Program Product

“Restricted M aterials of IBM”

All Rights Reserved

Licensed M aterials - Property of IBM
©Copyright IBM Corp. 1987

LY28-1695-0

File No. 8370-36

M VS/Extended Architecture
System Logic Library:
Global Resource
Serialization

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

<'II

"rRastrictad Materials of IBM"
Licensad Materials — Property of IBM

This publication supports MVS/System Product
Version 2 Release 2.0, and contains information
that was formerly presented in

/Ext ed Architectur tem Logqi ibrar
Volume 7, LY28-1230-4, which applies to

MVS/System Product Version 2 Release 1.7.
- Sea the Summary of Amendments for more information.

First Edition (June, 1987)

This edition applies to Version 2 Release 2.0 of MVS/System
Product 5665-291 or 5740-XC6 and to all subsequent releases
until otherwise indicated in new editions or technical
newsletters. Changes are made periodically to the information
haerein; before using this publication in connection with the
operatlon of IBM systems, consult the latest IBM System/370
Bibliography, G6GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products or services do
not imply that IBM intends to make these available in all
countries in which IBM operates. Any reference to an IBM
product in this publication is not intendad to state or imply
that only IBM's product may be used. Any functionally
equivalent product may be used instead.

Publications are not stocked at the address given below.

Requests for IBM publications should be made to your IBM
Ieprfggntative or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development,
Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you.

(c) Copyright International Bgsiness Machines Corporation 1987

"Restricted Materia
Licensed Materials

PREFACE

0 BRAR

SET OF BOOKS

ORGANIZATION OF THE

LY28-1695-0 (c) Co

1s of IBM™
- Property of IBM

The MVS/Extended Architecture System Logig-lLibrary is intendad
for people who debug or modify the MVS control progranm.
describes the logic of most MVS control program functions that
ara performed aftaer master scheduler initialization completes.
For detailed information about the MVS control program prior to
this point, refer to MVS/Extended r
itia . For ganeral information about the MVS
control program and the relationships among the components that
make up the MVS control program, refer to the ugggg;;gnggg
Architecture Overview. To obtain the names of publications that
describe some of the components not in the Svatem loaic Library,
refer to thae section Corequisita Reading in the Master Preface
VS/Ext ded rc e m c rary:
en .

ORG

The System Logic Library consists of a set of books. Two of tha
goots provide information that is relevant to the entire sat of
ooks:

1. The MVS/Extanded Architecture Svstem logic Library: Master
Jable of Contents and Index contains the master preface, the
master table of contents, and the master index for the other
books in the set.

2. The MVS/Ext i Sys i ibrar d
Descriptions contains module descrlptlons for all of the
modules in the components documented in the System logic

Library and an index.

Each of the other books (referrad to as component books) in tha
sat contains its own table of contents and index, and describes
the logic of one of the components in the MVS control program.

l"

COMPONENTS

Most componant books contain information about one component in
the MVS control program. Howaver, some component books (such as

i r b} r/ or) contain more than
one component if the components are closely ralated, fraquently
referaenced at the same time, and not so large that they require
a book of their own.

A three or four character mnemonic is associated with each
componant book and is used in all diagram and page numbers in
that book. For example, the mnemonic ASM is associated with the
beok MVS/Extended Architecture Syggem Logic Library: Auxiliary
Storage Management. All diagrams in this book are identified as
Diagram ASM-n, and all pages as ASM-n, where n represents the
specific diagram or page number. Whenevar poss:ble, the
existing component acronym is used as the mnemonic for the
component book. The Table of Book Tltles in the Master Praface
in / n Arc tem rary: a

of 099ggng§ and Index lists the book tltles, the componants
included in each book (if a book contains more than one
component), tha mnemonics for tha books, and the order number
for each book.

pyright IBM Corp. 1987 ' Preface iii

"Restricted Materials of IRM"
Licensad Materials — Property of IBM

HOW TO USE THE LIBRARY

FINDING INFORMATION

FINDING INFORMATION

To halp you use this library efficiently, the following topics
covar

] ﬂog to find information using book titles and the master
index
J What types of information are provided for each component
L gow to bbtgianErther information about othar books in the
stem lLogic

USING THE BOOK TITLES

As you become familiar with the book titles, MVS component names

and mnemonics, and the book contents, you will be able to use
the System logic Library as you would an encyclopedia and go
directly to the book that you need. We recommend that you group
the books in alphabetical order for easy reference, or, if you

gre :gmiliar with MVS, that you to group the books by related
unctions.

The Table of gook Titles in the Master Preface in MVS/Extended
Architecture Svstem logic Library: Maste

i brary: r Table of Contents and
Index contains a list of book titles and mnemonics. It provides
a quick reference to all the books, and their corresponding

components, in the System lLogic Library.

USING THE MASTER INDEX

If you are not sure which book contains the information you are
looking for, vou can locate the book and the page on which the
information appears by using the master index in System Logic
Library: Master Table gf Contents and Index. For the component

books, the page number in an index entry consists of the
mnemonic for the component and the page number; for System logic
Libr rary: Module Descriptions, the page number consists of the

mnemonic "MODY and the page number.
For example:

ASM-12 refers to MVS/Extended Architecture Svstem lLogic
Library: Auxiliary §t9rgge Management, page ASM-12.

MOD-245 refers to S/Extended Architecture stem Logi
Library: Module Descriptions, page MOD-245.

INFORMATION PROVIDED FOR MOST COMPONENTS

iv MVS/XA SLL: GRS

The following information is provided for most of the components

described in the System Logjc Library.

1. An introduction that summarizes the component's function

2. Control block overview figures that show significant fields
and the chaining structure of the component's control blocks

3. Process flow figures that show control flow between the
component's object modules

4. Module information that describes the functional
$rgani$ation of a program. This information can be in the
orm of:

. Mathod-of-Operation diagrams and extended descriptions.

. Automatically-generated prosa. The automated module
information is generated from the module prologue and
tha code itsalf. It consists of three parts: module
dggcription. module operation summary, and diagnostic
aids.

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Naterials of IBM"
Licensed Materials = Proparty of IBM

5. Modula descriptions that describe thae operation of the
modules (the modula descriptions a;e containad in
H

Some component books also include diagnostic techniquas
information following the Introduction.

FURTHER INFORMATION

For mora information about tha . K.
the ordar numbars of the books 1n tho
the Master Preface in M Exte d_ A i

Library: Mastgr T3

» including
» SQQ

LY28-1695-0 (c) Copyright IBM Corp. 1987 Proface v

"Restricted Materials of IBM"
Licenged Materials = Proparty of IBM

vi MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

mpestricted Materials of IBM™
Licensed Materials — Property of IBM

CONTENTS

Global Resource serijalization GRS-1

Introduction GRS-3
The Functions and Interfaces of Global Resource
Serialization GRS-3
The Subcomponents of Global Resource Serialization GRS-5
Control Blocks Representing Serialization Requests GRS-10
Processing ENQ, DEQ, and RESERVE Requests GRS-13
Ring Processing GRS-16

Sarializing Global Resources GRS=-16

Adding a System to the Main Ring GRS-22

Providing Informational Services GRS-23

Diagnostic Techniquas GRS-25
Debugging Hints GRS-25
Check on Enabled Wait During IPL GRS-25
Probe Points GRS-ZS
Useful Fields in the GVT and the GCL GRS-26
CTC Processing Debugging Hints GRS-26
Ring Processing Debugging Hints GRS-27
ENQ/DEQ/RESERVE Processing Debugging Hints GRS-27
ENQ/DEQ/RESERVE Termination Rasource Manager Debugging
Hints GRS-29
Storaga Management Debugging Hints GRS-30
SDWA and SDWAVRA Contents GRS-32
General Information Useful for Global Raesource Serialization
Analysis GRS-35
Recovery Considerations GRS-35
Sarialization GRS-36

control Block Overview GRS-37
Control Blocks GRS-37
Control Block Structures GRS-39

Method of Operation GRS-75

GRS-1. Provide Status Information (SNAPSHOT) GRS-78

GRS-2. Initialize One-System Main Ring (STARTPOP) GRS-82
GRS-3. Request Permission to Initialize a One-System Main Ring
(REQPERM) GRS-86

GRS-4. Receive the RSA GRS-94

GR5~5. Send a Command to Another System GRS-104

GRS-6. Send a Command Using the Main Ring RSA GRS-106

GRS-7. Send a Command Using the RSAIRCD GRS-110

GRS-8. Send Data to Another System GRS-114

GRS-9. Receive Data from a System GRS-118

GRS-10. Leave Save QWB Mode GRS-120

GRS-11. Send the RSA GRS-122

GRS~-12. Send the RSAIRCD GRS-126

GRS-13. Receive the RSAIRCD GRS-132

GRS-14., ISGCDSP - Global Resourcae Serialization DISPLAY GRS
Raquest Processor GRS-134

GRS-15. ISGCMDE - DISPLAY GRS Command Parser Exit

Routine GRS-140

GRS-16. ISGCMDI - Global Resource Saerialization Command
Interface GRS-142

GRS-17. ISGCMDR - Global Resource Serialization Command

Router GRS-148

GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE
Request Processor GRS=156

GRS-19. ISGCQMGR - Global Resource Serialization Queue

Merge GRS-160

GRS-20. ISGCQSC - Global Resource Serialization Queue Merge VARY
GRS QUIESCE Request Processor GRS-166

GRS-21. ISGCRCY - Global Resource Serialization Command Recovery
Routine GRS-170

GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART
Request Processor GRS-172

LY28-1695-0 (c) Copyright IBM Corp. 1987 Contants vii

"Restricted Materials of IBM™
Licensed Materials -~ Property of IBM

GRS-23. ISGDGCBO - Global Resourca Serialization Dump Control
Blocks Exit Routine GRS-176
GRS-24. ISGDPDMP - Global Resourca Sarialization Print Dump Exit
Routina GRS-178
GRS-25. ISGDSDMP - Global Resource Serialization SVC Dump Exit
Routine GRS-182
GRS-26. ISGDSNAP - Global Rasource Serialization SNAP Dump Exit
Routine GRS-184
GRS-27. ISGGDEQP - TCB/ASID Purge GRS-186
GRS-28. ISGGESTO - Global Resource Serialization ENQ/DEQ/RESERVE
Mainline ESTAE Routine GRS-192
GRS-29. ISGGFRRO - ENQ/DEQ/RESERVE Recovery Routina GRS-196
GRS-30. ISGGNQDQ ENQ/RESERVE Processing GRS-208
GRS-31. ISGGNQDQ DEQ Processing GRS-232
GRS-32. ISGGPGRP QEL Group Processing Routine GRS-244
GRS=-33. ISGGQWBI Queua Work Block Initialization
Routine GRS-254%
GRS~34. ISGGQWBO - Queue Work Block Service Routine GRS-260
GRS-35. ISGGRPOO - Global Resource Processor GRS-280
GRS-36. ISGGTRMO - ENQ/DEQ/RESERVE Termination Rasource
Manager GRS-300
GRS-37. ISGGTRM1 - ENQ/DEQ/RESERVE Termination Resource
Manager GRS-304¢
GRS-38. ISGJDIM1 - Global Resource Serialization CTC Driver
DIE GRS-310
GRS-39. ISGJENFO - Global Resource Serialization Event
Notification Exits GRS-322
GRS-40. ISGLNQDQ - ENQ/DEQ Fast Path Routine GRS-330
GRS-41. ISGMSGOO0 - Global Resource Serialization Message
Processor GRS-346
GRS~-42. ISGQRSCAN - Global Rasource Serialization Queue Scanning
Sarvices GRS-348
GRS-43. ISGSALC - Global Resource Serialization Storage
Management Allocation Routine GR$-35¢
GRS-4%4. ISGSDAL - Global Resource Serialization Storage
Managemant Deallocation Routine GRS-360

Index I-1

viii MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

EFIGURES

LY28-1695-0

. o o o .

HOWN N OO W N

[y
. . L] -

[
w N

[
E -
.

- -
~joun
PPy

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
3
32.
33.
34.
35.
36.
37.
38.
39.

%0.
41.

Global Resource Serialization Module Naming

Conventions GRS-5

Subcomponants Invoked for Primary Functions/Interfaces of
Global Resource Serialization GRS-6

Example of Control Blocks for Global Serialization
Requests GRS-12

Simplified Process Flow for ENQ/RESERVE Processing GRS-15
Updating the RSA and Ring Processing Queuaes GRS-20
Simplified Process Flow for Global ENQs (Ring
Processing) GRS-21

TCBs in the Global Resource Serialization Address

Spaca GRS-40

CTC Processing Control Block Overview GRS-41

Ring Processing Control Block Overview GRS-42

Command Process Control Block Overview GRS-43

ENQ/DEQ Processing - Local Resources - Control Block
Overview GRS-44

ENQ/DEQ Process - Global Resource - Control Block
Overview GRS-45

Queue Scanning Services Local Resources - Control Block
Overview GRS-46

Queue Scanning Services Global Rasources - Control block
Overview GRS-47

Storage Management Control Block Overview GRS-48
WTOR/WTOR Message Processing Control Block Ovarview GRS-49
Process Flow Overview and Directory GRS-50

Procaess Flow for CTC Procassing - Handlae Arrival of
Immediate CCW GRS-51

Process Flow for CTC Processing - Handle Arrival of RSA or
RSAIRCD GRS-52

Process Flow for CTC Procassing - Send a RSA or

RSAIRCD GRS-53

Process Flow for Ring Processing - Send/Raceive a

RSA GRS-54

Process Flow for Ring Processing - Send a RSAIRCD or
Immediate-CCW (Requested by ISGBCI) GRS-55

Process Flow for Ring Processing - Send a RSAIRCD
(Requested by ISGBTC) GRS-56

Process Flow for Ring Processing - Handle Arrival of
RSAIRCD (Not Requested by This System GRS-57

Process Flow for Ring Processing - SNAPSHOT

Function GRS-58

Process Flow for Ring Processing - SENDCMD (RSCRADDS)
Function GRS-59

Process Flow for Ring Processing - SENDCMD (RSCRSNAD)
Function GRS-60

Process Flow for Command Initialization and Cleanup GRS-61
Process Flow for DISPLAY GRS GRS-62

Process Flow for VARY GRS(x), PURGE GRS-63

Process Flow for VARY GRS(x), QUIESCE to Another

System GRS-6¢%

Process Flow for VARY GRS(x), QUIESCE by a Systam to
Quiesce Itself GRS-65

Process Flow for VARY GRS(x), RESTART to Rastart Another
System GRS-66

Process Flow for VARY GRS(ALL), RESTART to Restart All
Systems GRS-67

Process Flow for VARY GRS(x), RESTART by a System Not in
the Main Ring GRS-68

Process Flow for Join Processing at Initialization

Tima GRS-69

Process Flow for ENQ/DEQ Mainline - Local Rasource
Request GRS-70

Process Flow for ENQ/DEQ Mainline - Global Rasource
Request GRS-71

Process Flow for the Termination Resource Manager ©GRS-72
Process Flow for Queue Scanning Services GRS-73

Process Flow for Dump Support - SVC Dump GRS-74

(c) Copyright IBM Corp. 1987 Figures ix

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

2. Key to Method-of-Operation Diagrams GR5-76

x MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"pegtricted Materials of IBM™
Licensed Materials = Property of IBM

SUMMARY OF AMENDMENTS

LY28-1695-0

summary of Amendments
for LY28-1695-0
for MVSs/System Product Version 2 Ralease 2.0

This publication is new for MVS System Product Version 2 Ralease
2.0. It contains information that was reorganjzed from tha GRS

section in ﬂM§%xA_§xg1gm_Lgsls_lecgnx_!nlumg.l» LY28-1230~4,
which applias to MVS/XA System Product Version 2 Release 1.7.

This publication contains changes to support MVS/System Product
Version 2 Release 2.0. Tha changes includae:

) Changas supporting storage managament, including the
extended raesource queue area, the resource queuae area, and
the pool extant block.

e Minor technical and editorial changes throughout the
publication.

(c) Copyright IBM Corp. 1987 Summary of Amendments xi

‘"Rastricted Materials of IBM™
Licens2d Materials - Property of IBM

xii MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM"
Licensed Materials ~ Property of IBM

GLOBAL SQU]

LY28-1695-0 (c) Copyright IBM Corp. 1987 Global Resource Serialization GRS-1

vRestricted Materials of IBM™
Licensed Haterials = Property of IBM

GRS-2 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

INTRODUCTION

This introduction provides background information necessary to
understand the purpose and processing of the modulaes that
comprise global resource serialization. The first topic briefly
describes the functions and interfaces provided by global
resource serialization: the ENQ, DEQ, and RESERVE macro
instructions; the use of exit routines and resource name lists
to convert saerialization requests; the role of the GRSCNFxx and
IEASYSxx PARMLIB members and of operator commands in
initializing and controlling a global resource serialization
complex; the GQSCAN macro; and the GRSQ parameter on tha SDUMP
macro, and the GRSTRACE parameter for print dump (PRDMP), and
the GRACETRACE keyword, or the VERBEXIT subcommand, for the
interactive problem control system (IPCS). Readers familiar
with thaese interfaces can skip this topic. Subsequent topics
dascribe the kay concepts and terminology of the subcomponents
of global resource serialization.

FUNCTIONS AND INTERFACES OF GLOBAL RESOURCE SERYALIZATIX

Global resource serialization serializes the use of both local
and global serially rausable resources, as requested by ENQ,
DEQ, and RESERVE macro instructions. Local resources are
accessible by only ona system; global resources reside on shared
direct access devices and are accessible by more than one system
in a loosely couplaed or shared spool multiprocessing
environment.

Formerly, without the services provided by global resource
serialization, the only means of serializing global resources
was a hardware RESERVE instruction, generated by tha RESERVE
macro instruction. The hardware RESERVE instruction reserved
the entire volume containing the requestad resource for use by
one system, until that system relinquished control of the
resource by means of DEQ. ‘

Global rasource serialization serializes tha use of global
resources without using the hardware RESERVE instruction. By
communicating global requests to all systems included in the
global rasource serialization complex (defined by the
installation), global resource serialization serializas the usa
of resources on the volume, not the entire volume. Mora than
one system can enqueue concurrently on different resources on a
single shared volume; and more than one system can enqueue
concurrently on tha sama resource if all the requests specify
shared control.

To serialize use of a global resource among systems in the
global resource serialization complex, a program issuas the ENQ
macro (and, subsequently, the DEQ macro) with a scope of
SYSTEMS. A scope of STEP or SYSTEM requests local
serialization. To allow the installation to run existing
programs without changing them (for examplae, programs that
contain RESERVE), global rasource serialization provides thrae
exit routines that check three resource name lists (dafined by
the installation or IBM-supplied defaults): an inclusjon exit
and SYSTEM inclusion resource name list; an exclusion exit and
SYSTEMS exclusion resource name list; and a RESERVE conversion
exit and resource name list. Thae SYSTEM inclusion resource nama
list contains names of resources to be serializaed globally. Thae
SYSTEMS exclusion list contains names of resources to be
serialized locally (including data sets to be excluded from
generic names in the SYSTEM inclusion list). The RESERVE
conversion resource name list contains names of

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-3

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

global resources for which the hardware RESERVE instruction is
to be suppressed. Which exits are invoked depends on the
request and the scope it specified:

. For ENQ or DEQ requaests that specify SYSTEM (local
serialization), global raesocurce serialization invokes the
inclusion exit and, if the requested raesource is named in
tha SYSTEM inclusion list, the SYSTEMS exclusion exit. If
the requested rasource is namad in the inclusion list and
not in the exclusion list, global resource serialization
changaes the scope to SYSTEMS (global serialization).

L For ENQ or DEQ requests that specify SYSTEMS (global
serialization), global resource serialization invokes thea
exclugion exit. If the requasted resource is named in the
SYSTEMS exclusion list, global resource serialization
changes tha scope to SYSTEM (local serialization).

U For RESERVE requests, global resource serialization invokes
the exclusion exit. If the requested resource is named in
the SYSTEMS exclusion list, global resource serialization
will issue a SYSTEM (local) ENQ for the resource and will
not suppress the hardware RESERVE instruction. If the
requested rasource is not named in the exclusion list,
glggal resourca serialization invokes the RESERVE conversion
exit:

- If the raesource is named in the RESERVE conversion list,
global resource serialization issues a SYSTEMS (global)
ENQ and suppresses the hardware RESERVE instruction.

- If tha resource is not named in the RESERVE conversion
list, global raesource serialization issues a SYSTEMS
(global) ENQ for the resource but does pot suppress the
hardware RESERVE instruction.

The systems in a global resource serialization complax must be
connactaed using dedicated CTCs (channel to channel adaptars).
Tha installation defines the global serialization complex by (1)
defining the systems that are to participate in the complex in
tha GRS= paramater in an IEASYSxx member of SYS1.PARMLIB; and
(2) dafining the CTCs to be usad by the systems in tha GRSCNFxx
member of SYS1.PARMLIB.

To allow the operator to monitor and modify the global resource
saerialization complex, global resource serialization provides
tha DISPLAY GRS and VARY GRS oparator commands. The VARY GRS
command allows thae oparator to suspand or resume a system's
participation in a global resource serialization ring (the
active global resource serialization systems in the complex,
also called the main ring); rebuild a disrupted global resource
serialization ring; or terminate a system's participation in the
complex. Tha DISPLAY GRS command allows the operator to display
the status of the systems in the global resource serialization
complax and the channel-to-channal adapters (CTCs) assigned to
global rasource serialization and attached to the system on
which the command is issued. The DISPLAY GRS command allows the
operator to display raesource contention information, the
contents of the RNLs, the resourca gnames, and resource name
information.

In addition, global resource sarialization provides the
following:

. the GQSCAN macro, which allows users to obtain information
g?ouz resources uwithout directly accessing internal control
ocks

L the GRSQ parameter on the SDUMP macro to request the
inclusion of global resource serialization control blocks in
an SVC dump

. and the GRSTRACE parametar for print dump (PRDMP) and tha
GRACETRACE keyword, or the VERBEXIT subcommand, for the

GRS-4 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM"
Licensed Materials — Property of IBM

interactive problem control system (IPCS) to format global
resource serialization data.

THE SUBCOMPONENTS OF GLOBAL RESOURCE SERYALIZATION

LY28-1695-0

The global resource serialization component can be dividad into
several subcomponents, each of which is responsible for part of
the processing necessary to provide the functions and interfacas
described in the preceding topic. The structure of global
resource serialization is reflected in the names of the modules
that comprise it: the first three characters, ISG, identify the
modules as part of global resource serialization; the fourth
character identifies the function or service within the
component or subcomponent that the module supports.

Figure GRS-1 summarizes the module naming conventions for global
resource serialization modules. Figure GRS-2 shouws the
organization of the subcomponents that make up the global
resource serialization component.

Module names: ISGzxxxx

ISG = global resource serialization

2= Function

B ring processing

C command processing

D dump support

G mainline ENQ/DEQ/RESERVE processing

J CTC processing

L fast path ENQ/DEQ processing

M WTO0/WTOR message processing (ISGMSGO0O0)
N initialization

Q queue scan (GQSCAN macro)

S storage management

Note: Initialization modules (ISGNxxxx) are described
i stem Initialization logic.

Figure 1. Global Resource Serialization Module Naming
Convantions

(c) Copyright IBM Corp. 1987 Introduction GRS-5

S¥9 7118 VX/SAN 9-S¥9

0-569T-82A1

LBET °d40) WEI 3IYSiuAdog (2)

uotjezi(eLdag

22J4hosY TRQOT 10 SBOLLIBIUI/SUOLIDUNY AJewiud 4O} PBYOAUT Sjusuodwodqgng

*2 ®anBiy

Resource Request

itiali Processing:
Initializati
nitialzation ENQ/DEQ/RESERVE
macros
1ISGNxxxx ISGLNQDQ and
1SGGnnnn

All subcomponents
except request
processing and
dump support (see
System Initialization
Logic)

Operator s Queue scan:

t
Support Dump Suppor GQSCAN macro
ISGCxxxx 1SGDxxxx 1ISGQxxxx

Y Y Y

Y

Y

s WT Ring Prdcessing: s
Mtaorr::::mem' Ring Processing: me:am?:cessing‘ Queue Scan: 1SGBxxxx N::r::geemem'
. I1SGBxxxx : ISGQxxxx (for information :
ISGSxxxx 1ISGMSGO00 services only) ISGSxxxx
WTO/MWTOR R s
CTC Processing: Message RPsour?e . equest torage .
ISGIxxxX Processing: :’;gcgssmg. :ws:snsagemem.
1SGMSG00 XXXX X XXX

HEI 30 AjJadoud —~ STEIJIB3)RYK PISUIDLT

uH8I 3O STRIJIIBN PBIJI|LISBY.

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

The following describes each subcomponent, the functions or
services it provides, and its relationship to other
subcomponents.

Initialization, The initialization subcomponent has two
primary responsibilities:

- Creating and initializing the global resourcea
sarialization address space. Global resource
serialization has its own address space, &accessible by
means of PC/AUTH cross memory services, in which many of
its modules execute and in which it keeps most of its
data. Global resource serialization receives control in
the address space that requests its services and then
transfers control (via a PC instruction) to tha global
resour:e serialization address spaca to process the
raquest.

- Establishing the global resource serialization complex,
as defined by the installation in tha GRSCNFxx and
IEASYSxx membaers of SYS1.PARMLIB.

The initialization subcomponent invokes all subcomponents of
oglobal resource serialization except for resource requast
processing and dump support. tem itializati i
describes the global resource serialization initialization
modules, whose names follow the format ISGNxxxx.

Command Processing. This subcomponant (module names of the
format ISGCxxxx) supports the VARY GRS and DISPLAY GRS
operator commands. The global resource serialization
command interface (ISGCMDI) executes in the master scheduler
address space and receives control from the command sarvice
processor (IEECB808) when a VARY GRS or DISPLAY GRS is
detected. ISGCMDI posts the global resource serialization
command router (ISGCMDR) in the global resource
serialization address space. ISGCMDR routes control to the
appropriate request processor:

- ISGCQSC - QUIESCE processing. ISGCQSC removes an active
system from the global resource serialization ring.
Requasts for global resources made prior to the QUIESCE
will remain intact. ISGCQSC procaesses QUIESCE requests
for the system on which the command is issued or for any
other system in the global raesourca sarialization ring.

- ISGCPRG - PURGE processing. ISGCPRG removes a quiesced
system from the global resource serialization complex.
PURGE processing releases all global resources ouwned by
the system being purged and deletes all outstanding
requests for global resources made by that system. A
PURGE request can only be processed on an activae system
in the global resource serialization complex.

- ISGCRST - RESTART processing. ISGCRST rejoins a
quiesced system with the global rasource serialization
ring or rebuilds a ring that has been disrupted.

ISGCRST processes RESTART requests for the system
issuing the command, for a specific quiesced system in
the complex, or for all inactive systems in the complex.
The topic "Adding a System to the Main Ring" (undar
"Ring Processing” later in this introduction) describas
the processing that occurs to add a system to the global
resource serialization (main) ring. This processing is
shared between modules of the command processing
subcomponent and the ring processing subcomponent.

- ISGCDSP - DISPLAY processing. ISGCDSP displays the
status of

1. each system known to the global resource
sarialization complex

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-7

GRS-8 MVS/XA SLL: GRS

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

2. the CTCs that are assigned to global resource
sarialization and that are attachad to the system on
which the command was issued, including the status
of the systems attached to this system via the CTCs

3. both 1 and 2

4, any resource contention

5. the RNLs

6. the resource gnames

7. tha resources and their requestors
8. or the combination of 1, 2, %4, and 5

The command processing subcomponent invokes the following
subcomponaents:

- The queue scan subcomponent to obtain information about
global resources.

- The ring processing subcomponent to obtain information
to be displaved on the status of systems in the complex
and CTCs assigned to global resource serialization and
attached to the system on which the command was issued;
to remove a system from the complex; and to vary the
participation of systems in the global resource
serialization ring.

- The WTO/WTOR messaga processing module (ISGMSGO0O0) to
communicate with the operator.

Resource Regquest Processing. This subcomponent processes
ENQ, DEQ, and RESERVE macro instructions. It also receives
control during termination to purge all local and global
resources acquired by the terminating task or address space.

Processing of ENQ, DEQ, and RESERVE requests is divided into
fast path and mainline processing: fast path processing
(ISGLNQDQ) handles local ENQ and DEQ requests that meet
certain eligibility requirements (requests that do not
require spacialized processing); mainline processing (module
names of the format ISGGxxxx) handles local ENQ and DEQ
requests ineligible for fast path processing, all global ENQ
and DEQ requests, and all RESERVE requests. Global resource
requests require communication among all active global
resource serialization systems in the complex before the
request can be satisfied; this subcomponent invokes the ring
processing subcomponent to communicate with those systams.
Both fast path (in some cases) and mainline processing
invoke the storage management subcomponent to obtain the
control blocks that represent the requast.

Ring Processing. The active systems in a global resource
serialization complex are called a main_ring or a global
resource serialization ring. Ring processing modules
(module names of the format ISGBxxxx) are responsible for
(1) passing to all systems in the main ring the information
they require to serialize global resource requests across
all the systems in the main ring; and (2) adding or deleting
systems from the main ring as specified in initialization
parameters or requested by the operator via the VARY GRS
command. Ring processing also provides information about
the systems and CTCs in the global resource serialization
complex - for example, their status or the system nama
associated with a particular sysid. (The topic "Ring
Processing," later in this introduction, provides more
information on how ring processing provides its functions.)

The ring processing subcomponent invokes the CTC processing

subcomponent to actually initiata I/70 on the CTCs; the
WTO/WTOR message processing modula (ISGMSG00) to communicate

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
ticensed Materials — Property of IBM

LY28-1695-0

with the operator (for example, when a ring processing
module needs to notify the operator of a problem in the main
ring); the resource request processing subcomponent; and the
storage management subcomponent to allocate control blocks.

CTC Processing. This subcomponent (module names of the
format ISGJIxxxx) builds control blocks for the CTCs that
connect systems in the global resource serialization complex
(based on information specified in the GRSCNFxx PARMLIB
member); initiates I/0 on the CTCs; and handles interrupts
on the CTCs. It invokes the ring processing subcomponant
when it receives an interrupt on a CTC.

Storage Management. The storage managemant modules (module
names of the format ISGSxxxx) are responsible for managing
the resource queue area (RQA) and the extended resource
queue area (ERQA) of the global resource serialization
address space. ISGNASIM allocates the RQA from the private
area below 16 megabytes, and the ERQA from the private area
above 16 megabytes, of the global resource serialization
address space during initialization. The storage management
modules allocate and deallocate storage in the RQA or in the
ERQA, in one-page blocks called PEXBs (pool extent blocks).
PEXBs in the RQA contain QWB, MRB, CRB, TWKA and HWKA cell
types while PEXBs in the ERQA contain QCB, QEL, QXB and PQCB
cell types.

Each PEXB is divided into cells. There are diffaraent types
of cells, each type accommodating & particular control
block. In addition, different cell types are definad for a
single control block that can vary in size. For example,
three cell types are defined for QCBs: one to accommodate
QCBs for resource names of 1-24 bytes; one for resource
names of 25-52 bytes; and one for resource names of 53-255
bytes. Therefore, there is one cell type for each
particular control block (or size range of a control block)
allocated from the private area of the global resource
serialization address space. A single PEXB contains only
one type of caell and, therefore, only one particular control
block, thereby reducing the amount of information required
to assign or free cells in a PEXB. In addition, if a cell
type is associated with a control block that exists for both
global and local resources, a PEXB containing that cell type
is used only for local resources or only for global
resources, not for both.

PEXBs containing cells associated with local resources are
allocated from the low-address end of the RQA or the ERQA;
PEXBs containing cells associated with global resources are
allocated from the high—-address end of the RQA or the ERQA.
Resource pool tables (RPTs), a local RPT and a global RPT,
are used to keep track of the allocated PEXBs. The local
RPT contains an entry for each type of cell associated with
local resources; the global RPT contains an entry for each
type of cell associated with global resources. PEXBs that
have been allocated for a single cell type are chained
together and the RPT entry for that cell type contains
pointers to the first and last PEXB in the chain.

The storage management routines assign and release cells in
PEXBs, allocating another PEXB if no PEXB of the requested
cell type contains an available cell or deallocating the
PEXB if the cell just released was tha last assigned cell in
the PEXB. Whan the number of deallocated PEXBs reaches a
certain value (defined by global resource serialization),
global resource serialization releases (via PGRLSE) the real
storage associated with the deallocated PEXBs. Modules
executing in the global resource serialization address space
invoke the storage allocation routine (ISGSALC) and storage
deallocation routine (ISGSDAL) directly. An interface
module (ISGSMI) provides the interface to ISGSALC and
ISGSDAL for routines not executing in the global resource
serialization address space.

(c) Copyright IBM Corp. 1987 Introduction GRS-9

. "Rastricted Materials of IBM™
Licensed Materials ~ Property of IBM

In addition, tha storage management subcomponent provides
hashing routines to expedite searches of queues for a
requested raesource or for the requests from a particular
address space in a particular system. (The topic "Control
Blocks Reprasenting Serialization Requests," later in this
introduction, illustrates the hash tables used by the
hashing routinas.)

. Queue_Scan. Queue scan modules (ISGQSCAN and its recovery
module ISGOSCNR) procecs the GQSCAN macro instruction. Thea
queua scan module returns to the issuer of GQSCAN a
collection of data ¥rom multiple sources. To do this. it
invokes the following subcomponents:

- Storage management to hash raesource names to expedite
the search for more information and to allocate and
deallocate PQCBs (place holder QCBs), QELs, QXBs, and
HWKAs (huge workareas), which contain the RIBs (resource
information blocks) and RIBEs (RIB extensions) used to
collect the required information.

- The information services of the ring processing
subcomponant to convert system names to sysids and
sysids to systam names.

. Dump Support. Becausa most of its key control blocks are in
its own address spaca, global resource sarialization
provides its own dump support to dump tha control blocks.
The dump support modules (module names of the format
ISGDxxxx) obtain and format information about local and
global resources for SNAP dump, print dump (PRDMP), or
intaractive problem control system (IPCS), and provide a
dump of most global resource serialization control blocks
when the GRSQ parameter is specified on an SDUMP macro. The
dump support subcomponent invokes the quaue scan module
(ISGQSCAN), via the GQSCAN macro instruction, to obtain data
about local and global resources for a SNAP dump. Figure
GRS-2 illustrates the subcomponents invoked for each
interfacesfunction global resource serialization provides.

Resource request processing is the primary function of global
rasource serialization, and ring processing is ona of the more
complax functions. The next topics describe the control blocks
built to represent serialization requests (necessary background
information for understanding request processing); the
processing of ENQ, DEQ, and RESERVE requests; and ring
processing.

ES G RIALIZATION REQUESTS

Global resource serialization raeceives the information it
requires to process a request in a PEL (parameter element list).
From data in tha PEL, global resource serialization builds a QuB
(queua work block) in SQA to represent the ENQ, DEQ, or RESERVE
raquest. If the request is for a global resource, global
resourca serialization subsequently copies the QWB from SQA to
the private area of the GRS address space. (Note that two
routines copy QWBs: ISGGQWBO and ISGGQWBC. ISGGQWBO coptes
QWBs into or out of othar data areas, such as from the ring
system authority (RSA) message received via the CTC from another
system. ISGGQWBC copies QWBs to QWBs, as from the SQA QWB to a
QWB in the private area of the global resource serialization
address spaca.)

From information in the QWB, global resource serialization
creates the control blocks - QCBs, QELs, and QXBs - that it uses
to satisfy the request. The ring processing modules pass to
every gystem in the ring the QWBs for global resource raquasts
from each system. (See the topic "Ring Processing” later in
this introduction for more datail.) As a result, each system
craates and chains QCBs, QELs, and QXBs that represent all
global requests in the main ring and creates and chains QCBs,
QELs, and @XBs for tha local requests of this system only. The

GRS-10 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

following describes the role of each control block and the ways
in which they are chained.

A QCB (queue control block) describes the resource being
raquested; global resource sarialization builds a QCB if one
does not already exist for the resocurce. Tha QCB contains
pointers to the previous and next QCBs that are accassibla
via a single entry (the QCB synonym chain) in tha quaue hash
tabla (QHT). There are two queue hash tables: a local
queua hash table and a global queue hash table. QCBs for
global resources are chained from tha global queue hash
table; QCBs for local raesources are chainad from the local
quaue hash table.

A QEL (queua element) describes the requestor (tha ASID of
the requestor and whether thae raquestor requires shared or
exclusive control of the resource) and contains pointars
that define the various queues of QEls:

- The queue of QELs that reprasent requests for a single
rasource, pointed to by the QCB for that resource

- The queues of QELs that represent the requests of a
single address space. If the raquasts originated on
this system, there is onae quaue for QELs requesting
global resources and one queua for QELs requesting local
resources for each address space. Tha ASCB for the
address space is tha anchor for both queues. If the
requests originated on another system in tha main ring
(they represent global requests for an addraess space
executing on another system), the queue of QElLs is
located by means of an antry in thae SYSID/ASID hash
table. Each entry in the SYSID/ASID hash table points
to a QEL; that QEL points to (1) other QELs that have
the same SYSID/ASID combination, and (2) the next QEL
with a different SYSID/ASID combination that is
accessible via this entry.

A 9XB (queue extension block) describes the ENQ request -
for example, the address of tha raquastor's TCB; the ECB or
SVRB to be posted when tha request is satisfiad; and, if tha
raquest spaecified more than one resourca, the number of
resources raequested and the number of QELs waiting to
raceive control of requested resources.

Figure GRS-3 illustrates QCBs, QElLs, and QXBs for global
resourcas and the various ways in which they are chained.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-11

Pointers to first
and last QCBs
accessible via
this entry (QCB
synonym chain)

Pointer to first
ASID/SYSID
combination
accessible via

this entry (ASID/SYSID

synonym table)
Figura 3.

U .

"Restricted Matgrials of IBM™
Licensed Materials = Property of IBM

Global resource requests represented by control blocks in system SYS1:

Request A Request B Request C Request D
ASID 123 ASID 567 ASID 567 ASID 789
SYSID SYSI1 SYSID SYS2 SYSID SYS2 SYSID SYS2
Resources Resource Resource Resource

requested: X,W requested: W requested: Y requested: Z

Control blocks for requests A-D in system SYS1:

Global hash
table
acs acs Qcs acs
] 1 —al 11—
w X Y 4
e ~—T"
" ;
ASCB QEL QEL
//-D- ASID 123 ~ ASID 123
SYSID SYS1 SYSID SYS1
ASID 123
(mcbﬂl Vi [o kY
requests)
axs
QEL
ASID 567
A | SYSID SYS2
7/
QEL
' -
ASID 567 QxB
SYSID SYS2
1 N
c QEL
SYSID/ASID
hash table ASID 789
Qxs | SYSID SYS2
{

Example of Control Blocks for Global Serialization Requasts

GRS-12 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

0 ING DE

D

ERVE REQUES

The general (and simplified) processing global resource
serialization does to satisfy an ENQ request (whether the
request is local or global) or a RESERVE requast consists of the
following staeps:

1.
2.

5.

Copies the PEL into a QWB.

Chaecks tha rasource name lists to datermine if the resource
raequested is global or local.

(For a global rasource, delays the requestor and
communicates with other systems in the ring before
continuing.)

Builds and chains, if necessary, a QCB, QEL, and QXB to
raepresent the request.

If the QEL is the first QEL on that QCB's QEL chain or if
the QEL requested shared control and prior QELs also requast
shared control, grants the request. Otherwise, delays the
requastor (by issuing WAIT) until the task for the QEL just
created is posted (see thae DEQ processing steps, dascribed
next); and then grants the raquest.

Returns to the issuer of the ENQ or RESERVE macro
instruction via EXIT prolog.

The gaeneral (and simplifiaed) procaessing done to satisfy a DEQ
raquest (whether local or global) includes the following steps:

1‘
2.

5.

Copies the PEL into a QWB.

Checks the resource names lists to datermina if the resource
is local or global.

(For a global resource, delays the requastor and
communicates with othar systems in the ring before
continuing.)

Finds the QCB, QEL, and QXB that represent tha request to be
dequeued.

Frees tha QEL and, if this is tha last QEL associated with
tha request, also freas the QXB.

If this is the last QEL for tha QCB, frees the QCB.
Otherwise, posts the TCB for the next QEL chained from the
QCB (or, if tha next and one or more subsequent QELs request
shared control, posts the TCBs for those QElLs).

Raturns to the issuer of the DEQ macro instruction by means
of EXIT prolog.

These steps expand for the variations in processing that occur
for fast path versus mainline processing, for global versus
local resources, and for special situations. For example:

In step 2, fast path processing (which handles requests that
raquire only streamlined procassing) checks only the
inclusion list and passaes the requast to mainline processing
if it finds tha resource name in thae inclusion list, without
checking the exclusion list. Mainline procassing chaecks all
applicable resource name lists,

For global requests, ENQ/DEQ/RESERVE processing copies the
SQA QWB to a QWB in the private araa of the global resource
sarialization address spaca.

Steal procassing occurs in onae exceptional casa. When a
resource is requested by a8 task that is part of an ABENDing
task structure, and tha resource is owned by another task in
this same task structure, ENQ/DEQ/RESERVE processing

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-13

"Regtricted Materials of IBM"
Licensed Materials — Property of IBM

initiates a resource steal because tha ABENDing task is not
able to ralease the resource.

Variations such as these are described in the
maethod-of-operation diagrams for the resource requast processing
modules (ISGLNQDQ and ISGGxxxx). Figura GRS-4 illustrates tha
modulae flow of the primary modulas that receive control to
process ENQ/DEQ/RESERVE requests.

By far the most significant variation in the simplified steps
listed above is tha necessity to communicate with othar systems
for global resource requests. Ring processing, which controls
the communication, is describad in the next topic.

GRS~14 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

mpestricted Materials of IEM"
Licensed Materials = Proparty of IBM

ENTER

(from SVC FLIH as the
result of an ENQ/RESERVE
request)

ISGLNQDQ
If request is not
eligible for fast
path processing P ISGGNQDQ ISGSALC
{for example, it | *Copy PEL into
specifies more sGeawsi [« > SQA QWS Obtain storage
than one resource lg—] Global Resource e If not enough extensions if
or a scops of Serialization QWB storage in necessary
sYsTEMs’ Initialization SQA QWB
Copy PEL to L
SQA QWB pud Determine if re- ISGGREXO
quest is local or
ISGGREX0 global. Global resource
Determine if re- Global resource serialization
quest is in in- B erialization exit exit routines
clusion list routines
o Ifitis If request is
local
e |Ifitisnot
l 1
i { If request is
ISGLNQDQ/ global:
(ISGGNaDa o Obtain QWB ISGSALC
i m <> in private
:I‘\:‘ijnsm\':: in ISGSHASH area of Storage man-
i llo-
local hash table) Hashing GRS address ‘ agement a
in which to routines space cation routine
queue this re-
Simplified pro- quest. e Copy SQA
cessing of local QWB to pri- 1SGGawscC
resource re- ISGSALC vate ares e
quets‘tf,sdone g’\; a Build QCB, QEL, leg—pm| Storage manage- aws ,ouﬁn?pv
b:; l SGc;Gll-\lNQD a: and QXB, if ne- ment allocation o Place request
9 : cessary routine on request
see m.o, diagrams weue
for details and If request cannot a *
v:;?:ons in pro- be granted, delay jag—3 ISGGWAIT ® Delay re- ISGGWAIT
cessing. requestor until questor
task for this QEL Global resource N G!Ob?l resource
is posted serialization serialization
wait routine wait routine
Otherwise, grant N
request. See Figure GRS-6 for subsequent
\ processing of global requests.
ISGGPGRP
QEL group
processing routing

Figure %.

LY28-1695-0

(c) Copyright IBM Corp.

To issuer of ENQ/RESERVE

via EXIT prolog

1987

Simplified Procass Flow for ENQ/RESERVE Processing

Introduction

GRS-15

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

[s] ST
Ring processing provides three main functions:

. It passes to all systems in the main ring thea information
they require to serialize global resource requests across
all the systems in the main ring. Sea tha topic
"Serializing Global Resources.”

. Working with the command processing subcomponent, it adds or
deletes a system to or from the main ring, as specified in
initialization parameters or requested by the operator via
the VARY GRS command. The topic "™Adding a System to the
Main Ring™ is a simplified overview of the add function.

. It provides to othar subcomponents information about the
systems in the main ring. See the topic "Providing
Informational Services.”

SERIALIZING GLOBAL RESOQOURCES

Global resource serialization achieves the sarialization of
global resources by duplicating the control blocks that
represent requests for global resources in every system in the
main ring. Every system contains QCBs, QELs, and QXBs, queued
in identical order, that reflect avery request madae by a system
for a global resource. Therefore, system A cannot grant a
request to a requestor from system A if another QEL,
representing a request from system B, precedes the QEL for
system A - until it receives the DEQ request from system B for
that QEL or unless both requests specify shared control.

Ring processing passes requests for global resources to all
systems in the main ring by passing a message called the RSA
(ring system authority) from system to system so that the RSA
makes a complete circuit of the ring. Each system places its
global requests, in the form of QWBs, in the RSA using one of
two mathods:

1. Comprassion level 1. Determined by the value 1 found in the
QPLFCPRS field of the Queue Work Block Parameter list (QPL).
It indicates the QWBs in the RSA are copies of the system
QWBs and can contain unused bytes (non-compressed QWB).

2. Compression level 3. (Level 2 is not currently used.)
Determined by the value 3 found in the QPLFCPRS field of the
QPL. It indicates the basic section of the QWBs placed in
the RSA is shortened and the Storagae Management Parameter
list (SMPL) section is shortened to accomodate only those
fields which will vary (SMPCNUM). Thus more requests can
fit in the RSA. (Compressed QWB)

(The RSA can also contain a command area that is used to send
data or commands for the command processing subcomponent.)
There is only one RSA, containing batches of QWBs placad there
by each system; at any time, the RSA is either between systems
on a CTC or at one of the systems. Basically, when the RSA
arrives at a system, ring processing doas the following:

1. Sets an RSA residency interval, the amount of time the RSA
Will reside in that system. (The RSA residency interval
allows for the varying speeds of different processors in the
ring and, therefore, prevents a fastar processor from
driving a slower processor.)

2. Invokes ISGGQWB to reproduce from the RSA copies of QWBs
that this system placed in the RSA the last time the RSA
resided in this system. These QWBs are copies of QWBs that
originated on this system: they have made a complete
circuit of the main ring and have been seen by all systems
in the main ring. Therefore, this system can now remove
them from the RSA.

GRS-16 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

3.

Reproduce QWBs placed in the RSA by other systaems into QUWBs
that this system obtains from storage management. These
reproduced QWBs represent global requests that originated on
other systems in the main ring.

Adds to the RSA QWBs for global requests from this system
that have accumulated since the last RSA residency.

When the RSA residency interval expiraes, sends tha RSA to
the next system in the ring; that systam then performs these
same steps.

This processing actually involves four queues of QWBs. Each
system contains the four queues and usas them as follows:

The request queue. When mainline ENQ/DEQ/RESERVE processing
determines that an ENQ, DEQ, or RESERVE specifies a global
resource, it obtains a QWB for the global request in the
private area of the global resource serialization address
space. It then chains this global QWB on the request queue
and delays the requestor (by issuing WAIT). The request
queue is serialized by compare-and-swap logic and is
last-in/first-out.

The ring processing internal queue, Ring processing moves
the QWBs placed on the request queue to its own internal

queue (pointed to by the RSVQWBIF field in the ring
processing system vector table (RSV)). Tha internal queue
is first-in/first-out. Ring processing re-orders QWBs as
necessary when it moves them from the request gueue to the
internal queue. When the RSA resides in this system, ring
processing reproduces the QWBs from the internal queue into
the output RSA (the RSA to be sent to the next system in the
ring) and moves them to the sent queue, described next.

The sent queue (also caslled the staqing gueua). To aid
recovery if the RSA is lost, the sent queue provides a

record of tha QWBs sent in the output RSA to the naext system
in the ring. Ring processing places in the sent queue:

1. QWBs from other systems that arrived at this system in
the input RSA. Ring processing invokes ISGGQWB1
(INSYS-COPY) to reproduce other systems' QWBs from the
input RSA. Ring processing places the QWBs on the sent
queue. These QWBs remain in the output RSA and are sent
to the next system as part of the output RSA.

2. QWBs that this system places in the output RSA
(therefore, QWBs that originated on this system and are
being sent to the next system). When ring processing
invokes ISGGQWB1 (QUTSYS-COPY) to reproduca QWBs from
the internal queue to the output RSA. Ring processing
moves those QWBs to the sent queue.

Ring processing does these two steps each time the RSA
resides in this system but after it moves the sent queue
created during the previous RSA residency to the process

queue, described next. (Once the RSA has made a complete

circuit of the ring, there is no need to keep a record of

:he QWBs gontained in the RSA that started that circuit of
he ring.

The process queue. Whan the RSA arrives at a system, ring
processing moves the sent queue created during the previous
RSA residency to the process queue. Because of the role of
the sent queue (described above), the QWBs on the process
queue have made a complete circuit of the main ring. The
process queue is the output from ring processing: the
requests on the process queue are now ready for processing
(building QCBs, QELs, and QXBs to represent those requests
and attempting to grant those requests).

QWBs appear on the process queaua in the same order in which
they were passed through tha RSA; QWBs will appear in the

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-17

GRS-18 MVS/XA SLL:

"Restricted Materials of IBN"
Licensed Materials = Property of IBM

same order on the process queues of all systems in the main
ring. This ensures that global resource QELs, created from
tbe QWBs, are in the same ordar on all systems in the main
ring.

Combining the updating of the queues with the simplified steps
(listed earlier) that occur when the RSA arrives at system
results in the following sequence. (Figure GRS-5 illustrates
the queues and the input and output RSA; the circled numbers in
Figure GRS-5 refer to the following steps.)

1. The RSA arrives and ring processing sets tha RSA residency
intarval.

2. Ring processing moves the current sent queue (created during
the previous RSA residancy) to the process queue.

3. Ring processing removes from the input RSA this system's
QWBs, which were reproduced into the RSA during the previous
RSA residency.

4. Ring processing invokes ISGGQWB1 (INSYS-COPY) to reproduce
other systems'! QWBs from the input RSA. Ring processing
places QWBs in the sent queue.

5. Ring processing moves QWBs from the request queue (global
requests that originated on this systam since the previous
RSA residency) to the internal queua.

6. Ring processing invokes ISGGQWB1 (OUTSYS-COPY) to reproduce
QWBs on the internal queue to tha output RSA. Ring
processing moves QWBs to the sent queue.

7. When the RSA raesidency expires, ring procaessing sends the
output RSA to the next system in the ring.

Once ring processing has built the process queue, it posts
ISGGRPOO, which processes the requests represented by the QWBs
on the process queue and, therefore, builds QCBs, QELs, and QXBs
for all global requests in the ring. Figure GRS-6 illustrates
the modules that receive control to process requests for global
resources.

During ring processing the following exceptional conditions can
occur that cause a main ring failure and raequire the ring
§ggg$g?ing exception handling task (code that is part of

) Condition A

The RSA fails to complete a full circuit of tha main ring
within the time allowed. (Entry point ISGBDRM of ISGBDR
gets control through periodic timer interrupts to detect
this condition.)

. Condition B

An 1I/0 error occurs on a CTC assigned to the global resource
serialization main ring. (The CT{ processing subcomponent
of global resource serialization detects this 1/0 error.)

. Condition C

A status inquiry request arrives from a system at the
opposite end of a global resource serialization CTC. (The
CTC processing subcomponent of global resource serialization
detects this event; a SNAPSHOT, performed by the systam at
the opgosita end of the CTC, causes the status inquiry to
occur.

@hen any of these conditions occur, the GVTXBECB ECB in tha GVTX
is posted. This post activates the ring processing exception
hangll?g task; this task processes these axceptional conditions
as follows:

GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM"
Licensed Materials — Property of IBM

LY28-1695-0

[]

Condition A Raesponse

The ring procassing axception handling task writes messages
to the oparator that report the main ring failurae and issuas
a_VARY GRS command to automatically rebuild the disrupted
ring.

Condition B Rasponse

The ring procassing exception handling task writes a maessage
to the oparator that identifies the I/0 arror and issues a
VARY OFFLINE command to vary offline the CTC that
encountered tha I/0 error. (This I/0 error can cause the
condition A main ring failure to occur and subsequently
cause the condition A response dascribad abova.)

Condition C Rasponsea

This task sends an RSAIRCD to the system at the opposite end
of the CTC; this RSAIRCD contains the nama and status of the
sending system. (In some cases, the ring processing
excaption handling task issuas a VARY ONLINE for thae CTC
that received tha status inquiry requast.)

(c) Copyright IBM Corp. 1987 Introduction GRS-19

118 VYX/SAW 02-5¥9

$3¥9

0-9691-82A1

{867 °dJ0) WAI YGidAdo) (2)

‘G BUnB14

senenp Buissasouyd Buly pue ygy 8y} Buljepdp

@ Arrival of the RSA

I'e
This sytern’s QWBs placed in the output
RSA the last time the RSA resided in this
system. Deleted from input RSA.

\.

/
Other systems’ QWBs.
Ring processing reproduces these QWBs <
to the sent queue.

\.

Sent queue at anival of RSA (built during
previous RSA residency):

Other systems’ QWBs reproduced from the
input RSA during the previous RSA
residency.

This system’s QWBs placed here when
they were reproduced into the output RSA
during the previous RSA residency.

Input RSA

aws

awe

aws

aws

©)

Sent queue moved to Process queue

aws Qaws
Qws aws
Qws Qws
] []

. e

[] ®
aws aws
aws Qaws
[J L]

[] []
.~ e

®

Accumulating this system’s
global requests (ongoing):

QWS8s for requests
originating on this
system.

aws

aws

aws

Request queue (LIFO)

®

Request queue
moved to
internal queue.

Building the output RSA and

updating the queues Output RSA
Other systems’ QW8s aws
— =P (remalnmg'm output aws
RSA from input RSA).
[]
e
.
aws
This system’s global
QWBs that have accumu- aws
lated since the previous e
RSA residency. :

Updates to sent queue after
moving current sent queue to
process (queue:

Sent queue
Qaws
Other systems’ QWBs
aws reproduced from input
L4 RSA.
°
°
Qws
This system’s global
aws QWBs that have
aws awumulated since the
previous RSA
. .
° residency.
°

Internal queua

residency lif any).

Qaws)
aws
aw
B P in RSA).
aws
: *Requests that did not fit in
b RSA during previous RSA

) ()

Send RSA to
next system
in ring

@ Internal queue reproduced to
RSA and moved to sent queue
(as many QWBs as will fit

N8I 40 AjJedoJdd —~ STER}JBIEK PASULO}

uWEI J0 STRLJIBIBU P33} IS,

"pRestricted Materials of IBN"
Licensed Materials ~ property of IBM

Interrupt occurs on CTC

ISGBSM

ISGJDI
RSA arrives at | via
this system SRB
Timer pop

SR8
RSA residency
interval expires

Figure 6.

LY28-1695-0

ISGBDR via o

Set RSA residency
interval

Move sent queue
{built during pre-
vious RSA residency)
to process queue

Post ISGGRPOO
0 process requests on
process queue.

Remove from the
input RSA this
system's QWBs (placed
there during

previous RSA -
residency

Reproduce other
system’s QWBs from
the input RSA to the
sent queue.

Move this system’s
new global QWBs
from the request
qQueue to the internal
queue.

Move requests on
internal queue to
sent queue and
copy those requests
to output RSA.

Send RSA.

(c) Copyright IBM Corp.

1987

IscGcaweo (Attached during
Queue work initialization)
- block service
tine
i =3 ISGGPGRP
QEL group
processing routine
ISGGRPOO
Post
P={ For each QW8 on L3t ISGSHASH
process queue:
Hashing
routines
ISGSALC
Obtain storage
g for QCBs, QELs,
QXBs.
@ Process the QCBs,
QELs, and QX8Bs. > ISGGNQDQ
Build QCBs,
QELs, QXBs
o If this QEL can
receive control of Post
QCB, grant request ———————P{ ISGGWAIT
IT
?:: :::;I:ngWA Global resource
ISGGNQDQ) for this ﬁ;:‘:'::z‘::";
Qcs.
on process queue have
been processed, wait.)
To issuer of
ENQ/RESERVE
via EXIT prolog
BALR
ISGJFE
Initiate 1/0
on CTC

Simplified Process Flow for Global ExQs (Ring Processing)

Introduction

GRS-21

vRestricted Materials of IBM"
Licensed Materials — Property of IBM

ADDING A SYSTEM TO THE MAIN RING

When adding a system to the main ring, global resource
gserialization must ensure that the global resource queues in the
system entering the ring are identical to the global resource
queues in the other systems in the main ring. One active system
in the main ring (subsequently called the adding system) is
responsible for adding to the main ring the system that wants to
join the main ring (subsequently called the entering system).
Understanding the processing that occurs on the adding system
and the entering system requires an understanding of the
following:

. The RSAIRCD (ring system authority identity record). The
RSAIRCD is a small record of control information that is
passed back and forth across a CTC that connects the adding
system and entaring system. The RSAIRCD can be sent across
CTCs that are not used to pass the RSA. The RSAIRCD is used
only to pass commands and status information needed to add a
system to the main ring; it cannot be used to pass global
serialization requaests.

. The RSVENTY table (ring processing system vector tabla entry
table, mapped by the mapping macro for the RSV). The
RSVENTY table contains an entry for every system defined to
the global resource serialization complex. Each entry
coqtaiqs a flag that indicates if the system is part of the
main ring.

. Save-QUWB mode and the hold queue. Whan a system enters
save-QWB mode, it (1) stops placing global requests that
originate on that system into the output RSA (the requests
remain on the internal queue); and (2) moves the sent queue
to a hold queue instead of to the process queua. The system
does not create QCBs, QELs, and QXBs for QWBs on the hold
queue until the system leaves save-QWB mode; at that time,
the system moves the QWBs from the hold queue to the process
queue.

The processing done on the adding system and entering system
includes the following steps; responsibility for executing these
steps is shared between the command processing subcomponent and
ring processing. (Note that this processing is simplified; it
focuses on the steps necessary to ensure that the entering
system's global resource queues will match the queues in other
systems in the main ring.)

1. The entering system enters save-QWB mode. This step is part
of the SENDCMD-RSCRADDS function of ISGBCI. ISGBCI invokes
ISGBRF (entry point ISGBRFNM) to handle the SENDCMD-RSCRADDS
function. Once the system has entered the main ring and
starts to receive and send the RSA (step 6), it will move
the sent queue to the hold queue, not to the process queue.

2. Using the command area of the RSA, the adding system sends’
each system currently in the main ring an RSVENTY table
entry for the entering system.

3. The adding system instructs all systems currently in the
main ring to stop adding requests (global QWBs) to the RSA.

4. When the RSA is empty of QWBs, the adding system sends the

RSVENTY table, one entry at a time in the RSAIRCD, to the
entering system.

GRS-22 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Mataerials of IBM"™
Licensed Materials — Property of IBM

5. The adding system enters save-QWB mode. MWhen systems resume
adding QWBs to the RSA, it will move the sent queue to the
hold queue, not to the process queue.

Note: Steps 2, 3, 4, and 5 are part of the ADDSYS function
of ISGBCI.

6. Once steps 3 and & complete, the entering system and all
systems currently in the main ring have an RSVENTY tabla
that defines the new main ring (including the entering
system). The entering system begins to receive and send the
RSA. All systems in the new main ring, except for the
adding and entering systems (which are still in save-QWB
mode), resume sending QWBs in the RSA.

7. Because the entering system is still in save-QWB mode (step
1), it places the QWBs it receives in the RSA on its hold
queue. Although it is receiving new global requests
(assuming there are other systems in the ring other than the
entering and adding systems), its existing global resource
queues (QCBs, QELs, and QXBs) might not match tha other
systems! queues. (If this is the first time the entering
system has entered the main ring, its queues will be empty.)
However, because the adding system has also entered save-QWB
mode (step 5), its queues reprasent the global queues
current at the time the entering system entered the ring.
The adding system issues the GQSCAN macro instruction for
all global resources and sends the results (using the
BUFSEND function of ISGBCI) to the entering system.

8. The entering system (1) issues a GQSCAN macro instruction to
search its own global resource queues for each global
resource identified in the data received from the adding
system; and (2) compares the results to the data received
from the adding system (the results of the GQSCAN macro
issued on the adding system). The entering system generates
QWBs to eliminate differences in the data (and, therefore,
in the global resource queues) and places the generated QUWBs
at the beginning of the process queue.

9. Both the adding system and the entering system leave
save-QWB mode. Requests placed on the hold queue move to
the process queue (after any generated QWBs on the entering
system's process queue). When the entering system creates
QCBs, QEls, and @XBs for the requests on its process queue,
the resulting global resource queues will match the queues
of other systems in the main ring.

PROVIDING INFORMATIONAL SERVICES

Some global resource serialization modules call ring processing
modules for information only:

. To convert a sysid to a system name or vice versa.

U To obtain the status of systems in the complex and of the
CTCs that are assigned to global resource serialization and
attached to the system that requested the information.

A sysid is a numerical synonym for a sysnhame (system name).
Sysids range from 1 through 255 and are associated with every
global resource. (The sysid for a local resource is 0.) The
sysid occurs in certain global resource serialization control
blocks (such as QELs and QWBs). Ring processing maintains the
corraespondence between syshames and sysids and provides routinas
to convert a sysname to a sysid and vice versa.

Ring processing records the status of CTCs in RSLs (ring
processing system link blocks). There one RSL in each system
for each CTC attached to that system and assigned to global
resource serialization. Ring processing records the status of
systems in the RSVENTY table. Ring processing coordinates each
system's updates to its RSVENTY table so that the RSVENTY table

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-23

"Rastricted Materials of IBM"
Licensed Materials = Property of IBM

in each main ring system provides the same status information.

Ring processing achieves this coordination by passing
information in the command area of the RSA.

GRS-24 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

DIAGNOSTIC TECHNIQUES

DEBUGGING HINTS

The following topics contain diagnostic aids to halp vyou solve
problems with global resource serialization.

CHECK ON ENABLED WAIT DURING IPL

If an enabled wait occurs during IPL processing, you can make
tha following check to detarmina if the wait was due to missing
entries in the SYSTEMS exclusion RNL.

PROBE POINTS

LY28-1695-0

[

Chack the request quaue in tha GVT (CVTREQQ) for QWBs.

Compare the raesource name identified in the PEL portion of
the QWB to the entrias in the SYSTEMS exclusion RNL and
SYSTEM inclusion RNL.

If the RNLs indicate that thae raesourcae name identifies a
plobal rasourca, the requester of that resourca must wait
until master schedular initialization completes before the
requastar is grantad control of the rasource.

If the requester must complate processing prior to master
scheduler initialization complating, the resourcae name must
ba added to tha SYSTEMS exclusion RNL.

The following proba points are usaeful to halp you debug global
rasource sarialization problems or sat SLIP traps.

1.

Probe point for obtaining tha RSA massage that this system
recaived:

Modula: ISGBSM
Label: RECVTP1
Data: - RSAPTR (register 6) points to the RSA.
- Ragister ¢ contains tha length of tha RSA.
- Ragistar 13 points to the RSV.
- RSVIBFOR (RSV+X'8C') points to the raeceived RSA.

Proge point for obtaining tha RSA message that this system
sent:

Module: ISGBSM
Label: SENDTP1
Data: ~ Register 13 points to tha RSV.
~ RSVOBFOR (RSV+X'90') points to the sent RSA.

Probe point for obtaining thae QWB that is to ba processed
(tha first QWB on tha process queue):

Modula: ISGGRPOO

Label: GRPNXTPQ

Data: - Registaer 3 points to the GVT.
- GVTPRCQF (GVYT+X'40') points to the QWB to be
processad.

(c) Copyright IBM Corp. 1987 Diagnostic Techniques G6RS-25

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

USEFUL FIELDS IN THE GVT AND THE GCL

The following indicators, when set to one, have these meanings:

GVT indicators:

GYTGRSNA - Global rasource serialization is not active. (Only
local requests can be procassed.)

GVTNCMDR - Global rasource sarialization commands cannot be
processed.

GVTGQDMG - Global resource quaues have been damaged. This
system will reject VARY GRS,RESTART commands.

GVTNCOMM - CTC-driver and ring processing functions are not
operative.

GVTNREQS - Raquests cannot be put on the command requast queua.

ClL _indicators:

GCLINOP - CTC processing will not allow use of this CTC because
a software error occurraed and the control blocks of
this CTC (GCL or RSL) might be damaged.

GCLIOERR - CTC processing will not allow usae of this CTC because
an I/0 aerror occurred on this CTC.

GCLOFFLN - CTC processing will not allow use of this CTC because
the CTC has been varied offline.

CTC PROCESSING DEBUGGING HINTS

GRS-26 MVS/XA SLL:

The follouwing debugging hints help you isolate problems in the
CTC processing subcomponent.

1. Field GCLWGCQF of the GCL is the write queue of theae
corresponding GCL (representing a CTC) and points to a write
GCQ when the write queue is not empty. GCLWGCQF is zero
when the writa queue is empty.

2. Field GCLCNTS is bumped by one before the STARTIO for a
SENDBUF or SENDBUF-IMMEDIATE. Field GCLCNTC is bumped by
one when the SENDBUF or SENDBUF-IMMEDIATE completas.
Therefore, by comparing these two count fields you can
determine if a write operation is in progress.

3. Field GCLRGCQF is the read queue of the corresponding GCL
and points to a read GCQ when the read queue is not empty.
GCLRGCQF points to a dummy GCQ (located in the GCV) when the
read queua is empty.

4. The address in field GCLRGCQF is a word-multiple address
when the GCL does not have a read channel program in
progress. The address is bumped by one when a read channel
program is started. Thereforae, by checking the low order
bit in GCLRGCQF you can determina if a read channel program
is in prograss.

5. Field GCLTRACE contains the last 15 CCW operation codes
sensed from the corresponding CTC. In a dump, the acronym
TRC1 appears a short distance before this field. The
occurrence of an EE or ED operation code in this area
indicates that the system taking the dump sensed a broken
channel program that was started by the system at the
opposite end of the CTC.

GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBN"
Licensed Materials — Property of IBM

RING PROCESSING DEBUGGING HINTS

The following dabugging hints help you isolate problems in the
ring processing subcomponent.

1. Field RSVIBFOR points to the RSA input buffer. Field
RSVMRLRL contains the length of the last RSA received.

2. Field RSVOBFOR points to the RSA output buffer. Fieald
GCBLNBUF of the RSA output GCB contains the length of the
last RSA sent or the length of the RSA that soon will be
sent. Field RSVYGCBOP points to the RSA output GCB.

3. Fiald RSARCSEQ of tha RSA is the RSA sand count, which is a
number that is bumped by one each time the RSA is sent. By
comparing RSARCSEQ in the input buffer to RSARCSEQ in the
output buffer, you can determine if the system that took the
dump was holding tha RSA at the time of the dump. Also, by
comparing RSARCSEQ values in dumps taken by different
systems, you can determine which system last received the
RSA before a failure.

4. When a system is in the main ring, field RSYRSASC contains
the RSA send count of. the last RSA sent by this system (if
the system is not holding the RSA) or the send count of the
RSA that will soon be sent by this system (if the system is
holding the RSA). RSVRSASC is set to zero when a system
does main ring cleanup.

5. Subroutine CLNUFAIL (in module ISGBCI) does the main ring
cleanup. When a system does main ring cleanup after a main
ring disruption, CLNUFAIL copies field RSVRSASC to an entry
in the RSVENTY table, and also marks entries in the RSVENTY
table to show which systems were in the main ring at the
time of the disruption and which RSA was last received
bafore the disruption. Because main ring cleanup is
sarialized by the ISGBCI-ENQ-resource, cleanup might not
occur immediately after the main ring disruption because
another task might be holding the ISGBCI-ENQ-rasource at the
time of the disruption.

ENQ/DEQ/RESERVE PROCESSING DEBUGGING HINTS

LY28-1695-0

The following debugging hints help you isolate problems in the
ENQ/DEQ/RESERVE processing subcomponent.

1. The quaue work areas (QWAs) used by ENQ/DEQ mainline
procaessing contain information that is useful in solving
ENQ/DEQ/RESERVE problems. There are two QWAs: one for
local resource processing (the local QWA pointed to by
GVTLQWA), and tha other for global resource processing (the
global QWA pointed to by GVTGQWA).

The QWA is divided into the following major areas:

QWABASIC - This is the basic section of the QWA. It
contains the information required by the
mainline routine to process the resource
raquest. For example, it indicates whether or
not the request is authorized, whether global
resources are part of the request, and whaether
the request is an ENQ or DEQ. This is also the
only section of the QWA that can be mapped to
the SVRB aextended save area or the RMPL work
area.

QWARSA - This is the first request save area section of
the QWA. It contains the information required
to process a global or local resource request.
This section is moved to the QWBHRSA field and
later restored to the QWARSA field by module
ISGGES:O. It exists in the QWABASIC saction of
the .

(c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-27

GRS-28 MVS/XA SLL: GRS

"pestricted Materials of IBM™
Licensed Materials = Property of 1IBM

QWARSA2 - This is the second request save area section of
the QWA. It contains the information needad to
process a global or local resource request.
This section contains the requester's job name,
SYSID, ASID, and ASCB address. This data is
moved to the QWBHRSA2 field and later restored
to the QWARSA2 field by modula ISGGRPOO. It
exists in the QWARSA section of the QWA.

QWARDA - This is the request data area section of the
QWA. It contains the counts of the types of
resources being processed, and the addressas of
internal control blocks. .

Work/Save

areas - This series of general work/save areas follows
the QWARDA area in the QWA and are used by the
resource requaest processing routines. These
areas are used to save register contents.

QWATRMRM - This work area section of the QWA is used by the
termination resource manager. It contains
information used by ISGGTRMO and ISGGTRM1l to
process a termination requast.

When a local resource is being processed, the QWABASIC
section of the QWA is moved to the SVRB extended save area
when the requester of the resource must be suspended because
the resource is not immediately available. QWABASIC
information is then referenced in the SVRB extended save
area following the notification that the resource is
availabla.

When a global resource is being processed, the QWABASIC
saction of the QWA is always moved to the SVRB extaended sava
area baecause the global resource redquastar is always
suspended.

After the requester is notified (via cross memory post) that
the requested resource is available, the data in the SVRB
extended save area is copied back to the QWABASIC section of
tha QWA. This information in QWABASIC is then used to
complete the processing of the request.

The main point to consider about the QWA is that whenever an
ENQ/DEQ/RESERVE requester is suspended, the SVRB extended
save area contains useful information that can be used in
debugging. An important piece of information in the
QWABASIC section of the SVRB extended save area is thae QWB
address used to define a global resource request. By
locating this QWB (pointed to by QWAQWBA), you can find thae
data presented to ENQ/DEQ/RESERVE processing in the original
request. If this field in the QWA is zero, thaen a local
resource is being processed.

ENQ/DEQ/RESERVE processing uses two types of QWBs to procass
resource requests: the SQA QWB (pointed to by GVTSQWB), and
the global resource serialization address space QWBs
(pointed to by QXBQWB, GVTREQQ, and GVTPRCQF).

When a local resource is being processed, the SQA QWB is
used. MWhen a global resource is being procassed, the SQA
QWB is used only until the global resource serialization
private area QWBs are constructed. The following shows the
process in which the resource data is passed between
ISGGNQDQ and ISGGRPOO.

) The requester's PEL is moved to the SQA QWB.
. The local QWA is initialized.
. Information in the QWA and SQA QWB is moved to the

global resource serjalization private area QWBs.

LY28-1695-0 (c) Copyright IBM Corp. 1987

vpestricted Materials of IBM"
Licensed Materials — Property of IBM

o The QWABASIC section of the local QWA is moved to the
SVRB extended save area.

. The global resource serialization private area QWBs are
placed on the request queue. (These QWBs are
subsequently moved to the process queue by ring
processing routines.)

. The ring processing function notifies ISGGRPOO that work
(QWBs) is now available on the process queue.

. ISGGRPO0 moves the QWBHRSA and QWBHRSA2 fields to the
global QWARSA and QWARSA2 fields respectively.

J ISGGRPO0 processes the requests and notifies the
regge:?e; (ISGGNQDQ SVRB) when the resource requast is
satisfied,

. ISGGNQDQ restores the local QWA from the QWABASIC
section of the SVRB extended save area. It then locates
tha global resource serialization private area QWBs
defining this request from the restored QWABASIC
section. This address is then used to restore the
QWARSA from the QWBHRSA.

Prior to master scheduler initialization completing, any
global rasource requests placed on the request queue that
are required for IPL procaessing will cause an enabled wait
state. To prevent this from occurring, any global resource
requests required during IPL processing before master
scheduler initialization has completed should be placed in
the SYSTEMS exclusion RNL.

ENQ/DEQ/RESERVE TERMINATION RESOURCE MANAGER DEBUGGING HINTS

The following debugging hints halp you isolate problems in the
ENQ/DEQ/RESERVE termination resource manager function:

1.

For normal and abnormal task termination, ISGGTRMO receives
control from RTM in either the address space of the
terminating task or the address space of the master
scheduler. In either case, ISGGTRMO0 issues a PC to ISGGTRM1
in the global resource serialization address space to
process the request. The input resource manager parameter
list (RMPL, which is pointed to by register 1 on entry)
dafines the type of termination requast.

ISGGTRMO uses the local QWA to store information related to
its processing. QWABASIC is initialized with common
resource processing information and QWATRMRM is initialized
with information related to the task or address space being
purged. For the format of this data, refer to the QWA in

the Debugging Handbook.

If only local resources are being purged, the ENQ/DEQ cross
memory services lock (CMSEQDQ) is held to provide
serialization for tha local QWA.

If global resources need to be purged, then the data stored
in the QWA must be preserved during this process. ISGGTRM1
saves this data in the dynamic area before calling ISGGQWBS5.
Register 9 in ISGGTRM!l points to the dynamic area. The
information in the dynamic area includes tha QWARSA,
QWAASCB, QWATRMRM, QWAJOBNM, GVTXLSMP, and RUB (register
updated block).

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-29

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

STORAGE MANAGEMENT DEBUGGING HINTS

GRS-30 MVS/XA SLL:

The following debugging hints help you isolate problems in tha
storage management subcomponent.

1.

GRS

Most global resource serialization control blocks reside in
the global raesource serialization address space. Pools of
control blocks are maintained in resource pools as defined
by two resource pool tables (RPTs), thae local RPT and the
global RPT. RPTs, in turn, address pool extension blocks
(PEXBs) that define the control blocks (cells) for global
resource serialization. (For an overview of these control
blocks, see Figure GRS-15.)

Each PEXB is 4K bytes in length and contains multiple cells
for control blocks of the same type and size. PEXBs of QWB,
MRB, CRB, TWKA, and HWKA cell types are contained in the
RQA, while PEXBs of QCB, QEL, QXB, and PQCB cell types are
contained in thae ERQA. Listed below are the global rasource
serialization control blocks that are defined within a PEXB.
(The RPT indexas are described in the following hint.)

Control RPT

Block Index Name Attributes

QCB 1 qgeuelcontrol block local or global
size

QCB 2 qgeuezcontrol block local or global
size

QCB 3 qgeuescontrol block local or global
siza

QEL 4 queue element local or global

QXB 5 quaue extension block local or global

QWB 6 queue work block global only

HWKA 6 huge work area local only

TWKA 7 tiny work area local or global

PQCB 8 placeholder QCB local or global

MRB 9 message request block local or global

CRB 10 command request block global only

The RPT header contains either the acronym LRPT (local RPT)
or GRPT (global RPT). Also, in the PEXB headers, the PEXBs
addressed by each RPT contain the acronym PEXB as well as
the acronym for one of tha control blocks listed above.
This information is useful when vou ara scanning the RQA or
the ERQA in a dump listing to locate a particular control
block, or when you find an address of an unknown control
block. From the information in the PEXB, you can determine
the type of control block (defined by the acronym) and
whether or not the control block is in use by global
resource serialization. The control block is in use if it
;s zot chainad to the available cell chain in the PEXB
eader.

The available chain is double-headed (PEXFRST and PEXLAST)

and single-threaded (PEXNCELL). Note that the first four

gyte:hof each cell are used to chain available cells
ogether.

A storage manager parameter list (SMPL) is tha input to the
storage manager allocation (ISGSALC) and deallocation
(ISGSDAL) routines. The SMPL describes the number and type
of control blocks requested. The type of control block is
defined by an RPT index value in the SMPL. The RPT indexes
(definad in the ISGRPT and ISGSMPL mapping macros) are used
to index into the RPT to locate the RPT entry (RPTE) for the
control block in question.

The QCB is defined in three sizes: size 1 for those with an
RNAME of 24 bytes or less, siza 2 for those with an RNAME of
52 bytes or less, and size 3 for those with an RNAME of 255
bytes or less. Each QCB has a unique index corresponding to
the three sizes.

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

4.

The sequence in which the storage manager allocates control
blocks is:

o When the request is received, ISGSALC checks that the
caller has the proper lock needed to allocate the calls.
If the caller does not hold the proper lock then the
storage manager issues ABEND 09A with a reason code of
8110 if the global resource serialization lock is not
beld,taadlg reason code of 810C if the CMS enqg/deq lock
is no eld.

. If the global resource serialization address space is
initialized, ISGSALC checks if the caller is in 24 bit
mode and the requaest is to allocate cells in tha ERQA.
If so, the storage manager issues an ABEND of 09A with a
reason code of 8114.

L ISGSALC attempts to satisfy the request from the queue
of active PEXBs that are chained from RPTEFPXB and
RPTELPXB. If, while scanning the active PEXB queue,
ISGSALC finds a PEXB with no available cells, the PEXB
is rechained to the end of the active PEXB queue.

. If sufficient PEXBs are not available on the active
queue, ISGSALC searches the inactive PEXB queue that is
chained from RPTEIAPQ. If available, the inactive PEXB
is moved to the front of the active PEXB queue and the
required cells are obtained from this PEXB.

. If the inactive PEXB chain is empty and the request is
still not satisfied, an additional page is obtained from
the RQA for QWB, HWKA, TWKA, MRB, or CRB call type
request, or from the ERQA for QCB, QEL, @XB, or PQCB
cell type request. A new PEXB is then constructed and
chained to the front of the active quaue.

. If the RQA has been completely assigned, then the
storage manager issues ABEND 09A with a reason code of
8104. If the ERQA has bean completely assigned, then
t?esiggrage manager issues ABEND 09A with a reason code
() .

A bit map in the RQA dafines each page of the RQA, and a bit
map in the ERQA defines each page of the ERQA. When the
storage manager attempts to allocate a control block and no
active or inactive PEXB is found, the RQAZERQA bit map is
searched for an available page. (The address of the RQA bit
map is in GVTXBTMP and the length of the RQA bit map is in
GVTXBTML. The address of the ERQA bit map is in GVTXEBMP
and the length of the ERQA bit map is in GVTXEBML). The
storage manager allocates control blocks from the high end
of the RQRA/ERQA for global resources and the low end for
local resources. Thaerefore, for global resources, the
search proceeds from the high order bit in the bit map to
the low order bit. For local resources, the search proceeds
from the low order bit in the bit map to the high order bit.
When & page is allocated in the RQAZ/ERQA, the corresponding
bit in the bit map is set to 1. When a page is deallocated
from the RQAZERQA such as a PEXB, the corresponding bit in
the bit map is set to 0. By scanning the bits in the bit
map, you can determine the number and locations of all
allocated control blocks in the RQAZERQA. (The address of
the RQAZERQA is in GVTXRQA/GVTXERQA.)

You can locate a PEXB header by zeroing the low order 12
bits of the cell (or control block) address. The PEXB
header contains the addresses of the first and last
available cells in this PEXB. The header also contains
pointers to the previous and next PEXBs for this control
block. By scanning the queue of available cells (pointed to
by PEXFRST), you can determine if a particular control block
is allocated to a function or has been released.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniquaes GRS-31

"Rastricted Materials of IBM"
Licensed Materials = Property of IBM

When cells are returned to the storage manager, they are
placed at the end of the available chain. When cealls are
assigned by the storage manager, they are assigned from the
front of the queue. This ensures that a history of cell
usage is gaintained within the PEXBs because the oldest are
used first.

When all cells within a PEXB have been freed, the PEXB is
moved to the front of the chain of available PEXBs (that is,
the inactive PEXBs pointed to by RPTEIAPQ). Therefore, a
history of PEXBs is not maintained. Whenaevar the count of
inactive PEXBs (maintained in GVTXIACT) equals the count in
RPTIACNT, all inactive PEXBs defined by this PRT are
released. The storage manager deallocation routine
(ISGSDAL) schedules ISGSPRLS to perform the page release
function (via the PGSER macro).

7. Control blocks in the RQAZ/ERQA are not fixed. Instead,
global resource serialization relies on the storage
isolation function of SRM to ensure that the real frames
associated with these virtual pages remain in storage until
a critical storage shortage is encountered. (Refer to

Initialization and Tuning for information about storage
isolation.)

8. With the exception of the QWB, all global control blocks are
sarialized with the global resource serialization local
lock. All local resources and the QWB are serialized with
the ENQ/DEQ cross memory services lock (CMSEQDQ).

SDWA AND SDWAVRA CONTENTS

All global resource serialization recovery routines (except
ISGGESTO0) record the following information in the SDWA:

SDWAMODN - Load module nama
SDWACSCT - CSECT name
- Date of compilation
= Product/PTF number
SDWACID - Component identifier (SCSDS)
- Subcomponent identifier
SDWAREXN - Recovery routine name

Additional information is recorded in the variable recording
area (SDWAVRA) in the key-length-data format as describaed in the
following topics.

Recorded by ISGBERCV
ISGBERCY records the following in tha SDWAVRA:

. The REPL and its address. (The REPL contains execution
footprints. Also, if the failing module was working with a
sg[t;cular RSL, thae REPL contains the address of the that

. The RSC being processed at the time of failure and its
address. (Recorded only if (1) ISGBC1 and (2) ISGBRF or
ISGBSF was the failing module.)

. Six words copied from the UCB of the CTC that encountered
the timeout condition. (Recorded only if ISGBCI is the
failing module and the ABEND reason code is 620C.)

Recorded by ISGBFRCV

ISGBFRCY records the following in the SDWAVRA:

. The RVR and its address. (The RVR contains execution

footgrints. Also, if the failing modula was working with a
particular RSL, the RVR contains the address of that RSL.)

GRS-32 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

. The ISGBSR or ISGBSM entry point that encountered the
failure. .

. The addresses of the RSLs used to receive and send the RSA.
o Fiald RSVCRSAT of the RSV, which indicates whether a ring
processing function was being performed at the time of the

failure. Also. field RSVCPHNO, which indicates the phase of
the function being performed.

. The addresses of the RSA input buffer and output buffer,
plus six words from the beginning of each buffer.

If the failure occurred for entry point ISGBSRRI, the following
is also recorded:

. The address of the RSL.

. The device address of the CTC represented by that RSL.
. The RSL flags: RSLLKSF, RSLLKIF, and RSLBFCTC.
Recorded by ISGCRCV

ISGCRCV records the following in tha SDWAVRA:

° The contents of the CRWALEIB field (LOGREC arror
information) when ISGCRCV beings recovery processing.

L The parameter list passed to ISGBCI if the arror exit
routine determined that the failure occurred during a call
to ISGBCI. (ISGCRCV invokes exit routines in failing
modules as a part of its recovery processing.)

. The contaents of the CRWALEIB field whan ISGCRCY completes
processing.

For each CRWA on the chain, ISGCRCV repecats the recording noted
above. Therefore, multiple CRWALEIB fields might be recorded.

Recorded by ISGCRETO

ISGCRETO0 (at entry point ISGCRORV) records the following in tha
SDWAVRA:

. Tha FRR parameter list. (Refer to tha PARMAREA structura in
module ISGCRETO.)

Recorded by ISGCRET!

ISGCRET1 (at aentry point ISGCR1RV) racords the following in the
SDWAVRA:

. The FRR parameter list. (Refer to the PARMAREA structure in
module ISGCRET1.)

Recorded by ISGDSDMP

ISGDSDMP (at entry point ISGDSDRV) records the follouwing in the
SDWAVRA: .

. Tha contents of tha DEPL (ESTAE parameter list for SDUMP).
Recorded by ISGDSNAP

ISGDSNAP (at entry point ISGDSNRV) records the following in the
SDWAVRA:

. The ESTAE parameter list. (Refar to tha PARMAREA structure
in module ISGDSNAP.)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniquas GRS-33

"Restricted Materials of IBM™
Licensed Materials = Property of IBM

Recorded by ISGGESTO

ISGGESTO does not request recording to SYS1.LOGREC. Nothing is
copied into SDWAVRA.

Recorded by ISGGFRRO

ISGGFRRO racords the following in tha SDWAVRA:

. The contents of tha QFPL (ENQ/DEQ FRR paramater list).

. The contents of the output data area (0DA) if the queue
verifier routine detects queue damage. (Refer to module
IEAVEQV0 for the mapping of the 0ODA.)

. Internal processing flags. (Refer to tha FLAGS structure in
module ISGGFRRO.)

. Resource damage flags. (Refer to the DAMAGE structure in
module ISGGFRRO.)

Recorded by ISGGQSRV

ISGGQSRY (at entry point ISGGRECV) records the following in the
SDWAVRA:

o The error information block (EIB) (local to ISGGQSRV).
Recorded by ISGJRCV

ISGJRCV records the following in the SDWAVRA:

. The CTC unit address.

. The address of the I0SB.

. The I0SB fields: IOSFLA, IOSFLB, IOSFLC, IOSCOD, IOSCSW,
IOSSNS, and IOSUSE.

. The address of the GCQ.

. The first five words of the GCQ.

U The contents of GCL.

Recorded by ISGQSCNR

ISGQRSCNR records the following in the SDWAVRA:

. Ibetgontents of QFPL!l (queue scanning services FRR parameter
ist).

. The input parameter list (built by the GQSCAN macro) to
ISGQSCAN, if it is availabla.

o The original system completion code and reason code
describing the error.

. The control block cell type and address, if the control
block was found not valid.

. Internal recovery status flags. (Refer to the RCVYSTFG
structure in module (ISGQSCNR.)

Note: ISGQSCNR does not record the 09A ABEND code issued by
ISGQSCAN.

Recorded by ISGSMI

ISGSMI (at entry point ISGSMIFR) records the following in the
SDWAVRA:

o The FRR parameter list. (Refer to the PARMAREA structurae in
module ISGSMI.)

GRS-34 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

o The original system completion code and reason code (in
SDWAGR15) describing the error.

E M USEFUL FOR_GLOBA SOURCE_$8 I ON_ANALYS

RECOVERY CONSIDERATIONS

The recovery routines for the global resourca saerialization
subfunctions are:

Recovery Routine subfunction
¥ISGBERCV - ESTAE Ring processing
*ISBFRRCV - FRR

*ISGCRCY - ESTAE Command Procassing

ISGCRETO0 - FRR
ISGCRET1 - FRR
ISGDSDMP (EP-ISGDSDRV) - ESTAE Dump support
*¥ISGDSNAP (EP-ISGDSNRV) - ESTAE
ISGGESTO0 - ESTAE Request
(ENQ/DEQ/RESERVE)
procassing
ISGGFRRO - FRR
*ISGGQSRY (EP-ISGGRTRY)-FRR Global queue serviceaes

¥ISGJRCV - FRR CTC processing

*ISGCRCV - ESTAE WTO/WTOR message processing
¥ISGCRCV - ESTAE Initialization

*¥ISGQSCNR - FRR Queua scanning services
*ISGGFRRO - FRR Storagae management

®ISGSMI (EP-ISGSMIFR) - FRR

¥ This routine suppresses duplicate dumps via DAE and its
default dump-suppression
criteria.

LY28-1695-0 (¢} Copyright IBM Corp. 1987 Diagnostic Techniques GRS-35

"Raestricted Materials of IBM"
Licensed Materials — Property of IBM

SERIALIZATION

When GRS=NRONE is specified, all required global resource
sarialization resources are serialized with the CMSEQDQ lock.

When GRS=START or GRS=JOIN is specified, the following chart
summarizes the serialization of the resources used by global
resource serialization.

CMSEQDQ Local cs Resource

X Local hash tabla
Global hash table
SYSID/ASID hash tabla
Local ASCB QEL queue
Global ASCB QEL queue
Local storage management pools
Global storage management pools
Storage management QWB pools
X Request queue
Process queue
X Local QWA
X Global QWA

X X XX

x

Legand:
CMSEQDQ - ENQ/DEQ cross memory services lock

Local - Global resource serialization local lock
CS - Compare and Swap instruction

GRS-36 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Regtricted Materials of IBM"
Licensed Materials - Property

CONTROL_BLOCK OVERVIEW
CONTROI, BLOCKS

of IBM

Global resource serialization uses the following control blocks.
For thae format of these data areas, refer to the Debugging

Handbook and Data Areas (microfiche).

Data Area
CEPL

CRB

CRWA

DEPL

DPL

DSPL

ERQA

GCB

GCC

GCL

GCP

cCQ

GCT

GCV

GCX

Description

Command ESTAE parametar list - anchors the LIF0 queua
of CRWAs and contains an error recording areas for
requested functions.

Command request block - contains information required
to process a DISPLAY GRS or VARY GRS command.

Command recovery work area - contains the arror
information used by the command recovery routine to
handle errors.

SDUMP ESTAE parameter list - contains information used
by the global resource serialization dump support
subcomponent to process an SDUMP request.

DEQ purga list - contains the information needed to
complete processing for a DEQ SYSID, DEQ ASID, or DEQ
TCB purge request,

Dump sort parameter list - contains information for
the global resource serialization dump sort routine.

Extended resource queue area - contains PEXBs that
define QCBs, QELs, QXBs and PQCBs.

Global resource serialization CTC-driver request block
- is the parameter list required by the CTC-driver for
all functions (except extracting area lengths).

Global resource serialization CTC-driver control card
table - contains the information from the global
resgurce serialization SYS1.PARMLIB member for this
system.

Global resource serialization CTC-driver link control
block -~ contains information related to each CTC in
the system.

Global resource serialization CTC-driver buffer prefix
- contains message length and validity checking data.

Global resource serialization CTC-driver queueing
element ~ contains information used by CTC processing
when sending or receiving a message or an
unusual-event notification.

Global resource serialization CTC-driver branch table
- contains addresses of the CTC processing DIE
routines and exit routines.

Global resource serialization CTC-driver vector table
- contains addresses of CTC-driver entry points for
CTC-driver functions and information common to all
CTCs used by CTC procaessing.

Global resource serialization CTC-driver extract table
- is the parameter list required by tha CTC-driver for
the extraction of area lengths.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-37

GVT

GVTX

MRB

PEL

PEXB

PQCB

QCB

QEL

QFPL

QFPL1

QHT

QWA

QWB

xXB

REPL

RIB/RIBE

RNLE

RPT

GRS-38 MVS/XA SLL: GRS

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Global resource serialization vector table - contains
common information (global queues, pointers and entry
point addresses) for all global resource serialization
functions. It also has sections containing
information for the various subcomponents.

Global resource serialization vector table extension -
contains information specific to the global resource
serialization address space.

Message request block - contains information required
to process message requests,

Parameter element - is the input paramater list to
ENQ/DEQ/RESERVE procassing.

Pool extent block - maps & 4K page in the RQA for QUWB,
MRB, CRB, TWKA, or HWKA cell type; or a 4k page in the
ERQA for QCB, QEL, QXB, or PQCB cell type.

Placeholder queue control block - contains the
information necessary to resume a global resource
saerialization queue scanning request.

Queue control block - describes a resource to global
resource serialization.

Queue element - describes the requester of a resource
to global resource serialization.

ENQ/DEQ/FRR parameter list - is tha FRR parameter list
used by ENQ/DEQ/RESERVE processing.

Queue scanning services FRR parameter list - is the
FRR parametar list used by queue scanning services.

Queue hash table - contains queua hash table entries.
Each quauae hash table entry is a double-headed anchor
of QCBs. There are two QHTs; one for global requests
(GQHT), and one for local requests (LQHT).

Queue work area - is a work area used by
ENQ/DEQ/RESERVE processing modules.

Queue work block - describas a resource request. A
global resource request is described by a QWB in the
private area of the global resource serialization
address space. A local resource request is described
by the permanent QWB in the SQA.

Queue extension block - contains the data that
describes an ENQ/DEQ/RESERVE raquast.

Ring processing ESTAE parametar list - is tha ESTAE
paramaeter list used by ring processing.

Resource information block - contains the information
that describas a resource and any requesters for the
resource. The variable portion of the RIB (containing
RIB extents) is located immediately after the RIB.
Each RIB extent (RIBE) describes a requester of the
resource. RIBs and RIBEs are returned to the issuer
of the GQSCAN macro.

Resource name list entry - contains information about
resources that are to be includad or excluded from
global resource serialization processing and RESERVE
resources that are to be converted to global ENQs.

Resourcae pool table - contains entries for each cell
typa in the RQA. There are two RPTs - one for global
resources (GRPT), and one for local rasources (LRPT).
Eac? RPT points to the first and last PEXB for that
pool.

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"

Licensed Materials = Property of IBM

RQA

RSA

RSAIRCD

RSC

RSL

RST

RSV

RVR

SART

SMPL

SNDI

CONTROL BLOCK STRUCTURES

The figures in this topic show tha control block structures of
the global resource serialization control blocks for the

LY28-1695-0

following:

® 6 & 00

Resource queue area - contains PEXBs that define QUWBs,
MRBs, CRBs, and the work areas.

Ring processing systaem authority message - is used to
pass command data and ENQ/DEQ/RESERVE requests betwean
g}obal rasource serialization systems in the main
ring.

Ring processing information record - is used to pass
control information between systems that are not both
in the main ring.

Ring status change parameter list - fs the parametar
list used to call the interface module ISGBCI.

Ring processing system link block - contains
information about a CTC and is used by global resource
serialization ring processing functions.

Ring processing status tablae - contains tha status of
global resource serialization systems and CTCs.

Ring processing system vector table - contains
information used by the global resource serialization
ring processing modules.

Ring processing FRR parametar list - provides input
data to the ring processing functional recovary
routine, ISGBFRCV.

System/ASID hash table - contains entries that point
to a chain of QELs that define global resource
requesters from another system.

Storage management parameter list entry - contains
information for a request to global resource
serialization storaga management.

Ring procassing send information control block - maps
tha parameter list for ISGBRF (GRS Ring Processing
Request Function Module).

Permanent TCBs

CTC procassing
Ring processing
Command processing
ENQ/DEQ processing

Local resources
Global resources

. Queue scanning services

Local raesourcas
Global rasources

. Storage management
U WTO/WTOR Message processing

(¢c) Copyright IBM Corp. 1987 Control Block Overview GRS-39

‘Rasgtricted Materials of IBM™

Liceneed Materials — Propeirty of IBi

ASCB ASXB
ASCBASXB ASXBFTCB
TCB PRB
TCBRBP ———3 |EAVAROO
1 Region
control
task
TCB ?ﬂl__--
TCBRBP 1 |EAVTSDT
2 SVC dump
task
TCB PRB
TCBRBP PRB ISGNASIM
3
IEEPRWI2 [——1 .
space
Started initialization
task contro}
TCB PRB
TCBRBP 1 ISGCMDR
4 Command
router
TCB PRB
TCBRBP —3{ |SGGRPOO
4 Globa!
resource
processor
TCB PRB
TCBRBP |—{ ISGBTC
4 Ring
processing
task mode
controller
Notes:

o The numbers show the hierarchy.
o When GRS=START or JOIN, all

TCB/PRBs are permanent,

o When GRS=NONE: ail TCB/PRBs
-are permanent except the TC8/PRB
for ISGGRPOO, which is temporary; and
the TCB/PRB for ISGBTC, which is

not present.

Figure 7.

GRS-40 MVS/XA SLL: GRS

LY28~1695-0

TCBs in the Global Resource Serialization Address Space

(¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"

Licensed Matarials — Property of IBM

CVvT
CVTGVT
GCT
GVT
GVTGVTX GCC
GVTJGCT
GVTJCNFD .
Gev GCQ write GCP

GVTJGCV /

Dummy / GCLWGCAQF GCQBUFAD Buffer

GVTX Gca / | ecLRGear
GCQ read GeP
GVTXIGCV ger sense 10SB/SRBL [ecachaIn
N [read 10sE/SRB \\ P
GCL N\ _|write 10SB/SRB GCQBUFAD
GCL Sense
{Read channel program) 10S8/SRB UCB
{Write channel program)
10SUCB / UCBCTCAD
Figure 8. CTC Procaessing Control Block Overview
LY28~-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS—41

"Rectricted Materials of IBM"
Licensed Matarials ~ Property of IEZM

CVvT
Qaws
CVTGVT request
queue
GVT: RSA
aws Main ring
GVTGVTX process input buffer
queue .
GVTREQQ
GVTPRCQF RSV 82A
Main ring
output buffer
o[[remren
R
GVTXBRSV RSAIRCD
RSVBCIBF buffer
RSL (for CTC1) RSL (for CTCn)
RSLNRSL
RSVRSLQ
* ; LJ "L = L
GCB Tecs
GCBABUF GCBABUF
RSAIRCD RSAIRCD
buffer buffer
aws
internal
queue
RSVQWBIF
RSVQWBSF aWB
RSVQWBHF sent
queue
QwB
! hold
‘queue
RSVENTY S . -
| S =~ « RSVENTY (1 entry per system)
d 4N ~ SYSNAME
~N
~ SYSID
N J status flags

Figure 9. Ring Processing Control Block Overview

GRS-42 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

vpestricted Materials of IBM™
Licensed Materials — Property of IBM

CVT

CVTGVT CRB

Command
GVT request
queue

GVTCMDRQ
GVTCMDWQ »
GVTCMDCQ-

CRB

Command
work
queue

CRB

F‘:;mmand

cleanup
queue

CRBCEPL CEPL CRwA

CEPLCRWA CRWACRB

CRBRST

RST Register 1

Figure 10. Command Process Control Block Overview

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Ovarview GRS5-43

"Restricted Materials of IBM"
Licensad Matarials — Propaerty of ISM

QcB

CcvT QcB
QCBNQCB
QCBFQEL

CVTGVT
QCBFQEL (;-
GVT QeL QEL |
QELNQEL
GVIOVTX QELNQELQ
QELOXB
: QEL QELOXB
VTX :
axs QELNQELQ
GVTXLQHT axs
<: | QELQXB

LOHT)

AsCB

/

ASCBLQEL

Figure 11. ENQ/DEQ Processing ~ Local Resources - Control Block Overview

GRS~44 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Froperty of IBM

Control Block Overview GRS-45

CcvT QcB QEL
QELNQEL
CVTGVT QCBFQEL [\aeL.
QELQXB /F QELNQEL
GVT Qcs . [Geraxe EL
GVTGVTX QCBFQEL
acs QELQXB
mace QXB
GVTX ace oxB
QEL
GVTXGQHT QCBFQEL QELNQEL QEL
(// QELNQELQ QELNQELQ
GQHT
ii} QELQXB QELQXB,
axB
ASCB
\ QEL
ASCBGQEL //
QELNQELQ /
SYSID/ASID QELNSYN
hash table QELQXE
Qxs
Figure 12. ENQ/DEQ Process - Global Rescurce - Control Block Overview
LY28-1695-0 (c) Copyright IBM Corp. 1987

vRestrictad Matarials of IBM™
Licensed Matarials = Property of IBM

GRS-46 MVS/XA SLL: GRS

cvT Qcs PQace Qcs
CVTGVT QCBNQCB PQCBNQCB QCBFQEL
GVT QCBFQEL PQCBFQEL QEL QEL
GVTGVTX ASCB QELQXB QELNQELQ
GVTX ASCBLQEL axs QELQXB
GVTXLQHT
LQHT
QEL
QEL
QELNQEL
QELNQELQ
QELQX8 axs
QELQXB
Qxs
ASCB
ASCBLQEL
Figure 13. Queua Scanning Services Local Resources - Control Block Overview

LY28-1695-0 (&) Copyright IBM Corp. 1987

"Restrictad Materials of XIBM"

Licensed Materials — Property of IBM

QELNQEL
CVTGVT QCBFQEL \aEL
QELQXB QELNQEL
GVT PQCB
Qxs
GVTGVTX PQCBNQCB (7
acs .N\\ axe QELQXB
p PQCBFQEL
GVTX QCcBNQCB !)
Qaxs
GVTXGQHT QCBFQEL QEL
GQHT QELQXB
// ASCB
_/ ASCBGQEL axs
y acs
ASCB QEL QCBFQEL
ASCBGQEL QELNQEL
QELNQELQ EL
QELQXB QELNQELQ
QELQXB
QX8 .
SYSID/ASID
hash table < QEL)
QELNQELQ /
QELNSYN
QELQXB axg
Figure 14. Queue Scanning Services Global Resources - Control block Overview
LY28-1695-0 (e) Copyright IBM Corp. 1987 Control Block Overview GRS-47

RQA/ERQA

High end

PEXS8

"Restricted Materials of IBM"

Licensed Materials — Property of IBHM

PEXB

PEX8

|

x
@

I

PEXB

~

5

GVT ERQA Bit Map
GVTGVTX RQA Bit Msp
GVTX '
GVTXEBMA
GRPT '
GVTXBTMP Header I
_~3» RPTE1
GVTXERQA
RPTE2 I
GVTXRQA . |
(GVTXGRPT : |
N\ l
LAPT | [
Header /
/—D RPTE l
RPTE2 '
:znPTes :: :
\: L
|
\\g Low en
\ —F ==
Figure 15. Storage Managament Control Block Overview

GRS-48 MVS/XA SLL: GRS

LY28-1695-0

1
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
l
I

—_—————

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Synchronous Request

Register 1 MRB MRB

l F”aj MRee MRBRMRB

Asnychronous Request
MRB CEPL CRWA
-MRBCEPL CEPLCRWA CRWACRB
MRBRMRB .
- MRB Register 1

Note: Control block structure when the
message processing routine (ISGMSGO00}
receives control.

Figura 16. WTOR/WTOR Massage Processing Control Bleock Overview

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overviaw OGRS-49

"Restricted Matarials of IBM"
Licensed Matarials = Property of IBM

System A System B

Operator Operator
ISGCxxxx ISGCxxxx
Command Command
processing ISGBxxxx 1SGJxxxx ISGJxxxx ISGBxxxx processing

Ring) < cTC 11 cTC —> Ring

1ISGGxxxx processing processing processing processing ISGGxxxx
ISGLxxxx ISGLxxxx
ENQ/DEQ/ ENQ/DEQ/
RESERVE RESERVE
processing processing

GQSCAN SVC dump SVC dump GQSCAN
ISGQxxxx ISGDxxxx ISGDxxxx ISGQxxxx
Queue Dump Dump Queue
scanning support Support scanning
services services

Figure Title (Module Flow for:)

GRS-18
GRS-19
GRS-20

CTC Processing

Handle Arrival of Immediate-CCW
Handle Arrival of RSA or RSAIRCD
Send a RSA or RSAIRCD

Ring Processing

GRS-21 Send/Receive a RSA
GRS-22 Send a RSAIRCD or Immediate-CCW (Requested by. ISGBCI)
GRS-23 Send a RSAIRCD (Requested by ISGBTC)
GRS-24 Handle Arrival of RSAIRCD (Not Requested by This System)
GRS-25 SNAPSHOT Function
GRS-26 SENDCMD (RSCRADDS) Function
GRS-27 SENDCMD (RSCRSNAD) Function
Command Processing
GRS-28 ~— Command Initialization and Cleanup
GRS-29 - DISPLAY GRS
GRS-30 — VARY GRS(x), PURGE
GRS-31 — VARY GRS(x), QUIESCE to Another System
GRS-32 - VARY GRS({x), QUIESCE by a System to Quiesce Itself
GRS-33 — VARY GRS(x), RESTART to Restart Another System
GRS-34 — VARY GRS(ALL), RESTART to Restart All Systems
GRS-35 — VARY GRS(x), RESTART by a System Not in the Main Ring
GRS-36 — Join Processing at Initialization Time
ENQ/DEQ Mainline {Resource request processing)
GRS-37 - Local Resource Request
GRS-38 — Global Resource Request
GRS-33 — Termination Resource Manager
GRS-40 Queue Scanning Services
GRS-41 Dump Support — SVC Dump
Figure 17. Process Flow Overview and Directory

GRS-50

MVS/XA SLL: GRS

LY23-1695-0

(c) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Any Address Space ” Global Resource Serialization Address Space

Attention Interrupt]

10S — IECTCATN 3] ISGBTC Ring processing
task mode controller —
b g::ge:ﬁs;rg?;r;rg::::‘nn:a nd ” Exception-handling task
byte ” & Determines which GCL ———————— 3 IESPG.;ISFGEJGTUE
(répresenting a CTC) received
e I I the immediate-CCW ::‘rc driver
ront end
ISGJDI CTC driver DIE i S R AIHOD aoyh sands tho
EP-DI1000 I o pec ——3» See figure GRS-23
@ Marks the GCL to show
immediate-CCW was e Gives control, to CTC 3| ISGJFE
sensed “ processing, of the SRB used EP-ISGJGVSR
@ Schedules an SRB to “ to post GVTXBECB CTC driver
execute ISGBSM I & Wait on ECB GVTXBECB front end
e Returnsto I10S
sRs I G
ISGBSM RSA send/receive ”
routine | |
o Posts ECB GVTXBECB to POST,,

awaken ring processing task H|
e Exits to dispatcher “

II

Figure 18. Process Flow for CTC Processing - Handle Arrival of Immediate CCW

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-51

Any Address Space
Attention interrupt Channel end
108 IECTCATN 108 SLIH

o Issues STARTIO channel
program for sense

o Processes the read channel
program

command byte I
1SGJD! CTC driver DIE 1SGJDI CTC driver DIE
EP-DI1000 EP-DI2000

® Analyzes results of the sense
command byte

o Returns to 10S and requests
initiation of a read channel
program

o Analyzes results of the read
channel program

e Schedules an SRB to execute
ISGJFE

e Returns to 10S

l
|
I
I
|
I
|
I

I
|

"Restiricted Materizls of IBM™
Licensed Materials — Property of IBM

Global Resource Serialization
Address Space

ISGJFE CTC driver front end
EP-ISGJSRBX

o Loads registers with the
address and length of
received RSA or RSAIRCD
o [ISGJFE branches to
. ISGBSR or 1ISGBSM
o Branches to ISGBSR to process
the received message

y

ISGBSM RSA send/receive
routine

EP-ISGBSMR processes an
RSA it receives

See figure GRS-21 +

v

1SGBSR RSAIRCD send/receive
routine

EP-ISGBSRRI processes
an RSAIRCD

See figure GRS-24

Figure 19. Process Flow Tor CTC Processing - Handle Arrival of RSA or RSAIRCD

GRS-52 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM™
Licensed Materials - Property of IBM

Global Resource Serislization I I Any Address Space
Address Spaca

N

ISGBSM RSA send/receive ISGBSR RSAIRCD send/receive l l
routine routine I I WT&"

EP-ISGBSMSR sends a RSA EP-ISGBSRRI sends a RSAIRCD ”
~3= 108
| I @ Proceses write channel
I | program
ISGJDI CTC driver DIE
ISGJFE CTC driver I] EP-DI3000
EP-ISGJSNBF I I e Analyzes results of the write
o Initializes a write channel ' I channe! program
program and an |0SB o |f a RSA was sent, updates
e lssues STARTIO to initiate ! GVTMRSCW to shaw RSA
the write channel program ! send-completion occurred
, 1i sra | @ fe RSAIRCD was sent,
EP-ISGJSRBX ‘_.n._ schedules an SRB to
e 1fa RSAIRCD was sent, execute ISGIFE
branches to ISGBSR to I I o Returns to I10S
— handle the RSAIRCD
send-completion I I

% Il
|3/ 1SGBSR RSAIRCD send/receive I

routine
EP-ISGBSRR! l I

o Handles RSAIRCD send-
completion ”

Figure 20. Process Flow for CTC Processing - Send a RSA or RSAIRCD

LY28-1695-0 (e) Copyright IBM Corp. 1987 Control Block Overview. GRS-53

"Rastricted Materials of IBM"
Licansad Matarials = Property of IBM

@ From CTC processing
Figure GRS-19

ISGBSM RSA send/receive routine 3= |SGBDR
EP-ISGBSMR Timer
e Sets the RSA residence interval 3 manager

@ Performs one of the following:
1. Processes a command or message

) the received RSA contains a CRB or MRB from] ISGSALC
another system — Storage
— Obtains a CRB or MRB et manager
— Initializes the CRB or MRB and places it on the
command request queue (GVTCMDRQ) POST
— Posts the command router’s B€8 GVTCECB ISGCMDR
2. Processes a ring configuration command Command See figure GRS-28
If the received RSA shows that another system is router

performing a ring configuration command {ADDSY,

SUBSYS, DELSYS, or SERRELS function) —

— Marks the RSV to indicate which function and
phase is being performed POST

—~ Posts ECB GVTXBECB to awaken the ring —3 1SGBTC
processing exception-handling task

3 R 3 Ring processing
3. Continues a ring processing function task mode

If the received RSA shows that ring processing controller

command should be continued via the RSA —

— Marks the RSV and RSA to indicate the ring
processing function has advanced to its next
phase

— {f all phases of the function are complete:
marks the RSV to indicate completion and
the RSA to indicate the function is no longer
being performed

4, Initiates a ring processing function

If the received RSA shows that no other system is

performing a ring processing function, and the RSV

shows that this system is trying to perform a ring

processing function:

— Marks the RSV to indicate a ring processing
function is in progress

— Updates the RSA to show that this system is
performing a ring processing function

@ Moves any QWBs on the sent queue (RSVQWBSF) to ¥ ISGGRPOO
the process queue (GVTPRCQF) or hold queue Gioba! resource

See figure GRS-38

{RSVQWBHF) POST procassor

e Posts the RB (GVTGRPRB) used by ISGGRPOO

Obtains QWBs and reproduces data from the RSA -3yl |SGGQWBO0

to the QWBs and places the QWBs on the sent queue EP-ISGGQwB1
® Moves the QWBs that are on the request queue Queue
{GVTREQQ) to the sent queue (RSVQWBSF), service

and copies them into the RSA

e Exits to the dispatcher

I Any Address Space l l Global Resource Serialization Address Space

ISGBOR Timer manager | || sAB ISGBSM RSA send/receive ISGJFE
. ::;:g:snce interval 'Eo::g‘g BSRSA E:;?::v‘:':
e Gives the RSA input buffer front end
‘ I to CTC processing
| I e Sends the RSA —> ISGJFE
e Exits to the dispatcher EP-ISGJSNBF

I CTCdriver | See figure GRS-20
I l front end

Figure 21. Process Flow for Ring Processing - Send/Receive a RSA

GRS-5% MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

@ From ISGBRF
(EP-ISGBRFNM)

ISGBTC Ring processing task mode controller
EP-ISGBTCIR

e Examines the RSL time stamp and flags (passed by
ISGBRFNM and performs one of the following:

1. If this system should wait for an RSAIRCD, pauses for a

short time to await the arrival of the RSAIRCD 3= Sge figure GRS-24
2. If this system should send a RSAIRCD or an
immediate-CCW:
— Seizes control of the GCQ for this RSL t—————3»{ ISGJFE
— Initializes the GCQ as an SRB EP-ISGJTKBF
— Schedules the SRB to execute ISGBSR CTC driver
front end

® Returns to ISGBRF (EP ISGBRFNM)

y

ISGBRF (ISGBRFNM) Ring processing

o Pauses until the request is complete
— |f a RSAIRCD was sent, awaits the arrival of a A
response from the target system

— If an immediate-CCW was sent, awaits the send-

completion from CTC processing

(Note that ISGBRFNM might send an immediate-
CCW on another CTC ISGBRFNM before receiving
a response from the remote system.)

o Exits to caller

SRB
L34 ISGBSR RSAIRCD send/receive routine

EP-ISGBSRRI — :ESPG;ES‘:SEJGVBF

e Examines the RSV flags to determine if a RSAIRCD "
or an immediate-CCW should be sent CTC driver

e Gives, to CTC processing, control of the GCQ and —— front end
RSAIRCD buffer for this RSL

e Sends the RSAIRCD or immediate-CCW > :ESPG:S'Z isuep

o Exits to the dispatcher .) CTC driver -~ See figure GRS-20

front end

From CTC processing

ISGBSR RSAIRCD send/receive routine

EP-ISGBSRRI

Receives the RSAIRCD response (requested by ISGBCI)
® Marks the RSL to show that the RSAIRCD has arrived __>®

e If the RSV flags show that the RSVENTY table of this
system shouid be updated, copies the system status from
the received RSAIRCD to an entry in the RSVENTY table

® Gives control of the GCQ and RSAIRCD buffer for this «———| ISGJFE
RSL back to CTC processing EP-ISGJGVBF

e Exits to the dispatcher CTC driver

front end

Figure 22. Process Flow for Ring Processing — Send a RSAIRCD or Immediate-CCW
(Requested by ISGBCI)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-55

"restricted Materials of IBM™
Licensed Matarials - Property of IBM

m From ISGBTC
Exception-handling task

ISGBTC Ring processing task mode controller

EP-ISBGTCIR

o Examines the RSL time stamp and flags (passed by
ISGBTC, exception-handling task) and performs
one of the following:

1. If this system should wait for a RSAIRCD, pauses

for a short time to await the arrival of the RSAIRCD |———————3» See figure GRS-24
2. If this system should send a RSAIRCD:

— Seizes control of the GCQ for this RSL -_l___>
— Initializes the GCQ as an SRB ISGJFE
— Schedules the SRB to execute ISGBSR EP-ISGJTKBF
® Returns to ISGBTC, exception-handling task CTC driver
j - front end

ISGBTC Ring processing task mode controller,

Exception-handling task

o Processes another RSL, or waits on its ECB
{GVTXBECB)
(Note that the exception-handling task does not
wait for a send completion or arrival of 8
RSAIRCD.)

ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI

@ Copies the status of this system from the
RSVENTY table to the buffer for this RSL

SR8

e Sends the RSAIRCD using the GCQ and buffer ISGJFE
for this RSL EP-ISGJSNBF
o Exits to the dispatcher CTC driver See figure GRS-20

! front end

From CTC processing

ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI
o Receives the send completion
® Gives control of the GCQ and buffer for this RSL ———————p ISGJFE
back to CTC processing EP-ISGJGVBF
@ Exits to the dispatcher CTC driver
front end

Figure 23. Process Flow for Ring Processing - Send a RSAIRCD (Requested by ISGBTC)

GRS-56 MVS/XA SLL: GRS LY28~-1695-0 (c) Copyright IBM Corp. 1987

"Restrictad Materials of IBM"
Licensed Materials = Property of IEZM

From CTC processing

ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI

RSAIRCD is received from a remote system that is not
in response to a request from this system.

e Marks the RSL to show that a RSAIRCD has arrived

o If the RSV flags show that the RSVENTY table in
this system should be updated, copies the system
status from the received RSAIRCD to an entry in the
RSVENTY table

o If the received RSAIRCD contains a command that has
not previously bsen received by this system:

— Obtains a CRB

— Copies data from the received RSAIRCD to the CRB

— Places the CRB on the command request queue and
posts ECB GVTCECB

o Copies the system status from the RSVENTY table to
the RSAIRCD that is to be sent

o Sends the RSAIRCD using the GCQ and buffer for
this RSL

o Exits to the dispatcher

@b

ISGSALC

Storage
manager

ISGCMDR

POST

Command
router

ISGJFE
EP-ISGJSNBF

CTC driver
front end

See figure GRS-28

See figure GRS-20

From CTC processing

ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI

Receives the send completion

o Gives control of the GCQ and buffer for this RSL
back to CTC processing

o Exits to the dispatcher

@D

Figure 24.
Raquestad by This System

LY28-1695-0 (c) Copyright IBM Corp.

ISGJFE
EP-ISGJGVBF

CTC driver
front end

1987

Process Flow for Ring Processing - HandlevArrival of RSAIRCD (Not

Control Block Overview GRS-57

From command processing

ISGBCI Ring processing

Examines the RSC passed by the caller and invokes ISGBRF
(entry point ISGBRFSN) to start the SNAPSHOT function

o Enqueues exclusively on the ISGBCI-ENQ-resource

e Marks the RSV to show that the RSVENTY table must be
updated with the status contained in any received RSAIRCD

e For every RSL that is not used to send or receive the main
ring RSA, sends an immediate-CCW to obtain the status of
the remote system at the opposite end of the CTC represented
by that RSL

e After all immediate-CCWs have been sent, pauses to allow
the remote systems to respond

o [f this system is not in the main ring and some remote system
is in the main ring, repeatedly sends a RSAIRCD to the
remote system, ISGBC! waits for the arrival of a response
before sending the next RSAIRCD. (Each RSAIRCD requests
a RSVENTY entry from the RSVENTY table of the remote
system.)

Marks the RSV to show that RSVENTY table updates are no
longer allowed

Copiss system status from the RSVENTY entries to the RST
Copies CTC status from the RSLs to the RST

Dequeues the ISGBCI-ENQ-resource

Returns to command processing

o

Figure 25.

GRS-58 MVS/XA SLL: GRS

"Restricted Materials of IBM™
Licensed Materizls = Proparty of IBM

ISGBTC

Ring processing
task mode
controller

See figure GRS-22

ISGBTC

Ring processing
task mode
controller

See figure GRS-22

Process Flow for Ring Processing - SNAPSHOT Function

LY28-1695-0 (e) Copyright IBM Corp. 1987

vpestricted Materials of IBM" _
Licensed Materials = Property of IBM

m From RESTART command
processing

ISGBCI Ring processing

A system, not in the main ring, is requesting a system in the
main ring to add it to the main ring

® Examines the RSC passed by the caller and ISGBRF (entry
point ISGBRFNM) will be invoked to start the (RSCRADDS)
function

o Engueues exclusively on the ISGBCI-ENQ-resource
o Chooses the RSL to the target system in the main ring

o Initializes the RSAIRCD with the data from the input CR8
that requests this system to be added to the main ring

o Sends the RSAIRCD to the target system and pauses 1 ISGBTC
until the target system sends back the RSAIRCD —»1 EP-ISGBTCIR
o Repeats sending the RSAIRCD and pauses until the target <— Ring processing
system responds that it is performing phase 1A of the task mode
ADDSYS function (or has cancelled the CRB) controller
— = See figure GRS-22

e Marks the RSV to show that the RSVENTY table must be
updated in this system

@ Sends a RSAIRCD to the targst system to obtain the contents @3> |SGBTC
of each entry in the targst system’s RSVENTY table and pauses ——=3»{ EP-|ISGBTCIR
for the target system to respond to each RSAIRCD

Ring processing

e Marks the RSV to show that the RSA can be received sk mode
o Sends a RSAIRCD to the target system showing that this F— See figure GRS-22

system is in the main ring and is ready to process the RSA

e Marks the RSV to show that RSVENTY table updates are
no longer allowed

o Dequeues the ISGBCI-ENQ-resource
Returns to RESTART command processing

Figure 26. Procaess Flow for Ring Processing - SENDCMD (RSCRADDS) Function

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-59

From RESTART command processing

ISGBCI Ring processing

A system, in the main ring, will add a system not in the main

ring to the main ring

e Examines the RSC passed by the caller and ISGBRF (entry
point ISGBRFNM) will be invoked to start the SENDCMD
{RSCRSNAD) function

Enqueues exclusively on the ISGBCI-ENQ-resource
Chooses the RSL to the target system not in the main ring

Initializes the RSAIRCD with the data from the input
CRB that requests the target system to add itself to the
main ring

® Sends the RSAIRCD to the target system and pauses until
the target system sends back the RSAIRCD

o Repeats sending the RSAIRCD and pauses until the
target system responds that it is performing the
SENDCMD (RSCRADDS) function {(or has cancelled the CRB)

o Dequeues the ISGBCI-ENQ-resource
o Returns to RESTART command processing

"Rectricted Materials of IBN"
Licensed Materials — Property of IBM

ISGBTC
EP-ISGBTCIR

L]

Ring processing
task mode
controller

See figure GRS-20 (for processing
done on this system) and
figure GRS-24 (for processing

done on the target system)

Figure 27. Process Flow for Ring Processing — SENDCMD (RSCRSNAD) Function

GRS~-60 MVS/XA SLL: GRS

LY28-1695-0 (c) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBH

Master Scheduler Address Space Global Resource Serialization Address Space

ISGCMDE

Parser

exit
m From console services
(IEECB808) I

~———3»1 |ISGCMDR Command router

1ISGCMDI Command interface »| @ Moves the CRBs from the
. ——>» |EEMBB87 command request queue to See
o Establishes a recovery . g
environment Generalized the command work gueue fllgsucr:B zlﬂs 25
" parser —P1 @ |Initializes the CEPL, CRWA,
i Ch:cl;s the eonst::e authority and RST areas for a CRB At ISGBRF
an t, ¢ command syntax e Does a SNAPSHOT (for a {at entry point
e Obtains a command request [€——3 ISGSMI Display Request) to fill in ISGBRFNM)
block (CRB) Storage the RST Ring
® Initializes the CRB and manager processing
places it on the command * ::::::te:?ozz;and
 roasem auee POST e Places the CRE on th ATTACH
e Posts ECB GVTCECB cle:nip :ueue on the
e Waits for the command to
e e e — — — — each CRB on the command

work queue

s c—— C—— — C— — c—

o Deletes the recovery
environment

G

o Waits for another command
request to be placed on the
command request queue

EP-ISGETXR1 ‘
Return from
o Removes the CRB from the the command
cleanup queue request processor
posT Posts ISGCMDI's ECB
Releases the CRB, CEPL,

CRWA, and RST areas

I
|
|
|
I
I
|
|
I
!
I
| ® Repeats these steps for
|
!
|
I
|
!
I
|
I
I

8
3
1
2

*Command request processors
ISGCDSP — DISPLAY GRS (figure GRS-29)
ISGCPRG — VARY GRS(x}, PURGE (figure GRS-30)
ISGCASC — VARY GRS(x), QUIESCE (figures GRS-31 and GRS-32)
ISGCRST — VARY GRS(x), RESTART (figures GRS-33, GRS-34, and GRS-35)
ISGMSGO00 — Asynchronous message request

Figure 28. Process Flow for Command Initialization and Cleanup

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-61

From figure GRS-28

ISGCDSP Display request processor

Obtains storage for a control line

For an RNL or ALL request:

— Obtains storage for a label line

— For each RNL entry, obtains storage for a data ling
— Places RNL entry data into data line

Fora CONTENTION or ALL request:

— Finds out via the GQSCAN macro if there is resource
contention

— |f there is resource contention, places resource and
requestor data into the data line

— |f there is no resource contention, places ’no
contention’’ message into the data line

For a RES request:

— Scans queuss for data via the GQSCAN macro to
match the request

— If there are resources that match the request, places
resource and requestor data into the data line

— If the resources do not match the request, pleces ‘‘no
data for request’’ message Into the data line

For a SYSTEM or ALL request:

— Obtains storage for a label line

— For each pair of system entries in the RST, obtains
storage for a data line

— Places the system information into the line

For a LINK or ALL request:

— Obtains storage for a label line

— For each pair of CTC entrigs in the RST, obtains
storage for a data line

— Places the system information into the line

o Writes all lines of the message

Returns all storage for the lines
Returns to ISGCMDR

| | |EECBS08

Figure 29.

GRS-62 MVS/XA SLL: GRS

Process Flow for DISPLAY GRS

"Rastricted Materials of IBM"
Licensed Naterials = Property of IBM

EP-MSGSERV
Message
service
routing

LY28-1595-0 (c) Copyright IBM Corp. 1987

"Rastrictaed Materials of IBM"

Licensed Materials = Property of IEM

From figure GRS-28

ISGCPRG Purge request processor

purge

the ring

o Obtains the ring status
o Determines the status of this system and others
in the complex

o lssues GQSCAN to determine if the system to be
purged (target system) holds or is waiting for any
global resources

e If the target system has outstanding global resource
requests, issues messages ISG016t and ISGO17D
to obtain the operator’s permission to continue the

Issues message ISGO11(on this system
Initiates a DELSYS of the target system
Initiates a SYSID purge of the target system

Issues message 1SG018! for the resource requests
that were purged

Releases the QWBs and MRBs returned by ISGGQWBO0
@ Issues message 1ISG013! on this system
@ Broadcasts message 1SGO13I to all active systems in

e Returns to ISGCMDR

Figure 30.

LY28-1695-0

Process Flow for VARY CRS(x),

(c) Copyright IBM Corp.

1987

—>1 [SGMSGO00
] Message

PURGE

3 ISGBC!

r——-’ ISGGQWB0

> ISGMSG00

L—-’ ISGMSGO0

ISGBCI

I'Via ISGBRF

{at entry point’

ISGBRFNM)
Ring
processing

routine

Ring
processing

EP-ISGGQWBS

Queue
service

Message
routine

ISGGQWBF

Queuse
service

Message
routine

ISGBC!

Ring
processing

Control Block Overview GRS-63

"Rastricted Materials of IBM™
Licensed Materials ~ Proparty of IBM

System A 1SGBCI
Via ISGBRF s
m From figure GRS-28 {at entry point ystem B
_|ISGBRFNM)
Ring
ISGCQASC Quiesce request [processing
processor -
h ISGMSG00 ISGBSM RSA send/receive
e Obtain ring status "
i Message o Obtains a MRB —>{ ISGSALC
o Determines the status of this routine Initiali he MRB with th
system and others in the complex ¢ Initializes the with the Storage
message request and places the manager
® Issues message ISGO111 1SGBC J MRB on the command request
e Sends a message request (SENDCMD Ring queue
for message ISGO111) to the ocess P
target system L ing ¢ osT
e Performs a SUBSYS of the > 1SGeCl M1 ISGCMDR Command router
target system Ring o Issues message ISGO11 €—>1 ISGMSG00
processing -
® lssues message ISGO13I on ‘-l.y e Returns l Message
this system ISGMSGO0 routine
o Broadcasts messags 1ISG013!
to all active systems in the Masts'ags
complex routine ISGBTC Ring processing
o Returns to ISGCMDR task moda controller
ISGBCI e Changes the status of this
Ring system from active to
(:!':) processing quiesced
o lssues message ISGO13I >} 1SGMSG00
R Message
® Returns routine

Figure 31. Process Flou for VARY GRS(x), QUIESCE to Another System

GRS-64 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBN"
Licensad Materials = Property of IBM

Systeam A
From figuré GRS-28
System 8
1SGCQSC Quiesce request
processor ISGBCI
) Via ISGBRF —>1 1SGBSM RSA send/receive
o Obtain ring status (at entry point
(ISGBRFSN) e Obtains a CRB le—>{ ISGSALC
o Determines the status of)
this system and others ISGMSGO00 o Initializes the CRB for the Storage
in the complex quiesce request and places manager
o lssues messages 1SGO111 M‘”‘i"ﬁe the CRB on the command
essag routine
and ISGO12! on this system request queue
o Sends a quiesce request ISGBCI POST
(SENDCMD) to another Via ISGBRF
system in the main ring to {at entry point#f e ISGCMDR Command router
cause it to quiesce this ISGBRFSN) - -
system Rine , ISGMSG00 ‘_T ® Processes the quiesce request
processing I Mm@m
Secnote foutine ATTACH
e Issues message ISGO13| ISGMSG00 e ::::CI SGOASC Cuterse request procemor
e _Returns to ISGCMDR hﬁuting: processing e Determines the status of this
r system and others in the complex
m ISGMSG00 e Issues message ISGO111
Message e Performs a SUBSYS of system A
routing Issues message 1SGO131
Note: 1SGBCI changes the status . L4 g
of this system from active to quiesced. ISGBCI ft—>| ¢ Broadcasts message 1SG013I
Via ISGBRF to all systems
{at entry point
ISGBRFSN) e Returns to ISGCMDR
Ring
processing
See note

Figure 32.

LY28-1695-0

(c) Copyright IBM Corp.

1987

Control Block Overview GRS-65

Process Flow for VARY GRS(x), QUIESCE by a System to Quiasca Itself

. "Restricted Materials of IEM"
Licensed Materials = Propaerty of IBM

System A System B
From figure GRS-28
ISGBCI
ISGCRST Restart request via EP ISGBSM RSA send/receive
procINor , ISGBRFSN e Obtains a CRB ISGSALC
e Obtain ring status | Ring e Initializes the CRB for the Storage
e Determines the status of this processing restart request and places the manager
system and others in the ' CRB on the command request
complex ISGMSG00 queue
o Locates the RST entry for Message)
N P
system B routine LOSLD ISGCMDR Command router
Issues message ISGO111 e Processes the restart
e Does a SENDCMD {RSCRSNAD) ISGBCI request
to tell system B to restart Ring
itself processing 1 |!sGBci T ATTACH
r— AN D NN D S CE—— c— Via EP
L ISGBRFSN I_SGCRST Restart request
e Doesan ADDSYS of system B jat—3»| ISGBCI Ring processor
via EP processing e Obtain ring status
HSGBRFSN ISGBCI e Does s SENDCMD (RSCRADDS)
Ring = to signal system A that this
e Copies the compatibility level processing ing 5 system is ready
and the RNLs into a buffer Processing
—{ ® Updates the resource queues
e Doesa BUFSEND ISGBCI s . —— —— — — c—
@ Issues GOSCAN to obtain data Ring ® Cleans up and exits —
about all global resources and processing
requesters - |SGBCI
e Doesa BUFSEND lc—>»1 ISGBCI Ring
® Repeats these steps until all Ring processing
data has been sent processing 1 ISGCQMRG Qususe merge
[—— e T ISGBC! | g o Doesa BUFRECV
. D:‘es ?faul:FSEND of the L__ﬂ ISGBCI Ring o Compares the compatibility
end-o™ Ring processing level and RNLs to those
processing in this system
| 3! @ Doesa BUFRECV -
* E:;:.Z:P :‘I:hE(:V for th; «—> ISGBC|__ &1 Issues GQSCAN for each
has c::ml;?ete da system Ring resource in the buffer
processing ISGGQSRY e Generates the QWBs to get
S this system’s resource queues
eases serial ISGBCI ueue to match the other systems
e Rel serialization T service in the compiex and puts the
(SERRELS) Ring
processing QWBs on the process queue
ISGGRPOQ f&—— © Posts ISGGRPOO to process
o Issues message ISG013! c—>»1 ISGMSGO0 Global the QW8Bs
on this system Messa resource o Repeats these steps until
age processor end-of-file is received]
routine
e Broadcasts message ISGO13! PRI pps —— - ISGBC! |&—3] e Doesa BUFSEND to notify
to all active systems in the (ISGBCI Ring system A that queue updates
complex via EP processing are complete
ISGBRFSN o Releases serialization
e Returns to ISGCMDR Ring 1SGBCI I (SERRELS)
processing - e Returns to ISGCRST
Ring
m processing

Figura 33. Process Flow for VARY GRS(x), RESTART to Restart Another System

GRS-66 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials -~ Property of IBM

-

Figure 34.
LY28-1695-0

System A System B
‘ From figure GRS-28
ISGCRST Restart request 1 ISGBSM RSA send/receive
ik or e Obtains a CRB t——» ISGSALC
e Obtain ring status ISGBC! e Initializes the CRB for the Storage
o Determines the status of this Via ISGBRF restart request and plsces the manager
system and others in the (at entry point CRB on the command request
complex ISGBRFSN) queue
o For an operator command: POST
— Doesa STARTPOP to &—3 ISGBCI ISGCMDR Command router
perform restart processing Ring
on this system processing ® Processes the restart request
® For an internal command:
— DOeSiB ‘STARTP?fP - with- rlt— I1ISGBCI ‘ ATTACH
permission to perform Ring ISGBCI
automatic restart pro- processing IVie 1SGBRF ISGCRST Restart request
cessing on this system (at entry point processor
e Issues messags ISGO131 —»| ISGMSGC0 ISGBRFSN) Obtain ring status
o Locates the next RST ent Message
for a restartable systom. routing —{1scecI Je—| o Does a SENDCMD (RSCRADDS)
Ring to signal system A that this
e Issues message ISGO11I ISGMSG00 processing system is ready
Message o Updates the resource queues
routine - /=7
o Cleans up and exits
o Doesa SENDCMD j—>{ ISGBCI
RSCRSNAD il .
iystem Bto r::;rtteitself :rl:gessin ‘M_ ISGCQMRG Queue merge
e e — —— — — 2 1ISGBCI e Dossa BUFRECV
e Doesan ADDSYS of system B (eg—3»1 ISGBCI Ring e Compares the compatibility
e Copies the compatibility level Ring processing level and RNLs to those in
and the RNLs into a buffer processing this system
o Doesa BUFSEND 'l.) o Doesa BUFRECV <
e Issues GQSCAN to obtain data ::GBCI 3 ISGBCI o Issues GQSCAN for each
about all global resources and :«r.:gessin Ring resource in the buffer .
requesters P 8 processing o Generates the QWBs to get
this system’s resources
® Doss o BUFSEND 1SGBCI ISGGQSRV queues to match the other
e Repeats these steps until all Ring Queue systems in the complex and
data has been sent rocessing service puts the QWBs on the process
I —— queue }
e Does a BUFSEND of the)1—) ISGBCI ISGGRPOO e Posts ISGGRPOO to process
f-file T Global the QWBs
end-c Ring resource i
processing processor ‘e Repeats these steps until
end-of-file is received r—J
o Doesa BUFRECYV for the r'—‘ —_——
notification that system B ISGBC! __ | ISGBCI Je— ¢ Doesa BUFSEND to notify
has completed Ring Ring system A that queue updates
cessi
@ Releases serialization processng processing are complete
(SERRELS) o Releases serialization
ISGEC! (SERRELS)
o Issues message 1SG013! on Ring ISGBCI
this system processing Ring ® Returns to ISGCRST
e Broadcasts message 1SGO131 processing
to all active systems in the 1SGMSGO0
complex Massage
o Rapeats these steps for each routine
restartable system
o Resturns to ISGCMDR ISGBC!
Ring
o

(c) Copyright IBM Corp. 1987

Control Block Overview GRS-67

Process Flow for YARY GRS(ALL), RESTART to Restart All Systems

mpastricted Materials of IBM™
Licensed Materials — Property of IBM

System B

System A
(Enter) From figure GRS-28 ystem
ISGCRST Restart request B
processor
: r.l':lse BCl -»{ 15GBSM RSA send/receive
e Obtain ring status Via ISGBRF - ~
(at entry point e Obtainsa CRB €—>] ISGSALC
@ Dotormines the status of this ISGBRFNM) e Initializes the CRB for the S
system and others in the torage
I Ring restart request and places manager
complex processing the CRB on the command
- request queue
ISGMSGO00 POST
® Issues messages 1ISG011! and Message L——) ISGCMDR Command router
1SG0121 routine
® Processes the restart request
® Does a SENDCMD (RSCRADDS) [«e— I1SGBCI
to tell system A to build a new Via ISGBRF
main ring that includes system B (at entry point "1
———— ———— ISGBRFNM) |
Ring
processing
e Links to ISGCQMRG - ATTACH
Lo Issues message 1SGO13! on —»{ ISGMSG00 ISGCRST Restart request
this system Miessags ISGBCI processor
o Doesa SENDCMD to broadcast | routine G R it e Obtain ring status
message ISGO31 to all active. IgGBR '\:fsf:q) e Determines that a restart for
systems in the complex ISGBCI system B is possible
@ Returns to ISGCMDR (command Via ISGBRF ISGMSG00 o Issues message 1SG011¢
router) {at entry point
ISGBRFNM) Message
Ring routine
m processing |
1SGBC! e Doses an ADDSYS of system B
Ring
processing o Copies the compatibility level
ISGCOMRG Queue merge and the RNLs into a buffer
e Doesa BUFRECV > |SGBC! ISGBC! e Doesa BUFSEND
— - Ring Ring e Issues GQSCAN to obtain
res the compatibilit . .
¢ Fe.;:; ':id RNLs to rhose Y processing processing data about all global rescurces
in this system and requesters
o Doesa BUFRECV t—>»1 ISGBC! ISGBCI |w—3] ¢ Dosesa BUFSEND
— e Ring nil Ring ® Repeats these steps until all
o Issues GQSCAN for each processing processing data has been sent
resource in the buffer e
e Generates the QWBS to get l&—>»{ |SGGQSRV "ISGBCI |3 o E:;-z ?.glgsseno of the
this system’s resource queues Queue Ring
to match the other systems in service processing e Does a BUFRECYV for the
the complex and puts the notification that system B
QWBs on the process queue 1SGBCI has completed
e Posts ISGGRPOO to process —1 ISGGRP00 Ring o Releases serialization
the QWBs Global processing (SERRELS)
o Repeats these steps until ;i%';:gr e Cleans up and exits
|__endoffileisrecoived | ISGBCI
e Does a BUFSEND to notify l€—»{ |SGBCI : Ring @
system A that queue updates Ring processing
are complete processing

o Releases serialization

(SERRELS) I r——
‘—1 @ Returns to ISGCRST Ring
processing

Figure 35. Process Flow for VARY GRS(x), RESTART by a System Not in the Main Ring
GRS-68 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 19387

"Restricted Materials of IBN™
Licensed Materials — Property of IBM

System B System A
:s??lﬁﬂsp Option processor 1SGBCI ~3» ISGBSM RSA send/receive
tializati "
initialization module) - I ’ Vio ISGBRF o Obtains o CRB SGSALG
® Does a SNAPSHOT of the {at entry point o Initializes the CRB for the Storane
complex ISGBRFNM) restart request and places manager
o Datermines the status of this Ring the CRB on the command
system and others in the processing request queue
complex E
® Selects a system to send data [1SGMSGO0 l‘f_'r_’ ISGCMDR Command router
about all global resources Message
to this system routine e Processes the restart request
e Issues message ISGOO3I
e Does a SENDCMD (RSCRADDS)lag—»{ ISGBCI
to tell system A to build a Ring h
new main ring that includes rocessin
system B P 9 R
e Links to ISGCOMRG
—— — n— c— —— Via ISGBRF ISGCRST Restart request
° Issues‘ message 1SG004I| —{ ISGMSGO00 {at entry point processor
on this system ISGBRFNM)
Message k
e Does a SENDMCD to broad- routine Lﬂ e Obtain ring status
cast message 1SG004! to all ; |
active systems in the complex
Y . e i ISGBCI 1ISGMSGO00 o Determines that a restart
) Returng to initialization Ring Mossoge for system B is possible
processing processing routine
=] ® Issues message 1ISGO111
— ISGBCI — @ Doesan ADDSYS of system B
J, Ring
processing o Copies the compatibility leve!
ISGCQMRG Queus mergo and the RNLS into a buffer
e Doesa BUFRECV lag—>»1 ISGBCI (% 1SGBCI lt——»{ @ Doesa BUFSEND
o Compares the compatibility Ring Ring ‘e Issues GQSCAN to obtain data
level and RNLs to those in processing processing about all global resources and
this system y requesters
o Does a BUFRECV t—>»{ I1SGBCI 1ISGBCI lt—>={ @ Does a BUFSEND
'7— — —— — —— — — Ring d Ring e Repeats these steps until all
e Issues GQSCAN for each processing processing data has been sent
resource in the buffer o BorsEnE o —
o Generates the QWBs to gst —»}|SGGASRV ls.GBCI * e::-:?-file oe
this system’s resource queues Queue Ring
to match the other systems in service processing e Doesa BUFRECV for the
the complex and puts the QWBs notification that system B
on the process queue |SGBCI has completed
o Posts ISGGRPOO to process the [ISGGRP0O ﬁi " 9' o Release serialization
QWBs Global ' processing (SERRELS)
—1 e Repeats these steps until resource o Cleans up and exits
L_end-of-file is received processor * 1SGBOI
o Doss a BUFSEND to notify ISGBCI Ring
system A that queue updates Ring processing m
are complete processing
o Releases serialization
(SERRELS) I »{ iscec!
o Returns to ISGNGRSP n
Ring
processing

Figure 36. Process Flow for Join Processing at Initialization Time

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS5-69

"Restricted Materials of IBM"
Licensed Matarials = Property of IEM

User’s Address Space | | Global Resource Serialization Address Space
ENQ/DEQ/ SVC '
_;P_C_"____. ISGLNQDQ ENQ/DEQ fast path
I | routine
IEAVESVC 1 EP-ISGLDQOO (DEQ) — o[1SGSHASH
SVCFLIH i EP-ISGLNQOO (ENQ) EP-ISGSGLH
¢ | | o Initializes the resource request Hashing
| | blocks routine
ISGLNQDQ ENQ/DEQ fast path e Qusues or dequeues the resource [et—
I‘EO:?G“B £P (DEQ) Il request blocks to or from the € |SGSALC
.1GC048! local queuss
EP-IGCOS6FP (ENQ) ” . Rm:“ ﬁ“:;:g:r
e Validity checks the request i
o Invokes ISGGREXO resource 1 Ll 1SGSDAL
exit routine at EP: ” =
— ISGGSIEX (Inclusion exit) it:r::g:
r
o If request can be handled by fast = ”
path processing ”
— @ |f request cannot be handled by
fast path processing ”

@ Returns to caller via exit prolog —

-3 |ISGGNQDQ ENQ/DEQ/RESERVE —u—-—’ ISGGQWBI QW8 initialization

resource serialization address
space

processing ” EP-ISGGEDO1 (ENQ/DEQ)
EP-1GC048 (DEQ)
EP-1GC056 (ENQ) I | e Obtains storage ISGSALC
e Validity checks the request ” e Returns to ISGGNQDQ
e Initializes the local QWA l I l
—{ ® Sets up to process the request ISGGPGRP-
@ Returns to caller via exit prolog g ” ISGGNQDQ ENQ/DEQ/RESERVE QEL group
I processing |-—D processing
| routine
I l @ [Initializes the resource request
blocks
“ o Queues or dequeues the resource |fug———3» ':fg"égg':“
l I request blocks to or from the '
local queues i
L 1SGGAWB! QWB initialization " . ‘: ' :‘::3:;9
e Initializes the SQA QWB ® Frees local storage
FT 1 ¢ Returns
o Invokes ISGGREXO resource ISGSDAL
exit routine at EPs:
— ISGGSIEX (Inclusion exit) ” Storage
~ ISGGSEEX (Exclusion exit) manager
— ISGGRCEX (RESERVE I I
conversion exit)
; | |
o Sets addressability to the global — I I
]|

Figure 37. Process Flow for ENQ/DEQ Mainline - Local Resourca Request

GRS-70 MVS/XA SLL: GRS LY28~1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials = Property of IBM

User’s Address Space Global Resource Serialization Address Space
ENQ/DEQ SVC
| ieavesvesve FuH | I
ISGLNQDQ ENQ/DEQ Fast path I I
e Branches to ISGGNQDQ to I '
process global requests ”
Lffe:ggn‘l ENQ/DEQ/RESERVE —H—>{ isccawei aws initialization
EP-IGC048 (DEQ) II EP-ISGGEDO1 (ENQ/DEQ)
@ Validity checks the request “ e Returns to ISGGNQDQ Storage
o Initializes the local QWA ” Mmanager
[~ | ® Setsup to process the request ‘
e Returns to caller via exit prolog ot ![ISGGNIQDQ ENQ/DEQ/RESERVE
" processing
e Copies the SQA QWB into the < >
I I global resource serialization ISGGawsc
l I private area QWB QWB copy
routine
| ISGGQWBI QWB initialization ® Puts the request on the request L_g(7) :
— queus
o initializes the SQA QWB I I Waits for th to be
e Invokes ISGGREXO resource I ® rocemed | uestte c—] 1SGGWAIT
exit routine at EPs: " r—_——————— Wait
— ISGGSIEX (Inclusion exit) routine
— ISGGSEEX (Exclusion exit) o Returns
— ISGGRCEX (RESERVE ”
conversion exit) 0
e Sets addressability to the global |.FC "
resource serialization address I I
space
T T TawademSms [@ -
ISGBDR Timer manager I—b ISGBSM RSA send/receive
RSA residency interval expired SR8 ” routing
b Fesicency ” e Moves the request queue to the
RSA and sent queue and sends
| the RSA |3 See figure GRS-21
" e Returns to the dispatcher
1/O interrupt —“———b ISGBSM RSA send/receive routine
I o Moves requests from the sent See figure GRS-21
” queue to the process queue and
IEAVEIO 1/O FLIH I I posts ISGGRPOO
o RSA message arrival + POST
” ISGGRPOO Global resource
v f bttt ‘—’—P ISGGNQDQ
ISGJDI CTC driver DIE I I @ Queues or dequeues the ggocelgoE?
SRB request to or from the
o Schedules ISGBSM to process global resource queues
the RSA I |
e Posts the caller
" Waits for the next request

Figure 38. Process Flow for ENQ/DEQ Mainline - Global Resource Raquest

LY28-1695~-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-71

"Restricted Materials of IBM"
Licensad Materials — Proparty of IBM

Terminating Address Space " Globa! Resource Serialization Address Space
? From RTM ”
GGTRMO Terminati ” ISGGPGRP
IS ‘ermination resource i
_ QEL group
manager — stags 1 ” processing
e If the globa! resource serialization I routine
address space is not initialized or l
there are no resources to purge, " SGONGDG
returns to RATM @ [
P-
Initializes the QWA for ISGGTRM1 Il — Ep-1sGGo000
PC 1SGG purge ENQ/DEQ/
— ® m;?e:seemm to purge “ processing RESERVE
e —t " e Dequeues local resources processing
— olf ““reset must complete” is
> necessary, invoke STATUS " e Frees QCBs, QELs, and QXBs ISGSDAL
via SVC 79 (to IEAVSETS) I Storegs
" manager
p— ;============—I 1SGGQAQWBO0 Queue work block
| service routine {EP-ISGGQWBS5)
ISGGTRM1 Termination resource ISGSALC
manager — stage 2 o Obtains a QWB for the task or > ISGSALC
Storage address space termination request Storage
i manage
© Obtains o dynamic area il e Places the QWB on the request manager
o Purges local resources queue and waits for the request
e Purges global resources - 10 be processed
o Frees the returned QWB t—> ISGSDAL °
o Places purge messages on the Storage - -
con:npand request queue and POST manager ISGGWAIT Wait routine
notifies the command router _L, e Setsup to wait
°T o Frees Dynamic storage :i:::: o Branches to wait routine to
o Returns to ISGGTRMO router wait for the request to be
processed
============ﬂ ISGSDAL ¢
-] Storage
T
lnterrupt' on CTC I | manager EAVWAIT
Wait
Any [1SGJDI CTC driver DIE Il outine | ¥
Address | o Schedules ISGBSM to process | I
Space
the RSA _ll
=== §EE-_--—"_---_--
ISGGNQDQ
ISGBSM RSA send/receive —>{ " [SGGDEQP DEQ purge ENQ/DEQ/
o Places the QWBs on the process processing RESEBVE
processing
queuePOST o Dequeues a resource
* o Frees QCB8s, QELs, and QWBs |jgg——3p{ ISGSDAL
ISGGRPOD Globa! resource s
processor ;:::'
® Processes the task or address |EAQPTO1 P
space termination request h— RB past OoST
o Purges resources routine
o Notifies the requester that the ’
purge request is complete (if the IEAVWAIT
requester is from this system) I -
o Wait for more requests :v::'ttine

Figure 39. Process Flow for the Termination Resource Managar

GRS-72 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM™
Licensed Materials — Property of IBM

Usar’s Address Space | l Global Resource Serialization Address
User program | | {SGQSCAN Queue scanning service
: I ‘ o Obtains an internal buffer and a dynamic area in the RQA ISGSALC
: PC . | @ Copies the parameter list (from the GQSCAN macro) into Storage
GQSCAN I | the dynamic area and syntax checks it. (A syntax error manager
. — results in an 09A abend)
: FT I l e Starts (or resumes) the search of the LQHT and/or GQHT ‘
. for resources that have the attributes specified on GQSCAN
l I o Places the information found on the search in the internal
| | buffer-
o |f the search is complete ar the internal buffer is full, copies
I I the contents of the buffer to the user-provided area
o |f the search is not complete and the user-provided area is
| | not full, repeats these steps
o |f the search is not complete and the user-provided area is
l l full, sets the token value if token was specified
I I o Releases the internal buffer and dynamic area f—> ISGSDAL
e Returns to the caller Storage
I l manager

Figure 40. Process Flow for Queue Scanning Services

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-73

vpastricted Materials of IBM"
Licensed Materials — Property of IBM

Any Address Space I I Global Resource Serialization Address Space
SVC dump request l I
IEAVTSDU SVC dump exit I l
interface routine I I
o Processes the GRSQ request

) l

ISGDSDMP SVC dump exit |
e Establishes a recovery environment I I j—b ISGDGCBO Dump controi blocks
_PC
¢ Obtains a page of resource - o e Obtains a page of resource information,
information I I in the order listed, from the following
o Writes a page of resource information h—. IEAVTSEO gl'obal resource serialization control
biocks:
to the dump data set SVC dump _or:G \s/ 2
o Repsats these steps, for each page 1/0 routine — ASCB
of information, until all information — GVTX, GQHT, LQHT, GRPT. LRPT
isdumped =~ SAHT, RSV, and RSV entries
— Active RQA pages for QCBs, QELs,
o Deletes the recovery environment I QXBs, and PQCBs
e Returns to IEAVTSDUY ’ s e Returns to caller

Figure 41. Process Flow for Dump Support - SVC Dump

GRS-74 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Ragtricted Materials of IBM™
Licensed Materials — Property of IBM

METHOD OF OPERATION

The method-of-operation (m.o.) diagrams for the global resource
sarialization modules are named in the format "ISGxxxxx
function” and are in alphabetic ordar, with tha aexception of the
ring processing diagrams. Each ring processing diagram
documents a separate function, not necessarily a separate
module, and is named by the function documanted. The ring
processing diagrams ara first.

The processing of modules that are not documented in separate
diagrams is reflected in the diagram of the ralated function of
the module's caller. Module descriptions of all executabla
global resource serialization modules except initialization
modules follow the m.o. diagrams.

Note: Logic information, including m.o. diagrams, on global
raesource sarialization initialization modules is in
€ io e,

Method~of-operation diagrams are arranged in an
input-processing-output format: the left side of the diagram
contains data that sarves as input to the processing steps in
the centar of the diagram, and the right sida contains the data
that is output from thae processing steps. Each processing step
is numbered; the number corrasponds to an amplified explanation
of the step in the extended description area. The objact modula
name and labels in the extanded description point to the code
that performs thae function.

Note that the raelative size and the order of fields within input
and output data araeaas do not always represant the actual size
and format of tha data area.

LY28-1695-8 (c) Copyright IBM Corp. 1987 Method of Operation GRS-75

vpestricted Materials of IBM™
Licensad Materials = Proparty of IBM

Primary processing — indicates major functional flow.

Secondary processing — indicates functiofal fiow within a diagram.

Data movement, modification, or use.

Pointer — indicates that a data area contains the address of another
data area.

Connector — indicates that a diegram is continued on the next page.

SE B ;

Figure 42. Kay to Method-of-Operation Diagrams

GRS-76 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Matarials of IBH"
Licensed Materials — Proparty of I3M

LY28-1695-0 (c) Copyright IBM Corp. 1987 Method of Operation GRS-77

"pRastricted Materials of IBM"

Licansad Matarials = Property of IBM

RST
RSTID
RSTLEN

RSVENTY

ISGBTC

Send an
Immediate
ccw

R
: HH:
i ahi
g 73

Diagram GRS-1. Provide Status Information (SNAPSHOT) (Past 1 of 4)

i

GRS-78 MVS/XA SLL: GRS

LY28-1695-0

(c) Copyright IBM Corp. 1987

0-6691-82A1

LR6T °"d40) WEI 3IYBLJAdO) (3)

uoijedadg J0 poyjaly

6.~-S39

Diagram GRS-1. Provide Status Information (SNAPSHOT) (Part 2 of 4)

Extended Description Module

1 This routine is entered when the caller of ISGBCI
specified the RSCFUNCT field as RSCFSNAP. This
routine is referred to as the SNAPSHOT function and is
called by several global resource serialization modules to
get status information about the systems and CTC links
in the global resource serialization complex. ISGBCI ISGBRF
invokes ISGBRF (at entry point ISGBRFSN) to clear
the ring processing status table (RST) except for the
acronym (RSTID) and length {RSTLEN) fields.

2 ISGBRFSN updates the RSVENTY table to reflect
_ the currant status of the systems that are:
o Immediate neighbors of this system in the main ring
e Capable of responding to an immediate CCW
ISGBCI invokes ISGBRF (at entry point ISGBRFRF)
and initializes the entries in the RSVENTY table. It ISGBTC
then calls ISGBTC (at entry point ISGBTCIR) once for
each CTC that is not used to send or receive the main
ring RSA. ISGBTC sends an immediate CCW to the
system at the opposite end of the specified CTC.
ISGBTC does this by scheduling the SRB to enter .ISGBSR
ISGBSR at entry point ISGBSRRI. ISGBSR calls the
CTC driver (SENDBUF-IMMEDIATE function) fo
send an immediate CCW on the corresponding CTC.

After ISGBSR sends an immediate CCW on every

qualifying CTC, ISGBRFRF pauses to allow asynchronous ISGBRF
updating of the RSVENTY table. The following

paragraph shows that asynchronous processing.

Asynchronous Processing

ISGBSR is invoked (at entry point ISGBSRRI) once for ISGBSR
each RSAIRCD received through the CTC driver. ISGBSR

updates an RSVENTY entry with information taken

from the received RSAIRCD.

ISGBRFRF ends its pause when all responses have been = ISGBRF
received, or when a specified time has elapsed,

Labet

ISGBRFSN

ISGBTCIR

ISGBSRRI

BRFPAUSE

ISGBRFRF

«W8I 30 STRiJO}EW PAYILJIISAY,

W8I 20 AjJaododd - StRliJIIEM pasuUadd |1

0-9691-82A1 g9 :17718 VX/SAW 08-S¥9

*dao) WEI S L4AdO) ()

L8671

Diagram GRS-1. Provide Status Information (SNAPSHOT) (Part 3 of 4)

- g

input

RSVENTY

RSL

RSVENTY

)

3 -Find the status
of other systems in
the global resource
sarialization complex.

4 Put status
information into
the RST.

ISGBTC
Send
RSAIRCD

Output
RSVENTY
~
RST

HEXI 30 Ajdsdodd - STRLJDIRW pasuad}’

uHEI 30 STRLJRIEH PB3D}J3S3Y,

0-569T1-82A1

*dy0) WAI 3YBLJAdO) ()

L861

uoijedadqg 4o poyyey

78-5¥9

Diagram GRS-1. Provide Status Information (SNAPSHOT) (Part 4 of 4)

Extended Description Modute Label

3 ISGBRFRF updates the RSVENTY table to reflect the ISGBRF ISGBRFRF
current status of systems other than those covered by

step 2. Those systems are:

® Systems that are in the main ring but are not neighbors
of this system

e Systems that have besn removed from the main ring (via
the VARY GRS, QUIESCE command) and may be
incapable of responding to an immediate CCW.

If the system executing SNAPSHOT is in the main ring,
this step is a no-op. All systems in the main ring update
their RSVENTY tables as systems are added to or removed
from the main ring.

If the system executing SNAPSHOT is not in the main ring

but ISGBRFRF discovered a neighbor that is in the main ring,
it invokes ISGBRF (at entry point ISGBRFNM) to send a
series of RSAIRCD:s to the neighboring system and to check
for responses. Each RSAIRCD that is sent requests information
from a particular RSVENTY entry in the neighboring system.
Each response contains one of the following:

ISGBRFNM

o Information from the requested entry

e Information from some other entry

e Flag indicating that all entries have been sent in
previous response RSAIRCDs. When ISGBRFRF de-
tects this condition, the RSVENTY table on the system
that requested the SNAPSHOT has been updated.

Asynchronous Processing

The following processing occurs at the same time that the
processing in the previous paragraph is occuring.

Extendod Description Modute Label

ISGBRF (at entry point ISGBRFNM) calls module ISGBTC
{entry point ISGBTCIR) to send each RSAIRCD. ISGBTC
schedules an SRB to enter module ISGBSR (at entry point
ISGBSRRYI). ISGBSR invokes the CTC driver function
SENDBUF to send the RSAIRCD. The response RSAIRCD
causes the CTC driver to schedule ISGBSR (entry point
ISGBSRRI). ISGBSR then updates the RSVENTY table
with information contained in the response RSAIRCD.
ISGBSR sets field RSLICRF to show that the response
RSAIRCD has arrived so that ISGBRFNM can send the
next RSAIRCD of the series.

4 ISGBRFSN takes the system status information from ISGBRF
the RSVENTY table and puts it into the RST. The

first entry in the RST describes this system (that is, the

system executing the SNAPSHOT). Each entry in the sys-

tem section describes a system known to ISGBRFSN. Then

ISGBRFSN takes the CTC status information from the RSL

and puts it into the CTC link entry section of the RST.

Recovery Procassing

o ISGBREF (at entry point ISGBRFRF) might set flag bits
to cause its caller to re-invoke the ISGBRFRF subroutine.
Conditions that cause these flags to be set are:

® A new main ring is discovered while the ISGBRFRF
is in progress. The old main ring failed while the
SNAPSHOT function was in progress.

@ A teble overflow occurs in the RSVENTY table of
this system.

o Return code 16 indicates that the SNAPSHOT request
was unsuccessful and that communication with any
other system is impossible.

uK8I 30 STRlJd}el P8a}I|J3SaAY,

WEI 30 A3JuddoJdd — STEIJ2}RH pasuadll

1718 VX/SAW 28-539

Sy9

0-569T-82A1

L86T ‘dJ40) WEI IYSLaAdO) (2)

Diagram GRS-2. Initialize One-System Main Ring (STARTPOP) (Part 1 of 4)

Input

RSC

RSCID

RSCFLCOM

|

Process

1 Pointat the
QWB queue.

2 Assigna SYSID
to this system.

OCutput
GVT RSV
GVTPROCQ RSVADSTQ
:T
RSVSYIDT
RSVRSASC
RSAIRCD
GVT RSV

2

H3AI 40 AjJdododd — STRLJIIERY Pasuadyq

ul8X 30 STRIJIIRY PBIJ}JISY,

0-669T-82A1

*d10) WEI IYBL4AdOY (D)

L8671

£8-S¥9 uoijeJsadg Jo pPouzey

Diagram GRS-2. Initialize One-System Main Ring (STARTPOP) (Part 2 of 4)

Extended Description

This routine is called to create a ring of one system. This is
done when creating the ring for the first time (as a resuit of
the GRS=START option) and when the operator rebuilds
the main ring manually after a previous main ring failure:

Note: The internally-issued system command that auto-
matically rebuilds a disrupted ring invokes ISGBCI
to handle the function to request permission and
STARTPOP. ISGBCI invokes ISGBRF (at entry
point ISGBRFSP) to handle this request. See
Diagram GRS-3 for the processing.

1 ISGBRFSP initializes field RSVADSTQ to point to
the QWB process queue.

2 The SYSID of a system is assigned when the system

first enters the main ring and is used until an IPL is
performed on the system again. The first system to create
the main ring is assigned SYSID 1 by ISGBRF (at entry
point ISGBRFSP). Other systems are assigned a SYSID as
they join the main ring for the first time. ISGBRF (at
entry point ISGBRFSP) places the system’s SYSID into
the RSAIRCD, RSVENTY, and the GVT.

ISGBRF

ISGBRFSP

ulE8I $O STRIJIDIEH P3IVLJIISDY,

KEI 30 ArJ42dodd - STR}JBICN POSUBILT

1718 VX/SAW $8-6A9

S¥9

0-4691-82A1

L86T *d403 WEI IYBiIAdOy (9)

'Diagram GRS-2. Initialize One-System Main Ring (STARTPOP) (Part 3 of 4)

Input

Process

RSVENTY

——— 3 Cakulstothenew

RSA send count.

4 Clear any unusual event flags
and initialize the main ring.

§ Send the RSA.

Cutput

ISGBTC

Clear unusual
event flags

RSV

RSVRSASC

RSV

RSVFTESD

SRBEP

g.uneu pesuadi

uHEI O STeiJdBIRW PBIILJIISWY,,

H3I $0 A3Jadodd - STR

0-5691-82A1

L86T *du0) WEI FIYSL4AdO) ()

68-S¥9 uOijeJBd) $O POYIBY

Diagram GRS-2. Initialize One-System Main Ring (STARTPOP) (Part 4 of 4)
Extendoed Description Module Labet

3 ISGBRF (at entry point ISGBRFSP) sets the RSA

sand count (RSVRSASC) to the value of RSVRSASC
before the main ring failure plus the number of entries in
the RSVENTY table. This ensures that the new RSA send
count is unique. This is necessary to allow such systems to
correctly adjust their QWB queues when they rejoin the
re-created main ring.

4 ISGBRFSP invokes ISGBTC (at entry point ISGBTC ISGBTCR1
ISGBTCR1) to clear the unusual events. ISGBTC

posts the exception handling task using the GVTXECB

ECB, which is waited on by ISGBTC. The axception

handling task clears unusual events and turns on flag

GVTMAINR to indicate that this system is in the main

ring. It then posts the RSVR1ECB to allow ISGBTC (at

entry point ISGBTCR1) to proceed.

B ISGBTC (at entry point ISGBTCR1) places the ISGBTC ISGBTCR1
system in “one-systam’’ mode by setting flag
RSVFRNG1 and scheduling ISGBSR (entry point
ISGBSRSR) to perform the first sand-and-recsive of the
RSA. A system is in “one-system’’ moda whaen it does
not send the RSA through a CTC. ISGBTC schedules
ISGBSR (entry point ISGBSRSR) so that ISGBSR can
simulate a send-and-receive of the RSA by copying the
RSA from its output buffer to its input buffer. ISGBTC
(entry point ISGBTCR1) then returns to (SGBRF (at
entry point ISGBRFSP), which then returns to its calier.

ulE8l 4O STELJIIICN POID}JIISAY.,

HET 40 A3J2dOJd ~ STERIJIBIBK PBSUIDLT

$7171S VX/7SAW 98-S¥9

S¥9

0-669T-82A1

L86T °dv40) WAI FUSLuAdO] (D)

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 1 of 8)

input

Global Resource Serialization
VARY GRS RESTART
Request Processor (ISGCRST)

RSC

RSCID

RSCFLCOM

GVT

GVTAURST

. Process

> 1 Ensure that a main ring
is to be rebuilt.

@ Not to be rebuilt

> 2 Ensure that this system
is authorized to rebuild
a main ring.

o Not authorized

Output

ISGMSGCO0

)y

™ 1scozse

Write error

message f

¥

Return to
the caller

ISGMSGO00

Write M 1sGozse

message

¥ -

Return to

the caller

HEI 20 A)Jadodd - STRIJAIEBY PASUBDLT

aNEI $C STRIJIILIEW P8I} IISNY.,

0-969T-82A1

*dJo) WET B i4AdO) (D)

L1861

uoiLjrJ4Bdg J0 poyjsy

L8-5¥9

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 2 of 8)

Extanded Description

This routine is called to build a ring of one system; it is
invoked to process a system-issued VARY GRS (ALL),
RESTART command that ring processing issues when it
detects a main ring failure. This routine creates a ring of
one system only if it can obtain permission to do so from
the systems that were in the main ring when the failure
occurred.

1 If the RSCFLCOM flag is off (RSCFLCOM='0’), then
ISGBCI invokes ISGBRF (at entry point ISGBRFSP)
to only issue an operator message. The RSCFLCOM flag
tells ISGBCI whether or not to rebuild a main ring. If
ISGBRFSP is to rebuild a main ring then, processing
continues with step 2; otherwise, ISGBRFSP issues
message ISGO25E (_SYSTEM ERROR) and returns to
the caller.

2 ISGBRFSP checks the GVTAURST flag in the GVT

to see whether this system is authorized to rebuild a
main ring. If GVTAURST indicates that RESTART (NO)
was specified in the GRSCNF xx parmlib member, then
this system is not authorized to rebuild the main ring. In
this case, ISGBRFSP issues message ISGO25E (SYSTEM
NOT AUTHORIZED), sets a non-zero return code indicat-
ing that it did not rebuild a main ring, and returns to the
calter. If this sytem is authorized to rebuild a main ring
(RESTART(YES) was specified in the GRSCNFxx parmlib
member), ISGBRFSP continues at step 3.

Module

ISGBRF

Label

ISGBRFSP

uHEI 0 STRIJIDIBH PBID}JI2SAU.

HEI 40 A)J42doJdd - STRIJDIEN PASUII}T

:7178 VX/SAW 88-8Y9

Sy¥9

0-969T-82A1

L86T °da0) WETI IYBLtdAda) (2)

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 3 of 8)

Input Process
RSV
3 Verify that this system
RSVBGNES > is not in the main ring.
RSVENTY @ In the main ring
RSVEFMNR
RSV
" RSVBGNES > 4 Ensure that the main
ring has not already been
rebuilt.
o Main ring has
RSVENTY been rebuilt
RSVEFUUD

=

Return to
the caller

ISGMSGC0
“ Write

message

Output

¥

Return to
the caller

1SGO25E

HEI 30 A}J42dOJdd -~ STRLJI2IVW PISUIDLT

uHEI 30 STRIJBIERW PaYILUIS3Y,

0-S69F-82A1

L26T °d40) WAT IYB1IAdOY (9)

$8-6¥0 Uoijededg 30 poyisy

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 4 of 8)

Extended Description

3 ISGBREF (at entry point ISGBRFSP) checks the
RSVEFMNR field in the RSVENTY to see if this
system has already been brought into the main ring that
was rebulit by some other system. If this system has already
been brought into the main ring, ISGBRFSP sets a non-zero
return code and returns to the caller. If this system has
not already been brought into the main ring, processing
continues at step 4,

4 ISGBRF (at entry point ISGBRFSP) checks the

RSVEFUUD field in the RSVENTY to see if the main
ring has been rebuilt by some other system with this system
not being part of the rebuilt main ring. If this system is not
part of this rebuilt main ring, ISGBRFSP issues message
ISGO25E (option ALL ACTIVE SYSTEM EXISTS), sets a
non-zero return code, and returns to the caller; otherwise,
processing continues at step 5.

Module

ISGBRF

ISGBRF

Label
ISGBRFSP

ISGBRFSP

wHEI 40 STR}JDIRU PAII}JIISNY.

H3X 40 ArJBdoJid — STR}JIIRWN PASUBI|

849 :11S VYX/SAW 06-S¥9

0~-8691-82A1

L86T *d40) WEI IYB1uAdO] (9)

Disgram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part S of 8)

Input

RSV

.. ASVBGNES

Process

> 5 Send each system an RSAIRCD

RSVPRMSY

RSVENTY

RSVESYNM

" RSV

r RSVBGNES

RSVPRAMSY

RSVENTY

T T T T T

requesting permission to rebuild
the main ring.

— o Permission denied

© Process permission denied from
any system.

RSVESYNM

ﬁ 7 Process the non-responding
systems.

Output
RSV
N
V| RSVPRMSY
ISGMSG00
Write - A scozse
L./_§
ISGMSG00
I
message

W3T 0 A)IBdOJsd — STERIJIDEK PAsu3dli

aHEl 30 STERIJIIICN P3II}JIISAU,

0-969T7-82A1

L86T °dJao) WAI IYBLuAdO) (9)

uotjesadg 40 poyzey

16-5¥9

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part6 of 8)

Extended Description Module Label

5 ISGBRF (at entry point ISGBRFSP) asks permission GETNAME
to rebuild the main ring of each system that was in GETRSL

the main ring when the main ring failure occurred.

ISGBRFSP asks permission of each system one at a time,

from the highest SYSNAME to lowest SYSNAME.

This system (that is the one ISGBRF (at entry point
ISGBRFSP) is running on) gives permission to itself by
changing field RSVPRMSY of the RSV from zero to its
own SYSNAME.

This system calls the subroutine entry point ISGBRFNM ISGBRF ISGBRFNM
to request permission from another system. ISGBRFNM

sends a request-for-permission RSAIRCD to that system.

if there is no response to the sant RSAIRCD within the

required amount of time, this system calls ISGBRFNM to

send the RSAIRCD again but across some other CTC. If it

receives no response after trying all CTCs to a given targét

system, ISGBRF (at entry point ISGBRFSP) considers the

system as ‘‘non-responding.” ISGBRFSP then goes on to

process the next system identified by the next SYSNAME.

6 ISGBRF (at entry point ISGBRFSP) can receive an
indication that permission is denied to rebuild the main
ring. In this case, ISGBRF (at entry point ISGBRFSP)
receives the RSAIRCD that contins the name of the system
that is going to automatically rebuild the main ring;
ISGBRF (at entry point ISGBRFSP) then issues message
ISGO25E (PERMISSION GRANTED TO SYSTEM
sysname). Field RSVPRMSY and the text of message
ISGO25E contain the SYSNAME of the system that is
going to automatically rebuild the disrupted ring.

Extended Description Module Label

7 ISGBRF (at entry point ISGBRFSP) processes those
systems that did not respond to the RSAIRCD sent
in step B. If RESTART{YES) was specified in the
GRSCNFxx parmlib member for any non-responding
system that had completely entered the main ring before
the failure occurred, ISGBRF (at entry point ISGBRFSP)
rebuilds the main ring only if the number of responding
systems exceeds the number of non-responding systems, If
the non-responding systems all had RESTART(NO) in their
GRSCNFxx parmlib members or had not successfully
executed ISGAMRG before the main ring failure, ISGBRF
(at entry point ISGBRFSP) rebuilds the main ring only
if the number of responding systems exceeds or is equal
to the number of non-responding systems. (A system always
counts itself as a responding systems.) If the main ring is
not to be rebuilt, ISGBRFSP issuas message ISG026E
(INSUFFICIENT NUMBER OF RESPONDING SYSTEMS)
and returns to the caller with a non-zero return code indi-
cating the results of the processing of the non-responding
systems. If the main ring is to be rebullt after processing
the non-responding systems, ISGBRF (at entry point
ISGBRFSP) continues with step 8.

uN8I JO STelJd}ed pa3d}J363Y,,

HEI +0 A1J4adoJdd - STRjJIDLIEN pasusdy

1SG024!

Output

ISGMSGC0
Write

message

8 Create a one-system ring.

Process

ission to Initialize a One-System Main Ring (REQPERM) (Part 7 of 8)

Diagram GRS-3. Request P

GRS-92 MVS/XA SLL: GRS

Return to

the caller

"Rastrictad Materials of IBM"
Licensed Materials = Property of I3

LY28-1695-0 (c) Copyright IBM Corp. 1987

0-6G69T-82A1

L8361 *dd40) WEI 3IYSiaAdoy (2)

£6-S39 UOL}RJIRAQ 40 Poy3ay

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 8 of 8)

Extended Deascription Module Label

8 ISGBREF (at entry point ISGBRFSP) builds a one-
system main ring. (See the diagram *‘Initialize One-
System Main Ring (STARTPOP)” for further information
on the processing to create a one-system main ring.)
ISGBRF (at entry point ISGBRFSP) then issues message
1SG024| and returns to the caller with a return code of
zero to indicate that a one-gsystem main ring was rebuilt.

WEI 40 K;JEdOJd - STRLJI}RN pPASU3ILT

aME8I JO STR|JBIBN P33O}.I3}SaY.

0-669T1-82A1 S¥9 7115 VX/SAW H6-Sy9

*dJ0) WEI IYBL4Ad) (D)

L86T

Diagram GRS-4. Receive the RSA (Part 1 of 10)

Input

RSV

Process

RSVWLOCK

GVT

GVTMREAT

”

RSV

RSVMRRES

L

1 Update RSVWLOCK.

o |f serialization cannot
be obtained immediately.

2 Indicate that the
RSA is at this
system.

Cutput
9 | RSV
4
RSVWLOCK
ﬁ Dispatcher
GVT RSV
RSVFMRGA
RSVWLOCK

o If a main ring
failure has

occured. ————)) Oispatcher

3 Establish the RSA
residence time
interval.

Establish
time
interval

ISGBDR

KEI $0 A2143d04d — STR}JIDIBM 295U3D}T

uWEI 30 STRLJIIBW PIyD}JIsad,,

0-569T1-82A1

*da0) WEI IYS1JAdoy (9)

L861

uotje4adg jO0 poyzay

§6-539

Diagram GRS4. Receive the RSA (Part 2 of 10)
Extended Description Module Label

Entry point ISGBSM (at entry point ISGBSMR) of module
1SGBSM (at entry point ISGBSMR) is scheduled when the
main ring RSA is received and must be processed. It
executes in SRB mode, key 0, supervisor state. Recovery is
performed by module ISGBFRCV.

1 Entry points ISGBSM (at entry point ISGBSMR) ISGBSM ISGBSMR
and ISGBSM (at entry point ISGBSMSR) use

RSVWLOCK to serialize the RSV. If RSVWLOCK is in

use by ISGBSMSR, then ISGBSM (at entry point ISGBSMR)

alters RSVWLOCK and exits to the dispatcher. {(ISGBSM

(at entry point ISGBSMSR) will see the altered value and

will branch to ISGBSM (at entry point ISGBSMR) instead

of exiting to the dispatcher, when it has completed its

processing.)

If RSVWLOCK is not in use, ISGBSM (at entry point
ISGBSMR) alters the value to indicate that it is now
being used.

2 1SGBSM {at entry point ISGBSMR) changes the low

order bit of GVTMREAT from 0 to 1 to show that
the RSA is at this system. If the bit is already 1, it was set
by the missing event check routine in ISGBDR which
determined that the RSA is overdue and scheduled entry
point ISGBSRME of ISGBSR to report a main ring fgilure,
In this case, ISGBSM (at entry point ISGBSMR) ignores the
arrival of the main ring RSA, frees RSVWLOCK, and exits
to the dispatcher. .

3 1SGBSM (at entry point ISGBSMR) calls ISGBDR to ISGBDR
establish the time interval the RSA is to reside at this

system., When the interval expires, entry point ISGBDRM

of ISGBDR receives control and schedules ISGBSM (at

entry point ISGBSMSR) to send the RSA.

uHEI 3O STELJDICH POIIJI}SAY.

WEI 40 Ajyadodd — STR}JIBIEH Pasuaall

0-669T1-82A7 SAY :71IS VX/SAW 96-S¥9

*d40) WET 3YSL4ACO (D)

L86T

Diagram GRS4. Receive the RSA (Part 3 of 10)

Input

RSV

Process

Input buffer

‘ﬂﬂ

4 1f ISGBSMR is
executing after the system

has loft the main ring:

o Put an MRB for

message 1SG0131 on
the command router

queue.

o Indicate that this
system has loft the
main ring.

o Post command
router and
exception handling
task.

e Free lockword
and exit to
dispatcher.

Buitd the
command area
in the RSA.

Dispatcher

AV4

Output
RSV RSVENTY
GVT GVTX
Output buffer

WET $0 A349d404d ~ STRIJBIEN pasusayi

wHEI 30 STRIJOIBH P33IL4ISAY,,

0-6691-82A1

L86T *du40) WGI FUSLJAdO) (2)

L6-S¥9 uoijeJadp 4O poyjay

Diagram GRS-4. Receive the RSA (Part 4 of 10)

Extended Description Module

4 Flag RSVFSUBS3 is on if the system executing

ISGBSMR has just left the main ring. This occurs
when some other system has executed a SUBSYS
function to remove this system from the main ring. The
issuer of the SUBSYS function may have requested that
this system write a message to its operator; field
RSVMENTY indicates this fact. If a message must be
issued, ISGBSMR obtains an MRB, puts message
ISG0131 into it, and places it on the command router
queue,

ISGBSMR sets flag RSVFSUBS and clears field
RSVEFMNR to show that this system is no tonger in
the main ring. It then posts the command router task
and ring processing exception handling task (in module
1ISGBTC) to pass on any messages and perform any
needed cleanup. ISGBSMR then frees RSVWLOCK
and exits to the dispatcher.

B The RSA command erea, if present, follows the RSA
header. Flag RSAFURC in the header is on if the

command area is present and field RSALNCA gives the

length of the command area. Field RSASYS gives the

SYSID of the system that placed the command area in the

RSA.

A command can be initiated if the received RSA contains 1SGBSM

no command area and field RSVCRSAT is greater than

2zero; RSVCRSAT is the command type and is used to

choose a command initiator routine. Command initiation

routines are subroutines in ISGBSM named CMDIxxxx,

where xxxx is a four-tetter abbreviation of the command

type. ISGBSM changes RSVCRSAT to a negative number

to show that the command is in progress and updates the

RSA header in the output buffer to show the command

area is present. It also sats RSASYSCP in the header to

show that the first command phase is in progress and

RSVCACKR to point at the proper command continuation

routine for the command.

Label

CMDIADDS
CMDIBRCV
CMDIBSEN
CMDISENC

Extended Description

A command is continued if the received RSA contains a
command area previously built by this system. The
continuation routine can terminate the command (by
removing the command area from the output buffer and
changing RSVCRSAT to zero), advance to the next
command phase of the command (by increasing phase
number RSVCPHNO and field RSASYSCP in the output
buffer, and modifying the command area in the output
buffer), or repeat the current command phase (by leaving
RSVCPHNO and RSASYSCP unchanged and placing the
same command area that was sent into the output butfer).
Command continuation routines are subroutines named
CMDAXxxx where xxxx is a four {etter abbreviation of the
command type.

A command phase is received if the input buffer contains a
command area buiit by some other system The command
area is copied from the input buffer to the output buffer and
then a command receive routine is caljed to inspect or modify
the output buffer command area. Command receive routines
are subroutines named CMDRxxxx wheare xxxx is an
abbreviation of the command type.

Modute

Label

CMDAADDS
CMDABRCV
CMDASENC

CMDRADDS
CMDRBRCV
CMDRNONE
CMDRSENC

uldI JO STRLJIS3BW PR3I}J3sSaY,,

H3I 40 A3LEdodd — STERLJSIEH pasusd}q

118 VX/SAWN 86-S¥9

:3-D]

0-G69T1-82A1

L86T *d40) WEI FY6l4Ado) ()

Diagram GRS4. Receive the RSA (Part 5 of 10)

Input

RSV

RSVQWBSF

RSVAQWBSL

RSVADSTQ

GVT

GVTREQQ

Process Output
GVT
N 6 Move QWBs from N GVTPRCQF
v sent-queus to 14
process queue
or hold queus. GVTPRCQL
RSV
RSVQWBIF
N 7 Mova QWBs from :)
f ;m:::z;z: 0 RSVQWBIL
re-ordering them
from first-in/tast-out
to first-in/first-out. RSVQWBHF
.RSVQWBHL

HEI 40 AjJododd — STE}JIIIRY La5UIDL

ul3I JO STRiJBIRW RBIIOIJISTY,,

0-969T1-82A1

L86T °dJod WAI IYGLJAdO] (D)

66-5¥9 uoijeJedQ o poyisy

Diagram GRS-4. Receive the RSA (Part 6 of 10)

Extended Description Moduls Label

6 The sent queua contains QWBs that were in the RSA

when it was last sent. These QWBs have now been
seen by all systems in the main ring (since the RSA has
made a full circuit of the main ring), and can be placed on
the process queue (anchored by fields GVTPRCQF and
GVTPRCAQL) or, if this system is in save QWB made, the
hold queue (anchored by ficlds RSVQWBHF and
RSVQWBHL).

7 The request queue (anchored by field GVTREQQ)

is compare-and-swap serialized and is organized
first-in-tast-out. The internal queue (anchored by fields
RSVQWBIF and RSVQWBI L) is serialized by RSVWLOCK
and is first-in-first-out.

WHEL #0 STB}JIIEK PRIDIJIS3Y,

Wl 40 A3aBdodd ~ STRIJIIBH Pasuadyi

118 VX/SAW 00T-SA9

S¥9

0-9691-82A1

L86T °d40) WEI IYSi4Ada) ()

Diagram GRS-4. Receive the RSA (Part 7 of 10)

Input

Process

INPUT BUFFER

Old QWB-area
data from
this system.

QwB-area
data from
other systems

RSV

r— RSVQWBIF
RSvQwBIL
Qwss
from
this
system

=

Build QWB-area
in output buffer,

a. Remove QWB-area
data that came from
this system, and
adjust QWB counts
in RSA header.

b. Reproduce QWB-area
data that came from

other systems, from
input buffer to
output buffer,

c. Obtain QWB
control blocks
and reproduce QWB-
area data from other
gystems into the
obtained control
blocks.

d. Add new QWB-area
data from this system,
by reproducing QWBs
to the end of the RSA
output buffer. Move
these QWBs to the
end of the
sent-queus,

Output

OUTPUT BUFFER

QWB-area data
from other

4

systems

‘New QWB-area
data from
this system

RSV

ISGGQWBOo*

Reproduce
QWBs from
RSA to

f storage and
from storage

to RSA

RSVQWBSF

l RSVQWBSL

QwBes

vl B

11

HEX 0 A}J9d0Jdd - STRIJEIEHW pasSuad

uldl JO STE{JOjRW P3II|LISIY,

0-669T~82A1

*duaoy WAI IYBLaAdOY ()

L8671

uotjeasdqg JO poyley

T0T-S¥9

Diagram GRS4. Receive the RSA (Part 8 of 10)

Extended Description

8 The QWB-area contains reproductions of QWB
control blocks from systems in the main ring.
(Entry point ISGGQWB1 of object-module ISGGQWBO0

removes the QWB-area data from the RSA to the
system.) {(QWBs represent ENQ, DEQ, RESERVE
requests.) Older QWB reproductions are at the front
of the QWB-area, newer ones are at the rear.

b.

The removed data contains QWBs from this
system that have been seen by all systems in the
main ring. RSVBXQC has the amount by which
the RSA QWB-count (field RSAQWBCT in the
RSA header) is to be reduced.

The reproduced data consists of copies of QWBs
from other systems; these QWBs have not made
a complete circuit around the ring, and have not
been seen by all systems in the main ring.

Entry point ISGGQWB1 obtains QWB control-
blocks and reproduces QWBs by copying or
(optionally) uncompressing and copying QWB-
area data from the RSA to the obtained
control-blocks. All complete requests are
placed on the sent-queue {anchored by
RSVQWBSF and RSVQWSBSL). If the last
request in the RSA is incomplete, it is left
anchored in the parameter-list for ISGGQWB1;
the incomplete request will be extended or
completed when ISGGQWB1 is called after
the RSA returns,

QWBs from the internal-queue of this system
are copied or {optionally) compressed and
copied into the RSA via Ring Processing invok-
ing entry point ISGGQWBSO0. If the entire
request fits in the RSA, then the QWBs making
up that request are moved to the sent queue.

If the request does not fit in the RSA, it is left
at the head of the internal queue so that subse-
quent QWBs of the request are sent when the
RSA returns.

Module

1ISGGAQWBO0

Label

ISGGawsB1

GWEI 40 STERLJOIEN Pa1d}JIsal,

W4T 40 AjJaedodd — STERLJIBIBW pasuaall

S¥9 715 VX/SAW 201-S¥9

0-5691-8¢A1

£86T *dJo) WEI B LJAdOY (D)

Diagram GRS-4. Receive the RSA (Part 9 of 10)

Input

GVT

GVTGRPRB

Process

10

RSV

RSVWLOCK

11

If the received RSA contained

a command that must be

queued:

a. Obtain a CRB or MRB and
copy the command .

b. Place obtain CRB on
command-router queue
and post the command-
router task,

If any QWBs were
placed on the process
queue: Post ISGGRPOO
to handle QWBs on the
process-queus,

Release tockword
RSVWLOCK, and

4

POST

IEACPTO1

Branch-entry
POST

IEACPTO1

Branch-entry

exit to dispatcher

=

or branch to
entry point

ISGBSMR to
send the RSA,

Output

GVT

GVTCMDRQ

GVTCECB

RSV

RSVWLOCK

WEI 30 A33C0Ld -~ STRIJBIRH PISURIT

uN8l 40 STRIJIIBH PIFILNISIUL

0-969T-82A1

L4867 °du0) LEI IYBLJAdO) (9)

£0T-S¥9 uoljessdg o poyjey

Diagram GRS4. Receive the RSA (Part 10 of 10)

Extended Description

9 The received RSA contained a command that must be

queued if some other system did a SENDCMD via the
main ring to this system, or broadcast a command to all
main ring systems.

a. The RSA contgins a copy of the CRB or MRB to
be placed on the command-router queue.

b. Branch-entry post entry-point 1 (pointed at by
field CVTOPTO1) is used to post the command-
router task (via ECB GVTCECB) after the CRB
has been placed on the command-router queue
{anchored by field GVTCMDRQ).

10 1f any QWBs are on the process-queue, they must be

processed by object-module ISGGRPOO. This object-
module is activated by using the RB-post option of branch-
entry post. The RB used for ISGGRPOO is pointed at by
GVTGRPRS.

11 Set lockword RSVWLOCK to its available state,

Branch to entry point ISGBSMR if the lockword
was altered by ISGBSMR while entry-point ISGBSMR
was processing. Exit to dispatcher if the lockword has
not been aitered since ISGBSMR set it in step 1.

IEAVSYS0

IEACPTO

wHEI 30 STR}JIICN P31D}JI3S_Y,,

HEY 40 A}4Bd0OUd -~ STE|JDICH PISUBILT

"Rastrictad Materials of IBM™
Licansed Matarials - Property of IBM

RSAIRCD

using the main
ring RSA.

4 Send a command

2 Send 3 command
using the RSAIRCD.

N
| 4

RSC

Diagram GRS-S. Send a Command to Another System (Part 1 of 2)

i

GRS-104 MVS/XA SLL: GRS

LY28-1695-0 (c) Copyright IBM Corp. 1987

0-569T~-82A1

L8867 "du03 WAI IYBLJAdO) (2)

G0T-S¥0 uoijeJedg Jo poyzey

Diagram GRS-S. Send a Command to-Another System (Part 2 of 2)

Extsnded Descrigtion Module Label

1 1SGBCI sends a command using the main ring RSA if ISGBCI MAINSEND
the command sender and the command target are both

in the main ring. The caller indicates this by setting bits

RSCFLMRS or RSCFLBRD in the RSC that was passed

to ISGBCI.

2 ISGBCI invokes ISGBRF (at entry point ISGBRFNM) ISGBRF ISGBRFNM
to send a command using an RSAIRCD if either the

command sender or the command target is not in the main

ring. The caller indicates this by clearing bits RSCFLMRS

and RSCFLBRD in the RSC that was passed to ISGBCI.

oHEI $0 STR}JIBIEH PBID}JIISBY,,

KAl 40 A)Jdciodd -~ STRIJDIEN PASUBI|T

6349 :11S VX/SAW 90T-SA9

0-9691~-82A1

£86T *d40) WEI IYBiJ4Ado) ()

Diagram GRS-6. Send a Command Using the Main Ring RSA (Part 1 of 4)

Input

RSC

RSV

GVT

RSC

1 Initiate the request.

2 Pause repeatedly
until any of the
following occurs:

a. completion of
the request

b. expiration of
the time limit

¢. detection of a
main ring failure

Output

RSV

RSVCSYNM

RSVCRSAT

ISGBDRC

Check for
overdue
time

WEI 30 A3J2dodd — STEIJEIRY PasLdd}q

ul8l }O STRliJddIEW PE1O[JL1S3Y,

0-9691-82A1

L86T °dJ0) WEI FIYSLJAdO] ()

L01-539 wuoljededp jo poyjay

Diagram GRS-6. Send a Command Using the Main Ring RSA (Part 2 of 4)

Extsnded Description Module Label

1 ISGBCI puts the name of the system into the RSV if ISGBCI
one was specified the caller of ISGBCI. If broadcast

is requested, ISGBCI sots the SYSNAME to HEX zeroes so

that the command will be sent to all systems in the main

ring.

ISGBCI passes the request to ISGBSM. This is done by
copying input parameters into the RSV and then changing
RSVCRSAT from zero to a positive number.

Asynchronous Processsing
Note: The processing in steps 2 and 3 occurs asynchronously.

2 ISGBCI does a STIMER SVC to pausa, then it checks
exit conditions and either exits or pauses again. Each
pause is approximately equal to the time needed to send

. the RSA around the main ring.

a. ISGBSM sots RSVCRSAT to zero when it
asynchronously completes the request.
b. The time limit is exceeded when the sum of all pauses
-exceeds RSCTMLIM. ISGBCI cancels the request by
changing RSVCRSAT from a positive number to zero.
¢. ISGBC! invokes ISGBSF (at entry point ISGBSFMF) ISGBSF
to indicate a main ring failure when the main ring RSA
failed to arrive in time.

MAINSEND

ISGBSFMF

ukEIl O STR}JBIEN PBID}IISBY,

KEI 40 A3JBdOJd -~ STR}JIBIRW POSUBILT

"Restrictad Materials of IBM"
Licensed Haterials — Propzrty of IBM

ISGBSM
Receive

the
RSA

it with the command

RSA and update
to be sent.

3 Receive the

Process

RSA

RSV

Diagram GRS-6. Send a Command Using the Main Ring RSA (Part 3 of 4)

input

GRS-108 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

Diagram GRS-6. Send a Command Using the Main Ring RSA (Part 4 of 4)

Extended Description Module Label

0-9691-82A1

£86T *d40) WAI IYBLuAdo) (9)

uotlyedadg jo poyzop

601-S49

3 ISGBSR executes as an SRB that is scheduled by the ISGBSR CMDISENC

CTC driver whenever the RSA is received. ISGBSR
places a command in the RSA and updates the RSA
header to show that a command is present. ISGBSR
subsequently sends the RSA. ISGBSR reports the com-
mand as complete (by setting RSVRSAT to zero) when
the RSA returns after making a full circuit of the meain

ring.

Once ISGBCI exits from the loop or pauses described in
step 2, it passes the return code to the caller.

ISGBCI

wHEI }O STR}Jajel paj3dlJ3say,,

WEX 30 A1JadoJd — STRLJIIEN pasuasyq

¥ 7118 VX/SAW 0TT-S¥9

0-6569T7-82A1

£86T *da0) WAI FYSLJAdO) ()

RSL

Input
RSC
RSCCMDAD |- CRB
CRBSYSNM
CRBRSOPT

RSLSYNM

RSLSYTK

RSLFCOS

Diagram GRS-7. Send a Command Using the RSAIRCD (Part 1 of 4)

Process

1 Initislize the
RSAIRCD to be

ﬂ sent to the target
system,

2 Choosearing

‘> processing system

link block (RSL) for
a CTC connected to
the target system.

RSAIRCD

HEI J0 A}J3dodd -~ sTRIJEIER pasusd

uMlEI JO STELJIDIRY PBLI}JIIS3Y,,

0-669T-82A1

L8ET *€40) WAL IYS14AdO) (9)

TTI-539 Uuoijedsady so0 poyzey

Diagram GRS-7. Send a Command Using the RSAIRCD (Part 2 of 4)

Extendod Description Module Label

The entry point ISGBRFNM (in ISGBRF) is invoked by
ISGBCI to be entered in any of three situations:

‘a. The system sending the command is outside the main

ring and is trying to enter the main ring. In this case,
field RSCSCSFN of the ‘send-command’ RSC has value
RSCRADDS=4. The target system (system receiving

the command) must be in the main ring and it must

issue the ADDSYS. The ADDSYS (on the target system)
and the SENDCMD (on the sending system) complete
successfully if the sending system enters the main ring.

b. The system sending the command is in the main ring
and is sending the command to a target that is outside
the main ring. In this case, field RSCSCSFN of the
‘send-command’ RSC has value RSCRSNAD=12.

The targot system must issue the SENDCMD-
RSCRADDS. The sending system will then complote
its SENDCMD-RSCRSNAD and issue ADDSYS.
ADDSYS and SENDCMD-RSCRADDS complete
successfully if the target system enters the main ring.

c. The system sending the RSAIRCD is requesting

permission to rebuild the main ring. The target system
denies permission to rebuild the main ring if it knows
that some other system is already rebuilding the main
ring; otherwise, the target system grants permission.
The target system updates the RSAIRCD to indicate
whether it granted or denied permission to rebuild the
main ring and then sends the RSAIRCD back to the
requesting system.

Extended Description

The ISGBCI RSAIRCD buffer via entry point

ISGBRFNM (pointed to by RSVBCIBF) is initial-
ized with the identity and status of the sending system
and with the system name and command options;
(RSACSYNM and RSACRSOP) of the command that
was passed to ISGBCI.

2 The most-preferred RSL is the RSL most recently used
by the target system to sand a command to this system.

If no such RSL exists, ISGBCI chooses any eligible RSL.

An RSL is eligible if it goes to the target system, is not

offline because of a previous hardware/software error, and

is not used to send or receive the main ring RSA.

If ISGBRFNM is requesting permission, entry point
ISGBRFSP (in ISGBRF) and subroutine NMGETRSL
choose the RSL.

Modute
ISGBRF

Label
ISGBRFNM

ul8I JO0 STRlJB}EN PBII}JISIY,

W91 J0 Kjuedoud -~ STRjJIBIERY PASUAILT

SA9 :11S VX/SAW 2TT-SA9

£861T 'd40) WEI IYBLJAdo] (D)

0-6691-82A1

Diagram GRS-7. Send a Command Using the RSAIRCD (Part 3 of 4)

Process

input
RSL GCB
GCBABUF
RSAIRCD
RSV
RSVBCIBF | —» RSAIRCD

3a.

3b.

3e.

Repeatedly send an
RSAIRCD to the target
system and call a
subroutine to examine
the response from the
target.

Terminate this loop when
any of the following occurs:

o the subroutine
reports completion

® the subroutine
reports failure

e the caller-specified
time {imit expires

1f the sending

system is entering the
main ring, use
subroutine RESPFSA
to examine the response.

If the sending

system is telling the
target system to enter
the main ring, use
subroutine RESPFSC
to examine the response.

If the sending system is
requesting permission to
rebuild the main ring use
subroutine RESPFRP
to examine the response.

ISGBTC

Cutput

Send
RSAIRCD

RSV

SAIRCD

RSVBCIBF

RSVENTY

RSV

RSVPRMSY

HET JO AYdododd —~ STE}JELIRN PBSUIILT

wHEI 30 STR}JIICN P33D}J43S3Y.

0-669T-82A1

*duyo) WEI FYSLdAde) ()

L8671

uotjedadg ;0 poyzey

£11-53¥9

Diagram GRS-7. Send a Command Using the RSAIRCD (Part 4 of 4)

Extended Description Module

3 The RSAIRCD that is to be sent is placed in the I1SGBCI
RSAIRCD buffer pointed to by RSVBCIBF. The

response RSAIRCD is read into the buffer owned by the

RSL being used. The entry point (ISGBCFNM) that

is called can modify the RSAIRCD that is being sent,

during the subsequent loop, and can also detect a

failure in the target system. The RSAIRCD is sent

and the response is received asynchronously. Entry

point ISGBTCIR of module ISGBTC is called to

initiate this process.

ISGBCI loops and pauses repeatedly (via STIMER-WAIT)
until the response arrives. The called entry point can
request that another RSAIRCD be sent or that the loop
be terminated.

a. Subroutine RESPISA in ISGBRF repeatedly sendsa ISGBCI
SENDCMD-RSCRADDS RSAIRCD until the response
indicates that the target system has issued an ADDSYS.
The REPLSH subroutine then modifies each successive
RSAIRCD so that the target system returns an RSVENTY
entry in each RSAIRCD. This allows the RESPESA sub-
routine to update its RSVENTY table to match the
RSVENTY table of the main ring systems. The
RESPFSA subroutine also compares its saved send count
(RSVRSASC) to the vatue saved by the main ring. This
comparison tells subroutine CLNUREJN how to adjust
QWB queuss to match QW8 queues in the main ring.

After the RSVENTY table is updated, subroutine
RESPFSA prepares to receive the main ring RSA and
sends its last RSAIRCD to the target system indicating
that it is ready to enter the main ring.

b. Subroutine RESPFSC repeatedly sendsa SENDCMD-
RSCRSNAD RSAIRCD untif the response indicates that

the target system has issued SENDCMD-RSCRADDS. Sub-

routine RESPFSC then tells ISGBFNM (entry point in

ISGBRF) to stop sending the RSAIRCD and to return

to the caller of ISGBCI.

The target system continues to repeatedly send a SENDCMD-
RSCRADDS RSAIRCD and the cailer of ISGBCI in the
RESPFSC system subsequently calls ISGBCI for the
ADDSYS function.

Label

RESPADDS

Extended Dascription

c. Subroutine RESPFRP examines the response

RSAIRCD to determine whether the target system
granted or denied permission and updates the RSVPRMSY
field of the RSV to reflect whether permission was granted
or denied.

Return codes
The return code of ISGBCI may indicate:

a. success

b. failure due to hardware/software error in
communicating to target system

c. failure due to some condition in the target
system (e.g. the target of the SENDCMD-RSCRADDS
was unable to build a main ring containing the sending
system)

d. failure due to expiration of the time-limit

Module

Label

wWE8I 10 STRLJBYIEY PBIILJLISBY,

WEI #0 A3143dOJd — STRIJBIEH Pasuasyq

S¥9 715 VX/SAW HTT-SU9

0-969T-82A1

£86T *d403 WAI FYSLJAdO) (9)

input

RSC

Diagram GRS-8, Send Data to Another System (Part 1 of 4)

RSCFUNCT

RSCFBSEN

RSV

GVT

AV

RSC

1 Pass request

to ISGBSM

ASYNCHRONOUS
PROCESSING
(Steps 2-6)

Pause repeatedly
until any of the
following occurs:
a. completion of
the requast

b. expiration of the
time fimit

¢. detection of a
main ring failure

T ISGBDRC

Check for
overdue
time

KEI 40 Ajuaddodd - STR}JIIRN pBsuaay

uH81 JO STRIJGIEW P3}I}J1SOY,,

0-9691~-82A1

L86T °"dJo) KAI IYBLIAdO) ()

STT-S¥9 uojjmuedg 40 poyjey

Diagram GRS-8. Send Data to Another System (Part 2 of 4)

Extended Description Modute Label

1 ISGBCI places the address and length of the buffer in ISGBCI MAINSEND
the RSV and then passes the request to ISGBSM by
sotting RSVCRSAT to a positive number.

Asynchronous Processing
Step 2 and steps 3, 4, and 5 occur asynchronously.

2 [ISGBCI does an STIMER SVC to pause then it checks

exit conditions and either exits or pauses again. Each
pause is approximately equal to the time needed to send
the RSA around the main ring.

a, 1SGBSM sets RSVCRSAT to zero when it
asynchronously completes the request.

p, The time limit is exceeded when the sum of all pauses
exceeds RSCTMLIM. ISGBCI cancels the request by
changing RSVCRSAT from a positive number to zero.

c. ISGBCI invokes entry point ISGBSFMF to indicate ISGBSF ISGBSFMF
a main ring failure when the main ring RSA failed
to arrive in time.

ulN8I 40 STRIJIJCN POYJLJISAY,,

W8I 40 Ajuedoud — STRLJIIEY PASUBD}T

0-6691-82A1 SU9 716 VX/SAW 9TT-Sd9

*d10g WAI IYBL4Ado] (9)

L8671

Diagram GRS-8. Send Data to Another System (Part 3 of 4)

Input

BUFSEND
buffer

Process

3 Copy data into
RSA when the
target system does
a BUFRECV.

4 Terminate the
BUFSEND
function.

Output

RSA

MEI 30 A)}Jadoad — STRLIJIDIEK Pasuadii

wHEI $0 STRIJBIBR paidlJysay,

0-569T-82A1

*d10) WEI IYBLIAdO) (2)

L36T

uoijeJad(JO poyzey

LIT-SY¥O

Diagram GRS-8. Send Data to Another System (Part 4 of 4)

Extended Description

The received RSA may indicate that the target of the

BUFSEND function is currently executing a
BUFRECYV function. If so, ISGBSM updates the RSA to
contain data to be sent to the target system. If not, the
BUFSEND request remains outstanding until the target
performs a BUFRECV, the time limit expires, or the main
ring fails.

4 If the system receiving the data has indicated that all
of the data has been received, ISGBSM then
terminates the BUFSEND function.

Module

Label

wHEI JO STelJd} BN PBYI|JISAY,

W8T 30 A}u3dodd — STRLJIBIEN pAsuadl

"pestricted Matarials of IEM"™
Licensed Materials = Property of IBM

.m]
S 25
w I
m , mmm i
’ gged £s
m P
i iz H '
M
i
g
Qa
..w ;
) 8
1 1

GRS-118 MVS/XA SLL: GRS . 1Y28~-1695-8 (c) Copyright IBM Corp. 1987

0-969T-82A1

L86T *d40) WAI 3YSidAde) (9)

uoijeandg 30 poyjzay

611-S¥9

Diagram GRS-9. Receive Data from a System (Part 2 of 2)

Extended Description Module

1 ISGBCI places, into the RSV, the address and length 1SGBCI
of a BUFSEND buffer that is to receive data and the
SYSNAME of the system that must send the data.

2 ISGBCI! sets the address and length of the buffer it
expacts to receive. ISGBCI passes the request to
ISGBSM by changing RSVCRSAT to a positive number.

3 When the RSA is received, ISGBSM updates the RSA

with a BUFRECV marker to show that this system is
performing a BUFRECV and then sends it around the main
ring. When the RSA returns, it contains either the data
from the target or an indication that the target has not
performed a BUFSEND. If the RSA contains data, the
data is removed from the RSA and copied into the
BUFSEND buffer, iIf the RSA contains no data, ISGBSM
updates the RSA to remove the BUFRECV marker and
sends the RSA. When the RSA returns, the BUFRECV
marker is put in the RSA again and the process is repeated.
This process is repeated until ISGBCI detects that a time
limit has expired and cancels the request by changing
RSVCRSAT back to zero.

4 1SGBSM terminates the BUFRECV function by setting
a return code (and placing the length of the received
data} in the RSV and changing RSVCRSAT to zero.

Label

MAINSEND

uHiI 30 STElJDICN PE}I}JIISDU,

HRI 40 A3J2dodd —~ STRjJBICN PasSUBdL1

$116 VX/SAW 02T-S¥9

s¥9

0-969T-82A1

L86T *d40d WAI IYSiuaAdo) (2)

Diagram GRS-10. Leave Save QWB Mode (Part 1 of 2)

Input

Process

Saved QW8Bs

RSA

M

Get the global
resource serialization
local tock.

Place the saved
QWBs on the
process queue.

Roleass the
local lock,

Inform other main
ring systems that
this system is
leaving save QWB
mode.

1SGBSR

ISGBBE

Entry
point

Output

RSVENTY

H3I JO A1J3dodd - STRIJOIEN pAsuUBd}

w3l 40 STR}JOJEH POIOLIIER,

0-5691-82A1

L86T °du0) WEI IYBLJAdO) ()

T21-S39 uotjesedg 30 poyisy

Diagram GRS-10. Leave Save QWB Mode (Part 2 of 2)
Extended Description Modute Label

1 [ISGBSF (at entry point ISGBSFDP) obtains the local ISGBSF ISGBSFDP
lock of the global resource seralization address space.

The iISGBCI SERRELS function is used to cause a system
to leave save QWB mode.

2 ISGBSF (at entry point ISGBSFDP) puts the saved
QWBs on the process queue via a call to the ISGBBE
entry point of module ISGBSR.

If the process queue is empty, ISGBBE moves the QWB
string into the process queue, If the process queue is not
empty, add to the QWB string to the end of the process
queue.

3 ISGBSF (at entry point ISGBSFDP) takes the system
out of ‘save-QWB’' mode and releases the local lock.

4 The RSA is used to inform all other main ring systems
that this system has left save QWB mode. Each system
updates its RSVENTY table to reflect this fact.

ulN8I 40 STRIJIIICUH PAJO}JIISBY,

WEI 30 £A3.19c04d - STR}JIICH POSUDDLT

SYD :711S VX/SAW 22T-SA9

0-9691-82A1

L88T °dJ0) WAI IYSLJAdO) (9)

Diagram GRS-11, Send the RSA (Part 1 of 4)

f

RSV

RSVWLOCK

RSV

RASVFRANG1

RSVQWSBIF

RSVQWSBIL

RSVOBFOR oo

RSA output buffer

Process

Output

1 Undate the RSVWLOCK.

2

3

Calculate the

time when the
main ring RSA
should return.

1f this system
is the only system
in the main ring:

e Move GWBs from
the internal queue to
the sent queue

o Simulate the
immediate return
of the main ring
RSA

RSV

RSVWLOCK

GVT

GVTMREAD

GVTMREAT

RSV

RSVIBFOR

RSVWLOCK

RSA input buffer

WEI 40 A}J8dodd - STRLJ21ABN RBSUS3}1T

ul8I JO STRIJBIEW P3JO}JAISIY,,

8-969T~-82A1

*d10) WAT IYB14AdO) (D)

L8617

uotjeuddg 40 poyley

£2T-Sq0

Diagram GRS-11. Send the RSA (Part20f 4)"
Extended Description

The main ring RSA is sent by entry point ISGBSMSR of
module ISGBSM. This module executes in SRB mode,
key 0, supervisor state. Recovery for this function is
provided by ISGBFRCV.

ISGBSMSR is scheduled by entry point ISGBDRS of
module ISGBDR when a time interval expires. This time
interval is called the main ring RSA residence tims.

1 RSVWLOCK is used to serialize between entry
points ISGBSMSR and ISGBSMR. If RSVWLOCK

is still in use by ISGBSMR, then ISGBSMSR alters

RSVWLOCK and exits to the dispatcher. {Entry point

ISGBSMR will see the altered value and will branch to

ISGBSMSR instead of exiting to the dispatcher, when

it has completed its processing.

If RSVWLOCK is not in use, ISGBSMSR alters it to
show that it is now in use.

2 If this system is no longer in the main ring,
ISGBSM frees the resources (including the RSV
lockword RSVWLOCK), and exits to the dispatcher.

Assuming this system is still in the main ring, ISGBSM
field GVTMREAD with the number of miliseconds needed
for the main ring RSA to make a full circuit of the main
ring. ISGBSM also sets field GVTMREAT with the time
when the RSA is being sent from this system and clears
the low order bit of GVTMREAD to indicate that the
main ring RSA is no longer at this system.

3 Flag RSVFRNG1 ison wﬁen this system is the only
system in the main ring.

o [SGBSM moves the QWBs from the internal queue to
the sent queue so that the QW8s will be moved from
the sent queue to the process queue when ISGBSMR
is subsequently entered.

e |ISGBSM simulates the immediate return of the main
ring RSA by copying the RSA from the output buffer
into the input buffer and altering RSVWLOCK to
show that the RSA has been received. This simulates
the system sending the RSA to itself and the RSA
returning to this system as soon as it is sent.

Module

1SGBSM

Label

ISGBSMSR

uWEI JO STE|JBIEN PAID}JIISAY,,

W8I 30 K3JBdOJUd ~ STRIJBIBH PASUDI}T

89 118 VX/SAW $2T-5¥9

0-969T1-82A1

L86T "dJy0) WEI IYSLJAdO) (2)

Diagram GRS-11. Send the RSA (Part 3 of 4)

Input

Process

RSV

GCB

RSV

RSVWLOCK

Output

4 f this system is
not the only system
in the main ring:

o Give the RSA input
buffer to CTC driver

RSV

RSVWLOCK

ISGJFE

d—rb

Place buffer
on GCL
.read queue

o Send the RSA
output buffer

ISGJFE

Get and
initialize
the write
10s8 -

5 Update the RSVWLOCK.

R8I 40 AjJdedodd - STRIJBIEH [EasudalT

uHEI }O STR|JBIEW Pa3d}JiSed.

0-4969T-82A1

"d40) WEI IYBL14AdO) (D)

L86T

§2T-6¥9 uoljesedg 30 poyjey

Diagram GRS-11. Send the RSA (Part 4 of 4)

Extended Description

4 If the main ring contains two or more systems, the
RSA must be sent using the CTC driver.

8. RSVGCBIP points at the RSA input GCB. The GCB
is pre-initialized so the CTC driver will schedule entry
point ISGBSMR when the RSA has been read into the
RSA input buffer,

b. RSVGCBOP points at the RSA output GCB. The GCB
is pre-initialized so the CTC driver will send the RSA
from the RSA output buffer.

5 ISGBSM branches to ISGBSMR if RSVWLOCK

indicates that ISGBSMR was dispatched while
ISGBSMR held RSVWLOCK. (This can occur if the
RSA returns before ISGBSMR exits or if this system is
the only system in the main ring.)

ISGBSMR exits to the dispatcher if RSVWLOCK indi-
cates that ISGBSMR has not been dispatched yet.

Modute

ulE1 $0 STRlJOJEW POYI|IISDY,,

REI 30 AjJ4adodd - STERLJBIEN PASUBDLT

921-S¥9

118 VX/7SAN

SO

0-9691-82A1

"d40) WEI IYBLJAdD) ()

L8671

Diagram GRS-12. Send the RSAIRCD (Part 1 of 6)

input

Register 1

RSL

RSLINTSN

RSLTMSND

RSV

RSVBCINM

RSVBCIBF

RSVR1ECB

RSAIRCD

Process

_: > 1 Wait for the target system

to send an RSAIRCD to
this system,

2 Post the ring processing
exception-handling task.

Output

U

GVTX

RSV

GVTXJECB

RSVFMF

WAL 30 A3dudodd - STR}JDISW POSUDI}T

uHE1 JO STRLJIBIEN PIIOLJISAY,

0-869T1-82A1

£86T °d40) WGI IYBi1YAdo)y (9)

L2T-C¥9 uoijwuadQg jo poyzdy

Diagram GRS-12. Send the RSAIRCD (Part 2 of 6)

Extended Description Module Label

Entry point ISGBTCIR of ISGBTC is called to send an
RSAIRCD. ISGBTC determines whether to schedule entry
point ISGBSRRI of ISGBSR, or to do nothing and allow
the CTC driver to schedule ISGBSRRL.

ISGBTC also performs special processing when it is sending
an RSAIRCD in order to enter the main ring.

1 |f the target system is expected to send an RSAIRCD, ISGBTC ISGBTCIR
pause to wait for it. The target system is expected to
send an RSAIRCD to this system when all of the following
conditions are met:
o RSLINTSN is non-zero (that is, the arrival of the
RSAIRCD is not overdue)
@ The current time is not later than the time when the
RSAIRCD was sent plus RSLINTSN milliseconds plus
GVTOLINT mitliseconds.

When this system receives the RSAIRCD, ISGBSR (entry
point ISGBSRRI) updates the RSAIRCD and sends it back
1o the target system.

ISGBTC does not schedule ISGBSR to send the RSAIRCD.
ISGBTC determines whether the RSAIRCD has been sent by
checking whether RSLTMSND (the time when the
RSAIRCD was sent) has changed since control was passed

to ISGBTC.

2 1f this system is sending the last RSAIRCD before en-

tering the main ring, ISGBTC (entry point ISGBTCIR}
is called under a task other than the ring processing excep-
tion-handling task.

The exception-handling task must clear unusuai events and
set status flags to indicate that the sending system is in the
main ring. This is done by setting flag RSVFMF and post-
ing ECB GVTXJECB to awaken the exception-hanrdling
task. The exception-handling task clears RSVFMF and
posts RSVR1ECB when it has performed the request.

uHdI JO STRjJOIRH PBID}JISBY.,

NEL 40 A3Jdcd0Jdd - STRIJAJRY pPasSuUdd}

$11S VX/SAW 82T-S¥9

Sy9

8-669T7-82A1

£86T °dJ40) WEI IYBLJAdo) (9)

Diagram GRS-12. Send the RSAIRCD (Part 3 of 6)

Output

input
RSL GCB
Gca
Register 1
GCB RSL
RSV

|

——-—> 3 Get the RSL-owned buffer
and GCQ.

4 Schedule ISGBSR.

ASYNCHRONOUS PROCESSING

8 If ISGBSR was scheduled
by ISGBTC:

® Give the CTCdriver
a buffer for the expected
response to RSAIRCD.

o Send the RSAIRCD
from the buffer.

ISGJFE

Remove
GCQ from
the GCL
queue,

ISGJFE

Put a buffer
on the GCL
read queue.

& =

Get and

initialize
the write
10sg

W8I 30 A319dodd — STR}JBIBN Rasuad}i

ulgl 0 STRiJL3JeH PBII}IISIY,,

0-5691-82A1

L86T *d40) WEI FUBLIAdOY ()

uojeundg Jo poy3ay

62T-SA9

Diagram GRS-12. Send the RSAIRCD (Part 4 of 6)
Extended Description Module Label

3 Each RSL owns a GCQ (pointed to by field ISGJFE ISGJTKBF
GCBAGCQ of the GCB that follows the RSL). Field

RSLBFCTC indicates whether this GCQ (and the associated

buffers and GCB) have been given to the CTC driver. If the

CTC driver has the GCQ, ISGBTC calls ISGJTK to get the

GCa.

4 Field RSLWLOCK is set to 31 to show that ISGBTC

scheduled ISGBSR to send the RSAIRCD. An SRB is
built in the RSL-owned GCB and is scheduled to cause
ISGBSR to execute asynchronously. Return code O indi-
cates ISGBTC has scheduled ISGBSR.

;fl\e following processing occurs asynchronously to the
task that cafled ISGBTC (entry point ISGBTCIR).

§ ISGBSR at entry point ISGBSRRI is dispatched as an ISGBSR ISGBSRRI
SRB routine. The SRB may have been scheduled by
ISGBTC (indicated by an RSLWLOCK value of 31), by the
global resource serialization CTC driver when a send com-
pletion occurs {indicated by flag RSLFSIP being on when
ISGBSR is entered), or when the CTC driver receives a mes-
sage. Register 1 points to the GCB that immediately fol-
lows the RSL used by ISGHSR.
o The RSAIRCD is being sent for ISGBC| when the RSV
tield RSVBCIMM points at the RSL used by ISGBSR.
In this case, ISGBSR gives the CTC driver the RSL-
owned buffer and GCB for future use in reading the re-
sponse RSAIRCD from the target system,

o If the send is being done for ISGBCI and it is sending ISGJFE ISGJSNBF
the last RSAIRCD before entering the main ring,
ISGBSR gives the CTC driver the main ring RSA input
buffer (pointed to by RSVIBFOR) using the main ring
input GCB (pointed to by RSVGCBIP) and GCQ.

If the send is being done for ISGBCI, the RSAIRCD is

sent using the ISGBCl-owned GCB. When ISGBCI is send-
ing an immediate CCW, it will have set flag GCBFSNIM in
the 1ISGBCl-owned buffer. RSLFSIP is set before calling
the CTC driver. The CTC driver will schedule ISGBSR
when the send is complete.

ulEI 3O STRIJIBIRN POIILJL}60Y,

HEI #0 A3J3d0Jd — STRIJBIRW Pasuadli

SAD 718 VX/SAW 0E£T-S¥9

0-569T-82CA1

L86T °du0) WAI IYBLUAdO) (D)

Diagram GRS-12. Send the RSAIRCD (Part 5 of 6)

Input

Output

RSL

RSLFSIP

]|

m— [

If ISGBSR must handle
a send completion, give
the RSL-owned buffer
to the CTC driver.

ISGJFE

Put a buffer
on the GCL
read queue.

Process

RSL

RSLFSIP

RSLWLOCK

HEI 30 A}J49dodd — STRIJEIEN PASUBIT

uHEI JO STE}JBIEBH PR3ID1J3SAUL

0-9691-82A1

*dJ40) WEI IYBL4AdO) (2)

L861

uoijeJ4Bd(40 poyjel

T€I-S¥9

Diagram GRS-12. Send the RSAIRCD (Part 6 of 6)

Extended Description Modute

6 A send completion occurs if the RSAIRCD was previ- ISGJFE
ously sent with the RSL-owned buffer. The

RSL-owned buffer is given to the CTC driver so it can be

used to read any RSAIRCD sent by the remote system.

Label

ISGJGVBF

uHEI 30 STE|J2IEN Pa1d}J}SaY,

WEI 30 AjJadodd - STERLJIDIBY pasuaal

“Ragtricted Materials of IBM™

Licansad Materials = Property of IBM

CRB

Cutput

RSAIRCD

RSAIRCD

ISGJFE
Send
back

Initialize the CRB.

Process
1

2 Put RSVENTY
information into
the RSAIRCD.

back.

3 Send the RSAIRCD

-

RSVENTY

Diagram GRS-13. Receive the RSAIRCD (Part 1 of 2)

Input

GRS-132 MVS/XA SLL: GRS

LY28-1695-0

(c) Copyright IBM Corp. 1987

0-6691-82A1

*da0d Wgi FYBL4Ado) (9)

L8671

uotjedsedg ;0 poyjsy

£€T-5¥9

Diagram GRS-13. Receive the RSAIRCD (Part 2 of 2)

Extended Description Module Label

1 1 the RSAIRCD contains a command (field ISGBSR
RSACCMDCB is non-zero), ISGBSR gets a CRB

from the GRS storage manager (entry point ISGSALC) and

copies data from the RSAIRCD into the CRB. ISGBSR

places the CRB on the command router queue and posts

the command router.

If flag RSAIFIDR is on, ISGBSR copies the
RSVENTY information into the RSAIRCD. Field
RSACTBIX indicates which RSVENTY is to be copied

3 ISGBSR sends the RSAIRCD using the RSL-owned ISGISNBF ISGJSNBF
buffer via a call to ISGJSNBF. Then exits to the
dispatcher,

ulEI J0 STRIJIIEN PBIOLJISBYL

WEI #0 A3I9d0Jd — STRLJIBIRH pasuas)l

Diagram GRS-14. ISGCDSP — Global Resource Serialization DISPLAY GRS Request Processor (Part 1 of 6)

From the command router (ISGCMDR) or
the command Interface (ISGCMDI) if ISGCMDR

0-G9691-82A7 SUD 778 VX/SAW HET-SAD

*dJ0) WEI IY614AdO] ()

L861

Input is not operational Process Output
Register 1
Parmlist J> 7 Perform initialization. CEPL CRWA
4 CRB CEPLCRWA CRWALMOD
CRB CEPL CRWACSCT
CRBCEPL CEPLCRWA CRWAFID
CRWAMID
CRBDSOPT CMPL CRWAAB15
crecmpL ¥V CMPLMSRV _:> 2 Obtain storage and build the
control line, Control fine
CRBRST CMPLTIME
RST
Header
System
entries
Link
entries
RNL header
RNL entry
:) 3 If an RNL display is requested,
GVT build a label line. Build any of RNL entry
GVTSERNL Systems exclusion’ the following items that are
RNL requested: RNL entry
GVTSIRNL
GVTRCRNL “System inclusion — System inclusion RNL RNL entry
RNL display
— Systems exclusion RNL RNL entry
Reserve conversion display
RNL — Reserve conversion RNL
display

WEI 20 A)JBdodd — STERIJSIEN PASUBI}T

ulE8I $0Q STRIJVAIRY PBIDLJ1SOY,,

0-G69T-82A1

L86T °duo) WEI IYBLJAdo) ()

GE1~S¥9 UuO3}audd) 30 poyjey

Diagram GRS-14. ISGCDSP — Global Resource Serialization DISPLAY GRS Request Processor

Extended Description

1SGCDSP processes global resource serialization DISPLAY
GRS status requests and produces the |SG0201 message.
The global resource serialization command router
(ISGCMDRY) attaches ISGCDSP when it finds a command
request block (CRB) for a DISPLAY GRS request on the
global resource serialization command request queue. (f
communication with ISGCMDR is not possible ISGCMDI
attaches ISGCDSP.

1 ISGCDSP initializes a command request workarea
(CRWA) with recovery information and places it on
the CRWA queue,

2 ISGCDSP calls IEECB80S at entry point MSGSERV
to obtain storage to buiid a control line containing a
time stamp and the message text.

3 Foran RNL oran ALL request, ISGCDSP builds a

display for the requested RNLs. ISGCDSP obtains
the RNL contents from the SQA and invokes IEECB808
to get storage for a line. Thedisplay consists of alabe! line
for each entry in the RNLs that are to be displayed.

Module Label

tEECB808 MSGSERV

IEECB808 MSGSERV

uldI O STejJIBIRW PALD}JISAYL

HEI #0 A3J3doud — STRIJ8}RK Pasuadll

Diagram GRS-14. ISGCDSP — Global Resource Serialization DISPLAY GRS Request Processor (Part 3 of 6)

S¥9 :11S VX/SAW 9£1-S¥O

0-669T-82A1

*dae) WEI IYBLJAdOY ()

L861T

5 f aresource display is re-
quested by a

— gname, build it

— resource, build a resource/

requestor display

RESTART
Register 1
Parmlist
f CRB.
CRB CEPL
CRBCEPL / CEPLCRWA
CRBDSOPT CMPL
CRBCMPL: CMPLMSRV
CRBRST- CMPLTIME
RST
" Header
Link
entries
System .
entries .

— :> 6 1f a system display is re-

quested, build the label

line and the data lines.

Input Process. Output
GQSCAN buffer
Resource line
QMERGE puns 4 If the resource contention
display I requested, buitd it. > Header line
Requestor line

Requestor line

Qname's header

Qname’s hoader

Resource line

Header line

Requestor line

-(:ontro! line

System label
line

System data
lines

WAL +0 AIJNBdCId ~ STRIJOICH PIsSUad}T

a8l JO STeiJddIRY PBYJLJIIS3Y,

0-6697-82A1

4103 WEI IYSL4Adoy (D)

L86T

uotjeaadg 10 poyysy

LET-S¥O

Diagram GRS-14. ISGCDSP — Global Resource Serialization DISPLAY GRS Request Processor (Part 4 of 6)

Extended Description

4 Fora CONTENTION or an ALL request, ISGCDSP

builds a display of all resources that have requestors
that are waiting for the resource. ISGCDSP issues a
GQSCAN macro to obtain resource contention information
and invokes | EECB808 to get storage for aline. Thedisplay
consists of two label lines for the resource name, one label
for a requestor header line, and one data line for each re-
questor of the resource. This is repeated for each resource
that has requestors waiting for the resource.

B For a RES request that is a gname’s only request,

ISGCDSP builds a display that contains all the gnames
that match the request. ISGCDSP issues a GQSCAN macro
to obtain resource information for the request. Thedisplay
consists of a header (label) line followed by enough data
lines to contain all the gnames that match the request, at
eight gnames per data line.

For a RES request that is a resource request, a resource
display is built for all resources that match the request.
ISGCDSP issues a GQSCAN macro to obtain resource
information for the request and invokes IEECB808 to get
storage for a line. Thedisplay format is the same as that for
a CONTENTION request.

6 For SYSTEM or ALL requests, ISGCDSP builds a

label line and then a data line, describing two systems,
for each pair {or single) of SYSTEM entries in the ring
status table RST. While building the message, ISGCDSP
calls IEECB808 at entry point MSGSERYV to obtain
storage for each line prior to building the line.

Module

|IEECB808

IEECB808

Label

MSGSERV

MSGSERV

uHEI 20 STR}J31BH PaId|J3SAYU,,

HEI 30 A3140doJdd —~ STR|JIILY PBSUDILT

Diagram GRS-14. ISGCDSP — G!ol;al Resource Serialization DISPLAY GRS Request Processor (Part 5 of 6)

oY

0-9691-82A1 S¥D 7115 VX/SAW 8ET-SU9

€409 WAI IYSLLAdOY ()

L8617

Input Output
Register 1
— 7 alinkdisplay is re- > Comral tine
Parmlist guested, buitd the label
line and data lines. System label line
4 crs
System dsta lines
CRB CEPL Link labe! line
CRBCEPL CEPLCRWA Link data lines
8 Build the control line and]
CRBDSOPT CMPL determine if status is avail- Control line
CMPLMSRY able. FUNCTION INOPER-
CRBCMPL .
No status, > ATIVE- no status
CRBRST CMPLTIME “ Step 10
RST O If storage cannot be
obtained for a line, DISPLAY GRS TRUN-
Header CATED — INSUFFICIENT
STORAGE
System
entries
Link CRB
entries Step 8
b 10 Write the ISG020! mes- ;> CRBRQCMP
sage and clean up.]
Return
to the
caller

HEXI 30 A3J3cadd - STRIJAIRY pAsSUAILT

wHEI JO STERLJIBIBN P3IV|JIASDU,

0-669T-82A1

“d40) WEI IYB14Adoy ()

L86T

uotjeJdadq 40 poyisy

6£T-S¥9

Diagram GRS-14. ISGCDSP — Global Resource Serialization DISPLAY GRS Request Processor

Extended Description

7 For LINK or ALL requests, ISGCDSP builds a label

line and then a data line, describing 2 CTCs, for each
pair (or single) LINK entries in the RST. If no link status
is available, meaning there are no LINK entries in the RST,
ISGCDSP builds a “NO LINKS*’ data line. While building
the message, ISGCDSP calls |[EECB808 at entry point
MSGSERYV to obtain storage for each line prior to building
the line.

8 ISGCDSP then determines if status information is

available (CRBRST #0). If no status is available or
if RN Ls do not exist, ISGCDSP obtains storage and builds
a “FUNCTION INOPERATIVE — NO STATUS’ data
line. Processing continues at step 10.

9 If therels insufficient storage at any point in ISGCDSP,
the following message is issued:

“DISPLAY GRS TRUNCATED — INSUFFICIENT
STORAGE".

10 ISGCDSP calls MSGSERYV to write the ISG0201 mes-

sage and to perform clean-up processing. ISGCDSP
sets CRBRQCMP=1 to indicate that the request has been
processed and returns to the caller.

Recovery Processing

The global resource serialization command processing re-
covery routine (ISGCRCV) gives ISGCDSP control at entry
point ISGCDS02 to do recovery processing. ISGCDSP at
this entry point performs clean-up and returns to the caller.

Module Label

IEECB808 MSGSERV

uldI 30 STEelJddIBY PBIDLJISAY,

KEI 30 £A)Ja2d0dd -~ STRLJB)IER Pasuadyl

0-969T-82A1 S¥9 118 VX/SAW 0HT-S¥9

‘da0) WAI YBL4AGO) ()

L8671

Diagram GRS-15. ISGCMDE — DISPLAY GRS Command Parser Exit Routine (Part 1 of 2)

From IEEMB887

Process

Output

Input
Register 1
IEEPARSE"
scL
SCLCURNT
SCLUSER CRB
CRBQNADD
cmmwn\\
CPEP! ™\
CPEPCRB,
CPEPCEPL CEPL
CPEPCRWA'
CPEPQNME CRWA
CPEPRNME
CPEPCMPL -
QNAME
ZMPL RNAME
CMPLXSAP
XSA

—

1 Establishes a recovery
environment.

2 Selects routine based on the
syntactical unitin SCLUINDX.

e Routines 1-10 and 18 set
flags in the CRB to indicate
display request.

® Routines 11-17 save the
RES request data.

® Routines 33-36 set param-
aters for error messages.

3 Deletes the recovery
environment.

CR8B

—

CRBQNADD

CRBRNADD

RNAME QNAME

XSA

Return to
caller

HEI 30 AJJBdOJd ~ STRIJBIEH PASUBDLT

ulEI 40 STEIJIBIRK PBIILIISIY,

0-5691~82A1

L86T *dJ40) WEI IYBLuAdol (2)

tuotLjedadg 40 poyiray

THT-5A9

Diagram GRS-15. ISGCMDE — DISPLAY GRS Command Parser Exit Routine (Part 2 of 2)

Extended Description

ISGCMDE is an exit routine from the generalized parser -
(IEEMB887). 1SGCMDI supplies the parse table and other
parameters to the generalized parser to parse a DISPLAY
GRS command. As each element of the DISPLAY GRS
command is identified or as specific error conditions are
found, IEEMB887 invokes ISGCMDE to record the finding
in either the command request block {CRB) for correct
syntax or the extended savearea (XSA) for incorrect
command syntax.

1 ISGCMDE establishes a recovery routine by putting

the command recovery workarea (CRWA) on the
command ESTAE parameter list (CEPL) stack and indi-
cating why ISGCMDE was called.

2 ISGCMDE selects the routine based on the particular

syntactical unit being used. SCLUINDX is a param-
eter passed by |EEMB887 that identifies the syntactical
unit that IEEMB887 found.

o |f a keyword is found, ISGCMDE indicates that in the
CRB.

o |f the RES keyword is being parsed and a particular
unit such as the gname or rname is being used,
ISGCMDE saves them and converts them to EBCDIC.

o If a syntax error is found, ISGCMDE indicates the
error message in the XSA.

Module

ISGCMDE

Label

Extended Description Module Label

3 ISGCMDE removes the CRWA from the CEPL stack
to delete the recovery environment.

Recovery Processing:
The generalized parser’s recovery environment and the GRS

command recovery environment protect ISGCMDE.
ISGCMD! establishes the GRS command recovery.

wHEI J0 STRLJIDIEW POIDLI}SAY,

WEI 30 A}Jedodd ~ STRLIJDIEN PaSUIIL]

7718 VX/7SAW 2HT-S¥9

Sd9

0-6691-82A1

L861 *dJd0) WAT IYGidAdo) (2)

Diagram GRS-16. ISGCMDI — Global Resource Serialization Command Interface (Part 1 of 6)

From the
command service
ti E 808
routine (IEECB808) Process

Input
CMPL VARY GRS command pro-
cessing entry point (EECB921
1 Esteblish a recovery en-
CMPLMCON vironment.
CMPLSYSI
_—'___—“> 2 Determine whether the master
console issued the command or
global resource serialization.
CVT
GVT
GVTGRSPC > 3 Determine if the command
router is active.
GVTNCMDR
GVTNONE
CMPL cscB
> 4 Check the syntax of the
VARY GRS command.
CMPLCSCB

‘Output

1SG0141

HET ¢ Ajuaadoud — steiJz)RM pasusdl

uwHEI J0 STRIJIIRH PBIT}JIIS8Y,,

0-5691-82¢A1

*d40) WAL IYBLJAdO) ()

L1861

£6T7-5¥9 uojjededg jo poyzay

Diagram GRS-16. ISGCMDI — Global Resource Serialization Command Interface
Extended Description Module Label

The global resource serialization command interface per-
forms authority checking for the VARY GRS command
and syntax checking for the VARY GRS and DISPLAY
GRS commands. Entry point IEECB921 processes the
VARY command and entry point IEECB922 processes the
DISPLAY command.

1 ISGCMDI issues an ESTAE to establish ISGCRCV as
its recovery routine.

2 If the command parameter list master console bit is

on {CMPLMCON-=1) indicating that the master console
issued the command, processing continues. Processing also
continues when the system-issued bit is on (CMPLSYSI1='1‘)
in the command parameter list, indicating that the system
issued the command. Otherwise, ISGCMDI issues error
message 1EE345| at step 6, indicating invalid VARY
authority.

3 if the command router {ISGCMDR) is active

(GVTNCMDR=0), global resource serialization option
processing is complete (GVTGRSPC=1}, and GRS=NONE
was not specified at IPL (GVTNONE=0), then ISGCMDI
continues processing. If one of the above is not true,
ISGCMD issues an error message (ISGO141) at step 6
indicating that global resource serialization or the command
processor is inoperative.

4 This module checks the VARY GRS command syntax

for the proper ptacement of delimiters and operands.
If the syntax is not correct, ISGCMDI issues the appro-
priate error message at step 6.

(Part 2 of 6)

ulE8I 0 STelJd}ed POYdDLJ}SOY,,

WAI #0 A)Jscdodd ~ STR}J3)BY PBSUBILT

SU9 711 ¥X/SAW HHT-SAO

0-569T-82A1

£86T °d40) WEI IYBLJAdO) (2)

Diagram GRS-16, ISGCMDI — Global Resource Serialization Command Interface (Part 3 of 6)

— Y

Input

GVT

GVTGVTX - GVTX

GVTNREQS [GVTXGRPT

GRPT PEXB

p
6
. CRBECBP | }CRB

ECB

7

Obtain and initialize a
CRB, place the CRB on the
command request queue,
and wait for ISGCMDR to
process it.

Issue an error message
if necessary

Delete the recovery en-
vironment. -

IEE0503D

issue
error
message

Return
to the
caller

Output
GVT
GVTCMDRQ CRB
GVTCECB - CRBECBP

ECB

OR
1SGO144
Error
Message

HEI $0 A)}1ododd — STERLJSIBW pasuad)i

uKEI 30 STejJdB1el P3IILJLISDUL

0-969T-82A1

2861 °d40) WAI IS taAde) (3)

GHT-6Y¥9 uoijwJedp 0 PoyldY

Diagram GRS-16. ISGCMDI — Global Resource Serialization Command Interface (Part 4 of 6)

Extended Description

5 If requests are allowed on the command request queue
(GVTNREQS=0), ISGCMDI invokes ISGSMI to obtain
a command request block (CRB) from the global resource
serialization address space, initializes the CRB, places it on
the command request queue, and notifies the command
request router {ISGCMDR) of work. This module then waits
for ISGCMDR to process the VARY, if ISGCMDR returns
with an error post code, ISGCMDI issues the appropriate
error message at step 6. If requests are not allowed on the
command request queue, ISGCMDI issues message ISGO141.

6 ISGCMDI calls the appropriate module to issue any

error message required for an error that occcurred
while processing steps 2-5. 1ISGMSGOO0 issues message
1SG0141 and IEEC503D issues the rest.

If an error occurs while processing a VARY GRS (ALL),
RESTART command that global resource serialization
issued, ISGCMDI calls ISGMSGOO to issue message ISGO25E
indicating that this system was unable to automatically
rebuild the disrupted ring.

7 ISGCMDI issues an ESTAE to delete the recovery en-
vironment,

Module

ISGSMI

ISGCMDR

ISGMSG00
IEEOS03D

Label

TWEL T

1493ER FASURDL

wWEI 40 STejpJaien payd

WAI 30 Aj).Jasdoud — SR

Y9 :11S VX/SAW 9HT-SAO

0-56$1-82A1

1867 "d40) WEI IYBiJAdc) (3)

Diagram GRS-16. ISGCMDI — Global Resource Serialization Command Interface (Part 5 of 6)

From the
command service

Input routine ({EECB808) Process Output
CMPL DISPLAY GRS command pro-
cessing entry point IEEC8922 IEEMB887
8 Establish a recovery en- GV
CMPLCSCB* cscs vironment. Parse
J Command
_ 9 Check the syntax of the ‘ GVTCMDRQ] cae
DISPLAY GRS command.
GVT GVTCECB " CRBECBP
ISGCMDE
GVTGVTX GVTX :—_—> 10 Obtain a CRB, place the Parser
command on the com- Exit ECB
mand request queue, and
L wait for ISGCMODR to :
GVTNREQS GVTXGRPT process it. . ﬂ OR
1ISG0141
IEEO!
11 Issue an error message if ' 5030 \/
GRPT PEXB necessary. “ tssue
- error
message
Error
Message
- CRBECBP CRB ‘
€cs 12 Delete the recovery en- Return
vironment, - to the
’ caller

K8I 30 A}u0ddud — STRIJLBIEY PISUBILT

wNEI 30 STRIJDIRUW PRLOLJISBYUL

0-G69T1-82A1

*d10) WEI Y6 LIAdO) (D)

L86T

uoijedsadg jo poyiay

LYT-S¥9

Diagram GRS-16. ISGCMDI — Global Resource Serialization Command Interface (Part 6 of 6)

Extended Description Module

8 ISGCMDI issues an ESTAE to establish ISGCRCV as
its recovery routine.

9 ISGCMDI invokes the generalized parser (IEEMB887)

to check the DISPLAY GRS command syntax for the
proper placement of delimiters and operands. |EEMB887
uses ISGCMDE during the syntax check. If the syntax is
not correct, ISGCMDI issues the appropriate error message
atstep 11.

IEEMB887

10 1SGCMDI invokes ISGSMI to obtain a command

request block (CRB) from the global resource
serialization address space, places the CRB on the
command request queue, and notifies the command
router (ISGCMDR) of this work provided that the
following conditions exist:

1ISGSMI

ISGCMDR

e The command router (ISGCMDR) is active
(GVTNCMDR=0).

® Requests are allowed on the command request queue
{GVTNREQS=0)

o Global resource serialization option processing is
complete (GVTGRSPC=1).

e GRS=NONE was not specified during the IPL
(GVTNONE=0).

ISGCMDI then waits for ISGCMDR to process the
DISPLAY. if ISGCMDR returns with a post code indicating
an error, ISGCMDI issues the appropriate error message
atstep 11. If one of the above conditions does not exist,
ISGCMDI attaches ISGCDSP to do one of the following:

a) If no RNLs exist, issues a “FUNCTION
INOPERATIVE—NO STATUS" message

b) If the contention display, the RNL display, or the
resource displays are requested, builds the requested
display

Label

Extended Description Modulo

11 1SGCMDI calls IEEQ503D to issue any error message IEE0503D
required resulting from an error that occurred while

processing steps 9 and 10.

12 ISGCMD! issues an ESTAE to delete the recovery
environment.

Recovery Procassing

The command recovery routine (ISGCRCV) gives ISGCMDI
control at entry point ISGCDIRYV to do recovery proces-
sing. When entered at ISGCDIRV, ISGCMDI checks the
CRWA for a CRB address. If one is found, ISGCMDI veri-
fies the CRB, invokes ISGSMI to release the CRB, and re-
turns to the caller to continue with termination. If the
CRB found in the CRWA is on the command request queue
and a wait has not been issued, ISGCMDI retries at the
wait. If the CRWA does not contain the address of a CRB,
ISGCMDI returns to caller to continue with termination.

Label

uHE8I JO STERlJD}BN Pa1ILJIS8YU.

HEI 30 Alddodd ~ STR}J3}EN pasuadin

0-569T-82A1 S¥YD TS VX/SAW 8HT-SAUO

*d10) WEI IYS1dAdoy ()

L86T

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router (Part 1 of 8)

From address space
initialization (ISGNASIM)

input
cvT
GVT
GVTCMDRQ
GVTCMDWQ
CRB

II Process
1 Establish a recovery en-

vironment and perform
initialization.

Move the CRBs or MRBs
from the command request
queue to the command work
queue and build and initialize
the necessary control blocks.

—

Output
cvT GVT
GVTNCMDR
GVTGVTX
C GVTX GVTCMDCO
GVTXRET1 GVTRETO
cvT GVT
GVTCMDRQ
GVTCMDWQ
CRB

KET 30 A3uaBdold — STELJ3LEN PASUSSHT

uHEI JO sTeldajel pP333tJdlsay,,

0-669T-82A1

“dJ0) WEI IYBLIAdO] ()

L86T1

uotyeuedg o poyiyey

6HT-S¥9

Diagram GRS-17. ISGCMDR - Global Resource Serialization Command Router (Part 2 of 8)
Extended Description Module Label

The global resource serialization command router attaches

the message module to process message requests and the re-
start, quiesce, purge, and display processors to process the

VARY GRS and DISPLAY GRS commands. This module

is also called at entry point ISGCTXR1 to detach the com-
mand processor and release any storage it obtained for the

command processor,

1 ISGCMDR issues an ESTAE to establish ISGCRCV as

its recovery routine. This module then loads
ISGCRETO and ISGCRET1 and sets the GVTNCMDR bit
off to indicate that the command router is active.
ISGCMDR verifies the command cleanup queue by ensuring
that each element on the queue is in a page with no storage
checks and that each element is either a CRB or MRB,
otherwise, ISGCMDR truncates the queue.

2 The command router uses compare and double swap

to move a command request block (CR8) and/or mes-
sage request block (MRB) from the command request
queue to the command work queue. If the request is re-
start, quiesce, purge, or display, ISGCMDR cbtains storage
for the command ESTAE parameter list {CEPL), command
recovery workarea (CRWA), and a full ring status table
{RST), initializes them, and saves their addresses in the
CRB. ISGCMDR (for a display request) then calls ISGBCI ISGBRFSN
ISGBCI which invokes entry point ISGBRFSN (in
ISGBRF) to get the status of each system in the CTCs for
each system. If the request is for 8 message, ISGCMDR
obtains storage for the CEPL and CRWA and saves their
addresses in the MRB.

J3jel pasuasti
pe312} 4359y,

wHEI 30 sTelJa}am

W8I J0 A)Jddaodd - siel

:778 VX/SAKW 0ST-S¥9

S¥9

0-569T-82A1

L86T *d40) WEI 3IYG14Ado) (2)

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router

Process ;

(Part 3 of 8)

>L3

Input

GVT

GVTCMDRQ

GVTCMDWQ
CRB
CRBTYPE

GVT
GVTCECB

Attach the appropriate
module to process the
request.

@ Restart

e Quiesce

e Purge

e Display

o Message

Wait for more work.

1SGCRST

0 ISGCAsC

ISGCPRG

ISGCDSP

. -
* Step2

Output
GVT
: GVTCMDRQ
GVTCMDWQ
GvTCMDCa

CRB

Luso}1

HEI 30 K143dodd -~ STRLJILIRK paS
wHEL JO STRIJIIBN PaJS|JINSEY,

0-969T-8¢cA1

L86T °d40) WAEI IYBLJIADO) (D)

1GT-S¥9 uoi3jesadg 4o poyjey

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router
Extended Description Module Label

3 ISGCMDR attaches the appropriate request processor,

If the attach is successful, ISGCMDR saves the TCB
address in the CR8 or MRB and uses compare and swap to
place the CRB or MRB onto the clean-up queue, If the at-
tach fails, this module returns an error post code and frees
any unneeded storage. Steps 2 and 3 are repeated until the
command work queue is empty.,

4 When both the command request queue and command

work queue are empty, ISGCMDR issues a wait on
GVTCECB. This ECB is posted by either the command in-
terface routine (ISGCMDI), the RSA SEND/RECEIVE rou-
time (ISGBSM), the termination resource manager
(ISGGTRMO), or the mainline recovery routine
(ISGGFRRO).

(Part 4 of 8)

uH3I 30 STRIJDIEH PAFD}IISVY,,

HAI 40 A342dodd — STR}JIIEN Pasudd}l

S¥Y 7118 VX/SAW 2ST-S¥O

0-969T-82A1

L86T 'd40) WEI IYSLaAdo) (9)

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router (Part 5 of 8)

Process
b Entry point — ISGCTXR1

Find the CRB/MRB for
the task just completed.

Post the requestor,

Release the storage used
by the request and de-
tach the command pro-
cessor.

— ———'> CRBRQCMP

Output
CVT GVT
.>ﬂ _AGvrcmoca
L4
CRB
CRBRPTCB
CRB

=)

From the
dispatcher
Input

cvT GVT

GVTCMDCQ —:> 5
CRB T

" CRB
CRBRPTCB

CRBNCRB
CRB
CRBRQCMP Jv) 6
(ECB

ECBcc
CRB/MRB
CRBARSZ

CEPL "'—"J\V 7
CRBCEPL

CRWA
SMPL RST
SMPCADDR PEXB

CRB

—> CRBARSZ-0

Return
to the
caller

ECB

ECBcc

CRB/MRB

CRBCEPL=0

SMPL

SMPLCADDR=0

WEI 30 A)J42dodd — STRIJIBIRM PaSUADLT

al8I 3O STelJd8}eW pP8l13Ldl}ssl,,

0-9691-82A1

L86T *d400 WAT FYBLIAdOY ()

£6T-S39 uotjededg 40 poyjay

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router (Part 6 of 8)
Extended Description Modute Label

Entry point ISGCTXR1 — The dispatcher gives control to
ISGCMDR at entry point ISGCTXR1 after a global re-
source serialization command processor has completed. At
this entry point ISGCMDR releases command related stor-
age and detaches the command processor.

5 ISGCMDR finds the CRB/MRB for the completed

command cleanup queue by matching the TCB for the
completed task to a TCB in the control blocks on the com-
mand cleanup queue.

6 If there is an ECB address in the CRB/MRB,
1ISGCMOR posts the command requestor with the re-
sults of the command (0 for success and 8 for failure).

7 This module issues a FREEMAIN macro to release the
storage occupied by the CRWA, the CEPL, and the
RST. ISGCMDR calls ISGSDAL to return the cell used by ISGSDAL
the CRB/MRB to the pool extent block (PEXB), detaches
the completed command processor,-and returns to the cal-
ter.

uH8I JO STRIJIIRH POII|JISAU,

WEI 40 A}JBdodd ~ STR}.2IBH POSUBI}T

SUYD :71S VYX/SAW HST~S¥9

0-569T-22A1

L86T "d40) WGT IYSi4Ado] (2)

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router (Part 7 of 8)

From the recovery processor

Output
CRWA
CRWARTRY
GVT
GvrcMoca
>r CRB

(ISGCRCV)
input Process
CRWA b' Entry point — ISGCORRV
——————>| 8 Determine whather the error
CMDRCTXR cRe] was in ISGCTXR1 or
ISGCMDR,

CTXRECUR

CRWACRB CRBTCB

cvT

GVT
® Process the ISGCTXR1
error.
GVTCMDQC
CRB
CRWA »| e Process the ISGCMDR
1 4 error. -

CMDRECUR

GVT

GVTCMDWQ CRB

CRWA > O Release the command storage.

CRWACRB

Return to
the caller

CRWA

CRWARTRY

CRWA

CRWACRB

WEI 40 A3J10dodd - STRLJIRIEBH pPasuad}1

uHEI 20 STRLJS}BW PRID}JIISBYL

0-S691-82A1

£86T 'd40) WAI IYBLIAdO) (2)

uol324adg 40 poyzel

§6T-SA9

Diagram GRS-17. ISGCMDR — Global Resource Serialization Command Router (Part 8 of 8)
Extended Description Modute Label

Entry point ISGCDRRYV — The command recovery routine
(ISGCRCV) gives ISGCMDR contro! at entry point
1SGCDRRYV to do recovery processing.

8 ISGCMDR determines whether the error occurred in
ISGCMDR or ISGCTXTR1 by checking CMDRCTXR.

If CMDRCTXR is set to one, the error occurred in

1SGCTXR1, if not, the error was in ISGCMDR.

if the error was in ISGCTXR 1, ISGCMDR determines if
this is a recursion (CTXRECUR=1), and if so, continues
with termination. If this is not a recursion, ISGCMDR sets
up for a retry at entry point ISGCTXR 1, detaches the
command processor, and cleans up the command-related re-
sources. ISGCMDR then verifies the command cleanup
queue by ensuring that each element on the queue is in a
page with no storage checks and that each element is either
a CRB or MRB, otherwise, ISGCMDR truncates the queue,

If the error was in ISGCMDR, the processing is the same ex-
cept the retry is set for the appropriate entry point in
ISGCMDR.

O If the CRWA points to a CRB (CRWACRB contains an
address), ISGCMDR calls ISGSDAL to return the ISGSDAL
RQA control block cells back to the pool extent block
(PEXB). This module then returns to ISGCRCV indicating
whether to retry or continue with termination,

ul8I 30 STRLIJIBIEBN POIDLJISRY,

WEI #0 A3J43dodd ~ STRIJBIEH pasuad}q

118 VX/SAW 99T-S¥9

S¥9

0-4965T-82A1

L86T *d40) WAI 3FYBLJAdOY (3)

Diagram GRS-18. ISGCPRG — Global Resource Serialization VARY GRS PURGE Request Processor

From the command router

(ISGCMDR)
Input

CRB

b'Process

CRBSYSNM

CRBRST

CRB

> 1

CRBSYSNM

RSC

RSCPARMS

RSCFODELS

Determine if the proper
conditions exist to pro-
cess the request.

If not,

Determine if the system
to be purged owns or is
waiting for any resources.

If yes,

If the operator cancels
the request,

Inform the operator that
the system is being purged
and purge the system.

) s

(Part 1 of 4)

Output

CRWA

CRWAFID

) o

:> 1SGO161
ISGO17D
RSC
ISGO111 ‘
RSCPARMS
:> RSCFUNCT
RSCSYSNM
RSCTMLIM

WEI 30 A3J3dodd ~ ST2VJILIRH PAsSUR3LT

uNEI 30 STRLJBIRN P3O} I150Y,

0-9691-82A1

“dao) WEI IYBLJAdo) (0)

L86T

uoijedadg Jo poyjey

LGT-S¥9

Diagram GRS-18. ISGCPRG — Global Resource Serialization VARY GRS PURGE Request Processor

Extended Description

ISGCPRG processes the PURGE parameter of the VARY
GRS command. The PURGE parameter removes a system
from the global resource serialization complex. 1ISGCPRG
receives control from the command router (ISGCMDR)
when a command request block (CRB) for a purge request
is found on the global resource serialization command work
queue. ISGCPRG obtains ring status by invoking ISGBCI
which invokes ISGBRF (at entry point ISGBRFSN).

1 The following conditions must be met to process the
purge request:

o The system issuing the purge request must be an
active system in the global resource serialization
ring.

o The system being purged must be known to the
global resource serialization complex, and must
not be an active, joining, or restarting system,

If these conditions are not met, ISGCPRG rejects the
request and processing continues at step 6.

2 ISGCPRG issues the GQSCAN macro to determine if
the system being purged owns or is waiting for any re-
sources. |If there are resources associated with the system
to be purged, ISGCPRG issues message 1ISGO161 informing
the operator of that fact, then issues message 1ISG0170D to
give the operator the chance to cancel the purge request.
If the operator replys *“NO’ ISGCPRG cancels the request
and continues processing at step 6.

3 ISGCPRG issues message 1SGO111 informing the oper-

ator that the system named in the request is being
purged. {SGPRG then calis ISGBCI to remove the re-
quested system from the global resource serialization com-
plex.

Module

ISGBCI

Label

uwKEI 30 STE{JBIRW P33I}J3SAY,

WEI 30 A340dold — STE|JDIBH PASUIILT

1718 VYX/7SAW 89T-SA9

S¥9

0-669T-82A1

*du40) WEI IYS14Ade) ()

L8671

Diagram GRS-18. ISGCPRG — Global Resource Serialization VARY GRS PURGE Request Processor (Part 3 of 4)
Input Process ; Output
DPL RSC DPL MRB
— 4 Purge the global resources
- associated with the purged
RSCDELID system, ‘ DPLSYSID MRBSYSNM
ISGGQWBO0
oPLSVQwWB MRBSYNM1
Purge
Qaws the QWB OPLRSYID
DPLRB aws
QWBHMRBQ ISGSDAL |
Free the
message QWBHNQWB
request
blocks 1SGO18!
ISGGQWB0 L“‘\\-___
RSC
Free
the QWB
RSCPARMS
RSCFSENC > 5 Notify the remaining sys- >
tems in the complex of the 1SGO131
RSCRNONE purged system,
ISGBCI
Inform the
other systems CR8
of the purge
6 Indicate that purge pro-
cessing is complete, CRBRQCMP
Return
to the
caller

W8I 30 Ardadoad — STRLIJBIE| pasuadii

uNEI 3O SIRIJIDLIBH PBIDLIYISBY,,

0-669T-82A1

£86T "da0) WEI IYBLuAdo] (9)

65T-S¥0 UOj3RJBdQ 4O POYjaY

Diagram GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE Request Processor (Part 4 of 4)

Extended Description

4 ISGCPRG sets up a dequeue purgs list (DPL) and calls
ISGGQWBO at entry point ISGGQWBS to perform a
SYSID purge of the resources held or requested by the sys-
tem being purged. ISGGQWBS passes back the address of a
queue of messages to be issued regarding the resources that
it purged. ISGCPRG builds a header message to go on top

of those messages and calls ISGMSGOQO to issue the messages.

ISGCPRG sets up a storage manager parameter list (SMPL)
describing the MRBs and calls ISGSDAL to free them. This
module then calls ISGGQWBO at entry point ISGGQWSBF
to free the QWB returned by I5GGQWBS.

5 ISGCPRG calls ISGBC! which invokes ISGBRF ({at

entry point ISGBRFNM) at SENDCMD to inform the
remaining systems in the complex of the purged system and
calls ISGMSGOO to inform the operator on this system of
the purged system.

6 ISGCPRG sets CRBRQCMP=1 indicating that purge
request processing is complete and returns to the com-
mand router (ISGCMDR).

Recovery Processing

The command recovery routine (ISGCRCV) gives
ISGCPRG control at entry point ISGCPGO2 to do recovery
pracessing. ISGCPRG issues message ISGO15) to indicate
which function caused the error and the reason for the er-
ror. ISGCPRG indicates in the CRB that purge processing
is complete and, if the failure was caused by an error in
ISGBCI, records the ring status changed parameter list
(RSC) in the SDWA. ISGCPRG sets a recovery processing
return code {0=recovery processing successful and 4=un-
successful) and returns to the caller.

Module Label

ISGGOQWB0 1SGGQwWBS

ISGMSGO00

ISGSDAL
ISGGQWB0 ISGGQWBF

ISGBCI ISGBRFNM (SENDCMD)

ISGMSGO00

wHdI JO STelJdlel pR33LJa)s8Y,,

HEX 30 A3JRd0Jd — STR}JB}EN pPasusa}q

178 VX48AW 09T-S¥9

S¥9

0-669T-82A1

L8961 *duo) WEI IYSL4AdO) (9)

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Queue Merge (Part 1 of 6)
From
ISGNGRSP—join processing
or
ISGCRST— restart processing

Input Process
br 1 Obtain storage for global

resource information and
for data received from
other systems,

cvT ”] 1SGGQSo1
+GVT Flag QCBs as need

to be processed

GVT

Output

GVTCMPAT | T—"""") 2 Ensure that the inclusion,

exclusion, and reserve con-
version resource name lists
(RNLs) for this system
match the lists of the active
global resource serialization

system.
“l ISGBC)

Buffer receive
(BUFRECV) function

3 Obtain information about
global resources from the

active global resource ser-

ialization system,

“l ISGBCI

Buffer receive
(BUFRECV) function

\/

Buffer

Compatibility level
indicator

RNLs

Buffer

RiBs
RIBEs

WEI #+0 AyJd3dodd — STRlJ2}EW PasUdIILT

ul3I O STRIJDIEN PIII}JISSUL

0-6691-82A1

L86T °duo) WEI 3IYSLJAdo) (3)

uoiLjeJadg 0 poyjel

549

191~

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Queue Merge (Part 2 of 6)

Extended Description

Whenever a system is joining the global resource serializa-
tion ring or restarting global resource serialization, join pro-
cessing (ISGNGRSP) or restart processing (ISGCRST) calls
queue merge (ISGCQMRG) to perform the following:

e Verify that the inclusion, exclusion, and reserve conver-
sion resource name lists (RNLs) of the system joining or
restarting in the global resource serialization ring match
the inclusion, exclusion, and reserve conversion lists of
the active global resource serialization system.

o Generate the ENQ or DEQ requests necessary to make
this system’s global resource queues match those of the
active global resource serialization system.

ISGCQMRG toads module ISGGQSRYV to use the various
global resource serialization service routines provided by
ISGGQSRV..

1 ISGCQMRG performs some initialization for subse-

quent processing and initializes and queues the recov-
ery workarea for the ESTAE/I recovery routine
{(ISGCRCV). 1ISGCQMRG issues a GETMAIN macro to ob-
tain 64K bytes of storage from subpool 229. 60K bytes of
this storage is used as a buffer to hold the data sent from an
active global resource serialization system. The remaining
4K is used to contain information about the global resource
queues of this system. ISGCQMRG invokes ISGGQSRV at
entry point ISGGQSO01 to set a flag in all the global QCBs.
The flag indicates that the QCB has not yet been processed
by ISGCQMRG.

2 ISGCQMRG invokes the buffer receive function of

ISGBCI. The first buffer sent by the active global re-
source serialization,system contains the gtobal resource seri-
alization compatibility level indicator followed by the in-
clusion, exclusion, and reserve conversion RNLs. To pre-
serve data integrity, these lists must match the ones speci-
fied for this system. If the compatibility level indicator
does not match that of the active global resource seriali-
zation system, or if the resource name lists do not match,
ISGCQMRG issues an X'09A° ABEND with the appropriate
reason code, If the compatibility levels are the same and
the lists match, processing continues.

Module

ISGCOMRG

ISGGAQSRV

ISGBCI

Labe!

ISGGQsOo1

BUFRECV

Extended Description Module Label

3 ISGCQMRG invokes the buffer receive function of

ISGBCI again to cause the active global resource seri- ISGBCI BUFRECV
alization system to send information about global resources
in the form of resource information btocks (RIBs) and re-
source information block extensions (RIBEs) to this sys-
tem. ISGBCI does not return control until it copies the
data into the buffer area obtained in step 1. ISGCQMRG
ensures that the RIBs and RIBEs are constructed properly.
If they are not, ISGCQMRG issues an X'09A° ABEND with
an appropriate reason code; otherwise, processing contin-
ues,

uWEI JO STR]JBIBH PBJIOIJ}SY,

NEI JO0 A)u9doJdd — STRL.JIDIBN PASUdaLT

SAD 718 VX/SAW 29T-S¥9

-0-669T-82A1

£36T "da0) WAI FIYBLuAdO] (D)

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Quene Merge (Part 3 of 6)

input

" Buffer

R1B and RIBE
information for
this system

Buffer

RIB and RIBE
information in
GQSCAN format

1L

e Y

—))| 4

Check that each global re-
source, represented by a
RIB, exists in this sys-
tem.

Generate the ENQ and
DEQ requests necessary
to make the list of re-
questors for each global
resource match the list
on the active global re-
source serialization sys-
tem.

Repeat steps 3-5 for all
global resources known by
the active global resource
serialization system,

Output

4'...’r' ISGQSCAN

Search the
resource queues

ISGGQWB0

Obtain and

initialize a QWB

ISGBSR

gl

4K buffer

RIB and RIBE
information
in GQSCAN
format

aws

ENQ/DEQ requests
on process queue

aws (ENQ a)

aws (ENQ b)

aws (ENQ c)

Add QWSB string to
the process queue

WEX 30 A3J3d0dd — STRLIJSISN pPasuad}l

w8 O STER}JIBIRW P3}ILLISY,,

0-669T1~82A1

L86T *da0d WAI IYBLJAdE) (2)

uoljesedg 40 poyzay

£9T-S¥9

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Queue Merge

Extended Description Module Label

4 ISGCQMRG copies the gname and rname from the ree ISGQSCAN QSCAN
source information block {RIB) for each global re-

source and passes them to ISGQSCAN via the GQSCAN

macro to obtain any information this system has describing

requestors of the global resource. If ISGQSCAN returns

with a return code indicating that no data was found,

ISGCAMRG issues an X'09A' ABEND with an appropriate

reason code,

5 ISGCOMRG generates and queues the ENQ and DEQ
requests necessary to make this system’s list of re-

questors for the global resource match the list on the active

global resource serialization system. To do this,

ISGCQMRG:

e Invokes ISGGQWBO at entry point ISGGQWB2 to copy ISGGQWB0 'ISGGQwWB2
the information in the GQSCAN buffers into a queue
work black (QWB) that is suitable for the process queue

o Invokes ISGBSR at entry point ISGBBE to place this ISGBSR ISGBBE
QWB on the process queue

6 ISGCOMRG repeats steps 3 thru 5 until the active glo-
bal resource serialization system has sent all the in-
formation about each global resource on that system.

(Part 4 of 6)

WEX 30 A3}49doud ~ STRIJSIBW Pasuad}l

uH8I JO STR|JIBIRH PIFD|IISBY,

7178 VX/SAW H9T1-S¥9

S¥9

0-669T1-82A1

L26T "d40) WAT IYBLIAdO] (D)

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Queue Merge (Part S of 6)

Input

Global QCBs

]

Global QELs

GVT

Process

Generate DEQ requests
for all the resources
owned or requested by
systems that are no longer
in the ring.

ISGGQSRV

DEQ requests on
process queue

aws (DEQ x)

Qws (DEQYy)

Generate DEQ
requests

aws (DEQ 2}

Return
to caller

GVT

GVTQMRGA=0

WAT $0 A)Jd2dodd — SIRLJIBITL PASUBILT

wHEI JO STRIJIDIEN P3IO1L358YU.

0-6691-82A1

*d40) WEI IYBL4AdO] (9)

L8671

§91-S¥9 uoljeJadQ 30 Poyjey

Diagram GRS-19. ISGCQMRG — Global Resource Serialization Queue Merge

Extended Description Module ‘Label

7 if this system had been quiesced and is now restarting ISGCOMRG
global resource serialization, this system can indicate

same global resources being owned by other systems that

have actually released those resources. These resources

were not in the list that was sent by the active global re-

source serialization system and must be removed from this ISGGQSRV I1SGGQS03

system’s global resource queues. ISGCQMRG invokes

ISGGQSARYV at entry point ISGGQSO03 to scan the

QCB/QEL chains and generate DEQ requests for all re-

questors of global resources not known to the other sys-

tems in the global resource serialization ring. The global re-

source queues of this system now match the queues of the

active global resource serialization system, If ISGGQS03 is

unsuccessful, ISGCOMRG issues an X'09A° ABEND with a

reason code identifying the error. ISGCQMRG frees the

storage used to contain information about the global re-

source queues of this system and the data sent from the

active global resource serialization system. ISGCQMRG re-

turns to the caller with an indication in the GVT that the

queue merge process was successful (GVTAQMRGA=0).

Recovery Processing

When an error occurs while ISGCQOMRG is executing, RTM
calls ISGCRCV. I1SGCRCYV passes control to a special error
exit routine in ISGCOMRG to perform the following:

o Releasa any storage obtained for QW8s

e Delete module ISGGQSRV

o Specify storage to be released by ISGCRCV

ISGCAQMRG returns control to ISGCRCV to process the

following recovery options:

o Retry if allowed

o Take a dump using default options

o Release dynamic area and buffer area obtained for
GQSCAN and BUFRECV.

e |If retry is not allowed, ISGCRCV returns control to
RTM to continue with termination,

(Part 6 of 6)

uHEl JO syiRlJaBley paldiJl}say,,

WEI jO ArJiddoJd - STejJdIR| PASUID}

S¥Y 118 VX/SAW 99T-SA9

0~669T-82A1

L86T °d40) WEI IYB1JAdO] (D)

Diagram GRS-20. ISGCQSC — Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 1 of 4)

From the command
router (ISGCMDR)

Input
Register 1
CR8 —_
Gvr CRBSYSNM
GVTSYSNM
Register 1
RSC

—>

1

. Process

If the quiesce request is
for this system:

o If this is the only

active system, reject
the request.

o Inform the operator

o Pass the request to
an active system

o Inform the operator of
this system if the
quiesce is successfull,

If not,

Output

\/7

—

Return to
the caller

RTM

QI

18SG0141

[

1SGOo11lI

/

1SGo12!1

1ISGO13I

/

X'09A ABEND

HEI 30 A)}aadodd - STR}JB3BY Pasuadly

uHEI JO STRIJAJIRN PBIDLJISY.,

0-6G69T-82A1

L86T °d40) WAI YBLJIAdO) (I)

L91-S¥9 ucijedndg 30 PoUIA

Diagram GRS-20. ISGCQSC — Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 2 of 4)

Extended Description Modute Label

ISGCQSC processes the QUIESCE parameter of the VARY
GRS command. The QUIESCE parameter removes a system
from a global resource serialization ring. ISGCQSC receives
control from the command router (ISGCMDR) when a
command request block {CRB) for quiesce processing is
found on the global resource serialization command work
queue. ISGCQSC obtained the ring status by invoking
ISGBCI which invokes ISGBRF (at entry point ISGBRFSN).

1 If the operator requests 8 quiesce of his own system,
ISGCQSC determines if the system is the only active
system. If true, this module rejects the request and issues
message ISG014I. Otherwise, ISGCQSC issues message
1ISG011 to inform the operator that this system is quiescing
global resource serialization. Since the system being
quiesced cannot process the quissce request itself, ISGCQSC
calls ISGBCI which invokes ISGBRF {at entry point 1SGBC! ISGBRFNM
ISGBRFNM) to pass the request to another active system
in the ring. When ISGBCI returns, ISGCQSC checks for
successful compietion of the request. If the request was
successful, ISGCQSC issues message 1ISG013l, if not, it
issues an X'09A’ abend.

wHE1 30 STRIJAJEN PA3O}J1S0Y,

WEX 40 A3Jadodd — STR}JBIRK PAISUdILT

TS VX/7SAW 891-S¥9

S¥9

0-6691-82A1

L86T °dJ0) WEI IYBLJIAdO) (2)

Diagram GRS-20. ISGCQSC — Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 3 of 4)

Process

Input
Register 1
—, I
CRB
CRBSYSNM
Register 1
RSC
_ZDH *
From the
recovery
Register 3 processof
(ISGCRCV)
CRWA
CRWAFID | —

4

If the quissce request is
for another system:

Inform the operator
of the system being
quiesced.

Remove the system
from the ring.

Inform the operators
of the remaining sys-
tems.

Indicate that the request
is complete

Entry Point ISGCQS02

Issue an error message, in-
dicate that quiesce request
processing is complete, and
update the SDWA.

Output

&?

ISGBCI

ISGBCH

-

Return to
the catler

1SGO111

1SG014)

CRB

ISGO13t

CRB

1SGO15)

- CRBRQCMP

Return
to the
cafler

CRBRQCMP

SDWA

SDWAVRA

1SG0151

WEI 7 A}J8dodd — STRIJ2ISH Pasuddyl
uH8I 40 STelJS3IEU PIJD|JISAY,

0-969T-82A1

d40) WEI IYS14AdO) (D)

L8671

uoijededg 40 poyiey

69T~-S¥9

Diagram GRS-20. ISGCQSC — Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 4 of 4)

Extended Dascription

2 |If the quiesce request is for a system other than the
one issuing the command or is a request sent from an-
other system, ISGCQSC issues message ISGO1 11 to the sys-
tem being quiesced and the system that issued the com-
mand, informing the operator that his system is being
quiesced. ISGCQSC calls ISGBCI which invokes ISGBRF
{at entry point ISGBRFNM) to remove the requested
system from the global serialization complex. If the re-
quested system is not active, ISGCQSC issues message
1SG014I and 1SG015I to inform the operator that the
command was rejected because the target system was
not active. If the system was successfully quiesced, this
module calls ISGBCI to issue message 1SG0O13l to the re-
maining active systems in the complex informing them
that the quiesced system has been removed from the
complex,

3 ISGCQSC indicates in the request’s CRB that the
quiesce request is complete and returns to ISGCMDR.

Entry Point ISGCQS02

4 The recovery routine (ISGCRCV) calis ISGCQSC at
entry point ISGCQS02 to do recovery processing.
When entered here, ISGCQSC issues message 1SG015I to in-
dicate the function that caused the error and the reason for
the error. 1SGCQSC indicates in the CRB that quiesce pro-
cessing is complete and if the failure was caused by an error

in ISGBCI, this module records the RSC in the SDWA,
ISGCQSC sets a recovery processing return code
(O=recovery processing successful and 4=unsuccessful) and
returns to the caller.

WEI 30 AjJodoud ~ STER)JOIEN Pasualll
w8l JO STRIJBIRN PAJILJISAY,,

S¥YY 716 VX/SAW 0LT-S¥9

0-9691-82A1

L86T °*du0) WEI IYS1JAde) (2)

Diagram GRS-21. ISGCRCV — Global Resource Serialization Command Recovery (Part 1 of 2)

i

From
RT
Input M
CEPL CRWA queue
CEPLCRWA CRWALEIB] :-:
CEPL
CEPLCRWA CRWA
CRWA SDWA

. Process

1 Perform initialization and

establish a recovery routine,

If the failing routine pro-
vided a specia! exit, pass
control to it.

If requested, take an SVC
dump.

Release the storage
specified by the failing
routine,

Delete the recovery, and if re-

quested, set up to retry the

failing routine, before request-
ing that RTM record the SDW

in SYS1.LOGREC.

—

—

-

Output

Return
to
RTM

CEPL

CEPLSDWA

SDWA

Fixed

CEPLESTA

Variable
(SDWAVRA)

CEPL

SDWA

Fixed

Variable

WEI 3O A}.2doJdd — STPLJSIRN PBsuBasli

u4EI JO STER}JBIBW PEID|I3SBY,

0~-569T-82A1

*dJ0) WEI IYBLaAdog ()

L8617

uoijedadg 40 poyzey

TLT-S¥9

Extended Description

ISGCRCYV is the ESTAE/| routine used by the following
global resource serialization command processing and ini-
tialization routines:

e ISGCDSP — DISPLAY GRS

e ISGCMDI - Command interface

e ISGCMDR — Command router

e ISGCPRG — VARY GRS PURGE

¢ ISGCOMRG — AQueue merge

e ISGCASC - VARY GRS QUIESCE

e ISGCRST — VARY GRS RESTART

e ISGMSGO0 — Message processing

e ISGNASIM — Address space initialization
e ISGNGRSP — GRS=0Option processing

ISGCRCYV performs SYS1,LOGREC recording, takes SVC
dumps, routes control to special exit routines, and releases
storage for the failing module. This module then indicates
to RTM whether a retry should be attempted or termina-
tion continued.

1 |f an SDWA is available, ISGCRCV copies information
from the command recovery work area (CRWA) into
the variable area of the SDWA (SDWAVRA). ISGCRCV
obtains storage from subpool 229 for ESTAE and dump pa-
rameter lists, and for information about storage to be re-
leased. This module establishes a recovery routine to pro-
tect against an error occurring during special exit proces-
sing or within itself. If a recovery routine cannot be estab-
lished, ISGCRCYV indicates in the CEPL (CEPLESTA=0)
that special exit processing should not be invoked, ISGCRCV
then copies the CRWALE|B subfield of each CRWA pro-
cessed into SDWAVRA. When recorded in SYS1.LOGREC,
SDWAVRA will contain a trace of this recovery processing.

2 If the failing routine has a special recovery exit, before
passing the exit control, ISGCRCV determines if a
dump is also requested and if so invokes an SVC dump. If
an SDWA is available (CEPLSDWA=1), then ISGCRCYV val-
idates the GVT, GVTX, and CRB/MRB addresses. {f an
SDWA is not available this module assumes these addresses
to be invalid and then passes control to the special recovery
exit of the failing routine. Upon return ISGCRCYV indicates
whether the exit was successful or not in CRWASERR.

Module

Label

" Diagram GRS-21. ISGCRCV — Global Resource Serialization Command Recovery (Part 2 of 2)

Extendad Description

3 If adump was requested (CRWADMP=1) and one has

not already been taken, as in step 2, ISGCRCV in-
vokes SVC dump.

4 ISGCRCYV releases all storage specified in the CRWA,

CRWASTRG contains descriptions of storage ranges.
If the starting address and length fields for a range are not
zero, ISGCRCYV issus a FREEMAIN for that range.

5 ISGCRCV deletes its recovery environment and sets
up to retry thie failing routine if requested
(CEPLRTRY=1). If this is a recursion {CRWART2=1),
then this module does not allow a retry. 1ISGCRCYV issues
a SETRP to request that RTM record the SDWA in
SYS1.LOGREC and retry if either is requested.

Recovery Processing

ISGCRCYV establishes recovery to provide re-entry into it-
self if a failure occurs in a called routine.

Module

Label

uHEI #0 STER}JAIICH PIIILIJIISBY,

KEI 30 A3J43dodd — STE}JS1IeN pasuadtq

1118 VX/SAW 2LT-S¥9

SAD

0-965T-~82A1

L8361 *d40) WAI FYS1JAdO (3)

From the command
router {ISGCMDR)

Diagram GRS-22. ISGCRST — Global Resource Serialization VARY GRS RESTART Request Processor

Input
CRB RST
CRBRST —

CRB

CRBSYSNM GVT

CRBOSYNM

GVTSYSNM
CRB
ST ———|3
CRBRST

II Process

Determine the status of
this system and the other
systems in the complex.

If the request is for this
system, restart it.

If the request is not for
this system, restart the re-
quested system.

(Part 1 of 4)

Output

ISGBCI

«

ISGCOQMRG

1ISGO131

1SG0141

ayk

«

ISGBCI

1SG0141

\

I1SGO131

1SGO15I

/

HEI #0 A)Ja8douad — STRLJBLEN pasuad}q

uk8I JO STERLJBIEN PHID}JISDY,

0-669T-82A1

“du0) WET IYB1JAdO) ()

L8671

£LT-S¥9 uOLje4adQ O POYIBN

Diagram GRS-22. ISGCRST — Global Resource Serialization VARY GRS RESTART Request Processor

Extended Description Module Label
ISGCRST processes the RESTART parameter of the VARY
GRS command. The RESTART parameter performs the

following functions:

e Bring a new system into the global resource serialization
complex.
o Restart global resource serialization on a quiesced system.
o Restart global resource serialization processing on one
or more systems after a disruption in the complex.

ISGCRST receives control from the command router
{ISGCMDR) when a command request block (CRB) for a
restart request is found on the global resource serialization
command work queue. ISGCRST obtains the ring status by
invoking ISGBCI which invokes ISGBRF (at entry point
ISGBRFSN).

1 ISGCRST first determines if this system is an active

global resource serialization system. If it is not active
ISGCRST determines if the resource queues are up to date
on this system, whether another system in the complex has
the same name as this system, and whether this system is
connected to more than one global rescurce serialization
complex. ISGCRST checks the other systems in the com-
plex for the same conditions and sets the appropriate inter-
nal indicators for all the tests just made, for use in later
processing.

2 |f the restart request is for this system, ISGCRST
determines if the request was issued by this system or
sent from another system in the complex. If the request
originated on this system, an active global resource seriali-
zation system exists, and this system is quiesed or inactive,
ISGCRST issues messages tSG011l and ISGO12I indicating
that this system is restarting global resource serialization
and the restart request is being passed to another system.
1f the restart request did not originate on this system, an
active global resource serialization system exists and this
system is quiesced or inactive. ISGCRST issues message
{SGO0111 indicating that this system is restarting global
resource serialization. This module then calls ISGBCI which
calls ISGBRF (at entry point ISGBRFNM) to pass the re-
quest to an active global resource serialization system to
restart this system. ISGCRST calls the queue merge routine ISGCQMRG
{ISGCQMRG) to merge the restarting system’s global re-
source serialization queues with the global resource serializa-
tion queues of the other active systems. ISGCRST then issues
the restart completion message (ISG0311) on this system
and broadcasts the same message to the other active
systems in the complex.

ISGBRF ISGBRFNM

(Part 2 of 4)
Extended Description

if the request is for this system and this system is already
active, ISGCRST issues message 1SG0141 indicating that an
active system cannot be restarted and rejects the request.

If this system is inactive and no active global resource seriali-
zation system exists, ISGCRST determines if the global
resource queues of this system are accurate and calls

ISGBCI to restart this system and on return issues message
1SGO13I on this system. |f the global resource queues are
not accurate, ISGCRST issues message 1ISG0141 indicating
that the queues are damaged and rejects the request.

3 If the restart request is for another system, ISGCRST
determines if this system is an active global resource
serialization system, and if so looks for the system specified
on the request in the global resource serialization complex.
1f the specified system is not part of the complex, ISGCRST
issues message ISGO14I indicating that the specified
system could not be found. If the specified system is
found, ISGCRST checks the indicators set in step 1 to
determine if the specified system is restartable. If not, this
module issues message 1SG0141 indicating why the
specified system cannot be restarted, and rejects the request.
If it is restartable and inactive, ISGCRST issues message
ISGO1 11 indicating that the specified system is being
restarted. If the specified system did not request the
restart, ISGCRST calls ISGBCI to request the specified
system to send back a restart request. ISGCRST calls
ISGBCI again to add the specified system to the global
resource serialization ring. This module then issues a
GQSCAN macro to get information about this system’s
global resources and then calls ISGBCI which calls ISGBRF
(at entry point ISGBRFNM) to send the information to
the specified system. When the specified system completes
restart processing, ISGCRST issues message 1SG0131 on
this system and sends it to all other systems in the complex
indicating that the specified system has restarted global
resource serialization.

If this system is inactive, it cannot process a restart request
for another system and ISGCRST issues message ISG014I
indicating such.

Module

ISGBRF

Label

ISGBRFNM

wHEI 30 STejJd}el Pa3}d}JI3say,,

WEX #0 A343dodd - STEIJB)}BW PBsSuad}q

SUD 118 VX/SAW HLT-8¥O

8-6691-82A1

*dJ0)y WAI IYB1J4AdO] ()

L8611

Diagram GRS-22. ISGCRST — Global Resource Serialization VARY GRS RESTART Request Processor

Input

CRB

CRBRST

RST

Process

> 4 Process the ALL key-

CRB

CRBSYSNM

word.

>H 5 If the request cannot be

attempted, inform the
operator

(Part 3 of 4)

Output

=)

Return
to the
caller

HEI 40 A)J49dodd — STRIJISIEN pasusall

oHEI 30 SIRlJB)IEN PEIILLISAAU,

0-669T-82A1

(86T °*d40) WAL 3YB14AdOD (D)

GLT-SY9 uolruddp JO poyzey

Diagram GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART Request Processor

Extended Description

4 1f VARY GRS (ALL) RESTART is specified by an

active system and there are no restartable systems,
ISGCRST issues message 1SG0141 indicating such and re-
jects the command. If VARY GRS (ALL) RESTART is
specified from an inactive system and an active global re-
source serialization system exists, ISGCRST issues message
1SG0141! indicating such, and rejects the command. If
VARY GRS (ALL) RESTART is specified on an inactive
global resource serialization system and other restartable in-
active systems exist, ISGCRST restarts this system using the
same processing described in step 2.

After this system has restarted global resource serialization
successfully, ISGCRST performs the processing described
in step 3 for each restartable system.

5 If muitiple global resource serialization complexes

exist, two or more systems share the same system
name, or the global resource serialization queues are dam-
aged, ISGCRST issues message 1SGO141 indicating one of
the above and rejects the command.

Recovery Processing

ISGCRCV handles recovery processing for this module.
ISGCRCYV calls ISGCRST at entry point ISGCRS02 if an
error occurs while restarting another system, At this entry
point ISGCRST removes partially restarted systems from
the global resource serialization ring and releases serializa-
tion,

wH8I 30 STR}JOIBW PBID}JISAY,,

WEI 0 A)43dodd — STR}JISIBW PASUAD}T

S¥9 7118 VX/SAW 9L1-S¥9

0-669T7-82A1

L36T *du0) WAT IYBLaAdo) (9)

Diagram GRS-23. ISGDGCBO — Global Resource Serialization Dump Control Blocks Exit Routine (Part 1 of 2)

PC from
1ISGDSDMP

Input Process

Register 1

parameter list 1 Process the pages containing
control blocks important
to global resource

DEPLGVT -:D serialization.
DEPLASCB 2 Move the data to be dumped
to the SDUMP output
DEPLMGCB buffer.
3 Set a return code
DEPLRSV before returning control
to ISGDSDMP.
DEPLERQA -
PT to the
GVTX calle:
GVTXRQA
RQA bit map

Output

Register 1

:2 DEPL p—— |:|2

DEPL
parameter list

DEPLGVT

DEPLASCB

DEPLMGCB

DEPLRSV

DEPLERQA

LED Register

SDEXPARM
parameter list

SDEXBFAD

SDEXKEYS

SDEXASID

SDEXCDAD

WSI 30 Aru2dodd — STRIJIBIRN Pasuadll

al81 $0 STRIJBIEKR RIIOLJISHUL

0-969T-82A1

‘d40) WEI IYBL4AdO) (9)

L86T

uotijesadg Jo poyzay

LLT-S¥9

Diagram GRS-23. ISGDGCBO — Global Resource Serialization Dump Control Blocks Exit Routine (Part 2 of 2)

Extended Description

ISGDGCBO receives control via a program call instruction
from ISGDSDMP. Its purpose is to move from the global
resource serialization address space to the SDUMP output
buffer, the pages containing the following:

GVT (global vector table)

ASCB (global resource serialization ASCB)
GVTX (global vector table extension)
GQHT (global queue hash table)

LQHT (global queue hash table)

GRPT (global resource pool table)

LRPT (local resource pool table)

SAHT (system/ASID hash table)

RSV (ring-processing system vector table)
RSV entries

The active global resource serialization ERQA pages
for PQCBs, QCBs, QELs, and QXBs

Module

Label

Extended Description Modute

1 SGDGCBO processes only a page of data at one

time. Control blocks which occupy more than one
page of storage, or span pages, are processed in multiple
invocations of ISGDGCBO0. ISGDGCBO turns on flags in
the SDUMP ESTAE parameter list (DEPL) to indicate
that processing is to be initiated for each of the items
listed in the introduction. When ISGDGCBO is
processing a page in the resource queue area (RQA) or
extended resource queue area (ERQA), 1ISGDGCBO
checks the corresponding bit in the bit map to determine
if the page is allocated (the bit is on). If so, then
1SGDGCBO determines if the page is from the ERQA
containing QCBs, QELs, QXBs, or PQCBs and dumps
only those pages.

2 |SGDGCBO moves one page of data to the SDUMP
output buffer.

3 ISGDGCBO returns control to ISGDSDMP after
setting one of the following return codes:

Return Code Reason
0 Dump is complete, return to the caller
4 Write data to the dump data set and
return to the cailer
8 Write data to the dump data set and
return to ISGDGCBO to dump more
data.

Labal

uHEI 0 STRIJIBICH P23}D|JIISDY,,

K8 20 A3J42dodd - STRIJIB}RN POSUII}T

S¥9

0-9691-82A1

L86T °"duo) WEI IY6LJAdo) (9)

From

AMDPRUIM

271S VX/SAWN 8LT-S¥9

Register 1

ABDPL
parameter list

4 cvr

’PRINT routine

* memory
access routine

* print dump
output buffer

Diagram GRS-24. ISGDPDMP — Global Resource Serialization Print Dump Exit Routine

(Part 1 of 4)

—

Input parameters for
AMDMEMAR

Register 0 Register 1

(I i

Dump data set
ASC8

GVT

ASCBASID

GVTX
$ LanT
bdGant
} LreT
4 GRPT

. Process

Piace the global resource
serialization ASID in the
ABDUMP parameter list.

Retrieve the addresses of
the major global resource
serialization control blocks.

Print the labels and ad-
dresses of the control
blocks.

Output

ABDPL
parameter list

4ovr

AMDMEMAR

Memory access

‘ PRINT routine

4 memory access routine

* print dump
output buffer

ASID

AMDMEMAR

-

Memory access

AMDWRITR

Print routine

Print dump output

Acvr

A Ggvrx

A ranr

Acant

A LreT

A GRPT

HEI 30 AyJ2cdoud — STRlJ2}BW PEsusd}

uHEI 30 STERLJSIRH PEID} IS0,

0-669T-82A1

*d10) WEI IYS14ADO) ()

L1861

uoijeJsedg 40 poyjey

6L1-5¥9

Diagram GRS-24. ISGDPDMP — Global Resource Serialization Print Dump Exit Routine ~ (Part 2 of 4)

Extended Description Module Label

When global resource serialization control block infor-
mation located in the dump data set needs to be formatted

and printed, AMPRUIM branches to {ISGDPDMP to do this.

1 ISGDPDMP calls the memory access routine
(AMDMEMAR) to search the global resource serializa- AMDMEMAR
tion address space contained in the dump data set to obtain
and return the address of the areas where the required in-
formation can be found. AMDMEMAR requires two para-
meters: register O contains the virtual address to be refer-
enced and register 1 contains the address of the ABDUMP
parameter list passed to ISGDPDMP from AMDPRUIM,

1SGDPDMP obtains the virtual address of the gloabl re-
source serialization vector table (GVT) from the CVT and AMDMEMAR
passes the address to AMDMEMAR in register 0, If the
GVT address is accessible in the dump data set, then
AMDMEMAR returns to ISGDPDMP an address in re-
gister O where it can be located. ISGDPDMP obtains the
GVT address, converts it to printable hex, and stores it in a
buffer to be printed. ISGDPDMP updates the ASID field in
the ABDUMP parameter list to the glebal resource seriali-
zation ASID, found in the global resource serialization
ASCB pointed to by the GVT, to notify AMDMEMAR
from which address space to access data in the dump data
set,

2 ISGDPDMP then obtains the virtual address of the glo-

bal resource serialization vector table extension con-
trol black (GVTX) located in the GVT, and passes it to
AMDMEMAR, If the GVTX address is accessible, then
ISGDPDMP converts the address to printable hex and stores
it into a buffer to be printed. Next the virtual addresses of
the resource serialization storage management control
blocks located in the GVTX are passed to AMDMEMAR. If
they are accessible, then ISGDPDMP also converts these ad-
dresses to printable hex and stores them into a buffer to be
printed.

AMDMEMAR

3 ISGDPOMP calls the print service routine
(AMDWRITR) with the address of the ABDUMP pa- AMDWRITR

rameter list (ABDPL) in register 1. The ABDPL contains

the address of the buffer needed to print the following con-

trol block labels and the corresponding addresses in the be-

ginning of the dump.

GVT

GVTX

LQHT (local queue hash table)

GQHT (global queue hash table)

LRPT (local resource pool table)

GRPT (globat resource pool table)

uwHE8I JO STRlJd}EY PBIO|IIISAY,

KEI 30 AjJododd — STElJIdIEW pasuaalq

118 VX/SAW 08T-S39

S¥9

0-969T1~-82A1

L86T °dJo) WII FUBLUAdO) (2)

Diagram GRS-24. ISGDPDMP — Global Resource Serialization Print Dump Exit Routine

Input

QHT

QcB

QHTE

QEL

QEL

Process

(Part 3 of 4)

>+ 4 Obtain and sort the local

Qcs

QEL

"l

Sorted
RIBs

and global resource queue
data into QNAME/RNAME
sequence

> 5 Print the resource data.

Output

AV4

«

ISGDSORT

Sort routine

g

AMDWRITR

Print routine

Return to
caller

Sorted
RI1Bs

Print dump output

Major control
block addresses

Local queue control
block data

Global queue control
block data

WEI #0 ArJdadcdd - STERLJ31RR P3ISUadL

wHEI #0 STRIJB}EY PBLILJIYISBY,

0-9691-82A1

da0) WEI IYB14AdOY ()

L8671

18T-S¥9 uoijedsedg jo poulay

Diagram GRS-24. ISGDPDMP — Global Resource Serialization Print Dump Exit Routine
Extended Description Module Label

4 1SGOPDMP obtains and sorts the local and then the ISGDPDMP
global resource queue data in the following manner.

ISGDPDMP obtains information about each resource de-

scribed by a queue control block (QCB) and stores it into

alphabetical order by resource name. For each QCB on the

QCB synonym chains pointed to by the local and global

queue hash table entries, ISGDPDMP performs the follow-

ing: .

e Builds a resource information block (R18)

o Scans the QEL chain pointed to by a QCB for data
about the requestors of the resource

® Stores some of the information found in the QCB and
QEL into the RIB

When all the synonym chains have been processed,

ISGDPDMP calls the global resource serialization dump sort

routine {ISGDSORT) to sort the RIBs into alphabetical or- ISGDSORT
der using the resource name {QNAME/RNAME) as the sort

argument.

5 ISGDPDMP calls the print service routine
(AMDWRITR) to print the information about each re: AMDWRITR
source following the control block lgbels and addresses.
For each resource, ISGDPDOMP scans the QEL chain saved
in the RIB and prints information for each requestor.

(Part 4 of 4)

uH8I O STRIJIICH PaIDLJIISIY,,

W8I 30 A}JBdOJd -~ STRIJIIRW pasuas]y

$11S VX/SAW 28T-S¥9

S¥9

0-969T7-82A1

£86T *dJo) WET FYBLuAdO) (3)

Input

Register 1

SDEXPARM
parameter list

From
IEAVTSDU

Diagram GRS-25. ISGDSDMP — Global Resource Serialization SVC Dump Exit Routine

1

> 2

4 1eavTSEO

4 SDUMP output
buffer

Register 15

Return code
from ISGDGCBO

II Process

Entry Point: ISGDSDO01

(Part 1 of 2)

Output

Register 1

Establish a recovery en-

D

vironment.

Obtain resource infor-

—

mation from the global re-
source serialization ad-
dress space.

ISGDGCBO

Eiump processing
routine

Write the resource infor-

mation to the dump data set
and determine if any more
data remains to be dumped.

)

IEAVTSEO

1/0 routine

o ‘'If more data remains, * Step 2

Delete the recovery en-

vironment,

Return to
caller

SDEXPARM

DEPL
parameter list

4 SDEXPARM

4 SOUMP
output
buffer

Register 15

Return code

Dump data set

Register 156

0

NEI }0 A1J3dO.ld - STR}JIIRW pOSUEa}

uHEI 30 STERLJIIIRU PEII}IFSTAUL

0-669T-82A1

*d10) WEI IYSLJAdO) ()

L861

uotjeaddg 40 pPoyiay

£8T-SA9

Diagram GRS-25. ISGDSDMP — Global Resource Serialization SVC Dump Exit Routine

Extended Description Module

IEAVTSDU passes control to ISGDSDMP to write those
pages containing important global resource serialization
control blocks to the dump data set. 1SGDSDMP is called
by tEAVTSDU in any address space. When ISGDSDMP is
called, it is enabled, but the system is set nondispatchable.
At entry, register 1 contains the address of the SVC dump
exit parameter list (SDEXPARM). SDEXPARM contains a
200-byte workarea for ISGDSDMP to use.

1 ISGDSDMP puts the address of SDEXPARM into the 1SGDSDMP
SDUMP ESTAE parameter list (DEPL) and issues an

ESTAE macro establishing ISGDSDRYV as the recovery rou-

tine for ISGDSDMP and 1ISGDGCBO0. (See “’Recovery Pro-

cessing’’ for a description of ISGDSDRV).

2 1SGDSDMP issues a program call to ISGDGCB0 which ISGDGCB0
resides in the global resource serialization address

space. ISGDSDMP passes ISGDGCBO the address of the

SDUMP ESTAE parameter tist in register 1. Only one page

of data can be processed at a time. 1ISGDGCBO updates

SDEXPARM with the required data concerning the page t0

be dumped, then moves the page to the SDUMP output

buffer area. ISGDGCBO returns control to ISGDSDMP via

a program transfer instruction after setting one of the

following return codes.

Return code Action to be taken
0 Dump complete, return to the caller.
4 Write a page to the dump data set,
then return to the caller.
8 Write a page to the dump data set,
then return to ISGDGCBO to process
more data.

Label

(Part 2 of 2)
Extended Description Module
3 1f ISGDGCBO returned a nonzero return code indi- IEAVTSEOQ

cating that there is data to be written, ISGDSDMP
calls IEAVTSEO to write a page of data to the dump data
set. If the return code is eight, there is more data to be
dumped. ISGDSDMP repeats the process beginning at
step 2; otherwise, all the data has been dumped and pro-
cessing continues at the next step.

4 ISGDSOMP issues an ESTAE macro to delete the re-
covery environment and sets a zero return code to in-
dicate successful processing.

Recovery Processing:

When an error occurs while either ISGDSDMP or
1SGDGCBO is executing, RTM calls ISGDSDRYV to record ISGDSDRV
the recovery information in the SDWA and record the
SDUMP ESTAE parameter list in the SDWA's variable re-
cording area (VRA). ISGDSDRYV issues a SETRP macro to
indicate to RTM to retry at entry point ISGDSDO1

(step 2). Twenty-two retries are allowed:

o One retry for a failure while processing the major global
resource serialization control blocks (GVTX, LQHT,
LPRT, GAQHT, GRPT, SAHT)

@ One retry for a failure while processing the ring status
vector table

o Twenty retries for failures while processing the resource
queue area.

No retries are allowed if a failure occurs while processing the
GVT or the global resource serialization ASCB. If a retry is
not allowed, RTM is notified to continue with termination.

Label

uHEI O STRIJI}EW PBID}JISAY,,

HEI 30 A149d0Jd ~ STR}JBIRW Pasuaslq

SAY 716 VYX/SAWN H8T-SUD

0-6691-82A1

L86T °d4c) WII YO LuAdo) (o)

rocess

From
IEAVADO1
Input P
Register 1 ABDPL “
parameter list
4 Tcs
Register 1 ASID
4 ieAvADSB S
DSPL
Parameter List DSPLENT
* DSPLENT
PSA Sorted
RIBs
PSATOLD _:>
Current
TC8 RIBE | —
RIBEASID :::ﬁ
TCBJSTCA
8 RIBETCB
RIBE

1 Establish a recovery en-
vironment and load
ISGDSORT.

2 Set the current jobstep
non-dispatchable.

Entry Point: ISGDSNR1

3 Perform the following
functions for local and
global resources:

A. Obtain the resource
information,

B. Sort the resource data
into alphabetical order
by resource name.

C. Format and print the
sorted resource data.

Entry Point: ISGDSNR2

4 Do cleanup.

Diagram GRS-26. ISGDSNAP — Global Resource Serialization SNAP Dump Exit Routine (Part 1 of 2)

Output

TcB

> TCBADMP

«

?

Buffers
—> [re
RIB
Register 15
| Return code
L
> RIBs
ISGDSORT
RIBCHAIN RIBCHAIN
Sort
routine
Formatted dump
1EAVADS1
Print
routine RIBCHAIN=0
Return
to caller

MEI 40 Araadodd ~ Sieldeier pasuesii

uHEI 30 STR}J3IEH PEID}I1SAU,

0-5691-82A1

L86T °d40) WEI IYStuAdo) (9)

G8T-S¥O uotjeuadg 30 poyzay

Diagram GRS-26. ISGDSNAP — Global Resource Serialization SNAP Dump Exit Routine (Part 2 of 2)

Extended Description

When it is necessary to format and print information about
the resources associated with all the tasks in the current
jobstep, IEAVADO1 branches to ISGDSNAP.

1 ISGDSNAP issues an ESTAE macro to establish
ISGDSNRYV as the recovery routine. (See *’Recovery
Processing’ for a description of ISGDSNRV.)

2 1f the dump is for the current task, ISGDSNAP sets
the TCBADMP bit in the TCB to indicate that the cur-
rent task is making the jobstep non-dispatchable.
ISGDSNAP then issues the STATUS macro to set the job-
step non-dispatchable so that the resources owned by the
jobstep will not be released during the dumping process.

3 ISGDSNAP performs the following functions for local
and global resources:

A. ISGNSNAP issues a GQSCAN macro to obtain from the
global resource serialization address space resource and
requestor information associated with the ASID speci-
fied in the ABDUMP parameter list. {f no buffer exists
for the GQSCAN output, ISGDSNAP obtains one. The
GQSCAN service routine (ISGQSCAN) stores the data
in resource information blocks (R18s) and resource in-
formation extension blocks {(RI1BEs) and moves the re-
quested information into the buffer in ISGDSNAP’s ad-
dress space. When ISGQSCAN returns control,
ISGDSNAP checks the return code. If the return code is
eight, there is more data to be accessed. ISGDSNAP ob-

Module

ISGDSNAP

ISGQSCAN

tains another buffer and invokes ISGQSCAN again. {f the
return code is zero, all the information has been obtained,

and processing continues at 3B.

B. ISGDSNAP calis ISGDSORT to sort the resource in-
formation contained in the buffers. Before calling
ISGDSORT, ISGDSNAP obtains and initializes the
ISGDSORT parameter list. [t initializes the entry section
of the parameter list with buffer information such as the

ISGDSORT

address of the first buffer to be sorted, the number of RiBs
contained in the buffer, and a pointer to thye next buffer to

be processed. ISGDSNAP then calls ISGDSORT to sort
the resources into alphabetical order by resource name
{(QNAME/RNAME]).

Label

Extended Description

C. ISGDSNAP formats and prints the resource information
for the tasks in the current jobstep., The RIBs/RIBEs
contain information about the resources associated with
the ASID in the ABDUMP parameter list. To format
and print the resource information associated with the
tasks in the current jobstep, ISGDSNAP searches for the
requestor by comparing the RIBEASID with the ASID
specified in the ABDUMP parameter list and comparing
the TCB jobstep (TCBJSTCA) pointed to by the
RIBETCB with the current TCB jobstep. If a match is
found, then ISGDSNAP calls IEAVADS81 to print the
resource information.

4 I|SGDSNAP performs the following cleanup functions:

o Resets the TCB bit (TCBADMP) and issues the STATUS
macro to reset the jobstep dispatchable

® Releases any previously obtained storage

o Deletes the sort routine ISGDSORT to remove the CDE
entry and issues the ESTAE macro to delete the re-
covery routine (ISGDSNRV)

e Raeaturns to the caller with a zero return code

Recovery Procassing

When an error occurs white ISGDSNAP is executing, RTM
calls ISGDSNRYV to record the recovery diagnostic inform-
ation in the SDWA and to issue an SDUMP macro for the
LSQA, which contains the buffers used to contain the re-
source information returned by the GQSCAN service rou-
tine, and the ISGDSORT paramaeter list, Unless a recursive
error has occurred, ISGDSNRYV attempts a retry. (f global
resources have not been processed, it retries at entry point
ISGDSNR1 (step 3); otherwise, it retries at entry point
ISGDSNR2 (step 4) to perform cleanup processing. 1f a re-
try is not allowed, ISGDSNRYV resets the jobstep dispatch-
abte and returns control to RTM,

Modute

IEAVADS1

ISGDSNRV

Label

uHEI O STE}JBIEN Pa3d}JIsaY,

WAI 40 A3uSdodd - STRLJB}EW pasudd |1

S¥9 7118 VX/SAW 98T-S¥9

0-5691-82A1

£86T °du0) WEI YStaAdo) ()

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 1 of 6)

ENQ/DEQ/RESERVE Termination Resource Manager (ISGGTRM1)
Global Resource Processor (ISGGRPOO)

Input Process
Register 1 h
> 1 Locate the first/next
QE!. on the input QEL
DEQ Purge List (DPL) chain.
SYSID | ASID o Empty QEL chain

$ TcBorO

I 4 QEL queue N 2 Perform the TCB/ASID
purge.
fiags a. Locate the QCB and
Qxs.
QEL
7 Qcs
QELQCB A b. Initialize a PEL
describing the resource

QELQXB 9 to be purged.

QELSYSIO

QELASID

Qaxs
QELNQELQ
[0) ¢:31]

- Step 3

WEI JO AjJgBdodd — STRIJILEN PUSUdI}

ulE8I JO STRjJ3ICW PAJDLLISAY,,

0-G691-82A1

L8671 'd40) WAI IYBLJAdO) (2)

uotjeJadg 40 poyyay

L8T-S¥9

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 2 of 6)
Extended Description Module Label

ISGGDEQP purges the resources associated with a task or
address space. These resources are defined on any of the
following QEL queues.

e ASCB global QEL queue
e ASCB locat QEL queue
e SYSID/ASID QEL queue

The input parameter list contains the type of purge requested
{either TCB or ASID), the SYSID, TCB, and/or ASID to be
purged, and one of the above QEL queues to be scanned.

1 Search the QEL queue pointed to by the input ISGGDEQP
parameter list in order to find the element to be purged.
if the QEL queue is empty, continue at step 3.

2 If thisis a TCB purge request, then purge only those

QELs associated with the input TCB; otherwise purge
all the QELs defined on the QEL queue pointed to by the
input parameter list.

a. Use the QEL to get addressability to the QCB and
the QXB.

b. Extract information from the QCB, QEL, and QXB,
Initialize the PEL section of the queue work block
{QWB) supplied as input. Use the SQA QWB PEL when
purging a loca! queue. Use the input QW8 PEL when
purging a global queue.

uHEI 40 STR}JOIEW Pa3d}J1say,,

WAL 30 AyJadoud - STelJd el pasSuUald)

:71S VX/SAW 88T-S¥9

Sd9

0-969T~-82A1

1861 *dJo) WEI 3yStuAde)y (9)

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 3 of 6)

et Process Output
QWA
2 (continued) WA
DPLRSYID
DPLRABMC > c. Chain a warning message - J'> QWAMRBQ -
to the resource being
purged. ISGGPGRP
Process MRS
QWA QEL
r QWAQWBHS H osALc
Allocate a
> message
d. Dequeue the requestor
aws v from the QCB. buffer
 SuPL ISGGDQOO
Dequeue the
contro! blocks
QCB/QEL/QXB

NZI 46 AjJ2dodd - STRIJI2IBH Basusd}t

uH8I 0 STEIJIBIRHN PRI IFSAY,

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 4 of 6)
Extended Description . Modute Labet

2 (continued)

0-4691-82A1

2861 *dJo) WAI 3IYBLaAdO] (D)

681-539 uoijeJddQ 0 POYIaY

c. Determine if purge messages should be issued. Invoke

ISGSALC to allocate a message buffer (MRB) if purge
messages should be issued, These messages reside in

the MRB and are queued from the QWA and later
processed by ISGGTRM1 for task or address space
termination or processed by ISGCPRG for a SYSID
purge command. If the caller has indicated that the
requester was in ‘‘must complete’’ mode, owns the
resource, and the resource request represents an
exclusive request with scope of SYSTEM or SYSTEMS,
then build an MRB for message ISGO32E. Fora SYSID
purge request, build an MRB for each resource to be
purged; each MRB is for message 1ISG018I. If the QEL
is a MASID target (as determined by calling ISGGPGRP),
ISGGDEQP buitds an MRB for message ISGO35E.
Otherwise, continue with step 2d.

. Invoke ISGGDQOO to scan the QCB DEL chain for

the SYSID, ASID, or TCB passed as input. When the
input SYSID, ASID, or TCB is found, chain the control
blocks to be freed from the storage manager parameter
list (SMPL) and continue at step 1 until the QEL chain
is empty.

ISGSALC

ISGGPGRP

ISGGNQDQ DCURQEL

ul8I }0 STRIJBIEH PAYI|}JISDY,,

WET 40 A}.uddoud -~ STR|.4DIEY PBSUDIL

SAY :T1S VX/SAW 06T-S¥9

0-669T-22A1

£86T °da0) WAI IYSt4Ada) (2)

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 5 of 6)

Process

3 Purge the sync queue.

$ 5 End TCB/ASID purge

Input
ASCB QWBs
ASCBGSYN
SMPLPTR
- aws
L swPL
Qaws, acs,
QEL, QXBs
aQwAa
MRBs
QWAMRBQ

processing.

> 4 Free other control blocks.

Qutput
ISGSDAL
“ Free control
blocks
Register 0
> * MRB queue
or0

Return to
the caller

WEX 30 A3a8dodd — STELJ1BK pasuas}y

wHEI 0 STR}JDLIEH PRIOLJ3SBUa.

0-569T-82A1

£86T °d40) WAI YSLJAdE) (D)

T61-539 uojjedndg jJo poyjey

Diagram GRS-27. ISGGDEQP — TCB/ASID Purge (Part 6 of 6)
Extended Description Module

3 The sync queue represents steal requesters awaiting ISGGDEQP
sync ownership. The sync queue prevents ENQ requests

“directed” to the failing task from running before the first

request is processed. Entries normally exist on the sync

queue only when the address space is abnormally terminating.

When the address space is normally terminating or if a TCB

purge is requested and the task is normally terminating, no

entries exist for the task or address space. If the task is

abnormally terminating, the ISGGNQDQ ESTAE routine,

ISGGESTO, cleans up the QWB.

4 1f control blocks have been placed in the SMPL, call ISGSDAL
the storage manager dealtocation routine to free

them, using the CMS ENQ/DEQ class lock for serialization.

The caller has previously obtained the global resource

serialization local lock if global resources were to be

purged.

5 Return to the caller with register O containing the
address of the MRB queue or zero. The purge is
complete.

uH8I 20 STR|JOIRH. P333}J350)Y,,

HEI 40 A3JddoJd -~ STRiJIIRY PASUDD}T

S¥O 715 VX/SAW 26T1-5¥9

0-5691-82A1

£86T °d40) WEI IYSL4AdO] (2)

From ISGGWAIT

Diagram GRS-28. ISGGESTO — Global Resource Serialization ENQ/DEQ/RESERVE Mainline ESTAE Routine (Part 1 of 4)

Output

A4

ISGSDAL

1ISGGaweo

-«

Input Process
QEL 1 Perform initialization and
serialization.
ASCB QELQOXB
if all the resources are local,
ASCBGQEL QELNQELQ = —"—:l>. 2 dequeue them.
aws
awsHQOXB
aws GVTX
~ :). 3 Search the synchronization
. queue for the request ele-
QWBHNSYN GVTXLSMP ment,
QWBHSTL
QWBEXTA
ASCB J
aws “"_: M 4 1f the request is not found
on the synchronization
ASCBGSYN QWBHNSYN queue, re-obtain the locks.
QWBHNQWSB
QWBHOXB
QWBHMIXR

SMPL

SMPNCELL
SMPL
aws
SMPNCELL
QWBHNYSN SMPCADDR
SMPEOPL
ASCB
ASCBGSYN aws
SMPL QwBHNOWS
SMPNCELL

}1

WSI 30 AjJedodd - STR)IJBIEW Pasusd

uHEI 30 STRIJIBIBK POID}JI3SY,,

8-6G691-82A1

86T °d40) WAl IYBLIAdO) ()

uo13e4ddQ 40 POYIBY

£6T-S¥9

Diagram GRS-28. ISGGESTO — Global Resource Serialization ENQ/DEQ/RESERVE Mainline ESTAE Routine (Part 2 of 4)

Extended Description

ISGGESTO recovers from errors that occur while the ENQ/
DEQ/RESERVE mainline processing is waiting for a re-
quest to be processed. This module does not establish a re-
covery environment; if an error occurs, the task termination
manager cleans up.

1 ISGGESTO issues a PCLINK macro to save linkage in-

formation, issues the SETLOCK macro to obtain the
requestor’s local and CMS locks and calls ISGSALC to ob-
taing a work area.

2 |SGGESTO determines if the resources are loca! and if

so dequeues them, To do this ISGGESTO scans the
ASCB lacal QEL queue and dequeues any resource request
identified with a QXB in the RB extended save area.
ISGGESTO calis ISGGQWBO at ISGGQWB4 to build a DEQ
request and the calls ISGGNQDQ at ISGGDQOQO to perform
the DEQ.

3 ISGGESTO searches the synchronization queue to de-
termine if the request has been processed yet. If
found and it is not the top request on the synchronization
queue, this module calls ISGSDAL to free the QWB associ-

ated with the synchronization QWB.

4 If the request is not found or is found at the top of

the synchronization queue, ISGGESTO calls
ISGGQWBO at ISGGQWBS to build a SYNC QWB to make
sure that all outstanding requests issued by this task have
been processed. Upon return ISGGESTO abtains the local
and CMS locks. If the request is at the top of the synchron-
ization queue, ISGGESTO frees the synchronization QWB
and all the QWBs related to the request. If the request was
not found on the synchronization queue, ISGGESTO de-
queues all cutstanding global and local rescurces. ISGGESTO
decreases the task global resource count (TCBGRES) by
either the number of global ENQ requests or DEQ requests
that ISGGRPOO processed.

Module Label

ISGSALC

ISGGOQWBO0 1SGGQWB4
ISGGNQDQ 1SGGDQ00

ISGSDAL

ISGGQWB0 ISGGQWBS

ulE8I 30 STRlJd}eN PO3}I}JIISIY,,

HEI 30 A34adOdd - STRIJIBIEN PISUDILT

"Restricted Materials of IBM"
Licensed Materials — Property of IBN

SMPNCELL

SMPL

Output

Return
to the

caller

§ Clean up and return

GVTXLSAR
GVTGASCB

GVT

Diagram GRS-28. ISGGESTO — Global Resource Serialization ENQ/DEQ/RESERVE Mainline ESTAE Routine (Part 3 of 4)
Process

Input

GRS-1964 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

0-669T1-82A1

*dJ03 WEI IYBL4AdOY (D)

L86T

uoijedadg 40 poyjay

66T-S49

Diagram GRS-28. ISGGESTO — Global Resource Serialization ENQ/DEQ/RESERVE Mainline ESTAE Routine (Part 4 of 4)

Extended Description Module Label

5 ISGGESTO restores the linkage information, releases
the locks it obtained and returns to the caller,

uHEI }O STElJ33EN PR339}J1Sad,

HSI 30 A343dodd -~ STRLJB}BK Pasuaaty

118 VX/SAW 96T1-8¥9

SA9

0-969T-82A7%

£86T °duod WAI IYGlaAdoy (9)

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 1 of 12)

From RTM

a 1

—
—

Input
Register 1
SDWA

CvT

CVTGVT

GVT
‘GVT
SDWA
SDWAFMID

Process
b ISGGFRRO:

Copy the basic diagnostic

information into the SDWA.

Obtain workarea storage
in the CSA, verify that the
GVT is accessible, and
check if recovery proces-
sing is possible.

e if not, request an
SVC dump.

Output

{(branch
entry)

SDWA

SDUMP

Scheule an
SVC dump

. s s

WET 30 A3J2d0Jdd - STR}JS)IEW pasuad}i

uHEI #0 STR}J3IEW PAIDLIISBY.

0-6691-82A1

L86T °d40) WEI IYBJAdO) (3)

uoijedsedqg JO poylady

L6T-SA9

" Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine

Extended Description Modute Labe!

ISGGFRRO is the FRR routirie used to protect the gtobal
resource serialization modules shown in the table betow. In
some cases, 8 modute must issue the SETFRR macro to es-
tablish ISGGFRRO as its recovery routine. In other cases,
the module’s caller has already established ISGGFRRO as
the recovery routine,

Entry Point Name Issues SETFRR

1GC048 Y
1GCO48FP
1GC056
IGCO56FP
ISGGDEQP
ISGGQWBC
1SGGawsl
ISGGREX0
ISGGRPOO
ISGGTRMO
ISGGTRM1
ISGSALC
ISGSDAL
ISGSHASH

222<XK<X<K2222<<X<

This routine fills in the SODWA for LOGREC recording,
takes a dump, and performs resource validation and repair.

1 ISGGFRRO adds the recovery routine name and fail-
ing subcomponent information to the SDWA. The

SDWA already contains the following default options:

e Record the SDWA in LOGREC

e Do not take a dump

o Continue with termination

2 |ISGGFRRO uses a branch entry GETMAIN to condi-
tionally request storage for a workarea. Storage is re-
quested from subpool 239 (an SQA subpool allocated from
the CSA). The workarea must be in common storage be-
cause it will be used after primary addressability has been
switched to the global resource serialization address space.

(Part 2 0f 12)

Extended Description

ISGGFRRO ensures that there are no storage errors associ-
ated with the GVT and that the acronym is correct. The
global resource serialization vector table (GVT) must be
accessible in order to attempt resource validation and re-
pair.
Recovery is not possible in any of the following situations:
o The private area of the failing address space is not acces-
sible,

o The GVT failed the accessibility tests.
o A workarea could not be abtained.

When recovery is not possible, ISGGFRRO requests an SVC
dump and processing continues at step 13.

Module

SDUMP

Label

uNEI JC STRIJBIBW POII|JIISAY,

HEI 30 A)J4ddold —~ STELJDIBK PBSUdILT

71718 VX/SAW 86T-S¥9

S¥9

0-669T-82A1

L86T "d40) WET IYSLaAdaly (2)

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 3 of 12)

Input
SDWA
SDWAPARM FRR
parameter

list

Process

— 3

J>r4

2

Determine which module
failed.

For errors in ISGGNQDQ or
ISGGQWSBI, check if the error
was caused by invalid parameter

Output

information.

e Ifso, ||||.}Smp13

Add diagnostic infor-

mation to the SDWA,

Request an SVC dump.

{branch
entry)

—

SDWA

SDWAABCC

SDWA

SDUMP

Schedule an
SVC dump

WEI 30 A}12d0dd — STRLJIDNTOH pasuUs3LT

uwl8I 30 STR}JBLIEBU PRID}JIISIY,

0-6691-82A1

‘d103 WET FUBLJAdO) ()

L8671

661-649 uojjwiedg O poysy

Diagram GRS-29. ISGGFRR0 — ENQ/DEQ/RESERVE Recovery Routine
Extended Description Modute Label

3 For nucleus resident routines, ISGGFRRO uses the lo-

cation of the error to determine which module failed.
For routines that are not nucleus resident, the 24-byte FRR
parameter list contains information that is used to identify
the failing modute.

4 I1SGGFRRO checks the type and location of the error

to determine if it was an access exception caused by
an invalid parameter on the ENQ, DEQ or RESERVE
macro. If so, ISGGFRRO converts the completion code to
an ABEND 430 (for DEQ) or ABEND 438 (for ENQ/RE-
SERVE) and bypasses recovery processing.

If the error was not caused by an invalid parameter,
ISGGFRRO converts the comptetion code to an ABEND
730 (for DEQ) or ABEND 738 (for ENQ/RESERVE and
continues recovery processing,

5 ISGGFRRO copies the following information into the
SDWA:

Failing module name

Failing CSECT name

Compile date of the failing CSECT
PTF/product number of the failing CSECT

For nucleus resident routines, ISGGFRRO contains a table
of addresses of the CSECT name, the compile date, and the
failing CSECT's PTF/product number. For routines that
are not nucleus resident, the FRR parameter list contains
the address of an area that contains the information noted
above. In either case, ISGGFRRO uses the CSECT name to
determine the load module name.

6 ISGGFRRO requests an SVC dump except in the fol- SOUMP
lowing cases:

® A previous recovery routine has already provided diag-
nostic information.
@ ISGGFRRO was entered for cleanup only.

(Part 4 of 12)

uWEI 30 STE}JIDIBN PA}D}JISBY,

WEI 30 A3saciodd ~ STEJB)EW pasuBa |1

S¥9 :11S VX/SAW 002-5¥9

0-969T-82A1

L86T °dJ03 WGT IYS614Ado) (2)

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 5 of 12)

Input

GVT

GVTGASCB
ASCB
ASCBASID

GVT

GVTGVTX
GVTX

‘GVTX'

Process

Establish addressability to
the global resource seriali-
zation address space.

Obtain the locks necessary
for resource repair,

Verify that the GVTX is
accessible,

o If it is not accessible,

) s 3

HEI 30 AjJ48ddJdd — SIRLJISIRW PASUSILT

«HEI JO STREJIJEN POIILJ}53Y,,

0-569T-82A1

£86T °dJ03 WAI IUBLJAdo] (2)

uoi13eJadg JO poyjay

102-S¥9

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 6 of 12)

Extendad Description Module Label

7 ISGGFRRO issues the EPAR instruction to determine
if it has addressability to the global resource serializa-
tion address space. (ISGGFRRO receives control with the
same addressability that existed when the SETFRR was
issued. In most cases, the global resource serialization ad-
dress space is not accessible.) If the global resource serial-
jzation address space is not accessible, ISGGFRRO copies
all necessary information, including a copy of the 200-byte
workarea, into the workarea obtained in SQA (CSA).
ISGGFRRO then issues a PC instruction to obtain the

-necessary addressability.

8 Some callers hold no locks, others hold the local lock

of the global resource serialization address space and
others hold both a local and the CMSEQDQ lock. The fail-
ing pracess might not have been holding the locks necessary
to perform resource repair, 1f no locks are held,
ISGGFRRO obtains the local lock of the global resource
serialization address space and the CMSEQDQ lock. If only
a local lock is held, ISGGFRRO obtains the CMSFE.QDQ
lock. If both locks are held, ISGGFRRO does not obtain
any locks. {Note: ISGGFRRO uses SETLOCK for lock re-
quests. ISGGFRRO does not check for potential hierarchy
violations.)

O ISGGFRRO ensures that there are no storage errors
associated with the global resource serialization vector
table extension (GVTX) and that the acronym is correct.
The GVTX contains information about global resource ser-
ialization control blocks that is essential for resource valid-
ation and repair. Recovery is not possible if the GVTX is
inaccessible. In this case, processing continues at step 13.

uH8I 0 STRlJIB}EN POIDIJISBY,,

KEI 30 ArJddoud - sSTRjJIBIEN PISUAS}I

vpastrictad Matarials of IBM™
Licenced Materials -~ Property of IZM

S m.m & o

g3 | @

slef. | (B30,
Bsé BRIk
i i

for those resources as-
sociated with the failing

10 Perform resource repair

" Disgram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 7 of 12)

GRS-202 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

0-669T-82A1

"dd0) WEI IYBLaAdo) (9)

L3861

uoijedadQ SO PoyIay

£02-S¥9

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine
Extended Description Module Label

10 Depending on which process failed, ISGGFRRO at-
tempts resource validation and repair for the follow-
ing resources in the order listed:

Hash table queues
{GVTXLQHT, GVTXGQHT)
SYSID/ASID hash queue (GVTXSAHT)
ASCB resource queues
{ASZBLQEL, ASCBGQEL)
ASCB synchronization queue
(ASCBGSYN)
Process queue (GVTPROCQ)
Resource pool table queues
{GVTXLRPT, GVTXGRPT)
Global QWB queue (an entry
in the GRPT)
Count of inactive PEXBs
{GVTXIACT)
SMPL queue (FIXSMPLQ)
ASCB request count (ASCBREQ)

IEAVEQVO calls element verification routines for the fol- IEAVEQVO
lowing queue elements:

PEXB QEL
Qacs aws

If ISGGFRRO could not determine which module faited, it

attempts validation/repair for all resources except
ASCBCREQ.

If IEAVEQVO finds an error in a single-threaded queue, it
truncates the queue. When a double-threaded gueue con-
tains an error, |EAVEQVO uses backward chain pointers to
splice together as much of the queue as possible.
IEAVEQVO records atl queue repair actions in an area
which ISGGFRRO copies into the variable recording area
{(VRA) portion of the SDWA.,

Repair of the SYSID/ASID hash queue or ASCB resource ISGSHASH
queues is different. ISGGFRRO completely rebuilds these

queues using the previously validated hash table queues to

do this.

(Part 8 of 12)

ISGGFRRO notes errors in a queue element (QEL) chain in
the queue control block (QCB) from which the QELs are
chained. It notes errors in a QCB synonym chain in the
queue hash table entry (QHTE) from which the QCBs are
chained. (Subsequent ENQ or RESERVE requests that re-
quire addition of new elements to a damaged queue will be
abnormally terminated. DEQ requests will be allowed to
proceed.)

uk8I 40 STER}JBIEN PAYI|IFSIY,

War 40 A3Jddodd .~ steiJd8}EN Pasuang1

S¥Y :711S VYX/SAW H02-S¥9

0-5691-82A1

L86T *d40) WGT IYGLIAdO] ()

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 9 of 12)

Process

Input
SDWA :l:>| 1
SDWAPARM FRR
parameter
list
QFPLSMPL
12
From
Step 9
13
SDWA
SDWAPARM FRR
parameter] —‘:>
list
From
4
QFPLRTAD 2 and

If the address of a list -
of SMPLs was passed in
the parameter list, re-
lease the storage.

Output

“’ ISGSDAL

{branch Release
entry) storage
Queue
If resource queue dam- > damage
age was detected; issue message
message ISGO31E. 2
w ISGSALC
Obtain storage
;ﬁ?,::h for an MRB SDWA
Clean up for return:
o Release any locks >L
obtained earlier.
o If necessary, issue SDWA
a PT instruction to
—————N| | sowararm

reset addressability.

e Update the SDWA
with the results of
the recovery proces-
sing.

o If aretry is to be per-
formed, update the
SDWA,

o Release the workarea.

* RTM

FRR parameter
list

QFPLRTAD

RET JO Ajuddodd - STRLJIBIRW P3SUED}1

ulEl JO STRIJIIECN PIITLJIISAY,

0-669T7-82A1

1867 °d40) WAI 3YBLJAdO) ()

G02-S¥9 uotjeJsedQ jo poyyady

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine

Extended Description

11 if the 24-byte FRR parameter list contains the ad-

dress of a list of storage management parameter

list{s) (SMPLs), ISGGFRRU calls module 1ISGSDAL to re-
lease the cells defined in the SMPLs.

12 |f damage was detected in the hash table queues,

ISGGFRRO notifies the operator by issuing message

ISGO31E. ISGGFRRO invokes modute ISGSALC to obtain
storage for a message request block (MRB). After the MRB
has been placed on the command request queue, a cross
memory post is performed to notify ISGCMDR of the mes-
sage request,

13 ISGGFRRO performs cleanup before returning to

RTM.
If ISGGFRRO obtained any locks, it releases them via
SETLOCK.
If a PC was issued in step 7, ISGGFRRO issues a PT in-
struction to reestablish addressability to the SDWA and
the 200-byte workarea.
ISGGFRRO copies into the SODWA the output data area
(ODA) used by IEAVEQVO to record queue damage.
In addition, it copies into the SOWAVRA miscellaneous
processing flags and a bit string that identifies the dam-
aged resources.

Retry is not performed when:

— The problem is due t0 3 user error

— The name of the failing module is unknown

— The 24-byte parameter list has the recursion flag set
— ISGGFRRO was entered for cleanup-only

— The processing aborted flag is set

— No retry address is available

In all other cases, ISGGFRRO updates the SDWA to request
a retry.

1f a workarea was obtained earlier, ISGGFRRO uses a
branch entry FREEMAIN to release it.

Modute

ISGSDAL

ISGSALC
ISGCMDR

IEAOPTO1

Label

(Part 10 of 12)

Extended Description

ISGGFRRO returns to RTM. RTM performs any actions re-
quested in the SDWA, for example, it records the SDWA in
LOGREC, frees the SDWA, and possibly retries.

Module

Labes

wNEI 40 STElJB}CH RD}ILJIS3Y,,

WEI 36 A3J3d0Jdd -~ STELJIIIEN pAsSuUad|q

$71S VX/SAW 902-S¥9

S¥9

0-9697-82A1

L8671 °dJ0) KEI IUBLuAdO] (2)

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine (Part 11 of 12)

Process Output
1SGCPRG,
ISGGQWBR,
ISGQSCNR
b ISGGFRR1:
14 Obtain the locks necessary for
resource repair, check the GVT
for storage errors, and obtain
workarea storage from the CSA.
e If unsuccessful, - Step 16
15 Perform validation and
repair of all resources
associated with the global
resource serialization
storage manager. IEAVEQVO
Perform queue
{branch validation
entry) and repair
From
step 14 Register 15
16 Release the workarea > Return code
storage, release any locks
obtained earlier, and set
a return code.
Return
‘ to the
caller

W3I 40 A3Jddodd —~ STRLJB1BN pasualli

wHEI #0 STEIJ3}EN PR31D1J1SAYU,,

0-9691-82A1

1861 °dJ40) WAI 3YSLJAdOY (2)

102-S¥9 uojjeundg 0 poyzay

Diagram GRS-29. ISGGFRRO — ENQ/DEQ/RESERVE Recovery Routine
Extended Description Modute Label
ISGGFRR1:

Routines that call ISGSALC and ISGSDAL may use
ISGGFRR1 1o validate and repair the resources used by
ISGSALCand ISGSDAL. Note that the callers of
ISGGFRR1 must have esteblished addressability to the glo-
bal resource serialization address space.

14 Some callers hold no locks, others hold the local

lock of the gloabl resource serialization address space
and others hold both a local and the CMSEQDQ lock. If no
locks are held, ISGGFRR1 obtains the local lock of the glo-
bal resource serialization address space and the CMSEQDQ
lock. If only a local lock is held, ISGGFRR1 obtains the
CMSEQDQ lock. If both tocks are held, ISGGFRR1 does
not obtain any locks. (Note: ISGGFRR1 uses SETLOCK
for lock requests. ISGGFRR1 does not check for potential
hierarchy violations.)

ISGGFRR1 uses a brach entry GETMAIN to conditionally
request storage for a workarea, Storage is requested from
subpool! 239 (an SQA subpool allocated from the CSA.) If
storage cannot be cbtained, ISGGFRR1 bypasses resource
repair,

15 If the proper locks were obtained, ISGGFRR1 vali- IEAVEQVO
dates and repairs the following resources used by the
global resource serialization storage manager:

Resource poo! table {(RPT) queues
(GVTXLRPT, GVTXGRPT)
Global QWB queue (an entry in
the GRPT)
Count of inactive PEXBs (GVTXIACT)
Global and local SMPLs in the GVTX
{GVTXGSMP, GVTXLSMP)

These resources are a subset of those repaired by
ISGGFRRO. Refer to the extended descritpion of step 10
for an explanation of how the resources are repaired,

(Part 12 of 12)
Extended Description Module

16 ISGGFRR1 uses a branch entry FREEMAIN to re-
lease the workarea obtained earlier.

If ISGGFRR1 obtained any locks in order to perform re-
source repair, it releases the locks via SETLOCK.

When control is returned to the caller, register 15 contains
a return code as follows:

0 = Resource validation/repair is complete.
4 = |ISGGFRR1 was unable to perform
validation/repair.

WHEI JO STEjJa}EN PBII}JIISOU.

KEI J0 A3aadodd - STR{JDIEN PRSUID|T

176 VX/SAW 802-S¥9

Sd9

0-G69T1-82A1

L86T °du0) WET IYBLJAdoy (9)

Diagram GRS-30. ISGGNQDQ — ENQ/RESERVE Processing

Requestor of
ENQ or RESERVE
services via ISGLNQDQ Process

(Part 1 of 24)

Output

Entry Point IGC056:

1 Perform setup processing

and ensure that the pa-
rameter specifications
are correct.

Input
Register 1
PEL
Register 3 Register 7
Acvr A current AscB
Register 4 Register 14

4 current TCB

4 exit address

Register 5

+current RB

aQwa

QwA

Request
information

QWAERR

Abend code or 0

NEI 30 A143dodd — STELJISIEK Pasuadl’

WwHEI }O STRLJBIEN P33I1I1S3Y,,

0-569T-82A1

“dJ0) WEI 3UBLIAdO) (D)

L1861

uotjeJdadg 36 poyjiay

602-549

Diagram GRS-30. ISGGNQDQ — ENQ/RESERVE Processing
Extended Description Module

ISGGNQDQ processes ENQ/RESERVE requests for speci-
fied rasources. There are three major sections to
ENQ/RESERVE processing. I1SG056 is the initial entry
point for all ENQ/RESERVE requests, subroutine
XPROCENQ performs the actual processing, and entry
point ISGGNQOQO is utilized by ISGGRPOO for processing
global requests.

At entry point IGC056, ISGGNQDAQ first determines if a
request is only for local resources, only for global resources,
or for a mixture of local and global resources. The processing
of local and global requests differs in that requests for

tocal resources can be processed immediately while requests
for global resources cannot be processed until the other
systems active in the global resource serialization ring have
been informed of this request. For local requests,
ISGGNQDQ calls subroutine XPROCENQ to perform the
ENQ immediately. For global requests, ISGGNQDQ calls
the QWB-copy routine (ISGGAQWBC) to build a queue
workblock (QWB) for each global request and then places
the QWBSs on the request queue (GVTREQQ).

After the QWB built by ISGGNQDQ for a global
request has been passed around the global resource
serialization ring, IGGRPOO calls ISGGNQDQ at
entry point ISGGNQOO to process the global request.
ISGGNQDQ calls XPROCENQ to process the request.
1SGGNQDAQ then returns to ISGGRPCO,

Subroutine XPROCENQ searches the gltobal and local hash
tables and finds the appropriate hash table slots for the re-
quested resources. XPROCENQ then processes the
ENQ/RESERVE requests.

(Part 2 of 24)
Label

Extended Description

In some cases XPROCENQ also needs to perform steal pro-
cessing. When a resource is requested by a task that is part
of an abending task structure, and the resource is owned by
another task in this same task structure, XPROCENQ ini-
tiates a resource steal because the abending task is not able
to release the resource.

If the resource request is for a global resource, XPROCENQ
builds a sync QWB to be sent around the ring (to be sure
that there are no outstanding requests for this resource.) If
it is necessary to actually steal the resource, XPROCENQ
builds a DEQ QWB and places the DEQ QWB followed by
the request QWB on the request queue.

If the resource request is for a local resource, XPROCENQ
steals the resource without notifying the other systems.

Entry Point IGC056:

1 ISGGNQDAQ establishes an FRR, obtains the global re-
questor’s local lock and the CMSEQDQ lock, and ini-
tializes the queue workarea (QWA). 1SGGNQDQ checks
whether the parameters conflict and whather the caller is
authorized to request the specified functions. ISGGNQDQ
abends requestors when they fail any of these checks.

Modute Label

ISGGNQDQ 1GC056

XSETUP

uNEI FO STE}JaICN PB13|JISAY,,

HEZ #0 A)Jododd — STRIJ2IEY pasuasyy

012-S¥9

118<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>