
Program Product

"Restricted Materials of IBM II
All Rights Reserved
Licensed Materials - Property of IBM
«:Copyright IBM Corp. 1987
LY28-1695-0
File No. S370-36

M VS/Extended Architecture
System Logic Library:
Global Resource
Serialization

M VS/System Product:

J ES3 Version 2 5665·291
JES2 Version 2 5740-XC6

--- ------ --------------------------_.-

"Restricted Materials of IBM"
Licensed Materials - property 01 IBM

This publication supports MVS/System Product
Version 2 Release 2.0, and contains information
that was formerly presented in
MVS/Extended Architecture System logic library
Volume 7, LY28-1230-4, which applies to
MVS/System Product Version 2 Release 1.7.
See the Summary of Amendments for more information.

First Edition (June, 1987)

This edition applies to Version 2 Release 2.0 of MVS/System
Product 5665-291 or 5740-XC6 and to all subsequent releases
until otherwise indicated in new editions or technical
newsletters. Changes are made periodically to the information
herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370
Bibljography. GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products or services do
not imply that IBM intends to make these available in all
countries in which IBM operates. Any reference to an IBM
product in this publication is not intended to state or imply
that only IBM's product may be used. Any functionally
equivalent product may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development,
Department D58, Building 921-2, PO Box 390, Poughkeepsie, H.Y.
12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you.

(c) Copyright International Business Machines Corporation 1987

"Restricted Materials 01 IBM"
Licensed Materials - Property of IBM

PREFACE

The MVS/Extended Architecture System logic·librarv is intended
for people who debug or modifY the MVS control program. It
describes the logic of most MVS control program functions that
are performed after master scheduler initialization completes.
For detailed information about the MVS control program prior to
this point, refer to MVS/Extended Architecture System
Initialization logic. For general information about the MVS
control program and the ralationshiP5 among the components that
make up the MVS control program, refer to the MVS/Extended
Architecture Overview. To obtain the names of publications that
describe some of the componants not in the System logic ljbrary,
refer to the section Coraquisite Reading in the Master Prafaca
in MVS/Extended Architecture System logic library: Master Tpbl,
of Contents and Index.

HOW THE LIBRARY IS ORGANIZED

SET OF BOOKS

Tha System logic library consists of a set of books. Two of the
books provide information that is relevant to the entire set of
books:

1. The MVS/Extended Architecture System logic library: Master
Table of Contents and Index contains the master preface, the
master table of contents, and the master index for the other
books in the set.

2. The MYS/Extended Architecturg System logic library: Module
Descriptions contains module descriptions for all of the
modules in the components documented in the System logjc
library and an index.

Each of the other books Creferrad to as component books) in the
set con~ain5 its own table of contents and index, and describes
the logic of one of the components in the MVS control program.

ORGANIZATION OF THE COMPONENTS

Most component books contain information about one component in
the MVS control program. However, some component books (such as
System Logic ljbrary: Initiator/Termjnator) contain more than
one component if tho components are closely related, frequently
referenced at the same time, and not so large that they require
a book of their own.

A three or four character mnemonic is associated with each
component book and is used in all diagram and page numbers in
that book. For example, the mnemonic ASM is associated with the
book MYS/Extended Architecture System logic library: Ayxiliary
~torage Management. All diagrams in this book are identified as
Diagram ASM-n, and all pages as ASM-n, where n represents the
specific diagram or page number. Whenever possible, the
existing component acronym is used as the mnemonic for the
componont book. The Table of Book Titles in the Master Preface
;n MVS/Extended Architecturg System logic library: Master Table
of Contents and Index lists the book titles, the components
included in each book (if a book contains more than one
component), the mnemonics for the books, and the order number
for each" book.

LY28-169S-0 (c) Copyright IBM Corp. 1987 Preface iii

"Restricted Materials of I~M"
Licensed Materials - property of IBM

HOH TO USE THE LIBRARY

To help you use this library efficiently, the following topics
cover

• How to find information using book titles and the master
index

• What types of information are provided for each component
• How to obtain further information about other books in the

System Logic library

FINDING INFORMATION USING THE BOOK TITLES

As you become familiar with the book titles, MVS component names
and mnemoni.cs, and the book contents, you will be able to use
the System logic library as you would an encyclopedia and go
directly to the book that you need. We recommend that you group
the books in alphabetical order for easy reference, or, if you
ara familiar with MVS. that you to group the books by related
functions.

Tha Tabla of Book Titles in the Master Preface in MVS/Extended
Architecture System Logic library: Master Table of Content$ and
!nQgx contains a list of book titles and mnemonics. It provides
a quick reference to all the books, and their corresponding
components. in the System Logic Library.

FINDING INFORHATION USING THE HASTER INDEX

If you are not sure which book contains. the information you are
looking for, you can locate the book and the page on which the
information appears by using the master index in System Logic
Library: Master Table of Contents and Index. For the component
books, the page number in an index entry consists of the
mnemonic for the component and the page number; for System logic
library: Module Descriptions. the page number consists of the
mnemonic "MOD" and the page number.

For example:

ASM-12

MOD-245

refers to MVS/Extended Architecture System logic
library: Auxiliary Storage Management. page ASM-12.

refers to MVS/Extended Architecture System logic
library: Module Descriptions, page MOD-24S.

INFORHATION PROVIDED FOR HOST COMPONENTS

Iv MVS/XA Sll: GRS

The following information is provided for most of the components
described in the System logic library.

1. An introduction that summarizes the component's function

2. Control block overview figures that show significant fields
and the chaining structure of the component's control blocks

3. Process flow figures that show control flow between the
component's object modules

4. Module information that describes the functional
organization of a program. This information can be in the
form of:

• Method-of-Operation diagrams and extended descriptions.

• Automatically-generated prose. The automated module
information is generated from the module prologue and
the code itself. It consists of three parts: module
description. module operation summary, and diagnostic
aids.

lY28-1695-0 (c) Copyright IBM Corp. 1987

"Restrtcted "atertal. of II""
Licensed "atertals - property of 18"

FURTHER INFORHATION

5. Module descriptions that describe the operation of the
modules (tho module descriptions are contained in Systam
Lpaic Library: Mpdull Descriptions)

Some component books also include diagnostic techniques
information following the Introduction.

For more information about the ~~~~~~~~~~
the order numbers of the books
the Master Proface in ~~,~~~~~~~~~~~~~w-~~

LY28-1695-0 (c) Copyright IBM Corp. 1987 Preface y

y; MVS/XA SLL: GRS

"Restricted Materials of IBM"
Licensed "aterials"- property of IB"

lY28-169S-0 (e) Copyr;ght IBM Corp. 1987

"Restricted Haterials of IBH"
Licensed Haterials - Property of IBH

CONTENTS

Global Resource serialization GRS-l

Introduction GRS-3
The Functions and Interfaces of Global Resource
Serialization GRS-3

The Subcomponents of Global Resource Serialization GRS-5
Control Blocks Representing Serialization Requests GRS-IO
Processing ENQ, DEQ, and RESERVE Requests GRS-13
Ring Processing GRS-16

Serializing Global Resources GRS-16
Adding a System to the Main Ring GRS-22
Providing Informational Services GRS-23

Diagnostic Techniques GRS-25
Debugging Hints GRS-25

Check on Enabled Wait During IPL GRS-25
Probe Points GRS-25
Useful Fields in the GVT and the GCl GRS-26
CTC Processing Debugging Hints GRS-26
Ring Processing Debugging Hints GRS-27
ENQ/DEQ/RESERVE Processing Debugging Hints GRS-27
ENQ/DEQ/RESERVE Termination Resource Manager Debugging
Hints GRS-29 .

Storage Management Debugging Hints GRS-30
SDWA and SDWAVRA Contents GRS-32

General Information Useful for Global Resource Serialization
Analysis GRS-35

Recovery Considerations GRS-35
Serialization GRS-36

Control Block overview GRS-37
Control Blocks GRS-37
Control Block Structures GRS-39

Method of Operation GRS-75
GRS-l. Provide Status Information (SNAPSHOT) GRS-78
GRS-2. Initialize One-System Main Ring (STARTPOP) GRS-82
GRS-3. Request Permission to Initialize a One-System Main Ring

(REQPERM) GRS-86
GRS-4. Receive the RSA GRS-94
GRS-S. Send a Command to Another SYstem GRS-I04
GRS-6. Send a Command Using the Main Ring RSA GRS-I06
GRS-7. Send a Command Using the RSAIRCD GRS-IIO
GRS-8. Send Data to Another System GRS-114
GRS-9. Receive Data from a System GRS-118
GRS-I0. Leave Save QWB Mode GRS-120
GRS-ll. Send the RSA GRS-122
GRS-12. Send the RSAIRCD GRS-126
GRS-13. Receive the RSAIRCD GRS-132
GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS

Request Processor GRS-134
GRS-15. ISGCMDE - DISPLAY GRS Command Parser Exit

Routine GRS-140
GRS-16. ISGCMDI - Global Resource Serialization Command
Interface GRS-142

GRS-17. ISGCMDR - Global Resource Serialization Command
Router GRS-148

GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE
Request Processor GRS-156

GRS-19. ISGCQMGR - Global Resource Serialization Queue
Merge GRS-160

GRS-20. ISGCQSC - Global Resource Serialization Queue Merge VARY
GRS QUIESCE Request Processor GRS-166

GRS-21. ISGCRCV - Global Resource Serialization Command Recovery
Routine GRS-170

GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART
Request Processor GRS-172

lY28-1695-0 (c) Copyright IBM Corp. 1987 Contents vii

"Restricted Materials of IBM"
Licensed Materials - Property of IB"

GRS-23. ISGDGCBO - Global Resource Serialization Dump Control
Blocks Exit Routine GRS-176

GRS-24. ISGDPDMP - Global Resource Serialization Print Dump Exit
Routine GRS-178

GRS-25. ISGDSDMP - Global Resource Serialization SVC Dump Exit
Routine GRS-182

GRS-26. ISGDSHAP - Global Resource Serialization SHAP Dump Exit
Routine GRS-184

GRS-27. ISGGDEQP - TC8/ASID Purge GRS-186
GRS-28. ISGGESTO - Global Resource Serialization EHQ/DEQ/RESERVE
Mainline ESTAE Routine GRS-192

GRS-29. ISGGFRRO - EHQ/DEQ/RESERVE Recovery Routine GRS-196
GRS-30. ISGGHQDQ - ENQ/RESERVE Processing GRS-208
GRS-31. ISGGNQDQ - DEQ Processing GRS-232
GRS-32. ISGGPGRP - QEl Group Processing Routine GRS-244
GRS-33. ISGGQWBI - Queue Work Block Initialization

Routine GRS-254
GRS-34. ISGGQWBO - Queue Work Block Service Routine GRS-260
GRS-35. ISGGRPOO - Global Resource Processor GRS-280
GRS-36. ISGGTRMO - ENQ/DEQ/RESERVE Termination Resource

Manager GRS-300
GRS-37. ISGGTRMI - EHQ/DEQ/RESERVE Termination Resource
Manager GRS-304

GRS-38. ISGJDIMI - Global Resource Serialization CTC Driver
DIE GRS-310

GRS-39. ISGJENFO - Global Resource Serialization Event
Notification Exits GRS-322

GRS-40. ISGLHQDQ - EHQ/DEQ Fast Path Routine GRS-330
GRS-41. ISGMSGOO - Global Resource Serialization Message
Processor GRS-346

GRS-42. ISGQSCAN - Global Resource Serialization Queue Scanning
Services GRS-348

GRS-43. ISGSALC - Global Resource Serialization Storage
Management Allocation Routine GRS-354

GRS-44. ISGSDAl - Global Resource Serialization Storage
Management Deallocation Routine GRS-360

Index 1-1

viii MVS/XA SLL: GRS LY28-169S-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - property of IBH

FIGURES

1. Global Resource Serialization Module Haming
Conventions GRS-5

2. Subcomponents Invoked for Primary Functions/Interfaces of
Global Resource Serialization GRS-6

3. Example of Control Blocks for Global Serialization
Requests GRS-12

4. Simplified Process Flow for ENQ/RESERVE Processing GRS-15
5. Updating the RSA and Ring Processing Queues GRS-20
6. Simplified Process Flow for Global EHQs (Ring

Processing) GRS-21
7. TCBs in the Global Resource Serialization Address

Space GRS-40
8. CTC Processing Control Block Overview GRS-41
9. Ring Processing Control Block Overview GRS-42

10. Command Process Control Block Overviaw GRS-43
11. ENQ/DEQ Processing - Local Resources - Control Block

Overview GRS-44
12. ENQ/DEQ Process - Global Resource - Control Block

Overview GRS-45
13. QUeue Scanning Services Local Resources - Control Block

Overv i eLoI GRS-46
14. Queue Scanning Services Global Resources - Control block

Overview GRS-47
15. Storage Management Control Block Overview GRS-48
16. WTOR/WTOR Message Processing Control Block Overview GRS-49
17. Process Flow Overview and Directory GRS-50
18. Process Flow for CTC Processing - Handle Arrival of

Immediate CCW GRS-51
19. Process Flow for CTC Processing - Handle Arrival of RSA or

RSAIRCD GRS-52
20. Process Flow for CTC Processing - Send a RSA or

RSAIRCD GRS-53
21. Process Flow for Ring Processing - Send/Receive a

RSA GRS-54
22. Process Flow for Ring Processing - Sand a RSAIRCD or

Immediate-CCW (Requested by ISGBCI) GRS-55
23. Process Flow for Ring Processing - Send a RSAIRCD

(Requested by ISGBTC) GRS-56
24. Process Flow for Ring Processing - Handle Arrival of

RSAIRCD (Not Requested by This System GRS-57
25. Process Flow for Ring Processing - SNAPSHOT

Function GRS-58
26. Process Flow for Ring Processing - SENDCMD (RSCRADDS)

Function GRS-59
27. Process Flow for Ring Processing - SEHDCMD (RSCRSHAD)

Function GRS-60
28. Process Flow for Command Initialization and Cleanup GRS-61
29. Process Flow for DISPLAY GRS GRS-62
30. Process Flow for VARY GRS(x), PURGE GRS-63
31. Process Flow for VARY GRS(x), QUIESCE to Another

System GRS-64
32. Process Flow for VARY GRS(x), QUIESCE by a System to

Quiesce Itself GRS-65
33. Process Flow for VARY GRS(x), RESTART to Restart Another

System GRS-66
34. Process Flow for VARY GRS(ALl), RESTART to Restart All

Systems GRS-67
35. Process Flow for VARY GRS(x), RESTART by a System Hot in

the Main Ring GRS-68
36. Process Flow for Join Processing at Initialization

Time GRS-69
37. Process Flow for EHQ/DEQ Mainline - local Resource

Request GRS-7D
38. Process Flow for ENQ/DEQ Mainline - Global Resource

Request GRS-71
39. Process Flow for the Termination Resource Manager GRS-72
40. Process Flow for Queue Scanning Services GRS-73
41. Process Flow for Dump Support - SVC Dump GRS-74

lY28-1695-D (e) Copyright IBM Corp. 1987 Fi gures ix

x MVS/XA Sll: GRS

"Restricted l'Iaterlals Qf 111'1"
Licensed Materials - property of II"

42. Key to Method-of-Operation Diagrams GRS-76

lY28-1695-0 ee) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
ticensed Materials - property of IBM

SUMMARY OF AMENDMENTS

summary of Amendments
for LY28-l69S-0
for MVS/system Product Version 2 Releasa 2.0

This publication is new for MVS SYstem Product Version 2 Release
2.0. It contains information that was reorganized from the GRS
section in MVS/XA System Logjc ljbrary Volume 7, LY28-1230-4,
which applies to MVS/XA System Product Version 2 Release 1.7.

This pUblication contains changes to support MVS/System Product
Version 2 Release 2.0. The changes include:

• Changes supporting storage management, including the
extended resource queue area, the resource queue area, and
the pool extent block.

• Minor technical and editorial changes throughout the
publication.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Summary of Amendments xi

-xii "VSI'XA SLL: GRS

-"Restri·cted "aterials of II""
Licensed Matertals - property of lIN

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials -Property of IBM

LY28-1695-0 ec) Copyright IBM Corp. 1987

GLOBAL RESOURCE SERIALIZATION

Global Resource Serialization GRS-l

GRS-2 MVS/XA SlL: GRS

"Restr-icted Mater-tals of IBM"
Licensed Mater-fals - pr-oper-ty of IBM

LY28-169S-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Li'censed Materials - property of 111M

INTRODUCTION

This introduction provides background information necessary to
understand the purpose and processing of the modules that
comprise global resource serialization. The first topic briefly
describes the functions and interfaces provided by global
resource serialization: the ENQ, DEQ, and RESERVE macro
instructions; the use of exit routines and resource name lists
to convert serialization requests; the role of the GRSCNFxx and
IEASYSxx PARMlI8 members and of operator commands in
initializing and controlling a global resource serialization
complex; the GQSCAN macro; and the GRSQ parameter on the SDUMP
macro, and the GRSTRACE parameter for print dump (PRDMP), and
the GRACETRACE keyword. or the VERB EXIT subcommand, for the
interactive problem control system (IPCS). Readers familiar
with these interfaces can skip this topic. Subsequent topics
describe the kay concepts and terminology of the subcomponents
of global resource serialization.

THE FUNCTIONS AND INTERFACES OF GLOBAL RESOURCE SERIALIZATION

Global resource serialization serializes the use of both local
and global serially reusable resources, as requested by ENQ.
DEQ, and RESERVE macro instructions. local resources are
accessible by only one system; global 'resources reside on shared
direct access devices and are accessible by more than one system
in a loosely coupled or shared spool multiprocessing
environment.

Formerly. without the services provided by global resource
serialization, the only means of serializing global resources
was a hardware RESERVE instruction. generated by the RESERVE
macro instruction. The hardware RESERVE instruction reserved
the entire volume containing the requested resource for use by
one system, until that system relinquished control of the
resource by means of DEQ.

Global resou.rce serialization serializes the use of global
resources without using the hardware RESERVE instruction. By
communicating global requests to all systems included in the
global resource serialization complex (defined by the
installation), global resource serialization serializes the use
of resources on the volume. not the entire volume. More than
one system can enqueue concurrently on different resources on a
single shared volume; and more than one system can enqueue
concurrently on the same resource if all the requests specify
shared control.

To serialize use of a global resource among systems in the
global resource serialization complex. a program issues the EHQ
macro (and. subsequently. the DEQ macro) with a scope of
SYSTEMS. A scope of STEP or SYSTEM requests local
serialization. To allow the installation to run existing
programs without changing them (for example, programs that
contain RESERVE), global resource serialization provides three
exit routines that check three resource name lists (defined by
the installation or IBM-supplied defaults): an inclusion exit
and SYSTEM inclusion resource name list; an exclusion exit and
SYSTEMS exclusion resource name list; and a RESERVE conversion
exit and resource name list. The SYSTEM inclusion resource name
list contains names of resources to be serialized globally. The
SYSTEMS exclusion list contains names of resources to be
serialized locally (including data sets to be excluded from
generic names in the SYSTEM inclusion list). The RESERVE
conversion resource name list contains names of

lY28-169S-0 (c) Copyright IBM Corp. 1987 Introduction GRS-3

"Restricted Materials of 18""
Licensed Materials - property of 18"

global resources for which the hardware RESERVE instruction is
to be suppressed. Which exits are invoked depends on the
request and the scope °it specified:

• For ENQ or DEQ requests that specify SYSTEM (local
serialization)~ global resource serialization invokes the
inclusion exit and~ if the requested resource is named in
the SYSTEM inclusion list, the SYSTEMS exclusion exit. If
the requested resource is named in the inclusion list and
not in the exclusion list, global resource serialization
changes the scope to SYSTEMS (global serialization).

• For ENQ or DEQ requests that specify SYSTEMS (global
serialization), global resource serialization invokes the
exclusion exit. If the requested resource is named in the
SYSTEMS exclusion list, global resource serialization
changes the scope to SYSTEM (local serialization).

• For RESERVE requests, global resource serialization invokes
the exclusion exit. If the requested resource is named in
the SYSTEMS exclusion list, global resource serialization
will issue a SYSTEM (local) ENQ for the resource and will
not suppress the hardware RESERVE instruction. If the
requested resource is not named in the exclusion list,
global resource serialization invokes the RESERVE conversion
exit:

If the resource is named in the RESERVE conversion list,
global resource serialization issues a SYSTEMS (global)
ENQ An9 suppresses the hardware RESERVE instruction.

If the resource is not named in the RESERVE conversion
list. global resource serialization issues a SYSTEMS
(global) ENQ for the resource but does n2! suppress the
hardware RESERVE instruction.

The systems in a global resource serialization complex must be
connected using dedicated CTCs (channel to channel adapters).
The installation defines the global serialization complex by (1)
defining the systems that are to participate in the complex in
the GRS= parameter in an IEASYSxx member of SYS1.PARMlIB; and
(2) defining the CTCs to be used by the systems in the GRSCNFxx
member of SYS1.PARMLIB.

To allow the operator to monitor and modify the global resource
serialization complex, global resource serialization provides
the DISPLAY GRS and VARY GRS operator commands. The VARY GRS
command allows the operator to suspend or resume a system's
participation in a global resource serialization ring (the
active global resource serialization systems in the complex,
also called the main ring); rebuild a disrupted global resource
serialization ringJ or terminate a system's participation in the
complex. The DISPLAY GRS command allows the operator to display
the status of the systems in the global resource serialization
complex and the channel-to-channel adapters (CTCs) assigned to
global resource serialization and attached to the system on
which the command is issued. The DISPLAY GRS command allows the
operator to display resource contention information, the
contents of the RNLs, the resource qnames, and resource name
information.

In addition, global resource serialization provides the
following:

• the GQSCAN macro, which allows users to obtain information
about resources without directly accessing internal control
blocks

• the GRSQ parameter on the SDUMP macro to request the
inclusion of global resource serialization control blocks in
an SVC dump

• and the GRSTRACE parameter for print dump (PRDMP) and the
GRACETRACE keyword, or the VERB EXIT subcommand, for the

GRS-4 MVS/XA SLL: GRS LY28~1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - property of IBM

interactive problem control system (IPCS) to format global
resource serialization data.

THE SUBCOMPONENTS OF GLOBAL RESOURCE SERIALIZATION

The global resource serialization component can be divided into
several subcomponents, each of which is responsible for part of
the processing necessary to provide the functions and interfaces
described in the preceding topic. The structure of global
resource serialization is reflected in the names of the modules
that comprise it: the first three characters, ISG, identify the
modules as part of global resource serialization; the fourth
character identifies the function or service within the
component or subcomponent that the module supports.

Figure GRS-l summarizes the module naming conventions for global
resource serialization modules. Figure GRS-2 shows the
organization of the subcomponents that make up the global
reSource serialization component.

Module names: ISGzxxxx
ISG = global resource serialization

z= Function

B ring processing
C command processing
D dump support
G mainline EHQ/DEQ/RESERVE processing
J CTC processing
l fast path EHQ/DEQ processing
M WTO/WTOR message processing (ISGMSGOO)
H initialization
Q queue scan (GQSCAN macro)
S storage management

Note: Initialization modules (ISGNxxxx) are described
in ~~stem Ini~ia!ization ~ogic.

Figure 1. Global Resource Serialization Module Naming
Conventions

LY28-1695-0 (e) Copyright IBM Corp. 1987 Introduction GRS-5

(")
o
'tJ
'< .,
CO
:r­
tf"

M
o:J
3

o
o .,
'tJ

'"11

IQ
e .,
•
N .

<nUl
me .,cr
.. ·n
1110
'-3
"''0
NO
III~
tf"rD ... ~
Orl'
~III

M
~
< o
~
ID
Q,

-h
o .,
"0 .,
B c .,
'<

'"" e
~
n
tf"

o
~
III
M
~
tf"
ID .,
fII
n
/D
iii

o
-h

G)
t­
O
CJ"
C
I-

;.0
AI
III
o
e ,
n
/D

Initialization

ISGNxxxx

All subcomponents
except request
processing and
dump support Isee
System Initialization
Logic)

Resource Request
Processing:
ENO/DEO/RESERVE
macros

ISG LNODO and
ISGGnnnn

I
+ , +

Storage
Ring Processing:

Management: ISGB)()()()(
ISGS)()()()(

+
WTOIWTOR

CTC Processing: Message
ISGJ)()()(X Processing:

ISGMSGOO

Operator
SuppOrt

ISGCxx)()(

,
WTOIWTOR
message processing:
ISGMSGOO

+
Resource Request
Processing:
I SGGU)()(

Dump Support

ISGD)()()()(

+ ,
OueueScan:
I SGO)()(X)(

+
Storage
Management:
I SGS)()()()(

Queue scan:
GOSCAN macro

ISGQ)()()(X

I
r I

Ring Processing:
Storage ISGBxxxx

Ifor information Management:

services onlvl
ISGSx)(xX

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The following describes each subcomponent, the functions or
services it provides, and its relationship to other
subcomponents.

• Initialization. The initialization subcomponent has two
primary responsibilities:

Creating and initializing the global resource
sorialization address space. Global resource
serialization has its own address space, accessible by
means of PC/AUTH cross memory services, in which many of
its modules execute and in which it keeps most of its
data. Global resource serialization receives control in
the address space that requests its services and then
transfers control (via a PC instruction) to the global
resource serialization address space to process the
request.

Establishing the global resource serialization complex,
as defined by the installation in the GRSCNFxx and
IEASYSxx members of SYS1.PARMLIB.

The initialization subcomponent invokes all SUbcomponents of
global resource serialization except for resource request
processing and dump support. System Initialization Logic
describes the global resource serialization initialization
modules, whose names follow the format ISGNxxxx.

• Command Processing. This subcomponent (module names of the
format ISGCxxxx) supports the VARY GRS and DISPLAY GRS
operator commands. The global resource serialization
command interface (ISGCMDI) executes in the master scheduler
address space and receives control from the command service
processor (IEECB808) when a VARY GRS or DISPLAY GRS is
detected. ISGCMDI posts the global resource serialization
command router (ISGCMDR) in the global resource
serialization address space. ISGCMDR routes control to the
appropriate request processor:

ISGCQSC - QUIESCE processing. ISGCQSC removes an active
system from the global resource serialization ring.
Requests for global resources made prior to the QUIESCE
will remain intact. ISGCQSC processes QUIESCE requests
for the system on which the command is issued or for any
other system in the global resource serialization ring.

ISGCPRG - PURGE processing. ISGCPRG removes a quiesced
system from the global resource serialization complex.
PURGE processing releases all global resources owned by
the system being purged and deletes all outstanding
requests for global resources made by that system. A
PURGE request can only be processed on an active system
in the global resource serialization complex.

ISGCRST - RESTART processing. ISGCRST rejoins a
quiesced system with the global resource serialization
ring or rebuilds a ring that has been disrupted.
ISGCRST processes RESTART requests for the system
issuing the command, for a specific quiesced system in
the complex, or for all inactive systems in the complex.
The topic "Adding a System to the Main Ring" (under
"Ring Processing" later in this introduction) describes
the processing that occurs to add a system to the global
resource serialization (main) ring. This processing is
shared between modules of the command processing
subcomponent and the ring processing SUbcomponent.

ISGCDSP - DISPLAY processing. ISGCDSP displays the
status of

1. each system known to the global resource
serialization complex

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-7

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. the CTCs that are assigned to global resource
serialization and that are attached to the system on
which the command was issued. including the status
of the sy'stems attached to thi s system vi a the CTCs

3. both 1 and 2

4. any resource contention

5. the RNls

6. the resource qnames

7. the resources and their requestors

8. or the combination of 1. 2. 4. and 5

The command processing subcomponent invokes the following
subcomponents:

The queue scan subcomponent to obtain information about
global resources.

The ring processing subcomponent to obtain information
to be displayed on the status of systems in the complex
and CTCs assigned to global resource serialization and
attached to the system on which the command was issued;
to remove a system from the complex; and to vary the
participation of systems in the global resource
serialization ring.

The WTO/WTOR message processing module (ISGMSGOO) to
communicate with the operator.

• Resource Request Processing. This subcomponent processes
EHQ. DEQ. and RESERVE macro instructions. It also receives
control during termination to purge all local and global
resources acquired by the terminating task or address space.

Processing of ENQ. DEQ, and RESERVE requests is divided into
fast path and mainline processing: fast path processing
(ISGlNQDQ) handles local ENQ and DEQ requests that meet
certain eligibility requirements (requests that do not
require specialized processing); mainline processing (module
names of the format ISGGxxxx) handles local ENQ and DEQ
requests ineligible for fast path processing. all global ENQ
and DEQ requests. and all RESERVE requests. Global resource
requests require communication among all active global
resource serialization systems in the complex before the
request can be satisfied; this subcomponent invokes the ring
processing subcomponent to communicate with those systems.
Both fast path (in some cases) and mainline processing
invoke the storage management subcomponent to obtain the
control blocks that represent the request.

• Ring Processing. The active systems in a global resource
serialization complex are called a main ring or a global
resource serialization ring. Ring processing modules
(module names of the format ISG8xxxx) are responsible for
(1) passing to all systems in the main ring the information
they require to serialize global resource requests across
all the systems in the main ring; and (2) adding or deleting
systems from the main ring as specified in initialization
parameters or requested by the operator via the VARY GRS
command. Ring processing also provides information about
the systems and CTCs in the global resource serialization
complex - for example; their status or the system name
associated with a particular sysid. (The topic "Ring
Processing." later in this introduction. provides mora
information on how ring processing provides its functions.)

GRS-8 MVS/XA Sll: GRS

The ring processing subcomponent invokes the CTC processing
subcomponent to actually initiate I/O on the CTCs; the
WTO/WTOR message processing module (ISGMSGOO) to communicate

lY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBH"
Licensed Materials - property of IBH

with the operator (for example. when a ring processing
module needs to notify the operator of a problem in the main
ring); the resource request processing subcomponent; and the
storage management subcomponent to allocate control blocks.

• eTC Processing. This subcomponent (module names of the
format ISGJxxxx) builds control blocks for the CTCs that
connect systems in the global resource serialization complex
(based on information specified in the GRSCNFxx PARMLIB
member); initiates I/O on the CTCs; and handles interrupts
on the CTCs. It invokes the ring processing subcomponent
when it receives an interrupt on a CTC.

• storage Management. The storage management modules (module
names of the format ISGSxxxx) are responsible for managing
the resource queue area (RQA) and the extended resource
queue area (ERQA) of the global resource serialization
address space. ISGNASIM allocates the RQA from the private
area below 16 megabytes, and the ERQA from the private area
above 16 megabytes, of the global resource serialization
address space during initialization. The storage management
modules allocate and deallocate storage in the RQA or in the
ERQA, in one-page blocks called PEXBs (pool extent blocks).
PEXBs in the RQA contain QWB, MRS, CRB, TWKA and HWKA cell
types while PEXBs in the ERQA contain QCB, QEL, QXB and PQCB
cell types.

Each PEXB is divided into cells. There are different types
of cells, each type accommodating a partiCUlar control
block. In addition, different cell types are defined for a
single control block that can vary in size. For example,
three cell types are defined for QCBs: one to accommodate
QCBs for resource names of 1-24 bytes; one for resource
names of 25-52 bytes; and one for resource names of 53-255
bytes. Therefore, there is one cell type for each
particular control block (or size range of a control block)
allocated from the priVate area of the global resource
serialization address space. A single PEXB contains only
one type of cell and, therefore. only one particular control
block, thereby reducing the amount of information required
to assign or free cells in a PEXB. In addition, if a cell
type is associated with a control block that exists for both
global and local resources, a PEXB containing that cell type
is used only for local resources or only for global
resources, not for both.

PEXBs containing cells associated with local resources are
allocated from the low-address end of the RQA or the ERQA;
PEXBs containing cells associated with global resources are
allocated from the high-address end of the RQA or the ERQA.
Resource pool tables (RPTs), a local RPT and a global RPT,
are used to keep track of the allocated PEXBs. The local
RPT contains an entry for each type of cell associated with
local resources; the global RPT contains an entry for each
type of cell associated with global resources. PEXBs that
have been allocated for a single cell type are chained
together and the RPT entry for that cell type contains
pointers to the first and last PEXB in the chain.

The storage management routines assign and release cells in
PEXBs, allocating another PEXB if no PEXB of the requested
cell type contains an available cell or deallocating the
PEXB if the cell just released was the last assigned cell in
the PEXB. When the number of deallocated PEXBs reaches a
certain value (defined by global resource serialization),
global resource serialization releases (via PGRLSE) the real
storage associated with the deallocated PEXBs. Modules
executing in the global resource serialization address space
invoke the storage allocation routine (ISGSALC) and storage
deallocation routine (ISGSDAL) directly. An interface
module (ISGSMI) provides the interface to ISGSAlC and
ISGSDAL for routines not executing in the global resource
serialization address space.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-9

"Restricted l1aterials of IBM"
Licensed l1atert~ls - property of IBM

In addition, the storage management subcomponent provides
hashing routines to expedite searches of queues for a
requested rasourca or for the requests from a particular
address space in a particular system. (The topic "Control
Blocks Representing Serialization Requests," later in this
introduction, illustrates the hash tables used by the
hashing routines.>

• Queue Scan. Queue scan ~odules (ISGQSCAN and its recovery
module ISGOSCNR) proce~s the GQSCAN macro instruction. The
queue scan module returns to the issuer of GQSCAN a
collection of data from multiple sources. To do this, it
invokes the following subcomponents:

Storage management to hash resource names to expedite
the search for more information and to allocate and
deallocate PQCBs (place holder QCBs), QELs, QXBs, and
HWKAs (huge workareas), which contain the RIBs (resource
information blocks) and RIBEs (RIB extensions) used to
collect the required information.

The information services of the ring processing
subcomponent to convert system names to sysids and
sysids to system names.

• Dump Support. Because most of its key control blocks are in
its own address space, global resource serialization
provides fts own dump support to dump the control blocks.
The dump support modules (module names of the format
ISGDxxxx) obtain and format information about local and
global resources for SNAP dump, print dump (PRDMP), or
interactive problem control system (IPCS), and provide a
dump of most global resource serialization control blocks
when the GRSQ parameter is specified on an SDUMP macro. The
dump support subcomponent invokes the queue scan module
(ISGQSCAN), via the GQSCAN macro instruction, to obtain data
about local and global resources for a SNAP dump. Figure
GRS-2 illustrates the subcomponents invoked for each
interface/function global resource serialization provides.

Resource request processing is the primary function of global
resource serialization, and ring processing is one of the more
complex functions. The next topics describe the control blocks
built to represent serialization requests (necessary background
information for understanding request processing); the
processing of ENQ, DEQ, and RESERVE requests; and ring
processing.

CONTROL BLOCKS REPRESENTING SERIALIZATION REQUESTS

Global resource serialization receives the information it
requires to process a request in a PEL (parameter element list).
From data in the PEL, global resource serialization builds a ~
(queue work block> in SQA to represent the ENQ, DEQ, or RESERVE
request. If the request is for a global resource, global
resource serialization subsequently copies the QWB from SQA to
the private area of the GRS address space. (Note that two
routines copy QWBs: ISGGQWBO and ISGGQWBC. ISGGQWBO copies
QWBs into or out of other data areas, such as from the ring
system authority CRSA) message received via the CTC from another
system. ISGGQWBC copies QWBs to QWBs, as from the SQA QWB to a
QWB in the private area of the global resource serialization
address space.)

From information in the QWB, global resource serialfzation
creates the control blocks - QCBs, QELs, and QXBs - that it uses
to satisfy the request. The ring processing modules pass to
every system in the ring the QWBs for global resource requests
from each system. (See the topic "Ring Processing" later in
this introduction for more detail.) As a result, each system
creates and chains QCBs, QELs, and QXBs that represent all
global requests in the main ring and creates and chains QCBs,
QELs, and QXBs for the local requests of this system only. The

GRS-l0 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Haterials of I1H"
Licensed Haterials - property of IBH

following describes the role of each control block and the ways
in which they are chained.

• A ~ (queue control block) describes the resource being
requested; global resource serialization builds a QCB if one
does not already exist for the resource. The QCB contains
pointers to the previous and next QCBs that are accessible
via a single entry (the QCB synonym chain) in the queue hash
table (QHT). There are two queue hash tables: a local
queue hash table and a global queue hash table. QCBs for
global resources are chained from the global queue hash
table; QCBs for local resources are chained from the local
queue hash table.

• A ~ (queue element) describes the requestor (the ASID of
the requestor and whether the requestor requires shared or
exclusive control of the resource) and contains pointers
that define the various queues of QEls:

The queue of QEls that represent requests for a single
resource. pointed to by the QCB for that resource

The queUQS of QEls that represent the requests of a
single address space. If the requests originated on
this system. there is one queue for QEls requesting
global resources and one queue for QEls requesting local
resources for each address space. The ASCB for the
address space is the anchor for both queues. If the
requests originated on another system in the main ring
(they represent global requests for an address space
executing on another system), the queue of QEls is
located by means of an entry in the SYSID/ASID hash
table. Each entry in the SYSID/ASID hash table points
to a QEl; that QEl points to (1) other QEls that have
the Same SYSID/ASID combination. and (2) the next QEL
with a different SYSID/ASID combination that 15
accessible via this entry.

• A ~ (queue extension block) describes the EHQ request -
for example, the address of the requestor's TCB; the ECB or
SVRB to be posted when the request issatisfiad; and, if the
request specified more than one resource, the number of
resources requested and the number of QEls waiting to
receive control of requested resources.

Figure GRS-3 illustrates QCBs, QEls, and QXBs for global
resources and the various ways in which they are chained.

lY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-ll

"Restricted Materials of IBM"
License~ Natarials - property of IBM

Global resource requests represented by control blocks in system SYSI:

Request A
ASIDl23
SYSIDSYSI

Request B
ASID 567
SYSIDSYS2

Resources Resource
requested: X,W requested: W

Request C
ASIDS67
SYSIDSYS2
Resource
requested: Y

Control blocks for requests A·D in system SYSI:

Pointers to first
and last aces
accessible via
this entry (aCe
synonym chain.

Pointer to first
ASID/SYSID
combination
accassible via

Global hash
table

ASCB

ASID 123
(global
requests.

SYSID/ASID
hash table

this entry (ASID/SYSID
synonym table.

ace aCB

W X

B

Request D
ASID789
SYSIDSYS2
Resource
requested: Z

aCB

Y

aCB

Z

aEL

Figura 3. Example of Control Blocks for Global Serialization Requests

D

GRS-12 MVS/XA Sll: GRS lY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Haterials of IIH"
Licensed Haterials - Property of IBH

PROCESSING ENQ, DEQ, AND RESERVE REQUESTS

The general (and simplified) processing global resource
serialization does to satisfy an ENQ request (whether the
request is local or global) or a RESERVE request consists of the
following steps:

1. Copies the PEL into a QWB.

2. Checks the resource name lists to determine if the resource
requested is global or local.

(For a global resource. delays the requestor and
communicates with other systems in the ring bQfore
continuing.) .

3. Builds and chains. if necessary, a QCB. QEl. and QXB to
represent the request.

4. If the QEl is the first QEl on that QeB's QEl chain or if
the QEl ~equested shared control and prior QEls also request
shared control. grants the request. Otherwise, delays the
requestor (by issuing WAIT) until the task for the QEl just
created is posted (see the DEQ processing steps, described
next); and then grants the request.

5. Returns to the issuer of the ENQ or RESERVE macro
instruction via EXIT· prolog.

The general (and simplified) processing done to satisfy a DEQ
request (whether local or global) includes the following steps:

1. Copies the PEL into a QWB.

2. Checks the resource names lists to determine if the resource
is local or global.

(For a global resource, delays the requestor and
communicates with other sYsteMS in the ring before
continuing.)

3. Finds the QCB. QEL, and QXB that represent the request to be
dequeued.

4. Frees the QEL and, if this is the last QEL associated with
the request, also frees the QXB.

If this is the last QEL for the QCB. frees the QCB.
Otherwise, posts tho TCB for the next QEL chained from the
QCB (or, if the next and one or more subsequent QEls request
shared control, posts the TeBs for those QELs).

5. Returns to the issuer of the DEQ macro instruction by means
of EXIT prolog.

These steps expand for the variations in processing that occur
for fast path versus mainline processing, for global versus
local resources, and for special situations. For example:

• In step 2, fast path processing (which handles requests that
require only streamlined processing) checks only the
inclusion list and passes the request. to mainline processing
if it finds the resource name in the inclusion list, without
checking the exclusion list. Mainline processing checks all
applicable resource name lists.

• For global requests, EHQ/DEQ/RESERVE processing copies the
SQA QWB to a QWB in the private araa of the global resource
serialization address space.

• Steal processing occurs in one exceptional Case. When a
resource is requested by a task that is part of an ABENDing
task structure, and the resource is owned by another task in
this same task structure, ENQ/DEQ/RESERVE processing

lY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-13

"Restricted Hatertals of IBM"
Licensed Hatertals - property of IBH

initiates a resource steal because the ABENDing task is not
abla to ralaase tha resourca.

Variations such as thesa are dascribad in the
method-of-operation diagrams for tha resource request processing
modules (ISGLNQDQ and ISGGxxxx). Figure GRS-4 illustrates the
module flow of the primarY modules that receive control to
process ENQ/DEQ/RESERVE requests.

By far the most significant variation in the simplified staps
listed abova Is the nacassity to communicate with other systems
for global resourca requasts. Ring processing. which controls
the communication, is dascribed in the next topic.

GRS-14 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - prop~rty of IBM

(ENTER

ISGLNODO

If request is not
eligible for fllSt
path processing
(for example, it
specifies more

)
(from SVC FLIH as the
result of an .ENO/RESERVE
request)

ISGGOWBI ~

than ona resource ~H~ Global Resource
or a scope of Serialization OWB
SYSTEMSI Initialization

Copy PELto
SQAOWB

Determine if re­
quest is in in·
clusion list

• If it is

• If it is not

I

ISGGREXO

Global resource
serialization exit
routines

+ +
ISGLNODO/
ISGGNODO

Find synonym
chain (entry in
local hash tablal
in which to
queue this re­
quest.

...
- p

Build OCB. OEL, ~ ...
and OXB, if nee -- -­
cessary

ISGSHASH

Hashing
routines

ISGSALC

Storage manage·
ment allocation
routine

Simplified pro­
cessing of local
resou rce re­
quests, done by
both ISGLNODO
and ISGGNODO:
see m.o. diagrams
for details and
variations in pro­
cessing.

If request cannot
be granted, delay
requestor until
task for this OE L
is posted

_.. ISGGWAIT
--- --1------1

"

Otherwise, grant
request.

Global resource
serialization
wait routine

~

...
~

.. ..

ISGGPGRP

ISGGNODO ISGSALC

. Copy PEL into
Obtain storage SQAOWB

• If not enough .. extensions if

storage in
...--. necessery

SOAOWB

Determine if reo ISGGREXO
quest is local or
global. Global resource

serialization
exit routines

If request is
local

I
If request is
global:

• Obtain OWB - .. ISGSALC ..,--.,
in private
area of Storage man·

GRS address agement ello-

space cation routine

• CopySOA
OWB to pri· - - ISGGOWBC
vate area
OWB OWBcopy

routine

• Place request
on request
queue.

• Delay re- ISGGWAIT
questor

" Global resource

~ri.,;,..,.," walt routlna

See Figure GR~ for subsequent
processing of global requests.

.• OELgroup
processing routine

1

(EXIT
'----'

To issuer of ENO/RESERVE
via EXIT prolog

Figure 4. Simplified PrOCQSS Flow for ENQ/RESERVE Processing

LY28-169S-0 (c) Copyright IBM Corp. 1987 Introduction GRS-15

RING PROCESSING

"Restricted "atartals of lB"n
Lfcensad Materials - Property 01 IBM

Ring processing provides three main functions:

• It passes to all systems in the main ring the information
they require to serialize global resource requests across
all the systems in the main ring. See the topic
"Serializing Global Resources."

• Working with the command processing subcomponent, it adds or
deletes a system to or from the main ring, as specified in
initialization parameters or requested by the operator via
the VARY GRS command. The topic "Adding a System to the
Main Ring" is a simplified overview of the add function.

• It provides to other subcomponents information about the
systems in the main ring. See the topic "Providing
Informational Services."

SERIALIZING GLOBAL RESOURCES

Global resource serialization achieves the serialization of
global resources by duplicating the control blocks that
represent requests for global resources in every system in the
main ring. Every system contains QCBs, QELs, and QXBs, queued
in identical order, that reflect every request made by a system
for a global resource. Therefore, system A cannot grant a
request to a requestor from system A if another QEL,
representing a request from system D, precedes the QEL for
system A - until it receives the DEQ request from system B for
that QEL or unless both requests specify shared control.

Ring processing passes requests for global resources to all
systems in the main ring by passing a message called the ~
(ring system authority) from system to system so that the RSA
makes a complete circuit of the ring. Each system places its
global requests, in the form of QWBs, in the RSA using one of
two methods:

1. Compression level 1. Determined by the value 1 found in the
QPLFCPRS field of the Queue Work Block Parameter list (QPL).
It indicates the QWBs in the RSA are copies of the system
QWBs and can contain unused bytes (non-compressed QWB).

2. Compression level 3. CLevel 2 is not currently used.)
Determined by the value 3 found in the QPLFCPRS field of the
QPL. It indicates the basic section of the QWBs placed in
the RSA is shortened and the Storage Management Parameter
list (SMPl) section is shortened to accomodate only those
fields which will vary CSMPCHUM). Thus more requests can
fit in the RSA. (Compressed QWB)

(The RSA can also contain a command area that is used to send
data or commands for the command processing subcomponent.)
There is only one RSA, containing batches of QWBs placed there
by each system; at any time, the RSA is either between systems
on a CTC or at one of the systems. Basically, when the RSA
arrives at a system, ring processing does the following:

1. Sets an RSA residency interval, the amount of time the RSA
will reside in that system. (The RSA residency interval
allows for the varying speeds of different processors in the
ring and, therefore, prevents a faster processor from
driving a slower processor.)

2. Invokes ISGGQWB to reproduce from the RSA copies of QW8s
that this system placed in the RSA the last time the RSA
resided in this system. These QW8s are copies of QWBs that
originated on this system: they have made a complete
circuit of the main ring and have been seen by all systems
in the main ring. Therefore, this system can now remove
them from the RSA.

GRS-16 MVS/XA Sll: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restrtcted Matertals 01 IBM"
Licensed Materials - property of IBM

3. Reproduce QWBs placed in the RSA by ~ systems into QWBs
that this system obtains from storage management. These
reproduced QWBs represent global requests that originated on
other systems in the main ring.

4. Adds to the RSA QWBs for global requests from this system
that have accumulated since the last RSA residency.

5. When the RSA residency interval expires. sends the RSA to
the next system in the ring; that system then performs these
same steps.

This processing actually involves four queues of QWBs. Each
system contains the four queues and uses them as follows:

• The request gueue. When mainline ENQ/DEQ/RESERVE processing
determines that an ENQ. DEQ. or RESERVE specifies a global
resource. it obtains a QWB for the global request in the
private area of the global resource serialization address
space. It then chains this global QWB on the request queue
and delays the requestor (by issuing WAIT). The request
queue is serialized by compare-and-swap logic and is
last-in/first-out.

• The ring processing internal gueue. Ring processing moves
the QWBs placed on the request queue to its own internal
queue (pointed to by the RSVQWBIF field in the ring
processing system vector table (RSV». The internal queue
is first-in/first-out. Ring processing re-orders QWBs as
necessary when it moves them from the request queue to the
internal queue. When the RSA resides in this system. ring
processing reproduces the QWBs from the internal queue into
the output RSA (the RSA to be sent to the next system in the
ring) and moves them to the sent queue. described next.

• The sent gueue (also CoIled the staging gueue). To aid
recovery if the RSA is lost, the sp-nt gueue provides a
record of the QWBs sent in the output RSA to the next system
in the ring. Ring processing places in the sent queue:

1. QWBs from other systems that arrived at this system in
the input RSA. Ring processing invokes ISGGQWBI
(lHSYS-COPY) to reproduce other systems' QWBs from the
input RSA. Ring processing places the QWBs on the sent
queue. These QWBs remain in the output RSA and are sent
to the next system as part of the output RSA.

2. QWBs that this system places in the output RSA
(therefore. QWBs that originated on this system and are
being sent to the next system). When ring processing
invokes ISGGQWBI (OUTSYS-COPY) to reproduce QWBs from
the internal queue to the output RSA. Ring processing
moves those QWBs to the sent queue.

Ring processing does these two steps each time the RSA
resides in this system but after it moves the sent queue
created during the previous RSA residency to the process
queue, described next. (Once the RSA has made a complete
circuit of the ring, there is no need to keep a record of
the QWBs contained in the RSA that start~d that circuit of
the ring.)

• The process gueue. When the RSA arrives at a system. ring
processing moves the sent queue created dUring the previous
RSA residency to the process queue. Because of the role of
the sent queue (described above), the QWBs on the process
queue have made a complete circuit of the main ring. The
process queue is the output from ring processing: the
requests on the process queue are now ready for processing
(building QCBs. QELs, and QXBs to represent those requests
and attempting to grant those requests).

QWBs appear on the process queue in the same order in which
they were passed through the RSA; QWBs will appear in the

LY28-169S-0 (c) Copyright IBM Corp. 1987 Introduction GRS-17

"Restricted Haterials of IBM"
Licensed Materials - property of ISH

same order on the process queues of all systems in the main
ring. This ensures that global resource QELs, created from
the QWBs, are in the same order on all systems in the main
ring.

Combining the updating of the queues with the simplified steps
(listed earlier) that occur when the RSA arrives at system
results in the following sequence. (Figure GRS-5 illustrates
the queues and the input and output RSA; the circled numbers in
Figure GRS-5 refer to the following steps.)

1. The RSA arrives and ring processing sets the RSA residency
interval.

2. Ring processing moves the current sent queue (created during
the previous RSA residency) to the process queue.

3. Ring processing removes from the input RSA this system's
QWBs, which were reproduced into the RSA during the previous
RSA residency.

4. Ring processing invokes ISGGQWBI (INSYS-COPY) to reproduce
other systems' QWBs from the input RSA. Ring processing
places QWBs in the sent queue.

5. Ring processing moves QWBs from the request queue (global
requests that originated on this system since the previous
RSA residency) to the internal queue.

6. Ring processing invokes ISGGQWBI (OUTSYS-COPY) to reproduce
QWBs on the internal queue to the output RSA. Ring
processing moves QW8s to the sent queue.

7. When the RSA residency expires, ring processing sends the
output RSA to the next system in the ring.

Once ring processing has built the process queue, it posts
ISGGRPOO, which processes the requests represented by the QWBs
on the process queue and, therefore, builds QCBs, QEls, and QXBs
for all global requests in the ring. Figure GRS-6 illustrates
the modules that receive control to process requests for global
resources.

During ring processing the following exceptional conditions can
occur that cause a main ring failure and require the ring
processing exception handling task (code that is part of
ISGBTC) ;

• Condition A

The RSA fails to complete a full circuit of the main ring
within the time allowed. (Entry point ISGBDRM of ISGBDR
gets control through periodic timer interrupts to detect
this condition.)

• Condition B

An I/O error occurs on a CTC assigned to the global resource
serialization main ring. (The CTC processing subcomponent
of global resource serialization detects this I/O error.)

• Condition C

A status inquiry request arrives from a system at the
opposite end of a global resource serialization CTC. (The
CTC processing subcomponent of global resource serialization
detects this event; a SNAPSHOT, performed by the system at
the opposite end of the CTC, causes the status inquiry to
occur.)

When any of these conditions occur, the GVTXBECB ECB in the GVTX
is posted. This post activates the ring processing exception
handling task; this task processes these exceptional conditions
as follows:

GRS-18 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Hatertals of 18H"
Licensed Haterials - Property of IIH

• Condition A Response

The ring processing exception handling task writes messages
to the operator that report the main ring failure and issues
a VARY GRS command to automaticallY rebuild the disrupted
ring.

• Condition B Response

The ring processing exception handling task writes a massage
to the operator that identifies the I/O error and issues a
VARY OFFLINE command to vary offline the CTC that
encountered the I/O error. (This I/O error can cause the
condition A main ring failure to occur and subsequently
cause the condition A response described above.)

• Condition C Response

This task sends an RSAIRCD to the system at the opposite end
of the CTC; this RSAIRCD contains the name and status of the
sending system. (In some cases, the ring processing
exception handling task issues a VARY ONLINE for the CTC
that received the status inquiry request.)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-19

G')
;;a
CJ)

I
N
g

3:
<:
CJ)

" x
>
CJ)

r­
r-

G')
;;a
CJ)

r­
oo(
N
00
I

;...
<:r'o
'>D
\.11
I

g

o

H
CI:I
3:

o
o ,
"0

."

rQ
s::: ,
II)

U'I

c:
"0
a.
til
tT

:J
rQ

tT
:r
rD

;;a
tit
>
III
:J
a.
;;a

:J
rQ

'"0 ,
o
o
II)
III
III

:J
rQ

10
s:::
II)
s:::
II)
UI

o Arrival of the RSA

This 5ylern's aWBs placed in the output

RSA the laS! time the RSA resided in this

system.0 DelelEid from inpul RSA.

Other systems' aWBs.
Ring processing reproduces these aWBs
to the sent queue.

Sent quwe at arr ivai of RSA (built dUling
prL'Vious RSA .esidencyl:

Other systems' aWBs reproduced from the
input RSA during the previous RSA
residency. {
This system's aWBs placed here when {
they were reproduced into the output RSA
during the previous RSA residency.

Accumulating this system's
global requests (ongoing):

aW6s for requests
originating on this
system.

Input RSA

aWB

aWB

aWB

• • • •
aWB

aWB

• • •

./

,/
/'

/

Building the output RSA and
updating the queues

/1--"
Other systems' aWBs
(remaining in output
RSA from input RSAI.

This system's global
aWBs that have accumu'
lated since Ihe previous
RSA residency.

Updates 10 sent queue after
moving current sent queue 10

process queue:

{
Output RSA

aWB

aWB

• • •

•

-._0
Send RSA to

next system

in ring

Sent queue movtro to Process queue

aWB

OWB

aWB

• • •
OWB

owe

• • •

OWB

• • •

_ ,......,..

L.......IIr...
.r--r

aWB

awe

owe

• • •
awe

owe

• • •

internal queue.

Other systems' awes
reproduced from input
RSA.

This sySlem's global
awes that have
accumulated since the
previous RSA
residency.

Internal queue reproduced to
RSA and moved to sent queue
(as many aWBs as will fit
in RSA).

"Requests that did not fit in
RSA during previous RSA
residenc.y (if any).

"Restricted Materials of IBM"
Licensed Materials - Pro~erty of IBN

Interrupt occurs on CTC

\
ISGJDI ISGBSM

RSA arrives at ~ Set RSA residency
th is system SRB interval

Move sent queue .
(built during pre-
v iou s "J'tSA reside ncy I
to process queue

Post ISGGRPOO Pos~

to process requests on
process queue.

Remove from the
input RSA this
svstem's aWBs (placed
there during
previous RSA -
residency

Reproduce other
svstem's aWBs from
the input RSA to the
sent queue.

Move this system's
new global OWBs
from the request
queue to the internal
queue.

Move requests on
Timer pop internal queue to

\
sent queue and
coPv those requests
to output RSA.

BALR
ISGBDR ~ Send RSA. .

SRB
RSA residency
interval expires

ISGGaWBO (Attached during

aueue work initialization)

block service
routine ISGGPGRP

aEL group
processing routine

ISGGRPOO

For each aWB on ~ ISGSHASH
process queue:

Hashing
routines

ISGSALC

Obtain storage

~ for OCBs, aE Ls,
OXBs.

• Process the aCBs,
~ OELs, and aXBs. ISGGNaOa

Build aCBs,
aELs, aXBs

.If this OELcan
receive control of Post
aCB, grant request ~

ISGGWAIT

and post ISGGWAIT
Global resource

(on behalf of
ISGGNaOQ) for this

seriali zation

OCB.
wait routine

When all requests EXIT
on process Queue have
been processed, wait.

To issuer of
ENO/RESERVe
\/Ia EXIT prolog

ISGJFE

Initiate I/O
on CTC

Figure 6. Simplified Process Flow for Global E~Qs (Ring Processing)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-21

ADDING A SYSTEM TO THE MAIN RING

"Restrtcted Haterfals of IBH"
Licensed Materials - property of IBH

When adding a system to the main ring. global resource
serialization must ensure that the global resource queues in the
system entering the ring are identical to the global resource
queues in the other systems in the main ring. One active system
in the main ring (subsequently called the adding system) is
responsible for adding to the main ring the system that wants to
join the main ring (subsequently called the entering system).
Understanding the processing that occurs on the adding system
and the entering system requires an understanding of the
following:

• The RSAIRCD (ring system authority identity record). The
RSAIRCD ;s a small record of control information that is
passed back and forth across a CTC that connects the adding
system and entering system. The RSAIRCD can be sent across
CTCs that are not used to pass the RSA. The RSAIRCD is used
only to pass commands and status information needed to add a
system to the main ring; it cannot be used to pass global
serialization requests.

• The RSVENTY table (ring processing system vector tabla entry
table, mapped by the mapping macro for the RSV). The
RSVENTY table contains an entry for every system defined to
the global resource serialization complex. Each entry
contains a flag that indicates if the system is part of the
main ring.

• Save-QWB mode and the hold queue. When a system enters
save-QWB mode, it (1) stops placing global requests that
originate on that system into the output RSA (the requests
remain on the internal queue); and (2) moves the sent queue
to a hold queue instead of to the process queue. The system
does not create QCBs, QELs. and QXBs for QWBs on the hold
queue until the system leaves save-QWB mode; at that time.
the system moves the QWBs from the hold queue to the process
queue.

The processing done on the adding system and entering system
includes the following steps; responsibility for executing these
steps is shared between the command processing subcomponent and
ring processing. (Note that this processing is simplified; it
focuses on the steps necessary to ensure that the entering
system's global resource queues will match the queues in other
systems in the main ring.)

1. The entering system enters save-QWB mode. This step is part
of the SENDCMD-RSCRADDS function of ISGBCI. ISGBCI invokes
ISGBRF (entry point ISGBRFNM) to handle the SENDCMD-RSCRADDS
function. Once the system has entered the main ring and
starts to receive and send the RSA (step 6), it will move
the sent queue to the hold queue, not to the process queue.

2. Using the command area of the RSA, the adding system sends'
each system currently in the main ring an RSVENTY table
entry for the entering system.

3. The adding system instructs all systems currently in the
main ring to stop adding requests (global QWBs) to the RSA.

4. When the RSA is empty of QWBs, the adding system sends the
RSVENTY table, one entry at a time in the RSAIRCD. to the
entering system.

GRS-22 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restrtcted Materials of 18(1"
Licensed Materials - property of IBM

5. The adding system enters save-QWB mode. When systems resume
adding QWBs to the RSA. it will move the sent queue to the
hold queue, not to the process queue.

Nate: steps 2. 3, 4, and 5 are part of the ADDSYS function
of ISGBCI.

6. Once steps 3 and 4 complete, the entering system and all
systems cUrrently in the main ring have an RSVEHTY tabla
that defines the new main ring (including the entering
system). The entering system begins to receive and send the
RSA. All systems in the new main ring, except for the
adding and entering systems (which are still in save-QWB
mode), resume sending QWBs in the RSA.

7. Because the entering system is still in save-QWB mode (step
I), it places the QWBs it receives in the RSA on its hold
queue. Although it is receiving new global requests
(assuming there are other systems in the ~ing other than the
entering and adding systems), its existing global resource
queues (QCBs, QEls, and QXBs) might not match the other
systems' queues. (If this is the first time the entering
system has entered the main ring, its queues will be empty.)
However, because the adding system has also entered save-QWB
mode (step 5), its queues represent the global queues
current at the time the entering system entered the ring.
The adding system issues the GQSCAH macro instruction for
all global resources and sends the results (using the
BUFSEND function of ISGBCI) to the entering system.

8. The entering system (1) issues a GQSCAH macro instruction to
search its own global resource queues for each global
resource identified in the data received from the adding
system; and (2) compares the results to the data received
from the adding system (the results of the GQSCAN macro
issued on the adding system). The entering system generates
QWBs to eliminate differences in the data (and, therefore,
in the global resource queues) and places the generated QWBs
at the beginning of the process queue.

9. Both the adding system and the entering system leave
s8ve-QWB mode. Requests placed on the hold queue move to
the process queue (after any generated QWBs on the entering
system's process queue). When the entering system creates
QCBs, QEls, and QXBs for the requests on its process queue,
the resulting global resource queues will match the queues
of other systems in the main ring.

PROVIDING INFORMATIONAL SERVICES

Some global resource serialization modules call ring processing
modules for information only:

• To convert a sysid to a system name or vice versa.

• To obtain the status of systems in the complex and of the
eTCs that are assigned to global resource serialization and
attached to the system that requested the information.

A sysid is a numerical synonym for a sysname (system name).
Sysids range from 1 through 255 and are associated with every
global resource. (The sysid for a local resource is 0.) The
sysid occurs in certain global resource serialization control
blocks (such as QELs and QWBs). Ring processing maintains the
correspondence between sysnames and sysids and provides routines
to convert a sysname to a sysid and vice versa.

Ring processing records the status of CTCs in RSls (ring
processing system link blocks). There one RSl in each system
for each CTC attached to that system and assigned to global
resource serialization. Ring processing records the status of
systems in the RSYENTY table. Ring processing coordinates each
system's updates to its RSVENTY table so that the RSVENTY table

lY28-1695-0 (c) Copyright IBM Corp. 1987 Introduction GRS-23

"Restricted Materials of IBM"
Licensed Materials - property of IBH

in each main ~ing system p~ovides the sama status information.
Ring processing achieves this coo~dination by passing
information in the command area of the RSA.

GRS-24 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Co~p. 1987

"R •• ·trtcted "atertals af IB""
Ltcensed "aterials - praperty af IB"

DIAGNOSTIC TECHNIQUES

DEBUGGING HINTS

The following topics contain diagnostic aids to help you solve
problems with global resource serialization.

CHECK ON ENABLED NAIT DURING IPL

PROBE POINTS

If an enabled wait occurs during IPl processing, you can make
the following check to determine if the walt was due to missing
entries tn the SYSTEMS exclusion RHL.

• Check the request queue in the GVT (CVTREQQ) for QWBs.

• Compare the resource name identified in the PEL portion of
the QWB to the entries in the SYSTEMS exclusion RNL and
SYSTEM inclusion RNL.

• If the RNLs indicate that the resource name identifies a
global resource, the requester of that resource must wait
until master scheduler initialization completes before the
requester is granted control of the resource.

• If the requester must complete processing prior to master
scheduler initialization completing, the resource name must
be added to the SYSTEMS exclusion RNL.

The' following probe points are useful to help you debug global
resource serialization problems or set SLIP traps.

1. Probe point for obtaining the RSA message that this system
received:

Module:
labelz
Data:

ISGBSM
RECVTPI
- RSAPTR (register 6) points to the RSA.
- Register 4 contains the length of the RSA.
- Register 13 points to the RSV.
- RSVIBFOR (RSV+X'8C') points to the received RSA.

2. Probe point for obtaining the RSA message that this system
sent:

Module: ISGBSM
Label: SENDTP1
Dataz - Register 13 points to the RSV.

- RSVOBFOR CRSV+X'90') points to the sent RSA.

3. Probe point for obtaining the QWB that is to be processed
(the first QWB on the process queue):

Module:
Label:
Data:

ISGGRPOO
GRPNXTPQ
- Register 3 points to the GVT.
- GVTPRCQF (GVT+X'40') points to the QWB to be
processed.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-25

"Restricted Materials of IBM"
licensed Materials - property of IBM

USEFUL FIELDS IN THE GVT AND THE GCl

The following indicators, when set to one, have these meanings:

GVT indicators:

GVTGRSNA - Global resource serialization is not active. (Only
local requests can be processed.)

GVTNCMDR - Global resource serialization commands cannot be
processed.

GVTGQDMG - Global resource queues have been damaged. This
system will reject VARY GRS,RESTART commands.

GVTHCOMM - CTC-driver and ring processing functions are not
operative.

GVTHREQS - Requests cannot be put on the command request queue.

GCl indicators:

GClINOP - CTC processing will not allow use of this CTC because
a softWare error occurred and the control blocks of
this CTC (GCl or RSl) might be damaged.

GClIOERR - CTC processing will not allow use of this CTC because
an I/O error occurred on this CTC.

GClOFFlN - CTC processing will not allow use of this CTC because
the CTC has been varied offline.

eTe PROCESSING DEBUGGING HINTS

The following debugging hints help you isolate problems in the
CTC processing subcomponent.

1. Field GClWGCQF of the GCl is the write
corresponding GCl (representing a CTC)
GCQ when the write queue is not empty.
when the write queue is empty.

queue of the
and points to a write

GClWGCQF is zero

2. Field GClCNTS is bumped by one before the STARTIO for a
SENDBUF or SENDBUF-IMMEDIATE. Field GClCNTC is bumped by
one when the SENDBUF or SENDBUF-IMMEDIATE completes.
Therefore, by comparing these two count fields you can
determine if a write operation is in progress.

3. Field GClRGCQF is the read queue of the corresponding GCl
and points to a read GCQ when the read queue is not empty.
GClRGCQF points to a dummy GCQ (located in the GCV) when the
read queue is empty.

4. The address in field GClRGCQF is a word-multiple address
when the GCl does not have a read channel program in
progress. The address is bUmped by one when a read channel
program is started. Therefore, by checking the low order
bit in GClRGCQF you can determine if a read channel program
is in progress.

5. Field GClTRACE contains the last IS CCW operation codes
sensed from the corresponding CTC. In a dump, the acronym
TRCl appears a short distance before this field. The
occurrence of an EE or ED operation code in this area
indicates that the system taking the dump sensed a broken
channel program that was started by thQ system at the
opposite end of the CTC.

GRS-26 MVS/XA SlL: GRS lY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBH"
Ltcensed Materials - property of IBM

RING PROCESSING DEBUGGING HINTS

The following debugging hints help you isolate problems in the
ring processing subcomponent.

1. Field RSVIBFOR points to the RSA input buffer. Field
RSVMRlRl contains the length of the last RSA received.

2. Field RSVOBFOR points to the RSA output buffer. Field
GCBlHBUF of the RSA output GCB contains the length of the
last RSA sent or the length of the RSA that soon will be
sent. Field RSVGCBOP points to the RSA output GCB.

3. Field RSARCSEQ of the RSA is the RSA send count. which is a
number that is bumped by one each time the RSA is sent. By
comparing RSARCSEQ in the input buffer to RSARCSEQ in the
output buffer, you can determine if the system that took the
dump was holding the RSA at the time of the dump. Also. by
comparing RSARCSEQ values in dumps taken by different
systems, you can determine which system last received the
RSA before a failure.

4. When a system is in the main ring, field RSVRSASC contains
the RSA send count of. the last RSA sent by this system (if
the system is not holding the RSA) or the send count of the
RSA that will soon be sent by this system (if the system is
holding the RSA). RSVRSASC is set to zero when a system
does main ring cleanup.

5. Subroutine ClHUFAIL (in module ISGBCI) does the main ring
cleanup. When a system does main ring cleanup after a main
ring disruption, CLHUFAIL copies field RSVRSASC to an entry
in the RSVEHTY table. and also marks entries in the RSVEHTY
table to show which systems were in the main ring at the
time of the disruption and which RSA was last received
before the disruption. Because main ring cleanup is
serialized by the ISGBCI-EHQ-resource, cleanup might not
occur immediately after the main ring disruption because
another task might be holding the ISGBCI-ENQ-resource at the
time of the disruption.

ENQ/DEQ/RESERVE PROCESSING DEBUGGING HINTS

The following debugging hints help you isolate problems in the
EHQ/DEQ/RESERVE processing subcomponent.

1. The queue work areas (QWAs) used by ENQ/DEQ mainline
processing contain information that is useful in solving
ENQ/DEQ/RESERVE problems. There are two QWAs: one for
local resource processing (the local QWA pointed to by
GVTlQWA), and the other for global resource processing (the
global QWA pointed to by GVTGQWA).

The QWA is divided into the following major areas:

QWABASIC - This is the basic section of the QWA. It
contains the information required by tha
mainline routine to process the resource
request. For example. it indicates whether or
not the request is authorized, whether global
resources are part of the request, and whether
the request is an ENQ or DEQ. This is also tho
only section of the QWA that can be mapped to
the SVRB extended save area or the RMPL work
area.

QWARSA - This is the first request save area section of
the QWA. It contains the information required
to process a global or local resource request.
This section is moved to the QWBHRSA field and
later restored to the QWARSA field by module
ISGGRPOO. It exists in the QWABASIC section of
the QWA.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-27

QWARSA2 -

QWARDA -

Work/Save

areas -

"Restricted Haterials of IIH"
Licensed Haterials - property of IIH

This is the second request save area section of
the QWA. It contains the information needed to
process a global or local resource request.
This section contains the requester's job name,
SYSID. ASID, and ASCB address. This data is
moved to the QWBHRSA2 field and later restored
to the QWARSA2 field by module ISGGRPOO. It
exists in the QWARSA section of the QWA.

This is the request data area section of the
QWA. It contains the counts of the types of
resources being processed, and the addresses of
internal control blocks.

This series of general work/save areas follows
the QWARDA area in the QWA and are used by the
resource request processing routines. These
areas are used to save register contents.

QWATRMRM - This work area section of the QWA is used by the
termination resource manager. It contains
information used by ISGGTRMO and ISGGTRMl to
process a termination request.

When a local resource is being processed, the QWABASIC
section of the QWA is moved to the SVRB extended save area
when the requester of the resource must be suspended because
the resource is not immediately available. QWABASIC
information is then referenced in the SVRB extended save
area following the notification that the resource is
available,

When a global resource is being processed, the QWABASrC
section of the QWA is always moved to the SVRB extended save
area because the global resource requester is always
suspended.

After the requester is notified (via cross memory post) that
the requested resource is available, the data in the SVRB
extended save area is copied back to the QWABASIC section of
the QWA. This information in QWABASIC is then used to
complete the processing of the request.

The main point to consider about the QWA is that whenever an
ENQ/DEQ/RESERVE requester is suspended, the SVRB extended
save area contains useful information that can be used in
debugging. An important piece of information in the
QWABASIC section of the SVRB extended save area is the QWB
address used to define a global resource request. By
locating this QWB (pointed to by QWAQWBA>, you can find the
data presented to EHQ/DEQ/RESERVE processing in the original
request. If this field in the QWA is zero, then a local
resource is being processed.

2. EHQ/DEQ/RESERVE processing uses two types of QWBs to process
resource requests: the SQA QWB (pointed to by GVTSQWB), and
the global resource serialization address space QWBs
(pointed to by QXBQWB, GVTREQQ, and GVTPRCQF).

GRS-28 MVS/XA SLL: GRS

When a local resource is being processed, the SQA QWB is
used. When a global resource is being processed, the SQA
QWB is used only until the global resource serialization
private area QWBs are constructed. The following shows the
process in which the resource data is passed between
ISGGNQDQ and ISGGRPOO.

• The requester's PEL is moved to the SQA QWB.

• The local QWA is initialized.

• Information in the QWA and SQA QWB is moved to the
global resource serialization private area QWBs.

LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Matertals of IBMn

Licensed Materials - Property of IBM

• The QWABASIC section of the local QWA is moved to the
SVRB extended save area.

• The global resource serialization private area QWBs are
placed on the request queue. (These QWBs are
subsequently moved to the process queue by ring
processing routines.)

• The ring processing function notifies ISGGRPOO that work
(QWBs) is now available on the process queue.

• ISGGRPOO moves the QWBHRSA and QWBHRSA2 fields to the
global QWARSA and QWARSA2 fields respectively.

• ISGGRPOO processes the requests and notifies the
requester (ISGGHQDQ SVRB) when the resource request is
satisfied.

• ISGGHQDQ restores the local QWA from the QWABASIC
section of the SVRB extended save area. It then locates
the global resource serialization private area QWBs
defining this request from the restored QWABASIC
section. This address is then used to restore the
QWARSA from the QWBHRSA.

3. Prior to master scheduler initialization completing, any
global resource requests placed on the request queue that
are required for IPL processing will cause an enabled wait
state. To prevent this from occurrin~, any global resource
requests required during IPL processing before master
scheduler ini·tialization has completed should be placed in
the SYSTEMS exclusion RHL.

ENQ/DEQ/RESERVE TERMINATION RESOURCE MANAGER DEBUGGING HINTS

The following debugging hints help you isolate problems in the
EHQ.lDEQ1RESERVE termination resource manager function:

1. For normal and abnormal task termination, ISGGTRMO receives
control from RTM in either the address space of the
terminating task or the address space of the master
scheduler. In either case, ISGGTRMO issues a PC to ISGGTRM1
in the global resource serialization address space to
process the requQst. The input resource manager parameter
list (RMPL, which is pointed to by register 1 on entry)
defines the type of termination request.

2. ISGGTRMO uses the local QWA to store information related to
its processing. QWABASIC is initialized with common
resource processing information and QWATRMRM is initialized
with information related to the task or address space being
purged. For the format of this data, refer to the QWA in
the Debugging Handbook.

3. If only local resources are being purged, the EHQ.lDEQ cross
memory services lock (CMSEQDQ) is held to provide
serialization for the local QWA.

4. If global resources need to be purged, then the data stored
in the QWA must be preserved during this process. ISGGTRMl
saves this data in the dynamic area before calling ISGGQWB5.
Register 9 in ISGGTRMl points to the dynamic area. The
information in the dynamic area includes the QWARSA,
QWAASCB, QWATRMRM. QWAJOBHM. GVTXlSMP, and RUB (register
updated block).

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-29

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

STORAGE "ANAGE"ENT DEBUGGING HINTS

The following debugging hints help you isolate problems in the
storage management sUbcomponent.

1. Most global resource serialization control blocks reside in
the global resource serializat~on address space. Pools of
control blocks are maintained in resource pools as defined
by two resource pool tables (RPTs), the local RPT and the
global RPT. RPTs, in turn, address pool extension blocks
(PEXBs) that define the control blocks (cells) for global
resource serialization. (For an overview of these control
blocks, see Figure GRS-1S.)

Each PEXB is 4K bytes in length and contains multiple cells
for control blocks of the same type and size. PEXBs of QWB,
MRB, CRB, TWKA, and HWKA cell typas are contained in the
RQA, while PEXBs of QeB, QEL, QXB, and PQCB cell types are
contained in the ERQA. listed below are the global resource
serialization control bloc~s that are defined within a PEXB.
(The RPT indexes are described in the following hint.)

control RPT
Black Index Name Attributes

QCB 1 queue control block local or global
size 1

QCB 2 queue control block local or global
size 2

QCB 3 queue control block local or global
size 3

QEL 4 quaue element local or global
QXB 5 queue extension block local or global
QWB 6 queue work block global only
HWKA 6 huge work area local only
TWKA 7 tiny work araa local or global
PQCB 8 placeholder QCD local or global
MRB 9 message request block local or global
CRB 10 command request block global only

The RPT header contains either the acronym lRPT (local RPT)
or GRPT (globa'l RPT). Also, in the PEXB headers, tha PEXBs
addressed by each RPT contain the acronym PEXB as well as
the acronym for one of tha control blocks listed above.
This information is useful when you are scanning the RQA or
the ERQA in a dump listing to locate a particular control
block, or when you find an address.of an unknown control
block. From the information in the PEXD, you can determine
the type of control block (defined by the acronym) and
whether or not the control block is in use by global
resource serialization. The control block is in use if it
is not chained to the available cell chain in the PEXB
header.

The available chain is double-headed (PEXFRST and PEXLAST)
and single-threaded (PEXHCELL). Hote that the first four
bytes of each cell are used to chain available cells
together.

2. A storage manager parameter list (SMPl) is the input to the
storage manager allocation (ISGSAlC) and deallocation
(ISGSDAl) routines. The SMPl describes the number and type
of control blocks requested. The type of control block is
defined by an RPT index value in the SMPL. The RPT indexes
(defined in the ISGRPT and ISGSMPL mapping macros) are used
to index into the RPT to locate the RPT entry (RPTE) for the
control block in question. .

3. The QCD is defined in three sizes: size 1 for those with an
RHAME of 24 bytes or less, size 2 for those with an RHAME of
S2 bytes or less. and size 3 for those with an RHAME of 255
bytes or les5. Each QCB has a unique index corresponding to
the three sizes.

GRS-30 MVS/XA SLL: GRS LY28-169S-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4. The sequence in which the storage manager allocates control
blocks is:

• When the request is received, ISGSAlC checks that the
caller has the proper lock needed to allocate the cells.
If the caller does not hold the proper lock then the
storage manager issues ABEND 09A with a reason code of
8110 if the global resource serialization lock is not
held, and a reason code of 810C if the CMS enq/deq lock
is not held.

• If the global resource serialization address space is
initialized, ISGSAlC checks if the caller is in 24 bit
mode and the request is to allocate cells in the ERQA.
If so, the storage manager issues an ABEND of 09A with a
reason code of 8114.

• ISGSALC attempts to satisfy the request from the queue
of active PEXBs that are chained from RPTEFPXB and
RPTElPXB. If, while scanning the active PEXB queue,
ISGSALC finds a PEXB with no available cells, the PEXB
is rechained to the end of the active PEXB queue.

• If sufficient PEXBs are not available on the active
queue, ISGSAlC searches the inactive PEXB queue that is
chained from RPTEIAPQ. If available, .the inactive PEXB
is moved to the front of the active PEXB queue and the
required cells are obtained from this PEXB.

• If the inactive PEXB chain is empty and the request is
still not satisfied, an additional page is obtained from
the RQA for QWB, HWKA, TWKA, MRB, or CRB cell type
request, or from the ERQA for QCB, QEl, QXB, or PQCB
cell type request. A new PEXB is then constructed and
chained to the front of the active queue.

• If the RQA has been completelY assigned, then the
storage manager issues ABEND 09A with a reason code of
8104. If the ERQA has been completely assigned, then
the storage manager issues ABEND 09A with a reason code
of 8108.

5. A bit map in the RQA defines each page of the RQA, and a bit
map in the ERQA defines each page of the ERQA. When the
storage manager attempts to allocate a control block and no
active or inactive PEXB is found, the RQA/ERQA bit map is
searched for an available page. (The address of the RQA bit
map is in GVTXBTMP and the length of the RQA bit map is in
GVTXBTMl. The address of the ERQA bit map is in GVTXEBMP
and the length of the ERQA bit map is in GVTXEBML). The
storage manager allocates control blocks from the high end
of the RQA/ERQA for global resources and the low end for
local resources. Therefore, for global resources, the
search proceeds from the high order bit in the bit map to
the low order bit. For local resources, the search proceeds
from the low order bit in the bit map to the high order bit.
When a page is allocated in the RQA/ERQA, the corresponding
bit in the bit map is set to 1. When a page i.5 deallocated
from the RQA/ERQA such as a PEXB, the corresponding bit in
the bit map is set to O. By scanning the bits in the bit
map, you can determine the number and locations of all
allocated control blocks in the RQA/ERQA. (The address of
the RQA/ERQA is in GVTXRQA/GVTXERQA.)

6. You can locate a PEXB header by zeroing the low order 12
bits of the cell (or control block) address. The PEXB
header contains the addresses of the first and last
available cells in this PEXB. The header also contains
pointers to the previous and next PEXBs for this control
block. By scanning the queue of available cells (pointed to
by PEXFRST), you can determine if a particular control block
is allocated to a function or has been released.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-31

"Restricted Materials of 11M"
Licensed Materials - property of 11M

When cells are returned to the storage manager~ they are
placed at the end of the available chain. When cells are
assigned by the storage manager, they are assigned from the
front of the queue. This ensures that a history of cell
usage is maintained within the PEXBs because the oldest are
used first.

When all cells within a PEXB have been freed, the PEXB is
moved to the front of the chain of available PEXBs (that is~
the inactive PEXBs pointed to by RPTEIAPQ). Therefore, a
history of PEXBs is not maintained. Whenever the count of
inactive PEXBs (maintained in GVTXIACT) equals the count in
RPTIACNT, all inactive PEXBs defined by this PRT are
released. The storage manager deallocation routine
(ISGSDAL) schedules ISGSPRLS to perform the page release
function (via the PGSER macro).

7. Control blocks in the RQA/ERQA are not fixed. Instead,
global resource serialization relies on the storage
isolation function of SRM to ensure that the real frames
associated with these virtual pages remain in storage until
a critical storage shortage is encountered. (Refer to
Initialization and Tuning for information about storage
isolation.)

8. With the exception of the QWB, all global control blocks are
serialized with the global resource serialization loeal
lock. All local resources and the QWB are serialized with
the ENQ/DEQ cross memory services lock (CMSEQDQ).

SDWA AND SDWAVRA CONTENTS

All global resource serialization recovery routines (except
ISGGESTO) record the following information in the SDWA:

SDWAMODN - Load module name
SDWACSCT - CSECT name

- Date of compilation
- Product/PTF number

SDWACID - Component identifier (SCSDS)
- Subcomponent identifier

SDWAREXN - Recovery routine name

Additional information is recorded in the variable recording
area (SDWAVRA) in the key-length-data format as described in the
following topics.

Recorded by ISGIERCV

ISGBERCV records the following in the SDWAVRA:

• The REPL and its address. (The REPl contains execution
footprints. Also, if the failing module was working with a
particular RSL, the REPl contains the address of the that
RSL.)

• The RSC being processed at the time of failure and its
address. (Recorded only if (1) ISGBCl and (2) ISGBRF or
ISGBSF was the failing module.)

• Six words copied from the UCB of the CTC that encountered
the timeout condition. (Recorded only if ISG8CI is the
failing module and the ABEND reason code is 620C.)

Recorded by ISGBFRCV

ISGBFRCV records the following in the SDWAVRA:

• The RVR and its address. (The RVR contains execution
footprints. Also, if the failing module was working with a
particular RSl, the RVR contains the address of that RSL.)

GRS-32 MVS/XA Sll: GRS LY28-169S-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - property of IBM

• The ISGBSR or ISGBSM entry point that encountered the
failure.

• The addresses of the RSLs used to receive and send the RSA.

• Field RSVCRSAT of the RSV, which indicates whether a ring
processing function was being performed at the time of the
failure. Also. field RSVCPHNO, which indicates the phase of
the function being performed.

• The addresses of the RSA input buffer and output buffer,
plus six words from the beginning of each buffer.

If the failure occurred for entry point ISGBSRRI. the following
is also recorded:

• The address of the RSL.
• The device address of the CTC represented by that RSL.
• The RSL flags: RSlLKSF. RSLLKIF. and RSLBFCTC.

Recorded by ISGCRCV

ISGCRCV records the following in the SDWAVRA:

• The contents of the CRWALEIB field (LOGREC error
information) when ISGCRCV beings recovery processing.

• The parameter list passed to ISGBCI if the error exit
routine determined that the failure occurred during a call
to ISGBCl. (ISGCRCV invokes exit routines in failing
modules as a part of its recovery processing.)

• The contents of the CRWALEIB field when ISGCRCV completes
processing.

For each CRWA on the chain. ISGCRCV repeats the recording noted
above. Therefore, multiple CRWALEIB fields might be recorded.

Recorded by ISGCRETO

ISGCRETO (at entry point ISGCRORV) records the following in the
SDWAVRA:

• The FRR parameter list. (Refer to the PARMAREA structure in
module ISGCRETO.)

Recorded by ISGCRETI

ISGCRETI (at entry point ISGCRIRV) records the following in the
SDWAVRA:

• The FRR parameter list. (Refer to the PARMAREA structure in
module ISGCRET1.)

Recorded by ISGDSDHP

ISGDSDMP (at entry point ISGDSDRV) records the following in the
SDWAVRA:

• The contents of the DEPL (ESTAE parameter list for SDUMP).

Recorded by ISGDSNAP

ISGDSHAP (at entry point ISGDSHRV) records the following in the
SDWAVRA:

• The ESTAE parameter list. (Refer to the PARMAREA structure
in module ISGDSHAP.)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-33

Recorded by ISGGESTO

"Restrtcted "aterials of II""
Licensed Haterials - Property of 11M

ISGGESTO does not request recording to SYS1.LOGREC. Nothing is
copied into SDWAVRA.

Recorded by ISGGFRRO

ISGGFRRO records the following in the SDWAVRA:

• The contents of the QFPL (EHQ/DEQ FRR parameter list).

• The contents of the output data area (ODA) if the queue
verifier routine detects queue damage. (Refer to module
IEAVEQVO for the mapping of the ODA.)

• Internal processing flags. (Refer to the FLAGS structure in
module ISGGFRRO.)

• Resource damage flags. (Refer to the DAMAGE structure in
module ISGGFRRO.)

Recorded by ISGGQSRV

ISGGQSRV (at entry point ISGGRECV) records the following in the
SDWAVRA:

• The error information block (EIB) (local to ISGGQSRV).

Recorded by ISGJRCV

ISGJRCV records the following in the SDWAVRA:

• The CTC unit address.

• The address of the IOSB.

• The IOSB fields: IOSFLA, IOSFLB, IOSFLC, IOSCOD, IOSCSW,
IOSSHS, and IOSUSE.

• The address of the GCQ.

• The first five words of the GCQ.

• The contents of GCL.

Recorded by ISGQSCNR

ISGQSCHR records the following in the SDWAVRA:

• The contents of QFPL1 (queue scanning services FRR parameter
list).

• The input parameter list (built by the GQSCAH macro) to
ISGQSCAH, if it is available.

• The original system completion code and reason code
describing the error.

• The control block cell type and address, if the control
block was found not valid.

• Internal recovery status flags. (Refer to the RCVYSTFG
structure in module (ISGQSCHR.)

Hate: ISGQSCNR does not record the 09A ABEND code issued by
ISGQSCAN.

Recorded by ISGS"I

ISGSMI (at entry point ISGSMIFR) records the following in the
SDWAVRA:

• The FRR parameter list. (Refer to the PARMAREA structure in
module ISGSMI.)

GRS-54 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of 1811"
Licensed Materials - Property of IBM

• The original system completion code and reason code (in
SDWAGR15) describing the error.

GENERAL INFORMATION USEFUL FOR GLOBAL RESOURCE SERIALIZATION ANALYSIS

RECOVERY CONSIDERATIONS

The recovery routines for the global resource serialization
subfunctions are:

Recovery Routine
*ISGBERCV - ESTAE
*ISBFRRCV - FRR
*ISGCRCV - ESTAE

Subfunction
Ring processing

Command Processing
ISGCRETO - ERR
ISGCRETl - FRR
ISGDSDMP (EP-ISGDSDRV) - ESTAE Dump support

*ISGDSNAP (EP-ISGDSHRV)
ISGGESTO - ESTAE

- ESTAE

ISGGFRRO - ERR
*ISGGQSRV (EP-ISGGRTRY)-FRR
*ISGJRCV - FRR
*ISGCRCV - ESTAE
*ISGCRCV - ESTAE
*ISGQSCHR - ERR
*ISGGERRO - FRR
*ISGSMI (EP-ISGSMIER) - FRR

Request
(ENQ/DEQ/RESERVE)
processing

Global queue services
CTC processing
WTO/WTOR message processing
Initialization
Queue scanning services
Storage management

* This routine suppresses duplicate dumps via DAE and its
default dump-SUPpression
crt teri a.

lY28-1695-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques GRS-35

SERIALIZATION

"Restricted Materials of 18MB

Licensed Materials - Property of IBM

When GRS=HOHE is specified. all required global resource
serialization resources are serialized with the CMSEQDQ lock.

When GRS=START or GRS=JOIN is specified~ the following chart
summarizes the serialization of the resources used by global
resource serialization.

CHSEQDQ Local cs Resource

X
X
X

X
X

X
X

X

X
X

X

X

local hash table
Global hash table
SYSID/ASID hash table
local ASCB QEl queue
Global ASeB QEL queue
Local storage management pools
Global storage management pools
storage management QWB pools
Request queue
Process queue
Local QWA
Global QWA

legend:

CMSEQDQ - EHQ/DEQ cross memory services lock
local - Global resource serialization local lock
CS - Compare and Swap instruction

GRS-36 MVS/XA SlL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Katerials 01 IBM"
Licensed Katerials - property 01 IBK

CONTROL BLOCK OVERVIEW

CONTRa" BLOCKS

Global resource serialization uses the following control blocks.
For the format of these data areas, refer to the Debugging
Handbook and Data Areas (microfiche).

Data Area Description

CEPL

CRB

CRWA

DEPL

DPl

DSPl

ERQ·A

GCB

GCC

GCl

GCP

GCQ

GCT

GCV

GCX

Command ESTAE parameter list - anchors the LIFO queue
of CRWAs and contains an error recording areas for
requested functions.

Command request block - contains information required
to process a DISPLAY GRS or VARY GRS command.

Command recovery work area - contains the error
information used by the command recovery routine to
handle errorS.

SDUMP ESTAE parameter list - contains information used
by the global resource serialization dump support
subcomponent to process an SDUMP request.

DEQ purge list - contains the information needed to
complete processing for a DEQ SYSID, DEQ ASID, or DEQ
TCB purge request.

Dump sort parameter list - contains information for
the global resource serialization dump sort routine.

Extended resource queue area - contains PEXBs that
define QCBs, QELs, QXBs and PQCBs.

Global resource serialization CTC-driver request block
- is the parameter list required by the CTC-driver for
all functions (except extracting area lengths).

Global resource serialization CTC-driver control card
table - contains the information from the global
resource serialization SYSl.PARMLIB member for this
system.

Global resource serialization CTC-driver link control
block - contains information related to each CTC in
the system.

Global resource serialization CTC-driver buffer prefix
- contains message length and validity checking data.

Global resource serialization CTC-driver queueing
element - contains information used by CTC processing
when sending or receiving a message or an
unusual-event notification.

Global resource serialization CTC-driver branch table
- contains addresses of the eTC processing DIE
routines and exit routines.

Global resource serialization CTC-driver vector table
- contains addresses of CTC-driver entry points for
CTC-driver functions and information common to all
CTCs used by CTC proces9ing.

Global resource serialization CTC-driver extract table
- is the parameter list required by the CTC-driver for
the extraction of area lengths. .

LY28-169S-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-37

"Restricted "atarials of II""
Licensed Katertals - property of II"

GVT Global resource serialization vector table - contains
common information (global queues, pointers and entry
point addresses) for all global resource serialization
functions. It also has sections containing
information for the various subcomponents.

GVTX Global resource serialization vector table extension -
contains information specific to the global resource
serialization address space.

MRB Message request block - contains information required
to process message requests.

PEL Parameter element - is the input parameter list to
ENQ/DEQ/RESERVE processing.

PEXB Pool extent block - maps a 4K page in the RQA for QWB,
MRB, CRB, TWKA, or HWKA cell type; or a 4k page in the
ERQA for QCB, QEL, QXB, or PQCB cell type.

PQCB Placeholder queue control block - contains the
information necessary to resume a global resource
serialization queue scanning request.

QCB Queue control block - describes a resource to global
resource serialization.

QEl Queue element - describes the requester of a resource
to global resource serialization.

QFPL ENQ/DEQ/FRR parameter list - is the FRR parameter list
used by ENQ/DEQ/RESERVE processing.

QFPLl Queue scanning services FRR parameter list - is the
FRR parameter list used by queue scanning services.

QHT Queue hash table - contains queue hash table entries.
Each queue hash table entry is a double-headed anchor
of QCBs. There are two QHTsJ one for global requests
(GQHT), and one for local requests (LQHT).

QWA Queue work area - is a work area used by
ENQ/D~Q/RESERVE processing modules.

QWB Queue work block - describes a resource request. A
global resource request is described by a QWB in the
private area of the global resource serialization
address space. A local resource request is described
by the permanent QWB in the SQA.

QXB Queue extension block - contains the data that
describes an ENQ/DEQ/RESERVE request.

REPl Ring processing ESTAE parameter list - is the ESTAE
parameter list used by ring processing.

RIB/RIBE Resource information block - contains the information
that describes a resource and any requesters for the
resource. The variable portion of the RIB (containing
RIB extents) ;s located immediately after the RIB.
Each RIB extent (RIBE) describes a requester of the
resource. RIBs and RIBEs are returned to the issuer
of the GQSCAH macro.

RHLE Resource name list entrY - contains information about
resources that are to be included or excluded from
global resource serialization processing and RESERVE
resources that are to be converted to global EHQs.

RPT Resource pool table - contains entries for each cell
type in the RQA. There are two RPTs - one for global
resources CGRPT), and one for local resources (lRPT).
Each RPT points to the first and last PEXB for that
pool.

GRS-38 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RQA

RSA

RSAIRCD

RSC

RSL

RST

RSV

RVR

SAHT

SMPL

SNDI

CONTROL BLOCK STRUCTURES

Resource queue area - contains PEXBs that define QWBs,
MRBs, CRBs. and the work areas.

Ring processing system authority message - is used to
pass command data and ENQ/DEQ/RESERVE requests between
global resource serialization systems in the main
ring.

Ring processing information record - is used to pass
control information between systems that are not both
in the main ring.

Ring status change parameter list - is the parameter
list used to call the interface module ISGBCI.

Ring processing system link block - contains
information about a CTC and is used by global resource
serialization ring processing functions.

Ring processing status tabla - contains the status of
global resource serialization systems and eTCs.

Ring processing system vector table - contains
information used by the global resource serialization
ring processing modules.

Ring processing FRR parameter list - provides input
data to the ring processing functional recovery
routine, ISGBFRCV.

System/ASID hash table - contains entries that point
to a chain of QELs that define global resource
requesters from another system.

Storage management parameter list entry - contains
information for a request to global resource
serialization storage management.

Ring processing send information control block - maps
the parameter list for ISGBRF (GRS Ring Processing
Request Function Module).

The figures in this topic show the control block structures of
the global resource serialization control blocks for the
followi ng:

• Permanent TCDs
• CTC processing
• Ring processing
• Command processing
• ENQ/DEQ processing

Local resources
Global resources

• Queue scanning services

Local resources
Global resources

• Storage management
• WTO/I-IiOR Message processi ng

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-39

ASCB

TCB

I TCBRBP I .
2

TCB

r TCBRBP I
3

TCB

I TCBRBP I
4

TCB -I TCBRBP I
4

TCB

I TCBRBP
...

4

ASXB

PRB

IEAVAROO

Region
control
taSk

PRB

IEAVTSDT

SVCdump
teak

PRB

IEEPRWI2

Started
task control

PRB

ISGCMDR

Command
router

PRB

ISGGRPOO

Global
resource
processor

PRB

ISGBTC

Ring
processing
task moda
controller

Nora:

• The numbers show the hierarchy.
• When GRS"START or JOIN, all

TCB/PRBs are permanent.
• When GRSaNONE: ell TCB/PRSs

are permanent eKcept the Tce/PRe
for ISGGRPOO, which II temporary; and
the TCB/PRB for ISGBTC, which il
not present.

-..
PRB

ISGNASIM

Addrea
space
initialization

tYRestricted Materials of 1111"
Lfc~nEeC: Materials - propel~ty of Ilii

Figure 7. TCDs in the Global Resource Seriali~ation Address Space

GRS-40 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restl'icted Materials of IBM"
Licensed Materfals - Pl'operty of IBM

CVT

~ CVTGVT
GCT

GVT

JJ~ GVTGVTX

I GVTJGCT /l ~~ GVTJCNFD GCQwrite GCP
GCV

~ VI Buffer GVTJGCV I GCLWGCQF GCQBUFAD
Dummy /

~GVTX ~ GCQ / GCLRGCQF

~GCQread ~
GVTXJGCV GCL sense IOSB/SRB GCQCHAIN

, read IOSB/SRB I' LJ'1
GCL ',- write IOSB/SRB

\ GCQBUFAD I Buffer

\
GCL \ Sense

~B (Raad channel program) IOSB/SRB
(Write channel prog ram)

- ..,....,....
IOSUCB

Figure 8. CTC processing Control Block Overview

I

I

I

--.

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-41

CVT

I---..... r
(

CVTGVT

GVT·

aWB
request
queue

RSA

GVTGVTX

/ GVTREaa

GVTPRCaF

IJ r aWB

~ ==
RSV

r Main ring
input buffer

RSA

GVTX :r
GVTXBRSV r

I

RSVIBFOR

RSVOBFOR

1/ it Main ring
~ L output buffer

RSAIRCD

RSVBCIBF ~ buffer
~~---'

RSL (for CTC1.

"Restricted l1aterials of IBI1"
Lic~n3ed Materials - Pro~erty of IBI1

I-----IV RSLNRSL
RSVRSLa

RSL (for CTCn)

~1------4
I------~

~~GCB :~

RSAIRCD I
buffer

GCBABUF ~ 1-----.... GCBABUF ~

~---....
RSAIRCD I
buffer

V aWB
Internal
queue

RSVaWBIF .
RSVaWBSF r- aWB
RSVaWBHF

~
sent
queue

aWB
, hold

queue

RSVENTY
.........
"

.... RSVENTY (t entry per $Vsteml
"- ... ,

SYSNAME

'" , SYSID , status fl898

Figure 9. Ring Processing Control Block Overview

GRS-42 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Hatartals of IBM"
Licensed "atartals - property of IBH

CVT

CVTGVT
CRB

!GVT r/ Command
request
Queue

GVTCMDRQ

GVTCMDWQ
CRB

GVTCMDCQ·
Command

1\ --queue

CRB
Command -
cleanup
queue

CRBCEPL
CEPL

CRBRST
CEPLCRWA

~RST

CRWA

~ CRWACRB

Register 1

Figura 10. Command Process Control Block Overview

LY28-1695-0 (c) Copyright IBM Corp. 1987

""'"

II

Control Block Overview GRS-43

CVT OCB
I r OCBNOCB -CVTGVT

~OEL J QCBFOEL

GVT - OELNOEL
GVTGVTX

J QELOXB

3VTX Coxa
GVTXLOHT

LOHT

ASCB
J

ASCBLOEL I

J

"Restricted Hat.rials of I8H"
Licensed Materials - property of 11M

OCB

QCBFOEL ~
"OEL ----= /

Il.CEL
QELNQELO

QELOXB

~ QELNQELO
OXB

QELOXB I-- I

~

Figure 11. EHQ/DEQ Processing - Local Resources - Control Block Overview

GRS-44 MVS/XA SLL: GRS LY28-1695-0 (c) Copyrigh~ IBM Corp. 1987

"Regt~icted Hate~ials of IBM"
Licensed Materials - p~ope~ty of IBM

CVT • QCB

/ ! CVTGVT
QCBFQEL

GVT QCB

GVTGVTX QCBFQEL

~ GVTX

J QCB

" QCBNQCB

.. QEL
QCBFQEL

QELNQEL GVTXGQHT

(QELNQELQ
~ GQHT

-1 QELQX~

L-J
QXB

I
ASCB I

" ASCBGQEL

SYSID/ASID
hash table

QEL

/ QELNQEL
"QEL.

QELQXB I' QELNQEL

" I QELQXB 'laEL

~~. C:lXB

~
QELQXB

!QXB 1
Q:~LNQELQU V

QELQXB.

QEL

!QE~QE~~
QELNSYN

(QEL~.
QXB

Figure 12. EHQ/DEQ Process - Global Resource - Control Block Overview

I

lY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-45

CVT QCB
r· V , CVTGVT QCBNQCB

GVT
QCBFQEL

)
GVTGVTX ,
GVTX

GVTXLQHT

I LQHT
l/QEL

..

QELNQEL

(
QELQXB

QXB .-
ASCB

ASCBLQEL :
L ~

PQCB

"Restricted Materials 01 IBM"
Licensed Materials - Pra~erty of IBM

QCB

PQCBNQCB ~ QCBFQEL

PQCBFQEL "'. QEL QEL

ASC8 ((QELQXB ,- QELNQELQ

ASCBLQEL I QELQXB
~ QXB I I

~

QEL \ QELNQELQ QXB

.-------""
QELQXB ---

Figura 13. Queue Scannin~ Services Local Resources - Control Block Overview

GRS-46 MYS/XA SLL: GRS LY28-1695-0 (c) COPYright IBM Corp. 1987

"Restricted Materials 01 IBM~
Licensed Materials - property of IBM

CVT

I CVTGVT

~GVT

QCB

1------1' ---­QCBFQEL ~

PQCB

QEL

GVTGVTX
QCB

1'1----....
PQCBNQCB"

~ QXB

GVTX

GVTXGQHT

.~ GQHT
)

PQCBFQEL D
QCBNQCB

I't----...-..t

QCBFQEL!)~ ~Q~E~L~_~ / V(QELQXB
ASCB

I

QCB

ASCB ~Q'EL
~==---..... I QCBFQEL

ASCBGQEL ~ QELNQEL IL-_~

~aEL

SYSID/ASID
hash table

QELNQELQ

_ QEL

OELQXB OELNQELQ ~
i(~O~X~B~ __ ~~ ____ -~- QELQXB

r-L..-__ ..I

~======~ ______________________ -~ QELNQELQ

OELNSYN

QELaxB

QELQXB

I QXB

axB

QELQXB

IL-_~

• Qxe

I

Figure 14. Queue Scanning Services Global Resources - Control block Overview

lY28-1695-0 (e) Copyright IBM Corp. 1987 Control Block Overview GRS-47

GVT ERQA Bit Map

GVTXLRPT

RQA/ERQA

"Restrtcted Matertals of IBM"
Licensed Mater;als - property of IBM

rH;;;-------,
I

--------------~I-~~ - --- - --'
Figure 15. storage Management Control Block Overview

GRS-48 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted ttataria!s of I1tt"
Licensed Katerials - Property of IIH

Synchronous Request

Register 1 MR B
i~~~------~ • I ____ --..It'" I MRM r-' I MRBRMRB

Asnychronous Request

MRS

·MRSCEPL

MRBRMRB

Note: Control block structure when the
mesS8ge processing routine IISGMSGOO)
receives control.

MRB

Figure 16. WTOR/WTOR Message Processing Control Block Overview

LY28-1695-0 ec) Copyright IBM Corp. 1987 Control Block Overview GRS-49

System A

Operator

• ISGCxxxx

Command

"Restricted Haterhls of IBM"
Ltc~nsed Hatarials - Property of IBM

System B

Operator

f
ISGCxxxx

Command
processing n ISGBxxxx ISGJxxxx ISGJxxxx ISGBxxxx r processing

~
Ring

ISGGxxxx processing

ISGLxxxx

ENCl/DECl/ ~
RESERVE
processing

GQSCAN SVCdump

.~ l
ISGQxxxx ISGDxxxx

Queue Dump
scanning support
services

Figure Title IModule Flow for:)

CTC ProceS8ing

~ CTC
processing

GRS-18
GRS-1-9
GRS-20

Handle Arrival of Immediate-CCW
Handle Arrival of RSA or RSAIRCD
Send a RSA or RSAIRCD

Ring ProceS8lng

Send/Receive a RSA

- CTC
processing

9RS-21
GRS-22
G.RS-23
GRS-24
GRS~25
GRS-26
GRS-27

Send a RSAIRCD or Immediate-CCW IRequested by.ISGBCII
Send a RSAIRCD IRequested by ISGBTC)
Handle Arrival of RSAIRCD INot Requested by This System)
SNAPSHOT Function
SENDCMD (RSCRADDS) Function
SENDCMD (RSCRSNAD) Function

Command Processing
GRS-28 - Command Initialization and Cleanup
GRS-29 - DISPLAY GRS
GRS-30 - VARY GRSlx). PURGE
GRS:31 - VARY GRS(x). QUIESCE to Another System
GRS-32 - VARY GRS(x). QUIESCE by a System to Quiesce Itself
GRS-33 - VARY GRS(x). RESTART to Restart Another System
GRS-34 - VARY GRS(ALL). RESTART to Restart All Systems
GRS-3S - VARY GRS(x). RESTART by a System Not in the Main Ring
GRS-36 - Join Processing at Initialization Time

ENQ/DEQ Mainline (Resource request processing)

138S-37 - Local Resource Request
GRS-38 - Global Resource Request
GRS-39 - Termination Resource Manager

GRS-40 Queue Scanning Services

GRS-41 Dump Support - SVC Dump

Figure 17. Process Flow Overview and Directory

~ Ring ~ processing ISGGxxxx
ISGLxxxx .. ENC/DEQJ
RESERVE
processing

SVCdump GQSCAN

J t
ISGDxxxx ISGOxxxx

Dump Queue
SuPPOrt scanning

services

GRS-50 MVS/XA SlL: GRS lYZ3-169S-0 (c) Copyright IBM Corp. 1987

"Restrtcted "atertals of IBM"
Licensed "ataria!s - Property of IB~

Any Address Space

" II

Global Resource Serialization Addrea Space

Attention Interrupt ,
II~ IOS-IECTCATN ISGBTC Ring processing

luues STARTIO channel II task mode controller -
• Exception-handllng task

program for sense command
II ISGJFE

byte • Determines which GCL Ep·ISGJGTUE
(representing a CTC) received -

t II the immediate-CCW CTCdriver

II • At EP·ISGBTCIR, sends the front end
ISGJDI CTC driver DIE

RSAIRCD on the spacified
EP·DI1000 II CTC r---. See.fIgI!J'8.~GRS-~3..
• Marks the GCL to show

immedlate-CCW was II • Gives control, to CTC ""'- ISGJFE
sensed processing, of the SRB used - EP·ISGJGVSR

r-- • Schedules an SRB to

"
to post GVTXBECB CTCdriver

execute ISGBSM II • Wait on ECB .GVTXBECB
front end

• Returnsto lOS 1 II SRB (Wait)
~ ISGBSM RSA send/receive

" routine II
• ·Posts ECB GVTXBECB to POST

awaken ring processing task II
• Exits to dispatcher 1/

• II
(Exit) II

Figure 18. Process Flow for CTC ProcQssing - Handle Arrival of Immad;ato CCW

LY28-l69S-0 (c) Copyr;ght IBM Corp. 1987 Control Block Overview GRS-51

"Restricted Materi~ls of IBM"
~ieensed Haterials - property of IBM

Attention interrupt

Any Addr. Space

Chennelend

\I
II

Global Resource Serialization
Address Space

t t II
lOS IECTCATN

• Issues STARTIO channel
progrem for sense
command byte

t
ISGJOI eTC driver DIE
EP·011000

lOS SLiH II r+ ISGJFE CTC driver front end
Ep·ISGJSRBX

• Processes the read channel
II • Loads regiiters with the

program address and length of

I' II received RSA or_RSAIRCD

• ISGJFE branches to

II _ !S~~SFI orJSGBSM

ISGJOI CTC driver 011: II • Branches to ISGBSR to process

EP·012000 the received message

• Analyzes results of the sense
command byte

• Returns to lOS and requests

• Analyzes results of the read II ,
channel program

-U- ISGBSM RSA send/receive
• Schedules an SRB to execute routine

Initiation of e reed channel
program

ISGJFE II
Returns to lOS EP·ISGBSMR processes an • II -RSA it receives

II See figure GRS·21

I·j ,

\1
ISGBSR RSAIRCD send/receive
routine

EP·ISG BSR R I processes I ail RSAIRCD

See figure GRS-24

Figure 19. Process Flow for CTC Processing - Handle Arrival of RSA or RSAIRCD

GRS-S2 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted "aterials of IBM"
Ltcensed Materials - property of IBM

Global R8IOufCe Serialization
Addl'8Sl Space

(Enter)

r----~
~--~------------~ ISGBSM RSA send/receive

routine

EP·ISGBSMSR sends a RSA

ISGBSR RSAIRCD send/racelve
routine

EP·ISGBSRRI sends a RSAIRCD

ISGJFE CTC driver
front end
EP·ISGJSNBF

• Initializes a write channel
program and an 10SB

• Issues STARTIO to initiate
the write channel program

EP·ISGJSRBX

• If a RSAIRCD was sent.
branches to ISGBSR to
handle the RSAIRCD
send-completlon

(Exit)

ISGBSR RSAIRCD send/receive
routine
EP·ISGBSRRI

• Handles RSAIRCD send·
completion

Any Addreu Space

Channel end

~
-+I lOS

1-.--::P:-r-oc-e-se-s-w-r~it-e-c~ha-n-n-el~---1
program

1
ISGJDI CTC driver DIE
Ep·DI3000

• Analyzes results of the write
channel program

• If 8 RSA was sent. updates
II GVTMRSCW to show RSA
I r send-completion occurred

II SRB • If a RSAIRCD was sent. H schedules an SRB to
execute ISGJFE

II • Retums to lOS

II
II
II

" " II
II
/I

Figura 20. Process Flow for CTC Processing - Send a RSA or RSAIRCD

LY28-1695-' (e) Copyright IBM Corp. 1987 Control Block Overview GRS-53

C. E) From CTC processing
~er Figure GRS.19

ISGBSM RSA send/receive routine
EP·ISGBSMR

• Sets the RSA residence interval

• Performs one of the following:

1. Process. a command or meuarlfl
If the received RSA contains a CAB or MRB from
another system -
- Obtains a CRB or MRB
- Initializes the CAB or MAB and places it on the

command request queue CGVTCMDRO)
- Posts the command router's l!eB GVTCECB

2. Proceua. a ring configuration command
If the received RSA shows that another system is
performing a ring configuration command CADDSY.
SUBSYS, DELSYS, or S!:RRELS function) -
- Marks the RSV to indicate which function and

phase is being per,formed
- Posts ECB GVTXBECS to awaken the ring

processing exception'handling task

3. Continue. a ring proceuing function
If the received RSA shows that ring processing
command should be continued via the RSA -
- Marks the RSV and RSA to indicate the ring

processing function has advanced to its next
phase

- If all phases of the function are complete:
marks the RSV to indicate completion and
the RSA to indicate tha function is no longer
baing performed

4. Initiates 8 ring processing function
If the received RSA shows that no other system is
performing a ring proceuing function, and the RSV
shows that this system is trying to perform a ring
processing function:
- Marks the RSV.to indicate a ring processing

function is in progress
- Updates the RSA to show that this system is

performing a ring processing function

• Moves any OWBs on the sent queue CRSVOWBSFI to
the process queue CGVTPRCOFI or hold queue
CRSVOWBHFI

• Posts the RS CGVTGRPRBI used by ISGGAPOO

• Obtains OWBs and reproduces data from the RSA
to the QWBs and places the OWBs on the sent queue

• Moves the QWBs that are on the request queue
CGV.TREQQI to the sent queue CRSVQWSSFI,
and copies them into the RSA

• Exits to the dispatcher

..t
(Exit)

-
POST

POST .

POST

..

"RastrictS!d Materials of IBM"
Licensed Materials - Propsrty of IBM

ISGBDR

Timer
manager

ISGSALC
Storage
manager

ISGCMDR

Command See figure GRS·2B
router

ISGBTC

Ring processing
talk mode
controller

ISGGRPOO

Global resource See figure GR5-3B
processor

ISGGOWSO
EP·ISGGQWB1

Queue
service

Any Address Spaca 1\ Global Resource Serialization Addrass Spaca

ISGBOR Timer manager IlsRB~ ISGBSM RSA send/receive ISGJFE

• Residence interval routine EP·ISGJGVBF

expires II EP·ISGBSRSR CTCdriver
~ • Gives the RSA input buffer front end

II to CTC processing

II • Sends the RSA ISGJFE

Exits to the dispatcher EP·ISGJSNBF • II ~
CTCdriver

II front end
C Exit

See figure GAS·20

Figure 21. Process Flow for Ring Processing - Send/Receive a RSA

GRS-54 MVS/XA SLL: GRS LY28-1695-0 ec) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - property of IBM

(Enter) From ISGBRF

t (EP-ISGBRFNM)

ISGBTC Ring processing task mode controller
EP-ISGBTCIR

• Examines the RSL time stamp and flags (passed by
ISGBRFNM and performs one of the following:

1. It this system should wait for an RSAIRCD, pauses for a
short time to ewait the arrival of the RSAIRCD

2_ If this system should send a RSAIRCD or an
immediate-CCW:
- Seizes control of the GCQ for this RSL
- Initializes the GCQ as an SRB

:~ - Schedules the SRB to execute ISGBSR

• Returns to ISGBRF (EP ISGBRFNM)

• ISGBRF IISGBRFNM) Ring processing

• Pauses until the request is complete
- If a RSAIRCD was sent, awaits the arrival of a

response from the target system
- If an immediate-CCW was sent, awaits the send-

completion from CTC processing
(Note that ISGBRFNM might send an immediate-
CCW on another CTC ISGBRFNM before receiving
a response from the remote system.)

• Ex its to caller

..t
(Exit)

~ ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI

• Examines the RSV flags to determine if a RSAIRCD
or an immediate-CCW should be sent

• Gives, to CTC processing, control of the GCQ and
RSAIRCD buffer for this RSL

• Sends the RSAIRCD or immediate-CCW

• Exits to the dispatcher

+
(Exit)

(Enter) From CTC processing ,
ISGBSR RSAIRCD send/receive routine
EP-ISGBSRRI

Receives the RSAIRCD response (requested by ISGBCn

• Marks the RSL to show that the RSAI RCD has arrived

• If the RSV flags show that the RSVENTY table of this
system should be updated, copies the system status from
the received RSAIRCD to an entry in the RSVENTY table

• Gives control of the GCQ and RSAIRCD buffer for this
RSL back to CTC processing

• Exits to the dispatcher

• (Exit)

~ See figure GR8-24

ISGJFE --..
EP-ISGJTKBF

CTCdriver
fl'9nt end

A

B

- ISGJFE
EP-ISGJGVBF

CTCdriver
front end

- ISGJFE
EP-ISGJSNBF

~ CTCdriver
front end

See figure GRS·20

~

ISGJFE - ~

EP·ISGJGVBF

CTC driver
front end

Figure 22. Process Flow for Ring Processing - SQnd a RSAIRCD or Immediate-CCW
(Requested by ISGBCI)

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-SS

CEnter) From ISGBTC

t
Exception-handling task

ISGBTC Ring processing task mode controller
EP-ISBGTCIR

• Examines the RSL time stamp and flags (passed by
ISGBTC, exception-handling task) and parforms
one of the following:

1. If this system should wait for a RSAIRCO, pauses
for a short time to await the arrival of the RSAIRCD

2. If this system should send a RSAIRCO:
- Seizes control of the GCQ for this RSL
- Initializes the GCQ as an SRB

~
- Schedules the SRB to execute ISGBSR

• Return~ to ISGBTC, exceptlon·handllng task

+
ISGBTC Ring processing task mode controllar,
Excaption-handling task

• Processes another RSL, or waits on its ECB
(GVTXBECB)
(Note that the exception-handling task does not
wait for a sand completion or errival of a
RSAIRCO.)

+
(Exit)

~ ISGBSR RSAIRCD send/receive routine
Ep·ISGBSRRI

• Copies the status of this system from the
RSVENTY table to the buffer for this RSL

• Sends the RSAIRCO using the GCQ and buffer
for this RSL

• Exits to the dispatcher

l
(Exit 1

-

"Restricted Materials 01 11M"
Licensed Materfals - property of IIH

See figure GRS-24

I ISGJFE
EP-ISGJTKBF

CTCdrlver
front end

ISGJFE
EP-ISGJSNBF

CTCdriver Sea figure GRS-20
front end

----------------------- --~.

(Enter) From CTC processing ,
ISGBSR RSAIRCD send/receive routine
EP·ISGBSRRI

• Receives the send completion

Gives control of the GCQ and buffer for this RSL - ISGJFE •
back to CTC processing EP-ISGJGVBF

• Exits to the dispatcher CTCdriver ,- front end

C Exit)

Figure 23. Process Flow for Ring Processing - Send a RSAIRCD (Requested by ISGBTC)

GRS-56 MVS/XA SLL: GRS lY28-1695-0 (e) Copyright ISM Corp. 1987

"Restricted Materfals of IBM"
Licensed Materials - property of IBM

(Enter) From CTC processing

W
ISGBSR RSAIRCD send/receive routine
Ep·ISGBSRRI

RSAIRCD is received from a remota system that is not
In response to a request from this system.

• Marks the RSL to show that a RSAIRCD hal arrivad

• If the RSV flags show that tha RSVENTY table in
this system should be updated, copies the system
status from the received RSAIRCD to an entry in tha
RSVENTY table

• If the received RSAIRCD contains a command that has
not previously been received by this system:

- Obtains a CRB

- Copies data from the received RSAIRCD to the CRB
- Places the CRB on the command request queue and

posts ECa GVTCECB

• Copies the system status from the RSVENTY table to
the RSAI R CD that is to be sent

• Sends tha RSAIRCD using the GOO and buffer for
this RSL

• Exits to the dispatcher ,
(Exit)

(Enter) From CTC processing

f
ISGBSR RSAIRCD send/receive routine
EP·ISGBSRRI

Receives the send completion

• Gives control of the GCQ and buffer for this RSL
back to CTC processing

• Exits to the dispatcher

+
(Exit)

r ISGSALC

Storage
manager

ISGCMDR

POST Command See figure GRS'28
router

ISGJFE
Ep·ISGJSNBF

CTC driver See figure GR5-20
front end

- ... ISGJFE
Ep·ISGJGVBF

CTCdrlver
front end

Figure 24. Process Flow for R;ng Processing - Handle Arrival of RSAIRCD (Not
Requested by Th;s System

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-S7

(Enter) From command processing

W
ISGBCI Ring processing

Examines the RSC passed by the caller and Invokes ISGBRF
(entry point ISGBRFSN) to start the SNAPSHOT function

• Enqueues exclusively on the ISGBCI-ENQ-reaource

• Marks the RSV to show that the RSVENTV table must be
updated with the status contained In any received RSAIRCD

• For every RSL that II not used to send or receive the main
ring RSA, sends an Immedlate-CCW to obtain the status of
the remote systam at the opposite end of the CTC represented
by thatRSL

• After alilmmedlete-CCWs have been sent, pauses to "allow
the remote systems to respond

~-----------• If this system Is not In the main ring and some remote system
II In the main ring, repeatedly sends a RSAIRCD to the
remota system. ISGBCI walts for the arrival of a response
before sending the next RSAIRCD. (Each RSAIRCD requests
a RSVENTY antry from tha RSVENTV table of the ramote
system.)

~------------
• Marks the RSV to show that RSVENTV table updates are no

longar allowed

• Copies system status from the RSVENTV entries to the RST

• Copies CTC status from the RSLs to the RST

• Dequeues the ISGBCI-ENQ-rasource

• Returns to command processing

+
{ Exit 1

~

"Restrictsd "atarials of 11M"
Licensed Materials - praparty of II"

ISGBTC

Ring processing
task mode
controller

See figure GRS-22

ISGBTC

Ring processing
task mode
controller

See figure GR5-22

Figure 25. Process Flow for Ring Processing - SNAPSHOT Function

GRS-58 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Enter) From RESTART command + processing

ISGBCI Ring processing

A system, not in the main ring, is requesting a systam in the
main ring to add it to the mein ring

• Examines the RSC passed by the caller and ISGBRF lentry
point ISGBRFNM) will be invoked to start the (RSCRADDS)
function

• Enqueues exclusively on the ISGBCI·ENQ-resource

• Chooses the RSL to the target system in the main ring

• Initializes the RSAIRCD with the data from tha input CRB
that requests this system to be added to the main ring

• Sends the RSAIRCD to the target system and pauses
until the target system sends back the RSAIRCD

~-----------• Repeats sending the RSAIRCD and pauses until the target
system responds that it ia performing phase 1A of the
ADDSYS function (or hes cancelled the CRB) 1--------------

• Marks the RSV to show that the RSVENTY table must be
updated in this system

• Sends a RSAIRCD to the target system to obtain the contents
of eech entry in the target system's RSVENTV table and pauses
for the target system to respond to each RSAIRCD

• Marks the RSV to show that the RSA can be received

• Sends a RSAIRCD to the target system showing that thit
system is in the main ring and is ready to process the RSA

• Marks the RSV to show that RSVENTY table updates are
no longer allowed

• Dequeues the ISGBCI·ENQ·resource

• Returns to RESTART command processing

+
(Exit)

- - ISGBTC - EP·ISGBTCIR '"
Ring processing - task mode
controller

See figure GR8-22

- - ISGBTC ... EP·ISGBTCIR

Ring processing
task mode
controller-

See figure GRS·22

Figure 26. Process Flow for Ring Processing - SENDCMD (RSCRADDS) Function

LY28-1695-0 (c) Copyright IBM Corp. 1937 Control Block Overview GRS-59

(Enter J From RESTART command processing

+
ISGBCI Ring processing

A system, in the main ring, will add a system not in the main
ring to the main ring

• Examines the RSe passed by the caller and ISGBRF (entry
point ISGBRFNM) will be invoked to start the SENDCMD
(RSCRSNAD) function

• Enqueues exclusively on the ISGBCI-ENQ-resource

• Chooses the RSL to the target system not in the main ring

• Initializes the RSAIRCD with the data from the input
CRB that requests the target system to add itself to the
main ring

• Sends the RSAIRCD to the target system and pauses until

"Re~tricted Materials of IBM"
Licensed M3terials - property 01 IBM

- ISGBTC
EP-ISGBTCIR the target system sends back the RSAIRCD r ------------ -----1

• Repeats sending the RSAIRCD and pauses until the ,.1-._- Ring processing
task mode
controller

target system responds that it is performing the
SENDCMD (RSCRADDS) function (or has cancelled the CRB) --------- --

• Dequeues the ISGBCI-ENQ-resource

• Returns to RESTART command processing

(Exit)

See figure GR5-20 (for processing
done on this system) and
figure GRS-24 (for processing
done on the target system)

Figure 27. Process Flow for Ring Processing - SEHDCMD (RSCRSNAD) Function

GRS-60 MVS/XA SLL: GRS LY28-1695-0 (e) Copyright IBM Corp, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBH

Master Scheduler Address Space Global Resource Serialization Address Space

ISGCMDE

Parser

(Enter) From console services
exit -, (lEECB808)

ISGCMDI Commend interfece - .. IEEMB887 • Establishes a recovery
environment Generalized

• Checks the console authority
parser

and the command syntax

Obtains a command request
~ ISGSMI •

block (CRB)
Storage

• Initializes the CRB and
places it on the command

manager

request queue POST

• Posts ECB GVTCECB

• Waits for the command to
complete -------- f-4-

• Deletes the recovery
environment

+
(Exit)

·Command request processors

ISGCDSP - DISPLAY GRS (figure GRS·29)
ISGCPRG - VARY GRS(xl, PURGE (figure GRS-301

II
II
II ,.

II
--""

II
II
II
II
II
I I

rJ

II
II -
II
II
II
II
II POST

II
II
II
I

ISGCaSC - VARY GRS(x), aUI ESCE (figures GRS-31 and GRS-321

ISGCMDR Commend router

• Moves the CR Bs from tile
command request queue to
the command work queue

• Initializes the CEPL, CRWA,
and RST areas for a CRB

• Does a SNAPSHOT (for a
Display Request) to fill in
the RST

• Attaches a command
request processor

• Places the CRB on the
cleanup queue

• Repeats these steps for
each CRB on the command
work queue --------

• Waits for another command
request to be placed on the
command request queue

EP·ISGETXR1

• Removes the CRB from the
cleanup queue

• Posts ISGCMDl's ECB

• Releases the CRB, CEPL,
CRWA, end RST areas

i
(Exit)

ISGCRST - VARY GRS(x), RESTART (figures GRS-33, GRS·34, and GRS-35)
ISGMSGOO - Asynchronous message request

Figure 28. Process Flow for Command Initialization and Cleanup

See
figure GRS-25

~
ISGBCI
At ISGBRF
(at entry point
ISGBRFNM)

Ring
processing

ATTACH- •

Return from
the command
request processor

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-61

(Enter) F~om figure GRS·28 ,
ISGCDSP Display request processor

• Obtains storage for a control line

• For an RNL or ALL request:
- Obtains storage for a label line
- For each RN L entry. obtains storage for a data line
- Places RNL entry data into data line

• For a CONTENTION or ALL request:
- Finds out via the GQSCAN macro if there is resource

contention
- If there Is resource contention. places resource and

requestor data into the data line
- If there is no resource contention. places "no

contention" message Into the data line

• For a RES request:
- Scans queues for date via the GQSCAN macro to

match the request
- If there are resources that match the request. pieces

resource and requestor data into the data line

- If the resources do not match the request. places "no
data for requast" message Into the data line

• For a SYSTEM or ALL raquest:

- Obtains storage for a label line
- For each pair of system entries In the RST. obtains

storage for a data line
- Places the system information into the line

• For a LINK or ALL request:
- Obtains storage for e label line -
- For each pair of CTC entries in the RST. obtains

storage for a data line
- Placas the system information Into the line

• Writes all lines of the message -
• Returns all storage for the lines

• Returns to ISGCMDR

J
C Exit)

Figure 29. Process Flow for DISPLAY GRS

GRS-62 MVS/XA SLl: GRS

"Restricted Materials of 18M"
Licensed Materials - property of IBM

IEECBB08 ..
Ep·MSGSERV
Message
service
routine

LY28-1595-0 (c) Copyright IBM Corp. 1987

"Restricted Haterfals of IBH"
Ltcensed Materials - property of ItM

(Entar) From figure GRS-28 ,
ISGCPRG Purge request processor

• Obtains the ring status

• Determines the status of this system and others
in the complex

• Issues GQSCAN to determine if the system to be
purged (target system) holds or Is waiting for any
global resources

• If the target system has outstanding global resource
requests, issues messages ISG0161 and ISG017D
to obtain the operator's permission to continue the
purge

• Issues message ISG0111 on this system

• Initiates a DELSYS of the target system

• Initiates a SYSIO purge of the target system

• Issues message ISG0181 for the resource requests
that were purged

• Releases the QWBs and MRSs returned by ISGGQWBO

• Issues message ISG0131 on this system

• Broadcasts message ISG0131 to all active systems in
the ring

• Returns to ISGCMDR

i
(Exit)

f+

~

.-

-
-

Figure 30. PrOCQSS Flow for VARY CRS(x), PURGF.

LY28-169S-0 (c) Copyright IBM Corp. 1987

~
ISGBCI
Via ISGBRF
lat entry point
ISGBRFNM)

Ring
processing

... ISGMSGOO
_ ...

Message
routine

... ISGBCI

Ring
processing

... ISGGQWBO
EP-ISGGQWB5

Queue
service

ISGMSGOO

Message
routine

I ISGGQWBF

Queue
service

ISGMSGOO

Message
routine

... ISGBCI

Ring
processing

Control Block Overview GRS-63

System A ISGBCI
VlalSGBRF

(Enter 1 From figure GRS·2B (at entry point

• . ISGBRFNM)

Ring
ISGCasC Quiesce request processing
processor

• Obteln ring status .. ~ ISGMSGOO

Message • Determines the status of this routine
sYstem and others In the complex

• ISlues message ISG0111 ~
ISGBel l-

• Sends a message request (SENDCMD Ring
for meS1&g8 ISG011 I) to the processing
target syltem 1----------

~ • Performs a SUBSYS of the ISGBCI l-
target~em Ring

• Issu81 message ISOO131 on

~
processing

this.yltem
ISGMSGOO

• BroadcestB message ISG0131 Message
to all active systems in the

routine complex

Returns to ISGCMDR • ~ • ISGBCI
Ring

(Exit) proc8lling

.....

I-

I-

.....

"Restricted Haterlals of 11M"
Licensed Materials - property of IBM

System B

ISGBSM RSA send/receive

• Obtains a MRB ~ ISGSALC

• Initlallz8I the MRB with tha Storage
message request and places the manager
MRB on the command request
queue

~POST
ISGCMDR Command router

• Issues message ISG0111 ~ ISGMSGQO

• Returns Message
routine

ISGBTC Ring processing
talk mode controller

• Changes the status of this
system from active to
qulesced

Issues message ISG0131 ISGMSGOO •
• Returns

Message
routine

Figure 31. Process Flow for VARY GRS(x), QUIESCE to Another System

GRS-64 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - property of ISM

System A

(Enter) From figure GR8-28

~
ISGCasC OUlesce request
processor -- ISGBCI

W Via ISGBRF

• Obtain ring status (at entry point
(lSGBRFSN)

• Determines the stetus of
this system and others

J ISGMSGOO
in the complex

Issues messages ISG0111
Message

• routine
and ISG0121 on this system

• Sends a qu lasee request ISGBCI
(SENDCMD) to another Via ISGBRF
system In the main ring to (at antrv pol nt
cause It to qulasee this ISGBRFSN)
system Ring

processing

Se8 note

~------
Issues message ISG0131

.. ISGMSGOO • -
• Returns to ISGCMDR Message

1
routine

(Exit)

Note: ISGBCI changes tne status
of this system from active to qulesced.

-

System B

r+ ISGBSM RSA send/receive

• Obtalnsa CRB - ... ISGSALC

• Initializes the CRB for the Storage
qulesce request and places manager
the CRB on the command
request queue

POST

... ISGCMDR Command router

ISGMSGOO f4- • Processes the quiasee request

Message
routine ATTACH ,

~ -- ISGBCI
ISGcaSC OUlasee request processor Ring

processing • Determines the status of this
system and others In the complex

ISGMSGoO .. L,. • Issues message ISG0111
Message -. Performs a SUBSYS of system A • routine

~ Issues message ISG0131 •
ISGBCI .. Broadcasts message ISG0131 • Via ISGBRF to all systems
(at entry point • Returns to I!iGCMDR
ISGBRFSN)
Ring
procasslng

See note

Figure 32. Process Flow for VARY GRS(x), QUIESCE by a System to QuiescQ Itself

lY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-65

S A ystem

(Enter) From figure GRS-28

f ~ ISGBCI
ISGCRST Restart request via EP
processor

ISGBRFSN

• Obtain ring status .. . Ring

• Determines the status of this
processing

system and others in the
complex ... ISGMSGOO

• Locates the RST entry for Message
system B routine

• Issues message ISG0111 4-

Does a SENDCMD (RSCRSNAD) ... ISGBCI •
to tell system B to restart Ring
Itself processing
~-------

. - -.-

• Does an ADDSYS of system B .-. ISGBCI

via EP
ISGBRFSN
Ring

• Copies the compatibility level processing
and the RNLs into a buffer

• Does a BUFSEND ISGBCI

~ • IssUes GOSCAN to obtain data Ring
about all global resources and processing
requesters

• Does a BUFSEND ISG8CI

"-- • Repeats these steps until all Ring
data has bean sent processing

~-------.

• Does a BUFSEND of the ...
end-of-file

ISGBCI
Ring
processing

• Does a BUFRECV for the - -"" ISGBCI
notification that system B Ring has completed

processing

• Releases serialization - ISGBCI
(SERRELS) Ring

processing

Issues message ISG0131 ... ISGMSGOO •
on this system Message

routine
.. --~- ---

Broadcasts message ISG0131 • ISGBCI to all active systems in the
complex via EP

ISGBRFSN

• Returns to ISGCMDR Ring

.t processing

(Exit)

~

-..

-

- ..
-

+
~

..

-

"Restricted Materials of IBM"
Licensed Materials - propgrty of IBM

System B

ISGBSM RSA send/receive

• Obtains a CRB ISGSALC

• Initializes the CRB for the Storage
restart request and places the manager
CRB on the command request
queue

l POST __
ISGCMDR Command router

• Processes the restart
request

ISGBCI 4 + ATTACH
via EP
ISGBRFSN ISGCRST Restart request

processor Ring
processing ~ • Obtain ring status

ISGSCI ~ • Does a SENDCMD (RSCRADDS)
to signal system A that this

Ring system is ready
processing - • Updates the resource queues

f--------
• Cleans up and exits ~

ISGBCI ~

Ring
processing

~ ISGCQMRG Queue merge

ISGBCI .~ • Does a BUFRECV

Ring • Compares the compatibility
processing level and RNLs to those

in this system

~ • Does a BUFRECV r.
• Issues GQSCAN for each

resource in the buffer

ISGGOSRV 4-+ • Generates the QWBs to get
this system's resource queues

Queue to match the other systems
service in the complex and puts the

QWBs on the process queue

ISGGRPOO +-- • Posts ISGGRPOO to process

Global
the QWBs

resource • Repeats these steps until
processor end-of-file is received I---------
ISGBCI • Does a BUFSEND to notify

Ring system A that queue updates

processing are complete

J • Releases serialization

ISGBCI
(SERRELS)

Ring • Returns to ISGCRST f---

processing

Figure 33. Process Flow for VARY GRS(x), RESTART to Restart Another System

GRS-66 MVS/XA SLL: GRS LY28-1695-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Lfcensed Matertals - Property 0" IBM

S A ystem

(Enter) From figure GRS-28

+
ISGCRST Restart request
processor

System B

~ ISGBSM RSA send/receive

Obtains a CRB -• ISGSALC ---Obtain ring status ~ ISGBCI • • Initializes the CRB for the
Via ISGBRF restart request and pisces the

Storage

• Determines the status of this maneger
system and othen in the (at entry point CRB on the command request
complex ISGBRFSNI queue

• For an operator command: I POST - . ISGBCI -- Does a STARTPOP to ISGCMDR Command router
perform restart processing Ring
on this system processing • Processes the restart request

• :=or an intarnal command: - . • ATTACH - Does a STARTPOP - with- - . ISGBCI

permission to perform Ring ISGBCI L.....
automatic restart pro- processing Vie ISGBRF

ISGCRST Restart request
cessing on this system

(at entry point
processor

• Issues message ISG0131 ISGMSGOO ISGBRFSNI ~ Obtain ring status •
~ • Locates the next RST entry Message

~ for a restartsble system routine ..- ISGBCI • Does a SENDCMD (RSCRADDS)

Issues message ISG0111 Ring to signal system A that this

• - ISGMSGOO system is ready processing
Message -- • Updates the resource queues
routine ~------

• Cleens up and exits 14-
• Does a SENDCMD -- ISGBCI I-

(RSCRSNAD) to tell
system B to restart itself

Ring ~~ ~ ISGCQMRG Queue merge
processing ... ~ Does a BUFRECV --------- ISGBCI •

• Does an ADDSYS of system B ISGBCI Ring • Compares the compatibility

• Copies the compatibility level Ring processing level end RNLs to those in
and the RNLs into a buffer processing this system

• Does a BUFSEND ~ ~ •
Does a BUFRECV 4,

ISGBCI l-

• Issues GasCAN to obtain data -; ISGBCI • Issues GasCAN for each
~ about all global resources and Ring

Ring resource In the buffer
requesten procassing

processing ~ • Generates the QWBs to get

• Does a BUFSEND this system's resources
1""'"-- ISGBCI I- ISGGQSRV queues to match the other

• Repeats thase steps untllall
Ring Queue systems in the complex and I-

data has baan sent puts the QWBs on the process DrocesslnA service
1--'--------- I+-

queue

• Does a BUFSEND of the .
ISGBCI I- ISGGRPOO • Posts ISGGRPOO to process

end-of-file Ring Global the QWBs
resource

processinA procassor .. Repeats these steps until
I-- ~-o!:!!!e~e~ ___ l-

• Does a BUFRECV for the - .. ISGBCI ~ notification that system B ISGBCI • Does a BUFSEND to notify
has completed Ring

Ring system A that queue updates

• Releases serialization

~
processing processing are complate

(SERRELS)
ISGBCI ~ •

Releases serialization
(SERRELS) • Issues message ISG0131 on Ring ISGBCI

this system processing Ring • Returns to ISGCRST I--

• Broadcasts message ISG0131 l1li processing
to all active systems in the ~ ISGMSGOO
complex Message

I-.. • Repaats these steps for each routine
restertsble system

• Reaturns to ISGCMDR ~ ISGBCI

-'- Ring

(Exit)
prqcassing

Figure 34. Process Flow for VARY GRSCAll), RESTART to Restart All Systems

lY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block·Overview GRS-67

System B
(Enter) From figure GRS-28 ,

ISGCRST Restart request
processor

• Obtain ring status

• Determines the status of this
system and others in the
complex

• Issues messages ISG0111 and
ISG0121

.... ISGBel

Via ISGBRF
(at entry point
ISGBRFNM)

Ring
processing

f ISGMSGOO

Message
routine

"Restricted Materials of IBI1"
Licensed Materials - Property of IBK

System A

~ ISGBSM RSA send/receive

• Obtains a CRB

• Initializes the CRB for the
restart request and places
the CRB on the command
request queue

- ISGSALC

Storage
manager

lpOST ~~~~~-~--------,
..... _--... ISGCMDR Commend router

• Processes the restart request
• Does a SENDCMD (RSCRADDSI ~I __ S_G.;.B.;.e __ 1 --rTli

to teU system A to build a new Via ISGBRF
main ring that includes system B (at entry point ~

I-- - - - - - - - ISGBRFNMI

r-. Links to ISGCQMRG 1--------

Ring
processing

~. Issues message ISG0131 on _ _ ISGMSGOO
this system M essege

• Does a SENDCMD to broadcast 'rL routine
message ISG031 to all active,
systems in the complex ISGBCI

• Returns to ISGCMDR (command Via ISGBRF
routerl (at entry point

ISGBRFNM)

(Exit)

~ ISGCQMRG Queue merge

Ring
processing

ATTACH
r

ISGBCI ISGCRST Restert request -. L. p.rocessor
Via ISGBRF Obtain ring status
(at entry point
ISGBR FSN) • Determines that a restart for

system B is possible

~1~S~G~M~S~G~O~O~f--I-j. Issues message ISG0111
Message
routine

- ISGBCI
Ring
processing

~ ,.. Does an ADDSYS of system B

~_D_oes_a_Bu_F_RE_CV ____ ~~IS~G~B~C~I=H~--I~~£!:~"'-3~
• Compares the compatibility Ring

ISGBCI . -
• Copies the compatibility level

and the RNLs into a buffer

• Does a BUFSEND

level and RNLs to those processing
in this system

~. Does a BUFRECV
~-------
• Issues GOSCAN for each

resource in the buffer

• Generates the QWBs to get
this system's resource queues
to match the other systems In
the complex and puts the
QWBs on the process queue

• Posts ISGGRPOO to process
the QWBs

'-. Repeats these steps until
end-of-file is received --------

~ ISGBCI
Ring
processing

~ ISGGOSRV
Queue
service

~ ISGGRPOO

• Does a BUFSEND to notify ~
system A that queue updates
are complete

• Releases serialization
(SERRELSI

- • Returns to ISGCRST

~~
I L., ISGBCI

Ring
processing

Ring
processing

ISGBCI -
Ring
processing

'ISGBCI

Ring

• Issues GQSCAN to obtain ..
data ebout all global resources
and requesters

• Does a BUFSEND

• Repeats these steps until all
_~h~~~ __ ~

• Does a BUFSEND ofthe
end-of-file

processing ~ • Does a BUFRECV for the
notification that system B

ISGBCI ___ • has completed

Ring r---- Releases serialization
(SERRELSI

• Cleans up and exits

(Exit)

Figure 35. Process Flow for VARY GRS(x), RESTART by a System Hot in the Main Ring

GRS-68 MVS/XA SlL: GRS lY28-1695-0 ee) Copyright IBM Corp. 1987

ftRestrtcted "_tertals of IBM"
Ltcensed Matertals - property of 11K

System B

(Enter) ,
ISGNGRSP Option processor ISGBCI
(Initialization modulel

VlalSGBRF

• Does a SNAPSHOT of the f (at entry point
complex ISGBRFNMI

• Determines the status of this Ring
systBm and others In the processing
complex .-...

• Selects e system to send date ,.. ISGMSGOO
aboUt all global resources Message
to this system routlna

• Issues message ISGOO31 ...
• Does a SENDCMD (RSCRADDSI ISGBCI l-

to tell system A to build a Ring ~ new'maln ring that includes
systemB

processing

~-------
I"""" • Links to ISGCaMRG
1--.-.-.-----

~. Issues messaga ISG0041 .-. ISGMSGOO
on this system

Message

• Does a SENDMCD to broad· 1. routina
cast message ISGOO4I to all
actlva systems In the complax

ISGBCI

• Returns to initialization Ring
processing processing

1.
(Exit .. ISGCQMRG Queue merge

• Does a BUFRECV ISGBCI

• Compares the compatibility Ring
level and R N La to those in processing
this system

~ • Does a BUFRECV ISGBCI

f4 ------- Ring

• Issues GQSCAN for each processing
resource In the buffer

• Generates the aWBs to get - ... ISGGasRV

this system's resource queues Queue
to matCh the other systems in service
the complex and puts the aWBs
on the process queue

• Posts ISGGRPOO to process the ~ ISGGRPOO
aWBs Global - • Repeats these Steps until resource
end-of·flle Is recelvad processor

~------
• Does a BUFSEND to notify ~ ISGBel ~

system A that queue updates Ring
are complete processing

• Releases serialization 0. (SERRELSI
ISGBel -- • Returns to ISGNGRSP
Ring
processing

System A

~ ISGBSM RSA send/receive

• Obtelns a CRB .. ISGSALC -• Initializes the CRB for the ..

r~tert request and places
Storage
manager

the CRB on the command
request queue

l POST
ISGCMDR Commend router

• Processes the restart request

ATTACH
ISGBCI

~-

,
Via ISGBRF ISGCRST Restert request
(at entry point processor
,ISGBRFNMI

'+ • Obtain ring status

ISGMSGOO ~ • Determines that a restart

Message for systam B is possibla

routine ,+ • Issues message ISG0111

i.- ISGBCI .. --'" • Does an ADDSYS of system B

Ring
processing • Oopies the Compatibility level

and the RNLa into a buffer

ISGBCI - - • Does a BUFSEND

Ring '. Issues GasCAN to obtein data r.
processing about all global resources and

requesters

ISGBCI - _ ... • Does a BUFSEND -
Ring • Repeats these steps until all -
processing data has been sent

~------- ISGBCI
.. • Does a BUFSEND of the .,

Ring end-of·file

processing

~
• Does a BUFRECV for the

notification that syStem B

~ I.SGB~I
has completed

Release serialization
,Ring •
processing

(SERRELSI

• Cleans up and exits

ISGBCI f+- I Ring
() processing Exit

Figura 36. Process Flow for Join Processing at Initialization Time

lY28-1695-0 (c) Copyright IBM Corp. 1981 Control Block Overview GRS-69

User's Address Space

ENQfDEQ/ SVC

-+
IEAVESVC

SVC FLIH

• ISGLNQOQ ENQ/OEQ fast path
routine
EP·IGC048FP IOEQ)
EP·IGC056FP (ENQ)

• Validity checks the request

• Invokes ISGGREXO resource
exit routine at EP:
- ISGGSIEX IInclusion exit)

• If request can be handled by fast
path processing

r- • If request cannot be handled by
fast path processing

~--------• Returns to calier via exit prolog

t
(Exit)

l.., ISGGNQOQ ENQ/OEQ/RESERVE
processing
EP·IGC048 IOEQ)
EP·IGC056 (ENa)

• Validity checks the request

• Initiellzes the local QWA

...- • Sets up to process the request
~-------

• Returns to calier vie exit prolog

t
(Exit J

l., ISGGQWel QWe initialization

• Initializes the SOA QWe

• Invokes ISGGREXO resource
ax It routi ne at E Ps:
- ISGGSIEX IInclusion exit)
- ISGGSEEX (Exclusion exit)
- ISGGRCEX (RESERVE

conversion exit)

• Sets addressability to the global
resource serialization address
space

PC

"-

PT

...-

~

II
II
II
IT
II
II
II
II
II
II
! !
II
II
II
II
II
/I
II
II
II
II
II
II
II
II
II
IT
II
II
II
II
II
II
II
II
II
II

,.

.....!!!..

"Restricted Materials of IBM"
Lfcensed M~terfDls - property of IBM

Global Reaource Serialization Address Space

ISGLNQDQ ENQ/OEQ fast path
routine
EP·ISGLOaoo IOEQ)

~ ISGSHASH
EP·ISGLNQOO IE,NQ) EP·ISGSGLH

• Initializes the resource request Hashing
blocks routine

• Queues or dequeues the resource ~ .
request blocks to or from the

~
ISGSALC

local queues
Storage

• Return. maneger

4 ISGSDAI-

Storage
manager

ISGGQWBI QWB initialization
EP·ISGGEOO1 IENQ/DEQ)

• Obtain. storage I SGSA LC

• Returns to ISGGNQOQ Storage
maneaer

If ISGGPGRP

ISGGNQOQ ENQ/OEQ/RESERVE QEl..,group
processing

lr processing
routine

• Initializes the resource request
blocks

• Queues or dequeues the resource ISGSHASH

requeat blocks to or from the - .. Ep·ISGSGLH

local queues Hashing

• Fraas local storage iL
routine

• Return.
ISGSOAL

Storage
manager

Figure 37. Process Flow for ENQ/DEQ Mainline - Local Resource Request

GRS-70 MVS/XA SLL: GRS LY28-16?S-O (e) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Haterials - Property of IBH

r-"

~

.---

~

User's Address Space
ENQ/OEQSVC

w
IEAVESVCSVC FLIH I

+
ISGLNQOa ENQ/OEQ Fast peth

• Branches to ISGGNQOa to
process global requests

ISGGNQOQ ENQ/OEQ/RESERVE
processing
Ep·IGC048 (OEQ)
EP·IGC056 (ENa)

• Validity checks the request

• Initializes the local aWA

• Sets up to process the request
~--------------..

• Returns to caller via exit prolog

• (Exit)

ISGGQWBI QWB initialization

• I nitializes the SQA aWB

• Invokes ISGGREXO resource
exit routine at EPs:
- ISGGSIEX (Inclusion exit)
- ISGGSEEX (Exclusion exit)
- ISGGRCEX (RESERVE

conversion exit)

• Sets addressability to the global
resource serialization address
space

II
II
II
II

" ! !
II

II
II
II

- II

" II
II
II
II
II
II

..!£.. II
II

Global Resource Serialization Address Space

- ISGGQWel QWe Initialization
EP·ISGGED01 (ENQ/OEa)

• Obtains storage - ISGSALC

• Returns to ISGGNaOQ Storage
manager

+
ISGGNQOQ ENQ/OEQ/RESERVE
processing

• Copies the SQA Qwe into the --global resource serialization
ISGGOWBC

private area OWB QWBcoPV

• Puts the request on the request ~
routine

queue

• Waits for the request to be - ISGGWAIT processed

~------------- Walt
PT

• Returns routine '--

<f>

--11 . === A;;vAddr_~=-==II---:---------------

ISGBOR Timer manager

• RSA residency Interval expired

II
SRB II

II

"

routine

• Moves the request queue to the
RSA and sent queue and sends
the RSA

• Returns to the dispatcher
See figure GR5-21

-----------1r-------------------
I/O interrupt

II
ISGBSM RSA send/receive routine

+ • Moves requests from the sent See figure GR5-21

IEAVEIO I/O FLIH II queue to the process queue and

"
posts ISGGRPOO

• RSA message arrivel , POST

+ II ISGGRPOO Global resource

LJ ISGGNOOO

II processor

ISGJOI CTC driver DIE • Queues or dequeuesthe
ENQ/OEQ

I SRB II request to or from the
processor

• Schedules ISGBSM to process global resource queues
the RSA II ... B • Posts the caller

II Waits for the next request

Figure 38. Process Flow for ENQ/DEQ Mainline - Global Resource Request

LY28-1695-0 (c) Copyright IBM Corp. 1987 Control Block Overview GRS-71

Terminating Address Space

(Enter) From RTM

W-
ISGGTRMO Termination resource
maneger - stage 1

• If the global resource serialization
eddress space i. not initialized or
there ara no resources to purge.

II
II
II
II
II
II

"Restricted Materials of IBM"
Licensed Materials - Property of IBn

Global Resource Serialization Address Space

ISGGPGRP

OELgroup
processing ,......, routine

)11 IS.GGNODO returns to RTM f+{ Exit ~ II EP·ISGGDQOO
II Initializes the OWA for ISGGTRM1

~ PC Invokes ISGGTRM1 to purge II ISGGDEOP DEO purge ENQ/DEQ/ ..-- • processing RESERVE resources II !:- processing
~---------- II Dequeues local resources

~ .If "reset must complete" is II • Frees aCBs. aELs. and aXBs ~ necessary. invoke STATUS ISGSDAL
vie SVC 79 ho I EAVSETS) II Storage

; II manager

~....£~i:2 TO~ __ -----.JI = r+ ISGGaWBO aueue work block ~----------- servica routine IEp·ISGGaWBSI
~ ISGGTRM1 Tarminatlon resourca J ISGSALC

Obtains a aWB for the task or .. ISGSALC manager - stage 2 • Storage address space termination request Storage
II Obtains a dynamic area manager

Placas the aWB on the request manager II

• Purges local rasources .. queue and waits for the request

II Purges globel resources to be processed -
~ • Frees the returned aWB ~ ISGSDAL

Places purge messages on the Storaga II
command request queue and

POST
manager ISGGWAIT Wait routine

notifies the command router

~ II Sets up to wait
ISGCMDR

II Frees Dynamic storage • Branches to walt routine to
~ Command • Returns to ISGGTRMO router wait for the request to be

processed

------------11 ISGSDAL : -------------,.
Storaga

Interrupt on CTC II manegar IEAVWAIT

Wait
Any ISGJDI CTC driver DIE III routine
Address II Schedules ISGBSM to process III
Space the RSA

----1------=-11 ---- -------
SRB

r+ ISGGNaDa
ISGBSM RSA send/receive r---+ ISGGDEap DEa purge ENa/DEQ/

• Places the aWBs on the process processing RESERVE
quaue

~
orocessing

II Daqueues a resourca y POST
II Frees aCBs. aELs. and aWBs .. ISGSDAL

ISGGRPOO Global resource
Storege processor
manager

~ IEAOPT01 • Processes the task or address
space termination request POST

f+- RB post
II Pu rges resources

~
routine

• Notifies the requester that the
purge request is complete (if the

~
IEAVWAIT

requester is from this system)

• Wait for more requests
Wait
routine

Figure 39. Process Flow for the Termination Resource Manager

GRS-12 MVS/XA SLL: GRS LY28-1695-0 ec) Copyright IBM Corp, 1987

"Restricted Materials of 18""
Licensed "atertals - Property of IEM

User's Addr .. Space Global Resource Serialization Address

-
User program

~ ISGQSCAN Queue scanning service

: • Obtains an internal buffer and a dynamic area in the RCA
:

Copies the parameter list (from the GQSCAN macro) into PC •
GaSCAN the dynamic area and syntax checks it. (A syntax error

results in an 09A abend) · · PT · Starts (or resumes) the search of the I.QHT and/or GQHT · • · for resources that have the attributes specified on GQSCAN

• Places the information found on the search in the internal
buffer·

• If the search is complete or the internal buffer is full, copies
the contents of the buffer to the user-provided area

• If the search is not complete and the user-provided area is
not fu II, repeats these steps

• If the search is not complete and the user-provided aree is
full, sets the token value if token was specified

• Releases the internal buffer and dynamic area

• Returns to the caller

Figure 40. Process Flow for Queue Scanning Services

.. ISGSAI.C -
Storage
manager

-

..
ISGSDAI. -
Storage
manager

LY28-1695-0 (c) Copyright IBM Corp. 1937 Control Block Overview GRS-73

Any Addr. Spa ..

(Enter) SVC dump request ,
IEAVTSDU SVC dump exit
interface routine

• Proc:eases the GRSa request ,
ISGDSDMP SVC dump exit

• Ettablishes 8 recovery environment

~ • Obtain. 8 page of resource
-PC

information -
• Writes 8 page of resource Information .. -- --to the dump data set

i..-- • Repeats these .tapt, for each page
of Information, until ell Information
Is dumped

~----~---
• Deletes the recovery environment

• Returnlto IEAVTSDU

II
II
II
II
II
II
U
II IEAVTSEO

II SVCdump
I/O routine

II
II
II

"Restricted Materials of liMn
Licensed Mnterials - property of IBM

Global Resource Serialization Address Spaca

-- ISGDGCBO Dump control blocks .
• Obtains 8 page of resource Information,

In the order listed, from the following
global resource serialization control
blocks: - GVT
- ASCB
- GVTX, GaHT, LaHT, GRPT, LRPT

SAHT, RSV, and RSV entries
- Active RQA pages for aces, QELs,

axes, and paces
PT

• Returns to caller

Figure 41. Process Flow for Dump Support - SVC Dump

GRS-74 MVS/XA SLLI GRS LY28-169S-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBMn
Licensed Haterials - property of IBM

METHOD OF OPERATION

The mothod-of-operation (m.o.) diagrams for the global resource
sorialization modules are named in the format "ISGxxxxx
function" and are in alphabetic order, with the exception of the
ring processing diagrams. Each ring processing diagram
documents a separate function, not necessarily a separate
module, and 1S named by the function documented. The ring
processing diagrams ara first.

The processing of modules that are not documented in separate
diagrams is reflected in the diagram of the related function of
the module's caller. Module descriptions of all executable
global r.esource serialization modules except initialization
modules follow the m.o. diagrams.

Not~: logic information, including m.o. diagrams. on global
resource serialization initialization modules is in Systgm
Initjalizatjon logjc.

Method-of-operation diagrams ~re arranged in an
input-processing-output format~ the left side of the diagram
contains data that serVes as input to tha procQssing ~teps in
the centor of the diagram, and the right side contains the data
that is output from the proce5~ing steps. Each processing step
is numbered; the number co~responds to an amplified explanation
of the ~tep in the extended description area. The object module
name and labols in the extended description point to the c~de
that performs the function.

Note that the ralattve size and the order of fields within input
and output data areas do not always represent the actual ~ize
and format of ~he data area.

lY28-1695-0 (c) Copyright IBM Corp. 1981 Method of Operation GRS-75

:>
f

Figura 42.

Primary processing - Indlcatel major functional flow.

'~estrtcted "atartals of 18M­
Licensad Materials - propart~ of IB"

S4!c0ndary Pl'OC8lling - Indlcatel functloflal flow within a diagram.

Data movement, modification, or use.

Pointer - Indlcatel that a data area contains the eddreat of another
detaerea.

Connector - lndicatel that e diagram II continued on the next page.

Kav to Method-of-Operet'on Diagrams

ORS-76 "VS~XA SLL: ORS LY2a-1695-0 (c) Copyright IBM Corp. 1987

"Restrtcted Matarlals af II""
~tc.nsed Materials - property af laM

LY28-1695-0 ee) Copyright 18" Corp. 1987 Method of Operation GRS-77

;­
'S ...
1

I

t
:I
j
I . -B
J

j i

J

I
i

-

z
CI ~

i i

4 "

!
I
j
u

""

4 ~

GRS-?' "VS/XA SLL: GRS

~
III

I

4 "
cj U •

i] 1 § - -
•

nRest~1cted Materials of IBM"
Licensed H!terials - property of IBM

ai ~,

.It I
• .cu _J SISG -l

I it It
~~81
N

LY28-1695-0 (c) Copyr;ght IBM Corp. 1987

r- Diapmn GRS-I. Provide Status Information (SNAPSHOT) (Part 2 of 4) ,..~ ..(
N -,..
C» n ..
I :I

0-
..,

00 Extended Dlscriptlon Module lAbel 11-
UI a.n
I

0 1 This routine is entered when the caller of IOOBCI 311 .. a.
speclflad the RSCFUNCT field as RSCFSNAP. Thll ,.., routine is referred to al the SNAPSHOT function and II • ::1

n .,.,
..... callad by .".ralglobal resource serialization module. to -....

get status Information about the system. and CTC IInkl
.. ..

n,
0 In the global resource .erlallzatlon complex. ISGBCI ISGBRF ISGBRFSN CII-
'Q ..
'< Invokes ISGBRF (at entry point ISGBRFSN) to cleer ,

the ring proC8l8lng status tabla CRST) except for the
al

"a
co acronym CRSTID) and length (RSTLEN) fields. -'0
:r D. ,... " 2 ISGBRFSN updataB the RSVENTY table to reflect IIH, .
lOIS the current status of the .yltam. that ere: ::1
3 Immedlata nelghbon of this system In the main ring

~~

• 0 n
0 • Capable of nIIPOnding to an Immedlata CCW .. ,

ISGBCllnvokes ISGBRF Cet entry point'IOOBRFRF) H 'Q .
and Initializes the entries in the RSVENTY table. It ISGBTC ISGBTCIR

l1li
::I ... then calls ISGBTC (at entry point ISGBTCIR) once for

00
C» each CTC that II not Uled to lend or receive the main ring RSA. ISGBTC sends an Immediate CCW to the

SYltem et the opposite end of the specified CTC.
ISGBTC does this by scheduling the SRB to .enter ·ISGBSR ISGBSRRI
ISGBSR at entry point ISGBSRRI. ISGBSR calls the
CTC driver (SENDBUF·IMMEDIATE function) (0

send an Immediate CCW on the corresponding CTC.

After ISGBSR sends an Immediate CCW on every
qualifying CTC, ISGBRFRF pauses to allow asynchronous ISGBRF BRFPAUSE
updating of the RSVENTY tabla. The following

3 paragraph shows that asynchronous procealng.
r.) ,...
:r Asynchronoua ProGeaInt
0
a..
0 ISGBSR II invoked lat entry point ISGBSRRJ) once for ISGBSR ISGBSRRI each RSAIRCD received through the CTC driver. ISGBSR
0 updates an RSVENTY entry with information taken
'Q from the received RSAIRCD.
ID ,
III ISGBRFRF ends ita pause when all responses have been .ISGBRF ISGBRFRF ,...
0

received, or when a specified time has elapllld.
:J

to)

'" en
I

00

~ Diagram GRS-l. Provide Status Information (SNAPSHOT) (Part 3 of 4)
eI'
I

00
o

:I
<
eI'

" X
>-
eI'
r­
r-

r­
-<
N
00
I ...

0-
o,Q
UI
I

o

,..
n ..,

INC
~
:I

o
o ,
'IJ .

Input

RSVENTY

D
RSL RSVENTY

D D

Process 7
... 3 ·Flnd the statu. .. of other systems In

the global resource
serialization complex.

....

... 4 Put lIetu.
information Into

F the RST.

Output

RSVENTY

... D ""

--. ISGBTC
Send ..

RSAIRCD
RST

... D ...

n
o
"C
'< ..,

3:
II)

" :::r
o
D-

O
c
"C ., ..,
11/

" o
::J

Diagram GRS·l, Provide Status Infonnation (SNAPSHOT) (Part 4 of 4)

Extended Description Module

3 ISGBRFRF updates the RSVENTY table to reflect the ISGBRF
current status of systems other than those covered by

step 2. Those systems are:

• Systems that are in the main rlno but are not neighbors
of this system

• Systems that have been removed from the main ring I via
the VARY GRS, QUI ESCE commandl and may be
incapable of resPonding to an immediate CCW.

If the system executing SNAPSHOT Is in the main ring,
this step is a no-op. All systems in the main ring update
their RSVENTY tables as systems are added to or removed
from the main ring.

If the system executing SNAPSHOT is not in the main ring
but ISGBRFRF discovered a neighbor that is in the main ring,
it invokes ISGBRF (at entry point ISGBRFNM) to send a
series of RSAIRCDs to the neighboring system and to check
for responses. Each RSAIRCD that is sent requests information
from a perticular RSVENTY entry in the neighboring system.
Each response contains one of the following:

• Information from the requested entry

• I nformation from soma other entry

• Flag indicating that all entries have been sent in
previous response RSAiRCDs. When ISGBRFRF de­
tects this condition, the RSVENTY table on the system
that requested the SNAPSHOT has been updated.

Asynchronous Processing

The following processing occurs at the same time that the
proceSSing in the previous paragraph is occuring.

Label

ISGBRFRF

ISGBRFNM

Extended DelCl'lption

ISGBRF lat entry point ISGBRFNM) calls module ISGBTC
(entry point ISGBTCIR) to send each RSAIRCD. ISGBTC
schedules an SRB to enter module ISGBSR (at entry point
ISGBSRRI). ISGBSR invokes the CTC driver function
SENDBUF to send the RSAIRCD. The response RSAIRCD
causes the CTC driver to schedule ISGBSR (entry point
ISGBSRRI). ISGBSR then updates the RSVENTY table
with information contained in the response RSAIRCD.
ISGBSR sets field RSLICRF to show that the response
RSAIRCD has arrived so that ISGBRFNM can send the
next RSAIRCD of the series.

Module

4 ISGBRFSN takes the system status information from ISGBRF
the RSVENTY table and puts it into the RST. The

first entry in the RST describes this system !that is, the
system executing the SNAPSHOT). Each entry in the sys­
tem section describes a system known to ISGBRFSN. Then
ISGBRFSN takes the CTC status information from the RSL
and puts it into the CTC link entry section of the RST.

Recovery Procauing

• ISGBRF lat entry point ISGBRFRF) might set flag bits
to cause its caller to re-invoke the ISGBRFRF subroutine.
Conditions that cause these flags to be set are:

• A new main ring is discovered while the ISGBRFRF
is in progress. The old main ring failed while the
SNAPSHOT function was in progress.

• A table overflow occurs in the RSVENTY tabla of
this system.

• Retum code 16 indicates that the SNAPSHOT request
was unsuccessful end that communication with any
other system is impossible.

Label

~ Diagram GRS-2. Initialize One-8ystem Main Ring (STARTI'OP) (Part 1 of 4)
U)
I

C)I)
N

:3
<
U) ...
x
>
U)
r­
r-

r­
-<
N
00
I ...

G'o
.,g
VI
I

o

(")
o
~ .,
!Q
:r ,..
1-1
cal
3
(")
o .,
"

Input Process

RSC

RSCID

... 1 Point at the
RSCFLCOM --y OWBqueue.

2 Assign a SVSID
to this system.

6

Output

GVT RSV

~ RSVADSTQ ..
RSVSVIDT

RSVRSASC

RSAIRCD

D
GVT RSV

III.. D D .

,..,
n
(')
o
'U
'<: .,
IQ
:T
~
tJ;I
:I
(')
o .,
'U .

:I
lD
:s­
O
Cl.

o
-h

o
" III .,
II
o
:J

Diagram GRS-2. Initialize One-System Main Ring (STARTPOP) (Part 2 of 4)

ExtendId DlSctiption

ThillOUtine Is called to create a ring of one system. Thills
done when creating the ring for the first time (al a result of
the GRS=START option) and when the operator rebuilds
the main ring manually after a previoul main ring failure:

Note: The Internally-lssued system command that auto­
matically rebuilds a disrupted ring Invokel ISGBCI
to handle the function to request permission and
STARTPOP. ISGBCI invokes ISGBRF (at entry
point ISGBRFSP) to handle this request. See
Dlagrem GRS-3 for the processing •

1 ISGBRFSP initialiZes field RSVADSTQ to point to
the QWB proc8S$queue.

2 The SYSID of e syStem Is assigned when the system
first enters the main ring and 1& used until an IPL is

performed on the system again. The first system to create
the main ring Is assigned SYSID 1 by ISGBRF (at entry
point ISGBRFSP). Other systems are assigned a SYSID as
they join the main ring for the first time. ISGBRF (at
entry point ISGBRFSP) places the system's SYSID Into
the RSAIRCD, RSVENTY, and the GVT.

Module

ISGBRF ISGBRFSP
o ...
H
1111
:z

= . Diapmn GRS-l. Initialize One-System Main Rills (STARTJIOP) (Put 3 or 4)
CP
I

ell ..
3
< en ,
)(
:.
en ,.. ,..

,..
-<
N
01
I
~
'" I
0

~

a
'"'
n
0

~ ., -ca :r
ri-

t-4
."
3
n
0 .,
'V
•
ell

Input

RSVENTY

D
Process 9

...
3 Calculate the new .. RSA _nd count.

4 Clear any unusual avent flap
and Initialize the main ring.

... ..
5 Send the RSA.

III. ..

Output

RSV
.....

~
..

RSV

ISGBTe

f
RSVFTESD

Claar unulU8l
ewtnt flags

(SRB .. \ SABE'

... -n • ::J

'" l~
2. ... ,..,. . ., .,--n.a.
13
II ,..,. ...

0 ..
11-
CD. .,
'CD
0"
~=i

....
n
(')
o
~ .,
IQ
:r ...
....
IJJ
3
(')
o .,
'U .

3
II) ... ;r
o
G.

o ...
o
1J
lD

~ ...
o
:J

JliaSram GRS-2. Initialize One-System Main Ring (STAR1POP) (Part 4 of 4)

Extended Description

3 ISGBRF (at entry point ISGBRFSP) seta tho RSA
sand count (RSVRSASC) to tho value of RSVRSASC

before the main ring failure plus the number of entries In
tho RSVENTY tablo. Thia ensures that tho now RSA sand
count Is unlquo. This Is necessary to allow such systoms to
correctlv adjust thalr aWB queues whon thov rejoin tho
re-created main ring.

4 ISGBRFSP Invokes ISGBTC (at ontry point
ISGBTCR1) to clear tho unulual evants. ISGBTC

posta the exception handling task ullng tho GVTXECB
ECB. which Is waited on bV ISGBTC. Tho oxceptlon
handling task clears unusual evants and turns on flag
GVTMAINR to indicate that this system il In tho main
ring. It then postS the RSVR1 ECB to allow ISGBTC (at
entry point ISGBTCR1) to proceed.

S ISGBTC (at entry point ISGBTCR1) places the
system In "ono.syltem" modo bV setting flag

RSVFRNG1 and scheduling ISGBSR (entry point
ISGBSRSR) to perform tho flrat send-and-recelve of tho
RSA. A svstem II In "one-svltem" mode when it does
not send tho RSA through a CTC. ISGBTC schedules
ISGBSR (entry point ISGBSRSR) 10 that ISGBSR can
simulate a send-and-recelve of the RSA bV coPVlng the
RSA from Its output buffer to Its Input buffer. ISGBTC
(entry point ISGBTCR1) then returns to ISGBRF (at
entry point ISGBRFSP). which thon murns to Its caller.

Module Label

ISGBTC ISGBTCR1

ISGBTC ISGBTCR1

r­
-<
N
oe
I ...

G'
oD
U'I
I

o

....
~
3
n
o .,
'1J
oD
00

DiaJram GRS-3. Request Permission to Initialize a One-System Main Rinl (REQPERM) (Part 1 of 8)

Input

RSC

RSCID

RSCFLCOM

GVT

I G~AU-I

Global Resource Serialization
VARY GRS REST ART
Request Processor ClSGCRST)

Process

~;:::====:::::> 1 Ensure that a main ring
is to be rebuilt.

• Not to be rebuilt

~:====::::~ 2 Ensure that this system
is authorized to rebuild
a main ring.

• No~ authorized

ISGMSGOO

Writeenor
massage

Return to
the caller

ISGMSGOO

Write
message

Retumto
the caller

Output

ISG025E

ISG025E

r­
-<
N
00
I ...

0-
-0
VI
I

C)

n
o
'tJ
'< .,
III
J
....
0;,

::3:

n
o .,
"0 .

3:
III
:T
o
a.
o
;.

o
'U
ID .,
!If
ti-

o
::J

Diagram GRS-3. Request Pennission to Initialize a One-System Main Ring (REQPERM) (part 2 of 8)

EXlonded Description

This routine is called to build a ring of one system; it is
invoked to prOC8$S e system·issued VARY GRS (ALL).
RESTART command that ring proC85&ing i&Sues when it
detects a mein ring failure. This routine creates a ring of
one system only if it can obtain permi&sion to do so from
the systems thet were in the main ring when the failure
occurred.

Module

1 If the RSCFLCOM flag is off IRSCFLCOM='O'), then ISGBRF
ISGBCI Invokes ISGBRF (at entry point ISGBRFSP)

to only Issue en operator message. The RSCFLCOM flag
tells ISGBCI whether or not to rebuild a main ring. If
ISGBRFSP Is to rebuild a main ring then, processing
continues with step 2; otherwise, ISGBRFSP Issues
message ISG025E (~YSTEM ERROR) and returns to
the caller.

2 ISGBRFSP checks the GVTAURST flag in the GVT
to see Whether this system Is authorized to rebuild a

main ring. If GVTAURST Indicates that RESTART (NO)
was specified in the GRSCNFxx parmlib member, then
this system is not authorized to rebuild the main ring. In
this case, ISGBRFSP Issues message ISG025E (SYSTEM
NOT AUTHOR IZED), sets a non-zero return code indicat­
ing that it did not rebuild a main ring, and returns to the
caller. If this sytem Is authorized to rebuild a main ring
IRESTART(YES) was specified in the GRSCNFxx parmlib
member), ISGBRFSP continues at step 3.

Label

ISGBRFSP

~ Diagram GRS-3. Request Permission to Initialize a One-System Main RiDs (REQPERM) (put 3 of 8)
~
I

C»
00

3:
< en
'­
X
;z..

~
r­
r-

"" n
o
o
~ ,
ID
:r
rI"

1-1
tIIf
::I

o
o ,
'D .

Input

RSV

(

RSVBGNES

RSVENTY

RSVEFMNR

RSV

(RSVBGNES

\ RSVENTY

RSVEFUUD

Process

3 Verify that this system
is not in the main ring.

• In the main ring

4 Ensure that tha main
ring has not already been
rebuilt.

• Main ring has
been rebuilt

Retumto
the caller

Write
message

Return to
thecaUer

Output

ISG025E

r­
oo<
N
Of
I ...

CJIo
00
\II
I

a

...
n
C")
o
"0
0(.,
10
;r

" H ..
3
C")
o . .,
"0 .

3
II
rt­
'7
o
G.

o ...
o
1J •
~
rt-

o
:J

Diapam GRs-3. Request Permission to Initialize a ~ystem Main RiDs (REQPERM) (Put 4 of 8)

Extanded DlscrIp1ion

3 ISGBRF (at entry point ISGBRFSPI checks the
RSVEFMNR field In the RSVENTY to see if thlt

syltam has already been brought Into the main ring thet
was rebuilt by some other IYltem. If this system has already
been brought Into the main ring, ISGBRFSP lOtS a non-zero
return code and returns to the caller. If this system has
not already been brought Into the main ring, processing
continues at steP 4.

Module

ISGBRF

4 ISGBRF Cat antry point ISGBRFSPI checks the ISGBRF
RSVEFUUD field In the RSVENTY to see If the main

ring has been r.ebullt by some other system with this system
not being part of the rebuilt main ring. If thllsystem II not
part of this rebuilt main ring. ISGBRFSP iuues rneaage
ISG025E (option Al.l.ACTIVE SYSTEM EXISTSI, setla
non-zero return code, and returns to the caller; otherwise,
processing continues at steP 6 •

ISGBRFSP

ISGBRFSP

,., -. na ... :., .­Qn ..
Zll
arG. ,...
83 .,. ... ,...
tI •,
(I-.e. • "II
.,0
0 ...
'U
IDH
.,l1li :z
'C I

So
H .,
2

G) Diapam GJtS..3. Request Permission to IDitiaIize a One-System Main RiDs (REQPERM) (Put 5 018)

'" en
I ..

o

3 -= en
X •
en
r­
r-

M
OJ
:3

n
o .,
"0 .

Input

RSV

RSVBGNES

RSVPRMSY

I

I
RSVESYNM I

I
. RSV I

I
I

,. RSVBGNES

_J
RSVPRMSY ~--

I
RSVENTY

RSVESYNM

Process 9
...
>5 Send each system an RSAIRCD

r
requesting penniaion to rebuild
the main ring.

..
~ • PermlSllon denied

6 Process permiuion denied from
any system.

-> 7 Process the nOrKesponding
syatems. " ..

..

6

Output

RSV

..
v RSVPRMSY

ISGMSGOO
...

Write ISG026E
message

~

ISGMSGOO ..
Write ISG026E
message

~

o
o

" '< .,
G
:T ,..
H
CII1
3:

C')
o .,
" .

3
CD ,..
:T
o
D.

o
-t.

Q

" II) .,
~ ,..
o
:I

Diagram GRS-3. Request Permission to Initialize a One-System Maio Ring (REQPERM) (Part'6 of 8)

Extended Description Module

5 ISGBRF (at entry point ISGBRFSPI asks permission
to rebuild the meln ring of each system that was in

the mein ring when the main ring faliure occurred.
ISGBRFSP asks permission of aach system one at a time,
from the highest SYSNAME to lowest SYSNAME.

This system (that Is the one ISGBRF (at entry point
ISGBRFSPI is running ani gives permission to itself by
changing field RSVPRMSY of the RSV from zero to its
own SYSNAME.

This system calls the subroutine entry point ISGBRFNM ISGBRF
to request permission from another system. ISGBRFNM
sends a request-for-permission RSAIRCD to that system.
If there is no response to the sent RSAIRCD within the
required amount of time, this system calls ISGBRFNM to
send the RSAIRCD again but across some other CTC. If it
receives no response after trying ali CTCs to a given terset
system, ISGBRF (at entry point ISGBRFSPI considers the
system as "non-reaponding." ISGBRFSP then goes on to
process the next system Identified by the next SYSNAME.

6 ISGBRF (at entry point ISGBRFSPI can receive an
indication that permission is denied to rebuild the mein

ring. In this case, ISGBRF (at entry point ISGBRFSP)
receives the RSAIRCD that contlns the name of the system
that is going to autometlcally rebuild the main ring; ,
ISGBRF (at entry point ISGBRFSP) then issues message
ISG026E (PERMISSION GRANTED TO SYSTEM
sysnemal. Field RSVPRMSY and the text of message
ISG026E contain'the SYSNAME of the system that is
going to automatically rebuild the disrupted ring.

Label

GETNAME
GETRSL

ISGBRFNM

Extended Dacrlptlon

7 ISGBRF (at entry point ISGBRFSPI processes those
systems that did not respond to the RSAIRCD sent

in step 6. If RESTART(YES) wes specified in the
GRSCNFxx parmllb member for any non-responding
system that had completely entered the main ring before
the failure occurred, ISGBRF (et entry point ISGBRFSP)
rebuilds the meln ring only if the number of responding
systems exceeds the number of non-responding systems. If
the non-responding systems all had RESTART(NOI in their
GRSCNFxx parmllb membars or had not successfully
executed ISGQMRG before the main ring failure, ISGBRF
(at entry point ISGBRFSPI rebuilds the main ring only
if the number of responding systems exceeds or is equal
to the number of non-responding systems. (A system always
counts Itself es a responding systems. I If the mein ring is
not to be rebuilt, ISGBRFSP issues message ISG026E
(INSUFFICIENT NUMBER OF RESPONDING SYSTEMSI
and returns to the caller with a non-zero return code indi­
cating the results of the processing of the non-responding
systems. If the main ring is to be rebuilt after processing
the non-raspondlng systems, ISGBRF (at entry point
ISGBRFSPI continues with step 8.

Module Label

r-= -:a
CHD
IDfa :r,. .,.,
ID­a.n ,.
::lID
Ala. ..
m3 .,01 -.. Aim, .. -III

fa
."
.,0
0 ...

" QH
.,~

rfo3
'C ;

o ...
H
I:I1II
::I

~ Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Put 7 of 8)
en
I

"" N

3:
< en ...
)(

•
en
r­
r-

r-
-<
N
CO
I

0-

"" VI
I

0

,....
n
0
0
1J
'< ,
CO
~
rI-

....
c:r
3:

0
0 ,
"
"" 00
......

Process

8 Create a one-sYltem ring.

Return to
the caller

Write
mesaage

Output

ISG0241

... ..
n ..
::i
IQ ..
a.:

7:1
::1:m
Gl0
rio
Ill., .,--n
"'ri
... 11)
en a.
1:1

III
-Uri ..,m
0.,
'U-
mill ., ...
ri.
'C

0
0

H H.-
"':I
:I~

,...
~
N
CO
I ...

a-
001)

U'I
I

o

(")
o
"0
'< .,
CO
':S'
tt-

M
bI
:I
(")
o .,
"0

...
001)

co

:I
t1)
tt­
':S'
o
a.
o
o
"0

" .,
11/
tt-

o
::J

Diagram GRS-3. Request Permission to Initialize a One-System Main Ring (REQPERM) (Part 8 of 8)

Extended Description

8 ISGBRF (at entry point ISGBRFSP) builds a one·
system main ring. (See the diagram "Initialize One­

System Main Ring (STARTPOP)" for further information
on the processing to create a one-system main ring.)
ISGBRF (at entry point ISGBRFSP) then Issues message
ISG0241 and returns to the caller with a return code of
zero to indicate that a one-system main ring was rebuilt.

Module Label

~ Diagram GRS4. Receive the RSA (Part 1 of 10)
en
I

00
~

....
till
:3

(')
o .,
'U .

Input

RSV

I RSVWLOCK I
GVT

I GVTMAEAT I

RSV

I ~MRRES I

Process

.. ..

III.

--.

...
--..

1 Update RSVWLOCK.

• If serialization cannot
be obtained immediatelv •

... ..

2 I ndlcate that the
RSA lsatthis
system.

• If a main ring
failure has
occured.

3 Establish the RSA
residence time
interval.

.. ..

6

Output

..
RSV ... I RSVWWCK I ..

Dispatcher ..
GVT RSV

D RSVFMRGA

RSVwLOCK

--..
r

Dispatcher

ISGBDR
---.. Establish .. time

interval

r­
oo(
N
co
I .­

a­
..0
\II ,
o

(")
o
'C
'< .,
!Q
';l' ,...
....
t:I:I
3:
(')
o .,
'tI .

Diagram GRS4. Receive the RSA (Put 2 of 10)

Extended Description Module

Entry point ISGBSM (at entry point ISGBSMR) of module
ISGBSM (at entry point ISGBSMR) Is scheduled when the
main ring RSA Is received and must be processed. It
executes in SRB mode, key 0, supervisor state. Recovery Is
performed bV module ISGBFRCV.

1 Entrv points ISGBSM (at entry point ISGBSMR) ISGBSM
and ISGBSM (at entry point ISGBSMSR) use

RSVWL.OCK to serialize the RSV. If RSVWL.OCK is In
use bV ISGBSMSR, then ISGBSM (at entry point ISGBSMR)
alters RSVWL.OCK and exits to the dispatcher. (lSGBSM
(at entry point ISGBSMSR) will see the altered value and
will branch to ISGBSM (at entry point ISGBSMR) instead
of exiting to the dispetcher, when it has completed its
processing.)

If RSVWL.OCK is not in use, ISGBSM (at entry point
ISGBSMR) alters the value to indicate that it Is now

.- being used .

..0

~ 2 ISGBSM (at entry point ISGBSMRI changes the low

3:
III
ri'
';l'
o
a.
o
;

a
'tI
III .,
QI
t+

o
:::J

order bit of GVTMREAT from 0 to 1 to show that
the RSA Is at this system. If the bit is alreadv 1, it wes set
bV the missing event check routine in ISGBDR which
determined that the RSA is overdue and scheduled entry
point ISGBSRME of ISGBSR to report a main ring failure.
In this cese, ISGBSM (at entry point ISGBSMRI ignores the
arrival of the main ring RSA. frees RSVWL.OCK. and exits
to the dispatcher.

3 ISGBSM (at entry point ISGBSMAI calls ISGBDR to ISGBDR
establish the time interval the RSA Is to reside at this

system. When the interval expires, entry point ISGBDRM
of ISGBDR receives control and schedules ISGBSM (at
entry point ISGBSMSR) to send the RSA.

Label

ISGBSMR

o • ...
III
::E

~ Diagram GRS-4. Receive the RSA (Part 3 of 10)
en
I

-0
~

3
< en

")(
:.
en
r­
r-

r­
oo(
N
00
I

Q\o

'" Ul
I

Q

.....
n

M
tIrJ
:3

o
o .,
'g .

Input

RSV

Input buffer

D

.. ..

.. .

Process 7 Output

...
4 If ISGBSMR is RSV RSVENTY ...

executing after the system
has left the main ring:

• Put an MRB for
message ISG0131 on
the command router
queue.

• Indicate that thll
GVT GVTX

system has left tha

D D main ring.

• Post command
router and
exception handling
task.

• Free lockword
and exit to
dispatcher.

I .. Output buffer
I·

D Dispatcher

6 Build the
command area -...
in the RSA.

6

,..
-<
N
OIl
I ...

(Po

..0

'" I
o

....
n

1-1
CIt
3

o
o .,
~ .

Diagram GRS-4. Receive the RSA (Part 4 of 10)

Extended Desulption Module

4 Flag RSVFSUB3 is on If the system executing
ISGBSMR has just left the main ring. This occurs

when some other system hal executed a SUBSYS
function to remove this system from the main ring. The
issuer of the SUBSYS function may have requested that
this system write a message to its operator; field
RSVMENTY indicates this fact. If a message must be
issued, ISGBSMR obtains an MRB, puts message
ISG0131 into it, and places it on the command router
queue.

ISGBSMR sets flag RSVFSUB5 and clears field
RSVEFMNR to show that this system Is no longer In
the main ring. It then posts the command FOUter task
and ring processing exception handling task lin module
ISGBTC) to pass on any messages and perform any
needed cleanup. ISGBSMR then frees ~SVWLOCK
and exits to the dispatcher.

5 The RSA command area, If present, follows the RSA
header. Flag RSAFURC in the header Is on If the

command area is present and field RSALNCA gives the
length of the command area. Field RSASYS gives the
SYSID of the system that placed the command area in the
RSA.

A command can be initiated if the received RSA contains ISGBSM
no command area and field RSVCRSA T is greater than
zero; RSVCRSAT is the command type and is used to
choose a command initiator routine. Command Initiation
routines are subroutines In ISGBSM named CMDlxxxx,
where xxx x is a four-letter abbreviation of the command
type. ISGBSM changes RSVCRSAT to a negative number
to show that the command il in progress and updates the
RSA header In the output buffer to show the command
erea is present. It also satl RSASYSCP In the header to
show that the first command phase is in progress and
RSVCACKR to point at the proper command continuation
routine for the command.

Label

CMDIADDS

CMDIBRCV
CMDIBSEN
CMDISENC

Extended Description Module

A command is continued If the received RSA conteins a
command area previously built by this system. The
continuation routine can termlnete the command (by
removing the command area from the output buffer and
changing RSVCRSAT to zero), advanca to the next
command phase of ~ command (by Increasing phase
number RSVCPHNO and field RSASYSCP in the output
buffer, and modifying the command area In the output
buffer), or repeat the current command phase (by leaving
RSVCPHNO and RSASYSCP unchanged and placing the
same command area that was sent Into the output buffer).
Command continuation routines are subroutines named
CMDAxxxx where xxxx is a four letter abbreviation of the
command type.

A command phase Is received if the Input buffer contains a
command area built by some other system The command
area is copied from the input buffer to the output buffer and
then a command receive routine Is calJed to Inspect or modify
the output buffer command area. Command receive routines
are subroutines named CMDRxxxx where xxxx is an
abbreviation of the command type.

Label

CMDAADDS
CMDABRCV
CMDASENC

CMDRADDS
CMDRBRCV
CMDRNONE
CMDRSENC

3
<
en

" X
»-
en
r­
r-

r­
-<
N
00
I .-

0'0
00
us
I

o

,..,
()
(")
o
'C
'< .,
10
;r ,...
I-C
t#
3:
(")
o .,
'U .

Diapam GJlS.4. Receive the RSA' (Put S of 10)

Input Process

RSV

RSVQWBSF
6

.......

RsvaWBSL

RSVAOSTQ

GVT

IGvm_cO I ~ 7
-yo

9 OutpUt

GVT

Move aWBs from .. GVTPRCOF

sent-qu8Ue to ..
process queue
or hold queue. GVTPRCOL

RSV

RsvaWBIF ..
Move QWBs from
request-qu8Ue to r

Internal-qu8Ue, RSVaWBIL

re-ordering them
from flrst·in!last-out
to first-in/first-out. RSVQWBHF

-
RsvaWBHL

6

r­
-<
N
00
I ...

0-
<oD
UI
I

o

,....
n

I-f
O:J
:3:
(')
o ,
"U

:3
III
:r
o
a.
o
o
"U
III ,
III ,
o
~

Diagram GRS-4. Receive the RSA (Part 6 of 10)

Extendad Description

6 The sent queue contains OWBs that were in the RSA
when It wes last sent. These OW8s have now been

seen by all systems In the main ring (since the RSA has
made a full circuit of the main ringl. and can be placed on
the process queue (anchored by fields GVTPRCOF and
GVTPRCOU or, if this system is in save OWB mode, the
hold queue (anchored by fields ASVOWBHF and
RSVOWBHU.

7 The requast queue (anchored by field GVTREOOI
is compare-and-swap serialized and Is organized

first-in-last-out. Tho internal queue (anchorad by fields
RSVOWBI F and RSVOWBI LI Is serializad bV RSVWLOCK
and Is first-in-flrst-out.

Modula Label

fJ Diasram GJlS.4. Receive the RSA (Part 7 0110)
(II
I ...

o
o

3
<
(II

")(

•
(II
r­
r-

r­
-<
N
00
I ...
~
oD
us
I

o

H

--3:

n
o .,
'U .

Input

INPUT BUFFER

Old OWB-erea
data from
this svstem.

OWB-erea
data from

other SVSl8ftll

RSV

RSVOWBIF

RSVOWBIL
OWB.
from
this

svltem

...
...

r=:>

Process 9
8 Build OWB-erea

In output buffer.

a •. Remove. OWB-area
data that came from
thl. avstem. and
adjust OWB counts
In RSA header.

b. Reproduce OWB-area
data thet came from
other systems, from
Input buffer to
output buffer.

Co ObtainOWB
control blocks
and reproduce OW&-
area data f,om othe,
systems Into the
obtained control
blocks.

d. Add new OWB-area
data from thlssvltem.
by reproducing OWBs
to the end of the RSA
output buffer. Move
these OWBs to the
end of the
.. nt.queue.

6

Output

OUTPUT BUFFER

QWB.area data
fromoth8l'

r &yStema

·New OWB-are8
data from
this system

-r--

RSV

.. .. RSVOWBSF

RSVOWBSL

.... OWBs
ISGGOWBO' from other

T + Reproduce &yStema

OWBsfrom OWBs
RSAto from
storage and this
from storage system

toRSA

.­
-<
N
00
I ...

0-
.0
UI
I

o

,..
o ...,

....
01
:3

o
o ,
"tI .

3:
dI
ri­
J
o
Go

o
~

o
"tI
dI ,
11.1
ri-

O
:s

Diagram GRS4. Receive the RSA (part 8 of 10)

Extended Description

8 The aWB-area contains reproductions of aWB
control blocks from systems in the main ring.

(Entry point ISGGaWB1 of object-module ISGGaWBO
removes the aWB-area data from the RSA to the
system.) (aWBs represent ENG. DEa, RESERVE
requests.) Older aWB reproductions are at the front
of the aWB-erea, newer ones are at the rear.

e. The removed data contains aWBs from this
system that have been seen by all systems In the
main ring. RSVBXaC has the amount by which
the RSA aWB-count (field RSAaWBCT In the
RSA header) Is to be reduced .

b. The reproduced data consists of copies of aWBs
from other systems; these aWBs have not made
a complete circuit around the ring, and hava not
bean seen by all systems In the main ring .

c. Entry point ISGGaWB1 obtains aWB control­
blocks and reproduces aWBs by copying or
(optionally) uncompresslng and copying aWB­
area data from the RSA to the obtained
control-blocks. All complete requests are
placed on the sent-queue (anchored by
RSVaWBSF and RSVaWBSL). If the last
request In the RSA is Incomplete, It is left
enchored In the parameter-list for ISGGQWB1;
the incomplete requast will be extended or
completed when ISGGaWB1 Is celled after
the RSA returns.

d. aWBs from the internal-queue of this system
are copied or (optionally) compressed and
copied into the RSA via Ring Processing Invok­
Ing antry point ISGGaWBO. If the entire
requast fits In the RSA, then the awBs making
up that request are moved to the sent queue.
If the request doas not fit in the RSA. it Is left
at the head of the Internal queue 80 that subse­
quent aWBs of the request are sent when the
RSA returns.

Module Label

ISGGaWBO ISGGaWB1

~ Diagram GRS-4. Re<:eive the RSA (Part 9 of 10)
CIt
I .­

o
N

3
< en

" X ,.
en
r­
r-

.....
o
()
o
OJ
'C ..,
to
::r
It'

....
bJ
3
()
o ..,
1:1 .

Input

GVT

I GVTGRMO I
RSV

I ~OCK I

"

-
-y

Process C(
9 If the received RSA contained

8 command thet mult be
queued:

8. Obtain 8 CRB or MRS and
copy the command • ..

....-

b. PIac:e obtain CRB on
comma~erqueue

and post the command-
router task. ..

""

10 If any QWBs were
placed on the process
queue: Post ISGGRPOO
to handle awBs on the
procass-queue.

...

"'

1 t Release Iockword
RSVWLOCK. and
exit to dispatcher
or branch to
entry point
ISGBSMRto
send the RSA •

Output

ISGSALC

Obtain CRB
GVT

...
"

GVTCMDRQ
IEAOPT01

BranclHntry GVTCECB
POST

IEAOPT01

BrandHntry

POST

RSV

I MVW~K I ..
~

,...
~
N
00
I ...

0-
~
UI
I

o

(")
o
-a
'< .,
IQ
:r
"
till
:3:
(")
o .,
-a
~

Diagram GRs-4. Receive the RSA (Part 10 of 10)

Extended Dea:ription

9 The received RSA contained e command that must be
queued If some other SYltem did e SENDCMD via the

main ring to this system, or broadcast a command to ell
main ring systems.

8. The RSA contains a copy of the CRB or MRB to
be placad on the command-router queue.

b. Branch-entry post entry-point 1 (pointed at by
field CVTOPT01) Is used to post the command­
router task (via ECB GVTCECB) after the CRB
hes been placed on the command-router queue
(enchored by fiald GVTCMDRa).

10 If any aWBs are on the proc:esHlueue, they must be
processed by object-module ISGGRPOO. Thilobject­

module is activated by using the R81xIst option of branc
entry post. The RB used for .SGGRPOO is pointed at by
GVTGRPRB •

~ 11 Set loc:kWOld RSVWLOCK to It. available state.

:I
II)
,yo
:r
o
a.
o
-to

o

" G .,
ell
t+ ...
o
:.J

Branch to entry point ISGBSMR if the lackword
was altered by ISGBSMR while entry-point .SGBSMR
was processing. Exit to dispatcher if the lockword has
nat been altered since ISGBSMR set It In step 1.

Module Label

IEAVSY50 IEAOPT01

r-~
-:III
nCD
II.
~, ..­G.n ...
311
ilia. ...
liZ
.,11 -... 1111,
en-

II
I.-• "0

-SO
0 ..
"0
IIH ., .
.... Z
'C ~

o
US
;C

A
"0 ...
I
I
f
s

)
•
]

i c:»

I

I

I

i -

i

~ ~

1Ja
If, ...

j ~

i a:

- - --

GRS-I04 MYS/XA SLL: GRS

~
i

I

"Rastrtcted Hatertals of XI""
Ltcensed Kat2rt.ls - Property af ZI"

D
4 ~

11
.1
If
N

4 ~

LY28-1695-0 (c) Copyriaht IBM Corp. 1987

r­
oo(
N
01
I ...

0-
oG

'" I
C)

(")
o
'U
'<

"" 10
:r
If"

....
CIIJ
:3

(")
o
"" 'U .

:3
CD
ri­
:T
o
a.
o
.;.

o
'U
CD

"" !II
ri-

O
:J

G)
~ en , ...
C)

'"

. Diagram GRS-S. Send a Command to ·Another System (Part 2 of 2)

Extended o..:rlptlon Moduli LIbel

1 ISGBCI sends a command using the main ring RSA if ISGBCI MAINSEND
the Command sender and the convnand target are both

in the main ring. The caller indicates this by setting bits
RSCFLMRS or RSCFL8RD in the RSC that was passed
toISGBCI.

2 ISGBCI invokes ISGBRF (at entry point ISGBRFNMI ISGBRF ISGBRFNM
to send a command using an RSAIRCD If either the

command sender or the command terget Is not in the main
ring. The caller indicates this by clearing bits RSCFLMRS
and RSCFLBRD in the RSC that was passed to ISGBCI .

= Diagram GRS-6. Send a Command Using the Main Ring RSA (Put 1 of 4)
en
• ...

o
00

:I
< en
)(
>-
en
r­
r-

r­
-<
N
CO
I

CI'
>D
ur
I

o

M
t:I1
::I
C")
o .,
"0 .

Input

RSC

RSV

D
GVT RSC

D D

... 1 Initiate the request.

..

.. .. 2 Pause repeatedly
until eny of the
following occurs:

a. completion of
the request

b. eJCpiradon of
the time limit

c. detection of a
main ring failure

,r

OutpUt

RSV

~

"" RSVCSYNM

RSVCRSAT

~ ...
ISGBDRC
Chec:tc for
overdue
time

.-
eo(
N
00

• ...
0-
..0

'" • 0

,...
n ...,
n
0
'U
"< .,
10
;r
tt-

M
Of
3
n
0 .,
"
..0
00

:I
II
tt­:s­
o
a.
o ..
o
"D
II

~
tt--o
::J

Diagram GRS-6. Send a Command Using the Main Ring RSA (Put 2 014) r-:a -.
~ Detcriptian Module LIbel

n.
II •
::II""

1 ISGBCI puts the name of the syltem Into the RSV If ISGBCI MAINSENO "'.., 11-
one _. specified the caller of ISGBCI. If broadcast I:Ln ,...

Is requested, ISGBClsets the SVSNAME to HEX ___ so 311
that the command will be sent to all systems In the main "I:L ,...
ring. 113 .., .. -,...
ISGBCI passes the request to ISGBSM. This Is done by II.,
copying Input parametetslnto the RSV and then changing .-• RSVCRSAT from zero to 8 positive number.

'" Asynchronous PIOCIIIIIng
"CI
"'0 0 ..

Nota: The processing In It8Pt 2 and 3 occun asynchronously. " II" ..,.
2 ISGBCI does a STIMER SVC to pause, then it checks ... 2

'C = exit conditions and either exits or paulBl again. Each
0

pause is approximately equal to the time needed to send ...
. the RSA arouf!d the main ring. lot

a • ISGBSM sets RSVCRSAT to zero when it
l1:li
::I:

asynchronously completes the request.
b. The time limit Is exceeded when the sum of all pauses

·exceeds RSCTMLIM. I$GBCI cancels the request by
changing RSVCRSA T from a positive number to zero.

c. ISGBCI Invokes ISGBSF Cat entry point ISGBSFMF) ISGBSF ISGBSFMF
to Indicate a main ring failure when the main ring RSA
failed to arrive In time.

~ Diagram GRS~. Send a Command Using the Main Ring RSA (part 3 of 4)
U'
I ...

o
co

r-
-<
N
GO
I ...

CJ\
-D
VI
I

0

......
0
(")
0

" '<:
"'I

Itl
:r
IT

I-f
01
:3
(")
0
"'I

" ...
-D
co

Input Process 9
RSV RSA

3 Receive the

D D
RSA and update ,.
it with the command
to be sent.

..L ISGBSM

~ r Receive
the
RSA

...
0
III
:s
1.'1
III
0.:

;0
::111
AI."
.-l-rt
III' " ... -·n
CJrt m
Ina,
1:%

III
-Urt ,m
0' -C.-.
IlllZl
,~

.-+C4
'C

0
0 ...
-flo

H
Htd
"'-'3
:J: :I

r­
-<
N
00
I

0-
<oD
UI
I

o

(")
o
"0
'<
'"I

IQ
:r
t1-

....
= 3:
(")
o
'"I
"0

3:
lD
t1-
:r
o
0-

o
-to

o
"0
II)
'"I
OJ
t1-

o
:J

Diagram GRS-6. Send a Command Using the Main Ring RSA (Part 4 of 4)

Extended Description Module

3 ISGBSR executes as an SRB that is scheduled by the ISGBSR
CTC driver whenever the RSA is r8caived. ISGBSR

places a command In the RSA and updates the RSA
header to show that a command is present. ISGBSR
subsequently sends the RSA. ISGBSR reports the com­
mand as complete (by setting RSVRSA T to zero) when
the RSA returns after making a full circuit of the main
ring.

Once ISGBCI exits from the loop or pauses described in
step 2, it passes the return code to the caller.

ISGBCI

Label

CMDISENC

== DiapmD Ga.7. Send. (»1I!IUIld ·UsiDa the RSAlRCD (Part I "4)
Ut •
a

:.
<
ell ,
)(
~

ell ... ,..

r­
oo(
N
00 , ...
G'>
.0
UI ,
o

....
n ...,
o
o
'tI
~ .,
tQ
;r
ri'

....
till
:3
(')
o .,
'tI
.0
00

Input

RSC

I_DAD ~~.
CRBSYSNM

CRBRSOPT

RSL

RSLSYNM

RSLSYTK

..
RSLFCOS

1 I nltiallze the
RSAIRCDto" .. sent to the target .. &vstem.

2 Choose a ring .. processing &vltem .. link block CRSU for
a erc connected to
the target system.

6

Output

RSAIRCD

.. 0 ..

r­
oo(
N
GO
I ...

CI'o
'oG
UI
I

o

.....
n ..,

....
Of
3

o
o .,
'U .

3
11) ,..
:r o
~

o
-II

a
J .,
• ,.. ...
o
::s

Diapam GRS-7. Send a Command Using the RSAlRCD (Part 2 of 4)

ExtAInded Delcriptlon

The entry point ISGBRFNM (In ISGBRF) Is invoked by
ISGBCI to be entered In any of three situations:

'a. The system sending the command Is outside the main
ring and II trying to enter the main ring. In thil case,
field RSCSCSFN of the 'senckommand' RSC has value
,RSCRADDS"'4. The target system Isystem receiving
the command) must be In the main ring and It must
Issue the ADOSYS. The AODSYS Ion the target system)
and the SENOCMO Ion the sending system) complete
successfully If the sending system entan the main rI!'IJ.

b. The system sending the command I, In the main ring
and II sending the command to a target that Is outlide
the main ring. In thil case, field RSCSCSFN of the
'senckommand' RSC hal value RSCRSNAO"'12.

The target system must iIIue the SENOCMD­
RSCRAODS. The sending system will then complete
Its SENOCMD-RSCRSNAO and I ... e AOOSYS.
AODSYS and SENDCMD-RSCRAODS compJeta
lUCC8lSfully If the target system enters the main ring.

c. The system sending the RSAIRCD Is requesting
permlnlon to rebuild the main ring. The target IVitem
denies permiulon to rebuild the main ring if it knows
that some other IYstem II already rebuilding the main
ring; otherwise, the target iVltem grants permission.
The target system updates the RSAIRCO to Indicate
whether It granted or denied permlaion to rebuild the
main ring and then sends the RSAIRCO back to the
requesting system.

Module Extanded DescrIption Module

1 The ISGBCI RSAIRCO buffer via entry point ISGBRF
ISGBRFNM lpolnted to by RSVBCIBF) Is Initial·

Ized with the Identity and status of the sending system
and with the system name and command optlonsj
IRSACSYNM and RSACRSDP) of the command that
was passed to ISGBCI.

2 The moIt-prefarred RSL Is the RSL most recently used
by the target system to send a command to this system.

If no such RSL exists, ISGBel chooses any eligible RSL.
An RSL Is eligible If It goes to the target system, Is not
offline because of a previoul hardware/software error, and
II not used to send or receive the main ring RSA.

If ISGBRFNM is requesting permission, entry point
ISGBRFSP Un ISGBRF) and subroutine NMGETRSL
choose the RSL.

Label

ISGBRFNM

G) ...
CIt
I

N

:3
<:
CIt

" X
>
CIt
r­
r-

r­
-<
r,)
~
I ...

C1'o
..0
VI
I

o

,..
o ...,
n
o
'0
'(.,
10
J
0+

1-4
Of
:3

n
o .,
'0

Diagram GRS-7. Send a Command Using the RSAlRCD (Part 3 of 4)

Input

RSL GCB D ~ GCBABUF

L..,RSAIRCD
..

D
RSV

~.SAI.CD

D

Process

3 Repeatedly send an
RSAIRCD to the target
system and call a
subroutine to examine
the response from the
target •

Terminate this loop when
any of the following occurs:

• the subroutine
reports completion

• the subroutine
reports failure

• the caller·specified
time limit expires

3 a. Ifthe sanding
system is entering the
main ring, use
subroutine RESPFSA
to examine the response.

3b. If the sending
system is telling the
target svstem to enter
the main ring, use
subroutine RESPFSC
to examine the response.

3c. If the sending system is
requesting permission to
rebuild the main ring use
subroutine RESPFRP
to examine the response.

Output

RSV I rSAIRCD

ASYBCIBF u D

L

r
ISGBTC

Send ...
RSAIRCD n

" ::J - RSVENTY III

] D
II
a.::

t- lIO'
%ID
l'J CII m., -.--n

-....- "' ro
.. a.

RSV
13
~

I MVffi~Y I -a ...
... ID

t- O.,
12-

r- ID
'C

0 c • ...
Jot

HCIII
"3 :sa

,..
-<
N
00 , ...
0-...,
\,II
I

o

....
n
'oj

....
I:I1II
:I

o
o ,
-0 .

:I
II)
n­
:r
o
Q.

o
-to

o
'U
ID

~
n-
O
~

Q
~
en
I

01

Diagram GRS-'. Send a Command Using the RSAlRCD (Part 4 of 4)

Extended Description

3 The RSAIRCD that Is to be sent is placed in the
RSAIRCD buffer pointed to by RSVBCIBF. The

response RSAIRCD Is read Into the buffer owned by die
RSL being used. The entry point (lSGBCFNM) that
is called can modify the RSAIRCD that is being sent.
during the subsequent loop. and can also datect a
failure In the target system. The RSAIRCD is sent
and the response is received asynchronously. Entry
point ISGBTCIR of module ISGBTC is called to
initiate this process.

ISGBCI loops and pauses repeatedly (via STIMER-WAITI
until the response arrives. The called entry point can
request that another RSAIRCD be sent or that the loop
be terminated.

Module

ISGBCI

e. Subroutine RESPISA in ISGBRF repeatedly sends a ISGBCI
SENDCMD-RSCRADDS RSAIRCD until tha response

indicates that the target system hai issued an ADDSYS.
The REPLSH subroutine then modifies each successive
RSAIRCD so that the target system returns an RSVENTY

entry In each RSAIRCD. This allows the RESPESA sub­
routine to update Its RSVENTY table to match the
RSVENTY table of die main ring systems. The
RESPFSA subroutine also compares Its seved send count
(RSVRSASCI to tha value saved by the main ring. This
comparison tells subroutine CLNUREJN how to adjust
aWB queues to match aWB queues In the main ring.

After the RSVENTY table is updated, subroutine
RESPFSA preperes to receive the main ring RSA and
sends its last RSAIRCD to the target system Indicating
that It is ready to enter the main ring.

b. Subroutine R ESPFSC repeatedly sends a SENDCMD-
RSCRSNAD RSAIRCD until the response indicates that

die target system has issued SEN DCMD-ASCRADDS. Sub­
routine RESPFSC then tells ISGBFNM (entry point in
ISGBRFI to stop sending the RSAIRCD and to return
to die caller of ISGBCI.

The target system continues to repeatedly send a SElltDCMD­
RSCRADDS RSAIRCD and the caller of ISGBCI in the
RESPFSC system subsequently calls ISGBCI for the
ADDSYS function.

Label

RESPADDS

Extended D-tptlon Module

c. Subroutine RESPFRP examines the response
RSAIRCD to determine whether the target system

granted or denied permission and updateS the RSVPRMSY
field of the RSV to reflect whedler permission was granted
or denied.

Retumcodes

The return code of ISGBCI may Indlcata:

a. success
b. failure due to hardware/software error in

communicating to target system
c. failure due to some condition In the target

system (e.g. the target of the SENDCMD-RSCRADDS
was unabla to build a main ring containing the sending
systeml

d. failure dua to expiration of tha time-/imit

Label

,..
n
(')
o
~ .,
CO
;r
t't'

....
G'
:3:
(')
o .,
'U .

Diapam GRS-8. Sencl Data to Another System (Put 1 of 4)

Input Process

RSC .. 1
RSCFUNCT r

RSCFBSEN

RSV GVT

D D 2

RSC

D
...
.,

Pass request
to ISGBSM

ASYNCHRONOUS
PROCESSING
(Steps 2- 51

Pau. repeatedlV
until any of the
following occurs:

a. completion of
the request

b. expiration of the
time limit

c. detection of a
main ring failure

... ~

..- .. ISGBDRC

6
Check for
overdue
time

...
-<
N
00

J.
G'o
-0
UI
I

Q

,..,
n ...,
(')
0
'tJ
'C ..,
(Q
::r
rI-
...,
till
:3
(')
0 ..,
'tJ .
...
-0
C»

"

3:
til
rI­
::r
o
a.
o
o ,.,
Of
rl-

o
:»

Diagram GRS-8. Send Data to Another System (Part 2 of 4) 1"':
-:a nm

Extended Description Module Label CDea
:::I ..
01-'

1 ISGBCI places the addrelill and length of the buffer in ISGBCI MAINSEND 11-
the RSV and then passes the request to ISGBSM by a.n ..

setting RSVCRSAT to a positive number. 3m
ilia. ..

Alynclvonous Ptoceaing 113 .,111 -.. Step 2 and steps 3, 4, and 6 occur asynchronously. 11111,
!ft-

2 ISGBCI does an STIMER SVC to pause then It checks III . ..-exit conditions and either exits or pauses again. Each !ft
pause is approximately equal to the time needed to send "G

the RSA around the main ring. .,0
0 ..

" a. ISGBSM sets RSVCRSAT to zero when It IBM
.,\:G

asynchronously completes the request. ..3
'C =

b. The time limit is exceeded when the sum of all pauses 0
exceeds RSCTMLlM. ISGBCI cancels the request by

....
changing RSVCRSAT from a positive number to zero. H

as
3

c. ISGBCI Invokes entry point ISGBSFMF to· indicate ISGBSF ISGBSFMF
a main ring failure when the main ring RSA failed
to arrive In time.

~ Diagram GRS-8. Send Data to Another System (Part 3 of 4)
til
I

0'

3:
<
til
)(
>
til
r­
r-

r-
-<
N
00
I ...
'" .0
U1
I

0

,..,
0
0
0
1J
.c:; ,
CO
::r
IT

1-4
t:I'
3:

0
0 ,
1J .
...
.0
00

Input Process

BUFSEND
buffer

... 3

4

9 Output

RSA
Copy data into
RSAwhen the
target system does -v
a BUFRECV.

Terminate the
BUFSEND
function.

I"'"
~ .
n
19
::J
ell
II)
a,::

;a
XII)
IIItI! m., ., ~.
~·n
1111+
... 112 en a.
13

III
'Un
"7 CD
0"7
"0-
IDIII ., ...
"'411
IC

0
0040
040 ...
HW
W3
3=

r­
oo(
N
00
I
~
0-
<.D
U1

I
o

,.,
o

H
m
:3:

(")
o
'""I
"0

:3:
Il) ,....
J
o
a.
o
-t.

o
"0
II)
'""I
III ,....
o
::l

Diagram GRS-8. Send Data to Another System (Part 4 of 4)

Extended Description Module Label

3 The received RSA may indicate that the target of the
BUFSEND function is currently executing a

BUFRECV function. If so, ISGBSM updates the RSA to
contain data to be sent to the target system. If not, the
BUFSEND request remains outstanding until the target
performs a BUFRECV, the time limit expires, or the main
ring fails.

4 If the system receiving the data has indicated that all
of the data has been received, ISGBSM then

terminates the BUFSEND function.

f: Oiapam GRS-9. Receive Data from • System (Put 1 0(2) ,
CIt

• '
Of

o
o
"0
-C ... _.
10
7 ,..
....
til'
3
o
o ...
"0 .

Input

Input parameten

D

Output'

RSV

.. D 1 Place Input parameters In the RSV.
F

2 Pass the request to
ISGBSM.

3 Update the RSA to show
thet thillYstem Is performing
BUFRECV. RIInIOV8 any
data that has been sent to the
target 1Ystem.

4 Terminate the
BUFRECV function.

,...
~
N
00 ,
loA
GOo
-0
UI
I

Ct

I-t
l:1li
3
(')
o .,
11

3
III
;r
o
a.
o
o
"CI
ID .,
GI
o
::J

Diagram GRS-9. Receive Data from a System (part 2 of 2)

Extended Description

1 ISGBCI places, into the RSV, the address and length
of a BUFSEND buffer that Is to recaive data and the

SYSNAME of the system thet must send the data.

2 ISGBCI sets the address and length of the buffer it
expects to receive. ISGBCI passes the request to

ISGBSM bV changing RSVCRSAT to a positive number.

3 When the RSA is received, ISGBSM updates the RSA
with a BUFAECV marker to show that this system Is

performing a BUFRECV and then sends it around the main
ring. When the RSA returns, it contains either the data
from the target or an indication that the target has not
performed a BUFSEND. If the ASA contains data, the
data is removed from the ASA and copied Into the
BUFSEND buffer. If the RSA contains no data,lSGBSM
updates the RSA to remove the BUFRECV marker and
sends the ASA. When the RSA returns, the BUFRECV
marker is put in the RSA again and the proc:ess is repeated.
This process Is repeated until ISGBCI detects that a time
limit has expired and cancals the request by changing
RSVCASAT back to zero.

4 ISGBSM terminates the BUFRECV function by setting
a return code (and placing the length of the received

datal In the ASV and changing RSVCRSA T to zero.

Module

ISGBCI

Label

MAINSEND

= Diagram GRS-IO. i.eave Save QWB Mode (Put 1 of 2)
CP
I ...

N
o

Input Process
.~
CP
)(•
CP
r­
r-..

r­
-<
N ..
I

CJ'O
00
UI
I

o

H
OJ
3:

n
o
"I
"0 .

Saved OWBs ..
r

RSA

...
"'

1 Get the global
resource serialization
local lock.

2 Place the saved
OWB,onthe
process queue.

3 Releasa the
local lock.

4 Inform other main
ring systems that
this system II
leaving save OWB
mode.

Output

ISGBSR

.... -A. ISGBBE
.. Entry

point

RSVENTY

..
r

....
00(
N
C»
I ...

g. ..,
'" I
o

,..
()
o
o
'U
'C ,
rG
:r

"
I:I1II
3:
o
o ,
'U .
... ..,
00

"

CO)
~
en
I ...

N ...

Diagram GRS-IO. Leave Save QWB Mode (Part 2 of 2)

Extended o.criptlon Module

1 ISGBSF (at entry point ISGBSFDP) obtains the iocal ISGBSF
lock of the global resource serallzatlon address space.

The ISGBCI SERRELS function Is used to cause a system
to leave save aWB mode.

2 ISGBSF (at entry point ISGBSFDP) puts the saved
aWBs on the process queue via a call to the ISGBSE

entry point of module ISGBSR.

If the process queue Is empty, ISGBBE moves the aws
string into the process queue. If the process queue is not
empty, add to the aws string to the end of the process
queue.

3 ISGSSF (at entry point ISGSSFDP) takes the system
out of 'save-aWB' mode and raleases the local lock.

4 The RSA Is used to Inform all other main ring systems
that this system has left save aWB mode. Each system

updates Its RSVENTY table to reflect this fact.

Label

ISGBSFDP

= Diagram GRS-ll. Send the RSA (Put 1 014)
ell
I
~
N
N

:3
<
ell
)(•
en
r­
r-..

n
o
~ .,
IQ
J
".

....
'" :3
(")
o .,
'U .

RSV

I MVW~ I
RSV

RSVFRNG1

RSVOWBIF

RSVOWBIL

RSVOBFOR 10-

RIA output buffer

I+-

Process

..

...

Output

,RSV

1 Update the RSVWLOCK •
.. I OSVWLOCK I ..

GVT

GVTMREAD

2 Calculate the
time when the ..
main ring RIA

GVTMREAT ..
should retum.

RSV

RSVIBFOR r--

3 If this system RSVWLOCK

is the onlv system
in the main ring:

• Move OW8s from
the internal queue to RSA Input buffer'
the sent queue

• Simulate the
immediate return I+-of the main ring
RIA

6

r­
oo(
N
00
I

a­
.0
UI
I

o

....
011
3:

o
o ..,
"

3:
ID
r1"
:r
o
a.
o
-to

o
1J
ID .,
til
r1"

o
:::I

Diagram GRS-ll. Send the RSA (Part 2 of 4) .

Extended Description

The main ring RSA is sent bV entry point ISGBSMSR of
module ISGBSM. This module executes in SRB mode,
key 0, supervisor state. Recovery for this function is
provided bV ISGBFRCV.

ISGBSMSR is scheduled bV entry point ISGBDRS of
module ISGBDR when II time interval expires. This time
interval is called the main ring RSA residence time.

1 RSVWLOCK is used to serialize between entry
points ISGBSMSR and ISGBSMR. If RSVWLOCK

is still in use bV ISGBSMR, then ISGBSMSR alters
RSVWLOCK and exits to the dispatcher. (Entrv point
ISGBSMR will see the altered value and will branch to
ISGBSMSR instead of exiting to the dispatcher, when
it has completed its processing.

If RSVWLOCK is not in use, ISGBSMSR alters it to
show that it is now in use.

2 If this system is no longer in the main ring,
iSGBSM frees the resources (including the RSV

lockword RSVWLOCK). and exits to the dispatcher.

Assuming this system is still in the main ring, ISGBSM
field GVTMREAD with the number of miliseconds needed
for the main ring RSA to make a full Circuit of the main
ring. ISGBSM also sets field GVTMREATwlth the time
when the RSA is being sent from this system end clears
the low order bit of GVTMREAD to indicate that the
main ring RSA is no longer at this system.

3 Flag RSVFRNG1 is on when this system is the onlv
system in the main ring.

• ISGBSM moves the aWBs from the Internal queue to
the sent queue so that the aWBs will be moved from
the sent queue to the process queue when ISGBSMR
Is subsequentlv entered.

• ISGBSM simulates the immediate return of the main
ring RSA by copying the RSA from the output buffer
into the input buffer and altering RSVWLOCK to
show that the RSA has been received. This simulates
the system sending the RSA to itself and the RSA
returning to this system as soon as It Is sent.

Module Label

ISGBSM ISGBSMSR

H ..,
:It

G) ,.,
en
t ...

N ..

....
-<
N
00
I

loA
0-
..0
UI
I

o

H
W
3

o
o .,
'U .
....
.."
C»,

Diagram GRS-II. Send the RSA (Put 3 of 4)

Input Process

RSV GCB

D D r 4

RSV

I R_~ I 5

7 Output

RSV

...

S If thlslVstem Is
not the onlv IVltem

.,
In the main ring:

• Give the RSA Input
buffer to CTC driver

.. ..
r ISGJFE

Place buffer
onGCL

,read .queue

• Send the RSA
output buffer

..
ISGJFE

~ -r

Get and
Initialize
the write
10SB .

Update the RSVWLOCK.

r­
oo(
N
00
I .. .,.

.0
UI
I

a

'" n
n o
'U
'< ., ...
c ::r
tfo

'"" as
3:

n
o .,
'U .

:z
ID
t+
::r
o
Q.

o
o
'U
III ., ..
rio ...
o
='

Diagraio GRS-II. Send the RSA (Part 4 of 4)

Extended Description Module

4 If the main ring contains two or mora systems. the
RSA nwst be sent using the erc driver.

a. RSVGCBIP points at the RSA input GCB. The GCB
is pre-inltializad so the erc driver will schedule entry
point ISGBSMR when the RSA has been read into the
RSA Input buffer •

b. RSVGC80P points at the RSA outpUt GCB. The GCB
Is pre-lnltlalizad so the erc driver will sand the RSA
from the RSA output buffer.

6 ISGBSM branches to ISGBSMR if RSVWLOCK
indicates that ISGBSMR was dispatched while

ISGBSMR held RSVWLOCK. CThis can occur If the
RSA returns before ISGBSMR exits or If this system Is
the only system In the main rlngJ

ISGBSMR exits to the dispatcher If RSVWLOCK Indl·
cates that ISGBSMR has not been dispatched yet.

r-I -. nil
II. :.,
11-An ...
II ...
112 .,. -...
"II, .-III
'U
.,0 o.
'a
It I~ .,.
... 2
'C ~

o
H ..,
2

(i) Diagram GRS-12. Send the RSAlRCD (Part 1 of 6)
~
(II

I ...
N
GO

3:
<
(II

"­x
>-
(II
r­...

r­
oo(
N
CO
I

GO
-D
UI
I

o

,..,
n ...,
(')
o
"0
'< ,
to
::r
rl-

M
~
:3
(')
o ,
"0

Input

Register 1

C~L
I

RSLlNTSN

RSLTMSND

RSV

RSVBCINM

/
RSVBCIBF

RSVR1ECB

(
RSAIRCD

Process

..
1 Wait for the target svstem ...

to send an RSAIRCD to
this system.

...
2 Post the ring processing ., exception-handling task •

0

Output

GVTX RSV

-""
--y GVTXJECB RSVFMF

....
n ...,

Diagram GRS-12. Send the RSAIRCD (part 2 of 6)

Extended Description Module

Entry point ISGBTCIR of ISGBTC is called to send an
RSAIRCD. ISGBTC determines whether to schedule entry
point ISGBSRRI of ISGBSR. or to do nothing and allow
the CTC driver to schedule ISGBSRRI.

ISGBTC also performs special processing when It is sending
an RSAIRCD in order to enter the main ring.

1 If the target system is expected to send an RSAIRCD, ISGBTC
pause to wait for it. The target system is expected to

send an RSAIRCO to this system when all of the following
conditions are met:
• RSLINTSN is non-zero (that Is, the arrival of the

RSAIRCD is not overdue)
• The current time is not later than the time when the

RSAIRCO was sent plus RSLINTSN milliseconds plus
GVTOLINT milliseconds.

When this system receivas the RSAIRCD, ISGBSR (entry
point ISGBSRRII updates the RSAIRCO and sends it back
to the target system.

ISGBTC does not schedule ISGBSR to send the RSAIRCO.
ISGBTC determines whether the RSAIRCO has been sent by
checking whether RSL TMSNO Ithe time when the
RSAIRCD was send has changed since control was passed
to ISGBTC.

2 If this system Is sending the last RSAIRCO before en­
tering the main ring, ISGBTC (entry point ISGBTCIR)

is called under a task other than the ring processing excep­
tion-handling task.

The exception-handling task must clear unusual events and
set status flags to Indicate that the sending system Is in the
main ring. This is done by setting flag RSVFMF and post­
ing ECB GVTXJECB to awaken the exception-handling
task. The exception-handling task clears RSVFMF and
posts RSVR1 E.CB when It has performed the request.

Label

ISGBTCIR

= Diagram GRS-Il. Send the RSAlRCD (Part 3 of 6)
en
I ..

N
OJ

:I
en
"­)(
•
en
r­
r-..

r-
oo(
N
OJ
I ..

Oo
oG

'" I
0

...
n
(')
0

~ .,
0
:T ...
H
0'
3
C")
0 .,
'U . ..
oG
OJ

Input

RSL GCB

00
GCQ

o
RSL

0
RSV

D

Output

--11.----"'-1 3 Get the RSL-owned buffer
andGCQ.

L...._-..II 4 Schedule ISGBSR.

ASYNCHRONOUS PROCESSING

5 If ISGBSR was s!=heduled
bv ISGBTC:

• Give the CTC driver
a buffer for the expected
response to RSAIRCD •

• Send the RSAIRCD
from the buffer.

ISGJFE

Remove
GCOfrom
theGCL
queue.

ISGJFE

Put a buffer
ontheGCL
reed queue.

ISGJFE

Get and
initialize
thewrlta
10SB

r--n
IV
:1
It.
dI
a.:I

:III
:III IU", .,--n
fIID.

lif
",. .,.
0.,
1J-•• ., ... ,..
'C os.
.Z
31

r­
oo(
N
00
I ...

0-
.0
U1
I

o

....
n
n
o
'U
oc:: .,

....
all
:3:

n
o .,
'U .

3:
II)
rio
=r
o
a.
o
-+0

o
'U
II) .,
11/ ,..
o
:J

Diagram GRS-12. Send the RSAmCD (Part 4 of 6)

Extended Description Module

3 Each RSL owns a GOO (pointed to by field ISGJFE
GCBAGCQ of the GCB that folloM the RSLI. Field

RSLBFCTC indicates whether this GCQ (and the associated
buffers and GCB) have been given to the CTC driver. If the
CTC driver has the GCa, ISGBTC calls ISGJTK to get the
Goo.
4 Field RSLWLOCK is set to 31 to show that ISGBTC

scheduled ISGBSR to send the RSAIRCD. An SRB is
built In the RSL·owned GCB and is scheduled to cause
ISGBSR to execute asynchronously. Return code 0 indi­
cates ISGBTC has scheduled ISGBSR.

1l1e following proc8lling occurs asynchronously to the
task that called ISGBTC (entry point ISGBTCIR).

5 ISGBSR at entry point ISGBSRRI is dispatched as an ISGBSR
SRB routine. The SRB may have been scheduled by

ISGBTC (indicated by an RSLWLOCK velue of 31), by the
global resource serialization CTC driver when a send com­
pletion occurs (Indicated by flag RSLFSIP being on when
ISGBSR is entered), or when the CTC driver receives a mas­
sage. Register 1 points to the GCB that immediately fol­
lows the RSL used by ISGHSR •
• The RSAIRCD is being.ant for ISGBCI when the RSV

field RSVBCIMM points at the RSL used by ISGBSR.
In this case, ISGBSR gives the CTC driver the RSL­
owned buffer and GCB for future use in reading the r.
sponse RSAIRCD from the target system.

• If the send is being done for ISGBCI and it Is sending I.SGJFE
the last RSAIRCD before entering the mein ring,
ISGBSR gives the CTC driver the main ring RSA input
buffer (pointed to by RSVIBFOR) using the mein ring
input GCB (pointed to by RSVGCBIPI and GOO.

If the send is being done for ISGBCI, the RSAIRCD is
sent using the ISGBCI-owned GCB. When ISGBCIIs send­
ing an immediate CCW, it will heve set flag GCBFSNIM in
the ISGBCI-owned buffer. RSLFSIP is set before calling
the CTC driver. The CTC driver will schedule ISGBSR
when the send is complete.

Label

ISGJTKBF

ISGBSRRI

ISGJSNBF

= Diapam GRS-12. Sad the RSAlRCD (Put 5 of 6)
en
I ...
~
o

3
c
en ,
)(•
en
r­
r-

r-
~
N
GO
I ...
~

.0
\II
I

0

~

n ...,
n
0
'U
'C
'7 -ra :r ,..
...
ItIIf
3

n
0
'7
'U .
...
.0
GO

RSL

RSLFSIP

6 If ISGBSR must handle
e send completion. give
the RSL-awned buffer
to the CTC drlvw.

ISGJFE

Putebutfer
an theGCL
read queue.

Process

RSL

RSLFSIP

RSLWLOCK

... -0
ID
~ .,. ..
C&.~

" 3ID ., .
,.t+
r.;., .,-
-0
.t+
VIa.

liJ
'at+
"SID
0.,
u-
11111 ., ...
t+(Il
~

0 o •
H

H •
l1li3
3;

r­
-<
N
00
I ...

C1'
..0
U'I
I

o

(")
o

" '<' ,
r.a
J
....
tI1
:3

(")
o ,
"0 .

:3
II
;r
o
Q.

o
-to

o
"0
II , ..
Itt'

o
::J

Diagram GRS-12. Send the RSAIRCD (part 6 0(6)

Extended Description Module

6 A send completion occurs if the RSAIRCD was prelli- ISGJFE
ously sent with the RSL-owned buffer. The

RSL-owned buffer is gillen to the CTC driver so it can be
used to read any RSAIRCD sent by the remote system.

Label

ISGJGVBF

o
-to

3:
< en ,
X
:)00

en
r­
r-
oo

r­
oo(
N
00
I ...

CI'o
-D
UI
I

o

,...
n ...,
n
o
1)

'< .,
IQ
;r
ri'

I-f

= 3:

n
o .,
'0 .

Diagram GaS-13. Receive the DC! A.m. ~CD

Input

r -,

RSVENTY

D - I
- I

L -.J

(Part Ion)

Process

r
1 I nitialize the CRB.

-"I --,.I
2 ~RSVENTY

rnformat ion into
the RSAIRCD.

3 Send the RSAIR
back. CD

L

Output

1 -I -,
CRB

I -- I
J- D ---,.I

RSAIRCD

J - D - I ~
-
IISGJFE 1

.£- .. -- Send L --I
RSAIRCD
~ck -I
. -

r­
-<
N
00
I

c:r­
..0
UI
I

«:)

,..
n
o
o
'U
'< ,
CO
:r
"
~

CIJ
3:

o
o ,
'U .
....
..0
00

"

3:
IV
rfo
:r
o
a.
o ...
a
'U
IV ,
'" rfo

o
:J

Diagram GRS-13. Receive the RSAIRCD (Part:1 oU)

Extended O-Iption Module

1 If the RSAIRCD contains a command (field ISGBSR
RSACCMDCB is non-zero), ISGBSR gets a CRB

from the GRS storage manager (entry point ISGSALC) and
copies data from the RSAIRCD into theCRB. ISGBSR
places the CRB on the command router queue and posts
the command router •

2 If flag RSAIFIDR is on,lSGBSR copies the
RSVENTY information into the RSAIRCD. Field

RSACTBIX indicates which RSVENTY is to be copied

3 ISGBSR sends the RSAI RCD using the RSL-owned
buffer via a call to ISGJSNBF. Then exits to the

dispatcher.

ISGJSNBF

Label

ISGJSNBF

r­
oo(
N
00
I ...
"" .0

'" I
Q

,..
n ..,
C")
o
~ ..,
10
:r
ri'

....
ar
3
C")
o ..,
'U .

Diagram GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS Request Processor
From the commend router IISGCMDR) or
the command Interface IISGCMDU If ISGCMDR

(Part I of 6)

Input Is not operational

~ ~.nn 1n1t1." ... 1o ••

Output
Register 1

L_ CRWA r ~Parmllst 1.....-_... it CRB
-.-- -v

~=============~~ ~C_EP_L ____ ~

J CRB CEPL

~------~v~~------~ CRBCEPL CEPLCRWA

CRBDSOPT CMPL

~-....... v~-......
CRBCMPL CMPLMSRV

LC_R_B_R_ST_ ~ I CMPLTIME

I \RST

GVT

Header

System
antrles

Link
entries

GVTSERNL V"'"I Systems exclUSiOn]
I RNL

GVTSIRNL ~
-.=-----:-""""'!""~-

GVTRCRNL I'system Inclusion I
RNL

I Reserve conversion I
RNL I

..
2 Obtain storage and build the =!========::>I ..

control line.

~ 3 If an RN L display Is .- -
build a label line. Build eny of ..

... .. the following items that are =:========::>1
requested:

- System Inclusion RNL
display

- Systems exclusion RN L
display

- Reserve conversion RNL
displav

CEPLCRWA CRWALMOD

CRWACSCT

CRWAFID

CRWAMID

CRWAAB16

I Control line I

RNL header

RNL entry

RNLentry

RNLentry

RNLentry

RNL entry

... -0 ..
:l
fit
!II
o.~
~

311
!YCIt
to.., ..,
-0
.... 10 en a.
1:1

III
"Ow
"Jill
0..,
"C
IDIII .., ...
.... CIt
~

0 o • • H
HQI
Ql3
3:

r-
-<
N
~
I

g..
oG
UI
I

0

" n
OJ

n
0
'tJ
'< .,
III
J
It-

....
till
:I

n
0 .,
'tJ
oG
00

3: e
t+
:I' o
a.
o
~

«:)
'tJ
III ., ..
t+

o
::I

Diagram GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS Request Processor
Extended Description Module Label

ISGCDSP processes global resource serialization DISPLAY
GRS status requests pnd produces"the ISG0201 message.
The global resource serialization command router
IISGCMDR) attaches ISGCDSP when It finds a command
request block ICRB) for a DISPLAY GRS request on the
global resource serialization command request queue. If
communication with ISGCMDA is not possible ISGCMDI
attaches ISGCDSP.

1 ISGCDSP initializes a command request workarea
ICAWA) with recovery information and places it on

the CRWA queue.

2 ISGCDSP calls IEECB808 at entry point MSGSERV IEECB808 MSGSEAV
to obtain storage to build a control line containing a

time stamp and the message text.

3 For an ANL or an ALL request,lSGCDSP builds a
dlsplav for the requested ANLs. ISGCDSP obtains

the ANL contents from the SQA and Invokes IEECB808 IEECB808 MSGSEAV
to get storage for a line. The display consists ofa label line
for each entry In th~ RNLs that are to be displayed.

1"':1
(Part 20f6) -:a nm mat

::J~ en.,
fI-a.n .. 3m AJa. .. fD3
.,lII
.... 0+
lIIlD
"'''7 en-..
I ... en
" "70
0
"U
11M .,.
.. 3
'C :I

0
-to.

M
." •

CO) Diasram GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS Request Processor (Part 3 of 6)
;l1li
en 9 I ...
e...
00

:3
c
en
)(
:Jo-

en
r­
r-

r­
oo(
N
co
I ...

0-
o,Q

VI
I

CI

o
o

" "< .,.
10
~ ,..
t-C
CIIII
3:

o
Ci .,
" .

Input

GOSCAN buffer

QMERGE

I I
RESTART

I I

RlI9.lster 1

L.- Parmliat
J t CRB.

, CRB CEPL

CRBCEPL V CEPLCRWA

CRBDSOPT CMPL

CRBCMPL: / CMPLMSRV

CRBRST· ~cMPLnME

RST

Heeder

Link
entries

System.
entries ,

Process

"
---v' 4 If the resource contention

display II requ8lted,.bulld It.

----1\ 5 If a F8IOUFCe display Is re-
" quested by a

- qname, build It

- resource, build a resourcel
requestor display

"
r 6 If a system display Is re-

quested, build the label
line and the data lines.

6

Output

Resource line

.... Header line

r Requestor line

Requestor line

" Qneme's header
" Qname's header

" Resource line
r

Header line

Requestor line

....
Control line

System label
line

System data
. lines

r­
oo(
N
00
I ...

Q\

oD
UI
I

Q

M

= :3

(')
o .,
"0 .
...
oD
00,

3:
II)
ri'
:r
o
Il.

o
.....
o
"0
II) .,
01 ...
o
:J

Diagram GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS Request Processor (part 4 of 6)

Extended Description Module Label

4 For a CONTENTION or an ALL request, ISGCDSP
builds a display of all resources that have requestors

that are waiting for the resource. ISGCDSP issues a
GQSCAN macro to obtain resource contention information
and Invokes I EECB808 to get storage for a line. The display I EECB808 MSGSERV
consists of two label lines for the resource name, one label
for a requestor header line, and one data line for each re-
questor of the resource. This is repeated for each resource
that has requestors waiting for the resource.

5 For a RES request that is a qname's only request,
ISGCDSP builds a display that contalnsall the qnames

that match the request. ISGCDSP issues a GQSCAN macro
to obtain resource information for the request. The display
consists of a header Uabell line followed by enough data
lines to contain all the qnames that match the request, at
eight qnames per data line.

For e RES request that is a resource request, a resource
display is built for all resources thet metch the request .
ISGCDSP issues a GQSCAN macro to obtain resource
information for the request and invokes IEECB808 to get IEECB808 MSGSERV
storage for a line. The display format is the same as that for
a CONTENTION request.

6 For SYSTEM or ALL requests, ISGCDSP builds a
label line and then a data line, describing two systems.

for each pair (or single) of SYSTEM entries in the ring
stetus tabie RST. While building the message,lSGCDSP
calls IEECB808 at entry point MSGSERV to obtain
storage for each line prior to building the line.

= Diagram GRS-14. ISGCDSP - Global Resource Serialization DISPLAY GRS "Request Processor (Part S of 6)
en
I ...
t
3
< en ,
)(
>
en ,..

r­
oo(
N
00
I

C7"
.0
VI ,
o

.....
n

....
tlIlI
3:

o
o .,
"V .

Input

Register 1

Parmlist

._-----t{+ CRB

~ CRB CEPL

~C-R-B-C-E-P-L~~ CEPLCRWA

CRBDSOPT CMPL

.....-----1~ ~-~
CRBCMPL CMPLMSRV

.. C_R_B_R_S_T_ ... "'- CMPLTIME

, ~ RST

Header

SYSiam
entries

Link
entries StePS

Process

7 If a link display lire·
quasted. build the label
line and data lines.

8 Build the control line and
determine If status Is avail·
able.

No status.

9 If storage cannot be
obtained for a line •

10 Write thelSG0201 mes­
sage and clean up.

Step 10

Return
to the
caller

Output

Control line

System label line

System data lines

Unk labellinG

Link data lines

Control line

FUNCTION INOPER­
ATIVE- no statUI

DISPLAY GRS TRUN­
CATED - INSUFFICIENT
STORAGE

CRB

I~B"Q_ I

.­
-<
N
00
I ...

G\
..0
\II
I

Q

(')
o
"0
'< .,
ra
;;;r
....
II:ICI
3:
(')
o .,
"0 .

3
ID
;;;r
o
JJ..

o
o
"0
ID .,
IIJ

Diagram GRS-14. ISGCDSP - Global Resomce Serialization DISPLAY GRS Request Processor (Part 6 016)

Extended Description Module Label

7 For LINK or ALL requests, ISGCDSP builds II label
line and then a data line, describing 2 CTCs, for each

pair lor single) LINK entries In the RST. If no link status
isavaliable,l'1)eanlng thereare no LIN K entries in the RST ,
ISGCDSP builds a "NO LINKS" data line. While building
the message, ISGCDSP cells I EECB808 at entry point I EEC8808 MSGSERV
MSGSERV to obtain storage for each line prior to building
the line.

8 ISGCDSP then determines if status Information Is
available (CRBRST +0). If no status Is available or

if RN Ls do not exlst,lSGCDSP obtains storage and builds
a "FUNCTION INOPERATIVE - NO STATUS" data
line. Processing continues at step 10.

9 If there Is Insufficient storage at eny point in I SGCDSP,
the follOWing message is issued:

"DISPLAY GRS TRUNCATED - INSUFFICIENT
STORAGE".

10 ISGCDSP cells MSGSERV to write the ISG0201 mes­
sage and to perform clean-up processing. ISGCDSP

sets CRBRQCMP=1 to indicate that the request has been
processed and returns to the celler.

Recovery Processing

The global resource serialization command processing reo
covary routine IISGCRCVI gives ISGCDSP control at entry
point ISGCDS02 to do recovery processing. ISGCDSP at
this entry point performs clean-up and returns to the celler.

~ Diagram GRS-lS. ISGCMDE - DISPLAY GRS Command Parser Exit Routine (part 1 of 2)
en
I ...

: From IEEMB887

r­
-<
N
c»
I

C1<o
o,Q

VI
I

Q

,...
o,

Input

Register 1

SCLCURNT

SCLUSER

CPEP:

CPEPCRB,

CPEPCEPL,

CPEPCRWA

CPEPQNME

CPEPRNME

CPEPCMPL

CMPLXSAP

IEEPARSE'

CRBQNADD

CRBRNADD

1 Establishes a recovery
environment.

2 Selects routine based on the
syntactical unit In SCLUINDX.

• Routines 1·10 and 18 set
flags In the CRB to Indicate
display request.

• Routines 11·17 save the
RES request data.

• Routines 33·36 set paramo
eters for error messages.

3 Deletes the racovery
environment.

Return to
caller

Output

CRB

CRBQNADD

CRBRNADD

XSA

.QNAME

.....
n ...,
(')
o
'0
'< ,

t-C
eel
:3

(')
o ,
"0 .
....
'" 00

:3:
ID
-:r
o
Q.

o
-f\

o
"0
II) ,
'" ri-

o
J

Diagram GRS-IS. ISGCMDE - DISPLAY GRS Command Parser Exit Routine (Part 1 of 1)

Extended Description Module

ISGCMDE is an exit routine from the generalized parser· ISGCMDE
(I EEMB887). ISGCMDI supplies the parse table and other
parameters to the generellzed parsar to parse a DISPLAY
GRS command. As each element of the DISPLAY GRS
command is Identified or as specific error conditions are
found, IEEMB887 invokes ISGCMDE to record the finding
in either the command request block (CRB) for correct
syntax or the extended savearea ()(SAI for incorrect
command syntax.

1 ISGCMDE establishes a recovery routine by putting
the command recovery workarea (CRWA) on the

command ESTAE parameter list (CEPLl stack and indi­
cating why ISGCMDE was called.

2 ISGCMDE selects the routine basad on the particular
syntactical unit being used. SCLUINDX is a param­

eter passed by I EEMB887 that identifies the syntactical
unit that IEEMB887 found •

• If a keyword is found, ISGCMDE indicates that in the
CRB.

• If the RES keyword is being parsed and a particular
unit such as the qname or rname is being used,
ISGCMDE saves them and converts them to EBCDIC.

• If a syntax error is found, ISGCMDE indicates the
error message in the XSA.

Label Extended Description

3 ISGCMDE removes the CRWA from the CEPL stack
to delete the recovery environment.

Recovery Processing:

The generalized parser's recovery environment and the GRS
command recovary environment protect ISGCMDE.
ISGCMDI establishes the GRS command racovery.

Module Label

o ...
H
0;1
3

o
o
o
1:1
'< ,
III
:r
"'"
1-1
c;:I
:3

o
o ,
1:1

Diagram GRS·16. ISGCMDI - Global Resource Serialization Command Interface (part 1 of 6)

nput
CMPL

CMPLMCON

CMPLSYSI

CVT

I GVT

GVTGRSPC

GVTNCMDR

GVTNONE

CMPL CSCB

I~PL=B rl
I

From the
command service
routine IIEECB8081 Process .. VARY GRS command pro-

cessing entry point IEEC8921

1 Establish a recovery en-
vironment.

..
2 Determine whether the master

" console issued the command or
global resource serialization.

3 Determine if the command
v router is active.

..
4 Check the syntax of the

VARY GRS command.

Output

v c:::J
r-
n
ill
:7
':J

= Q,::
;I:J

3:1D
jII "'I
rio ... R1, .,.­
... ·n
ttl rio
... r!l
ilia.

IX
ttl

'tIrio
"'10
0,
'0-
fill:.!
,~

rio III
'<: o
tl-io
-to

fool
MIlI:I
11:3
::;:: ::

r­
oo(
N
00
I ...

CI'o
..0
'II
I

o

....
n

....
till
3:
(')
o ,
"U .

3:
ID
t+
:r
o
D.

o ..
o
'V
ID , ..
t+

o
~

Diagram GRS-16. ISGCMDI - Global Resource Serialization Command Interface (Part 2 of 6)

Extended Description

The global resource serialization command interface per.
forms authority checking for the VARY GRS command
and syntax checking for tha VARY GRS and DISPLAY
GRS commands. Entry point IEECB921 proc8SSes ttla
VARY command and entry point IEECB922 proC8SSes tha
DISPLAY command.

1 ISGCMDI issues an ESTAE to establish ISGCRCVas
its recovery routine.

2 If the command parameter Ust master console bit is
on .(CMPLMCON"') indicating that the master console

issued the command. processing continues. Processing also
continues when the system·issued bit Is on (CMPLSYSla'1')
in tha command parameter list, indicating that tha systam
Issued the command. OtherWise, ISGCMDI issues error
message IEE3451 at step 6, indicating invalid VARY
authority.

3 If the command router (lSGCMDR) is active
(GVTNCMDR=O), global resource serialization option

processing is comp/ete IGVTGRSPC"'), end GRSaNONE
was not specified at IPL (GVTNONEaO), then ISGCMDI
continues processing. If one of the a~ is not true.
ISGCMDI issues an error m8SS898 USG014J) at step 6
indicating that global resource serialization or the command
processor is inoperative.

4 This module checks the VARY GRS command syntax
for the proper placament of delimiters and operands.

If tha syntax is not correct, ISGCMDI issues the appro­
priate error message at step 6.

Module Label

~ Diagram GRS·16. ISGCMDI - Global Resource Serialization Command Interface (part 3 of 6)

'" I ...
"'" "'"
3
<
'" " x :.

'" r-,..

o
o

" '< ,
10
J
....
011
3

o
o ,
'U .
...
.0
00

Input

GVT

GVTGVTX

GVTNREOS'

l~GRPT

~ ECB

Process

~GVTX

GVTXGRPT

5 Obtain and initialize 8

CRB, place the CRB on the
command request queue,
and walt for ISGCMDR to
process It.

PEXB

CRBECBP }
6 Issue an error message

If necessary

7 Delete the recovery en-
vironment.

IEE0503D

Issue
error
message

Return
to the
caller

Output

GVT

GVTCMDRQ ~CRB

GVTCECB /
CRBECBP

-..{ECB

OR

-"

~
~

,...
n
o
o
'tJ
'< .,
10
:r
It"

....
a#
::I

o
o ,
"

3
10

" :r
o
a.
o
~

Q

" II) .,
11/
It"

o
~

Diagram GRS-16. ISGCMDI - Global Resource Serialization Command Interface (part 4 of 6)

Extended Description

5 If requests are allowed on the command request queue
IGVTNREQS"O).ISGCMDI invokes ISGSMI to obtain

a command request block (CRB) from the global resource
serialization address space. initializes the CRB. places it on
the command request queue. and notifies the command
request router USGCMDR) of work. This module then waits
for ISGCMDR to process the VARY. if ISGCMDR returns
with an error post code. ISGCMDI Issues the appropriate
error message at step 6. If requests are not allowed on the
command request queue.ISGCMDI issues message ISG0141.

6 ISGCMDI calls the appropriate module to issue any
error message required for an error that occurred

while processing steps 2-5. ISGMSGOO issues message
ISG0141 and IEE0503D issues the rest.

If an error occurs while processing a VARY GRS (ALL).
RESTART commend that global resource serialization
issued. ISGCMDI calls ISGMSGOO to issua message ISG025E
Indicating that this system was unable to automatically
rebuild the disrupted ring.

7 ISGCMDI issues an ESTAE to delete the recovery en­
vironment.

Module

ISGSMI

ISGCMDR

ISGMSGOO
IEE0503D

Label

CD Diagram GRS-16. ISGCMoI - Global Resource Serialization Command Interface (Part S of 6)
;II1II
U»
I
.. From the

3:
<
U»

")(
~

U»
r­
r-..

r-
oo(
N
Ot
I

(#'0
..a
\II
I

0

,..
n
""'
(')
0
'0
'C ., -U2
::r ,...
t-I
til
:3
(')
0 .,
'U .
too
.0
W

command service
Input routlna (lEECB808t Process

~~--------------------~ ~--------~--------
CMPL

CMPLCSCB·

GVT

GvrXGRPT

PEXB

CRBECBP }~.

DISPLAY GRS GOmmand pro­
rasing entry point IEECB922

8 Establish 8 racoverv en-
vironment.

9 Check the syntax of the
DISPLAY GRS command.

10 Obtain a CRB, place the
commend on the com­
mand request queue, and
wait for ISGCMDR to
process it.

11 Issue an error message if
necessary.

12 Delete the recovery en·
vlronment.

IEEMB887

Parse
Command

ISGCMDE

Perser
Exit

IEE05030

Issue
error
massage

Output

GVT

GVTCMORQ ~CRB

GVTCECB

f
f- CRBECBP

.a.ECB

OR

rEl
~

r­
oo(
N
C»
I
'" oD
U'I
I

o

,...
o
>oJ

....
IJ'
:3:

o
o ,
'0 .

:3
ID
t+
':1'
a
a.
a
o
'tJ
ID ..
III
t+

a
:::J

Diagram GRS-16. ISGCMDI - Global Resource Serialization Command Interface (part 6 of 6)

Extended Description

8 ISGCMDllssues an ESTAE to establish ISGCRCV as
its recovery routine.

9 ISGCMDI invokes the generalized parserllEEMB887)
to check the 0 ISP LA Y G RS command syntax for the

proper placement of delimiters and operands. IEEMB887
uses ISGCMDE during the syntex check. If the syntax is
not correct, ISGCMDI issues the appropriate error message
at step 11.

10 ISGCMDI invokes ISGSMI to obtain a command
request block (CRB) from the global resource

serialization address space, places the CRB on the
command request queue, and notifies the command
router (lSGCMDR) of this work provided that the
following conditions exist:

• The command router (lSGCMDR) is active
(GVTNCMDRcO).

• Requests are allowed on the command request queue
(GVTNREQSc())

• Global resource serialization option processing is
complete (GVTGRSPC .. 1).

• GRS=NONE was not specified during the IPL
(GVTNONEC()).

ISGCMDI then waits for ISGCMDR to process the
DISPLA Y. If ISGCMDR returns with a post code indicating
an error, ISGCMDI issues the appropriate error message
at step 11. If one of the above conditions does not exist,
ISGCMDI attachas ISGCDSP to do one of the following:

a) If no RNLs exist, issues a "FUNCTION
INOPERATIVE-NO STATUS" message

b) If tha contention display, the RNLdlsplay,or the
resource displays are requested, builds the requested
display

Module Label

IEEMB887

ISGSMI

ISGCMDR

Extended Description

11 ISGCMDI calls I EE0503D to issue any error message
required resulting from an error that occurred while

processing steps 9 and 10.

12 ISGCMDI issues an ESTAE to delete the racovery
environment.

Recovery Processing

The command recovery routine (/SGCRCV) gives ISGCMDI
control at entry point ISGCDIRV to do recovery proces·
sing. When entered at ISGCDIRV, ISGCMDI checks the
CRWA for a CRB address. If one is found, ISGCMDI veri­
fies the CRB, invokes ISGSMI to release the CRB, and re­
turns to the caller to continue with termination. If the
CRB found in the CRWA is on the command request queue
and a wait hes not been issued, ISGCMDI retries at the
wait. If the CRWA does not contain the address of a CRB,
ISGCMDI returns to caller to continue with termination.

Module Label

IEE0503D

:3
<:
(II
.....
x
>
(II
r­
r-

r-
-<
N
00
I

0-
-D
1..11
I

0

,...
0

'""
0
0
-0
'< ..,
III
-:r
I-t
l.O
:3

0
0 ..,
'lJ

....
-D
00
.....a

Diagram GRS-17. ISGCMDR - Global Resource Serialization Command Router (Part 1 of 8)

Input

CVT

._-------fGVTCMDRO

GVTCMDWQ

From address space
initialization (lSGNASIM)

1 Establish a recovery en­
vironment and perform
initialization.

2 Move the CRBs or MRSs
from the command request
queue to the command work
queue and build and initialize
the necessary control blocks.

Output

CVT ----....

(GVTX

GVTXRET1

GVT

GVTNCMDR

GVTGVTX

GVTCMDCO

GVTRETO

GVT

GVTCMDRO

GVTCMDWO

r
0
r!)
:J
lit
ID

il. = :\l :x ,Q
Will
ri·r+
f'I)'"J
'"J-.
... ·n
CIIr+
~m
<110.

13
aJ

-cr+
-j m
O'"J " 111111
'"J'"
",lit
'<:

0 ooot.
ott

H
fo4tl1J
tn:z
:I: =

r­
-<
N
OIl
I

t­
ao­
..0
UI
I

c

,...,
o

o
o
"0
'< .,
IQ
:r
i"t'

H
till
3:

o
o .,
"0

Diagram GRS-17. ISGCMDR - Global Resource Serialization Command Router

Extended Description

The global resource serialization command router aUaches
the message module to process message requests and the re­
start. quiesce. purge, and display processors to process the
VARY GRS and DISPLAY GRS commands. This module
is also called at entry point ISGCTXR1 to detach the com­
mand processor and release any storage it obtained for the
command processor.

1 ISGCMDR issues an EST AE to establish ISGCRCV as
its recovery routine. This module then loads

ISGCRETO and ISGCRET1 and sets the GVTNCMDR bit
off to indicate that the command router is active.
ISGCMDR verifies the command cleanup queue by ensuring
that each element on the queue is in a page with no storage
checks and that each element is either a CRB or MRB.
otherwise, ISGCMDR truncates the queue.

2 The command router uses compare and double swap
to move a command request block (CRB) and/or mes·

sage request block (MRB) from the command request
queue to the command work queue. If the request is re­
start, quiesce, purge. or display. ISGCMDR obtains storage
for the command ESTAE parameter list (CEPLI, command
recovery workarea (CRWA), and a full ring status table
{RSTI. initializes them, and saves their addresses in the
CRB. ISGCMDR (for a display request) then calls
ISGBCI which invokes entry point ISGBRFSN (in
ISGBRF) to get the status of each system in the CTCs for
each system. If the request is for a message, ISGCMDR
obtains storage for the CEPL and CRWA and saves their
addresses in the MRB.

Module Label

ISGBCI ISGBRFSN

(Part 20fB)

~ Diagram GRS-17. ISGCMDR - Global Resource Serialization Command Router (Part 30r8)
(I)
I

UI
o

3
<
(I)

"­x
>
(I)
r­
r-

r-
-<
I\)
00
I ...

0-
ooD
UI
I

0

......
0
'oJ

CO)
0

" oe:: ..,
CO :r
rl"

I-C

"" 3

n
0 ..,
"
<oD
00

"

Input

GVT

GVTCMDRQ

GVTCMDWQ ~CRB
CRBTYPE

GVT

I GVTCEC81

Process

3 Attach the appropriate
module to process the
request.

• Restart

• Quiesce

• Purge

• Display

• Message

4 Walt for more work.

Output

GVT

GVTCMDRQ

ISGCRST
GVTCMDWQ

GVTCMDCQ

CRB

ISGCQSC

ISGCPRG

ISGCDSP
r--0
ID
:J en
til
Q.~

ISGMSGOO ;a
31'1)
~en
rio,.
1lJ'" "'J-
-·n "' $

Step 2 CtlQ.

13

'" ."rfo
"'111 0.,
"O-
fir'" "' ... o+ra
'C

0 c
H

Htd
=:x :x :

r­
oo(
N
00
I ...

a-

'" U'I
I

o

,..
n

:3
It!
t+
:r o
Q.

o
;

o
"G
It! ,
III
t+ ...
o
:J

Diagram GRS-17. ISGCMDR - Global Resource Serialization Command Router

Extended Description

3 ISGCMDR attaches the appropriate request processor.
If the attach is successful, ISGCMDR saves the TCB

address in the CRB or MRB and uses compare and swap to
place the CRB Or MRB onto the clean·up queue. If the at·
tach fails, this module returns an error post code and frees
any unneeded storage. Steps 2 and 3 are repeated until the
command work queue Is empty.

4 When both the command request queue and command
work queue are empty, ISGCMDR issues a wait on

GVTCECB. This ECB is posted by either the command in­
terface routine IISGCMDII, the RSA SEND/RECEIVE rou­
time (lSGBSM), the termination resource manager
(lSGGTRMO), or the mainline recovery routine
(lSGGFRROI.

Module Label

(part 4 of 8)

o
-to
H
~
:I:

= Diagram GRS·17. ISGCMDR - Global Resource Serialization Command Router (Part S of 8)
en
I ...

VI
N

::I
< en

" X
:lit-

en
r­
r-

r­
oo(
N
011
I ...

Q\

.0
\11
I

o

,...
n
(')
o
'0
'< .,
III
:T
t+

I-C
Uf
3

n
o .,
'0 .

Input

CVT

~ CRB

CRBRPTCB

CRB

QCRBRQCMP

CRB/MRB

CRBARSZ

CRBCEPL

SMPL

SMPCADDR

From the 9 --,-
---.. GVT Entry point - ISGCTXR1

-"
./ GVTCMDCa 5 Find the CRBIMRB for

r the task just completed.

.....: CRB

V
CRBNCRB

...
6 Post the requestor.

r

ECB
p

ECBcc

J..

7 Release the storage used

~ CEPL r by the request and de-

CRWA
tach the command pro-
cessor.

RST

\PEXB

CRB 6

Output

CVT GVT
-.,.

....
./ ", GVTCMDCa

r

~ CRB

CRBRPTCB

CRB

--.. CRBRQCMP
r

ECB
p

ECBcc

CRB/MRB

... CRBARSZ=O
r

CRBCEPL=O

Return
to the SMPL

caller

SMPLCADDR=O

....
CI'
:3
(")
o .,
" .

:3
III ,..
':r
o
Q.

o ...
(:)

" I:D .,
Gill ,..
o
::J

Diagram GRS-17. ISGCMDR - Global ReS01ll'Ce Serialization Command Router

Extended Description

Entry point ISGCTXR1 - The dispatcher gives control to
ISGCMDR at entry point ISGCtXR 1 after a global re­
source serialization coll'lfJland processor has completed. At
this entry point ISGCMDR releases command related stor·
age and detaches the command processor.

5 ISGCMDR finds the CRB/MRB for the completed
command cleanup queue by matching the TCB for the

completed task to a TCB in the control blocks on the com­
mand cleanup queue.

6 If there is an ECB address in the CRB/MRB,
ISGCMDR posts the command requestor with the re­

sults of the command (0 for success and 8 for failure).

7 This module issues a FREEMAIN macro to release the
storage occupied by the CRWA. the CEPL, and the

Module

RST. ISGCMDR calls ISGSDAL to return the cell used by ISGSDAL
the CRB/MRB to the pool extent block (PEXBI. detaches
the completed command processor,·and returns to the cal-
ler.

Label

(part 6 of 8)

= Diagram GRS-17. ISGCMDR - Global Resoun:e Se.riaJizaCioD Command Router (Put 7 of 8)
CIl

• ..
VI
~

:.
< en ,
)(•
en
r­
r-

r­
~
N
ex.
I

0-
~
t"n
I

Q

....
n ...,
o
o
~ ,
CO
:r
ri-

From the recovery prOc:eslOl' 9 Input
(ISGCRCVt

.. Pro
CRWA

Entry point - ISGCDRRV

..
8 Determine whether the error

CMDRCTXR
y

was In ISGCTXR1 or
CRB ISGCMDR.

CTXRECUR r CRWACRB CRBTCB

CVT

I I GVT
I ... • Process the ISGCTXR1

~ error • .. - -GVTCMDQC
, CRB

I

CRWA • Process the ISGCMDR

leMORE~R I "' ... error. '.

GVT

IG~~owa heR" I
.....

..

..

....
,/ ...

.....
M
tlI:I
:3

o
o ,

CRWA

le~~R" I
~ .. 9 Release the command storage.

~Returnt~
the caller

0 'U .
....
..0
DO,

Output

CRWA

~
GVT

GVTCMDCQ
~CRB

I I

CRWA

leRWARmv I

CRWA

leRWA~" I

Diagram GRS-17. ISCCMDR - Global Resource Serialization Command Router

I-f

'" 3:

(")
c .,
'U .
~

Extended Description

Entry point ISGCDRRV - The command recovery routine
(lSGCRCVI gives ISGCMDR control at entry point
ISGCDRRV to do recovery processing.

8 ISGCMDR determines whether the error occurred in
ISGCMDR or ISGCTXTR1 by checking CMDRCTXR.

If CMDRCTXR is set to one, the error occurred in
ISGCTXR1, if not, the error was in ISGCMDR.

If the error was in ISGCTXR1, ISGCMDR determines if
this is a recursion (CTXR ECUR=1I, and if so, continues
with termination. If this is not a recursion, ISGCMDR sets
up for a retry at entry point ISGCT XR 1, detaches the
command processor, and cleans up the command-related re­
sources. ISGCMDR then verifies the command cleanup
queue by ensuring that each element on the queue is in a
page with no storage checks and that each element is either
a CRB or MRB, -otherwise, ISGCMDR truncates the queue •

.0 If the error was in ISGCMDR, the pro<;essing is the same ex-
~ cept the retry is set for the appropriate entry point in

I SGCMDR.

9 If the CRWA points to a CRB (CRWACRB contains an

Module

address), ISGCMDR calls ISGSDAL to return the ISGSDAL

3:
CD
t+
::J"
o
Q.

o
o
1J
ID .,
!II
t+

o
:J

RQA control block cells back to the pool extent block
(PEXB). This module then returns to ISGCRCV indicating
whether to retry Or continue with termination.

Label

(Part 8 of 8)

3
<
~
)(
:II-

~
r­
r-

r­
-<
N
co
I ...

CI>
,.g
UI
I

o

I-f
all
3

o o ,
'U .

Diagram GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE Request Processor

Input

CRB

CRBSYSNM

CRBRST

CRB

ICRBSYSNM I

RSC

RSCPARMS

RSCFDELS

From the command router
(ISGCMDR)

1 Determina if the proper
conditions exist to pro­
cess the request.

If not,

2 Determine if the system
to be purged owns or is
waiting for any resources.

If yes,

If the operator cancels
the request.

3 Inform the operator that
the system is being purged
and purge the system.

StepS

StepS

ISGBCI

(Part 1 of 4)

Output

CRWA

~
RSC

RSCPARMS

RSCFUNCT

RSCSYSNM

RSCTMLlM

,....
o

....
co
:3:
(')
o .,
'U

:3:
II) ,....
:r
o
a..
o
-to

o
'U
II) .,
III ,....
o
:::I

G)
~
en
I ..

UI

Diagram GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE Request Processor

Extended Description

ISGCPRG processes the PURGE parameter of the VARY
GRS command. The PURGE parameter removes a system
from the global resource serialization complex. ISGCPRG
receives control from the command router (ISGCMDR)
when a command request block (CRB) for a purge request
is found on the global resource serialization command work
queue. ISGCPRG obtelns ring status by Invoking ISGBCI
which invokes ISGBRF (et entry point ISGBRFSN).

1 The following conditions must be met to process the
purge request:

• The system issuing the purge request must be en
active system in the global resource serialization
ring.

• The system being purged must be known to the
globel resource serialization complex, and must
not be an active, joining, or restarting system.

If these conditions are not met, ISGCPRG rejects the
request and processing continues at step 6.

ISGCPRG issues the GaSCAN macro to determine if
the system being purged owns or is waiting for any re­

sources. If there ere resources associated with the system
to be purged, ISGCPRG issues message ISG0161 informing
the operator of that fact, then issues message ISG017D to
give the operator the chance to cancel the purge request.
If the operator replys "NO" ISGCPRG cancels the request
and continues processing at step 6.

3 ISGCPRG issues massage I SGO 111 informing the oper·
ator that the system named in the request is being

purged. ISGPRG then calls ISGBCI to remove the re­
quested system from the global resource serialization com·
plex.

Module Label

ISGBCI

(part 20f4)

CO) Diagram GRS-18. ISGCPRG - Global Resource Serialization VARY GRS PURGE Request Processor (Part 3 of 4)
.v
en
I ...

U'I
00

3
< en

" X
>
en
r­
r-

r­
oo(
N
co
I ...

0-
.,g
U'I
I

Co

,..,
n

H
O:J
3:
n
o .,
'U .

Input

OPL ASC

..

..
ASCOELIO

OWB

I QWB_RBQ I

ASC

ASCPAAMS

...
ASCFSENC ..
ASCANONE

Process 7 Output

OPL

4 Purge the global resources ...
associated with the ..

.~.
..

system. OPLSYSIO
ISGGQWBO

OPLSVOWB
Purge
theOWB OPLASYID

OPLAB
ISGSOAL

"IIfI"""'"
Free the
message
request e blocks

..........
ISGGOWBO

............
Free
theOWB

.... e 5 Notify the remaining SY5-

• 'ompl", of tho '*
purged system.

ISGBCI

Inform the
other systems CAB
of the purge

6 I ndicate that purge pro- t..

cassing is complete. .. CABAOCMP

~R~"m
to the
caller

MAB

MABSYSNM

MABSYNM1

OWB

OWBHNOWB

I-i
tJ:I
3
(")
o ..
'1) .
~
~
00

3
10
rt­
~
o
a.
o ...
o
'U
ID ..
III ,.. -o
~

Diagram GRS·18. (SGCPRG - Global Resource Serialization VARY GRS PURGE Request Processor

Extended Description

4 ISGCPAG sets up a dequeue purge list IDPL) and calls
ISGGQWBO at entry point ISGGQWB6 to perform a

SYSID purge of the resources held or requested by the sys­
tem being purged. ISGGQWB6 passes back the address of a
queue of messages to be Issued regarding the resources that
it purged. ISGCPAG builds a header message to go on top
of those messages and calls ISGMSGOO to issue the messa9lls.
ISGCPAG sots up a storage manager parameter list ISMPLi
describing the MABs and calls ISGSDAL to free them. This
module then calls ISGGQWBO at entry point ISGGQWBF
to free the QWB returned by I~GGQWB5.

5 ISGCPAG calls ISGBCI which invokes ISGBAF let
entry point ISGBAFNM) at SENDCMD to inform the

remaining systems In the complex of the purged system and
calls ISGMSGOO to inform the operator on this system of
the purged system .

6 ISGCPAG sets CABAQCMP", indicating that purge
request processing is complete and returns to the com·

mand router IISGCMDA) •

Recovery Processing

The command recovery routine IISGCRCV) gives
ISGCPAG control at entry point ISGCPG02 to do recovery
processing. ISSCPAG issues message ISOO151 to indicate
which function caused the error and the reason for the er·
ror. ISGCPAG indicates in the CRB that purge processing
is complete and, if the failure was caused by an error In
ISGBCI, records the ring status changed parameter list
(ASC) In the SDWA. ISGCPRG sets a recovery proceSsing
return code (O"'recovery processing successful and 4=un·
successful) and returns to the caller.

Module Label

ISGGQWBO ISGGQWB5

ISGMSGOO

ISGSDAL
ISGGQWBO ISGGQWBF

ISGBCI ISGBAFNM (SENDCMD)

ISGMSGOO

(Part 4 of4)

3:
<
CA
~
)(
>
en
r­
r-..

,..
n
n
o
~ ., ...
ra
;r
rf"

1-1
til'
3:

n
o .,
'tJ .

Diapun GRS-19. ISGCQMRG - Global Resource Serialization Queue Map (Part 1 0(6)
From

Input

CVT

~GVT

ISGNGRSP-join procestlng
or
ISGCRST - restart processing

~GVT
GVTCMPAT

1 Obtain storage for global
resource Information and
for data received from
other systems,

2 Ensure that the inclusion.
axcluslon, and reserve con­
version resource nama lists
(RNLs) for this system
match the lists of tha active
global resource serialization
system.

3 Obtain information about
global resources from the
active global resource ser­
Ialization system.

ISGGaS01

Flag aCBs as need
to be processed

ISGBCI

Buffer receive
(BUFRECV) function

ISGBCI

Buffer receive
(BUFRECV) function

Output

Buffer

Compatibility level
Indicator

RNLs

Buffer

l;=1
~

,...
n
~

o
o
"U
'< .,
(Q
:r
M
CIJ
:(

o
o .,
"U .

:(
II)
:r
o
a.
o
o
"U
tD .,
CII
o
::J

Diagram GRS-19. ISGCQMRG - Global Resource Serialization Queue Merge

Extended Description

Whenever a system is joining the global resourca serializa­
tion ring or restarting global resource serialization, join pro­
cessing (lSGNGRSP) or restart 'processing (lSGCRST) calls
queue merge (lSGCOMRG) to perform the following:
•. Verify that the inclusion, exclusion, and reserve conver­

sion resource name lists IRNLsI of the system joining or
restarting in the global resource serialization ring match
the inclusion, exclusion, and reserve conversion lists of
the active global resource serialization system.

• Generate the ENO or DEO requests necessary to make
this system's global resourca queues match those of the
active global resource serialization system.

ISGCOMRG loads module ISQGOSRV to use the various
global resource serialization service routines provided by
ISGGOSRV ..

Module

1 IOOCOMRG performs some initialization for subsa- ISGCOMRG
quent processing and initializes and queues the recov­

ery workerea for the EST AE/I recovery routine
(lSGCRCVI. ISGCOMRG Issues a GETMAIN macro to 0b­
tain 64K bytes of storage from subpool 229. 60K bytes of
this storage is used as a buffer to hold the data sent from an
active global resource serialization system. The remaining
4K is used to contain Information about the global resource
queues of this system. ISGCOMRG invokes ISGGOSRV at

Label

antry point IOOGOS01 to set a flag In all the global OCBs. ISGGOSRV ISGGOS01
Tha flag indicates that the OCB has not yet been processed
by ISGCOMRG.

2 IOOCOMRG invokes the buffer receive function of
IOOBCI. The first buffer sent by the active global re- ISGBCI BUFRECV

source serlalization.system contains the global resource seri-
alization compatibility level indicator followed by the in-
clusion, exclusion, end reserve conversion RNLs. To pre-
serve data integrity, these lists must match the ones speci-
fied for this system. If the compatibility level indicator
does not match that of the active global resource seriali-
zation system, or If the resource name lists do not match,
ISGCOMRG issues an X~09A' ABEND with the appropriate
reason code. If the compatibility levels are the same and
the lists match, processing continues.

(part 2 of 6)

Extended Description

3 ISGCOMRG invokes the buffer receive function of
ISGBCI again to cause the active global resource seri­

alization system to send information about global resources
in the form of resource information blocks (RiBs) and re­
source information block extensions (RIBEs) to this sys·
tem. ISGBCI does not return control until it copies the
data into the buffer area obtained in step 1. ISGCOMRG
ensures that the RIBs and RIBEs are constructed properly.
If they are not, ISGCOMRG issues an X'09A' ABEND with
an appropriate reason code; otherwise, procesSing contin­
ues.

Module Label

ISGBCI

CD
lID
CIt
I

N

:I: c
CIt ,
)(
~

CIt ,.. ,..

,..
-<
N
00
I
~
UI
I

o

....
n ...,

....
~
3:

n
o ,
'U .

Diapam GRS-19. ISGCQMRG - Global Resource Serialization Qaeae Merae (Put30f6)

Input

. Buffer

RIBand RIBE
Information for
this system

Buffer

RIBand RIBE
Information In
GOSCAN format

Process

4 Check that each globa' r.
source, represented bV a
RIB, exists in this SVI­
tern.

5 Generate the ENO and
DEO requests necessary
to make the list of r.
questors for each global
resource match the list
on the active global re-
source serlallzetlon sVl-
tern.

6 Repeat steps 3-5 for all
global resources known bv
the active global resource
serialization system.

Output

the
queues

ISGGOWBO

initialize a OWB

ISGBSR

process queue

4Kbuffer

RIBand RIBE
information
InGOSCAN
format

OWB

ENO/DEO requests
on process queue

OWB (ENOa)

OWB (ENOb)

OWB (ENOcl

,...
o
~

1-4
tJI
:3

(")
a ,
'tJ .

Diagram GRS-19. ISGCQMRG - Global Resource Seria1ization Queue Merge

Extended Description Module Label

4 ISGCOMRG copies the qname and rname from the reo I5GOSCAN OSCAN
source information block (RIBI for each global re­

source and passes them to ISGOSCAN via the GOSCAN
macro to obtain any information this system has describing
requestors of the global resource. If I5GOSCAN returns
with a return code indicating that no data was found,
I5GCOMRG issues an X'09A' ABEND with an appropriate
reason code.

5 ISGCOMRG generates and queues the ENO and CEO
requests necessary to make this system's list of re­

questors for the global resource match the list on the active
global resource serialization system. To do this,
ISGCOMRG:
• Invokes ISGGOWBO at entry point ISGGOWB2 to copy ISGGOWBO 'I5GGOWB2

the information in the GOSCAN buffers into a queue
work block IOWBI that is suitable for the process queue

• Invokes ISGB5R at entry point ISGBBE to place this I5GBSR 15GB BE
... OWB on the process queue
.0

~ 6 ISGCOMRG repeats steps 3 thru"S until the active glo-

3
III
ri'
:r o
a.
a ...
o
'tJ
II) ,
01
ri'

o
:;:,

bal resource serialization system has sent all the in­
formation about each global resource on that system.

(Part 4of6)

~ Diagram GRS-19. ISGCQMRG - Global Resource Serialization Queue Merge (part 5 of 6)
en
I ...

G'o
~

3
< en ,
X
>-
en
r­,...

r-
oo(
N
00
I ...

G'o
\0
01
I

0

'"' n
(")
0
'0
<c:: .,
IQ
::r
c+
1-1
tlI'
3
(")
0 .,
'0 .
...
.,g

00

Input

Global QCBs

~
Global QELs

~
GVT

D

Process

7 Generate DEQ requests
for all the resources
owned or requested by
systems that are no longer
in the ring.

Return
to caller

ISGGQSRV

Generate DEQ
requests

Output

DEQ requests on
process queue

QWB IDEQ xl

QWB IDEQ yl

QWB IDEQzl

GVT

GVTQMRGA~O

r-
0
II)
::l
(.II
ITI
Do = :Q
:< II
III (/I
....11-
1\"1"1
~
"·0
III
... 10
III Jl.

13
III

"011-
'"'lID
0.,
\J-
!alii .,,.
roc

0 o • • ...
!of'" 1:13
3: a

r­
oo(
N
C»
I

G'o
.0
UI
I

o

"" n

foot
tJ:I
:3

o
o .,
'0 .

Diagram G~19. ISGCQMRG - Global Resource Serialization Queue Merge

Extended Description

7 If this system had been qulesced and is now restarting
global resource serialization, this system can indicate

S:lme globel resources being owned by other systems that
have actually released those resources. These resources
were not in the list that was sent by the active global re­
source serialization system and must be removed from this
system's global resource queues. ISGCOMRG invokes
ISGGOSRV at entry point ISGGOS03 to scan the
OCB/OEl chains and generate DEO requests for all re­
questors of global resources not known to the other sys·
tems in the global resource serialization ring. The global re­
source queues of this system now match the queues of the
active global resource serialization system. If ISGGOS03 is
unsuccessful, ISGCOMRG issues an X'09A' ABEND with a
reason code identifying the error. ISGCOMRG frees the
storage used to contain information about the global re­
source queues of this system and the data sent from the
active global resourca serialization system. ISGCOMRG re­
turns to the caller with an Indication in the GVT that the
queue merge process was successful (GVTOMRGA=O).

Recovery Processing

When an error occurs while ISGCOMRG is executing. RTM
calls ISGCRCV. ISGCRCV passes control to a special error
exit routine in ISGCOMRG to perform the following:
• Release any storage obtained for OWBs
• Delete module ISGGOSRV
• Specify storage to be released by ISGCRCV

ISGCOMRG returns control to ISGCRCV to process the
following recovery options:
• Retry if allowed
• Take a dump using default options
• Release dynamic area and buffer area obtained for

GOSCAN and BUFRECV.
• If retry is not allowed, ISGCRCV returns control to

RTM to continue lNith termination.

Module 'Label

ISGCOMRG

I~GOSRV ISGGOS03

(Part 60(6)

3
< en

" ~
en ,.. ,..

,..
-<
N
C»
I

CI"
.."

'" I
o

....
Ill'
3
C')
o ,
'G .

Diagram GRS-lO. ISGCQSC - Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 1 of 4)

Input

Register 1

GVT

IG~MI
Register 1

CRB

From the command
router /lSGCMDRI

CRBSVSNM

RSC

1 If the quiesce request is
for this svstem:

• If this is the onlv
active system, reject
the request.

• Inform the operator

• Pass the request to
an active svstem

• Inform the operator of
this system If the
quince Is successfull.

If not,

Retumto
the caller

RTM

Output

I X'09~ ABEND I

r­
-<
N
0-
I ...

0-
,Q

UI
I

o

....
n ...,
n
o
~ ,
G
~ ,..
1-1
II:IIJ
3:

n
o ,
'U .

3
II) ,..
~
o
0-

o
a
'U
II)

~ ,.. -o
~

CD
0Ia
en
I

Diagram GRS-20. ISGCQSC - Global Resource Serialization VARY GRS QUIESCE Request Processor (Part:1 of 4)

Extended Description

ISGCasc processes the au I ESCE parameter of the VARY
GRS command. The aUIESCE parameter removes a system
from a global resource serialization ring. ISGCasC receives
control from the command router (JSGCMOR) when a
command request block (CRB) for qulesce processing is
found on the global resource serialization command work
queue. ISGCasC obtained the ring status by Invoking
ISGBCI which Invokes ISGBRF (at entry point ISGBRFSN).

1 If the operator requests a qulesee of his own system,
ISGCasC determines If the system Is the only active

'vstem. If true, this module rejects the request and Issues
message ISG0141. Otherwise, ISGCasc issues message
ISG011 to Inform the operator that this system Is qulesclng
global resource serialization. Since the system being
quiesced cannot process the qulesce request Itself, ISGCasC

Module

callI ISGBCI which invokes ISGBRF (at entry point ISGBCI
ISGBRFNM) to pass the request to another active system
In the ring. Wilen ISGBCI returns, ISGCasc checks for
8uccessful completion of the request. If the request was
successful, ISGCasc Issues message ISG0131, If not, It
l88u88 en X'DBA' ebend.

Lebel

ISGBRFNM

3
<
Ut ,
)(
:a-
Ut
r­
r-

r­
-<
N
00
I
~
0-
..0
UI
I

g

,...
n ..,
o
o
lJ
'<: ,
IQ
;r
I't'

1-1
t»
3

o
o ,
'0 .

Diagram GRS-20. ISGCQSC -. Global Resource Serialization VARY GRS QUIESCE Request Processor (Put 3 or 4)

Input

Register 1

Register 3

CRBSYSNM

RSC

CRWA

CRWAFID

From the
recovery
processor
IISGCRCV)

Process

2 If the quiesce request is
for another system:

• Inform the operator
of the system being
quiesced.

• Remove the system
from the ring.

• Inform the operators
of the remaining sys­
tems.

3 Indicate that the request
is complete

Entry Point ISGCQS02

4 Issue an error message, in­
dicate that quiesce request
processing is complete, and
update the SDWA.

ISGBCI

ISGBCI

Return to
the caller

Return
to the
caller

Output

CRB

I~BROCMP I
CRB

ICRBRQ~pl
SDWA

I SOWAVRA I

r­
-<
N
00

Diagram GRS-10. ISGCQSC - Global Resource Serialization VARY GRS QUIESCE Request Processor (Part 4 of 4)

I ...
CJ"

'" \JI
I

o

,...
n
n
o
'tJ
oc:: ,
fQ
':J"
n-
M
t7::I
:3

n
o ,
'tJ .

Extended Des«iption

2 If the quiesce request is for a system other than the
one issuing the command or is a request sent from an­

other system, ISGCaSC issues message ISGOlll to the sys·
tem being quiesced and the system that issued the com·
mand, informing the operator that his system is being
qulesced. ISGCaSC calls ISGBCI which Invokes-ISGBRj:
(at entry point ISGBRFNMI to remove the requested
system from the global serialization complex. If the reo
quested system is not active, ISGCasC issues message
ISG0141 and ISG0151 to inform the operator that the
command was rejected because the target system was
not active. If the system was successfully quiesced, this
module calls ISGBCI to issue message ISG0131 to the reo
malnlng active systems in the complex informing them
that the qulesced system has been removed from the
complex.

:;; 3 ISGcaSC indicates in the request's CRB that the
00 quiesce request is complete and returns to ISGCMDR,

Entry Point ISGCQS02

4 The recovery routine (lSGCRCVI calls ISGCaSC at
entry point ISGCaS02 to do recovery processing.

When entered here, ISGCaSC issues message ISG0151 to in·
dicate the function that caused the error and the reason for
the error. ISGCaSC indicates in the CRB that quiesce pre­
cessing is complete and if the failure was caused by an error

3 in ISGBCI, this module records the RSC in the SDWA.
~ ISGCaSC sets a recovery processing return code
':J" (O=recovery processing successful and 4"unsuccessful) and
g, returns to the caller.

o
-h

C
'tJ
III ,
AI
n-
o
::J

Module Label

~
Ut

")(•
Ut
r­
r-..

r­
-<
N
C»
I ...

0-
.0
VI
I

o

,...
n
(')
o
~ , ...
IQ
J

" 1-1
~
3:
(')
o ,
-u .

DJagram GRS-21. ISGCRCV - Global Resource Serialization Command Recovery (Part 1 of 2)

Input

CEPL ~ CRWAqueue

CEPLCRWA If CRWALEIB

I
I

CEPL

CEPLCRWA I--.....CRWA

CRWA SDWA

D D

~

-

From
RTM -.

...

...

.,.

..
r

Process

1 Perform initialization and ...
establish a recovery routine. "Y

2 If the failing routine pro-
vlded a special exit, pea
control to it.

3 If requested. take an SVC
dump.

4 Release the storage
specified by the failing
routine.

..
5 Delete the recovery, and If reo

quested, set up to retry the ...
failing routine, before request·

;ng RT .. """ ... he SOWA-,.. R m
in SYS1.LOGREC. to

RTM

Output

CEPL

c;EPLSDWA --........SDWA

Fixed

CEPLESTA Variable
(SDWAVRA)

CEPL SDWA

D
Fixed

Variable

r­
oo(
N
C»
I

0-
..a
UI
I

o

(")
o
"0
'< .,
III
J
t+

1-1
tl::I
::I

(")
o .,
"0 .

::I
II)
IT
';f'
o
a.
o
o
"0
ID .,
11.1
t+
o
:J

. Diagram GRS-21. ISGCRCV - Global Resource Serialization Command Recovery <Pa!t 2 of 2)

Extended Description

ISGCRCV is the ESTAE/I routine used by the following
global resource serialization command processing and ini·
tialization routines:

• ISGCDSP
• ISGCMDI
• ISGCMDR
• ISGCPRG
• ISGCQMRG
• ISGCQSC
• ISGCRST
• ISGMSGOO
• ISGNASIM
• ISGNGRSP

DISPLAYGRS
Command interface
Command router
VARY GRS PURGE
Queue merge
VARY GRS QUIESCE
VARY GRS RESTART
Message processing
Address space initialization
GRS.:Option processing

ISGCRCV performs SYS1.LOGREC recording, takes SVC
dumps, routes control to special exit routines, and releases
storage for the failing module. This module then indicates
to RTM whether a retry should be attempted or termina­
tion continued.

1 If an SDWA is available, ISGCRCV copies information
from the command recovery work area (CRWA) into

the variable area of the SDWA (SDWAVRA). ISGCRCV
obtains storage from sub pool 229 for EST AE and dump pa·
rameter lists, and for information about storage to be reo
leased. This module establishes a recovery routine to pro­
tect against an error occurring during special exit proces·
sing or within itself. If a recovery routine cannot be estab­
lished, ISGCRCV indicates in the CEPL (CEPLESTA.:O)
thet special exit processing should not be Invoked. ISGCRCV
then copies the CRWALEIB subfield of each CRWA pro·
cessed into SDWAVRA. When recorded in SYS1.LOGREC,
SDWAVRA will contain a trace of this recovery processing.

2 If the failing routine has a special recovery exit, before
passing the exit contrOl, ISGG.RCV determines if a

dump is also requested and if so invokes an SVC dump. If
an SDWA is available (CEPLSDWA.:'), then ISGCRCV val·
idates the GVT, GVTX, and CRB/MRB addresses. If an
SDWA is not available this module assumes these addresses
to be invalid and then passes control to the special recovery
exit of the failing routine. Upon return ISGCRCV indicates
,whether the exit was successful or not in CRWASERR.

Module Label Extended Description

3 If a dump was requested (CRWADMP=1) and one has
not already been taken, as in step 2, ISGCRCV In·

vokes SVC dump.

4 ISGCRCV releases all storage specified in the CRWA.
CRWASTRG contains descriptions of storage rangas.

If the starting address and length fields for a range are not
zero, ISGCRCV issus a FREEMAIN for that range.

5 ISGCRCV deletes its recovery environment and sets
up to retry tlie failing routine if requested

(CEPLRTRY~1). If this is a recursion (CRWART2.:1),
then this module does not allow a retry. ISGCRCV issues
a SETRP to request that RTM record the SDWA in
SYS1.LOGREC and retry if either is requested.

Recovery Processing

ISGCRCV eSlablishes recovery to provide re-entry into it.
self if a failure occurs in a called routine.

Module Label

~ Diagram GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTARt Request Processor (Part 1 of 4)
~
I ...
~ From the command

::I
<
~

"­
X
Joo

~
r­
r-

r­
-<
N
00
I ...

CI'
-0
us
I

C)

M
CI
::I
(')
o ,
"0 .

,Input

CRB

CRBRST If

CRB

CRBSYSNM

CRBOSYNM

CRB

CRBRST V"

router (lSGCMDRI
... p,ocess

RST

.. 1 Determine the status of
P' this system and the other

systems in the complex.

to. 2 If the request is for this
r system, restart it.

GVT

I G~SVSNM I
..

3 If the request is not for
RST .,. this system. restart the reo

quested system.

6

Output

t... ISG011I
P' ISG0121

..... ~
ISGBCI

,- --r

.. ISGCQMRG

c:::J ~

P'

.... ...
ISGBCI

,- --r

~

c::J
~

~

~

" n
(')
o
"0
'< ..,
!Q
:r
IT

1-1
c:g
3:

(")
o ..,
"0 .

Diagram GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART Request Processor (part 2 of 4)

Extended Description Module Label

ISGCRST processes the RESTART parameter of the VARY
GRS command. The RESTART parameter performs the
following functions:

• Bring a new system into the global resource serialization
complex.

• Restart global resource serialization on a quiesced system.
• Restart global resource serialization processing on one

or more systems after a disruption in the complex.

ISGCRST receives control from the command router
(lSGCMDR) when a command request block (CRB) for a
restart request is found on the global resource serialization
command work queue. ISGCRST obtains the ring status by
invoking ISGBCI which invokes ISGBRF (at entry point
ISGBRFSN).

1 ISGCRST first determines if this system is an active
global resource serialization system. If it is not active

ISGCRST determines if the resource queues are up to date
on this system, whether another system in the complex has
the same name as this system, and whether this system is
connected to more than one global resource serialization
complex. ISGCRST checks the other systems in the com­
plex for the sama conditions and sets the appropriate inter·
nal indicators for all the tests just made, for use in later
processing.

2 If the restart request is for this system, ISGCRST
determines if the request was issued by thi5 system or

sent from another system in the complex. If the request
originated on this system, an active global resource seriali·
zation system exists, and this system is quiesed or inactive,
ISGCRST issues messages ISG0111 and ISG0121 indicating
that this system is restarting global resource serialization
and the restart request is being passed to another system.
If the restart request did not originate on this system, an
active global resource serialization system exists and this
system is quiesced or inactive. ISGCRST issues message
ISG0111 indicating that this system is restarting global
resource serialization. This module then calls ISGBCI which
calls ISGBRF (at entry point ISGBRFNM) to pass the ra- ISGBRF ISGBRFNM
quest to an active global rasource sarialization system to
restart this system. ISGCRST calls the queue merge routine ISGCClMRG
(lSGCaMRG) to merge the restarting system's global reo
source serialization queues with the global resource serializa-
tion queues of the other active systems. ISGCRST then issues
the restart completion message (ISG031I) on this system
and broadcasts the same message to the other active
systems In the complex.

Extended Description

If the request is for this system and this system is already
active, ISGCRST issues message ISG0141 indicating that an
active system cannot be restarted and rejects the request.
If this system is inactive and no active global resource seriali­
zation system exists, ISGCRST determines if the global
resource queues of this system are accurate and calls
ISGBCI to restart this system and on return issues messaga
ISG0131 on this system. If the global resource queues are
not accurate, ISGCRST issues message ISG0141 indicating
that the queues are damaged and rejects the request.

3 If the restart request is for another system, ISGCRST
determines if this system is an active global resource

serialization system, and if so looks for the system specified
on the request in the global resource serialization complex.
If the specified system is not part of the complex, ISGCRST
issues message ISGOt41 indicating that the specified
system could not be found. If the specified system is
found, ISGCRST checks the indicators set in step 1 to
determine if the specified system is restartable. If not, this
module issues message ISG0141 indicating why the
specified system cannot be restarted. and rejects the request.
If it is restartable and inactive, ISGCRST issues message
ISG0111 indicating that the specified system is being
restarted. If the specified system did not request the
restart, ISGCRST calls ISGBCI to request the specified
system to send back a restart request. ISGCRST calls
ISGBCI again to add the specified system to the global
resource serialization ring. This module then issues a
GQSCAN macro to get information about this system's
global resources and then calls ISGBCI which calls ISGBRF
(at entry point ISGBRFNM) to send the information to
the specified system. When the specified system completes
restart processing, ISGCRST issues messaga ISG0131 on
this systam and sends It to all other systems In the complex
indicating that the specified system has restarted global
resource serialization.

If this system Is inective, It cannot process a restart request
for another system and ISGCRST Issues message ISG0141
Indicating such.

Module Label

ISGBRF ISGBRFNM

I"" = -;a
nm
ID'"
;:'1+ "'., ID-
a.n

1+
31D
lila.
1+
1D3
.,111 -.... IIIID,
"' RI
I ...

1/1
'V
.,0
0
"0
II)H
.,as
.... :z
'C :

o
H
as
3:

3
< en ,
)(
~

en
r­
r-

(')
o
'U
'C .,
ro
;r ,..
....
011
3

o o .,
'U .

Diapam GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART Request Processor (Part 3 of 4)

Input Process 9
CRB

...
4 Process the ALL key-

CRBRST ~ RST
v word.

CRB

...
CRBSVSNM 5 If the request cannot be .. attempted, inform the

operator

Return
to the
caller

Output

... c::J ...

c:J ...
..

r­
~
N
00
I ...

0-
00
UI
I

o

,..,
n
COl
o
~ ,
IQ
:r
rI-

....
CIa!
:3

COl
o ,
'D .

3:
lID
rI­
:r
o
a.
o
Q
'D
CD ,
Ib
rl-

O
::I

Diagram GRS-22. ISGCRST - Global Resource Serialization VARY GRS RESTART Request Processor

Extended Description

4 If VARY GRS CALLI RESTART is specified by an
active system and there are no restartable systems.

ISGCRST issues message ISG0141 indicating such and re­
jects the command. If VARY GRS CALLI RESTART is
specified from an inactive system and an active global reo
source serialization systam exists, ISGCRST Issues message
ISG0141 indicating such, and rejec'ts the command. If
VARY GRS (ALL) RESTART is specified on an inactive
global resource serialization system and other restartable in'
active systems exist, ISGCRST restarts this system using the
same processing described In step 2 •

After this system has restarted global resource serialization
successfully, ISGCRST performs the processing described
in step 3 for each restarteble system.

5 If multiple global resource serialization complexes
exist, two or more systems share the same system

name, or the global resource serialization queues are dam·
aged, ISGCRST issues message ISG0141 indicating one of
the above and rejects the command.

Recovery Processing

ISGCRCV handles recovery processing for this module.
ISGCRCV calls ISGCRST at entry point ISGCRS02 if an
error occurs while restarting another system. At this entry
point ISGCRST removes partially restarted systems from
the global resource serialization ring and releases serializa·
tion.

Module Lebel

(Part 4 of 4)

Q
:Ia
en
I

3
<
CIt

")(
>
en
r­
r-

r­
-<
N
00
I ...

CI'o
oD
VI
I

o

.....
n ..,

lot
Df
:I

o
o .,

1:1 .

Diagram GRS-23. ISGDGCBO - Global Resou:e Serialization Dump Control DIodes Exit Routine (Part 1 of 2)

Input

Register 1

L.-___ ~ DEPL

parameter hst

OEPLGVT

OEPLASCB

OEPLMGCB

OEPLRSV

DEPLERQA,

GVTX

RQA bitmap

PC from
ISGDSDMP

1 Process the pages containing
control blocks Important
to global resource
serialization.

2 Move the date to be dumped
to the SOUMP outPUt

buffer.

3 Set a return code
before returning control
to ISGOSOMP.

PTtothe

c:aller

Output

RegIster 1

c:::;. DEPL
parameter hst

DEPLGVT

DEPLASCB

DEPLMGCB

DEPLRSV

DEPLERQA

Register 9

L-__ -I SDEXPARM I ~

Register 15

IReturn code!

parameter list

SDEXBFAD

SDEXKEYS

SDEXASID

SDEXCDAD

....
n

1-1
til'
3

n
o ,
11 .
loA ..,
co

3
CD
t't"
J o
Q.

o ...
o
'tJ
III .,
III
ri-

o
:J

G)
;10
en
I

Diagram GRS-13. ISGDGCBO - Global Resource Serialization Dump Control Blocks Exit Routine (Part 2 of 2)

Extended Description

ISGDGCBO receives control via a program call instruction
from ISGDSDMP. Its purpose Is to move from the global
resource serializetion address spaca to the SDUMP output
buffer, the pages containing the following:

• GVT (global vector tablet

• ASCB (global resourea serializetion ASCBI

• GVTX (global vector table extensiont

• GQHT (global queue hash tablet

• LQHT (global queue hash tablet

• GRPT (global resourea pool tablet

• LRPT (local rasourca pool tablet

• SAHT (system/ASID hash table)

• RSV (rinlHlrocessing systam vector tablel

• RSV entries

• The active global resource serializetion ERQA pages
for PQCBs, QCBs, QELs, and QXBs

Module Label Extended Description

1 ISGDGCBO procassas only a page of data et one
time. Control blocks which occupy more than one

page of storage, or span pages, are processed in muhiple
invocations of ISGDGCBO. ISGOOCBO turns on flags in
the SDUMP EST AE parameter list (DEPL) to indicate
thet procassing Is to be Inltieted for each of the itams
listed in the introduction. When ISGDGCBO is
processing a page in the resourca queue area CROA) or
extended resource queue area CERQA), ISGDGCBO
checks the corresponding bit In the bit map to determine
If the page is alioeeted !the bit Is on). If so, then
ISGDGCBO determines If the page Is from the ERQA
containing QCBs, QELs, QXBs, or PQCBs and dumps
only those pages.

2 ISGDGCBO moves one page of data to the SDUMP
output buffer •

3 ISGDGCBO returns control to ISGDSDMP after
setting one of the following return codes:

Return Code

o
4

8

Reason

Dump is complete, return to the caller

Write data to the dump deta set and
return to the caller

Write data to the dump data set and
return to ISGDGCBO to dump more
data.

Module Labal

~ Diagram GRS-24. ISGDPDMP - Global Resource SerialiZation·Print Dump Exit Routine
en
I
'" Oi'

3
< en ,
X
>
(II
r­
r-

r­
-<
N
011
I ...

0-
.0
VI
I

o

,...
n,

n
o
"0
'< .,
10
::r
t+

I-f

'" 3

n
o .,
"0 .

Input

Register 1

I
ABDPL

~ parameter list

+ CVT

+ PR INT routine

+ memory
access routine

+ print dump
output buffer

Input parameters for
AMDMEMAR

Register 0 Register 1

I I I I

Dump data set

ASCB

I~-{ ASCBASID

1
~GVTX

tLQHT

+GQHT

+LRPT

+GRPT

From
AMDPRUIM

~
-v'

e
n/

-'--
-,..-

~

_L-

Process

1 Place the global resource
serialization ASID in the
ABDUMP parameter list.

2 Retrieve the addresses of
the major global resource
serialization control blocks.

3 Print the labels and ad-
dresses of the control
blocks .

6

(Part 1 of 4)

Output

... ABDPL
po parameter list

+ CVT

• AMDMEMAR • PRINT routine

Memory access + memory access routine

+ print dump
output buffer

ASID

• AMDMEMAR

Memory access

o..
./ .. Print dump output

.GVT

.GVTX

"LQHT AMDWRITR
.GQHT- Print routine
.LRPT

4GRPT

r­
-<
N
t»
I ...

go.
'>D

"" I
o

o
o

" oc: ,
III
:r ,...
1-1
DI
3

o
o ,
"

3
II)
:r
o
a.
o -.-
o
'U
D ,
III ,...
o
:::J

Diagram GRS-24. ISGDPDMP - Global Resource Serialization Print Dump Exit Routine (part 2 of 4)

Extended Desc:ription

When global resource serialization control block infor·
mation located in the dump data set needs to be formatted
and printed, AMPR UIM branches to ISGDPDMP to do this.

1 ISGDPDMP calls the memory access routine
(AMDMEMAR) to search the global resource serializa­

tion address space contained in the dump data set to obtain
and return the eddress of the areas where the required in·
formation can be found. AMDMEMAR requires tWO para­
meters: register. 0 contains the virtual address to be refer·
enced and register 1 contains the address of the ABDUMP
parameter list passed to ISGDPDMP from AMDPRUIM.

ISGDPDMP obtains the virtual address of the gloabl re­
source serialization vector table (GVT) from the CVT and
passes the address to AMDMEMAR in register O. If the
GVT address is accessible in the dump data set, then
AMDMEMAR returns to ISGDPDMP an address in reo
gister 0 where it can be located. ISGDPDMP obtains the
GVT address. converts it to printable hex, and stores it in a
buffer to be printed. ISGDPDMP updates the ASID field in
the ABDUMP parameter list to the global resource seriali­
zation ASID, found in the globel resource serialization
ASCB pointed to by the GVT. to notify AMDMEMAR
from which address space to eccess data in the dump data
set.

2 ISGDPDMP then obtains the virtual address of the glo·
bal resource serialization vector table extension con­

trol block (GVTXllocated in the GVT, and passes it to

Module Label

3 ISGDPDMP calls the print service routine
(AMDWRITR) with the address of the ABDUMP pa·

rameter list (ABDPL) in register 1. The ABDPL contains
the address of the buffer needed to print the follOwing con·
trol block labels and the corresponding addresses in the be.

AMDMEMAR ginning of the dump.

• GVT
• GVTX
• LOHT 1I0cai queue hash table)
• GOHT (global queue hash table)
• LRPT (local resource pool table)
• GRPT (global resource pool tablel

AMDMEMAR

AMDMEMAR. If the GVTX address is accessible, then AMDMEMAR
ISGDPDMP converts the address to printable hex and stores
it into a buffer to be printed. Next the virtual addresses of
the resource serialization storage management control
blocks located in the GVTX are passed to AMDMEMAR. If
they are accessible, then ISGDPDMP elso converts these ad·
dresses to printable hex and stores them into a buffer to be
printed.

AMDWRITR

r- :I
-;a
nil
milt
:Jr+ en.,
11-
a.n

r+
3m
ilia. ,...
m3
.,SU
-r+
SUCD,
en-

III
en

'U
.,0
0 ..
'U
ID'" .,ar
r+:I:
'< :
a ...

~ Diagram GRS-24. ISGDPDMP - Global Resource Serialization Print D~p Exit Routine (put 3 of 4)
en
I ...

OJ
o

3
< en
X
>
en
r­
r-

r-
-<
N
00
I

0-
'.0
U!
I

Q

,...,
0
(")
0 .,
'< ,
10
:r
I'T

M
t:z>
3
(")
0 , .,
...
.0
00

"

Sorted
RIBs

....

I
I

I-

Process

4 Obtain and sort the local
and global resource queue
data into QNAME/RNAME
sequence

5 Print the resource data.

Return to
caller

ISGDSORT

Sort routine

AMDWRITR

Print routine

Sorted
RiBs

I
I

Print dump output

Majorcontrol
block addresses

Local queue control
block data

Global queue control
block data

....
00(
N
00
I ...

G'o
.a
\II
I

o

o
o
1J
'C .,
Ul
:T

"
M
tIJ
:3:

o
o .,
'tl

...
'10
co

:3:
ID
rt­
:l"
o
0..

o
-+.
o

" ID .,
QI
ti-

o
:J

Diagram GRS-24. ISGDPDMP - Global Resource Serialization Print Dmnp Exit Routine

Extendacl Description

4 ISGDPDMP obtains and sorts the local and then the
global resource queue data in the following manner.

ISGDPDMP obtains information about each resource de·
scribed by a queue control block laCBI and stores it into
alphabetical order by resource name. For each aCB on the
aCB synonym chains pointed to by the local and global
queue hash table entries, ISGDPDMP performs the follow­
ing:
• Builds a resource information block IR IBI
• Scans the aEl chain pointed to by a aCB for data

about the requestors of the resource
• Stores some of the information found in the aCB and

aEl into the RIB

When all the synonym chains have been processed.
ISGDPDMP calls the global resource serialization dump sort

Module

ISGDPDMP

routine IISGDSORT) to sort the RiBs into alphabetical or" ISGDSORT
der using the resource name IONAME/RNAMEI as the sort
argument .

5 ISGDPDMP calls the print service routine
IAMDWRITRI to print the information about each reo AMDWRITR

source following the control block labels and addresses.
For each resource. ISGDPDMP scans the aEl chain saved
in the RIB and prints information for each requestor.

Label

(Part 4 of 4)

H

'" 3

G)
;0
CI)
I

t­
OO
N

3
<
CI) ,
X
>-
CI)
r­
r-

r­
-<
N
co
I

t­
o­
.0
UI
I

Q

o
o
1J
'< ,
112
:r
IT

I-f
~
3

o
o ,
1J
..0
00 ...,

Diagram GRS·25. ISGDSDMP - Global Resource Serialization SVC Dwnp Exit Routine

Input

Register 1

+ IEAVTSEO

+ SCUMP output
buffer

Register 15

Return code
from ISGDGCBO

From
IEAVTSCU

1 Establish a recovery en­
vironment.

Entry Point: ISGDSO01

2 Obtain resource infor­
mation from the global re­
source serialization ad­
dress space_

3 Write the resource infor­
mation to the dump data set
and determine if any more
data remains to be dumped.

• 'If more data remains,

4 Delete the recovery en­
vironment.

Return to
caller

(Part 1 of 2)

ISGDGCBO

Dump procesSing
routine

IEAVTSEO

I/O routine

Step 2

Output

Register 1

SDEXPARM

+ SDUMP
output
bl.ffer

Register 15

I 0

DEPL
parameter list

+SDEXPARM

Register 15

Return code

""" = 3:
(')
o .,
'0

3:
10
;+
:r
o
Q.

o
o
'0
G .,
III
;+

o
:J

CO)
;v
en
I ...

00
(,01

Diagram GRS-2S. ISGDSDMP - Global Resource SeriaUzation SVC Dump Exit Routine (Part 20(2)

Extended Description

IEAVTSDU passes control to ISGDSDMP to write those
pages containing Important global resource serialization
control blocks to the dump data set. ISGDSDMP is called
by IEAVTSDU in any address space. When ISGDSDMP is
called, it is enabled, but the system is set nondispatchable.
At entry, register 1 contains the address of the SVC dump
exit parameter list !SDEXPARM). SDEXPARM contains a
200-byte workarea for ISGDSDMP to use.

Module

1 ISGDSDMP puts the address of SDEXPARM into the ISGDSDMP
SDUMP ESTAE parameter list !DEPL) and issues an

ESTAE macro establishing ISGDSDRV as the recovery rou·
tine for ISGDSDMP and ISGDGCBO. !See "Recovery Pro·
cessing" for a description of ISGDSDRV).

2 ISGDSDMP issues a program call to ISGDGCBO which ISGDGCBO
resides in the global resource serialization address

space. ISGDSDMP passes ISGDGCBO the address of the
SDUMP ESTAE parameter list in register 1. Only one page
of data can be processed at a time. ISGDGCBO updates
SDeXPARM with the required data concerning the page to
be dumped, then moves the page to the SDUMP output
buffer area. ISGDGCBO returns control to ISGDSDMP via
a program transfer Instruction after setting one of the
following return codes.

Retumcode

o
4

8

Action to be taken

Dump complete, return to the caller.
Write a page to the dump data set,
then return to the caller.
Write a page to the dump data set,
then return to ISGDGCBO to process
more data.

Label Extended Description

3 If ISGDGCBO returned a nonzero return code indio
cating that there is data to ba written, ISGDSDMP

calls IEAVTSEO to write a page of data to the dump data
set. If the return code is eight, there is more data to be
dumped. ISGDSDMP repeats the process beginning at
step 2; otherwise, all the data has been dumped and pro­
cessing continues at the next step.

4 ISGDSDMP issues an ESTAE macro to delete the reo
covery environment and sets a zero return code to in­

dicate successful processing.

RecoverV Processing:

When an error occurs while either ISGDSDMP or
ISGDGCBO is'executing, RTM calls ISGDSDRV to record
the recovery information in the SDWA and record the
SDUMP ESTAE parameter list in the SDWA's variable re­
cording area !VRAI. ISGDSDRV issues a SETRP macro to
indicate to RTM to retry at entry point ISGDSD01
!step 2). Twenty-two retries are allowed:
• One retry for a failure while processing the major global

resource serialization control blocks !GVTX, LOHT,
LPRT, GOHT, GRPT, SAHT)

• One retry for a failure while processing the ring status
vector table

• Twenty retries for failures while processing the resource
queue area.

No retries are allowed if a failure occurs while processing the
GVT or the global resource serialization ASCB. If a retry is
not allowed, RTM is notified to continue with termination.

Module

IEAVTSEO

ISGDSDRV

Label

Q ...
H
tG
:c

:I
< en
)(
>
en
r­
r-

r­
-<
N
CO
I

t-<
a­
-0
us
I

c

,...
o
C")
o
~ ,

1-4
to ..
3
C")
o ,
1J .
....
..0
00

Diagram GRS-26. ISGDSNAP - Global Resource Serializa~ion SNAP Dump Exit Routine (part 1 of 2)

Input

Register 1 ABDPL
parameter list

+ TCe

Register 1 ASID

1) + IEAVAD81

(DSPL
Parameter List DSPLENT

From
IEAVAD01 -..

...
-,... ~

.. lrl ~SPLENT
I I

PSA Sorted
RIBs

I-
PSATOLD ~

~
" T I

• I

~
Current

~ ~ TCB RIBE :.
RIBEASID

TCBJSTCA
..

RIBETCB
~

.J

/
~ RIBE

Process

1 Establish a recovery en·
vlronment and loed
ISGDSORT.

2 Set the cu rrent jobstep
non-dispatchable.

Entry Point: ISGDSNR1

3 Perform the following
functions for local and
global resources:

A. Obtain the resource
Information.

B. Sort the resource data
into alphabetical order
by resource name. .. ISGDSORT

C. Format and print the Sort

sorted resource data. routine

.. IEAVAD81

Entry Point: ISGDSNR2
Print
routine

4 Do cleanup. Return
to celler

Output

TCa

I TCBAD~ I --""-

r

Buffers
RIB ~

r

0
l-

RIB

D
Register 15

I I Return code I I
_Joo..

RiBs

J RIBCHAI.

...

RIBCHAIN

/'
Formatted dump ~

D RIBCHAIN=O

r­
oo(
N
00
I ...

C/\

"" VI
I

o

(')
o
'U
'< ,
to
;:r
IT

....
tIIS
3:
(')
o ,
'U .

3:
II)
IT
;:r
o
a.
o
~

o
'U
ID ,
121
rt-

o
:J

Diagram GRS-26. ISGDSNAP - Global Resource Serialization SNAP Dump Exit Routine (Part 2 of 2)

Extended Description

When it Is necessary to format and print information about
the resources associated with all the tasks in the current
jobstep, IEAVAD01 bran~es to ISGDSNAP.

Module

1 ISGDSNAP issues an ESTAE macro to establish ISGDSNAP
ISGDSNRV as the recovery routine. (See "Recovery

Processing" for a description of ISGDSNRV.I

2 If the dump is for the current task, ISGDSNAP sets
the TCBADMP bit In the TCB to indicate that the cur·

rent task is making the jobstep non-dlspatchable.
ISGDSNAP then issues the STATUS macro to set the job·
step non-dispatchable so that the resources owned by the
jobstep will not be released during the dumping process.

3 ISGDSNAP performs the follOwing functions for locel
and global resources:

A. ISGNSNAP issues a GQSCAN macro to obtain from the
global resource serialization address space resource and
requestor Information associated with the ASI D speci­
fied In the ABDUMP parameter list. If no buffer exists
for the GOSCAN output, ISGDSNAP obtains one. The
GOSCAN service routine (tSGOSCAN) stores the data ISGOSCAN
In resource information blocks (RIBs) and resource in·
formation extension blocks (RIBEs) and moves the re-
quested information into the buffer in ISGOSNAP's ad-
dress ,pace. When ISGOSCAN returns control,
ISGDSNAP check, the return code. If the return code is
eight, thare is more date to be accessed. ISGDSNAP 0b-
tains another buffer and invokes ISGQSCAN again. If the
return code is zero, all the information has been obtained,
and processing continues at 3B.

B. ISGOSNAP cells ISGDSORT to sort the resource in- I SGDSO RT
formation contained In the buffers. Before ceiling
ISGOSORT, ISGDSNAP obtains and initializes the
ISGDSORT parameter list. It initializes the entry section
of the parameter list with buffer Information such as the
address of the first buffer to be sorted, the number of R ISs
contained in the buffer, and a pointer to th,' next buffer to
be processed. ISGOSNAP then cells ISGDSORT to sort
the resources Into alphabetical order by resource name
(ONAME/RNAME).

Label Extended Description

C. ISGDSNAP formats and prints the resource Information
for the tasks in the current jobstep. The RIBs/RIBEs
contain information about the resources associated with
the ASID in the ABDUMP parameter list. To format
and print the resource information associated with the
tasks in the current jobstep, ISGDSNAP searches for the
requestor by comparing the RIBEASID with the ASID
specified in the ABDUMP parameter list and comparing
the TCB jobstep (TCBJSTCAI pointed to by the
R I BETCB with the current TCB jobstep. If a match is
found, then ISGDSNAP calls IEAVAD81 to print the
resource information .

4 ISGDSNAP performs the follOwing cleanup functions:

• Resets the TCB bit (TCBADMP) and issues the STATUS
macro to reset the jobstep dispatchable

• Releases any previously obtained storage
• Deletes the sort routine ISGDSORT to remove the CDE

entry and Issues the EST AE macro to delete the re­
covery routine (tSGDSNRV)

• Returns to the caller with a zero return code

RecoverV Procaing

When an error occurs while ISGDSNAP is executing, RTM
calls ISGDSNRV to record the recovery diagnostic inform­
ation in the SDWA and to issue an SDUMP macro for the
LSOA, which contains the buffers used to contain the reo
source Information returned by the GOSCAN ser~ce rou­
tine, and the ISGDSORT parameter list. Unless a recursive
error has occurred, ISGDSNRV attempts e retry. If global
resources have not been processed, it retries at entry point
ISGDSNR1 (step 3); otherwise, it retries at entry point
ISGDSNR2 (step 4) to perform cleanup processing. If a re­
try is not allowed, ISGDSNRV resets the jobstep dispatch­
able and returns control to RTM.

Module Label

IEAVAD81

ISGDSNRV

o

" ..
I ..

Ot ..
~ ..
")(
:.
en
r­
r­..

r­
oo(
N
OJ
I,.

-0
us
I

o

(')
o
'U
'< ,
10
;r
....
tII1
3:

n
o ,
'U .

Diapam GRS.27 •. ISGGDEQP - TCBI ASID Purge (Put 1 of 6)

Input

Register 1

j.

ENO/DECl/RESERVE Termination Resource Manager USGGTRMU
Global Resource Processor USGGRPOOl

Process

~ DEO Purge List (DPU

r;=~~ 1 Locate the fint/next
OEL on the Input OEL
chain.

SYSID I ASID

t TCBorO

t OELqueue , I flags

~ aEL

OELOCB

OELOXB

OELSYSID

OELASID

QELNOELQ

OCB

/

~

~OXB

QXBTCB

• Empty OEL chain

=:!==~=:::!::::::> 2 Perform the TCB/ASID
pUrge.

e. Locate the acB and
axB.

b. Initialize II PEL
describing the resource
to be purged.

• •• Step3

.­
-<
N
00
I ...

0-
.0
U1
I

o

(')
o
lJ
'< ,
10
:r
IT

....
IJI:I
3:

(')
o ,
lJ .

3:
10
:r
o
Co

o
o
lJ
III ,
III
IT

o
:::1

G')
iU
en
I ...

00

"

Diagram GRS-27. ISGGDEQP - TeDI ASID Purge (part 2 or 6)

Extended Description Module Label

ISGGDEap purges the resources associated with a task or
address space. These resources are defined on any of the
following aEL queues.

• ASCB global aELqueue
• ASCB local aEL queue
• SYSIO/ASIO aELqueue

The input parameter list contains the type of purge requested
(either TCB or ASIO), the SYSIO, TCB, and/or ASIO to be
purged, and one of the above aEL queues to be scanned.

1 Search the aEL queue pointed to by the input ISGGOEOP
parameter list in order to find the element to be purged .

If the aEL queue is empty, continue at step 3.

2 If this is a TCB purge request, then purge only those
aELs associated with the input TCB; otherwise purge

all the OE Ls defi ned on the OE L queue pointed to by the
input parameter list.

a. Use the aEL to get addressability to the aCB and
the aXB.

b. Extract information from the OCB, OEL, end OXB.
Initialize the PEL section of the queue work block
(OWB) supplied as input. Use the SaA aWB PEL when
purging a local queue. Use the input OWB PEL when
purging a global queue.

o
H
l1li
:z

~ Diagram GRS-27. ISGGDEQP - TeB/ ASID Purge (part 3 of 6)
en
I ...

01
01

3
< en
"­X
>
en
r­
r-

r­
oo(
N
01
I ...

a­..,
UI
I

o

.....
n

....
m
:3
C")
o ,
'U .

Input

aWA

OPLRSYIO

OPLRABMC

aWA

aWAaWBHS

aWB

" SMPL

I
(

aCB/aEL/aXB

Process 9
2 (continued)

") c. Chain a warning message ..
to the resource being
purged.

....
d. Dequeue the requestor

r
from the aCB.

6

Output

aWA

II.
aWAMRBa i\ r

ISGGPGRP
'" "'

Process ',. MRB
aEL

..
r ISGSALC

Allocate a
message
buffer

ISGGOOOO ...
.. r

Dequeue the
control blocks

r- Diagram GRS-27. ISGGDEQP - TCB/ASID Purge (part 4 of 6) r-J
-< -:a
N nm
01 Extended Description Module Label aut

~,..
I .,.~ ...

0- 2 (continued) 11-
D.n .0 ,..

UI
I Determine if purge messages should be Issued. Invoke

:rID
e c. OlD.

ISGSALC to allocate a message buffer (MRB) if purge ISGSALC
,..
1I:r

"" messages should be issued. These messages reside In "'1181
n the MRB and are queued from the OWA and later

-,.. 11111
processed by ISGGTRM1 for task or address space

~..,

(") CIt-
0 termination or processed by ISGCPRG for a SYSID II
'U purge command. If the caller has indicated that the

I~
'C 14 ., requester was in "must complete" mode, owns the 'V

"'110
III resource, and the resource request represants an o.

" :r exclusive request with scope of SYSTEM or SYSTEMS, ntH
then build an MRB for message ISG032E. For a SYSID

..,.
H ,..:r
IIlI' purge request, build an MRB for each resource to be 'C ~

:3 purged; each MRB is for message ISG0181. If the OEL 0
(") is a MASID target (as determined by calling ISGGPGRP), ISGGPGRP
0

ISGGDEQP builds an MRB for message ISG035E • H ., ..,
'U Otherwise, continue with step 2d. :z .
...

d. Invoke ISGGDOOO to scan the OCB DEL chain for ISGGNODO DCUROEL -D
01 the SYSID, ASID, or TCB passed as input. When the
" Input SYSID, ASID, or TCB is found, chain the control

blocks to be freed from the storage manager parameter
list (SMPL) and continue at step 1 until the OEL chain
is empty.

3:
< en

" X
:.
en
r­
r-

r­
-<
N
eo
I .-

.0-

-0
~,

I .,
,...
o

Diagram GRS-27. ISGGDEQP - TCB/ASID Purge

ASCB

SMPLPTR

QWA

QWAMRBQ ~

QWB

SMPL

QWB,QCB,
QEL,QXBs

MRBs

V

(partS 0(6)

Process

3 Purge the sync queue.

4 Free other control blocks.

5 End TeB/ASID purge
processing.

Return to
the caller

ISGSDAL

Free control
blocks

Register 0

=::!=========:!:==::!>I t MRS queue
or 0

,..
00(
N
co
I ...

0-
.g
UI
I

Q

'" n ...,
n
a

" '< .,
10
:J"

"
M
af
3

n
a .,
"
.g
~ ...,

:3
ID
tfo
:J" a
a.
a ...
o
'V
ID .,
III -o
:II

Diagram Gft.S.27. ISGGDEQP - TeD/ASID Purge (part 6 of6) r-~
-lQ a.

Extended Description Module Label mea ::s,
3 The sync queue represents steal requesters awaiting ISGGDEOP 11-

An
sync ownership. The sync queue prevents ENQ requests

"directed" to the failing task from running before the first
:l:1D
"A

request is processed. Entries normally exist on the sync
m:z

queue only when the address space is abnormally terminating. .,AI -.... When the address space is normally terminating or if 8 TeB ...
purge is requested and the tesk is normallv terminating. no

... .,
al-

entries exist for the tesk or address space. If the task is 01 ...
abnormally terminating. the ISGGNQDQ ESTAE routine. 81
ISGGESTO. cleans up the QWB. ..

.,0
0 ...
'IS

4 If control blocks have been placed in the SMPL. call ISGSDAL mM .,.
the storage manager deallocation routine to free 3

them. using the eMS ENQ/DEQ class lock for serialization. ~=

Tho caller has previously obtained the global resource 0 ...
serialization local lock if global resources were to be
purged.

H
to :z

5 Return to the caller with register 0 containing the
addtea of the MRB queue or zero. The purge is

complete •

3:
< en
.....
)(
>
en
r­
r-

r­
-<
N
00
I ...
"" '" VI ,
o

(')
o

" '< .,
Ul
;r
rt-

....
CI'
3:
(')
o .,
'U .
...
'" 00

Diagram GRS·28. ISGGESTO - Global Resource Serialization ENQfDEQ/RESERVE Mainline ESTAE Routine (Part 1 of 4)

From ISGGWAIT
t o _I!,p~ .. Proa>ss

utpu

aEL 1 Perform initialization and
SMPL serialization.

ASCB r aELOXB

I~Elll
ASCBGOEL OELNOELO / 2 If all the resources are local,

r dequeue them.
...

OWB \

~ SMPL

OWB

aWB GVTX 1~8~VSNI
SMPNCELL

~
....

3 Search the synchronization
....

SMPCADDR
queue for the request ele- ...

OWBHNSYN ment. SMPEOPL

aWBHSTL ISGSDAL
.... a..

OWBEXTA- -r

ASCB
ASCB

I~GSVN I I~GSVN I
aWB

4 If the request is not found OWB ... on the synchronization
...

IQW8HN~·1
OWBHNSYN queue, re-obtain the locks.

aWBHNaWB ISGGOWBO
.... Ia.. SMPL

ISM"NeEll I OWBHOXB .,
I"

OWBHMIXR

6

r­
-<
N
00
I

0-
..0
VI
I

c

o
o
'tI
'< .,
Ul
J
....
aJ
:3

o
o .,
'lJ .

:3
111
no
::T
o
D-

O
-it

o
'tI
ID .,
a.
o
:::J

Diagram GRS·28. ISGGESTO - Global Resource Serialization ENQJDEQ/RESERVE Mainline EST AE Routine (Part 2 of 4)

Extended Description

ISGGESTO recovers from errors that occur while the ENOl
DEQ/RESERVE mainline processing is waiting for a re­
quest to be processed. This module does not establish a re­
covery environment; if an error occurs, the task termination
manager cleans up.

1 ISGGESTO issues a PCLlNK macro to save linkage in·
formation, issues the SET LOCK macro to Obtain the

requestor's local and CMS locks and calls ISGSALC to ob·
taing a work area .

2 ISGGESTO determines if the resources are local and if
so dequeues them. To do this ISGGESTO scans the

ASCB local OE L queue and dequeues anv resource request
identified with a OXB in the RB extended save area.
ISGGESTO calls ISGGOWBO at ISGGOWB4 to build a. DEO
request and the calls ISGGNODO at ISGGDOOO to perform
the DEO •

3 ISGGESTO searches the synchronization queue to de-
termine if the request has been processed yet. If

found and it is not the top request on tha synchronization
queue, this module calls ISGSDAL to frae the OWB associ·
ated with the synchronization OWB.

4 If the request is not found or is found at the top of
the synchronization queue, ISGGESTO calls

ISGGOWeo at ISGGOWB5 to build a SYNC OWB to make
sure that all outstanding requests issued by this task have
been processed. Upon return ISGGESTO obtains the local
and CMS locks. If the request is at the top of the synchron·
ization queue, ISGGESTO frees the synchronization OWB
and all the OWBs related to the request. If the request was
not found on the synchronization queue, ISGGESTO de­
queues all outstanding global and local resources. ISGGESTO
decreases the task global resource count (TCBGRES) by
either the number of global ENO requests or DEO requests
that ISGGRPOO processed.

Module Label

I SGSALC

ISGGOWBO ISGGOWB4
ISGGNODO ISGGDOOO

ISGSDAL

ISGGOWBO ISGGOWB5

= Diapam GRS.28. ISGGESTO - Globallteso1m:e Serialization ENQ/DEQlRESERVE MaiIlline ESTAE Routine (Part 3 of 4)
CIt
I

<II>

3
<
CIt ,
)(
>
CIt
r­
r-..

,..
-<
N oe
I ...

er-
-0
UI
I

0

,..
n
-.J

C")
0
'tJ
'C .,
10
:r n-
H
011
3

n
0 .,
'tJ .
....
-0
00

Input

GVT

GVTXlSAR

GVTGASCB

Process

6 Clean up and return

Return
to the
caller

Output

SMPL

~

r--n
II
:::J
fit
II
a.~ ,.,
3.
QllIl ,... ...
It,-
-0
III
... 11
Uto.
1:1:

81
'1:1" "711
0.,
'O-
/Dill
~ ...
r+ •
'Co
0

tot
MOIl
cd2
:Z:~

r­
oo(
N
00
I ...
"" -D
UI
I

o

~

n ...

....
1:l1li
3
(')
o .,
'U .

Diagram GRS·28. ISGGESTO - Global Resource Serialization ENQ/DEQ/RESERVE Mainline EST AE Routine (part 4 of 4)

Extended Description

5 ISGGESTO restores the linkage information, releases
the locks it obtained and returns to the caller.

Module Label

~ Diagram GRS.29. ISGGFRRO - ENQ/DEQ/RESERVE Recovery Routine (part 1 of 12)
(II
I,

Go

3
<
en ,
X ::a.
(II
r­
r-

r-
oo(
N
00
I
'" ...,
U'I
I

Q

,...
n,
(')
o

~ .,
10 ::r
rf'

t-4
or
3:

(')
o .,
'U .

SDWA

CVT

CVTGVT

~GVT
'GVT

SDWA

IS~AFMID I

From RTM

ISGGFRRO:

1 Copy the basic diagnostic
information into the SDWA.

2 Obtain workar. &torege
in the CSA, verify that the
GVT is accessible, and
check if recovery proces­
sing is possible.

• If not, reque&t an
SVCdump.

(branch
entry)

SDUMP

Scheu Ie an
SVCdump

Step 13

SDWA

o

r­
oo(
N
Ot
I ...

GOo
..0
us ,
o

(")
o

" 'C ,
10
J
H

'" 3
(")
o ,
" .

3
/D

" J
o
a.
o
;

o

" II) ,
III

Diagram GRS-29. ISGGFRRO - ENQlDEQ/RESERVE Recovery Routine

Extended D8ICflption

ISGGFRRO Is the FRR routirie used to protect the global
resource serialization modules shown in the table below. In
some cases, a module must iSlue the SETFRR macro to es­
tablish ISGGFRRO as Itl recovery routine. In other cases,
the module's caller has already established ISGGFRRO as
the recovery routine.

Entry Point Name ISlUftSETFRR

IGC048 Y
IGC048FP y

IGC056 y

IGC056FP y

ISGGDEQP N
ISGGQWBC N
ISGGQWBI N
ISGGREXO N
ISGGRPOO Y
ISGGTRMO Y
ISGGTRMl y

ISGSALC N
ISGSDAL N
ISGSHASH N

This routine fills In the SDWA for LOGREC recording,
takes a dump, and performs resource validation and repair.

1 ISGGFRRO adds the recovery routine name and fail-
ing subcomponent information to the SDWA. The

SDWA already contains the following default options:
• Record the SDWA in LOGREC
• Do not take a dump
• Continue with termination

2 ISGGFRRO uses a branch entry GETMAIN to condi-
tionally request storage for a workarea. Storage is re­

quested from subpool 239 (an SQA subpool allocated from
the CSAI. The workarea must be in common storage be­
cause it will be used after primary addressability has been
switched to the global resource .serialization address space .

Module Label

(Putlofll)

Extended Description Module

ISGGFRRO ensures that there are no storage errors assOci­
ated .with the GVT and that the acronym is correct. The
global resourca serialization vector table (GVTI must be
accessible in order to attempt resource validation and re­
pair.

Recovery Is not possible in any of the following .situations:

• The private area of the failing address space is not acces­
sible.

• The GVT failed the accessibility tests.
• A workarea could not be obtained .

When recovery is not possible, ISGGFRRO requests an SVC SDUMP
dump and procassing continues at step 13.

Label

lot
CIII
:z

~ Diagram GRS·29. ISGGFRRO - ENQ/DEQ/RESERVE Recovery Routine (part 3 of 12)
CI)
I ...

-0
00

:3:
<
CI) ,
X
2»

CI) .­.-

.­
-<
N
00
I

C/'o
..0
01
I

o

,...
o
(')
o

" '< .,
Ul
J
t+

M
o:J
:3:

(')
o .,
" .

Input

SDWA

SDWAPARM ~FRR parameter
list

Process

3 Determine which module
failed.

4 For errors in ISGGNODO or
ISGGOWBI. check if the error
was caused bV invalid parameter
information.

• If 50,

5 Add diagnostic infor­
mation to the SDWA •

6 Request an SVC dump.

(branch
entry)

Step 13

SDUMP

Schedule an
SVCdump

Output

SDWA

IS~AA= I
SDWA

D

Diagram GRS-29. ISGGFRRO - ENQ/DEQ/RESERVE Recowry Routine

,...
n ...,
n
o
"0
'< ,
o :r
no
....
alii
3

n
o ,
'U .

3:
III ,..
:r
o
a.
o
~

Q

Extended Description

3 For nucleus resident routines. ISGGFRRO uses the 10-
eation of the error to determine which module failed.

For routines that are not nucleus resident, the 24-bvte FRR
parameter list contains information that is used to identify
the failing module.

4 ISGGFRRO checks the type and location of the error
to determine if it was an access exception caused bV

an invalid parameter on the ENO, DEO or RESERVE
macro. If so, ISGGFRRO converts the completion code to
an ABEND 430 (for DEO) or ABEND 438 (for ENO/RE­
SERVE) and bypasses recovery processing.

If the error was not caused bV an invalid parameter,
ISGGFRRO convert. the completion code to an ABEND
730 Ifor DEal or ABEND 738 If or ENaJRESERVE and
continues recovery processing.

5 ISGGFRRO copies the following information into the
SDWA:

• Failing module name
• Failing CSECT name
• Compile date of the failing CSECT
• PTF/product number of the failing CSECT

For nucleus resident routines, ISGGFRRO contains a table
of addresses of the CSECT name, the compile date, and the
failing CSECT's PTF/product number. For routines that
are not nucleus resident, the FRR parameter list contains
tha address of an area that contains the information noted
above. In either case, ISGGFRRO uses the CSECT name to
determine the load module name.

6 ISGGFRRO requests an SVC dump except in the fol­
Iowlngceses:

: • A previous recovery routine has already provided diag-
;: nostic information.
,... ISGGFRRO was entered for cleanup oniV.
o
:J

Module Label

SDUMP

(part 4 ofll)

~ Diagram GRS-29. ISGGFRRO - ENQ/DEQ/RESERVE Reeowry Routine (part S of 12)
CIt
I

N
o
o

r­
oo(
N
00
I

Q\o
>D
UI
I

o

....
n
'oJ

(')
o
'U
oc:: ,
ID
:r
"
tr:J
3

(')
o ,
'U .

Input

GVT

GVTGASCB

~ ASCB

ASCBASID

GVT

GVTGVTX

~ GVTX

'GVTX'

Process 7

7 Establish addressability to
the global resource seriali·
zation address space.

8 Obtain the locks necessary
for resource repair.

to.
9 Verify that the GVTX is

r accessible.

• If it is not accessible,

6

..
Step 13

r

r­
oo(
N
co

Diagram GRS-29. ISGGFRRO - ENQ/DEQ/RESERVE Recovery Routine

I ...
0-

"" UI
I

o

,..
n ...,
(")
o
'tI oc: ,
Q
:r
t+

1-4
till
3:

(')
o ,
'tI .

Extended Description

7 ISGGFRRO issues the EPAR instruction to determine
if It has addressability to the global resource serializa­

tion address space. IISGGFRRO receives control with the
SBme addressability that existed when the SETFRR was
issued. In most cases, the global resource serialization ad·
dress space is not accessible.) If the global resource serial·
ization address space is not accessible, ISGGFRRO copies
all necessery information, including a copy of the 200-byte
workerea, into the workarea obtained in SOA (CSAI.
ISGGFRRO then issues a PC instruction to obtain the
necessary addressability.

8 Some callers hold no locks, others hold the local lock
of the global resource serialization address space and

others hold both a local and the CMSEOOO lock. The fail·
ing process might not hava been holding the locks necessary
to perform resource repair. If no locks are held,
ISGGFRRO obtains the local lock of the global resource
serialization address space and the CMSEOOO lock. If only
a local lock Is held, ISGGFRRO obtains the CMSF.OOO
lock. If both locks are held, ISGGFRRO does not obtain
any locks. (Note: ISGGFRRO uses SETLOCK for lock re­
quests. ISGGFRRO does not check for potential hierarchy
violations.)

9 ISGGFRRO ensures that there are no storage errors
associated with the global resource serialization vector

table extension (GVTX) and that the acronym is correct.
The GVTX contains information about global resource ser·
ialization control blocks that is essential for resource valid·

3: ation and repair. Recovery is not possible if the GVTX is
~ inaccessible. In this case, processing continues at step 13.
:r
o
Co

o
-+.
a
1J
ID ,
III
t+

o
::J

G)
~
~ ,
N
o ...

Module Label

(part 6 of 12)

o
H
GJ
:I

= . DiIpIm GJtS.19. ISGGFRRO - ENQ/DEQlRESERVE Recovery RoutiDe (Put 70112)
CIt
I

N
o
N

,...
-<
N
tJt
I ...

GIo
..0
\JI
I

0

,..,
n
n
0
'U
~ ..,
CD
J
.rfo

....
or
3
n
0 .,
'U
..0
co

Process

10 Perform resource repair
for thOle resources as­
sociated with the falling
proc_.

(branch
entry)

(branch
entry)

IEAVEQVO

Perform queue
validation and
repair

ISGSHASH

Perform
SVSID/ASID
hash queue
repair roo -C'J

ftI :s , .. ,
ID
Q.f

;a
3:0
III" r+I+
III., .,-
-()
~,
lite.

13
III "',,..

0.,
-0-
Ill. ., ...
.... co
'<0
0" ..

H
HOI
tal 3
3:~

,...
n
'"'

:];
ID
rr
:T
o
Co

o
-it

o
"0
III .,
III
o
:l

DiagramGRS-29. ISGGFRRO - ENQjDEQ/RESERVE Reco!ery Routine

Extended Description

10 Depending on which process failed,lSGGFRRO at­
tempts resource validation and repair for the follow­

ing resources in the order listed:

Hash table queues
(GVTXlOHT, GVTXGOHT)

SVSID/ASID hash queue (GVTXSAHT)
ASCB resource queues

(AS~BlOEL. ASCBGOEL)
ASCB synchronization queue

(ASCBGSVN)
Process queue (GVTPROCO)
Resource pool table queues

(GVTXlRPT, GVTXGRPT)
Global OWB queue (an entry

in the GRPT)
Count of inactive PEXBs

(GVTXIACT)
SMPl queue (FIXSMPLO)
ASCB request count (ASCBREO)

IEAVEOVO calls element verification routines for the fol·
lowing queue elements:

PEXB OEl
OCB OWB

If ISGGFRRO could not determine which module failed, it
attempts validation/repair for all resources except
ASCBCREO.

If IEAVEOVO finds an error in a single·threaded queue, it
truncates the queue. When a double·threaded queue con·
tains an error. I EAVEOVO uses backward chain pointers to
splice together as much of the queue as possible.
I EAVEOVO records all queue repair actions in an area
which ISGGFRRO copies into the variable recording area
(VRA) portion of the SDWA .

Repair of the SYSI D/ ASI D hash queue or ASCB resource
queues is different. ISGGFRRO completely rebuilds these
queues using the previously validated hash table queues to
do this.

Module Label

IEAVEOVO

ISGSHASH

(part 8 of 12)

ISGGFRRO notes errors in a qu'eue element (OEl) chain in
the queue control block (OCB) from which the OELs are
chained. It notes errors in a OCB synonym chain in the
queue hash table entry (QHTE) from which the OCBs are
chained. (Subsequent ENO or RESERVE requests that re­
quire addition of new elements to a damaged queue will be
abnormally terminated. DEO requests will be allowed to
proceed.)

H
m
:3

= Diagram GRS·29. ISGGFRRO - ENQlDEQlRESERVE Recovery Routine (part 9 of 12)
en
I

N
o
~

3
< en
X
~

en
r­
r-

r-
oo(
l'-t
~
I

0-
..0
VI
I

o

n
o .,
'< ..,
IQ
:r
IT

I-t
011
:z
(')
o ..,
" .

Input

SDWA

SDWAPARM

"

SDWA

SDWAPARM

~
SDWACLUP

FRR
parameter
list

QFPLSMPL

FRR
parameter
list

QFPLRTAD

From
Step 9

Process

11 If the address of a list .
of SMPLs was passed In
the parameter list. re­
lease the storage.

12 If resource queue dam·
age was detected; issue
message ISG031 E.

13 Clean up for return:

• Release any locks
obtained earlier.

• If necessary. issue
a PT instruction to
reset addressability.

• Update the SDWA
with the results of
the recovery proces·
sing.

(branch
entry I

• If a retry is to be per·
formed. update the
SDWA.

• Release the workarea.

ISGSDAL

Release
storage

ISGSALC

Obtain storage
for an MRS

RTM

Output

Queue
damage
m~age

SDWA

D
SDWA

SDWAPARM

FRR parameter
list

QFPLRTAD

r­
oo(
N
00
I,..

..a
US
I

a

,...
o
(')
o
'tJ
'< .,
!Q
:r
t+

....
b'
::3:

(')
o .,
'tJ .

:3
III
t+
:r
o
Q.

o
o
"0
CD .,
III
t+-

o
~

Diagram GRS·29. ISGGFRRO - ENQ/DEQ/RESERVE Recowry Routine

Extended Description

11 If the 24·byte FRR parameter list contains the ad­
dress of a list of storage management parameter

list(s) (SMPLs), ISGGFRRv calls module ISGSDAL to re­
lease the cells defined in the SMPLs.

12 If damage was detected in the hash table queues,
ISGGFRRO notifies the operator by Issuing message

ISG031 E. ISGGFRRO invokes module ISGSALC to obtain
storage for a message request block (MRB). After the MRB
has been placed on the command request queue. a cross
memory post is performed to notify ISGCMDR of the mes­
sage request_

13 ISGGFRRO performs cleanup before returning to
RTM_

• If ISGGFRRO obtained any locks. It releases them via
SETLOCK .

• If a PC was issued in step 7, ISGGFRRO issues a PT in­
struction to reestablish addressabilitY to the SDWA and
the 200-byte workarea.

• ISGGFRRO copies into the SDWA the output data area
(ODA) used by IEAVEQVO to record queue damage.
In addition, it copies into the SDWAVRA miscellaneous
processing flags and a bit string that identifies the dam­
aged resources.

• Retry is not performed when:

The problem is due to a user error
The name of the failing module is unknown
The 24-byte parameter list has the recursion flag set

ISGGFRRO was entered for cleanupoonly
The processing aborted flag is lOt

No retry address is available

Module

ISGSDAL

ISGSALC
ISGCMDR
IEAOPT01

In all other cases, ISGGFRRO updates the SDWA to request
a retry.

• If a workarea was obtained earlier, ISGGFRRO usas a
branch entry FREEMAIN to release it.

Label

(part 10 of 12)

Extended Description

ISGGFRRO returns to RTM. RTM performs any actions re­
quested in the SDWA, for example, It records the SDWA in
LOGREC, frees the SDWA, and possibly retries.

Module

= Diagram GRS-29. ISGGFRRO - ENQ/DEQlRESERVE Recovery Routine (Put II of 12)
en
I

N
D
~

3
< en
)(
•
en .­.-

r­
oo(
N
00
I ...

0'0
-0
VI
I

o

,..,
n
~

(')
o
'0
'< .,
IQ
::r
tT

1-4
till
3:
(')
o .,
'0 .

ISGCPRG,
ISGGOWBR,
ISGOSCNR

From
step 14

Process

ISGGFRR1:

14 Obtain the Ioc:ks necessary for
resource repair, check the GVT
for storage errors, and obtain
workBrea storage from the CSA.

• If unsuccessful.

15 Perform validation and
repair of all resources
associated with the global
resource serialization
storage manager.

Ibranch
entry)

16 Release the workarea
storage. release any locks
obtained earlier. and set
a return code.

Step 16

IEAVEOVO

Perform queue
validation
and repair

Return
to the
caller

Output

Register 15

I Return code

(")
o
"0 oc: ,
It:!
J
rl"

I-C

= ::&
(")
o ,
"0 .

:3
II)
rl"
J
o
a.
o
-h

o
"0
II)

~
rl" -o
:J

G)

'" en
I

N
o

Diagram GRS-29. ISGGFRRO - ENQ/DEQ/RESERVE Recovery Routine

Extended Description

ISGGFRR1:

Routines that call I SGSA LC and ISGSOAL may use
ISGGFRR1 to validate and repair the resources used by
ISGSALC and ISGSOAL Note thatthe callers of
ISGGFRR1 must have established addressability to the glo­
bal resource serialization address space.

14 Some callers hold no locks, others hold the local
lock of the gloabl resource serialization address space

and others hold both a local and the CMSEQOQ lock. If no
locks are held. ISGGFRR1 obtains the local lock of the glo­
bal resource serialization address space and the CMSEQOQ
lock. If only a local lock is held, ISGGFRR1 obtains the
CMSEQOQ lock. If both locks are held, ISGGFRR1 does
not obtain any locks. !NOt8: ISGGFRR1 uses SETLOCK
for lock requests. ISGGFRR 1 does not check for potential
hierarchy violations.)

ISGGFRR1 uses a brach entry GETMAIN to conditionally
request storage for a workarea. Storage is requested from
subpool239 (an SOA subpool allocated from the CSA.I If
storage cannot be obtained, ISGGFRR1 bypasses resource
repair.

15 If the proper locks were obtained, ISGGFRR1 vali·
dates and repairs the following resources used by'the

global resource serialization storage manager:

Resource pool table (RPT) queues
(GVTXLRPT. GVTXGRPTI

Global QWB queue (an entry in
theGRPTI

Count of inactive PEXBs (GVTXIACT)
Global and local SMPLs in the GVTX

(GVTXGSMP. GVTXLSMP)

These resources are a subset of those repaired by

ISGGFRRO. Refer to the extended descritpion of step 10
for an explanation of how the resources are repaired.

Module Label

IEAVEQvO

(Part 12 of 12)

Extended Description

16 ISGGFRR1 uses a branch entry FREEMAIN to re­
lease the workarea obtained earlier,

If ISGGFRR1 obtained any locks in order to perform re­
source repair, it releases the locks via SET LOCK,

When control is returned to the caller, register 15 contains
a return code as follows:

o = Resource validation/repair is complete.
4 = ISGGFRR1 was unable to perform

validation/repair.

Module Label

o ...

3:
<
(J)

" x
>
(I)

r­
r-

r­
-<
N
co
I ...

0-
..0
VI
I

o

o
"'"

...
t:r:I
3

(")
o .,
'C

Diagram GRS-30_ ISGGNQDQ - ENQ/RESERVE Processin, (Part 1 of 24)

Requestor of
ENO or RESERVE

Input services via ISG LNOOO Process

Register 1

Register 3

I" CVT

Register 4

L =r
Register 7

I. current ASCB

Register 14

I.. current TCB I. exit address

Register 5

'''current RB

OWA

D

Entry Point IGC056:

1 Perform setup processing
and ensure that the pa­
rameter specifications
are correct.

Output

OWA

Request
information

OWAERR

I Abend code or 0

r-

n
IV
~
U\
II)
a.::
~

:::o::m ., II' rt
14, , -'.

-·0
U ,+
t-1lI
ilia.
13

III " ,11)
0,
"tJ
rDlIJ ,
rtlll
<.:

o
oot.
-to

M
MIIIJ
~::z ::: =

,..,
o
'OJ

I-t
Oil
3:

o
o .,
"C

:3
III
I"t­
:r
o
C1.

o
of>

o
'U
19 .,
III
I"t-

o
~

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing

Extended Description

ISGGNODO processes ENO!RESERVE requests for speci·
fied resources. There are three major sections to
ENO!RESERVE processing. ISG056 is the initial entry
point for all ENO!RESERVE requests, subroutine
XPROCENO performs the actual processing, and entry
point ISGGNOOO is utilized by ISGGRPOO for procassing
global requests.

At entry point IGC056, ISGGNODO first determines if a
request is only for local resources, only for global resources,
or for a mixture of local and global resources. The processing
of local and global requests differs in that requests for
local resources can be processed immediately while requests
for global resources cannot be processed until the other
systems active in the global resource serialization ring have
been informed of this request. For local requests,
ISGGNODO calls subroutine XPROCENO to perform the
ENO immediately. For global requests, ISGGNODO calls
the OWS-copy routine (lSGGOWSC) to build a queue
workblock (OWS) for each global requast and then places
the OWSs on the request queue (GVTREOO).

After the OWB built by ISGGNODO for a global
request has been passed around tha global resource
serialization ring, IGGRPOO calls ISGGNODO at
entry point ISGGNOOO to process the global request.
ISGGNODO calls XPROCENO to procass tha request.
ISGGNODO then returns to ISGGRPOO.

Subroutine XPROCENO searches the global and local hash
tables and finds the appropriate hash table slots for the re­
quested resources. XPROCENO then processes the
ENO!RESERVE requests.

Module

(part 2 of 24)

Label Extended Description

In some cases XPROCENO also needs to perform steal pro·
cessing. When a resource is requested by a task that is part
of an abending task structure, and the resource is owned by
another task in this sama task structure, XPROCENO ini·
tiates a resource steal because the abending task is not able
to release the resource.

If the resource request is for a global resource, XPROCENO
builds a sync OWS to be sent around the ring Ito be sure
that there are no outstanding requests for this resource.) If
it is necessary to actually steal the resource, XPROCENQ
builds a DEQ OWB and places the DEO OWS followed by
the request OWB on the request queue.

If the resource request is for a local resource, XPROCENO
steals the resource without notifying the other systems.

Entry Point IGC056:

1 ISGGNODQ establishes an FRR, obtains the global re-
questor's local lock and the CMSEOOQ lock, and ini·

tializes the queue workarea (QWA). ISGGNOOQ checks
whether the parameters conflict and whether the caller is
authorized to request the specified functions. ISGGNQOQ
abends requestors when they fail any of these checks.

Module Label

ISGGNOOO IGC056

XSETUP

r-:
-;III
alii ann
:Jr+ us..,
tD­a.n

r+
3tD
ilia.
r+
11)3
..,111
--r+
IIItD,
m-

III
I m

'V
-,0
O-+.

" /:1M
..,tIII
f1o::Z
'C =
o ...
'of
till
::1:

:3
<
U)

" x
>
U)
r­
r-

r­
-<
N
00
I
~

:;r..
o,D
:.n
I

o

I-f
t;l:I
3

n
o ,

1:1

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (part 3 of 24)

Input

PEL

.-
f

GVT

OWA

IOWATCBFAI

--f

SOAOWB

OWBHDR

OWBSMPL

OWBPEL

Process

2 Copy the user PE L into the _-L _________JI'\.

SOA OWB and obtain the
control blocks required to
process the request.

3 If necessary. perform
steal processing to prevent
a resource interlock.

ISGGOWBI

Copy PEL into
SOAOWB

Step 8

Output

GVT

ASCB

Steal
sync
OWB

SQAOWB

OWBHDR

OWBSMPL

OWBPEL

Steal
sync OWB(s)

Original
request
OWBs

r -.
n
!!)
::!
U'I
~
0.::1 ..,
::J:I!J
W/II
.:2~ ,­
...... n
fIJ
... 111
ilia.
13

11.1
'U ,m
0,
"D­
mill , ...
rfo/ll
'<: o
0-40
-10

H
.... DJ
~3
::x ::

n

o
o
"0
'<: .,
10 :r
IT

H
tI:I
3:

o
o .,
"0

:3:
I'D
:r
o
C-

O
-fl

o
"0
III .,
AI
o
:J

(i)

'" en
I

N

Diagram GRS·30. ISGGNQDQ - ENQ/RESERVE Processing (part 4 of 24)

Extended Description

2

to

ISGGNQOQ invokes the global resource serialization
queue work block initialization routine I!SGGQWBII

• Copy the parameter element list (PE LI to the system
queue area (SQA) QWB

Module

ISGGQWBI

• Call installation exit routines (lSGGREXO) to identify ISGGREXO
the requests as being for either local or global resources

• Establish addressability to the global resource serializa­
tion address space

• Obtain QCBs, aEls, and QXBs

Upon return from ISGGQWBI, ISGGNQOa verifies that the
requests represented by the PEL entries do not exceed the
concurrent request limit. If an unconditional requester
exceeds the limit, ISGGNaOa issues an ABENO; if a condi·
tional requester exceeds the limit, ISGGNQOQ notifies the
requester of this fact via the appropriate return code.

3 When a resource is requested by a task that is part of
an abending task structure, and the resource is owned

by another task in this same task structure, there can be an
interlock. If ISGGNOOQ finds this situation, it solves the
problem by stealing the resource from the owning task.
Global steal processing is performed in 3 stages.

Stage 1 - ISGGNQDQ constructs a sync QWB containing a
pointer to the original request's QWB(s). The sync aWB
ensures that the request and processing queues are
purged of any outstanding ENQs for this resource be-
fore the steal is attempted. (That is, because QWBs are
processed in the order in which they are queued, when
the sync QWB appears on the process queue,
ISGGNQDQ is assured that all preceding requests have
been processed.)

Stage 2 - After the sync QWe is processed,
XPAOCENQ processes the originel request's awe .
XPAOCENa steals the requested local resources if this
is a request with both local and global resources re­
quested, and builds steal DEQ QWB(s) for all of the re­
quested global resources. It places aU the original re­
quest's QWe(s) after any DEQ QWe(s) on the process
queue.

Label Extended Description Module Label

Stage 3 - ISGGAPOO processes the original request's
aWB(s) (lSGGRPOO calls ISGGNQOQ at entry point
ISGGNaOO to do the processing.)

ISGGNQOQ starts the steal processing by calling ISGGQWBC ISGGQWBC
to copy each global resource (and any local resources
that are also present) from the SOA QWB into the pri-
vate area OWBs. The private area QWBs were obtained
earlier and chained from the SOA QWB SMPL. When all
the PEL entries have been copied, ISGGQWBC initial-
izes a sync QWB.

ISGGNQOO moves the sync QWB to the request queue only
when no other syncs are outstanding. This ensures that
only one sync request is processed at a time. When a
sync request is already being processed,lSGGQWBC
places the current sync on the end of the ASCB sync
queue. ISGGNQOQ (at subroutine XPROCENQ) pro­
cesses the aWB after previous sync requests complete.

ISGGNQOQ goes to step 8 to branch enter WAIT while the
sync QWB is passed around the ring. (This completes
stage 1 processing.)

= Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (Put S of 24)
Ut
I

N ...
N

:z
c

'"
)(
>

'" r-
r-

r­
oo(
N
C»
I

0-
~
UI
I

o

M
tIJ
3

o
o .,
tJ .

Input

SQA
QWB

QWBHDR

QWBSMPL

QWBPEL

QWB

PEL

PELXRET

QWB

QWBHDR

QCBs

QWBSMPL I--:... QWBs

QWBPEL

QWA

D

Step 10

4 If this is a local resource,

• call subroutine
XPROCENQ to pro·
cess each local resource.

• Store the return codes

• Terminate the requestor
when necessary.

5 If this is a global resource,
copy each global resource
request to the private area
QWBs.

Step 19

ISGGQWBC

Copy PEL entries

Output

SQAQWB

~--' PELXRET I QWBPEL __ .J

QWA

~
User
PEL

~
QWA

QWAQWBF r-:.,QWBS

~

-<
N
00
I

G'
.0
UI
I

0

,..
n ...,
(")
D

" '< ,
III
~
rl-

1-1

'" :3

(")
D .,
" .
....
00
00 ..,

:I
,1) ,...
~
o
a.
o
o

" ID .,
III ,... -o
:J

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (Part 6 or 24) r-~ ... ~
Extended Description Module Label ntll

~ ... "..,
4 ISGGNOOO calls subroutine XPROCENO to process the XPROCENO 11-

local requests (steps 19·26 describe XPROCENO's a.n
processing.) The OWBSMPL points to the Oce, OEL, and 3l'D

Ala.
QXB control blocks. ISGGNOOO passes this Input to the sub-
routine XPROCENG. 113

-,AI -.... AlII
• ISGGNOOO uses the SOA owe PE L as the input PE L.-,

(Note that In the case of steal processing, the input PEL en-
AI

is located in a private area owe not a SOA owe.) ,..-
1ft

'U

• After each PEL entry Is processed, ISGGNOOO moves -'0
0

the return codes to the user's PEL. ISGGNODO issues XENQSTRC "0
11)104

an ABEND if it is necessary to do so (determined by -,w
XPROCENO). "3

IC =
5 If this is a global resource, ISGGNQOO calls ISGGOWeC 0

ISGGOWBC to copy each global resource from the
104

SOA awe into the private area OWBs. ISGGNOOO had l1l:I
previously obtained the private area aWBs and chained them 3

out of the owe SMPL •

3
<:
en ,
X •
en
r­
r-

r­
-<
N
00
I .­.,.

..0
Ut
I

o

(")
o
'U
'<: ,
IQ
';T
t+

~

til'
3:

(")
o ,
" .

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (part 7 of 24)

Input

QWA

D
SQAQWB

QWBSMPL

SQAQWB

QWBHDR

QWBSMPL

QWBPEL

QWA
UnSVRB
workareal

D

Process

6 Free any unused control
blocks

7 Check if the requestor
must be suspended.
• If so, continue

with step 8
• If not, save the accu­

mulated request inform­
ation and perform
completion processing .

ISGSDAL

Free control blocks

EXIT
prolog

Output

SVRB savearea

D

....
n ...,
n
o

" oc:: .,
10
:r
no
....
ell
3

n
o .,
" .

Diagram GRS-30. ISGGNQDQ - ENQjRESERVE Processing

Extended Dascrlption

6 When all the input PEL entries have been processed.
ISGGNOOO calls ISGSOAL to free any unused

control blocks (OCBs. OELs and the OXB.!

7 ISGGNOOO does not suspend the requestor If any of the
following conditions are met for each local resource

requested (requests for global resources always result in sus­
pension):

• The resource was immediately available_
• The resource was not immediately available but

ECB" or RET=USE was indicated.
• RET"HAVE was indicated and the requestor cur­

rently owns the resource.
• RETaTEST or CHNG was indicated.

If the requestor must be suspended. processing continues at
step 8. Otherwise. ISGGNOOO moV81 the OWA into the
SVRB extended savearea. This enables the completion
routine to reference the data after the QWA serialization is
released.

To complete the request. ISGGNQDO

• Reestablishes addreaability to the home addr.
space.

• Invokes STATUS If step must complete (SMe) was
Indicated.

• Releases the locks and deletes the FRR.

Module

ISGSDAL

(part 8 of 24)

Label

3
<:
(I)

"­
X
>
(I)
r­
r-

r­
-<
N
00
I
I~

a­
-0
VI
I

o

o

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (Part 9 of 24)

Input

OWA

OWA

OWAOWBF ~OWBS

SOA OWB

IOW""DR I
OWA

IOWAFlAG21

From step 3

8 Suspend the requestor.

9 After the wait, check
if the request was only
for local resources.

• If so, obtain the
user's local lock.

Output

GVT

ISGGWAIT

Wait

•• II~ Step 14

Request
queue
OWBs

SVRB savearea

r

,...
n ...,
()
o

" 'C ,
10
':r
no
....
QIr
3
()
o ,
" .

3
19
no
:r
o
a.
o
-h

a

" 11) ,
Gf
I't"

o
:s

G)
iIIII
en
• N ...
"

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing

Extended Description

8 ISGGNQOQ suspends the requestor if any of the
following conditions are met:

• A global resource is present.
• A local resource was not immediatelv available and

RET"'NONE was specified or RETcHAVE was
specified and the requestor was not the owner of
the resource.

• Stage 1 steal p.rocesslng needs to wait until the
sync QWB is processed.

To suspend a requestor, ISGGNQDQ:

• Places the QWBs on the request queue so that the re­
quest will be serialized with the other systems in the
global resource serialization ring.

• Increases the task global resource count (TCBGRES)
bV the number of global resources requested by this
task.

• Copies the QWA into the SVRB extended savearea (for
global resources, some of the QWA information is
copied into the private area QWB) prior to the WAIT.

• Releases the CMSEQOQ lock. The local lock is retained
since it is required bV the WAIT interface (which will re­
lease the locel lock.l

• Sets register 0 to indicate either a short or long walt.
Global requests are alwavs considered short walts. For
local resources, ISGGNQOQ checks whether the long.wait
bit was set during resource processing. If the bit is
set to one, ISGGNQDQ Indicates in register 0 that this is
to be a long wait.

Module

(part 10 of 24)

Label

ISGGNQOQ calls the wait service routine to suspend the ISGGWAIT
requestor.

9 If global resource serialization is not active, or if It is
active but the request did not specify any global reo

sources, ISGGNQOQ continues at step 14 where It prepares
to return to the caller.

3
< en

")(
~

CIt

....
-<
N
go
I

t­
o-

"" Ut
I

o

,...
n ...,

Diapam GRS-30. ISGGNQDQ - ENQjRESERVE ProcessiDg (Part 11 0124)

Input Process

OWBPTR

~awB

OWBHFLGS
... 10 Check if this is 8 Iteal sync
... OWB •

• If 50, perform ini·
tialization to resume
steal processing.

SVRB
extended
sawarea

I I
Staallvnc
OWB

aWBHSTL , Request
OWBs

SVRB

~ -'" 11 Perform initialization to /
y complete the processing

of the global requests.

Output

OWA

... D ...

Step 4

aWA

... D ..

1-1
o:f
:3

o
o .,
"0 .

:3
II)
n­
'3'
o
D-

o
-ft

o
'tI
11) .,
AI
n-
o
:J

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing

Extended Description

10 Steal processing placed a sync OWB on the request
queue and waited for it to be processed Isee step 3).

The POST from ISGGRPOO to ISGGWAIT causes steal
processing to resume. ISGGNOOO performs the following
initialization functlon's:
• Acquires the global resource serialization local lock to

serialize the global resource queues.
• Acquires the CMSEODO lock to serialize the OWB pool

and the sync request queue.
• COpies the data saved prior to the wait from the SVRB

extended savearea back into global OWA. This data is
needed to process the request.

• Decreases the task global resource count (TCBGRES) by
the number of global resource requests that are on the
queue for global ENO requests IISGGRPOO has not
put any OELs on the queue.)

• Locates the OWBs that are chained out of the steal
synchronization OWB. These private area OWBs are the
input for stage 2 steal processing.

11 In order to complete the processing of the global re-
quests, ISGGNOOO obtains the requestor's local lock

and the CMSEOOO lock Un order to free the OWB) and
copies the data saved in the SVRB extended sawarea back
into the OWA.

Module

(part 12 or 24)

Label

o ...
H ..,
:z

~ Diagram GJ(S-30. ISGGNQDQ - ENQ/RESERVE Processing
en
I

N
N
o

(part 13 of 24)

....
-<
N
co
I .-

0"
\Q
UI
I

0

,....
0
w

(")
0
"'0
'< .,
ca. .-
rl"

....
':E'
3

n
0 .,
'U .
....
\Q
co
......

Input

aWA
L . Request
I ~aWBs

~ I n
Request
aWBs

aWB

IOWBHODSI

Local
aWA

D

Process

12 Store the return codes
when necessary.

13 Free the priwte area
aWBs.

14 Move the local resource
completion information.

15 Perform completion
processing.

Output

PEL

~
ISGSDAL

Free control blocks

... -n m
SVRB extended :J

III
savearea CD a.:

1IO
::UD
lUln
r+r+
IIJ.., ..,
-·n
lUrfo
... tU
Ina.

Return to I~
the caller "Urfo

"'11)
0..,
'U-
0IQ1
r+1II
'C

0
0

H
Ht113
.~
::1::

r­
oo(
N
00
I ...

G"

'" Uf
I

o

.....
n
o
o
'U
oc: ,
IQ
J
1-1
tr=I
:3

o
o ,
'U .

:3
III
J
0
Q.

0
-io

0
'U
II) ,
III
0
::II

G)
;IIU
en
I

N
N ...

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing

Extended Description

12 ISGGNODO moves the return codes from the OWB PEL
entry into the requestor's PEL entry. ISGGNODO

also issues an ABEND when the return code Indicates thet
one is needed •

13 ISGGNODO frees the OWBs defining this request .
(Private area OWBs will not exist unless a request was

for a global resource'!

14 ISGGNOOO moves the OWB to the SVRB extended
savearea. This is necessary so that the completion

data can be referenced after addressablllty is reestablished
to the home address space and the locks are released.

15 ISGGNOOO performs the following completion
processing:

• Reestablishes addressability to the home address
space

• Invokes STATUS when step must complete (SMC)
was indicated

• Releases the locks and deletes the FRR

Module

(Part 14 of 24)

Label

o ...
H
QJ
:x

,

G)
;:0
ell
I

N
N
N

:3
<
ell
X
:z..
ell
r­
r-

r­
-<
N
C»
I ...

a­
.0
UI
I

Q

,...
n
-.J

t-t
QII

3:

o
o .,
"D

Diagram GRS-30. ISGGNQDQ - ENQjRESERVE Processing (part IS of 24)

Input

Register 13

...... __ ~ Savearea

I I

Register
savearea

D

From
ISGGRPOO

Entry Point ISGGNQOO:

16 Save the caller's environ·
ment.

17 Call subroutine
XPROCENQ to process
a global resource request.

18 Restore the ~lIer's en·
vironment.

Step 19

To
ISGGRPOO

Output

Register
savearea

D

Restored
registers

D

,..,
n
o
o
'U
'C , -.
III
:r ,...

3:
lD ,...
:T
o
~

o ...
o
'D
/I)

~ ,... -o
~

Q
iV
en ,
N
N
c.oe

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (part 16 of 24)

Label Extended Description

Entry Point ISGGNOOO:

16 ISGGRPOO uses entry point ISGGNQOO as an inter·
face to reach subroutine XPROCENQ. ISGGNQOQ

saves ISGGRPOO's registers and the savearea address before
ceiling XPROCENQ,

17 XPROCENQ processes a global request. Steps 19·26
describe XPROCENQ's processing.

18 ISGGNQOQ restores ISGGRPOO's registers and reo
turns to ISGGRPOO.

Module

ISGGNQOQ ISGGNQOO

XPROCENQ

ISGGRPOO

:3
<
en

" X
Jo-

en ,...
roo

I-f
tIIf
:3

o
o ,
-g .

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (Part 17 of 24)

From 9 step 4
Input

0 ...

Process

Entry Point XPROCENQ:
Global

local hash hash
table table

" 19 Search the local or global

D D
queue hash table for the ..
requested resourca.

• If found, save its
hash table slot.

aWB

~ • If not found, check:
- If RET=TEST or

CHANGE was
PEL specified, set the

D return code

....

- If not, obtain, in-
itialize. and chain
aaCB.

aWB

aWBHDR

aWBSMPl
~,..

...
aWBPEL

6

Output

... ''''L , .. L ._-
.. .. Search

queue
~ r

hash table. aWA

laWAHASH I I"

aWB

IPELXRET 1--lawBPEL
/

r
__ .J

"cm~
aCB

SYSID/ASID
hash table ~

" ,
I" aEl

/
Step I 24 or

ASCB ~aXB

r­
oo(
N
00
I ...

cr-
00
UI
I

o

,..
n

...
till
3:
C")
o .,
"CI .
...
00
00

Diapam GRS-30. ISGGNQDQ - ENQ/RESERVE Processing

Extended Dtscrlptian Module

Entry Paint XPROCENQ:

.(Part 18 01 24)

Label

19 The subroutine XPROCENacalis ISGSHASH to ISGAHASH ISGSGLH
search the resource queues for the requested resource

(represented by a aCB.) If a local resource has been
requested, ISGSHASH returns a slot from the local hash table.
If a global resource has been requested,lSGSHASH returns
a slot from the global hash table.

The subroutine XPROCENa uses the hash table slot to
queue this resource to the hash table for subsequent processing.

If the resource name is not found queued out of this hash
table slot, a aCB might need to be added to the hash table •

• If the requestor specified RET"'CHNG, and ENQ for this
resource should have already been done. Since the resource
was not found queued out of the hash table, the re-
quested change cannot be done. XPROCENa sets a
return code of 8 In the PELXRET and returns to the
caller.

• If the requestor specified RET"TEST; not finding the
resource Indicates that the resource is available. The
subroutine XPROCENQ sets a return code of zero In
the PELXRET and returns to the caller.

For all other types of requests, XPROCENQ obtalns .. lnltiel­
izes and chains a aCB to the appropriate hash table entry.

XPROCENa takes the aCB from control blocks that it
obtains from the globel resource serialization storage
manager (JSGSALC). ISGGNQOa calls ISGSALC
before the subroutine XPROCENa. ISGSALC allocates
a axe and one or more aCBs and aElI. The storage
management paremeter list (SMPLI points to the allocated
control blocks.

Note: The retum code is only set if the request originated
from the current system. Each system in the ring sets Its
own return codes.

o
3:

3
< en

")(..
en
r­
r-

r-
oo(
N
00
I ..
~
..0
VI ,
0

~

n
(")
0
'U oc: .,
III
:r
ri'

M
CIIS
3

(")
0 .,
'U,
00

"

Diagram GRs-30. ISGGNQDQ - ENQlRESERVE Processing (Part .9bf.24)

Input

Hash table

awe

SQAaWe

I aWeSMPL I

Process

20 If the resource name was
found and stage 2 steal
processing Is in progress,
check If the resource
should be stolen.

• If so, but a deferred steal
Is necessary, mark the aE L
for a deferred steal. ..11111~

Process
aEL Group

• If so, and It is a local
resource, dequeue the
resource.

• If so, and it is a global
resource, build a
OEa awe and place
the awe on the request
queue.

• If not, continue.

..... ----'

ISGGaweo

Output

aEL

I aELQMATO I
aces

r­
-<
N
00
I

toA
0-
<0
UI
I

o

,...
n
'oJ

M
UlI
3:

(")
o ,
'U .

3:
II) ,...
;:s­
o
Q.

o
Q
'U
ID ,
III ,...
o
;:,

Ci)
:iIU
CA
I

N
N ...,

Diagram GRS-30. ISGGNQDQ - ENQjRESERVE Processing
Extended Description

20 This processing is required to ensure that no per·
manent waits caused by ENO suspensions occur during

RTM processing.

If the requesting task is abending and a global resource was
requested, ISGGNODO invokes the subroutine XPROCENO
twice: first to build steal DEO OWBs if necessary (stage 2
processing), and then to process the ENO request (stage 3
processing) .

OWASTLC controls steal processing. When it is zero (during
stage 2 processing), XPROCENO attempts the needed steal
by building DEO OWBs. When it is one (during stage 3 pro·
cessing), the steal has been completed and XPROCENO
processes the original ENO request. During stage 2,
HASI O"SASI Octhe ENO requestor's address space, and
PASlDcthe global resource serialization address space.
During stage 3, HASIO=SASIDcPASIOcthe global resource
serialization address space.

XPROCENO scens the resource's OEL chain. If the end of
the queue is reeched and no steals are necessary ,
XPROCENO return to the caller.

If XPROCENO finds the OEL, and the SYSID/ASID
matches the requestor's SYSID/ASID, the OEL isa steal

. possibility. XPROCENO examines TCBs in the ENO
requestor's address space. XPROCENO issues SAC ON to
access the requestor's address space and SAC OFF to restore
access to the global resource serialization address space. In
the requestor's address space, XPROCENO checks if the
OEL-TCB is in the same abend TCB tree as the requestor.
If the OEL is not, XPROCENO issues a SAC OFF to re­
establish eddressing to the global resource serialization ad­
dress space. XPROCENO continued to search the OEL
queue for steal possibilities .

If XPROCENO finds the OEL in the requestor's TCB tree,
a steal is needed. XPROCENO marks the OEL for a deferred
steal (If a MASI O-QE L currently points et the OE L that must
be stolen) or performs the steal. XPROCENO calls

Module

(part 20 of 24)

Label

ISGGPGRP (function MASIDSCN) to make this decision. ISGGPRGP

Extended Description

If the OEL is for a local resource, XPROCENO performs the
steal by calling subroutine XDEOOEL, which dequeues the
resource. XPROCENO continues to search the OEL chain
for other steal possibilities.

If the OEL is for a global resource, the DEO cennot be exe­
cuted until after the DEO request has been presented to
each system in the global resource serialization ring. This is
necessary to ensure the consistency of the hash table data.
Therefore, OEO requests are generated in this step and
passed to other systems in the global resource serialization
ring. XPROCENO calls subroutine XGLDEOG. which calls
ISGGOWBO (entrv point ISGGOWB4) to build a OEO
OWB. XPROCENO places this OWB on the request queue.
XPROCENO continues to search the OEL queue for steal
possibilities until it reaches the end of the queue. It then
returns to the caller.

Module Label

XDEOOEL

ISGGOWBO ISGGOWB4

3:
<
(II

" X ,.
(II
r­
r-

r­
~
N
co
I

f1'­
..0
U1
I

o

,...
n
o
o
'tJ
'< .,
co
:r
1'1'

....
= 3:

o
o .,
'tJ .

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE&-ocessiog (Put 21 of 24)

Input Process 9
21 Determine whether the requesting

task owns or previously requested
aWBPEl aWAMalAD the resource.

D I I '\ 22 If this task already owns or is .I already waiting for this resource, I

set the appropriate retum code.

aWBPEl

I I ...
23 If this is the first request for this

-y
resource by this task and

aWBSMPl
RET=CHNG or TEST,

• aXB
• Set the retum code .

+ aEl

+ aCB
24 If the request cannot be handled,

reject the requestor undo the
processing.

...
25 Obtain, initialize, and chain ... a aEl for this resource.

6

Output
ISGGPGRP

Process
~ " aEl

Group

--'" aEl aWA

EJ laWAERR I Caller -..

aWB ... 1
~~~ IOWSPEL 

PElXRET .,J .., 
h. 

,. 

• Coil" 

/ aWBPEl 0" I PElXAET I 
Hash table 

i--- -.,.aCB 

I 

'L aXB 

L 'I 1 I 

GVT 

-'" I GVTAEaa I 



(") 
o 
'tI 
'<: ., 
to 
::r ,... 
~ 

tlaI 
:3 
(") 
o ., 
-g . 

:3 
II) ,... 
::r 
o 
a. 
o .... 
o 
-g 
& ., 
OJ ,... 
o 
::J 

G') 
;IU 
en 
I 

I\) 
I\) 
ooD 

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (part 22 of 24) 

Label Extended Description 

21 XPROCENQ calls the QEl group processing routine 
(ISGGPGRP) to perform the function ENQSCAN. 

ISGGPGRP determines whether the requesting task owns 
the resource or previously requested the resource. ISGGPGRP 
also determines whether the requesting task Is alloWed to 
use the resource Wag QWA7AURC) and whether the request 
Is illegal (flag QWA7ABMR) or cannot be handled (flag 
QWA7COEX). 

22 When the requestor asks for the same resource a 
second time, XPROCENQ sets a return code. The 

return code Is determined by whether the requestor owns 
the resource of is waiting for the resource, and by what 
RETcparameter was specified. 
• When the requestor owns the resource and specified 

RET=HAVE and SMC=STEP. XPROCENQ sets the 
RMC indicator in the current QE l and sets a return 
code of S in PELXRET. 

• When the requestor owns the resource and specified 
RET=CHNG, XPROCENQ attempts to change the re­
source's status from shared to exclusive. If no other 
requestor is presently sharing the resource, XPROCENQ 
changes the resource's status to exclusive and sets a re­
turn code of zero in PElXRET. If the requestor al­
ready owns the resource exclusively, XPROCENQ sets 
a return code of zero in PElXRET. If another re­
questor is presently sharing the resource, the resource's 
status cannot be changed. XPROCENQ sets a return 
code of 4 in PElXRET to show the request failed. 

• When the requestor owns the resource and specified 
RET=HAVE, RET=USE, RET=TEST, or ECB=, 
XPROCENQsets a return code of S in PElXRET. 

• When the requestor owns the resource and specified 
RET=NONE, XPROCENQ sets an aOOnd code of 
X'13S' in QWAERR. 

• When the requestor is waiting for the resource and spec­
Ified RETcHAVE, USE, CHNG, TEST, or ECB=, 
XPROCENQ sets a return code of 20. 

• When the requestor is waiting for the resource and spec­
ified RET=NONE, XPROCENQ sets an abend code of 
X'13S' in QWAERR. 

Module 

ISGGPGRP 

Extended Description Module 

23 Because this is the first request for thl~ resource, 
XPROCENQ cannot test or change the status of the 

resource. XPROCENQ sets a return code of zero for a 
. TEST and an S for a CHNG in the PElXRET and returns 
to the caller. 

24 If the request cannot be handled (flag QWA7COEX Is on), 
a local-resource ENQ must be rejected or a 

global-resource ENQ must be completed and then undone. 
This is done by calling subroutine XGlDEQG, which initial­
izes a DEQ QWB and places it on the ring processing request 
queue (GVTREQQ). 

25 XPROCENQ obtains, initializes, and chains a QEl to 
this QCB (to represent this requestor.) If this request 

does not already have a QXB, XPROCENQ obtains a QXB 
from the SMPL and chains it to the QEl. 

Label 



:3 
< 
en .... 
)( 
>-
en 
r­
r-

r­
oo( 
N 
~ 
I ... 

a-
0,1) 

VI 
I 

o 

,... 
o ..... 
o 
o 
-0 

'" .., 
IQ 
:r 
rio 

1-4 
tJ:II 
:3: 

o 
o .., 
" . ... 
0,1) 

00 
..... 

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing (part 23 of 24) 

Input 

Local or global 
hash table 

From 
step 19 

26 Place the OE L on the 
ASCS local or global 
queue or the 

OCB SYSID/ASID hash table. 

OXB 

aWBPEL aWA 

D laWATHOLDI --~------~~ 
OWA 

laWATPOST I 
aWA 

laWA7AVRCI 

27 Issue SYSEVENT 
ENaHOLD, if necessary • 

28 Post a previous register's 
aEL, is necessary. 

29 Set return codes in 
the PEL. 

ISGSSAH 

For 
SYSID/ASI0 

To the 
caller 

Output 

SYSI D/ASI 0 
hash table 

ASCB 

ASCBGaEL 

ASCSLOEL 

OWBPEL 

IPELXRET I 

aELs 

OELs 

aWA 

laWALNGWTI 



(") 
o 

" '<: ., 
!O 
:T no 
.... 
tII:lI 
:3: 

(") 
o ., 
1J . 

3 
ID 
no 
:T 
o 
0.. 

o 
~ 

o 

" III ., 
• ,.. ... 
o 
:;, 

Diagram GRS-30. ISGGNQDQ - ENQ/RESERVE Processing 

Extended Description 

26. XPROCENO obtains, initializes, and chains a OE l to 
this OCB to represent the requestor. XPROCENO 

also chains the OEl to: 
• The ASCB local OEl queue if this is a local reo 

quest. 
• The ASCB global OEl queue if this is a global re­

quest. 
• The SYSIO/ASIO hash table if this is a global re­

quest from another system. 

On behalf of ISGGRPOO, XPROCENO decreases by one 
the count of global resource requests (OWAGRES) for 
each OE l that was not placed in the queue for a global 
resource request. The task global resource count (TCBGRES) 
will be decreased by the value in OWAGRES after 
ISGGRPOO posts ISGGWAIT. 

If this request does not already have a OXB, XPROCENO 
obtains a OXB from the SMPl.and queues it to the OEL 
For RET"'HAVE or USE, and ECB'" requests. XPROCENO 
sets a return code of zero in the PELXRET. 

Note: The return code is only set it the request originated 
from the current system. Each system in the ring sets its 
own return codes. 

Serialization of the local queue is through use of the 
CMSEOOO lock. Serialization of the global queue is 
throu~ use of the local lock of the global resource 
serialization address space. If both queues must be serialized, 
both locks must be held. The caller is responsible for this 
serialization. 

27 Flags set by module ISGGPGRP determine which 
SYSEVENTs are Issued. XPROCENQ issues 

SYSEVENTs only for address spaces In the system that Is 
issuing the SYSEVENT. Each system Issues SYSEVENTs for 
its own address space. 

Modulo 

(part 24 of 24) 

Label Extended Description Module 

28 Flags set by module ISGGPGRP determine what OELs 
are posted. A OEl is posted by reducing the wait count 

in the corresponding OXB. When the OXB wait count is reo 
duced to zero, ISGGNOOO posts the ECB or SVRB of the 
requestor. Each system posts ECBs or SVRBs for tasks in 
its own address spacos. 

29 Flags set by modula ISGGPGRP determine what return 
code is placed In the PElX. 

Label 

... .., 
3 



:3 
< 
C/I , 
)( 
:.. 
C/I 
r­
r-

,.... 
n 
~ 

n 
o 
~ , 
Ul 
:r ,... 
1-4 
til' 
:3 

n 
o , 
'til . 

Diagram GRS-31. ISGGNQDQ - DEQ Processing (part 1 of 12) 

Input 

Register 3 

Register 5 

1+ current RB 

Register 14 

1+ Exit address 

Register 1 

Register 4 

I+CSlrrent TCB 

Register 7 

Requestor of OEQ 
&ervices via ISG LNQOQ 

I + current ASCB 

QWA 

D 

r r 

Process 

Entry Point IGC048: 

1 Perform setup processing 
and ensure that the pa­
rameter specifications are 
correct. 

2 CoPV the user's PEL to the 
SQAQWB. 

Output 

QWAERR 

Abend code 
orO 

GVT 

QWA 

QWAQWBE 

SQAQWB 

QWBHDR 

QWBSMPL 

QWBPEL 

~QWB 



..... 
n ..... 
(") 
o 
'0 
'< ., 
U2 
J ,.. 
..... 
~ 
:3 

(") 
o ., 
'0 . 

3: 
ID ,.. 
J 
o 
Q. 

o 
-+0 

o 
'0 
II) ., 
or 
ri-

o 
~ 

Diagram GRS-31. ISGGNQDQ - DEQ Processing (part 2 of 11) 

Extended Description 

ISGGNQOQ proce55es DEQ requests for specified re­
sources. There are three major sections to DEQ processing. 
IGC048 is the initial entry point for all DEQ requests, sub­
routine XPROCDEQ performs the actual processing, and 
entry ISGGDQOO is utilized by ISGGRPOO for global 
requests . 

At entry point IGC048, ISGGNODO first determines if a 
request is only for loc?al resources, only for global resources, 
or for a mixture of local and global resources. The processing 
of local and global requests differs in that requests for local 
resources can be processed immediately while requests for 
global resources cannot be processed until the other systems 
active in the global resource serialization ring have been 
informed of this request. For local requests ISGGNQDQ 
calls subroutine XPROCDEO to perform the DEO 
immediately. For global requests ISGGNQDQ calls 
QWB-copy routine (lSGGQWBC) to build a queue workblock 
(QWB) for each global request end then ISGGNQOQ places 
the QWBs on the request queue (GVTREQQ). 

After the QWB built by ISGGNOOQ for a global request has 
passed around the global resource serialization ring, 
ISGGRPOO calls ISGGNQDQ (at entry point ISGGOQOO) 
to proce55 the DEQ request. ISGGNOOO calls XPROCDEO 
to proce55 the req uest. 

Subroutine XPROCDEO searches the global and local hash 
tables and finds the appropriate table slots for the re­
quested resources. XPROCDEO then processes the DEO re­
quests. 

Entry Point IGC048: 

1 ISGGNODO establishes an FRR, obtains the requestor's 
local lock and the CMSEODO lock, and initializes the 

queue workerea (OWA). ISGGNODO checks whether the 
parameters conflict and whether the caller is authorized to 
request the specified authorized functions. ISGGNOOO 
abends requestors when the'( fail any of these checks. 

Module Label 

XSETUP 

Extended Description Module Label 

2 ISGGNODO invokes the globel resource serialization ISGGOWBI 
queue work block initialization routine (lSGGOWBIl to 

copy the parameter element list (PEL) to the system queue 
area (SQA) QWB, establish addressabllity to the global 
resource serialization address space, and obtain private OWBs 
if there are global resources. 

a .. 
H 
Id 
:I: 



r­
oo( 
N 
00 
I ... 

0-
.0 
Ion 
I 

c 

.... 
n ..... 
o 
o 
~ 
"' IQ 
::r 
r+ 
.... 
I;IIlI 
:3: 

o 
o 
"' 'U . 

D.iapam GRS-31. ISGGNQDQ - DEQ Processing 

Input 

QWA 

QWATCBFA 

SQAQWB 

aWBHDR 

aWBSMPL 

~QWB QWBPEL 

SQAaWB 

aWBSMPL --...aWBs 

aWBPEL 

aWA 

D 

(Part 3 of 12) 

Process 

3 If nec:assary. perform steal 
processing to prevent a 
resource interlock. 

4 If this is a local request. 

• Call subroutine 
XPROCDEa to pro­
caito 

• Store the return code 
from XPROCDEQ. 

• If necessary. termi· 
nate the caller. 

5 If this is a global request, 
copy each global resource 
request to the private area 
aWBs . 

Step 7 

Step 17 

ISGGaWBC 

Copy PEL 
entries 

Output 

I 

ASCB 

ASCBGSYN 

GVT 

GVTREaa 

Steahync 
aW8 
aWBHSTL 

Original 
request 
aWBs 

SOAOWB 

PELXRET 

aWA 

aWAERR 

" 

~ 

-1 

Steal 
syncQWBls) 

laWBPEL 

) 

PEL 

PELRET 



,.. 
o ..... 
(') 
o 
'tI 
'< , 
10 
:r­
tf-

1-1 
or 
:3 

(') 
o , 
'tI 

.... 

..0 
00 ..., 

:3 
to 
n­
:r­
o 
a.. 
o 
-h 

<:) 

'tI 
to , 
11/ 
n-
o 
::J 

Diagram GRS-3l. ISGGNQDQ - DEQ Processing 

Extended Description 

3 When a resource is requested by a task that is part of 
an abending task structure, and the resource is owned 

by another task in this same task structure, there can be an 
interlock over the resource. When a OEO request is for a 
local resource, it is not necessary to perform steal proces­
sing. However, when a OEO request is for a global re­
source, steal processing consists of sending a sync OWB 
around the ring so that any outstanding ENOs complete be­
fore the OEO request starts. Because the resource is being 
released, no actual steal is necessary (as is done in ENO 
steal processing). OEO steal processing is done in 3 stages. 

Stage 1 - ISGGNOOO constructs a sync OWB con­
taining a pointer to the original request OWB(s). 
The sync OWB ensures that the request and processing 
queues are purged of any outstanding ENOs for this 
resource before the OEO request starts. 

Stage 2 - After the sync OWB has processed, the origi-

(part 4 of 12) 

Module 

nal request queue OWB is processed. XPROCOEO pro­
cesses any local resources. ISGGNOOO copies any global re­
source requests to global resource serialization private 
area OWBs. When all resource requests have been 
copied, ISGGNODO places these OWBs on the request 
queue. 

Stage 3 - ISGGRPOO processes the global request 
OWB(s) (ISGGRPOO calls ISGGNODO at entry point 
ISGGDOOO to do the processing). 

ISGGNOOO starts the ~teal processing by calling ISGGOWBC 
ISGGOWBC to copy each local and global resource from the 
SOA OWB into the private area OWBs. The private area 
OWBs were obtained earlier and chained from the SOA OWB 
SMPL. When all the PEL entries have been copied, 
ISGGOWBC initializes a sync OWB. ISGGOWBC moves the 
sync OWB to the request queue only when no other syncs 
are outstanding. This ensures that only one sync request 
is processed at a time. When a sync request is already being 
processed, ISGGOWBC places the current sync OWB on the 
end of the ASCB sync queue. ISGGNODO (subroutine 
XPROCOEO) processes the OWB after previous sync requests 

Label Extended Description 

3 (continued) 

complete. ISGGNODO goes to step 7 to branch enter WAIT 
while the sync OWB Is passed around the ring. (This 
completes stage 1 steal processing.! 

4 ISGGNODO calls subroutine XPROCOEO to process the 
local requests (steps 17-1B describe XPROCDEO's pro­

ceSSing.) 
• ISGGNODO uses the SOA OWB PEL as the input PEL. 

(Note that in the case of steal processing, the input PEL 
is located in a private area OWB not a SUA OWB.) The 
SUA OWBSMPL points to the OWB control blocks ob­
tained earlier. ISGGNODO passes this input to 
XPROCOEO. 

• If XPROCDEO detected an error, it places the abend 
code in OWAERR and ISGGNODO discontinues the PEL 
scan, performs cleanup, and issues an ABEND. 

• If no error was detected, ISGGNODO places any 
return codes in the requestor's PEL . 

5 ISGGNODO calls ISGGOWBC to copy each global 
resource from the SUA OWB into private area OWBs. 

ISGG NODO has previously obta ined the private area OWBs and 
chained them out of the OWB SNIPL. 

Module Label 

XPROCDEO 

,XDEOSTRC 

ISGGOWBC 



~ Diagram GRS-3l. ISGGNQDQ - DEQ Processing (part S of 12) 
en 
I 

N 
~ 
~ 

:3 
< en 

" )( 
:. 
en 
r­
r-

r-
-< 
N 
00 
I ... 
~ 
-0 
UI 
I 

Q 

..... 
() ..., 
(') 
0 

" oc: ., 
rtI :r ,.. 
M 
~ 
3: 
(') 
0 ., 
" . ... 
..a 
00 ...., 

Input 

SOAQWB 

aWBHOR 

aWBSMPL 

aWBPEL 
(PELXRET) 

aWA 
in SVRB savearea 

aWBPTR 

SVRB 
extended 
savearea 

Steal sync 
aWB 

aWBHSTL 

From 
steps 3 or6 

hawB 

lowaHFLGs 

Request 
r-----.. aWBs 

Process 

6 Checkiftherequettor 
must be suspended. 

• If so, 

• If not, save the accu­
mulated request infor­
mation and perform 
completion proces­
sing. 

7 Suspend the requestor. 

8 After the wait, check if 
this is a steal sync aWB. 

• If so, perform initiali­
zation to resume steal 
processing. 

Step 7 

EXIT 
prolog 

ISGGWAIT 

Step 4 

Output 

SVRB savearea 

GVT 

GVTREaa 

aWA 

D 

Global 

"" only 
request , 
aWBs 



,... 
~ 
N 
00 
I ... 

go. 
.0 
UI 
I 

o 

,... 
n .... 

..... 
OJ 
3: 

o 
o ., 
'U . 

:3 
III 
rfo 
:s­
o 
a. 
o 
-to 
c 
'U 
III 

~ 
rl-

O 
:J 

Diagram GRS-31. ISGGNQDQ - DEQ Processing (Part 6 of 12) 

Extended Description 

6 ISGGNQOQ does not suspend the caller if all of the re­
quested resources are local resources. ISGGNQOQ 

issues a PT instruction to the caller's address space. 
ISGGNQOQ then does the following: 

ISGGNQOQ sets the following Indicetors for completion pro­
cessing in the global resource serialization address space: . 

• locks held 
• RMC indicator 
• SPOST indicator 

Note that ISGGNQOQ moves the accumulated request Infor­
mation to the SVRB extended sevearea to ensure that the 
correct data is available for completion processing after the 
QWA serialization is lost. 

To complete the request, ISGGNQOQ performs the following 
completion processing in the requestor's address space • 

• Reestablishes addressabllity to the home address space. 
• Issues an SPOST, if necessary. 
• Invokes STATUS if reset must complete (RMC) was in­

dicated_ 
• Releases the locks and deletes the FRR. 

7 ISGGNQOQ s.uspends the requestor if a global resource Is 
requested or stage 1 steal processing is waiting for the 

sync QWB to be processed. 
• If this was a mixed resource request, ISGGNOOQ placas 

the address of the private area QWB and the address of 
the QXB In the SVRB axtended savearea. The wait Is cov­
ered by an ESTAE. ISGGESTO. which cleans up the 
existing requestor If an error occurs (the FRR is deleted 
when WAIT is entered). 

• ISGGNQOO releases the CMSEQOQ lock. The local lock 
is retained since it is required by the WAIT interface. The 
WAIT occurs In the global re&Ource serialization address 
space under the requestor's TCB. The POST will occur 
when one QWB is processed by the GRP. 

Module Label 

lOCAlCOM 

Extended Oescription Module 

8 Steal processing placed a sync QWB on the request 
queue and waited for it to be processed (see step 3) . 

The POST from ISGGRPOO to ISGGWAIT causes steal pro­
cessing to resume. ISGGNQOQ performs the following func­
tions: 

• Acquires the global resource serialization local lock to 
serialize the global resource queues. 

• Acquires the CMSEQOQ lock to serialize the OWB pool 
and the sync request queue. 

• Oecreases the task global resource count CTCBGRES) 
by the number of global resource requests on the 
queue for global OEO requests from which a OEl 
was removed. 

• locates the awBs that are chained from the &teal sync 
OWB. These private area OWBs are the input for stage 2 
steal processing. 

Label 



= Diapan GRs-3t. ISGGNQDQ - DEQ PrcKlessinJ (J'art 7 of 12) 
fit 
I 

N 
c-I .. 
3: 
< en .... 
)( .. 
en ... ... 

... 
-< 
N 
00 
I ... 

0-

'" \II 
I 

o 

(") 
o 
'0 
'< ., 
ca 
:r 
rt-

1-1 
I;"!:I 
:3 

(") 
o ., 
"D . 
... 
'" 00 .... 

Input 

SVRB 

~ 
Request 

QWA QWBs 

I r-I , n 
Register 

r Request 
'QWBs 

QWB 

B 
Local 
QWA 

D 

Process )) 
.. 

9 Perform Initialization to .. complete the processing 
of the global requests • 

... 
10 Store the return codes .. 

when necessary. 

.. 
11 Free the prlvete area .. QWBs • 

.. 
12 Move the local resource ... Information. 

13 Perform completion 
processing . 

6 

Output 

QWA .. D .. 
PEL .. 
IpE~a I -.. 

...... ..... 
ISGSDAL .......... 

Free the 
control blocks 

SVRB 
extended 
savearea 

... I I p 

-t'RMum to the 
caller 



,... 
-< 
N 
C» 
I 

Diapam GRS-31. ISGGNQDQ - DEQ Processing (Part 8 of 12) 

Extendad Description Module ... .,. 
.0 
UI 
I 

Q 

" n ... 

H 

'" :I 
(') 
o ., 
"G . 

9 This step is perfonned efter ISGGRPOO has updated 
the globalof'esourca OCBa, OE Ls, and axBs (by calling 

ISGGOOOO). This step Is executed because the ISGGRPOO 
posted the suspended SVRB In the requestor's address spece. 
The posted SVRB must store return codes In the requestor's 
PEL, free the OWB(slln the private area of the global 
resource sarlalizatlon eddress space, and then exit to the DEO 
requestor. In order to complete the processing of the global 
requestS, ISGGNODO obtains the requestor's local lock and 
the CMSEOOO lock lin order to free the OWB) and copies 
the data sevad In the SVRB extended savaarea back Into the 
OWA. 

10 ISGGNODO moves the return codes from the OWB PEL 
entry to the requestor's PE L entry. ISGGNOOO will 

also Issue an ABEND when the return code.lndicata that one 
Is needed • 

11 ISGGNODO calls ISGSDAL to free the OWBs defining 
this request. (Private area OWBs will not exist unless 

a request was for a global resourcel. 

: 12 ISGGNODO moves the local OWA to the SVRB ex-
tended sevaarea. This Is necessary so thet the com· 

,pletlon data can be referenced after addressablllty Is rees­
tablished to the ho~e address space and the locks are re­
leased. 

13 ISGGNOOO performs the following completion proces­
sing: 

:I • Reestablishes addressablllty to the home addr .. space. 
~ • Invokes STATUS when reset must complete (RMS) was 
i' Indicated. 
Q • Releases the locks and deletes the FRR. 

o ... 
o 
" • ~ ,.. -o 
:I 

ISGSDAL 

Label 



3: 
< 
(J) 

'" x 
> 
(J) 

r­
r-

r­
-< 
N 
00 
I 
~ 
a­
'>D 
1.11 
I 

o 

n 

o 
o 

" '< .., 
10 
:r 
rl-

H 
~ 

3: 

(') 
o .., 
" 

Diagram GRS-31. ISGGNQDQ - DEQ Processing (part 9 of 12) 

Input 

Register 13 

, Savearea 

SYSID/ASID 
hash table 

Heglster 
savearea 

Global 
OELs 

OWA 

OWAFLAG7 

OWAMOLDD 

Global 
OELs 

ASCB i ~~ 
ASCBGOEL 

ASCBLOEL 

Local 
__ OELs 

ISGGRPOO Process 9 
--. Entry Point ISGGOQOO: 

From 
step 4 

• 

or 15 ... 

14 Save the caller's environ· 
ment. 

15 Call subroutine XPROCDEO 
to process a global reo 
source request. 

16 Restore the caller's en· 
vironment. 

XPROCDEO: 

17 For generic DEO reo 
quests, do the followi ng: 

A. Search the appro­
priate resou rce tab Ie 
for this resource. 

B. If the resource is found 
and the requestor is on 
the resource's OE L chain, 

• dequeue the OE L 
• set a retu rn code. 

C. If the resource is not 
found, set a return 
code. 

.. •• II~ Step 17 
r 

L.. -,..,.. ISGGRPOO 

ISGSSAH 

SYSID/ASID 
hash table 
search, if 
necessary 

ISGGPGRP 

Process 
OEL group 

• 

Output 
Register 
savearea 

D 
Restored 
registers 

D 

OWB .//1 ,,::.:......:..---" 

PELXRET 

./' 

I OWBPEL 

I 
) 

r 

o 
1'0 
:J 
III 
1'0 
0.: 

;Q 
::;:r.! 
QS(II ....... m.., ., ..... 
"'·0 
JUri' 
.... fi) 
1110. 

1:1: 
III 

-or+ 
-;m 
0.., 
"0 -. 
10) fIJ .., .... 
.... 111 
'<:: 

o 
o-t. 
-to 

lot 
Hn:I 
W::J: 
:% : 



.... 
-< 
N 
000 
I .... 

0-
~ 
UI 
I 

a 

o 
o 
'U 
'< ., 
10 
J 

'*' .... 
til 
:3 

o 
o ., 
'U 

.... 
~ 
000 .... 

3: 
II) 

'*' :r 
o 
Q. 

o 
oft 

o 
'U 

" ., 
III 
ti-

o 
::J 

Diagram GRS-31. ISGGNQDQ - DEQ Processing 

Extended Description 

Entry Point ISGGDQOO: 

14 ISGGRPOO uses entry point ISGGOQOO as an in· 
terface to reach subroutina XPROCDEQ. ISGGNQOQ 

executes under a task In the global resource serialization 

address space. It updates global resource (lCBs, QELs, and 
QXBs and then returns them to ISGGRPOO. ISGGNQDQ 
saves ISGGRPOO's registers and the savearea address before 
calling XPROCDEQ. 

15 XPROCDEQ processes a global request. Steps 
17·1B descri~ XPROCDEQ's processing. 

16 ISGGNQDQ restores ISGGRPOO's registers and re­
turns to ISGGRPOO. 

17 For each PELentry in the request, XPROCDEQ 
does the following: 

A. If the request originated from the current system, 
XPROCDEQ searches the ASCB OE L queues. These are 
queues of OELs representing both local and global reo 
source requests for the address space defined by this 
ASCB. There exists a separete queue for local requests 
and for global request. 

I f the request originated from another system In the global 
resource serialization ring, XPROCDEO cells ISGSSAH to 
obtain the hash table slot that points to the OELs for those 
global resources requested by other systems in the global reo 
source serialization ring. For each OEL defined for this 
SYSID/ASID, a match occurs when: 

• The SYSIO/ASIDs are equal and 
• The ONAME equal. the"ONAME In the OCB 

B. When the resource is found, XPROCOEQ determines If 
the requestor owns the resource or Is waiting for the re­
source by calling the QEL group processing routine 
C1SGGPGRPI. Users are not permitied to DEQ a resource 
unless they own It or specified ECB" on the 
corraspondlng ENO. If the requestor owns the resourca, 
XPROCDEO dequeues it now. 

(Part 10 of 12) 

Module Label 

ISGGNODO ISGGDOOO 

XPROCOEO 

ISGGRPOO 

ISGGPGRP 

Extended Description 

C. If the request originated from the current system and 
is a global resource, XPROCDEO increases the count 
of global resources COWAGRES) by one for each QEL 
removed from the queue. This count is used to 
decrease the tesk global resource count CTCBGRES) 
after ISGGRPOO posts ISGGWAIT. 

XPROCDEO sets return codas In PELXRETwhen the reo 
quest is processed on the requesting system and 
R ET=HAVE was specified . 

Return code=O - The resource was found and the re­
questor owned the resource or the 
resource was found and the requestor 
was waiting but specified ECB" on the 
corresponding ENQ. In both cases the 
resource was dequeued • 

Return code=4 - The resource was found but the re­
questor is a waiter who did not specify 
ECB'" on the corresponding ENQ. 

Return code=8 - The resource OEL for this request 
was not found. 

Return code"NONE - RET =NON E was specified or this 
was an internally generated DEO. 

Module Label 



= Diapam GRs-31. ISGGNQDQ - DEQ Processing (Put II of 12) 
CIt 
I 

N ... 
N 

r0-
o<: 
N 
00 , . ... 
tI'o 
.0 
U'I. 
I 

o 

I-f 
tIIJ 
·3 
(') 
o , 
'U . 

Input 

GVT 

QWA 

D 
QWBPEL 

D 

Process 

18. For non-ganerlc DEQ re­
qUalts, do the following: 

A. Search the appro­
priate resource table 
for this resource. 

B. If the resource Is 
found and the 
requestor is on tha 
resource's QEL chain, 

• dequeue the QE L 
• set a return code. 

C. If the resource is not 
found, set a return 
code. 

Caller 

ISGSSAH 

ISGGPGRP 

Process 
QEL 
group 

o 

Output 

PEL 

~ 



r­
oo( 
N 
CD 
I ... 

0-
oG 
U'I 
I 

o 

..... 
n ..., 

1-4 
till 
3: 
(') 
o ., 
"U . 

:I: 
ID 
"... 
::T 
o 
a. 
o 
; 

o 
"U 
aI ., 
III 
"... ... 

Q 
;U 
Ut 
I 

N .. 
Coof 

Dia,gtam GRS-31. ISGGNQDQ - DEQ Processing (Part 12 of 12) 

Extended Description Module Label 

18 For non'generic DEQ requests, XPROCDEQ does 
the following: 

A. If the current request represents a request for a local re­
source, the local hash table is searched; otherwise the 
global hash table is searched. A match occurs when: 

• The scopes are equal and 
• The SYSID/ASIDs ere equal end 
• The input resource equals a QCB resource name. 

B. DEQs are not permitted unless the resource is owned, or 
one of the following conditions is met: 

• The DEQ requestor previously Issued an ECB=ENQ or 
RESERVE. 

• The DEQ represents an internal global resource seriali­
zation DEQ. 

• The DEQ requestor previously Issued a MASIDaENQ or 
RESERVE. 

If the DEQ is permitted, XPROCDEQ dequeues the re­
source here. 

Return codes are set in PElXRET when the request is pro­
cessed on the requesting system and AET=HAVE was speci­
fied. 

Return code=O The resource was found and the re­
questor owned the resource or the re­
source was found and the requestor 
was waiting but specified ECB= . 

Return code=4 - The resource was found but the re­
questor Is a waiter who did not speci· 
fy ECB= or MASID=. 

Return code"'S - The resource QE L for this request was 
not found. 

Return code=NONE - RET=NONE was specified or this 
was an internally genarated DEQ. 

r- = -JII 
nlD 
lIeft :s .... "'., 11-a.n .... 
:Zit 1Ua. ,... 
II:Z 
.,01 -,... 
IUID ... ., 
"' ... • . ..-

UJ 
"G 
""110 
0; 
1J 
111M 
..,QJ 
,...3 
'< = 
o .. 
M 
till 
:z 



3 
< en 

" )( 
:. 
en 
r­
r-.. 

r­
-< 
~ 
00 
I .... 

u­
.0 
U1 
I 

o 

,.. 
n .... 
n 
o 
1J 
'C 
"'I -CD 
;r ,... 
H .. 
3 
(') 
o ., 
1J . 

I)Iapam GRS-31. ISGGPGRP - QEL GIOUp Pmt-in, Roadne (Pat 1 of (0) 

OEO.purge ClSGGOEOP) or 
ENQ/OEQ/RESERVE USGGNOOO) 

Input 

Register 5' 

OWAPGRFN"1; 

Register 9 

:::b OXB 

r I .. OEL 
OXBTCB. 

OELOXB 

OELSYSIO 

OELOCB ~OCB 

OELASIO 
OCBFQEL. 

-
'4 0EL1 

OWLNQEL 

'OELOXB' ~OXB, 

aELSYSIO' 
QXBMTCB, 

aELMASIO 

I 
QEL n I 

QELOXSn 
,...-.... QXBn 

QXSMTCBn , 

D 

Process 

MASIDSCN: 

1 Returns the address of the 
MASIO-OEL that points 
at the Input OEL or zero 
if no QEL points at the 
InputOEL. 

QWA 

I QWAMQLAD I 
..~caller 



.... 
n ..., 
o 
o 
'U 
~ ., ... 
..., 
0:1 
3: 

o 
o ., 
'U . 

3: 
III 
tT 
J 
o 
Q. 

o ... 
o 
'U 
ID ., 
OJ 
ri-

o 
:::II 

Diagram GRS·32. ISGGPGRP - QEL Group Processing Routine 

Extended Description 

ISGGPGRP processes aEl groups for task requests. 
ISGGPGRP determines whether: 
• A aEl exists for a task 
• The task requested exclusive or shared control 
• The task owns the resource 

ISGGPGRP transfers this information to the caller by setting 
the appropriate flags and filling address pointers. 

A aCB represents a resource; each aCB has its own aEl 
chain that consists of one or more aELs. A aEl represents 
a task that requested the resource represented by the aCB. 
The first OEl on the OEl chain represents the task that 
issued the oldest outstanding request for the rasource: The 
last OEl on the OEl chain represents the task that issued the 
newest outstanding request for the resource. When a task 
issues a DEO for the resource, its OEl is removed from the 
OEl chain . 

A task can appear, at most, once on the OEl chain of a OCB. 
An ENO or RESERVE is rejected if the requesting task 
already appears on the OEl chain of the requested resource. 

Each OEL. has a flag (OEL.SHR) that indicates whether the 
task requested exclusive control or shared control. 

The OEl chain can be divided into OEL. groups, representing 
tasks that can share use of the resource. A aEl group 
consists of either (a) one exclusive control aEl, or (b) any 
number of successive shared control OEL.s. Successive 
shared-control OELs are considered a single group, because 
they represent tasks that can share the resource. The task 
(or tasks) in the first OE L. group are the task (or tasks) that 
own the resource. OEl groups other than the first group 
represent tasks that must wait for ownership of the resource. 

A task owns the resource if it appears in the first OEl group. 
This is indicated by output flag OWA70WNR. 

Module 

(Part 2 of 10) 

Label Extended Description . 

A task can use the resource if it owns the resource, or if it 
"points at" the OEL. of a task that owns the resource; this is 
indicated by the otuput flag OWA7AURC. A OEl "points 
at" another OEl via the OElMASID and aXBMTCB fields; 
these fields are non-zero only if the requesting task used the 
MASID", and MTCB= operands of ENO (or RESERVE) when 
the OEl was created. 

MASIDSCN function: 

1 If the input function code is MASIDSCN, ISGGPGRP 
searches for the address of a MASID OEl that points at 

the input OEL. and returns it to the caller. If none of the 
MASID aELs point at the input OEl, ISGGPGRP returns a 
zero to the ca II er . 

The input OEL. has the address of its OCB. ISGGPGRP 
searches the OEl chain of this OCB for a OEl that meets the 
following conditions: (a) it has the same SYSID as the input 
OEl, and (b) its OEL.MASID value equals OElASID of the 
input OEl, and (c) its OXBMTCB value equals OXBTCB of 
the input OEl. If ISGGPGRP finds such a aEl, ISGGPGRP 
sets OWAMOlAD to point at it. If ISGGPGRP cannot find 
such a OEl, ISGGPGRP sets OWAMOL.AD to zero. 
ISGGPGRP then returns to its caller. 

Module Label 

ISGGPGRP 



3: 
<: 

'" .... x 
>-

'" .-.-

.­
-< 
N 
QrJ 
I .­

f7' 
.0 
UI 
I 

o 

,.. 
n ..... 
o 
o 
'tJ 
0( 
"'J 

(Q 
':r 
IT 

.... 
CIII 
3: 

o 
o , 
'tJ . 

Diagram GRS-32. ISGGPGRP - QEL Group Processing Routine (part 3 of 10) 

Input Process 7 
Register 5 

~ 
ENQ or DEQSCAN: 

~ 2' If the input QCB has no 
QEL chain, indicates that 
the current requestor owns 
the resource. 

QWAPGRFN 

Register 9 

+ 
6 ./ 

C, 
QCBFQEL 

Output 

QWA 
-

QWAMQLAD 

QWA70WNR 

"' Caller ... 
QWA7AURC 

QWA7CHGA 

QWA7HOLD 

QWA7POST 

QWA7RISE 

QWA7COEX 

QWA7ABMR 

QWA8EXSH 

QWAGPMAS 

QWADSTAD 



... 
-< 
N 
00 
I 

loA 
CI'o 
.." 
VI 
I 

o 

.... 
n .... 
o 
o 
"0 
oc: .., 

'" ;r ,... 
.... 
0:1 
3: 

o 
o .., 
"0 . 

3: 
ID ,... 
;r 
o 
a. 
o 
-t. 
Q 
"0 
ID ., 
III ,... 
o ::s 

Diagram GRS-32. ISGGPGRP - QEL Group Processing Routine 

Extended Description 

ENQSCAN and DEQSCAN function: 

2 If the requesting task does not appear on the aEl chain, 
ISGGPGRP indicates this bV setting aWAMalAD to 

zero. ISGGPGRP turns aWA70WNR on to indicate that any 
new QEl added to the QEl chain will describe a task that 
owns the resource. ISGGPGRP turns QWA7AURC on to 
indicate that the task described bv the newly-added aEl can 
use the resource. Then ISGGPGRP returns to the caller. 
If the caller is performing an ENQ or a RESERVE, the caller 
can add a new QEl to the aEl chain. If the caller is per­
forming a CEQ, the callar can reject the CEQ, because the 
requesting task is not on the QEl chain • 

Module 

(part 4 of 10) 

Label 

o ... 



~ Diagram GRS-32. ISGGPGRP - QEL Group Processing Routine 
en 
I 

N 
~ 
00 

3: 
< 
en 
..... 
X 
:> 

en 
r­
r-

r­
oo( 
N 
00 
I .... 

"" ..0 
VI 
I 

o 

,.., 
n 
oJ 

(") 
o 
~ , 
U:I 
:T .... 
I-f 
till 
3: 

(") 
o , 
'tJ . 

Input 

Register 4 

It TCBorO I .. 
-y 

Register 5 

QWA 

QWAPGRFN=2 
Register 9 

~ 
QWANPMAS 

QWANPMTC-

t' QWAORIGN 
~ QCB 

QCBFQEL 

:!J 
(OEL1 

QELNQEL 

QELQXB1 

~ OELORIGN 
QXB1 

QELMASID, QXBTCB1 

I 

QELn : 
QELQXBnl 

'\ QXBn-

QXBTCBn-

(part S of 10) 

Process Output 

QWA 

3 Scan the QEL chain to ( determine its characteristics. QWA70WNR 

ENQSCAN: QWA7AURC 

4 If the QE L chain has a 
_lI.. 

QEL for the input task, QWA7CHGA 
set the flags and match 
QEL pointer. 

l QWA8EXSH 

.. QWAMQLAD 

... 



,.. 
~ 
N 
Of 

Diagram GRS-31. ISGGPGRP - QEL Group Processing Routine (Put60rlO) 

• ... .-
'" '" • o 

..... 
n 
'"' 
(') 
o 

" 'C ., 
III 
'7 
ri-

M 
~ 
3 
(') 
o ., 
" . 

3 ISGGPGRP searches the OEL chain to determine the 
following: 

• Whether the OEL chain has a matCh.QEL for the Input 
task (OWAMOLAO) 

• Whether the Input MASIO and MTCB operands, If there 
are any, match the ASIOITCB values In lOme OEL that 
Is on the OEL chain (OWAGPMAS) 

• How many OELs are in each of ttte flnt three OEL 
groups on the OEL chain, and what Is the address of the 
first OE L of each group 

• Whether a fourth OEL group existS 

ENQSCAN function: 

4 Ifthe OEL chain han OEL for the Input task, 
ISGGPGRP sets flags to indicate whether the Input talk: 

• Owns the resource 

• Can use the nnourca 

• Is the lole owner of the resource 

• Has exclusive control of the nnource 

A task has exclusive control of the resource If it ownl the 
resource and appears in an exclusive control OEL. A task II 
the sole owner of the resource If It appears In the only OEL 

3: of the first OEL group. ISGGPGRP also sets the match.QEL 
~ pointer. 
'7 
o 
Q. 

o 
-t-

a 

" II ., 
III 
t+ 

o 
::J 

Module lAbel 

r-: 
-:III n. •• :. ... .., .­An .. 
II ... 
• 2 .,. -... -.. ... ., .-., .... • .. 
-'0 
O~ 
'U .... .,. 
... 3 
~; 

~ ... ., 
:I: 



~ Diagram GRS.32. ISGGPGRP - QEL Group Processing Routine (Part 7 of 10) 
CIt 

• N 

'" D 

3 
< 
CIt 
..... 
X 
> 
CIt 
r­
r-

r­
-< 
N 
00 
I .... 
~ 
.0 

'" I 
D 

.... 
tI:1 
:3: 
(') 
o , 
'U . 
.... 
.0 
00 .... 

Input· 

Register 4 

It TCB 

Regi~r8 

I 

Register 9, 

I 

Register 5· 

I 

PEL. 

PELSHARE 

QCB. 

QCBMASF 

QCBFQEL 

JQEL, 

QELNQEL 

QELQXB 

QELORIGN 

QELMASID 

QELSHARE 

I 

QELn I 

QELQXBn· 

Process )) 
aNA 

~ QWAPGREN 
.. .. 5 If the QEL cheln does not have 

a QEL for the input task, sat the 
QWANPMAS, flags and fields for the addition of 

a QEL to the end of a QEL chain, 
QWANPMTC and sat a flag and counter to 

QWAORIGN determine whethor Ii previous ENQ 
request can be processed. 

QWACSYID 

6 
'\ QXB, 

QXBTCB 

QXBMTCB" 

I 
I 
I 

~QXBnl 

Output 

QWA 
... 

QWA70WNR 

QWA7AURC 

.. QWA7ABMR I 

Caller 
r 

QWA7CHGA 

QWA7POST 

QWA7COEX 

QWAGPMAS 

QWASEHAD 

QWASEHCT 

QWA7HOLD 

QWAPSTAD 

QWAPSTCT 

QWAMQLAD 

QCB 

I QCBMASF I 



r­
oo( 
N 
C» 
I .... 

cr­
..a 
UI 
I 

o 

.... 
n .... 

.... 
till 
:3 

o 
o , 
1J . 

3 
aJ 
IT 
;r 
o 
Q. 

o .... 
o 
'U 
j!) , 
III 
IT 

o 
::;, 

DiaJl811l GRS·32. IsGGPGRP - QEL Group Processing Ro'utine 

Extended Description 

5 If the OEL chain does not have a OEL for the Input 
task, ISGGPGRP sets flags to Indicate how the OEL 

chain will appear after the caller edds a OEL for the 
requesting task to the end of the OEL chain. The flags show 
whether the requesting task: 

• Owns the resource 

• Cen use the resource 

• Caused contention with other tasks that are using the 
resource 

• Points to another OEL 

ISGGPGRP also sets a flag and counter to tell the caller 
whether a previous request can now be satisfied. Then 
ISGGPGRP returns control to the caller. 

When a request causes contention, ISGGPGRP sets certain 
flags to tell Its caller to Issue ENOHOLD SYSEVENTs for 
the tasks of the first OEL group. A request causes 
contention if the new OEL. which the caller will add to the 
end of the OEL chain, is the first OEL of the second OEL 
group. 

The new OEL should "point at" another OEL if the new 
ENO (or RESERVEI uses MASID= or MTCB= operand. that 
match the ASI D and TCB of some task that appears in a 
OEL on the OEL chain. If the new OEL should "point at" 
another OEL, ISGGPGRP sets OWAGPMAS to the value that 
must be place in the OELMASID field of the new OEL. 

A previous ENO request can be satisfied if the previous ENO 
requested excluslve-controland used the MASID= or MTCB=­
operands to "polnt at" a shared control OEL that shared 
ownership of the resource. One such request can be satisfied 
when all shared control ~ELs of the first OEL group are 
"pointed at" by exclusive control OELs. This can occur only 
when ISGGPGRP processes an exclusive control ENO (or 
RESERVE) with MASID= or MTCB= operands. 

Module 

(Part 8 of 10) 

Label 

o .... 
H ... 
3: 



(i) 
;ICI 
en 
I 

N 
VI 
N 

C") 
o 
'0 
'< ., 
IoQ 
::r ,.. 
H 
~ 
3: 

n 
o ., 
'U 

Diagram GRS-32. ISGGPGRP - QEL Group Processing Routine 

Input 

Register 5 

~ 
./ 

r 
~ QWA 

aWAPGREN=3 

aWANPMAS=O 

aWANPMTC=O ~ 
aWAORIGN. 

aWACSYIO 

Register 4 

It TCB orO 

Register 9 

~ 
aCB 

aCBFaEl 

QEl, . 

QElNQEl 

aElOXB 

, aXB1 QElORIGN' 

OELMASIO aXBTCB 

QElMATO' QXBMTCB' 

I 

QEln ,I 'I 

QElQXBn 

"OX8n. 

(Part 9 of 10) 

Process 

OEQSCAN: 

6 If the requesting task is not 
on the QEl chain, sets 
aWAMalAO to zero to 
indicate that the OEQ 
should be rejected, ••• ~Caller 

7 If the requesting task is on 
the QEl chain, sets flags to 
indicate Information about 
the resource ownership, the 
DEQ, the aELs to be posted" 
and the QEls to be used with 
SYSEVENTs. 

Caller 

Output 

aWA 

QWAMalAO 

QWA70WNR 

aWA7AURC 

aWAGMTOa 

aWADSTAO 

QWASEHAO 

aWASEHCT, 

QWA7HOlO 

QWASERAD 

QWASERCT 

QWA7RLSE 



r­
oo( 
N 
co 
I ... 

G' 

"" \II 
I 

o 

,.., 
n ..... 

!-of 
!CD 
:I 

o 
o , 
"U 

:I 
10 ,... 
J 
o 
a. 
o ... 
o 
'tJ 
ID ., 
III ,... 
o 
::J 

Diagram GRS-32. ISGGPGRP - QEL Group Processing Routine 

Extended Description 

DEQSCAN function: 

6 If the requesting task Is not on the OEL chain, 
ISGGPGRP returns to the caller with OWAMOLAD 

equal to zero to indicate that the DEO should be rejected. 

7 If the requesting task is on the OEL chain, ISGGPGRP 
sets the flags to indicate whether: 

• The requesting task owns the resource 

• The DEO is Illegal 

The DEO Is illegal if it removes a OEL that is "pointed at" 
by some other OEL on the OEL chain. 

ISGGPGRP sets flags, counts, and addresses to indicate to 
the caller which OELs should be posted and which OELs 
should be used with SYSEVENTs. 

The caller posts OELs If: 

• The caller will be removing the only OEL of the first OEL 
group 

• The caller will be remOVing an exclusive control OEL that 
makes up the second OEL group, thus allowing shared 
control OELs In the third OEL group to share the 
resource with shared control OELs In the first OEL group 

• The caller will be removing a OEL from the first OEL 
group, and all remaining OELs in the first OEL group are 
"pointed at" by exclusive control OELs. 

The caller issues a SYSEVENT ENORLSE if the caller will 
be removing a OEL from the OEL chain and if the OEL was 
previously used with a SYSEVENT ENOHOLD. If the caller 
removes the OWAMOLAD OEL from the OEL-chain and the 
removed OEL is the only OEL in its group. the caller issues a 
SYSEVENT ENOHOLD and a SYSEVENT ENORLSE to 
reflect the contention that exists. 

Module 

(Part 10 of 10) 

Label Extended Description 

ISGGPGRP performs a deferred steal If the DEO removes a 
OEL which "points at" some other OEL, which was 
previously marked for a deferred steal (flag OELMATD). 
ISGGPGRP sets field OWADSTAD to "point at" the OEL 
that was marked for the deferred steal. 

Module Label 

o • 
H 
till 
3 



r­
-< 
N 
01> 
I ... 

a­
.0 
VI 
I 

o 

,.., 
n ...... 

1-4 
IJOI 
3: 

(") 
o ., 
'0 . 

Diagram GRS·33. ISGGQWBI - Queue Work Block Initialization Routine (part I of 6) 

ISGGQWBI 
Input "Proc8H 

Register 5 

~-. ~awA 
" 1 Copy the user's PEL into ... theSQA QWB. 

I I 

~_'12 ~PEL I 
I ~G~ I 

Register 9 

~ .. ;ote, 12 
~~L 

.. 
2 Perform exit list processing. ... 

I 

~~ote'4 ~G~ I 
I ~TC' 3 I 

PSA 

f I 

o utput 

SQAQWB 
_11.. I ~~L .. 

I 

Register 8 . :::=;> I ~PEL 
ISGGREXO ...- -,. 

Process 
exit I lists 



Diagram GRS-33. ISGGQWBI - Queue Work Block Initialization Roudne (Part 2 of 6) 

..... 
n ..... 

Extended Dascriptlon 

ISGGOWBI, the queue work block Initlellzatlon routine, 
moves the requestor's parameter list (PEL) to the system 
queue area (SOA) queue work block (OWB) and establishes 
eddressa~lIity to the global resource serialization address 
space. 

Modula 

n 
o 
'tJ 
'( , 

1 ISGGOWBI copies the user's parameter element (PEL) ISGGOWBI XINITOWB 

-III 
:::r 
rf' 

I-f 
." 
:I 

n 
o , 
'U . 

::I 
ID 
rf' 
:::r o 
D-

o 
-h 

into the SQA OWB. If the entire PEL cannot be con· 
tained In the SQA OWB, ISGGOWBI invokes subroutine 
XGETOWB to do the following: 

• Establish addressability to the global resource serialization 
eddress space via a program call (PC) to entry point 
ISGGED02. 

• Obtain private area OWB extensions to conteln the re­
mainder of tha request. 

2 If global resource serialization is active 
(GVTGRSNA~'O'B), ISGGOWBI parforms exit list pro­

cessing as follows: 

• If the request has SCOPE=STEP,local resource processing 
occun; exit list processing is not performed. 

• If the request has SCOPE=SYSTEM, ISGGOWBI calls 
the ISGGSIEX entry point of ISGGREXO to scan the 
SYSTEM Inclusion RNL. If a matching resource name Is 
found, the request becomes a global request 
(SCOPE=SYSTEMSI; otherwise the request remains 
local. 

• If the request has SCOPE=SYSTEMS or a matching re­
source name was found in the SYSTEM Inclusion RNL, 
ISGGOWBI calls the ISGGSEEX entry point of 
ISGGREXO to scan the SYSTEMS Exclusion RNL If 

o a matching resource name is found, the request becomes a 
-: local request (SCOPE=SYSTEM); otherwise tha request 
~ remains global. 
t+ -

ISGGREXO ISGGSIEX. 

ISGGREXO ISSGSEEX 

Extended Description 

• If the request is a RESERVE, ISGGOWBI calls the 
ISGGRCEX entry point of ISGGREXO to scan the 
'RESERVE Convenlon RNL. If a matching resource 
name Is found, the hardware RESERVE is suppressed and 
the request Is serialized by a global ENO; otherwise, 
the request remains a RESERVE . 

During initialization if a matching name was not found in the 
SYSTEMS Exclusion RNL, ISGGOWBI excludes RESERVE 
(SCOPE=SYSTEMSI requests from global processing by 
converting the request to a local ENO with a hardware 
RESERVE. iSGGOWBI also issues the message 'ISG0661 -
RESOURCE NAMED xxx,yyyTEMPORARILY 
EXCLUDED FROM GLOBAL PROCESSING' . 

ISGGOWBI excludes any DEO (SCOPE=SYSTEMSI 
associated with an excluded RESERVE from global 
processing by treating it as a local resource • 

If the global resource serialization is not active, ISGGOWBI 
treats all requests as local requests. 

Modula Label 

ISGGREXO ISGGRCEX 

ISGGOWBI 

!:.,; 
I: :s,. .. ., .­a.n ,. 
311 
"a. ... 
113 .,., 
-rfo ". ...., .-" .... .. 
"G 
"70 
O-h 
"U .... .,UlI 
rfo::a: 

IC = 
o • ... • :z 



~ Diagram GRS·33. ISGGQWBI - Queue Work Block Initialization Routine (part 3 of 6) 
CP 
f 

N 
VI 
0-

(') 
o 
~ , 
co 
:r .... 
H .. 
:3 

(') 
o , 
'U . 

Input 

Requestor or 
t TeB 

Register 6 

~--__ ~~~_OW __ A~. __ ~ 
Register 12 1 

r--,~_GV_T __ .... 
Register 14 

,.--R=--1 
~ 

Process 

3 Establish addressability to the 
global resource serialization 
address space 

Output 

Register 9 

OWB Extension 

Size of 
PEL area 

I .... ___ ~ OWBPEL 

I 



r-

~ 
00 
I ... 

G' 
00 
UI 
I 

o 

..... 
n .... 
CO) 
o 
'U 
~ ., -10 
':T 
rt-

toe • 3 

n 
o ., 
'U 
• 

3 
ID 
rt­
':T 
o 
a. 
o .... 
o 
'U 
II) ., -,... 
o 
:s 

G) 
lIU 
~ 
I 

N 
us .... 

Diagram GRS-33. ISGGQWBI - Queue Work Block Initialization Routble 

Extended Description 

3 ISGGQWBI determines If addressablllty to the global 
resource serialization address space was established. 

If not. ISGGQWBI establishes addressabilltv to the global 
resource serialization address apace via a PC to entry point 
ISGGED01 • 

Module Label 

(Part 4 of 6) 

o • ... .., 
:x 



= Diagram GRS.33. ISGGQWBI - Queue Work Block Initialization Routine (Part S of 6) 
CIt 
I 

N 
loll 
00 

3 
< 
CIt , 
)( 
:. 
CIt 
r­
r-

r­
-< 
N 
co 
f ... 

C7' 
..0 
I.JI 
I 

o 

'" n ..., 
o 
o 
~ ., 
co ::r 
IT 

.... 
til' 
3 

o 
o ., 
'U . 

Input. 

Register 1 

Register 4. 

Register 5' 

Register 12 . 

Register 14· 

t Requestor or 
TCe . 

~ L~lawA 
~GVT 

Process· 

4 Obtains control blocks from 
the global resource serialization 
storage manager. 

Caller 

ISGSALC 

Obtains 
control 
blocks 

Output 

ace 

aEL 

axe 

awe 



,... 
-< 
N 
00 
I ... 

0-
.0 
UI 
I 

Q 

.... 
n .... 

I-f 
CIII 
3: 

n 
o , 
"G . 

::I 
CD ,.. 
:T 
o 
a.. 
o 
-+0 

o 
"G 
CD ., 
Co ,.. 
o 
:::J 

Diagram GRS-33. ISGGQWBI - Queue Work Block Initialization Routine 

Extended .Description 

4 ISGGQWBI ob1ains control blocks from the globe I 
resource serialization storage manager (lSGSALC). 

The control blocks obtained ere defined by the input 
SMPL, and the first QWB will be initialized when the 
globel resources are present • 

Recoverv Operation 

When ISGGQWBI is executing, recovery is provided 
by the module ISGGFRRO. 

Module Label 

ISGSALC 

(Part 6 or 6) r-s 
-lQ 
nil 
IDOl 
::II .. 
III~ 
fD­a.n .. 3m 
~a. .. 
• 3 
~., -.. _ID 
... ~ 
111-., .... 

01 
'V 
.,0 
oot. 
'0 
tiM ..,. 
0+3 
~~ 

o ... 
.... 
." 
:z 



r-
oo( 
N 
00 
I .... 

CIo 
>D 
1.11 
I 

0 

.... 
n ...... 
0 
0 
1J 
'< ., 
lID 
:r 
" M 
tel 
3: 

0 
0 ., 
1J . ... 
>D 
00 

" 

Diagram. GRS-34. ISGGQWBO - Queue Work Block Service Ro~tine (Part 1 of 20) 

Input 

aPL 

D 

From 
ISGBSM 

ISGGQWB1: 

, Perform initialization. 

2 Obtain storage for the 
total number of aWBs 
being copied. 

ISGSALC 

Obtain 
working 
storage 

ISGSALC 

Obtain aWBs 

Output 

SMPL· 

Register 1 

SMPL 

aWBs 



r­
oo( 
N 
00 

• ... 
G' 
.0 
UI 
I 

ct 

.... 
n .., 

.... 
OJ 
:3: 

o 
o ., 
"0 

:3 
ID ,... 
:r 
o 
a. 
o 
-to 

c 
"0 

'" ., 
01 ,... 
o 
::J 

Dia$f8Dl.GRS-34. ISGGQWBO - Queue Wcnk Block Service Routine (put 2 of 20) 

Extended Description 

ISGGaWBO is a seri6S of service routines. Callers enter 
ISGGaWBO at one of six entry points to obtain, return, or 
initialize queue work blocks (QWSs). See each entry point 
for more detailed descriptions . 

Entry Point ISGGQWB1 

ISGBSM calls ISGGaWB1 for one of two functions: 

1. Copy of (optionally) uncompress and copy the 
ring system authority (RSA) aWBs to the global 
resource serialization private area awes (copv 
into the svstem) • 

. 2. CoPV or (optionally) compress and copy the 
resource serialization private area owes to the 
ring system authority (RSA) owes (coPV out 
of the system) • 

. Input to this routine when copying into the system is 
a queue parameter list (OPL). The OPL defines the func­
tion (coPV into or out of the system), compression code 
(copy or uncompress and copy),location of aWBs and 
number of aWBs. This parameter list also contains 
pointers to complete and Incomplete request queues. 

When a request is incomplete, ISGGaWB1 assumes that 
subsequent RSAs will contain OWBs defining this request 
until the request has been completed and copied to the pri­
vate aWBs. 

1 Initialization consists of establishing addressability. es-
tablishing ISGGQWBA as the FAA, obtaining the local 

lock of the home address space and the CMSEQOa lock, 

Mod,,1e Label 

ISGGOweo ISGGQWB1 

and invoking ISGSALC to obtain dynamic storage. The 00- ISGSALC 
dress of the storage management parameter list (SMPL) is 
passed to ISGSALC in register 1. 

2 ISGGaWe1 determines a "CoPV into the system" 
function and determines how many aWBs need to 

be copied (OPLNOOWB). It then Invokes ISGSALC to 
obtain storage from the awe pool for that many aWBs. 
The address of the SMPL is passed to ISGSALC in 
register 1. ISGSALC holds the CMSEOOa lock for serial­
Ization of the awe pool. 

ISGGQWBO 
ISGGaWB1 

ISGSALC 



:3 
<: 
(J) 

" x 
> 
(J) .­
r-

Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (part 3 of 20) 

Input 

QPL 

QPLFIOC 

QPLFCPRS 

QPLORGIN 

QPLNOQWB 

QPLNREQ 

9PLCREQ 

0 

0 

QPLlR 

Register 1 

SMPL 

Process 

3 Copy or uncompress and 
copy the input QWBs into 
private area QWBs. 

4 Perform cleanup processing. 

ISGSDAL 

Free the 
storage 

Return to 
the caller 

Output 

QPL 

QPLFCPRS 

QPLORGIN 

QPLNOQWB 

QPLNREQ 

QPLCREQ 

QPLFCR 

QPLLCR 

QPLIR 



,.., 
n 
OJ 

C") 
o 
~ ., ... 
o 
'7 ,... 
.... 
at 
3 
C") 
o ., 
'U . 

to') .,. 
en 
I 

N .. 
c,.r 

. ·Dia~ GRS-34. ISGGQWBO - Queue Work Block. Serrice Routine (Part 4 of 20) 

Extended Description Module Label 

3 ISGGQWB1 copies or uncompresllll and copies the ISGGQWBO 
RSA QWBs Into the global rasource serialization ISGGQWB1 

privata arae QWBs. Virtual addr8118as within the PE L area 
of the QWB are re-Inltlallzed to reflect thase naw virtual 
addrasaas. 

The Input parameter list (OPL) identlflas thet this is a 
copy from the RSA to the global rasourcas serialization 

I privata arae (QPLFIOC), whether to copy or uncomprass 
I and copy the QWB (QPLFCPRS), and whether there Is 

an outstanding Incomplata request (OPLIR not zero). 

If there Is an outstanding Incomplete request ISGGQWB1 
! copies or uncompresses and coplas the Input QWBs a880-
: clated with the Incomplata request Ihto privata arae 

QWBa. The Incomplata request becomes complata when 
. all of the QWBs associated with the request have been 

Initialized. 

ISGGQWB1 places e request on the completed-request-
: queue when all of the associated QWBs ara not in the input 

arae. 

4 ISGGQWB1 invokes ISGSDAL to frae the dynamic ISGSDAL 
storage. The address of the SMPL is passed to 

ISGSOAL in register 1. ISGGQWB1 then relaasas the 
CMSEQOQ lock and the locellock, and deletas the FRR. 
Note that ISGGQWB1 only rel88_ the locks thet it 0b-
tained. 

On return, registar 1 points to the Input QPL that contains ISGGQWBO 
pointers to the first and last completed requests CQWBs) ISGGQWB1 
and pointers to any Incomplete requests (QWBs). 

r"'2 .-. nil •• ::J .... 
1ft., ,,-a.n ,.. 
:Zll .a. ,.. 
fa:Z .,11 ... ,.. 
•• ... ., .-'" .... .. 
" ..,0 
0 ... 
"CS 
jiM .,. 
,..~ 

-c I 

0 ... 
... • :It 



3 
< en .... 
)( 
> 
en ,.. ,.. 

,.. 
00( 
N 
01 
I 
t-
o-
00 
\II 
I 

0 

..... 
. n ..... 

(') 
0 

" oe , -c :s-.... 
.... 
ar 
3 

n 
0 .., 
" . ... 
00 
01 ..... 

Diagram GRS-34. ISGGQWBO - Queue Workbloc:k Service Routine (part 5 of 20) 

Register 1 

From 
ISGBSM 

ISGGQWB1 

1 Perform Initialization. 

Output 

QPL 

r -n 
CD 
:J 
fit 
It a.,: 
3m 
&I." ........ .-w -w--n 
III ... ..... 
ella. 

lif 
" .... -,. 
0-, 
'U .... 
IiU' ..... ... 
~ 

0 
O~ 
~ 

H 
HCD 
-:. 
:&1 



r­
.( 
N 
00 
I ... 

cr­
.a 
\II 
I 

00 

..... 
o ..... 
C') 
o 
~ ., 
G 
':s' 
It' ... 
GIl 
3 
C') 
o ., 
'U . 

3 
CI 
t+ 
':s' 
o 
D-

o 
-to 
o 
'U 
II ., 
III 
It' 

o 
:::I 

: DJapam GRS-34. '"ISGGQWBO - Queue WOIkhlock Service Routine (Part 6 of 20) 

Extended DIIcrIption 

! Entry PoInt IsGGQWB1 

, ISGBSM calls ISGGQWB1 to copy or (optionally) com­
o press and copy the global resourcea serialization privata 
i area OWBs to the ring status authority (RSA) • 

: The Input parameter list (CPL) ldentlflea that this Is a 
! copy from the global rasourcea serialization privata area 
: to the RSA (CPLFIOC) • 

. 1 Initialization consists of establishing addresaabillty, 
establishing ISGGOWBR 88 the FRR, obtaining the 

lacallock of the home addr_apace and the CMSEODQ 
lock. 

Module 

ISGGOWBO 
ISGGOWB1 



:3 
< 
Ut 

" )( 

• 
Ut 
r­
r-

r­
-< 
N 

.00 
I ... 
~ 
..0 
UI 
I 

o 

(') 
o 
~ , 
IQ 
:r ,.. 
.... 
tI:r 
:3 
(') 
o , 
'U . 

Diagram GRS-34. ISGGQWBO - Queue Workbloc:k Service Routine (Part 7 of 20) 

Input· 

QPL 

QPLFIOC 

QPLFCPRS 

.aPLOSFSA 

aPLOSFSL 

QPLOSFCR 

QPlOSIR 

Register 1 

SMPL 

Process 

2 . Copy or compress and copy 
the private erea QWBs to the 
RSA. 

3 Perform cleanup 
processing. 

Free the 
. storage 

Return to the caller 

. OUtput 

aPL 

QPLFIOC 

QPLFCPRS 

aPLOSFSA 

QPLOSFSL 

QPlOSFCR 

aPLOSIR 



Diqram 'GRS-34. ISGGQWBO - Queue Workbloc:k Service Routine (Part 8 of 20) 

..... 
n .., 

... 
tJ' 
3 

n 
o ., 
'0 . 

Extended Description 

2 ISGGQWB1 copies or compresses and copies the 
global resource serialization private area QWBs to 

the RSA. Virtuel addresses are convarted to displace­
ments within the RSA. 

The Input parameter list (QPL) Identifies whether to copy 
or comprass and copy the QWB (QPLFCPRS), a pointer to 
the RSA (QPLOSFSA), a pointer to the first aWB on the 
Input queue (QPLOSFCR), and whether this Is an out. 
standing Incomplete request (QPLOSCPRS not zero). 

If this Is an outstanding incomplete request ISGGQWB1 
copies or compresses and copies the private area aWBs 
associated with the Incomplete request Into the RSA. 
The Incomplate request becomas complete when all of 
the QWBs associated with the request have been copied 
to the RSA (QPLOSFCR non-zero) • 

... An Incomplete request is Initiated when 80me portion c: of the first QWB on the input queue will not fit In the 

.... RSA. 

:3 
II 
rI­
-:T o 
a. 
o .... 
o 
'0 
ID ., 
III 
rl-

o 
::J 

3 ISGGQWB1 Invokes ISGSOAL to free the dynamic 
storage. The address of the SMPL Is passed to 

ISGSDAL In register 1. ISGGQWB1 then releases the 
CMSEQOQ lock and deletes the FRR. 

On return, register 1 points to the output QPL that 
contains the count of aWBs copied to the RSA 
(QPLOSOQCT), pointers to the first and last complete 
request (QPLOSFCR and QPLOSLCR), and pointer to 
the extension to be copied or zero (QPLOSIR). 

Module Label 

ISGGQWBO 
ISGGQW81 



~ Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 9 of 20) 
en 
I 

N 
~ 
~ 

3: 
< en 
'­
X 
> 
en ,.... ,.... 

,.... 
-< 
N 
~ 
I .... 

g.. 
<D 
UI 
I 

o 

,.. 
n ..... 
(") 
o 
~ ., 
Ie :r ... 
.... 
CIIJ 
3: 

(") 
o ., 
'U . 

From 
~1_np~u_t __________________ ~ISGCaMRG 

SMPL 

Parameter list 

RIBE 

Process 

ISGGQWB2: 

5 Perform Initialization. 

6 Obtain storage for the 
ENOIDEa aWB. 

7 Initialize the output aWB. 

ISGSALC 

Obtain working 
storage 

ISGSALC 

Obtain a aWB 

ISGBSRNI 

Convert a system 
name to a system 
identifier 

Output 

aWB 

aWBHDR 

aWBSMPL 

aWBPEL 

aWB 



,.. 
-< 
N 
00 
I 

Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 10 of 20) 

... 
cr­
'oD 

'" I 
o 

Extended Description Module label 

Entry Point ISGGQWB2 

ISGCOMRG calls ISGGOWB2 in the global resource seriali- ISGGOWBO 
zation address space to build a OWB for an ENO or DEQ re- ISGGQWB2 

n 

(") 
o 
1:1 
'< , -CO 
'j' 
r+ -till 
3: 
(") 
o , 
1:1 . 
... 
'" co ..... 

quest from an input resource information block (AIBI or 
resource information block extension (AIBEI. The input 
parameter list, pointed to by register 1, contains pointers to 
the RIB and RIBE and indicates either an ENQor DEO re-
quest. 

This routine Is only invoked to build QWBs for global re­
sources. 

ISGGQWB2 marks each DEQ request as an unconditional 
internal DEQ (that is, the DEQ will be processed regardless 
of current ownership). 

5 Initialization consists of establishing addressability, ISGSALC 
establishing ISGGQWBR as the FAA, obtaining the 10-

cal lock of the home address space and the CMSEQOQ 
lock, and invoking ISGSALC to obtain dynamic storage . 
The address of the storage management parameter list 
(SMPL) Is passed to ISGSALC in register 1. 

6 ISGGQWB2 invokes the storage manager (lSGSALC) ISGGQWBO 
to obtain storage from the QWB pool for a QWB. The ISGGQWB2 

address of tha SMPL is passed to ISGSALC in register 1. ISGSALC 

3: 
\II 
t+ 
'j' 
o 
Q. 

ISGSALC holds the CMSEQDQ lock for serialization of the 
QWB pool. 

7 ISGGOWB2 fills in the QWB using data from the RIB 
and RIBE. ISGGQWB2 invokes ISGBSANI to obtain 

the system identifier. 

o If this is an ENQ request, ISGGQWB2 initializes the SMPL 
-h to obtain a QCB, QEL, and QXB from the storage manager. 
Q 

~ If this is a DEQ request, ISGGQWB2 sets these entries to 
i: zero (control blocks are not obtained during DEQ proces-
r+ sing). However, the QWB SMPL entry is set to 1 to allow 
o for returning the DEQ OWB to the storage manager. 
:s 

ISGGQWBO 
ISGGOWB2 

lot .., 
::I: 



~ Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 11 of 20) 
en 
I 

N .... 
o 

2: 
< 
en 

" X 
> 
en 
r­
r-

r-
-< 
N 
00 
I .... 

a-
..0 
U1 
I 

0 

,.. 
n 
'"' 
n 
0 

" oc:: ., .... 
IQ 
J 
t+ 

~ 
til' 
3 

0 
0 ., 
" . .... 
..0 
00 
...... 

Input 

Register 1 

SMPL 

SMPL 

From 
ISGGaSRV 
ISGGNaOa 
ISGGESTO 

Process 

8 Perform cleanup proces­
sing. 

ISGGQWB4: 

9 Perform initialization. 

10 Obtain storage for the 
DEaaWB. 

Obtain 
working 
storage 

ISGSALC 

Obtain the 
aWB 

Output 

Register 1 

Register 1 

Register 1 

Parameter list 

SMPL 

aWB 



r-
-< 
N 
00 

• ... 
epo. 
00 
us 
• 0 

" C'I 
OJ 

(') 
0 
1J 
'< , -fQ 
~ 
rl' 

.... 
til 
3 
(') 
0 , 
1J . ... 
..0 
00 .., 

3 
Ii) ,.,. 
~ 
o 
C-

O 
-ft 

o 
1J 
ID , 
171 ,.,. 
o 
!' 

G) .v. 
en 
• N .., ... 

Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 12 of 20) r-2 -,., nil 
Extended Description Module Label •• :2,.. . ., 
8 ISGGQWB2 calls ISGSDAL to free the dynamic stor· ISGSDAL !'D-o.n 

age. The address of the SMPL is passed to ISGSDAL ,.. 
in register 1. I SGGOWB2 releases the locks it obtained and :Zll SUo. 
deletes the FAR. ISGGOWB2 puts the address of the OWB 

,.. 
II::X 

it just built into the input parameter list and returns to the .,11 -... celler. tI. ... ., 
en-

Entry Point ISGGQWB4 • .... 
CIt 

ISGGQSRV, ISGGNQDQ, and ISGGESTO invoke ISGGOWBO ." 
.,0 

ISGGOWB4 to build a OWB for a OEO request from the ISGGOWB4 0 ... 
'U 

data described by an input OEL (pointed to by register 11. CDM 
This OEQ OWB is marked as intemally-generated to ensure 

..,. 
,..:1 

that the OEQ occurs regardless of ownership checks. IIC : 

0 
9 Initialization consists of establishing addressability, es· ISGSALC ... 

tablishing ISGGQWBA as the FRR, obtaining the local H 

lock of the home address space and the CMSEaoO lock, • :I 
and invoking ISGSALC to obtain dynamic storage. The ad· 
dress of the storage management parameter list (SMP U is 
passed to ISGSALC in register 1 • 

10 ISGGOWB4 invokes ISGSALC to obtain storage ISGGOWBO 
from the OWB pool for a OWB. The address of the ISGGOWB4 

SMPL is passed to ISGSALC in register 1. ISGSALC holds ISGSALC 
. the CMSEOOO lock for serialization of the OWB pool. 



G) 
;;0 
en 
I 

N .... 
N 

3 
<: 
en 

" X 
»>-

en 
r­
r-

r­
-< 
N 
Of 
I ... 

G\ 
..0 
U1 , 
o 

o 
o 

" '< ., 
III 
:::r 
ri-

M 
tlIJ 
3 

o 
o ., 
" . 

Diagram GRS·34. ISGGQWBO - Queue Work Block Service Routine (Part 130f 20) 

Input 

aEL 

aELQXe 

aELace 

Register 1 

axe 

From 
ISGGTRM1. 
ISGCPRG. or 
ISGGESTO 

Process 

11 Initialize the output aWB. 

12 Perform cleanup pro­
cessing. 

ISGGQWB5: 

13 Perform initialization. 

14 Obtain storage for the 
purgaaWB. 

ISGSALC 

storage 

ISGSALC 

Obtain the 
aWB 

Output 

aWBPTR 

Register 1 

laWBPTR 

Register 1 

Register 1 

aWBHDR 

QWBSMPL 

aWBPEL 

SMPL 

SMPL 



'"' n ..... 
o 
o 

" '<: ., 

1-1 
01 
:3 

o 
o ., 
" . 

::I 
II) .... 
J 
o 
a. 
o 
~ 

o 

" II) ., 
III 
rl-.. ' 

Diagram GRS·34. ISGGQWBO - Queue Work Block Service Routine (Part 14 of 20) 

Extended Description 

11 ISGGOWB4 builds the DEO OWB using data from 
the input OEL The OELOXB and OELOCB fields 

contain the addresses of the OXB and ace respectively. 
The OXB contains pointers to the TCB and SVRB or ECB, 
the jobname and some flags. The OCB contains the scope, 
qname, rname, and more flags . 

12 ISGGOWB4 invokes ISGSDAL to free the dynamic 
storage. The address of the SMPL is passed to 

ISGSDAL in register 1. ISGGOWB4 releases the locks it 
obtained and deletes the FRR. ISGGOWB4 returns to the 
caller with the private area OWB address in register 1. 

,Entry Point ISGGOWS5 

Three routines invoke ISGGOWB5 in the globel resource 
serialization address space: 
• ISGCPRG invokes it to perform a synchronous SYSID 

purge 
• ISGGTRM1 invokes it to parform a synchronous TCe 

or ASID purge 
• ISGGESTO invokes it to perform a synchronous re­

quest, which ensures that all previous requests have been 
processed 

The DEO purge list (DPU pointed to by register 1, indicates 
the system, ASID, or TCB to be purged and whether the reo 
quest is to be a synchronous or asynchronous request. In 
the case of a synchronous request, a WAIT is issued to the 
current RB until the purge has completed. When the global 
resource processor has processed the request and issued a 
POST to the RB defined in the OWB, processing continues. 
In the case of an asynchronous request, the request is 
placed on the request queue and ISGGOWBS returns to the 
caller. 

Module Label 

ISGGOWBO 
ISGGOWe4 

ISGSDAL 

ISGGOWB4 

ISGGOWBO 
ISGGOWBS 

Extended Description 

13 Initialization consists of establishing addressability, 
establishing ISGGOWBR as the FRR, obtaining the 

local lock of the home address space and the CMSeODO 
lock, and invoking ISGSALC to obtain dynamic storage. 
The address of the storage management parameter list 
(SMPLI is passed to ISGSALC in register 1., 

14 ISGGOWB5 invokes I SGSALC to obtain storage 
from the awe pool for a OWB. The address of the 

SMPL is passed to ISGSALC in register 1. ISGGOWB5 
holds the CMSeODO lock for serialization of the awe 
pool. 

Module Label 

ISGSALC 

ISGGQWBO 
ISGGOWe5 

ISGSALC 



~ Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part IS of 20) 
CIt 
I 

N ..., 
~ 

3 
< 
CIt .... 
)( 
>. 
CIt ,.. ,.. 

,.. 
-< 
N 
00 
I ... 

CI' 
-.D 
\II 
I 

o 

... 
'" 3 

n 
o ., 
lJ . 

Input 

DPL 

DPLSYSID 

DPLASID 

DPLTCB 

DPLRB 

Process 

15 Initialize the aWB for 
the request. 

16 Place the aWB on the 
request queue. 

17 Determine if this is an 
asynchronous request. 

• If so, 

18 Wait for the synchro­
nous request to be pro· 
cessed. 

19 Re-establish a recovery 
environment and serio 
alization . 

Output 

aWBPTR 

aWB 

aWBHDR 

aWBSMPL 

aWBPEL 

GVT 

I GVTREaa r aWBS 

~ I i 
Register 1 

hawB 

I 
to caller 

ISGGWAIT 



,.. 
-< 
N 
CIt 
I ... 

CI' 
oG 
U'I 
I 

0 

" n ..... 
n 
o 
'U 
'< ., 
co 
':T .... 
.... 
aJ 
3 

0 
0 ., 
'U . 
... 
oG 
00 .... 

:3 
ID .... 
:s­
o 
Q. 

o ... 
o 
-U 
ID 

~ 
r+ 
o 
:::J 

= en 
I 

N .... 
loll 

Diapam GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 16 of 20) 

Extended Dascrlptlon Module Label 

15 ISGGOWB5 initializes the output OWB using data In ISGGOWBO 
the OPL The output OWB is initialized for a SYSID ISGGOWB5 

purge, a TCB purge. an ASIO purge, or a synchronization 
request. 

16 ISGGOWB5 places the OWB on the request queue. 

17 If ISGGOWB5 determines that this is an asvnchro-
nous request (OPLASYNC"'11, it returns control to 

the caller • 

18 For synchronous requests. ISGGOWB5 saves the re- ISGGWAIT 
gisters and releases the CMSEQOQ lock. 

ISGGQWB5 then invokes ISGGWAIT to brench enter 
WAIT. 

After the global resource processor executes, it issues an RB 
POST to reactivate this routine. 

19 ISGGOWB5 reestablishes an FRR and obtains the 10- ISGGQWBO 
cal lock of the home address space and the ISGGQWB5 

CMSEQOQ lock. ISGGQWB5 decreases the task global 
resource count (TCBGRESI by the number of global 
resources for which a QEL was removed from the queue 
bV ISGGRPOO. 

r-~ 
-::q n,.. 
IDCII ::. .. . .. ,..-o.n 

.to 
3,.. 
110. 
.to 
1D3 ... 
-.to 
"ID ..., 
ClI-

III ,..-
CI'J 

" .. a 
a~ 
11 
ID'" .,II1II 
.to 3 
t< :: 

a ... 
H 
W 
3: 



= Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 17 of 20) 
en 
I 

N 
~ 
cr-

:I: 
< en 
'­)( 
> 
en 
r­
r-

r­
oo( 
N 
00 
I .... 

go. 
-0 
VI 
I 

g 

o 
o 
~ 
'"J 

co =r 
t+ 

o 
o 
'"J 
'U . 

Input 
DPL 

IDPLSyaWB 

Register 1 

Register 1 

~ ______ ~~SMPL 

I 
Register 1 

Register 1 

~ ______ ~~SMPL 

I 

From 
ISGCPRG, 
ISGGTRMl 

Process 

20 Either return the aWB to 

the caller or free the aWB, 
and perform cleanup pro-
cessing. 

ISGGQWBF: 

21 Perform initialization. 

22 Free the private aWBs. 

23 Perform cleanup proces­
sing. 

ISGDSAL 

Free the 
aWB 

Return to 
the caller 

ISGSALC 

Obtain 
working 
storage 

ISGSDAL 

Free the 
aWBs 

Output 

Register 1 

I howe 
I 

Register 1 

SMPL 



r- Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine ~ 18 of 20) r-~ 
eo( -:III 
N OCD 
OJ ElCtendad Description Module Label •• • ::I'" ... "'., G" 20 After the synchronous request has been processed, aa-
<0 An 
UI ISGGOWB5 determines if the OWB is to be returned .... 
• 311 

D to the caller. If OPLSVaWB=1, register 1 will point to the ilia. 
OWB to return to the caller. If OPLSVOWB=O, ... 

1113 ,.. ISGGOWB5 calls the storage manager (ISGSOALI to return ISGSOAL ~D.I 
n -,... 
OJ the OWB to the OWB pool, if necessary. The address of the III,.. 

SMPL is passed to ISGSOAL in register 1. 
... ., 

0 CIt-
0 III 
1J .... 
oc:: ISGGOWB5 then frees the working storage. releases the ISGGaWBO CIt ., 

locks it obtained. and deletes the recovery environment. ISGGOWB5 'U 
.,0 

UI 0 ... 
';3' 'U ,... Entry Point ISGGQWBF 111M 

'"Jail 
1-1 ,...3 
= ISGGTRM1 and ISGCPRG invoke ISGGOWBF to free a ISGGOWBO 'c:: 2 
:3 

private area aWB. Input to this routine is the address of ISGOWBF 0 
0 the first OWB on the chein of OWBs to be freed. 

-to 
0 ., 104 
1J IlII . This routine must be invoked with the current addressabil· ::z: 
.... ity. to the global resource serialization address space . 
<0 
C)) .... 21 Initialization consists of establishing addressability. ISGSALC 

establishing ISGGOWBR as the FRR, obtaining the 
global resource serialization local lock and the CMSEOOQ 
lock. and invoking ISGSALC to obtain dynamic storage. 
The address of the storage management parameter list 
(SMPLI is passed to ISGSALC in register 1. 

22 ISGGQWBF initializes the storage management pa· ISGGQWBO 
rameter list (SMPLI to define the OWBs to be freed. ISGGQWBF 

:3 ISGGOWBF then invokes the storage manager IISGSOALI ISGSOAL 
ID ~o free the input QWBs. The address of the SMPL Is passed 
t+ 

to ISGSOAL in register 1. ISGGOWBF holds the :T 
0 CMSEOOa lock for serialization of the aWB pool. a. 
0 

23 ISGGQWBF invokes ISGSOAL to free the dynamic ISGGQWBO ..... 
0 storage. The address of the SMP L is passed to ISGGOWBF 
1J ISOSOAL in register 1. ISGGQWBF releases the locks it 
CD obtained and deletes the FRA . ., 
I!I 

" 0 
;, 

(;) 
::v 
en 
I 

N 

" ..... 



:I 
< en 

" ~ 
CoO 
I"" 
r-

I"" 
-< 
N 
OG 
I ... 
'" .0 ..,. 
I 

o 

C') 
o 
1J 
~ ., ... 
ID 
::r no 
H 
OJ 
:I 
C') 
o ., 
'U . ... 
.0 
00 ... 

!Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 19 of 20) 

Input 

SMPL 

SMPL 

aWBs 

FAA 
workarea 

From RTM 

ISGGOWBR: 

24 Dump the error-related 
storege. 

25 Free the unlnitialized 
aWBs. 

26 If initialized aWBs are 
from an ASA, free those 
aWBs. 

27 

28 

Free the working storage. 

Request recording of the 
error and percolate. 

Raturn to 
the caller 

ISGSDAL 

Free the 
aWBs 

ISGSDAL 

Free the 
storage 

r--n 
g 
fA 
CD 
a.= 

III 
:lID .,.,. ,...,... ..... .,­
-0 ., ... 
... CD 
Iha. 
13 ., 

'a"" .,CD 
0 ... 
'a­
ID., ...... 
~: 
0'" .. 

toe 
toe-. 
-'3 :z:a 



,... 
~ 
N 
C):I , .... 
go 
00 
UI 
I 

o 

..... 
n .... 
(") 
o 
U 
'< ., 
to 
:T 

" 1-4 
ill" 
3 
(") 
o ., 
'U . 

3 
ID 

" :T 
o 
a. 
o 
-i\ 

o 
"U 
II) ., 
lIJ 

" -. 

Diagram GRS-34. ISGGQWBO - Queue Work Block Service Routine (Part 20 of 20) 

Extended Description 

Entry Point ISGGQWBR 

ISGGOWBR provides recovery for all antry points to 
ISGGOWBO. Its function is to dump, clean up, record, and 
percolate . 

24 ISGGOWBR initializes the SDWA to provide re-
covery data. It then calls the branch entry interface 

\0 the SDUMP service to dump the storage related to the 
failure. To ensure that the storage is dumped before pro· 
cessing continues, ISGGOWBR requests the suspend func­
tion of the SDUMP interface. 

25 If there are unlnltielized OWBs to free, ISGGOWBR 
initializes the storage management parameter list 

(SMPLI to identify those OWBs. ISGGOWBR invokes 
ISGSDAL to free the OWBs. The eddress of the SMPL is 
passed to ISGSDAL In register 1. 

26 If initialized OWBs exist In the original input pa-
rameter list (RSAI. ISGGOWBR initializes the 

SMPL to Identify those OWBs. ISGGOWBR then invokes 
ISGSDAL to free the OWSS. The address of the SMPL is 
passed to ISGSDAL in register 1. 

27 ISGGOWBR calls ISGSDAL to free the dynamic 
workarea used by the failing function. The address 

of the SMPL is passed to ISGSDAL in register 1. 

28 ISGGOWBR returns control, requesting the locks to 
be freed and the error to be recorded in the SDWA. 

and percolates. 

Module Label 

ISGGOWBO 
ISGGOWBR 

ISGSDAL 

ISGGOWBR 

ISGSDAL 

ISGSDAL 

ISGGOWBO 



~ Diagram GRS-35. ISGGRPOO - Global Resource Processor (part 1 or 20) 
en 
I 

N 
011 
o 

3 
< en 
..... 
X 
> 
en 
r­
r-

r-
-< 
N 
011 
I ... 

a.. 
..0 
U'I 
r 

0 

.... 
n 
"" 
0 
0 
'U 
'< ., 
G 
':1' 
tt-
.... 
tIJ 
3 

0 
0 ., 
'U . ... ... 
00 ..... 

Input 

PSA TCB 

PSATOLD .-/' TCBRBP 

CVT 

CVTGVT 

GVT 

GVTXECB1 

PRB 

~ . RBPRB 

SVRB for 
ENQJDEQJRESERVE 
processing 

Attached by 
ISGNASIM 

1 Initialize global resource 
processing. 

IEAOPT02 

post 
routine 

Output 

GVT 

IGVTGRPRB 

.... -2 
:.J ua 
at 
AS 

:III 

ilm ........ 
CD., .,-
-0 
AI .... ..... 
«Ita. 

13 u .,..,.. .,. 
0., 
'U-
II a. ., ... 
rio-'CO 
0 .. .. 

H 
HtIlI 
.:1 
31 



r­
-< 
N 
Ot 
I ... 

G' 
.a 
UI 
I 

CI 

.... 
CII 
:z 
(") 
o , 
'U . 

3 
II) ,... 

Diagram GRS·35. ISGGRPOO - Global Resource Processor 

Extended Description 

When initializing the global resource serialization address 
space, ISGNASIM anaches ISGGRfOO to prepare for pro­
cessing global ENQJDEa/RESERVE requests. 
ISGGRPOO then enters a wait untillSGSSR puts 
ENQ/DEQ/RESERVE requests Un the form of queue 
work blocks, aWSs) on the process queue and notifies 
ISGGRPOO that there are requests to be processed. For 
each aws on the process queue, ISGGRPOO remOl/es the 
aws from the queue in first·in-first-out order, determines 
the request type it represents, and processes it accordingly. 
When the process queue is empty, ISGGRPOO returns to 
a wait until posted . 

1 To initialize global resource processing,ISGGRPOO: 

• establiShes GPRESTAE as its ESTAE to provide 
recovery while in a wait state. 

• Obtains the local lock of the global resource serializa· 
tion address space to serialize the global queues and 
control blocks. Serialization is necessary because 
other global resource serialization functions can be 
executing concurrently with ISGGRPOO. The local 
lock is also required to call the system POST routine 
(lEAOPT02) and to serialize the GVTNONE 
IGRS=NONE) flag with the global resource serializa­
tion option processor (lSGNGRSPI. 

• Establishes ISGGFRRO as its FRR to provide recovery 
when processing the process queue elements. 

• Places the address of ISGGRPOO's RS in the 
GVTGRPRS field. ISGSSR posts the RS in that field 
when elements are placed on the process queue. 

Module 

(PutloflO) 

Label 

:r 
o 
a. • Calls IEAOPT02 to inform ISGNASIM that ISGGRPOO IEAOPT02 
o is now initialized and can be posted to handle requests 
-to on the process queue. I EAOPT02 posts the ECB in the 
o GVTXECS1 field. 
'U 
ID , 
III ,... 
o 
:J 



= ~ GRS-3S. ISGGRPOO - Global ReaoaKe Procasor (tilt 3 of 20) 
CIt , 
N • N 

3 
< en 

= en ... ... -

r­
< 
N 
Ot , .. .. 
~ 
'II , 
CD 

,... 
n ..... 
n o 
~ ., 
G 
'7 
Ifo 

tot 
QII 
3 

n 
o ., 
" • 

GVT 

GVTNONE 

GVTAEQQ 

2 If the system II excluded 
from global resoun:e 
serialization (GASaNONE) • 
determine If tile qq.-t queue 
ilemptV· 

• If It II. 

• If It is not. move the 
requests to the procea 
queue. 

••• Stap4 

GVT Aegister 15 

GVTGASNA 10 I 
GVTGAPAB 

Proceu queue 
GVT r - \ 

GVTPRCOF OWB 

GVTAEOQ 



,... 
-< 
N 
OD 
I ... 

c.­
oO 
UI 
I 

o 

.... 
n .... 
C) 
o 
'0 
'< , .... 

... 
CI' 
:3 

n 
o , 
'0 

J>iasram GRS-3S. ISGGRPOO - Global Reso1irc:e Processor 

Extended Description 

2 If the GASaNONE option was specified, the system 
is excluded from global resource processing. 

Although this means that the system will not pass or 
receive global resource requests to or from other systems, 
the request queue might contain requests because: 

• Global resources were requested and queued during 
NIP processing before the GRS system parameter was 
resolved. 

• The system specified GRS=JOIN or START and 
requests were placed on the queue before the GRS 
parameter was resolved. After thet. the installation 
was unable to include the system in a global resource 
serialization ring or to start a new ring and, therefore, 
responded with the GAS"NONE option. 

When the request queue contains entries (GVTAEOO;lOI, 
ISGGRPOO: 

• Moves the OWBs to the process queue. 

• Indicates that the request queue is empty by setting 
the GVTAEOO field to zero. After the existing reo 
quests are processed, ISGGRPOO notes that the reo 
quest queue is empty and terminates global resource 
processing. 

• Processes the requests as described in steps 5 to 11. 
Note that although the resources might have been 
requested as global resources, they are treated as 
locel requests because global resource serialization 

Module 

:3 is inactive. 
CD 
rfo 
':l' 
o 
Q. 

o 
-h 

o 
"U 
CD , 
III 
rfo 

o 
:I 

Ci) ,., 
en 
I 

N 
CO 

'" 

(part 4 of 20) 

Label Extended Description 

2 (continuecil 

When the request queue is empty (GVTREOO .. OI. 
ISGGRPOO terminates global resource processing. To do 

so. it: 

• Obtains the CMSEOOO lock (if it is not already heidi 
to serialize the global-sharing·not·active flag 
(GVTGRSNAI. 

• Clears the AB address in the GVTGRPAB field since 
ISGGAPOO can no longer be posted. 

• Indicates that global sharing is inactive by setting the 
GVTGASNA bit to one. 

• Releases the CMSEOOO lock. 

• O"eletas the FRR. 

• Releases the locel lock. 

• Deletes the EST AE. 

• Sets a return code of zero to indicate successful 
termination. 

• Branches to EX IT prolog. 

Module label 

... ~ 
-:III 
nil 
II .. 
:::rrio ..., 
11-a.n 

rio 
311 
IIG. 
rio 
"3 ., .. 
-rio 
GIlD ... ., 
m-

III 
1..-

en 
"U 
.,0 
Ooio 

" IDM .,. 
0+3 
'C : 



~ Diagram GRS·35. ISGGRPOO - Global Resource Processor (part 5 of 20) 
en 
I 

'" 00 
.po 

o 
o 

" '< ., 
10 
:r 
t+ 

""" CI7 
:z 
o 
o ., 
-0 . 

Input 

GVT 

GVTPRCOF 

GVT 

GVTPRCOF 

OWB 
header 

GVT 

I GVTNONE 

OWB 

OWBHNOWB 

OWB 

{ 
I=Q=W=B=H=N=Q=W=B=t 

aWBHFLG3 

Process 

3 If the system is included 
in a global resource serialization 
complex, wait until there are 
ENO/DEO/RESERVE requests 
to be processed. 

4 Prepare to process the 
requests on the process queue. 

Output 

IEAVWAIT 

Master 
scheduler 
wait 
routine 

GVT 



r­
-< 
N 
co 
I ... 
"" -0 
U'I 
I 

g 

(') 
a 
"0 
'C , 
10 
::r 
tfo 

I-C 
CII:I 
3 
(') 
a , 
"0 . 

3 
ID 
tt' 
;r 
a 
0. 

a 
; 

o 
'tI 
III , 
cu 
tfo 

a 
:J 

G) 
;a 
en 
I 

N 
00 
U'I 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 6 of 10) 

Extended Description 

3 When GRS=JOIN or START IGVTNONE~I, 
ISGGRPOO releases the FRR and calls IEAVWAIT, 

which puts ISGGRPOO in a wait until requests IOWBs) 
are placed on the process queue. When this happens, 
ISGBSR posts ISGGRPOO via the GVTGRPRB field 
and ISGGRPOO resumes processing at the next step. 

4 To prepare for processing the ENO/DEO/RESERVE 
requests on the process queue, ISGGRPOO: 

• Obtains the local lock of the global resource serializa· 
tion address space to serialize the global work areas 
and control blocks. 

• Establishes ISGGFRRO as its recovery routine. 

• Clears the queue work area IOWA) and group 
summary area IGSA) • 

Module Label 

IEAVWAIT 

o .... 



(;) Diagram GRS-3S. ISGGRPOO - Global Resource Processor (part 7 of 20) 
;IQ 
(II 
I 

N 
CD 
CJ' 

::I 
<: 
(II .... 
x 
> 
(II 
r­
r-

r­
-< 
N 
CD 
I 
~ 
01'0 
-0 
VI 
I 

C) 

,... 
o 

H 
OJ 
:3 
(') 
o ., 
1:1 . 

Process 

5 Remove the first (or next! OWB 
on the process queue. determine 
the request type. and proceed 
accordinglv· 

• To process an ENO request 

• To process a DEO request 

• To process a DEO TCB purge 
request 

• To process a DEO ASID 
purge request 

• To process a DEO SYSID 
purge request 

• To process a synchronization 
request 

• To process a request with an 
undefined request type 

• If the process queue is empty 
and the system is not included 
in the global resource seriali­
zation complex. terminate 
global resource processing 

• If the process queue is empty 
and the system is included in 
the global resource serialization 
complex. wait for more resource 

••• Step6 

••• Step 7 

•• ~Step8 

••• Step9 

••• Step 10 

••• Step 11 

••• Step 12 

Step 2 

requests ••• ~ Step 3 

Output 

GVT 
QWB 

lowa-" I 
OWBHNQWB 



...... 
n .... 
n 
o 
"0 
'< .., ... 
f,Q 
;r ,... 
t-t 
OS 
3 
(') 
o .., 
"0 

3 
AI 
ri" 
;r 
o 
Q. 

o 
~ 

o 
"0 
ID .., 
OJ ,... 
o 
::J 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor 

Extended Description 

5 ISGGAPOO removes the first (or neKti element 
(OWB) from the process queue. The owe header 

contains request-related information required to process 
the request. ISGGAPOO 8I<amlnes the OWB header's 
flag field (OWBHFlG3) to determine which request 
tYPe it represents and proceeds accordingly. Possible 
request tYpes and the step describing how ISGGAPOO 
processes each are: 

ENO -step 6 
DEO -step 7 
DEO TeB purge - step 8 
DEO ASID purge - step 9 
DEO SYSID purge - step 10 
Synchronization - step 11 
Undefined owe - step 12 

If the process queue is empty and the system has 
requested that it not be included In a global resource 
serializetion cornpleK (GAScNONE), ISGGAPOO deletes 
the FAA and continues at step 2 where it terminates 
global resource processing. 

If the process queue Is empty and the system is included 
in a global resource serialization compleK (GAS=JOIN 
or STAAT).ISGGAPOO continues at step 3 where it 
enters a wait until posted that more elements heve been 
placed on the process queue. 

Module 

(part 8 of 20) 

Label 



= . Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 9 of 20) 
cP 
I 

N 
01 
01 

:3 
..: 
en 

" )( 
>-
cP 
r­
r-

r­
-< 
N 
00 
I ... 

QOo 

oG 
U1 
I 

o 

,... 
n 
'" 
o 
a 

~ ., 
~. 

U2 
':r ,.. 
.... 
~ 
:3 

o 
o ., 
" . ... 
oG 
01 .... 

Input 

GVT ... 
) 

GVTGOWA OWA v 

OWAERR 

OWB 

SMPL section 

PELXRET }QW8PEL 
PEL 

CJ 

Process 9 
6 Proc:ess an ENO request. 

~ ... 
"' ... 

~ .. 
"' ... 

• If a request originated 
In the current system 
cannot be satisfied. post 
ISGGNODO If necessary • 

..... ... 
.... r 

• If a request originated in 
another system. free the aWB. 

+1! • When all the resource 
requests have been 
processed, 

6 
....... 

Output 

ISGSALC 

Allocation 
routine 

ISGGNODO 

ENQ/DEO 
mainline 
routine 

OWB 

.. 
QWSHRSA 

v 

}~EL 
IEAOPT01 PELXERR 

Post 
routine PEL 

EJ ISGSDAL 

Deallocation 
routine 

Step 5 



,.. 
-< 
N 
Qi) , ... 
0-
00G 
\II , 
o 

n 

3: 
II) 

" :r 
o 
Q, 

o ..... 
o 
'0 
II) ., 
OJ 

" o 
~ 

Diagram GRS·3S. ISGGRPOO - Global Resource Processor (Part 10 of 20) 

Extended Description 

ENQ Processing 

6 The QWBBASIC section of the QWS contains one 
or more parameter element entries (PELs). Each 

PE L entry represents a resource on which the requestor 
wants to enqueue. ISGGRPOO calls the allocation routine 

Module 

(lSGSALC) to obtain the control blocks (QCBs. OELs. ISGSALC 
and QXBs) required to enqueue on all of the resources 
specified in the PE Ls. The SMPL section of the OWB 
defines the types and amounts of storage required. 

For each PE L entry in the QWB lor OWB extension if the 

Label 

PEL cannot be contained in a QWB). ISGGRPOO calls ISGGNQOQ ISGGNQOO 
the mainline ENQ/OEO routine (lSGGNOOO) at entry 
point ISGGNQOO to enqueue the requestor on the speci-
fied resource. 

After ISGGNQOQ returns control. ISGGRPOO examines 
the PELXRET and QWAERR fields to determine whether 
or not the requestor should be abended. If not. 
ISGGRPOO processes the next PEL entry in the OWB. 

If ISGGRPOO is to abend the requestor or hes processed 
all the PEL entries and the request originated in this 
system, ISGGRPOO: 

• Frees the unused QELs, OXB. and/or OCB. 

• Copies the QWARSA section of the QWA into the 
header section of the QWB IQWBHRSA). This saves 
for the caller the return or abend code that 
ISGGNQOQ placed into the QWA. Although 
ISGGRPOO copies the OWARSA into the QWB for all 
requests, the information in the QWB is only used 
when the request originated in the current system • 

• If the request is not an internal request(one generated 
by a global resource serialization module), calls 
IEAOPT01 to post ISGGWAIT to finish processing IEAOPT01 
the request. 

Extended Description 
1 

If the request originated in another system, ISGGRPdo 
frees the request QWB and any unused control blocks,. 

When all the PELs entries related to one request have 
been processed, ISGGRPOO returns to step 5 to proc. 
the next QWB. 

Module Label 

ISGSOAL 



G) Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 11 of 20) ,., 
CJt 
I 

N 
.0 
o 

3 
< en ..... 
)( 
~ 

en 
r­
r-

r­
-< 
N 
00 
I ... 

Q\o 

.0 
U'I 
I 

o 

M 
t" 
3 

o 
o , 
'0 . ... 
.0 
00 ..... 

Input 

GVT 

GVTGQWA r--.:... OWA 

OWARET1 

OWARET2 

QWARET3 

OWB 

OWBSMPL 
section 

}awsPEl PELXRET 

PEL 

EJ 

Process 9 
... 

7 Procesl a DEQ request ... 

• If a request originated in 
the current system cannot 
be satisfied. I f necessary. 
post I SGGNQDQ. 

• If a request originatad in 
another system. free the 
aWB. 

• When all the resource 
requests have been 
processed. 

6 

Output 

... ... 
ISGGNODO .... ~ 

ENQJDEO 
mainline 
routine 

.... ... 
IEAOPT01 

". ~ 

Post 
routine 

~ ~ 
ISGSDAL , .. 

Deallocation 
routine aWB 

... 
aWBHRSA 

-v 

}QWBPEl PELXERR ... 
Step 5 .. PEL 

D 



,... 
-< 
N co 
I .. 

CI' 
<4 
UI 
I 

o 

,.. 
n .., 
(") 
o 
"0 
'< , 
III 
:r 
t1" 

M 

'" 3 
(") 
o , 
1J 

:3: 
III 
t1" 
:r 
o 
a. 
o 
-it 

o 

" III , 
OJ 
t1" 

o 
:::J 

G') 

'" (II 

I 
N 
.0 .... 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor (part 12 of 20) 

'Extended Description Module Label 

DEa Processing 

7 The input aWB conte ins one or more PEL entries. 
Each PEL entry represents a resource to be dequeued. 

For each PEL entry, ISGGRPOO calls the mainline 
ENQ/DEQ routine (lSGGNQDQI at entry point ISGGNQDQ ISGGDQOO 
ISGGDQOO to dequeue the requestor from the specified re-
source. 

After ISGGNQDQ returns control, ISGGRPOO determines 
if this was a generic or unconditional DEQ request. 

• If this was a generic DEQ request, ISGGRPOO uses the 
return codes generated by local and global processing to 
datermine the final return code. 

• If this was an unconditional DEa request with a non· 
zero return code, ISGGRPOO saves the abend code for 
mainline DEQ processing (lSGGNQDQI. 

ISGGNQDQ will issue the ABEND for this requestor aft!,r 
the POST from ISGGRPOO. If ISGGRPOO did not en· 
counter an abend condition. it processes the next PEL en· 
try in the aWB request. 

If ISGGRPOO is to abend the requestor or has processed all 
the PEL entries and the request originated in this system, 
ISGGRPOO: 

• Frees any control blocks accumulated in the SMPL as a 
re-ult of ISGGNQDQ (at entry point ISGGDQOOI pre­
cessing. 

• Copias the QWARSA section of the QWA into the 
header section of the QWB. This saves for the caller the 
return or abend code that ISGGNQDQ placed into the 
QWA. Although ISGGRPOO copies the QWARSA into 
the QWB for all requests, the information in the QWB is 

only used when the request originated in the current 
system. 

Extendad Description 

• If the request is not an internal request (one generated 
by a global resource serialization module}, calls 

Module 

IEAVOPTOl to post ISGGWAIT to finish processing the IEAVOPTOl 
requast. 

If the request originated in another system, ISGGRPOO 
frees the request QWB and any other control blocks. 

When all the PEls related to one request have been pre­
cessed, ISGGRPOO returns to step 5 to process the next 
QWB. 

ISGSDAl 

Label 

r- = ".:0 
nil lien :s .. en., 
II­a.n .. 
3m 
Dla. .... 
113 
.,AI -.. DIll .... ., 
en ... 

AI , .... 
UI 

"V 
-,0 
0 .... 
"'!'J 
Blot .,:0 
r+::r: 
'< = 
o .... 
foe 
~ 
:x 



= Diagram GRS-35. ISGGRPOO - Global Resource Processor (Part 13 of 20) 

7 
en 
I 

N 
00 
N 

3 
< en 

" )( 
)0-

CP 
r­
r-

,.. 
n .... 
n 
o 
'U 
'< ., -!Q 
':T 
t+ 

H 
tIf 
3 

n 
o ., 
'U . 
toA 
00 
00 .... 

Input 

SAHT (SVSID/ASI0 hash tablal 

SAHTEOEL ~OEL 

OELNSVN 

OEL 
aWA 

~~QEL J 
OWARSA 

OWAABDMC I 
OWACSVID ASCB 

OWAORIGN 

I 
ASCBGOEL 

OWAASCB I 
~OEL 

ASCB r 
global C 

queue l ~ aEL 

-'1 

Process 

.. 
,) 8 Process a DEO TCB 

purge request. 

~ 

... 

.... 
... 

I 
• If tha purge request was 

made in the current system. 
notify the requester that 
it has been processed. 

~ 

... 

I • If the purge request 
originated In another 
system. free the OWB. 

~ 

1 ... 

6 

Output 

Register 1 
.... 

rOPL 
... .. 

ISGSAHT 
r 

Hashing 
DPLTARGT 

routines DPLTCB 

DPLOELOP ... 
ISGGDEOP ,.. DPLRTCB 

DEO 
purge DPLRABMC 

routine 

OWB OWA .. 
IOWAORIGN I IEAOPT01 OWBHRSA .. 

Post 
routine OWBHTRGT 

... 
StepS ,.. 

.. 
ISGSDAL .. 

Deallocation 
routine .. 
Step 5 --,.. 



r­
oo( 
N 
00 
I .... 

0-
-0 
UI 
I 

o 

..... 
n .... 

I-i 
tJ1 
3 

(") 
o ., 
1J . 

3 
:I> 
n­
:r 
o 
0-

o .... 
o 
"tJ 
III ., 
III 
n-
o 
:::I 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 14 of 20) 

Extended Description 

DEQ TeB Purge Processing 

8 The ENQ}DEQJRESERVE resource termination man-
ager IISGGTRM1) issues a DEO TCa purge request to 

purge the global resources that are owned by that TCa. 
The TCa to be purged is represented by queue elements 
(OELs) on two queues: 

• If the resources for a task In the current system are be­
ing purged, the Tca is represented by OELs on the 
ASCB global OE L queue. 

• If the task Is in a system other than the current one, 
the OE L queue to be purged is chained from a OE L on a 
synonym chain pointed to by a slot in the SYSID/ASID 
hash table ISAHT). To locate the appropriate synonym 

Module 

OEL, ISGGRPOO first calls the hash routine IISGSAHT) ISGSAHT 
to find the hash slot address which points to the appro-
priate synonym chain. It then searches the synonym 
chain for the synonym OEL with a SYSID/ASID match-
ing the input SYSI D/ASI D IOE LOR IGNaOWBHTRGT). 
The OELs queued from the synonym OEL owned by 
this TCB represent the resources to be purged. 

To purge the resources, ISGGRPOO: 

• Initializes a DEO purge list (DPL) with information 
about the resources to be purged, including the address 
of either the ASCB global OE L queue or the synonym 
OEL queue. ISee the output section of the diagram for 
details.l 

• Calls ISGGDEOP to purge the resources. The DPL is in- ISGGDEOP 
put to ISGGDEOP. 

• Saves the requestor's RSA (the OWARSA field) in 
OWBHRSA. ISGGRPOO does this for every request pro­
cessed, even though information in the OWB is used 
only when the request originated in the current system. 

• If the purge request was made in the current system, 
calls the post routine II EAOPTO 1 I to post ISGGWAIT IEAOPT01 
which returns to ISGGOWBO which returns to 
ISGGTRM1. 

• If the request came from a system other than the cur-
rent one, calls ISGSDAL to free the OWB. ISGGRPOO ISGSDAL 
obtains and holds the CMSEODO lock during this pro-
cessing. 

Label Extended Description Module 

ISGGRPOO returns to step 5 to process the next OWB_ 

Note that the DEO TCB request allows the 
ENO/DEQJRESERVE resource termination manager to be 
sure that the terminating task has no outstanding global re­
source requests on the request, staging, or process queue . 
Since the OWB representing the DEO TCB request is 
queued and therefore processed after any requests the ter­
minating task might have made, the terminating task's re­
quests must have already been processed. Anv resources al­
located to the task would be represented by OELs on either 
the SYSID/ASID hash table queues or the ASCB global 
OELqueue. 

Label 



~ Diagram GRS-3S. ISGGRPOO - Global Resource Processor (part IS of 20) 
CP 
I 

N 
00 ..... 

:3 
< 
CP 

" X 
>-
CP 
r­
r-

r­
oo( 
N 
00 
I ... 

go. 
00 
UI 
I 

c 

(") 
o 
~ ., .... 
!Q 
:T ,.. 
1-1 

'" :3 

n 
o ., 
"0 . .. 
00 
00 .... 

Input 

SAHT (SYSIO/ASIO hash table) 

SAHTEOEL ~OEL 

eaELNSVN 

OEL 

~ aEL OWA 

~ aWARSA 

OWAABDMC 

aWACSYID 

aWAORIGN ASCB 

aWAASCB ASCBGOEL 

( 
\...aEL 

r~ ASCB 
global L ~ ~ aEL queue ·1 

Process 9 
... 

9 Process a OEO ASIO 
v purge request. 

.... 
, 

.... 
.... 

I 
• If the purge request was 

made in the current system. 
notify the requester that .... 
it has been proces.d. 

....-

• If the purge request 
originated in another 
system. free the OWB. .... 

.... 

I 

6 

Output 

... Register 1 

... 

COPL ... 
ISGSAHT 

r 
Hashing OPLTARGT 
routines 

.... OPLOELOP 
ISGGOEOP 

r DPLRASID DEO 
purge 
routine DPLRABMC 

.. aWB OWA 

IEAOPT01 

IOWAORIGN I 7 aWBHRSA 
Post 
routine 

OWBHTRqT 

.... 
Step 5 

r 

... ISGSDAL 

" Deallocation 
routine .. 
Step 5 

Ir 



r­
oo( 
N 
01 
I 
~ 
CPo 
~ 
\II 
I 

o 

~ 

n .... 
n 
o 
'U 
~ ., 
IQ 
J ,.. 
.... 
til' 
3 
(') 
o ., 
'U . 

3 
ID ,.. 
:r o 
a. 
o 
-II 

o 
'U 
III ., 
• ,.. -o :I. 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor (part 16 of lO) 

Extended Dascription 

DEQ ASID Purge Processing 

9 The ENQ/DEQ/RESERVE resource termination man-
ager (lSGGTRM1) issues a DEQ ASID purge request 

to purge tha gloabl resources that are owned by the ASID 
specified in the request. ISGGRPOO processes a DEQ ASID 
purge request the same way that it processes DEQ TCa 
purge requests with the exception that the TCa address is 
ignored and the SYSID/ASID alone becomes the search 
argument for resources to be dequeued. Step 6 describes 
that processing. 

Module Label 



~ Diagram GRS-3S. ISGGRPOO - Global Resource Processor (part 17 of 20) 
CP 
I 

N 

'" 0-

3 
<: 
CP 

" X 
> 
CP 
r­
r-

r­
-< 
N 
00 
I ... 

0-
'IQ 
UI 
I 

o 

,.., 
n ..., 

M 

'" 3 

(") 
o , 
'U . ... 
'" 00 .... 

Input 

GVT .. 
GVTXSAHT ~ SAHT (SYSID/ASID hash tablel v 

SAHTEOEL ~OEL 
OWB 

lawBHDASY I CQELNSYN 

OEL 

I QWA 

IOWA"SA I TI 
QWA .. 
IOWACSYID I II .... 

Process 9 
10 Process a DEO SYSID purge 

request. 

.... ... 

....- ...", 

• Notify the requester that 
it has been processed. ..ilL ... ,.....,. 

11 Process a synchronization 
request. 

.... ... 
• If the request was made ... JI" 

in the cu rrent svstem. post 
the requester. 

~ ... 
• If the request was made ,- -y 

in a system other than the 
current one, free the QWB . 

... 
I ,. 

0 

Output 

DPL OWA .. 
IOWASYSID I .... DPLTARGT 

ISGGDEOP DPLOELOP 

DEOpurge 
routine DPLRSYSID OWB 

IOWSH"SA I 
IEAOPT01 

Post 
routine 

IEAOPTOt 

Post 
routine 

ISGSDAL 

Daallocation 
routine 

Step 5 



r­
oo( 
N 
00 
I ... 

0-
-0 
\II 
I 

a 

'" n .... 

.... 
01 
::I 
(') 
o , 
" 

.J)iagram GRS-3S. ISGGRPOO - Global Resource Processor (part 18 of 20) 

Extended Description 

DEQ SVSID Purge PrOCIISIing 

10 ISGGRPOO satisfies a DEO SYSID purge request by 
purging all global resources allocated to tasks in the 

system identified by the input SYSI D. IThe caller must 
purge locel resources.l ISGGRPOO searches ell the syno· 
nym chains queued from the SVSID/ASID hash table for 
synonym OEu having the same SYSID as specified in the 
input (OELSVSID=OWBHDASYI. For each match found, 
ISGGRPOO initializes a DEO purge list (DPLI and calls 

Module 

ISGGDEQP to purge the OE L queue chained from the ISGGDEQP 
synonym OEL. The DPL is input to ISGGDEQP . 

When all the synonym chains have been processed, 
ISGGRPOO: 

• Saves the requestor's RSA (the OWARSA field I in the 
OWB 

• Obtains and holds the CMSEODO lock during this pro­
cessing. 

• Calls IEAOPT01 to post the requestor 

Note: A requestor may not do a SYSID purge on itself. 

ISGGRPOO returns to step 5 where it processes the next 
OWB. 

Synchronization Processing 

11 !SGGRPOO determines whether or not the synchron-
ization request originated in the current system. If 

IEAOPT01 

it did, ISGGRPOO calls IEAOPT01 to post the requestor. IEAOPT01 
The requestor then knows that all requests made prior to 
the synchronization request have been processed (that is, 
they are not outstanding on the request, staging, or process 
Queuel. 

I f the request originated on a system other than the current 
one, ISGGRPOO calls ISGSDAL to free the OWB. ISGSDAL 

ISGGRPOO returns to step 5 where it processes the next 
OWB. 

Label 

o .... 



~ Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 19 of 20) 
CII 
I 

N 
oD 
C» 

3 
< 
CII .... 
X 
> 
CII .­.-

o 
o 

" '<: .., 
III 
:T 
IT 

I-f 
0:1 
3 

o 
o .., 
" .... 
oD 
00 

" 

Input 

Invalid 
aWB 

D 

Process 7 
12 Process an undefined 

request . 

• Issue the ABEND . 

RTM 

1.+ 
... 13 Free the invalid 
vi aWB 

Output 

... ABEND X'09A' 

... Register 15 

I Reason code E200 I 
... 

RTM .. 

~ ... 
ISGSDAl , .. 

Deallocation 
routine ,.. ... 

... 
Step 5 

r 



r­
oo( 
N 
C. 
f ... 

GO 

'" Ul 
I 

o 

.... 
tIIJ 
:3 

<" o 

"' 'tI . 

3: 
III 
ri" 
J 
o 
D-

o .... 
o 
'tI 
III , 
OJ ,... 
o 
:s 

Diagram GRS-3S. ISGGRPOO - Global Resource Processor (Part 20 of 20) 

. Extended Description 

12 When none of the request type flags ere on in 
aWBHF LG3, the aWB is invalid. ISGGAPOO issues 

an ABEND X'09A' with a reason code X'E200' set in re­
gister 15. (ISGGFAAO retries at label GAPATAY2 in 
ISGGAPOO). 

13 At retry label GAPATAY2, ISGGAPOO calls 
ISGSDAl to return the invalid aWB to the storage 

manager. ISGGAPOO returns to step 5 where it processes 
the next aWB . 

Module Label 

ISGSDAl 

o ... 
H 
M 
3: 



~ Diagram GRS-36. ISGGTRMO - ENQ/DEQjRESERVE Termination Resource Manager (part 1 of 4) 
en 
I 

CJoI 
o 
o 

3: 
< 
en 

" X 
:. 
cn .... .... 

.... 
-< 
N 
00 
I 

~ .. 
0-
-D 
~n 
I 

o 

'" o ..... 
(') 
o 

" '< ., 
III 
:r ,.... 
.... 
'" :3 

(') 
o ., 
" . 

Input 

Register 1 

I I 
Parameter list 

GVT ~ 
GVTGRSNA 

GVTGRSAS 

GVTPRGOK 

RMPL 

RMPLASCB ~ ASCB 

--
ASCBLQEL 

From 
RTM Process 

I+. 1 Clear the resource 
manager parameter list 
(RMPL) workarea and 
obtain the necessary 
serialization. 

... 
2 Determine if local 

-v and/or global resource 
purge processing can 
be performed and 
is necessary. 

• No, release locks 
and return to 
RTM. 

• Yes, continue 
in step 3. 

3 Establish a recovery 
environment. 

6 

Output 

RMPL resource 

-'" 
manager workarea 

". 

rJ ••• ·0 

.. 

... 



Diapam GRS-36. ISGGTRMO - ENQlDEQJRESERVE TermiDation Resource Manager (Part 2 of 4) 

.... 
n .... 
n 
o 
~ ., ... 
~ 
rt' 

M 
OJ 
:3 

n 
o ., 
'1J . 

Extended DescrIption 

ISGGTRMO, the ENQ/DEQ/RESERVE termination 
resource manager, recelvel control from RTM when a 
task or address space I. being terminated. Input to 
ISGGTRMO ila parameter lilt. pointed to by register t. 
that contain. the address of the RMPL. ISGGTRMO 
receives control In the terminating address space during 
normal and abnormal task termination and In the master 
address space during normal and abnormal eddress rpace 
termination. ISGGTRMO determines if there are 
resources needing to be purged. If so. it prepares them 
for purging and calls ISGGTRMt to purge them. After 
ISGGTRMt purges the resources, It returns to 
ISGGTRMO for clean up processing. Note that this 
routine does not clean up any global resource. acquired 
by the terminating tesk or eddress space until the global 
resource serialization address rpace has been initialized 
and the global resource processor (lSGGRPOO) hes run. 

1 ISGGTRMO copies the resource manager parameter 
list (RMPLI workarea into the RMPL resource 

manager workarea (RMPLRMWA) and sets it to zeroes. 
ISGGTRMO then obtains the local lock of the current 
eddress rpace and the CMS ENQ/DEO lock. Holding 
these locks allows ISGGTRMO to serialize the local 
queue workarea (OWAI and local resource processing. 

:3 2 If the global resource serialization address space Is not 
~ Initialized (GVTGRSASa ·O'BI. then purge processing 
l cannot be parformed. ISGGTRMO release. the locks and 
a. returns control to RTM. 

o 
.... If there are no global resources on the local resource 
o queue (ASCBLOEU and the talk owns no global resources 
'I for task termination CTCBGRESaOI or the giobal resource 
~ serialization address space is not Initialized, purge processing 
rt' is not necessary. ISGGTRMO rel811S111 the locks and returns 
o control to RTM. 
:I 

Madul. Label 

ISGGTRMO 

Extended Description 

3 ISGGTRMO issues a SETFRR macro instruction to 
establish ISGGFRRO as its recovery routine • 

Module Label 



= Dfapam GRS-36. ISGGTRMO - ENQJoEQlRESERVE TermiDation Resource MaDager (Part 3 of 4) .. 
• CIIII 

o 
N 

r­
-< 
N 
00 
I .... 

epo. 
..0 
1.11 
I 

o 

n 
o 
"0 
'< , 
III 
':T 
rfo 

.... 
0' 
3 

n 
o , 
"0 . 
... 
..0 
00 .... 

Input 

TCB nOT 

TCBRP TIOCNJOB 

TCBCMPC TIOCSTEP 

TCBFJMC 

GVT RMPL 

GVTSaWB RMPLTYPE 

GVTLGSA RMPUST 

GVTSYSID RMPLASID 

ASCB 
RMPLASCB 

I ~MCT I 

Process C( 
4 Indicate that 

directed ENOs will 
be suppressed. 

... 
5 Set the local aWA 

-v and aWB fields 
necessary for 'SGGTRM1 
processing. 

6 Release the global 
resource serialization 
resources held bV the 
terminating task or 
address space • 

.. 

...-

7 Perform clean-up 
processing. 

Output 

TCB 

... I Tea.NORM I P' 

aWA aWB 

D D -'" 

'" 

.. 
T ISGGTRM1 

Return 
toRTM 



~ 

-< 
N 
00 
I ... 

CI' 
~ 
UI 
I 

c 

:3: 
CD .... 
:r 
o 
a.. 
o 
-f\ 

Q 
'tJ 
III .., 
OJ .... 
o 
:J 

Diagram GRS-36. ISGGTRMO - ENQjDEQ/RESERVE Termination Resource Manager (Part 4 of 4) 

Extended Description 

4 ISGGTRMO sets the TCBENORM bit to 1. Setting 
this bit while holding the CMS ENOIDEO lock ensures 

that the ENQ/DEO routine (lSGGNODO) suppresses all 
ENOs directed ot the terminating task. (lSGGNODO 
abends all callers directing ENO requests to a terminating 
task.) 

5 ISGGTRMO sets all the fields necessary for processing 
in ISGGTRM1. The necessary OWA fields are: 

OWACMS 
OWAFRR 
OWAREOLL 
OWACSYID 
OWAJOBNM 
OWASYSID 
OWAASID 
aWAASCB 

aWACSYS 
aWAaWBHS 
aWAGSA 
aWASTPNM 
aWAJSTEP 
aWACOMPC 
aWARB 
aWAGBLRS 

If a task that is in "step-must-complete" mode is being 
terminated, ISGGTRMO also sets the aWARMC bit in the 
OWA so that, when ISGGTRM1 completes processing, 
ISGGTRMO will issue a STATUS macro with the RMC 
option. 

If either a task or address SP8ce that is in "step-must­
complete" mode is being abmormally terminated, 
ISGGTRMO sets the aWAABDMC bit in the local aWA so 
that a message is set up during local or global resource 
purge processing. 

The OWB field necessary for ISGGTRM1 processing 
isaWBSMPL 

6 ISGGTRMO issues a program call (PC) instruction to 
ISGGTRM1, which purges the global resource serio 

alization resources held by the terminating task or address 
space. ISGGTRMO passes the address of the RMPL 
worker. in register 1. The RMPL workarea is used to 
save registers and flags during the PC instruction. 

Module Label 

7 When ISGGTRM1 completes processing, it issues a 
program transfer (PT) instruction to return control to 

this step. ISGGTRMO does the following clean up tasks: 

• Releases the CMS ENa/DEO lock. 

• Deletes the recovery routine. 

• Releases the local lock. 

• Issues a STATUS macro with the RMC (reset-must­
complete) option when necessary to raset a task 
diSP8tchable. 

• Issues an SPOST macro when necessary to synchronize 
all outstanding cross memory POSTs. 



Q Diagram GRS-37. ISGGTRM 1 - ENQ/DEQ/RESERVE Tennination Resource Manager (Part 1 of 6) 
;:0 
eft 
I 

VI 
o 
+" 

3 
<: 
(ft 

" X 
> 
(ft .­..... 

r­
-< 
N 
C» 
I 
~ 

0'0 
-0 
VI 
I 

o 

n 

(') 
o 
"tI 
'< , 
10 
:r .... 
~ 

c:t 
3: 

(') 
o , 
"'0 

Input 

Register 1 

I ~SMPL 
I I 

ASCB OWA 

ASCBASID OWATCBA 
ASCBLOEL OWAABDMC 

Register 1 

I hDPL 

I I 

From 

ISGGTRMO Process -.. 1 Save the cross memory en-
vironment and the address 
of the RMPL (resource man-
ager parameter list) workarea. 

... 
v 

2 Obtain dynamic area storage. 

-
... 

3 r'urge all the local resources. 
v 

a. Initialize a DEO purge 
list (DPL) in the queue 
workarea (OWA) for a 
local resource TCB or 
ASID purge. 

.... 
b. Purge the desi red local 

... resources. 

.... ...... .....,.,.. 

6 

Output 

... 
l§MWAPTR 

Register 1 
... 

CSMPL 
v 

ISGSALC 

Obta in storage 

" 
DPL 

DPLSYSID 
DPLASID 
DPLTCB 
DPLOELOP 
DPLLOCAL 
DPLRABMC 
DPLRASID 
DPLRTCB 

~ OWA 
/ 

OWASPOST 
IOWAMRBO 

ISGGDEOP 

DEQ resources 

I 

I 
Dynamic 

_ ... storage 

r 1 

n 
ID 
:J 
III 
m 
n. :: 

Xi 
:xro 
PJ III 
t+,..,. 
til., ., ..... 
-·0 
!lJt+ 
.... IU 
ilia. 

I:: 
III 

"0 .... 
., I'll 
0., 
-0 ..... 
!':I1lI , .... 
.... 111 
'<: o 
0-40 
-t. .... 
.... to::I 

IXJ::J: 
::r :: 



..... 
o ..... 

t-4 
os 
:3: 

o 
o ., 
1J . 
.... 
..0 
00 .... 

:3: 
ID 
rt­
J 
o 
C-

o 
; 

c 
1J 
ID ., 
11/ 
rt-

o 
:J 

Diagram GRS-37. ISGGTRMI - ENQjDEQjRESERVE Termination Resource Manager (Part 2 of 6) 
Extended Description 

ISGGTAM1 receives control from ISGGTAMO via a PC in­
struction to purge all local and global ENQ/AESERVE re­
sources acquried by the terminating task or address space. 

The input to this routine is the address of the RMPL work­
area in register 1. 

1 ISGGTAMl issues a PCLlNK STACK macro to save 
the STACK entry that ISGGTRMO created for 

ISGGTRM1. 

ISGGTAM1 saves the AMPL workarea address in 
AMWAPTR so it can pass this address back to ISGGTRMO. 

2 ISGGTRMl obtains a dynamic area to be used as 
working storage for this routine. ISGGTRMl estab­

lishes addressability to the dynamic area and sets the area 
to zeroes. 

3 To purge local resources: 

a. ISGGTRMl initializes the following fields in the 
DEQ purge list (DPLI: 
• DPLSYSID = 0 for a local purge 
• OPLASIO= the ASIO of the address space in which 

termination is occurring 
• DPL TCB= pointer to a TCB or Q. If a task is being 

terminated. ISGGTRMl uses the TCB address that 
ISGGTRMO passed in the QWATCBA field. If an 
address space is being terminated. ISGGTRMl sets 
this field to O. 

• OPLQELQP= pointer to a queue element (QELI of 
the queue containing the resources to be purged_ 
ISGGTRMl purges local resources from the ASCe 
local resource queue (ASCeLQELI. 

• OPLLOCAL hhe local/global flagl= 1 to indicate a 
local purge 

• OPLRASIO (the ASIO purge flagl= 1 or OPLRTCB 
ithe TCe purge flagl= 1 to indicate either an ASIO 
or TCe purge 

• OPLAABMC hhe must-complete flagl= 1 if the 
TCB or ASIO failed in the must-complete mode. 
This flag is set so that the appropriate error mes­
sage will be set up. 

Module Labal 

ISGGTRM1 

ISGSALC 

ISGGTRMl 

Extended Description 

3 (continued I 

b. ISGGTRMl calls the OEQ processor IISGGOEQPI 
to purge all local resources as requested. passing the 
OPL in register 1_ 

Before returning to ISGGTRM1. ISGGDEQP sets an in­
dicator (QWASPOSTI showing whether an SPOST 
(synchronization of outstanding cross memory POSTs I 
is necessary. ISGGOEQP also places in the 
QWAMRBQ field the beginning address of a queue of 
messages to be issued. 

Module Labal 

ISGGOEQP 

,.. ~ 

.... :l1li 
nil men 
:J,... 
UI., 
li­
nn .. 
311 
ma. .... 
1!J3 
.,GI -.,... 
GIll ... ., 
ur-

GI , ... 
(It 

"0 
.,0 
0 .... 
'D 
1IJ .... 
-'0' .... :z 
'<: :I 

o .... 
.... 
tIJ 
3 



~ Diagram GRS·37. ISGGTRMI - ENQ/DEQ/RESERVE Termination Resource Manager (Part 3 of 6) 
Ut 
I 

ell 
o 
~ 

3: 
< 
Ut , 
X • 
Ut 
r­
r-

r­
-< 
N 
00 

• .. 
~ 
00 
UI 

• o 

,... 
n 
"" 
(') 
o 

" 'C ., ... 
to 
:r ,. 
.... 
all 
3: 
(') 
o ., 
" . 

Input 

GVT 

I GVTGRSNAI 

ASCB aWA 

I ASCBASID I aWARB 
aWATCBA 

GVT aWAABDMC 

I GVTSYSID I 
aWA 

aWARSA 
aWAASCB 
aWATRMRM 
aWAJOBNM 

Register 1 

I ~ DPL 

I I 
aWBHRSA 

aWBHRMC 
aWBHSPST 
QWBHMRBa 

Dynamic area 
aWAmapping 

MAPRSA 
MAPASCB 
MAPTRMRM 
MAPJOBNM 

Register 1 

·1 
aWB 

I ~ I 

Process 9 
~ 

4 If global resource seriall· .. zation is active, purge 
all global resources 

... 
a. Initialize a DPL for 

.... a global resource TCB 
or ASI D purge. 

.. 
./ 

b . Save the necessary awl, 
fields in the dynamic area. .. 

... c. Purge the appropriate 

.. resources. 
JI!!I... ..... 

d. Obtain the necessary ,- ..... 
serialization and estab· 
lish a recovery environ· 
ment. 

... e. Merge the aWB header 

./ flags with the aWA flags 
"' saved in the dynamic 

area. 

... 

" ./ 

f. Restore the local aWA. 

Free the aWB obtained 

~ ~ 
g. 

by ISGGaWBO. 

Q 

Output 

DPL 

DPLSYSID 
DPLASID 

A DPLTCB .. DPLRB 
DPLLOCAL 
DPLRASID 
DPLSVaWB 
DPLLOCKH 
DPLRTCB Dynamic erea 

... DPLRABMC aWA mapping 

.. MAPRSA 
MAPASCB 
MAPTRMRM 
MAPJOBNM 

Register 1 
Jo. 

~ 
/ .. 

ISGGaWBO 

Build aTCB 
or ASID purge 
aWB Dynamic area 

aWA mapping 

.. MAPRMC 
MAPSPOST 

r 
MAPMRBa 

aWA 

aWARSA 

" 

... aWAASCB 
aWATRMRM ."' 

ISGGaWBO aWAJOBNM 

Free the aWB 



r­
oo( 
N 
C» 
I 
~ 
GOo 
-0 
~ 
I 

o 

n 

H 
l:1l:I 
3: 

o 
o ., 
"U . 

3: 
III ,... 
::r 
o 
Co 

o 
-+0 

o 
"U 
III ., 
III 
ri-

o 
:J 

Diagram GRS-37. ISGGTRMI - ENQ/DEQ/RESERVE Termination Resource Manager (part 4 of 6) 

Extended Description Module 

4 When global resource serialization is not active ISGGTRM1 
(GVTGRSNA=OI or when the task owns no global 

resources for task termination (OWAGBlRS=OI, global 
purge processing is not required and ISGGTRM1 skips 
this step. Otherwise, ISGGTRM1 purges all global 
resources if purge processing is allowed (GVTPRGOK=11. 
(The eMS ENO/OEO lock that ISGGTRMO obtained 
serializes the GVTGRSNA field.1 

Label 

ISGGTRM1 invokes ISGGOWBO (entry point ISGGOWB5) ISGGOWBO ISGGOWB5 
to present the purge request (either TCB or ASIO) to each 
system in the global rasource serialization ring. 

a. ISGGTRM1 initializes the following data in the DEO 
purge list (DPLl: 
• OPLSYSIO= the current system ID 
• OPLASID= the ASIO of the address space in which 

termination is occurring 
• OPL TCB= pointer to a TCB or O. If a task is being 

terminated, ISGGTRM1 uses the TCB address that 
ISGGTRMO passed in the OWATCBA field. If an ad· 
dress space is being terminated, ISGGTRM1 sets this 
field toO. 

• OPLRB= address of the current RB. ISGGOWB5 
uses this address when issuing a WAIT macro. 

• OPLLOCAl (the local/global flag)= 0 to indicate a 
global purge 

• DPlRASIO (the ASIO purge flag)= 1 or OPLRTCB 
(the TCB purge flag)= 1 to indicate either an ASIO 
orTCB purge 

• DPlSVOWB (the save OWB flag)= 1 to tell 
ISGGOWB5 to return the OWB (queue work block) 
it obtains 

• OPlRABMC (the must-complete flagl= 1 if the TCB 
or the ASIO failed in the must·complete mode 

• OPlLOCKH (the lock-held flag)= 1 to indicate that 
locks are held on entry to ISGGOWB5 

b. ISGGTRM1 saves the following local OWA fields in the 
dynamic area: OWARSA, OWAASCB, OWATRMRM, 
and OWAJOBNM. 

Extended Description 

c. ISGGTRM1 calls ISGGOWBO at entry point 
ISGGOWB5 to place the purge request on the request 
queue and to issue a WAIT macro. ISGGOWB5 releases 
the local lock of the home address space and the CMS 
ENO/DEO lock and releases all FRRs on the stack be-
fore issuing the WAIT macro. The global resource pro-
cessor IISGGRPOOI periodically checks this queue. 
When it finds the queued purge request, it purges the 
appropriate resources and posts ISGGOWB5 when fin-
ished. ISGGOWB5 then returns the address of the purge 
OWB to ISGGTRM1. 

d. ISGGTRM1 obtains the local lock of the home address 
space and the CMS ENO/DEO lock to restore serializa· 
tion that ISGGOWB5 released. It also re-establishes 
ISGGFRRO as its FRR. 

e. The global resource processor IISGGRPOO) initialized 
the fields in the OWB header. These include 
OWBHSPST. OWBHRMC. and OWBHMRBQ. 
ISGGTRM1 merges these fields with the OWA flags that 
were sal/ed in the dynamic area's OWA mapping. 

f. ISGGTRM1 moves the OWA and OWB fields sal/ed in 
the dynamiC area OWA mapping back into the local 
OWA. 

g. ISGGTRM1 calls ISGGOWBO at entry point 
ISGGOWBF to free the OWB obtained and returned by 
ISGGOWB5. 

Module Label 

ISGGOWBO ISGGOWB5 

ISGGOWBO ISGGOWBF 



= Diagram GRS·37. ISGGTRMI - ENQjDEQ/RESERVE Termination ResouR'le Manager (Put S of 6) 
CIt 

• CoIIII 
a 
011 

:I 
< 
CIt , 
)( 

• 
CIt 
r­
r-

,.. 
() ..... 
n 
o 
~ ., 
rQ 
':!' ,.. 
..... 
0' 
3: 

n 
o ., 
'U . 

Input 

QWA 

I QWAMRBQ I .. 
.. 

Register 1 

I lS~LI 
GVT 

IGVTNCMDR I 
Register 1 

I l~PLI 
.. 
... 

Process )) 
5 Issue any messages built 

during local and global 
purge processing. 

6 Free the dynamic area 
storage. ...... ...... 

ISGSDAL ....- ---,.. 
Free the 
storage 

7 Restore the cross memory 
environment. 

Return 
to caller 

Output 

.. 
rGVTCMDRQ ,.. 

MRB 



,.. 
n .... 
(") 
o 

" oc:: , 
10 
:r 
r+ 
1-1 
tlI' 
3: 

(") 
o , 
" . 

3: 
II) .... 
:r 
o 
C-

O 
of. 

o 

" 11) , 
01 .... 
o 
::I 

Diagram GRS-37. ISGGTRMI - ENQ/DEQ/RESERVE Termination Resource Manager (Part 6 of 6) 

Extended Description 

5 If any messages were set up during local and global 
purge processing (QWAMRBQ is not zero), 

ISGGTRM1: 
• Obtains the storage for the header messages from the 

global resource serialization storage manager 
IISGSALC). Two message request blocks (MRBs) 
are obtained for task termination, one MR B for ad­
dress space termination. 

• Builds the necessary header messages. 
• Places the header messages at the beginning of the 

chain of MRBs built during local and global purge 
processing. The QWAMRBQ field points to the 
MRB chain. 

• Places the chain of MRBs onto the command request 
queue pointed to by the GVTCMORQ field. 

• If the global resource serialization command router 
IISGCMOR) is active, issues a cross address space 
POST for the ECB to notify ISGCMOR of work. 
Since ISGCMOR checks the command request queue 
when it becomes activa, any MR Bs placed on the 
queue by this routine get processed, even if 
ISGGTRMl does not issue e POST. 

Module 

ISGGTRMl 

6 ISGGTRMl calls the global resource serialization deal- ISGSOAL 
location routine (lSGSOAU to release the dynamic 

area storage. ISGGTRMl passes in register 1 the address of 
the storage manager parameter list (SMPL), which contains 
the address of the storage to be freed. 

7 ISGGTRMl issues a PCLlNK UNSTACK macro to re­
trieve the STACK entry created for this routine. 

ISGGTRMl then issues a PT (program transfer) instruction 
to ISGGTRMO to perform cleanup processing. Input to 
ISGGTRMO is the address of the RMPL workarea. which 
ISGGTRMl saved earlier in RMWAPTR. 

ISGGTRMl 

Label 



:I 
<: 
Ut 

" )( 
>-
Ut 
r­
r-

r­
-< 
N 
ceo 
I .... 

G' 
\D 
Ut 
I 

o 

,... 
n 
'oJ 

o 
o 
"0 
'C 
'l .... 
10 
:r ,.. 
.... 
"" :I 

o 
o ., 
"0 . 

Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE (Part 1 of 12) 

Input 

Register 2 

1) 
" 1058 

10SUSE 

~GCL 
GCLRSPCO 

GCLCMO 
I 

From the 
I/O supervisor 
(lOSVIR8A) -.. 

... .. 

.. 
~ 

~ .. 

Process 

Entry point 011000 (sense DIE) 

1 If the channel1jlrogram 
that completed was a read-
response or write-response, 
free the sense IOS8 and 
the UCB. 

2 1ft he data sensed is a 
write, prepare to read. 

3 If the data sensed is a read-
response or a write-re-
sponse, prepare to com-
plete the channel pro-
gram. 

1 

Output 

1058 (senseI 
.... 

~ 
.... 

.. Return 
to the 

r caller 

IOS8 (readl 

.. D y 

... Return 
to the ,.. 
caller 

1058 (senseI 

... D ----,... 

GCl 

----'" IGC~CL I .... .. Return 
to the ,.. caller 



,... Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE (part 2 of 12) 
r- ~ 
-:0 

~ nil 
N IDOl oe Extended Description Module Label Extended Description Module Label ::Jr+ 
I (II" .... 

1 " -. "" ISGJOI contains various entry points that are either dis· If the completed I/O Is a read·response or a write· a.n .,g 
abled Interrupt exits (Dies) or error-handling exits. These response resulting from 011000 having Initiated the r+ 

VI 3m 
I entry points receive control from the I/O supervisor (IDS) sense 10SB to process a read or a write channel program ilia. a to complete the processing of a channel program. The that did not complete its function successfully (refer to r+ 

"'3 .... channel programs processed are sense, read, write, read· step 3), 011000 fraes the sense 10SB (by turning off a -·,,11 
response, and write-response. Except for the sense chan· bit in the lOUSE field of the 10SB) and frees the UCB (by _.r+ 

n "'ft) ..... nel program, which IDS initiates, the CTC driver initiates Invoking the 10SLEVEl·RESETservice). Control returns ....., 
(") these channel programs to enable two systems, connected to IDS Indicating that no further processing is requested 01 -. 

AI 
0 to a CTC. to communicate. (register 15"'8). I ... 
'U (II oc: The DIE entry points (011000. 012000, end 013000) com· 2 If the data sensed by IDS is a write CCWoperation "Ill ., 

plete the processing of sense (including read·response and code (meaning that the remote system is sending a "10 
o~ 

10 write-response), write, and read channel programs. respec· message or data to this system via the CTC). 011000 pre- 'U 
:T fDH ,... tively. The error·hendling entry points (ABNOOOO, pares for e reed. It frees the sense 10SB, obtains and Ini· 018000 ~CIJ 

1-4 NRMOOoo, and PGAOOOOI receive control from IDS only tlelizes the read 10SB, and returns to IDS requesting the 011000 r+3 
till If an ISGJOI DIE entry point (012000 or 013000) returned start of I/O (register 15=4). 'C :: 

:3 to IDS requesting further processing to handle an error, as 0 
(") Indicated by setting register 15 to O. If 011000 is unable to locate a buffer or finds thet the ~ 

0 CTC Is now offline, 011000 sets an unusual event flag In H ., During processing, ISGJol references and updates the the GCl and returns to IDS, requesting the start of I/O tIIr 

" global resource serialization CTS driver link control block (register 15=4). 3: . 
... (GCl) and the I/O supervisor block (lOSB). On each 

If 011000 Is unable to obtain the read 10SB or a buffer, It 

'" processor, there Is one GCl for a CTC and three 10SBs 
sets unusual event flags In the GCl and returns to IDS UEREPT ~ for a GCL The 10SBs are the sensa 10SB, the read 10SB, 

" ; and the write 10SB. lOS or the global resource serialization Indicating that no further processing is requested (regis· 011000 

CTC driver Initiates the sense 10SB; the global resource ter 15"'8). 

serialization CTC driver initiates both the read 10SB and 3 If the data sensed by IDS is a read-response CCW 
the write 10SB. oparation code or a write-response CCW operation 

Eech entry point In ISGJol establishes addressablllty to 
code, this system's channel program did not successfully 
complete Its function. (A read channel program consists 

module ISGJRCV which is the functional recovery routine of a react CCW and a write response CCW Is all the systems (FRR) for ISGJOI. In the main ring are of a pre MVS/220 level or the main 
Note: A read channel program consists of a read CCW and ring has systems of a mixed level. If all systems In the 
a write response CCW Is all the systems In the main ring main ring are of an MVS/220 level or higher, a read chen· 

::I are of a pre MVS/220 level or the main ring has systems of nel program consists of a read CCW. 
III a mixed level. If all systems in the main ring are of an 
ri- A write channel program consists of a write CCW and a 
:T MVS/220 level or higher, a read channel program consists 

read response CCW if all the systems in the main ring are 0 of a read CCW. a. of pre MVS/220 level or the main ring has systems of a 
0 A write channel progrem consists of a write CCW and a mixed level. If all systems In the mein ring are of an 
..... . read response CCW If all the systems in the main ring are MVS/220 level or higher, a write channel program consists 
0 of pre MVS/220 level or the main ring has systems of a ofa write CCW.I 

" mixed level. If all systems In the main ring are of an 
011000 reinitlallzes the sense 10SB with a write-response fD MVS/220 level or higher, a write channel program consists 018100 ., 
channel program to satisfy the sensed read-response CCW III of a write CCW. ,... or with a read-response channel program to satisfy the 

0 Entry point 011000 processes the sense 10SB received ISGJOI 011000 sensed write-response CCW. It then places a length value in 011000 
:::J from lOS. Step 1 describes the processing performed if the GCl to indicate to the remote system that this sy&-

the sense 10SB was Inititiated during a previous pass tem's original channel program did not complete success· 
(#) through this entry point (refer to step 3). Steps 2 through fully. 011000 returns to IDS requesting the start of I/O 
,g 6 describe the processing performed If the sense 10SB was (register 15=4). en 
I Initiated by IDS. 

CA .. .. 



~ Diagram GRS-38. ISGJDI - Global Resource Serialization eTC Driver DIE (part 3 of 11) 
(It 

I 
Cool .­
N 

3: 
< 
(II , 
)( 
~ 

(II 
r­
r-

r­
-< 
1') 
00 
I .­

CJ' 
-D 
U'I 
I 

o 

(') 
o 
"0 
~ ., _. 
IQ 
:T 
rfo 

1-1 
til' 
3: 
(') 
o ., 
"0 . 

Input 

GCL 

~ 

Process 

--"" 4 If the data sensed is an 
v immediate·write, set an 

unusual event flag. 

.. 
5 If the data sensed is a ... HAL TIO, free the sense 

IOS8. 

.. 
) 6 If the data sensed is none 

p-
of the above, free the 
sense IOS8 and set an un· 
usual event flag. 

,r 

Output 

GCL 

_ .... 
IGCLUEFW I v 

... Return 
to the 

'" caller IOS8 (sensei .. 

~ 
.. 

... Return 
to the .. caller 

IOS8(sensel .. 

~ 
........."I 

GCL 

.. 
GCLUEFLG ... Return ... 

to the 
r caller 



.... 
-c 
N 
Ot 
I ... 

G\ 
..0 
VI 
I 

o 

,... 
n ..... 
n 
o 

" 'C , 
10 
~ 
1+ 

M 
tJ:I 
3: 

n 
o , 
'U . 

Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE (part 4 of 12) 

Extended Description 

4 If the data sensed by lOS is an immediate-write CCW 
operation code (meaning that the remote system 

wants this system to identify itself I, 011000: 
• Sets an unusual event flag in the GCl to indicate 

that an immediate-write was sensed 
• Frees the sense IOS8 

Control returns to lOS with the indication that no further 
processing is requested (register 15=81. 

5 If the data sensed by lOS is a HAL TIO CCW operation 
code, 011000 frees the sense IOS8 and returns to lOS 

indicating that no further processing is requested (register 
15=81. 

6 If the data sensed is not any of those described in 
steps 1 through 5, 011000 frees the sense IOS8, sets 

an unusual event flag in the GCL. and returns to lOS indi­
cating that no further processing is requested (register 
15=81. 

Module Label 

UEAEPT 

011000 

UEAEPT 
011000 



~ Diagram GRS·38. ISGJDI - Global Resource Serialization CTC Driver DIE (part 5 of 12) 
(II 

I 
~ .... 
~ 

:3 
< 
(II 
..... 
x 
»-
(II 
r­
r-

.... 
"" 3: 

(") 
o ., 
'Il . 

Input 

Register 2 

'GCl 

GClSTOP 

GClWSCOF 

h 10SB 

10STSA 

10STSB 

10SUSE 

~ GCO 

SRB 

From the 
I/O supervisor 
(lOSVIRBA) 

.. Process 
Entry point 012000 (write DIE) 

... 
7 Determine the status of 

v the write or immediate-
write I/O completion 
and process accordingly, 

"'" 

1 

. 

Output 

10SB {writel 
... 
v 

10SUSE 

\ GCl 
... Return 

to the 
r caller 

GClCNTC 



n 

t-t 

'" 3: 

(") 
o .., 
"g . 

Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE 

Extended Description 

Entry point 012000 processes 1/0 completions (from 105) 
for write and immediate-write channel programs which use 
the write 1058_ (A write channel program consists of a 
write CCW and a read· response CCW.I 

7 If a write or immediate-write completes without error 
(no unit exception, no unit check, and no status bits 

onl. 012000: 
• Frees the write 1058 
• Removes the global resource serialization CTC 

driver queueing element (GCQ) from the write 
queue 

• Schedules the SR8 lif supplied) 
• Adds one to the 1/0 write-completed count in 

the GCl 
Control returns to lOS indicating that no further processing 
is requested (register 15~8) . 

If a write completes with an error and no HAL TIO is in pro­
gress, 012000 returns to 105 indicating that further pro­
cessing is requested (register 15=0). Otherwise (a HAL TIO 
is In progress), 012000 frees the write IOS8, adds one to 
the write-completed count in the GCl, and returns to lOS 
indicating that no further processing is requested (register 
15=81. 

If an immediate-write completes with error, 012000 returns 
to lOS indicating that further processing is requested (regis­
ter 15=0). 

Module Label 

012000 

(part 6 of 12) 



3 
<: 
en 

" X 
:.-
en ,... ,... 

,... 
-< 
N 
()) 

I .... 
0-
>D 
VI 
I 

o 

,.. 
n ..., 

1-4 
~ 
3 

(") 
o ., 
12 . 

Diagram GRS·38. ISGJDI - Global Resource Serialization CTC Driver DIE (Part 7 of 12) 

Input 

Register 2 

1058 

10SCSWCA 

10SCSWRC 

10SUSE 

C. GCl 

GClRGCQF ~GCQ 

GCQCHAIN 

SR8 

(GeQ 

~ 

""" 

From the 
I/O supervisor 
(lOSVIR8AI 

Entry point 013000 (read DIE) 

8 Determine the status of 
the read I/O completion 
and process accordingly. 

Output 

1058 

IOSUSE 

GCl 

GClRGCQF 

Return 

••• tothe 
caller 



..... 
Cl ..... 
n 
o 
"U 
'< ., 
10 
':r ,... 
t-4 
I:I1II 
3 

n 
o ., 
"1J . 

3 
ID ,... 
':r 
o 
a. 
o 
-h 

o 
"U 
ID ., 
III ,... 
o 
::J 

Diagram GRS·38. ISGJDI - Global Resource Serialization ere Drl",r Dm (Part 8 of 12) 

Extended Description 

Entry point 013000 processes I/O completions (from lOS) 
for read channel programs which use the read IOS8. (A 
read channel program consists of a reed CCW and a write­
response CCW) . 

8 If the read completed Its function without error, 
013000 frees the read IOS8, removes the global re­

source serialization CTC driver queueing element (GCQ) 
from the read queue, and schedules the SRB (if one was 
supplied). Control returns to lOS indicating that no fur­
ther processing is requested (register 15=8). 

If the read completed with an error or did not complete 
the read funaion, 013000 returns to lOS indicating that 
funher p'rocessing Is requested (register 15aQl. 

Module Label 

013000 

o ..... 
H • 3: 



:3 
< 
en 
"­
)( 
:. 
en 
r­
r-

r­
-< 
N 
00 
I ... 

a. 
..0 
UI 
I 

Q 

,.. 
o ..... 

1-4 
tI1 
:3 

(") 
o , 
" . 

Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE (part 9 of 12) 

From the 9 1/0 supervisor 

Input UEC", Process 
Entry point ABNOOOO 

Register 1 

1) ... 
r--Y 9 If an 10HAl T is in pro· 

Cos. 
gress, indicate to lOS 
that the PGADOOO exit 
is to get control. 

10SEPR 

IOSEX=1 

10SUSE -....GCl 
... 

----... 10 If an 10HAlT is not in 
progress, prepare for 
lOGREC recording and 

GClSTOP messages. 

Register 1 Entry point NRMOOOO 

b '" 11 Determine if the I/O com-----... pletion indicates an incor-

(IOSB 

rect length condition and 
process accordingly. 

10SEX 

- """:III.. GCl /' 10SUSE 

6 

Output 

10SB 

... 
10SEX=O 

y 

10SB 

I ~OCTCNP I ... 
... 

... Return 
to the Gel r caller 

IOCLUEFLO I ,.. 
... 

... Return 
to the 

r caller 



r­
oo( 
N 
00 
I ... 

c.­
oD 
VI 
I 

o 

1-1 
CIII 
3: 
C") 
o ., 
'tI . 
... 
-0 
00 
...... 

3: 
ID 
r+ 
'j" 
o 
a. 
o .... 
o 
'tI 
I) ., 
IIJ 
r+ 

o 
::::I 

Diagram GRS·38. ISGJDI - Global Resource Serialization ere Driver Dm (Part 10 of 12) 

Extended Description 

Entry point ABNOOOO is the error-handling exit used bV 
105 to process all abnormal I/O completions. except those 
indicating an incorrect length condition. 

9 If an lOHAL T is in progress (cleanup of the CTC Is 
taking place). ABNOOOO sets the 10SEX flag to 0 and 

returns to 105. No LOGREC recording, issuing of mes­
sages, or retries will be done. lOS then enters the 
PGADOOO exit to free the lOSB. 

10 If no 10HALT is in progress, ABNOOO leaves the 
10SEX flag on and indicates to lOS that no retry of 

1/0 is to be done (I OSCTCNR=1I. Control returns to lOS 
for lOGREC recording and for issuing messages. IIOS then 
enters the PGADOOO termination exit to free the lOSB.1 

E'ntry point NRMOOOO is the error-handling exit used by 
105 to process all I/O completions that indicate an incor­
rect length condition . 

11 NRMOOOO checks the lOSEX flag to determine if the 
completed I/O had an incorrect length condition. If 

NRMOOOO finds that lOSEX=1. an incorrect length condi­
tion exists and NRMOOOO returns to lOS. Otherwise. 
NRMOOOO sets an unusual event flag in the GCl before re­
turning to lOS. 

When 105 gets contrOl. it enters the PGADOOO exit to free 
the 10SB. 

Module Label 

ABNOOO 

NRMOOOO 

o .. 
.... 
GIJ 
:I: 



3 
<:: 
eft 
"­X 
> 
eft 
r­
r-

r­
-< 
N 
co 
I .... 

0-
.c 
VI 
I 

o 

,..,. 
o 

(") 
o 

" oc: , 
rQ 
;r ,... 
I-f 
o:J 
:3 

(") 
o , 
'0 . 

Diagram GRS-38. ISGJDI - Global Resource SeriaUzation ere Driver DIE (part 11 of 

Input 

Register 1 

10SUSE 

GCl 

GClSTOP 

From the 
I/O supervisor 
(JECVPSTI 

Entry point PGADOOO 

12 Perform termination 
processing of the IOS8. 

Output 

1058 

10SUSE 

~ 
I 
~ GCl 

Return 
••• to the 

caller GClUEFlG 

GCLIOERR 

GClCNTC 



o 
o 
'tJ 
oc: -, 
!O 
:r 
n-
1-4 
011 
3 

o 
o -, 
'tJ 

~ 
C) 
n­
:r 
o 
c... 
o 
-h 

o 
'tJ 
ID -, 
01 
n-
o 
::::I 

o 
;;0 
en 
I 

c.. 
N ... 

Diagram GRS-38. ISGJDI - Global Resource Serialization CTC Driver DIE 

Extended Description 

Entry point PGAOOOO is the error·handling termination 
exit 105 uses to allow the global resource serialization CTC 
driver to free the 10SB. PGADOOO is entered after either 
the ABNOOOO or the NRMOOOO entry point has executed. 

12 PGADOOO frees the 10SB (read or write) associated 
with the completed I/O. For a write I/O comple­

tion, PGADOOO adds one to the write-completed count in 
the GCl. For a read or a write I/O completion, PGAOOOO 
sets an unusual event flag in the GCl if no HAL TIO is in 
progress (GClSTOP=OI. For an I/O error PGADOOO 
sets an I/O error indicator (GCLlOERR=1). PGAOOOO 
returns to 105. 

Recoverv Processing: 

If an error occurs while ISGJDI is executing, RTM gives 
control to ISGJRCV, which is the functional recovery rou· 
tine (FRR) for ISGJOI. ISGJRCV: 
• Fills in the SOWA with module identification data 
• Verifies the 10SB, GCl, and GCa control blocks 
• Fills in the variable recording area ISDWAVRA) 
• Issues the SDUMP macro to obtain a dump 
• Marks the GCl as inoperative 
• Frees the 10SB 
• Schedules the SRB, if applicable, to handle unusual 

event processing 
• Returns to RTM 

Module Label 

PGAOOOO 

UEREPT 

PGAOOOO 

(part 12 of 12) 

o .... 
H .,.. 
:z 



3 
< 
CIt 

" )( 
» 
CIt 
r­
r-

r­
-< 
N 
00 
I ... 

CI' .., 
VI , 
o 

..... 
n ..... 
o 
o 
"0 
'< ., 
ttl =r 
w 
toe 
Cf 
3 
(') 
o ., 
'U . ... .., 
00 .... 

Diagram GRS-39. ISGJENFO' ..... Global Resource Serialization E\'eI1t Notification Exits (part 1 of 8) 

Ring prCM:essing task mode 
controller ClSGBTC) 

Process 

1 Establish the global resource 
serialization ENF listen 
exits; 

2 Ensure that all the 
listen exits are 
established. 

IEFENFFX 

Event 
notification 
facility 

Return 
to caller 

Output 

Return code 



r­
.0( 
N 
00 

Diagram GRS-39. ISGJENFO - Global Resource Serialization Event Notification Exits 

I 
~ 
CI'I 
oD 
VI 
I 

CI 

.... 
n ..... 

t-C 
l:1l:I 
:3 

C') 
o , 
"D 

'"" 

Extended Description 

During ring processing initialization, ISGBTC invokes 
ISGJENFO. ISGJENFO establishes event notification exits 
to "listen" for processing conditions associated with varying 
a CTC online or offline. The "listen" exits notify the operator 
that the CTCs involved in global resource serialization are 
being varied offline or online; their processing is described 
later in this diagram. 

1 Issue the ENFAEQ macro instruction to invoke the 
event notification facility (EN F) in order to establish 

the following global resource serialization ENF "listen" exits 
that will apply to CTC devices only: 

• ISGJENF1 - used to listen for a device pending offline 
condition. 

• ISGJENF2 - used to listen for a vary device offline 
completion condition. 

• ISGJENF3 - used to listen for a vary device online 
condition. 

~ 2 Verify that the event notification facility successfully 
" established all the global resource serialization ENF 

"listen" exits; if it did, set a return code of zero; otherwise, 
set a return code of four. Then return to the caller. The 
caller, ISGBTC, checks the return code to determine if 
global resource serialization should become active. 

Recovery Processing for ISGJENFO 

ISGJENFO does not establish any recovery routine for 
itself but relies on the recovery established by its caller, 

:::r ISGBTC. 
II) 
It-
J 
o 
Co 

o .... 
o 
"D 
III , 
01 
<+ 
o 
:J 

Module Label 

ISGJENFO 

(Part 20rS) r-: 
-;lO 
nil 
11(#1 
::s ... 
(#I'" 
11-a.n ... 
311 
wD. ... 
113 
..,111 ... ... 
11111 ....., 
en-

III .... 
en 

'U 
..,0 
0 .... 
'U 
{oJ H 
..,OS 
... 3 
'C; : 

o .... 
H 
lJJ 
::I: 



:3 
< en 
"'­)( 
>-
en 
r­
r-

r-
~ 
N 
00 
f .... 

cr-
.a 
UI 
I 

Q 

..... 
n 
OJ 

(") 
a 
'U 
'< -, 
III 
:::T 

" ... 
b7 
3: 
(") 
a -, 
'a . 
.... 
00 
00 ..... 

Diagram GRS-39. ISGJENFO - Global Resouree Serialization Ewnt Notification Exits (Part 3 of 8) 

Input 

GC In{ 

GVT 

GVTNCOMM 

GVTJGCV 
EVAUCB 

GCV 

10SB 

Event Notification 
Facility IIEFENFNM) 

Process 

ISGJENF1: 

3 Establish a recovery 
environment. 

GCVEND 

GCLSIOSR ~:~ 
4 Check whether the CTC 

being varied is one of those 
defined to global resource 
serialization. 

GCl I GCLMRGCL I 
UCB 

5 Ensure that the vary 
offline completes. 

6 Delete the recovery 
environment . 

ISGMSGOO 

Issue a 
message 

Return 
to the caller 

Output 

JSG048E 

UCB 

UCBAlOC 



r­
oo( 
N 
00 
I ... 

Diagram GRS-39. ISGmNFO - Global Resource Serialization Event Notification Exits 

t:I\ 
..0 
VI 
I 

o 

,.., 
n .... 

tot 
DIll 
:3 
(") 
o ., 
"D . 

Extendud Description 

ISGJENF1 

This ENF exit allows a VARY device,OFFLINE command 
to complete if the target of the request is a global resource 
serialization CTC and the CTC is not being used to send or 
receive the RSA message. 

3 Establish the ISGJENFO entry point ISGJENFR as an 
EST AE recovery routine. If the EST AE is not established 

successfully, issue an ABEND macro instruction with a system· 
completion code of X '09A' and a reason code identifying the 
nature of the error. If the ESTAE was established successfully, 
continue processing. 

4 If ring processing is inactive (GVTNCOMM=11 or if 
the target of the VARY CTC, OFFLINE command is 

Module 

not a global resource serialization CTC (EVAUCBofIOSUCBI, 
then return to the caller; otherwise, check to see if the CTC is 
being used to send or receive the RSA message (GCLMRGCL=1) . 

... 

.0 5 If the CTC is not being used to send or receive 
~ the RSA message, then ensure that the vary offline 

3: 
ID 
rt­
;:r 
o 
Il. 

o .... 
o 
"D 
ID ., 
11.1 
rt-

o 
:J 

request completes by setting UCBAIOC9>; otherwise, in­
voke ISGMSGOO to issue message ISG0481. 

6 Issue the EST AE macro instruction to delete the ESTAE 
recovery routine. 

Label 

ISGJENFI 

(Part4ofS) rot -:a nat •• :J.to 
CIt., .­An 

.to 
31D 
1Ia. 
.to 
113 .,,, 
-.to 
"II ... ., 
ut-

ili 
I ... 

fit 
'11 
.,0 
oot. -a 
11M 
.,1IIt 
1+3 
IIC ~ 

o .... 
H 
III 
:Ie 



3 
< en 
"­
X 
> 
en 
r­
r-

r-
-< 
N 
00 
I ..... 

0-

'" 01 
I 

0 

~ 

n ..., 
(") 
0 
"0 
'<: 
"7 

IQ 
J 
t+ 

.... 
en 
:3 
(") 
0 
"7 
"0 . 
... 
'" 00 

" 

Diagram GRS·39. ISGJENFO - Global Resource Serialization Event Notification Exits (part S of 8) 

Input 

GVT 

GVTNCOMM 

GVTJGCV 

GCV 

GCVEND 

GC Ln { GCLSIOSR 

Event Notification 
Facility (lEFENFNM) 

/ 
/ 

"-

10SB 

10SUCB 

"-'----~ 

Process 

ISGJENF2: 

7 Establish a recovery 
environment. 

8 Notify the global re$Ource 
serialization CTC driver that 
the CTC is offline. 

9 Delete the recovery 
environment. 

MSGOO 

Issue a 
message 

Return to 
the caller 

Output 

ISG0471 

GCL 

GCLOFFLN 
r--n m 
::J c. .. 
II) 
Co2 n 
31D 
8111' 
.... ,.0. 
ID"'J 
"'J -. .. ·n 
1tIr+ 
too'~ 
cnCo 

13 
QI 

-0 .... 
"'JII) 
O"'J 
-0-
COlli 
"'Jtoo 
r+CII 
"CO 
o oft 

"'" ... 
.... ~ 
til 3 
:z :: 



r­
-< 
N 
Oi) 
I .... 

cr. 
..0 
U'I 
I 

o 

,... 
n 
""'" 
(") 
o 
"0 
'<: , 
!O 
:r ,... 
1-4 
~ 
:3 
(":I 
o ., 
"0 

3 
n) 
ti­
:r 
o 
0-

o 
-+0 

o 
"0 
fD ., 
III 
ti-

o 
;, 

Diagram GRS-39. ISGJENFO - Global Resource Serialization Event Notification Exits 

Extended Description 

ISGJENF2 

This ENF exit notifies the operator and the global re~urce 
serialization CTC driver that a CTC defined to global 
resource serialization has been varied offline. 

7 Establish the ISGJENFO entry point ISGJENFR as 
an ESTAE recovery routine. If the ESTAE is not 

established successfully, issue an ABEND macro instruction 
with a system completion code of X'09A' and a reason 
code identifying the nature of the error. If the ESTAE was 
established successfully, continue processing. 

8 Return to the caller if ring processing is inactive 
(GVTNCOMM=11 or if the target of the VARY CTC, 

OFFLINE command is not a global resource serialization 
CTC IEVAUCB* IOSUCBI; otherwise, notify the global 
resource serialization CTC driver that the global resource 
serialization CTC is offline. Then invoke ISGMSGOO 
to issue message ISG0471. 

9 Issue the EST AE macro instruction to delete the 
ESTAE recovery routine. 

Module Labol 

ISGJENF2 

(part 6 of 8) 



~ Diagram GRS-39. ISGJENFO - Global Resource Serialization Event Notification Exits (part 7 of 8) 
en 
I 

c... 
N 
00 

3 
..: 
en 

" X 
:.. 
en .... ... 

,... 
-< 
N 
CO 
I .... 

a­
\0 
\II 
I 
~ 

(") 
o 
"tJ 
'< ... .... 
4Q 
;SO ,... 
1-4 
!:Ii' 
3 
(") 
o ... 
'V . 

Input 

GVT Register 1 

GVTNCOMM 

(.VARY 
GVTJGCV 

EVAUCB 

GCV 

GCVEND IOS8 

/ 
/ 

GCln { 
10SUCB 

GClSIOSR 

" 

Event Notification 9 Facilitv (lEFENFNM) 

.. p-
ISGJENF3: 

10 Establish a recovery 
environment. 

.... 

... > 11 Notifv the global resource 
serialization CTC driver that 
the CTC is online. 

12 Indlcete that the CTC is 
In use. ..L 

~ 

13 Tell global resource 
serialization ring processing 
that the CTC is online. 

14 Delete the recovery environment. 

Return to 
the celler 

Output 

GCl 

GClOFFLN 

GCllOERR 

GCLlNOP 
or 

............ ,."'''' .. .... 
Issue a ISG0471 

....... .. 
message 

I....-,..;"'" 

UCB 
.... 

UCBAlOC 



r­
oo( 
N 
00 
I .... 

0" 
ooQ 
VI 
I 

Q 

o 

o 
o 
'tJ 
oc:: ., 
IQ 
:r 
tT 

t-f 
~ 
3: 

o 
o ., 
'tJ . 
.... 
ooQ 
00 ..... 

:£ 
ID 
tT 
:r 
o 
a. 
o 
-it 

o 
'tJ 
II) ., 
11/ 
tT 

o 
::J 

Diagram GRS-39. ISGJENFO - Global Resource Serialization Event Notification Exits (Part 8 of 8) 

Extended Doscription 

ISGJENF3 

This ENF exit notifies the operator, the global resource 
serialization CTC driver. and the global resource serialization 
ring processor that a CTC defined to global resource seriali· 
zation has !-'!On varied online. 

10 EstaL •. sh the ISGJENFO entry point ISGJENFR as an 
ESTAE recovery routine. If the ESTAE is not established 

successfully. issue an ABEND macro instruction with a 
system completion code of X'09A' and a reason code 
identifying the neture of the error. If the ESTAE was 
established successfully. continue processing. 

11 Return to the caller if ring processing is inactive 
(GVTNCOMM=lI or if the target of the VAAY CTC, 

ONLINE command is not a global resource serialization 
CTC (EVAUCB:;C 10SUCB); otherwise, notify the global 
resource serialization CTC driver that the CTC is online 
by setting GCLOFFLN=O and resetting the hardware end 
software error flags IGCLlOERA"O and GCLlNOP=O) to 
indicate to the global resource serialization CTC driver 
that there are no outstanding hardware or software errors 
on this CTC. 

12 Indicate that the CTC is being used by global resource 
serialization by setting the UCB allocated bit 

(UCBALOC=l). Invoke ISGMSGOO to issue message 
ISG0471. 

13 Schedule an unusual event as an SAB. The SAB 
notifies global resource serialization ring processing 

that the global resource serialization CTC has been varied 
online. Global resource serialization ring processing updates 
its control blocks that describe this CTC to indicate this 
online condition. 

14 Issue the ESTAE macro instruction to delete the 
EST AE recovery routine. 

Module Laba! 

ISGJENF3 

Extended Description 

Recovery Procealng 

The ISGJENFR entry point in ISGJENFO is established as 
an ESTAE recovery routine by ISGJENF1,ISGJENF2, 
and ISGJENF3. On entry to ISGJENFA. check to see if 
an SDWA was supplied. If it was, record the error In 
SYS1.LOGAEC and issue the SDUMP macro instruction 
to request a SVC dump. Then issue message ISG021 I to 
notify the operator that an error occurred in global re­
source serialization event processing. Finally, set up to 
retry event processing at ISGJRTRY in ISGJENFO. If 
an SDWA is not available, no recording of the error to 
SYS1.LOGREC or dumping of storage (via SVC dump) 
takes place. Retry is still attempted at entry point 
ISGJRTHY in ISGJENFO and error message ISG0211 is 
still issued. 

If entry at ISGJENFA is because of a recursive error 
- that is, an error occurred after rhe retry routine lentry 
point ISGJATAY) was executed - percolate the error 
to the next level of recovery. 

Module Label 

r= -::a nm men 
:;,~ en., 
fD­
D.n 
~ 

:1m 
SUD. .... 
I!l:l 
-'AI -.... Alto ... ., 
cn-

AI , ... 
en 

"CI 
-'0 
0 .... 

" ~H .., ... 
.... 3: 
IIC : 

o .... 
H 
W 
:I 



:3 
< 
UJ .... 
X 
> 
UJ .... .... 

.... 
00( 
N 
C» 
I 
~ 

"" .0 
UI 
I 

Q 

.... 
o .., 
(') 
o 
'tI 
'< , 
IQ 
J ,... 
.... 
til' 
:3 

(') 
o , 
" . 

Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (part 1 of 16) 

From the SVC FLiH 

Input IIEAVESVC) Process 

Register 1 

Register 3 

I+CVT 

Register 4 

Tce 

Caller's 
PEL 

Register 5 

&~u~rent 

Register 7 

+ current 
ASCe 

~ -------r----------,/ 

1 Oetermintl if this module 
can process the request. 

• If not, pess the request 
to ISGGNQOQ for pro-
cessing. 

2 Obtain the local lock. 

3 Check if the caller is 
abendlng. 

• If it is, 

4 Establish an FRR. 

Output 

Register 1 

1+ PEL 

ISGGNQOQ 

ENQ/OEQ 
mainline 

Register 1 

1+ PEl 

ISGGNQPQ 

ENQ/DEQ 



r­
oo( 
N. 
00 
I ... 

G" 
00 
UI 
I 

o 

,... 
n .... 

t-I 
1:11 
3: 

o 
o 
~ 
'U 

3: 
I'D 

" J 
o 
0-

o 
-II 

o 
'U 
/I) ., 
01 

" o 
:J 

Diagram GRS-40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (part 2 of 16) 

Extended Description 

ISGLNQOQ provides a fast path for processing ENQ ISVC 
56) and OEQ (SVC 48) requests that meet certain criter~. 
When an ENQ or DEQ SVC Is Inued, I EAVESVC gives 
ISGLNQOQ control at entry point I GC056FP or 
IGC048FP, respectively. If possible, ISGLNQDQ handles 
the request and returns control to the caller via EXIT pro· 
log. If ISGLNQOQ cannot handle the request, it calls the 
ENQ/DEQ mainline routine (lSGGNQOQ) to process the 
request. 

ISGLNQDQ begins processing In the caller's address space. 
It performs Initialization functions and copies the caller's 
parameter element list IPEL) into a queue work block 
IQWB) in common storage so that the global resource serial· 
Ization address space can access It. ISG LNQOQ then issues 
a PC Instruction to either the ENQ or OEQ PC routine len· 
try point ISGLNQOO or ISGLOQOO within ISGLNQOQ, re­
spectively) end continues executing in the global resource 
serialization address space. This Is where ISGLNQOQ per­
forms the ENQ or DEQ processing. After the request is 
processed, ISGLNQDQ Inues a PT instruction to transfer 
control to the caller's primary address space where it cleans 
up and exits. 

1 ISG LNQOQ checks if the request can be handled in 
the fast path. If not, ISGLNQOQ places the PEL ad· 

Module 

dress in register 1 and passes the request to ISGGNQOQ for ISGGNQOQ 
processing. Only a request of the following type passes 
this test: 
• Caller in supervisor state 
• Single request Inot a listl 
• Scope of STEP or SYSTEM (not SYSTEMS) 
• AET=NONE or AET=HAVE 
• Exclusive or shared 
• AMC=NONE or SMC=NONE 
• GENEAIC=NO 
• TCB not specified 
• UCB not spacified 
• ECB not specified 

Label Extended Description 

2 ISG LNQDQ obtains the local lock of the caller', ad­
dress space. 

3 ISGLNQOQ checks the Tea fail bit ITCBFAI to de· 
termine if the task Is abending. If so, ISGLNQOQ 

places the PEL address in register 1 and passes the request 
to ISGGNOOQ for processing. This is done because the 
fast path does not contain the logic to check for possible 
interlocks in an abending task's familv trea. 

4 ISGLNQOQ iSSUes a SETFAA macro to establish 
ENOFAA or DEQFAA as its recovery routine. 

ISGLNQOQ saves recovery· related data and footprints in 
the FAA parameter area that the macro returns. 

Module Label 

ISGGNQDO 



:11 
< en 

" )( 
:z,o. 

en 
r­
r-

r-
oo( 
N 
00 
I ... 

flo 
\0 
UI 
I 

0 

,., 
n .., 
(') 
0 
'D 
~ ., ... 
10 :r ,.. 
tot 
D1 
:11 
(") 
0 ., 
"0 . 
... ... 
00 .... 

Diagram GRS-40. ISGLNQDQ - ENQlDEQ Fast Path Routine (Part 3 of 16) 

Input 

GVT 

GVTLQWA 

ASCB 

I ASCBASIO 

PEL 

Flags 

Rname lensth 

Flags 

Return code 

Process 

6 Obtain the CMSEQOQ 
lock and locate and ini· 
tlalize the QWA and QWB. 

6 If SCOPE=SYSTEM, check 
whether the resource name 
is in the system inclusion 
list. 

• If It Is, pass the request 
to ISGGNQOQ for 
processing. 

• If it is not, Invoke the 
ENQ or OEQ PC rou-
tine. ENQ processing 
I. desCribed in steps 
7-14. OEQ procesaina 
i. described in steps 
15-23 

ISGGREXO 

Check 
the RNL 
lists 

ISGGNQOQ 

ENQ/OEQ 

Output 

QWA I QWAORIGN 

SQAQWB 

Rounded Rname 
length 

Rounded frame 
length 

QNAME 

RNAME 

Register 1 

1+ PEL 
... 
n 
II 
::J 
IA 

'" a.: 
~ 

il .... ... 
It.., ..,--n 
II,... 
... It 
CIa a. 
f3 

III 
"0" "J:a 
0.., 
'0 .... 
IDAI .., ... ... '" 'C 

0 
0 ... ... 

H ... . 
;=j 



,.. 
n 
~ 

n 
a 
'a 
'< , -IQ 
:r 
rt-

t-C 
011 
:a:: 
o 
a , 
'U . 

3 • rt-
'7 
o 
Q. 

o 
-h 

·0 
'U 
CD 

i1 
It' ... 
o 
;:, 

Diagrain GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 4 of 16) 

Extended Oascription 

5 ISGLNQDO obtains the CMSfQDQ lock te» serialize 
the queue workareas CQWA and QWB) and the global 

resource serialization control blocks. 

ISGLNQDQ locates the QWA from the global resource ser· 
lalization vector table CGVT). ISGLNQDQ stores the re­
questor's ASID IASCBASID)"In the QWAORIGN field. 

ISG LNODO moves the ENQ or DEQ request into the OWB. 
This is done so the information will be accessible from the 
globel resource serialization address space (the QWB is in 
common storage). 

6 If the request specified SCOPE=SYSTEM and global 
resource serialization is active, ISG LNODQ calls the 

global resource serialization resource exit routine 

Module Label 

USGGREXO) at entry point ISGGSIEX to determine if the ISGGREXO ISGGSIEX 
resource name Is in the system inclusion list. If it Is, the re-
quest is treated as a global request and ISGLNODO paaes 
the request to ISGGNQDQ for processing. Before branch- ISGGNODQ 
ing to ISGGNQDa. ISGLNODQ Cat label REJENQ1) re-
leases the CMSEQDQ lock, delates the FRR and places the 
PEL address in register 1. Note that it enters ISGGNQDQ 
holding the local lock. 

If the resource name for a DEQ request is not In the system 
Inclusion IIst,lSGLNQDQ issues a PC instruction to 
ISGLDQOO, an entry point In ISGLNQDQ. If the resource 
name for en ENQ request Is not In the system Inclusion 
list, ISGLNOOQ c~ecks that the request does not exceed 
the concurrent request limit. If it does, then ISGLNQOO 
passes the request to ISGGNQDQ for processing. If it does 
not, then ISGLNQDQ Illuase PC Instruction to ISGLNaoo, 
'8n entry point In ISGLNQDQ. 



~ Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 5 of 16) 

'" I 
c... 
c... 
~ 

:3 
< 
'" "-x 
> 

'" r-
r-

r­
-< 
N 
co 
I 
~ 
go. 
o,Q 

VI 
I 

o 

,..., 
n .... 
(') 
o 
'C 
'<: ., 
Q:2 
::r .... 
.... 
tI1 
3 

(') 
o ., 
" . 

Input 

GVT 

OCBSTEP 

OCBRNAML 

OCBONAME 

OWA 

IOWAASID 

OCB 

OVTX 

queue hash tablel 

OWB 

PELMILEN­

PELFLAG 

PELXONME 

IOCBNOENQ 

Process 

ENQ PC Routine Processing 

7 Determine if the specified 
resource has alreadv been 
allocated. 

• If it has been, 

8 Allocate the specified re­
source to the requestor. 

9 Determine if any more 
requestors can be en­
queued on the resource. 

• If not, 

ISGSHASH 

ISGSALC 

Allocation 
routine 

ISGGNODO 

ENQJDEO 
mainline 

Output 

Local queue hash table 

Register 16 

10 

Register 1 

I t PEL 



r­
oo( 
N 
Of 
I .... 

a. 
~ 
UI , 
ct 

M 
CIIf 
3: 

n 
o ., 
'U . 

3 
II) 

" ':J' 
o 
Q. 

o .... 
o 
'U 
II» ., 
III 

" o 
~ 

Diagram GRS-40. ISGLNQDQ - ENQlDEQ FaSt Path Routine (part 6 of 16) 

Extended Description 

ENQ PrOC8lSlng 

7 To determine if the reqeulted resource has already 
been allocated, ISGLNOOO searches the appropriate 

local hash table synonym queue for a OCB having the seme 
ONAME, RNAME length, RNAME, SCOPE, and ASID (if 
SCOPE"'STEP) as specified In the parameter element list 

Module 

(PEL). (lSGLNOOO calls the hash routine, ISGSHASH, to ISGSHASH 
determine which local synonym queue to search.) If 
ISGLNOOO finds a matching OCB, the resource has already 
been allocated. ISGLNOOO continues at step 9 where it 
determines If the requestor can also ba enqueued on the re-
60urce. 

8 If the resource Is not already allocated (no OCB exists 
for itl, ISG LNODO allocates it to the requesting task. 

To do 50, ISGLNOOQ: 
• Calls ISGSALC to obtain storage for a OCB if there are ISGSALC 

no available cells in the currently allocated PEXBs, in-
itializes the QCB with information about the resource 
baing requested, and chains it to the appropriate hash 
table entry. 

• Calls ISGSA LC to obtain storage for a OE Land OXB, 
if there are no available cells in the currently allocated 
PEXBs. ISGLNOOO initializes the OEL with informa­
tion about the request type and the requestor. It puts 
the job name and pointers to the TCB and SVRB into 
the OXB. ISG LNOOO then chains the OE L to the OCB 
and the OXB to the OEL It also chains the OEL to the 
ASCB local OE L queua. 

Label 

• Issues a PT instruction to transfer control to label ISGLNOOQ NORET 
NORET in ISGLNOOO's mainline. There ISGLNOOO 
releases the CMSEOOO lock, sets a return code of zero, 
and branches to EXIT prolog. EXIT prolog releases the 
local lock, deletes the FRR, and returns to the caller . 

Extended Description 

9 A recovery routine might have determined that no 
more requestors can be enqueued on the specified re­

source, in which case the. recovery routine set the 
OCBNOENO flag to one. If this has happened, ISGLNOOQ 
issues a PT instruction to transfer control to label NORET1 
in ISGLNOOO's mainline. There ISGLNODO branches to 
label REJEN01, places the PEL address in register 1, re­
leases the CMSEODO lock, deletes the FRR, and branches 
to entry point ISC056 in ISGGNOOQ. 

Module Label 

ISGGNOOO NORET1 

REJEN01 

ISC056 



~ Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 7 of 16) 
en 
I 

'" '" 00 

:3 c 
en 
" )( 
~ 

en 
r­... .. 

r-
-< 
N 
00 
I ... 

0-
-0 
1.11 
I 

Q 

"" n .... 
(') 
0 

~ ., 
112 
';T ... 
.... 
~ 
:3 
(') 
0 ., 
'U . ... 
-0 
00 ..... 

Local queue 
halhtable 

QXBTC8 

Process 

10 Determine If the re-
questor has previously 
requested the resource. 

• If not. continue at tha 
next step. 

• If so, proceed according 
to which RET parameter 
option was specified and 
whether the requestor 
Is stili waiting on the re-
source. 

- RET"NONE 

RET=HAVE and 
the requestor is 
still waiting for 
the resource 

RET=HAVE and 

requestor 

Register 1 

It PEL 

ISGGNQOQ 

ENO/DEO 
mainline 

Register 15 awe 

It PEL J 

EXIT prolog 

Register 15 OWB 

1+ PEL PELSHR 

EXIT PELRETooS 

prolog 



r­
-< 
N 
Ot 
I .... 

Go 
>Q 

UI 
I 

g 

..... 
n .... 
n 
o 

" '< ., 
10 
;r 
It-

t-f 
I:IilI 
3: 

n 
o ., 
" . 

3: 
lit .... 
;r 
o 
a. 
o .... 
o 

" ID 

~ 
it' -o 
:. 

Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 8 of 16) 

Extended Description 

10 ISGLNQDQ searches the QELs chaintld to the Input 
QCB to determine if the requestor has previously re­

quested the resource. If it has, ISGLNQOQ's actions de­
pend on which RET parameter option is specified and 
whether the resource has been allocated or the task Is still 
waiting for it. Clf the requestor has not previously asked 
for the resource, see step 11.) If the requestor has previ· 
ously asked for the resource and actuallv owns it, 

Module Label 

ISGLNQDQ Issues a PT instruction to label NORET2. If NORET2 
the requestor has previously asked for the resource and is 
still waiting for it, ISG LNQDQ issues a PT instruction to 
label NQRETJ. NORET3 

If RET=NONE at either label NQRET2 or NQRETJ, 
ISGLNQDQ goes to label REJENQ1 where it loads tha re­
questor's PE L address into register 1, restores the entry en­
vironmant, releases the CMSEQDQ lock, deletes the FRR, 
and branches to ISGGNQDQ. ISGGNQDQ abends the re- ISGGNQOO 
questor. 

If RETaHAVE and the task Is stili weitlng IIabel NQRET3). 
ISGLNQOO: 

• Places the requestor's PEL address into register 15 
• Puts a return coda of 20 Into the PELRET field 
• Releases the CMSEQDQ lock 
• Branches to EX IT prolog. which releases the local lock. 

deletes the FRR. and returns to the caller. 

If RET=HAVE and the resource has been allocated to the 
requestor Uabel NQRET2). ISGLNQDQ: 

• Indicates whether tha resource is allocated exclUsively 
or shared by setting the PELSHR bit to 1 If the reo 
source Is shared or to zero If the resource is owned ex· 
clusively. 

• Puts the address of the requestor', PEL into register 15. 
• Puts a return code of 8 into the requestor'. PELRET 

field. 
• Releases the CMSEQDQ lock. 
• Branches to EXIT prolog. EXIT prolog releases the 10-

cal lock. deletes the FRR. and returns to the requestor. 

1""::1 
-lIII 
nlD 
ID. :J,. . ., 
ID­An ,. 
31D .. a. .... 
1D3 .,11 
-rfo •• ...., 
eII-• .... 

'" " "0 0 ... · 
"U .... .,. 
rfo3 
IIC :I 

o .. ... • :z 



= Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 9 of 16) 
en 
I 

Cool 
Cool 
CD 

:3 
< 
CIt 

" )( • 
en ,.. ,.. .. 

r­
-< 
N 
CD 
I ... 

(Jo 

..0 

'" I 
o 

n o 
-0 
'< ., ... 
IG ;r 
rI-

.... 
CI:I 
:3 
(") 
o ., 
-0 . ... 
..0 
CD .... 

Process 

11 Obtain storage for, in­
Itialize, and chain the 
OELandOXB. 

12 Determine whether the 
requestor now owns the 
resource. 

If 10, 

ISGSALC 

Allocetion 
routine 

EXIT 
prolog 

Output 

Local queue 
hash table 

ASCB 

ASCBLOEL 

Register 16 
, 0 

OCBFOEL 

OEL 

OELNOEL 

OELOXB 



r­
oo( 
N 
00 
I ... 

0-

'" UI 
I 

o 

o 
o 
"'C 
'<: .., 
rQ 
::r 
t+ 

..... 
IlI:I 
3: 

o 
o .., 
"'C 

.... 
'" 00 ..... 

3: 
ID 
n­
::r 
o 
a. 
o 
-f> 

o 

" ID .., 
III 
t+ 

o 
:I 

Diagram GRS-40. ISGLNQDQ - ENQJDEQ Fast Path Routine (Part 10 of 16) 

Extended Description Module 

11 ISG lNOOO calls ISGSAlC to obtain storage for a ISGSAlC 
oe land OXB it thare are no available cells in the cur· 

rently allocated PEXBs. ISGlNOOO initializes the Oel 
with information about the request type and the requestor. 
It puts the job name and pointers to tha TCB and SVAB in· 
to the OXB. ISGlNOOO then chains the OEl to the OCB 
and the OXB to the OEl. It also chains the OEl to the 
ASCB local oe l queue. 

12 If the resource can be shared and the task requested 
it shared, the task now owns the resource. (If the reo 

quest specified exclusive and the task gains control of the 
resource, the task was the first requestor for the resource . 
This case is handled at stap 8). ISGlNOOO sets the return 
code of zero in register 15, releases the CMSEOOO lock, 
and branches to EXIT prolog. eXIT prolog releases the 10-
cal lock, deletes the FAA, and returns to the callar . 

Label 

o .... 



C') 
o 
~ ., 
CO 
:r 
t+ 

.... 
tlIII 
3: 
C') 
o ., 
'U . 

I 

DiIpam GRS4). ISGLNQDQ - ENQ/DEQ Fast Path. Routine (put II 0116) 

Input 

CVT 

CVTASVT 

ASVT 

ASVTENTY 

ASCB 

ASCBNoa 

Local queue 
hash table 

aCB 

Synonym 
chain 

13 If neceSIIIIY. notify 
SAM and AMF of re­
source contention 

14 Put the requestor in 
await. 

DEQ PC Routine Processing 

15 Locate the aCB repre­
senting the resource to 
be dequeued. 

• If the resource is not 
found, 

16 Check that the reqeustor 
previously requested the 
resource. 

• If it has been 
requested, 

Step 17 

Step 18 



r­
oo( 
N 
C. 
I ... 

GO' 
00 
UI 
I 

C 

..... 
() .... 
(") 
o 
'0 
oc: ., 
IQ 
;r .... 
1-1 
1:11' 
3: 
(") 
o ., 
'0 

... 

..c 
00 

" 

3: 
ID 
IT 
J 
o 
0-

o 
-+0 

C) 
'0 
II) ., 
III .... 
o 
:::J 

Diagram GRS-40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 12 of 16) 

Extended Description 

13 If the task cannot gairl control of the resource and 
thIS is the first requestor not able to gain control of 

the resource with SCOPE=SYSTEM, ISGLNQDQ Issues 
SYSEVENT ENQHOLD to notify SRM that the requesting 
task's processing is dalayed. If RMF is active, ISGLNQDQ 
also calli RMF to inform it of resource contention . 

14 If any previous QEls on tha QELqueue are associ· 
ated with swapped out address spaces, ISGLNQDQ 

indicates that the requestor is to be put into a long wait 
Iregister 0'" 1). Otherwise, the requestor is put into a short 
wait. ISGLNQDQ then: 

• Releases the CMSEQDQ lock 
• Calls ISGGWAIT to put the current RB into a wait 
• Branches to EXIT prolog 

15 ISGLNQDQ searches the hash tabla and synonym 
chain to find the QCB representing the resource to 

be dequeued. if the QCB is not found (the requestor had 
not previously enqueued on the resource), ISGLNQDQ is· 
sues a PT instruction to label DQREn. Step 17 describes 
what I SG LNQDQ does after the PT instruction. n a 
matching QCe is found, see step 16. 

16 If a matching QCB is found, ISGLNQDQ searches 
the QE ls chained to the matching QCB to determine 

if the requestor had previously enqueued on the resource. 
If a OEL Is not found, ISGLNODO issues a PT instruction 
to label DQRET2. Step 17 describes what ISGLNQDQ 
does after the PT instruction. If a matching QEL is found, 
ISGLNQDO continues at step 18. 

Module Label 

ISGGWAIT 

ISGLNQDQ DQREn 

DQREn 

H 
M 
::z 



~ Diagram GRS-40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 13 of 16) 
en 
.1 
CIt 
;.po 
N 

:3 
< en 

" )( 

• 
en 
r­
r-

r­
-c 
N 
00 
I .... 

0-

"" VI 
I 

o 

o 
o 
~ ., 
o 
:T 
ri" 

H 
011 
:3 

n 
a ., 
1J . 

Process 

17 Check the RET" parameter 

• If RET"NONE, 

• If RET"'HAVE, 

18 If the requestor does not 
own the resource, 

19 POST the next ra­
questorls) (if any). 

20 Notify SMF and RMF of 
possible contention for 
a resource. 

ISGGNQOQ 

ENQ/OEQ 
mainline 

EXIT 
prolog 

ISGGNQOQ 

ENQ/OEQ 
mainline 

Output 

Register 1 

1+ PEL I 

Register 16 QWB 

1+ PEL I PELRET=8 I 

r-
n 

Register 1 II 

1+ PEL I 
:7 
Ut 
ID a.: ,., 
311 
AlUt 
r+r+ ", ,-
-n 
tlr+ 
... 11 
III a. 
13 

AI 
'U .... "'l. 
0' 
'n-
1It1 , ... 
rU' 
'CO 
0""" 

""" H H'" l1li3 
3: 



r­
-< 
II.) 

CO 
I .... 

go,. 

-0 
VI 
I 

o 

,.. 
o 
~ 

.... 
m 
3 

n 
o ., 
'0 . 

3 
ID ,.,. 
J 
o 
a. 
o 
-h 

c 
'U 
D 

~ ,.,. 
o 
:J 

Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 14 of 16) 

Extended Description 

17 OORET2 checks the RET parameter. If 
RET=NONE was specified, the request needs to be 

passed to ISGGNODQ for an abend. OORET2 resets the 
caller's registers, places the PE L eddress in register 1, re­
leases the CMSEOOO lock, deletes the FRR, and branches 
to ISGGNOOO. 

If RET=HAVE was specified, OORET2 sets a return code 
of 8 In the caller's PE L and places the address of the caller's 
PEL in register 15 to indicate that no OEO was performed. 
OORET2 then releases the CMSEOOO lock and branches to 
EXIT prolog . 

18 ISG LNOOQ checks that the DEQ requestor cur· 
rentlyowns the resource. If the requestor does not 

own the resource, ISGlNQOQ cennot dequeue it. 
ISGLNQOO issues a PT instruction fo label OORET4 which 
branches to REJOEQ1. There ISGlNQDQ places the PEL 
address in register 1, releases the CMSEQOQ lock, deletes 
the FRR, and passes control to ISGGNOOO. 

19 The resource owner is releasing the resource so If any 
programs are waiting for the resource, ISGlNOOO 

issues a POST to them and they become the new owners. If 
the next requestor has requested exclusive ownership, 
ISGlNQOQ only issues a POST to that requestor. If the 
next requestor has requested shared ownership, 
ISGlNQOQ issues a POST to all the requestors up to but 
not including the first exclusive requestor. 

20 ISGlNOOQ notifies SRM to issue a SVSEVENT 
ENQRlSE if there is someone waiting for the re­

source being released. If the new owner has others still 
waiting for the resource, a SVSEVENT ENQHOlO is issued 
for the new owner. If RMF is active, ISGLNQDQ also calls 
RMF to inform it of a change in resource contention. 

Module Label 

ISGGNODO 

ISGLNQOQ OQRET4 
REJOEQ1 

ISGGNQOQ 

o 
-to 

H .. 
% 



~ Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (part IS of 16) 
CP 
I 

CA 
~ 
-4'" 

3: 
< 
CP ..... 
)( ,.. 
CP 
r­
r-

r­
oo( 
N 
00 
I ..... 

0-
-0 
VI 
I 

C) 

,.. 
n ...., 
o 
o 
'U 
'C ., .... 
G 
=r 
If" 

H 
tt' 
3 

o 
o ., 
'U . 
..... 
-0 
00 ..., 

Input 

Asce 

ASCBlael 

ace 

ael 

Process 

21 Dequeue the aeL re­
presenting the resource. 

22 Free the ae L storage, 
and, if necessary, the 
aXB and ace storage. 

23 Issue a PT instruction to 
a Dea Mainline entry 
point. eXIT 

prolog 

Output 

ASCB 

D 
PEXB 

D 
Hash table 

aCB 

D 

... ..... 
(1 
I'J 
:J 
In 
II 
0.: 

:Ia 
3m 
OIIA 
,...1+ 
r .. ~ 

"'­... ·0 
tzrt 
~tD 
UlQ. 

12 
II 

"U,.. 
.,ID 
C.., 
"0-
IDIII .., ... 
,...,,0 
'C 

o~ 
-to 

H 
He. 
":I 3: 



Diagram GRS40. ISGLNQDQ - ENQ/DEQ Fast Path Routine (Part 16 of 16) 

,.. 
n .., 

10<1 
011 
:3 
(') 
o ., 
'U . 

Extended Description 

21 ISGLNOOO unchains the OEL from the OCB and 
the ASCB local queue. 

22 ISGLNOOO releases the storage occupied by the 
OEL This is done by direct manipulation of the 

storage manager's control block, exc:apt in the case when all 
cells of a PEXB would then be free. In that case, 
ISGLNOOO invokes the storage deallocatlon routine 

Module 

IISGSOAL) to frea the storage. ISGSOAL 

If the wait count in the OXB is zero, ISGLNOOO frees the 
OXB's storage (either by direct manipulation or via 
ISGSOALI. ISGSOAL 

If the OCB has no more OELs chained from it, ISGLNOOO 
unchains the OCB from the hash table and frees the OCB's 
storage (elthar directly or via ISGSOALI. ISGSOAL 

,23 ISGLNOOO issues a PT instruction to OORET if an 
SPOST is not needed or to label DORET1 if an 

SPOST is needed. This PT instruction returns ISGLNOOO 
to the caller's address space. 

ISGLNOoa OQRET 

OORET sets a return code of zero in register 15 to indicate 
the OE,O was successful. It releases the CMSEOOQ lock 
and branches to EXIT prolog. 

DORET1 releases the CMSEODO lock (this Is necessary ba· 
fore issuing an SPOSTI. DORET1 deletes the FRR because 
it will no longer be valid after the local lock is released, and 

l' releases the local lock (also necessary before issuing an 
,... sposn. OORETl then Issues the SPOST. Upon retum 
~ from the SPOST, DORETl branches to EXIT prolog. 
a. 
o .... 
o 
'U 
ID ., 
III ,... 
o 
:l 

OQRETl 

r-= -:a nil a..,. 
:s .... .,.., 
11-An .... 
3: a. 
GIIQ, .... 
113 
.,11 -.... 1111 
~., 

w-
01 
I~ 

III 
'0 
"0 
0 .... 
U 
11M ., ... 
.... 3 
OC :I 

o .... ... 
W 
3: 



3: 
<: 
VI 
"­
X 
> 
VI 
r­
r-

G) 
;;Q 
VI 

o 

("') 

o 
"'0 
'< , 

H 
c:I 
3: 

("') 
o , 
"0 

Diagram GRS41. ISGMSGOO - Global Resource Serialization Message Processor (Part 1 of 2) 

Input 

Register 1 

(,mil" 
(IMR' 

MRB 

MRBRMRB 

MRBMSGID 

MRBIMSID 

MRBIMOPT 

MRBICNID 

MRBRMSID 

MRBRMOPT 

MRBREPAR 

MRBREPLN 

MRBRGFLG 

MRBSPFLG 

MRBCNFLG 

Variable data 

I 

I 

~MRB 

~ 

From a global resource 
serialization module 

Reply 

area 

1 Establish a recovery 

environment. 

2 If reques ted, delete a 
previously issued informa­

tional message from the 
operator's console_ 

3 Build and issue each re­

quested informational or 
reply message_ Indicate 

that the request has been 
completed_ 

4 Delete the recovery 
environment. 

To the caller. 

Output 

/ 
~CRWA 

CRWALMOD 

CRWACSCT 

CRWAFID 

CRWAMID 

CRWAAB15 

OR MRB 

MRBROCMP 

MRBREPAR 

CEPL 

CEPLCRWA 

MRB 

MRBROCMP 

MRBMSGID 

V Valid reply 

text 

,... 
n 
~':l 
:J 
t'l 
iii 
c.:: 

7J 
:;; IV 
r.J til ,..."" 
;'!), 
""1-, 
--0 
Il!t+ 
..... l1) 
UlQ. 

I~ 

'" '0 t+ 
""I III 
C, 
'0 -. ro III 
""II­
.... :n 
'C 

C 
0-1. .... 

H 
HIJI.l 
H:X 
3 : 



r­
-< 
N 
00 
I 
~ 
0-.., 
'" I 
o 

"" n ...... 

1-1 
toe' 
:3 

o 
o ., 
'0 . 

:;r: 
ID 
n­
~ 
o 
Q. 

o ... 
o 
'0 
ID ., 
III 
n-

o 
:l 

Diagram GRS41. ISGMSGOO - Global Resource Serialization Message Processor 

Extendod Description 

ISGMSGOO receives control from a global resource serializa­
tion module via BALR whenever it needs to communicate 
with the operator. ISGMSGOO also receives control from 
ISGCMOR via an ATTACH whenever ISGCMOR 
encounters a message request block (MRB) on the global 
resource serialization command work queue. Upon entry, 
register 1 contains the address of a parameter list containing 
the address of an MRB. 

1 ISGMSGOO initializes a command recovery work area 
(CRWA) with recovery information and places the 

CRWA on the CRWA queue. ISGMSGOO establishes 
ISGCRCV as its recovery routine via an ESTAE macro. 
(lSGMSGOO loads ISGCRCV prior to Issuing the ESTAE.I 

2 If an MRB contains a message 10 for a previously 
issued informational message (MRBMSGIOIO), 

ISGMSGOO deletes the associated message from the 
operator's console. 

3 ISGMSGOO establishes a loop to process each message 
request (each message request is represented by an 

MRB). The processing depends on if the MRB contains an 
informational message 10 or a reply message 10. 

If an Informational message 10 Is provided in the MRB 
(MRBIMSIO~O), ISGMSGOO builds a WTO/MLWTO 
parameter list for the requested informational message. 
If the informational messege is to be written to the 
operator, ISGMSGOO builds a WTO parameter list for a 
single line message and a MLWTO parameter list for a 
multi-line information message. If the informational message 
is to be written to the system log, ISGMSGOO builds II WTL 
parameter list for the message. The actual text of the 
line(s) in an informational message depends on the 
message option provided in the MRB (MRBIMOPT) 
and any variable data provided In the MRB. Once 
ISGMSGOO builds the WTO/MLWTO/WTL parameter 
list, ISGMSGOO issues the Informational message to the 
appropriate operator console or to the system log. 

Module Label 

(part 2 of 2) 

Extended Description Module 

3 (continued) 

If a reply message 10 is provided in the MRB 
(MRBRMSIO~O), ISGMSGOO builds a WTOR parameter 
list for the reply message. The ~tual text of the reply 
message depends on the message option provided in the 
MRB (MRBRMOPT) and any variable data provided in the 
MRB. Once ISGMSGOO builds the WTOR parameter list, 
it issues the reply message to the appropriate operator 
console. When the operator replies, ISGMSGOO validates 
the reply. If the reply is not eppropriate for this particular 
message, ISGMSGOO reissues the reply message until a 
valid reply is recaived. Once a valid reply is received, 
ISGMSGOO places the reply in the reply area pointed to by 
MRBREPAR. 

After processing the MRB, ISGMSGOO indicates that the 
message request has been processed by setting the 
MRBRQCMP bit to one. If MRBRMRB#O there ara more 
messages to process and so ISGMSGOO repeats this step. 

4 ISGMSGOO deletes the recovery routine (lSGCRCV 
via an ESTAE) and returns to the caller. 

Label 

o .... 
H 

'" :z 



3: 
<: 
en 
..... 
X 
>-
U) ,.... ,.... 

r­
-< 
N 
(» 

I ... 
a­
o,Q 

U1 
I 

o 

1-1 
tEl 
:3 

o 
o , 
'0 . 

Diagram GRS42. ISGQSCAN - Global Resource Serialization Queue Scanning Services (part 1 or 6) 

Issuer of a 

Input GQSCAN macro Process 
~~------------~ p-----------------------~ 

Register 1 

0.M.m~. 
List 

AREAAOOR 

AREASZ 

.QNAME 

~RNAME 

~SYSNAME 

ASIO 

REQCNT 

OWNERCNT 

WAITCNT 

~TOKEN 
REQUM 

SCOPE 

RESERVE 

RNMLEN 

QNMLEN! 

1 Save the cross memory en­
vironment of the caller and 
establish a recovery envi­
ronment_ 

2 Obtain storage for an In­
ternal buffer and a dy· 
namic area 

3 COpy the parameter list in­
to the global resource ser­
Ialization address space 
and determine if the re­
quest is valid. 

Output 

ABEND X'09A' 

Register 15 

I reason code 

Reason Codes and Explanations 

X'A104' 

X'A10S' 

X'Al0C' 
X' A110' 

Global resource serialization address space not 
fully initialized. 
AREASZ cannot contain minimum informa­
tion. 
Mutually exclusive parameters specified. 
The user held a local lock other than the glo· 
bal resource serialization local lock with 
SCOPE=G LOBAL or when the GQHT is be· 
ing scanned. 

X'A114' - RESNAME not valid: 

X'A11S' 

X'A11C' 

X'A12C' 
X'A130' 
X'A134' 

rname specified without gname or rname 
length specified without either gname or 
rname. 
SYSNAME not valid: 
ASIO specified without SYSNAME. 
REQCNT specified with OWNERCNT or 
WAITCNT. 
Invalid token specified. 
User not authorized to use restricted interface. 
The QUIT=YES argument specified without 
the token argument. 

r-.... 



r­
oo( 
N 
00 
I .... 

0-
\0 
U1 
I 

c 

o 
o 
lJ 
'< , 

..... 
t):I 

:3: 

o 
o , 
lJ . 

:3: 
II) ,... 
J 
o 
Q. 

o 
-to 

o 
lJ 
III , 
III 
n-
o 
=' 

Diagram GRS42. ISGQSCAN - Global Resource Serialization Queue Scanning Senices (part 2 of 6) 

Extended Description 

Global resource serialization queue scanning service module 
IISGOSCANI receives control via a PC instruction from the 
issuer of the GOSCAN macro in key zero and supervisor 
state. ISGOsCAN scans the resource queues for informa­
tion about resources specified on the GOSCAN macro and 
requestors of those resources. ISGOSCAN returns this in­
formation to the issuer of the GOSCAN macro. 
ISGOSCAN receives as input the parameter list shown in 
the input section of the diagram. 

1 ISGOsCAN saves the cross memory environment of 
the issuer of a GOSCAN macro via a PCLlNK STACK 

macro. The PCLlNK macro returns a stack elemtlnt to-
ken (not the TOKEN pointed to in the parameter listl that 
uniquely identifies the stack element containing such infor­
mation as the register contents and PSW key of the issuer of 
a GO SCAN macro. ISGOSCAN saves the stack element to­
ken in an unused register until the dynamic area storage is 
available. The functional recovery routine (FRR) for 
ISGOSCAN is ISGOSCNR. For more details see the Re­
covery Processing section at the end of this extended de­
scription_ 

ISGOSCAN obtains the serialization required by ISGSALC, 
the global resource serialization storage allocation routine, 
to allocate the storage required by ISGOSCAN. 

2 ISGOSCAN calls ISGSALC to obtain storage for the 
internal buffer and its dynamic area from the pool ex­

tent blocks (PEXBs) in the resource queue area (ROA). 
ISGOSCAN uses the internal buffer to store the requested 
information until it can be copied Into the area provided by 
the user. ISGQSCAN also releases the serialization, if any, 
~btained by ISGSALC in step 1. 

Module Label 

ISGSALC 

Extended Description 

3 ISGQSCAN copies the parameter list built by the 
GOSCAN macro from the user's address 

space to the global resource serialization address space. 
ISGQSCAN also copies data pointed to by fields of the pa­
rameter list into the global resource serialization address 
space. ISGQSCAN checks to see that the global resource 
serialization address space is active. If it is not active, 
ISGOSCAN issues a X'09A' ABEND with reason code 
X' A 104'. ISGQSCAN also checks the parameter list to de­
termine if the list specifies allowable combinations of pa­
rameters. (Combinations that are not allowed can be de­
termined from the explanations of reason codes in the out­
put section of the diagram. I ISGOSCAN also checks the 
following parameters to determine if their values are valid: 
REOUM, REQCNT, OWNERCNT, AREASZ, and 
WAITCNT. If any parameters are invalid, ISGQSCAN ter­
minates the requestor by issuing a X'09A' ABEND with one 
of the reason codes shown in the output section of the dia­
gram. 

Module Label 

sYNTXCHK 

o • 
H 
as 
:I: 



3 
< 
II) 
..... 
x 
> 
c.n .­.-

.-
-< 
N 
00 
I ... 
"" ..0 
U'I 
I 

co 

,.., 
n ..., 
0 
0 
'U 
'< ., 
IQ 
;r .... 
.... 
I:J;I 

3 

0 
0 ., 
'U . 
.... 
<00 
00 .... 

Diagram GRS42. ISGQSCAN - Global Resource Serialization Queue Scanning Services (Part 3 of 6) 

Input 

GVT 

GVTGVT~ 

LOHT 

GOHT 

GVTX 

GVTXGOHT 

OCB 

OCB 

OEL 

OCB 

OEL 

Process 

4 Search the appropriate 
hash table queue(s) for in­
formation about the speci­
fied resources and the re­
questors of those resources. 

Output 

Internal Buffer 

RIB RIBEs 

D 

.--n 
ftI 
~ 
til 
CD D...; 
:EftI 
SII(j) 
rIort-
10., .,-
-0 
Mrt-
.,.CIl 
"'0. 

I~ 
."rt-
.,CD 
0., 
"D-
I'll'" .,.,. 
,...'" 
'C 

0 
0 .. .... 

H 
HIIIJ .:c 
3:1 



r­
-< 
N 
01 
I ... 

c.­
oO· 
Ut 
I 

o 

1-1 

= 3: 

o 
o ., 
1J . 

3: 
/0 
t+ 
J 
o 
D-

O 
-to 

o 
1J 
II) ., 
III 
t+ 

o 
;, 

Diagram GRS41. ISGQSCAN - Global Resource Serialization Queue Scanning Services (Part 4 of 6) 

Extended Description 

4 ISGQSCAN searches either the local queue hash table 
(LQHT) or the global queue hash table (GQHT) for reo 

sources having the attributes specified in the parameter list. 
Resource attributes the caller can use to qualify the search 
are: 

Resource type - If the scope field specifies STEP, SYS­
TEM, SYSTEMS, LOCAL, or GLOBAL, ISGQSCAN 
searches for resources with that scope. 

Resource name - If both the QNAME and the RNAME 
are specified, ISGQSCAN calls the GLOBAL/LOCAL hashing 
routine IISGSGLSH) to determine which entry in the queue 
hash table has the resource names that match the QNAME 
and RNAME combination. 

If a different valid combination of the QNAME and the 
RNAME is the input, ISGQSCAN searches all the queues for 
the resource names that match the QNAME and RNAME 
combination. 

Reserved/Unreserved - If RES=YES, ISGQSCAN looks for 
resources for which a RESERVE macro has been issued. 
If RES=NO, ISGQSCAN looks for resources for which a 
RESERVE mecro instruction has not been issued. 

SYSNAME/ASIO - If only the SYSNAME is specified, 
ISGQSCAN looks for resources requested by requestors 
from the specified system. If SYSNAME and ASIO are 
both specified, ISGQSCAN looks for resources requested 
by requestors from the specified address space of the speci· 

Module 

fied system. ISGQSCAN calls ISGBCI at entry point ISGBCI 
ISGBSRNI to convert the externally used SYSNAME to an 
internally used SYSIO; ISGQSCAN calls ISGBCI at entry 
point ISGBSRIN to conven the internally used SYSIO back 
to the externally used SYSNAME. 

If no options are specified, ISGQSCAN returns information 
about all resources in either the local or global queue, de­
pending on the resource type specified. 

ISGQSCAN can funher limit the information returned by 
specifying the following parameters 1 : 

1 REQCNT cannot be specified with OWNERCNT or 
WAITCNT. 

Labal 

ISGBSRNI 

ISGBSRIN 

Extended Description 

REQLlM (request limitl- when specified,limits the num­
ber of requestors of a given resource that informetlon Is re­
turned on. 

REQCNT (request count) - when specified, information is 
returned only on those resources that have at least as many 
requestors as the R EQCNT parameter specifies. 

OWNERCNT (owner count) - when spacified, information 
il returned only on those resources that have at least as 
many owners as the OWNERCNT parameter specifies. 

WAITCNT (wait count) - when specified, information is 
returned only on those resources that have at least as many 
waiters (requestors waiting for shared or exclusive use) as 
the WAITCNT parameter specifies. 

ISGQSCAN also uses the SCOPE field to determine which 
queue(s) to search. Because STEP and SYSTEM requests 
are local requests, when either of these is specified, 
ISGQSCAN searches the LQHT. ISGQSCAN also searches 
the LQHT when SCOPE= LOCAL is specified. If 
SCOPE'"SYSTEMS and global resource serialization Is not 
active, the LQHT is scanned. If global resource serialization 
is active, the GQHT is scanned. When SCOPE"GLOBAL is 
specified, ISGQSCAN searches the GQHT. If SCOPE=ALL 
is specified, iSGQSCAN searches both the local and global 
queues for STEP, SYSTEM and/or SYSTEMS resources. 

If TOKEN=O, the request is new and ISGQSCAN starts 
searching at the beginning of the appropriate hash table. A 
nonzero TOKEN value indicates that the request is a con· 
tinuation of a previous request. For example, ISGQSCAN 
had to interrupt the search because the user provided area 
is full. The nonzero TOKEN points to a placaholder queue 
control block (PQCB), which points to the next QCB to be 
searched. The PQCB is dequeued from the appropriate IYO­

oynm chain before the search continues . 

When ISGQSCAN finds a resource having all of the speci· 
fied attributes, it places the information describing the re­
source into a resourca information block (RIB) and it 
places the information describing the requestors of that re­
source into resource information block extents (RIBEs), 
one R IBE for each requestor. The internal buffer contains 
the RIB and RIBES. 

Module Label 

r-: 
-~ CHD 
rDetI 
:I .... 
etI., 
rD­a.n ..... 
3:rD 
11.1 a. .... 
rD:% 
.,11.1 -..... 
II.IrD ....., 
etI-

II ..... 
etI 

'U 
.,0 
0 .... 
'0 
CDH 
"7D1.1 
.... :& 
'< = 
o ... 
H .,., 
3: 



3 
<: 
VI 
"­
X 
l> 

r 
-< r.) 
('l:> 

I 
I-
,:r-
VJ 
In 
I 

<=> 

...... 
0 

0 
0 
'0 
'< .., 
\Q 
T 
r+ 

H 
01 
3: 

(') 

0 .., 
-0 

I-
>D 
~ 
--..J 

Diagram GRS-42. ISGQSCAN - Global Resource Serialization Queue Scanning Services (part 5 of 6) 

Input 

Internal buffer 

RIBs RIBEs 

00 
Process 

5 Copy the internal buffer's 
contents into the user's 
area. 

6 Release the storage for the 
internal buffer and dynamic 
area. 

7 Release the recovery en­
vironment and restore the 
croSS memory environment 
of the caller. 

Return to the 
issuer of the 
GOSCAN macro 

Output 

User provided area 

Information about 
resources and re­
questors of those 
resources 

r 

" :'1) 

:~ 
!II 
11) 
Q. 

AI 
:til) 
~I (II 

"'"' ,to .., 
'1 ~. 
-·n 
IlJ .-:-
I-ro 
\Ito. 

I::.: 
qz 

"tl,;. 
'11l) 
0'1 
U -. .U ill ...... 
,;.\It 
'< 

0 
n ..... 
..... 

M 
Ht;J 
tn::: 
~ : 



Diagram GRS42. ISGQSCAN - Global Resource Serialization Queue Scanning Services (Part 6 of 6) 

..... 
n 

.... 
D:I 
3: 

o 
o .., 
" 

Extended Description 

5 When the internal buffer is filled to capacity or when 
the reque51 has been 58tisfied, ISGQSCAN copies the 

contents of the internal buffer into the user provided area. 
If the user provided area is full, the request is not satisfied, 
the concurrent request limit has not been reached, and the 
user has provided an area in which the TOKEN value can 
be returned, ISGQSCAN obtains a PQCB from ISGSALC 

Module 

and places it on the appropriate QCe synonym chain. ISGSALC 
ISGQSCAN sets the TOKEN to point to where the request 
search will resume. Steps 6 and 6 are repeated until the 
user provided area is filled to capacity or the request has 
be!!n 58tisfied. 

6 ISGQSCAN calls ISGSDAL to return the storage for the ISGSDAL 
dynamic area and the internal buffer to the PEXBs from 

which it was allocated. ISGSDAL requires the same serializa· 
tion as ISGSALC in step 2. ISGQSCAN releases the serializa· 
tion after the storage is returned. 

7 ISGQSCAN releases the recovery environment and is· 
sues a PCLlNK UNSTACK macro to restore the cross 

memory environment that existed prior to the issuing of the 
GQSCAN macro. ISGQSCAN returns control to the caller 
via the PT instruction. 

Recovery Processing 

Label 

When an error occurs while ISGQSCAN is executing, RTM 
gives control to ISGQSCNR in key zero and supervisor 
state. ISGQSCNR: 

ISGQSCAN ISGQSCNR 

3: 
~ • Converts a system completion code of X'OC4', asso-
~ ciated with moving data to or from the user's address 
0. space, to a X'09A' ABEND with reason code X'A220', 
o but does not record it. 
-it • Converts unexpected errors to a X'09A' ABEND with 
o reason code X' A22S', records them, and dumps them 
~ viaSDUMP . ., 
11.1 .... 
o 
:J 

Extended Description 

• Obtains the serialization required to modify queues and 
to deallocate storage in the resource queue area. If 
ISGQSCAN or the invoker of ISGQSCAN did not hold 
any local lock at the time of the error, ISGQSCNR ob· 
tains the global resource serialization local lock. If 
ISGQSCAN or the invoker of ISGQSCAN did not hold 
the CMS ENQ/DEQ lock at the time of the error, 
ISGQSCNR also obtains the CMS ENQ/DEQ lock. 

• Frees the dynamic area and internal buffer. 
• Validates and frees any cells that ISGQSCAN obtained. 

ISGQSCNR calls the address verification routine 
IIEAVEADV) to validate each cell address. If the PQCB 
and the QCBs it is chained to pass validation, 
ISGQSCNR dequeues the PQCB from the appropriate 
QCB synonym chain. If a QEL and the QELs it is 
chained to pass validation, ISGQSCNR dequeues the 
QEL cell from the appropriate QEL ASCB queue. 

• If the error occurred in a storage management routine, 
ISGQSCNR invokes ISGGFRRO at entry point 
ISGGFRR1 to validate and repair the storage manage· 
ment control blocks. 

• Releases the serialization: the user's local lock, the local 
lock of the global resource serialization address space, 
and/or CMS ENQ/DEQ lock. 

• Issues a PCLlNK UNSTACK macro to restore the cross 
memory environment to what it was when the 
GTQSCAN macro was issued. 

• Percolates the error. 

Module Label 

ISGSDAL 

IEAVEADV 

ISGGFRRO ISGGFRR1 

... = .. ·iIIJ 
nlD 
IDCI) 
::rr+ en., 
CD­
a.n 

r+ 
3m 
ilia. .... 
tD% ..,111 
-.r+ 
III CD .... ., 
1/1-

III 
I .... 

CI) 
"CJ 
-'0 
0 ... 
'U 
11M 
-,." .... ::.:; 
'<: = 
o 
-+0 



~ Diagram GRS43. ISGSALC - Global Resource Serialization Storage Management Allocation Routine (Part 1 of 6) 
en 
c!. Global resource serialization modules 
~ needing to allocate cells in the global 

3 
< 
ell 

" X 
> 
ell .­.-

.-
-< 
N 
co 
I ... 

0-
oQ 
UI 
I 

Q 

"" n 
'oJ 

0 
0 
'tJ oc: , 
IQ 
:T ,... 
M 
CIII 
3 

0 
0 , 
'tJ . ... 
oQ 

co .... 

Input 

Register 1 

End of list indicator 

Global/local indicator 

Cell type 
(Index into RPT) 

Number of cells 
to be ellocated 

• • 

GRPT 

rll$ou rce sar ialization addretl& 

PEXBs 

PEXBs 

1 Allocate as many cells as 
available or as neCetl&ary 
from the resource pool for 
the requested cell type. 

... .... 
n 
II :s 
UI 
II) 
Do: 

'" 311 
1lIct1 
r+r+ 
It.., 
"'J .... 
-n 
AI ... 
.... fIt 
uta. 

I~ 
",.. 
"'7f!J 
0.., 
-0-
fit" .,,.. 
rfoctl 
IC a a ... ... ... .... 
W3 
:Z~ 



,... 
n .... 

.... 
OJ 
3: 

(") 
o .., 
"0 

3: 
ID 
,;­
;r 
o 
D-

o 
-h 

C 
"0 
I:) .., 
to 
t+ 

o 
j 

Diagram GRS43. ISGSALC - Global Resource Serialization Storage Management Allocation Routine 

Extended Description 

ISGSALC allocates cells from the pool extent blocks 
(PEXBs) in the resource queue area (ROA). The-ROA is 
part of the private area of the global resource serialization 
address space. 

The caller passes the address of the storage management pa­
rameter list (SMPL) in register 1 to ISGSALC. The SMPL 
consists of one or more requests. Each request cen be for 
one or more cells of the same cell type. ISGSALC proces­
ses each request individually. 

1 There are two resource pool tables {RPTs}, One RPT 
for global control blocks, GRPT. and one for local 

control blocks, LRPT. Each table contains an entry for 
each cell type that can be requested. Each RPT entry con­
tains a queue of active and inactive pool extent blocks 
(PEXBs) for the associated cell type. Whenever the queue 
of active PEXBs is empty, the first and last PEXB pointers 
in the RPT entry point to the beginning of that RPT entry. 
Each PEXB contains a count of the number of available 
cells in that PEXB and a queue of those available cells. 
ISGSALC searches the active PEXB queue for a PEXB with 
available cells. From each of these PEXBs (PEXBs with 
available cells), ISGSALC allocates cells from the beginning 
of the available cell queue and decreases the count of avail­
able cells within the PEXB and the count of available cells 
in the entire pool within the associated RPT entry for each 
allocated cell. If the cells from more than one PEXB are 
required to satisfy a request, ISGSALC chains the first 
available cell in the new PEXB to the last allocated cell in 
the previous PEXB, Thus, ISGSALC chains together all the 
cells alloceted to satsify an individual request. 

Module Label 

(Part 2 of 6)· 

o ... 
tot 
." 
:I: 



~ Diagram GRS43. ISGSALC - Global Resource Serialization Storage Management AUocation Routine (Part 3 of 6) 
(II 

I 
~ 
UI 
~ 

:3 
< 
(II .... 
>< ;p 

(II .­.-

r­
-< 
N 
011 
I .... 

a­
\0 
UI 
I 

Q 

o 
o 
"D 
'< , 
ra 
::T 
ri' 

..... 
U;I 
:3 

o 
o , 
"D . 

Input 

GVTX _ .. RQAbit map 

~ 

_. ERQA bit map 

0 

Process 7 
.... 

2 Build a new pool extent 
r block if the request hes not 

been satisfied. 

• If no storage is available, 
I 

(') 

Output 

.... RQAlEROA bit map .. 

@] 
... 

X'09A' ABEND 
y 



,... 
n .... 
(') 
o 
~ , 
III 
;r 
rt-

I-C = 3: 
(') 
o , 
1J . 
... 
oD 
00 ..... 

3: 
II .... 
':r 
o 
a. 
o 
-to 

o 
1J 
II) , 
III ,.. .... 
o 
:J 

Diagram GRS43. ISGSALC - Global Resource SeriaIization Storage Management Allocation Routine (Part 4 of 6) 

Extended Description 

2 If the request for a particular cell type has not been 
satisfied yet. the resource pool for the requested cell 

type is empty. Consequently. ISGSALCobtains a PEXB 
from the inactive PEXB queue or builds a new PEXB. If 
an inactive PEXB. a PEXB in which all cells are available, 
exists for the requested cell type, ISGSALC removes it 
from the inactive PEXB queue and places it on the active 
PEXB queue. Thus, ISGSALC can allocate cells from the 
now active PEXB. ISGSALC updates the RaA bit map if 
the call type is aWB, MRB, CRB, HWKA or TWKA and 
ERaA bit map If tha call type is aCB, aEL, aXB or paCB 
cell type, to indicate that the pege containing the new 
active PEXB Is in use. If the inactive PEXB queue for the 
resource pool for the raquested cell type is empty, ISGSALC 
allocates and formats a PEXB from the RQA for aWB, 
MRB, CRB, TWKA, or HWKA call type request and formats 
a PEXB from the ERaA for aCB, aEL, aXB, or paCB 
cell type request. If a PEXB is placed on the active PEXB 
queue, ISGSALC Increases the count of available cells in 
the entire pool within the associated RPT entry by the 
amount of calls contained in the PEXB. If no more RaA/ 
ERQA storage is ave liable, ISGSALC issues a X'09A' 
ABEND. 

Module Label 

EXTEND 

r-~ 
-;II 
nlD 
IDIII 
:::J .... 
Ul~ 
ID -. a.n .... 
:J:ID 
ilia. .... 
ID:Z 
~III -.... IIIID ...., 
ut-

" .... 
Ul 

" .,0 
o-to 
1J 
IDM -,01 
.... :z 
'C = 



~ Diagram GRS43. ISGSALC - Global Resource Serialization Storage Management Allocation Routine (part 5 of 6) 
en 
I 

'-'I 
U'I 
00 

:3 
< 
en , 
x 
>-
en 
r­
r-

r­
oo( 
N 
00 
I 

t­
o­
oD 
U'I 
I 

o 

,.. 
o ...... 
o 
o 

" '< , .... 

1-4 
tI' 
:3 

o 
o , 
" . 

Process 

3 Repeat steps 1 and 2 until 
the request is satisfied. 

4 Repeat steps 1·3 for each 
cell type requested. 

Return to caller 

Output 

R.egister 1 

SMPL 

Address of 
first cell 
allocated 

Cells 
Allocated 



r­
oo( 
N 
C» 
I .... 

0-
-D 
r.n 
I 

o 

..... 
tlCI 
3 

o 
o , 
-0 . 

3: 
ID 
rf" 
::r 
o 
a. 
o 
-h 

o 
-0 
at , 
III 
rf" 

o 
:J 

Diagram GRS43. ISGSALC - Global Resource Serialization Storage Management AHocation Routine 

Extended Description 

3 If the request for a particular cell type has not been 
satisfied yet, ISGSALC returns to step 1 and repeats 

steps 1 and 2 until the requested number of cells has been 
allocated. If the request has bean satisfied, ISGSALC 
placas the address of the first allocated cell into the para· 
meter list to be returned to the caller. 

4 If more than one cell type is requestad, ISGSALC reo 
turns to step 1 and repeats the entire process until all 

unique cell type requests have been satisfied. 

Recovery Processing 

The caller of ISGSALC provides recovery which calls 
ISGSDAL to deallocate any cells allocated to the failing reo 
quest. 

Module Label 

(Part 6 of 6) 



:3 
< en , 
)( 
> 
en 
r­
r-

G) 
jiIQ 
en 

r-
-< 
N 
01» 
I 
~ .,.. 
~ 
UI 
I 

0 

,.. 
a ...., 
0 
0 
"0 
'< ., 
d 
J .. 
H 
til' 
:3 

n 
0 ., 
"0 . ... 
~ 
01» ..... 

Diapam GRS44. ISGSDAL - Global Resource Serialization Storaae Management DeaUocation Routine 

Input 

Storage management 
parameter list 

Cell address 

~--

LRPT 

Cell 

Global resource serialization modules 
needing to unalloc:ate cells In the global 
resource serialization address space Process 

1 Determine the address of 
the pool extent block 
containing the cell. 

(Put 10(4) 

r--0 
II) 
::J 
fn 
II D.= ~ 
ZfII 
III • .. ".. 
flJ"'J 
"'J-
-0 
.".. 
... fD Uta. 
rill 

,.".. .,. 
A., 
"a-.. ., ., ... "... 
IIC 

0 
0 .. ... ... .... 
W3 
3:1 



r­
-< 
N 
00 
I .... 

C1'o 
.0 
U'I 
I 

o 

.... 
n ..... 
("} 
o 
'tI 
'< ., 
co 
:r 
n-
.... 
b:J 
3: 

("} 
o ., 
'tI 

3: 
III 
n­
:r 
o 
a. 
o 
-fI 

o 
'tI 
III ., 
III 
n-
o 
::J 

Diagram GRS44. ISGSDAL - Global Resource Seria1ization Storage ~sement Deallocation Routine 

Extended Description 

ISGSDAL deallocates aWB, MRB, CRB, TWKA or HWKA 
cells In the resource queue area (RQA), and aCB, aEL, 
axB or paCB cells In the extended resource queue area 
(ERaA), in tha global resource serialization address space 
by returning each cell to the pool extent block (PEXB) 
from which it was allocatad. The caller of ISGSDAL 
passes the address of the storage management 
parameter list (SMPL) in register 1. The SMPL consists 
of one or more requests. Each request provides the 
address of the first cell in the chein of cells to be 
deallocated. This chain of cells might consist of cells 
of differant types, each of which Is processad separately . 
ISGSDAL processes each request individually. 

If the global resource serialization address space Is 
initialized, ISGSDAL checks If the caller hes proper 
lock needed to deallocate the requested cells; ISGSDAL 
also checks if the caller is in 24 bit amode and the 
request is to deallocate cells in the ERQA. ISGSDAL 
issues '09A' ABEND If any of the above condition is 
trua. 

1 If the global resource serialization address space has 
not been initialized, ISGSDAL finds the address of the 

PEXB header to be updated by comparing the address of 
the cell to be deallocated to the starting and ending address 
of each PEXB. If the cell address falls within a particular 
PEXB, that PEXB header is updated. This logic is repeated 
for each cell to be deallocated. Only local cells can be 
processed before the globel rasource serialization address 
space is initialized. If the global resource serializ:ltion 
address space has been initialized, ISGSDAL determines the 
address of the PEXB header to be updetad by masking out 
the low order 12 bits of the address of the cell to be deal· 
located. This approach is possible because all PEXBs in 
tha global resource serialization address space start on page 
boundaries end era 01 pege in length (4K bytes). 

Module Label 

(part 20f4) 



3 
< en 
..... 
X 
> 
en ,... 
r-

r­
-< 
N 
00 
I 
t­
Oo 
-D 
VI 
I 

o 

,.... 
n 

(') 
o 

" '< ., 
III 
:T 

" 
1-1 
tI' 
3: 
(') 
o ., 
'D . 

Diagram GRS-44. ISGSDAL - Global Resource Serialization Storage Management Deallocation Routine (part 3 of 4) 

Input Output 

CVT 2 

3 

4 

5 

RCA bit map 

ERCAbltmap 

Return the cell to the 
PEXB. 

If all cells)n the PEXB 
are available, free die 
page containing the PEXB. 

Repeat steps 1 and 2 for 
each cell. 

Repeat steps 1-3 for each 
request. 

Return 
to the 
caller 

r------------------------, 



..... 
n .... 
(') 
o 
"U 
'< ., 
10 
:r ,... 
~ 

til' 
3 

(') 
o ., 
"U . 

Diagram GRS44. ISGSDAL - Global Resource Serialization Storage Management DeaUocation Routine 

Extended Description 

2 If available cells exist in the PEXB, ISGSDAL chains 
the cell to be deallocated to the last available cell in 

the PEXB. If no available cells exist in the PEXB, 
ISGSDAL sets the first and last available cell pOinter to 
the call being deallocated. ISGSDAL increases the count 
of available cells within the PEXB and the count of avail­
able calls in the entire pool within the associated RPT 
entry for each cell returned. 

3 If all cells in the PEXB are available, ISGSDAL 
dequeues the PEXB from the actlva queue of PEXBs, 

queues it to the Inactiva queue of PEXBs, and decreases 
tha count of available calls in the entire pool within the 
essociated RPT entry by the amount of cells contalnad in 
the PEXB. If the number of inactive PEXBs exceeds the 
allowed number of inactive PEXBs. ISGSDAL schedules 
an SR B for ISGSPR LS, which Is an entry point in 
ISGSDAL, to page-releasa all inactive PEXBs. ISGPRLS 

Module 

uses PGSER macro to release each page that contains an in- .1 EAVPSIB 
active PEXB. ISGSDALsats each bit in tha RQA bit map 
thet corresponds to a released vinual page to zero. 

4 ISGSDAL repeats steps 1 and 2 until each cell has 
been returned to itsPEXB. 

5 ISGSDAL repeats steps 1-3 until each request has 
been satisfied. 

Recovery Processing 

Label 

ISGSPRLS 

3 Recovery is provided by the caller. 
CD ,... 
:r 
o 
a. 
o 
~ 

o 
"U 
CD ., 
til ,... 
o 
:::II 

(Part4of4) 



"Restricted Materials of IBM" 
Licen~ed Katerials - property of IBH 

LY28-169S-0 (c) Copyright IBM Corp. 1987' 



"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

!ImG 

A 

ABEND codes 
09A GRS-161, GRS-167, GRS-298, 
GRS-324, GRS-327, GRS-329 

430 GRS-199 
438 GRS-199 
730 GRS-199 
738 GRS-199 

ABNOOOO 
entrY point of ISGJDI GRS-318 

adding a system to the main ring GRS-22 
address space 

global resource serialization GRS-7 
ADDSYS function of ISGBCI GRS-22 
AMDPRDMP service aid 

GRSTRACE parameter GRS-5 

B 

BUFRECV function of ISGBCI GRS-118 
BUFSEND function of ISGBCI GRS-23, 

GRS-114 

C 

cells for storage allocation GRS-8 
CEPl (command ESTAE parameter list) 

in GRS GRS-37 
ClNUFAIl subroutine of ISGBCI GRS-27 
command 

processing 
module names GRS-5, GRS-7 

router task 
posting GRS-I03 

command processing subcomponent 
control block overview GRS-43 
introduction GRS-7 
process flow GRS-61 
relationship to other 

subcomponents GRS-7 
command-router queue GRS-I02 
complex 

controlling participation in GRS-4 
defining GRS-4 
displaying status of GRS-4, GRS-23 

control block overview 
for GRS GRS-37 

control blocks 
global resource serialization GRS-IO 

description GRS-37 
example for global 

requests GRS-12 
for global requests GRS-12 
in command processing GRS-43 
in CTC processing GRS-41 
in ENQ/DEQ processing GRS-44 
in ring processing GRS-42 
in storage management GRS-48 
in WTD/WTDR message 
processing GRS-49 

list GRS-37 
representing requests GRS-IO 

TCBs in GRS address space GRS-40 
CRB (command request block) 

in GRS GRS-37 

lY28-1695-0 (c) Copyright IBM Corp. 1987 

creating a one-system ring GRS-82, 
GRS-87 

CRWA (command recovery work area) 
in GRS GRS-37 

CTC (channel-to-channel) adapters 
defining for global resource 
serialization GRS-4 

·D 

displaying status of GRS-4, GRS-23 
function in global resource 
serialization complex GRS-4 

handling I/O errors GRS-18 
processing 

control block overview GRS-41 
debugging hints GRS-26 
introduction GRS-8 
module names GRS-S 
process flow GRS-Sl 
relationship to other 

subcomponents GRS-7 

debugging hints 
eTC processing GRS-26 
EHQ/DEQ/RESERVE processing GRS-27 
EHQ/DEQ/RESERVE termination resource 
manager GRS-29 

GCl bits GRS-26 
global resource serialization 

enabled wait GRS-2S 
probe points GRS-25 

GVT bits GRS-26 
ring processing GRS-27 
storage management GRS-30 

DEPL (SDUMP ESTAE parameter list) 
in GRS GRS-37 

DEQ macro instruction 
fast path processing 

description GRS-340 
mainline processing 

module names GRS-S, GRS-7 
message processing GRS-7 
processing 

control block overview GRS-44 
debugging hints GRS-27 
in component overview GRS-7 
introduction GRS-7, GRS-12 
process flow GRS-69, GRS-70 

usa of GRS-3 
DEQSCAN 

entry point function of 
ISGGPGRP GRS-252 

diagnostic techniques 
global resource serialization GRS-25 

DIE (disabled interrupt exits) 
read GRS-314 
sense GRS-310 
write GRS-314 

DISPLAY GRS command 
function of GRS-4 
introduction GRS-7 
parser exit GRS-140 
process flow GRS-62 
processing GRS-134 
syntax checking GR5-142. GRS-146 

DUOaO 
entry point of ISGJDI GRS-310 

Index I-I 



DI2000 
entry point of ISGJDI GRS-3l4 

DI3000 
entry point of ISGJDI GRS-3l6 

DPl (DEQ purge list) 
in GRS GRS-37 

DQRET 
entry point of ISGlNQDQ GRS-34l, 

GRS-343 
DQRETl 

entry point of ISGLNQDQ GRS-34l. 
GRS-343 

DQRET2 
entry point of ISGLHQDQ GRS-337, 

GRS-34l, GRS-343 
DQRET4 

entry point of ISGlNQDQ GRS-34l. 
GRS-343 

DSPl (dump sort parameter list) 
in GRS GRS-37 

dump support subcomponent 
introduction GRS-9 
process flow GRS-73 
relationship to other 

subcomponents GRS-7 
dumping 

E 

global resource serialization 
queues/control blocks GRS-S. GRS-7, 
GRS-l76, GRS-l82 

ECB (event control block> 
GVTCECB GRS-I03 
GVTXECBl GRS-281 
GVTXJECB GRS-l27 

enabled wait during IPl 
processing GRS-25 

ENQ macro instruction 
fast path processing 

description GRS-334 
mainline processing 

module names GRS-5, GRS-7 
processing 

control block overview GRS-44 
debugging hints GRS-27 
in component overview GRS-7 
introduction GRS-7, GRS-l2 
process flow GRS-l5, GRS-69. 

GRS-70 
usa of GRS-3 

EHQ or DEQSCAN 
entry point function of 

ISGGPGRP GRS-246 
EHQSCAN 

entrY point function of 
ISGGPGRP GRS-248 

entering the main ring GRS-22 
exception handling task 

posting GRS-126 
exclusion exit routine 

introduction GRS-4 
mainline vs. fast path 

processing GRS-l2 
exit routines 

exclusion 
introduction GRS-4 

inclusion 
introduction GRS-4 

RESERVE conversion 
introduction GRS-3 

1-2 MVS/XA SLl: GRS 

F 

"Restricted "atartals of II"" 
Licensed Materials - property of 18" 

fast path processing 
eligible ENQ/DEQ SVC 

requests GRS-331 
introduction GRS-12 

formatting global resource serialization 
control block i nformati on GRS-S'. 
GRS-7, GRS-178 

functions 

G 

of global resource 
serialization GRS-3 

GeB (global resource seriali~ation 
CTC-driver request block) GRS-37 

GCC (global resource serialization 
CTC-driver control card table) GRS-37 

GCl (global resource serialization 
CTC-driver link control block) 

description GRS-37 
fields useful in debugging GRS-26 

GCP (global resource serialization 
CTC-driver buffer prefix) GRS-37 

GCQ (global resource serialization 
CTC-driver queueing element) GRS-37 

GCT (global resource serialization 
CTC-drivar branch table) GRS-37 

GCV (global resource serialization 
CTC-driver vector table) GRS-37 

GCX (global resource serialization 
CTC-driver extract table) GRS-37 

global ENQ 
process flow GRS-2l 

global resource 
definition GRS-3 
processing 

DEQ requests GRS-290 
ENQ requests GRS-288 
synchronization requests GRS-296 
undefined requests GRS-298 

serializing GRS-3, GRS-16 
global resource serialization 

adding a system to the main 
ring GRS-22 

address space 
introduction GRS-7 

cornplex 
controlling participation 

in GRS-4 
defining GRS-4 
displaying status of GRS-4, 

GRS-23 
control blocks 

description GRS-lO. GRS-37 
dumping GRS-5, GRS-7 
examples GRS-12 
formatting in dumps GRS-S, GRS-7 
list GRS-37 
within a PEXB GRS-30 

diagnostic aids GRS-25 
introduction 

functions GRS-3 
interfaces GRS-3 

modules 
naming conventions GRS-5 

probe points GRS-25 
process flow diagrams GRS-SO 
process flow overview and 
directory GRS-50 

recovery routines GRS-35 
ring 

lY28-169S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBI1" 
Licensed Haterials - Property of 18H 

controlling participation 
in GRS-4 

definition GRS-4 
rebuilding GRS-4 

ring processing 
description GRS-16 

SDWA contents GRS-32 
SDWAVRA contents GRS-32 
serializing resources use by GRS-36 
steal processing GRS-13 
subcomponents 

command processing GRS-7 
CTC processing GRS-8 
dump support GRS-9 
initialization GRS-7 
list GRS-7 
message processing GRS-7 
naming conventions GRS-5 
queue scan GRS-9 
relationship between GRS-7 
resource request processing GRS-7 
ring processing GRS-8 
storage management GRS-8 

GQSCAN macro instruction 
processing 

introduction GRS-9 
use of GRS-5, GRS-7 

GRPRTRY2 
entry point of ISGGRPOO GRS-298 

GRS system parameter GRS-4 
GRSCNFxx PARMlIB member 

purpose of GRS-4 
GRSQ parameter on SDUMP macro GRS-5. 

GRS-7 
GRSTRACE parameter for AMDPRDMP GRS-5 
GVT (global resource serialization 
vector table) 

description GRS-38 
fields useful in debugging GRS-26 

GVTX (global resource serialization 
vector table extension) GRS-38 

H 

hash tables 
global queue hash table 
local queue hash table 
SYSID/ASID hash table 

hashing routines 
introduction GRS-9 

hold queue 
adding QWBs GRS-98 
introduction GRS-22 

I 

IEAOPTOI 

GRS-IO 
GRS-I0 

GRS-I0 

entry point of IEAVSY50 GRS-I03 
IEASYSxx PARMlIB member 

GRS parameter GRS-4 
IEAVSY50 

posting command router task GRS-I03 
IEAVTSDU 

process flow GRS-73 
IECTCATH 

process flow GRS-51 
IEECB808 

in DISPLAY GRS command 
processing GRS-135 

introduction GRS-7 
process flow GRS-62 

IEECB921 

LY28-1695-0 (c) Copyright IBM Corp. 1987 

entry point of ISGCMDI GRS-142 
IEECB922 

entry point of ISGCMDI GRS-146 
IEE3451 message GRS-143 
IEFEHFFX 

invoked by ISGJENFO GRS-322 
IGSCQSC 

process flow GRS-63 
inclusion exit routine 

introduction GRS-4 
mainline vs. fast path 

processing GRS-12 
informational services of ring 
processing GRS-23 

initializing 
a one-systQm ring GRS-82, GRS-87 
global resource serialization 

module prefixes GRS-7 
subcomponent description GRS-S 

interfaces 
global resource s€rialization GRS-3 

internal queue in ring processing 
adding QWBs GRS-98 
description GRS-17 

introduction 
to GRS GRS-3 

ISGBBE 
entry point of ISGBSR GRS-120, 

GRS-162 
ISGBCl 

ADDSYS function GRS-22 
BUFSEHD function GRS-23 
ClHUFAIL subroutine GRS-27 
function GRS-78 
introduction GRS-22 
process flow GRS-S5, GRS-58, GRS-59, 

GRS-60 
receiving data GRS-119 
recovery processing GRS-78 
REQPERM function GRS-86 
SEHDCMD-RSCRADDS function GRS-22 
sending commands GRS-I04, GRS-I06, 

GRS-110 
sending data GRS-115 
STARTPOP function GRS-82 

ISGBDES 
entry point of ISGBDR GRS-122 

ISGBDR 
establishing the RSA residence time 

interval GRS-95 
scheduling ISGBSRSR GRS-122 

ISGBDRM 
entry point of ISGBDR GRS-95 

ISGBERCV routine 
recording information in the 

SDWAVRA GRS-32 
ISGBFRCV routine 

recording information in the 
SDWAVRA GRS-32 

ISGBSR 
function GRS-87 
invoked by ISGCQMRG GRS-162 
placing a command in tho RSA GRS-I08 
process flow GRS-51, GRS-63, GRS-70 
receiving data GRS-119 
receiving the RSAIRCD GRS-132 
scheduled by ISGBTC GRS-129 
sending data GRS-115 
sending the RSA GRS-122 

ISGBSRME . 
entry point of IGSBSR GRS-95 

ISGBSRR 
entry point of ISGBSR GRS-85. 

GRS-95. GRS-125 

Index 1-3 



ISGBSRRI 
entry point of ISGBSR GRS-78, 

GRS-126 
ISGBSRSR 

entry point of ISGBSR GRS-85, 
GRS-95, GRS-122 

ISGBTC 
process flow GRS-51, GRS-55, GRS-56, 

GRS-63 
sending the RSAIRCD GRS-126. GRS-129 

ISGBTCIR 
entry point of ISGBTC GRS-78, 

GRS-112, GRS-126, GRS-129 
ISGBTCR! 

entry point of ISGBTC GRS-85 
ISGCDIRV 

entry point of ISGCMDI GRS-147 
ISGCDRRV 

entry point of ISGCMDR GRS-154 
ISGCDSP 

attached by ISGCMDR GRS-149 
function GRS-134 
introduction GRS-7 
process flow GRS-62 
recovery processing GRS-137 

ISGCDS02 
entry point of ISGCDSP GRS-137 

ISGCMDE 
function GRS-140 

ISGCMDI 
function GRS-142 
introduction GRS-7 
process flow GRS-61 
recovery processing GRS-147 

ISGCMDR . 
attaching ISGCDSP GRS-134 
function GRS-148 
introduction GRS-7 
process flow GRS-61 
recovery processing GRS-1S4 

ISGCPG02 
entry point of ISGCPRG GRS-159 

ISGCPRG 
attached by ISGCMDR GRS-149 
function GRS-156 
introduction GRS-7 
process flow GRS-62 
recovery processing GRS-159 

ISGCQMRG 
fUnction GRS-160 
process flow GRS-65, GRS-66, GRS-67, 

GRS-68 
recovery processing GRS-165 

ISGCQSC 
attached by ISGCMDR GRS-149 
function GRS-166 
introduction GRS-7 
recovery processing GRS-168 

ISGCQS02 
entry point of ISGCQSC GRS-168 

ISGCRCV 
function GRS-170 
recording information in the 

SDWAVRA GRS-33 
recovery processing GRS-171 

ISGCRETO routine 
recording information in the 

. SDWAVRA GRS-33 
ISGCRETl routine 

recording information in the 
SDWAVRA GRS-33 

ISGCRST 
attached by ISGCMDR GRS-149 
function GRS-172 

1-4 MVS/XA Sll: GRS 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

introduction GRS-7 
process flow GRS-65. GRS-66, GRS-67, 

GRS-68 
recovery processing GRS-174 

ISGCRS02 
entry point of ISGCRST GRS-174 

ISGCTXRl 
entry point of ISGCMDR GRS-152 

ISGC048 
entry point of ISGGHQDQ GRS-232 

ISGC056 
entry point of ISGGHQDQ GRS-208 

ISGDGCBO 
function GRS-176 
process flow GRS-73 
return codes GRS-177, GRS-182 

ISGDPDMP 
function GRS-178 

ISGDSDMP 
function GRS-182 
recording information in the 

SDWAVRA GRS-33 
recovery processing GRS-183 
return codes GRS-183 

ISGDSDRV routine GRS-183 
ISGDSDOI 

entry point of ISGDSDMP GRS-182 
ISGDSHAP 

function GRS-184 
recording information in the 

SDWAVRA GRS-33 
recovery processing GRS-185 

ISGDSHRV GRS-185 
ISGDSHRI 

entry point of ISGDSHAP GRS-184 
ISGDSHR2 

entry point of ISGDSHAP GRS-184 
ISGGDEQP 

function GRS-186 
process flow GRS-71 

ISGGDQOO 
entry point of ISGGHQDQ GRS-193, 

GRS-240 
ISGGES'TO 

function GRS-192 
ISGGFRRO 

function GRS-196 
recording information in the 

SDWAVRA GRS-34 
recovery GRS-196 
resource repair routine GRS-202 
return codes GRS-207 

ISGGFRRI 
entry point of ISGGFRRO GRS-206 

ISGGHQDQ 
DEQ processing GRS-232 
EHQ/RESERVE processing GRS-208 
process flow GRS-15, GRS-69, GRS-70 
return codes GRS-229, GRS-240 

ISGGHQOO 
entry point of ISGGHQDQ GRS-220 

ISGGPGRP 
function GRS-244 

ISGGQSRV 
invoked by ISGCPRG GRS-161 
invoked by ISGCQMRG GRS-164 

ISGGQSOI 
entry point of ISGGQSRV GRS-161 

ISGGQS03 
entry point of ISGGQSRV GRS-164 

ISGGQWBC 
comp~red to ISGGQWBO GRS-IO 
process flow GRS-15 

ISGGQWBF 

lY28-1695-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - property of IBH 

entry point of ISGGQWBO GRS-l59, 
GRS-276 

ISGGQWBI 
function GRS-254 

ISGGQWBR 
entry point of ISGGQWBO GRS-278 

ISGGQWBO 
compared to ISGGQWBC GRS-lO 
entry point of ISGGQWBO GRS-271 
functJon GRS-260 
process flow GRS-7l 
recovery processing GRS-278 

ISGGQWBl 
entry point of ISGGQWBO GRS-IOl, 

GRS-260, GRS-264 
process flow GRS-15, GRS-69, GRS-70 

ISGGQWB2 
entry point of ISGGQWBO GRS-l62, 

GRS-268 
ISGGQWB4 

entry point of ISGGQWBO GRS-193, 
GRS-221. GRS-210 

ISGGQWB5 
entry point of ISGGQWBO GRS-159, 

GRS-l93, GRS-272 
ISGGREXO 

process flow GRS-15 
ISGGRPOO 

function GRS-280 
introduction GRS-17 
process flow GRS-70, GRS-71 
processing QWBs GRS-103 

ISGGTRMO 
debugging hints GRS-29 
function GR5-300 
process flow GRS-71 

ISGGTRM1 
debugging hints GR5-29 
function GRS-304 
process flow GRS-71 

ISGGWAIT 
process flow GRS-15, GRS-7l 

ISGJDI 
function GRS-310 
process flow GRS-51, GRS-53 
recovery processing GRS-321 

ISGJEHFR 
entry point of ISGJEHFO GRS-329 

ISGJEHFO 
function GRS-322 
recovery processing GRS-323, GRS-329 

ISGJEHF1 
entry point of ISGJEHFO GRS-324 

ISGJENF2 
entry point of ISGJENFO GRS-326 

ISGJENF3 
entrY point of ISGJEHFO GRS-328 

ISGJFE 
process flow GRS-53 

ISGJRCV 
function GRS-32l 
recording information in the 

SDWAVRA GRS-34 
ISGLDQOO 

entry point of ISGLH~DQ GRS-340 
ISGLNQDQ 

fast path requirements GRS-331 
function GRS-330 
introduction GRS-7 
process flow GRS-15, GRS-69, GRS-70 
recovery GRS-331 

ISGLNQOO 
entry point of ISGLHQDQ GRS-334 

ISGMSGOO 

LY28-1695-0 (c) Copyright IBM Corp. 1987 

attached by ISGCMDR GRS-149 
function GRS-346 
in component overview GRS-7 

ISGHASIl1 
introduction GRS-8 

ISGHGRSP 
process flow GRS-68 

ISGQSCAN 
function GRS-348 
introduction GRS-9 
invoked by ISGCQMRG GRS-162 
process flow GRS-12 
reason codes and explanations for an 

09A ABEND GRS-353 
recovery GRS-353 

ISGQSCHR 
recording information in the 

SDWAVRA GRS-34 
recovery routine in ISGQSCAH GRS-353 

ISGSALC 
function GRS-354 
introduction GRS-9 
process flow GRS-15 
recovery GRS-359 

ISGSDAL 
function GRS-360 
introduction GRS-9 

ISGSDMP 
process flow GRS-73 

ISGSHASH 
process flow GRS-15 

1SGSMI . 
introduction GRS-9 
invoked by ISGCMD1 GRS-143, GRS-147 
recording information in the 

SDWAVRA GRS-34 
ISG0111 message GRS-157, GRS-168, 

GR5-174 
15G0121 message GRS-174 
I5G013I message GRS-96, GRS-167, 

GRS-168, GRS-174 
ISG014I message GRS-143, GRS-167, 

GRS-168, GRS-174 
ISG015I message GR5-168, GRS-172 
I5G016I message GRS-151 
ISG011D message GRS-151 
ISG020I messaga GRS-137 
ISG025E message GRS-86, GRS-145 
ISG031E message GRS-205 
ISG032E message GRS-189 
ISG047I message GRS-327, GRS-329 
ISG048I message GRS-324 

J 

JOInIng the main ring GRS-22 
process flow GRS-68 

L 

local resource 

M 

definition GRS-3 
serializing use of GRS-3 

main ring 
definition GRS-8 
passing the RSA GRS-16 

MASIDSCN 

Index 1-5 



entry point function of 
ISGGPGRP GRS-244 

memory access routine GRS-178 
message processing (WTO/WTOR) 

control block overview GRS-49 
in component overview GRS-7 

messages 
IEE3451 
ISGOllI 
ISG0121 
ISG0131 

GRS-143 
GRS-157, GRS-168, GRS-174 
GRS-174 
GRS-96. GRS-167. GRS-168. 

GRS-174 
ISG0141 GRS-143, GRS-167, GRS-168, 
GRS-174 

ISGOlSI GRS-168, GRS-172 
ISG016I GRS-157 
ISG017D GRS-157 
ISG0201 GRS-137 
ISG025E GRS-86, GRS-145 
ISG031E GRS-205 
ISG032E GRS-189 
ISG0471 GRS-327, GRS-329 
ISG048I GRS-324 

method of operation 
for GRS GRS-75 

mode 
save-QWB GRS-22 

module naming conventions GRS-5 
MRB (message request block) 

in GRS GRS-38 
MSGSERV 

entry point of IEECB808 GRS-135 

H 

naming conventions for global resource 
serialization modules GRS-5 

NRMOOOO 
entry point of ISGJDI GRS-318 

o 
one-system ring 

creating GRS-82, GRS-87 
operator commands 

P 

DISPLAY GRS command GRS-4 
VARY GRS command GRS-4 

passing the RSA GRS-16 
PEL (parameter element list) 

description GRS-38 
use of GRS-IO 

PEXB (pool extent block) 
description GRS-38 
global resource serialization control 
blocks defined in GRS-30 

introduction GRS-8 
use in debugging GRS-30 

PGADOOO 
entry point of ISGJDI GRS-320 

PQCB (private catalog control block) 
in GRS GRS-38 

printing global resource serialization 
control block information GRS-178 

probe points GRS-25 
process flow 

for GRS GRS-49 
global resource serialization 

diagrams GRS-51 

1-6 MVS/XA SLL: GRS 

"Restricted Materials of IBM" 
Licensed Materials - Property of II" 

directory GRS-50 
overview GRS-50 

process queue 
adding QWBs GRS-98 
description GRS-17 
updating GRS-18 

providing informational services GRS-23 
purge processing 

Q 

introduction GRS-7 
purging resources acquired by a 
terminating task or address 
space GRS-300 

QCD (queue control block) 
description GRS-IO, GRS-38 
example GRS-12 
sizes of GRS-30 
synonym chain GRS-IO 

QEL (queue element) 
description GRS-I0, GRS-38 
example GRS-12 
queues GRS-IO 

QFPL (ENQ/DEQ/FRR parameter list) 
in GRS GRS-38 

QFPll (queue scanning services FRR 
parameter list) 

in GRS GRS-38 
QHT (queue hash table) 

description GRS-38 
example GRS-12 
usa of GRS-IO 

queue 
hold queue GRS-22 
merge processing GRS-160 
process queue GRS-17 
request queue GRS-17 
ring processing internal 
queue GRS-17 

scan subcomponent 
introduction GRS-9 

scanning services GRS-348 
control block overview GRS-46 
in component overview GRS-7 
module names GRS-5 
process flow GRS-72 

sent queue GRS-17 
staging queue GRS-17 
updating GRS-18 

QWA (queue work area) 
description GRS-38 
description of major areas GRS-27 
how used GRS-27 

QWB (queue work block) 
description GRS-38 
queues GRS-16 
use of GRS-I0 

QXB (queue extension block) 
description GRS-l1, GRS-38 
example GRS-12 

R 

read DlE GRS-314 
receiving 

an RSAIRCD GRS-132 
data from a system GRS-118 
the RSA GRS-94 

recovery routines 
global resource serialization GRS-35 

lY28-1695-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of iBM" 
Licensed Materials - Property of IBM 

REPL (ring processing ESTAE parameter 
list) 

in GRS GRS-38 
REQPERM function 

ISGBCI GRS-86 
request queue 

description GRS-17 
removing QWBs GRS-98 
use of GRS-18 

RESERVE conversion exit routine 
introduction GRS-3 

RESERVE hardware instruction 
suppressing GRS-3 
use' of GRS-3 

RESERVE macro instruction 
fast path processing GRS-12 
mainline processing 

module names GRS-5 
processing 

debugging hints GRS-27 
in component overview GRS-7 
introduction GRS-7, GRS-12 
process flow GRS-15 

use of GRS-3 
resource 

name lists (RNL) 
introduction GRS-3 
mainline vs. fast path 

processing GRS-!2 
obtaining serialization 

information GRS-5, GRS-7 
request processing 

subcomponent GRS-7 
return codes 

returned by ISGDSDMP GRS-183 
returned by ISGGFRRO GRS-207 
returned by ISGGHQDQ GRS-240 
set by ISGDGCBO GRS-177. GRS-182 
set by ISGGHQDQ GRS-229 

RIB (resource information block) 
in GRS GRS-38 

RIBE (resource information block extent) 
in GRS GRS-38 

ring 
controlling participation in GRS-4 
definition GRS-4 
rebuilding GRS-4 

ring processing 
adding a system to the main 

ring GRS-22 
causes of failure GRS-18 
control block overview GRS-42 
debugging hints GRS-27 
description GRS-16 
exception handling task GRS-18 
in component overview GRS-7 
internal queue 

description GRS-17 
updating GRS-18 

module names GRS-5, GRS-7 
process flow GRS-54, GRS-56, GRS-57, 

GRS-58, GRS-59 
providing informational 
services GRS-23 

queues 
description GRS-17 
updating GRS-!8 

subcomponent GRS-8 
RNLE 

description GRS-38 
RPT (resource pool table) 

description GRS-38 
introduction GRS-9 
use in debugging GRS-30 

LY28-1695-0 (c) Copyright IBM Corp. 1987 

RQA (resource queue area) 
bit map GRS-31 
description GRS-38 
introduction GRS-8 

RSA (ring processing system authority 
message) 

command area 
building GRS-96 

description GRS-38 
fields useful in debUgging GRS-27 
input GRS-18 
output GRS-17, GRS-18 
receiving GRS-94 
residency time interval 

establishing GRS-94 
introduction GRS-16 

send count 
calculating GRS-84 

sending GRS-16, GRS-122 
use of GRS-IO, GRS-16 

RSAIRCD (ring system authority identity 
record) 

description GRS-22, GRS-38 
receiving GRS-132 
sending GRS-18, GRS-126, GRS-133 

RSC (ring status change parameter list) 
in GRS GRS-38 

RSl (ring processing system link block) 
descripti on , GRS-39 
introduction GRS-23 

RST (ring processing status table) 
description GRS-39 
updating GRS-78 

RSV (ring processing system vector 
table) 

description GRS-39 
fields useful in debugging GRS-27 

RSVENTY (ring processing system vector 
table entry table) 

description GRS-22 
role in providing status 

information GRS-23 
updating GRS-78 

RVR (~ing processing FRR parameter list) 
description GRS-39 

S 

SAHT (system/ASID hash table> 
description GRS-39 

save-QWB system mode 
description GRS-22 
leaving GRS-120 

scope of serialization requests 
changing GRS-3 
for global requests GRS-3 
for local requests GRS-3 

SDUMP macro instruction 
GRSQ parameter GRS-S,GRS-7 

SDWA (system diagnostic work area) 
global resource serialization 

information GRS-32 
SDWAVRA (SDWA variable recording area) 

global resource serialization 
information GRS-32 

SEHPBUF function of ISGBCJ GRS-78 
SENDCMD-RSCRADDS function of 

ISGBCI GRS-22 
sending 

commands 
using an RSA GRS-I04. GRS-I06 
using an RSAIRCD GRS-I04. GRS-II0 

data to another system GRS-114 

Index 1-7 



the RSA GRS-I04 
the RSAIRCD GRS-126. GRS-133 

sense DIE GRS-310 
sent queue 

description GRS-17 
removing QWBs GRS-98 
updating GRS-18 

serializing global resource 
serialization resources GRS-36 

SERRElS function of ISGBCI GRS-121 
SMPl (storage manager parameter list) 

description GRS-39 
use in debugging GRS-30 

SNAPSHOT function of ISGBCI GRS-78 
SNDI (ring processing send information 
control block) 

description GRS-39 
staging queue GRS-17 

See also sent queue 
STARTPOP function of ISGBCI GRS-82 
steal processing 

in DEQ processing GRS-232 
in ENQ processing GRS-211 
introduction GRS-13 

STEP scope on ENQ or DEQ macros GRS-3 
storage management subcomponent 

control block overview GRS-48 
debugging hints GRS-30 
in component overview GRS-7 
introduction GRS-8 
module names GRS-S. GRS-7 

SUbcomponents of global resource 
serialization 

command processing GRS-7 
CTC processing GRS-S 
dump support GRS-9 
initialization GRS-7 
queue scan GRS-9 
resource request processing GRS-7 
ring processing GRS-8 
storage management GRS-8 

SVRB (supervisor request block) 
extended save area 

use in debugging GRS-27 
synchronization request 
processing GRS-296 

sysid 
converting to a system name GRS-23 
defined GRS-23 

SYSID/ASID hash table 
example GRS-12 
introduction GRS-I0 

sysname 
converting to a sysid GRS-23 

SYSTEM 
inclusion resource name list 

introduction GRS-3 
mainline vs. fast path 
processing GRS-12 

scope on ENQ or DEQ macros 
changing via exit routines GRS-3 

system mode 
save-QWB GRS-22 

system name 
converting to a sysid GRS-23 

SYSTEMS 
exclusion resource name list 

introduction GRS-3 
mainline vs. fast path 

processing GRS-12 
scope on ENQ 

1-8 MVS/XA Sll: GRS 

"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

DEQ. or RESERVE macros. changing 
via exit routines GRS-3 

SYSl.PARMlIB 

T 

defining a global resource 
serialization complex GRS-4 

TCB (task control block) 
in GRS address space 

overview GRS-40 

U 

updating the RSA and ring processing 
queues GRS-20 

V 

VARY GRSCALl) 
RESTART process flow GR5-66 

VARY GRS(x) command 
function of GRS-4 
processing GRS-142 
PURGE process flow GRS-62 
PURGE processing GRS-156 
QUIESCE process flow GRS-63 
QUIESCE processing GRS-166 
RESTART process flow GRS-65 t GRS-67 
RESTART processing GRS-172 

volume 
serializing GRS-3 

W 

write DIE GRS-314 
WTO/WTOR message processing 

control block overview GRS-49 
subcomponent of global resource 
serialization GRS-7 

X 

XPROCDEQ 
entry point of ISGGNQDQ GRS-240 

XPROCEHQ 
entry point of ISGGHQDQ GRS-224 

o 
09A ABEND GRS-161, GRS-167. GRS-298, 

GRS-324. GRS-327. GRS-329 

4 

430 ABEND GRS-199 
438 ABEND GRS-199 

7 

730 ABEND GRS-l99 
738 ABEND GRS-199 

lY28-1695-0 (c) Copyright IBM Corp. 1987 



MVS/Extended Architecture 
System Logic Library: 
Global Resource 
Serializa tion 

L Y28-1695-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to commtmicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever infonnation you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at tlte 10catJon to which this form is addressed. Please 
direct any nquests for copies of publicatJons, or for assistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

aarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

lhank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



MVS/Extended Architecture System Logic Library: Global Resource Serialization 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
(Except for Customer- Originated Materials) 
«:Copyright IBM Corp. 1987 
LY28-1695-0 

Reader's Comment Form 

S370-36 

() 

s. 
o .., 

i 
Fold and tope Please Do Not Staple Fold and tope I 

-----------------------------------------------------------------------------------------------------------------------------------------1 

raid and tope 

--.. -- .---..--.. ...... - ---.------ -. _ ....... ---- ---=="= ~ =® 

BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I ntemational Business Machines Corporation 
Department 058, Building 921-2 
PO Box 390 
Poughkeepsie, New York 12602 

I 

NO POSTAGE I 
NECESSARY I 

IF MAILED 'I' 

IN THE 

... U.N.IT.E.D.S.T.A.TE.S..I' 

1111111111111111111111111111111111111111111111111111 

Please Do Not Staple Fold and tope 

Printed in U.S.A. 

LY28-1695-00 



MVS/Extended Architecture System Logic Library: Global Resource Serialization 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
CCopyright IBM Corp. 1987 
LY28-1695-0 S370-36 

Printed In U.S.A. --- -------------------- -----=~= '-:' =CIIl 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB
	xBack

