RTM1
@ BALR
l ‘ IEAVTRT1
CALLRTM Via branch table go to
TYPE=MEMTERM TYPE processor.
ASID= TYPE=MEMTERM

COMPCOD = 0 (Normal)
#0 (Abnormal)

ASCB

RTCT Queue

RTCTFASBI) :>

Pointer to the ASCB
queue of address
space(s) to be
terminated.

ASID

IEAVTRTM

Put the ASCB of the address
space to be terminated on the
address space queue.

Store the completion code in
the ASCB with the matching
ASID (or current).

Schedule the SR8 to post the
address space termination task
in the master address space
{Use of the SRB routine is
serialized by compare and
swap).

®

L

Global SRB dispatcher
Address \
space termination SR8
Post RTCTMECB — This
activates the address space
termination task in the

IEAVTRT1

Return to the caller.

Note: Since callers 4, 5, and 6 above are
task-related and running in the address
space to be terminated, they will set
themselves non-dispatchable after
issuance of CALLRTM.

Figure 9 (Part 1 of 2).

The Process of Terminating an Address Space

ASCB on queue master address space.
ASCB l
) _AsiD Dispatcher
(IEAVEDSO)
Completion
code
L:> SRB on
dispatch
queue
Step 1 Identifies the
requesters
Step 2 The request format
Steps 3, 4 Initiate the request
Steps 5, 6, 7 Process the request

WEI 40 AjJadoud — STETIJalel Pasuaati

uHdI JO STIPTJIIEH POIITUISAY,

0-9ELT-82A1

L86T °d40) WAI IYBTJIADO] ()

GE€-W1Y MoT4 Ss9d044

POST

RTCTMECB

Resident address space termination
controller task in master address space

®

IEAVTMTC

RTCT
RTCTFASB
ASCB queue
pointer .]
ASCB
4 Next ASCB
ASID
—
ASCB l I :
N
= K |
ASID

-—————
| Resident task attached |

Ibv IEAVTMSI,

{Master scheduler

| initialization at IPL).

l It remains inactive until
posted for work.

— e — — w— e—)

I
Ld

Reset the address space termination ECB.

N -

Dequeue the ASCB representing the address
space to be terminated.

3 Stop all processing inside the address space
being terminated.

© Break any active addressing binds.
@ If an excessive spin is detected inform
the operator.

4 Release any cross memory locks (CML) or
local locks.

5 Purge any 1/O operations.

6 Free any real and auxiliary storage.

7 Atach a subtask to handle the remainder of the
puryes for the address space (pass ASCB in
register 1.)

8 I the address space termination ASCB queue
pointer is not zero, then do processing steps.

@ to @ for the next ASCB.

Otherwise, the task waits for work
(wait on RTCTMECB).

. Register 0
f To dequeued
ASCB
Register 1 Register 1
’ To the ASCB being MEMTERM
dequeued options
Address space
terminator processor task
IEAVTMTR @
. RTM2
IEAVEBBR 1 Set register 0 to point to
this terminating address
Bind break space’s ASCB. V|
service routine
2 Indicate the MEMTERM
options in register 1. Perform
IEEVEXSN SVC 13 {.ddress
Excessive spin 3 Issua SVC 13 — to invoke space
notification the services of RTM2. Return |purges.
routine to caller
IEAVLKRM 4 Exit to the dispatcher. t

Lock manager

resource manager

IGCOCO01F

1/0 supervisor

=

BR 14

ILRTERMR

Auxiliary
storage
management

IEAVTERM

Real storage
management

Figure 9 (Part 2 of 2).

WAIT

ATTACH

The Process of Terminating an Address Space

uHdI 40 STefJdajel PajdTJIsay,

WGI 40 Ajuadodd -~ STETIJa3eN pasuadTi

SRB dispatcher

\ 4

SRB
abends

b IEAVTRT1

IEAVTRT1

Obtain the
local lock

Figure 10 (Part 1 of 2).

RTM-36 MVS/XA SLL:

Recov Term Mgmt

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

’ IEAVTRTS
IEAVTR10 Route control to
” the FRRs (each
FRR request per-
colates the error).
IEAVTRTM

1 Check whether the task that created
the SRB still exists.

2 |f the SRB holds a spin lock or a CML
lock or if the SRB was running in a
different address space than its re-
lated task (the task is a reentrant task),
do the following:

A. Validate the ASID of the re-
lated task.

B. Obtain and initialize an SRB,

C. Obtain and fill in the EEDs in
order to pass the error infor-
mation.

D. Schedule the SRB.

3 If the SRB was running in the same address
space as its related task and the SRB does
not hold a spin lock or a CML lock, do the
following:

A. Enable the current PSW.
B. Obtain the local lock.

4 Call STATUS to do the following:

A. Stop the related task (since it
could be running on another
processor).

B. Make the task non-dispatchable.

SRB to Task Percolation

LY28-1735-0

«

IEAVTRTDI

IEAVTRS1
entry point

IEAVTRSO

IEAVTRS3
entry point

(c) Copyright IBM Corp.

1987

"pestricted Materials of IBM"
‘Licensed Materials — Property of IBM

5 If the related task is currently in recov-
ery (TCBRCVRY is set to show that
RTM has been entered to process an
error for this task) and the last FRR to
receive control for the SRB requested
that percolation be serialized
(SERIAL=YES on the SETRP command),
do the following:

A. Obtain storage for a SP| (serial per-
colation information) control block
{if unable to obtain storage, increase
the serial percolation count in the
TCB).

8. Copy the needsd information into
the SPI.

C. Queue the SP1 off of the TCB.

If the related task can sustain an abend,

do the following:

A. Copy the error information into the
TCB and the highest RB (TCBRBPX).

B. Store the address of an SVC 13 in the

RBOPSW.

C. If the task is not a reentant task,
accumulate information in the EEDs. IEAVTRRSO
IEAVTRS3
entry point
7 Set the task dispatchable, ve

8 Free all the locks. ”’ IEAVTRRSO

IEAVTRS6
entry point

IEAVTRT1

Figure 10 (Part 2 of 2). SRB to Task Percolation

LY28-1735-0 (c) Copyright IBM Corp. 1987 Process Flow RTM-37

EUT FRR
IEAVTRT1

IEAVTR10

el

IEAVTRTS

The task’s
EUT FRR
requests a
retry.

. 2

. "Restricted Materials of IBM"
Licensed Materials — Property of IBM

ESTAE
IEAVTRT2

IEAVTRTC

AS2

« el

AS1

The task’s
ESTAE
requests

aretry.
retry AS3

IEAVTR10

If the retry is back to an ESTAE or
mainline FRR

do the following:
A. Dequeue the SPI,

and error type information from
the SPI into the TCB.

point to the EED information in
the SPI.

D. Modify the retry address in the
SDWA to point to an SVC 13.

3 If the serial percolation counter in the

A. Decrease the counter.
{set TCBCMP=06A).

C. Modify the retry address in the
SDWA to point toan SVC 13.

4 Retry

.

IEAVTRTC

2 |f there are any SPIs queued to the TCB,

IEAVTRT2 I

B. Copy the mode, completion code,

L 4

IEAVTRTE

C. Set the EED pointer in the TCB to

TCB is greater than zero, do the following:

B. Indicate SRB percolation in the TCB

Figure 11. Removal of a SPI

RTM-38 MVS/XA SLL: Recov Term Mgnmt

1 If the retry is back to an ESTAE,

2 |f there are any SPIs queued to the TCB,
do the following:

A. Dequeue the SPI.

B. Copy some of the information from
the SP1 into the TCB.

C. Set the EED pointer in the TCB to
point to the EED information in the
SPI.

D. Store the address of an SVC 13 in the

RBOPSW,

3 If the serial percolation counter in the
TCB is greater than zero, do the following:

A. Decrease the counter.

B. Indicate SRB percolation in the TCB
{set TCBCMP=06A).

C. Store the address of an SVC 13 in
the RBOPSW.

LY28-1735-0 (c) Copyright IBM Corp.

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

Entry
Froma
CALLRTM
macro
IEAVTRT1 1EAVTRTV IEAVTRIS
i PSACSTK Allocate/
v -

S Vorify tne verification —>1 frec SOWA
the module module
PSACSTK
tobea

lid
:;m::“" IEAVTRID IEAVTRTS IEAVTRIC IEAVTR1I IEAVTRIA
® Create the o Process Control the Prepsre for | - Obtain the
RTMIWA | FRAvetry FRR-.recovery | routing to > sowa faiting in-
for an inter- e o Process processing FRRs module struction
foce FRR perc stream

o Exit to the — o Process
dispatcher, FRR re- IEAVTRTR IEAVTSLP IEAVTRIR
exit pro. sume
logue or the @ Process. Write the

caller SAB-to- Process the »] Stipoction > sowaw
task perc recursions processor SYSt.
{ LOGREC
IEAVTRTM IEAVTRSO IEAVTR1A 1EAVTRIF IEAVTR1D
Schedule Obzain the
> eaTEAM | RTM1 P ftaifing in- [~ FRR routing i FRR post
*MEMTERM subroutines struction pre-processor procesing
stream
IEAVEEXP IEAVTRTD IEAVTR1X
CMSET
> ExIT > R | interface
prolog subroutines module
1EAVEDSO IEAVTSLP IEAVTSSX
. Adjust PER
1 Dispen > :m;m 3! stotus for
SLIP
IEAVTRIG IEAVTSSX
Entry Entry Adiost PER
GTF inter- ust
status for
Froma Fromo] 1ace modute r’ g
CALLRTM CALLRTM
‘ macro macro
1EAVTSR1 IEAVTRMC IEAVTRID IEAVTR1S
Setupan FAR post

oy s R e

ule the module 1 module

TYPE~ MODE=

ITERM LOCAL

FRAs,
IEAVTRIR
Y Write the
Exit to Exit to —> :5‘:'“ to
the catler the caller LOGI;EC

Figure 12. RTM1l Module Flow and Basic Functions Performed

LY28~-1735-0 (c¢) Copyright IBM Corp. 1987 Process Flow RTM-39

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

ENTRY

Via SVC 13
IEAVTRT2 IEAVTR2A
Obtain the failing
instruction stream IEAVTASI1
Give control to the pug——ped User STAE/ESTAE
user STAE routine. routine.
IEAVTSLP
Initialize the SLIP action
RTM2WA processing _IEAVTAS2
i Perform the service
requests.
IEAVTRTC
g——=4 Route control to ot -
Process an the STAE exits.
abnormal EOT IEAVTAS3
poap——p={ Set up for 5 retry or
percolation.
3
\
IEAVTPMT
Purge the type 1
IEAVTPMT message table.
Print the type 1 ¢ >
message table. 1 Print the message.
‘\ IEAVTABD
Display storage. 4> Displsy storege.
Route control to
the user termination
exits.
Synchronize the
failing tasks.
To part 2
Perform purges
IEAVEDSO
Exit Dispatcher
IEAVEEXP
EXIT prolog

Figure 13 (Part 1 of 2). RTM2 Module Flow and Basic Functions Performed

RTM-60 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

From
part 1
IEAVTRTE IEAVTMMT
BALR LINK
Purge address paf————pnd @ Purge installation e
space resources, resources
. ‘BALR
® Purge system S ——-
resources
IEAVTSKT
BALR LINK
Purge task e Purge installation je—————ipu
resources. resources
ALR
o Purge system BAL
resources

Figure 13 (Part 2 of 2).

LY28-1735-0

instellation resource
managers

System resource
managers

Installation resource
managers

System resource
- managers

RTM2 Module Flow and Basic Functions Performed

(¢) Copyright IBM Corp. 1987

Process Flow RTM-41

ENTRY

IEAVTMTC

® On all processors
stop all tasks of the
address space to be
terminated.

Wait for work.

IEAVEMSO
P Memory switch
SVC 16 1/0 QUIESCE
ol
IEAVTERM

- > RSM resource manager

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Figure 16.

RTM-42 MVS/XA SLL:

Recov Term Mgmt

Address Space Termination Module Flow

LY28~1735-0

ILRTERMR
1 ASM resource
manager
BALR IEAVTREM
> Record resource
manager
IEAVTMTR via IEAVTRT2 IEAVTMMT
ATTACH and IEAVTRTE
——
.Add l:ess fpace, Address space
termination termination purge
task
e Issuea e Route control
special SVC 13 to the address

space resource
termination
managers

IEAVEMDL

—>

Memory
delete

(¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

From IPL/NIP or
vary processor

ENTRY

IEAVTSIN

FRR stack
initialization

Figure 15 (Part 1 of 3).

LY28~-1735-0

FRR stack initialization

(¢) Copyright IBM Corp. 1987

ENTRY

SVC IH, or
type 2,3,0r4
SVC routine

IEAVSTAO

IEAVTRT2

e Invalid ESTA
requests

o Create {from
branch entry)

o Create (from SVC
entry)

o Overlay
o Propagate

o Cancel

o Cancel {from SVC,
free storage)

ABEND CALLER

IEAVGMOO0

IEAVGMOO

J

RTM Services Module Flow

To caller
STAE routine.

Process Flow RTM-43

IEAVTACR

ENTRY

Via CALLRTM
type=ACR

ENTRY

Via CALLRTM,
type=ACRLM
=ACRDISP

o Set the ACR in
progress, save the
PSA.

o Resume work.

o Interchange the PSA
information.

e Recover the work
lost (for first time).

o Resolve the lock '
conflicts, switch
the PSAs.

o Perform the VARY
CPU requests.

o Clean up the 1/0.

® Switch the consoles.

o Notify SRM.

o Notify the operator.

o Reset ‘ACR in
progress’.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RETURN

IEAVTRT1

Recover processor's
work.

FRRS

To dispatcher
BALR IEEVWKUP
e E—
IECVRSTI
BALR
IRARMEVT
SYSEVENT
f—————D
ALTCPREC|
IEAVTRER
RECORD
ot ———————

Figure 15 (Part 2 of 3).

RTM-46 MVS/XA SLL:

(Exit) To dispatcher

Recov Term Mgmt

RfM Services Module Flow

LY28-1735-0

(~ Exit)

To SETLOCK or
dispatcher

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

‘ ENTRY }

Via RECORD

macro

IEAVTRER

e Move the record
into RECORD’s
buffer.

e Schedule an
SRB to post the
RECORD task.

(EXIT)

To the caller of

the recording service

Figure 15 (Part 3 of 3).

LY28-1735-0

Via POST

from SRB
————

‘ ENTRY >

IEAVTRET

Write the records
to LOGREC.

Write the messages
to the operator.

Go to MCH WTO
routine for any
MCH operator
messages.

Wait for work.

- SYS1.LOGREC

Via SVC 76 N
e recording
service
Via SVC 35 WTO
" message
service
BALR IGFPWMSG
P .
MCH WTO routine

RTM Services Module Flow

(c) Copyright IBM Corp. 1987

Process Flow RTM-45

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

From IEAVTRTM, IEAVTRTS, IEAVTRT2 or IEAVTPER

via BALR
y
IEAVTSLP
SLIP action
processor Part 1
. P IEAVTSL1
via branch via via
Y SLIP trap BALR BALR
IEAVTSLB LR N IEAVTSLS > IEAVTADR
SLIP action -~ SLIP processor [« Convert the
processor Part 2 vioBALR service routines indirect addresses
via branch
1 » IEAVTSL2
IEAVTSLE SLIP trap
SLIP action matching routine - (-J
processor Part 3 Part 2
|
" Exit
To the caller
of IEAVTSLP

From IEAVTRTS
{FRR router)

via LPSW

\
IEAVTSLR

SLIP modules’
FRR routine

\
(Exit)

To the caller

Figure 16. SLIP Action Processing Module Flow

RTM-46 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

IEAVTESP
From SVC
Interruption
Handler
1GC0001D/1GX00028

From Contents
Supervision

From

Checkpoint/
Restart

From RTM or
SVC exit
processor
(IEAVEDR)

3

Create SPIE/ESPIE environment,

IEAVSPIP

Determine the program mask to be used in the PSW
of the synched to program.

IEAVSPI

Save or restore SPIE/ESPIE environments and deter-

mine the number of subsystem checkpoint record

{SSCR) blocks required for checkpoint.

IEAVSPIE

Clean up SPIE/ESPIE environment at RB and task
termination.

-

T

Figure 17 (Part 1 of 2).

LY28-1735-0

(c) Copyright IBM Corp. 1987

Exit to caller
via EXIT prolog

Exit to caller

:,:> Exit to caller

Exit to caller!

SPIE/ESPIE Module Flow

Process Flow RTM-47

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

From PC FLIH
(IEAVEPC)

ENTER

IEAVSPI IEAVSPI
IEAVSSPF IEAVSRB

SCHEDULE
soctuesrEEs | SOHEDULE |y papiesnc

A interface.
ruption occurs for a
program check.

IEAVSP!

IEAVSPEX
Set up for and give v
control to a SPIE/ sves o ror e
ESPIE exit to handle an Dispatch ean up for re-
(—) .
interruption for a page SPIE/ESPIE exit [«——3| turning SPIE/

fault. ESPIE exit

EXIT

To caller

Figure 17 (Part 2 of 2). SPIE/ESPIE Module Flow

RTM-48 MVS/XA SLL:+ Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

From IEAVADIN
Ent
or BLSQECT

IEAVTFMT

o Validity check the
parameter list.

® Format the control
blocks that are valid

for the TCB being
processed,

paLR __ (Notel) iR BALR BALR
—RTM2WA le——»[BLSGROUT __ J&——3» IEAVTRF2 l«——»{__BLsorouT

® Pass parameters for o Pass paremeters

A @ Pass the address of for requested
requested services the RTM2WA for- services
matting model and
the address of the
E’ dump data to for- : L>
BLSQCFMT mat the RTM2WA BLSQIFMT

Check the control using IE_AVTRFTS @ Load the control
block acronym formatting model block data to be
teble (CBAT). CSECT formatted,

(IEAVTRP2).

@ Load the requested o Format the control
control block for- block using the
matter module, o.Perform a bit specified formatting
which contains analysis summary model.
the control block for the RTM2WA.
model. '

BALR | |EAFTESA (entry
~If the SVRB is l———3 point in IEAFTRT2)
available, format
the ESA bits. ESA bit flag
summary formatter
. BALR IEAFTSDW (entry
—SDWA's «——» point in IEAFTRT2)
registers.
SDWA registers at
time of error
formatter
To Part 2

Note:

1. The BLS modules are documented in IPCS Logic and Diagnosis.

Figure 18 (Part 1 of 6). RTM Control Block Formatter

LY28~-1735-0 (c¢) Copyright IBM Corp. 1987 Process Flow RTM-49

From Part 1

IEAVTFMT

Continue formatting
control blocks:

_—EED

-SCB

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

ToPart3

Note:

1. The BLS modules are documented in IPCS Logic and Diagnosis.

Figure 18 (Part 2 of 4).

RTM-50 MVS/XA SLL:

Recov Term Mgmt

RTM Control Block Formatter

LY28-1735-0

BALR (Note 1) BALR BALR BALR
[€———]_BLSQROUT > IEAVTRFS «—>[sisonour
® Pass parameters for o Pass the address of © Pass parameters for
requested services the EED formatting requested sorvices
model and the ad-
dress of the dump
I data to format the
SLsacrmy EED using BLSQIFMT
@ Check the control IEAVTRFb5’s for-
block acronym matting model o Load the control
teble (CBAT). (CSECT) block data to be
o Load the requested (IEAVTRPS). formatted.
control block for- o Format the contro}
xg’ "‘°"'|"°' @ Peform a bit block using the
contains specified i
control block analysis summary iy ormatting
mode!. for the EED.
BALR BALR BALR BALR
___BLSOROUT __je&— IEAVTRF4 - BLSQROUT
© Pass parameters for ® Pass the address of ® Pass parameters for
requested services the SCB formatting requested services
model and the ad-
dress of the dump
data to format the
BLEQCPMT SCB using BLSQIFMT
® Check the control IEAVTRF4's for-
block acronym matting model ® Load the control -
table (CBAT). block data to be
CSECT formatted.
o Loed the requested (IEAVTRP4).
control block for. o Format the contro}
matter module, o Perform a bit block wsiag the
which contains lysis summ specified formatting
control block analysis summary model.
mode!. for the SCB.

(¢) Copyright IBM Corp. 1987

"Restricted Materials of IBW"
Licensed Materials — Property of IBM

From Part 2

BALR

IEAVTFMT

o If called by
BLSQECT, format
any active FRR
stacks.

To Part 4

Note:

prr—
BLSQROUT

{Note 1)

BALR

@ Pass parameters for
requested services

BLSQCFMT

® Check the contro!
block acronym
table (CBAT).

@ Load the requested
control block for-
matter module,
which contains the

control block
model.
IEAVTRF3 —I-_y BLSQROUT BALR
® Pass the address of © Pass paramsters for
the FRR formatting _J—’ requested services
mode! and the ad-
dress of the dump
data to format the L
FRR using stsaiemt]
IEAVTRF3's for-
matting model ':‘:::““‘:':’
CSECT
(IEAVTRP3) formatte.
o Format the control
o Pass the address of |- block using the
the RT1W format- | [ormating
ting model and the
address of the dump
data to format the
RT1W using
IEAVTRF3's for- | BALR M orsamomr—Jonh IEAVTRFS
matting model
CSECT o Pass parameters for @ Pass the address of
(IEAVTRP1), requested services the EED formatting
model and the ad-
o If RT1W is valid, dress of the dump
L. data to format the
—Perform a bit BLSQCFMT EED using
analysis summary @ Check the control IEAVTRF5's for-
for the RT1W. block acronym matting mode!
table (CBAT). CSECT.
—If the EED @ Load the requested
printer does not contro! block for- @ Perform s bit
equal zero, format xi‘:’ "Wd‘:“- " analysis summary
the EE.Ds. ol for the EED, -
model.

1. The BLS modules are documented in tPCS Logic and Diagnosis.

Figure 18 (Part 3 of 4).

LY28-1735-0

(c) Copyright IBM Corp. 1987

RTM Control Block Formatter

Process Flow RTM-51

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

From Part 3
|EAVTFMT BALR {Note 1) BALR (Notes 2 and 3) BALR GALR
BLSQROUT BLSQROUT
o If called by e -3 IEAIHSAF
BLSQECT, format @ Pass parameters for ® Pass parameters for
the interrupt requested services o Pass the address of requested services
handler save area, the IHSA format-
ting model and the
I address of the l
BLSQCFMT dump data to for- ‘ BLSQIFMT
Check the control mat the IHSA using

‘ block acronc::'nro IEAI.HSAF's for- ® Load the control

table (CBAT). matting model block data to be
CSECT formatted.

® Load the requested] P).
control block for- (IEAIHSAP) © Format the contro!
matter module, block using the
which contains the spocified formatting
control block model.
model.

BALR BALR
na ALR

the XSBusingthe L o —fisamoor Joa @ Formatany active fe——— BLSQROUT 8
formatting model FRR stack "
CSECT ® Pass parameters for @ Pass parameters for
(IEAXSBP), and requested services. requested services
the STKE chain
using the for-
matting model l
CSECT l—. BLSQIFMT BLSQCFMT
(IEASTKEP).

® Check the contro!

® Load the control block acronym
block data to be table (CBAT).
formatted,

@ Loed the requested

® Format the control control block for-

° block using the matter module,
specified formatting which contains the
model. control block

model.
Notes:’

1. The BLS modules are documented in IPCS Logic and Diagnosis.
2. IEAIHSAF is the supervisor module’s formatter.
3. SDUMP calls IEAIHSAF directly.

Figure 18 (Part 4 of 64). RTM Control Block Formatter

RTM-52 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

METHOD OF OPERATION

LY28-1735-0

This section contains logic diagrams for the modules in this
component.

The first two diagrams are overviews of RTM1 and RTM2
processing. The remaining diagrams are in alphabetic order by
module name, and the diagrams use either hipo format or prologue
format.

The following figure shows the symbols used in hipo format logic
diagrams. The relative size and the order of fields in control

block illustrations do not always represent the actual size and

format of the control block.

Keys to Symbols Used in the hipo format Method-of-Operation Diagrams

Primary processing — indicates major functional flow.

Secondary processing — indicates functional flow within
a diagram.

Data movement, modification, or use.

I R

— — -3 Data reference — indicates the testing or rcading of
a data area to determine the course of subsequent
processing.

T Pointer — indicates that a data area contains the address
of another data area.

—— Indirect pointer — indicates intermediate pointers have
been omitted.

Connector — indicates that a diagram is continued on
the next page.

Figure 19. Key to Hipo Logic Diagrams

(c) Copyright IBM Corp. 1987 Method of Operation RTM-53

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

The prolog format diagrams contain detailed information that is
broken down into four different headings. The four headings and
the topics they document are:

Module Deseription, which includes:

. Descriptive name

. Function (of the entire module)

U Entry point names, which includes:
Purpose (of the entry point)
Linkage
Callers
Input
Qutput
Exit normal
"Exit error, if any

xternal references, which includes:
Routines
Data areas, if any
Control blocks

° Tables

o Serialization

.
I Iml e

Note: Brief RTM module descriptions are also included in
VS/ ended chit S ic Library: Module
Descriptions, which contains module descriptions for all the
MVS/Extegded Architecture components described in the Systenm
c ry.

Module Operation, which includes:

. Operation, which explains how the module performs its
function.

U Recovery operation, which explains how the module
performs any recovery.

Diagnostic aids, which provide information useful for
debugging program problems; this includes:

Entry point names

Messages

Abend codes

Wait state codes

Return codes for each entry point. MWithin each entry
point, return codes might be further categorized by
exit-normal and exit-error.

o Entry register contents for each entry point

L Exit register contents for each entry point

Logic Diagram, which illustrates the processing of the
module, the input it uses, the output it producs, and the
flow of control. Some modules do not have a logic diagram
because the processing is sufficiently cxplained in the
module description, the module operation, and the diagnostic
aids sections. Figure 20 on page RTM-55 illustrates the
graphic symbols and format used in the logic diagrams.

RTM-54 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c¢) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

LOGICKEY ~ Key to the Logic Diagrams STEP 01
Callers
This paragraph describes what this module
\]|does. The same text appears under the
> | | FUNCTION heading on the Module Description
/ page.
LOGICKEY
01] Numbered steps describe the
processing at a high level.
A. Lettered steps describe the processing
at a lower level.
SPQA J“"““"j’ 02| Input and output fields. I I\SPQE
\ 7/
SPQAADRE SPQAEDSE ———7| The control block acronym or data area name SPQRENEXT
appears above the input and output boxes, SPRESPQA
SPQE and the field names appear within the SPRETCB
boxes. A dotted arrow means the data is SPQEKEY
SPQENEXT SPQESPQAI referenced, a solid arrow means the data is SPRESHR
modified, SPQECWN
TCB
03| Ext 1 11 hi L-:\SPQA
TCBPKF ernal ca grapnic /
I passing the parameter, TROB. SPQRAFADQ
70—\ SPQALADQ
\Ne—/ ITRFBR SPRAFEDQ
SPRALEDR
TROB
04| Internal call graphic (at
the step indicated) passing
two parameters.
7\
\—/ SUBROUTN: 12
EFMSGl, TFWAPMSG
EAECB [m————————- >|]05] Macro instruction graphic
-3 I\ with these keywords,
EAERIMAT s | — parameters, and options.
ASCB : POST
-3
H (EAERIMWT, RCO) ASCB(TOBAASCB->ASCB)
H ERRET(CVTBRET)
CcvT :
.|
CVTBRET
TOB
ronanscn 06} Inger{tal Iprgl;chttg the label
: - ana step inaicated. -
[. . \
>BRLABEL: 08
/

Figure 21. Key to Logic Diagrams (Part 1 of 2)
LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Oparation RIM-55

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

LOGICKEY - Key to the Logic Diagrams STEP 07

07] SVC graphic.
< > svc TSOTEST

I\
08 >|108] Step 06 branches here. A

V4 program call (PC) graphic
BRLABEL shows aq exit.

— bc

Callers

| L‘\
>|]109] Secondary entry point.

/
SECONBEP This paragraph describes the function of
TROB THISLINE I———-'\ this entry point. Four parameters (to the
L——|/

MAXLINES ETPBOPTS left) are passed an input.

PARAMETERS

TTE DOILABEL|| 10| This is the beginning of an
> iterative DO group.
TTEMBZ1
A. Iterate graphic of ths DO 10
instruction to the specified step ——
number.

B. Leave graphic of the DO instruction ——1—

to the specified step number. 11
11| External return graphic, to
the calling routine. | |
\ 7/
—\
12 >|112]| This is an internal
— subroutine.
SUBROUTN
This paragraph describes the function
of this subroutins.
13| Internal return graphic, to >
a step within this module. T;l
\/

Figure 21. Key to Logic Diagrams (Part 2 of 2)

RTM-56 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

0-SELT~-82A1

L86T °d40) WAI FYSTJAdO) ()

LS-WLY uoTjeJedg o Poyrey

RTM1 Overview (Part 1 of 2)

From a branch entry

after a supervisor

state routine issues a CALLRTM
macro instruction

Input

RTM1
work registers

l | Process

Current
FRR stack

RTM1
work registers

Figure 21 (Part 1 of 2).

1 Set up the common interface from
the RTM1 entry points.

Q 2 Perform the second fevel
l > interruption operation procassing.

> 3 Process any rescheduled RTM
requests.

4 Perform the clean-up processing.

> 5 Exit to the appropriate routine.

Retry routine.

Machine check handler.
Interrupted program.
Dispatcher.

SRB exit.

Exit prologue.

Caller.

Output

RTM1
work ragisters

<

SLIH

M Reschedule

H Clean-up

RTM1 Overview

RTM1 exit processing
(IEAVTRT1)

Note: When either MCH (machine check handler) or
ACR (alternate CPU recovery) indicates a hardware
error, CALLRTM goes directly to MCH or ACR.

wHEI JO0 STeTJajel PajdtJlsaly,

WEI 40 Ajuadoud — STETJ8}EH PasuadTl

JuBy w9 A0d9Y :71S VX/SAW 8S-WLY

0-S€LT-82A1

L86T °d40) WAI IYSTJAdO) ()

RTM1 Overview (Part 2 of 2)
Extended Description

The RTM1 service of recovery termination management
(RTM) provides a recovery interface with other supervisor
routines. When a supervisor routine (principally the inter-
ruption handlers) detects an error situation, it passes con-
trol to RTM1, via the CALLRTM macro, to initiate
recovery from the error. RTM1 records the error (both
hardware and software) on SYS1.LOGREC.

RTM1 does not perform the recovery function itself; it
routes control to functional recovery routinas {(FRRs)
established by locked, disabled SRB routines or enabled,
unlocked task {EUT) routines. These FRRs are placed on a
last-in-first-out FRR stack by a SETFRR macro issued

by the routine requesting protection. The macro expansion
places the FRRs on one of the following stacks, depending
on its functional path through the supervisor. (The super
FRR is placed on each stack by NIP processing.)

ACR stack

RTM1 stack

SVC-1/O-dispatcher stack

Machine check stack

Program check stack

External interruption handler 1 stack
External interruption handler 2 stack
External interruption handler 3 stack
Restart interruption handier stack

Additionally, a normal FRR stack contains the recovery
status for other paths through the system.

RTM1 receives control for the following reasons:

Program checks

Restart operations

SVC errors

STERM errors

Machine checks

DAT (dynamic address translation) errors

Abnormal termination (ABTERM) requests for a task
with an ASID (address space identifier) specified
Abnormal termination requests for a task in the current
address space

Address space termination requests

Reentry for abnormal termination requests

Reentry for machine checks

Branch entries for abnormal termination requests
RMGRCML resource manager

Figure 21 (Part 2 of 2).

® o® 00000

Module

RTM1 Overview

Label

Extanded Description

1 RBTM1 creates a common interface for its
sub-functions using various entry point data and
establishes recursion control for service routine requasts.

2 The program check IH (interruption handler), SVC
IH, restart 1H, and machine check handler {MCH)
all can request that RTM1 perform second level interrup-
tion handler (SLIH mode) processing. When RTM1
processes an SLIH mode entry, viaa CALL RTM (that is,
TYPE = PROGCK, SVCERR, RESTART, DATERR, or
MACHCK) it continues processing the interruption only
after IEAVTRTV verifies that the PSA pointer (PSACSTK)
to the current FRR stack contains a valid FRR stack
address. [f there is a valid address, then RTM1, while in
SLIH mode, determines the state of the system at the time
of the interruption so that recovery from the interruption
can be attempted in either system mode or task mode.

If PSACSTK is not the address of a valid FRR stack,
IEAVTRTV invokes IGFPTERM to put the system ina
X‘084' wait state and to issue message | EA797W, requiring
the system to be re-ipled,

3 RTM1 performs reschedule processing for a service

routine entry (that is, the CALLRTM request was for
ABTERM, MEMTERM, or STERM). The reschedule
function can also be performed as part of SLIH mode
processing. This would occur if the action indicated by
routine to FRRs required a reschedule service or if the
processor had been in task mode (no FRRs established)
when the error interruption occurred.

4 Thecleanup function frees any resources no longer
necessary before determining the appropriate type of
exit.

5 RTM1 creates the final exit linkage based on an

indicator established in IEAVTRTM except for
FRR retry and resume processing, which are per-
formed by IEAVTR10.

Module

IEAVTRT1

IEAVTR10

IEAVTRTM

IEAVTRT1 or
IEAVTR10

Label

WEI 30 A3Juadoudd — STETIJSIRW Pasuasti

ulNgI 30 STETJal}e pPajdTJ3Isay,,

0-9€.T-82A1

L861 "d40D WUI IYBTJIAdOY ()

6S-W1Y¥ uoTyeJUEdQ JO POy}l

'RTM2 Overview Part 1 of 4)

From the SVC IH {IEAVESVC)

to perform SVC 13
(ABEND) processing.

Input . | Process
Register 0
ASCB or dump
— T
Ve options
/ Dump +’ASCB of address |
options space being terminated|
Register 1 2
I Flags]
TC8 _ SVRB
TCBRBP /
SvC 13
TCBSTABB
SCB
TCBRTM12 Failing
RB
EED

__j) 1 tnitialize the RTM2WA

according to the parameters
requested on the SVC 13
instruction,

Process the recursions through-
out the RTM2 operation.

Output

RTM2WA

Figure 22 (Part 1 of 4). RTM2 Overview

input for
steps 3-7

initialization

Recursion

Processor 1

FIAYIN0 2

WaEI 30 AjJadoudd — STETJajel pasuaasty

uW8l O STBTJSIBU P3IOTJIISBY,,

0-9€.T1-82A1 JUBK wJad] A023Y 7S YX/SAW 09-WLY

L1861 °d40) WGI IYSTIADO] (D)

RTM2 Overview (Part 2 of 4)
Extended Description

The RTM2 function responds to SVC 13 (ABEND) requests
after receiving control from the SVC IH (interruption
handler). Basically, RTM2:

o Initializes a common work area called the RTM2WA.
This work area contains the information needed by the
various RTM2 routines to service the SVC 13 request;
the work area serves as the input for the rest of RTM2
processing.

@ Provides for error handling in RTM2 by tracking any
possible recursions that occur. Unlike other supervisor
routines, RTM2 does not rely on FRRs (functional
recovery routines) to handle errors. Instead, RTM2
uses recursion tracking to perform recovery by tracking
the various RTM2 routines as they execute.

o Performs any of the basic RTM2 services: task recovery,
storage displays, synchronizing failing tasks, purging task
resources, and purging address space resources.

@ Exits to the correct RTM2 exit routine depending on
the following conditions indicated in the RTM2WA:
permanent or last task exit, retry, normal EOT (end-
of-task) abnormal termination of a task, address space
termination, subtask waiting to terminate, convert-to-
step request, or recursion exit condition. Control
then goes to the dispatcher (IEAVEDS0) or EXIT
prolog (IEAVEEXP).

Figure 22 (Part 2 of 4).

Module

RTM2 Overview

Label

Extended Description

RTM2 initializes an RTM2WA with the information

needed to perform the requested service. RTM2
routines use the information placed in the RTM2WA as
input. The IEAVTRT2—-RTM2 initialization M.O.
diagram shows how RTM2 obtains and initializes the
RTM2WA.

2 Recursion processing occurs throughout RTM2 proc-
essing. Basically, RTM2 indicates each logical section of

code as it executes in the RTM2SCTC field of the RTM2WA.

This field shows the sequential processing of segments, and

Module Label

IEAVTRT2 RT2INWA

marks how far RTM2 processed any request. The IEAVTRT2—

recursion processor 1 M.O. diagram shows this function,
After a recursion occurs, RTM2 either retries the segment if
the segment can recover from the error, or skips the segment
for any further processing requiring that segment. The M.O.
diagram IEAVTRTE — Recursion Processor 2 shows this
function.

WEI 30 Ajuadoud — STETJdIEN PBSU3ITY

uHgI 30 STETJ3l1el PajITJiIsay,,

0-G¢.1-82A1

L86T °du0o) WAI IYETJIAdO] (D)

19-Wl¥ uoTiedady o poyzay

RTM2 Overview (Part 3 of 4)

Input

scB

Process

TCB

TCBSTABB |

3

TCB

>3

Figure 22 (Part 3 of 4).

RTM2 Overview

Process the STAE/ESTAE exits to
recover a task.

Display the storage for the
tasks requesting an ABEND
dump.

Synchronize the failing tasks.

Purge the resources for the tasks,

Purge the resources for an address
space.

Return conuol to the dispatcher
(IEAVEDSO) G 12X1V proloy
{IEAVEEKXP).

IEAVTASI

Recover task
processing

IEAVTABD

ABDUMP
processing

IEAVTRTC

Synchioming
failing tasi.s

IEAVISKT

Taok ity
processing

IEAVTMMT

Adiliess space

PULLE Proiatssing

11

IEAV I

R1M2 e

uHdl 30 STETJA3EH PaJITJIISeU,

HEI JO A3Juadoudd — STETJOIRW Pasusati

0-SSLT-82A1 JWEl wa9) A0ddY 1S YX/SAW 29-WLY

1861 °*d40) WEI IYSTJAMO] (D)

RTM2 Overview (Part 4 of 4)

Extended Description

3 RTM2 will process the STAE/ESTAE exits. The

M.O. diagram IEAVTAS1 — Recover Task Processing
shows the STAE/ESTAE recovery function, the M.O. dia-
gram IEAVSTAOQO — STAE/ESTAE processing shows the
creation of the STAE/ESTAE exit and the SCB (STAE
contro! block),

4 RTM2displaysstorage when the caller specifies dump.

The M.O. diagram IEAVTABD — ABDUMP Processing
in the section “Dumping Services” shows the processing
involved to dump salected areas of main storage.

5 Failing tasks will complete their termination even if

they are subtasks of a task that fails during their
termination processing. RTM2 synchronizes failing tasks
to independently terminate all the tasks in a TCB family
that fail. The M.O. diagram IEAVTRTC — Synchronizing
Failing Task shows this processing.

Figure 22 (Part 4 of 4).

Module

IEAVTRTC
IEAVTAS1

IEAVTAS2
IEAVTAS3

IEAVTABD

IEAVTRTC
IEAVTRTE

RTM2 Overview

Label

Extended Description

6 RTM2 routes control to the resource manager
routines to perform necessary clean up for task
termination. The M.O. diegram IEAVTSKT — Task Purge

Processing shows this processing.

7 RTM2 purges address space resources for address space
termination requests. The M.O.diagram IEAVTMMT —
Address Space Termination Processing shows this processing.

8 Exit processing for RTM2 consists of returning con-
trol to the dispatcher (IEAVEDSO) or EXIT prolog
(IEAVEEXP). The settings in the RTM2FLX field of the

RTM2WA indicate the exit conditions that RTM2 processes.

The M.O. diagram IEAVTRTE — RTM2 Exit Processing
shows this processing.

Module

IEAVTRTE
IEAVTSKT

IEAVTRTE
IEAVTMMT

{EAVTRTE
IEAVTRT2

Label

HAI 30 AjJvadodd -~ SIETJOIEH PAsuasTy

oHdl JO STETJILHd PAITJISAY,,

"pRestricted Materials of IBM"
Licensed Materials — Property of IBM

This page left blank intentionally.

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-63

Juby wao) '\\0998 t11S YX/SAW H9-WLd

0-SSL1-82A1

1861 °d40) WEI IYBTJIALO] (9)

IEAVESPI — SPIE/ESPIE Processing (Part 1 of 6)

.Input

From IEAVEOR

TCB

TCBPIE

SCA

SCAPIE

PIE/ESPIE

PIEPSW

PIEGR14

PIEGR15

PIEGRO

PIEGR1

PIEGR2

EPIEGPR

EPIEPSW

—

. Process

IEAVSPEX: SPIE/ESPIE Exit Processor

1 Mark the SPIE/ESPIE exit as
inactive.

Output

\NZ

2 Copy the appropriate registers
from the PIE/ESPIE to the TCB
for retry.

N2

3 Copy the resume PSW address and

set the program mask in the RB.

To
IEAVEOR

\Z

PIE

PIENOPI

TCB

TCBGRS

RB

RBOPSW

WEI 30 A3uedoud — STETJIOIBH PESUIITT

uHEI JO0 STETJ6IBW PIIITJISAU,

0-SEL1-82A1

L86T °duo) WEI IYSTJIAdO] (2)

§9-Wl¥ uoTiyedadg jo poyiey

IEAVESPI — SPIE/ESPIE Processing (Part 2 of 6)
Extended Description

SVC exit processing, IEAVEOR, calls |EAVSPEX, an entry
point in IEAVESPI, whenever a program issues the SPIE/
ESPIE SVC 3 contained in IEAVTESG. |IEAVSPEX deter-
mines if a SPIE or ESPIE exit issued the SVC 3. If a SPIE
or ESPIE exit did not issue the SVC 3, IEAVSPEX sets a re-
turn code of 0. Otherwise, IEAVSPEX sets the TCB registers
for retry, sets the RB resume PSW address and mask, sets a
return code of 4, and returns control to IEAVEOR.

1 IEAVSPEX resets the program interrupt element flag

bit (PIENOPI) to indicate that neither a SPIE nor an
ESPIE exit is currently in control and that it is valid to
schedule the exit if an error occurs.

2 |faSPIEexit issued the SPIE/ESPIE SVC 3, IEAVSPEX

copies registers 0-2 and 14-15 from the program inter-
rupt element control block (PIE) to the TCB. If an ESPIE
exit issued the SPIE/ESPIE SVC 3, IEAVSPEX copies all
the registers from the extended program interrupt element
control block (EPIE) to the TCB.

3 IEAVSPEX then copies the address portion of the PIE

or EPIE PSW to the RB old PSW. This becomes the re-
try address. |EAVSPEX sets the program mask in the RB
old PSW from the interrupts specified on the SPIE or ESPIE
to complete processing of a SPIE or ESPIE issued from within
the returning exit.

uHEI 30 SIEBTJSICW PBIIFJISBU.

WEI 30 Ajuodoud — STETJO3el Pasuadti

0-SSL1-82A1 JuSl wJo) A0dRY IS VX/SAW 99-WLId

1861 *d40) WAI IYSTJAdO] (D)

IEAVESPI — SPIE/ESPIE Processing (Part 3 of 6)

Process

From SRB
Dispatcher
Input
Register 0 SRBin
: RB
SRB szs
SRBPTCB ’)
TCB SCA] _—D
TCBPKF SCAPIE
TCBPIEND SCAPARMS [~ ‘@
‘TCBGRS SCARPPTR \
TCBPIE
PIE
TCBRBP
) PIEPICA
RBGRSAVE PICA
- PICAITMK
RBOPSW
PICAEXIT
RBXSB
PICAPRMK .
® ‘
SCAPARMS RPIEPICA
RB address RPPTYPE
ILC/PINT RPPEXITA
PSW RPPPARMA
RPPITMK

8 Set the TCB dispatchable.

IEAVPSRB: SPIE/ESPIE SRB Processing

4 Check to ensure the SPIE/ESPIE
environment is valid.

§ Check if the program check was
selected for processing.

Output

6 Initialize the PIE or the EPIE fields.

7 [Initialize he RB and the XSB

fields.

PIE

PIEPSW

EPIE

EPIEPARM

PIENOPI

PIEGR14

EPIEGPR

PIEGR15

EPIEPSW

EPIEINT

PIEGRO

PIEGR1

PIEGR2

RB

RBGRSAVE

RBOPSW

XSB

RBXSB

XSBKM

TCB

TCBGRS

TCBPIEND

TCBRBP

To SRB
‘Dispatcher

HEI 30 Ajuadodd — STETJO3eN PasusdTl

uHEI 30 STETJOl}el POJITJISAY,

0-9€L1-82A1

L86T °dJ40]3 WAI IYBT4AdO) (D)

L9-WlY UOT}eJSd) SO POYIOY

IEAVESPI — SPIE/ESPIE Processing (Part 4 of 6)
Extended Description Module Label

The program check interruption handler (IEAVSPPF) sched- IEAVESPI IEAVPSRB
ules IEAVPSRB, an entry point in |IEAVESPI, when a pro-

gram interruption occurs and a SPIE or ESPIE is eligible to

receive control. IEAVPSRB is an SRB that initializes the

PIE or EPIE with the PSW and register contents at the time

of the program check. |EAVPSRB then maodifies the TCB

and RB so that the SPI1E or ESPIE exit receives control when

the TCB is redispatched.

4 IEAVPSRB checks to ensure that the environment is

valid to schedule the SPIE or ESPIE exit. If the TCB
is dispatchable, IEAVPSRB returns without causing the SPIE
or ESPIE exit to receive control, If there are no SPIE or
ESPIE exits to process or if a SPIE or ESPIE exit is currently
in control (a SPIE or ESPIE exit suffered the program in-
terruption), IEAVPSRB terminates the task by using the
CALLRTM interface; the SPIE or ESPIE exit does not re-
ceive control.

5 IEAVPSRB checks the PICA (for a SPIE) or the

RPIEPICA (for an ESPIE) to determine if the program
check was one selected for processing by the issuer of SPIE
or ESPIE. If the program check interrupt is not to be pro-
cessed by the SPIE or ESPIE, IEAVPSRB terminates the
task by using the CALLRTM interface; the SPIE or ESPIE
exit does not receive control.

6 IEAVPSRB initializes either the PIE or ESPIE with the
PSW and the register contents at the time of error.

7 IEAVPSRB initializes the RB resume PSW so that the

exit receives the registers saved in the TCB or RB so
that the exit receives control with the appropriate register
interface. IEAVPSRB uses the TCB key to set the PKM in
the extended status block (XSB).

8 IEAVPSRB invokes the STATUS service {to mark the
TCB dispatchable).

uwH{EI JO STETJOIEel PAJITJISAYU,

HEI 30 AjJadoud — STETJUSILH Pasuadt

0-GSLT-82A1 JUBl wud] A0d3Y 1S YX/SAW 89-WIN

*d40) WEI IYBTJIADO] ()

L861

IEAVESPI — SPIE/ESPIE Processing (Part 5 of 6)

From PC FLIH
Input (IEAVEPC)
PSA ASCB
PSAAOLD ASCBASID
PSATOLD .
PSALCCAV TcB —
PSASTKE TCBPIE
LCCA SCA
LCCAPPSW SCAPIE
LCCAPX2P
LCCAPX2S
LCCAPGR2

Process

IEAVSPPF

9 If the SPIE or ESPIE can not be
processed, set a return code.

10 Initialize the TCB and the RB
fields.

11 |Initialize the SPIE/ESPIE SRB.

12 |Initialize the SRB's parameter
list.

13 Mark the TCB non-dispatchable.

14 Schedule the SRB to finish
SPIE/ESPIE processing.

To
PC FLIH

* To caller

)

Output

Register 15

return code

TCB

TCBGRS

RB

TCBRBP

Y

RBOPSW

SCA

SRBASCB

SRBPTCB

SRBCPAFF

SRBEP

SRBFRRA

SRBPRIOR

SRBPARM

RB address

ILC/PINT

PSW

TCB

-

> SCASRB

SCAPARM

ASCB

TCBPNDSP

.ASCBTCBS,

TCBPIEND

WEI 40 Ajusdoud — STETJ33el P3SU3ITT

uHEI 3O STETJU231EH PalITJISaY,

0-9€LT-82A1

1867 *d40) WAI IYBTIADO] ()

69-WLY uoTjeJad) 30 Poy3el

IEAVESPI — SPIE/ESPIE Processing (Part 6 of 6)

Extended Description Module Label

The PC FLIH (IEAVEPC) calls entry point IEAVSPPF for IEAVESP! |EAVSPPF
all program interruptions except PER, monitor event, special

operation, and transiation exception. If the system environ-

ment at the time of the interrupt does not preclude a SPIE

or ESPIE from being given control, IEAVSPPF schedules an

SRB to complete the processing necessary to give the exit

controf. When IEAVSPPF returns to the PC FLIH, register

15 contains a code that indicates whether to continue SPIE

or ESPIE processing or to abnormally terminate the task.

O |IEAVSPPF tests the execution environment to deter-

mine if the SPIE or ESPIE SRB should be scheduled.
If the SRB should not be scheduled, IEAVSPPF sets a re-
turn code of 8 in register 15 and returns control to PC FLIH
to abnormally terminate the task.

10 1EAVESPPF copies the registers at the time of the inter-
rupt to the TCB and copies the PSW at the time of the
interrupt to the RB.

11 IEAVSPPF initializes the SPIE/ESPIE SRB contained

in the SCA. The SPIE/ESPIE SRB processor routine
contained in IEAVESPI (IEAVESRB) receives control when
the SRB runs.

12 |EAVSPPF initializes the SRB parameter list contained
in the SCA.

13 |EAVSPPF makes the TCB non-dispatchable by setting

the TCBPIEND and TCBPNDSP bitsonin the TCBand
decreases the number of ready TCBs in the ASCB
(ASCBTCBS).

14 IEAVSPPF schedules the SPIE/ESPIE SRB to complete
processing for the exit.

uwWEI JO STETJajel POITIISAU,

WEI 40 Ajuadoud — STETJajel Pasuadr’

JUBK wWao) A0I8Y 7S VX/SAW 0L-WiI¥

0-9€L1-82A1

1861 'd40) WAI IYSTJIAdO] (D)

IEAVSTAO — STAE/ESTAE Service Routine (Part 1 of 6)
Branch entry from type 2,3,

or 4 SVCs, or from SVC IH
and IEAVTRGS to process an
E/STAE or an E/STAI request

Input

Process

Branch entry only

Register 13

4 Register save area

Register 15

Entry point address

Branch and SVC entries

v

Register 1 Register 0
Parameter list or the Code
TOKEN for cancel
with TOKEN specified

Codes:
X‘00’, ‘100" — Create SCB
X‘02', '102* - Propogate SCB

X‘04’, ‘84°, ‘94, ‘A4’, ‘B4’ — Cancel SCB
Xx‘08’, ‘108’ - Overlay SCB

Register 14

Return address

SVC entry only
Register 3

} cvr

Register 4
4 Tce

Register 5
4 svceoSVRB

1 Validate the request.

o If invalid, abend

2 Perform the requested service.

o Create the SCB.

o Cancel the SCB.

o Overlay the SCB.
e Propagate the SCB.

Output

X08' —
X'0C’ —

X'10' -

X‘14' —

Completion code
E x13c |

Register 15
Reason code J

Reason codes:

Invalid ESTAI request

Invalid branch entry to SVC 60
service routine

Unauthorized use of TOKEN
for ESTAE request
STAI/STAE in 31-bit mode

Register 6

Entry point address

Register 7
} ascs

Before propeagation

I After propagation
these control blocks

TCB A ATTACH are also present
TCB B TCBC's
2nd ESTAE
TCB C SCB
[+ v
TC8E's/ | TcB B'sI f
RB ESTAE (TCBC's
S RB
c8 | TCBC's
1st ESTAE
l SCB
TCB B's l
ESTAI SCB
Copy of
_ TCBB's
ESTAI SCB

Si73VLs -

0¥ IJIAY3S

3

WYI 30 Ajuadoud - STetrJajel pasusdT

ul8I 30 STETJajlel PalITJISIY,

0-SELT-82A1

L8361 "d40) WET IYSTJAdOY (9)

1.-Wl¥ uoTjeJodg 40 poyrol

Extended Description

The STAE/ESTAE service routine creates and initializes
an SCB (STAE/ESTAE control block) to represent an
abnormal interruption exit routine. The STAE/ESTAE
service routine can create, cancel, overlay, or propagate
an SCB, according to the action codes passed as input.

An ESTAE SCB can have an unique identifier (TOKEN)
associated with it. If an ESTAE SCB is created with

a TOKEN, then this TOKEN is used to locate the SCB

to cancel or overlay it. The STAE/ESTAE service routine
receives control from the SVC interrupt handler or from
type 2, 3, or 4 SVCs by branch entering module IEAVTRGS,
which preserves the addressing mode and return address of
its catler and then branches to IEAVSTAO in 31-bit mode.
Control returns to the caller.

1 The STAE/ESTAE service routine validates both
branch-entered and SVC issued requests. The
STAE/ESTAE service routine abnormally terminates
invalid callers, issuing a X°'13C’ abend. The value in
register 15 indicates the reason for the termination.

2 The STAE/ESTAE service routine performs the
requested service, as indicated in register 0.

(a) For create requests, the STAE/ESTAE service
routine obtains storage for an (E) STAI or (E) STAE
SCB from the SCB cellpool (if available) or by
issuing a GETMAIN request. The STAE/ESTAE
service routine chains each newly created SCB to
the SCB queue, pointed to by the appropriate TCB,
The STAE/ESTAE service routine indicates that
the caller owns an SCB by setting an indicator in the
RBSCB field of the caller’s RB. When an SCB associ-
ated with an ESTAE is created with TOKEN=token-
address, after STAE/ESTAE processing completes,
the user-supplied token-address field contains the token
created for this request. When processing a STAI or
ESTAI request, the STAE/ESTAE service routine auto-
matically propagates the STAIl or ESTA) SCBs from
all former (E) STAI requests. (see (d))

. IEAVSTAO — STAE/ESTAE Service Routine (Part 2 of 6)

Medule

IEAVSTAO

Label

Extended Description Module Labe!

(b) For cancel requests, the STAE/ESTAE service routine de-
queues the last SCB related to the caller’'s RB. For an
ESTAE with TOKEN=token-address specified, the STAE/
ESTAE service routine uses TOKEN to find and dequeue
the SCB identified by TOKEN and all newer SCBs associ-
ated with the caller’s RB. |f the caller does not own any
more SCBs, the RBSCB indicator in the caller’s RB isset
to zero.

(c) For overlay requests, the STAE/ESTAE service routine
initializes the existing SCB with the new values. If the
original SCB was created with a TOKEN, then the STAE/
ESTAE service routine uses TOKEN to find this specific
SCB and replaces the old exit information with the new
ESTAE exit routine information. In addition, if TOKEN
was specified, the STAE/ESTAE service routine deletes all
newer SCBs associated with the caller’s RB.

(d) For (E) STAI propagation, the STAE/ESTAE service routine
obtains storage for the other SCB(s) from the SCB cellpool
(if available) or by issuing a GETMAIN, copies the SCB
information from the appropriate SCB(s) (addressed by the
TCB pointed to in register 4), and chains both the new and
the propagated SCB(s) to the newly attached TCB.

W8I 3O STETJaE| PAOITIIEAU.

WEI 30 AjJuadodd — STerJdajey pasuasr

JUSH wa9) A0O9Y :11S VX/SAW 2Z.-WLY

0-SELT-82A1

1861 °*dJ40) WAL IYSTJADO] (D)

IEAVSTAO — STAE/ESTAE Service Routine (Part 3 of 6)

Process

3 Return control to the caller.

Output

>

ﬂTo the caller
{branch

entry or
EXIT
prolog

(IEAVEEXP))

Register 15
I Return code —l

‘Return ESTAE/ESTAI codes:
X‘00" — Successful STA or ESTA request.

X‘04' — ESTAE OV has been requested and the
tast SCB is one of the following:

o Non-existent,

o Not-owned by the user’'s RB

e Not an ESTAE exit

In any of these instances an ESTAE
create was performed.

X'08° — A previous create has been issued with the
BRANCH=YES option. The create has been
performed and the previous SCB that’
was created has been eliminated.

X‘0C’ — Invalid cancel request.

X'10' — Unexpected error.

X’14' — Insufficient storage.

X‘18' — ESTAE OV has been requested and either:

o TOKEN was requested and the SCB
is not owned by the current RB

o TOKEN was not specified for an SCB
created with TOKEN

STAE/STAI
X‘00° — Successful STA or ESTA request.

X‘04' — Insufficient storage.
X‘08' — STAE issued in a STAE exit or
— cancel or overlay request with no SCB
on gueue.
X‘0C' — STAI not issued by ATTACH or
—STAI request with a missing TCB operand.
X‘10" — Cancel or overlay and SCB is not a STAE
SCB or is not owned by the requestor’s RB or
— unexpected error encountered while
processing the request.

WEI 30 A3uododd ~ STETJOIRW POsSusdT

uiEI 40 STETJI1EY PaJITJISaY,

0-S£LT-82A1

2861 "d403 WET IYBTIADOY (9)

uotjededg JO poyroy

€L-W1¥

IEAVSTAO — STAE/ESTAE Service Routine (Past 4 of 6)

Extended Description - Module

3 The STAE/ESTAE service routine returns control to
the caller, with a return code in register 15 indicating
the results of the request.

Label

TeTvalel PajdTJIsaUy,

WEI 30 Ajuadodd — STETJSIBW PasuaaLi
aldl J0 S

0-S€LT-82A1 JUBK wJd] A0IDY 1S VX/SAW HL-WLY

L86T "d40) WEI IYBTIJAdO] (D)

IEAVSTAO — STAE/ESTAE Service Routine (Part 5 of 6)

From EXIT, XCTL,
or ATTACH to
cleanup SCB queues

Input Process

Register 0
0 or # RB issuing
EXIT or XCTL IEAVTSBP

Register 1
Oor4RB receiving 4}
control by a XCTL v 4 232:::;2‘;:933 from the

RB RB e RB exit.

e XCTL requests.
Transfer the SCB for an
XCTL request, if eligible.

o End-of-task.

Register 4 o Failed ATTACH.
4 TCB
TC8
From RTM
(IEAVTRTS) I
SDWA

> B Recover from an error.
L4
e Continue with termination.

o Retry.

“ To caller

Output

Register 16

Return code

Return codes:

X‘00° — Successful.
X‘04' — Error occurred.

SCB queue modified.
Output for step 2 shows
SCB queue.

To caller

Register 16

Return code

Return codes:

X‘00° — Address space termi-
nation or incomplete
FRR parameter list.

X‘04' — Erroroccurred during
processing.

X'1C’ — Storage protection
exception for the
E/STAE macro para-
meter list.

WEI 30 Ajuodoud - STETJSIERW POSUaaly

ulddl 30 STeTJdelel PajdTJIsay,

0-S€.1-82A1

1861 °dJ40) WEI IYSTJAdO] (D)

uorjedadg JO poyrey

SZ-W1Y

IEAVSTAO — STAE/ESTAE Service Routine (Part 6 of 6)

Extendad Description

EXIT, XCTL and ATTACH use the SCB task recovery

resource manager (IEAVTSBP) to transfer or dequeue SCBs.
IEAVTSBP builds an FRR to recover from errors. Upon

completion, control returns to the caller.

4 |EAVTSBP either removes or transfers SCBs. if
IEAVTSBP finds a O in register 4, it returns the

caller a return code of 4 in register 15. |IEAVTSBP sets

the calling RB’s SCB indicator to show that no SCB is

owned. In addition, depending on the caller, IEAVTSBP
does one of the following:

For an RB issuing EXIT, removes the SCBs from the
SCB queue.

For an RB issuing XCTL, transfers all SCBs created
with the XCTL=YES option and removes all SCBs if
the XCTL=YES option was not specified. IEAVTSBP
sets the new RB’s SCB indicator to show that at least
one SCB is owned.

For an RB issuing end-of-task EXIT or if an ATTACH
request failed, dequeues the SCBs from the SCB queue
and sets the SCB address field in the TCB to 0 to indicate
that no SCBs are on the active queue.

If an error occurred in IEAVTSBP, its functional re-
covery routine {FRR) attempts to recover.

If the error occurred under address space switch
conditions or if the FRR parameter list was incomplete,
no retry is permitted and the FRR finishes termination.

If the caller requested dequeueing of all SCBs associ-
ated with this task, the FRR makes the SCB queue
pointer in the TCB equal zero.

For RB EXIT and an XCTL request, the FRR first
checks for storage key failures and storage data checks.
{f either is found, the FRR scans the SCB queue for an
SCB within the address range of the storage error in-
dicated in the SDWA. If the FRR finds an SCB within
this range, the FRR makes the SCB queue pointer in
the TCB equal zero. If the FRR finds no SCB within
this address range or if there was no storage error, the
FRR dequeues all the SCBs owned by this RB.

Modute

IEAVTSBP

IEAVTSBP

Label

TRRMFRR

uHgI 30 STETJO3IBH POIITJISAY,

WEI 30 AjJuadoud — STETJIILH PBsSUadIT

0-SE.1-82A1 JUBK WJ9) A0d9Y :TIS YX/SAW 9L-WLY

L1861 "du40) WEI IYSTIAdO) (D)

IEAVTAS1 — Recover Task Processing (Part 1 of 4)

Input

From IEAVTRTC

RTM2WA

SCB

XSB

RB

SCBX

Process

Select an ESTAE exit routine.

if none available

Prepare the data for the user's

ESTAE exit.

Give control to the user’s

ESTAE exit.

Perform the services for the user’s

ESTAE exit routine.

o Track the SDWA,

e Record the error,

o

To RTM2
overview
(IEAVTRT?2)

Output

RTM2WA

SCB

| -
TCB
. SDWA SCBX
i
SYNCH User’s exit
BR 14
Register 1]
[.4 Record parameter list
Register 13
l + Save area I
IEAVTRER
Record SDWA
routine
RTM2WA

o Process the DUMP options,

S

§S320

HEI 30 AjJadodd — STETJdICH POsSuadL]

uWEI 3O STeTJd}el PIJITJISAY,

0-9€L1~-82A1

L86T °d40) WAI IYSTJIAdO) (2)

uorjedadg 40 Poyray

LL-WLY

IEAVTAS! — Recover Task Processing (Part 2 of 4)

Extended Description

RTM2 routes control to user-written exit routines before it
terminates a task. These exit routines — either STAE (specify
task abnormal exit) or ESTAE (extended STAE) — receive
control to attempt to recover an abnormally terminated task.
(See the M.O. diagram IEAVSTAQ — STAE/ESTAE Service
Routine for a description of how the user creates a STAE
control block (SCB)). See Supervisor Services and Macro
Instructions for adescription of how a user creates an ESTAE
routine.)

RTM2selectsan ESTAE/STAE routine from the SCB queue,
and branches to it. |If the terminating task can recover after
the ESTAE/STAE routine processes, RTM2 performs any
processing necessary for a retry condition, and the task re-
sumes processing. Otherwise, the task is terminated.

RTM2 places diagnostic information in the SDWA during
ESTAE/STAE processing.

1 RTM2 searches the SCB queue to selact the exit to be
given control. The searching sequence follows:

® Oninitial entry, the most recently established exit will
be selected.

o During percolation, {a previously selected exit has not
elected toretry) — the next exit on the queue is selected.

e During percolation only one STAE (as opposed to
ESTAE) is selected; all others are bypassed.

® During TERM processing, only those exits with the
TERM option {TERM=YES on the ESTAE macro
instruction) are selected.

o |If the queue is exhausted with no exit requesting retry,
control returns to RTM2 and the task is terminated.

Note: If more than 32 consecutive exit routines fail {be-
cause of a program check or issuance of the ABEND macro)
the next exit in the chain will be skipped. |IEAVTAS1
changes the completion code to X‘60D’ with a reason code
of 0.

Module

IEAVTAS1

Label

FINDSCB

Extended Description

2 RTM2 initializes some fields in the internal RTM2WA
(RTM2 work area) to ensure the accuracy of the SDWA
during percolation.

RTM2 obtains and initializes an SDWA with information
that will aid the user in diagnosing the error.

RTM2 performs the user otpions indicated on the ESTAE
macro instruction. Abnormal exit processing may be blocked
and active 1/O may be halted or quiesced. 1/0 options are
performed only for the first exit selected; all subsequent
exits receive an indication of 1/O status.

3 RTM2initializes parameter registers for the exit routine.

Additionally, RTM2 sets the interface with the SYNCH
macro (used to give contro! to the exit),

4 On return from the user exit routine, RTM2 uses the
macro to trace either the SOWA (if one exists) or the

return information. RTM2 writes the SDWA on the

SYS1.LOGREC data set if one of the following is true:

® SLIP requested recording.

® The user exit requested the SDWA be recorded, and it is
available,

o RTM2 is processing a restart error that occurred while
in the enabled, unlocked task mode.

RTM2 initializes the RTM2 work area with user dump
options if any exist. RTM2 combines any dump parameters
with existing options; it adds storage ranges to the end of the
existing storage range list, wrapping around to the top again
if necessary. (A maximum of thirty storage ranges can be ac-
cumulated.) If the user requested no dump, RTM2 sets the
existing options to zero.

Module

IEAVTAS2

Label

WKUPDAT

SDWAINIT

USEROPTS

EXITINTR

GTFHOOK

RCRDSDWA

DUMPORTS

WEI 40 A3ju3doud ~ STETJI3EH Pasuast
uwHEI 30 STBTJOlEH PO3ITJISAY,

JUSY W9l A029Y 1S VX/SAW 8L-WIY

0-SSLT-82A1

1861 °d40) WAI IYSTJADO] (D)

IEAVTASI — Recover Task Processing (Part 3 of 4)

Process

2

Input
RTM2
Tcs RB SVRAB
1
3
wa
XSB XSB
¥ RTM2WA
sce scs scB
7] /8
scBx £scex WA scBX
ATM2WA
r
SOWA
sce

SCBX

v

5 Retry or continue with termination,
according to the requested action.

. Output

A. Retry

=N

o Locsate the correct RB.
e Modify the RB queue.

o Update the SDWA.

=)

To RTM2
overview
(IEAVTRT2)

SDWA

RTM2WA

RTM2RETR
g

B. Continue with termination

e Permit a change of the
completion code.

o Free the SDWA.

e Indicate continuation with
termination,

¢ Return tostep 1 to

process the remaining exits. * Stap 1

RTM2WA

WEY 30 Ajuadodd - STETJa}el PasualdL

uwHEI JO STETJ23BW POIITIISBY,

0-S€L1-82A1

L86T °duol WAI FYBTJAdO) (D)

6.-WlY¥ uoTjedadg jo poyyey

IEAVTAS1 — Recover Task Processing (Part 4 of 4)
Extended Description

BA If a retry can be performed (this is not term exit
processing), RTM2 selects a retry RB. For a
STAE/ESTAE retry, the SCB contains the RB address.
For an ESTAR retry, RTM2 uses the oldest RB. For a
STAI/ESTAIL, RTM2 performs the retry under the PRB
for the last STAE/ESTAE or STAJ/ESTAI exit routine
if one exists. Otherwise, RTM2 purges the RB queue
until only PRBs remain and the STAI/ESTAI retry
routine will run under the newest PRB left on the queue.

RTM2 prepares the RB queue for a retry. RTM2 purges
resources and closes open, embedded data sets. RTM2 sets
the primary and secondary address spaces of RBs to be
purged (those between the retry RB and the ABEND SVRB)
to the home address space, turns off their PSW S-bits, points
their resume PSW to EXIT, and sets their wait count to zero.
If registers update was requested on the retry, RTM2 inserts
the retry register values to ensure that the correct registers
are pasgd to the retrying RB. If register update was not
requested, RTM2 initializes the parameter registers to be passed
to the retry RB. To ensure that the retry RB will run in

‘the home address space, RTM2 sets the primary and

secondary address spaces to the home address space in the
XSB, and turns off the RBOPSW S-bit. RTM2 places the
keymask for a retry in the retry RB’s XSB. The registers
and PSW at the entry to ABEND can still be found in the
RTM2WA. This work area resides in the LSQA and the
TCBRTWA field of the TCB points to it.

According to the user’s request, RTM2 either updates the
SDWA to be passed to the retry routine, or frees it. Task
recovery returns control to RTM for further preparation
for retry.

BB RTM2 saves the information to be passed to the

next exit during percolation {a changed completion
code or a serviceability indicator) in the RTM2WA and
frees the SDWA, In addition, RTM2 initializes percolation
information in the RTM2WA,

Module Label

IEAVTAS3 FINDRB

RBPRGE

RTRYSDWA

IEAVTAS3 SCBPERC

uW8I JO STEFJA1BK POIIFJIISAY,,

WEI 40 A3J49dodd — STETJa3EW POsusdt

0-9£.T-82A1 Jubp wao) Ao0d8y :771S VX/SAW 08-WLIY

*d40) WEI IYBTIAdOY (2)

L861

IEAVTESP — SPIE/ESPIE Processing (Part 1 of 14)

From SVC FLIH to
process SPIE requests

input
Register 1
f eica _
PICA =
PICAITMK
TCB
TCBPIE
TCBPMASK
RB
RB
RBOPSWMK

Process

—

IGC0001D: SPIE CREATE Processing

1 Check for invalid calls.

2 Obtain storage for the SCA.

3 Obtain storage for the PIE/EPIE.

4 Obtain storage for the RPIEPICA.

5 [f an ESPIE exists, obtain a fake
PICA.

6 Return the address of the PICA or
the fake PICA.

Output

Register 15

Completion code

X'10E' — Invalid PICA address

X'20E’ ~ Invalid PIE address

X‘30E' — Function requires
authorized caller

TCB
TCBPIE

TCBPMASK
TCBPIE17
TCBRBP
TCBRTMCT

RB

SCA

1]

SCARPPTR RB

SCAPIE RBOPSW

PIE/EPIE
PIEPICA

PICA

RPIEPICA
RPPPIE

RPPPICA
RPPPRB RPIEPICA

RPPNPTR RPPPICA
RPPTOKEN

Register 1 fake PICA

Caller via

[t Picacro |

Exit Prolog

HaI 30 Ajuadoud — STETUSIEH PasuasTl

uHEI 3O STRTIJSIBH P8JITJIISAY,

0-9£41-82A1

1861 °d40) WEI IYS5TJIAdO] (2)

uorjedadg 4O POy}l

18-W1d

IEAVTESP — SPIE/ESPIE Processing (Part 2 of 14)
Extended Descu_'iption Module

SPIE processing contains the following entry points:

e |GC0001D — SPIE create processing

e [GX00028 — ESPIE SET, RESET, and TEST processing
e |EAVSPIE — SPIE/ESPIE termination resource manager
o IEAVSPI — SPIE/ESPIE checkpoint/restart processing

SPIE processing handles user requests for program inter-
ruption exit routines, When the user codes a SPIE macro
instruction, SP|E create protessing initializes the fields of a
PICA (program interruption control area) with a program
mask, the address of a user’s program interruption exit rou-
tine, and an interruption mask.

If a program check interruption occurs while a program is
executing on behalf of the user’s task, the user’s program
interruption exit routine must handle it using information
from the PICA, Otherwise, the program whose error caused
the program interruption is abnormally terminated. The
user’s exit routine also uses information from the PIE (pro-
gram interruption element).

SPIE processing places in the TCB of the macro-issuing pro-
gram an indirect pointer to the user’s exit routine. If a pro-
gram interruption occurs, the SPIE SRB processor (M.O.
diagram IEAVESPI-SPIE/ESPIE SRB Processor) sets up the
PIE, checks the TCB indirect pointer field, and passes control
to the user’s exit routine.

SPIE must refer to the PIE and PICA in the key of the caller,
so that unauthorized references to the PIE or PICA will re-
sult in a program check. The SPIE FRR (functional re-
covery routine) converts the program check to either a X’ 10E’
or X‘20E’' ABEND code.

Label

Extended Description Module Label

1 If the caller is in supervisor state, the caller’s key is

other than that indicated in the TCBPKF field, or the
caller is executing in 31-bit addressing mode, he cannot use
SPIE. If PICAEXT does not equal 0, SPIE processing sets
the TCBPIE17 bit to 1, if the user is authorized, to indicate
page fault processing is requested.

2 If the TCBPIE field equals O, this is the first time that
the caller has issued a SPIE macro. SPIE create proces-
sing obtains and initializes the SCA and chains it to the TCB.

3 " If a PIE does not exist (SCAPIE field equals 0), SPIE

create processing obtains storage for a PIE and initializes
it with a pointer to the user supplied PICA. SPIE create
processing also obtains an extended program interruption
element (EPIE) contiguous to the PIE so it will be available
should the user specify an extended program interruption
exit routine.

4 SPIEcreate processing uses the RPIEPICA for recovery

processing. The SPIE create service initializes the
RPIEPICA with pointers to the PIE, PICA, and RB issuing
the SPIE, chains any previously active RPIEPICAs to the
new RPIEPICA, and generates a token, representing the
SPIE environment, from the TCBRTMCT field to represent
this RPIEPICA.

B If the previously active RPIEPICA represents an ESPIE

exit, SPIE create processing obtains a fake PICA and
initializes the fake PICA so that a SPIE restore request cor-
rectly restores the ESPIE exit.

6 On return to the issuer of the SPIE macro, register 1

contains the address of the previously active SPIE’s
PICA, the previously active ESPIE's fake PICA, or O if
neither a SPIE nor an ESPIE was active.

uHEI 30 STETJOIEN Paj3ITJIISaY.

HEI 30 AjuadoJdd — STETJ93}EH Pasuasti

JWBY wJas] Aod9y :71S VX/SAW 28-WLd

0-9£.L1-82A1

IEAVTESP — SPIE/ESPIE Processing (Part 3 of 14)

Input

From SVC FLIH to
process ESPIE requests

Register 1

f PICA

TCB

TCBPKF

PICA

PICA/TMK

TCBPMASK

TCBPIE

TCBRBP

SCA

SCARPPTR

RB

RB

SCAPIE

RBOPSWMK

PIE

PIEPICA

/ ‘RPIEPICAS A

RPPPICA

fake PICA

Process

—

7

10

11

1GC0001D: SPIE DELETE Processing

Check for invalid calls.

Reset the TCB and the RB fields.

Free the storage obtained for all
the RPIEPICAs.

Free thestorage obtained for the
SCA.

Free the storage obtained for the
PIE/ESPIE and return the address .
of the PICA.

Output

L861 "d40) WAI IYGTJIADO) (D)

=)

Register 15

completion code

X‘10E€' — Invalid PICA address

X‘20E’ — Invalid PIE address

X‘30E’ — Function requires
authorized caller

TCB
TCBPIE

TCBPMASK

TCBPIE17

RB

RBOPSWMK

Register 1

* rica

Caller via
Exit Prolog

HII 30 A3uadoud — STETJdEl PasusdTl

wWEI 30 STeTJajel pPajaTJIISaY,,

0-9€£.1-82A1

L86T °d40) WAI IY6TILADO) ()

£8-WI¥ uoTiesedg JO POYIoY

IEAVTESP — SPIE/ESPIE Processing (Part 4 of 14)
Extended Description Module Label

The SPIE Delete processor (IGC0001D) receives control IEAVTESP (GC0001D
when a user issues a SPIE macro to delete a SPIE environ-

ment. When a user issues a SPIE macro with no operands, a

zero PICA address is placed in register 1 during the macro

expansion. A SPIE macro with no operands is a request to

cancel all SPIEs or ESPIEs for the task.

SPIE processing always references the PIE and PICA in the
key of the caller. An unauthorized reference to the PIE or
PICA results in a program check. The SPIE functional re-
covery routine (FRR) converts the program check to either
a X'10E’ or X'20E’ ABEND code.

7 |f the caller is in supervisor state, is in a key other than

that indicated in the TCBPKF field, or is executing in
31-bit addressing mode, the caller cannot use SPIE. SPIE
processing issues an ABEND code,

8 1GC0001D resets the TCB and RB fields.

9 IGC0001D frees the storage obtained for the RPIEPICAs
and any fake PICAs anchored off the RPIEPICAs.

10 !GCO001D frees the storage obtained for the SCA,

11 !GCOC01D frees the storage obtained for the PIE and
EPIE and places the PICA address previously contained
in the PIE into register 1 to pass back to the caller,

w8l JO STEeTJdalel PIAJITJIISAN,,

HEI 30 Ajuodoud — STETJOIEH POsSUaaT

0-S€LT-82A1 JWBl wad] A0O3Y :71S VX/SAW He8-WLY

"d40) WEI IYBTJADO] (9)

L1861

IEAVTESP — SPIE/ESPIE Processing (Part 5 of 14)

Input

From SVC FLIH to process
ESPIE requests

Process

Output

Register O

[«]

Register 1
ESPI
parameter list
ESPIEXIT
ESPIPARM
ESPIITMK
user
exit
routine parms
TCB
TCBPIE
TCBPMASK
RB
RB
RBOPSWMK

—

1GX00028: ESPIE SET Processing

12 Check for invalid calls.

13 Obtain storage for an SCA.

14 Obtain stroage for a PIE/EPIE.

15 Obtain stroage for the
RPIEPICAs.

16 Return the token representing
the previous SPIE/ESPIE or, if
there were no previous SPIEs or
ESPIEs, a zero.

J—

I

|

Loy

|

X‘46D' ABEND code

Register 15

reason code

SCA

SCARPPTR

PIE/EPIE

{ Y RPIEPICA

RPPNPTR

RPPPRB

RPPEXITA

RPPPARMA

RPPITMK

RPPTOKEN

TCB

TCBPIE

TCBPMASK

TCBPIE17

TCBRBP

TCBRTMCT

RBLINK

RB

RPPMASK

Register 1

token or zero

Register 15

return code

RBOPSW

...PI’DCMlWa
Exit Prolog

WEI 40 Ajuadodd — STETIJ83IEW Pasuadr

uWgI 30 STeTJalel PaIITJIIS3Y,,

0-S£.L1-82A1

*d40) WET IYBTIAOY (D)

L1861

G8-WI¥ uoTyEJad) JO POYIY

IEAVTESP — SPIE/ESPIE Processing (Part 6 of 14)
Extondad Description

ESPIE SET processing provides most of the SPIE functions
to programs executing in 31-bit addressing mode as well as
to 24-bit mode users. As does the SPIE service, the ESPIE
service allows a program to establish an exit that is to receive
control when a selected program interruption occurs. The
ESPIE SET service records the program'’s selected program
interruptions, exit address, and other control information in
a control block (RPIEPICA) anchored off the TCB. Ifa
program interruption occurs, the supervisor examines the re-
corded information to determine if the user exit routine
should receive control to process the program interrupt,

12 The ESPIE SET function checks the validity of the in-

formation supplied in the ESPIE parameter list. The
user’s execution environment is also checked to ensure that
the user is allowed to use the ESPIE services. If any errors
are detected, ESPIE SET processing issues an X'46D’
ABEND code and places a reason code into register 15 as
follows:

Hexadecimal
code Reason
4 . An invalid function code was passed in

register 0. The code was not that of
SET, RESET, or TEST.

8 An invalid parameter list was passed.
The area might not have been on a full-
word boundary or might be in protected
storage.

(o4 - An invalid exit routine address might
have been supplied or a field defined to
be zero was found to be non-zero.

18 The caller of ESPIE was either in super-
visor state or the execution key did not
equal the TCB key.

20 The caller requested a function that
required authorization, but the caller
was not authorized.

13 If the TCBPIE field equals 0, this is the first time the
caller has issued an ESPIE or SPIE macro. ESPIE SET
processing obtains storage for an SCA and initializes the SCA.

Module Label

IEAVTESP 1GX00028

CHECKENV

SETPROC

Extended Description

14 ESPIE SET processing obtains contiguous storage for
the PIE and EPIE.

15 The RPIEPICA contains recovery and control infor-

mation. ESPIE SET processing obtains storage for the
RPIEPICA and initializes it with information from the ESPIE
parameter list, such as the user exit address and list of pro-
gram interruptions to be processed. ESPIE SET processing
generates a token to be used as input to the ESPIE RESET
function, if required, to represent this RPIEPICA.

16 On return to the issuer of the ESPIE macro, register 1
contains the token representing the previous SPIE or
ESPIE or O if there are no previous SPIEs or ESPIEs.

uiEI JO STETJSIBH PIIITJISAU,

WEI 30 Ajdadodd —~ STETJIJEel PasuadL

JuSy waa) A0d9Y 7S VX/SAW 98-WLY

0-S€.L1~-82A1

L1861 °d40) WAI IYSTJIADO] (D)

IEAVTESP — SPIE/ESPIE Processing (Part 7 of 14)

From SVC FLIH to
process ESPIE requests

Input

Register 0

rocess

W

Register 1

TCB
TCBPKF

TCBPMASK

TCBRBP
TCBPIE

SCA

SCARPPTR
SCAPIE

RPIEPICAs

RPPTOKEN RPIEPICAs

RPIEPICA

RPPTOKEN |

represented
by token in
register 1

IGX00028: ESPIE RESET Processing

17 Check for invalid calls.

18 An RPIEPICA represented by the
token was not found.

19 If an RPIEPICA was found, free
the RPIEPICASs.

20 Determine if there are any SPIEs/
ESPIEs still active:

o If none are active, free the
SCA and the PIE/EPIE.

e If any are active, set the
TCBPIE17 and RBOPSWMK
fields.

21 Set the ESPIE return code to 0.

Output

Register 15

reason code

TCB

X‘46D° ABEND code

SCA

TCBPIE

SCARPPTR

TCBPMASK

TCBPIE17

RB

(\ RPIEPICAs
) I

RBOPSWMK

Register 15

return code

Caller via
Exit Prolog

HEI 40 Ajuedoud — STETJ3el PasuadTi

uHEI JO STeTJolel PaIITJIIS3,

0-S£.1-82A1

L861 °d40) WEI IYSTJIAdO] (D)

L8-W1¥ uorjeJdadQ jOo poyjzel

IEAVTESP — SPIE/ESPIE Processing (Part 8 of 14)
Extended De;cription

The ESPIE RESET function cancels all SPIE and ESPIE
requests up to, but not including, the SPIE or ESPIE repre-
sented by the specified token,. If a O token is specified,
ESPIE RESET processing cancels all SPIEs and ESPIEs for
the task.

17 ESPIE RESET processing checks the validity of the

ESPIE input parameters and user's execution environ-
ment. If any errors are detected, ESPIE RESET processing
issues a X'46D' ABEND code and places a reason code into
register 15 as follows:

Hexadecimal
code " Reason
4 An invalid function code was passed in

register 0. The code was not that of
SET, RESET, or TEST.

18 ’ The caller of ESPIE was either in super-
visor state or the execution key did not
equal the TCB key.

18 ESPIE RESET processing scans the RPIEPICA chain to

verify that the token specified represents a valid SPIE
or ESPIE environment. |f not, the ESPIE RESET function
issues a X'46D’ ABEND code and places a reason code of 14
into register 15. If any RPIEPICAs on the chain prior to the
specified RPIEPICA indicate an RB other than the RB of
the issuing program, the request isinvalid. The ESPIE RESET
function issues a X’46D’ ABEND code and places a reason
code of 10 into register 15.

Module

IEAVTESP

Label

1GX00028

CHECKENV

Extended Description

19 ESPIE RESET processing deletes all RPIEPICAS up to

but not including the one rperesented by the specified
token. Deleted RPIEPICAs are chained to the SCAFRPPQ as
long as at least one ESPIE or SSPIE remains on the
SCARPPTR. If the input token is zero, the ESPIE RESET
function deletes all SPIEs and ESPIEs. The ESPIE RESET
function also frees the storage obtained for all fake PICAs
anchored off the freed RPIEPICAs.

20 If no SPIEs or ESPIEs exits, the ESPIE RESET

function frees the storage obtained for the SCA and
PIE/EPIE and resets the TCB and RB fields. If any SPIEs
or ESPIEsarestill active, the SPIE RESET function sets the
TCBPIE17and RB'’s program mask according to the in-
formation saved in the RPIEPICA and PICA.

KX 30 A3Juadodd — STETJOIEH Pasuasry
uHdI 30 STBTJOIBN PAIITJISBYU,

JUBK wae) A0d8Y :71S VX/SAW 88-WLY

0-SS.1-82A1

L86T "d40) WEI FYSTJADO] ()

IEAVTESP — SPIE/ESPIE Processing (Part 9 of 14)

From SVC FLIH to
process ESPIE requests

rocess

Input I P
Register 0
ESPI -
parameter list
Register 1
TCB
TCBPIE RPIEPICA p—
RPPTYPE
RPPEXITA
SCA
SCARPPTR RPPPARMA
RPPITMK
RPPPICA

1GX00028: ESPIE TEST Processing

22 Check for invalid calls.

23 Determine if an exit is active and
test for type of exit:

@ An ESPIE is active.
® A SPIE is active.

e Neither a SPIE nor an ESPIE
is active.

*

|

Caller via
Exit Prolog

Output

X'46D' ABEND code
'Register 15

reason code

ESPI

.parameter list

ESPIEXIT

ESPIPARM

ESPIITMK

0

Register 15
return code

WEI 30 AjuodoJdd - STETJa3EW PasuedT

uWEI JO0 STETJa}BeH PAJITJISAY,

0-9€L1-82A1

L86T °dJ40l WHI IYSTJIADO) (D)

68-W1¥ uOT}EJed) JO POY}ey

IEAVTESP — SPIE/ESPIE Processing (Part 10 of 14)
Extended Description

The ESPIE TEST function determines if an exit is active and
the exit type. ESPIE TEST processing initializes the caller’s
parameter list with appropriate SPIE or ESPIE parameter
information dependent on the current exit type and sets a
return code that indicates whether a SPIE, ESPIE, or no exit
is currently active.

22 ESPIE TEST processing checks the validity of the ESPIE

input parameters and user's execution environment. If
any errors are detected, the ESPIE TEST function issues a
X'46D° ABEND code and places a reason code in register 15
as follows:

Hexadecimal
code Reason
4 An invalid function code was passed in

register 0. The code was not that of
SET, RESET, or TEST.

8 An invalid parameter list was passed.
The area might not have been on a full-
word boundary or mightbe in protected
storage.

18 The caller of ESPIE was either in super-
visor state or the execution key did not
equal the TCB key.

23 ESPIE TEST processing checks the RPPTYPE field to

determine whether the active exit isa SPIE oran ESPIE
exit. If an ESPIE exit isactive, ESPIE TEST processing copies
the ESPIE parameter list that defined the exit and sets a re-
turn code of 0. If a SPIE exit is active, ESPIE TEST proces-
sing sets the ESPIPARM field of the ESPIE parameter list
equal to the address of the current PICA and sets a return
code of 4. If neither a SPIE or an ESPIE is active, ESPIE
TEST processing sets a return code of 8.

Module

IEAVTESP

Label

1GX00028

CHECKINV

TESTPROC

uwHII 30 STBTJOIBH PBIOTJIISOY,

WEI 30 Ajuedoud — STETJOIeW PasuadTi

JWSY Wad)l A099Y :71S VX/SAW 06-WLN

0-GSLT-82A1

1861 "dJ40) WEI IYSTJAdO] ()

IEAVTESP — SPIE/ESPIE Processing (Part 11 of 14)

From IEAVEOR

Process

lnput or RTM
Register 1 resource manager
parameter list
RMPLTERM
1 RMPL RMPLRBPP i
RMPLTCBA
RMPLRBPA J
RB TCB
TCBPIE-
SCA RPIEPICAs

IEAVSPIE: SPIE/ESPIE Termination
Resocurce Manager

24 Reset the TCBPIE17 bit to pre-
vent processing of page faults.

25 Delete all required SPIEs and
ESPIEs.

26 Determine if there is any SPIE
or ESPIE still active.

o Ifanexitisactive, make next
SPIE or ESPIE active.

e [f an exit is not active, delete
all the RPIEPICAs on the free
queue and free the SCA and
the PIE.

27 If processing task termination,
stop execution of all SPIE/ESPIE
SRBs.

‘Output

TCB

TCBPIE17

SCA

free queue
RPIEPICAs

SCAFRPPQ

SCA

SCARPPTR

To caller

SCAPIE

PIE/EPIE

_PIEPICA

TCB

TCBPIE17

HEI 30 Ajuadoud - STETJSIEH Pasuadrl

uHEI JO STETJalel PajITJISaY.

0-SS€LT-82A1

L86T °d40) WAI IYBTJIADO] (D)

$6-Wl¥ UOTededp jO Poyrel

IEAVTESP — SPIE/ESPIE Processing (Part 14 of 14)

Extended Description Module Label
Checkpoint/restart calls IEAVSPI to save or restore SPIE
and ESPIE environments or to determine the number of
subsystem checkpoint record (SSCR) blocks required for
checkpoint, The SSCR contains flags indicating whether
the environment should be saved, restored, or whether a count
of SSCRs should be calculated.

IEAVTESP |EAVSPI

28 When performing checkpoint processing, IEAVSPI copies VSPICHCP

the information required to save the SPIE/ESPIE en-
vironment in the SSCR. [f the page fault processing bit in
the TCB (TCBPIE17) is on, IEAVSPI indicates this in the
SSCR. IEAVSPI copies the program mask from the TCB, the
SPIE control area {SCA), and all RPIEPICAs to the SSCR.
IEAVSPI replaces the RB address in each copied RPIEPICA
with a number that represents that RB's relative position
from the TCB. That is, if the RPIEPICA points to the RB
that is pointed to by the TCB, that RPIEPICA's RB address
would be replaced with the value 1. |f there is no more room
in the SSCR for the RPIEPICAs, IEAVSPI uses the SSCR
chain field to obtain the address of the next SSCR to be
used.

29 When performing restart processing, |IEAVSPI restores VSPIRSRT
the SPIE/ESPIE environment according to information

saved in the SSCR. |EAVSPI obtains storage for the SCA

and initializes it from the SCA copy in the SSCR. IEAVSPI

restores the TCBPIE17 bit and the program mask in the TCB.

IEAVSP! obtains enough storage to contain all the

RPIEPICAs, copies the RPIEPICAs from the SSCRs to this

storage, and chains the RPIEPICA to the SCA. IEAVSPI re-

places the relative RB number in each RPIEPICA with the

actual RB address.

Extended Description

30 IEAVSPI scans the active RPIEPICA chain anchored
off the SCA to determine the number of SPIE and ESPIE
envirenments that must be checkpointed. Using the number
of SPIE and ESPIE environments, | EAVSPI calculates the
number of required SSCR blocks needed. If no SPIE or
ESPIE environments exist, |IEAVSPI returns a zero count
to checkpoint/restart and the checkpoint restart functions
of IEAVSP! are not called. If at least one SPIE or ESPIE
exists, |EAVSPI calculates the number of SSCRs.

Module

Label

VSPINUMC

uHaI 3O STETJEIEBH PBIOTJUISOU.

WEI 30 Ajuadodd — STETJ@3el pasusdtl

0-SE€LT-82A1 JUBK wds | A0d3Y TS YX/SAW H6-WLY

"dJ0) WEI 3IYBTJADO] ()

L861

IEAVTFMT — RTM Control Block Formatter (Part 1 of 12)

From IPCS, PRDMP, or SNAP/ABDUMP
for formatting of RTM control blocks.

Input

ASCB

. Process

>1

ASCBASXB

ASXB

ASXBFTCB

Register 1

l} BLSABDPL J

Register 13

f Save area

Register 14

u Return address J

Register 15

U Entry point]

Set up an ESTAE to continue
processing when possible.

Follow the pointers to find
the RTM2WAs associated
with the TCB. Stack the
last 35 and print them in
historical order (oldest to
be printed first). If there
are 35 or more chained
together, print a warning
message; then call the
RTM2WA formatter for
the control blocks on

the stack.

Output

Register 1

t sLsasorL
—

¢

U

via
BLSQROUT

IEAVTRF2

RTM2WA control
block formatter

0
} rRimawa
>Regislerl
l BLSABDPL }/'
Formatted } svms

RTM2WA

WGI 30 Ajuadoud — STETJ3}el pPasuadrl

ulWgI 30 STeTJ31el P3JITJISIY,,

0-SS.1-82A1

L1861 "d40) WEI IYSTJIAdO] (D)

uotjedadg J0 PoYyyey

S6-WLY

IEAVTFMT — RTM Control Block Formatter (Part 2 of 12)

. Extended Description

{ [EAVTFMT searches the control block chains to find the
RTM information associated with the TCB passed in the
parameter list. This information, if accessed through normal
chain pointers and contained in the dump, is the RTM2WA's,
EEDs, and SCBs pointed to by the TCB. It is also RTM1
information such as the FRR stack, for a current task, the
IHSA for any interrupted or suspended task, the XSB or
the STKE.

1 This ESTAE routine will simulate the PRDMP

access service routine on errors caused by accessing
dump data under SNAP. It will set a return code of 4 and
continue processing. If the error was not a result of acces-
sing dump data, a message will be printed with the abend
code and control will return to the calling program.

2 The TCB has a pointer to the RTM2WA. Save the ad-
dress of the 35 most recent RTM2WAs in a stack, If

there are 35 or more in the chain, print out a message text

warning of the possibility of a loop in the RTM2WA chain.

Module Label

|IEAVTFMT

IEAVTFMT ESTAERTN

Extended Description

To format and printeach RTM2WA in the stack, IEAVTFMT
performs the following processing:

1. IEAVTFMT calls BLSQROUT (Exit Services Router) to
pass the requested service code (in this case the format
service) and to pass the control block’s acronym.

2. BLSQROUT calls BSLQCFMT (Control Block Format-
ter) to check the passed control block acronym with the
acronym entries in the control block acronym table
(CBAT) and to load the requested control block format-
ter module (IEAVTRF2),

3. BLSQCFMT calls IEAVTRF2 (RTM2WA Control Block
Formatter) to pass to BLSQROUT the address of the
RTM2WA formatting model, the address of the dump
data to be formatted, and the requested service code.

4. BLSQROUT then calls BLSQIFMT (Control Block
Formatter Model) which loads the control block data
to be formatted and formats the control block using
RTM2WA's formatting model CSECT (IEAVTRP2).

5. Finally, IEAVTRF2 performs a bit analysis summary.

Module Label

IEAVTFMT RTM2RTN

ulSI JO STBTJIIEY PaITJIISaAY,,

WgI 40 Ajuadoud — STETJ93el pasusadtl

0-SE£.T-82A1 JUBY W49 A0I3Y 1 T1S VX/SAW 96-WLY

*d40) WAT IYSTJAdO) ()

L861

IEAVTFMT — RTM Control Block Formatter (Part 3 of 12)

-Input

Register 1

Process

N

4 BLsaBDPL A

4 svms

Y 3

If the RTM2WA formatter
completed successfully, and
if the SVRB is valid, call the
ESA formatter

and then the SDWA formatter.

Otherwise, continue
processing at step 4.

Output

Register 1

> |} sLsasorL

IEAFTESA
Entry point in — Zg;‘m:_tled
IEAFTRT2 » it
summary Q SVRB
Register 1
v |4 BusasorL |
IEAFTSDW
Entry point in Formatted 0
IEAFTRT2 registers at f SDWA
error from

SDWA

WEI 40 A3Ju3doud — STETJ31EH Pasussty

uH8I JO STETJIIBW PIJITJIS,

0-9€LT-82A1

*d40) WEI IYBTJAOY ()

L861

L6-W1¥ uOTIEISd) 3O POYIOW

IEAVTFMT — RTM Control Block Formatter (Part 4 of 12)

Extended Description Module Label

3 If the RTM2WA formatted without any problems IEAVTFMT RTM2RTN
(return code 0), IEAVTFMT will access the address

of the related SVRB. The SVRB's axtended save area

contains information indicating reasons for entry to RTM1

or RTM2. |EAFTESA (an entry point in IEAFTRT2), for-

mats these bits. IEAFTRT2

IEAVTEMT then locates and passes the SDWA to the SDWA IEAFTRT2

formatter, IEAFTSDW (an entry point in IEAFTRT2), to
print out the registers saved there at the time of the error.

gl 30 STEBTJOJRK PAJITJISAY,

WAI 30 AjJdedodd — STETJ331eW POSUS3IT

0-GSLI-82A1 JUGY was) A0d23Yy 7S VX/SAW 86-WLIYN

L1861 °d40) WAI IYBTJAdO] ()

IEAVTFMT — RTM Control Block Formatter (Part 5 of 12)

Process

4

Follow the pointers to find
the EEDs associated with
the TCB. Stack the last 35
and print them in historical
order (oldest to be printed
first). If there are 35 or
more chained together,
print a warning message,
then call the EED for-
matter for those control
blocks on the stack.

If the TCB has a nonzero
completion cocde or has its
abnormal termination in
progress flag on, find the
associated SCBs and stack
the last 35 and print them
in historical order. f
there are 35 or more
chained togsther, print a
warning message, then
call the SCB formatter
for those control blocks
on the stack.

If the TCB is not
terminating abnormally
and has a zero completion
code, continue processing
at step 6.

Output

via
BLSQROUT

IEAVTRFS

mpmmmmmmmm—)){ ::0 control

block formatter

L 4

v

via
BLSQROUT

IEAVTRF4

SCB control
block formatter

Register 1
} sLsasoPL

Formatted
EED 0
} Eeo
Register 1
} sLsasorL
Formatted 0
ScB ’ scB

WEI 30 AjJuadodd — STETJ83EH Pasuadtl

wWEI JO STeTJaley pPajdtrJdisay,

0-SE£.LT-82A1

*d40) WAT IYSTJAdO) (9)

L2861

66-WlY uoTieuadg jo poyray

IEAVTFMT — RTM Control Block Formatter (Part 6 of 12)

Extended Description Module Label

4 The TCB has a pointer to the EED. Save the address

of the 35 oldest EEDs in a stack. If there are 35 or
more in the chain, print out a message text warning of the
possibility of a loop in the RTM2WA chain.

IEAVTFMT EEDRTN

To format and print each EED in the stack IEAVTFMT
performs the following processing:

IEAVTRFS

1. IEAVTFMT calls BLSQROUT (Exit Services Router)
to pass the requested service code (in this case the for-
mat service) and to pass the control block’s acronym.

2. BLSQROUT calls BLSQCFMT (Control Block Formatter)
to check the passed control block acronym with the
acronym entries in the control block acronym table
{CBAT) and to load the requested control block formatter
module (IEAVTRFS).

3. BLSQCFMT calls IEAVTRFS (EED Control Block
Formatter) to pass to BLSQROUT the address of the
EED formatting model, the address of the dump data
to be formatted, and the requested service code.

4, BLSQROUT then calis BLSQIFMT {(Control Block
Formatter Model) which loads the control block data
to be formatted and formats the control block using
EED’s formatting model CSECT (IEAVTRPS).

5. Finally, IEAVTRFS performs a bit analysis summary.

Extended Lescription . Module Labsel

B Check whether the TCB has a nonzero return code or IEAVTFMT SCBRTN
the TCB has the abnormal termination in progress flag
on. Only under these circumstances does IEAVTFMT for-
mat the SCBs. The TCB has a pointer to the SCB. Save the
address of the 35 most recent SCBs in a stack. If there are
35 or more in the chain, print out a message text warning
of the possibility of a loop in the SCB chain.
To format and print each SCB in the stack IEAVTFMT IEAVTRF4

performs the following processing:

1. IEAVTFMT calls BLSQROUT (Exit Services Router)
to pass the requested service code (in this case the format
service} and to pass the control block’s acronym.

2. BLSQROUT calls BLSQCFMT (Control Block Formatter)
to check the passed control block acronym with the
acronym entries in the control block acronym table
(CBAT) and to load the requested control block for-
matter module (IEAVTFF4},

3. BLSQCFMT calls IEAVTRF4 (SCB/SCBX Control
Block Formatter) to pass to BLSQROUT the eddress of
the SCB/SCBX formatting model, the address of the
dump data to be formatted, and the requested service
code.

4, BLSQROUT then calls BLSQIFMT (Control Block
Formatter Model) which loads the control block data
to be formatted and formats the control block using
SCB/SCBX's formatting model CSECT (IEAVTRP4).

5. Finally, IEAVTRF4 performs a bit analysis summary.

uHEI O STETJalel PazdTJIsed,

HaI 30 Ajuadodd — STETJI1EBW PasuaaT

JUEK wae) A0d8y :77S VX/SAW 00T-WLY

0-SE€L1-82A1

L1861 °d40) WAI IYBTJAdO) (2)

IEAVTFMT — RTM Control Block Formatter (Part 7 of 12)

Input Process
ASCB © If the ASCB does not have
N its local lock held, there is no
v related RTM1 information.
Return to
ASCBLOCK=0
Otherwise, continue
processing at step 7.
ASCBLOCK=4X

PSATOLD=ADPLTCB

> 7

If the ASCB is current and

Output

CALLER

PRDMP, IPCS,
or SNAP

Register 1

the TCB passed is current,
call the FRRs formatter to
format the current FRR
stack and the RT1W con-
trol block.

Otherwise

via

BLSQROUT r IEAVTRF3

FRRs and RT1W
control block
formatter

= |4 sLsasorL |

Formatted

CALLER

PRDMP, IPCS,
or SNAP

FRRs and
RTIW

} FRRs

WEI 30 Ajuadoud — STETJajel Pasusati

ulEI JO STETJdleW PIJITJIISBY,

0-9¢L1-82A1

L1861 *dJo) WAI IYSTJIAdO] ()

uot}edadg JO POY3}ay

TOT-WLY

IEAVTFMT — RTM Control Block Formatter (Part 8 of 12)

Extendad Description

6 |f the ASCB does not have its local lock held
(ASCBLOCK=0), there isno RTM1 related information
to be formatted. Return to the caller.

7 1f the TCB passed in the parameter list is the current

task on any processor and it holds the local lock, find
the correct PSA and place the FRR's pointer into the param-
eter list. (To determine the correct PSA, the ASCBLOCK
contains the logical processor address of the processor in
which this task was running. The PSA also contains the
logical processor address for the processor with which it is
associated. Thus it can be determined which PSA in an
MP system contains the current RTM1 information.)

To format and print the current FRR stack IEAVTFMT
performs the following processing:

1. IEAVTFMT calls BLSQROUT (Exit Services Router) to
pass the requested service code (in this case the format
service) and to pass the control block’s acronym.

2. BLSQROUT calls BLSQCFMT (Contro! Block Formatter)
to check the passed control block acronym with the
‘acronym entries in the control block acronym table
{CBAT) and to load the requested control block for-
matter module (IEAVTRF3).

Module Label

IEAVTFMT RT1IMAIN

IEAVTRF3

Extended Description

3. BLSQCFMT calls IEAVTRF3 (FRR Control Block
Formatter) to pass to BLSQROUT the address of the
FRR formatting model, the address of the dump data
to be formatted, and the requested service code.

4, BLSQROUT then calls BLSQIFMT (Control Block
Formatter Modael) which loads the control block data to
be formatted and formats the control block using FRR's
formatting model CSECT (IEAVTRP3).

To format and print thg RT1Win the FRR stack IEAVTRF3
performs the following processing:

1. IEAVTRF3 (FRR Control Block Formatter) provides
the address of the RT1W formatting model, the address
of the dump data to be formatted, and the requested
service code to pass to BLSQROUT.

2. BLSQROUT then calls BLSQIFMT (Control Block
Formatter Model) which loads the control block data
to be formatted and formats the control block using
RT1W's formatting model CSECT (IEAVTRP1).

3. Finally, IEAVTRF3 performs a bit analysis summary.
If RT1W is valid and if the pointer to the EED is nonzero,

each EED in the stack is formatted. (See Step 4's extended
description for an explanation of the EED processing.)

Mduule

Label

wHEI 3O STEBTJ3EW PAJITIISAY,

W4 30 Ajuadoud — STETJajEe| Pasuasry

JUSH wJae) A0d9Y :T1S VYX/SAW 20T-WLY

0-SE€LT1-82A1

L1861 °d40) WHI IYSTIADO] (D)

IEAVTFMT — RTM Control Block Formatter (Part 9 of 12)

Process

8 Call the IHSA formatter:

If the ASCB is interrupted
and the TCB pointer in the
related IHSA points to the
TCB passed in the param-
eter list,

if the address space is sus-
pended and if the TCB
passed in the parameter
list was suspended for a
page fault while holding
the local lock, or

if the address space is
suspended and if the TCB
passed in the parameter
list was suspended trying
to obtain the CMS lock.

If the IHSA is formatted,
continue processing at step 9.
Otherwise, return to the caller.

Output

IEAIHSAF

IHSA control
block formatter

IEAVTRF3

Register 1

4 BLSABDPL
A

FRRs control
block formatter

Input
ASCB
IHSA TCB
IHSAOTCB
Register 1
[4 sLsasorL J\’ TCB
IHSA
TCB
IHSAOTCB |
ASCBLOCK="7FFFFFFF'
ASCBLOCK='7FFFFFFF’
IHSA
TCB
~
CMSLOCK ASCB
-1

(]
4 iHsA
Register 1
4 BLSABDPL
1
Formatted
IHSA, FRRs, o
and RT1W
4 Eeo

HAI 30 Ajuddoud - STETJdIEW PaSUadIT

wNEI 30 STeTJajel PajoTdlsay,

0-SE€LT-82A1

*d40) WAT FYSTJAdO) (9)

L1861

SOT-WLY UOTyeJsd) 40 Poy3ay

IEAVTFMT — RTM Control Block Formatter (Part 10 of 12)

Extended Description

8 IEAVTFMT performs the following checks to deter-

mine whether the IHSA contains RTM1 information
that is pertinent to the current TCB. If any one of these
checks is valid, the IHSA is formatted. Otherwise, the IHSA
does not contain valid information and, therefore, control
returns to the caller,

IEAVTFMT's first check determines if the address space
was interrupted (ASCBLOCK=FFFFFFFF) while holding
the local lock and if the interrupt handler save area (IHSA)
points to the TCB passed in the parameter list. |f so, the
IHSA contains RTM1 information pertinent to the TCB
being formatted.

IEAVTFMT s second check determines if the address space
is suspended and if the TCB was in control. One way to
determine this is to check the status of the TCB. |f the TCB
was suspended for a page fault while holding the local lock,
the |HSA contains RTM1 information pertinent to the TCB
being formatted.

IEAVTFMT's last check determines if the address space was
suspended while trying to obtain the CMS lock. IEAVTFMT
searches the CMS suspend queue for the ASCB address. If
it is on the queue, the TCB was in control and the IHSA
contains related RTM1 information.

Once IEAVTFMT has determined that the IHSA has valid
information, IEAVTFMT formats and prints the IHSA
through the following processing:

Module Label

|IEAVTFMT INTERRUP

IEAVTFMT SUSPEND

IEAVTFMT CMSEARCH

IEAIHSAF

Extended Description

1. IEAVTFMT calls BLSQROUT (Exit Services Router)
to pass the requested service code (in this case the for-
mat service) and to pass the control block’s acronym.

2. BLSQROUT calls BLSQCFMT (Control Block Formatter)
to check the passed control block acronym with the
acronym entries in the control block acronym table
{CBAT) and to load the requested control block for-
matter module (IEAIHSAF).

3. BLSQCFMT calls IEAIHSAF (IHSA Control Block
Formatter) to pass to BLSQROUT the address of the
|HSA formatting model, the address of the dump data
to be formatted, and the requested service code.

4. BLSQROUT then calls BLSQIFMT {(Control Block
Formatter Model) which loads the control block data
to be formatted and formats the control block using
|HSA's formatting model CSECT (IEAIHSAP).

|EAIHSAF formats and prints any active FRRsin the stack
and RT1W control blocks through module |EAVTRF3. (See
Step 7's extended description for an explanation of the FRR
and RT1W formatting process.)

If RT1W is valid and if the pointer to the EED is nonzero,
the EEDs are formatted. (See Step 4's extended
description for an explanation of the EED processing.)

Module

Label

wHdl JO STRTJOIBN POJITJISAY,

WEI 30 A3Jododd — STETJ9IEl POsSusdtT

0-9€.1-82A1 JUB) wJao] A0O9Y 118 VX/SAN HOT-WLY

L1861 °"d40) WAI IYBTJIAdO] (9)

IEAVTFMT — RTM Control Block Formatter (Part 11 of 12)

Input

IHSA

Process

tHSAXSB

XsB

> 10

XSBSEL

If a valid XSB pointer exists,
call the format model ’

processor,

If a valid STKE pointer exists,
call the format model
processor.

Output

D

Return to
the Caller

Formatted
XSB

Formatted
STKE chain

WEI 30 Ajuododd — STETJOIEl PasusaTy

uKEl JO STeTJOlel POJITJIISAY,

Diagram RTM-7. IEAVTFMT — RTM Control Block Formatter (Part 12 of 12)

Extended Description Module Label Extended Description

9 If the XSB pointer in the IHSA isnot zero, IEAVTFMT

0-9€LT-82A1

L1861 °"dJo) WAI IYBTJIAdO) (9)

uotyedadg 40 poyjey

SOT-WLY

formats and prints the XSB in the following manner:

. VJEAVTFMT calls BLSQROUT (Exit Services Router) to

model service) and to pass the control block’s acronym,

. BLSQROUT then calls BLSQIFMT (Control Block

Formatter Model) which loads the control block data to
be formatted. BLSQIFMT formats the control block
using the specified formatting model, IEASTKEP,

-

The following chart summarizes IEAVTFMT's formatting
process of RTM's control blocks.

: : Controf Formatter Bit Analysis | Extended Description
pass the requested service code (in this case the format
model service) and to pass the control block’s acronym. Block Module Model Summary Step Number
RTM2WA | IEAVTRF2 | IEAVTRP2 Yes 2
. BLSQROUT then calls BLSQIFMT (Control Block EED IEAVTRF5 | IEAVTRPS Yes 4
Formatter Model} which loads the control block data
to be formatted. BLSQIFMT formats the control block scB IEAVTRF4 | IEAVTRP4 Yes 5
using the specified formatting model, IEAXSBP, FRR IEAVTRE3 | IEAVTRP3 No 7
10 !fthe STKE pointer in the XSB is not zero, IEAVTFMT RTIW IEAVTRF3 | IEAVTRP1 Yes 7
formats and prints the STKEs in the following manner: IHSA IEAIHSAF IEAIHSAP No 8
. IEAVTEMT calls BLSQROUT (Exit Services Router) to Xxse N/A IEAXSBP No S
pass the requested service code (in this case the format STKE N/A IEASTKEP No 10

ulgl JO STETJO3EH POlOTJISaY,,

WEI 30 A3JodoJdd - STETJO3EW Pasuastl

0-9€41-82A1 JUBY wa9) A023Yy 118 VX/SAW 90T-WLY

861 °"dJ0) WEI IYBTJAdO] (9)

IEAVTGLB — SLIP Global PE.® Activation/Deactivation Routine

From the dispatcher
VEAVEDSO0)

(Part 1 of 8)

Process

Input
CcvVT SHDR
CVTRAMS SHORPFC
CVTVPSA SHDRSRB
SR8
Model PSA
[| SRBPARM

1

Register 1

SRBPARM value
at entry

S 2

SHDR

SHDRSEQ

v
w

Perform initialization.

Determine if PER
monitoring is to be
activated/deactivated in
the system or adjusted
in an address spacels).

o [f no function is
to be performed

Obtain the SHDR
sequence word.

e If the sequence word is

not obtained

e If the requested
function adjusts PER
monitoring in an
address spacels).

Output
FRR stack
GLPERFRR
IEAVPSI
Page-fix or SHOR —
free storage SHDRPFC SRBPARM
SHDRSRB
Register 1
SRBPARM
value
at entry
Continue at
step 7
SHDR
vV
SHDRFLGS
“ Continue at
step 7 SHDRSEQ
“ Continue at
step 5

W8T 40 Ajuddoud — STETJOIEH Pasusatl

ul8I J0 STETJOICH POIITJISAY,

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine (Part 2 of 8)

Extended Description Module Label Extended Description Module Label

0-9€LT-82A1

"d4o) WEI IYBTIAdOY (9)

L1861

L0T-WL¥ UOTieJadg 3O poyiey

IEAVTGLB receives control from:

The dispatcher as the result of a global SRB being
scheduled.

The SLIP command processor (I EECB305) whena SLIP
user issues a command to enable or disable a non-
IGNORE PER trap, or when IEECB905 detects that the
SHDRSRBR flag is set, indicating that IEAVTGLB is

to be rescheduled

The SLIP action processor (IEAVTSLS) when a non-
IGNORE PER trap is to be disabled

The SLIP PER select interface routine (IEAVTJBN) when
it is unable to acquire an SRB to schedule the SLIP local
PER activation/deactivation routine (|lEAVTLCL)

IEAVTLCL when it is unable to acquire the SHDR se-
quence word

IEAVTLCL when PVTMOD PER processing is activated
and the PER control registers need to be set.

IEAVTGLSB either activates or deactivates PER monitoring
in the system, or, if PER monitoring is already activated and
is to remain active, adjusts PER control in the address spaces
requiring a change in PER status.

1

IEAVTGLB performs the following initialization IEAVTGLSB

functions.)
Issues a SETFRR macro to add GLPERFRR to the FRR
stack.

if the SLIP use counter {SHDRPFC) has not already been
updated for this entry, adds one to the counter. This
prevents the IEAVTSLP load module, which contains this
CSECT, from being page-freed.

Obtains the LOCAL lock.

Page-fixes the model PSA if the model PSA exists and {EAVPSI
has not been page-fixed.

Obtains the CMS, SALLOC, and dispatcher locks.

Makes the SRB available by setting to one the
SHDRSRBA flag in the SHDRSRB pointer.

Saves the contents of the SRBPARM field in register 1
and puts zeros in the SRBPARM field.

2 if the SRBPARM input value is negative, IEAVTGLB
activates or deactivates PER monitoring on sall

procassors in the system. If the value is positive, IEAVTGLB

adjusts PER monitoring in all address spaces requiring a
change in PER status. In either case, processing continues at
the next step. If the value is zero, no function is performed,
and processing continues at step 7.

3 |EAVTGLB uses a CS (compare and swap) instruction

to obtain the SHDR sequence word (SHDRSEQ),
which serializes this routine with IEECB905 to prevent the
SCE chain from being altered. Before attempting to obtain
the sequence word, IEAVTGLB turns on the SHDRSRBR
flag in the SHDRFLGS field.

If the sequence word is not obtained, the SHDRSRBR
flag is left at one, indicating to the routine that owns the
sequence word that it is to reschedule [EAVTGLB when it
releases the sequence word. Processing continues at step 7,
where IEAVTGLB cleans up and returns to the dispatcher.

If the sequence word is obtained, IEAVTGLB sets the
SHDRSRBR flag to zero. When the requested function is
to activate/deactivate PER monitoring in the system, pro-
cessing continues at the next step. When PER monitoring
is to be adjusted in an address spacel(s), processing continues
atstep 5.

IEAVTGLB

JHEI JO STeTJojel pPe3dTJisay,

WGl 30 A3uddodd - STETJa3}el PasuadT

0-GELT1-82A1 JUS) Wa9)] A0d9Y :717S VX/SAW SOT-WLY

1861 *d40) WAI IYSTJAdO) (D)

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine (Part 3 of 8)

Input Process Output
CVT SHDR
TRTMS /] SHDRPER 4 11 the non-IGNORE CVT SHOR
CVTRTMS —] PER trap is disabled or ' d
CVTPECAT SHDRCMS1 non-existent deactivate CVTRTMS ~ SHDRPER
PER monitoring in the
SHDRCMR2
IEAVTSIG SHDRPERA
Activate or SHDRPERJ
PCCAVT . SCE) deactivate ASCB
SCEFLGS PER monitoring
on a processor. ASCBPER
o] A ASCBSSSP
4mm)| cavesse ASCBPERS
Set or clear
PCCA for processor n the space
switch event
mask for
LCCA SLIP LCCA
LCCASLIP
ASCB LCCASLIP
ASCBPER SVT
ASCBSSSP SVTCMST1
ASCBPERS SVTCMRT1
SVTCMRT2

WEI 30 Ajuadodd - STETJa1eW PasuadT

wHEI JO STeTJajel PalITJISAY,

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine (Part 4 of 8)

Extended Description Module Label Extended Description Module Label

0-9€LT1-82A1

L86T "d40) WAI IY6TJAdO) (2)

60T-W1Y uoTredodg jO pPoyzoy

4 |f there is no non-IGNORE PER trap {SHDRPER=0) IEAVTGLB
or the existing one is disabled (the SCEDSABL=1),

JEAVTGLB deactivates PER monitoring in the system. To

do so, IEAVTGLB:

Restores CMSET entry point addresses.
Turns off PER monitoring in each active processor.
Frees SLIP storage.
Sets model PSA PSW PER bits to zero.

" Sets the PER trap pointers in the SHDR to zero.
Turns off space switch and PER monitoring in all
address spaces in which PER was activated.

~sao0Uw®

Each step is explained below in greater detail.

a. Restore CMSET entry point addresses. |IEAVTGLB IEAVTSIG
restores the CMSET entry point addresses in the
SVT that were saved in the SHDR when PER was
activated.

b. Turn off PER globally. |EAVTGLB initializes a
parameter list and passes control to IEAVTSIG, which
sets PER control registers 9-11 and the external, 1/O,
and SVC new PSW PER bits to zero. In a multiprocessing
environment, IEAVTGLB does this for each active pro-
cessor in the PCCAVT. For active processors other than
the one on which this module is executing, |IEAVTGLB
uses a RISGNL macro to pass control to IEAVTSIG. To
turn off PER monitoring in this module’s processor,
IEAVTGLSB calls IEAVTSIG directly.

c. Free SLIP storage. After a processor has been signalled IEAVTGLB
and before locating the next processor in the PCCAVT,
IEAVTGLB attempts to free allocated SLIP storage. If the
SLIP work area pointer is valid and the work area is not in
use by IEAVTPER or IEAVTSLP (LCCASLIP >0).
IEAVTGLB frees the storage and sets the LCCASLIP
value to zero. If the storage is being used (LCCASLIP<0),
IEAVTGLB indicates that IEECB905 is to be posted to
have this module rescheduled.

d. Set the model PSA PSW PER bits to zero. 1t the model
PSA exists {CVTVPSA+#0) and is page-fixed, IEAVTGLB
sets the EXT, SVC, and t/O new model PSA PSW PER bits
to zero, If the model PSA is not page-fixed and an enabled
non-IGNORE PER trap exists, IEAVTGLB indicates that

IEECBS05 is to be posted to issue message |EA424|.

(When a processor is varied online, the model PSA is copied
into the new processor’'s PSA.)

e. Set the PER trap pointers to zero. |EAVTGLB sets to
zero the following PER trap pointers: the SHDRPERJ,
SHDRPER, SHDRPERA, and SHDRPERR fields.

f. Turn off space switch and PER monitoring in address
spaces. 1EAVTGLB processes each ASCB pointed to
in the ASVT as follows. To indicate that PER is de-
activated in the address space, IEAVTGLB sets the PER
bit (ASCBPER) to zero. If the ASCB's space switch
event mask for SLIP is on {ASCBSSP=1), IEAVTGLB
calls the space switch event mask manager (IEAVESSE)
to clear the mask for SLIP. If the ASCB indicates that
PER was activated in the corresponding address space
(ASCBPERS=1), IEAVTGLB sets the ASCBPERS
bit to zero. It then initializes and schedules a local
SR8 to enter IEAVTLCL. IEAVTLCL finds the
ASCBPERS bit off and turns off PER monitoring.

A subroutine of IEAVTGLB (SCHEDSRB) issues a
GETCELL to obtain storage for the SRB. If the cell
is acquired, SCHEDSRB initializes an SRB parameter
list and schedules tEAVTLCL to execute as a local
SRB. (See the diagram and extended description for
IEAVTLCL.)

If the GETCELL fails, SCHEDSRB attempts to obtain

a new extent, using a GETMAIN. If this fails and the

PER trap is disabled, SCHEDSRB turns on the SHDRSRBR
flag, indicating that this module is to be rescheduled. If

the GETMAIN fails and the trap is enabled, SCHEDSRB
indicates that IEECB90S5 is to be posted to issue message
IEA742I. Processing continues at step 6.

if the GETMAIN for a new extent is successful, SCHEDSRB
issues a BLDCPOOL to build a cell pool. f this fails,
IEAVTGLB abends with system code X‘06E’. If the
BLDCPOOL is successful, SCHEDSRB schedules
IEAVTLCL.

IEAVTGLB SCHEDSRB

uHEI JO STBTJSIBH PBIITJIISAY,

WEI 40 AjJadodd — STETJIIBW PAsuaaTi

JUSY wWJas] A0d9Yy :71S VX/SAW OTT-WLIY

0-G£LT1-82A1

L1861 "du0) WAI IYSTIAdO] (D)

IEAVTGLB — SLIP Global PER_Activation/Deactivation Routine

From
input step 3
cvT SHDR I-I
CVTRTMS SHORPER
CVTVPSA SHDRPERA |
) SHDRPERJ
Model PSA SCE
[1 SCEFLGS
ASCB
SCVA
ASCBASID 1
SCVAJND
ASCBJBNI
ASCBJBNS SCVAASD
ASCBPER
ASCBSSSP
ASCBPERS

(Part 5 of 8)

Process

> § If the non-IGNORE PER
trap is enabled, and PER

activation/deactivation is

requested, activate PER

monitoring in the system.

OCutput

LCCA
N

LCCASLIP

ASCB

IEAVTSIG

Activate PER
monitoring on
a processor,

IEAVESSE

Set the space
switch event

mask for SLIP.

ASCBPER

ASCBSSSP

ASCBPERS

SVT SHCR
SVTCMST1 SHDRCMS1
SVTCMRT1 SHDRCMR1
SVTCMRT2 SHDRCMR2

WEI 30 Ajuadoud — STETJS1el Pasusdt

uHEI 30 STEeTJajel pPaj3ITJIISaY,,

0-GE£LT1-82A1

L1861 °dJ0) WAI IYBTJADO] (D)

uoT}eJ4adg 40 poyrey

TTT-WLY

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine

Extended Description

5
a.
b.
c.
d

e.

(Part 6 of 8)

Module Labe!
To activate PER monitoring in the system, IEAVTGLB:

Replaces the CMSET entry point addresses in the SVT.

Establishes PER monitoring in each active processor.

Obtains SLIP storage for each active processor.

. Sets the model PSA PSW PER bits to one.

Turns on space switch and PER monitoring in all of the
required address spaces.

Each step is explained below in greater detail.

Replaces the CMSET entry point addresses. IEAVTGLB
replaces the CMSET entry point addresses in the SVT
with addresses of entry points into IEAVTSLC. The
original CMSET entry addresses are saved in the SHDR.
When PER monitoring is deactivated, IEAVTGLB restores
the CMSET entry addresses.

. Establishes PER monitoring globally. \EAVTGLB

initializes a parameter list with the PER mode values (SA
or |IF) found in the trap’s SCEPFLG field, and the be-
ginnning and ending addresses for PER monitoring
(SCVAADD). (Note: SB PER traps are always set up
initially in IF mode,) The module passes control to
IEAVTSIG, which copies the parameter values into con-
trol registers 9-11, and sets the PER bit in the external,
1/0, and SVC new PSWs to one. In a multiprocessing
environment, IEAVTGLB does this for each active pro-
cessor in the PCCAVT. For each active processor other
than the one on which this module is executing,
IEAVTGLB uses a RISGNL macro to pass control to
IEAVTSIG. To activate PER monitoring in this module’s
processor, IEAVTGLB calls IEAVTSIG directly.

Obtains SLIP storage. After a processor has been sig-
nalled, and before locating the next processor in the
PCCAVT,IEAVTGLB issuesa GETMAIN to obtain stor-
age in the SQA for the SLIP work area {except when
SLIP storage already exists, LCCASLIP #0). IEAVTGLB
puts the address of the work area in the LCCASLIP field.

. Turnson the modei PSA PSW PER bits. |f the model PSA

exists and is page-fixed, IEAVTGLB sets the EXT, SVC,
and 1/O new model PSA PSW PER bits to one. |f the
model PSA is not page-fixed, IEAVTGLB indicates that
IEECB90S is to be posted to issue message |IEE4241,

Turns on space switch and PER monitoring in all required
address space(s). |f the PER trap was defined with an
ASID list parameter (SHDRPERA #0) and without
MODE=HOME (SCEMHME=0), IEAVTGLB calls
|EAVESSE to set the space switch event mask
{ASCBSSSP) bit in each ASCB associated with each ASID
in the list to one. IEAVTGLB also sets the PER bit

IEAVESSE

Extended Description

(ASCBPER) to one when these conditions exist unless the
trap was also defined with a JOBNAME parameter
(SHDRPERJ ¥0). If the trap was defined with a
JOBNAME, IEAVTGLB only sets the PER bit
(ASCBPER) to one when the jobname pointed to by
either the ASCBJBNI or ASCBJBNS matches the jobname
in the SCVA.

To determine if PER monitoring is to be activated or de-
activated in an address space, IEAVTGLB scans the ASVT,
comparing the jobname fields and ASIDs of each ASCB entry
with those specified on the enabled non-IGNORE PER trap.
An address space is selected for PER monitoring if:

e The jobname pointed to by either the ASCBJBNI or
ASCBJBNS field matches the jobname in the
SCVAJND field of the enabled non-IGNORE PER trap
(or there is no SCVA jobname entry, SHDPERJ=0),
and,

o MODE=HOME was specified on the trap and the
ASCBASID field matches an ASID entry in the
SCVAASD table of the enabled non-IGNORE PER
trap {or there is no SCVA ASID entry, SHDRPERA=0),
or,

e MODE=HOME was not specified on the trap.

If these conditions are not met, PER monitoring is to be
off.

IEAVTGLB compares the PER activation indicator of the
address space (ASCBPERS) with the desired status deter-
mined above. If the two differ, IEAVTGLB adjusts the
ASCBPERS flag to the desired status and schedules
IEAVTLCL to execute as a local SRB. This processing is
described in the previous step. (Recall that IEAVTLCL
uses the ASCBPERS flag to determine whether to activate
or deactivate PER monitoring). |IEAVTLCL adjusts the old
PSW PER bits in all RBs in the address space.

|f private module PER monitoring is enabled but not active,
IEAVTGLB schedules IEAVTLCL toexecute as alocal SRB.
IEAVTLCL searches the local job pack area queue to find

-a matching private area module,

Module Label

IEAVTGLB

IEAVTGLB SCHEDSRB

wHdl 30 STETJS3BW POJITJISAY,,

WEI 30 AjJuadodd — STETJOIEW PasSusIT

JUB wa9) A0d9Y 7S VX/SAW ZTT-KWLIY

0-9€LT1-82A1

L1861 °du40) WEI IYBTJAdO] ()

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine

From
step 2

(Part 7 of 8)

Process

w—)

6 Process the message
requests.

7 Clean up and return.

Output

_\ SHDR

ﬁ IEACPTO02

Post

1EECBS0S5.

SHDRSEQ

SHORECB

SHOR

== icavesi

Page-fix or

SHORPFC

free storage.

To the dispatcher
(IEAVEDSO)

WEI 30 Ajuadoud — ST=TJa3eH POsuaItly

uN81 3O STeTJajel Pa3dTJ3sSay,

0-S€LT-82A1

1861 °‘dJ40) WAI IYSTIADO] (D)

uotjedadg 40 Poyysy

STI-WLY

IEAVTGLB — SLIP Global PER Activation/Deactivation Routine (Part 8 of 8)

Extended Description Modute Label
6 |EAVTGLEB releases the SHDR sequence word so
IEECB905 can obtain it to process messages. |f
any messages have been requested in earlier processing,
IEAVTGLB branch enters POST (IEAOPT02) to post
IEECBS05's ECB (SHDRECB). IEECBS05 issues the
messages. (See the diagram and extended description of
IEECB905.) .

7 |EAVTGLB releases the CMS, SALLOC, and
dispatcher locks, if held. If the model PSA is page-
fixed, IEAVTGLB frees it. IEAVTGLB then releases the
LOCAL lock, decreases the SLIP use counter (SHDRPFC)
by one, and removes GLPERFRR from the FRR stack.

Recovery processing:

When a non-recursive error occurs while IEAVTGLB is
executing, RTM gives GLPERFRR control, GLPERFRR:

o Indicates that the SRB is available (if necessary).

o Records the error in the SYS1.LOGREC data set and
saves a retry address in the SDWARTYA field.

e If the SHDR sequence word is held, disables the enabled
non-IGNORE PER trap, indicates that the SLIP com-
mand processor communications routine (| EECB90S) is
to be posted to issue message |EE743, and releases the
SHDR seguence word. If the sequence word is not
held, GLPERFRR indicates that message IEE415 is to
e issued. o

e Calls IEAOPTO2 to post IEECBS05's ECB.

Releases the locks obtained by this FRR.

o Determines if a retry is allowed. If not (SDWACLUP=1),

GLPERFRR requests percolation, page-frees the model
PSA (if it was page-fixed), and decreases the SLIP use
counter by one (if necessary).

e Sets the recursive error indicator.

o Returns to the dispatcher.

Extended Daescription

Module Label

If a recursive error occurs, GLPERFRR:

Issues message 1EA4141, using a RECORD macro, to
notify the system operator of the recursive error.
Sets the enabled non-IGNORE PER trap pointer
(SHDRPER) to zero.

Issues a8 SETRP macro to request that RTM free any
locks currently held by IEAVTGLB.

Page-frees the model PSA (if it was page-fixed).
Releases the SHDR sequence word (if held).
Decreases the SLIP use counter by one (if necessary).
Percolates to RTM.

ulddI 30 STBTJ8IBH PBITJIIEANY,

WEI 30 Ajvadoud — STETJezel Pasuastl

IEAVTIBN — SLIP PER Select Interface Routine (Part 1 of 2)

From IEESB605,
IEFIB60O, IEAVEMRQ
Input ‘ Process Output

0-GSL1-82A1 JWE Wad] A0OdY 178 VX/SAW HTI-WIY

1861 °d403 WAI IYSTJAdO] (9)

Delete the recovery routine.

Return to the caller

CcVT
CVTRTMS - ,_____________ﬁ'> 1 If no SHDR exists, return, ﬁ Return to the
calter
2 Establish a recovery SR8
environment.
SRBEP
SHDR SRBRAMTR
3 1f avalid cell pool 1D is
SHORCPID supplied, schedule IEAVTLCL SRBPARM
to adjust PER monitoring in
an address space.
SHOR . SHOR SLIP
R
SHORSAE | S ~> 4 1 novalid ceft poot 1D is N sHprsre JA globa! SRB
supplied or storage is not
available for an SRB, schedule
IEAVTGLB to activate/
deactivate PER monitoring
globally.

WA 30 A3JadoJdd — STETJSIEH PasuUsIT]

uHEI 30 STETJIIEH P3IITJISAY,,

0-9€.1-82A1

L1861 'du0) WEI IYBTIADO] ()

GTT-Wl¥ UOT}eJadp jo Poyroy

IEAVTJBN — SLIP PER Select Interface Routine (Part 2 of 2)

Extended Description Module

This module provides an interface between:

® Address space create (lEAVEMRQ) and the SLIP
local PER activation/deactivation routine (IEAVTLCL)
to determine if a newly created address space is to
have PER monitoring active.

e Job scheduler routines {lEESB605 and IEEIB600) and
PER routines to determine if LOGON, START, or JOB
SELECT commands require a change in the PER
monitoring status of the address space.

1 1 an SHDR does not exist (CVTRTMS=0),

IEAVTJBN returns to the caller. IEAVTJIBN

2 |EAVTJIBN obtains the LOCAL lock, then issues a
SETFRR macro to establish entry point JENFRR
as its FRR.

3 1EAVTJIBN obtains the CMS lock. 1f the SLIP
comumand processor (IEECBS05) supplied a valid
cell pool 1D (SHDRCPID#0), IEAVTJIBN issues a
GETCELL 1o obtain storage in the SQA lor an SRB.
The CMS lock is then released. tf the GETCELL is
successful, IEAVTJBN initializes an SRB parameter
fist with SRBPARM -1, indicating that full
activation/deactivation of PER monitoring is requested,
and with the SRBRMTR field pointing to an RMTR in
1EAVTLCL. IEAVTJBN then schedules IEAVTLCL
to execute as an SRB with local priority. 1EAVTLCL
turns PER monitoring on or off in the address space
in which it is executing. Processing continues at step 5.
1 the GETCELL fails, or the cell pool 1D is invalid,
processing continues at the next step.

Label

Extended Description Module Label

4 1EAVTIBN uses a CS (compare and swap) IEAVTJIBN
instruction to acquire an SRB (pointed to by

SHDRSRB), which the SLIP command processor

initialized. If successful, IEAVTJBN schedules

IEAVTGLS to execute as an SRB with global

priority. If the CS instruction fails, IEAVTGLB is

already scheduled and will make any PER

monitoring changes necessary.

5 |EAVTJIBN deletes the FRR, releases the LOCAL
lock, and returns to the caller.

Rocovery processing:

JBNFRR records the error in the SYS1.LOGREC
data set. If the SHDR exists, JBNFRR sets the
1EA422! message fiag and posts IEECBS0S to issue
the message. JBNFRR then issues an SDUMP. If
IEAVTJBN obtained the CMS lock, JBNFRR
requests that RTM free it. If retry is not allowed
{SDWACLUP=1), JBNFRR requests that RTM also
free the LOCAL lock. If retry is aliowed, JBNFRR
indicates that RTM is to retry at RETRYADR in
1EAVTJBN, where registers are restored and
control is returned to the caller. JBNFRR returns
control to RTM.

JBNFRR

uHgl JO STBTJ83EW PBIITJISeY,

WEI 30 Ajuadoud — STETJa3elH PasusadTl

0-9€.1-82A1 JUSW wJB] A0DBY TS VYX/SAW 9TT-WLY

*d40) WEI IYBTJADOY (9)

L1861

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine (Part 1 of 10)

From the dispatcher

(IEAVEDSO)
Input

Register 0 SRB
} sr8 4

. Process

SRBPARM

1 Perform initialization.

IEAVPSI

Page-fix
or free
storage.

Output
Register 10 FRR stack
SRBPARM LPERFRR
value at
entry

WEI 30 Ajuadoud ~ STETJa3el PasuasaTl

uldI 30 STeTJdd3ely PaITJIsay,,

0-S€LT-82A1

L86T °"du0) WAI IYSTJIAdO) (D)

LIT-WLY uoTreuadQ j0 poyray

IEAVTLCL - SLIP Local PER Activation/Deactivation Routine (Part 2 of 10)

Extended Description Modute Label

IEAVTLCL receives control as the result of an SRB routine -
scheduled with local priority by the SLIP global PER
activation/deactivation routine (IEAVTGLB) or the SLIP

PER select interface routirie (IEAVTJBN). IEAVTLCL's
function is to turn PER monitoring on or off in the address

space in which it is executing and to search the local job

pack area queue for a private area module that matches the
current enabled PER trap.

1 IEAVTLCL performs the following initialization IEAVTLCL
functions.

e Saves the contents of the SRBPARM field.

e Provides recovery by adding LPERFRR to the FRR
stack.

o Obtains the LOCAL lock to allow a branch entry to page-
fix, page-free, and STATUS in later processing.

e Obtains the CMS lock to serialize GETCELL/
FREECELL.

o Frees the SRB storage. To do so, IEAVTLCL obtains
the SLIP cell pool ID from the SHDRCPID field
and issues a FREECELL. IEAVTLCL releases the
CMS lock. If the freed cell was the last of an extent
in which no other cells are currently allocated
(FREECELL's return code=20), IEAVTLCL to page-
fixes this segment of the module, obtains the SALLOC
lock, then issues a FREEMAIN to free the extent.
IEAVTLCL releases the SALLOC lock and page-frees
its fixed pages. If the FREECELL fails and the cell be-
longs to an extent from the pool, IEAVTLCL issues an
ABEND with code X‘06E’.

wldl 3O STBTJOICW POJITJISAY,

WA 30 A3JuodoJdd - STETJ93el Pasuasti

JUSY wds) A0d8Y 7S VX/SAW STI-WIY

0-S£LT-82A1

L86T *dJ0) WEI IYBIJAdO] (D)

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine

(Part 3 of 10)

| cvraBeno

CvT

CVTRSCB

CVTRTMS

ASCB

ASCBASXB

ASCBASID

ASCBPERS

ASXB

ASXBFTCB

TCB

TCBRBP

RB

RBLINKB

RBXSB

RB

R8

TCB

RB

Process Output
V
> 2 I requested, adjust 4\0 Ll
SCvT PER monitoring in YVl cvTRTMS SHDR
this address space.
SCVTSTAT SHDRCTR
ASCB
1GC07902 SHDRFWD
SHDR ywT ASCBASXB
just SHDRBKWD
SHDRCTR dispatchability ASCBSRBM g
SHDREWD of the task. SHDRPER
SHDRBKWD ASXS
sorren IEAVESSE ASXBFTCB SCE
Space SCECTR
SHDRPERA switch TC8
event mask TCBRBP I SCEFWD
manager SCEBKWD
SCE RS
SCECTR IEATRSCN RBOPSW SCE
SCEFWD Find " -
nd nex
RBLINKB
SCEBKWD TCB
SCE TCB RB
SCEFLGCS
RB
SCVA RB
SCVAASD
XsB A8
XSBPASID
RB

WEI 30 A3Jadodd — STETJS1EH Pasuadti

uWEI JO STeTJalel P3IJITJIISAY,

0-S€L1-82A1

L86T °d40) WEI IYSTJAdO] (2)

uotjeJdedg 40 poyirou

6TT-WLY

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine

Extended Description

2 If the SRBPARM value at entry was zero, {EAVTGLB

has already determined which address spaces should

have PER monitoring active, and has adjusted the ASCBPERS

bit accordingly. IEAVTLCL calls the internal subroutine

TCBRBSCN to adjust PER monitoring in each request block

in the address space. .

TCBRBSCN first branch enters the STATUS routine
(1GC07902). STATUS sets all tasks in the address

space non-dispatchable by turning on the SLIP secondary
non-dispatchability flag in each TCB. (This prevents
alteration of the TCB/RB chain while it is being scanned.)
It the ASCBPERS bit indicates to turn PER off,
TCBRBSCN locates the first TCB and, in each request
block attached to it, sets the RBOPSW PER bit to zero.
TCBRBSCN calls IEATRSCN to locate the next TCB

on the TCB chain, and repeats the process until all

TCBs have been located and the RBOPSW bits in their
associated RBs have been adjusted.

If the ASCBPERS bit indicates to turn PER on,
TCBRBSCN calls the SCECTR routine to serialize the
SCE chain up to the enabled non-IGNORE PER trap.
TCBRBSCN locates the first TCB and, for each
request block attached to it, does the following:

o |If MODE=HOME was requested on the enabled
non-IGNORE PER trap, TCBRBSCN compares the
primary address space (XSBPASID) of that request
block with the home (ASCBASID). If they match,
TCBRBSCN sets the RBOPSW bit to one.

o |f MODE=HOME was not requested on the enabled
non-IGNORE PER trap and the ASID parameter
was specified, TCBRBSCN compares the primary
address space {XSBPASID) of that request block
with each ASID in the ASID entry of the SCVA
and if one matches, TCBRBSCN sets the RBOPSW
PER bit to one.

e |f MODE=HOME was not requested and the ASID
parameter was not specified, TCBRBSCN sets the
RBOPSW PER bit to one in every request block.

Module

1GC07902

IEAVTLCL

IEATRSCN

(Part 4 of 10)

Label

TCBRBSCN

Extended Description Module

‘ TCBRBSCN calls IEATRSCN to locate the next TCB IEATRSCN

on the TCB chain, and repeats this process until all
TCBs have been located and their associated RBs
have been checked.

If MODE=HOME was requested or the ASID parameter [EAVTLCL
was not specified on the enabled non-IGNORE PER

trap, TCBRBSCN sets the ASCBPER bit in the

ASCBSRBM field to one and calls IEAVESSE, the IEAVESSE
space switch event mask manager, to set the space

switch event mask on for SLIP,

TCBRBSCN calls STATUS to reset all tasks in the
address space dispatchable.

Label

uH8I 30 STBTJOIBH POIITJIEAN,

WII 30 Ajuadoud — STETJ3EY PasuadTi

JUSK Wa9] A0d8Y 7S VX/SAW 02T-WLIY

0-S£LT-82A1

L1861 °d40) WAI IYBTJAdO) ()

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine

(Part 5 of 10)

Process

3 1f SRBPARM#0, determine

Input
cvT scvT
CVTRSCN SCVTSTAT
ABEND
cvT SHDR
CVTRTMS SHDRPER
ASCB r‘\\ SHDRPERA
SHDRPERJ
ASCBASXB SORSEG
ASCBASID
ASCBJBNI SCE
ASCBJBNS SCEFLGCS
ASCBPERS SCVA
ASXB SCVAJIND
ASXBFTCB SCVAASD
RB
TcB RE
RBLINKB
TCBRBP
RBXSB
RB
TCB
RB
XSB
RB
XSBPASID

which address spaces are to
have PER monitoring active,
and adjust the PER controls
accordingly.

4 Release the SHDR sequence
word.

Output
SHDR
CVT SHDRPER
CVTRTMS SHDRSEQ
D AscB SCE
;l 1GC07902 ASCBASXB SCEFLGCS
Adjust
dispatchability ASCBSRBM
of the task. ASCBPERS
IEAVESSE ASXB RB
Space switch
vant mask ASXBFTCB RBOPSW
manager
RBLINKB
TCB
1E
ATRSCN TCBRBP A8
Find the
next TCB R
TCB 8
RB
R8

SHDR

\Z

SHDRSEQ

WEI 30 Ajuadoud — STETJIOIEW PAsSUsIT

uHEI JO STBTJ8IEH PA3ITJISAY,

0-S€LT1-82A1

1861 "d40) WEI IYSTJIADO) (D)

I2T-W1Y uoTyeJdedQ 40 poyjzoy

IEAVTLCL — SLIP Local PER Actiavtion/Deactivation Routine (Part 6 of 10)

Extended Description © Module Label

3 1f SRBPARM{0 at entry (the caller is IEAVTJBN), IEAVTLCL
IEAVTLCL obtains the SHDR sequence word

(SHDRSEAQ). If it is unavailable, IEAVTLCL continues

processing at step 6, where IEAVTGLB is scheduled, |f

the PER trap does not exist (SHDRPER=0) or it is disabled

(SCEDSABL=1), IEAVTLCL continues processing at step 4.

If the PER trap indicates MODE=HOME was not requested
(SCEMHME=0) and there is an ASID entry in the SCVA
(SHDRPERA#0) which matches the ASID of this address
space (ASCBASID), IEAVTLCL:

e Calls IEAVESSE to turn on the space switch event IEAVESSE
mask for SLIP in this address space.
e If the jobname pointed to by either ASCBJBNI or
ASCBJBNS matches the jobname in the SCVA of
the PER trap (or there is no jobname entry,
SCHRPERJ=0), turns on the PER indicator {ASCBPER]).
o Determines whether PER monitoring should be active
in this address space. This is done by comparing the
ASCB of this address space with the enabled non-IGNORE
PER trap. PER monitoring is to be active in this address
space if:

~ The jobname pointed to by either the ASCBJBNI or
ASCBJBNS field matches the jobname in the trap
{or there is no jobname in the trap, SHDRPERJ=0),
and

— Either MODE=HOME was requested (SCEMHME=1)
and the ASCBASID value matches one of the ASIDs
listed in the trap {or there are no ASIDs listed in the
trap, SHDRPERA=0), or MODE=HOME was not
requested (SCEMHME=0)

If PER monitoring is not already active (ASCBPERS=0),
{EAVTLCL sets the ASCBPERS bit to one and calls the

* internal subroutine TCBRBSCN to adjust PER monitoring

in each request block as described in step 2.

If any of the above conditions are not met, PER monitoring
is to be off. IEAVTLCL sets the PER indicator
(ASCBPER) to zero. If PER monitoring is active
(ASCBPERS=1), IEAVTLCL also sets the ASCBPERS bit
to zero and calls the internal subroutine TCBRBSCN to
adjust PER monitoring in each request block as described

instep 2.
4 After adjusting PER monitoring, IEAVTLCL releases
the SHDR sequence word.

ulgI JO STETJ81eH PAIITJISaYU.,

WEI 40 Ajuadoud — STETJOIel Pasuadrl

0-SELT1-82A7 Juby waej] A0d9Y TS VX/SAW 22T-WLN

*d10) WEI IYGTJAdO) ()

L1861

Input

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine (Part 7 of 10)

Process

SHDR

SHDRPER

SHDRPVTP

SCE

$5 If a search of the job pack

SHDRPVTA

SCEFLGCS

SHDRPVLP

SCEFWD

SHDRPVTG

SCEBKWD

SHDRPVTL

SCESCVA

PSA

PSAAOLD

SCVA

ASCB

ASCBASXB

ASXB

ASXBLTCB

TCB

TCBJPQB

CDE

CDCHAIN

CDNAME

CDENTPT

coxXLmJP

XTLST

area queue is requested,
search for the matching
private area module.

e |If found,

o Otherwise,

Output

SHOR

SHDRPVTA

SHDRPER

SDHRPCDE

SHDRPVAS

control

IEAVTGLB
Set the PER

SHDRPASC

registers

IJIII’»Smp?

CDATTR

XTLNRFAC

XTLMSBLA

SHDRPTCB

SHDRPVTG

SHDRPVTL

SCE

SCESCVA

SCVA

SCVAMDA1

SCVAMDA2

HEI 30 Ajuadoud — STETJ9IE Pasuasti

uHdI JO STeTJalel PajaTJIsay,

0-9€LT-82A1

L1861 °dy0] WAI IY6TJIAdO] (9)

€2T-WLY uoTredadQ JO POYIaYy

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine (Part 8 of 10)

Extended Description Module Label

5 IEAVTGLB indicates to IEAVTLCL (by passinga 1 in
bit position 30 (x‘00000002°) in the SRBPARM word)

that a search of the job pack area queue (JPAQ) must be per-

formed. IEAVTLCL's search attempts to find a private area

module that matches the module specified in the enabled

non-ignore PER trap.

To prevent IEECBS05 from deleting any of the traps being SEARCHJP

examined, SEARCHJP processing serializes the SCEs by in-

crementing the use counts in each SCE. SEARCHJP then

examines each CDE in the JPAQ for each TCB in thisaddress

space. If the module name in the CDE matches that in the

trap, SEARCHJP does further checking. SEARCH.JP dis-

tinguishes between modules loaded locally and modules

loaded globally {indicated by the COGLOBAL bit).

Extended Description

Having found a match, SEARCHJP cbtains the dispatcher
lock. SEARCHJP processing determines if the module start
offset, which is specified in the trap, lies within the module
found. If so, SEARCHJP uses this module’s CDE. Other-
wise, SEARCHJP continues searching. For a matching
module, SEARCHJP sets up the actual module addresses to
be monitored (prior to this, only the module offsets were
available) and saves information needed for IEAVTPVT's
processing. IEAVTLCL then indicates that IEAVTGLB
must be reschaduled to set the PER control registers, having
determined the PER range to be monitored.

After releasing the dispatcher lock, SEARCHJP releases the
serialization of the SCEs by decrementing their use counts.

If the module name in any CDE does not match that in the
trap, continue processing at step 7.

Meodule

IEAVELK

Label

wHEI JO STeTJdjeH POJITJIISOY,,

WEI 30 Ajuadoud — STETJBIEW Pasuast

0-SSLT-82A1 JUSK W9 A02BY 11IS VX/SAW H2T-WLd

*d40) WEI IYSTJAdO] ()

L1861

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine

Input

Process

(Part 9 of 10)

SHDR

SHDRFLGS

D

6 !f requested, schedule
IEAVTGLB to execute
as a global SRB.

7 Clean up.

‘Return to the
dispatcher
(IEAVEDSO)

HEI 30 Ajuadoud - SIETJ3lBKH POasuaslt

uNEI J0 STeTJajely pajoTJisay,,

0-9€.1~-82A1

L861 °dJ40]d WAI IYBTIAAO] (D)

uotjedadg 40 PoYy}ay

SZT-W1Y

IEAVTLCL — SLIP Local PER Activation/Deactivation Routine

Extended Description

6 If there is a request to have IEAVTGLB scheduled

{the SHDRSRBR flag is set), IEAVTLCL tries to ob-
tain the global SRB using a CS (compare and swap) instruc-
tion and the SHDRSRB field. If successful, IEAVTLCL
schedules IEAVTGLB to run as a global SRB in the master
address space. If the SRB is unavailable, processing con-
tinues at the next step.

7 JEAVTLCL releases the local lock, deletes LPERFRR
from the FRR stack, and returns to the dispatcher.

Recovery Processing:

If an error occurs while IEAVTLCL isexecuting, LPERFRR
receives control to:

e Record the error in the SYS1.LOGREC data set.

e Settasks in the address space dispatchable (if I EAVTLCL
set them non-dispatchable) by obtaining the LOCAL lock,
calling IEAVPSI to page fix this segment of the module,
obtaining the SALLOC lock, and calling STATUS
(1GC07902) to turn off the SLIP secondary nondispatch-
ability flag in each TCB.

e Issue an SDUMP.

o Release the SALLOC lock (if obtained by the FRR},
page free this segment of the module if it was fixed, and
release the SHDR sequence word (if held).

(Part 10 of 10)

Label

LPERFRR

Extended Description

e Decrease the use counts in the SCEs and the SHDR if
they have not already been decreased by IEAVTLCL.

o Post the SLIP command processor communications
routine (|IEECBS05). IEECBI0S5 issues message
IEA415] to the SLIP trap user, indicating an ABEND
occurred while a PER request was being processed.

o Release the LOCAL lock if it was obtained by the FRR.

e |If the LOCAL, CMS, or SALLOC lock is held, request
that RTM release it.

e Return to RTM with a return code of zero (request
percolation).

If IEAVTLCL has been scheduled but not yet dispatched
when its eddress space terminataes, it receives control at entry
point LPERRMTR as the result of a PURGEDAQ function
issued by RTM2, IEAVTLCL obtains the LOCAL and CMS
locks, issuesa FREECELL to free SRB storage, then releases
the LOCAL and CMS locks. If the freed cell is the last of
an extent {the FREECELL return code=20), IEAVTLCL
attempts to free the extent using a FREEMAIN macro. if
an error occurred while FREECELL was exacuting (the re-
turn code ¥ 0or 20), and the cell belongs to an extent from
the cell pool (return code #8), IEAVTLCL issues an ABEND
with system code X‘06E’, and returns to RTM. Otherwise;
IEAVTLCL returns to the PURGEDQ function.

Module

Label

LPERRTMR

WAI 30 Ajuadoud ~ STETJOIEW PasuadT]
wHEI 30 STETJajeW pPajdTJ3sad,

0-9€LT-82A1 JWSK wWud | A023Y TS VX/SAW 92T-WLN

*d40) WEI 3YBTJADOY (9)

L86T

IEAVTMMT — Address Space Purge Processing

Input

From IEAVTRTE

(Part 1 of 2)

Process

RTM2WA

RTM2ASC

ASCB

| Module IEAVTRML |

Prepare for a possible recursion by
establishing an ESTAE exit.

Clean up the installation-specified
resources and address space-related
IBM resources.

Clean up the SRBs related to the
address space.

Free the ASCB.

Clear the ESTAE exit.

]

IEAVSTAO

STAE/ESTAE
processing

I_

Appropriate
resource
manager

Output

Register 1

f Parameter list

ONISS3J0dd 3ININd FJIVAS SSIYAAY - 1WHIAVII

Register 13

f Save area

RTM2A

RMPL

IEAVEPDO

PURGEDQ

IEAVEMDL

Address space
delete

w

To RTM2 exit processing

(IEAVTRTE)

Input to <:—
resource

manager routines.

WdI 40 AjJadoud — STETJS83}El Pasuasti

uHaI 30 STETJ23EH Pa31dTJISaY,

0-SSLT-82A1

L861 °d40) WGI IYSTIAdO) (2)

uotjeJadg jO Poyyay

L2T-KWid

IEAVTMMT — Address Space Purge Processing (Part 2 of 2)

Extended Description

The address space purge function cleans up the address
space resources when it terminates. Control initially goes

to the RTM1 mainline code (see the M.O. diagram IEAVTRT2
RTM1 Overview) to service a CALLRTM=MEMTERM
request. RTM1 then schedules the address space
termination routines (see the M.O. diagram IEAVTMTC —
Address Space Termination Processing) to terminate the
address space. The final process in address space termination
occurs when RTM2 receives a request from the address
space termination routines to purge the resources from

the address space.

Address space purge processing uses the RTM2WA initialized
by initialization processing (see the M.O. diagram
IEAVTRT2 — RTM2 Initialization) for the basic input, along
with the address of the ASCB being purged.

The address space purge processing routine only honors
requests from the master address space. Requesters from
any other address space will be terminated.

1 Address space purge processing establishes an ESTAE
exit in case of failure.

2 Address space purge processing cleans up address
space resources by first giving control to installation-
defined subsystem cleanup routines (defined in module
IEAVTRML) to clean up any subsystem resources. These
subsystem cleanup routines will receive control sequen-
tially until they have all executed. Control next passes to

the IBM-defined resource managers, which clean up system
control program routines. The resource managers receive

‘control in the addressing mode indicated in the address

field, in the following order:

Availability manager

SVC dump

Timer

MSSFCALL SVC

System trace

ENQ/DEQ

Data management

VTAM (virtual telecommunications access method)
TCAM (telecommunications access method)

Meodule

IEAVTMMT
IEAVSTAQ

IEFJRECM

AVFMHTRM
IEAVTSDR
IEAVTRTI1
IEAVMFRM
IEAVETRM
IEAVENQ2
IEGO1COA
ISTRAMA2
IEDQOTO1

Label

Extended Description

TIOC (terminal input/output coordinator)
VTIOC (VTAM terminal input/output coordinator
TSO/VTAM)

WTOR (write-to-operator with reply)
Subsystem interface

Initiator

Scheduler allocation

Contents supervisor

Virtual fetch

Linklist lookaside

PCAUTH

POST

Virtual storage management

Lock management

OLTEP {on-line test executive program)
IDMS

RTM1

Type 1 message

SMF

ASCB delete

The diagrams for the SPI1E and RCT resource managers
show the modules that perform the clean up, and the
control blocks that are cleared.

3 Control goes to the PURGEDQ routines (see the
M.O. diagram {EAVEPDO — PURGEDQ Processing)
to remove any SRBs left in the address space. No more
SRBs will be queued since IEAVTMMT sets the ASCB
acronym to zero before passing control to PURGEDQ.

4 Address space purge processing gives control to address

_ space-delete to free any non-permanent address spaces
(ASID >>1 in the ASCB). Address space purge processing
does not free the address space if:

o ASID =0 - system wait task
e ASID = 1 - master scheduler

Address space purge processing clears the ESTAE routine
and gives control to the caller (module IEAVTRTE).

Module
IEDAYS

IEAVMED2
IEFJRECM
IEFIRECM
IEFAB4ES
IEAVLKO2
CSVVFMEM

CSVLLTRM
IEAVXPAM

{EAVEPST
IEAVGFAS
IEAVELRM
IFDOLTOA
iICB2AIR
IEAVTMRM
IEAVTPMT
IEASMFSP
IEAVEMDL

IEAVEMDL

IEAVTMMT

Label

w8l JO STETJOIEK PAIITJISAU.

WEI 30 Ajuadodd — STETJaj3el PasusdT

0-9€LT-82A1 JUBY wJae) A0d9y 17718 VX/SAW 82T-WLIY

*d40) WEI IYBTJAO) (2)

1861

IEAVTMMT — Address Space Pui'ge Resource Managers (Part 1 of 10)

From address space purge processing
(IEAVTMMT) to clean up address
space-related resources when an

address space terminates

Input

RMPL

Process

>é

CVT

CVTMSFCB

1 Ctean up the address space-related
resources for |BM resources when
an address space terminates.

a. Clean up the availability
manager resources.

b. Clean up the SVC dump
resources.

o Set the SVC dump request
fields in the RTCT to zero.

c. Clean up the timer resources.

|

e Free the TQEs and timer SRBs.

d. Clean up the MSSFCALL SVC
resources.

e. Clean up system trace resources.
o Clear the TOB.

f. Clean up the ENQ resources.
o Free the QCBs and QELs.

o Print the messages.

g L1

Output
RTCT
TQE Timer SRB
MSFCB MSFAB
TOB TTCH
QcB QEL
Message

> Text
L

*’name, name FAILED IN ‘STEP MUST

COMPLETE' STATUS”

“RESOQURCE NAMED, name, name
MAY BE DAMAGED"”

“FAILED IN ‘'STEP MUST COMPLETE
DUE TO abend code”

WEI 30 A3u8doJdd — STETJUSICH POSUBITT

uHdl 30 STETJaJeH PajITJIsaY,,

0-S£L1-82A1

1861 °dJ40) WEI IYSTJADO] (D)

62T-W1Y¥ uorjBJadQ JO POYroY

IEAVTMMT — Address Space Purge Resource Managers (Part 2 of 10)
Extended Description Module Label

The IBM-defined address space cleanup resource managers
free any resources held by an address space during proc-
essing. The address space purge processing routine, module
IEAVTMMT, routes control to these rescurce managers
after establishing an interface. Control goes to each address
space resource manager, in the appropriate addressing mode
until all of them have performed their cleanup processing.

1 The address space purge routine routes control to 1IEAVTMMT
each of the 1BM-defined resource managers. After one

resource manager completes its processing, control returns

to the address space purge 1 outine, which routes control

to the next resource manager. This continues until all the

resource managers have performed clean up.

a. The AVM resource manager does one of the following: =~ AVFMHTRM

o Starts takeover,
e Cleans up availability manager data areas.
e If no action necessary, does nothing.

b. The SVC dump resource manager issues STATUS to IEAVTSDR
set the system dispatchable if a dump was in progress
in the failing address space.

c. The timer resource manager frees the TQEs (timer queue IEAVRTI1
elements) and timer SRBs associated with the address
space being terminated. (See the M.O. diagram
IEAVRTI1 — Timer Supervision in the section “Timer"
for a description of the timer purge routine.)

The MSSFCALL SVC resource manager dequeues the 1IEAVMFRM
MSSFCALL control blocks.

e. If the terminating address space is not the trace address IEAVETRM
space, the system trace resource manager removes all
trace table copy headers (TTCH) for the terminating ad-
dress space from the TTCH queue and frees them.

e

If the terminating address space is the trace address space,
the system trace resource manager clears the trace option
block {TOB) and notifies the operator that the trace ad-
dress space has terminated. (See M.O. diagram
IEAVETRM in the section ‘‘Trace” for a description of
the system trace resource manager.)

Extended Description Meaodule Label

~f. The ENQ resource manager frees associated ENQ re- IEAVENQ2

sources used by the terminating address space by freeing
QCBs (queue control blocks) and QE Ls (queue elements).
The ENQ resource manager also writes messages explain-
ing whiqh address space failed while it controlled the re-
source. (See thesection “Global Resource Serialization’’

for a detailed description of ENQ processing.)

WEI 30 Ajuadodd — STETJ83IBW POSUSITT]
uHEl 40 STBTJaIEH POIITJIISAY,

JUSK waD) A0d9Y 7S VX/SAW OST-WLIY

0-G€L1-82A1

1861 °d40) WAI IYSTJIAdO] ()

IEAVTMMT — Address Space Purge Resource Managers (Part

Process

3 of 10)

g. Clean up the data management
rasources,

e Clean up the DEB address
in the TCB,

H. Clean up the VTAM resources

e Free the VTAM contro! blocks.

o Set the restart indicators

i. Clean up the TCAM resources.

e Free the PEBs, PEWAs,
AlBs, and TCX.

Reset the UCB fields.

Terminate any processing
programs.

j. Clean up the TIOC resources.
o Free the TSB.

o Wait for the messages to
be issued by TCAM.
(POST is issued by
TCAM when messages
are complete.

Qutput
TCB
PEB PEWA
AlB TCX
ucs
TSB

WEI 30 Ajusdoud — STETJSIEBW POsUaIT1

uHEI 30 STETJd3EH PSIITJIISAY,,

0-SELT~82A1

1861 °duo) WGI IY6TJIAdO) (D)

IST-WI¥ UOTIedadg 30 POyl

IEAVTMMT — Address Space Purge Resource Managers (Part 4 of 10)

kxtended Description

g. The data management resource manager cleans up the
TCBDEBAD field of the TCB. This field contains
the DEB address from the DCB. (See the publication
Open/Close/EOV Logic for more detailed information
about the data management resource manager.)

h. The VTAM resource manager cleans up resources
associated with the VTAM user address space. These
resources include storage, VTAM locks, and control
blocks associated with the VTAM devices and
applications which were active for this address space.
The user’s address space control blocks consist of:

o Active CRAs (component recovery area)

o DEBs (data extent block)

@ FMCBs (function management control block)
@ NCBs (node control block)

o ICEs (inactive connection element)

@ ACE:s (active connection element)

e DCEs (DEB chain element)

o PST (process scheduling table)

e Application RDTEs (resource definition table}
o Destination RDTEs

o DVTs {(destination vector table)

o EPTs (entry point table)

© MPSTs (memory process scheduling table)

VTAM's address space control blocks consist of:

o AVT (VTAM address vector table)

e ATCVT (VTAM communications vector table)
e ISTCONFT (configuration table)

e CVT (communications vector table)

If the terminated address space is VTAM’s, appropriate

indicators in the CVT are reset to zero to allow VTAM
to be restarted. (These indicators are the CVTATCVT,
the CVTRMPTT, and the CVTRMPMT.)

(See the publication VTAM Logic for a description of
VTAM processing.)

Module Label

IEGO1COA

ISTRAMA2

Extended Description

i. The TCAM (telecommunications access method) resource
manager frees the resources associated with the
terminating address space by freeing the PEBs (process
extension blocks), PEWAs (process entry work areas),
AlBs (application interface blocks), and TCX (TCAM
CVT extension), and it resets UCB (unit control block)

fields. (See the publication TCAM Logic for a de-
cription of the TCAM resource manager.)

j. The TIOC (terminal input/output coordinator) resource

manager cleans up the TSB (terminal status block) for the
address space being terminated.

Module

{EDQOTO1

IEDAYS

uHII 30 STETJelel PajaTJ3say,

WEI 30 AjJuadoJdd — STETJ93E| Pasuast

0-9€.1-82A1 JWGY wJas) A028Yy 718 VX/SAW 2ST-WLIY

*du0) WAI IYBTJAdO] (9)

L1861

IEAVTMMT — Address Space Purge Resource Managers (Part 5 of 10)

Process

Clean up the WTOR resources.

o Free the WWBs, OREs,

and WQEs.

® Create the DOMCB.

Clean up the
subsystem interface Via
resources. IEFSSREQ

o Inform the active
subsystems that a
task has terminated.

Clean up the initiator resources.

{EFJRASP

Master

Subsystem,

common
request
router

e Free the CSCBs.

—

e Print the message.

Clean up the scheduler
allocation resources.

o Free the UCBs.

o Release the device groups.

® Post the allocations
waiting for devices.

Output
wws ORE WQE
poMmcB
CSCB
Message
ucB

WEI 40 Ajuododd — STETJ3}E Pasuaari

uWEI 30 STETJ3RY POIITJIISAY,

0-S€L1-82A1

1861 °"d40) WAI IYBTJIAdO] (9)

SSI-WLY uorjedadg jo poyjsy

IEAVTMMT — Address Space Purge Resource Managers (Part 6 of 10)

Extended Description

k.

3

n.

The communications task resource manager cleans up
WTOR (write to operator with reply) resources asso-
ciated with the address space being terminated, by
freeing the WWBs (write wait blocks), OREs (operator
reply elements), WQEs (write queue elements}, and
DOMCs (delete operator message control blocks.)

The subsystem interface resource manager cleans up the
resources associated with the failing address space by
notilying the active subsystems, via the IEFSSREQ
macro, of the address space that terminated.

The initiator resource manager cleans up the resources
associated with the address space being terminated by

freeing the CSCBs (command scheduling control blocks).

The resource manager also prints a message to the
operator indicating which tasks in the address space
are being terminated.

The allocation resource manager cleans up the resources
associated with the address space being terminated by
unallocating the UCBs (unit control blocks). Addition-
ally, the resource manager releases the device groups
for the allocation, and then posts allocations waiting
for those devices. (See the section *’Allocation/
Unallocation” for a description of allocation and un-
allocation processing.)

Module
IEAVMED2

IEFJRECM

1EFJRASP

IEFIRECM

1EFAB4ES

Label

WGI 30 Ajuadoud — STETJ93e| pasuadtl
uHdI JO STBTJOIEeH PajITJISdAY,

0-9€L1-82A1 JubY W9 A029Y 1711S VX/SAW HET-WLY

*dJ40) WEI IY6TJAdO] ()

L861

IEAVTMMT — Address Space Purge Resource Managers (Part 7 of 10)

Input

Register 13

f Save area

Process

P

. Clean up the POST resources.

Clean up any globally
located modules.

e Free the GXL.

Reset the virtual
fetch control block.

. Clean up the program

call resources.

o Free the SRBs associated
with any cross-memory
requests.

Clean up the virtual storage
management resources.

e Free the VRWPQEL.

. Clean up the lock

management resources.

o Reschedule the
suspended SRBs.

o Free the SRBs.

. Clean up the OLTEP

resources.

e Free all the OLTEP
control blocks.

Output
j'> = SXL g GXL
> VFCB
> ASCB ASTE LT
AXAT LXAT ETIB/ETIX
__—:_If> SRBs
:_,} VRWPQEL

PURGEDQ

—N

OLTEP common area
CHASCT

DEVTAB

MCT

OLTTAB

SECLST

RESTAB

HET 30 Ajuadoud -~ STETJSIEK Pesusdtl

o{E8I JO STETJOIBY PIJITJIIS8Y,

0-G£LT-82A1

L861 °du0l WAI IYSTJIAdO] ()

GST-WIY¥ uoTIeuadQ jo poyzel

IEAVTMMT — Address Space Purge Resource Managers (Part 8 of 10)

Extended Description

o.

(See the publication OL TEP Logic, for a complete description

The contents supervisor program manager frees the
globally located modules.

The virtual fetch service address space termination re-
source manager resets the virtual fetch control block
(VFCB) to indicate that the virtual fetch service address
space is not active.

Aninline macro (PCARM) gives the program call authori-
zation resource manager control. This resourcé manager
cleans up the program call resources.

The POST resource manager cleans up the resources
associated with the address space being terminated by
freeing the SRB associated with any cross-memory
POST requests. {The M.O. diagram for IEAVEPST
describes POST processing.)

The virtual storage management resource manager cleans
up resources associated with the address space by freeing
the VRWPQEL (virtual equals real wait or post queue
element). (See the section **Virtual Storage Manage-
ment’’ for a complete description of the resource
manager.)

The lock management resource manager cleans up re-
sources associated with the address space being termin-
ated by scheduling suspended SRBs. These SRBs will
be freed after they complete their processing. (The M.O.
diagram IEAVELK — SETLOCK Processing describes
SETLOCK processing.)

. The OLTEP resource manager cleans up the resources

associated with the address space being terminated by
freeing the OLTEP control blocks:

o OLTEP common area (module IFDOLT23)
CHASCT (OLT program control table)
DEVTARB (device tables)

MCT (module control table)

OLTTAB (OLT program link table)
SECLST (test section list)

RESTAB (CDS equate resident table)

of the OLTEP resource manager.)

Module Label

IEAVLKOO GXLHKEEP

CSVVFMEM

IEAVXPAM

IEAVEPST

IEAVGFAS

IEAVERM

IFDOLTOA

uHEI 3O STBTJ8IBH PAYITJISAYU,

WEI 30 AjJadoud - STETJ81eW PasuadT

JUBY WD) A0IBY]S VX/SAW 9ST-WLN

0-SELT1-82A1

L86T "d40) WEI IYSTJAdO) (2)

IEAVTMMT — Address Space Purge Resource Manaéers (Part 9 of 10)

Input

Process

Output

CcvT

CVTICB
ICBQHEAD

Queue of MSS
control blocks

Il

—

v. Clean up the 3850 mass
storage system resources.

w. Clean up the RTM resources.

e Free the SDWAs.

b

x. Clean up the type 1 message
resources.

o Free the message
table entries.

y. Free the SSB.

Z. Clean up the SRBs related to the
address space.

aa. Clean up the address space control
block associated with the
terminating address space.

e Free the ASCB.

e Indicate in the ASVT that the
ASID is now free.

2 Return to RTM2.

SDWA

AV

Message
CVvT table
-,> 4
) $SB
N
v ASVT ASCB

To address space purge processing
(IEAVTRTE)

WEI 30 A3uododd — STETJOICH POSUaIT

SHEI 30 STeTJeleN PajydTJISaY,,

0-9SLT-82A1

*d40) WAT IYSTJAdO) (9)

L861

LST-WI¥ UOTieded) JO pPoyiey

IEAVTMMT — Address Space Purge Resource Managers (Part 10 of 10)

Extended Description

V.

X

:

The 3850 mass storage system resource manager marks
invalid all delayed response queue elements relating to
the terminating address space.

. The RTMresource manager frees all the SDWAs (system

diagnostic work areas) obtained from SQA (system
queue area) during FRR processing in RTM1.

The type 1 message resource manager cleans up the re-
sources by freeing any entries in the type 1 message

table associated with the address space being terminated.

. The IEASMFSP memterm resource manager frees

the SSB. The SSB is used to keep track of the
suspended address space.

The address space purge routine uses the PURGEDQ
function to free the SRBs associated with the
terminating address space. (The M.O. diagram
IEAVEPDO — PURGEDAQ Processing in section
*Supervisor Control’’ fully describes this pro-
cessing.)

The virtual address space terminating routine acts as

a resource manager to clean up the resources held by
the terminating address space by freeing the ASCB and
indicating in the ASVT the ASID of the address space
associated with the terminating address space.

The address space purge routine returns control to
RTM2 after all the resources have been freed.

Module Label

ICB2AIR

IEAVTMRM

{EAVTPMT

IEASMFSP

IEAVTMMT

IEAVGCAS

IEAVTRTE"

uHEI JO STETJOIBY PBIITJIISAY,,

HII 30 A3Jadoud - STETJ33EW PasudITy

JUSK W9 A033Y 7S VX/SAW 8ST-WLY

0-9£LT-82A1

L86T °dJ40) WAI IYSTJIAdO] (9)

IEAVTMTC — Address Space Termination Processing (Part 1 of 4)

From RTM1, via a posted ECB,
to terminate an address space

Input
CVvT
CVTRTMCT 1
RTCT
" CVTABEND
1 Address
sCcvT space termin-
ation queue
ASCB
h ASCB

. Process

1 Reset the address space termination
ECB.

> 2 Dequeue the ASCB representing the
address space to be terminated.

3 Stop all processing inside the address
space being terminated.

e |f an excessive spin is
detected, inform the operator.

4 Release any cross memory
locks (CML) or the locat
lock.

85 Purge any 1/O operations.

6 Stop tracing on all processors if
terminating the system trace address
space. Otherwise, free the system
trace control block for the termi-
nating address space.

7 Free any real and auxiliary
storage.

Output

ECB

ASCB

IEEVEXSN

Excessive spin
notification
routine

IEAVEBBR

IEAVLKRM
Lock manager

Bind break
service
routine

resource
manager

IGCOCO1F

1/0 supervisor

IEAVETRM

System trace
resource
manager

{EAVTERM

management

ILRTERMR
Auxiliary ‘
storage '

Real storage

management

ASCBFAIL

WEI 30 A3uadodd — STETJIIEH POsuasti

w8 JO STerJajel PajdTJlIsay.

0-S§LT-82A1

1861 'd40) WAI IY6TIAdO] ()

6ST-WLY UOTIeJadQ O POyIoY

IEAVTMTC — Address Space Termination Processing (Part 2 of 4)

Extended Description Mecdule Label
Address space termination consists of two routines,

IEAVTMTC and IEAVTMTR, both of which are resident in

the master address space. When a system routine issues a

CALLRTM TYPE=MEMTERM request, RTM1 gives control

to the address space termination routine to:

@ Find and dequeue the ASCB (address space control block)
representing the address space to be terminated.

o Stop the processing in the address space.
e Perform the actual termination.

e Repeat the operation for all the ASCBs on the termina-
tion queue.

After this processing has completed for all the address

spaces on the termination queue, IEAVTMTC

goes into a wait state to wait for another address space

termination request.

1 Since this routine receives control after an SRB IEAVTMTC
scheduled by RTM1 posts its ECB, IEAVTMTC sets

the ECB to zero to allow for later entries.

2 1EAVTMTC uses a CS (compare and swap) instruction

to remove the last ASCB from the termination queue.
The RTCT (recovery termination control table) points to
this queue.

3 IEAVTMTC marks the address space non-dispatchable

so that no new work can execute in the address space.
If there is more than one online processor in a multi-
processing environment, additional steps are taken to stop
any activity in the address space.

e Calls memory switch (IEAVEMSO) to set every IEAVEMSO

PSAANEMW fieid to point to the master address space.

'

Extended Description Module Label

3 (continued)

o Spins until no other processor is executing work in the
terminating address space and no other processor is
executing work that holds the local lock of the termi-
nating address space. |f the length of the spin exceeds a
predetermined time limit, IEAVTMTC gives control to
the excessive spin notification routine (JEEVEXSN),
which issues message IEE331A to inform the operator.

e Calls the bind break service routine (IEAVEBBR) to
ensure that no pracessor has an active addressing bind
with the terminating address space.

IEEVEXSN

IEAVEBBR

4 |EAVTMTC gives control to the lock manager resource

manager to release any cross memory locks (CML) or
the LOCAL lock, if any of these are held by the terminating
address space. The CVTLKRM field of the CVT contains
the entry point address of the lock manager resource
manager.

IEAVLKRM

B IEAVTMT issues an SVC 16 macro to give control to
the 1/0 supervisor, which stops all activity for the
address space being terminated.

IGCC001F

6 |EAVTMTC gives control to IEAVETRM to:

@ Stop tracing on each processor if the terminating address
space is the system trace address space.

IEAVETRM

e Remove all trace table copy headers (TTCH) for the
terminating address space from the TTCH queue and free
them if an address space other than the trace address
space is terminating.

The CVT field CVTTRCRM contains the entry point address
of the system trace resource manager.

IEAVTERM
ILRTERMR

7 1EAVTMTC gives control to the real storage manage-

ment routine to release all real page frames and all
auxiliary storage pages belonging to the address space. The
SCVTPTRM field of the SCVT contains the entry point
address of the real storage management routine.

WEI 30 Ajuedoud — STETJSIEH PasSuUadIT
uHEI $0 STETUO3EH PaydTJISoY,

0-GSELT-82A1 Juby wad] A0d8Y :77S VX/SAW 0HT-WLY

*d10) WEI IYBTJAdO) ()

L861

IEAVTMTC — Address Space Termination Processing (Part 3 of 4)

Input

Register 1

4 ascs

Process

From module
IEAVTMTR,
after an
ATTACH
request, to
perform the

termination |

8 Freeinvalid error records in
the SYS1.LOGREC recording
buffer.

9 Give control to the address space
termination task {via ATTACH).

> 10 Perform the termination.

o Indicate the address space to
be terminated.

o Indicate the MEMTERM
options.

® Give control to
RTM2 to purge the address
space resources.

Output
IEAVTREM
Record resource
manager
Register 0
N4 ascs |
Register 1
;)I MEMTERM options
Via
SvC 13
IEAVTRT2

RTM2 overview

To dispatcher
(IEAVEDSO)

WdI 40 Ajuadoud — STBTJS3}EN POSUaari

uWgI JO STETJ3IBH PIIITJUIS3Y,,

0-9¢.1-82A1

*da0) WET IYBTJAdO) (9)

L861

uorjedodg 0 POYIOW

THT-WLY

IEAVTMTC — Address Space Termination Processing (Part 4 of 4)

Extended Description

8 IEAVTMC gives control to the record resource manager
to mark as invalid any incomplete entries in the
SYS1.LOGREC recording buffer.

9 Address space termination continues after module

IEAVTMTC, the controller routine, attaches the
address space termination task, |EAVTMTR, to perform
the actual termination. (IEAVTMTR runs in the master
address space.)

10 The address space termination task indicates the ad-
dress space being terminated in register O and the
MEMTERM options in register 1. IEAVTMTR gives control
to RTM2, via SVC 13, to purge the address space resources.
(See the M.O. diagram IEAVTRT2 — RTM2 Overview and

the M.O. diagram IEAVTRTE — Address Space Purge
Processing for the description of how RTM purges address
space resources.) After control comes back from RTM2,
the address space termination task gives control to the dis-
patcher.

Module

IEAVTREM

IEAVTMTR

Label

wWaI JO STETJSIEH POJOTJIISAU,

WEI 30 A3uedoudd — STETJa3eW pasusasti

JUBY WaB] A028Y TS VX/SAW 2HT-WLY

0-9£LT-82A1

2861 *dJ0) WAI IYBTIAdO] ()

From IEAVEPC

IEAVTPER — PFLIH/SLIP and PFLIH/Space Switch Handler Interface (Part 1 of 4)

I Process

> 1 Determine whether there

are any traps to check.

o Ifnot, pume— (£AVEPC

2 Establish a recovery
environment.

A4

3 Save the PER interruption

information,

4 |f a space switch inter-
rupt has occurred, call
the space switch handler.

5 Switch to the home
addressing mode.

> 6 Obtain the SLIP resources.

Input
cvT LCCA
CVTRTMS LCCAPPSW
LCCA
LCCAPINT
PSA
FLCPERCD
FLCPERA
PSA cvT
PSASUPER CVTRTMS
LCCA SHOR
LCCASLIP SHDRPFC

IEAVTSSH

Output
A
Lcc Register 15
/| LCCAPPSW 0
PSA FRRs
v
PSACSTK FRRSCURR
FRARSFRRA
LCCA
LCCAPERC
LCCAPERA
PSA LCCA
PSASUPER LCCASLIP
SHOR
SHORPFC

HEI 30 Ajuadoud — STETJa3RW Pasuasti

uldI 30 STETJaleW Pa3ITJISAY,

0-SELTI-82A1

2861 °d40) WEI IYBTJIAO] (D)

£HT-WIY uoT}eJad) JO POY3oY

IEAVTPER — PFLIH/SLIP and PFLIH/Space Switch Handler Interface (Part 2 of 4)

Extended Description Module
After detecting a PER and/or space switch interruption,

the program check FLIH (IEAVEPC) calls this module to

provide an interface with the SLIP action processor

(IEAVTSLP) and/or the space switch handler

(IEAVTSSH).

1 IEAVTPER determines whether any SLIP traps have
been defined by referring to the CVTRTMS field (the
pointer to the SLIP header control block). If there are no
traps (CVTRTMS=0), IEAVTPER prevents future PER
interruptions from occurring in the interrupted program by
setting the PER bit in the resume PSW (LCCAPPSW) to zero.
IEAVTPER then returns to IEAVEPC with a return code
of zero. If CVTRTMS= 0, SLIP traps exist and need to be
checked. Processing continues at the next step.

IEAVTPER

2 |EAVTPER adds an FRR {entry point VTPERFRR
in this module) to the stack and initializes an FRR
parameter list.

3 IEAVTPER saves the PER code (FLCPERCD) and the
address of the instruction causing the interruption

(FLCPERA) in the LCCA for use by IEAVTSLP. (See

the M.O. diagram IEAVTSLP — SLIP Action Processor-Part 1

for a description of IEAVTSLP.)

4 |EAVTPER checks the interrupt code in the
LCCAPINT field. If a space switch interrupt

has occurred, IEAVTPER calls the space switch handler

(IEAVTSSH). (See the M.O. diagram IEAVTSSH — SLIP

Space Switch Handler for adiagram and extended description

of IEAVTSSH.)

Label

Extended Description

B IEAVTPER receives control with the cross memory
mode in effect at the time of the PER or space

switch interrupt. Because SLIP processing is always

done in the home address space, |EAVTPER issues a

CMSET SET macro to PSAAOLD (the home

address space).

6 Before calling IEAVTSLP to process the PER
interruption, IEAVTPER obtains several SLIP
resources. |EAVTPER:

o Sets the PSASLIP super bit to one for recursion control.

o Obtains ownership of the processor’s local SLIP work/save
area to prevent this storage from being freed.

® Increases the page fix counter (SHORPFC) by one to
prevent the command processor {{EECBS05) from freeing
the fixed portion of the IEAVTSLP load module page.

1f the SLIP work/save area does not exist {LCCASLIP=0) or
is busy (the high order bit of the LCCASLIP=1), or if
IEAVTSLP is not page-fixed (SHDRPFC < 1), the interrup-
tion cannot be processed. IEAVTPER sets the PER bit in
the resume PSW (LCCAPPSW) to zero to prevent future

PER interruptions, then returns to |EAVEPC with a return
code of zero. If the resources have been obtained, processing
continues at the next step.

Module

Labet

uldl #0 STEFJSICN POIITJISOY,

WEI 30 Ajusdodd — STETJ83ICH Pasuaati

JWEY wJao] A0d8Y 11§ VX/SAW HHTI-WLY

0-SELT1-82A1

L86T °d40) WAI IYSTJIADO] ()

IEAVTPER — PFLIH/SLIP and PFLIH/Space Switch Handler Interface (Part 3 of 4)

Process

7 Process the PER interruption.

8 Restore the cross memory
environment at the time of
the interruption.

9 Cilean up and return.

Input
LCCA
SLIP work/save
LCCASLIP T area
SHDR LCCA
SHDRPFC LCCASLIP
Register 15

Return to
{EAVEPC

Output
Work area extension
= WAECLKIN
IEAVTSLP Register 1 SLPL
SLip I I I J
processor .Register 13 Register save area
SHDR LCCA
v
SHDRPFC LCCASLIP
LCCAPPSW
PSA
Register 15 FLCEOPSW
FLCSOPSW
PSAEEPSW
FLCSVILC
FRRs PSASUPER
FRRSCURR PSAGPREG
PSACSTK
FRRSFRRA
PSASSAV
LCCA
LCCASGPR

WEI 30 Ajuadodd — STETJSIEW PasuedT

uldI 30 STETJalel PaIITJIIsSaY,

0-S€.L1-82A1

L86T *du0) WAI IYSTJIAdO] (D)

uotT}edadg JO PoOY3}oy

SHT-WLY

Diagram RTM-14, IEAVTPER — PFLIH/SLIP and PF LlH/Spgce Switch Handler Interface (Part 4 of 4)

Extended Desctiptio.n

7 EAVTPER uses a STCK instruction to place the current
time of day in the WAECLKIN field for subsequent per-
cent limit processing by IEAVTSLP. |IEAVTPER saves in-
formation that could be overlayed by a recursive call for the
external and SVC FLIH. |IEAVTPER also builds the
IEAVTSLP parameter list (SLPL), indicating that a PER in-
terruption is to be processed, then calls IEAVTSLP to pro-
cess it. (See the M.O. diagram IEAVTSLP — SLIP Action
Processor-Part 1 for a description of IEAVTSLP.)

IEAVTPER issues a CMSET RESET macro to restore the
cross memory environment to what it was at the time of
the PER or space switch interrupt.

8 IEAVTPER disables PSA protection to restore informa-

tion saved for the external and SVC FLIH, relinquishes
ownership of the SLIP work/save area, and decreases the
SHDRPFC counter by one. Depending on the code re-
turned by IEAVTSLP, IEAVTPER takes the following ac-
tion:

Return code
from IEAV.TSLP 1EAVTPER processing
4] Leaves the return code unchanged.
4 Leaves the return code unchanged.
8 Turns off PER monitoring in the
interrupted program by setting the
PER bit of the LCCAPPSW field to
zero; sets a return code of zero.
All others Sets the PER bit of the LCCAPPSW
to zero and leaves the return code
unchanged.

{EAVTPER uses the return code to inform IEAVEPC that
it should either resume processing where the PER inter-
ruption occurred (return code = 0), or force recovery pro-
cessing (return code ¥0). Before returning to {EAVEPC,
IEAVTPER sets the PSASLIP bit to zero and deletes the
FRR.

Extended Description
Recovery processing

Recovery for this module is designed to aliow the system to
continue executing at the risk of not processing a PER in-
terruption, When an error occurs, IEAVTPER receives con-
trol at entry point VTPERFRR, where it attempts to re-
lease all the resources obtained by IEAVTPER and to retry
at a point in IEAVTPER where minimal processing is re-
quired to return to IEAVEPC. To do so, the FRR refreshes
the registers necessary for the retry from the FRR para-
meter list. |f the error occurred before IEAVTPER saved
these critical registers, the FRR percolates. Percolation also
occurs if various RTM footprints indicate that critical reg-
‘isters expected by IEAVEPC might not be available.

ulSI JO STEeTJolel Pe3dTJIsay,

WEI 30 AjJadoud — STETJ9IEH Pasuasrl

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - MODULE DESCRIPTION

DESCRIPTIVE NAME: SLIP PVTMOD LOAD/DELETE exit routine

FUNCTION:

This module processes a contents directory entry (CDE) whenever
CDEs enter or leave the job pack area queus if the CDE matches
a PVTMOD PER trap.

ENTRY POINT: IEAVTPVL

PURPOSE :
Handles CDE(s) coming onto the job pack queus and
receives control from LINK, LOAD, IDENTIFY, Virtual
Fetch, ATTACH, and XCTL. When appropriate, IEAVTPVL
starts PER monitoring by setting the PER control
registers.

LINKAGE: Via BASSM 14,15

CALLERS:
By the Contents Supervisor when a CDE is placed on the job pack
queue and the extent list is valid (LINK, LOAD, IDENTIFY, XCTL,
and, ATTACH) or when the module is brought into memory
(Virtual Fetch).

INPUT:
Key input items are:
SHDRPVMN field - Module name associated with PVTMOD PER trap
SHDRPER field <~ Pointer to the non-ignore PER trap
SHDRPERR field - Pointer to the PER range to be monitored
SHDRPCDE field - CDE address of PVTMOD load
SHDRPVAS field - ASID of PVTMGD load
SCVAAS field ASID selections for a trap
ASCBASID field - Address space id

OUTPUT:

SCVAMDAL and SCVAMDA2 fields are set to the actual
addresses to be monitored.

SHDRPVTA field is turned on to indicate the PER trap
is active.

SHDRPVLP field is turned off. .

SHDRPCDE field contains the address of the CDE for the
PVTMOD PER trap.

Either SHDRPVTL or SHDRPVTG is set to indicate whether the
module was loaded locally or globally.

PER control registers are set to start PER.

EXIT NORMAL: Returns to the caller.
EXIT ERROR: Percolates rtrom entry point, PVTFRR.
ENTRY POINT: IEAVTPVD

PURPOSE:
Handles CDE(s) taken off the job pack queue and
raceives control from LINK, DELETE, and VIRTUAL
FETCH. When appropriate, IEAVTPVD stops PER
monitoring by setting the PER control registers.

LINKAGE: Via BASSM 14,15

CALLERS:
By the Contents Supervisor when a CDE is removed from
the job pack queus.

INPUT:
Key input items are:
SHDRPVMN field - Module name associated with PVTMOD PER trap
SHDRPER field - Pointer to the non-ignore PER trap

RTM-146 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (¢} Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - MODULE DESCRIPTION (continued)

Pointer to the PER range to be monitored
CDE address of PVTMOD load

ASID of PVTMOD load

ASID selections for a trap

Address space ID

SHDRPERR field
SHDRPCDE field
SHDRPVAS field
SCVAAS field

ASCBASID field

OUTPUT:
SHDRPVTA field is turned off.
SHDRPVLP field is turned on indicating that the PVTMOD PER trap
is waiting for IEAVTPVL to be entered to restart
PER monitoring.
PER control registers are reset to stop PER monitoring.

EXIT NORMAL: Returns to the caller
EXIT ERROR: Percolates from entry point, PVTFRR.
ENTRY POINT: IEAVTPVR

PURPOSE :
Receives control from Virtual Fetch's resource managers
on end of job step task and end of memory. When
appropriate, IEAVTPVR stops PER monitoring by setting
the PER control registers.

LINKAGE: Via BASSM 14,15

CALLERS:
By Virtual Fetch resource manager at the end of a job step
task or end of memory.

INPUT:
Key input items are:
SHDRPTCB field - TCB of PVTMOD load
SHDRPER field - Pointer to tha non-ignore PER trap
SHDRPVAS field - ASID of PVTMOD load
RMPLASID field - Address space id
RMPLASCB field - ASCB address
RMPLTCBA field - TCB address for end of task

QUTPUT:
SHDRPVTA field is turnad off.
SHDRPVLP field is turned on indicating that the PVTMOD PER trap
is waiting for IEAVTPVL to be entered to restart
PER monitoring.
PER control registers are reset to stop PER.

EXIT NORMAL: Returns to ths caller.
EXIT ERROR: Percolates from entry point, PVTFRR.
ENTRY POINT: PVTFRR

PURPOSE:
Functions as the FRR for IEAVTPVT. If the error is non
recursive, PVTFRR records the error on SYS1.LOGREC,
initiates a dump to provide output of the pertinent
diagnostic information, and retries to release resources
held by the mainline. '
If the error is recursive, PVTFRR issues a message to
the system operator, zerces the PER trap pointer in the
SHDR, and then percosates. The state of PER and the
resources, which may have been acquired for SLIP PER
routines, are unpredictable.

LINKAGE:

Entered from RTM with the indicated register
contents

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Cperation RTM-147

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT =~ MODULE DESCRIPTION (Continued)

CALLERS: RTM
INPUT: SDWA

OUTPUT:
SDWA fields are set
SDUMP is taken

EXIT NORMAL: Returns to the caller
EXIT ERROR: Percolates to RTM from PVTFRR on a recursive error
EXTERNAL REFERENCES:

ROUTINES:
Branch .enter lock manager routines
Branch enter SDUMP
Branch enter GETMAIN
Branch enter FREEMAIN
Branch enter recording facility
Branch enter RISGNL routine i
Branch enter SLIP PER RISGNL routine(IEAVTSIG)
Branch enter Cross Memory POST

DATA AREAS: No data areas used.
CONTROL BLOCKS:

Common name Macro ID Usage Function
ASCB IHAASCB read Obtains the current ASID.
IEEBASEA read Obtains the master's ASCB
address.
CDE IHACDE read Obtains the module name,
extent list, etc.
cvT CvT read Establishes addressability
to IEEBASEA.
PCCA IHAPCCA read Obtains information about the
active processor for RISGNL.
PCCAT IHAPCCAT read Locates all active processors.
PSA IHAPSA read and Obtains the ASCB and FRR
write addresses.
SRB IHASRB read and Schedules IEAVTLCL to search
write the job pack queues.
SCE read Obtains information about
the SLIP trap.
SCVA read and Obtains information about
write the SLIP trap.
SDHA THASDWA read and Obtains recovery information
write about the error.
SHDR read and Obtains system SLIP
write information.
XTLST IHAXTLST read Obtains the module's address
and length.

TABLES: No tables used.

SERIALIZATION:

IEAVTPVT has the local lock on entry to serialize the
manipulation of the CDEs on the job pack cqueue. IEAVTPVT
obtains the CMS lock to serialize GETCELL/FREECELL processing
from which it obtains the SRB, which is used to schedule IEAVTLCL.
IEAVTPVT also obtains the dispatcher lock to serialize with
IEAVTGLB. To prevent the deletion of SCEs from the SCE chain,
IEAVTPVT increments the SHDR use count.

RTM-148 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - MODULE OPERATION

IEAVIPVT receives control to process a contents directory entry
(CDE) whenever CDEs enter or leave the job pack queue if the
CDE matches a PVIMOD PER trap.

Entry point IEAVTPVL receives control from the Contents
Supervisor when a CDE is placed on the job pack queue via a
LINK, LOAD, IDENTIFY, XCTL, or ATTACH macro and the extent list
is valid or when the module is brought into memory via Virtual
Fetch. IEAVTPVL performs the following processing:

. Sets the control register on all the processors to start
PER monitoring if these conditions are valid:
- A PVTMOD PER trap is enabled, that is, not active (the
trap has not had its address range set).
- The module nams in the CDE matches the module name in the
PVTMOD trap.
~ The current address space matches one of the eligible
address spaces.

Entry point IEAVTPVD receives control from ths Contents
Supervisor when a CDE is removed from the job pack queue via a
LINK, DELETE, Virtual Fetch, or XCTL macro and the extent list
is valid.

IEAVTPVD performs the following processing:

. If the CDE matches the CDE for which PVTMOD PER monitoring
is currently active, IEAVTPVT resets the control registers
on all the processors to stop PER monitoring.

. Indicates that for a ‘local’' PVIMOD trap, the local
job pack queue should be searched for another occurrence
of the module. IEAVTPVT schedules a local SRB.

Entry point IEAVIPVR receives control from Virtual Fetch
resource manager on end of job step task or end of memory.
IEAVTPVR performs the following processing:

. Processes the end of task for the appropriate job step
task and end of memory for the proper address space in the
same manner as the processing at entry point IEAVTPVD.
However, IEAVTPVR does not schedule an SRB if at end of
memory.

RECOVERY OPERATION:

Retry is attempted only for the first entry into entry point,
PVTFRR. The retry releases all obtained resources and
returns to the caller. Before retrying, an SVC dump is

ial;x, setting up a summary list to dump the relevant centrol
blocks.

On a recursive entry into PVIFRR, the FRR frees, if possible,
the resources. Then PVTFRR percolates indicating to RTM that
the remaining resource (the dispatcher lock or the CMS lock)
is to be freed.

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-149

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT -~ DIAGNOSTIC AIDS

ENTRY POINT NAMES: IEAVTPVL
IEAVTPVD
IEAVTPVR
PVTFRR

MESSAGES:
(Displayed by the command processor)
To the system operator:
IEAG414I SLIP unable to deactivate PER.
(Issued through RECORD TYPE=WTO)
IEA415I SLIP error attempting to activate/deactivate

PER, dump scheduled.
(Posts the SLIP command processor to issue this message)

ABEND CODES: None

WAIT STATE CODES: None

RETURN CODES: None

REGISTER CONTENTS ON ENTRY:
ENTRY POINT IEAVTPVL:

Register 0 - Irrelevant

Register 1 - Address of the CDE that has been added
Registers 2-12 ~ Irrelevant

Register 13 - Address of 72 byte save area

Return address
Entry point (SHDRPVL1) (pointer defined)

Register 14
Register 15

ENTRY POINT IEAVTPVD:

Register 0 - Irrelevant
Register 1 - Address of the CDE that has been deleted
Registers 2-12 -~ Irrelevant

Register 13
Register 14
Register 15

Address of 72 byte save area
Return address
Entry point (SHDRPVD1) (pointer defined)

ENTRY POINT IEAVTPVR:

Irrelevant

Address of a word containing the address
of the RMPL passed to ths resourcs manager
Irrelevant

Return address

Entry point (SHDRPVR1) (pointer defined)

Register 0
Register 1

Registers 2-12
Register 16
Register 15

ENTRY POINT PVTFRR:

Register (1]
Register 1
Registers 2-13
Register 14
Register 15

Points to a 200 byte work area in fixed SQA
Points to the SDHA

Irrelevant

Return address

Entry point

REGISTER CONTENTS ON EXIT:

RTM-150 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - DIAGNOSTIC AIDS (Continued)

ENTRY POINT IEAVTPVL:
EXIT NORMAL:
Registers 0-15 - Same as on entry
EXIT ERROR:
Registers 0-15 - Unknown
ENTRY POINT IEAVTPVD:
EXIT NORMAL:
Registers 0-15 - Same as on entry
EXIT ERROR:
Registers 0-15 - Unknown
ENTRY POINT IEAVTPVR:
EXIT NORMAL:
Registers 0-15 - Same as on entry
EXIT ERROR:
Registers 0-15 - Unknown
ENTRY POINT PVTFRR:
EXIT NORMAL:
Registers 0-15 - Irrelevant
EXIT ERROR:
Registers 0-15 - Irrelevant

LY28-1735-0 (c) Copyright IBM Corp. 1987

Method of Operation RTM-151

"Raestricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

N\ || This module processes a contents directory
> | |entry (CDE) whenever CDEs enter or leave

the job pack area queue if the CDE matches

/
IEAVTPVT|{a PVTMOD PER trap.

By the Contents Suparvisor when
a CDE is placed on the job pack
queues and the extent list is
valid (LINK, LOAD, IDENTVIFY,
XCTL, and, ATTACH) or when the
module is brought into memory

(Virtual Fetch).
\
l >{]01

- /
IEAVTPVL

SHDR = peecccmeee- >| 02

0 ee eo oo o0 o wy

SHDRPVTP SHDRPVTA
SHDRPVLP SHDRPER
SHDRPVMN

CDE

CDNAME

L

03

PSA ‘_____J\ 04
/

PSALITA

This is the entry point for
loading a CDE onto the local
job pack queue.

Checks for a valid load:

The PVTMOD PER must be
active.

The CDE module name must
match the module name in the
trap.

For a local trap, the
current ASID must match the
ASID in the trap.

Issues the SETFRR macro to
establish an FRR
environment.

7—I\

\—/ SETFRR

A, FRRAD=PVTFRRAD,
PARMAD=(REGFRR) ,
WRKREGS=(R1,R2),

RELATED=('SLIP LOAD EXIT')

Issues the SETLOCK macro to
obtain the dispatcher lock.
This is to serialize
resources with IEAVTGLB
while examining the ASVT
entries.

SETLOCK

(OBTAIN)} TYPE(DISP) MODE(UNCOND)}
RELATED('SERIALIZE SLIP CONTROL REG
SETTING')

RTM-152 MVS/XA SLL: Recov Term Mgmt

LY28-1735-0 (c) Copyright IBM Corp. 1987

STEP 01

“Restricted Materials of IBM”
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

SHDR

SHDRPVTP SHDRPVTA
SHDRPVLP SHDRPER
SHDRPVMN

CDE

CDNAME

SHDR

SHDRPER

SCE

SCEFWD

SCE

L

[mm———————=>

-2

L. ..

SCECBID

SCE

SCECTR SCEFWD
SCEBKHWD

SHDR

SHDRBKWD SHDRFLCS
SHDRXCHN

LY28-1735-0 (c) Copyright IBM Corp. 1987

STEP 05

05

Having obtained the

dispatcher lock, performs
the following checks again
to ensure that the potential
match is still valid:

The PVTMOD PER must be
active.

The CDE module name must
match the module name in the
trap.

For a local trap, the
current ASID must match the
ASID in the trap.

NOTE: IEAVTGLB cannot change the
SHDRPER field.

06

Serializes the SCEs to fill

A.

in the PVTMOD address

This processing requires examining the
SCVA PVTMOD entry associated with the
SCE, which is pointed to by SHDRPER. To
prevent alteration of the chain of SCEs,
IEAVTPVT increments the use counts for
the forward pointers to each SCE
starting at the SHDR. This means the use
count in the SHDR and all of the SCEs up
to SHDRPER SCE are incremented. Thus,
the SCE chain up to SHDRPER is
serialized. If the SCE chain is in use
by another address space there will be
no conflict. Incrementing the module use
count prevents IEECB905 from deleting
this SCE.

Validates the next SCE.

If the SCE is invalid, replaces the
pointer to that SCE with a pointer to a
valid SCE. This is accomplished by
starting with the SCE pointed to via the
SHDRBKWD and backing up the chain until
an invalid SCE is found or the SCE
SCEPTR is found.

e I\SCE

/7
SCEFWD
SCEBKWD

\SHDR

SHDRBKWD

Method of Operation RTM-153

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 07

CDE [mm———————- >]107} Validates the ASID for this
-3 I\ module.

CDGLOBAL : | —
SHDR

SHDRPER SHDRPERJ
SCVA

SCVAJND SCVAASD
ASCB :

ASCBASID ASCBJBNI
ASCBJBNS

SCE
SCEMHME
SHDR
SHDRPERA —
SCVA

SCVAASNO

-3

CDE [em——m———— >||08] Loops through the extent
-2 J\ list entries to check the
CDMIN : l— offsets.

XTLST
XTLMSBLA
CDE

CDXLMJP N
XTLST

XTLNRFAC | —

xtLoor{ | 09| Loops through all the
XTLST I > extents.

XTLMSBLA |
XTLST

XTLNRFAC —

RTM-154 MVS/XA SLL: Recov Term Mgnmt LY28-1735-0 (c) Copyright IBM Corp. 1987

“"Restricted Materials of IBM"
Licensed Materials ~ Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

SCVA

STEP 10

10] If a valid offset is found,

SCVAMDEP

CDE

CDGLOBAL

PSA

PSATOLD

SCVA

SCVAMDO1 SCVAMDO2 it

CDE

CDENTPT

—

SHDR

SHDRFLCS SHDRXPVA
SHDRYPLP

PSA

PSAAOLD

|

ASCB

ASCBASID

TCB

TCBJSTCA

SHDR

SHDRPERR SHDRC9SB

SCE

SCEPFLG

SCVA

SCVAADD

CVvT

CVTMAXMP

PSA

PSAPCCAV

PCCAVT

PCCATOOP

LY28-1735-0 (c) Copyright IBM Corp. 1987

performs the following:
Obtains the active bit.
Saves the ASID, CDE, ASCB,
and TCB addresses.
.Indicates whether the trap
is local or global. .
Btgrns off the load pending
it.

11| starts PER globally.

12| Loads the PER control

registers after the
following processing has
occurred:

A. Initializes the parameter list for the
IEAVTSIG subroutine.

B. Loops through the PCCAVT entries to
locate the active processors.

C. Signals an active processor by issuing
the RISGNL macro.

7 —\

——I\SCVA
/

SCVAMDAl1
SCVAMDA2

\SHDR

—7
SHDRPCDE
SHDRPVAS
SHDRPVTL
SHDRPVTG
SHDRPASC
SHDRPTCB

—I\SHDR

4
SHDRC9
SHDRC9SB
SHDRCYIF
SHDRCRS

\—/ RISGNL

SERIAL, CPU=(1), EP=RISGRTN

Method of Operation RTM-155

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

'IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 12D
PSA r——————J\
T4
PSAPCCAV — D. Calls the IEAVTSIG subroutine to load
the PER control registers for the
current processor.
7—\
\—/ IEAVTSIG
XTLST J---------;i
XTLMSBLA —
XTLST

XTLNRFAC r——-J

RETRYADR|{ 13| This is the FRR retry entry
point for entry points
IEAVTPVL and IEAVTPVD.

14] If the use counts had been
incremented, calls the
internal subroutine DECUSECT
'Eo cllecrement the use counts.

/ \

\r—v/ DECUSECT: 38

PSA r————'\ 151 Issues the SETLOCK macro to
'_J / release the dispatcher lock.

PSALITA

SETLOCK

(RELEASE) TYPE(DISP) RELATED('SERIALIZE
SLIP CONTROL REG SETTING')

PSA l_—'\ 16] If this is a retry from
14 IEAVTPVD, issues the SETLOCK
PSALITA |—-r macro to release the CMS
lock.

SETLOCK

(RELEASE) TYPE(CMS) RELATED('SERIALIZE
GETCELL")

17] Issues the SETFRR macro to
delete the FRR environment.

RTM-156 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 18

7—\
\—/ SETFRR

D, WRKREGS=(R1,R2),
RELATED=('SLIP LOAD EXIT')

18| Returns to the caller.

ull

7
N

By thae Contents Supervisor when
a CDE is removed from the job

pack queus. N
>|{{19]| This is the entry point for
1/ the deleting of a CDE from
IEAVTPVD the job pack queue.

20] Checks that this DELETE
request matches the previous
LOAD request. The module
name, CDE address, and ASID
must all match the PVTMOD

trap.
SHDR [rem——————— >| A. If one of the checks fails, returns to
-2 the caller.)
SHDRPVTP SHDRPVTA| :
SHDRPVLP SHDRPER | :
SHDRPCDE SHDRPVAS| : 21] Issues the SETFRR macro to
: establish an FRR
PSA : environment.
PSAAOLD : 7—\
: \—/ SETFRR
ASCB :
-~ A> FRRAD=PVTFRRAD,
ASCBASID PARMAD=(REGFRR),
WRKREGS=(R1,R2),
RELATED=(*SLIP DELETE EXIT')
PSA I—J\ 22| Issues the SETLOCK macro to
W/ obtain the dispatcher lock.
PSALITA I—J
SETLOCK

(OBTAIN) TYPE(DISP) MODE(UNCOND)
RELATED("SERIALIZE SLIP CONTROL REG
SETTING')

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-157

“Rastricted Materials of IBM"
Licensed Materials ~ Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 23
SHDR rrm——————— >||23] Rechecks the following
-2 initial conditions again to
SHDRPVTP SHDRPVTA| : determine if they are still
SHDRPVLP SHDRPER | : valid:
SHDRPCDE SHDRPVAS| : The DELETE request module
: name matches the LOAD
PSA : request module name.
-3 The DELETE request CDE
PSAACLD : address matches the LOAD
: request CDE address.
ASCB : The DELETE request ASID
- matches the LOAD request
ASCBASID ASID.
If the above conditions are still
valid, continues processing. Otherwise,
releases the lock and returns to the
caller.
24| Calls the internal
subroutine PEROFF to turn
off PER processing.
gAY
\—/ PEROFF: 40
PSA r———-l\ 25| Issues the SETLOCK macro to
14 release the dispatcher lock.
PSALITA I"J
SETLOCK
(RELEASE) TYPE(DISP) RELATED('SERIALIZE
SLIP CONTROL REG SETTING')
SHDR N >|126] If this is a local trap,
schedules IEAVTLCL to search
SHDRPVTP SHDRPVTL for the local PVTHMOD.
PSA r—————-'\ A. Issues the SETLOCK macro to obtain the
T4 CMS lock to serialize GETCELL/FREECELL
PSALITA r—l processing for this cellpool.
SETLOCK
(OBTAIN) TYPE(CMS) MODE(UNCOND)
RELATED("SERIALIZE GETCELL-FREECELL',
IEAVTPVT)
SHDR I-—————'\ B. Attempts to obtain storage for an SRB
14 from the cellpool.
SHDRCPID I—-J

RTM-158 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"

Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

PSA \
ﬁl /
PSALITA |—-'
SRB r—--————1>
PSA r1
PSAAOLD —
SRB r————————J\
V7
SRBPARM
SHDR r]
SHORSRB l--—

By Virtual Fetch resource
manager at the end of a job
step task or end of memory.

\
>

/
IEAVTPVR
RMPL \

STEP 26C

C. Issues the SETLOCK macro to release the
CMS lock.

SETLOCK

(RELEASE) TYPE(CMS) RELATED('RELINQUISH
SERIALIZATION', IEAVTPVT)

D. If the return code indicates that the
GETCELL was successful, initializes the
cell as an SRB and schedules the SRB to
IEAVTLCL to search the local job pack

queue.

27

28

If the return code indicates that the
GETCELL for the SRB was not successful,
schedules IEAVTGLB to initiate an SRB to
IEAVTLCL.

Issues the SETFRR macro to

delete the FRR environment.

L———I\SRB

SRBID
SRBASCB
SRBEPA
SRBRMTRA
SRBPARM

74—\

\N—y/ SETFRR

D, WRKREGS=(R1,R2),

RELATED=('SLIP DELETE EXIT')

Returns to the caller.

29

This is the entry point for
end of task and end of
memory from Virtual Fetch.

RMPLRMNA

r-l 1/

30

Ensures that this request
matches the LOAD request by
checking the TCB address
andsor the ASCB address.

LY28-1735-0 (c) Copyright IBM Corp. 1987

Method of Operation RTM-159

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

SHDR

SHDRPVTP SHDRPVTA

A. If invalid, returns to the caller.

SHDRPVLP SHDRPER 31| Issues the SETFRR macro to
SHDRPASC SHDRPTCB establish an FRR
environment.
RMPL
- | /I I\
RMPLTERM RMPLASCB \r—/ SETFRR
RMPLTCBA
A, FRRAD=PVTFRRAD,
PARMAD=(REGFRR),
WRKREGS=(R1,R2), EUT=YES,
RELATED=('SLIP VIRTUAL FETCH
RESOURCE MANAGER EXIT')
PSA r——————J\ 32| Issues the SETLOCK macro to
+/ obtain the dispatcher lock.
PSALITA I"J
SETLOCK
(OBTAIN) TYPE(DISP) MODE(UNCOND) -
RELATED('SERIALIZE SLIP CONTROL REG
SETTING')
SHDR @ pemeceeeea- >1133] Rechecks the initial

SHDRPVTP SHDRPVTA
SHDRPVLP SHDRPER
SHDRPASC SHDRPTCB

RMPL

RMPLTERM RMPLASCB
RMPLTCBA

PSA

RMRETRY

PSALITA

I._I

34

/
\

35

conditions:

The TCB address ands/or the
ASCB address from the LOAD
request match this request.
If they are still valid,
continues processing.
Otherwise, performs cleanup
at RMRETRY.

Calls the internal
subroutine PEROFF to stop
Egklprocessing.

\

PEROFF: 40

v/

At RMRETRY, performs

necessary cleanup
processing.

A. Issues the SETLOCK macro to release the
dispatcher lock.

SETLOCK

(RELEASE) TYPE(DISP) RELATED('SERIALIZE
SLIP CONTROL REG SETTING')

RTM-160 MVS/XA SLL: Recov Term Mgmt

STEP 30A

LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"

Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 35B

B. Issues the SETFRR macro to delete the
FRR environment.

RMPL N — >|136]| Returns to the caller.
—\
—
RMPL
RMPLRMWA —
RISGRTN| |37| The RISGRTN internal

70—\
\Nr—/

SETFRR

D, WRKREGS=(R1,R2),
RELATED=('SLIP VIRTUAL FETCH
RESOURCE MANAGER EXIT')

subroutine is executed in
each active processor via
the RISGNL macro.

A. Calls '|the ?LIP RISGNL routine, IEAVTSIG.

/ \

\r—v/

IEAVTSIG

' I\
|38 >

38

l/
DECUSECT

The DECUSECT internal
subroutine decrements the
use count of each SCE

previous

which PVTHOD PER monitoring
is occurring.

to the one for

LY28-1735-0 (¢) Copyright IBM Corp. 1987

Method of Operation RTM-161

“Restricted Materials of IBM”
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 39

SCE prem——————— >|{39] Releases the SCE (because it
-2 i\ is no longer needed) by
SCEDELP : | — decrementing the use count

: in the SCE. The SCE has a
SHDR : forward pointer to this SCE.
4 CS logic is used to control
the updating of the use
count and the forward

SCE pointer fields. The backward
pointer is not updated in

SCECTR SCEFWD this manner and may be

SCEBKKD asynchonous with the forward

pointer. Therefore, by
convention, prior to
altering the forward pointer
a flag is set to indicate
that the backward pointer
may not be used. This flag
is turned off once the
backward pointer is
synchonous with the forward

pointer.
I\
40 >1140] The PEROFF internal
4 subroutine turns off PER by
PEROFF| | resetting the control
registers on the current
processor and issuing the
RISGNL macro to any other
processors.
SHDR I————-'\ 41| sets this trap as load
V4 pending and not active.
SHDRFLCS SHDRYPVA —
SHDRXPLP
PSA N >|{42]| Calls all the appropriate L———F—I\SHDR
I\ routines to turn PER off 4
PSAPCCAV —/ globally. SHDRCREG
cvVT Issuss an RISGNL macro to each active CPU
(except in the case of a uni-processor or
CVTMAXMP] when the PCCAVT entry is for the current
CPU) to reset the PER control registers to
PCCAVT Zeros.
PCCATOOP —
PSA l-—————'\ A. Issues the RISGNL macro to execute the
-7 internal subroutine, RISGRTN.
PSAPCCAV |—|
B. Calls the IEAVTSIG routine to load the

PER control registers with zeros for the
current processor.
7—\
\—/ IEAVTSIG

RTM-162 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 43
AN
43 >|{43] The DUMPLIST internal
e/ subroutine constructs a list
DUMPLIST of storage areas to be
dumped as a part of the
summary dump.
CcVT D >|]44] Lists the following storage
-: —I\ areas as part of the summary
CVTMAP : — dump:
: FRR work area
SHDR : CcVvT
-2 SHDR
SHDRCBID : SCE
: SCVA
SCE : PCCAVT
-3 PCCA
SCECBID : control registers
SCVA :
SCVACBID
PCCAVT
PCCA :
-
CVvT
CVTRTMS CVTPCCAT ——
SHDR
SHDRPER |
SCE
SCESCVA B
SCVA
SCVALN -
SDWA
SDWAGROS S e

LY28~1735-0 (c¢) Copyright IBM Corp. 1987 Method of Operation RTM-163

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTPVT -~ SLIP PVTMOD LOAD/DELETE exit routine STEP 45
RTM -
45| This entry point functions
\) as the FRR for this module.
/
SDWA PVTFRIR
\
SDWAPARM —
46| Copies the diagnostic module eI \SDWA
‘data into the SDWA. T4
SDWARECP
SDWACID
47| If entered at entry points SDHASC
IEAVTPVL and IEAVTPVD and 1if SDWAMDAT
this is a non-recursive SDWAMVRS
error, the following SDWARRL
processing occurs:
SDWA I—————'\ A. Moves footprints into the SDWA variable J————I\SDWA
1/ area. /
SDWAPARM M SDHASRO7
B. Issues a GETMAIN macro for dump summary SDWASR11
SHDR storage. SDWASR12
SDWAURAL
SHDRFLCS SHDRXG15 M GETMAIN SDWAVRA
PSA (RC) LV(SUMLEN) SP(235) BRANCH(YES) \SHDR
—7
PSATOLD PSAAOLD — SHDRPER
C. Calls the internal subroutine DUMPLIST
to generate a list of storage areas.
/7—\
\—/ DUMPLIST: 43
cvT e L———I\SDUMP
-3 \ /
CVTRTMS : —/ " |spursoxr
: D. Issues an SBUMP macro to dump the data. SDUTUSID
SHDR : -
-t 77—\
SHDRPER : \—/ SpuMP
SCE : MF=(E, (SDUMPPTR}),
~ BRANCH=YES, ASID=(RG),
SCETSO SUMLIST=(SUMPTR),
SDATA=(PSA,SQA,SUMDUMP 3
SCE
SCETSOU —
PSA ’—-—-——'\
V4
PSATOLD PSAAOLD r—‘ E. Issues the FREEMAIN macro to free the

dump summary storage.

FREEMAIN

(RU) LV(SUMLEN) A((SUMPTR)) BRANCH(YES)
SP(235}) RELATED('FREE SUMMARY LIST AREA')

RTM-164 MVS/XA SLL: Recov Term Mgmt

LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials ~ Property of IBM

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine

SHDR

SHDRECB

BASEA

BAASCB

CVT

CVTBRET

SDWA

SDWACLUP

LY28-1735-0 (c) Copyright IBM Corp. 1987

STEP 47F

F. Issues the POST macro for SLIP's message
processing.

POST

(SHDRECB, TWENTY) BRANCH(YES)
ERRET(CVTBRET) ASCB(BAASCB~>I031P)

48| For all entry points the

following processing of
non-recursive errors occurs
if a retry is not allowed:

A. Sets the percolate code.

B. Moves footprints into the SDWA variable

area.

C. Requests that RTM free any locks

obtained by IEAVTPVT.

D. If needed, decrements the SLIP use

counts in the SCEs via DECUSECT internal
subroutine.

49| For a recursive error,

IEAVTPVT does the following:

A. Notifies the system operator (via

message IEA4141).

B. Zeros the PER trap pointer (SHDRPER).

C. Requests that RTM free any locks

obtained by IEAVTPVT.

D. If the SCEs were incremented, decrements

the SCEs use counts.

E. Percolates.

F. Issues the RECORD macro to notify the
system operator.

————I\SHDR

SHDRPER

Method of Operation RTM-165

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - MODULE DESCRIPTION

DESCRIPTIVE NAME: LOGREC Recording Buffer Formatter

FUNCTION:

This module is a dump formatting exit that can be called fron

Print Dump {(PRDMP) or the Interactive Problem Control Program

(IPCS). IEAVTREF is invoked when the IPCS/PRDMP LOGDATA verb

is executed. IEAVTREF locates the LOGREC entries that are

contained in the LOGREC recording buffer and invokes the EREP

program to format and print the LOGREC entries.

ENTRY POINT: IEAVTREF

PURPOSE: Formats and prints the LOSREC recording buffer

LINKAGE: LINK or ATTACH

CALLERS: PRDMP or IPCS

INPUT: The Common Exit Parameter List (BLSABDPL)

OUTPUT: The formatted contents of the LOGREC buffer

EXIT NORMAL: Returns to caller

ENTRY POINT: REFIO

PURPOSE: Prints the formatted output from IFCRCGIF

LINKAGE: BALR

CALLERS: IFCRCGIF

INPUT:
The parameter list contains the address of the
134 character formatted print line
The Common Exit Parameter List (BLSABDPL)

OUTPUT: Nane-

EXIT NORMAL: Returns to caller

EXTERNAL REFERENCES:

ROUTINES: IFCRCEIF -~ EREP service to format LOSREC entries.

CONTROL BLOCKS:
Common name macro id usage function

ABDPL BLSABDPL read Communication area batween
PRDMP/IPCS and user
verb exit routines

cvT cvT read Establishes addressability
to the RBCB.

HDR IHAHDR read Required for the expansion of
the RBCB.

PSA IHAPSA read Establishes addressability
{O {he CVT.

RBCB RTMRBCB read Establishes addressability
to the RCBs

RCB RTMRCB read Contains the entries for the
recording requests

RCBENTRY RTMRCBE read Contains the information for
a single recording request

SRB IHASRB read Required for the expansion of

the RBCB.
SERIALIZATION: None required

RTM-166 MVS/XA SLL: Recov Term Mgmt LY28-1735~0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM”
Licensed Materials - Property of IBM

IEAVTREF - MODULE OPERATION

IEAVTREF is a dump formatting exit that is invoked to format
and print the contents of the LOGREC Recording buffer. IEAVTREF
locates the LOSREC buffer in the dump and passes each entry to
IFCRCGIF, an EREP service that formats and prints the data.
PRDMP/IPCS generates a table of contents entry for the output
of the LOGDATA verb.

Entry point IEAVTREF is given control by PRDMP or IPCS and
performs the following processing:

« Prints a header line identifying the output as the
formatted contents of the LOGREC buffer.

. Locates the LOGREC buffer in the dump.

. Copies the LOGREC buffer into storage, and validates the
information in the buffer header. If the header contains
invalid data, the buffer contents will not be formatted.

. Loads IFCRCGIF

. Locates the oldest entry in the buffer by chaining backward
through the entries.

. For each entry in the buffer:

- If the entry is not a LOGREC request, or if it is not
ready, the entry is not processed.

~ If the entry is buffered, IEAVTREF passes the buffered
data to EREP for formatting.

- If the entry is not buffered, IEAVTREF attempts to read
the data into storage. If the data was available, it is
passed to IFCRCGIF for formatting.

RECOVERY OPERATION:

Errors in IEAVTREF are handled by IPCS/PRDMP
recovery routines. LOGDATA verb processing is terminated, and
a message is issued indicating that IEAVTREF abended.

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-167

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - DIAGNOSTIC AIDS

ENTRY POINT NAMES: IEAVTREF
REFIO
MESSAGES:
Message texts issued from this module are:

IEA24001I LOGREC buffer could not be accessed,
possible cause - data not in dump

IEA240021I LOGREC buffer could not be formatted,
header information is invalid.

IEA24003I EREP enhancement is not available,
LOGREC entries formatted as hexadecimal data.

IEA240041 There are no LOGREC entries in the buffer.

IEA24005I Some entries could not be formatted due to
errors in the recording process.

IEA24006I This entry was incomplete at the time of the dump.

IEA24007I This entry was not buffered and may contain
invalid data

IEA26008I EREP formatting failed for this entry. It will
be formatted as hexadecimal data.

IEA24009I Processing errors encountered in EREP formatting.
Remaining entries formatted as hexadecimal data.

IEA24010I Unable to locate the next entry in the buffer.

IEA24011I A non-buffered entry could not be located -
procassing continues with the next entry.

'IEA26012I A non-buffered entry could not be retrieved from
the dump.

IEA240501I LOGDATA processing completed successfully.

IEA24060I LOGDATA processing terminated due to errors.
ABEND CODES: None
WAIT STATE CODES: None

RETURN CODES:
ENTRY POINT IEAVTREF:
EXIT NORMAL:
0 - Successful completion
ENTRY POINT REFIO:
EXIT NORMAL:
0 - Successful completion

RTM-168 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - DIAGNOSTIC AIDS (Continued)

8 - Not all entries were formatted

REGISTER CONTENTS ON ENTRY:
ENTRY POINT IEAVTREF:

Register 0 - Irrelevant
Register 1 - Address of the BLSABDPL
Registers 2-12 - Irrelevant

Address of the caller's register save area
Return address
Entry point address

Register 13
Register 14
Register 15

ENTRY POINT REFIO:

Register 0 - Irrelevant
Register 1 -~ Address of the parameter list
Registers 2-12 - Irrelevant

Address of the caller's register save area
Return address
Entry point address

Register 13
Register 14
Register 15

REGISTER CONTENTS ON EXIT: Irrelevant

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-169

“Rastricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - LOGREC Recording Buffer Formatter STEP 01
PRDMP or IPCS
This module is a dump formatting exit that
\ |lcan be called from Print Dump (PRDMP) or
> || the Interactive Problem Control Program
/ (IPCS). IEAVTREF is invoked whan the
IEAVTREF| | IPCS/PRDMP LOGDATA verb is executed.
IEAVTREF locates the LOSREC entries that
are contained in the LOGREC recording
buffer and invokes the EREP program to
format and print the LOGREC entries.
01 Prin?: LQGDATA header
/ \
\F——/ ADPLESRV
ABDPL, ADPLSPR2, PPRH
cvT I — >||02| Locates the LOGREC buffer in L— 8 I\BLSABDPL
AN the dump. If the buffer V
CVTRBCB —/ cannot be located, prints an ADPLDLEN
error message. ADPLPAAD
BLSABDPL
A. Retrieves the RBCB pointer from the CVT
ADPLCVT — 7=\
\— ADPLESRV
ABDPL, ADPLSACC, ADPLPACC,
RETCODE(ACCRC)
RTMRBCB N > L——F8F0———I\BLSABDPL
/
RBCBLRCB B. Retrieves the RCB pointer and length ' ADPLDLEN
from the RBCB ADPLBUFR
7— ADPLPAAD
\r—/ ADPLESRYV
ABDPL, ADPLSACC, ADPLPACC,
RETCODE (ACCRC)
INBLSABDPL
-7
ADPLBUFR

RTM-170 MVS/XA SLL: Recov Term Mgmt

03| Allocates storage for the

LOGREC buffer.

GETMAIN

(RU) LV(LBUFLEN+TBUFLEN) A(RCBPTR)

04} Calls the GETBUF subroutine

to copy the LOGREC buffer
from the dump into storage
and validates the buffer
header.

/=i
\—/ GETBUF: 07

LY28-1735-0 {c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - LOGREC Recording Buffer Formatter STEP 05

05| Loads the EREP formatting
service.

LOAD

EP(FORMATTER_NAME) LOADPT(FORMATTER_BASE)
ERRET(AFTER_LOAD)

I\BLSABDPL
1/

ADPLBUFR

06] Calls the DEBLOCK subroutine
to chain through buffer and
format the entries using
FORMATTER or models.

/b—d\
\—/ DEBLOCK: 11

A. Delete the EREP formatting routine

DELETE

EP{FORMATTER_NAME)

B. Free the storage for the LOGREC buffer

FREEMAIN

(RU) LV(LBUFLEN+TBUFLEN) A((RCBPTR))

L—————I\BLSABDPL
/
1

ADPLBUFR

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-171

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - LOGREC Recording Buffer Formatter STEP 07
———l
07 >1107| Copies the LOGREC buffer
14 from the dump into storage
GETBUF and validates the header
information.
08| Copies the LOGREC buffer —I\BLSABDPL
into the storage. If a 1/
failure occurs while reading ADPLDLEN
the dump data set, prints an ADPLPAAD
error message.
A. Retrieves the LOGREC buffer from the
dump
7\
\—/ ADPLESRY
ABDPL, ADPLSACC, ADPLPACC,
RETCODE (ACCRC)
BLSABDPL |———-l\
W/
ADPLDLEN ADPLPARTJ—-J
BLSABDPL I-—-———-'\ B. Copies buffer to storage ‘L———'\BLSABBPL
/ /
ADPLDLEN J—J ' " | appLBUFR
RCB N >[]09] validates the buffer header. L———I\BLSABDPL
If the header is invalid, 4
RCBCNTL RCBRCB prints an error message. ADPLBUFR
RCBBUFB RCBBUFE LOGIC: Check the
RCBTLNG RCBFREE acronym,
RCBFLNG RCBBUFRS beginning of buffer,
end of buffer,
buffer length,
free pointer, and
free length.
RCB N >|110}] Recomputes the addresses in L———nn8«+——I\RCB
—I\ the header of the LOGREC V4
RCBBUFRS —/ buffer. RCBBUFB
RCBBUFE
RCB RCBFREE
RCBFREE —

RTM-172 MVS/XA SLL: Recov Term Mgmt

LY28-1735-0 (c) Copyright IBM Corp. 1987

“"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREF - LOGREC Recording Buffer Formatter STEP 11
—\
11 >|]11}] Locates the LOGREC entries
—/ in the buffer and formats
DEBLOCK them using the EREP
generalized input interface
or the model processor.
RCB [rom——————- >}|12] Finds the oldest record in 4————\BLSABDPL
-: -\ the buffer by chaining back /
RCBBUFB RCBBUFE | : —/ through the freed records. I: ADPLBUFR
RCBE : \RCB
- 7
RCBEAPP RCBFLNG
RCB
RCBTLNG RCBFREE
RCBFLNG
RCBE
RCBEALEN —
RCB fomm——————— >|]13]| Processes each complete
-t entry in the buffer.
RCBTLNG RCBFLNG | :
RCBE :
-
RCBENBFR
RCBE N — >| A. If the entry is in the buffer
—I\ Moves the data to a contiguous piece of
RCBERDY RCBEDATA 7 storage if necessary
If the record is complete and the EREP
RCBE formatting routine is available, calls
IFCRCGIF to process the record. If
RCBELEN 7 IFCRCGIF could not format the entry,
calls the model processor to format the
RCB entry as hexadecimal data
If the record is not complete, calls
RCBBUFB RCBBUFE the model processor to format the the
RCBTLNG entry as hexadecimal data
7—\
\N—/ FORMATTER
FORMATTER_PARM,
RETCODE(FMTRC)
RCBE T > l———I\BLSABDPL
/
RCBERDY 74—\ ! " |aoPLEJEC
\—/ ADPLESRY ADPLPSDH
ADPLPSTM
ABDPL, ADPLSFMT, ADPLPFMT ADPLPBLC
ADPLPPTR
ADPLPBAS
ADPLPBLS
ADPLPHEX

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-173

“"Restricted Materials of IBM*
Licensed Materials - Property of IBM

IEAVTREF - LOGREC Recording Buffer Formatter

RCBE
RCBERDY

RCBE

H
RCBEERFG RCBERDY | @
RCBEDATA RCBEERID| :

s

RCB
RCBBUFE
RCBE

RCB

RCBELEN RCBENBPT |

BLSABDPL

RCBBUFB RCBTLNS -

ADPLPART
RCBE

—

RCBECNTL RCBENBFR
RCBEERFG RCBENBPT
RCBEERID RCBEAPP

RCB

RCBBUFB RCBBUFE

RCBE

RCBELEN
RCB

—

RTM-176 MVS/XA SLL: Recov Term Mgmt

RCBTLNS RCBFI.Nir-—-

STEP 13B
L \BLSABDPL
/
" |aopLEJEC
ADPLBUFR
B. If the entry is not in the buffer L I\BLSABDPL
Attempts to retrieve the data from the -7/
ADPLEJEC
If the record is complete, calls ADPLDLEN
IFCRCGIF to process the record ADPLPAAD
If the record is not complete, issues a ADPLPSDH
message to indicate that the record was ADPLPSTM
incomplete ADPLPBLC
ADPLPPTR
77—\ ADPLPBAS
\r—/ ADPLESRV ADPLPBLS
ADPLPHEX
ABDPL, ADPLSFMT, ADPLPFMT
4i— - I\BLSABDPL
/
ADPLEJEC
ADPLBUFR
\RCB
/
RCBFLNG

LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of 1BM

IEAVTREF - LOGREC Recording Buffer Formatter

STEP 14
IFCRCGIF
\ —————I\BLSABDPL
>||14] Handles print requests for V4

/ formatter. Performs the ADPLBUFR
PARAMETERS RE}IO requested carriage control

—J\ and prints the record to the
EREPPARM I———-—-./ output data set.

A. Prints the output line
/—\

\Np—/ ADPLESRV

ABDPL, ADPLSPRZ, PPRD

LY28-1735-0 (c) Copyright IBM Corp. 1987 Mathod of Operation RTM-175

“"Rastricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREM - MODULE DESCRIPTION

DESCRIPTIVE NAME: Record Resource Manager
FUNCTION:
This module is a resource manager that is given control at memory
termination time. IEAVTREM scans the recording control buffers
(RCBs) for entries belonging to the address space being
terminated. If an entry is found that has not been marked ready
for termination, IEAVTREM marks the entry as invalid. IEAVTRET,
the record task, does not wait for the entry to be completed and
removes the entry from the buffer without processing it.
ENTRY POINT: IEAVTREM
PURPOSE: Sea function
LINKAGE: BALR
CALLERS: IEAVTMTC
INPUT: Resource manager's parameter list (RMPL)
OUTPUT: None
EXIT NORMAL: Returns to the caller
EXIT ERROR: No exit error conditions
ENTRY POINT: RCDRMRCV
PURPOSE :
Recovers from errors encountered during IEAVTREM's
processing.
LINKAGE: Standurd linkage for an ESTAE exit
CALLERS: RTM
INPUT: System diagnostic work area (SDWA)
QUTPUT: None
EXIT NORMAL: Terminates
EXIT ERROR: Percolates
EXTERNAL REFERENCES:
ROUTINES:
ESTAE service routine - Establishes the ESTAE
environment.

DATA AREAS: RMPL

CONTROL BLOCKS:

Common name Macro id Usage Function
CcvT CcvT read Establishes addressability
to the RBCB.
PSA IHAPSA read Establishes addressability
to the CVT.
RBCB RTMRBCB read, Establishes addressability
write to the RCB.
RCB RTMRCB read, Has recording request
write entries.
RCBENTRY RTMRCBE read, Maps an individual buffer
write entry.
RMPL IHARMPL read, Determines if an address
write space is terminating

RTM-176 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (¢) Copyright IBM Corp. 1987

"Raestricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREM - MODULE DESCRIPTION (Continued)

normally or abnormally. Also
provides a work area.
SDWA IHASDWA read, Provides error information
write and serves as a
communication area for RTM.

TABLES: No tables used

SERIALIZATION:

Serialization is required between IEAVTRET and IEAVTREM (the
recording memory termination resource manager) during specific
processing sections involving the recording buffers.

Module IEAVTRET obtains the local lock when:
. Releasing an entry from the recording buffers
. Procassing of a temporary error

Module IEAVTREM obtains the local lock when:
. Scanning the buffer for invalid records

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-177

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTREM - MODULE OPERATION

IEAVTREM receives control at memory termination time as a resource
manager. IEAVTREM checks to see that entries in the recording
control buffers (RCBs) that belong to the address space being
terminated are marked ready for processing. If an entry is found
that has not been marked ready, IEAVTREM marks the entry as
invalid.

Entry point IEAVTREM receives control from IEAVIMTC and performs
the following processing:

. Checks the following conditions. If one is true, returns
to IEAVTMTC:
- Address space is terminating normally.
- The record buffers control block (RBCB) is not
initialized.
-~ The RECORD function encountered a permanent error.

. Establishes a recovery environment via an ESTAE.

. Attempts to serialize itself (via the local lock of masters
address space) with two critical processing sections of
IEAVTRET. These critical sections occur when IEAVTRET is
performing temporary error cleanup and when IEAVTRET is
processing an entry in the RCB.

. Scans each buffer for invalid entries, after serializing
itself with IEAVYRET.

. Checks the active count in the buffer to dotermine if any
recording requests have begun processing but have not yet
completed.

- If the active count is zero, there are no invalid entries
in the buffer and IEAVTREM does not process them.

- If the active count is not zero, IEAVTREM scans the
buffer for entries that are not marked ready. If
IEAVTREM finds an entry that is not ready, IEAVTREM
checks whaether or not the entry belongs to the address
space being terminated. If it does, the entry is marked
invalid. IEAVTREM continues searching until all the
entries in the buffer are processed. (IEAVTREM ignores
any entries that might have been put into the buffer
after it began processing.)

RECOVERY OPERATION:

IEAVTREM employs an ESTAE recovery enviromment. If an error
occurs during IEAVTREM's processing, entry point RCDRMRCV receives
control. RCDRMRCV retries at RETRYPT to allow IEAVTREM to
terminate normally and to allow memory termination to continue.

RTM-178 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials ~ Property of IBM

IEAVTREM - DIAGNOSTIC AIDS

ENTRY POINT NAMES: IEAVTREM

MESSAGES: None

RCDRMRCV

ABEND CODES: None

WAIT STATE CODES: None

RETURN CODES: None

REGISTER CONTENTS ON ENTRY:
ENTRY POINT IEAVTREM:

Register)]
Register 1 -

Registers 2-12 -
Register 13 -
Register 16 -
Register 15 -

Irrelevant

Address of a fullword that points to the
resource manager's parameter list (RMPL)

Irrelevant

Address of the caller's register save area

Return address ‘

Entry Point address

ENTRY POINT RCDRMRCV:

Register 0 -
Register 1l -

Register 2 -

Registers 3-12
Register 13
Register 14
Register 15

Code indication

Address of the SDHA or an ABEND
completion code

Address of the parameter list specified on
the ESTAE macro, if no SDWA was available
Irrelevant

Address of the caller's register save area
Return address

Entry Point address

REGISTER CONTENTS ON EXIT:
ENTRY POINT IEAVTREM:

Registers 0-15

- Irrelevant

ENTRY POINT RCDRMRCV:

Registers 0-15

- Irrelevant

LY28-1735-0 (c) Copyright IBM Corp. 1987

Method of Operation RTM-179

"Restricted Materials of IBM”
Licensed Materials - Property of IBM

IEAVTREM - Record Resource Manager STEP 01

RMPL

IEAVTMTC

\
>

/
IEAVTRENM

This module is a resource manager that is
given control at memory termination time.
IEAVTREM scans the recording control
buffers (RCBs) for entries belonging to
the address space being terminated. If an
entry is found that has not been marked
ready for termination, IEAVIREM marks the
entry as invalid. IEAVTRET, the record
task, does not wait for the entry to be
completed and removes the entry from the
buffer without processing it.

01

RMPLTYPE

cvT

CVTRBCB

RTMRBCB

RBCBRPER

PARAMETERS

oe 00 oo o0 o0 e e o my

L

RMPL

RCB

02

RCBBUFE RCBRTER

RCBE

RCBECNTL RCBENBFR
RCBEERFG RCBERDY

RCBEHASI RCBEPASI
RCBENBPT RCBEERID
RCBEAPP

RMPL

RMPLASID

RCB

®s o0 0 6s oo e oo oo oo se ee e

L

RCBTLNG RCBFREE
RCBFLNG RCBACNT

RCBE

RCBELEN

If the address space is
terminating normally, or if
Record has suffered an
error, return to the caller.

Scan the Record Control —————JI\RCBE
Buffers for entries V4
belonging to the address RCBERIV

space being terminated. If
an entry is found, and it is
not complete, mark it as
invalid.

RTM-180 MVS/XA SLL: Recov Term Mgmt

LY28-1735-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEAVTRER - MODULE DESCRIPTION

DESCRIPTIVE NAME: Record Request Routine

FUNCTION:

This module determines whether the caller requested the recording
function (via the RE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>