GC28-1154-4
File No. §370-36

MVS/Extended Architecture
Supervisor Services and
Program Product Macro Instructions

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

Fifth Edition (September, 1989)

This is a major revision of, and obsoletes, GC28-1154-3. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to Version 2 Release 2 of MVS/System Product 5665-291 or
5740-XC6 and to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM systems, consult the latest
IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM
product in this publication is not intended to state or imply that only IBM’s product may
be used. Any functionally equivalent product may be used instead. This statement does
not expressly or implicitly waive any intellectual property right IBM may hold in any
product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 950, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1989
All Right Reserved

7N

.

£

Preface

This book, intended mainly for the programmer coding in assembler language, describes how to
use the services of the supervisor, the macro instructions used to request these services, and the
linkage conventions used by the control program to provide these services.

The system programmer interested in additional information on the supervisor should see
MVS|Extended Architecture System Programming Library: System Macros and Facilities
Volume 1, GC28-1150 and Volume 2, GC28-1151.

About This Book

This book is divided into two parts. Part I, “Supervisor Services,” provides explanations and
aids for using the facilities available through the supervisor. Part II, “Macro Instructions,”
provides coding information.

Part 1 is divided into nine topics. Specific topics include:

Linkage Conventions

Subtask Creation and Control

Program Management

Resource Control

Program Interruption, Termination, and Dumping Services
Virtual Storage Management

Real Storage Management

Data in Virtual Facility

Timing and Communication

Part II contains the descriptions and definitions of the supervisor macro instructions available
in the assembler language. It provides applications programmers coding the assembler language
with the information necessary to code the macro instructions. The standard, list, and execute
forms of the macro instructions are grouped, where applicable, for ease of reference.

Trademarks

The following are trademarks of International Business Machines Corporation.

e MVS/DFP™
e MVS/XA™

Preface 1ii

Related Publications

Use of this book requires a basic knowledge of the operating system and of assembler language.
Books that contain basic information are:

Assembler H Version 2 Application Programming: Language Reference, GC26-4037

IBM[370 Vector Operations, SA22-7125

MVS/Extended Architecture Checkpoint/Restart User's Guide, GC26-4012

MVS|Extended Architecture Data Administration Macro Instruction Reference, GC26-4014

MVS|Extended Architecture Data Administration Guide, GC26-4013

MYVS|Extended Architecture Debugging Handbook Volume 1, LC28-1164

MVS|Extended Architecture Debugging Handbook Volume 2, 1L.C28-1165 N
MVS|Extended Architecture Debugging Handbook Volume 3, LC28-1166

MYVS/|Extended Architecture Debugging Handbook Volume 4, LC28-1167

MYVS|Extended Architecture Debugging Handbook Volume 5, LC28-1168

MYVS|Extended Architecture Linkage Editor and Loader User's Guide, GC26-4011

MVS|Extended Architecture Message Library: Routing and Descriptor Codes, GC28-1194 ' N
MVS|Extended Architecture Operations: JES3 Commands, SC23-0063

MVS|Extended Architecture Operations: System Commands, GC28-1206

OS/VS2 MVS Planning: Global Resource Serialization, GC28-1062

MVS|/Extended Architecture System Programming Library: Initialization and Tuning, o
GC28-1149

MYVS|Extended Architecture System Programming Library: Service Aids, GC28-1159

MVS|Extended Architecture System Programming Library: System Macros and Facilities
Volume 1, GC28-1150 and Volume 2, GC28-1151

MVS/Extended Architecture System Programming Library: System Modifications,
GC28-1152

370-Extended Architecture: Principles of Operation, GA22-7085

MVS/|Extended Architecture: Integrated Catalog Administration: Access Method Services
Reference, GC26-4135

Note: All references to Assembler H in this publication indicate the program product ; h
Assembler H Version 2 (5668-962). ’

1V Supervisor Services and Macro Instructions

Contents

Part I: Supervisor Services 1
Summary of Services 1

Linkage Conventions 3

Linkage Registers 3

Saving the Calling Program’s Registers 5

Establishing a Base Register 6

Providing a Save Area 6

Summary of Conventions to be Followed When Passing and Receiving Control 8

Subtask Creation and Control 9
Creating the Task 9

Priorities 10

Task and Subtask Communications 12

Program Management 15
Residency and Addressing Mode of Programs 15
Residency Mode Definitions 16
Addressing Mode Definitions 16
Linkage Considerations for MVS/XA 16
Passing Control Between Programs with the Same AMODE 17
Passing Control Between Programs with Different AMODEs 17
Load Module Structure Types 19
Load Module Execution 19
Passing Control in a Simple Structure 20
Passing Control without Return 20
Passing Control with Return 22
Passing Control in a Dynamic Structure 28
Bringing the Load Module into Virtual Storage 28
Passing Control with Return 34
Passing Control without Return 38
Additional Entry Points 40
Entry Point and Calling Sequence Identifiers as Debugging Aids 40

Resource Control 41

Task Synchronization 41

Using a Serially Reusable Resource 42
Naming the Resource 43
Local and Global Resources 44
Requesting Exclusive or Shared Control 44
Limiting Concurrent Requests for Resources 44
Processing the Request 45

Program Interruption, Recovery/Termination, and Dumping Services 51

Contents V

Interruption Services 51
Specifying User Exit Routines 51 2N
Using the SPIE Macro Instruction 52 N /
Using the ESPIE Macro Instruction 54
Register Contents Upon Entry to User’s Exit Routine 56
Functions Performed in User Exit Routines 56
Recovery/Termination Services 57
Using SETRP to Change the Completion and Reason Codes 58
Changing the Completion and Reason Codes Directly 58
Handling ABENDs 59
Dumping Services 66
ABEND Dumps 66
Obtaining a Symptom Dump 67
SNAP Dumps 67
Obtaining a Summary Dump 68

Virtual Storage Management 71
Explicit Requests for Virtual Storage 71

Cell Pool Services 74 e
Implicit Requests for Virtual Storage 77

Data-in-Virtual 81

When to Use Data-in-Virtual 81

Using the Services Of Data-in-Virtual 83
The IDENTIFY Service 86

The ACCESS Service 86

The MAP Service 83 ST
The SAVE Service 90
The RESET Service 92 -

The UNMAP Service 93
The UNACCESS and UNIDENTIFY Services 94
Conditions for Invocation of Data-in-Virtual 95
DIV Macro Programming Examples 96
General Program Description 96
Data-in-Virtual Sample Program Code 97
Executing the Program 102

Real Storage Management 103 Iy
Relinquishing Virtual Storage 104

Loading/Paging Out Virtual Storage Areas 104

Virtual Subarea List (VSL) 105

Page Service List (PSL) 106

Timing and Communication 107

Timing Services 107

Communicating with the System Operator 109
Writing to the Programmer 113

Writing to the System Log 113

Message Deletion 114

Part II: Macro Instructions 115

Selecting the Macro Level 115

Addressing Mode and the Macro Instructions 116
Macro Instruction Forms 117

»

Vi Supervisor Services and Macro Instructions

Coding the Macro Instructions 119
Continuation Lines 121
ABEND — Abnormally Terminate a Task 122
ATTACH — Create a New Task 125
ATTACH (List Form) 132
ATTACH (Execute Form) 133
CALL — Pass Control to a Control Section 135
CALL (List Form) 137
CALL (Execute Form) 138
CHAP — Change Dispatching Priority 139
CPOOL — Perform Cell Pool Services 141
CPOOL — (List Form) 145
CPOOL — (Execute Form) 146
CPUTIMER — Provide Current CPU Timer Value 147
DELETE — Relinquish Control of a Load Module 149
DEQ — Release a Serially Reusable Resource 151
DEQ (List Form) 155
DEQ (Execute Form) 156
DETACH — Detach a Subtask 157
DIV — Data-in-Virtual 159
DIV (List Form) 165
DIV (Execute Form) 166
DIV (Modify Form) 167
DOM — Delete Operator Message 168
ENQ — Request Control of a Serially Reusable Resource 170
ENQ (List Form) 176
ENQ (Execute Form) 177
ESPIE — Extended SPIE 178
SET Option 178
RESET Option 180
TEST Option 181
ESPIE (List Form) 183
ESPIE (Execute Form) 184
ESTAE — Extended Specify Task Abnormal Exit 185
ESTAE (List Form) 190
ESTAE (Execute Form) 191
EVENTS — Wait for One or More Events to Complete 192
Using the EVENTS Macro Instruction 194
FREEMAIN — Free Virtual Storage 199
FREEMAIN (List Form) 203
FREEMAIN (Execute Form) 204
GETMAIN — Allocate Virtual Storage 205
GETMAIN (List Form) 210
GETMAIN (Execute Form) 211
IDENTIFY — Add an Entry Name 212
LINK — Pass Control to a Program in Another Load Module 214
LINK (List Form) 217
LINK (Execute Form) 218
LOAD — Bring a Load Module into Virtual Storage 219
LOAD (List Form) 222
LOAD (Execute Form) 223
PGLOAD — Load Virtual Storage Areas into Real Storage 224
PGLOAD (List Form) 226
PGOUT — Page Out Virtual Storage Areas from Real Storage 227

Contents

vii

PGOUT (List Form) 229

PGRLSE — Release Virtual Storage Contents 230
PGRLSE (List Form) 232

PGRLSE (Execute Form) 233

PGSER — Page Services 234

POST — Signal Event Completion 238

RETURN — Return Control 240

SAVE — Save Register Contents 242

SEGLD — Load Overlay Segment and Continue Processing 244
SEGWT — Load Overlay Segment and Wait 245
SETRP — Set Return Parameters 246

SNAP — Dump Virtual Storage and Continue 249
SNAP (List Form) 256

SNAP (Execute Form) 258

SPIE — Specify Program Interruption Exit 260
SPIE (List Form) 263

SPIE (Execute Form) 264

SPLEVEL — SET and TEST Macro Level 265
STATUS — Change Subtask Status 267

STIMER — Set Interval Timer 269

STIMERM — Set, Test, Cancel Multiple Interval Timer 273
STIMERM (List Form) 280

STIMERM (Execute Form) 281

SYNCH — Take a Synchronous Exit to a Processing Program 283
SYNCH (List Form) 285

SYNCH (Execute Form) 286

TIME — Provide Time and Date 287

TTIMER — Test Interval Timer 290

WAIT — Wait for One or More Events 292

WTL — Write To Log 295

WTL (List Form) 296

WTL (Execute Form) 297

WTO — Write to Operator 298

WTO (List Form) 302

WTO (Execute Form) 303

WTOR — Write to Operator with Reply 304
WTOR (List Form) 306

WTOR (Execute Form) 307

XCTL — Pass Control to a Program in Another Load Module 308
XCTL (List Form) 311

XCTL (Execute Form) 312

Index 315

vill Supervisor Services and Macro Instructions

)

o

Figures

,._.
SO B WL

el e e e el
PPENI R~

20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
3s.
36.
37.
38.
39.
40.
41.
42.

Acquiring PARM Field Information 4

Format of the Save Area 5

Use of the SAVE Macro Instruction 5

Chaining Save Areas in a Nonreenterable Program 7
Chaining Save Areas in a Reenterable Program 7
Levels of Tasks in a Job Step 12

Assembler Definition of AMODE/RMODE 15
Example of Addressing Mode Switch 18
Characteristics of Load Modules 19

Passing Control in a Simple Structure 21

Passing Control With a Parameter List 22
Passing Control With Return 23

Passing Control With CALL 24

Test for Normal Return 25

Return Code Test Using Branching Table 25
Establishing a Return Code 26

Using the RETURN Macro Instruction 27
RETURN Macro Instruction With Flag 27

Search for Module, EP or EPLOC Parameter With DCB =0 or DCB Parameter

Omitted 30

Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private

Library 31

Search for Module Using DE Parameter 32

Use of the LINK Macro Instruction With the Job or Link Library
Use of the LINK Macro Instruction With a Private Library 35
Use of the BLDL Macro Instruction 35

The LINK Macro Instruction With a DE Parameter 36
Misusing Control Program Facilities Causes Unpredictable Results
Event Control Block 41

ENQ Macro Instruction Processing 45

Interlock Condition 49

Two Requests For Two Resources 50

One Request For Two Resources 50

Program Interruption Control Area 53

Using the SPIE Macro Instruction 53

Program Interruption Element 54

Extended Program Interruption Element 55

Detecting an Abnormal Condition 60

Key Fields in the SDWA 63

Using the GETMAIN Macro Instruction 73

Virtual Storage Control 75

Using the List and the Execute Forms of the DEQ Macro 79
Releasing Virtual Storage 104

Interval Processing 108

35

39

Figures

X

43.
44.
45.
46.
47.
48.
49.
50.
s1.
52.
53.
54.
55.
56.
57.

Characters Printed or Displayed on an MCS Console 109
Descriptor Code Indicators 111

Writing to the Operator 111

Writing to the Operator With a Reply 112
Macro Level Selected at Execution Time 116
Sample Macro Instruction 119

Continuation Coding 121

Return Code Area Used by DEQ 153

DEQ Macro Instruction Return Codes 154
Return Code Area Used by ENQ 174

ENQ Return Codes 174

Creating a Table 194

Parameter List Format 195

Posting the Parameter List 196

Processing One Event At a Time 197

X Supervisor Services and Macro Instructions

TN

Summary of Amendments

Summary of Amendments
for GC28-1154-4
for MVS/System Product Version 2 Release 2.3

This major revision supports MVS/System Product Version 2 Release 2.3 and modifications
required in conjunction with MVS/DFP Version 3.1. These changes include LOCVIEW, which
is a new parameter of the DIV macro instruction.

The RACF macro instructions FRACHECK, RACHECK, RACROUTE, and RACSTAT have
been moved to MV S/XA SPL: System Macros and Facilities.

This revision also contains minor technical and editorial changes.

Summary of Amendments
for GC28-1154-3
for MVS/System Product Version 2 Release 2

This revision contains changes to the SNAP, DOM, and ATTACH macro instructions, and a
description of the new DIV macro instruction.

Summary of Amendments
for GC28-1154-2
for the following:
- MVS/System Product Version 2
Release 1.3 Vector Facility Enhancement
~ RACF Version 1 Release 7
- PTF UZ90404

In support of RACF Version 1 Release 7, this revision contains changes to the FRACHECK,
RACHECK, RACROUTE, and RACSTAT macro instructions.

In support of MVS/System Product Version 2, Release 1.3 Vector Facility Enhancement, this
revision contains changes to the ESPIE, SNAP, and SPIE instructions for the Vector Facility.

In support of PTF UZ90404, this revision contains changes to the ATTACH, LINK, LOAD,
and XCTL macro instructions.

The revision also contains minor technical and editorial changes.

Summary of Amendments xi

Xii

Supervisor Services and Macro Instructions

Part I: Supervisor Services

MVS|XA Supervisor Services and Macro Instructions describes the operating system services that
an unauthorized program can use. An unauthorized program is one that does not run in
supervisor state, or have PSW key 0-7, or reside in an APF-authorized library. To use a
service, the program issues a macro instruction.

The book consists of Part I and Part II. The first topic in Part I describes the linkage
conventions that a program should use when it calls another program. The rest of Part I
describes how to use the system services. Part II of this book provides the detailed information
for coding the macro instructions.

Summary of Services

The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the supervisor will help
you design more efficient programs.

The services you can request from the supervisor are discussed in the following topics:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: You can use the supervisor to aid communication between segments of
a program. Residency and addressing mode of programs and linkage considerations for
MVS/XA are discussed in this section. Save areas, addressability, and passage of control from
one segment of a program to another are also discussed.

Resource Control: Portions of some tasks are dependent on the completion of events in other
tasks, thus requiring planned task synchronization. Planning is also required when more than
one program uses a serially reusable resource.

Program Interruption, Termination, and Dumping Services: The supervisor provides facilities for
writing exit routines to handle specific types of interruptions. It is not likely, however, that you
will be able to write routines to handle all types of abnormal conditions. The supervisor
therefore provides for termination of your program when you request it by issuing an ABEND
macro instruction, or when the control program detects a condition that will degrade the system
or destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without

the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Part I: Supervisor Services 1

Data-in-Virtual: By using a simple technique that lets you create, read, or update external
storage data without the traditional GET and PUT access methods, you can write programs
that use very large amounts of data. The data, which is not broken up into individual records,
appears in your virtual storage all at once. For many applications, this technique also provides
better performance than the traditional access methods.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page-size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

Timing and Communication: The supervisor provides the facilities for timing events and for
communication with the system operator, TSO terminals, and the system log.

2 Supervisor Services and Macro Instructions

Linkage Conventions

Linkage conventions are the register and save area conventions a program must follow when it
is called by another program or when it calls another program. It is important that all
programs follow the linkage conventions described here to ensure that the programs can
successfully pass control from one to the other while preserving register contents and parameter
data that they need for successful execution.

During the execution of a program the services of another program may be required. The
program that requests the services of another program is known as a calling program, and the
program that was requested is known as the called program. For example, when the control
program passes control to program A, program A becomes a called program. If program A in
turn passes control to program B, program A becomes a calling program, and program B
becomes a called program. From the point of view of the control program, however, program
A remains a called program until control is returned by program A. For more information on
this subject, see the discussion under the heading “Task and Subtask Communications” in
“Subtask Creation and Control.”

The following conventions are presented assuming one calling and one called program. They
apply, however, to all called and calling programs operating in the system. If the conventions
presented here are always followed, execution of the called program will not be affected by the
method used to pass control or by the identity of the calling program.

Linkage Registers

Registers 0, 1, 13, 14, and 15 are known as the linkage registers; they are used in fixed ways by
the control program. It is good practice to use these registers in the same way in your program,
since they may be modified by the control program or by your program when system macro
instructions are used. Registers 2-12 are not changed by the control program.

Registers 0 and 1 are used to pass parameters to the control program or to a called program.
The expansions of some system macro instructions result in instructions that load a value into
register 0 or 1 or both, or load the address of a parameter list into register 1. For other macro
instructions, the control program uses register 1 to pass specified parameters to the program
you call.

Register 13 contains the address of the save area provided by the calling program.

Register 14 contains the return address of the calling program or an address within the control
program to which your program is to return control when it has completed execution.

Linkage Conventions 3

Register 15 contains the entry address when control is passed to your program by the control
program. The entry address of the called routine should be in register 15 when you pass
control to another program. The expansion of some macro instructions results in instructions
that load into register 15 the address of a parameter list to be passed to the control program.
Register 15 is also used by the called program to return a value (a return code) to the calling
program.

The manner in which the control program passes the information in the PARM field of your
EXEC statement is a good example of how the control program uses a parameter register to
pass information. When control is passed to your program from the control program, register 1
contains the address of a fullword on a fullword boundary in your area of virtual storage (refer
to Figure 1). The high-order bit (bit 0) of this word is set to 1. This is a convention used by
the control program to indicate the last word in a variable-length parameter list; you must use
the same convention when making requests to the control program. Bits 1-31 of the fullword
contain the address of a two-byte length field on a halfword boundary. The length field
contains a binary count of the number of bytes in the PARM field, which immediately follows
the length field. If the PARM field was omitted in the EXEC statement, the count is set to
zero. To prevent possible errors, the count should always be used as a length attribute in
acquiring the information in the PARM field. If your program is not going to use this
information immediately, you should load the address from register 1 into one of registers 2-12
or store the address in a fullword in your program.

Register
1

4 Bytes
AN\

Full-Word
Boundary

Length Field PARM Field gi

N A J

N ~
2 Bytes 0 to 100 Bytes

Half-Word

Boundary

Figure 1. Acquiring PARM Field Information

4 Supervisor Services and Macro Instructions

\«W/

Saving the Calling Program’s Registers

The first action a called program should take is to save the contents of the calling program’s
registers. The contents of any register the called program modifies and the contents of the
linkage registers must be saved. All registers should be saved to avoid errors when the called
program is modified.

The registers are saved in the 18-word save area provided by the calling program and pointed to
by register 13. The format of this area is shown in Figure 2. As indicated by this figure, the
contents of each register must be saved in a specific location within the save area. Registers can
be saved either with a store-multiple (STM) instruction or with the SAVE macro instruction.
The store-multiple instruction, STM 14,12,12(13), places the contents of all registers except 13
in the proper words of the save area. Saving register 13 is discussed under the heading
“Providing a Save Area.”

Word Contents

0 Used by PL/I language program

1 Address of previous save area (stored by calling program)
2 Address of next save area (stored by current program)
3 Register 14 (Return address)

4 Register 15 (Entry address)

5 Register 0

6 Register 1

7 Register 2

8 Register 3

9 Register 4

10 Register 5

11 Register 6

12 Register 7

13 Register 8

14 Register 9

15 Register 10

16 Register 11

17 Register 12

Figure 2. Format of the Save Area

The SAVE macro instruction generates instructions that store a designated group of registers in
the save area. The registers to be saved are coded in the same order as in an STM instruction.
Figure 3 illustrates uses of the SAVE macro instruction. The T parameter (in B) specifies that
the contents of registers 14 and 15 are to be saved.

(A) PROGNAME SAVE (14,12)
(B) PROGNAME SAVE (5,10),T

Figure 3. Use of the SAVE Macro Instruction

The SAVE macro instruction or the equivalent instructions should be placed at the entry point
to the program.

Linkage Conventions 3

Establishing a Base Register

Providing a Save Area

In MVS/XA, addresses are resolved by adding a displacement to a base address. You must,
therefore, establish a base register using one of the registers from 2-12 or register 15. If your
program does not use system macro instructions and does not pass control to another program,
you can establish a base register using the entry address in register 15. Otherwise, because both
your program and the control program use register 15 for other purposes, you must establish a
base using one of the registers 2-12. This should be done immediately after saving the calling
program’s registers.

Note: Cautiously choose your base registers keeping in mind that some instructions alter
register contents (for example, TRT alters register 2). A complete list of instructions and their
processing is available in Principles of Operation.

If any control section in your program passes control to another control section, your program
must provide its own save area. You must also provide a save area when you use certain
system functions, such as GET or PUT. If you establish which registers are available to the
called program or control section, a save area is not necessary. Omitting the save area is not a
good coding practice, however, since any changes in your program might necessitate changing a
called program.

Whether or not your program provides a save area, you must save the address of the calling

AN
program’s save area, which you used, because you will need it to restore the registers before you o
return control to the program that called you. If you are not providing a save area, you can s
keep the address in register 13 or store it in a location in virtual storage. If you are creating
your own save area, use the following procedure.
® Store the address of the save area that you used (the address passed to you in register 13) in
the second word of the save area you created.
e Store the address of your save area (the address you will pass in register 13) in the third
word of the calling program'’s save area. N
\
N~ S

This procedure enables you to find the save area when you need it to restore the registers, and
it enables a trace from save area to save area should one be necessary during a dump.

6 Supervisor Services and Macro Instructions

Figure 4 and Figure 5 show two methods of obtaining a save area and of saving all the
registers, including the addresses of the two save areas. In Figure 4 the registers are stored in
the save area provided by the calling program by using the STM instruction. Register 12 is
then established as the base register. The address of the caller’s save area is then saved in the
second word of the new save area, established by the DC statement. The address of the calling
program’s save area is loaded into register 2. The address of the new save area is loaded into
register 13, and then stored in the third word of the caller’s save area.

PROGNAME CSECT

PROGNAME AMODE 31

PROGNAME RMODE 24
STM 14,12,12(13)
LR 12,15
USING PROGNAME,12
ST 13,SAVEAREA+4
LR 2,13
LA 13,SAVEAREA
ST 13,8(2)

SAVEAREA DC 18F'0"

Figure 4. Chaining Save Areas in a Nonreenterable Program

In Figure 5, the SAVE macro instruction is used to store registers. (An STM instruction could
have been used.) The entry address is loaded into register 12, which is established as the base
register. An unconditional GETMAIN macro instruction (discussed in detail under the heading
“Virtual Storage Management”) is issued requesting the control program to allocate 72 bytes of
virtual storage from an area outside your program, and to return the address of the area in
register 1. The addresses of the old and new save areas are stored in the assigned locations, and
the address of the new save area is loaded into register 13. '

PROGNAME CSECT

PROGNAME AMODE 31

PROGNAME RMODE 24
SAVE (14,12)
LR 12,15

USING PROGNAME, 12
GETMAIN R,LV=72

ST 13,4(1)
ST 1,8(13)
LR 13,1

Figure 5. Chaining Save Areas in a Reenterable Program

Linkage Conventions 7

Summary of Conventions to be Followed When Passing and

Receiving Control :L/
The following is a list of conventions to be followed when passing and receiving control. The
actual methods of passing control are described under the heading “Program Management.”
By a calling program before passing control (return required):
e Place the address of your save area in register 13.
® Place the address at which you wish to regain control (the return addfess) in register 14.
e Plgce the entry address of the program you are calling in register 15.
® Place the address of the parameter list (if there is one) in register 1. (Passing parameters is
discussed under “Program Management.”) 7D
By a calling program before passing control (no return required): -
e Restore registers 2-12 and 14.
e Place the address of the save area provided by the program that called you in register 13.
® Place the entry address of the program you are calling in register 15.
e Place the addresses of parameter lists in registers 1 and 0. 0
By a called program upon receiving control: o
e Save the contents of registers 0-12, 14, and 15 in the save area provided by the calling
program.
@ Establish a base register.
e Request the control program to allocate storage for a save area if you did not already e
allocate it by using a DC statement. \'\k‘")

e Store the save area addresses in the assigned locations.
By a called program before returning control:
e Restore registers 0-12 and 14.

o Place the address of the save area provided by the program you are returning control to in
register 13.

e Place a return code in register 15 if one is required. Otherwise, restore register 15.

8 Supervisor Services and Macro Instructions

Subtask Creation and Control

The control program creates one task in the address space as a result of initiating execution of
the job step (the job step task). You can create additional tasks in your program. If you do
not, however, the job step task is the only task in the address space being executed. The
benefits of a multiprogramming environment are still available even with only one task in the
job step; work is still being performed for other address spaces when your task is waiting for an
event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are competing
for control. When a wait condition occurs in one of your tasks, it is not necessarily a task from
some other address space that gets control; it may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is, more than one task in an
address space) should be chosen only when a significant amount of overlap between two or
more tasks can be achieved. The amount of time taken by the control program in establishing
and controlling additional tasks, and your increased effort to coordinate the tasks and provide
for communications between them must be taken into account.

Creating the Task

A new task is created by issuing an ATTACH macro instruction. The task that is active when
the ATTACH macro instruction is issued is the originating task; the newly created task is the
subtask of the originating task. The subtask competes for control in the same manner as any
other task in the system, on the basis of priority (both address space priority and task priority
within the address space) and the current ability to use a processor. The address of the task
control block for the subtask is returned in register 1.

If the ATTACH macro instruction is executed successfully, control is returned to the user with
a return code of X‘00’ in register 15.

The entry point in the load module to be given control when the subtask becomes active is
specified as it is in a LINK macro instruction, that is, through the use of the EP, EPLOC, and
DE parameters. The use of these parameters is discussed in “Program Management.”
Parameters can be passed to the subtask using the PARAM and VL parameters, also described
under “The LINK Macro Instruction.” Additional parameters deal with the priority of the
subtask, provide for communication between tasks, specify libraries to be used for program
linkages, and establish an error recovery environment for the new subtask.

Subtask Creation and Control 9

Priorities

There are really three priorities to consider: address space priorities, task priorities, and subtask
priorities.

Address Space Priority

When each job is initiated, an address space is created. All successive steps in the job execute
in the same address space. The address space has a dispatching priority, which is normally
determined by the control program. The control program will select, and alter, the priority in
order to achieve the best load balance in the system - that is, in order to make the most
efficient use of processor time and other system resources.

It may be desirable for some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign a priority, you code

DPRTY = (valuel,value2) on the EXEC statement. The address space priority is then
‘determined as follows:

address space dispatching priority = (valuel x 16) + value2

Once the address space dispatching priority is set, it can be altered only by the control program.
(Thus, there is no limit priority associated with an address space.) However, a new address
space priority may be set for succeeding job steps by specifying different values in the DPRTY
parameter on the EXEC statement.

The IEAIPSxx and IEAICSxx members of SYSI.PARMLIB can override the dispatching
priority specified by the DPRTY parameter. The control program assigns the priority obtained
from IEAIPSxx to jobsteps that request a dispatching priority falling within specific installation
defined limits. IEAICSxx directs jobs into specific performance groups thereby affecting their
priority. See SPL: Initialization and Tuning for additional information.

Task Priority

Each task in an address space has associated with it a limit priority and a dispatching priority.
These priorities are set by the control program when a job step is initiated. When other tasks
are created in the address space by use of the ATTACH macro instruction, they may be given
different limit and dispatching priorities by use of the LPMOD and DPMOD parameters,
respectively.

The task dispatching priorities of the tasks in an address space do not affect the order in which
the jobs are selected for execution because the order is selected on the basis of address space
dispatching priority. Once an address space is selected for dispatching, the highest priority task
awaiting execution is selected. Thus, task priorities may affect processing within an address
space. Note, however, that in a multiprocessing system, task priorities cannot guarantee the
order in which the tasks will execute because more than one task may be executing
simultaneously in the same address space on different processors. In a paging environment,
page faults may alter the order in which the tasks execute.

10 Supervisor Services and Macro Instructions

o
\/

Subtask Priority

(When a subtask is created, the limit and dispatching priorities of the subtask are the same as
the current limit and dispatching priorities of the originating task except when the subtask
priorities are modified by the LPMOD and DPMOD parameters of the ATTACH macro
instruction. The LPMOD parameter specifies the number to be subtracted from the current
limit priority of the originating task. The result of the subtraction is assigned as the limit
priority of the subtask. If the result is zero or negative, zero is assigned as the limit priority.
The DPMOD parameter specifies the number to be added to the current dispatching priority of
the originating task. The result of the addition is assigned as the dispatching priority of the
subtask, unless the number is greater than the limit priority or less than zero. In that case, the
limit priority or 0, respectively, is used as the dispatching priority.

Assigning and Changing Priority

Tasks with a large number of input/output operations should be assigned a higher priority than

(" tasks with little input/output, because the tasks with much input/output will be in a wait
condition for a greater amount of time. The lower priority tasks will be executed when the
higher priority tasks are in a wait condition. As the input/output operations are completed, the
higher priority tasks get control, so that more I/O can be started.

The priorities of subtasks can be changed by using the CHAP macro instruction. The CHAP
macro instruction changes the dispatching priority of the active task or one of its subtasks by
adding a positive or negative value. The dispatching priority of an active task can be made less
than the dispatching priority of another task. If this occurs, if the other task is dispatchable it
would be given control after execution of the CHAP macro instruction.

(The CHAP macro instruction can also be used to increase the limit priority of any of an active
task’s subtasks. An active task cannot change its own limit priority. The dispatching priority
of a subtask can be raised above its own limit priority, but not above the limit of the
originating task. When the dispatching priority of a subtask is raised above its own limit
priority, the subtask’s limit priority is automatically raised to equal its new dispatching priority.

Subtask Creation and Control 11

Task and Subtask Communications

The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a job step is
shown in Figure 6. The horizontal lines in Figure 6 separate originating tasks and subtasks;
they have no bearing on task priority. Tasks A, Al, A2, A2a, B, Bl and Bla are all subtasks
of the job-step task; tasks Al, A2, and A2a are subtasks of task A. Tasks A2a and Bla are the
lowest level tasks in the job step. Although task B1 is at the same level as tasks Al and A2, it
is not considered a subtask of task A.

Task A is the originating task for both tasks Al and A2, and task A2 is the originating task for
task A2a. -A hierarchy of tasks exists within the job step. Therefore the job step task, task A,
and task A2 are predecessors of task A2a, while task B has no direct relationship to task A2a.

Job

Step

Task

yd S~

/J/ \\\\
e ~\\\
e ~~.
e ~~e
7 S
//// \\\\\\
/// \\\\\
e S
e TS
Task A Task B
/’// \\\\
/,/ \\
/// \\\
P // \\
g ~,
7 N,
// \\\\
///, \\\\
f/ \\\
£ N
Task A1 Task A2 Task B1
Task A2a Task B1a

Figure 6. Levels of Tasks in a Job Step

12 Supervisor Services and Macro Instructions

All of the tasks in the job step compete independently for processor time; if no constraints are
provided, the tasks are performed and are terminated asynchronously. However, since each
task is performing a portion of the same job step, some communication and constraints between
tasks are required, such as notification of the completion of subtasks. If termination of a
predecessor task is attempted before all of the subtasks are complete, those subtasks and the
predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH macro
instruction to assist in communication between a subtask and the originating task. These
parameters are used to indicate the normal or abnormal termination of a subtask to the
originating task. If the ECB or ETXR parameter, or both, are coded in the ATTACH macro
instruction, the task control block of the subtask is not removed from the system when the
subtask is terminated. The originating task must remove the task control block from the
system after termination of the subtask by issuing a DETACH macro instruction. If the ECB
parameter is specified in the ATTACH macro instruction, the ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The task control blocks for all subtasks
must be removed before the originating task can terminate normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the originating task,
which is to be given control when the subtask being created is terminated. The end-of-task
routine is given control asynchronously after the subtask has terminated and must therefore be
in virtual storage when it is required. After the control program terminates the subtask, the
end-of-task routine specified is scheduled to be executed. It competes for CPU time using the
priority of the originating task and of its address space and can be given control even though
the originating task is in the wait condition. Although the DETACH macro instruction does
not have to be issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed under “Task
Synchronization™), which is posted by the control program when the subtask is terminated.
After posting occurs, the event control block contains the completion code specified for the
subtask.

If neither the ECB nor the ETXR parameter is specified in the ATTACH macro instruction, the
task control block for the subtask is removed from the system when the subtask is terminated.
Its originating task does not have to issue a DETACH macro instruction. A reference to the
task control block in a CHAP or a DETACH macro instruction in this case is risky as is task
termination. Since the originating task is not notified of subtask termination, you may refer to
a task control block that has been removed from the system, which would cause the active task
to be abnormally terminated.

Subtask Creation and Control 13

14 Supervisor Services and Macro Instructions

-
.

Program Management

This section discusses facilities that will help you to design your programs. It includes
descriptions of the residency mode and addressing mode of programs, linkage considerations for
MVS/XA, load module structures, facilities for passing control between programs, and the use
of the associated macro instructions.

Residency and Addressing Mode of Programs

The control program ensures that each load module is loaded above or below 16 megabytes
(MD) virtual as appropriate and that it is invoked in the correct addressing mode (24-bit or
31-bit). The placement of the module above or below 16 Mb depends on the residency mode
(RMODE) that you define for the module. Whether a module executes in 24-bit or 31-bit
addressing mode depends on the addressing mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both instruction and
data addresses as 24-bit addresses. This allows programs executing in 24-bit addressing mode
to address 16 megabytes (16,777,216 bytes) of storage. Similarly, when a program is executing
in 31-bit addressing mode, the system treats both instruction and data addresses as 31-bit
addresses. This allows a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128 x 16 megabytes) of storage.

You can define the residency mode and the addressing mode of a program in the source code.
Figure 7 shows an example of the definition of the AMODE and RMODE attributes in the
source code. This example defines the addressing mode of the load module as 31-bit and the
residency mode of the load module as 24-bit. Therefore, the program will receive control in
31-bit addressing mode and will reside below 16 Mb.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

Figure 7. Assembler Definition of AMODE/RMODE

Version 2 of Assembler H places the AMODE and RMODE in the external symbol dictionary
(ESD) of the output object module for use by the linkage editor. The linkage editor passes this
information on to the control program through the directory entry for the partitioned data set
(PDS) that contains the load module and the composite external symbol dictionary (CESD)
record in the load module. You can also specify the AMODE/RMODE attributes of a load
module by using linkage editor control cards. SPL: 31-bit Addressing contains additional
information about residency and addressing mode; Linkage Editor and Loader contains
information about the linkage editor control cards.

Program Management 15

Residency Mode Definitions

The control program uses the RMODE attribute from the PDS directory entry for the module
to load the program above or below 16 Mb. The RMODE attribute can have one of the
following values:

24 specifies that the program must reside in 24-bit addressable virtual storage.

ANY specifies that the program can reside anywhere in virtual storage because the code has no virtual storage
residency restrictions.

Note: The default value for RMODE is 24.

Addressing Mode Definitions

The AMODE attribute, located in the PDS directory entry for the module, specifies the
addressing mode that the module expects at entry. Bit 32 of the program status word (PSW)
indicates the addressing mode of the program that is executing. MVS/XA supports programs
that execute in either 24-bit or 31-bit addressing mode. The AMODE attribute can have one of
the following values:

24 specifies that the program is to receive control in 24-bit addressing mode.
31 .specifies that the program is to receive control in 31-bit addressing mode.

ANY specifies that the program is to receive control in either 24-bit or 31-bit addressing mode.

Note: The default value for AMODE is 24.

Linkage Considerations for MVS/XA

MVS/XA supports programs that execute in either 24-bit or 31-bit addressing mode. The
following branch instructions take addressing mode into consideration:

Branch and link (BAL)

Branch and link, register form (BALR)
Branch and save (BAS)

Branch and save, register form (BASR)
Branch and set mode (BSM)

Branch and save and set mode (BASSM)

See Principles of Operation for a complete description of how these instructions function. The
following paragraphs provide a general description of these branch instructions in MVS/XA.

The BAL and BALR instructions are unconditional branch instructions (to the address in
operand 2). BAL and BALR function differently depending on the addressing mode in which
you are executing. The difference is in the linkage information passed in the link register when
these instructions execute. In 31-bit addressing mode, the link register contains the AMODE
indicator (bit 0) and the address of the next sequential instruction (bits 1-31); in 24-bit
addressing mode, the link register contains the instruction length code, condition code, program
mask, and the address of the next sequential instruction.

BAS and BASR perform the same function that BAL and BALR perform when BAL and
BALR execute in 31-bit addressing mode.

16 Supervisor Services and Macro Instructions

The BSM instruction provides problem programs with a way to change the AMODE bit in the
T PSW. BSM is an unconditional branch instruction (to the address in operand 2) that saves the
(current AMODE in the high-order bit of the link register (operand 1), and sets the AMODE
indicator in the PSW to agree with the AMODE of the address to which you are transferring
control (that is, the high order bit of operand 2).

The BASSM instruction functions in a manner similar to the BSM instruction. In addition to
saving the current AMODE in the link register, setting the PSW AMODE bit, and transferring
control, BASSM also saves the address of the next sequential instruction in the link register
thereby providing a return address.

BASSM and BSM are used for entry and return linkage in a manner similar to BALR and BR.
The major difference from BALR and BR is that BASSM and BSM can save and change
addressing mode.

Passing Control Between Programs with the Same AMODE

(,, : If you are passing control between programs that execute in the same addressing mode, there
are several combinations of instructions that you can use. Some of these combinations are:

Transfer Return

BAL/BALR BR
BAS/BASR BR

Passing Control Between Programs with Different AMODEs

(, If you are passing control between programs executing in different addressing modes, the
’ AMODE indicator in the PSW must be changed. The BASSM and BSM instructions perform
this function for you. You can transfer to a program in another AMODE using a BASSM
instruction and then return by means of a BSM instruction. This sequence of instructions
ensures that both programs execute in the correct AMODE.

Figure 8 shows an example of passing control between programs with different addressing
modes. In the example, TEST executes in 24-bit AMODE and EP1 executes in 31-bit
AMODE. Before transferring control to EP1, the TEST program loads register 15 with EPA,

(the pointer defined entry point address (that is, the address of EP1 with the high order bit set to
1 to indicate 31-bit AMODE). This is followed by a BASSM 14,15 instruction, which performs
the following functions:

e Sets the high-order bit of the link register (register 14) to 0 (because TEST is currently
executing in 24-bit AMODE) and puts the address of the next sequential instruction into
bits 1-31.

e Sets the PSW AMODE bit to 1 to agree with bit 0 of register 15.

e Transfers to EP1 (the address in bits 1-31 of register 15).

Program Management 17

The EP1 program executes in 31-bit AMODE. Upon completion, EP1 sets a return code in
register 15 and executes a BSM 0,14 instruction, which performs the following functions:

e Sets the PSW AMODE bit to 0 to correspond to the high-order bit of register 14.
e Transfers control to the address following the BASSM instruction in the TEST program.

TEST CSECT
TEST AMODE 24
TEST RMODE 24
L 15,EPA OBTAIN TRANSFER ADDRESS
BASSM 14,15 ~ SWITCH AMODE AND TRANSFER
EXTRN EP1
EPA DC A(X'80000000'+EP1) POINTER DEFINED ENTRY POINT ADDRESS
END
EP1 CSECT
EP1 AMODE 31
EP1 RMODE ANY
SLR 15,15 SET RETURN CODE O
BSM 0,14 RETURN TO CALLER'S AMODE AND TRANSFER
END
Figure 8. Example of Addressing Mode Switch

18 Supervisor Services and Macro Instructions

AN
A

P

S

Load Module Structure Types

Each load module used during a job step can be designed in one of three load module
structures: simple, planned overlay, or dynamic. A simple structure does not pass control to any
other load modules during its execution, and is brought into. virtual storage all at one time. A
planned overlay structure may, if necessary, pass control to other load modules during its
execution, and it is not brought into virtual storage all at one time. Instead, segments of the
load module reuse the same area of virtual storage. A dynamic structure is brought into virtual
storage all at one time, and passes control to other load modules during its execution. Each of
the load modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 9.

Since the large capacity of virtual storage all but eliminates the need for complex overlay
structures, planned overlays will not be discussed further.

Passes Control to Other

Structure Type Loaded All at One Time Load Modules
Simple Yes No
Planned Overlay No Optional
Dynamic Yes Yes

Figure 9. Characteristics of Load Modules

Simple Structure

A simple structure consists of a single load module produced by the linkage editor. The single
load module contains all of the instructions required and is paged into real storage by the
control program as it is executed. The simple structure can be the most efficient of the two
structure types because the instructions it uses to pass control do not require control-program
assistance. However, you should design your program to make most efficient use of paging.

Dynamic Structure

A dynamic structure requires more than one load module during execution. Each load module
required can operate as either a simple structure or another dynamic structure. The advantages
of a dynamic structure over a simple structure increase as the program becomes more complex,
particularly when the logical path of the program depends on the data being processed. The
load modules required in a dynamic structure are paged into real storage when required, and
can be deleted from virtual storage when their use is completed.

Load Module Execution

Depending on the configuration of the operating system and the macro instructions used to
pass control, execution of the load modules is serial or in parallel. Execution is serial in the
MVS/XA operating system unless an ATTACH macro instruction is used to create a new task.
The new task competes for processor time independently with all other tasks in the system. The
load module named in the ATTACH macro instruction is executed in parallel with the load
module containing the ATTACH macro instruction. The execution of the load modules is
serial within each task.

Program Management 19

The following paragraphs discuss passing control for serial execution of a load module.
Creation and management of new tasks is discussed under the headings “Task Creation and
Control.”

Passing Control in a Simple Structure

There are certain procedures to follow when passing control to an entry point in the same load
module. The established conventions to use when passing control are also discussed. These
procedures and conventions are the framework for all program interfaces. Knowledge of the
information about addressing contained in the Assembler Language publication is required.

Passing Control without Return

Some control sections pass control to another control section of the load module and do not
receive control back. An example of this type of control section is a housekeeping routine at
the beginning of a program that establishes values, initializes switches, and acquires buffers for
the other control sections in the program. Use the following procedures when passing control
without return.

Preparing to Pass Control

Because control will not be returned to this control section, you must restore the contents of
register 14. Register 14 originally contained the address of the location in the calling program
(for example, the control program) to which control is to be passed when your program is
finished. Since the current control section does not make the return to the calling program, the
return address must be passed on to the control section that does make the return. In addition,
the contents of registers 2-12 must be unchanged when your program eventually returns control,
so these registers must also be restored.

If control were being passed to the next entry point from the control program, register 15
would contain the entry address. You should use register 15 in the same way, so that the called
routine remains independent of the program that passed control to it.

! Use register 1 to pass parameters. Establish a parameter list and place the address of the list in
register 1. The parameter list should consist of consecutive fullwords starting on a fullword
boundary, each fullword containing an address to be passed to the called control section. When
executing in 24-bit AMODE, each address is located in the three low-order bytes of the word.
When executing in 31-bit AMODE, each address is located in bits 1-31 the word. In both
addressing modes, set the high-order bit of the last word to 1 to indicate that it is the last word
of the list. The system convention is that the list contain addresses only. You may, of course,
deviate from this convention; however, when you deviate from any system convention, you
restrict the use of your programs to those programmers who know about your special
conventions.

Since you have reloaded all the necessary registers, the save area that you received on entry is
now available, and should be reused by the called control section. Pass the address of the save
area in register 13 just as it was passed to you. By passing the address of the old save area, you
save the 72 bytes of virtual storage for a second, unnecessary, save area.

Note: 1If you pass a new save area instead of the one received on entry, errors could occur.

20 Supervisor Services and Macro Instructions

™

C

Passing Control

The common way to pass control between one control section and an entry point in the same
load module is to load register 15 with a V-type address constant for the name of the external
entry point, and then to branch to the address in register 15. The external entry point must
have been identified using an ENTRY instruction in the called control section if the entry point
is not the same as the control section’s CSECT name.

Figure 10 shows an example of loading registers and passing control. In this example, no new
save area is used, so register 13 still contains the address of the old save area. It is also
assumed for this example that the control section will pass the same parameters it received to
the next entry point. First, register 14 is reloaded with the return address. Next, register 15 is
loaded with the address of the external entry point NEXT, using the V-type address constant at
the location NEXTADDR. Registers 0-12 are reloaded, and control is passed by a branch
instruction using register 15. The control section to which control is passed contains an
ENTRY instruction identifying the entry point NEXT.

L 14,12(13) LOAD CALLER'S RETURN ADDRESS
L 15 ,NEXTADDR ENTRY NEXT

LM 0,12,20(13) RETURN CALLER's REGISTERS

BR 15 NEXT SAVE (14,12)

NEXTADDR DC V(NEXT)

Figure 10. Passing Control in a Simple Structure

Figure 11 shows an example of passing a parameter list to an entry point with the same
addressing mode. Early in the routine the contents of register 1 (that is, the address of the
fullword containing the PARM field address) were stored at the fullword PARMADDR.
Register 13 is loaded with the address of the old save area, which had been saved in word 2 of
the new save area. The contents of register 14 are restored, and register 15 is loaded with the
entry address.

Program Management 21

USING *,12 Establish addressability

EARLY ST 1,PARMADDR Save parameter address
L 13,4(13) Reload address of old save area
L 0,20(13)
L 14,12(13) Load return address
L 15,NEXTADDR Load address of next entry point
LA 1,PARMLIST Load address of parameter list
oI PARMADDR,X'80' Turn on last parameter indicator
LM 2,12,28(13) Reload remaining registers
BR 15 Pass control

PARMLIST DS 0A
DCBADDRS DC A(INDCB)
DC A(OUTDCB)
PARMADDR DC A(0)
NEXTADDR DC V (NEXT)

Figure 11. Passing Control With a Parameter List

The address of the list of parameters is loaded into register 1. These parameters include the
addresses of two data control blocks (DCBs) and the original register 1 contents. The
high-order bit in the last address parameter (PARMADDR) is set to 1 using an OR-immediate
instruction. The contents of registers 2-12 are restored. (Because one of these registers was the
base register, restoring the registers earlier would have made the parameter list unaddressable.)
A branch register instruction using register 15 passes control to entry point NEXT.

Passing Control with Return

The control program passed control to your program, and your program will return control
when it is through processing. Similarly, control sections within your program will pass control
to other control sections, and expect to receive control back. An example of this type of
control section is a monitoring routine; the monitor determines the order of execution of other
control sections based on the type of input data. Use the following procedures when passing
control with return.

Preparing to Pass Control

Use registers 15 and 1 in the same manner they are used to pass control without return.
Register 15 contains the entry address in the new control section and register 1 is used to pass a
parameter list.

Register 14 must contain the address of the location to which control is to be returned when the
called control section completes execution. The address can be the instruction following the
instruction which causes control to pass, or it can be another location within the current control
section designed to handle all returns. Registers 2-12 are not involved in the passing of control;
the called control section should not depend on the contents of these registers in any way.

22 Supervisor Services and Macro Instructions

'

P

You should provide a new save area for use by the called control section as previously
described, and pass the address of that save area in register 13. Note that the same save area
can be reused after control is returned by the called control section. One new save area is
ordinarily all you will require regardless of the number of control sections called.

Passing Control

Two standard methods are used for passing control to another control section and providing
for return of control. One is an extension of the method used to pass control without a return,
and requires a V-type address constant and a branch, a branch and link, or a branch and save
instruction provided both programs execute in the same addressing mode. If the addressing
mode changes, a branch and save and set mode instruction should be used. The other method
uses the CALL macro instruction to provide a parameter list and establish the entry and return
addresses. With either method, you must identify the entry point by an ENTRY instruction in
the called control section if the entry name is not the same as the control section CSECT name.
Figure 12 and Figure 13 illustrate the two methods of passing control; in each example, assume
that register 13 already contains the address of a new save area.

Figure 12 also shows the use of an inline parameter list and an answer area. The address of
the external entry point is loaded into register 15 in the usual manner. A branch and link
instruction is then used to branch around the parameter list and to load register 1 with the
address of the parameter list. An inline parameter list, such as the one shown in Figure 12, is
convenient when you are debugging because the parameters involved are located in the listing
(or the dump) at the point they are used, instead of at the end of the listing or dump. Note
that the high-order bit of the last address parameter (ANSWERAD) is set to 1 to indicate the
end of the list. The area pointed to by the address in the ANSWERAD parameter is an area to
be used by the called control section to pass parameters back to the calling control section.
This is a possible method to use when a called control section must pass parameters back to the
calling control section. Parameters are passed back in this manner so that no additional
registers are involved. The area used in this example is twelve words. The size of the area for
any specific application depends on the requirements of the two control sections involved.

L 15,NEXTADDR Entry address in register 15
CNOP 0,4
BAL 1,GO0UT Parameter list address in
register 1
PARMLIST DS OA Start of parameter list
DCBADDRS DC A(INDCB) Input DCB address
DC A(OUTDCB) Output DCB address
ANSWERAD DC A(AREA+X'80000000') Answer area address with
high-order bit on
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14

contains return address
and current AMODE
RETURNPT .
AREA DC 12F'0" Answer area from NEXT

Note: This example assumes that you are passing control to a program that executes in the same addressing mode as
your program. See the topic “Linkage Considerations for MVS/XA” for information on how to handle branches
between programs that execute in different addressing modes.

Figure 12. Passing Control With Return

Program Management 23

CALL NEXT, (INDCB,OUTDCB,AREA) ,VL
RETURNPT ..
AREA DC 12F'0"

Note: You cannot use the CALL macro instruction to pass control to a program that executes in a different addressing
mode.

Figure 13. Passing Control With CALL

The CALL macro instruction in Figure 13 provides the same functions as the instructions in
Figure 12. When the CALL macro instruction is expanded, the parameters cause the following
results:

NEXT - A V-type address constant is created for NEXT, and the address is loaded into
register 15. '

(INDCB,OUTDCB,AREA) - A-type address constants are created for the three parameters
coded within parentheses, and the address of the first A-type address constant is placed in
register 1.

VL - The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the instruction
following the CALL macro instruction is loaded into register 14 before control is passed.

In addition to the results described above, the V-type address constant generated by the CALL
macro instruction requires the load module with the entry point NEXT to be link edited into
the same load module as the control section containing the CALL macro instruction. The
Linkage Editor and Loader publication tells more about this service.

The parameter list constructed from the CALL macro instruction in Figure 13, contains only
A-type address constants. A variation on this type of parameter list results from the following
coding:

CALL NEXT, (INDCB, (6),(7)),VL

In the above CALL macro instruction, two of the parameters to be passed are coded as
registers rather than symbolic addresses. The expansion of this macro instruction again results
in a three-word parameter list; in this example, however, the expansion also contains
instructions that store the contents of registers 6 and 7 in the second and third words,
respectively, of the parameter list. The high-order bit in the third word is set to 1 after register
7 is stored. You can specify as many address parameters as you need, and you can use
symbolic addresses or register contents as you see fit.

Analyzing the Return

When the control program returns control to the user after it invokes a system service, the
contents of registers 2-13 are unchanged. When control is returned to your control section
from the called control section, registers 2-14 contain the same information they contained
when control was passed, as long as system conventions are followed. The called control
section has no obligation to restore registers 0 and 1; so the contents of these registers may or
may not have been changed.

24 Supervisor Services and Macro Instructions

4

-
A

RN

,
y.
\ e

When control is returned, register 15 can contain a return code indicating the results of the
processing done by the called control section. If used, the return code should be a multiple of
four, so a branching table can be used easily, and a return code of zero should be used to
indicate a normal return. The control program frequently uses this method to indicate the
results of the requests you make using system macro instructions; an example of the type of
return codes the control program provides is shown in the description of the IDENTIFY macro
instruction.

The meaning of each of the codes to be returned must be agreed upon in advance. In some
cases, either a “good” or “bad” indication (zero or nonzero) will be sufficient for you to decide
your next action. If this is true, the coding in Figure 14 could be used to analyze the results.
Many times, however, the results and the alternatives are more complicated, and a branching
table, such as shown in Figure 15 could be used to pass control to the proper routine.

Note: Explicit tests are required to ensure that the return code value does not exceed the
branch table size.

RETURNPT LTR 15,15 Test return code for zero
BNZ ERRORTN Branch if not zero to error
routine

Figure 14. Test for Normal Return

RETURNPT B RETTAB(15) Branch to table using return
code
RETTAB B NORMAL Branch to normal routine
B COND1 Branch to routine for
condition 1
B COND2 Branch to routine for
condition 2
B GIVEUP Branch to routine to handle

impossible situations

Figure 15. Return Code Test Using Branching Table

How Control is Returned

In the discussion of the return under “Analyzing the Return” it was indicated that the control
section returning control must restore the contents of registers 2-14. Because these are the same
registers reloaded when control is passed without a return, refer to the discussion under
“Passing Control without Return” for detailed information and examples. The contents of
registers 0 and 1 do not have to be restored.

Program Management 25

Register 15 can contain a return code when control is returned. As indicated previously, a B
return code should be a multiple of four with a return code of zero indicating a normal return. ’(\
The return codes other than zero that you use can have any meaning, as long as the control A
section receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14; you should always return
control to that address. If an addressing mode switch is not involved, you can either use a
branch instruction such as BR 14, or you can use the RETURN macro instruction. An
example of each of these methods of returning control is discussed in the following paragraphs.
If an addressing mode switch is involved, you can use a BSM 0,14 instruction to return control.
See Figure 8 for an example that uses the BSM instruction to return control.

Figure 16 shows a portion of a control section used to analyze input data cards and to check

for an out-of-tolerance condition. Each time an out-of-tolerance condition is found, in addition

to some corrective action, one is added to the one-byte value at the address STATUSBY. After

the last data card is analyzed, this control section returns to the calling control section, which

bases its next action on the number of out-of-tolerance conditions encountered. The coding N
shown in Figure 16 loads register 14 with the return address. The contents of register 15 are N
set to zero, and the value at the address STATUSBY (the number of errors) is placed in the

low-order eight bits of the register. The contents of register 15 are shifted to the left two places

to make the value a multiple of four. Registers 2-12 are reloaded, and control is returned to

the address in register 14.

L 13,4(13) Load address of previous save
area N

L 14,12(13) Load return address

SR 15,15 Set register 15 to zero

IC 15,STATUSBY Load number of errors

SLA 15,2 Set return code to multiple
of 4

LM 2,12,28(13) Reload registers 2-12

BR 14 Return

. AN
STATUSBY DC X'00" "

Note: This example assumes that you are returning to a program with the same AMODE. If not, use the BSM
instruction to transfer control.

Figure 16. Establishing a Return Code

The RETURN macro instruction saves coding time. The expansion of the RETURN macro

instruction provides instructions that restore a designated range of registers, load a return code

in register 15, and branch to the address in register 14. If T is specified, the RETURN macro

instruction flags the save area used by the returning control section (that is, the save area

supplied by the calling routine). It does this by setting the low-order bit of word four of the

save area to one after the registers have been restored. The flag indicates that the control

section that used the save area has returned to the calling control section. The flag is useful

when tracing the flow of your program in a dump. For a complete record of program flow, a)
separate save area must be provided by each control section each time control is passed. {;

26 Supervisor Services and Macro Instructions

You must restore the contents of register 13 before issuing the RETURN macro instruction.
Code the registers to be reloaded in the same order as they would have been designated for a
load-multiple (LM) instruction. You can load register 15 with the return code before you write
the RETURN macro instruction, you can specify the return code in the RETURN macro
instruction, or you can reload register 15 from the save area.

The coding shown in Figure 17 provides the same result as the coding shown in Figure 16.
Registers 13 and 14 are reloaded, and the return code is loaded in register 15. The RETURN
macro instruction reloads registers 2-12 and passes control to the address in register 14. The
save area used is not flagged. The RC=(15) parameter indicates that register 15 already
contains the return code, and the contents of register 15 are not to be altered.

L 13,4(13) Restore save area address

L 14,12(13) Return address in
register 14

SR 15,15 Zero register 15

IC 15,STATUSBY Load number of errors

SLA 15,2 Set return code to

multiple of 4
RETURN (2,12) ,RC=(15) Reload registers and
return

STATUSBY DC X'00'

Note: You cannot use the RETURN macro instruction to pass control to a program that executes in a different
addressing mode.

Figure 17. Using the RETURN Macro Instruction

Figure 18 illustrates another use of the RETURN macro instruction. The correct save area
address is again established, and then the RETURN macro instruction is issued. In this
example, registers 14 and 0-12 are reloaded, a return code of 8 is placed in register 15, the save
area is flagged, and control is returned. Specifying a return code overrides the request to
restore register 15 even though register 15 is within the designated range of registers.

L 13,4(13)
RETURN (14,12),T,RC=8

Figure 18. RETURN Macro Instruction With Flag

Program Management 27

Return to the Control Program

P
The discussion in the preceding paragraphs has covered passing control within one load N
module, and has been based on the assumption that the load module was brought into virtual
storage because of the program name specified in the EXEC statement. The control program
established only one task to be performed for the job step. When the logical end of the
program is reached, control passes to the return address passed (in register 14) to the first
control section in the control program. When the control program receives control at this
point, it terminates the task it created for the job step, compares the return code in register 15
with any COND values specified on the JOB and EXEC statements, and determines whether or
not subsequent job steps, if any are present, should be executed.

Passing Control in a Dynamic Structure

The discussion of passing control in a simple structure provides the background for the SN
discussion of passing control in a dynamic structure. Within each load module, control should
be passed as in a simple structure. If you can determine which control sections will make up a
load module before you code the control sections, you should pass control within the load
module without involving the control program. The macro instructions discussed in this section
provide increased linkage capability, but they require control program assistance and possibly
increased execution time.

Bringing the Load Module into Virtual Storage

The load module containing the entry name you specified on the EXEC statement is /
automatically brought into virtual storage by the control program. The control program places S
the load module above or below 16 Mb according to its RMODE attribute. Any other load

modules you require during your job step are brought into virtual storage by the control

program when requested; these requests are made by using the LOAD, LINK, ATTACH, and

XCTL macro instructions. The LOAD macro instruction sets the high-order bit of the entry

point address to indicate the addressing mode of the load module. The ATTACH, LINK, and

XCTL macro instructions use this information to set the addressing mode for the module that

gets control. If the AMODE is ANY, the module will get control in the same addressing mode

as the program that issued the ATTACH, LINK, or XCTL macro instruction. If a copy of the A
load module must be brought into storage, the control program places the load module above /M{__; o
or below 16 Mb according to its RMODE attribute. The following paragraphs discuss the

proper use of these macro instructions.

Location of the Load Module
Initially, each load module that you can obtain dynamically is located in a library (partitioned
data set). This library is the link library, the job or step library, the task library, or a private
library.
e The link library is always present and is available to all job steps of all jobs. The control

program provides the data control block for the library and logically connects the library to
your program, making the members of the library available to your program.

28 Supervisor Services and Macro Instructions

C

C

® The job and step libraries are explicitly established by including //JOBLIB and //STEPLIB
DD statements in the input stream. The //JJOBLIB DD statement is placed immediately
after the JOB statement, while the //STEPLIB DD statement is placed among the DD
statements for a particular job step. The job library is available to all steps of your job,
except those that have step libraries. A step library is available to a single job step; if there
is a job library, the step library replaces the job library for the step. For either the job
library or the step library, the control program provides the data control block and issues
the OPEN macro instruction to logically connect the library to your program.

e Unique task libraries can be established by using the TASKLIB parameter of the ATTACH
macro instruction. The issuer of the ATTACH macro instruction is responsible for
providing the DD statement and opening the data set or sets. If the TASKLIB parameter
is omitted, the task library of the attaching task is propagated to the attached task. In the
following example, task A’s job library is LIB1. Task A attaches task B, specifying
TASKLIB=LIB2 in the ATTACH macro instruction. Task B’s task library is
therefore LIB2. When task B attaches task C, LIB2 is searched for task C before LIBI or
the link library. Because task B did not specify a unique task library for task C, its own
task library (LIB2) is propagated to task C and is the first library searched when task C
requests that a module be brought into virtual storage.

Task A ATTACH EP=B,TASKLIB=LIB2
Task B ATTACH EP=C

e A private library is defined by including a DD statement in the input stream and is
available only to the job step in which it is defined. You must provide the data control
block and issue the OPEN macro instruction for each data set. You may use more than
one private library by including more than one DD statement and an associated data
control block.

A library can be a single partitioned data set, or a collection of such data sets. When itis a
collection, you define each data set by a separate DD statement, but you assign a name only to
the statement that defines the first data set. Thus, a job library consisting of three partitioned
data sets would be defined as follows:

//JOBLIB DD DSNAME=PDSI,..
// DD DSNAME=PDS2,
// DD DSNAME=PDS3...

The three data sets (PDS1, PDS2, PDS3) are processed as one, and are said to be concatenated.
Concatenation and the use of partitioned data sets is discussed in more detail in the Data
Management Services publication.

Some of the load modules from the link library may already be in virtual storage in an area
called the link pack area. The contents of these areas are determined during the nucleus
initialization process and will vary depending on the requirements of your installation. The link
pack area contains all reenterable load modules from the LPA library, along with installation
selected modules from the SVC and link libraries. These load modules can be used by any job
step in any job.

With the exception of those load modules contained in this area, copies of all of the reenterable
load modules you request are brought into your area of virtual storage and are available to any
task in your job step. The portion of your area containing the copies of the load modules is
called the job pack area.

Program Management 29

The Search for the Load Module

In response to your request for a copy of a load module, the control program searches the job
pack area, the task’s load list, and the link pack area. If a copy of the load module is found in
one of the pack areas, the control program determines whether that copy can be used (see
“Using an Existing Copy™). If an existing copy can be used, the search stops. If it cannot be
used, the search continues until the module is located in a library. The load module is then
brought into the job pack area or the load list area.

The order in which the libraries and pack areas are searched depends on the parameters used in
the macro instruction (LINK, LOAD, XCTL, or ATTACH) requesting the load module. The
parameters that define the order of the search are EP, EPLOC, DE, DCB, and TASKLIB.

The TASKLIB parameter is used only for ATTACH. You should choose the parameters for the
macro instruction that provide the shortest search time. The search of a library actually involves
the search of a directory, followed by copying the directory entry into virtual storage, followed
by loading the load module into virtual storage. If you know the location of the load module,
you should use parameters that eliminate as many of these searches as possible, as indicated in
Figure 19, Figure 20, and Figure 21.

The EP, EPLOC, or DE parameter specifies the name of the entry point in the load module;
you code one of the three every time you use a LINK, LOAD, XCTL, or ATTACH macro
instruction. The optional DCB parameter indicates the address of the data control block for
the library containing the load module. Omitting the DCB parameter or using the DCB
parameter with an address of zero specifies the data control block for the task libraries, the job
or step library, or the link library. If TASKLIB is specified and if the DCB parameter contains
the address of the data control block for the link library, no other library is searched.

To avoid using “system copies” of modules resident in LPA and LINKLIB, you can specifically
limit the search for the load module to the job pack area and the first library on the normal
search sequence, by specifying the LSEARCH parameter on the LINK, LOAD, or XCTL
macro instruction with the DCB for the library to be used.

The following paragraphs discuss the order of the search when the entry name used is a member
name.

The EP and EPLOC parameters require the least effort on your part; you provide only the
entry name, and the control program searches for a load module having that entry name.
Figure 19 shows the order of the search when EP or EPLOC is coded, and the DCB parameter
is omitted or DCB =0 is coded.

The job pack area is searched for an available copy.

The requesting task’s task library and all the unique task libraries of its preceding tasks are searched. (Note: For the
ATTACH macro, the attached task’s library and all the unique task libraries of its preceding tasks are searched.)

The step library is searched,; if there is no step library, the job library (if any) is searched.

The link pack area is searched.

The link library is searched.

Figure 19. Search for Module, EP or EPLOC Parameter With DCB=0 or DCB Parameter Omitted

30 Supervisor Services and Macro Instructions

P
N

When used without the DCB parameter, the EP and EPLOC parameters provide the easiest
method of requesting a load module from the link, job, or step library. The task libraries are
searched before the job or step library, beginning with the task library of the task that issued
the request and continuing through the task libraries of all its antecedent tasks. The job or step
library is then searched, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold one version
of a load module, while another can be used to hold another version with the same entry name.
If one version is in the link library, you can ensure that the other will be found first by
including it in the job or step library. However, if both versions are in the job or step library,
you must define the data set that contains the version you want to use before the data set that
contains the other version. For example, if the wanted version is in PDS1 and the unwanted
version is in PDS2, a step library consisting of these data sets should be defined as follows:

//STEPLIB DD DSNAME=PDSI1,...
// DD DSNAME=PDS2,...

If, however, the first version of a nonreusable module in the job or step library has been
previously loaded and the version in the link library or the second version in the job library is
desired, the DCB parameter must be coded in the macro instructions.

Use extreme caution when specifying module names in unique task libraries, because duplicate
names may cause the wrong module to be brought into virtual storage when a task requests it.
Once a module has been loaded from a task library, the module name is placed in the job pack
queue. A copy of this module will then be available to all tasks in that job that request that
module, regardless of the requester’s task library.

If you know that the load module you are requesting is a member of one of the private
libraries, you can still use the EP or EPLOC parameter, this time in conjunction with the DCB
parameter. You specify the address of the data control block for the private library in the DCB
parameter. The order of the search for EP or EPLOC with the DCB parameter is shown in
Figure 20.

The job pack area is searched for an available copy.
The specified library is searched.

The link pack area is searched.

The link library is searched.

Figure 20. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private
Library

Searching a job or step library slows the retrieval of load modules from the link library; to
speed this retrieval, you should limit the size of the job and step libraries. You can best do this
by eliminating the job library altogether and providing step libraries where required. You can
limit each step library to the data sets required by a single step; some steps (such as
compilation) do not require a step library and therefore do not require searching and retrieving
modules from the link library. For maximum efficiency, you should define a job library only
when a step library would be required for every step, and every step library would be the same.

The DE parameter requires more work than the EP and EPLOC parameters, but it can reduce
the amount of time spent searching for a load module. Before you can use this parameter, you
must use the BLDL macro instruction to obtain the directory entry for the module. The
directory entry is part of the library that contains the module.

Program Management 31

To save time, the BLDL macro instruction must obtain directory entries for more than one

entry name. You specify the names of the load modules and the address of the data control P
block for the library when using the BLDL macro instruction; the control program places a
copy of the directory entry for each entry name requested in a designated location in virtual
storage. If you specify the link library and the job or step library, the directory information
indicates from which library the directory entry was taken. The directory entry always indicates
the relative track and block location of the load module in the library. If the load module is
not located on the library you indicate, a return code is given. You can then issue another
BLDL macro instruction specifying a different library.

To use the DE parameter, you provide the address of the directory entry and code or omit the
DCB parameter to indicate the same library specified in the BLDL macro instruction. The task
using the DE parameter should be the same as the one which issued the BLDL or one which
has the same job, step, and task library structure as the task issuing the BLDL. The order of
the search when the DE parameter is used is shown in Figure 21 for the link, job, step, and
private libraries.

The preceding discussion of the search is based on the premise that the entry name you
specified is the member name. The control program checks for an alias entry point name when
the load module is found in a library. If the name is an alias, the control program obtains the
corresponding member name from the library directory, and then searches to determine if a
usable copy of the load module exists in the job pack area. If a usable copy does not exist in a
pack area, a new copy is brought into the job pack area. Otherwise, the existing copy is used,
conserving virtual storage and eliminating the loading time.

Directory Entry Indicates Link Library and DCB=0 or DCB Parameter Omitted.
The job pack area is searched for an available copy.
The link pack area is searched. . .
The module is obtained from the link library. R
Directory Entry Indicates Job, Step, or Task Library and DCB=0 or DCB Parameter Omitted.
The job pack area is searched for an available copy.
The module is obtained from the task library designated by the ‘Z’ byte of the DE operand.
DCB Parameter Indicates Private Library
The job pack area is searched for an available copy.
The module is obtained from the specified private library.

Figure 21. Search for Module Using DE Parameter

As the discussion of the search indicates, you should choose the parameters for the macro
instruction that provide the shortest search time. The search of a library actually involves a
search of the directory, followed by copying the directory entry into virtual storage, followed by
loading the load module into virtual storage. If you know the location of the load module, you
should use the parameters that eliminate as many of these unnecessary searches as possible, as
indicated in Figure 19, Figure 20, and Figure 21. Examples of the use of these figures are
shown in the following discussion of passing control.

Using an Existing Copy

The control program uses a copy of the load module already in the job pack area if the copy

can be used. Whether the copy can be used or not depends on the reusability and current

status of the load module; that is, the load module attributes, as designated using linkage editor

control statements, and whether the load module has already been used or is in use. The status

information is available to the control program only when you specify the load module entry

name on an EXEC statement, or when you use ATTACH, LINK, or XCTL macro instructions -
to transfer control to the load module. The control program protects you from obtaining an ((/
unusable copy of a load module if you always “formally” request a copy using these macro

32 Supervisor Services and Macro Instructions

instructions (or the EXEC statement); if you pass control in any other manner (for instance, a
branch or a CALL macro instruction), the control program, because it is not informed, cannot
(protect your copy.

All reenterable modules (modules designated as reenterable using the linkage editor) from any
library are completely reusable; only one copy is ever placed in the link pack area or brought
into your job pack area, and you get immediate control of the load module. If the module is
serially reusable, only one copy is ever placed in the job pack area; this copy is always used for
a LOAD macro instruction. If the copy is in use, however, and the request is made using a
LINK, ATTACH, or XCTL macro instruction, the task requiring the load module is placed in
a wait condition until the copy is available. A LINK macro instruction should not be issued
for a serially reusable load module currently in use for the same task; the task will be
abnormally terminated. (This could occur if an exit routine issued a LINK macro instruction
for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro instruction will always bring in a new copy
. of the load module; an existing copy is used only if a LINK, ATTACH, or XCTL macro
(instruction is issued and the copy has not been used previously. Remember, the control
program can determine if a load module has been used or is in use only if all of your requests
are made using LINK, ATTACH, or XCTL macro instructions.

Using the LOAD Macro Instruction

Use the LOAD macro instruction to ensure that a copy of the specified load module is in
virtual storage. When a LOAD macro instruction is issued, the control program searches for
the load module as discussed previously and, if required, brings a copy of the load module into

: virtual storage. When the control program returns control, register 0 contains the addressing

(mode and the virtual storage address of the entry point specified for the requested load module,

. and register 1 contains the length of the loaded module (in doublewords) and the authorization
code in the high byte. Because the load module is retained even though it is not in use, the
LOAD macro instruction is normally used only for a reenterable or serially reusable load
module.

| The control program brings the copy of the load module into subpool 251, with one exception.

| It places the module in subpool 252 when all of the following conditions exist:

| e The library is authorized
| ® You are not running under TSO test.

(' | e The module is reentrant

| Subpool 251 is fetch protected and has a storage key equal to your PSW key. Subpool 252 is
| not fetch protected and has storage key 0.

The control program establishes a “responsibility” count for the copy, and adds one to the
count each time the requirements of a LOAD macro instruction are satisfied by the same copy.
As long as the responsibility count is not zero, the copy is retained in virtual storage.

The responsibility count for the copy is lowered by one when a DELETE macro instruction is
issued during the task which was active when the LOAD macro instruction was issued. When a
task is terminated, the count is lowered by the number of LOAD macro instructions issued for
the copy when the task was active minus the number of deletions. When the use count for a
copy in a job pack area reaches zero, the virtual storage area containing the copy is made

(. available.

Program Management 33

Passing Control with Return

The LINK macro instruction is used to pass control between load modules and to provide for
return of control. You can also pass control using branch, branch and link, branch and save,
or branch and save and set mode instructions or the CALL macro instruction; however, when
you pass control in this manner you must protect against multiple uses of nonreusable or
serially reusable modules. You must also be careful to enter the routine in the proper
addressing mode. The following paragraphs discuss the requirements for passing control with
return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your program is concerned,
you are passing control to another load module. Remember, however, that you are requesting
the control program to assist you in passing control. You are actually passing control to the
control program, using an SVC instruction, and requesting the control program to find a copy
of the load module and pass control to the entry point you designate. There is some similarity
between passing control using a LINK macro instruction and passing control using a CALL
macro instruction in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not change the
contents of these registers, and the called load module should restore them before control is
returned. You must provide the address in register 13 of the save area for use by the called
load module; the control program does not use this save area. You can pass address
parameters in a parameter list to the load module using register 1; the LINK macro instruction
provides the same facility for constructing this list as the CALL macro instruction. Register 0
is used by the control program and the contents may be modified. In certain cases, the contents
of register 1 may be altered by the LINK macro instruction.

There is also some difference between passing control using a LINK macro instruction and
passing control using a CALL macro instruction. When you pass control in a simple structure,
register 15 contains the entry address and register 14 contains the return address. When the
called load module gets control, that is still what registers 14 and 15 contain, but when you use
the LINK macro instruction, it is the control program that establishes these addresses. When
you code the LINK macro instruction, you provide the entry name and possibly some library
information using the EP, EPLOC, or DE, and DCB parameters, but you have to get this entry
name and library information to the control program. The expansion of the LINK macro
instruction does this by creating a control program parameter list (the information required by
the control program) and passing its address to the control program. After the control program
finds the entry name, it places the address in register 15.

The return address in your control section is always the instruction following the LINK; that is
not, however, the address that the called load module receives in register 14. The control
program saves the address of the location in your program in its own save area, and places in
register 14 the address of a routine within the control program that will receive control.
Because control was passed using the control program, return must also be made using the
control program. The control program also handles all switching of addressing mode when
processing the LINK macro instruction.

The control program establishes a use count for a load module when control is passed using the
LINK macro instruction. This is a separate use count from the count established for LOAD
macro instructions, but it is used in the same manner. The count is increased by one when a
LINK macro instruction is issued and decreased by one when return is made to the control
program or when the called load module issues an XCTL macro instruction.

34 Supervisor Services and Macro Instructions

s

Figure 22 and Figure 23 show the coding of a LINK macro instruction used to pass control to
an entry point in a load module. In Figure 22, the load module is from the link, job, or step
library; in Figure 23, the module is from a private library. Except for the method used to pass
control, this example is similar to Figures 10 and 11. A problem program parameter list
containing the addresses INDCB, OUTDCB, and AREA is passed to the called load module;
the return point is the instruction following the LINK macro instruction. A V-type address
constant is not generated, because the load module containing the entry point NEXT is not to
be edited into the calling load module. Note that the EP parameter is chosen, since the search
begins with the job pack area and the appropriate library as shown in Figure 19.

LINK EP=NEXT, PARAM= (INDCB,OUTDCB,AREA) ,VL=1
RETURNPT ...
AREA DC 12F'0"

Figure 22. Use of the LINK Macro Instruction With the Job or Link Library

OPEN (PVTLIB)
LINK EP=NEXT, DCB=PVTLIB, PARAM=(INDCB,OUTDCB,
AREA) ,VL=1
PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 23. Use of the LINK Macro Instruction With a Private Library

Figure 24 and Figure 25 show the use of the BLDL and LINK macro instructions to pass
control. Assuming that control is to be passed to an entry point in a load module from the link
library, a BLDL macro instruction is issued to bring the directory entry for the member into
virtual storage. (Remember, however, that time is saved only if more than one directory entry
is requested in a BLDL macro instruction. Only one is requested here for simplicity.)

BLDL 0,LISTADDR

DS OH List description field:
LISTADDR DC H'OLl' Number of list entries
DC H'60' Length of each entry
NAMEADDR DC CL8'NEXT' Member name
DS 26H Area required for directory
information

Figure 24. Use of the BLDL Macro Instruction

Program Management 35

The first parameter of the BLDL macro instruction is a zero, which indicates that the directory

entry is on the link, job, step, or task library. The second parameter is the address in virtual P
storage of the list description field for the directory entry. The second two bytes at "/
LISTADDR indicate the length of each entry. A character constant is established to contain

the directory information to be placed there by the control program as a result of the BLDL

macro instruction. The LINK macro instruction in Figure 25 can now be written. Note that

the DE parameter refers to the name field, not the list description field, of the directory entry.

LINK DE=NAMEADDR ,DCB=0,PARAM=(INDCB,OUTDCB,AREA) ,VL=1

Figure 25. The LINK Macro Instruction With a DE Parameter

Using CALL or Branch and Link

You can save time by passing control to a load module without using the control program.
Passing control without using the control program is performed as follows. Issue a LOAD
macro instruction to obtain a copy of the load module, preceded by a BLDL macro instruction
if you can shorten the search time by using it. The control program returns the address of the
entry point and the addressing mode in register 0 and the length in doublewords in register 1.
Load this address into register 15. The linkage requirements are the same when passing control
between load modules as when passing control between control sections in the same load
module: register 13 must contain a save area address, register 14 must contain the return
address, and register 1 is used to pass parameters in a parameter list. A branch instruction, a
branch and link instruction, a branch and save instruction, a branch and save and set mode P
instruction (BASSM), or a CALL macro instruction can be used to pass control, using register ’
15. Use BASSM only if there is to be an addressing mode switch. The return will be made
directly to your program.

Notes:

1. You must use a branch and save and set mode instruction if passing control to a module in a
different addressing mode.

2. When control is passed to a load module without using the control program, you must check -
the load module attributes and current status of the copy yourself, and you must check the N
status in all succeeding uses of that load module during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the usability of the load module has been discussed
previously; you are not allowing the control program to determine whether you can use a
particular copy of the load module. The following paragraphs discuss your responsibilities

- when using load modules with various attributes. You must always know what the reusability
attribute of the load module is. If you do not know, you should not attempt to pass control
yourself.

If the load module is reenterable, one copy of the load module is all that is ever required for a
job step. You do not have to determine the status of the copy; it can always be used. You can
pass control by using a CALL macro instruction, a branch, a branch and link instruction, a
branch and save instruction, or'a branch and save and set mode instruction (BASSM). Use
BASSM only if there is to be an addressing mode switch. (A

36 Supervisor Services and Macro Instructions

If the load module is serially reusable, one use of the copy must be completed before the next
use begins. If your job step consists of only one task, preventing simultaneous use of the same
copy involves making sure that the logic of your program does not require a second use of the
same load module before completion of the first use. An exit routine must not require the use
of a serially reusable load module also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task in the job
step requires more effort on your part. You must still be sure that the logic of the program for
each task does not require a second use of the same load module before completion of the first
use. You must also be sure that no more than one task requires the use of the same copy of the
load module at one time; the ENQ macro instruction can be used for this purpose. Properly
used, the ENQ macro instruction prevents the use of a serially reusable resource, in this case a
load module, by more than one task at a time. Refer to “Resource Control” for a complete
discussion of the ENQ macro instruction. A conditional ENQ macro instruction can also be
used to check for simultaneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once; you must be sure that you
use a new copy each time you require the load module. You can ensure that you always get a
new copy by using a LINK macro instruction or by doing as follows:

1. TIssue a LOAD macro instruction before you pass control.

2. Pass control using a branch, branch and link, branch and save, branch and save and set
mode instruction, or a CALL macro instruction.

3. Issue a DELETE macro instruction as soon as you are through with the copy.

How Control is Returned

The return of control between load modules is the same as return of control between two
control sections in the same load module. The program in the load module returning control is
responsible for restoring registers 2-14, possibly loading a return code in register 15, passing
control using the address in register 14 and possibly setting the correct addressing mode. The
program in the load module to which control is returned can expect registers 2-13 to be
unchanged, register 14 to contain the return address, and optionally, register 15 to contain a
return code. Control can be returned using a branch instruction, a branch and set mode
instruction or the RETURN macro instruction. If control was passed without using the control
program, control returns directly to the calling program. However, if control was originally
passed using the control program, control returns first to the control program, then to the
calling program.

The action taken by the control program is as follows. The control program returns in the
caller’s addressing mode. When control was passed using a LINK or ATTACH macro
instruction, the responsibility count was increased by one for the copy of the load module to
which control was passed to ensure that the copy would be in virtual storage as long as it was
required. The return of control indicates to the control program that this use of the copy is
completed, and so the responsibility count is decreased by one. The virtual storage area
containing the copy is made available when the responsibility count reaches zero.

Program Management 37

Passing Control without Return

The XCTL macro instruction is used to pass control between load modules when no return of
control is required. You can also pass control using a branch instruction; however, when you
pass control in this manner, you must protect against multiple uses of nonreusable or serially
reusable modules. The following paragraphs discuss the requirements for passing control
without return in each case.

Passing Control Using a Branch Instruction

The same requiremenfs and procedures for protecting against reuse of a nonreusable copy of a
load module apply when passing control without return as were stated under “Passing Control
With Return.” The procedures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the load module. The entry
address and addressing mode returned in register 0 are loaded into register 15. The linkage
requirements are the same when passing control between load modules as when passing control
between control sections in the same load module; register 13 must be reloaded with the old
save area address, then registers 14 and 2-12 restored from that old save area. Register 1 is
used to pass parameters in a parameter list. If the addressing mode does not change, a branch
instruction is issued to pass control to the address in register 15; if the addressing mode does
change, a branch and save and set mode macro instruction is used.

Note: Mixing branch instructions and XCTL macro instructions is hazardous. The next topic
explains why.

Using the XCTL Macro Instruction

The XCTL macro instruction, in addition to being used to pass control, is used to indicate to
the control program that this use of the load module containing the XCTL macro instruction is
completed. Because control is not to be returned, the address of the old save area must be
reloaded into register 13. The return address must be loaded into register 14 from the old save
area, as must the contents of registers 2-12. The XCTL macro instruction can be written to
request the loading of registers 2-12, or you can do it yourself. If you restore all registers
yourself, do not use the EP parameter. This creates an inline parameter list that can only be
addressed using your base register, and your base register is no longer valid. If EP is used, you
must have XCTL restore the base register for you.

When using the XCTL macro instruction, you pass parameters in a parameter list. In this case,
however, the parameter list (or the parameter data) must be established in a portion of virtual
storage outside the current load module containing the XCTL macro instruction. This is
because the copy of the current load module may be deleted before the called load module can
use the parameters, as explained in more detail below.

The XCTL macro instruction is similar to the LINK macro instruction in the method used to
pass control: control is passed by way of the control program using a control program
parameter list. The control program loads a copy of the load module, if necessary, loads the
entry address in register 15, saves the address passed in register 14, and passes control to the
address in register 15. The control program adds one to the responsibility count for the copy of
the load module to which control is to be passed and subtracts one from the responsibility
count for the current load module. The current load module in this case is the load module last
given control using the control program in the performance of the active task. If you have been
passing control between load modules without using the control program, chances are the
responsibility count will be lowered for the wrong load module copy. And remember, when the

¥

38 Supervisor Services and Macro Instructions

/ ™
A

N

L

responsibility count of a copy reaches zero, that copy may be deleted, causing unpredictable
results if you try to return control to it.

Figure 26 shows how this could happen. Control is given to load module A, which passes
control to the load module B (step 1) using a LOAD macro instruction and a branch and link
instruction. Register 14 at this time contains the address of the instruction following the branch
and link. Load module B then is executed, independently of how control was passed, and issues
an XCTL macro instruction when it is finished (step 2) to pass control to load module C. The
control program knowing only of load module A, lowers the responsibility count of A by one,
resulting in its deletion. Load module C is executed and returns to the address which used to
follow the branch and link instruction. Step 3 of Figure 26 indicates the result.

Two methods are available for ensuring that the proper responsibility count is lowered. One
way is to always use the control program to pass control with or without return. The other
method is to use only LOAD and DELETE macro instructions to determine whether or not a
copy of a load module should remain in virtual storage.

Control Program

k.

e Step 1
LOAD B
BALR B
—>» Control
Control Progrom
Program ;
———————————— Al
]
i
\J c Step 2
BALR > B
XCTL C
" Control
| Program
B | ¢
: Step 3
1
|
Y T ti hich
: o routine whic
XCTL C RETURN last issued a BALR
instruction.

Figure 26. Misusing Control Program Facilities Causes Unpredictable Results

Program Management 39

Additional Entry Points

Through the use of linkage editor facilities you can specify as many as 17 different names (a
member name and 16 aliases) and associated entry points within a load module. It is only
through the use of the member name or the aliases that a copy of the load module can be
brought into virtual storage. Once a copy has been brought into virtual storage, however,
additional entry points can be provided for the load module, subject to one restriction. The
load module copy to which the entry point is to be added must be one of the following:

e A copy that satisfied the requirements of a LOAD macro instruction issued during the same

task

o The copy of the load module most recently given control through the control program in
performance of the same task

The entry point is added through the use of the IDENTIFY macro instruction, which can be
issued only by a program running under a program request block (PRB). The IDENTIFY
macro instruction cannot be issued by supervisor call routines or asynchronous exit routines
established using other supervisor macro instructions.

When you use the IDENTIFY macro instruction, you specify the name to be used to identify
the entry point, and the virtual storage address of the entry point in the copy of the load
module. The address must be within a copy of an active load module that meets the

requirements listed above; if it is not, the entry point will not be added, and you will be given a

return code of 0C (hexadecimal). The name can be any valid symbol of up to eight characters,

and does not have to correspond to a name or symbol within the load module. The name must

not be the same as any other name used to identify any load module available to the control
program; duplicate names cause errors. The control program checks the names of all active
load modules in the link pack area, and the job pack area when you issue an IDENTIFY

macro instruction, and provides a return code of 8 if a duplicate is found. You are responsible

for not duplicating a member name or an alias in any of the libraries.

IDENTIFY services sets the addressing mode of the alias entry point equal to the addressing
mode of the major entry point.

If an authorized caller creates an alias for a module in the pageable link pack area, IDENTIFY

services places an entry for the alias on the active link pack area queue. If an unauthorized
caller creates an alias for a module in the pageable link pack area, IDENTIFY services places
an entry for the alias on the task’s job pack queue.

Entry Point and Calling Sequence Identifiers as Debugging Aids

An entry point identifier is a character string of up to 70 characters that can be specified in a
SAVE macro instruction. The character string is created as part of the SAVE macro
instruction expansion.

A calling sequence identifier is a 16-bit binary number that can be specified in a CALL or a
LINK macro instruction. When coded in a CALL or a LINK macro instruction, the calling
sequence identifier is located in the two low-order bytes of the fullword at the return address.
The high-order two bytes of the fullword form a NOP instruction.

40 Supervisor Services and Macro Instructions

A

N

Resource Control

When your program executes, other programs are executing concurrently in the MVS
multiprogramming environment. Each group of programs, including yours, is a competitor for
resources available at execution time. A competitor for resources is a task. As your program
executes, it can identify another program as a task and request concurrent execution of that
program.

A resource is anything that a program needs as it executes — such as processor time, a data set,
another program, a table, or a hardware device, etc. If you subdivide an application into
separate logical parts, and code it as several small programs instead of one large program, you
can make the parts execute as separate tasks and with greater efficiency. However, you must
ensure that each part executes in correct order relative to the others.

Use the macros in this chapter to introduce strategic delays into the code. These delays force
programs to hold up execution of any sequence of code for which the necessary resources are
not available, and commence execution as resources become available.

Task Synchronization

Some planning on your part is required to determine what portions of one task are dependent
on the completion of portions of all other tasks. The POST macro instruction is used to signal
completion of an event; the WAIT and EVENTS macro instructions are used to indicate that a
task cannot proceed until oné or more events have occurred. An event control block is used
with the WAIT, EVENTS or POST macro instructions; it is a fullword on a fullword boundary,
as shown in Figure 27.

An event control block is also used when the ECB parameter is coded in an ATTACH macro
instruction. In this case the control program issues the POST macro instruction for the event
(subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the task
completed normally) or the completion code specified in the ABEND macro instruction (if the
task was abnormally terminated) is placed in the event control block as shown in Figure 27.
The originating task can issue a WAIT or EVENTS WAIT =YES macro instruction specifying
the event control block; the task will not regain control until after the event has taken place and
the event control block is posted (except if an asynchronous event occurs, for example, timer
expiration).

0 1 2 31

WiP completion code

Figure 27. Event Control Block

Resource Control 41

When an event control block is originally created, bits 0 (wait bit) and 1 (post bit) must be set

to zero. If an ECB is reused, bits 0 and 1 must be set to zero before a WAIT, EVENTS ECB = £
or POST macro instruction can be specified. If, however, the bits are set to zero before the /\& j
ECB has been posted, any task waiting for that ECB to be posted will remain in the wait state.
When a WAIT macro instruction is issued, bit 0 of the associated event control block is set to

1. When a POST macro instruction is issued, bit 1 of the associated event control block is set

to 1 and bit 0 is set to 0. For an EVENTS type ECB, POST also puts the completed ECB

address in the EVENTS table.

A WAIT macro instruction can specify more than one event by specifying more than one event
control block. (Only one WAIT macro instruction can refer to a event control block at a time,
however.) If more than one event control block is specified in a WAIT macro instruction, the
WAIT macro instruction can also specify that all or only some of the events must occur before
the task is taken out of the wait condition. When a sufficient number of events have taken
place (event control blocks have been posted) to satisfy the number of events indicated in the
WAIT macro instruction, the task is taken out of the wait condition.

An optional parameter, LONG=YES or NO, allows you to indicate whether the task is
entering a long wait or a regular wait. A long wait should never be considered for I/O activity.
However, you might want to use a long wait when waiting for an operator response to a
WTOR macro instruction.

Using a Serially Reusable Resource

When one or more programs using a serially reusable resource modify the resource, they must

not use the resource simultaneously with other programs. Consider a data area in virtual .
storage that is being used by programs associated with several tasks of a job step. Some of the s
programs are only reading records in the data area; because they are not updating the records,

they can access the data area simultaneously. Other programs using the data area, however, are

reading, updating, and replacing records in the data area. Each of these programs must serially

acquire, update, and replace records by locking out other programs. In addition, none of the

programs that are only reading the records want to use a record that another program is

updating until after the record has been replaced.

If your program uses a serially reusable resource, you must prevent incorrect use of the AN
resource. You must ens