Program Product

GC28-1150-4
File No. S370-36

MVS/ Extended Architecture
Y) stem Programming

Library: System Macros

and Facmtles

Volume 1

MVS/System Product:

JES3 Version 2  5665-291
JES2 Version 2 5740-XC6




Fifth Edition (September, 1989)

This is a major revision of, and obsoletes GC28-1150-3 and Technical Newsletter GN28-1901. See the
Summary of Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to Version 2 Release 2 of MVS/System Product program number 5665-291 or 5740-XC6
and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters. Changes
are made periodically to the information herein; before using this publication, in connection with the
operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that
are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM’s product may be used. Any functionally equivalent product may
be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building
921-2, PO Box 950, Poughkeepsie, New York 12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1989
All Rights Reserved

7N
Y\L,\/’/’



Preface

This two-volume publication describes supervisor and scheduler facilities that the system
programmer can use. In this publication, a system programmer is defined as a programmer
whose programs run in supervisor state, system key 0-7 or access APF-authorized libraries. The
publication included the macro instructions and parameters used to obtain the functions.

Volume 1 contains descriptions of the supervisor and scheduler services available to a system
programmer. Most of the services described are supervisor services; however, the scheduler
functions available through the use of the DYNALLOC macro instruction are also described.
Volume 1 includes a description of the DYNALLOC macro instruction. Some of the topics
discussed in Volume 1 are also discussed in Supervisor Services and Macro Instructions; however
in Volume 1, these topics are extended to include functions that are restricted to system
programmers or used primarily by system programmers.

Volume 2, GC28-1151, contains the formats and descriptions of the supervisor macro
instructions. Volume 2 provides system programmers with the information necessary to code
the macro instructions. Each macro instruction is completely described, in Volume 2, but
restrictions, requirements, and environmental considerations for the effective use of each macro
is explained in Volume 1.

Trademarks

The following are trademarks of International Business Machines Corporation.

¢ MVS/ESA™
¢ MVS/DFP™
MVS/SP™
¢ MVS/XA™

Related

Publications
A Structured Approach to Describing and Searching Problems, SC34-2129
The Considerations of Physical Security in a Computer Environment, G520-2700
Data Security Controls and Procedures - A Philosophy for DP Installations, G320-5649
MVS|ESA Checkpoint/Restart User's Guide, SC26-4503
MVS|ESA Data Administration: Macro Instruction Reference, SC26-4506
MVS/ESA Data Facility Product Version 3: Diagnosis Reference, LY27-9551
MVS/ESA Linkage Editor and Loader User's Guide, SC26-4510
MVS/ESA System-Data Administration, SC26-4515
MVS/ESA VSAM Administration Guide, SC26-4518
MYVS|Extended Architecture Checkpoint/Restart User's Guide, GC26-4139
MVS/Extended Architecture Data Administration: Macro Instruction Reference, GC26-4141

MYVS/Extended Architecture Data Facility Product Version 2: Diagnosis Reference,
LY27-9530

MVS|Extended Architecture Debugging Handbook Volume 1, LC28-1164

© Copyright IBM Corp. 1982, 1989 Preface il




MYVS|Extended Architecture Debugging Handbook Volume 2, 1.C28-1165

MVS|Extended Architecture Debugging Handbook Volume 3, 1LC28-1166 o~
MVS|Extended Architecture Debugging Handbook Volume 4, LC28-1167 ’ V
MVS/Extended Architecture Debugging Handbook Volume 5, LC28-1168

MVS|Extended Architecture Debugging Handbook Volume 6, 1LC28-1169

MYVS|Extended Architecture Diagnostic Techniques, L'Y28-1199

MVS|Extended Architecture Interactive Problem Control System Planning and
Customization, GC28-1406

MVS|Extended Architecture Interactive Problem Control System User's Guide and Reference,
GC28-1297

MVS/Extended Architecture Job Control Language User’'s Guide, .GC28-1351
MVS|Extended Architecture Job Control Language Reference, GC28-1352
MYVS|Extended Architecture Linkage Editor and Loader User's Guide, GC26-4143
MVS|Extended Architecture Message Library: System Messages Volume 1, GC28-1376
MVS|Extended Architecture Message Library: System Messages Volume 2, GC28-1377
MVS|Extended Architecture Operations: System Commands, GC28-1206
MVS/Extended Architecture Planning.' Global Resource Serialization, GC28-1062
MVS|Extended Architecture Supervisor Services and Macro Instructions, GC28-1154
MVS/Extended Architecture System-Data Administration, GC26-4149

MVS|Extended Architecture System Initialization Logic, LY28-1200

MVS|Extended Architecture System Logic Library: Allocation/Unallocation, LY28-1615
MVS/Extended Architecture System Programming Library: Initialization and Tuning,

GC28-1149

MVS|Extended Architecture System Programming Library: Service Aids, GC28-1159

MVS/Extended Architecture System Programming Library: System Macros and Facilities

Volume 2, GC28-1151

MVS|Extended Architecture System Programming Library: System Modifications, b
GC28-1152 “
MYVS|Extended Architecture System Programming Library: User Exits, GC28-1147

MYVS|Extended Architecture System Programming Library: 31-Bit Addressing, GC28-1158
MVS|Extended Architecture VSAM Administration Guide, GC26-4151

OS/VS Mass Storage System Extensions Messages, SH35-0041

Resource Access Control Facility (RACF): General Information Manual, GC28-0722

Security Assessment Questionnaire, GX20-2381

System Programming Library: RACF, SC28-1343

TSO Extensions Version 2 Programming Guide, SC28-1874

TSO Extensions Version 2 Programming Services, SC28-1875 i
TSO Extensions Version 2 System Programming Command Reference, SC28-1878 . @

370-Extended Architecture: Principles of Operation, SA22-7085

iv spL: System Macros and Facilities Volume 1



Notes:

1. All references to RACF in this publication indicate the program product Resource Access
Control Facility (5740-XXH).

2. All references to Assembler H in this publication indicate the program product Assembler
H Version 2 (5668-962).

3. All references to RMF in this publication indicate the program product Resources
Measurement Facility (5665-274)

Preface Vv



vi

SPL: System Macros and Facilities Volume 1

A



Contents

Introduction 1-1

Subtask Creation and Contrel  1-3
Creating a New Task (ATTACH) 14
Changing the Defaults of ATTACH 1-4
Issuing an Internal START or REPLY Command (MGCR) 1-6
Communicating with a Problem Program (EXTRACT, QEDIT) 1-7
Providing an EXTRACT Answer Area  1-11
Changing the Priority of a Task (CHAP) 1-12

Program Management  1-13

Residency and Addressing Mode of Programs  1-13
Placement of Modules in Storage  1-13
Addressing Mode 1-14

Specifying Where the Module is to be Loaded (LOAD) 1-14

Synchronous Exits (SYNCH) 1-15

Using Checkpoint/Restart  1-15

Using Re-entrant Modules  1-16

Serialization 1-17
When Resource Serialization Is Needed  1-17
Serialization Requirements  1-17
Locking  1-18
Categories of Locks  1-18
Types of Locks  1-19
Classes of Locks  1-21
Locking Hierarchy  1-22
CML Lock Considerations  1-23
Obtaining, Releasing, and Testing Locks (SETLOCK) 1-24
Altering the Dispatching Queue (INTSECT) 1-25
Using the Must-Complete Function (ENQ/DEQ)  1-25
Characteristics of the Must-Complete Function  1-25
Programming Notes  1-26
Limiting Global Resource Serialization Requests  1-26
Shared Direct Access Storage Devices (Shared DASD)  1-27
Devices that Can be Shared 1-27
Volume/Device Status  1-28
System Configuration 1-28
Volume Handling  1-28
Macro Instructions Used with Shared DASD (RESERVE, EXTRACT) 1-29
Indicating Event Completion (POST) 1-35
Cross Memory POST  1-35
Bypassing the POST Routine  1-35
Waiting for Event Completion (EVENTS)  1-36
Writing POST Exit Routines  1-36
Identifying and Deleting Exit Routines  1-37
Initializing Extended ECBs and ECB Extensions  1-37
POST Interface with Exit Routines  1-38
Re-entry to POST from a POST Exit 1-39
Example of Using a POST Exit Function 1-39
Branch Entry to the POST Service Routine  1-40
Branch Entry to the WAIT Service Routine  1-42

© Copyright IBM Corp. 1982, 1989 Contents

vii




Suspension and Resumption of Request Blocks  1-42
Waiting for an Event to Complete (SUSPEND)  1-43
Resuming Execution of a Suspended Request Block (RESUME)  1-45 , £
Transferring Control for SRB Processing (TCTL)  1-46 N
Using the BRANCH =YES Option of CALLDISP (CALLDISP) 1-47

Reporting System Characteristics 1-49
Collecting Information About Resources and Their Requestors (GQSCAN)  1-49
Using the SRM Reporting Interface to Measure Subsystem Activity  1-53
Reporting Software Error Symptoms (SYMREC) 1-54
Writing Applications That Use SYMREC  1-54
The Format of the Symptom Record 1-56
Symptom Strings — SDB Format 1-57
Using EREP and IPCS to Format Symptom Record Reports  1-57
Programming Notes for SYMREC Applications  1-58
Obtaining Accumulated Processor Time  1-64

Communication 1-65
Interprocessor Communication  1-65
Service Classes  1-65
Status Indicators  1-66
Writing and Deleting Messages (WTO, WTOR, DOM, and WTL)  1-68
Routing the Message 1-68
Writing a Multiple-Line Message  1-69
Embedding Label Lines in a Multiline Message 1-70
Using the Authorized Parameters of WTO and WTOR  1-70
Deleting Messages Already Written  1-71 ,
Identifying Messages to be Deleted 1-71 Van
Limiting the Extent of Message Deletion 1-71
Writing to the System Log  1-72
Inter-Address Space Communication  1-72
Asynchronous Address Space Communication  1-73
Synchronous Inter-Address Space Communication  1-78
Designing a PC Routine  1-95
Recovery Considerations  1-97

Virtual Storage Management 1-99
Allocating and Freeing Virtual Storage (GETMAIN, FREEMAIN) 1-100 P
The BRANCH Parameter 1-100
The KEY Parameter 1-101
Using Cell Pool Services (CPOOL) 1-101
Using Storage Subpools  1-102
Obtaining Information about the Allocation of Virtual Storage  1-105
Using the VSMLIST Work Area  1-105
Accessing the Scheduler Work Area  1-113
Using the IEFQMREQ and the SWAREQ Macros 1-114
The SWAREQ Macro  1-114
How to invoke SWAREQ  1-115
The IEFQMREQ Macro  1-117
How to Invoke IEFQMREQ  1-118

Real Storage Management 1-121
Fixing/Freeing Virtual Storage Contents  1-122 ' e
PGFIX/PGFREE Completion Considerations  1-123 K{/
Input to Page Services 1-124

Virtual Subarea List (VSL) 1-124

vili SPL: System Macros and Facilities Volume 1



Page Service List (PSL) [-124
Short Page Service List (SSL)  1-124
Branch Entry to the PGSER Routine  1-125
Branch Entry to MVS/370 Page Services 1-126
Cross Memory Mode  1-126
Non-Cross Memory Mode  1-127

The Nucleus  1-129
Linking to Routines in the DAT-OFF Nucleus (DATOFF)  1-129
Using System Provided DAT-OFF Routines (DATOFF) 1-129
Writing User DAT-OFF Routines  1-132
Obtaining Information about CSECTs in the DAT-ON Nucleus (NUCLKUP)

Normal and Abnormal Program Termination  1-135
Recovery Termination Manager  1-135
Invoking the Recovery Termination Manager 1-136
Processing Program Interruptions (SPIE, ESPIE) 1-138
Interruption Types  1-138
Intercepting System Errors  1-139
Using the SLIP Command  1-140
Obtaining an SVC Dump During Slip Processing  1-140
Bypassing Dump Suppression  1-140
System Trace Facilities 1-141
Performing Branch Tracing 1-141
Performing Address Space Tracing  1-141
Performing Explicit Tracing (PTRACE) 1-141
Dumping Virtual Storage 1-142
Using the IPCS Macro Instructions  1-142
Using the SDUMP Macro Instruction  1-143
Obtaining an SVC Dump  1-146
Obtaining a Summary Dump  1-147
Suppressing SDUMPs and SYSMDUMPs  1-149
Using Dump Data Sets  1-150
Using the Dumping Services Commands  1-150
Canceling and Restarting the DUMPSRYV Address Space  1-151
Getting More Than One SYSMDUMP  1-151
Providing Recovery Routines  1-152
Providing Information for Dump Analysis and Elimination  1-153
Selecting a Recovery Routine  1-153
System Environment  1-154
ESTAE-Type Recovery Routines  1-162
Using the FESTAE Macro Instruction  1-164
Special Considerations  1-164
Recovery Routine Guidelines 1-176
Uses of Resource Managers 1-183

Protecting the System  1-185
System Integrity 1-185 .
Documentation on System Integrity  1-185
Installation Responsibility  1-185
Elimination of Potential Integrity Exposures  1-185
Using the Authorized Program Facility (APF)  1-189
APF Authorization 1-189
Using APF  1-191 ,
Authorization Results Under Various Conditions  1-193
Guidelines for Using APF  1-194

1-133

Contents

ix




Resource Access Control Facility (RACF) 1-194
Defining a Resource to RACF (RACDEF) 1-194
Identifying a RACF-Defined User (RACINIT) 1-195 ' £
Checking RACF Authorization (RACHECK and FRACHECK) 1-195 \U
Retrieving and Encrypting Data (RACXTRT) 1-195
Building In-Storage Profiles (RACLIST) 1-195
RACSTAT Macro Instruction  1-196
Protecting the Vector Facility 1-196
System Authorization Facility (SAF) 1-196
MVS Router 1-196
Interface to the MVS Router (RACROUTE) 1-199
Changing System Status (MODESET) 1-200
Generating an SVC  1-200
Generating Inline Code  1-200
Protecting Low Storage (PROTPSA) 1-201

Exit Routines 1-203

Using Asynchronous Exit Routines  1-203
Stage 1 Initialization  1-203 /
Stage 2 Scheduling  1-205 Yo
Stage 3 Execution  1-205

Establishing a Timer Disabled Interrupt Exit  1-206
DIE Characteristics  1-207
Timer Queue Element Control  1-209

User-Written SVC Routines 1-211

Writing SVC Routines  1-211 .
Programming Conventions for SVC Routines  1-212 o

Inserting SVC Routines Into the Control Program  1-216 *
Modifying the SVC Table at Execution Time (SVCUPDTE) 1-217

Subsystem SVC Screening  1-218

UCB Scan Services 1-221
Invoking IOSVSUCB  1-221
Input to IOSVSUCB  1-221
Limiting the UCB Scan  1-222
Output from IOSVSUCB  1-223
Example Using IOSVSUCB  1-224 -
Obtaining Information from the Input/Output Supervisor (I0S)  1-226

Dynamic Allocation  1-227
Introduction to SVC 99 Functions  1-228
Concepts Needed to Understand SVC 99 Processing  1-229
Processing Control Features  1-229
Functions Available Through SVC 99  1-231
Dynamic Allocation . 1-231
Dynamic Unallocation  1-233
Dynamic Concatenation  1-235
Dynamic Deconcatenation  1-236
Dynamic Information Retrieval  1-236
Installation Options For SVC 99 Functions  1-237
Space and Unit Defaults  1-237
Mounting Volumes and Bringing Devices Online  1-238 -
Installation Input Validation Routine for SVC 99  1-239 @;/

Requesting SVC 99 Functions  1-241

X SPL: System Macros and Facilities Volume 1




Programming Considerations When Using SVC 99  1-241
SVC 99 Parameter List  1-243
Request Block Pointer  1-244
Request Block  1-244
Request Block Extension  1-246
Text Pointers  1-248
Text Units  1-249
Detailed Review of Dsname Allocation Processing  1-249
Checking for Environmental Conflicts  1-250
Using an Existing Allocation  1-250
Using a New Allocation  1-252
Considerations When Requesting Dsname Allocation  1-253
Processing Messages from Dynamic Allocation  1-254
SVC 99 Return Codes  1-259
Information Reason Codes  1-259
Error Reason Codes  1-261
SVC 99 Text Units, by Function  1-267
Dsname Allocation Text Units  1-270
DCB Attribute Text Units  1-289
Non-JCL Dynamic Allocation Functions  1-299
Dynamic Unallocation Text Units  1-303
Dynamic Concatenation Text Units  1-305
Dynamic Deconcatenation Text Unit  1-306
Text Units for Removing the In-Use Attribute Based on Task-ID
Ddname Allocation Text Units  1-307
Dynamic Information Retrieval Text Units  1-309
Example of a Dynamic Allocation Request  1-315

Index X-1

1-307

Contents

xi




Xii

SPL: System Macros and Facilities Volume 1

W



Figures

el A

R

10.
1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51
52.

Setting Up the Buffer for MGCR  1-6

EXTRACT ECB, CIB Pointers, and Token 1-7
Command Input Buffer Contents  1-7

Example Using the EXTRACT and QEDIT Macros 1-9
EXTRACT Answer Area Fields 1-11

Assembler Definition of AMODE/RMODE  1-13
Summary of Locking Characteristics  1-19

Requests for Shared/Exclusive Locks  1-20

Valid Volume Characteristic and Device Status Combinations  1-28
Example of an Interlock Environment 1-30

Example of Subroutine Issuing RESERVE and DEQ  1-34
Bypassing the POST Routine  1-36

ECB Extension (ECBE) 1-37

Extended ECB  1-38

Data Areas Post Exit Example  1-39

POST Function and Branch Entry Points  1-40

POST Branch Entry Input  1-41

POST Branch Entry Output  1-41

GQSCAN Results with STEP, SYSTEM, SYSTEMS, or ALL  1-51
GQSCAN Results with LOCAL or GLOBAL  1-51
EBCDIC Characters Printed or Displayed on an MCS Console  1-68
PC Number Indexing Linkage and Entry Tables 1-84
Authorization and Linkage Macro Instructions  1-86
PC/PT Linkage Conventions  1-88

Declared Storage For Cross Memory Examples  1-89
Entry Table Descriptions for Examples  1-90

Linkage Table and Entry Table Connection  1-92

Linkage and Entry Tables for a Global Service [-94
Characteristics of a Non-Space Switch PC Routine  1-96
Characteristics of a Space Switch PC Routine  1-96
Characteristics of the Valid Storage Subpools  1-103
MVS/XA Virtual Storage Map 1-104

Format of the VSMLIST Work Area  1-105

Description of VSMLIST Work Area  1-106

Allocated Storage Information for Subpools in a Specified Area  1-108
Format of Subpool Descriptor  1-109

Format of Allocated Block Descriptor  1-109

Allocated Storage Information for the Private Area  1-110
Allocated Storage Information for a Subpool List  1-110
Format of Free Space Descriptor  1-111

Unallocated Storage Information for CSA and PVT Subpools  1-112
Format of Region Descriptor  1-113

Format of Unallocated Block Descriptor  1-113

Format of a SWA Control Block  1-113

DAT-OFF Routines Available to Users  1-129

Virtual Storage Map of DAT-ON Nucleus  1-133

Key Fields in the SDWA  1-160

ESTAE Environment 1-163

Routing Control to Recovery Routines  1-171

Assigning Authorization via SETCODE  1-193
Authorization Rules  1-193

Asynchronous Exit Data Area Configuration 1-204

© Copyright IBM Corp. 1982, 1989 Figures

xiii




53. Programming Conventions for SVC Routines  1-213

54. Parameter List for the UCB Scan Routine (IOSVSUCB) 1-221

55. Device Classes  1-222

56. Example of the UCB Scan Routine IOSVSUCB) 1-224

57. JCL DD Statement Facilities not Supported by Dynamic Allocation  1-232

58.  Structure of the SVC 99 Parameter List 1-244

59. SVC 99 Return Codes  1-259

60. Class 2 Error Reason Codes (Unavailable System Resource) 1-262

61. Class 3 Error Reason Codes (Invalid Parameter List) 1-263

62. Class 4 Error Reason Codes (Environmental Error) 1-264

63. Class 7 Error Reason Codes (System Routine Error) 1-266

64. Verb Code 01 (Dsname Allocation) - Text Unit Keys, Mnemonics, and
Functions  1-268

65. Verb Code 01 (DCB Attributes) — Text Unit Keys, Mnemonics, and Functions  1-288

66. Verb Code 01 (Non-JCL Dsname Functions) — Text Unit Keys, Mnemonics, and
Functions  1-299

67. Verb Code 02 (Dynamic Unallocation) — Text Unit Keys, Mnemonics, and
Functions  1-303

68. Verb Code 03 (Dynamic Concatenation) — Text Unit Keys, Mnemonics, and
Functions  1-305

69. Verb Code 04 (Dynamic Deconcatenation) — Text Unit Key, Mnemonic, and
Function 1-306

70. Verb Code 05 (Remove-In-Use Processing Based on Task-ID) — Text Unit Keys,
Mnemonics, and Functions  1-306

71.  Verb Code 06 (Ddname Allocation) — Text Unit Keys, Mnemonics, and
Functions  1-307

72.  Verb Code 07 (Dynamic Information Retrieval) — Text Unit Keys, Mnemonics, and
Functions  1-308

73. Example of a Dynamic Allocation Request 1-316

74. Parameter List Resulting From Dynamic Allocation Example  1-317

Xiv  SPL: System Macros and Facilities Volume 1



Summary of Amendments

Summary of Amendments
for GC28-1150-4
MYVS/System Product Version 2 Release 2.3

This major revision contains changes to support MVS/System Product Version 2 Release 2.3.
Changes include:

¢ MVS/XA support for MVS/Data Facility Product Version 3 Release 1.0, which introduces

the storage management subsystem (SMS). SMS provides new function for data and
storage management.

In this book, “with SMS” indicates information that applies when SMS is installed and
active; “without SMS” indicates SMS is not installed or is not active.

* Changes to the dynamic allocation service.

Maintenance changes and other documentation enhancements include:
¢ Addition of documentation related to the TIMEUSED macro.
» Re-write of section on “Inter-Address Space Communication”.

* Re-write of section on “Managing SWA Control Blocks”, now called “Accessing the
Scheduler Work Area”.

¢ Changed information related to using the SDUMP macro instruction and obtaining a
summary dump.

* Changed information related to using the LOAD macro instruction.
¢ Addition of a section on “Protecting the Vector Facility”.
» Changed information related to the extended ECB.

¢ Other minor technical and editorial changes throughout.

Summary of Amendments
for GC28-1150-3
MYVS/System Product Version 2 Release 2

This major revision describes how to use the SYMREC macro, which is new. It also describes

changes to the DATOFF, DOM, VSMLOC, WTO, and WTOR macros, and changes that
affect:

The use of address space by PC/AUTH.
User-written SVC routines.

The allocation default module (IEFAB445).
Dumps obtained via SDUMP.

The jobstep DD limit.

© Copyright IBM Corp. 1982, 1989 Summary of Amendments

Xy




Summary of Amendments
for GC28-1150-2
MVS/System Product Version 2 Release 1.3

This major revision contains information about the new macro, IOSINFO, in support of System
Product Version 2 Release 1.3 and minor technical and editorial changes.

XVi SPL: System Macros and Facilities Volume 1



Introduction

The system facilities described in this publication include both supervisor and scheduler services.
The supervisor services provide the resources that your programs need while assuring that as
many of these resources as possible are being used at a given time. The scheduler services
described in this publication are the scheduler functions that are available through the use of
the dynamic allocation macro instruction (DYNALLOC). Knowing the conventions and
characteristics of the system facilities will help you to design more efficient programs.

Volume 1 describes those supervisor services that should be restricted in use to systems
programmers and installation-approved personnel. If a particular topic includes a description
of a macro instruction, the macro instruction is given in parentheses after the topic heading.
Volume 1 includes a description of the DYNALLOC macro instruction. The supervisor macros
and parameters are described in Volume 2. The topics described in Volume 1 are:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
( other tasks for execution time. This topic includes information about task creation, using an

internal START, and communication with a problem program.

Program Management: You can use the supervisor to aid communication between segments of a
program. This topic includes information about the residency and addressing mode of a
module, loading a module, synchronous exits, checkpoint/restart, and re-entrant modules.

Serialization: Portions of some tasks depend on the completion of events in other tasks, which
) requires planned task synchronization. Planning is also required when more than one program
( uses a serially reusable resource. Locking, the must-complete function, shared direct access
storage devices, waiting for an event to complete, and indicating event completion are discussed
in this topic.

Reporting System Characteristics: Collecting information about resources and their requestors
and using the SRM and SYMREC reporting interfaces are described in this topic.

Communication: This topic is divided into four distinct and different types of communication.
These are:

(' ¢ Interprocessor communication available through the use of the SIGP instruction

¢ Communication with the operator available through the use of the WTO, WTOR, and
DOM macro instructions

¢ Asynchronous inter-address space communication available through the use of the
SCHEDULE macro instruction

¢ Synchronous inter-address space communication available through the use of cross memory
facilities

Virtual Storage Management: Virtual storage allows you to write large programs without the
need for complex overlay structures. This topic describes how to allocate and free virtual
storage. It also includes descriptions of the VSM functions, available through the use of the
VSMLIST, VSMLOC, and VSMREGN macro instructions, and a description of managing
SWA control blocks.

© Copyright IBM Corp. 1982, 1989 ' Introduction  1-1




Real Storage Management: The supervisor administers the use of real storage and directs the

movement of virtual pages between auxiliary storage and real storage in page size blocks. The

services provided allow you to release virtual storage contents, load virtual storage areas into A ™
real storage, and page out virtual storage areas from real storage. s

The Nucleus: This topic includes descriptions of the functions available through the use of the
DATOFF and NUCLKUP macro instructions.

Normal and Abnormal Program Termination: The supervisor provides facilities for writing exit
routines to handle specific types of interruptions. It is not likely, however, that you will be able
to write routines to handle all types of abnormal conditions. The supervisor therefore provides
for termination of your program when you request it by issuing an ABEND macro instruction
or when the control program detects a condition that will degrade the system or destroy data.
This topic describes the recovery termination manager, system trace facilities, recovery routines,
the use of the SPIE/ESPIE macro instructions to process program interruptions, the use of the
SLIP command to intercept errors, and the use of the SDUMP macro to obtain a dump of
virtual storage.

Protecting the System: This topic includes the maintenance of system integrity, the use of the
authorized programming facility, the use of the resource access control facility, changing system
status, and protecting low storage.

Exit Routines: Two types of exit routines are described in this topic. They are asynchronous
exit routines and timer disabled interrupt exits.

User-Written SVC Routines: This topic contains information needed to write SVC routines. It
includes the characteristics of the SVC routines, program conventions for SVC routines, and

ways to insert SVC routines into the control program. 2N
J
UCB Scan Services: This topic describes the function of the UCB scan routine (IOSVSUCB). ~
This routine allows you to scan each unit control block (UCB) in the system or in a specified
device class.
Dynamic Allocation (SVC 99) Services: This topic describes the functions provided by dynamic
allocation (SVC 99). A description of the parameter list used to request SVC 99 functions, the
SVC 99 return codes, error codes, and information codes are included.
a

1-2  SPL: System Macros and Facilities Volume 1



Subtask Creation and Control

The control program creates a task when it initiates execution of the job step; this task is the
job step task. You can create additional tasks in your program. If you do not, however, the
job step task is the only task in a job being executed. The benefits of a multiprogramming
environment are still available even with only one task in the job step; work is still being
performed for other jobs when your task is waiting for an event, such as an input operation, to
occur.

The advantage in creating additional tasks within the job step is that more of your tasks are
competing for control than the single job step task. When a wait condition occurs in one of
your tasks, it is not necessarily a task from some other job that gets control; it might be one of
your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is, more than
one task in a job step) only when a significant amount of overlap between two or more tasks
can be achieved. Both the amount of time the control program takes to establish and control
additional tasks and your increased effort to coordinate the tasks and provide for
communications between them must be taken into account.

Most of the information concerning subtask creation and control appears in Supervisor Services
and Macro Instructions. This chapter continues discussion in the following areas:

¢ Task creation (ATTACH macro instruction)

¢ Issuing an internal START command (MGCR macro instruction)

e Communicating with a problem program (EXTRACT and QEDIT macro instructions)
¢ Changing the priority of a task (CHAP macro instruction)

© Copyright IBM Corp. 1982, 1989 Subtask Creation and Control 1-3




Creating a New Task (ATTACH)

. . IR
The ATTACH macro instruction causes the control program to create a new task. The ( )

complete use of the macro instruction is described in Supervisor Services and Macro Instructions.

The macro instruction has parameters that provide the authorized user (protection key 0-7 or
supervisor state) flexibility in using the macro instruction’s services. If authorized tasks do not
specify a particular parameter, the default value for that parameter is assigned. These defaults
include:

JSTCB=NO -- the attached task is a task in the present job step.
SM =PROB -- the new task is to run in problem program mode.
SVAREA =YES -- a save area is needed for the new task.

KEY =PROP -- the protection key of the newly created task is to be the same as the task
using ATTACH.

DISP=YES -- the subtask is to be dispatchable.
TID =0 -- the task identifier of the new task is 0.

JSCB -- omission of this parameter specifies that the job step control block of the attaching
task is also used for the new task.

NSHSPV and NSHSPL -- omission of these parameters specifies that subpools 236 and
237, if they exist, are to be shared with the subtask.

RSAPF =NO -- The APF authorization of the step is to be unchanged.

Changing the Defaults of ATTACH

Rather than accepting the default values, (assuming the task is authorized), you can extend the N
facilities of the ATTACH macro instruction by coding the following values:

[

JSTCB =YES -- the attached task is a new job step task. In this case, the address of the
TCB of the newly created task is placed in the TCBJSTCB field of the attached TCB. The
initiator attaches the first load module of a job as a job step task. For such an attach, the
program manager does not search the job library of the attaching task.

Also, only under a job step task can a system program (system key or supervisor state)
attach a load module from a non-system library.

In order to attach a job step task, the attaching task (and any of its subtasks) must be job
step tasks. If one of these conditions is not met, the new task will not be created.

SM =SUPYV -- the system is to run in supervisor mode when executing the attached task.

Supervisor state is a requirement for issuing privileged instructions (for example, LPSW).
You can specify supervisor mode via this parameter or via the MODESET macro
instruction.

SVAREA =NO -- the new task does not need a save area.

The save area is obtained from the user’s region. Because it might not always be desirable
to have a save area (for example, the user’s region might not be defined at the time of a
system ATTACH), this parameter can be used to specify that no save area is to be created.

KEY =ZERO -- the protection key of the newly created task is zero.

Protection key zero allows the new task to reference any defined storage and pass all e
validity checks. :

1-4 spL: System Macros and Facilities Volume 1




DISP=NO -- the subtask is to be nondispatchable.

This parameter causes the primary nondispatchability bit TCBANDSP to be turned on in
the new TCB. As a result, the new TCB will not be dispatched. Thus, specifying
DISP=NO allows the originating task to alter the new TCB. The new task remains
nondispatchable until the originating task issues the STATUS macro instruction with the
RESET option to reset TCBANDSP.

Note: STATUS START TCB will not make the new TCB dispatchable.

TID =task id -- the task identifier specified is to be placed in the TCBTID field of the
attached task.

The task identifier can be set to identify critical system tasks. Other uses of this parameter
are not recommended.

JSCB =job step control block address -- the address specified for the JSCB is to be used for
the new task.

This parameter sets the TCBJSCB to the address of a job step control block. This action,
normally associated with the creation of a job step task, is not required by ATTACH.

NSHSPV =subpool number and NSHSPL =subpool list address -- subpools 236 and 237
are not to be shared with the new task.

Subpools 236 and 237 are known as the scheduler work area (SWA). This parameter
allows the scheduler to control these subpools.

RSAPF=YES -- reset the step APF authorization.

This parameter allows a system program that is not running APF authorized to ATTACH
a subtask and have the APF authorization for the step reset according to the attributes of
the subtask. The subtask must be attached while in the problem program state and must be
in a non-system key. For more information on this parameter see “Authorization Results
Under Various Conditions” in the “Protecting the System” section.

Subtask Creation and Control 1-5




Issuing an Internal START or REPLY Command (MGCR)

A program can issue an internal START or REPLY command using the MGCR macro
instruction and can pass 31 bits of information, called a token, to the program being started (in
the case of the START command). An internal REPLY command is available to reply to a
WTOR message. Before issuing the MGCR macro instruction, initialize a buffer for the
command and the token, if any, as follows:

k)

1 byte 1 byte 2 bytes variable length 4 bytes

flagsl | length flags2 text 31 bit token
right justified

You must also set register 0 to zero before issuing the MGCR macro instruction.

flagsl
If bit 0 of the flagsl byte is one, the flags2 field must contain meaningful information. Bits
1-7 of flagsl must be zero.

length
The length field contains the length of the buffer in bytes, up to but not including the token
field.

flags2
If a token is present, flags2 must be set to X‘0800°, otherwise, it must be set to X‘0000’.

. text

The text field contains the START or REPLY command followed by operands and,
optionally, comments.

token
This field contains any desired information to be communicated to the started program.
Token is meaningful only for the START command.

Figure 1 shows how the buffer is set up.

The IEZMGCR mapping macro, in SYSI.MACLIB, is available to map the buffer.

SR REGO,REGO INDICATE SYSTEM ISSUED
* o COMMAND
MGCRMAC MGCR MGRCDATA

MGCRDATA  EQU *

FLG1 DC X's0'

LGTH DC  AL1(TOKEN-MGCRDATA)

FLG2 DC  Xx'0800'

XT DC C'S IMS ***ANY COMMENTS***!
TOKEN DC  AL4(ECB) ECB ADDR

Figure 1. Setting Up the Buffer for MGCR

- 1-6 SPL: System Macros and Facilities Volume 1



Communicating with a Problem Program (EXTRACT, QEDIT)

The operator can pass information to the started program by issuing a STOP or a MODIFY
command. In order to accept these commands, the program must be set up in the following
manner.

The program must issue the EXTRACT macro instruction to obtain a pointer to the
communications ECB and a pointer to the first command input buffer (CIB) on the CIB chain
for the task. The ECB is posted whenever a STOP or a MODIFY command is issued. The
EXTRACT macro instruction is written as follows, and returns what is indicated in Figure 2.

EXTRACT answer area,FIELDS=COMM

Answer area

>» 0
Address of the . ECB address
communication area CIB address
8
token For internal START

commands only -
otherwise zero.

Figure 2. EXTRACT ECB, CIB Pointers, and Token

The CIB contains the information specified on the STOP, START, or MODIFY command, as
shown in Figure 3. If the job was started from the console, the EXTRACT macro instruction
will point to the START CIB. If the job was not started from the console, the address of the
first CIB will be zero.

0
Address of next CIB
4
Verb CIB Reserved
code length
8
Reserved Address
Space ID
12
Console | Reserved Length of
ID data field
16
Variable length data
specified on the command

Verb code X‘04° START
X‘40’ STOP
X‘44 MODIFY

Figure 3. Command Input Buffer Contents

Subtask Creation and Control. 1-7



If the address of the START CIB is present, use the QEDIT macro instruction to free this CIB
after any parameters passed in the START command have been examined. The QEDIT macro
instruction is written as follows:

QEDIT ORIGIN=address of pointer to CIB,BLOCK=address of CIB

Notes:

1. The address of the pointer to the CIB is the contents of the answer area plus 4 bytes, as
shown in Figure 2.

2. The address of the CIB must be the exact address returned by EXTRACT, not an address
generated from copying the CIB to another location.

The CIB counter should then be set to allow CIBs to be chained and MODIFY commands to
be accepted for the job. This is also accomplished by using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY commands
are accepted for the job. However, STOP commands are accepted for the job regardless of the
value set for CIBCTR.

Note: When using the address or addresses returned from the EXTRACT macro as input to
the QEDIT macro, you must establish addressability via the IEZCOM mapping macro, in
SYSI.MACLIB, based on the address returned by the EXTRACT.

For the duration of the job, your program can wait on or check the communications ECB at
any time to see if a command has been entered for the program. Check the verb code in the
CIB to determine whether a STOP or a MODIFY command has been entered. After
processing the data in the CIB, issue a QEDIT macro instruction to free the CIB.

The communications ECB is cleared by QEDIT when no more CIBs remain. Care should be
taken if multiple subtasks are examining these fields. Any CIBs not freed by the task are
unchained by the system when the task is terminated. The area addressed by the pointer
obtained by the EXTRACT macro instruction, the communications ECB, and all CIBs are in
protected storage and may not be altered.

1-8 SPL: System Macros and Facilities Volume 1 -

A e



The program in Figure 4 follows the procedure outlined in the preceding paragraphs.y It shows
how you can code the EXTRACT and QEDIT macros to accept MODIFY and STOP

( commands.

QEDITEX CSECT
BALR 12,0 PROGRAM...
USING *,12 ... ADDRESSABILITY

*

* INITIALIZATION PROCESSING - DELETE START CIB

*

* OBTAIN ADDRESS OF CIB

*

LA S,ANSRAREA ADDRESS OF RESPONSE AREA FOR QEDIT

EXTRACT (5),FIELDS = COMM OBTAIN ADDRESS OF THE X
COMMUNICATIONS AREA FOR THE X

. CURRENT TASK
*

L 5,ANSRAREA LOAD ADDRESS OF COMMUNICATIONS AREA

USING COMLIST,S ESTABLISH ADDRESSABILITY TO IEZCOM

L 3,COMCIBPT OBTAIN ADDRESS OF CIB

— | -LTR 3,3 WAS A CIB ADDRESS RETURNED?
( i BZ SETCOUNT NO, CONTINUE INITIALIZATION
USING CIBNEXT,3 ESTABLISH ADDRESSABILITY TO IEZCIB

*

* MOVE DATA FROM CIB TO WORKING STORAGE

*

LH 4,CIBDATLN OBTAIN LENGTH OF DATA FIELD
BCTR 4,0 DECREASE LENGTH BY ONE
EX 4,DATAMOVE MOVE DATA TO WORKING STORAGE

*

* FREE THE START CIB, IF PRESENT

*

CLI CIBVERB,CIBSTART FIRST CIB FOR START COMMAND?

( BNE SETCOUNT NO, CONTINUE INITIALIZATION
QEDIT ORIGIN = COMCIBPT,BLOCK =(3) YES, FREE IT
LTR 15,15 CHECK RETURN CODE
BZ SETCOUNT IF RETURN CODE IS ZERO, THE CIB X

WAS FREED, CONTINUE

WTO ‘START CIB NOT FREED’ IF RETURN CODE IS NOT ZERO,
NOTIFY THE OPERATOR THAT
THE CIB WAS NOT FREED

bl

Figure 4 (Part 1 of 2). Example Using the EXTRACT and QEDIT Macros

Subtask Creation and Control 19




*

* SET THE LIMIT ON MODIFY COMMANDS
*
SETCOUNT EQU *

QEDIT ORIGIN = COMCIBPT,CIBCTR =2 SET LIMIT TO 2

*

* COMMAND PROCESSING LOOP

*

* CHECK THE COMMUNICATIONS ECB
*

WAIT EQU  *
L 4,COMECBPT OBTAIN ADDRESS OF COMMUNICATIONS ECB
WAIT ECB=(4) '~ WAIT FOR STOP OR MODIFY COMMAND

* NOTE: QEDIT CLEARS THE POSTED ECB

* WHEN THE LAST CIB IS FREED
L 3,COMCIBPT OBTAIN ADDRESS OF CIB

*
* TEST FOR MODIFY COMMAND CIB

* .
CLI CIBVERB,CIBMODFY IS IT FOR A MODIFY COMMAND?
BNE TSTSTOP NO, GO TEST FOR STOP

*

* PROCESS THE MODIFY COMMAND

*

* FREE THE MODIFY CIB
*

QEDIT ORIGIN = COMCIBPT,BLOCK =(3) FREE IT
B WAIT WAIT FOR NEXT COMMAND

*

* TEST FOR STOP COMMAND CIB

*

TSTSTOP  EQU  *
CLI  CIBVERB,CIBSTOP IS IT FOR A STOP COMMAND?
BNE  ERRORI NO, GO PROCESS AS ERROR

*

* PROCESS THE STOP COMMAND

*

* FREE THE STOP CIB -
*
QEDIT ORIGIN = COMCIBPT,BLOCK = (3) FREE THE CIB
B WAIT WAIT FOR NEXT COMMAND
*
* ERROR HANDLER FOR UNRECOGNIZED CIB TYPE

*

ERRORI EQU  *

*

* CONSTANTS AND DATA AREAS
*

DS OF
DATAAREA DS 4F WORK AREA FOR CIB DATA
ANSRAREA DS F ANSWER AREA FOR EXTRACT MACRO
DATAMOVE MVC DATAAREA(0),CIBDATA MOVE DATA FROM CIB TO DATAAREA
DSECT
1IEZCOM MAPPING MACRO FOR COMMUNICATION AREA
DSECT
1IEZCIB MAPPING MACRO FOR CIB
END

Figure 4 (Part 2 of 2). Example Using the EXTRACT and QEDIT Macros

1-10 SPL: System Macros and Facilities Volume 1



Providing an EXTRACT Answer Area

The EXTRACT macro instruction provides TCB information for either the active task or one
of its subtasks. Figure 5 shows the order in which the information from the requested fields is
returned. If the information from a field is not requested, the associated fullword is omitted.

Answer Area Address

GRS 00 Address
FRS 00 Address
Reserved 00 00 , 00 ‘ 00
AETX Address
PRI 00 00 l Value I Value
CMC 00 Completion Code
TIOT Address
COMM 00 Address
TSO 00 Address
PSB Address
TJID 00 00 Value
ASID 00 00 Value
R e )
1 Byte 1 Byte 1 Byte T 1 Byte 'l

Note: See the syntax of the EXTRACT macro instruction in Volume 2 for a description of these fields.
Figure 5. EXTRACT Answer Area Fields

You must provide an answer area consisting of contiguous fullwords, one for each of the codes
specified in the FIELDS parameter, with the exception of ALL. If ALL is specified, you must
provide a 7-word area to accommodate the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT
fields. The ALL code does not include the COMM, TSO, PSB, TJID, and ASID fields.

Most of the addresses are returned in the low-order three bytes of the fullword, and the
high-order byte is set to zero; the fields for AETX, TIOT, and PSB could have a nonzero first
byte. Fields for which no addresses or values are specified in the task control block are set to
ZEero.

For example, if you code FIELDS =(TIOT,GRS,PRI, TSO,PSB,TJID) you must provide a
6-fullword answer area, and the extracted information appears in the same relative order as
shown in Figure 5. (That is, GRS is returned in the first word, PRI in the second word, TIOT
in the third word, and so forth.)

If FIELDS =(ALL,TSO,PSB,COMM,ASID) is coded, you need an 11-fullword answer area,
and the extracted information appears in the answer area in the relative order shown above.

Subtask Creation and Control . 1-11




Changing the Priority of a Task (CHAP)
Programs should not use priority or precedence as a serialization mechanism because they
become sensitive to changes in the system’s dispatching algorithms. For example, the CHAP
macro instruction does not ensure that tasks are dispatched in the expected order, due to
dispatching on more than one processor. Also, the PRIORITY and DPRTY JCL parameters
cannot be used to accomplish serialization. First, the system resources manager might change
the dispatching priority of a task or job, allowing it to execute before a task with a previously
higher priority. Second, because tasks can execute on more than one processor, tasks of
different priority might be executed on more than one processor simultaneously.

- 1-12  SPL: System Macros and Facilities Volume 1




Program Management

( You can specify whether you want a program loaded into storage above or below the 16
megabytes line and if you want a program loaded at a specific address. This information along
with a description of synchronous exits, the use of checkpoint restart, and the use of re-entrant
modules, is described in this chapter.

Load module structures, methods of passing control between programs, and the use of
associated macro instructions are described in Supervisor Services and Macro Instructions.

Residency and Addressing Mode of Programs

The control program ensures that each load module is loaded above or below 16 megabytes
(Mb) as appropriate and that it is invoked in the correct addressing mode (24-bit or 31-bit).
The placement of the module above or below 16 megabytes depends on the residency mode
(RMODE) that you define for the module. Whether a module executes in 24-bit or 31-bit
( addressing mode depends on the addressing mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both instruction and
data addresses as 24-bit addresses. This allows programs executing in 24-bit addressing mode
to address 16 megabytes (16,777,216 bytes) of storage. Similarly, when a program is executing
in 31-bit addressing mode, the system treats both instructions and data addresses as 31-bit
addresses. This allows a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128x16 megabytes) of storage. SPL: 3I-Bit Addressing provides
detailed information concerning the AMODE and RMODE of modules.

(‘ You can define the residency mode and the addressing mode of a program in the source code.
Figure 6 shows an example of the definition of the AMODE and RMODE attributes in the
source code. This example defines the addressing mode of the load module as 31 and the
residence mode of the load module as 24. Therefore, the program will receive control in 31-bit
addressing mode and will reside below 16 megabytes in 24-bit addressable storage.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24
( 7 Figure 6. Assembler Definition of AMODE/RMODE

The assembler places the AMODE and RMODE in the output object module for use by the
linkage editor. The linkage editor passes this information on to the control program through
the directory entry for the partitioned data set that contains the load module. You can also
specify the AMODE/RMODE attributes of a load module by using linkage editor control
cards. See Linkage Editor for information concerning these control cards.

Placement of Modules in Storage
The control program uses the RMODE attribute from the directory entry for the module to
load the program above or below 16 megabytes. The RMODE attribute can have one of the
following values:

24-specifies that the program must reside in 24-bit addressable storage
ANY-specifies that the program can reside anywhere in virtual storage

© Copyright IBM Corp. 1982, 1989 Program Management 1-13




Addressing Mode
The AMODE attribute, located in the directory entry for the module, specifies the addressing
mode of the module. Bit 32 of the program status word (PSW) indicates the addressing mode d
of the program that is executing. MVS/XA supports programs that execute in either 24-bit or N
31-bit addressing mode.

T

The AMODE attribute can have one of the following values:
24-specifies that the program is to receive control in 24-bit addressing mode
31-specifies that the program is to receive control in 31-bit addressing mode
ANY-specifies that the program is to receive control in either 24-bit or 31-bit addressing

mode

Information about the addressing mode as it applies to macro instructions can be found in
Volume 2 under the topic “Addressing Mode and the Macro Instructions”

Specifying Where the Module is to be Loaded (LOAD)

|
| When a program in supervisor state uses the LOAD macro to bring a copy of the load module
[ into virtual storage, it can use one of three parameters to specify where the control program is
| to load the module:

l e Use the ADDR parameter to load a module in an APF-authorized library at a specified
| address. You must first allocate storage for the module in your key.

| ¢ Use the ADRNAPF parameter to load a module in an unauthorized library at a specified
| address. You must first allocate storage for the module in your key.

| e Use the GLOBAL paranieter on LOAD to load the module into either fixed or pageable \ ¥
| CSA.

| — GLOBAL=(YES,P) or GLOBAL =YES requests storage in the CSA.
| — GLOBAL =(YES,F) requests storage in fixed CSA.

| When you use GLOBAL = YES, you can use the EOM parameter to specify when the
| control program is to delete the module. EOM = YES (the default) requests deletion at task
| termination. EOM =NO requests deletion at address space termination.

| If you do not use ADDR, ADRNAPF, or GLOBAL =YES (that is, you use GLOBAL=NO or )

| take the default), the control program loads the module in subpool 251, with one exception. If ‘\{
| the module is reentrant, the library is authorized, and you are not running under TSO test, the

| control program places the module in subpool 252. Subpool 251 is fetch protected and has a

| storage key equal to your PSW key. Subpool 252 is not fetch protected and has storage key 0.

| When a program is in problem state, the control program brings the copy of the load module in
| subpool 251, with one exception. If the module is reentrant, the library is authorized, and you
| are not running under TSO test, the control program places the module in subpool 252.

1-14 spL: System Macros and Facilities Volume 1



Synchronous Exits (SYNCH)

( : In general, the SYNCH macro instruction is used when a control program in supervisor state
gives temporary control to a processing program routine (not necessarily running in supervisor

state) where the processing program is expected to return control to the supervisor state control
program. This facility should be used only by system programmers or other
installation-approved personnel. The program to which control is given must be in virtual
storage when the macro instruction is issued. To ensure that a program receives control with a
program key mask (PKM) consistent with its key, SYNCH processing forms the PKM using
the default key in the TCB along with the key specified by the KEYADDR parameter. If the
KEYMASK parameter is coded, the PKM formed thus far is ORed with the specified keymask.

When the processing program returns control, the supervisor state bit, the PSW key bits, the
system mask bits, and the program mask bits of the program status word are restored to the
settings they had before execution of the SYNCH macro instruction.

The SYNCH macro instruction is similar to the BALR instruction in that you can use register
( 15 for the entry point address.

SYNCH processing does not save or restore registers when control is returned to the caller
unless RESTORE = YES is specified. If you specify RESTORE =NO explicitly or by default,
the register contents are unpredictable. When an authorized program uses SYNCH to invoke
an exit in an unauthorized program, the general registers returned from the exit might not
contain expected data or correct addresses. Therefore, the authorized program must save the
registers in a protected save area and then restore them, or validate the contents of the returned
registers, or code RESTORE = YES.

) Label processing as a result of an OPEN macro instruction is an example of the use of the
( SYNCH macro instruction. Label processing might proceed to a point at which a user’s
processing program indicates that it wants or needs private processing. The control program'’s
open routine would then issue a SYNCH macro instruction giving the address of the subroutine
required for the user’s private label processing.

Using Checkpoint/Restart

When issuing checkpoints and then restarting a task, the restarted task must request control of
S all resources required to continue processing. Resources are not automatically returned to the
( task upon restart.

You can use the checkpoint/restart facility with the following restrictions:

¢ A routine that is restricted from issuing SVCs (for example, a routine running in SRB,
disabled, or cross memory mode) is also restricted from establishing checkpoints because
programmer-designated checkpoints require the use of the checkpoint SVC.

* An exit routine other than the end-of-volume exit routine cannot request a checkpoint.

¢ A routine invoked by a program call (PC) cannot request checkpoints because the system
environment might be different at the time of the restart from what it was at the time of the
checkpoint. This could lead to unpredictable results on the return linkage (PT).

¢ A routine with a PCLINK STACK request outstanding cannot establish a checkpoint.

¢ Routines that use both PC/AUTH facilities and checkpoint/restart must reestablish their
( PC/AUTH environment at restart time. In addition, they must not use any PC/AUTH data
: (for example, a PC number) that was obtained before the restart.

Program Management 1-15



e Subsystems that use the TCB subsystem affinity service cannot issue checkpoints. This is
because the subsystem affinity table (SSAT) index values might change from one system
initialization to another.

For additional information concerning the restrictions and use of the checkpoint/restart facility
see Checkpoint|/Restart User’'s Guide.

Using Re-entrant Modules

When link editing modules as re-entrant, be sure that all the modules and the macro
instructions they call are re-entrant. In a multiprocessing system this is important because:

* Two tasks in the same address space making use of the module might cause the module to
be executed simultaneously on two different processors.

e Asynchronous appendages can operate on one processor simultaneously with an associated
task on another processor.

* Enabled recovery routines can execute on any processor, not necessarily on the one on
which the error was detected.

The CSECTs must be unchanged during execution or their critical sections must be explicitly
serialized. The general method for ensuring re-entrance of macro instructions is to use the
LIST and EXECUTE forms of the macro instructions with a dynamically acquired parameter
list.

1-16 spL: System Macros and Facilities Volume 1

,
N



Serialization

Planning is required when more than one program uses a serially reusable resource. A serially
reusable resource is a resource that can be used by another program after the current use has
been concluded; that is, a resource that should not be used or modified by more than one
program within a given span of processing. Planning is also required when portions of some
tasks depend on the completion of events in other tasks.

This chapter discusses some of the services available to control resources, and thus to help you
plan ahead for a more efficient installation. The services discussed include:

¢ Locking (SETLOCK macro instruction)

¢ Must-complete function (ENQ and DEQ macro instructions)

* Shared DASD (RESERVE and EXTRACT macro instructions)

¢ Event completion (POST, SPOST, and EVENTS macro instructions)

Global resource serialization (ENQ, DEQ, RESERVE, or GQSCAN macro instructions) is
another form of serialization available to an installation. This topic appears in Supervisor
Services and Macro Instructions and Planning: Global Resource Serialization.

When Resource Serialization Is Needed

Resource serialization is used to prevent a program from altering the content or status of a
resource while another program is using that resource or is dependent on the content or status
of that resource remaining unchanged for a given span of processing. For example, resource
serialization prevents a program from issuing an SVC and changing the content of a control
block while another SVC is using that control block. '

Serialization Requirements

It is necessary to determine and keep track of resources that must be serialized and the routines
that access such resources. The only safe method of serialization is one of the following:
ENQ/DEQ, WAIT/POST/EVENTS, SUSPEND/RESUME, locking at the TCB level, CS
(compare and swap instruction), CDS (compare double and swap instruction), and TS (test and
set instruction). Such forms of serialization are required in the following cases:

* Scanning of the command input buffer (CIB) chain. You could use the QEDIT macro
instruction to manipulate the CIB chain.

¢ Using data in subpools shared between tasks.

e Using data referenced by more than one task. (For example, attached tasks can execute at
the same time as the attaching task on different processors.)

¢ Referencing system control block fields that dynamically change after IPL. The
serialization technique in this case must match that used by the system. (See the Debugging
Handbook for information concerning the serialization requirements for a particular system
control block.) Also, bits within a byte all require the same serialization technique.

¢ Accessing of data sets shared between tasks in the same address space, if the tasks update
the data and if the access method is not VSAM or BDAM.

¢ Referencing any common data between an ESTAE exit and asynchronous exits, if ESTAE
with ASYNCH = YES is issued.

© Copyright IBM Corp. 1982, 1989 Serialization 1-17




Locking

A locking mechanism serializes access to resources. This locking technique is only effective, A ™
however, if all programs that depend on a resource use the same locking mechanism. Each type \h_j
of serially reusable resource is assigned a lock. The lock manager controls a hierarchical

locking structure with multiple types of locks to synchronize the use of serially reusable

resources. The lock manager also handles all functions related to the locks. These functions

include obtaining or releasing locks and checking the status of a particular lock on a processor.

Use of the lock manager is restricted to key 0 programs running in supervisor state. This

prevents unauthorized problem programs from interfering with the system serialization process.

Categories of Locks
There are two categories of locks:

e Global locks -- protect serially reusable resources related to more than one address space.
(For example, a unit control block is protected by a global lock because it relates to the
entire system. Also, a system-related GETMAIN for a global subpool requires a global
lock.)

e Local locks -- protect the resources assigned to a particular address space. When the local
lock is held for an address space, the owner of the lock has the right to manipulate the
queues and control blocks associated with that address space. (For example, an address
space-related GETMALIN for a user subpool requires a local lock.)

All of the locks described in Figure 7, with the exception of the LOCAL and CML locks, are
global locks. These global locks provide system-wide services or use control information in the
common area and must serialize across address spaces. The local level locks, on the other
hand, do not serialize across address spaces, but serialize functions executing within the address )
space. Figure 7 summarizes the characteristics of MVS/XA locks. / )

1-18 SPL: System Macros and Facilities Volume 1



lock global local spin suspend single multiple shared/
(class) exclusive

RSMGL
VSMFIX
ASM
ASMGL
RSMST
RSMCM
RSMXM
RSMAD
RSM
VSMPAG
DISP
SALLOC
IOSYNCH
JOSUCB
SRM
TRACE

CPU

CMS
CMSEQDQ
CMSSMF
CML X
LOCAL X

X

Pl e

XK

oo
>

Pl Rl e R o T o T T el b i s

BTl Il B i e e i e i e Tl i

bl

X
X

Rl Rak ol

Note: The CPU lock has no real hierarchy except that once a user obtains it, the user cannot obtain a suspend

lock; a user can obtain the CPU lock while holding any spin lock. The CPU lock could be considered a pseudo
spin lock. It could also be considered multiple because there is one per processor and any number of requestors
can hold it at the same time.

Figure 7. Summary of Locking Characteristics

Types of Locks
The type of lock determines what happens when a function on one processor in an MP system
makes an unconditional request for a lock that is held by another unit of work on another
processor. There are two major types of locks: spin and suspend. Shared/exclusive locks are a
category of spin locks. The CPU lock is in a category by itself but could be considered a
pseudo spin lock. Descriptions of these types of locks follow:

¢ Spin locks -- prevent the requesting function on one processor from doing any work until
the lock is freed on another processor. The lock manager enters a loop that keeps testing
the lock until it is released on the owning processor. As soon as the lock is free, the lock
manager spinning on the requesting processor attempts to obtain the lock for the requesting
function. As long as a spin lock (except for shared/exclusive locks and the CPU lock) is
held by a function executing on a processor, the ID of that processor is in the lockword.
Once the lock is released by the owning function, the lockword is cleared.

— Shared/exclusive locks--serialize the reading or updating of a global resource. More
than one processor can own a shared/exclusive lock as shared at one time; only one
processor can own a shared/exclusive lock as exclusive at one time.

Code executing under a shared/exclusive lock is physically disabled. Figure 8
summarizes the results of an unconditional request for a shared/exclusive lock that
another processor holds. In general, the lock manager gives processors spinning for
exclusive ownership of a shared/exclusive lock priority over processors spinning for
shared ownership.

Serialization 1-19




Note: The contents of the lockword for a shared/exclusive lock is different from the
contents of a spin lockword. In particular, the shared/exclusive lockword does not
contain a logical processor ID. For more information about the contents of the
lockword for a shared/exclusive lock, see Diagnostic Techniques.

Type of Request How Held by Results
Owning Processor
Shared Shared Obtain shared ownership.
Shared Exclusive Spin on the lock until the exclusive owner releases it.
Exclusive Shared Spin on lock until all shared owners release it.

Set the exclusive-pending-request bit in the lockword.

Exclusive Exclusive Spin on lock until the exclusive owner releases it.
Set the exclusive-pending-request bit in the lockword.

Figure 8. Requests for Shared/Exclusive Locks

—  CPU lock--provides system recognized (legal) disablement for units of work (requestors)
on a processor level. System recognized (legal) disablement is defined as holding a spin
lock or having a super bit set in the PSASUPER field of the PSA. While a requestor
holds the CPU lock, the requestor is physically disabled for I/O and external
interruptions.

Multiple units of work on the same processor can own the CPU lock. The CPU
lockword (in the PSA) contains the cumulative count of requestors who hold the CPU
lock. Obtaining the CPU lock increases the ownership count of the CPU lock by 1;
releasing the CPU lock decreases the ownership count by 1.

Note: The CPU lockword does not contain a processor ID. See Diagnostic Techniques
for additional details about the CPU lockword; see Figure 7 for a description of the
“hierarchy” of the CPU lock and its other attributes.

¢ Suspend locks -- prevent the requesting program from doing work until the lock is
available, but allow the processor to continue doing other work. The requestor is
suspended and other work may be dispatched on that processor. Upon release of the lock,
the suspended requestor is given control with the lock or is redispatched to retry the lock
obtain.

Examples of Lock Types
All of the locks described in Figure 7 with the exception of the CPU, LOCAL, cross memory
local (CML), and cross memory services (CMS) locks, are spin locks. The CPU lock can be
considered a pseudo spin lock. The LOCAL, CML, CMS, CMSSMF, and CMSEQDQ locks
are suspend locks. Their owners receive control enabled and can be interrupted to run higher
priority work. If there is another request for the lock while it is held, the requestor is
suspended and other work is dispatched. The local lockword contains the ID of the processor
on which its owner is dispatched or an indication that the owner is suspended or interrupted.
The CMS lockword contains the ASCB address of the locally locked address space that owns
the lock. Special IDs are placed in the local lockword whenever the owner of the local lock is
not currently executing on a processor because of an interruption or suspension. See Diagnostic
Techniques for a description of the contents of a local suspend lockword.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

1-20  SPL: System Macros and Facilities Volume 1

P

N

S

‘_ = \
.



The CMS lock is an enabled global lock for the following reasons:

* Because disabled page faults are not allowed in the system, some global functions need a
lock that does not require the functions to fix all their code and control blocks.

¢ Some functions require significant amounts of time under the lock and could impact the
responsiveness of the system. By running these functions enabled under the lock,
responsiveness is retained at the expense of some increased contention for the lock.

The other global locks are disabled spin locks because the functions that run under the locks
are of short duration and cannot tolerate interruptions. The cost in system overhead to
perform the status saving necessary to accept interruptions and allow switching would offset the
gain in responsiveness. Also, the more frequently used functions (for example, IOS interruption
handler, dispatcher, and storage manager) perform interruption handling and task switching,
and have to remain disabled.

If a lock is unconditionally requested, the lock is unconditionally obtained. If the lock is
conditionally requested, the requestor is given the lock if it is available; if the lock is
unavailable, control is returned to the caller without the lock. (See the COND and UNCOND
parameters on the SETLOCK macro instruction.)

Classes of Locks
There are two classes of locks:

¢ Single locks -- Only one lock exists at a given level of the locking hierarchy. Because there
is one lock at a given level, SETLOCK requests for single locks cannot specify the ADDR
keyword parameter.

¢ Multiple locks (commonly referred to as class locks) -- More than one lockword exists at a
given level of the locking hierarchy. Because of this, SETLOCK requests for multiple locks
must specify the ADDR keyword parameter.

The locks provided in MVS/XA in hierarchical order are:

¢ RSMGL (real storage management global lock) -- serializes access to all RSM global
queues and resources.

¢ VSMFIX (virtual storage management lock) -- serializes the common area subpools
(subpools 226, 227, 228, 231, 239, 241, and 245).

* ASM (auxiliary storage management lock) -- serializes ASM resources on an address space
level.

¢ ASMGL (auxiliary storage management global lock) -- serializes ASM resources on a
global level.

¢ RSMST (real storage management steal lock) -- serializes RSM control blocks on an
address space level when it is not known which address space locks are currently held.

* RSMCM (real storage management common lock) -- serializes RSM resources in the
common area (such as page table entries, the pageable-frame queue, and the fixed-frame
queue).

* RSMXM (real storage management cross memory lock) -- serializes RSM control blocks on
an address space level when serialization to a second address space is necessary.

¢ RSMAD (real storage management address space lock) -- serializes RSM control blocks on
an address space level.

* RSM (real storage management lock) -- serializes RSM execution and RSM resources.

Serialization 1-21




VSMPAG (virtual storage management lock) -- serializes the use of common VSM work
area for pageable subpools.

DISP (global dispatcher lock) -- serializes the use of resources such as address space vector
table (ASVT) updating and changes to the address space control block (ASCB) dispatching
queue.

SALLOC (space allocation lock) -- serializes the external receiving routines that enable a
processor for either an emergency signal or a malfunction alert.

IOSYNCH (I0S synchronization lock) -- serializes global IOS functions by means of an
IOSYNCH lock table.

TOSUCB (IOS unit control block lock) -- serializes access and updates to the unit control
blocks (UCB)s. There is one lock for each UCB.

SRM (system resources manager lock) -- serializes use of the SRM control algorithms and
associated data.

TRACE (TRACE lock) -- serializes the system trace buffer structure.

CPU (processor lock) -- serializes on the processor level, providing system recognized (legal)
disablement.

CMS (general cross memory services lock) -- serializes on more than one address space
where this serialization is not provided by one or more of the other global locks.

CMSEQDQ (ENQ/DEQ cross memory services lock) -- serializes ENQ/DEQ functions and
the use of ENQ/DEQ control blocks.

CMSSMF (SMF cross memory services lock) -- serializes SMF functions and the use of
SMF control blocks.

CML (cross memory local lock) -- serializes resources in an address space other than the
home address space.

Local storage lock (LOCAL) -- serializes functions and storage, used by the local supervisor
within an address space. There is one lock for each address space.

You must hold a local lock, either CML or LOCAL, when requesting the CMS, CMSEQDQ,

or CMSSMF lock. You cannot release the local lock while holding a cross memory services
lock. You need not hold all locks in the hierarchy up to the highest lock needed. Hold only
locks that you need.

Locking Hierarchy

The locks are arranged in a hierarchy to prevent a deadlock between functions on the
processor(s). An example of a deadlock between functions would be:

* Function A holding the SRM lock and requesting the DISP lock on processor 0

¢ Function B holding the DISP lock on processor 1 and requesting the SRM lock currently

held on processor 0

A function on a processor can request unconditionally only those locks that are higher in the
hierarchy than the locks it currently holds, thus preventing deadlocks. The hierarchy is shown

in Figure 7, with RSMGL being the highest lock.

The CPU lock has no hierarchical relationship with other spin locks. The CPU lock can be

obtained while other spin locks are held; other spin locks can be obtained (in their hierarchical
sequence) while the CPU lock is held. The CPU lock is, however, higher in hierarchical order
than any of the suspend locks, therefore once you obtain the CPU lock, you cannot obtain any
suspend lock. The cross memory services locks (CMS, CMSEQDQ, and CMSSMF) are equal

1-22  SPL: System Macros and Facilities Volume 1

K‘K,/"

TN



to each other in the hierarchy. The CML and LOCAL locks are also equal to each other in the
hierarchy.

( 7 With the exception of cross memory services locks, a processor can hold only one lock at the
same level of hierarchy. Therefore, if a processor holds an IOSUCB lock, it may not request a
different IOSUCB lock at a different address. If a processor holds one cross memory services
lock, it can not request another cross memory services lock. However, a processor can hold all
cross memory services locks if it unconditionally requests them simultaneously. If the locks are
requested at the same time, they must be released at the same time. It is not recommended that
all cross memory services locks be held at the same time because it will degrade performance.

Using the Same Lockword for Class Locks at Different Levels
To simplify lockword management, a user can provide the same lockword for certain class locks
at different levels of the locking hierarchy (for example, the RSMST, RSMCM, RSMXM, and
RSMAD locks). However, the lockword can only represent one lock at any given time.

For example, the RSMXM lock held at location 1000 on processor 0 creates two kinds of
locking restrictions:

( ¢ No other lock (for example, RSMAD) can be obtained at location 1000 on processor 0 or
any other processor, until the RSMXM lock is released (however, another lock, like the
RSMAD lock, can be obtained at another location on processor 0).

e An RSMXM lock at another location on cannot be obtained on processor 0 until the
RSMXM lock at location 1000 is released (however, the RSMXM lock at another location
on another processor can be obtained).

The lock manager prevents an interlock by detecting the attempt to simultaneously obtain
( multiple locks using the same lockword or lock location.

For conditional requests using the same lockword, the lock manager supplies return codes that
the user can check. For unconditional requests, if the caller holds the lockword for a different
level lock, the lock manager abnormally terminates the caller with an 073 ABEND code. The
return codes are described with the syntax of the SETLOCK macro instruction in Volume 2.

There is another situation in which an interlock could occur. This type of interlock is not

prevented by the lock manager, but must be solved in the program by using internal hierarchy

rules. It involves using the same lockword for a class of locks. For example, if task A and task
( B are executing on different processors an interlock could occur if:

Task A holds the RSMAD lock located at location 1000 and requests the RSMXM lock
located at location 2000 while task B holds the RSMAD lock located at location 2000 and
requests the RSMXM lock located at location 1000.

CML Lock Considerations
The cross memory local lock (CML) is provided to allow cross memory services to serialize
resources in an address space that might not be the home address space. It has the same
attributes as the LOCAL lock. (The LOCAL lock refers only to the home address space
pointed to by PSAAOLD.) The owner of a CML lock can be suspended for the same reasons
as the owner of the LOCAL lock, such as CMS lock suspension or page fault suspension.

In a multi-tasking environment, it is possible for more than one task or SRB in an address

space to obtain a local level lock. For example, task A might own the LOCAL lock of its
( address space while task B in the same address space owns the CML lock of address space C.

Serialization 1-23




To prevent possible system deadlocks, only one lock at the local level can be held at one time

by a unit of work. If a CML lock is requested while owning the LOCAL lock, the requestor

will be abended. The same is true if the LOCAL lock is requested while owning a CML lock. Y
\%“‘7/’

Either a CML lock or the LOCAL lock must be held to request one or all of the cross memory

services locks (CMS, CMSEQDQ, or CMSSMF).

The requestor of a CML lock must have authority to access the specified address space prior to
the lock request. This is accomplished by setting the primary or secondary address space to
that specified on the lock request. The specified address space must be non-swappable prior to
the obtain request.

Note: The CML lock of the master scheduler address space cannot be obtained. The master
scheduler address space lock can only be obtained as a LOCAL lock.

Obtaining, Releasing, and Testing Locks (SETLOCK)
Use the SETLOCK macro instruction to obtain, release, or test a specified lock or set of locks
(using the OBTAIN, RELEASE, and TEST parameters). Users can also obtain the current
CPU lock use count for a processor and determine whether a processor holds a spin lock higher ,,
in the locking hierarchy than a specified lock. To use SETLOCK, you must be executing in "
supervisor state with protection key 0. Users of SETLOCK can also be executing in SRB
mode, in cross memory mode, as an extension of the interrupt handlers, or as a system service
such as the MVS/XA dispatcher.

Disabled/Enabled State for Obtain
When a global spin type lock is successfully obtained, control returns to the caller with the
processor disabled for I/O and external interruptions.

When a suspend type lock is successfully obtained via an unconditional request, control returns
to the caller with the processor enabled for I/O and external interruptions.

For an unsuccessful conditional request of a spin lock, control returns to the caller disabled
only if the caller was disabled on entry. Otherwise, control returns enabled for I/O and external
interruptions. If a disabled caller unconditionally requests a suspend type lock that is not
immediately available, the caller is abnormally terminated.

Disabled/Enabled State for Release
When a global spin type lock is released, control returns to the caller enabled for I/O and N
external interruptions unless at least one of the following is true: \ 5

* Another global spin lock is held
¢ A disabled supervisor indicator (PSASUPER) is on
e The DISABLED parameter was specified

If one of the above is true, control returns to the caller disabled for I/O and external
interruptions.

When a suspend type lock is released, control returns disabled for I/O and external
interruptions if the caller was disabled on entry. Otherwise control returns to the caller enabled

for I/O and external interruptions.

For a release request via the SPIN, ALL, or (reg) parameters, the final state is the same as that
which would have existed had the locks been released one at a time.

1-24  SPL: System Macros and Facilities Volume 1



Altering the Dispatching Queue (INTSECT)
The intersect function is the serialization mechanism that the dispatcher and control program
functions use to alter the dispatching queues. The LOCAL and dispatcher locks are used in
conjunction with the intersect function. Intersect serialization is only between the requestor of
the intersect and the dispatcher. The requesting routine must hold the LOCAL or dispatcher
lock for serialization with other routines.

A routine can intersect on either the local or global level. The LOCAL lock is required for
obtaining the local intersect; it also ensures the proper serialization with other routines
requesting the local intersect. The local intersect ensures serialization of an address space with
the dispatcher and serialization of routines that modify the TCB dispatching queue or TCB
dispatchability. Similarly, the dispatcher lock is required for routines requesting the global
intersect. The global intersect ensures serialization of dispatcher functions on a global level.

Using the Must-Complete Function (ENQ/DEQ)

System routines (routines operating under a storage protection key of zero) often update and/or
manipulate system resources such as system data sets, control blocks, and queues. These
resources contain information critical to continued operation of the system. The task
requesting this serialization must successfully complete its processing of the resource.

Otherwise, the resource might be left incomplete or might contain erroneous information.

The ENQ service routine ensures that a routine queued on a critical resource(s) can complete
processing of the resource(s) without interruptions leading to termination. ENQ places other
tasks in a nondispatchable state until the requesting task -- the task issuing an ENQ macro
instruction with the set must-complete (SMC) parameter -- has completed its operations on the
resource. The requesting task releases the resource and terminates the must-complete condition
by issuing a DEQ macro instruction with the reset must-complete (RMC) parameter.

Because the must-complete function serializes operations to some extent, its use should be
minimized -- use the function only in a routine that processes system data whose validity must
be ensured. Just as the ENQ function serializes use of a resource requested by many different
tasks, the must-complete function serializes execution of tasks.

Characteristics of the Must-Complete Function
The must-complete function can be used only at the step level, where only the current problem
program task in an address space is allowed to execute. All other problem program tasks, and
the initiator task, are made non-dispatchable.

When the must-complete function is requested, the requesting task is marked in “must complete
mode” when the resource(s) queued upon are available. All asynchronous exits from the
requesting task are deferred. The initiator and all other tasks in the job step are set
nondispatchable. Tasks external to the requesting task are prevented from initiating procedures
that will cause termination of the requesting task. Other external events, such as a CANCEL
command issued by an operator, or a job step time expiration, are also prevented from
terminating the requesting task.

The failure of a task that owns a must-complete resource results in the abnormal termination of

the entire job step. The programmer and the operator receive a message stating that the failure
occurred while the step was in must-complete mode.

Serialization 1-258



Programming Notes

1. All data used by a routine that is to operate in the must-complete mode should be checked
for validity to ensure against a program-check interruption.

2. If a routine that is already in the must-complete mode calls another routine, the called
routine also operates in the must-complete mode. An internal count is maintained of the
number of SMC requests; an equivalent number of RMC requests is required to reset the

‘must-complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally, an interlock
might occur if a routine issues an ENQ macro instruction while in the must complete mode.
Also, a task that is non-dispatchable, because of a must-complete request, might already be
queued on the requested resource. In this case, an enabled wait occurs. An enabled wait
can be broken by an operator’s action (such as the use of the FORCE command).

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, (unless
extreme care is taken) by a routine operating in the must-complete mode. An interlock
condition results if a serially reusable routine requested by one of these macro instructions
either has been requested by one of the tasks made nondispatchable by the use of the SMC
parameter or was requested by another task and has been only partially fetched.

5. The time a routine is in the must-complete mode should be kept as short as possible -- enter
at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s))
b. ENQ (on same resource(s)),RET=HAVE,SMC = STEP

Step (a) gets the resource(s) without putting the routine into the must-complete mode.
Later, when appropriate, issue the ENQ with the must-complete request (Step b). Issue a
DEQ macro instruction to terminate the must complete mode as soon as processing is
finished. Tasks set nondispatchable by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

Limiting Global Resource Serialization Requests

Global resource serialization allows an installation to share symbolically-referenced resources
between units of work. (Planning: Global Resource Serialization explains the function and use
of global resource serialization.) A global resource serialization request is an ENQ or
RESERVE request that causes an element to be added to any queue in the global resource
serialization queue area.

GQSCAN uses the same control blocks as ENQ and RESERVE to obtain the status of
resources and requestors of resources during resumption processing. (The GQSCAN macro is
described in the section ‘Measuring System Characteristics’ and in Volume 2.) In order to
prevent any one job, started task, or TSO user from generating too many concurrent requests,
global resource serialization limits the number of global resource serialization requests in each
address space.

Global resource serialization counts the number of ENQ/RESERVE requests and the number
of pending GQSCAN requests issued by all TCBs in each address space. Each time a user
issues an ENQ/RESERVE, global resource serialization increases the count in that address
space by 1 for each resource name and decreases the count by 1 when a user in that address
space issues a DEQ. Similarly, when a user issues a GQSCAN request, global resource
serialization increases the count in that address space by 1 and decreases the count by 1 when
the scan is completed (if resumption is requested).

1-26 SPL: System Macros and Facilities Volume 1

PN

~



Global resource serialization compares the computed count of requests to a threshold value
(4096) stored in the GVTCREQ field of the global resource serialization vector table (GVT).
(See SPL: System Modifications for a description of how to change the threshold value.) When
the computed count reaches the threshold value, global resource serialization processes
subsequent requests as follows:

¢ ENQ/RESERVE requests from unauthorized callers are rejected; unconditional requests
from these callers are abended and conditional requests receive a return code of X‘18’.

¢ ENQ/RESERVE requests from authorized callers are not rejected until the count exceeds
the threshold value by a tolerance value. This higher limit is stored in the GVTCREQA
field of the GVT. The tolerance provided by the system is 15, but system programmers can
change this value. (See SPL: System Modifications for a description of how to change the
limit for authorized callers.) This means that an additional 15 concurrent ENQ/RESERVE
requests are accepted from authorized callers. This is done to allow for normal termination
and to permit error recovery routines to obtain the resources that they need. Once the
computed count exceeds the limit for authorized callers, subsequent requests are rejected in
the same way as requests from unauthorized callers.

* GQSCAN requests that do not fit into the caller’s buffer receive a return code of X‘14’;
these requests are not queued and a TOKEN is not provided.

ENQ/RESERVE requests from authorized callers use the MASID and MTCB parameters to
allow a further conditional control of a resource. One task issues an ENQ or RESERVE for a
resource specifying a matching ASID; if the issuing task does not receive control, it is notified
whether the matching task has control (which allows the issuing task to use the resource even
though it could not acquire the resource itself). This process requires serialization between the
issuing and requesting tasks.

Shared Direct Access Storage Devices (Shared DASD)

The shared DASD facility allows systems to share direct access storage devices. Systems can
share common data and consolidate data when necessary. No change to existing records, data
sets, or volumes is necessary to use the facility. However, reorganization of volumes might be
desirable to achieve better performance.

Exercise careful planning in accessing shared data sets or shared data areas. Data integrity can
not be assured without proper intersystem communication. This topic, as it relates to macro
instructions, is discussed further under “Macro Instructions Used with- Shared DASD.”
Similarly, appropriate security procedures must be performed on each of the multiple systems
involved in the sharing of DASD before data can be regarded as secure. Data sets that are
intended to be protected via passwords or RACF should be initially protected on each system
before sensitive data is placed in them. This topic, as it refers to password protection, is
discussed further under “System Configuration.”

Devices that Can be Shared
The following control units and devices are supported by the shared DASD option:

e IBM 2835 Storage Control Unit with two-channel switch -- IBM 2305 Fixed Head Storage
Facility.

¢ [BM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Series Disk Storage
Drive. The IBM 3330, 3340/3344, 3350 Series devices may also be configured for shared
use via the string switch feature.

¢ IBM 3880 Storage Control Units Models 2 and 3 -- IBM 3380 Direct Access Storage
Facility.

Serialization 1-27



¢ IBM 3880 Storage Control Units Models 1 and 2 -- IBM 3375 Direct Access Storage
Facility.

Alternate channels to a device from any one system can only be specified for the IBM 3330,
3340/3344, 3350 Series Storage Unit, the 3375 Direct Access Storage Device, and the 3380
Direct Access Storage Device.

Volume/Device Status
The shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. Figure 9 shows the combinations that
must be in effect for a volume or device:

System A Systems B, C, D

Permanently resident Permanently resident

Reserved Reserved

Removable Offline - Non-JES3 devices

Removable Removable - JES3 - managed devices

Offline Removable, reserved, or permanently resident
(In JES2, if a device is removable in one
system, it must be offline in all others.)

Figure 9. Valid Volume Characteristic and Device Status Combinations

If a volume or device is marked removable on any one system, the device must be either in
offline status or removable status on all other systems. The mount characteristic of a volume
and/or the status of a device can be changed on one system as long as the resulting combination
is valid for other systems sharing the volume or device. No other combinations of volume
characteristics and device status are supported.

System Configuration
Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxiliary Control unit. The user must also observe certain restrictions about the data sets
that are shared. The following data sets cannot be shared:

Master catalog

PASSWORD SYS1.MANX
SYS1.DCMLIB SYS1.NUCLEUS
SYS1.DUMPxx SYS1.PAGExx
SYS1.LOGREC SYS1.STGINDEX
SYS1.LPALIB SYS1.SVCLIB

Because the system does not provide for the sharing of the PASSWORD data set, the
PASSWORD data set for each system must contain password records for all protected data
sets. Where independent computing systems share common DASD resources, individual
installations must ensure that the PASSWORD data set contains records for all protected data
sets for each system sharing the DASD. For further details regarding password protection on
shared DASD, see System-Data Administration.

Volume Handling
Volume handling with the shared DASD option must be clearly defined because operator
actions on the sharing system must be performed in parallel. The following rules should be in
effect when using the shared DASD option:

¢ Operators should initiate all shared volume mounting and demounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently resident
status, and only the former can be changed by the operator.

1-28 SspL: System Macros and Facilities Volume 1



¢ Mounting and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be issued on all systems before a device can be dismounted.

( ¢ Valid combinations of volume mount characteristics and device status for all sharing
systems must be maintained. To IPL a system, a valid combination must be established
before device allocation can proceed. This valid combination is established either by
specifying mount characteristics of shared devices in VATLST, or varying all shareable
devices offline before issuing START commands and then following parallel mount
procedures.

Macro Instructions Used with Shared DASD (RESERVE, EXTRACT)
You can use the RESERVE, ENQ, DEQ, and EXTRACT macro instructions when working
with shared DASD. The following paragraphs describe the use of these macro instructions in
relation to shared DASD.

¢ The RESERVE macro instruction reserves a device (identified by its UCB address and
symbolic resource name) for use by a particular system. Each task that needs exclusive use
of a device must issue the RESERVE macro. When a task issues a RESERVE for a

, particular device, the system increases the count of outstanding reserve requests (located in

( the UCBSQC field of the UCB) for that device. If MVS starts I/O for that device while the

count is non-zero, it precedes the channel program with a RESERVE channel control word

(CCW) that reserves the device to the system that executed the RESERVE CCW.

Notes:

1. The set-must-complete (SMC) parameter of the ENQ macro instruction can also be
used with RESERVE.

2. If a check point restart occurs when a RESERVE is in effect for devices, the system
does not restore the RESERVE; the user’s program must reissue the RESERVE.

(. , * The initiator, allocation, and direct access device storage management (DADSM)
components of MVS use an ENQ with a major name of SYSDSN to serialize access to
datasets, whether these datasets exist on shared DASD or not. The use of global resource
serialization in a shared DASD environment allows DADSM 4o serialize the use of DASD
space by all systems sharing a volume so that data integrity is guaranteed. The SYSDSN
major name must be a resource known to all systems in the shared DASD environment.
Refer to the topic Setting Up Resources Name Lists in the “Global Resource Serialization’
section for more information about how to make SYSDSN known to all systems.

9

* When the task issues a DEQ for the resource named on the RESERVE macro, the system
( reduces the count in the UCB. When this count reaches zero, the system starts a channel
program, consisting of a RELEASE CCW, to free the device.

» If global resource serialization is active, ENQ and DEQ, with SCOPE=SYSTEMS
specified, can serialize on a particular shared DASD data set without reserving the entire
device. See Planning: Global Resource Serialization for details.

¢ The EXTRACT macro instruction obtains the address of the task input/output table
(TIOT) from which the UCB address can be obtained. “Finding the UCB Address for the
RESERVE Macro” explains this procedure. EXTRACT provides information, it does not
actually serialize a resource.

Serialization  1-29




Releasing Devices
The DEQ macro instruction is used with RESERVE just as it is used with ENQ. It must
describe the same resource as the RESERVE and its scope must be stated as SYSTEMS; Fa
however, the UCB = pointer address parameter is not required. If the DEQ macro instruction is ‘M. j,"‘
not issued by a task that has previously reserved a device, the system frees the device when the N

task is terminated.

Preventing Interlocks
The greater the number of device reservations occurring in each sharing system, the greater the
chance of interlocks occurring. Allowing each task to reserve only one device minimizes the
exposure to interlock. The system cannot detect interlocks caused by a program’s use of the
RESERVE macro instruction and therefore, enabled wait states can occur on the system.
Global resource serialization can also be used to prevent interlocks by suppressing the hardware
RESERVE or simply issuing a global ENQ to serialize the resource. See Planning: Global
Resource Serialization for additional information on this topic.

Volume Assignment
Because exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems --
processing four different data sets on two shared volumes -- to become interlocked. (If global ~
resource serialization is active and RESERVEs are converted to global ENQs, an interlock does
not occur.) For example, as shown in Figure 10, data sets A and B reside on device 124, and
data sets D and E reside on device 236. A task in system 1 reserves device 124 in order to use
data set A; a task in system 2 reserves device 236 in order to use data set D. Now the task in
system 1 tries to reserve device 236 in order to use data set E and the task in system 2 tries to
reserve device 124 in order to use data set B. Neither can ever regain control, and neither will
complete normally. When the system has job step time limits, the task, or tasks, in the
interlock will be abnormally terminated when the time limit expires. Moreover, an interlock PN
could mushroom, encompassing new tasks as these tasks try to reserve the devices involved in "
the existing interlock.

Task X Task Y

Reserves Reserves

Interlock

O
-

Device 124 Device 236

(O

Figure 10. Example of an Interlock Environment

(i

'

1-30 SPL: System Macros and Facilities Volume 1



Program Libraries
When assigning program libraries to shared volumes, take care to avoid interlock. For
example, SYS1.LINKLIB for system 1 resides on volume X, while SYS1.LINKLIB for system 2

( resides on volume Y. A task in system 1 invokes a direct access device space management
function for volume Y, causing that device to be reserved. A task in system 2 invokes a similar
function for volume X, reserving that device. However, each load module transfers to another
load module via XCTL. Since the SYS1.LINKLIB for each system resides on a volume
reserved by the other system, the XCTL macro instruction cannot complete the operation. An
interlock occurs; because no access to SYS1.LINKLIB is possible, both systems will eventually
enter an enabled wait state. (If global resource serialization is active and RESERVEs are
converted to global ENQs, an interlock does not occur).

Using Different Serialization Techniques for the Same Volume
A task interlock can occur within a global resource serialization complex when two tasks
reserve the same volume and some of the RESERVEs specify resource names that suppress the
hardware reserve while other RESERVEs are hardware reserves that lock up the entire volume.
The UCB count of outstanding reserves for that volume is manipulated only for the hardware
RESERVEs.

( If you code a RESERVE macro, the hardware reserve is suppressed when the resource name
appears in the reserve conversion resource name list (RNL). See Planning: Global Resource
Serialization for additional information about RNLs and about preventing interlocks.

Finding the UCB Address for the RESERVE Macro
This topic explains procedures for finding the UCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine that issues the RESERVE
and DEQ macro instructions and can be called by routines written in higher level languages.

( , Job management routines construct the TIOT, which resides in virtual storage during step
execution. The TIOT consists of one or more DD entries, each of which represents a data set
defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, you must locate the DD entry in the TIOT corresponding to the DD name of the data
set for which the RESERVE macro instruction is to be issued.

Providing the Unit Control Block Address to RESERVE: Use the EXTRACT macro instruction
to obtain information from the task control block (TCB). The address of the TIOT can be
obtained from the TCB in response to an EXTRACT macro instruction. Before issuing an
( EXTRACT macro instruction, set up an answer area to receive the requested information. One
full word is required for each item to be provided by the control program. If you want to
obtain the TIOT address, you must specify FIELDS =TIOT in the EXTRACT macro
instruction.

The control program returns the address of the TIOT, right adjusted, in the full word answer
area.

You can also obtain the UCB address via the data extent block (DEB) and the data control
block (DCB). The DCB contains data pertinent to the current use of the data set. After the
DCB has been opened, offset 44 decimal contains the DEB address. The DEB contains an
extension of the information in the DCB. Each DEB is associated with a DCB and the two
point to each other.

Serialization 1-31




The DEB contains information about the physical characteristics of the data set and other
information that the control program uses. A device-dependent section for each extent is
included as part of the DEB. Each such extent entry contains the UCB address of the device to
which that portion of the data set has been allocated. In order to find the UCB address, you
must locate the extent entry in the DEB for which you intend to issue the RESERVE macro
instruction. (In disk addresses of the form MBBCCHHR, the M indicates the extent number
starting with 0). :

Procedures for Finding the UCB Address of a Device:

e For data sets using the queued access methods in the update mode or for unopened data
sets:

1. Extract the TIOT from the TCB.
2. Search the TIOT for the DD name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the
UCB address in the TIOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the parameter
of the UCB keyword.

Note: This procedure can be used for non-concatenated DD statements and for data sets
that reside on a single volume.

e For opened data sets: ,
1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step 1.
The result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the parameter
of the UCB keyword.

¢ For BDAM data sets, you can reserve the device at any point in the processing in the
following manner:

1. Open the data set.

2. Convert the block address used in the READ/W RITE macro to an actual device
address of the form MBBCCHHR.

Load the DEB address from the DCB field labeled DCBDEBAD.
Load the address of the field labeled DEBDVMOD in the DEB.
Multiply the “M” of the actual device address (step 2) by 16.

A

The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter
of the UCB keyword.

1-32  SPL: System Macros and Facilities Volume 1



o If the data set is an ISAM data sét, QISAM i the load mode should be used only at
system update tithe. Further, if it is a multivolume ISAM data set, it must be assumed that
all jobs will access the data set through the highest level index. The indexes should never
reside in virtual storage whein the data set is beirig shared. In this case, by issuing a
RESERVE macro for the volume of which the highest level index resides, the user
effectively reserves the volumes on which the prime data and independent overflow areas
reside. The following procedures can be used to achieve this:

1. Open the data set.

2. Locate the actual device address (MBBCCHHR) of the highest level mdex This
address can be obtained from the DCB.

Load the DEB address from the DCB field labeled DCBDEBAD.
Load the address of the field labeled DEBDVMOD in the DEB.
Multiply the “M” of the actual device address located in step 2 by 16.

o voa W

The sum of steps 4 and § is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter
of the UCB keyword.

* For information concefning how to find the UCB address when using the VSAM access
method, see VSAM Administration Guide.

RESDEQ Subroutine: The assembler ]éﬁgu’a’ge subroutine in Figure 11 can be used by
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must be passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the DD statement for the device to be reserved.
QNAME - an eight character name.

RNAME LENGTH - ofie byte (a binary integer) that contains the RNAME length value.
RNAME - a name from 1 to 255 characters in length.

The DEQ macro instruction does not require the UCB =uch addr as a parameter. If the DEQ

macro is to be issuéd, a fullword of binary zeroes must be placed in the leftmost four bytes of
the DDNAME field before control is passed.

Serialization 1-33




RESDEQ CSECT
RESDEQ AMODE 24
RESDEQ RMODE 24

SAVE (14,12),7 SAVE REGISTERS
BALR 12,0 SET UP ADDRESSABILITY
USING *,12
ST 13,SAVE+4
LA 11,SAVE ADDRESS OF MY SAVE AREA IS
STORED IN THIRD WORD OF CALLER'S
ST 11,8(13) SAVE AREA
LR 13,11 ADDRESS OF MY SAVE AREA
LR 9,1 ADDRESS OF PARAMETER LIST
L 3,0(9) . DDNAME PARAMETER OR WORD OF
ZEROS
CLC 0(4,3),=F'0" WORD OF ZEROS IF DEQ IS
REQUESTED
BE WANTDEQ
*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7 ,ADDRTIOT ADDRESS OF TASK I/0 TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY
NEXTDD CLC 0(8,3),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7) LENGTH OF DD ENTRY
LA 7,0(7,11) ADDRESS OF NEXT DD ENTRY
CLC 0(4,7),=F'0" CHECK FOR END OF TIOT
BNE NEXTDD
ABEND 200,DuMpP DDNAME IS NOT IN TIOT, ERROR
FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT
*

CONTAINS ADDRESS OF UCB
*PROCESS FOR DETERMINING THE QNAME REQUESTED

WANTDEQ L 7,4(9) ADDRESS OF QNAME
MVC QNAME(8) ,0(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME
L 7,8(9) ADDRESS OF RNAME LENGTH
mMve RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7 ,RNAME STORE LENGTH OF RNAME IN THE

FIRST BYTE OF RNAME PARAMETER
FOR RESERVE/DEQ MACROS

L 6,12(9) ADDRESS OF RNAME REQUESTED
BCTR 7,0 SUBTRACT ONE FROM RNAME LENGTH
EX 7 ,MOVERNAM MOVE IN RNAME
CLC 0(4,3),=F'0"
BE ISSUEDEQ
RESERVE ~ (QNAME,RNAME ,E,0,SYSTEMS) ,UCB=(8)
B RETURN

ISSUEDEQ DEQ (QNAME ,RNAME , 0, SYSTEMS)

RETURN L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN  (14,12),T

MOVERNAM MVC RNAME+1(0) ,0(6)

ADDRTIOT DC F'o'

SAVE DS 18F

QNAME DS 2F

RNAME DS CL256

RNLEN DC F'o'
END

Figure 11. Example of Subroutine Issuing RESERVE and DEQ

Note: This example assumes that non-concatenated DD statements and single volume data sets
are used. '

1-34  SPL: System Macros and Facilities Volume 1

J/

N



l

Indicating Event Completion (POST)

The POST macro instruction signifies the completion of an event by one routine to another.
Usually the system posts the completion of the event in the user’s address space. The user can,
however, cause the system to post completion of the event in another address space.

Cross Memory POST

The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro instruction can use the ASCB and ERRET parameters to
schedule an SRB to be dispatched to perform a POST in an address space other than his own.
If the caller is authorized to specify the ASCB and ERRET parameters, no check is made to
determine if the requested address space is the issuing address space. This use of the POST
macro instruction is sometimes known as “cross memory post.”

The ERRET routine is given control in the issuer’s address space when an error condition is
detected. It receives control enabled, unlocked, in SRB mode, and with the following register
contents:

Register Contents

0 ECB address

1 address of POSTer’'s ASCB

2 completion code specified on POST invocation
3 completion code from failing address space
4-13 unpredictable

14 return address

15 ERRET address

The ERRET routine will receive control in the addressing mode of the caller of the cross
memory POST. The ERRET routine must return control to the address in register 14,
unlocked and enabled.

If cross-memory post is being used, a synchronization problem arises when it becomes necessary
to eliminate an ECB that is a potential target for a cross memory post request. To ensure that
all outstanding cross memory post requests for the ECB have completed, the user must invoke
the SPOST macro instruction.. The ECB might or might not be posted, depending on existing
conditions. Because SPOST invokes the PURGEDQ SVC, see the description of PURGEDQ
for the restrictions on its use.

The serialization method used to control modifications to an ECB depends on whether or not

‘the ECB is waiting. If the ECB is not waiting (the high order bit of the ECB is off), it may be

‘quick posted’ via the compare-and-swap instruction using the technique described in
“Bypassing the POST Routine” If the ECB is waiting (the high order bit of the ECB is on), the
LOCAL lock serializes updates to the ECB.

Bypassing the POST Routine

The programmer can bypass the POST routine whenever the corresponding WAIT has not yet
been issued if the wait bit is not on. In this case, a compare-and-swap (CS) instruction can be
used to quick post the ECB. The compare operand should reflect the ECB content with the
wait and post bits off, and the swap operand should have the post bit on and contain the
desired post code. If the wait bit is on in the ECB, the CS will fail (giving a non-zero condition
code), and the normal POST routine must be executed. If the wait bit is not on, the CS will, in
effect, post the completion of the event. Note that holding the LOCAL lock does not eliminate
the requirement to use the CS instruction. Figure 12 demonstrates an example of how to
‘Quick Post’ an ECB.

Serialization 1-35




I
l

L RX,ECB Get contents of ECB.
N RX,=X'3FFFFFFF' Turn off wait and post bits
L RY,=X'40000000' Post bit and post code

CS RX,RY,ECB Compare and swap to post ECB
BZ POSTDONE Branch if CS is successful
LTR RX,RX Wait bit on?

BM DOPOST If yes, then execute POST

N RX,=X'40000000' Is ECB posted?

BNZ POSTDONE If yes, do not execute POST

DOPOST POST ECB
POSTDONE EQU *

Figure 12. Bypassing the POST Routine

Waiting for Event Completion (EVENTS)
The EVENTS macro instruction allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have completed. Branch
entry to this function, significantly more efficient than SVC entry, is available to users executing
in key 0, supervisor state, and holding only the LOCAL lock.

Branch entry specifies BRANCH = YES on the EVENTS macro instruction. If this parameter
is used, the branch entry routine performs all normal WAIT processing and ECB initialization.
You can specify BRANCH =YES in conjunction with either WAIT =YES, WAIT=NO, or
ECB=.

¢ If you specify WAIT = YES, control will later be returned to the dispatcher, even though
there might be ECBs posted to the EVENTS table. EVENTS frees the LOCAL lock.
Before issuing the EVENTS macro instruction with the WAIT = YES option, you must
establish the return environment (the PSW and registers in the RB and TCB). EVENTS
stores a pointer to the first completed EVENTS entry into the TCB register 1 save location.
(This service is not available to Type 1 SVCs or SRBs.)

¢ If you do not specify WAIT = YES, control returns to you. EVENTS does not free the
LOCAL lock.

Writing POST Exit Routines

The POST exit function provides authorized system routines with a service that allows them to
receive control immediately upon each completion of an outstanding event. Thus, the user can
write a routine that receives control between the time the ECB is marked completed and the
return by POST to the caller.

This function defines a special type of ECB known as an extended ECB. When initialized,
these extended ECBs identify potential work requests rather than waiting tasks. A purpose of
an extended ECB is to notify a process (for example, a subsystem) of an additional work
request. Thus when an extended ECB is posted, a subroutine of the process receives control
and updates a queue to identify the current work request.

When using the POST exit function, your routine must follow this sequence:

¢ Identify POST exit routines.

¢ Initialize extended ECBs and ECB extensions.
e Wait for work requests.

e Delete POST exit routines before terminating.

1-36 spL: System Macros and Facilities Volume 1



Identifying and Deleting Exit Routines
IEAOPTOE is the entry point to POST. It performs exit identification and deletion through a
function code that indicates whether the input exit address should be added to or deleted from
the POST exit address queue for the current address space. A function code of 4 indicates an
exit creation request, while 8 indicates an exit deletion request. Details of this interface are in
“Branch Entry to the POST Macro Instruction.”

You cannot provide the same exit routine as input to IEAOPTOE on separate invocations in
different addressing modes. A 24-bit caller of the POST-exit-delete function can only delete an
exit below 16 megabytes; a 31-bit caller must pass a valid 31-bit address and can delete an exit
above or below 16 megabytes.

The process that establishes a POST exit is responsible for deleting that exit before its normal
or abnormal termination.

Initializing Extended ECBs and ECB Extensions
The user must obtain and initialize the extended ECBs and ECB extensions. A system service is
not available to perform these functions.

The ECB extension must be obtained and initialized before the initialization of the extended
ECB. This sequence avoids the possibility of an initialized extended ECB being posted before
the initialization of the ECB extension.

The ECB extension is two words long, begins on a word boundary, and can be from any
subpool. However, the POST routine must be able to read from the ECB extension in the PSW
key of the issuer of the POST macro instruction. The ECB extension must also be accessible in
the addressing mode of the POST’s caller. More than one extended ECB can point to it. The
mapping for the ECB extension is available via the EXT = YES parameter on the IHAECB
mapping macro. It has the format shown in Figure 13.

VALUE MODE RESERVED
(1 byte) (1 byte) (2 bytes)
POST DATA
(4 bytes)

Figure 13. ECB Extension (ECBE)

The fields in the ECBE are:

VALUE is one byte containing a value from 1-255. A value of 1 indicates that the
POST exit function is being requested. All other function codes are reserved.

MODE The first bit of this byte indicates the addressing mode of the exit routine. If
the byte contains X‘80’, the exit routine will receive control in 31-bit addressing
mode. If the byte contains X‘00’, the exit routine will receive control in 24-bit
addressing mode. The first bit of this byte must match the addressing mode
that existed when IEAOPTOE was invoked to identify the exit routine.

POST DATA When VALUE is 1 (that is, contains X‘01°) this field contains the address of
the exit routine to be given control when the POST occurs.

Serialization 1-37




The extended ECB must conform to current requirements for ECBs and be initialized to the

format shown in Figure 14. The extended ECB must be initialized only after it is eligible for

posting. The extended ECB must be initialized using a compare-and-swap (CS) instruction. .
Holding the LOCAL lock does not eliminate the requirement to use the CS instruction to Q; )
initialize the ECB because the ECB could be ‘quick posted’ by a routine, using CS, that does <
not hold the LOCAL lock. It is unnecessary to hold the LOCAL lock to initialize an extended

ECB. Compare and Swap is necessary and sufficient to initialize an extended ECB. The

meaning of the bits in the extended ECB follows:

Bits Meaning
0 If one, indicates initialized ECB.
1-29 Address of the associated ECB extension.
30-31 If ones, indicates an extended ECB.
0 1-29 30 31
1 Address of ECBE 1 1
Figure 14. Extended ECB /

If the compare and swap fails and if the ECB is pre-posted, the user should perform the
appropriate POST exit functions in order to replace those ordinarily performed by the already
concluded POST processing.

Once the extended ECB has been initialized, the LOCAL lock must be held when modifying the
ECB. If the LOCAL lock is not held, posts may be lost.

POST Interface with Exit Routines \
Before giving the exit control, POST checks to ensure that the user’s exit routine address
identified in the ECB extension denotes a valid POST exit routine. Even though POST thereby
makes sure that a valid system exit receives control, the exit routine must ensure that an
unauthorized routine has not counterfeited the extended ECB/ECB extension pair.

The user’s exit routine receives control from POST with the LOCAL lock in supervisor state,
key zero. The routine must not release the LOCAL lock and should be able to process in both
SRB and TCB mode. The register contents at entry to the user exit routine are:

Register Contents (

0 Address of the currently posted ECB
1 Address of related ECB extension
2-13 Unpredictable

14 Return address

15 Exit routine entry point address

The register contents upon return to POST from the user’s routine must be:

Register 11, 14-Unchanged
Register 0-10, 12, 13, 15-Irrelevant

The user’s exit routine must return control in supervisor state, PSW key zero and with the
LOCAL lock still held.

For performance reasons, the user’s routine should not cause page faults (that is, the routine’s /{
code and the data that it references should be available when the routine receives control).

1-38 spL: System Macros and Facilities Volume 1



Re-entry to POST from a POST Exit

A POST exit routine can issue POST only via the POST entry point, IEAOPT03. Details of the
interface are in “Branch Entry to the POST Service Routine.”

Because of the save area recursion within POST, a POST exit routine cannot post another
extended ECB unless it does so by specifying a cross memory post. Any attempt to activate
another POST exit before the completion of the current exit causes a 702 abend. If you must
post another extended ECB from a POST exit routine, you should either have your routine
issue a cross memory post or schedule your own SRB so that your routine enters POST by
branching to it.

Example of Using a POST Exit Function

A subsystem allocates and initializes extended ECBs, ECBEs, and EQTs. These data areas
appear in Figure 15. Once initialized, the subsystem dispatcher waits on a list of ECBs. Each
list entry identifies an ECB in an EQT.

Extended ECB ECB Extension (ECBE) Event Queue Table (EQT)
80888883 00888880
01 000000 User Info
A Exit routine A ECB
+ EQT * Scheduled Queue
User Data + Dispatching Queue
Notes:
1. The dotted lines identify data defined by the dispatching
applications rather than data required by the POST exit function.
2. The address of the ECB extension is 00888880 .

Figure 15. Data Areas Post Exit Example

As soon as any system routine posts an extended ECB, the subsystem exit routine identified in
the ECBE receives control. The exit routine receives control in the addressing mode specified
by the first bit in byte 1 of the ECBE. If this bit is on, the exit routine receives control in
31-bit addressing mode; if this bit is off, the exit routine receives control in 24-bit addressing
mode. After checking the validity of the work request, the exit routine places a work element
on the EQT schedule queue identified by the ECBE. The exit routine then posts the ECB
associated with that EQT, which completes the queuing of the work and the activation of the
dispatching task.

The subsystem dispatcher then scans the ECB list to locate posted ECBs (that is, an EQT with
work queued). The subsystem dispatcher then uses compare and swap to switch the schedule
queue to the dispatching queue values. Then the subsystem dispatcher dequeues work from the
dispatching queue until the queue is depleted. Then the subsystem dispatcher clears the post bit
in that EQT ECB and again uses compare and swap to move the schedule queue to the
dispatching queue. If the dispatching queue is still empty, the subsystem dispatcher checks the
next ECB in the ECB list. After having processed the entire ECB list, the subsystem dispatcher
again awaits requests for work.

Serialization 1-39




The subsystem dispatcher can use the USERINFO field in the EQT for serialization where
multiple system dispatcher tasks can wait on the same EQT.

Branch Entry to the POST Service Routine

Branch entry to the POST service routine provides all the normal ECB and RB POST
processing. The BRANCH parameter on the POST macro instruction uses entry point
IEAOPTO1 only. To use the other entry points, shown in Figure 16, you must write your own
code. In general, the caller must hold the LOCAL Jlock and be in supervisor state, PSW key
zero. Upon completion of the POST process, control returns to the caller in supervisor state,
PSW key zero with the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

You can use branch entry to the POST service routine in cross memory mode for cross memory
POST. If you hold the LOCAL lock of the home address space and if bit 0 of register 12 is 0,
then the current address space must be the home address space and registers 0-9 and 14 are
preserved. If you do not hold home’s local lock or if bit O of register 12 is 1, then the current
address space can be any address space and only registers 9 and 14 are preserved.

Note: If the high-order bit of register 12 is 0 and an error routine is invoked, the error routine
is dispatched in the home address space.

Figure 16 shows the POST function and the branch entry points through which those functions
can be performed. Figure 17 shows the input parameters to POST. Figure 18 shows the
output parameters from POST.

Functions Entry Points
IEAOPTO1 IEAOPTO2 IEAOPTO03* IEAOPTOE
(CVTOPTO1) | (CVTOPTO02) |(CVTOPTO3) | (CVTOPTOE)
Local ECB POST X X X
Local POST without ECB X X
Cross address space POST X** X
Post exit creation/deletion X

* This entry point performs processing identical to entry point IEAOPTO1. It is designed for use only by POST exit
routines (that is, routines that receive control from POST as the result of having established that exit via entry point

IEAOPTOE).

** The local lock does not need to be held for a cross address space POST at this entry point.

Figure 16. POST Function and Branch Entry Points

1-40 SPL: System Macros and Facilities Volume 1

Sl S



Registers IEAOPTO1 IEAOPTO02 IEAOPTO3 IEAOPTOE
(CVTOPTO1) (CVTOPTO02) (CVTOPTO3) (CVTOPTOE)
0 ECB storage protect ECB storage Func. Code
key! protect key?!
1 Exit Routine Address

10 Completion Code? Completion Code Completion Code?

11 ECB Address?® ECB Address ECB Address?

12 Error Routine Error Routine

Address* Address*

13 ASCB Address* ASCB Address*

14 Return Address Return Address Return Address Return Address

15 Entry Point Address Entry Point Address Entry Point Entry Point Address

Address

L If cross address space post, optionally contains the storage protection key of the ECB in bits 24-27.
2 If POST-without-ECB, contains RB address; if cross address space post and the storage protection key of the
ECB is supplied in register 0, then the high order bit must be set to one.
3 If POST-without-ECB, set to zero; if local address space POST, ensure high-order bit of register is zero; if
cross address space POST, set high-order bit of register to 1.
4 Only necessary when performing cross address space POST. If performing a cross address space POST and
the high order bit in register 12 is on, only registers 9 and 14 are retained, and the error routine executes
in the master scheduler’s address space.

Figure 17. POST Branch Entry Input

Entry Points Registers Saved and Restored

IEAOPTO1! 0-9, 122, 132, 14
IEAOPTO02 0-9, 12-14
IEAOPTO3 0-14
IEAOPTOE 2-14

! The contents of only registers 9 and 14 are retained during a cross address space POST when
either the LOCAL lock is not held or the high order bit in register 12 is on; all other register
contents are unpredictable.

2 The contents of these registers will not be saved and restored during a cross address space
POST; their contents are therefore unpredictable in these circumstances.

Figure 18. POST Branch Entry Output

1-41

Serialization




Branch Entry to the WAIT Service Routine

Branch entry to the WAIT service routine provides all the normal ECB and RB WAIT
processing. This function is not available, however, to Type 1 SVCs or SRBs. The caller must
hold home’s LOCAL lock and be in key zero, supervisor state with current addressability to the
home address space. While holding home’s LOCAL lock and before branching to WAIT, the
caller must establish the PSW and register return environment in its RB and TCB. When
WAIT is invoked, the caller should hold only the LOCAL lock. WAIT performs the following
functions:

¢ Stores the ECB/ECBLIST address into the register 1 location of the TCB register save area,
(user data cannot be passed through this field or register).

e Releases home’s LOCAL lock.

¢ Returns control to the dispatcher (control does not return to the caller even though all
previously pending events have already occurred). The dispatcher ensures that all FRRs
have been deleted.

Branch entry to WAIT can occur without identification of any ECBs. This process sets the
wait count in the current RB to the specified value. The corresponding POSTs-without-ECB
then activate the RB. If you use this process, make sure that the WAIT-without-ECB precedes
the POST-without-ECB in order to avoid causing the RB to wait indefinitely.

The following registers contain parameters for branch entry to WAIT:

Register Contents

0 The wait count in the low order byte. When the high order bit is one, it
indicates long-wait (The LONG = YES specification).

1 The ECB pointer value. If only one ECB is being waited on, place that ECB

address in register 1. If a list of ECBs is being waited on, place the
complemented ECBLIST address in register 1. If the WAIT-without-ECB
function is being requested, set register 1 to a value of zero.

15 The branch entry address to WAIT (IEAVWALIT), which in turn is obtained
from the CVT (CVTVWAIT).

You can use branch entry to the WAIT service routine in cross memory mode if you hold the
LOCAL lock of the home address space and if the current address space is the home address
space.

Suspension and Resumption of Request Blocks

An alternate method of waiting for an event and indicating its completion is available on a
restricted basis for systems programming. This method gives faster performance than the
normal method of using the WAIT and POST macro instructions. The summary below outlines
the functions that provide this alternative:

Macro Description

SUSPEND Wait for an event to complete.

RESUME Indicate the completion of the event.

TCTL Give control directly to a ready task.
CALLDISP Give up control so that an event can complete.

1-42 SPL: System Macros and Facilities Volume 1

.



Waiting for an Event to Complete (SUSPEND)

The SUSPEND macro instruction provides an efficient means of waiting for an event to
complete. It is analogous to the WAIT macro instruction, and is used in a
SUSPEND-RESUME sequence, which is analogous to the WAIT-POST sequence. The
SUSPEND macro instruction causes the wait for event completion through the wait count field
(RBWCEF) in the request block (RB). This field is the same one the WAIT macro instruction
uses. When used with the SUSPEND macro instruction, however, the wait count field is
known as the suspend count field, even though the function it performs for both macro
instructions is the same.

The SUSPEND macro instruction does not have an immediate effect on the issuer as the WAIT
macro instruction does. Instead, the effect is delayed, depending on the type of suspension the
macro instruction user requests. If the previous RB is suspended, the effect takes place when
the current RB exits. If the current RB is suspended, the suspended state occurs when the RB
passes control to the dispatcher.

RBs that issue the SUSPEND macro instruction with the RB=CURRENT option should hold
the suspended state time to a minimum. As soon as possible after SUSPEND completion, the
RB that issues a SUSPEND RB=CURRENT should exit to the dispatcher (for example, issue
a CALLDISP macro instruction with the BRANCH =YES option). Using the SUSPEND
macro instruction this way minimizes potential performance problems because the RB in this
case must either be disabled or must hold the LOCAL lock or a CML lock. Minimizing
suspension time also minimizes other potential problems the program might experience by
limiting the time in which the RB is unable to cause any synchronous interrupts (such as SVCs
and page faults) or provide interfaces to the WAIT, POST, or EVENTS macro instructions.

RBs that issue SUSPEND RB=PREVIOUS, on the other hand, do not require the same
synchronization because they are operating on behalf of another RB. The suspension of the
previous RB does not require disabled execution or the holding of the LOCAL lock or a CML
lock.

The following scenarios show typical SUSPEND macro instruction sequences:

Scenario 1:

SUSPEND RB=PREVIOUS

1.

Scenario 2:

Type 2 SVC routine receives control.

2. The SVC suspends the macro issuer’s RB.

3. The process that will eventually issue the RESUME is started.
4.
5
6

The SVC completes processing and exits.

. Event completion occurs; process started in step 3 resumes issuer of the macro instruction.

. The macro issuer’s task resumes (at return from the SVC routine).

SUSPEND RB=CURRENT

L.

User acquires the LOCAL lock or a CML lock.

. The macro suspends processing of the current RB.

2
3.
4

The process that will eventually issue the RESUME is started.

. Macro issuer issues CALLDISP BRANCH = YES, which releases the LOCAL lock or

CML lock before going to the dispatcher.

Serialization 1-43




1-44

5.

Event completion occurs; process started in step 3 resumes issuer of the macro instruction.

6. Normal processing resumes.

Consider the following when using the SUSPEND macro instruction:

L]

The SUSPEND macro instruction can be issued in cross memory mode.
Only a routine executing under protection key 0 can issue SUSPEND.
The SUSPEND macro instruction requires that the CVT mapping macro be included.

When the issuer requests (explicitly or by default) the SUSPEND RB =PREVIOUS option,
there must be a previous RB on the chain to prevent a task abend.

Only task-related users can issue SUSPEND, and then only for the current task.
SUSPEND cannot be issued for another TCB or by an SRB.

SUSPEND RB=PREVIOUS is intended for use by Type 2, 3, and 4 SVCs to place the
issuer of the SVC in a suspended state.

The SUSPEND function user must ensure that the SUSPEND and RESUME sequence
takes place in proper order. The user must issue SUSPEND, then event completion must
occur, and then the RESUME function must take place. One way to ensure proper
sequencing is to issue SUSPEND before scheduling the asynchronous process on which the
RB must wait.

When using the SUSPEND RB=CURRENT option, the issuer must either execute
disabled or hold the LOCAL lock or a CML lock. The issuer must remain in this state until
the program initiates the stimulus for event completion in order not to lose control, which
could result in never being redispatched. Because the issuer must also coordinate the
SUSPEND and RESUME sequence, the event completion must not occur until after the
SUSPEND RB=CURRENT macro takes effect. The caller that is in the key 0 supervisor
state and EUT (enabled unlocked task) mode and that uses a local lock to serialize the
SUSPEND and RESUME processing sequence can use issue CALLDISP

FRRSTK =SAVE to enter the dispatcher. The CALLDISP routine releases the local lock,
which serialized the SUSPEND/RESUME processing of the caller. Because an EUT FRR
exists, the current FRR stack is saved.

When a Type 1 or Type 6 SVC issues a SUSPEND RB=CURRENT, the top RB (the
caller of the SVC) is suspended. Whenever the SVC exits (via EXIT PROLOGUE or
T6EXIT), the caller is suspended until RESUME occurs. A TYPE 1 SVC must not issue
the CALLDISP macro instruction or release home’s LOCAL lock, and it must exit via its
exit mechanism. A Type 6 SVC must not issue the CALLDISP macro instruction or
become enabled, and it also must exit via its exit mechanism.

When a TYPE 2, 3, or 4 SVC issues a SUSPEND RB=CURRENT, the top RB (the SVC
itself) is suspended. The SUSPEND routine returns control to the SVC. The SVC can
continue to execute as long as it remains locally locked or disabled. Once the SVC releases
the LOCAL lock or enables, an interrupt or an entry to the dispatcher (via CALLDISP)
suspends the SVC until it is resumed. While the SVC is enabled and before it is resumed, it
cannot incur a page fault, issue an SVC, or branch enter any supervisor service that makes
local work ready or places the caller in a wait state (for example, WAIT, POST, EVENTS,
or STATUS).

The SUSPEND and RESUME sequence must not be intermixed with the WAIT and POST
sequence on a single RB because both sequences use the same count field for control of the
functions. Because the SUSPEND-RESUME sequence is a restricted-use function, it does
only minimal validity checking. For example, if an RB were already waiting on 255 events
and someone issued a SUSPEND against it, the count would be reset to one.

An RB can have only one SUSPEND outstanding at a time. There can be no subsequent
SUSPEND macros issued until a RESUME occurs for the outstanding SUSPEND macro.

SPL: System Macros and Facilities Volume 1



e A program that has invoked the SUSPEND RB=CURRENT option must not be
suspended again (for example, through a page fault or a lock suspension) after releasing
home’s LOCAL lock, a CML lock, or enabling until a RESUME is issued counteracting
the outstanding SUSPEND macro instruction.

Resuming Execution of a Suspended Request Block (RESUME)

The RESUME macro instruction, which is supported in cross memory mode, provides an
efficient means for indicating the completion of an event. The RESUME macro instruction
specifies the TCB and RB that were previously suspended by the SUSPEND macro instruction.
The specified TCB and RB must be addressable in the currently addressable address space.
Only routines executing in supervisor state and PSW key zero can issue the RESUME macro
instruction.

The RESUME macro instruction and the service routine it calls must serialize the use of the
task that is being resumed. This serialization might require the local lock of the task’s address
space, called the target address space. Because disabled or locked callers of RESUME are not
allowed to obtain a local lock, the RESUME macro instruction has the MODE and ASYNC
options to handle these types of situations.

Note: The ASYNC parameter for the RESUME macro instruction is spelled differently from
similar parameters on other macro instructions.

The MODE option specifies whether or not the RESUME operation must complete
(MODE =UNCOND) or not MODE =COND). MODE = UNCOND requires that certain
system locks can be obtained.

The ASYNC option specifies whether or not RESUME can schedule an SRB to perform the
resume if necessary. These RESUME options can be combined in four ways:

¢ MODE=UNCOND and ASYNC=N

— RESUME attempts to obtain the necessary task serialization to complete the function
synchronously. If it can obtain serialization, RESUME completes its function and
returns to its caller. If it cannot obtain serialization, RESUME requests the local lock
of the target address space to serialize the operation. The caller of RESUME must be
able to obtain the target address space’s local lock or already hold it when RESUME is
issued. This means that, with one exception, the caller of RESUME must either be
running enabled and unlocked or disabled and holding the target address space’s local
lock when the RESUME is issued. The exception is the disabled caller that resumes the
TCB under which it is running, that is, the currently executing TCB. This situation
could occur if, for example, a routine became disabled, executed a SUSPEND
RB=CURRENT macro instruction, and then determined that there was more work to
be done. The disabled, unlocked routine could issue a RESUME macro instruction for
the TCB and RB to counteract the SUSPEND.

If the local lock is required but not available, the caller will be suspended waiting for
the local lock. Control returns to the caller after the RESUME has occurred.

— Disabled interrupt exits cannot issue the RESUME macro instruction with the
MODE=UNCOND and ASYNC=N options.

— The RETURN=N option on the RESUME macro instruction is allowed only with this
combination of options. The RETURN =N option cannot be used with the ASCB
parameter. To use RETURN =N, the caller must be running in SRB mode, must be in
home addressing mode, and must not hold any locks. If these three conditions are met,
the TCTL service is entered to transfer control to the task that was just resumed. If
these three conditions are not met, that caller is abended with an X070’ abend code.

Serialization 1-45




* MODE=UNCOND and ASYNC=Y

RESUME attempts to obtain the necessary task serialization and complete the function
synchronously. If RESUME cannot obtain serialization, RESUME does not obtain the
local lock. RESUME unconditionally obtains an SRB from the supervisor SRB pool
and schedules it to complete the RESUME asynchronously.

The caller can be enabled or disabled, however, the VSMFIX lock must be available.
The caller must not hold any locks higher in the lock hierarchy than the VSMFIX lock
or the caller must hold the VSMFIX lock when the RESUME macro instruction is
issued.

* MODE=COND and ASYNC=N

RESUME attempts to obtain the necessary task serialization to complete the function
synchronously. If serialization is available, the task is resumed and control returns to
the caller. If serialization is not available, RESUME returns to the caller without
completing the RESUME operation.

The caller can either be enabled or disabled and can hold any combination of locks.
RESUME does not attempt to obtain any locks. The caller must be prepared to handle
the situation when the RESUME operation can not be performed because the necessary
serialization is not available.

* MODE=COND and ASYNC=Y

RESUME attempts to obtain the necessary serialization to complete the function
synchronously. If serialization is available, the task is resumed and control returns to
the caller. If serialization is not available, RESUME conditionally obtains an SRB
from the supervisor SRB pool and schedules it to perform the RESUME
asynchronously. If the supervisor SRB pool is empty, RESUME returns to the caller
without completing the RESUME operation.

The caller can be either enabled or disabled, and can hold any combination of locks.
RESUME does not attempt to obtain any locks. The caller must be prepared to
handle the situation when the RESUME operation cannot be performed because the
necessary serialization is not available.

RESUME provides return codes in register 15 to indicate the result of the RESUME attempt.

See the RESUME macro instruction in Volume 2 for details on the return codes.

The RESUME macro instruction requires the IHAPSA mapping macro. If the ASCB option is
not specified, then the MODE = UNCOND and ASYNC=Y combination requires the CVT

mapping macro. All other combinations require the IHASVT mapping macro.

Transferring Control for SRB Processing (TCTL)

1-46

The TCTL (transfer control) macro instruction allows an SRB routine to exit from its

processing and to pass control to a task with minimal dispatcher overhead. When an SRB
specifies RESUME RETURN =N, control transfers to the resumed TCB. Control then passes

to the top RB on the TCB/RB chain, but only if it passes all the dispatchability tests the
dispatcher normally makes.

Some other considerations for using the TCTL macro instruction are:

e The TCTL macro may be used only by SRB programs, but they may be in any key. Ifa
non-SRB routine issues either the TCTL macro or a RESUME RETURN =N, the routine

will abnormally terminate with a X070’ system completion code.

SPL: System Macros and Facilities Volume 1



The TCTL constitutes an exit from the issuing routine, which therefore causes cleanup of
the SRB.

The TCTL service requires inclusion of the CVT mapping macro.

The TCTL service requires that the SRB requesting the TCTL must not hold any locks and
must be in home addressing mode.

Using the BRANCH = YES Option of CALLDISP (CALLDISP)
The CALLDISP macro instruction with the BRANCH = YES option is supported in cross
memory mode. The BRANCH = YES option allows an issuer of the SUSPEND macro with its
RB=CURRENT option to exit while leaving the current RB in the wait state. This option
causes the supervisor to save status and control to pass to the dispatcher.

Some considerations for using the BRANCH = YES option on the CALLDISP macro
instruction are:

®

The issuer of CALLDISP must be executing in supervisor state with PSW key zero.
The issuer must be in task mode rather than in SRB mode.
The BRANCH = YES option requires inclusion of these mapping macros:

THASVT
THAPSA

The FIXED =YES or FIXED = NO option can be specified with BRANCH = YES.
When FRRSTK =SAVE is specified:
The caller must not hold any locks or an abend results.

Note: For MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement or
MVS/System Product Version 2 Release 1.3 Availability Enhancement and later releases:

— If any EUT (enabled unlocked task) FRRs exist, the current FRR stack is saved and
the caller may hold either the LOCAL or CML lock. CALLDISP releases the lock
before going to the dispatcher.

— Ifno EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend occurs.
When FRRSTK =NOSAVE is specified:
— The current FRR stack is purged.

— The caller may hold either the LOCAL or CML lock. CALLDISP releases the lock
before going to the dispatcher.

Notes:

1.
2.

A type 1 and type 6 SVC must not issue the CALLDISP macro instruction.

The LOCAL or CML lock can be used to serialize the SUSPEND processing and establish
the RESUME processing. If a local lock is not used to serialize the FRR stack, the caller
can use the CALLDISP FRRSTK =SAVE option to serialize the stack. For more
information, see “Suspension and Resumption of Request Blocks” in this volume.

Serialization  1-47




1-48 SPL: System Macros and Facilities Volume 1

£



Reporting System Characteristics

This chapter describes three ways to report system characteristics:

¢ Using GQSCAN to obtain resource usage reports
* Using SRM to obtain subsystem measurement reports
e Using SYMREC to obtain software error reports

Collecting Information About Resources and Their Requestors
(GQSCAN)

Global resource serialization enables an installation to share symbolically-named resources
between units of work. Programs issue ENQ, DEQ, and RESERVE macro instructions to
request access to resources. Global resource serialization runs in its own address space and
maintains the resource queues in this address space, which cannot be swapped, cancelled, or
forced. The only way you can extract information from the resource queues is by using the
GQSCAN macro instruction. You can extract this information whether or not global resource
serialization is active. See Planning: Global Resource Serialization for information about how
global resource serialization functions.

Using GQSCAN, you can inquire about a particular scope of resources (such as STEP,
SYSTEM, or SYSTEMS), a specific resource by name, a specific system’s resources, a specific
address space’s resources, or resources requested by the RESERVE macro instruction. The
GQSCAN service routine collects the information you request from the resource queues and
consolidates that information before returning it.

In order to specify a scope of LOCAL or GLOBAL, you must be a supervisor state, key zero
user. SCOPE=LOCAL and SCOPE=GLOBAL are restricted because when you specify these
parameters the GQSCAN service routine serializes the use of the GRS control blocks to stop
any other ENQ, DEQ, or RESERVE instructions from changing them.

The information you request is returned in an area whose location and size you specify using
the AREA parameter on the GQSCAN macro instruction. You can also specify a fullword
location in which the GQSCAN service routine can return a token by specifying the TOKEN
parameter. If the amount of information exceeds the size of your area, the GQSCAN service
routine gives you as much as the area will hold and returns a token in the specified location.
On subsequent invocations of the GQSCAN macro instruction, if you provide the token, you
can obtain the remaining information. You can invoke the GQSCAN macro instruction again
and again using the same token, until all of the information has been returned. You can also
invoke the GQSCAN macro instruction using the same token and QUIT=YES to terminate
the scan.

© Copyright IBM Corp. 1982, 1989 Reporting System Characteristics 1-49




The information is returned in the form of resource information blocks and resource
information block extensions, as shown below.

RIB Resource information block (RIB) describes a resource
A
RIBE RIB extension (RIBE) describes resource requestor
Al
RIBE
A2
RIBE
A3
RIB
B
RIBE
Bl
RIBE
B2

The RIB and RIBE are described in the Debugging Handbook.

The amount of information you get about a particular resource depends on the scope you
specify on the GQSCAN macro instruction, the size of the area you provide, and whether or
not you specify a token.

Whether you specify a scope of STEP, SYSTEM, SYSTEMS, or ALL with or without a token,
the information returned the first time you issue the GQSCAN macro instruction is the same.
You get the first RIB and as many of its associated RIBEs as will fit in your area. The RIB
has an entry that tells how many RIBEs it has and, of those, how many appear in your area.
Any RIBEs that do not fit are lost. If there is room for another RIB and all of its RIBEs, it
also is returned and so on until there is not enough room for the next RIB and all of its RIBEs.

The second return of information occurs the next time you issue the GQSCAN macro
instruction. The contents of this return differ depending on whether or not you specify a token.
If you specified a token on the first GQSCAN and supply that token on the next invocation,
the information returned continues with the next RIB, and as many of its associated RIBEs as
will fit in your area. Any RIBEs that do not fit are lost. If there is room for another RIB and
all of its RIBEs, it too is returned, and so on, until there is not enough room for the next RIB
and all of its RIBEs. If you do not specify a token, the information starts over with the first
RIB.

The example in Figure 19 shows three returns. The scope is either STEP, SYSTEM,
SYSTEMS, or ALL and a token is specified each time.

1-50 SPL: System Macros and Facilities Volume 1



For the example, assume that there are four resources, A, B, C, and D. Resource A has three
requestors, resource B has six requestors, resource C has two requestors, and resource D has
one requestor.

First return Second return Third return
RIB 5 RIB B RIB c
3 RIBEs total 6 RIBEs total 2 RIBEs total
3 here 5 here 2 here
RIBE a1 RIBEg4 RIBE (4
RIBE pp RIBEB2 RIBE o2
RIBEA3 RIBEBS RIB D
RIBE 1 RIBE total
B4 1 here
RIBE RIBE
B5 D1

Figure 19. GQSCAN Results with STEP, SYSTEM, SYSTEMS, or ALL

Whether you specify a scope of LOCAL or GLOBAL with or without a token, the information
returned the first time you issue the GQSCAN macro instruction is the same. You get the first
RIB and as many of its associated RIBEs as will fit in your area. The RIB has an entry that
tells the number of RIBEs associated with it, and, of those, how many appear in your area.
Any RIBEs that do not fit will appear in your area the next time you issue the GQSCAN
macro instruction if a token is provided. If there is room for another RIB and at least one
RIBE, it is also returned, and so on , until there is not enough room for a RIB and RIBE
combination. If you do not specify a token, the information starts over with the first RIB.

The example in Figure 20 shows two returns. The scope is either LOCAL or GLOBAL and a
token is specified each time. Note that the GQSCAN service routine does not truncate any of
the RIBEs. On every return after the first, in which you supply the token that was returned,
the previous RIB is repeated to put the remaining RIBEs in context and more resource
information, if any, continues.

First return Second return
RIB A RIB 5
3 RIBEs total 6 RIBEs total
3 here 2 here
RIBE A RIBE
RIBEA2 RIBE 526
RIBEA3 RIB c
S e RIBE ¢4
RIBE g1 RIBE 5
RIBE g,
RIBE g3
RIBE B4

Figure 20. GQSCAN Results with LOCAL or GLOBAL

Reporting System Characteristics

1-51



In scanning the information returned, be sure to use the size of the fixed portion of the RIB
and the RIBE that is returned in register 0. The size of the fixed portion of the RIB is in the
high-order half of register 0 and the size of the RIBE is in the low-order half.

The first RIB starts at the beginning of the area you specify. The first RIBE is pointed to by
the current RIB pointer plus the size of the fixed portion of RIB plus the size of the variable
portion of RIB (RIBVLEN). To find the second RIBE, add the size of the RIBE.

To find the second RIB, use the current RIB pointer plus the size of the fixed portion of the
RIB plus RIBVLEN and then add the number of RIBEs times the RIBE size.

1-52 SPL: System Macros and Facilities Volume 1

L

(/



Using the SRM Reporting Interface to Measure Subsystem Activity

The reporting interface allows an IBM or user-written interactive subsystem to pass transaction

( performance data to the system resources manager (SRM). The data collected by the SRM can
be reported through the RMF workload activity report or the transaction activity report. The
Resource Measurement Facility (RMF) program product must be installed to obtain these
reports. The data is reported according to the subsystem identifiers (subsystem name,
transaction name, transaction class, or userid) specified in the installation control specification
(IEAICSxx parmlib member). For more information on the installation control specification,
see Initialization and Tuning.

The reporting interface is necessary because, except for TSO, the SRM does not normally
recognize the individual transactions of an interactive subsystem. For example, the SRM
considers a subsystem that consists of an address space created by a START command to be a
single long transaction, and the RMF workload activity report indicates the total service for the
address space but does not indicate the average transaction response time. However, when a
subsystem uses the interface and the subsystem is specified in the installation control
specification, the RMF workload activity report provides the average transaction response time.

( The reporting interface consists of a SYSEVENT macro instruction, which the subsystem must
issue at the completion of each transaction. Issuing the macro instruction allows the subsystem
to pass the transaction start time or elapsed time and, optionally, its resource utilization. The
SRM does not use data collected through the reporting interface to dynamically adjust resource
distribution to subsystems. However, the installation can review the RMF reports to determine
which, if any, SRM parameters need to be changed.

Reporting System Characteristics 1-53




Reporting Software Error Symptoms (SYMREC)

SYMREC is a facility that can store and format information about non-abend errors that occur
in an authorized user application. Authorized applications may be written to detect their own
errors and to invoke the SYMREC macro, which stores information about each error on
SYS1.LOGREC, the on-line repository where error information is collected. The unit of
information that the SYMREC macro stores in the repository is called a symptom record. The
data in the symptom record is a description of some programming failure combined with a
description of the environment where the failure occurred.

The SYMREC facility can interpret the symptom records stored on the repository, and
formatting them into various kinds of reports. SYMREC consists of the following elements:
1. Two macros, ADSR and SYMREC.

2. Formatting capabilities that are invoked through EREP and IPCS.

Writing Applications That Use SYMREC

The use of SYMREC implies that an application is written in a programming style in which the
program monitors execution-time conditions that denote errors. To write an application that
uses SYMREC, you use the ADSR macro to obtain a DSECT for an area in your virtual
storage that is called a symptom record. This area has six sections. When the application starts
to execute, it first stores zeroes into the entire area, then initializes certain fields in the first two
sections. These fields identify the application’s environment and supply essential addressing
information for the application as it executes. After identifying the symptom record, the
application continues with its main processing.

If the application detects an error during its processing, it collects information about the error,
then stores the error information in the symptom record by referencing the data fields in the
ADSR DSECT. When the application stores the error information, the information is in a
special format called the SDB (structured data base) format.

After storing data into the symptom record, the application issues the SYMREC macro, which
writes data from the symptom record to an on line repository. Before SYMREC processing
writes the data, it updates the symptom record in the application’s virtual storage (even if the
storage is store-protected) with various data about the execution environment. After SYMREC
writes the data, it returns control to the application with return and reason codes respectively in
registers 15 and 0. The application can continue processing if the error is not fatal. The return
and reason codes, in hexadecimal, are:

Return Code Reason Code Explanation
0000 Symptom record component completed successfully
and the symptom record was recorded.
0000 Successful completion of the SYMREC macro service
routine.
0004 Error(s) detected on the SYMREC macro statement.

The entire input record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

0164 The input symptom record was successfully copied.
However, an attempt to write section 1 information
from the completed symptom record failed. The area
was found non-accessible to a write request.

0008 Error(s) detected on the SYMREC macro statement.
A partial symptom record was recorded. Following
are specific reasons why-the symptom record
component processed unsuccessfully:

1-54 SPL: System Macros and Facilities Volume 1

““m. .



Return Code Reasor Code Explanation

0158 Total length of the input symptom record exceeds the
maximum.
015C Optional segments of the input symptom record were

found non-accessible. The record includes the
accessible entries of the input symptom record.

000C Serious error on the SYMREC macro statement. No
symptom record was recorded. Following are specific
reasons why the symptom record component
processed unsuccessfully:

0104 The first 2 bytes of the input symptom record does
not contain the SR operand.

0108 The input symptom record does not contain the
required entries for section 2.

010C The input symptom record does not contain the
required entries for section 2.1.

0114 The input symptom record does not contain the
required entries for section 3.

0128 Portions of the input symptom record were found
non-accessible to a write request.

012C Required portions of the input symptom record were
found non-accessible to a write request.

0134 Input symptom record address is in non-accessible
storage.

0144 Program attributes of the job issuing the SYMREC

macro are not written in accordance with the
symptom record component standards.

0010 Serious error in the symptom record component.
Error is not related to SYMREC macro statement.
No symptom record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

0F04 Insufficient space in the LOGREC buffer to
accommodate the symptom record.

0F08 SYMREC macro service routine could not acquire
storage for its workarea and a copy of the symptom
record.

0F0C Failure occurred while moving the symptom record to
the LOGREC buffer.

0F10 SYMREC macro service routine has a logic error.

0014 Symptom record component is not operable.

To invoke the SYMREC macro, an application must be authorized, enabled for interrupts, and
running in primary addressing mode (bit 16 of the PSW is equal to zero). The AMODE
attribute of the program can be set for either 24-bit or 31-bit addressing, but any address passed
to SYMREC must be a 31-bit address. A program that invokes SYMREC can be running in
cross memory mode, and it can be holding a suspend lock.

Reporting System Characteristics 155



The Format of the Symptom Record

The symptom record consists of six sections that are structured according to the format of the
ADSR DSECT. These sections are numbered 1 through 5, including an additional section that
is numbered 2.1. Because sections 2.1, 3, 4, and 5 of the symptom record are non-fixed, they do
not need to be sequentially ordered within the record. In section 2, the application supplies the
offset and the length of the non-fixed sections. The ADSR format is described in the Debugging
Handbook, and the purpose of each section is as follows:

Section 1 (Environmental data): Section 1 contains the record header with basic environmental
data. The SYMREC caller initializes this area to zero and stores the characters, ‘SR’, into the
record header. The environmental data of section 1 is filled in automatically whenever the
SYMREC macro is invoked. The environmental data that SYMREC stores in this section
provides a system context within which the software errors can be viewed. Section 1 includes
items such as:

CPU model and serial numbers

Date and time, with a time zone conversion factor
Name of the customer installation

Product ID of the control program

Special features installed, if any

Section 2 (Control data): Section 2 contains control information with the lengths and offsets of
the sections that follow. The application must initialize the control information before invoking
SYMREC for the first time. Section 2 immediately follows section 1 in the symptom record
structure.

Section 2.1 (Component data): Section 2.1 contains the name of the component in which the
error occurred, as well as other specific component-related data. The application must also
initialize section 2.1 before invoking SYMREC.

Section 3 (Primary SDB symptoms): Section 3 contains the primary string of problem
symptoms, which may be used to perform tasks such as duplicate problem recognition.
Whenever an application detects a given error, the string that it stores in section 3 becomes
uniquely associated with that error incident as its primary symptom string. Note that an
application does not store any primary symptom string or invoke SYMREC unless it detects an
error in its own processing.

Section 4 (Secondary SDB symptoms): Section 4 contains an optional secondary symptom
string. The purpose of the secondary string is to save any critical diagnostic values that existed
at the time of the incident.

Section 5 (Free-format data): Section 5 contains logical segments of optional problem related
data to aid in problem diagnosis. However, the data in section 5 is not in the SDB format,
which is only found in sections 3 and 4. Each logical segment in section 5 is structured in a
key-length-data format. This format consists of a two-byte key field, which is immediately
followed by a two-byte length field, which is immediately followed by a variable length data
field. The length that is indicated in the two-byte length field should be equal to the length of
the data field.

1-56 SPL: System Macros and Facilities Volume 1

A



Symptom Strings — SDB Format
The symptom strings placed in sections 3 and 4 of the symptom record must be in the SDB
(structured data base) format. In this format, the individual symptoms in sections 3 and 4 of the
( symptom record are separated by syntactical dividers called prefixes. For more information on
the prefixes that SYMREC recognizes, see Debugging Handbook. Also see A Structured
Approach to Describing and Searching Problems for more general information on symptom
strings and prefixes. Examples of typical prefixes are:

PIDS/ a component name follows the slash
RIDS/ a routine name follows the slash

AB/ an abend code follows the slash

PRCS a return code follows the slash

REGS/ a register name follows the slash
LVLS/ a release level follows the slash
FLDS/ a data field name follows the slash
VALU/ an error-related value follows the slash

- An SDB symptom string is a continuous character string. Each prefix must end in a slash, and
( a blank is required between successive symptoms in the string. For example:

LVLS/B10 PIDS/5752SASR RIDS/ASRSERVX PRCS/00000001 REGS/GR14
VALU/H81ABCDEF ~ FLDS/XSTATUS ~VALU/CUSED

Symptom strings in SDB format can be interpreted as meaningful remarks about program
incidents. The symptom string shown above is interpreted as follows:

LVLS/B10 In release level B10
PIDS/5752SASR of the component, 5752SASR,

( RIDS/ASRSERVX routine ASRSERVX was executing,
PRCS/00000001 and it received return code 00000001.
REGS/GR14 At that time, general register 14

VALU/H81ABCDEF contained hex 81ABCDEF, and
FLDS/XSTATUS the field, XSTATUS,
VALU/CUSED contained characters USED.

Using EREP and IPCS to Format Symptom Record Reports
To format and print various reports from the data on the repository, you use EREP and IPCS
programs, which invoke the SYMREC post-processing services. The four basic reports
( generated by SYMREC post processing services are:

The System Summary Report: The system summary EREP report is an overview of processor,
channel, subchannel, operating system, and I/O subsystem errors. The report contains a count
per CPU of the symptom records that were stored.

The Event History Report: The event history report consists of one-line abstracts of selected
information from each record, listed in chronological order. The one-line abstract is the
primary symptom string. The event history also has a count of the symptom records classified
by processor.

The Detail Edit Report: The detail edit report shows the entire contents of an error record,

except for section 2. Optional fields that have not been completed, which contain hexadecimal
zeroes, are not included in the report.

Reporting System Characteristics 1-57




The Detail Summary Report: The detail summary report shows each unique primary symptom
string in the repository; it does not duplicate symptom strings that recur. For each unique

string, the report indicates the number of occurrences and the date and time of the first and last P
occurrence. SYMREC uses the first 80 bytes of the symptom string when comparing for ¢

duplicate strings. -

Note: For detailed information on these reports, see Debugging Handbook.

Through EREP, you can generate all four reports, which are obtained when you specify the
TYPE =S parameter. [PCS can generate only one kind of report, the detail edit report. To
cause IPCS to generate this report, you specify the LOGDATA verb. LOGDATA causes one
report to be generated for each symptom record in its recording buffer.

Programming Notes for SYMREC Applications
This section contains programming notes on how the various fields of the ADSR data area
(symptom record) are set. Some fields of the ADSR data area (symptom record) must be set by
the caller of the SYMREC macro, and other fields are set by the system when the application
invokes the SYMREC service. The fields that the SYMREC caller must always set are indicated
by an RC code in the following sections. The fields that are set by SYMREC are indicated by -
an RS code. \

The RA code designates certain flag fields that need to be set only when certain kinds of
alterations and substitutions are made in the symptom record after the incident occurs. These
alterations and substitutions must be obvious to the user who interprets the data. Setting these
flag fields is the responsibility of the program that alters or substitutes the data. For example, if
a program changes a symptom record that is already written on the repository, it should set the
appropriate RA-designated flag-bit fields as an indication of how the record has been altered.

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the caller of

the SYMREC macro. When SYMREC is invoked, it checks that all the required input fields in -7
the symptom record are set by the caller. If the required input fields are not set, SYMREC

issues appropriate return and reason codes.

Programming Notes for Section 1
Notes in this section pertain to the following fields, which are in section 1 of the ADSR data

area.

ADSRID Record header (RC)
ADSRGMT Local Time Conversion Factor

ADSRTIME  Time stamp (RS)

ADSRTOD Time stamp (HHMMSSTH)
ADSRDATE  Date (YYMMDD)

ADSRSID Customer Assigned System/Node Name (RS)
ADSRSYS Product ID of Base System (BCP) (RS)
ADSRCML Feature and level of Symrec Service (RS)
ADSRTRNC  Truncated flag (RS)
ADSRPMOD  Section 3 modified flag (RA)
ADSRSGEN  Surrogate record flag (RA)

ADSRSMOD  Section 4 modified flag

ADSRNOTD  ADSRTOD & ADSRDATE not computed flag (RS)
ADSRASYN  Asynchronous event flag (RA)
ADSRDTP Name of dump

1-58 spL: System Macros and Facilities Volume 1



Notes:

1.

10.

SYMREC stores the TOD clock value into ADSRTIME when the incident occurs.
However, it does not compute ADSRTOD and ADSRDATE when the incident occurs, but
afterwards, when it formats the output. When the incident occurs, SYMREC also sets
ADSRNOTD to 1 as an indication that ADSRTOD and ADSRDATE have not been
computed.

. SYMREC stores the customer-assigned system node name into ADSRSID.

SYMREC stores the first four digits of the base control program component id into
ADSRSYS. The digits are 5752, 5759 and 5745 respectively for MVS, VM, and DOS/VSE.

. The ADSRDTP field is not currently used by the system.

If section 3 of a symptom record is changed or extended after SYMREC is invoked, the
program that makes the change should set the ADSRPMOD flag to 1. If section 4 of a
symptom record is changed or extended after SYMREC is invoked, the program that
makes the change should set the ADSRSMOD flag to 1. The purpose of these flags is to
indicate whether the symptom strings are original, intact, and exactly the same as when
SYMREC was invoked.

If some application creates the record asynchronously, that application should set
ADSRSYN to 1. 1 means that the data is derived from sources outside the normal
execution environment, such as human analysis or some type of machine post-processing.

If SYMREC truncates the symptoni record, it sets ADSRTRNC to 1. This can happen
when the size of the symptom record provided by the invoking application exceeds
SYMREC’s limit.

. ADSRSGEN indicates that the symptom record was not provided as ‘first time data

capture’ by the invoking application. Another program created the symptom record. For
instance, the system might have abended the program, and created a symptom record for it
because the failing program never regained control. Setting the field to 1 means that
another program surrogate created the record. The identification of the surrogate might be
included with other optional information, for example, in section 5.

The application invoking SYMREC must provide the space for the entire symptom record,
and initialize that space to hex zeroes. The application must also store the value ‘SR’ into
ADSRID.

The fields ADSRCPM through ADSRFL2, which appear in the record that is written on
the repository, are also written back into the input symptom record as part of the execution
of SYMREC.

Reporting System Characteristics  1-59



Programming Notes for Section 2
Notes in this section pertain to the following fields. which are in section 2 of the ADSR data

area.

ADSRARID  Architectural level designation (RS)
ADSRL Length of section 2 (RC)
ADSRCSL Length of section 2.1 (RC)
ADSRCSO O0ffset of section 2.1 (RC)
ADSRDBL Length of section 3 (RC)
ADSRDBO 0ffset of section 3 (RC)
ADSRROSL  Length of section 4

ADSRROSA  Offset of section 4

ADSRRONL  Length of section 5

ADSRRONA  Offset of section 5

ADSRRISL  Length of section 6

ADSRRISA  (Offset of section 6

ADSRSRES  Reserved for system use

Notes:

1. The invoking application must ensure that the actual lengths of supplied data agree with
the lengths indicated in the ADSR data area. The application should not assume that the
SYMREC service validates these lengths and offsets.

2. The lengths and offsets in section 2 are intended to make the indicated portions of the
record indirectly addressable. Invoking applications should not program to a computed
absolute offset, which may be observed from the byte assignments in the data area.

3. The value of the ADSRARID field is the architectural level at which the SYMREC service
is operating. This field is supplied by the SYMREC service.

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC, RS, or RA)
will contain zeroes when the invoking application provides no values for them.

Programming Notes for Section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the ADSR data

area.
ADSRC C'SR21' Section 2.1 Identifier (RC)
ADSRCRL Architectural Level of Record (RC)

ADSRCID Component identifier
ADSRFLC Component Status Flags

ADSRFLC1  Non-IBM program flag (RC)
ADSRLVL Component Release Level (RC)
ADSRPTF Service Level

ADSRPID PID number (RC)
ADSRPIDL  PID release Tlevel (RC)
ADSRCDSC  Text description

ADSRRET Return Code (RS)
ADSRREA Reason Code (RS)

ADSRPRID  Problem Identifier
ADSRID Subsystem identifier

Notes:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional fields (not
marked with RC, RS, or RA) will appear as zero if no values are provided.

2. ADSRCID is the component ID of the application that incurred the error, without the
imbedded punctuation that normally appears when the component id is seen in print.

1-60 SPL: System Macros and Facilities Volume 1



Under some circumstances, there can be more than one component ID involved. For
ADSRCID, select the component ID that is most indicative of the source of the error. The
default is the component ID of the detecting program. In no case should the component ID
represent a program that only administratively handles the symptom record. Additional and
clarifying data (such as, other component ID involved) is optional, and may be placed in
optional entries such as ADSRCDSC of section 2.1, section 4, or section 5.

For example: if component A receives a program check; control is taken by component B,
which is the program check handler. Component C provides a service to various programs
by issuing SYMREC for them. In this case, the component ID of A should be given.
Component B is an error handler that is unrelated to the source of the error. Component C
is only an administrator. Note that, in this example, it was possible for B to know A was
the program in control and the source of the program check. This precise definition is not
always possible. B is the detector, and the true source of the symptom record. If the identity
of A was unknown, then B would supply, as a default, its own component ID.

ADSRCID is not a required field in this section, although it is required in section 3 after
the PIDS/ prefix of the symptom string. Repeating this value in section 2.1 is desirable but
not required. Where the component ID is not given in section 2.1, this field must contain
ZEroes.

ADSRPID is the Program Information Department (PID) number assigned to the program
that incurred the error. It appears as a seven-character value with no punctuation and one
byte of padding. ADSRPID must be provided only by IBM programs that do not have an
assigned component ID. Therefore, ADSRCID contains hex zeroes if ADSRPID is
provided.

. ADSRLVL is the release level of the assigned component ID. It is required even if the

assigned component ID value is not given in ADSRCID for IBM products. All release level
values are numeric values. Therefore, this field normally has a blank (X'40’) as the
rightmost pad character.

. ADSRPIDL is the release level of the program designated by ADSRPID, and it should be

formatted using the characters, V, R, and M as separators, where V, R, and M represent
the version, release, and modification level respectively. For example, VIR21bbbbb is
Version 1 Release 2.1 without any modification. No punctuation can appear in this field,
and ADSRPIDL must be provided only when ADSRRPID is provided.

. ADSRPTEF is the service level. It may differ from ADSRLVL because the program may be

at a higher level than the release. ADSRPTF can contain any number indicative of the
service level. For example, a PTF, FMID, APAR number, or user modification number.
This field is not required, but it should be provided if possible.

. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the discretion of

the reporting component. It provides clarifying information. For example, ‘10S IOSB
ANALYSIS ROUTINE'.

. ADSRREA is the reason code, and ADSRRET is the return code from the execution of

SYMREC. SYMREC places these values in registers 0 and 15 and in these two fields as
part of its execution. The fields are right justified, and identical to the contents of registers
0 and 15.

. ADSRCRL is the architectural level of the record. Note that ADSRARID (section 2) is the

architectural level of the SYMREC service.

. ADSRPRID is a value that can be used to associate the symptom record with other

symptom records. This value must be in EBCDIC, but it is not otherwise restricted.

Reporting System Characteristics 1-61




10.

11.

12.

ADSRNIBM is a flag indicating that a non-IBM program originated the symptom record.
When this flag is 1, ADSRPID, ADSRPIDL, and ADSRPTF are interpreted respectively as
program name, program major level, and program fix level. For IBM programs originating
a symptom record, this flag must be ‘0.

s

ADSRSSID is the name of a subsystem. The primary purpose of this field is to allow IBM
subsystems to intercept the symptom record from programs that run on the subsystem.
They may then add their own identification in this field as well as additional data in
sections 4 and 5. The subsystem can then pass the symptom record to the system via
SYMREC. A zero value is interpreted as no name.

The ADSRVSES flag is set to 1 when the user has added another section to the symptom
record after section 5 (that is, the contents of ADSRRISL are non-zero).

Programming Notes for Section 3
Section 3 of the symptom record contains the primary symptoms associated with the error
incident, and it is provided by the application that incurred the error, or some program that
acts in its behalf. The internal format of the data in section 3 is the SDB format, with a blank

separating each entry. Once this data has been passed to SYMREC by the invoker, it may not

be added to or modified without setting ADSRPMOD to ‘1’. The data in this section is
EBCDIC, and no hex zeros may appear. The symptoms are in the form K/D where K is a
keyword of 1 to 8 characters and D is at least 1 character. D can only be an alphanumeric or
@, $, and #.

Notes:

1.

o

The symptom K/D can have no imbedded blanks, but the ‘#” can be used to substitute for
desired blanks. Each symptom (K/D) must be separated by at least one blank. The first
symptom may start at ADSRRSCS with no blank, but the final symptom must have at
least one trailing blank. The total length of each symptom (K/D combination) can not
exceed 15 characters.

This section is provided by the component that reports the failure to the system. Once a
SYMREC macro is issued, the reported information will not be added to or modified, even
if the information is wrong. It is the basis for automated searches, and even poorly chosen
information will compare correctly in such processing because the component consistently
produces the same symptoms regardless of what information was chosen.

. If section 3 is modified, then a flag in section 1 (ADSRPMOD) should be set to warn users

(such as detecting programs) that this data has been modified (perhaps to correct it), and
may be useless in SDB automated searches. '

. The PIDS/ entry is required, with the component ID following the slash. It is required from

all programs that originate a symptom record and have component a ID assigned. Further,
it must be identical to the value in ADSRCID (section 2.1) if that is provided. (ADSRCID
is not a required field).

Pt
{ j
S /

1-62 spL: System Macros and Facilities Volume 1



Programming Notes for Section 4
Section 4 of the symptom record contains the secondary symptoms associated with the error
incident, and it is provided by the application that incurred the error, or some program that
acts in its behalf. The internal format of the data in section 4 is the SDB format, with a single
blank separating each entry. Once this data has been passed to SYMREC by the invoker, it
may not be added to or modified without setting ADSRSMOD to 1. The data in this section is
EBCDIC, and no hex zeroes may appear. The symptoms are in the form, K/D, where K is a
keyword of one to eight characters and D is at least one character. D must be alphanumeric or
@, $, or #.

Notes:
1. The secondary symptom string is in the same SDB format as the primary symptom string.

2. If any changes are made in this section, ADSRSMOD must be set to 1.

Programming Notes for Section 5
Section 5 of the symptom record contains logical segments of data that are provided by the
component or some program that acts in its behalf. The component may store data in section 5
when SYMREC is invoked, or the system may add notes in this section at the time of
SYMREC execution. Further, section 5 may be added to by a general edit of the record or by
other programs operating on the entry any time after SYMREC is invoked.

Notes:

1. The first segment must be stored at symbolic location ADSRSST. In each segment, the first
two characters are a hex key value, and the second two characters are the length of the data
string, which must immediately follow the two-byte length field. Adjacent segments must be
packed together. The length of section S is in the ADSRRONL field in section 2, and this
field should be correctly updated as a result of all additions or deletions to section 5.

2. There are 64K key values grouped in thirteen ranges representing thirteen potential
SYMREC user categories. The data type (that is, hexadecimal, EBCDIC, etc.) of section 5
is indicated by the category of the key value. Thus, the key value indicates both the user
category and the data type that are associated with the information in section 5. Because
the component ID is a higher order qualifier of the key, it is only necessary to control the
assignment of keys within each component ID or, if a component ID not assigned, within
each PID number.

Key Value User Category and Data Type

0001-00FF Reserved

0100-0FFF MVS system programs

1000-18FF VM system programs

1900-1FFF DOS/VSE system programs

2000-BFFF Reserved

CO000-CFFF Product programs and non-printable hex data
D000-DFFF Product programs and printable EBCDIC data
E000-EFFF Reserved

F000 Any program and printable EBCDIC data
FO001-FOFF Not assignable

F100-FEFF Reserved

FF00 Any program and non-printable hex data
FFO1-FFFF Not assignable

Reporting System Characteristics

1-63



|
|
l
|

i

Obta

1-64

ining Accumulated Processor Time

The TIMEUSED macro offers you the opportunity to record execution times and to measure
performance. TIMEUSED returns the amount of processor time that a work unit (such as a
task or an SRB) has used since it began executing.

TIMEUSED is available only to authorized programs (supervisor state or PSW key 0-7).
Example of measuring performance with TIM EUSED macro:

Use TIMEUSED to measure the efficiency of a routine or other piece of code. If you need to
sort data, you may now code several different sorting algorithms, and then test each one. The
logic for a test of one algorithm might look like this:

Issue TIMEUSED

Save old time

Run sort algorithm

Issue TIMEUSED

Save new time

Calculate time used (new time - old time)

Issue a WTO with the time used and the algorithm used.

Nk v

After running this test scenario for all of the algorithms available, you can determine which
algorithm has the best performance.

SPL: System Macros and Facilities Volume 1

A
S



Communication

( The following types of communication are included in this chapter:

e Interprocessor communication
e Writing operator messages
¢ Inter-address space communication

Interprocessor Communication

Interprocessor communication (IPC) is a function that provides communication between
processors sharing the same control program. Those executing functions that require a
processor or program action on one or more processors use the IPC interface to invoke the
desired action. The IPC function uses the signal processor (SIGP) instruction to provide the
necessary hardware interface between the processors.

spin routine. The excessive spin routine may cause message IEE331A to be issued. This
message either requires the operator to initiate alternate CPU recovery (ACR) or continue with
processing. For more information concerning the SIGP instruction, see Principles of Operation.

( Based on the condition code of the SIGP instruction, the IPC function may invoke the excessive

Service Classes
IPC services divide the SIGP order codes into two classes, direct and remote. The SIGP
instruction and the valid order codes are documented in Principles of Operation.

- Direct service class is defined for those control program functions that require the modification
( or sensing of the physical state of one of the configured processors. The following SIGP order
codes can be invoked via the DSGNL macro instruction.

Sense: The specified processor presents its status to the issuing processor. No other action is
caused at the specified processor.

Start: The specified processor is placed in the operating state. The processor does not

necessarily enter the operating state during the execution of the SIGP instruction. No action is

caused at the specified processor if that processor is in the operating state when the order code
(., is accepted.

Stop: The specified processor stops. The processor does not necessarily enter the stopped state
during the execution of the SIGP instruction. No action is caused at the specified processor if
that processor is in the stopped state when the order code is accepted.

Restart: The specified processor restarts. The processor does not necessarily perform the
function during the execution of the SIGP instruction.

Stop and Store Status: The specified processor stops and stores status. The processor does. not
necessarily complete the operation, or even enter the stopped state, during the execution of the
SIGP instruction.

Store Status at Address: The specified processor stores status starting at a specified location.

If the specified processor is not stopped, it does not accept the order. The processor does not
( necessarily complete the operation during the execution of the SIGP instruction.

© Copyright IBM Corp. 1982, 1989 Communication  1-65




Initial CPU Reset: The specified processor performs initial processor reset. The execution of
the reset does not affect other processors and does not cause any channels, including those
reconfigured to the specified processor, to be reset. The reset operation is not necessarily
completed during the execution of the SIGP instruction.

CPU Reset: The specified processor performs processor reset. The execution of the reset does

~ not affect other processors and does not cause any channels, including those configured to the
specified processor, to be reset. The reset operation is not necessarily completed during the
execution of the SIGP instruction.

Set Prefix: The specified processor’s prefix register is set to the value passed to it by the
control program. If the specified processor is not stopped, it does not accept the order. This
function is not necessarily completed during the execution of the SIGP instruction.

Remote class services are defined for those control program functions that require the execution
of a software function on one of the configured processors. The remaining SIGP functions are
defined as remote services. External call is a remote pendable service that can be invoked via
the RPSGNL macro and emergency signal is a remote immediate service that can be invoked
via the RISGNL macro. A description of these services follows:

External Call: An “external call” external-interruption condition is generated to the specified
processor. The interruption condition becomes pending during the execution of the SIGP
instruction. The associated interruption occurs when the processor is interruptible for that
condition. Only one external-call condition can be kept pending in a processor at a time. Issue
the RPSGNL macro instruction to invoke the external-call function.

Emergency Signal: An “emergency-signal” external-interruption condition is generated at the
specified processor. The interruption condition becomes pending during the execution of the
SIGP instruction. The associated interruption occurs when the processor is interruptible for
that condition. At any one time the receiving processor can keep pending one emergency-signal
condition for each processor of the multiprocessing system, including the receiving processor
itself. Issue the RISGNL macro instruction to invoke the emergency signal function.

Status Indicators
If the user receives a return code of 8 from the DSGNL macro, register 0 contains a status
indicator describing the state of the specified processor. The status indicators describe the
following conditions:

Equipment Check: This condition exists when the processor executing an instruction detects
equipment malfunctioning that has affected only the execution of the instruction and the
associated hardware function. The order code may or may not have been transmitted, and may
or may not have been accepted, and the status bits provided by the specified processor may be
in error.

Incorrect State: This condition exists when an order has been directed to a processor that is
not stopped. The condition, when present, is indicated only in response to status or prefix.

Invalid Parameter: This condition exists when an address exception occurs. This happens

when the storage referenced by the status or prefix function is not installed or not configured
on the system. The condition, when present, is indicated only in response to status or prefix.

1-66 SPL: System Macros and Facilities Volume 1

AN

NS



External Call Pending: This condition exists when an external-call interruption condition is
pending in the specified processor because of a previously issued SIGP instruction. The
condition exists from the time an external-call function is accepted until the resulting external
interruption is accepted. The condition may exist on the issuing processor or another processor.
The condition, when present, is indicated only in response to sense and to external call.

Stopped: This condition exists when the specified processor is in the stopped state. The
condition, when present, is indicated only in response to sense.

Operator Intervening: This condition exists when the specified processor is executing certain
operations initiated from the console or the remote operator control panel. The particular
manually initiated operations that cause this condition to be present depend on the model and
on the specified functions. This condition, when present, can be indicated in response to all
functions. Operator intervening is indicated in response to sense if the condition is present and
precludes the acceptance of any of the installed orders (or SIGP hardware functions). The
condition might also be indicated in response to unassigned or uninstalled orders.

Check Stop: This condition exists when the specified processor is in the check-stop state. The
condition, when present, is indicated only in response to sense, external call, emergency signal,
start, stop, restart, and stop and store status. The condition may also be indicated in response
to unassigned or uninstalled functions.

Invalid Function: This condition exists during the communications associated with the
execution of SIGP when the specified processor decodes an unassigned or uninstalled function
code.

MSSF Failure: This condition exists when the MSSF (3082) is currently inoperative. The
MSSF performs the SIGP between two processors.

Receiver Check: This condition exists when the specified processor detects malfunctioning of
equipment during the communications associated with the execution of SIGP. When this
condition is indicated, the function has not been initiated and, because the malfunction may
have affected the generation of the remaining receiver status bits, these bits are not necessarily
valid. A machine-check condition may or may not have been generated at the specified
processor.

Communication 1-67




Writing and Deleting Messages (WTO, WTOR, DOM, and WTL)

The WTO and WTOR macro instructions allow you to write a message to a display device or a £
printer at the operator console. Besides writing a message, WTOR allows you to request a reply \

from the operator who receives the message. The DOM macro instruction allows you to delete
a message that is already written to the operator. The standard printable EBCDIC characters
that constitute messages are shown in Figure 21. All other characters, which are not printable,
are replaced by blanks. If the terminal does not have dual-case capability, it prints lowercase
EBCDIC characters as uppercase EBCDIC characters.
Hex EBCDIC | Hex EBCDIC | Hex EBCDIC | Hex EBCDIC
Code Code Code Code
40 (space) 7B # 99 r Ds N
4A ¢ 7C @ A2 s D6 O
4B . 7D ! A3 t D7 P
4C < 7E = A4 u D8 Q
4D ( TF " AS v D9 R
4E + 81 a A6 w E2 S
4F | 82 b A7 X E3 T
50 & 83 c A8 y E4 U
SA ! 84 d A9 z ES v TN
5B $ 85 e C1 A E6 w
5C * 86 f C2 B E7 X
5D ) 87 g C3 C E8 Y
SE ; 88 h C4 D E9 V4
SF - 89 i Cs E FO 0
60 - 91 ] Co6 F F1 1
61 / 92 k (oy] G F2 2
6B s 93 1 C8 H F3 3
6C Y% 94 m C9 I F4 4
6D — 95 n D1 J F5 5
6E > 96 o D2 K F6 6
6F ? 97 P D3 L F7 7 N\
TA : 98 q D4 M F8 8 "
F9 9 -
Figure 21. EBCDIC Characters Printed or Displayed on an MCS Console
Notes:
1. If the display service or printer is defined to JES3, the following characters are translated to
blanks:
7! = " L
2. The system recognizes the following hexadecimal representations of the U.S. national "\ B
characters: @ as X‘7C’; § as X‘5B’; and # as X‘7B’. In countries other than the U.S., the
U.S. national characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character generates a X‘4A’.
Routing the Message
The ROUTCDE parameter allows you to specify the routing code or codes for a WTO and
WTOR message. The routing codes determine which MCS console or consoles receive the
message. Each code represents a predetermined subset of the consoles that are attached to the
system, and that are capable of displaying the message. It is up to the user to define the
consoles that belong to each routing code. WTO and WTOR allow routing codes from 1 to
128. Routing codes 29 through 41 are reserved, and are ignored if specified. Routing codes 42
through 128 are available to authorized programs only, although the ROUTCDE parameter
itself is available to non-authorized as well as authorized users. \{ h
o

1-68 SPL: System Macros and Facilities Volume 1



The parameters, MSGTYP and MCSFLAG, which are associated with message routing, should
only be used by programmers familiar with multiple console support (MCS). The MSGTYP
parameter is typically used for messages related to the monitor command. The MCSFLAG

( 7 parameter is used to specify various attributes of the message, such as:
¢ Whether the message is for a particular console
*  Whether the message is for all active consoles
*  Whether the message is a command response
[ ]

Whether the message is for the hardcopy log

The MCSFLAG =BUSYEXIT parameter determines what happens if no message buffers are
available. If BUSYEXIT is specified and no console buffers for either MCS or JES3 are
available, or if BUSYEXIT is specified and there is a JES3 WTO staging area excess, the WTO
is terminated. If BUSYEXIT is not specified, the WTO invocation will be placed in a wait state
until WTO buffers are again available. BUSYEXIT is available to authorized programs only.

When MSGTYP=Y is specified, the MCSFLAG field indicates that the MSGTYP field is to
be used for the message routing criteria. In this case, the issuer of the WTO(R) must set a
message identifier bit in the MSGTYP field of the macro expansion. The macro expansion is

( mapped by IEZWPL. When a message identifier bit is recognized by the system, the message is

: routed to all consoles and TSO terminals (in operator modes) that have requested the particular

type of information represented by the identifier bit. If there are no consoles or terminals
requesting that kind of information, a WTO message is not sent anywhere; however, a WTOR
message is sent to the master console. The routing codes and REGO MCSFLAG field, if
present, are ignored when MSGTYP =Y is specified.

Another alternative for routing a message is to use the CONSID parameter. This parameter lets
you specify a field or register that contains the four-byte id of the console that is to receive the
message. This is a handy alternative to the MCSFLAG option of placing the console id in
( register zero. When you issue a WTO or WTOR macro that uses both the CONSID and the
ROUTCDE parameters, the message(s) will go to all of the consoles specified by both
parameters.

Notes:

1. By using the various parameters of WTO(R), messages can be routed by route code,
console id, descriptor code, and message type. Messages can be sent on multiple paths. See
the description of the WTO(R) macro instruction in Volume 2 for additional information.

L 2. For the convenience of the operator, messages can be associated with individual keynames.
( A keyname consists of 1 to 8 alphanumeric characters, and it appears with the message on
the console. The keyname can be used as an operand in the D R console command, which
operators can issue at the console. Use the KEY parameter on the WTO or WTOR macro

for this purpose.

Writing a Multiple-Line Message
Messages consisting of multiple lines should be issued using the WTO multiple-line capability to
assure that all lines of a multiple-line message appear together and are not broken up by other
single-line messages.

Using the WTO macro instruction, a program can write a multiple-line message to one or more
operator consoles. System programs (supervisor state, PSW key 0-7, or APF-authorized) can
create a message that consists of up to 255 lines with one WTO request. If more than 255 lines
are needed, the authorized user can issue more than one WTO.

Communication 1-69




When issuing more than one request, the first WTO supplies the first lines of the message, up to
a limit of 255 lines. Subsequent WTO requests can then add lines to the message. The
additional lines appear at the end of the message and continue until an “END?” line is specified.
For the first request, you must ensure that the left most three bytes of register zero are zero. If
the bytes are not zero, WTO assumes that the multiple-line request is adding lines to an existing
message, and no new message is created.

After processing the first request, the system places a message identifier in register 1. For each
additional request, you must pass this identifier to the subsequent lines via the CONNECT
parameter of WTO.

Embedding Label Lines in a Multiline Message

Label lines provide column headings in tabular displays. You can change the column headings
used to describe different sections of a tabular display by embedding label lines in the existing
multiline WTO message for a tabular display.

System programs (supervisor state, PSW key 0-7, or APF-authorized) that are authorized to
add lines to an existing multiline WTO message are also permitted to embed label lines within
that existing multiline WTO message. The label line does not have to appear immediately
following the control line and before the data lines. At most two label lines can appear
consecutively without an intervening data line.

Note: You cannot use the WTO macro instruction to embed label lines. The WTO macro
instruction handles label lines at the beginning of the message only.

Using the Authorized Parameters of WTO and WTOR

CONNECT, JOBID, JOBNAME, SUBSMOD, SYSNAME, PRTY, and SYSNAME are
authorized parameters used with WTO or WTOR.

The CONNECT parameter is used to connect a subsequent message to a previous message. For
example, if your program develops a large, multi-line message of unknown length, it can issue
different WTOs for the different parts of the message at different times. The CONNECT
parameter can force all these WTOs to use the same message id, and cause all the different
parts of the message to be physically reunited at the display console as a single message. To use
CONNECT, you save the message id that is returned in general register 1 after you issue the
first part of the multi-line message. On subsequent invocations of WTO for the remaining
message parts, you supply the returned message id as an input parameter by using the
CONNECT parameter. The end-of-message character in the text allows the system to recognize
the last WTO in the sequence, and to start issuing the message. CONNECT is mutually
exclusive with CONSID and SYSNAME, and it is not available with WTOR.

The SYSNAME parameter, which is mutually exclusive with CONNECT, is used to provide an
eight-byte system name that appears on the console with the message. SYSNAME is available
with WTO and WTOR.

The WQEBLK parameter, which is similar in principle to the DOMCBLK parameter of the
DOM macro, is used when the control information for WTO(R) is in a table instead of in the
input parameters. WQEBLK is mutually exclusive with all other parameters. As an example of
how WQEBLK can be used, an application might capture the internally-generated control table
resulting from the invocation of a previous WTO(R). Then it might supply this table as an
input parameter in the subsequent WTO(R), by using the WQEBLK parameter.

The JOBNAME and JOBID parameters are used to correlate WTO or WTOR macros and
their resulting messages with the jobs that are passing through the system.

1-70  SPL: System Macros and Facilities Volume 1

£
\‘t‘/’

N



The SUBSMOD parameter is used to indicate whether the message can be modified by a
subsystem, and the PRTY parameter is used to give the message a priority that is visible when
the message appears on the console. These two parameters are only available with WTOR.

. Deleting Messages Already Written

| The DOM macro deletes the messages that were created using the WTO or WTOR macros.

| Depending on the timing of a DOM macro relative to the WTO or WTOR, the message may or
| may not have already appeared on the operator’s console.

¢ When a message already exists on the operator screen, it has a format that indicates to the
operator whether the message still requires that some action be taken. When the operator
responds to a message, the message format changes to remind the operator that a response
was already given. The actual message, however, remains displayed until it rolls off the
screen. When DOM deletes a message, it does not actually erase the message. It only
changes its format, displaying it like a non-action message.

| ¢ If the message is not yet on the screen, DOM deletes the message before it appears. The

| DOM processing does not affect the logging action. That is, if the message is supposed to
| be logged, it will be, regardless of when or if a DOM is issued. The message is logged in

| the format of a message that is waiting for operator action.

| The program that generates an action message is responsible for deleting that message.

Identifying Messages to be Deleted

To identify the message(s) that you want to delete, you normally use the MSG, MSGLIST, or
TOKEN parameters. When you issue a WTO or WTOR macro instruction to write a given
message to the operator, the system generates a message id, which it returns in general register

, 1. To delete the message, you can issue the DOM macro instruction with a MSG or MSGLIST

( parameter specifying the same system-generated message id that WTO or WTOR returned in
- general register 1. If you specify MSGLIST (message list), then several message ids can be

associated with the delete request. The number of message ids in the message list is defined by
the COUNT parameter or it is defined by an 1 in the high order bit position of the last message
id in the list. The count parameter cannot exceed 60.

On the other hand, the TOKEN parameter allows the message id to be generated by the user
rather than the system. When you issue WTO or WTOR with a TOKEN parameter, the system
associates your TOKEN parameter with all the message(s) that are written by this particular
, WTO or WTOR. Then you can issue DOM with the same TOKEN parameter to delete all the
( message(s) associated with the token.

Limiting the Extent of Message Deletion
DOM allows you to limit the extent of message deletion. One way to limit the extent of
message deletion is to use the SYSID parameter, which deletes only messages from a particular
system whose id you specify. Another way to limit the extent of deletion is to use the SCOPE
parameter. If you specify SCOPE =SYSTEMS, the delete request is sent to all other processors.
To delete messages only within the host system, you can specify SCOPE=SYSTEM. SYSID
and SCOPE can only be coded by authorized users.

Communication 1-71




|
l

!

Custom-Built Delete Functions
When DOM executes, it builds a control block from the specified parameters to control the
execution of the delete. All the input parameters specified on the DOM macro are represented
by fields in this control block. However, the control block can be built directly by an authorized
user. To build the DOM control block without specifying parameters, simply specify the
address of the control block by using the DOMCBLK parameter. When this parameter is
specified, the system does not build any delete control block, and it substitutes the
user-provided control block instead.

Note: Specifying the REPLY = parameter of the DOM macro causes an MNOTE warning
message to be issued at assembly time. The MNOTE warns you that you are coding the
REPLY = parameter, which is a function no longer supported in the system. If you code the
REPLY = parameter and receive the MNOTE warning, remove the REPLY = parameter from
your program and reassemble it. Programs containing the REPLY = parameter that are already
assembled do not need to be reassembled.

Writing to the System Log

There are two ways to request that the system write a message to the system log:
¢ Use the HRDCPY option on the MCSFLAG parameter on the WTO macro.

e Use the HARDCOPY statement in CONSOLxx member of SYSI.PARMLIB to specify
that the message appear at the device that is the hardcopy log. Note that you can use this
member to direct the system log to a printer or a spooled file.

You can change this specification through the VARY HARDCPY command.

IBM recommends that you do not use the WTL macro to write to the system log. This macro
generates messages with formats that are inconsistent with other messages in the log.

Inter-Address Space Communication

There are many advantages to the use of multiple virtual address spaces. Virtual addressing
permits an addressing range that is greater than the real storage capabilities of the system. The
use of multiple virtual address spaces provides this virtual addressing capability to each job in
the system by assigning each job its own separate virtual address space. The potentially large
number of address spaces provides the system with a large virtual addressing capacity.

With multiple virtual address spaces, errors are confined to one address space, except for errors
in commonly addressable storage, thus improving system integrity and making error recovery
easier. Programs in separate address spaces are protected from each other. Isolating data in its
own address space also protects the data. In addition, having a separate address space for data
increases the amount of data that can be addressed.

In a multiple virtual address space environment, sometimes applications need ways to
communicate between address spaces. There are two basic methods of inter-address space
communication:

¢ Scheduling a service request block (SRB), an asynchronous process described in this chapter
(see “Asynchronous Address Space Communication.”)

¢ Using cross memory services, a synchronous process that is also described later in this
chapter (see “Cross Memory” on page 1-79.)

1-72  SPL: System Macros and Facilities Volume 1

V2



|
|
|

Asynchronous Address Space Communication
A program can use a dispatchable unit of work, the SRB, for asynchronous communication
between the program and a routine, the SRB routine, in another address space (or a routine in
the same address space). This process is called scheduling an SRB. While WAIT and POST
macros can synchronize communication between the program and the SRB routine, the major
advantage of scheduling an SRB is that an SRB routine is asynchronous in nature and executes
independently of the routine that scheduled it. This advantage makes SRBs very useful in the
following situations, where the scheduling program does not need to wait for the SRB routine
to finish executing:

To process in parallel

In a multi-processor environment, the SRB routine, after being scheduled, can be
dispatched on another processor and can execute concurrently with the routine that
scheduled it. The scheduling program can continue to do other processing in parallel with
the SRB routine.

To avoid serializing

Because the SRB represents a separate unit of work, the unit of work that schedules the
SRB routine is not serialized or delayed while the SRB routine completes its function. The
following types of delays can usually be avoided:

Page fault resolution
Address space swap-ins
Lock suspensions - wait time

To account for resources

Because the SRB represents a separate unit of work, the processor time spent accomplishing
that work can be charged to the address space in which the SRB is executing.

To make changes of state

In some instances, a routine might be executing in some state that prevents certain
functions from being performed. (For example, a routine that is in a disabled state cannot
request a suspend-type lock.) A routine can avoid these restrictions by scheduling an SRB
to complete the function.

To raise the priority of a process

Because the SRB represents a separate unit of work, the SRB has its own dispatching
priority. It can execute at a priority higher than that of any address space or at the priority
of the address space in which it is scheduled.

A Service Request Block (SRB)
An SRB is a control block that represents an SRB routine that performs a particular function
or service in a specified address space. The SRB is similar to a TCB in that it identifies a unit
of work to the dispatcher. Some characteristics of an SRB are:

The SRB is built by the program.

The SRB is required only for initial dispatch. The user can free or reuse the SRB after it is
dispatched.

An SRB cannot “own” storage areas. SRB routines can obtain, reference, use, and free
storage areas, but the areas must be owned by a TCB.

An SRB has associated with it such resources as an FRR stack.

Communication 1-73




Two macros schedule and manage SRBs:

¢ The SCHEDULE macro service places the SRB on a dispatcher queue to be dispatched
when it becomes the highest priority work in the system. When the system dispatches the
SRB, the SRB routine begins executing.

e The PURGEDQ macro service allows for cleanup of SRB activity.

The scheduling program must be in supervisor state with PSW key 0. It first allocates storage
for the SRB from commonly addressable fixed storage (for example, subpool 245) either above
or below 16 megabytes. The storage key should be 0. The program then initializes fields in the
SRB that identify:

The SRB routine

The address space in which the SRB routine is to execute

The priority level of the SRB relative to other requests in the system
Additional information for recovery and control

e o o o

The SRB can be reused after it has been dispatched. The program must provide the
serialization to ensure that it doesn’t reschedule an SRB, or change or free the SRB while it still
on a dispatcher queue.

It is the scheduling program’s responsibility (not the system’s) to obtain storage for the SRB,
and then to free this storage when the SRB is no longer needed.

The Content of an SRB
Before issuing the SCHEDULE macro, the scheduling program must initialize the fields in the
SRB. Use the following information to help you initialize the SRB. ITHASRB macro maps the
structure of an SRB. To see the format of the SRB, see IHASRB mapping macro in Debugging
Handbook. You can include IHASRB in your program.

SRBASCB Contains the address of the ASCB of the address space in which the SRB
routine will execute.

SRBPKF Indicates, in the 4 high-order bits, the PSW key of the SRB routine. The 4
low-order bits must be zero.

SRBEP Specifies the address of the entry point of the SRB routine. If the SRB routine
is to execute in 31-bit addressing mode, set the high-order bit in the field to 1;
if the routine is to execute in 24-bit addressing mode, set the high-order bit to
0.

SRBSAVE Contains all zeroes. This field is used by the system.

SRBPARM Contains the address of a user parameter area. The system will load the
address into register 1 when the system dispatches the SRB routine. Through
this field, the scheduling program passes information to the SRB routine.

SRBCPAFF  Defines the processor affinity. If all zeroes or all ones, no affinity is implied.
Otherwise, this field contains a bit mask in which the bits that are set “on”
indicate on which processors the SRB can be dispatched. (For example, set the
nth bit “on” to indicate that the SRB can be dispatched on the processor with
physical address n.)

SRBRMTR Contains the address of an RMTR. This routine is responsible for cleaning up
an SRB that has been scheduled but not yet dispatched. The RMTR is
required; SRBRMTR must contain a valid nonzero address. For information
about the RMTR, see “Resource Manager Termination Routine (RMTR)” on
page 1-78.

1-74 spL: System Macros and Facilities Volume 1

.
N

e



SRBPTCB Contains the address of a TCB that is associated with the SRB routine. The
system uses this address in two ways:

* If the SRB routine abends and its FRR does not exist or does not retry,
the task is scheduled for abnormal termination.

¢ [f the specified TCB terminates, the system purges the SRB and gives the
RMTR control.

If this SRB is not related to any task, or purging is not necessary, specify a
zero value.

SRBPASID Contains the ASID of the address space associated with the SRB routine. If
you specified a nonzero value in SRBPTCB, you must specify a value for
SRBPASID; the value must contain the ASID of the address space containing
that TCB. Otherwise, this field can be zeroes.

SRBFRRA Contains the address of an FRR that receives control if the SRB routine
abends. If the FRR is to execute in 31-bit addressing mode, set the high-order
bit in the field to 1; if the routine is to execute in 24-bit addressing mode, set
the high-order bit to 0.

Priority of the SRB

Through the SCHEDULE macro, a program schedules either a global SRB (through
SCOPE=GLOBAL) or a lecal SRB (through SCOPE =LOCAL), depending on the priority at
which you want the system to dispatch the SRB. The system gives a global SRB a priority that
is above that of any task in any address space. The system gives a local SRB a priority equal
to that of the address space in which it is dispatched, but higher than that of any task within
that address space.

The global SRBs that user programs dispatch compete with the global SRBs that the system
dispatches. Therefore, it is recommended that you specify SCOPE =LOCAL (the default).

Characteristics and Restrictions of SRB Routines

At entry, an SRB routine is in supervisor state, primary ASC mode, enabled and unlocked.
The general purpose registers contain the following:

Register Contents

0 Address of the SRB

1 Area for passing user parameters from the scheduling program to the SRB
routine (same as SRBPARM)

2 If FRR=YES, 24-bit address of FRR parameter area; otherwise unpredictable

14 Return address

15 Entry point address

Other general purpose registers and all access registers are unpredictable.

The SRB routine runs in the operating mode known as SRB mede. Code in SRB mode:

¢ Cannot leave supervisor state and must establish its own recovery environment. However,
the scheduling program can specify that the SRB routine be dispatched with a LOCAL lock
held (LLOCK = YES) or have a recovery routine established for the SRB routine
(FRR=YES), or both.

¢ Can request any lock through the SETLOCK macro

Communication 1=75




¢ Cannot issue SVCs except ABEND. This limitation means that a program in SRB mode
cannot issue some of the system macros and data management macros such as OPEN and
CLOSE. The macro descriptions in the SPL: System Macros and Facilities Volume 2 and
Supervisor Services and Macro Instructions tell whether you can use the macros in SRB
mode. If a description does not give this information, you can assume that the macro does
not support SRB mode callers.

e Must provide for all cleanup before it completes execution. Cleanup activity might include
freeing the SRB storage.

* Must return control to the address supplied in register 14, in supervisor state with no locks
held, except the CPU lock. (If LLOCK =YES, the routine must release the LOCAL lock.)

e Can issue a PC instruction and schedule an SRB

¢ Should not be a long-running program. An SRB routine is generally not preempted by I/O
interruptions once the SRB is dispatched.

Although SRB routines run enabled and can be interrupted by an asynchronous interruption,
they do not lose control to higher priority tasks or SRBs until they give up control voluntarily.
However, SRBs might lose control because of synchronous events that cause suspension of the
program in control, such as page faults and unconditional requests for suspend-type locks. In
this case, full status of the process is saved and other work is dispatched; the SRB is
redispatched when the situation is resolved.

An enabled SRB routine can take page faults.

¢ If the routine does not hold any locks when the page fault occurs, the system suspends the
SRB, which allows the system to dispatch other work on the active processor. The system
redispatches the SRB when after resolves the page fault.

¢ If the routine holds a suspend type lock (such as a local, CML, or CMS lock) when a page
fault occurs, the suspended SRB continues to hold those locks. The system suspends other
workunits that require the lock held by the suspended SRB until the system redispatches the
SRB and explicitly releases those locks.

Purging SRBs (PURGEDQ)
Because an SRB routine is dispatched after the program actually issues the SCHEDULE
macro, the conditions that existed in the system at the time the SCHEDULE was issued might
have changed by the time the SRB routine is dispatched. If, in this time interval, the
environment that the SRB routine needs to run successfully has been changed, the results are
unpredictable. An example of a changed environment is when a task or address space
terminates, leaving outstanding requests for the task or address space. The system issues
PURGEDQs at task and address space termination. For task termination, any SRBs associated
with the task (SRBPTCB) are purged. For address space termination, any SRBs scheduled to
the address space (SRBASCB) are purged. If there are any other conditions for which your
SRBs should be purged, you should issue PURGEDQ to cover them. For this reason, a
program, such as an FRR, an ESTAE routine, or a resource manager, might use the
PURGEDQ macro to:

¢ Dequeue SRBs that are scheduled, but not yet dispatched
¢ Allow processing for previously scheduled SRBs to complete
¢ Purge each dequeued SRB

1-76 spL: System Macros and Facilities Volume 1



The program must tell PURGEDQ which SRBs are to be purged. Input to PURGEDQ is as
follows:

* The address of the RMTR (RMTR parameter, required).

¢ The address space identifier (corresponding to SRBASCB) of the address space in which the
SRB is scheduled to be dispatched (ASID parameter, optional). '

¢ The address space of the TCB associated with the SRB that the system is to purge
(ASIDTCB parameter, optional).

The RMTR parameter specifies the address of the RMTR. The RMTR cleans up an SRB that
has been scheduled, but not yet dispatched. The system purges only those SRBs whose
SRBRMTR field contains the address of the RMTR, as specified on the PURGEDQ macro.

The ASID parameter specifies the address of a halfword containing an address space identifier.
PURGEDQ searches for SRBs scheduled to be dispatched into the address space specified by
this parameter.

* If you specify the current address space, the PURGEDQ routine waits for completion of
any active SRBs and then dequeues all nondispatched SRBs. After all of the SRBs have
been dequeued or completed, the RMTR specified in the SRB is given control to perform
the required cleanup for each dequeued SRB. No locks should be held when PURGEDQ is
invoked.

¢ If you specify an address space other than the current address space, only SRBs that have
not yet been dispatched are affected because PURGEDQ does not wait for SRBs already
dispatched but not completed.

If you omit the ASID parameter, the system uses the current address space.

The ASIDTCB parameter specifies the address of a doubleword that describes the TCB for
which SRBs are to be purged. Through this parameter, you can purge the SRBs associated
with a specific task. If you omit the parameter, the system purges SRBs associated with the
current task in the current address space.

Specify the ASIDTCB parameter in one of the following ways:

1. To purge all SRBs scheduled to a specific address space as defined by ASID:
Bytes 0 - 7 Zero The system is to purge all SRBs defined by the ASID

(SRBASCB) and RMTR parameters, regardless of their task
(SRBPASID) and address space (SRBPTCB) association.

2. To purge all SRBs scheduled by a specified address sl’)ace:

Bytes 0 - 1 Reserved The system is to purge all SRBs defined by the
Bytes 2 - 3 ASID ASID and RMTR parameters and associated
Bytes 4 - 7 Zero with the specified address space (SRBPASID), regardless of

their task (SRBPTCB).
3. To purge SRBs associated with a specified TCB in a specified address space:

Bytes 0 - 1 Zero The system is to purge all SRBs defined by the

Bytes 2 - 3 ASID ASID and RMTR parameters and associated
Bytes 4 - 7 TCB with the specified address space (SRBPASID) and task

(SRBPTCB). (If you specify SRBPTCB, you must also
specify SRBPASID.)

All other values produce unpredictable results.

Communication 1-=77




Resource Manager Termination Routine (RMTR)
If the system has purged the SRB from the dispatching queue before the SRB routine can run,
PURGEDQ calls the RMTR associated with the SRB. The primary purpose of the RMTR is
to clean up the SRB activity. The routine can either free the SRB storage by invoking the
FREEMAIN macro or mark the SRB so that it can be reused. The choice depends on how
your application manages its SRBs.

The RMTR must be commonly addressable from all address spaces and must remain in
supervisor state. One RMTR can provide recovery for more than one SRB. However, then
you must be more careful when you tell the PURGEDQ macro which SRB (or SRBs) to purge.

At entry, the RMTR must be enabled, in supervisor state, with PSW key 0, and hold no locks.
Entry register contents are as follows:

Register Contents

0 Contents of register 0 of the caller of PURGEDAQ at the time the PURGEDQ
SVC was issued. This register allows the caller of PURGEDAQ to pass
information to the RMTR.

1 Address of the dequeued SRB.

2 Contents of SRBPARM of the dequeued SRB.
14 Return address of PURGEDQ.

15 Entry point of RMTR.

The RMTR must return control using a BR 14, enabled, in supervisor state with PSW key 0
and hold no locks. It may, however, acquire locks, issue SVCs and destroy input registers
during its processing.

Synchronous Inter-Address Space Communication
MVS/XA provides a synchronous method of communication between address spaces that is
called cross memory. Using cross memory, programs can pass control directly to programs in
other address spaces and can move data directly from one address space to another. At any
time, a program has associated with it two addressable address spaces, the primary address
space and the secondary address space. It is between these two address spaces, which may be
the same, that synchronous communication occurs.

Three of the ways cross memory can be used are program sharing, data movement, and data
access.

Program Sharing: A program residing in the private area of a particular address space can be
directly called by programs residing in a number of different address spaces. These address
spaces must have such calling ability defined for them. MVS/XA provides a set of macro
instructions to establish the required access structures. Thus, a service needed by a number of
address spaces no longer has to reside in commonly addressable storage, or have multiple
images in many address spaces.

Data Movement: A program can move data directly between the primary and secondary
address spaces, within an address space, and between storage areas of differing storage
protection keys. Thus, programs can pass data directly between address spaces.

Data Access: A program residing in commonly addressable storage can choose to access data

from either the primary or secondary address space. Being able to access data in two address
spaces increases the amount of data that the program can handle.

1-78 SPL: System Macros and Facilities Volume 1

'

.



Program sharing, data movement, and data access enable cross memory to provide:

» Storage isolation and protection of code and data structures. By moving their programs
( and data structures from commonly addressable storage to their own address spaces,
MVS/XA components and subsystems avoid the accidental destruction of their information
by unrelated processes.

¢ Migration of code and data from commonly addressable storage to private storage. With
code and data migrating to private storage, the common storage requirements of the system
decrease. This decrease effectively expands the private area addressing range and provides
each user with more virtual storage.

e Creation of data address spaces. Partitioning data into address spaces isolates sensitive
data and provides restricted access to it. This also enables a program to address greater
amounts of data.

Cross Memory
Cross memory is a very complex concept, and there are a number of warnings and restrictions
associated with its use. Before listing the restrictions, however, some definitions are needed.

( Cross Memory Terminology: The following terms are associated with cross memory.

¢ Cross memory environment: The environment in which synchronous inter-address space
communication can take place.

¢ Home address space: The home address space, whose address space identifier (ASID) is
called the HASID!, is the address space defined by PSAAOLD. The home address space
contains the address space local control blocks that describe a unit of work to the control
program. On initial dispatch of a unit of work, the home address space and the primary
address space are the same.

( e Primary address space: The primary address space, whose ASID is called the PASID?, is
the address space whose segment table is used to access data and instructions in primary
mode.

e Secondary address space: The secondary address space, whose ASID is called the SASID?,
is the address space whose segment table is used to access data in secondary mode. In
secondary mode, instructions must be in common storage because they might be fetched
from either the primary or secondary address space.

¢ Current address space: The current address space is the primary address space when in
( primary mode and the secondary address space when in secondary mode.

¢ Primary mode: In primary mode, instructions and data are fetched from the primary
address space.

¢ Secondary mode: In secondary mode, data is fetched from the secondary address space.
Instructions might be fetched from either the primary or secondary address space.

¢ Home mode: A unit of work is in home mode if it is in primary mode and HASID and
PASID are the same.

* CML lock: The cross memory local (CML) lock is the local level lock of an address space
other than the home address space.

MVS/XA publications use the equivalent terms HASID, PASID, SASID, and primary mode.

2 Principles of Operation uses the terms HASN, PASN, SASN, and primary-space mode.
MVS/XA publications use the equivalent terms HASID, PASID, SASID, and primary mode.

( U Principles of Operation uses the terms HASN, PASN, SASN, and primary-space mode.

Communication 1-79




¢ Cross memory mode: Cross memory mode exists when at least one of the following is true:

The home address space is not the primary address space.
The home address space is not the secondary address space.
Secondary mode is active.

A CML lock is held.

e Active addressing bind to an address space: An executing unit of work has an active
addressing bind to an address space if that address space is the current PASID or SASID.

¢ Active bind to an address space: An executing unit of work has an active bind to an
address space if the unit of work holds the CML lock of that address space or if the
address space is associated with the current HASID, PASID, or SASID.

A series of macro instructions create a cross memory environment. The macro instructions
establish the necessary linkage and authorization information for synchronous inter-address
space communication. The following System/370-XA instructions actually accomplish the
communication:

¢ PC - program call - causes another program to get control. The program can be in another
address space.

e PT - program transfer - returns control from the program called by the PC instruction to
the calling program.

e SSAR - set secondary ASNS3 - sets the secondary address space to any desired address space.

¢ MVCP - move to primary - moves data from the secondary address space to the primary
address space.

e MVCS - move to secondary - moves data from the primary address space to the secondary
address space.

e MVCK - move with key - moves data between storage areas that have different protection
keys.

e SAC - set address space control - explicitly sets either the primary or secondary mode.

¢ JAC - insert address space control - indicates in a general purpose register whether primary
or secondary mode is in effect.

e EPAR - extract primary ASN3 - places the primary ASID into a general purpose register.

¢ ESAR - extract secondary ASNS3 - - places the secondary ASID into a general purpose
register.

Warnings and Restrictions: The design and implementation of programs using synchronous
cross memory communication is extremely complex. System services use cross memory on a
user’s behalf; the user can obtain the benefits of cross memory without having to know the
details. Using cross memory services improperly could cause severe system problems.
Therefore, it is very important to consider all the implications of using cross memory. Some
general considerations that apply to users of cross memory are:

¢ Real storage requirements might increase.
¢ Resource management is different.
¢ Accounting methods might be affected.

3 Principles of Operation uses the term ASN. MVS/XA publications use the equivalent term ASID.

1-80 spL: Systém Macros and Facilities Volume 1




Cross memory has the following specific restrictions:

* Services are not available in cross memory mode unless their description specifically states
that they are available.

* Code running in cross memory mode cannot issue any SVCs except ABEND. That is, any
system service that depends on SVCs is not available in cross memory mode. TSO test, for
example, provides only limited testing for programs that execute in cross memory mode
because TSO test uses the TEST SVC.

* Only one step of a job can establish ownership of space switch entry tables. Subsequent job
steps cannot issue the LXRES, AXRES, or ETCRE macro instructions.

e MVS/XA does not support cross memory accesses to a swapped-out address space; such
accesses cause an ASID translation exception-program interruption that is treated as an
error. Thus, in order to be accessed, the address space must be one of the following:

The home address space
A non-swappable address space
An address space whose local lock is held

This restriction must be a major consideration when using cross memory because it might
increase the storage requirements of the system.

e Some MVS/XA services require an active addressing bind to the address space in w2ich
processing is to occur. Such an address space must be one of the following:

The home address space
A non-swappable address space
An address space whose local lock is held

If none of these three requirements are met, the address space might be swapped out and a
unit of work that referenced the address space would be abnormally terminated.

¢ Storage acquired in a cross memory environment is attributed to the job step task of the
address space in which it was obtained if the subpool it comes from is task related. A
program that acquires such a resource should provide a task termination/address space
termination resource manager to clean up any resources obtained on behalf of the
terminating task or address space but attributed to another address space’s job step task.
For more considerations on resource management see “Designing a PC Routine” later in
this section.

¢ Execution time is attributed to the home address space, not necessarily the address space in
which the program executes.

* Routines that get control as the result of a PC instruction must not use the
checkpoint/restart facility.

Summary of MVS/XA Facilities Available in Cross Memory Mode
The MVS/XA facilities available in cross memory mode can be divided into two categories:
those services that are available to cross memory mode programs without restriction and those
services that have special cross memory options or restrictions associated with their use. A list
of the macro instructions available without restrictions to cross memory mode callers and a list
of the macro instructions that have special options or restrictions for cross memory callers are
provided in Volume 2 under the topic “Cross Memory Restrictions for Macro Instructions.”

Communication 1-81




In addition to the services provided by the macro instructions, the following functions are
available to cross memory mode programs without restriction:

Segment and page faults - The system function of resolving segment and page faults is &\’/
supported for a unit of work executing in cross memory mode. :

Dispatcher, interrupt handling - The MVS/XA dispatcher and interrupt handlers, except the
SVC interrupt handler, support programs executing in cross memory mode, and these
functions save and restore the additional status required by cross memory mode programs.

System tracing also traces cross memory information.
The macro instruction descriptions in Volume 2 give details about cross memory support.

Cross Memory Structures
Cross memory uses a set of programming and data structures that can be divided into three
functional areas: cross memory authorization, cross memory linkage, and linkage conventions.

“Cross Memory Authorization” describes how address spaces and programs are authorized to
use PT, SSAR, and PC instructions and how the user can request that the system provide this
authorization. s

“Cross Memory Linkage” describes the structures and tables used by the PC instruction and
how a user can request that the system create and connect these structures to particular address
spaces.

“Linkage Conventions” describes a set of programming conventions that must be used to
preserve register information and maintain system serviceability when using cross memory.

Cross Memory Authorization: Cross memory uses a more flexible authorization mechanism for
inter-address space communication than the PSW key zero, supervisor state requirement for
scheduling SRBs. There are multi-level authorization facilities that permit both supervisor and
problem state programs in an address space to access programs and data in a selected set of
address spaces, and also to restrict an individual problem state program’s access to only a
selected set of programs in other address spaces.

Programs have a selected set of PSW keys to which they are authorized, and, in problem state,
this set controls the program’s authority to access data in the secondary address space. Users
request authorization by invoking a series of macro instructions.

Address Space Authorization: An address space’s authorization to access other address spaces
is based upon the authorization index (AX). Each address space has an AX. A program runs
with the AX of the primary address space. The AX indicates the authority of the program to
set another address space as its primary address space using the PT instruction and to set
another address space as its secondary address space using the SSAR instruction.

The PT instruction is the mechanism used to return control from a PC routine (a routine that
gets control as the result of a PC instruction). A program should use the PT instruction only to
return to a program that called it using the PC instruction because instruction processing
continues at the specified virtual address in the new primary address space, and system integrity
and serviceability might be exposed by using the PT instruction in any other way.

Once a program has established another address space as its secondary address space, the

program is authorized to move data between the secondary address space and the primary .
address space if the storage protection key of the data permits. The program can also directly Q{
reference data in the secondary address space by switching to secondary mode if the storage g
protection key of the data permits.

1-82 SPL: System Macros and Facilities Volume |



Each address space has associated with it an authorization table (AT). The AT contains one
entry for every AX in use and indicates the authority of programs running with that AX to
issue PT and SSAR instructions to the address space. The AX is used to index into the AT of
the target address space on a PT or SSAR instruction to check if the issuing program has the
authority to set the target address space as its primary or secondary address space.
Authorization checking is required for both supervisor state and problem programs.

A particular address space, then, can selectively obtain PT and SSAR authority to a specific set
of address spaces based on the ATs of those address spaces.

MVS/XA provides macro instructions to supervisor state or PKM 0-7 (the PKM is described
below under “Program Authorization™) programs to:

* Reserve an AX value for an address space (AXRES macro instruction)
¢ Free an AX value (AXFRE macro instruction)
¢ Set an address space’s AX to a specified value (AXSET macro instruction)

¢ Set an address space’s AT to indicate authorization levels for a specified AX value (ATSET
macro instruction)

e Determine the AX value of an address space (AXEXT macro instruction)

All address spaces start with an AX of 0. An AX of 0 is an unauthorized AX value that
prevents the address space from using PT and SSAR instructions. An AX of 1 is a fully
authorized AX value that permits the address space to issue PT and SSAR instructions to any
active address space. Certain system services that functionally serve all address spaces have an
AX of 1. To have any other AX value, the user must explicitly reserve and set the AX with the
AXRES and AXSET macro instructions, respectively. An address space to which this AX
value is to be authorized (the address space to be accessed using PT and SSAR) must have its
AT set using the ATSET macro instruction.

Program Authorization - PKM (PSW Key Mask): Each program has associated with it a PSW
key mask (PKM) value. The PKM value can authorize individual programs to use cross
memory. The PKM is a 16-bit string value that represents storage protection keys that are
valid for the program to use, where bit n equal to 1 indicates that the program is authorized to
use key n. The PKM is used only to perform authorization checking for problem state
programs; supervisor state programs do not require PKM authority.

The PKM value is checked to see whether a problem state program can use the secondary
access key specified on the MVCP and MVCS instructions to access storage in the secondary
address space. It is also checked to see whether a problem program can use the secondary
access key on the MVCK instruction.

The PKM value is also checked to see whether a problem program can issue a PC instruction.
The PC instruction looks up an entry table entry (described later under “Cross Memory
Linkage”) that contains information for the PC instruction. Part of this information consists of
an authorization key mask (AKM) value. The AKM is a 16-bit string value that indicates
authorized keys in which a problem program can use a particular PC instruction. If the
program’s PKM indicates that it is authorized to use any of the keys indicated by the AKM,
then the program can use the PC instruction. The PKM value also indicates whether a problem
program can set a particular PSW key using the SPKA instruction.

All programs are initially dispatched with a PKM value equal to the bit mask representation of
the field TCBPKF or SRBPKF. For example, X‘0080’ represents key 8 and X‘8000” represents
key 0. The PKM value can be changed using the PC and PT instructions and the MODESET
SVC instruction.

Communication 1-83




The MODESET SVC sets the PKM value to the bit mask representation of the PSW key value
when control returns to the program in problem state.

The entry table that contains information for the PC instruction also contains an execution key
mask (EKM). The EKM is a 16-bit string value like the PKM and could contain additional
keys to which the PC service is to be authorized. The EKM is ORed into the PKM when the
PC routine receives control.

A program that issues a PT instruction specifies a 16-bit string value that indicates the PSW
keys the program is authorized to use when the PT instruction is completed. This 16-bit string
is ANDed with the original PSW key mask, and the result is placed in the PSW key mask in
control register 3.

Cross Memory Linkage: Synchronous cross memory transfer of control is done with the
program call (PC) instruction and the program transfer (PT) instruction. The PC instruction
uses a PC number as input. The PC number is composed of two concatenated indexes, the
linkage index (LX) and the entry index (EX). The PC instruction uses these indexes to perform
a two level table lookup that causes a specific program to get control in the address space and
mode specified in the table.

The first level table is the linkage table; the second level table is the entry table. Figure 22
shows how the PC number is used to access a particular entry table entry. The first portion of
the PC number is the linkage index (LX), which selects a specific entry in the linkage table.
The low order byte of the PC number is the entry index (EX), which is an index into the entry
table pointed to by the linkage table entry. The entry table entry contains information that
describes the program to receive control.

PC number
N\

4 N

PC 0 LX EX
0 11 12 23 31
select linkage tfable entry select entry table entry
Linkage table Entry table
Entry table e - Program e, etc.

M Entry table e

Figure 22. PC Number Indexing Linkage and Entry Tables

1-84 SPL: System Macros and Facilities Volume 1



Linkage Tables: There is a linkage table associated with each address space in the system. An
address space can have its own unique linkage table that gives it a set of cross memory services
that is different from the set of services for any other address space. The linkage table can
contain up to 1024 entries. Each linkage table entry can point to an entry table that describes a
subset of the services available to the address space.

When a program wants to provide services via the PC instruction, it reserves an index into
every linkage table in the system. The program connects an entry table to the reserved index
for every linkage table whose address space is to have access to the services. To reserve an
index, the program invokes the reserve linkage index service by issuing the LXRES macro
instruction, which returns the reserved linkage index (LX). For further details, see “How to
Establish a Cross Memory Environment” later in this section.

Entry Tables: Each program that provides services accessed via a PC instruction owns one or
more entry tables. These entry tables are connected to the linkage tables of those address
spaces that require access to the programs. Each entry in the entry table contains the following
information about the program to be given control:

¢ Instruction address - specifies the addressing mode and virtual address in which the service
is to receive control. (The addressing mode bit specifies the addressing mode of the called
program as 24-bit or 31-bit.) For those entry table entries that do not describe user defined
programs, this entry points to a special abend routine.

¢ ASID - specifies the ASID of the address space in which the called program will execute. If
the value is zero, the program executes in the caller’s primary address space.

¢ Problem state bit - specifies whether the called program will operate in problem state or
supervisor state.

¢ Authorization key mask (AKM) - the AKM and the EKM are described earlier under
“Cross Memory Authorization.”

¢ Execution key mask (EKM) - the EKM and AKM are described earlier under “Cross
Memory Authorization.”

e Latent parameter address - specifies the address of a double word to be passed to the called
program. The entry table creator supplies the first word. The second word is used by the
PCLINK macro instruction. (PCLINK is described later in this section under “Linkage
Conventions.”)

An entry index (EX) is associated with each entry created in the entry table; the first entry has
an EX of X‘00’ and subsequent entries have EXs of X‘01° through X‘FF’.

A program creates an entry table by issuing the ETCRE (create entry table) macro instruction,
supplying all necessary details about the programs to receive control. These details go into the
entry table. The ETCON and ETDIS macro instructions, respectively, connect and disconnect
entry tables from linkage tables. The ETDES macro instruction destroys an entry table by
removing it from the system. The uses of these macro instructions are described in greater
detail in “How to Establish a Cross Memory Environment” later in this section. Figure 23
summarizes the macro instructions used to establish authorization and linkage.

Communication 1-85




Macro Instructions Function
For Authorization

AXRES (Reserve AX) Reserve authorization index

AXFRE (Free AX) Return an AX for reuse

AXEXT (Extract AX) Determine the AX of an address space
AXSET (Set AX) Set the AX for an address space
ATSET (Set AT) Set PT and SSAR authority in an

authorization table entry

Macro Instructions
For Linkage

LXRES (Reserve LX) Reserve a linkage index

LXFRE (Free LX) Return an LX for reuse

ETCRE (Create ET) Create an entry table

ETDES (Destroy ET) Destroy an entry table

ETCON (Connect ET) Connect an entry table to a linkage
table at the specified LX

ETDIS (Disconnect ET)  Disconnect an entry table from a
linkage table

Figure 23. Authorization and Linkage Macro Instructions

PC Numbers: PC numbers are not permanently associated with a particular service the way
SVC numbers are. The LX portion of the PC number is assigned by the control program and
is not known before IPL. The EX portion is assigned by the component that owns a particular
entry table. (While the component could make the EX portion of the PC number known by
convention to the callers of its services, this is neither necessary nor desirable.)

Because the PC numbers themselves are not known before program execution, macro
instructions and control program services cannot use PC numbers directly. Instead, PC
numbers are determined indirectly by a table lookup process. For example, the PC numbers
corresponding to many system functions are contained in a system function table (SFT) pointed
to by the CVT. A macro instruction that invokes one of these PC services uses a permanently
assigned index into the SFT to obtain the PC number for the service. A program that provides
PC services must use a similar indirect method to give its callers the PC numbers they need to
invoke its services. The caller of a service is not dependent on the actual PC number that is
issued to obtain the service, on which module performs the service, or on where that module is
located.

Linkage Conventions
In a cross memory environment linkage conventions are more important than in other
environments because the “how did I get here” information is essential. Therefore, users must
save and restore status and diagnostic information in a consistent way for every program
call/program transfer sequence.

When a program gets control as the result of a PC instruction, and uses PT to return, there are
several things to be aware of;
® The called program must preserve registers 3 and 14 in order to return control with PT.

* The called program must preserve the PSW key and program mask across the PC/PT
interface.

1-86 sPL: System Macros and Facilities Volume 1



e If there is a dump when the called program is executing, the following information might be
needed for the dump:

Who called the currently executing program?
What were the original contents of the caller’s registers?
Where is the caller’s save area chain?

In order to preserve the above information, a program that is about to issue a PC instruction
does the following:

o Saves registers 2 through 12 in the last 11 words (words 7 through 17) of a standard save
area pointed to by register 13. You must save registers before issuing a PC because the PC
instruction updates registers 3, 4, and 14, and the address space where the save area resides
might no longer be the currently addressable address space.

e Saves the current SASID in bits 16-31 of save area word 5.

¢ Optionally loads registers 0, 1, and 15 as parameter registers.

e Loads register 2 with a PC number.

* Issues a PC specifying register 2.
The program that receives control as a result of the PC issues the PCLINK macro instruction
with the STACK option to save linkage information. The PCLINK macro instruction can only

be issued in supervisor state. The PCLINK macro instruction creates an area called a stack
element (STKE), which contains the following information:

e Caller’s save area address from caller’s register 13

¢ AMODE, return address, and PSW problem state bit from caller’s register 14
e Parameter registers 0, 1, and 15

e Caller’s PSW key and other information from caller’s register 2 as follows:

In bits 0-23, bits 8-31 of caller’s register 2
In bits 24-27, PSW key
In bits 28-31, zeroes

e Caller’s PSW key mask and PASID from caller’s register 3
o Latent parameter list address for this entry from caller’s register 4

e Return address from the PCLINK service routine to the program that issued PCLINK
STACK. This point is just after the PC routine entry point.

¢ Program mask from current PSW

After issuing PCLINK STACK, the program begins processing. It can, if it needs to, get
information from the stack element using the PCLINK macro instruction with the EXTRACT
option.

When the program is about to return control to its caller, it loads any data to be passed back to
the caller into registers 0, 1, and 15 and then issues PCLINK with the UNSTACK,THRU
option. This option restores registers 3, 13, 14, the program mask and, optionally, the original
PSW protection key. The program then issues a PT instruction to return control. The caller
restores its own registers and its SASID.

The PCLINK stack element is described in the Debugging Handbook. Diagnostic Techniques
describes how the PCLINK stack elements and register save areas are chained together.

Communication 1-87




Fig'ure 24 summarizes the PC/PT linkage conventions. In the figure, a program in ASID 8
issues a PC that invokes a program in ASID 7.

ASID 8 ASID 7 N
Save registers )
Save SASID
Load parameters
Load PC number
PC » [ssue PCLINK STACK

o<
<

Restore SASID
Restore registers

Issue PCLINK UNSTACK
PT

Figure 24. PC/PT Linkage Conventions

How to Establish a Cross Memory Environment
This section contains three examples that show three ways to establish a set of services for
access via a PC instruction. The term “subsystem” is used in this section but note that the SN
functions providing cross memory services are not limited to those functions that use the
subsystem interface. The required operations are grouped into five categories:

1. SETTING UP initializes the structure that cross memory needs so the transfers of control
can take place.

2. ESTABLISHING ACCESS sets up the linkage necessary for an address space to use cross
memory services.

3. PROVIDING SERVICE consists of designing a service for cross memory use. Refer to
“Designing a PC Routine” later in this section. PN

4. REMOVING ACCESS disconnects the linkage that enabled an address space to use cross s
memory services.

5. CLEANING UP removes the structures established in the initialization step.

The first example shows how to make a cross memory subsystem’s services available to a select
group of users. (The code actually shows only one user, but the extra steps for adding users are
pointed out.) The second example shows how to make a subsystem'’s services available
system-wide to all address spaces. The third example shows how a subsystem can provide a
series of non-space switch services that operate on data in the user’s address space. A P
non-space switch service is one that does not cause an address space switch. See “Designing a \
PC Routine” later in this section.

Assume for all the examples that the subsystem has obtained common storage that can be
accessed via the CVT. In this area it would store the PC numbers corresponding to its services.
It could also store some of the lists that are needed to invoke PC/AUTH services, and that
must be available to different address spaces. Assume also that SSBLOCK, shown in

Figure 25, is in common storage accessible via the hypothetical CVT field, CVTXXXX. All
examples use the declared storage areas shown in Figure 25.

1-88 SPL: System Macros and Facilities Volume 1



Example 1

SSBLOCK
LXL
LXCOUNT
LXVALUE
AXL
AXCOUNT
AXVALUE
TKL
TKCOUNT
TKVALUE
PCTAB
SERVIPC
SERV2PC

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

OF.

F
F

SUBSYSTEM’S BLOCK

LX LIST

NUMBER OF LXS REQUESTED
LX RETURNED BY LXRES

AX LIST

NUMBER OF AXS REQUESTED
AX RETURNED BY AXRES
TOKEN LIST

NUMBER OF ETS CREATED
TOKEN RETURNED BY ETCRE
TABLE OF PC NUMBERS

PC NUMBER FOR SERVICE 1
PC NUMBER FOR SERVICE 2

Figure 25. Declared Storage For Cross Memory Examples

- Making Services Available to Selected Address Spaces
Setting Up: To make its services available to other address spaces via a PC instruction, the
subsystem sets up the linkage and entry tables and the authorization structures.

To request that the control program reserve an LX for later use, use the LXRES macro
instruction to reserve a 4-byte LX across the entire system. When LXRES is issued, the home
address space becomes the owner of the LX.

LA
ST
GETLX LXRES

2,1

2,LXCOUNT REQUEST 1 LX
LXLIST=LXL,RELATED=(FREELX,CONET)

To set up the entry table describing the services and their entry points, use the ETCRE macro
instruction. An entry table describes all the services the subsystem makes available to users

through a PC instruction. The home address space, at the time the ETCRE macro instruction
is issued, becomes the owner of the entry table.

First construct a list of entry table descriptors. Each descriptor, mapped by the IHAETD

mapping macro instruction, describes a program that gets control when a PC is issued.
Figure 26 shows an entry table descriptor list with two entries.

CET1 ETCRE
ST

ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET2)

0, TKVALUE SAVE RETURNED TOKEN

Communication

1-89



ETDESC DS 0D ENTRY TABLE DESCRIPTION LIST
* (MAPPED BY IHAETD)
* ETD HEADER
DC X'00’ ETDFMT - MUST BE ZERO
DC X‘00 ETDRSV1 - RESERVED, MUST BE ZERO
DC H*? ETDNUM - NUMBER OF ENTRY
DESCRIPTIONS THAT FOLLOW
ENTRY 1
DC X000 ETDEX - ENTRY INDEX (EX)
DC X‘CO» ETDFLG - PROGRAM WILL EXECUTE
SUPERVISOR STATE (ETDSUP ON)
AND ENTRY WILL CAUSE SPACE
SWITCH (ETDXM ON)
DC HO ETDRSV3 - RESERVED, MUST BE ZERO
DC FO ETDPRO!

DC A(SERVICE!)

ETDPRO2 - VIRTUAL ADDRESS TO BE

* GIVEN CONTROL

DC X‘FFFF’ ETDAKM - CALLER CAN BE IN ANY KEY
DC X*8000° ETDEKM - SERVICE1 CAN ACCESS ONLY
* KEY 0 PLUS KEYS AUTHORIZED IN CALLER’S PKM
DC FO» ETDPAR - LATENT PARAMETER
PASSED TO CALLED PROGRAM
ENTRY 2
DC X‘0r ETDEX
DC X80 ETDFLG - PROGRAM WILL EXECUTE IN
SUPERVISOR STATE (ETDSUP ON) AND
ENTRY IN NON-SPACE SWITCH (ETDXM OFF)
DC H'» ETDRSV3
DC CL8'SERVICE2’ ETDPRO (PROGRAM NAME) PROGRAM
* MUST BE IN LPA
DC X‘00FF’ ETDAKM - CALLER MUST BE KEY 8-15
DC X‘00FF’ ETDEKM - SERVICE CAN ACCESS ONLY
KEYS 8-15 PLUS KEYS AUTHORIZED IN CALLER’S
PKM
DC FO»° ETDPAR - LATENT PARAMETER
* PASSED TO CALLED PROGRAM

Note: Upon entry, the PC routine receives a pointer, in general purpose register 4, to the
latent parameter list. The first word of the latent parameter list is the value from the
ETDPAR field.

Figure 26. Entry Table Descriptions for Examples

To request that the control program reserve an authorization index (AX) for the service, use the
AXRES macro instruction. The AX is reserved across the entire system. The home address
space at the time the AXRES macro instruction is issued becomes the owner of the AX.

LA 2,1
STH 2 ,AXCOUNT REQUEST 1 AX
GETAX AXRES AXLIST=AXL,RELATED=(AXSET,FREEAX)

To set the AX of the subsystem’s address space to the AX value the control program reserved,
use the AXSET macro instruction.

SETAX AXSET AX=AXVALUE,RELATED=(GETAX,SETAX)

1-90 SPL: System Macros and Facilities Volume 1




At this point, you can construct the PC numbers that will be used to invoke the services. A PC
number is a fullword value formed from an LX and an EX.

0 LX EX
0 1112 23 24 31

The linkage index returned by LXRES is in the following format so that you can OR it with an
EX to form a PC number:

0 LX 0
L 1,LXVALUE LX=PC# WITH EX OF 0
LA 2,0(,1) CONSTRUCT EX=0 PC#
ST 2,SERV1PC SAVE PC# FOR FIRST SERVICE
LA 2,1(,1) CONSTRUCT EX=1 PC#
ST 2,SERV2PC SAVE PC# FOR SECOND SERVICE

Establishing Access: The next two steps make the subsystem’s services available to a user.
The instructions used for these two steps must be issued from the user’s address space but they
must be invoked by a supervisor state or PKM 0-7 routine. If the user is a problem state
program, the subsystem must arrange for the instructions to be executed on its behalf with the
user’s address space as the home address space. These two steps, of course, must be repeated
for each user.

1. Set the PT and SSAR authority in the user’s authorization table entry that corresponds to
the subsystem’s AX value so that the subsystem can issue a PT or SSAR instruction to the
user’s address space. This action allows the subsystem to access user data and return
control to the user.

SETAT ATSET AX=AXVALUE,PT=YES,SSAR=YES,RELATED=(GETAX,
SETAX,RESETAT)

2. Connect the subsystem’s entry table to the user’s linkage table at the entry that corresponds
to the subsystem’s LX. The linkage table now points to the subsystem’s entry table.

LA 2,1
ST 2, TKCOUNT SET COUNT OF ETS TO BE CONNECTED
CONET ETCON  TKLIST=TKL,LXLIST=LXL,RELATED=(GETLX,CET1)

Now all the user needs to get to the subsystem is the correct PC number. The subsystem
devises a method of making its PC numbers available and makes the method known. The
subsystem could use an executable macro instruction that expands into code that locates the PC
number and then executes the PC instruction to invoke the desired service. The subsystem
could keep the PC numbers in a table that each address space can locate in commonly
addressable storage.

Communication 191




At this point in the example, the subsystem has set up two services that the user can access
using PC instructions. The subsystem has also established authority to issue PT and SSAR
instructions to the user. The user’s linkage table is connected to the subsystem’s entry table as
shown in Figure 27.

LT user ETSS

At this point, the subsystem
has established its ability
to provide two services to a

EX=0 ETE for Service 1

ETE for Service 2 user via a PC. The user's LT
EX=1 is connected to the
. . subsystem's entry table.
EX=2 invalid
EX=3 invalid
X |A ET A
SS SS

Figure 27. Linkage Table and Entry Table Connection

Providing Service: The PC instruction gives control to a PC routine that might run in cross
memory mode. The PC routine must have been designed following the guidelines described in
“Designing a PC Routine” later in this section.

To invoke the PC routine, the subsystem might provide a macro instruction. In the example, a
macro instruction to invoke the first service would generate the following code:

STM 14,12,12(13) SAVE REGISTERS

ESAR 2 SAVE CALLER'S SASID IN THE
ST 2,16(,13) REG 15 SLOT OF SAVEAREA

L 15,FLCCVT ACCESS CVT

L 15,CVTXXXX(,15) ACCESS SUBSYSTEM BLOCK

L 2,SERVIPC(,15) OBTAIN SERVICE1 PC NUMBER
PC  0(2) ISSUE THE PC

L 14,12(,13) RESTORE REG 14

L 2,16(,13) LOAD SAVED SASID

SSAR 2 RESTORE CALLER'S SASID

M 2,12,28(13) RESTORE REGS 2-12

Removing Access: The next two steps remove access to subsystem services. The steps are
performed with the user’s address space as the home address space. These steps are essentially
the opposite of the steps used to establish access. First, remove the subsystem’s PT and SSAR
authority to the user’s address space.

RESETAT ATSET AX=AXVALUE,PT=NO,SSAR=NO,RELATED=(SETAT)

Second, disconnect the subsystem’s entry table from the user’s linkage table.
DISET1 ETDIS TKLIST=TKL,RELATED=CET1

1-92 SPL: System Macros and Facilities Volume 1

P
N



Example 2

(

Cleaning Up: When the subsystem is about to shut down, it must remove all cross memory
connections and release any cross memory resources it owns. Destroy the subsystem’s entry
table, first making sure that all connections to it have been disconnected.

DESET1 ETDES TOKEN=TKVALUE,RELATED=CET1

Free the subsystem’s linkage index so that another subsystem can reuse it.
FREELX LXFRE LXLIST=LXL,RELATED=GETLX

Reset the subsystem’s AX to zero.

SR 2,2 ZERO VALUE
RESETAX AXSET AX=(2) RESET AX TO ZERO

Free the AX value so the system can reuse it. This action removes PT and SSAR authority
corresponding to the subsystem’s AX in all authorization tables in the system.

FREEAX AXFRE ~ AXLIST=AXL,RELATED=GETAX

- Making Service Available to All Address Spaces

This example shows how a subsystem makes global services available system-wide to all users.
The example uses the same storage areas as example 1, however, it does not need the AX list.
Figure 25 and Figure 26 earlier, show the areas. The main differences between example 1 and
example 2 are example 2’s use of a system linkage index and a system AX value. There are
only ten slots available in the system linkage table for the user to use. A system linkage index
allows the subsystem to globally connect an entry table to all address spaces, and a system AX
value gives the subsystem PT and SSAR authority to all address spaces.

Setting Up: The first step in the set up operation is obtaining a “system” linkage index. The
control program sets aside part of the available linkage indexes for use as system LXs. When
an entry table is connected to a system LX, the entry table is automatically connected to all
present and future address spaces.

Unlike ordinary LXs, system LXs cannot be freed for reuse. When an address space that owns
a systemm LX terminates, the LX becomes “dormant.” The system allows a dormant system LX
to be reconnected to an address space different from the original owning address space. This is
an important consideration for a subsystem that can be terminated and then restarted. The
subsystem must have a way to “remember” the system LX it owned so that it can connect the
LX to an entry table when it is restarted.

There are two ways subsystems or components become owners of a system LX. Many
IBM-supplied global services use a pre-assigned system LX and the PC numbers that

correspond to their services are in the system function table (SFT).

The second way that a subsystem can get a system LX is by issuing the LXRES macro
instruction with the SYSTEM = YES option.

Communication 1-93




The code shown in the following three steps runs with the subsystem’s address space as the
home address space. The first step obtains a system LX. If the subsystem is coming up for the
first time since IPL and does not have a system LX preassigned in the SFT, issue the LXRES
macro instruction with the SYSTEM =YES option. Save the LX somewhere, probably in
common storage, so that it is accessible if the subsystem is restarted. On a subsystem restart,
this step is not necessary.

LA 2,1
ST 2,LXCOUNT REQUEST 1 SYSTEM LX
GETSLX  LXRES LXLIST=LXL,SYSTEM=YES

Next, set the subsystem AX to 1. This allows the subsystem to issue a PT or SSAR instruction
to all other address spaces because an AX of 1 is authorized to all address spaces. The
subsystem that is providing a global service does not need to obtain a unique AX.

LA 2,1
AXSET AX=(2)

Define the subsystem’s entry table as follows:

ETCRE ENTRIES=ETDESC
ST 0,TKVALUE SAVE THE ET TOKEN

Next construct the PC numbers in the same way as in example 1.

Establishing Access: The following ETCON macro instruction, issued once from any address
space, connects the subsystem’s entry table to all address spaces in the system, current and
future.

LA 2,1
ST 2, TKCOUNT SET COUNT OF ETS TO BE CONNECTED
ETCON LXLIST=LXL,TKLIST=TKL

All address spaces in the system now have access to the subsystem’s services. All linkage tables
are connected to the subsystem’s entry table and, because the subsystem’s AX is 1, it can issue
PT and SSAR to any address space. Figure 28 shows how the linkage and entry tables appear
at this point.

N e M ETss
EX=0 ETE for Service 1
EX=1 ETE for Service 2
X |A g7 A T EX=2 invalid
SS SS SS
EX=3 invalid

Figure 28. Linkage and Entry Tables for a Global Service

Providing Service: The subsystem provides service in the same way as in Example 1. The users
of the services need to determine the PC number associated with each service. For many
IBM-supplied services, the PC numbers are in the SFT. Other services must use a similar
method.

1-94 SPL: System Macros and Facilities Volume 1

‘.



Removing Access: To remove access, disconnect all users and destroy the entry table by
issuing the ETDES macro instruction with the PURGE = YES option. This disconnects the
entry table from all linkage tables in the system and then destroys it. (You cannot issue an
( ' ETDIS macro instruction for an entry table connected to a system LX.)

ETDES TOKEN=TKVALUE,PURGE=YES

Cleaning Up: To clean up, reset the subsystem’s AX to 0 as follows:

SR 2,2
AXSET AX=(2)

Example 3 - Providing Non-Space Switch Services
In this example, a subsystem is providing a series of non-space switch services. Non-space
switch services are described in “Designing a PC Routine” later in this section. This example is
like example 1 except that the macro instructions for AX authorization are not used because an
address space switch does not occur.

Designing a PC Routine
‘ PC routines get control as the result of a PC instruction. A PC routine serves the same general

( purpose as an SVC routine in that it is a means of providing a function at an increased level of
authority. While the SVC always increases the authority of the SVC routine to key 0,
supervisor state, the PC instruction allows greater flexibility in the authority that a PC routine
can have. A PC instruction can switch to supervisor state, increase PKM authority, and switch
to a different primary address space that has greater AX authority. The PC instruction can
also prevent problem state programs from calling PC services based on PKM authority. For
more information on the PKM and AX, see “Cross Memory Authorization” earlier in this
section. ‘

( The SVC instruction requires that the issuer be in enabled task mode and hold no locks, but the
PC instruction does not have these restrictions.

The PC instruction also allows the PC routine and the data it manipulates to reside in its own
address space and be isolated from its callers.

The PC instruction must be issued in primary mode. The PC instruction can cause an address
space switch. When you set up the entry table descriptor as input to the ETCRE macro
instruction, one of the attributes specified is whether or not the PC routine is space switch.

( When a non-space switch PC routine gets control, it executes in primary mode, and both the
primary and secondary addresses are set to the address space in which the PC was issued.

When a space switch PC routine gets control, it executes in primary mode in the address space
in which the entry table by which it is accessed was created, not the address space in which the
PC instruction was issued. Secondary mode is set to the PC issuer’s address space. Thus, the
space switch PC routine gets contro! in cross memory mode.

All PC routines, both space switch and non-space switch, must:

e Be loaded under the job step task of the address space that created the entry table(s) that
describe the routine or else be permanently resident (in PLPA or the nucleus).

¢ Preserve and restore PC linkage information.
¢ Use a PT instruction to return to their caller.

(’ "~ Not use the checkpoint/restart facility.

Communication 1-95




PC routines that cause an address space switch have the following additional requirements:
e The address space in which the PC routine runs must be non-swappable.

¢ The PC routine must perform its functions using only the MVS/XA services supported in K’*\)
cross memory mode. Refer to “Warnings and Restrictions” earlier. d

A space switch PC routine can access data in another address space by using the MVCP and
MVCS instructions, or by using secondary mode. When executing in secondary mode,
remember that all data is accessed from the secondary address space and that you cannot
predict which address space (primary or secondary) instructions will be fetched from. Thus, all
space switch PC routines that run in secondary mode must reside in common storage.

In deciding whether to make the PC routine a space switch or non-space switch routine,

consider the nature of the routine itself and the data it manipulates. If either the PC routine or

the data it manipulates needs to be isolated from the routine’s callers, then the program or

data, whichever requires isolation, should be located in the private area of an address space and

the PC routine should be a space switch PC. If the program and data reside in commonly

addressable storage or in the caller’s address space, then the PC routine can be a non-space

switch PC. A non-space switch PC can increase PKM authority and switch to supervisor state, a
but it cannot increase AX authority because no address space switch occurs. \“

Figure 29 shows the possible locations of the non-space switch PC routine and the data it
manipulates and also lists the types of users who can invoke a non-space switch PC routine.

PC routine can be connected to
address space:

Location of PC routine: Location of data to be manipulated:

Common Common or caller’s private area All address spaces, via connection to a
system LX or any address space via

connection to an LX.

An entry table Common or caller’s private Only entry table owner’s address space A

owner’s private area area

Figure 29. Characteristics of a Non-Space Switch PC Routine

. Figure 30 shows the possible locations of the space switch PC routine and the data it
manipulates, what types of users can invoke the PC routine, and whether or not the routine can
run in secondary mode.

address space

space that creates
the ET must be
able to issue PT
and SSAR instruc-
tions to the con-
nected address
space)

Figure 30. Characteristics of a Space Switch PC Routine

1-96 SPL: System Macros and Facilities Volume 1

Location of PC routine Location of data PC routine can be PC rouiine can run in PAERN
connected to: secondary \
Common ,, Common ,, All address spaces Yes o
,, Particular address with a system LX
space that owns ET ,» Any address space
Particular address , Associated data (to connect to a
space that owns an ET address space specific address
. Each calling space, the address No



Recovery Considerations

There are special recovery considerations when you write a space switch PC routine. A PC
routine executing in cross memory mode has active binds to address spaces other than home. If
one or more of these address spaces terminates, then the PC routine will incur a program check
and its recovery routine might get control. The SETFRR macro instruction provides options
that specify the cross memory mode in which the recovery routine must get control. There are
also options that enable a recovery routine to get control as a resource manager when the
requested cross memory mode cannot be established in order to recover resources serialized by
local (CML) or global locks. Refer to “Providing Recovery Routines” for details on recovery
in cross memory mode. See “Locking” in the Serialization section for more information about
the CML lock.

Linkage Conventions: The linkage conventions for PC and PT transfers of control have
already been described under “Linkage Conventions” earlier. You will recall that the PCLINK
macro instruction provides a standard method for saving status. The stack entries created by
PCLINK are formatted like standard save areas so that you can trace the flow of control across
address spaces in the event of a dump.

Resource Management: PC routines should be loaded under the job step task of the address
space that created the associated entry tables. If the task under which the PC routine was
loaded fails and it is not the job step task of the address space that created the entry tables, the
PC routine is freed even though users are still connected to the inoperative PC routine, and
results are unpredictable. If the PC routine is loaded under the job step task, any failure of the
task causes a program check when any program issues a PC to the inoperative PC routine.

When a job step task that owns entry tables providing space switch PC services terminates,
whether normally or abnormally, the space switch event mask for the address space is turned
on. If this indicator is on, no unit of work can execute in cross memory mode in the address
space. A unit of work currently using the space switch PC services or a unit of work
attempting to issue a PC to the address space causes a space switch event program check.
Subsequent job steps execute normally except that they cannot reestablish space switch PC
services. If a unit of work in a subsequent job step attempts to reestablish space switch PC
services (that is, issues an LXRES, AXRES, or ETCRE macro instruction), it causes a X052’
abend.

When a job step task that owns space switch entry tables terminates (normally or abnormally),
the address space of the task is not terminated. The ASID representing the address space of the
terminated task is retained and evaluated for possible reuse before the next IPL takes place. The
reuse of address space spares an installation the burden of scheduling IPLs at frequent intervals
to recover the lost space. The automatic recovery of used address spaces is an important
consideration in the installation’s choice of a MAXUSERS parameter. It is also a factor in how
an installation controls the creation and termination of cross memory environments.

The system maintains a history of cross memory binds and address spaces. When all cross
memory binds have terminated, address spaces that created space switch entry tables are
generally reused, although there are a few special cases in which system integrity cannot be
guaranteed if the spaces are reused. The system recognizes those cases (there are two) and
prevents the reuse of the corresponding address space for the duration of the current IPL.

¢ The first case involves circular PC chains. For example, consider programs pl, p2, and p3
running in respective address spaces sl, s2, and s3. If PC instructions are issued by pl to
p2, and by p2 to p3, and then by p3 back to pl, a circular PC chain exists. Upon
termination, address spaces such as s1-s3 that are used in a circular PC chain are considered
non-reusable for the duration of the IPL.

Communication 1-97




e The second case involves any address space that has a cross memory connection to a system
linkage index (LX). When this kind of address space terminates, it is considered ‘
non-reusable for the duration of the IPL. In addition, if this space is connected to any other
address spaces, upon their termination they would also become non-reusable for the
duration of the IPL.

A TCB for any job step task that owns a cross memory resource imposes a restriction on other
TCBs that are higher up. The higher TCBs (that is, TCB for the initiator, RCT, DUMP, or
STC) are restricted; they can only use system PC services. When the TCB that represents the
task terminates, any connections between the higher TCBs and non-system entry tables are
severed. Subsequent PCs that depend on those connections will not be successful.

While a PC routine is running, execution time is attributed to the home address space whether
or not it is the same address space in which the PC routine executes.

1-98 SPL: System Macros and Facilities Volume 1

A

L



Virtual Storage Management

Virtual storage management (VSM) allocates and releases blocks of virtual storage on request,
ensures that real frames exist for SQA, LSQA, and V=R pages, and protects storage with fetch
and storage protection keys. In addition, VSM provides the following services through the use
of the macro instructions specified:

¢ List the starting address and the size of the private area regions associated with a given
TCB -- VSMREGN

¢ Verify that a given area has been allocated via a GETMAIN macro instruction --
VSMLOC

¢ List the ranges of virtual storage allocated in a specified area -- VSMLIST

These VSM services are especially useful when determining available storage, coding recovery
procedures, or specifying areas to be included in a dump. VSMREGN enables you to
determine the amount of storage that you have for potential use. If you need to check whether
a GETMAIN was issued to allocate a given block of storage, you can use the VSMLOC macro
instruction to perform this check. If the given block is located in private area storage, you can
also request the address of the TCB that issued the GETMAIN macro. VSMLOC enables you
to verify control blocks or storage locations when coding recovery procedures. You can use
VSMLOC to check whether a control block has been allocated and to verify that the control
block is located in the correct subpool. VSMLIST enables you to obtain detailed information
about virtual storage that could be useful in determining the areas that you might need in a
dump and thereby limit the size of the dump. Limiting the size of a dump is especially critical
when executing in 31-bit addressing mode because of the amount of storage involved. The use
of VSMLIST is described later in this topic under the heading “Obtaining Information about
the Allocation of Virtual Storage.”

© Copyright IBM Corp. 1982, 1989 Virtual Storage Management  1-99




Allocating and Freeing Virtual Storage (GETMAIN, FREEMAIN)

The GETMAIN and FREEMAIN macro instructions respectively allocate and free one or AN
more areas of virtual storage. The KEY parameter allows a user executing in PSW key zero to \J
specify the storage key for storage requests involving subpools 227, 228, 229, 230, 231, and 241.

You can use the GETMAIN and FREEMAIN macro instructions when your program is
executing in either 24-bit or 31-bit addressing mode. If you specify the options R, LC, LU, VC,
VU, V, EC, EU, or E (provided by SVC 4, 5, and 10), storage addresses and lengths are treated
as 24-bit addresses and lengths. If you want to specify 31-bit address and lengths, you must use
the options RU, RC, VRC, or VRU. You can use the keyword LOC with these options to
indicate the location of both virtual and real storage. See Figure 31 for a list of valid subpools
and the location of these subpools when backed in real storage.

Most of the functions of GETMAIN and FREEMAIN (including the options mentioned
above) are available to all users. However, some of the GETMAIN and FREEMAIN
functions are available only to programs executing in supervisor state or PSW key zero. The
restricted functions are provided by the parameters BRANCH and KEY.

The BRANCH Parameter
In addition to the normal SVC entries to the GETMAIN and FREEMAIN macros, there are
also branch entries, which are available through the BRANCH parameter. Although the
branch entries require the user to do more work, they are more efficient than the SVC entries.

Branch entry to the GETMAIN or FREEMAIN macro instructions is accomplished by

specifying BRANCH =YES on the macro instructions. If the BRANCH =YES parameter is

used, the caller must preload register 4 with the TCB address, preload register 7 with the ASCB )
address, and hold the LOCAL lock. The contents of register 3 are destroyed if RC, RU, VRC, \‘:
or VRU are specified with this parameter. o

Callers in cross memory mode can use the BRANCH = YES parameter of the GETMAIN and
FREEMAIN macro instructions. If the caller is in cross memory mode, the storage that is
allocated or freed is located in the currently addressable address space. The caller must hold
the CML lock for the currently addressable address space; load register 7 with the address of
the ASCB of the currently addressable address space; and load register 4 with zero or the
address of a TCB in the currently addressable address space. If register 4 contains a zero, the
storage is associated with the current job step task that owns the cross memory resources in the
currently addressable address space (that is, the TCB anchored in ASCBXTCB).

An additional branch entry point is provided to obtain global storage without the need for
holding the LOCAL lock. This entry point is available to programs that contain no references
to particular address spaces (for example, timer routines). The caller must be in key zero,
supervisor state, and be disabled. In addition, the caller must hold no locks higher in the
locking hierarchy than the VSMFIX lock for global subpools or the VSMPAG lock for
subpools 231 and 241. Although the TCB address and ASCB address are not required for this
entry, the macro expansion loads register 4 with the address of the global save area pointed to
by the CVT.

Global branch entry can be obtained by coding BRANCH = (YES,GLOBAL) on the

GETMAIN or FREEMAIN macro instruction that includes the positional parameter RC, RU,

VRC, or VRU. The subpools that are supported by this entry are limited to the global

subpools: common service area (CSA) subpools 227, 228, 231, and 241, and system queue area

(SQA) subpools 226, 239, and 245. Any other subpool is considered an error. a

1-100 SPL: System Macros and Facilities Volume 1



The KEY Parameter

The KEY parameter allows a user executing in PSW key zero to specify the storage key for
( h storage he requests. Because branch entry users must be executing in PSW key zero at entry

time, the KEY parameter satisfies the need to specify the actual key in which the requested
storage is to be obtained.

The KEY parameter applies only to six subpools: 227, 228, 229, 230, 231, and 241. These
subpools allow the requestor to obtain both global and local storage in key 0. (The KEY
parameter allows an override of the PSW key.) Subpools 227 (fetch protected) and 228 (not
fetch protected) are fixed global storage in the common service area, and must be freed
explicitly. Subpools 229 (fetch protected) and 230 (not fetch protected) are local storage
allocated from the top of the private area downward and intermixed with LSQA and SWA, and
are freed automatically when the task terminates. Subpools 231 (fetch protected) and 241 (not
fetch protected) are global storage in the common service area, and must be freed explicitly.

Using Cell Pool Services (CPOOL)

The cell pool macro instruction provides users with another way of obtaining virtual storage.
This macro instruction provides centralized, high performance cell management services.

Cell pool services obtain a block of virtual storage (called a cell pool) from a specific subpool at
the user’s request. The user can then request smaller blocks of storage (called cells) from this
cell pool as needed. If the storage for the requested cells exceeds the storage available in the
cell pool, the user can also request that the cell pool be increased in size (extended) to fill all
requests.
The CPOOL macro instruction makes the following cell pool services available:

e Create a cell pool (BUILD)

e Obtain a cell from a cell pool if storage is available (GET,COND)

¢ Obtain a cell from a cell pool and extend the cell pool if storage is not available
(GET,UNCOND)

¢ Return a cell to the cell pool (FREE)
¢ Free all storage for a cell pool (DELETE)
The CPOOL macro instruction, with the exception of the TCB, KEY, and
LINKAGE =BRANCH parameters, is available to all users. Note, however, that in order to

provide high performance, cell pool services do not attempt to detect most user errors. For
example, the following user errors are not detected by cell pool services:

e The user is executing in a non-zero key that does not match the key of the pool being
manipulated.

e The user attempts to free a cell from a pool that has already been deleted.

¢ When trying to free a cell, the user passes cell pool services a bad cell address. (This might
damage the cell pool, preventing subsequent requests from being properly handled.)

e A disabled user requests that a cell pool be built in a pageable subpool.

Virtual Storage Management  1-101




Using Storage Subpools

Both the GETMAIN and the CPOOL instructions allow users to allocate storage from specified { ™
storage subpools. L W%

The chart in Figure 31 lists the valid MVS/XA subpools and the characteristics of the subpools.
It indicates the type of storage, whether the storage is fixed or fetch protected, where the
storage is backed when fixed, and the storage key associated with the storage.

The storage map in Figure 32 shows the location of the storage areas listed in Figure 31.
Virtual storage management allocates low private area storage beginning at the start of the
private area or the start of the extended private area and it allocates high private area storage
beginning at the upper end of the private area or the upper end of the extended private area.

The storage keys listed are:

Key Meaning

0 MVS/XA system control program o
1 Job scheduler and job entry subsystem (JES2 or JES3) "
USER The storage key is taken from the PSW at the time of the GETMAIN or can be

specified on the GETMAIN/FREEMAIN macro instructions.

JOB The storage key is from the TCB associated with the request at the time of the
first GETMAIN request. All subsequent GETMAIN requests use this key
regardless of the key currently in the TCB.

-

1-102 SPL: System Macros and Facilities Volume 1



Subpool Type of Storage Fixed Fetch Protected Where Backed Storage Key

( 0-127 Low private No Yes Below 16 Mb Job
- 226 Common-SQA Yes No Below 16 Mb 0
227 Common-CSA/ECSA Yes Yes Below 16 Mb User
228 Common-CSA/ECSA Yes No Below 16 Mb User
229 High Private No Yes Below 16 Mb User
230 High private No No Below 16 Mb User
231 Common-CSA/ESCSA No Yes Below 16 Mb User
233 Private-LSQA/ELSQA Yes No Anywhere 0
234 Private-LSQA/ELSQA Yes No Anywhere 0
235 Private-LSQA/ELSQA Yes No Anywhere 0
236 High private No No Anywhere 1
237 High private No No Anywhere 1
239 Common-SQA/ESQA Yes Yes Anywhere 0
240 Low private No Yes Below 16 Mb Job
241 Common-CSA/ECSA No No Below 16 Mb User
245 Common-SQA/ESQA Yes No Anywhere 0
250 Low private No Yes Below 16 Mb Job
251 Low private No Yes Below 16 Mb Job
252 Low private No No Below 16 Mb 0
253 Private-LSQA/ELSQA Yes No Anywhere 0
254 Private-LSQA/ELSQA Yes No Anywhere 0
) 255 Private-LSQA/ELSQA Yes No Anywhere 0

Figure 31. Characteristics of the Valid Storage Subpools

Notes:

1.
2.

All private area subpools are swappable. Common area subpools are not swappable.

All subpools allocated virtually in the extended area can be backed anywhere.

. Subpools 0-127, 229, 230, 231, 240, 241, 250, 251, and 252 can be backed anywhere.

However, if a page fix is requested for allocation in the nonextended areas, these subpools
are backed below 16 megabytes real unless LOC is specified with ANY for real allocation.

. Subpool 226 is valid only for allocating virtual storage below 16 megabytes.

. Subpools 227 and 228 are backed anywhere for virtual addresses above 16 megabytes. For

virtual addresses below 16 megabytes, they are backed below 16 megabytes unless the user
of the GETMAIN instruction specifies the LOC parameter with ANY for real allocation.

Callers executing in key 0 and supervisor state, who request storage from subpool 0, via the
GETMAIN macro instruction, obtain that storage from subpool 252. Therefore, if they
want to dump the storage using the SDUMP macro instruction, they must specify subpool
252 rather than subpool 0.

Virtual Storage Management 1-103




2G

Free space

VSM and RSM work areas
PVT page tables

ELSQA
Authorized subpools

Free space

P 1 1

USER subpools
(0-127, 251, 252)

Extended
private area

. A
ECSA
ELPA Extended
common area
ESQA
Extended nucleus
16 Mb -——--—-
Nucleus T
SQA Common
area
LPA
CSA
A
LSQA
Authorized subpools
Free space
T T T Private
area
User subpools
(0-127, 251, 252)
20K
System region
\
4K
A

PSA

Common area

Figure 32. MVS/XA Virtual Storage Map

1-104 sprL: System Macros and Facilities Volume 1




Obtaining Information about the Allocation of Virtual Storage

- The VSMLIST macro instruction provides information about the allocation of virtual storage.
( The VSMLIST service routine returns the information in a user-supplied work area specified as
a parameter of the VSMLIST macro instruction. The length of the work area varies but it
must be a minimum length of 4K bytes. Figure 33 shows the format of the VSMLIST work

area.
0
Return code
4
Address of data area
8
Length of data area
12
Parameter list
32
Control information
(,. . X
. Data area
y

Figure 33. Format of the VSMLIST Work Area

Using the VSMLIST Work Area

Prior to the first invocation of the VSMLIST macro instruction for a single request, you must
- set the first four bytes of the work area to zero. This field will contain the return code of the
( , VSMLIST macro instruction after control returns to the issuer.

The VSMLIST service routine updates the work area and places the requested information in
the data area located at the end of the work area. If the macro instruction was executed
successfully and all of the requested information fit into the data area, the VSMLIST service
routine returns to the caller with a return code of 0 in the first four bytes of the work area. If
the macro instruction was executed successfully, but all of the requested information could not
fit into the data area, the service routine returns to the caller with a return code of 4 in the first
four bytes of the work area. In this case, the caller can reissue the macro instruction as many
times as necessary to obtain all of the information.

For multiple invocations of VSMLIST, the service routine continues supplying the information,
starting where it left off on the previous invocation, provided the work area is not changed.
However, multiple invocations do not p.uvide cumulative results. For each invocation of a set
of multiple invocations for a specific request:

¢ The count fields are relative to the current invocation of the macro instruction (for
example, the number-of-subpools field contains the number of subpool descriptors in the
current invocation only).

¢ The output in the data area describes the current invocation only.
You can avoid multiple invocations by enlarging the work area to hold all of the information.

If you do enlarge the work area, be sure to set the first four bytes of the work area (the return
code area) to zero before reissuing the macro instruction.

Virtual Storage Management 1-105




Bytes Field name Description

0-3 Return code This field contains the return code from the previous invocation of the
VSMLIST macro instruction. You must set this field to zero before
the first invocation of the VSMLIST macro instruction for a single

request.

4-7 Address of data area The data area is located at the end of the work area and contains the
information that you requested.

8-11 Length of the data area The data area varies in length and is limited in size by the length of

the work area that you specified as a parameter of the VSMLIST
macro instruction.

12-15 Parameter list This section of the work area is constructed by the VSMLIST service
routine according to the parameters that you specified when you
issued the VSMLIST macro instruction.

Bytes Contents
12-15 Length of work area
16 SP operand represented as follows:
X00’ -- SQA
X‘01’ -- CSA
X‘02’ -- LSQA
X‘03’ -- PVT
X‘FF’ -- Subpool list provided
17 SPACE operand represented as follows:
X‘00’ -- ALLOC
X‘01’ -- FREE
X‘02’ -- UNALLOC
18 Information about the TCB, LOC, and REAL operands
represented as follows:
X80" -- ALL specified for the TCB operand
X*40” -- ANY specified for the LOC operand
X220 -- REAL operand specified
19 Set to zero
20-23 TCB address or zero
24-27 Subpool list address or zero
28-31 Set to zero
32-x Control information The control information is used by the VSMLIST service on multiple
invocations for a single request. This area varies in size.
X-y Data area This area contains the actual output of the VSMLIST macro

instruction. The area varies in size and is limited by the length of the
work area specified as a parameter of the macro instruction.

Figure 34. Description of VSMLIST Work Area

The information returned in the data area depends on the parameters specified on the macro
invocation. You can use the VSMLIST macro instruction to obtain information about the
following types of storage:

¢ Allocated
e Free
¢ Unallocated

Except for subpool 245, an allocated block of storage is a multiple of 4K, some of which has
been allocated via a GETMAIN macro instruction. Free space within that block is the area
that has not been allocated via a GETMAIN macro instruction. An unallocated block of
storage is some multiple of 4K none of which has been allocated via a GETMAIN macro
instruction.

VSMLIST reports all SQA pages not allocated to subpools 226 and 239 as allocated to subpool
245. These pages of subpool 245 may not have been allocated via a GETMAIN macro.

The format of the information returned in the data area for each of these three types of
requests follows.

1-106 SPL: System Macros and Facilities Volume 1



Allocated Storage Information

You can request allocated storage information by coding the SPACE = ALLOC parameter of
the VSMLIST macro instruction. The format of the output varies according to what you
specify for the SP parameter.

If you specify SP=SQA, SP=CSA, or SP=LSQA, the output consists of the allocated storage
information for the subpools in the specified area. The subpools listed in each of these areas
are:

SQA: 226, 239, 245
CSA: 227, 228, 231, 241
LSQA: 255

Figure 35 shows the format of the output for a request for information about the allocated
storage in a specified area.

If you specify SP=PVT, the output consists of the allocated storage information for subpools
in the private area according to the owning TCB. These subpools are 0-127, 229, 230, 236, 237,
251, and 252. Figure 38 shows the format of the allocated storage information for the private
area.

If you specify a subpool list, the output consists of the allocated storage information for each of
the subpools in the list. Figure 39 shows the format of the allocated storage information for a
subpool list request.

Virtual Storage Management 1-107




Number of subpools

First subpool descriptor

Number of allocated blocks in first subpool \ First

Allocated block descriptor for first block subpool

Allocated block descriptor for second block in specified
] area

Allocated block descriptor for last block )

Second subpool descriptor

Number of allocated blocks in second subpool \ Second

Allocated block descriptor for first block subpool

Allocated block descriptor for second block in specified
’ area

Allocated block descriptor for last block

Last subpool descriptor

Number of allocated blocks in last subpool \ Last

Allocated block descriptor for first block subpool

Allocated block descriptor for second block in specified
i area

Allocated block descriptor for last block

Notes:

1. The number of subpools and the number of allocated blocks in the subpool
are given as 31-bit numbers.

2. Figure 36 shows the format of a subpool descriptor.

3. Figure 37 shows the format of an allocated block descriptor.

Figure 35. Allocated Storage Information for Subpools in a Specified Area

1-108 spL: System Macros and Facilities Volume 1




Byte

47

Content

X‘00’ to identify a subpool descriptor

Length of subpool descriptor

Subpool ID

Miscellaneous flags and storage key as follows:
Bit Meaning When Set

0-3 Storage key

4 The TCB with which this descriptor is associated
owns the storage described by this descriptor

This is meaningful for private area storage only.

S The storage described by this descriptor is shared.
This is meaningful for private area storage only.

6-7 Reserved
Owning TCB address (if PVT subpool), otherwise zero.

Figure 36. Format of Subpool Descriptor

Byte
0-3

47

Content
The virtual address of the allocated block
Bit Meaning When Set

0 The caller specified the REAL option and this
allocated block could be backed in real storage
above (bit 0=1) or below (bit 0=0) 16 megabytes.

The length of the allocated block

Figure 37. Format of Allocated Block Descriptor

Virtual Storage Management

1-109



Number of TCBs in the private area

Address of the first TCB

Allocated storage information for
subpools owned by the first TCB

Address of the second TCB

Allocated storage information for
subpools owned by the second TCB

Address of the last TCB

Allocated storage information for
subpools owned by the last TCB

Notes:

subpools owned by each TCB.

First TCB

Second TCB

Last TCB

1. The number of subpools in the private area is a 31-bit number.
2. The address of the TCB is contained in a fullword.

3. Figure 35 shows the format of the allocated storage information for the

Figure 38. Allocated Storage Information for the Private Area

Number of SQA subpools

Number of CSA subpools

Number of LSQA subpools

Number of TCBs

If the number of SQA subpools
is not zero, the information for
the SQA as described in Figure 35

If the number of CSA subpools
is not zero, the information for
the CSA as described in Figure 35

If the number of LSQA subpools
is not zero, the information for
the LSQA as described in Figure 35

If the number of TCBs is not
zero, the information for the
private area as described in Figure 35

Note: The number of subpools is a 31-bit number.

This information

is always present

but could be zero.

Figure 39. Allocated Storage Information for a Subpool List

1-110 SPL: System Macros and Facilities Volume 1

“.



Free Storage Information
A request for free storage information is specified by the SPACE =FREE parameter of the
VSMLIST macro instruction. The VSMLIST service routine returns information about both
( allocated and free virtual storage. The information is returned in the same manner as allocated
storage information except that each allocated block descriptor is followed by the number of
pieces of contiguous free storage contained within the allocated block and the free space
descriptors for each of these areas. Figure 40 shows the format of a free space descriptor.

Byte Content
0-3. The virtual address of the start of the free space
4-7 The length of the free space

Figure 40. Format of Free Space Descriptor

Virtual Storage Management 1-111




Unallocated Storage Information
You can request information about unallocated storage by specifying the SPACE=UNALLOC
parameter of the VSMLIST macro instruction. You can obtain this information for CSA and
private area subpools only, by specifying SP=CSA or SP=PVT. Figure 41 shows the format
of the output for a SPACE =UNALLOC request for CSA or PVT subpools.

Number of region descriptors

First region descriptor First
Number of unallocated blocks in the first region \ region in
Unallocated block descriptor for the first unallocated block specified
Unallocated block descriptor for the second unallocated block area

Unallocated block descriptor for the last unallocated block

Second region descriptor

Number of unallocated blocks in the second region \ Second

Unallocated block descriptor for the first unallocated block region in

Unallocated block descriptor for the second unallocated block specified
4 area

Unallocated block descriptor for the last unallocated block

Last region descriptor

Number of unallocated blocks in the last region \
Unallocated block descriptor for the first unallocated block Last
Unallocated block descriptor for the second unallocated block region in

} specified
area

Unallocated block descriptor for the last unallocated block

Notes:

1. The number of region descriptors and the number of unallocated
blocks in each region are given as 31- bit numbers.

2. Figure 42 shows the format of a region
descriptor.

3. Figure 43 shows the format of an
unallocated block descriptor.

Figure 41. Unallocated Storage Information for CSA and PVT Subpools

1-112 spL: System Macros and Facilities Volume 1

.
AN
4

{3

A



Byte Content

0-3 The virtual address of the region (CSA, ECSA, RCT area,
V=V area, extended V=V area, or V=R area)

4-7 The length of the region

Figure 42. Format of Region Descriptor

Byte Content
0-3 The virtual address of the unallocated block
4-7 The length of the unallocated block

Figure 43. Format of Unallocated Block Descriptor

Accessing the Scheduler Work Area

When the system interprets JCL statements, it obtains information about jobs that are coming
into the system. It stores this information in the scheduler work area (SWA). When jobs run,
the system (dynamic allocation, for example) develops additional information about the jobs,
which it also stores in the SWA. Some of this information is in the following SWA blocks:

e The job control table (JCT)

The step control table (SCT)

The account control table (ACT)

The job file control block (JFCB)

The job file control block extension (JFCBX)

Your program can use the SWAREQ macro and the IEFQMREQ macro to access the
information in these blocks. Some of the blocks have accounting and timing information.
Your program can use this information to generate reports of the system resources that your
job uses.

For detailed information on coding the macros, see SPL: System Macros and Facilities Volume
2. By using these macros, you can read from a block, write into a block, or obtain the location
of a block. You can also create or delete a SWA block, although creating and deleting a block
requires special knowledge of the system. The only SWA blocks that you can access are the
ones associated with your job.

As shown in Figure 44, SWA blocks have a prefix area and a data area:

SWA Prefix

Data
Area

Figure 44. Format of a SWA Control Block

Virtual Storage Management 1-113



The part of an SWA block that you can access by using the SWAREQ and IEFQMREQ
macros is the data area. Each macro has a different way of accessing a SWA block:

¢ IEFQMREQ reads the SWA information into a buffer that you provide, or writes
information from your buffer into the SWA.

¢ SWAREQ, instead of actually writing or reading information, only tells you the location of
the SWA block that you are interested in. Once you know the location, you can read or
write information yourself.

Using the IEFQMREQ and the SWAREQ Macros

To use these macros, you must be authorized, in task mode, and not in cross memory mode.
However, when you are using SWAREQ to perform a Read Locate or a Locate All, you can
override these restrictions by specifying the UNAUTH = YES parameter.

When you invoke the macros, you must provide a function code and a pointer to an external
parameter area (EPA). The function code specifies the service that the macro is to perform.
The EPA is where you store input data to the macro and where the macro returns output data
to you. The input data in the EPA depends on the function code that you specify. The data in
the EPA can be:

* The buffer address.
e The token that represents the SWA block. These tokens are called SVAs.
e The pointer (block pointer) to the SWA block being accessed.

e The length (block length) of the block being accessed. Assign locate is the only function
that requires you to input a block length.

¢ An id field (block id) that represents the type of SWA block. Use this block id to compare
against the block id in a SWA block returned from a read function. If the comparison is
not equal, then the returned block is not the type of SWA block that you requested. Block
ids are listed in the IEFQMIDS macro.

One of the items that you must store in the EPA before invoking the macro is the token that
identifies the SWA block that you want to access. You can obtain these tokens (called SVAs)
from the following fields:

SWA block to be accessed Field that contains the token

JCT (job control table) JSCBJCTA in the active JSCB

SCT (step control table) JSCSCTP in the active JSCB

JCTACTAD in the JCT or
SCTAFACT in the SCT

ACT (account control table)

JFCB (job file control block)

TIOEJFCB in the TIOT entry

JFCBX (job file control block extension)

JFCBEXAD in the JFCB

The SWAREQ Macro

SWAREQ), instead of actually writing or reading information, only tells you the location of the
SWA block that you are interested in. Once you know the location, you can read or write
information yourself. By specifying a function code when you invoke the macro, you can
request the following SWAREQ services.

1-114 SPL: System Macros and Facilities Volume 1



| Read Locate — Returns the address of the block that you specify. It does not read any data
| from the specified block into your buffer. Your program does the actual reading by coding
( | techniques such as MVC instructions.

| Write Locate — When you use regular coding techniques to write data from your buffer

| into the data area of a SWA block, the system does not know that the block has been

| written into. To allow the system to set up the control fields that are necessary to integrate
| the SWA block into the system, use write locate to inform the system that a write has taken
| place.

| Other services (Assign Locate, Assign Conditional, Delete Block, and Locate All) are available
l but require special knowledge of the system:

| Assign Locate — Obtains storage within the SWA for the type of block that you specify.
l Because the system has already assigned the necessary SWA blocks when your program
| executes, you would not normally use this service.

| Assign Conditional — This service is the same as assign locate with the following exception:
| it does not abend if it cannot obtain the storage that it needs, but gives you a return code

( | instead.

| Delete Block — This service removes the block that you specify from the SWA. After this
| service executes, the specified block does not exist.

| Locate All — This service returns the address of the data area and the address of the prefix
| area of the SWA block that you specify.

How to invoke SWAREQ

|
| As parameters of the SWAREQ macro, you specify the function code and the pointer to the

| EPA. The EPA input data and the EPA output data for each function code are summarized in
| the following block:

| SWAREQ Function EPA | EPA Input Fields EPA Output Fields
| Size
| Assign Locate 16 Block length, SVA, block pointer
| block id
| Assign Conditional 16 Block length, SVA, block pointer
| block id
( | Read Locate 16 SVA Block pointer, block length, block
l id
| Write Locate 16 SVA, block None
| pointer, block id
| Delete Block 16 SVA None
| Locate All 28 SVA, QMPA Block pointer, block id, block
| pointer length, prefix pointer, prefix
| length.

Virtual Storage Management  1-115




When you write a program that invokes SWAREQ, you must provide the field definitions in

the EPA. You might also need to provide the SWA block definitions. When you assemble the

program, the assembler needs definitions for the Communications Vector Table and the Job £
Entry Subsystem Communications Block. The following mapping macros provide the k S/
definitions that you need:

e IEFZB505 — EPA mapping macro

o IEFQMIDS — SWA block id definitions

e [EFJESCT — job entry subsystem communications block
e CVT — Communications vector table

When you specify UNAUTH = YES, you must observe the following rules:
¢ Your function code must specify Read Locate or Locate All.

¢ The EPA that you provide must be an extended EPA — an EPA that is 28 bytes long. To
provide an extended EPA, use an option of the IEFZB505 mapping macro.

o If the job for which you are invoking SWAREQ is not the current job, or if the TCB of the
job step is not addressable by PSATOLD, you must pass the QMPA address that is
associated with the job you are interested in. In this case, obtain the QMPA address from
the active JSCB of whatever job you are interested in, and place this address in the EPA
that SWAREQ refers to by its input parameter.

SWAREQ Summary

To issue a locate mode request, take the following steps:
1. Build an EPA (mapped by macro IEFZB505).

2. Issue the SWAREQ macro instruction, specifying the address of the EPA pointer and the
required function code. N

Example of Using SWAREQ o
The following program locates the JFCB block in the scheduler work area. After the program
obtains the location of the block, it can store new information in the block or it can move
information from the block into another area. The example assumes that register 6 points to

the TIOT:
LA 5,EPA GET ADDRESS OF THE EPA
ST 5,SWEPAPTR INITIALIZE EPA POINTER
USING SWAEPA,5 ESTABLISH ADDRESSABILITY TO EPA
XC SWAEPA, SWAEPA INITIALIZE THE EPA -
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT o
MVC SWVA,TIOEJFCB MV SVA OF JFCB INTO EPA
SWAREQ FCODE=RL,EPA=SWEPAPTR,MF=(E,SWAPARMS) LOCATE THE JFCB
L 7,SWBLKPTR SET THE POINTER TO THE JFCB
USING INFMJFCB,7 ESTABLISH ADDRESSABILITY TO JFCB
*
SWEPAPTR DS F
EPA DS CL16
SWAPARMS SWAREQ MF=L
) CvT
TIEFJESCT
T1EFZB505
IEFTIOT1
TIEFJFCBN

1-116  SPL: System Macros and Facilities Volume 1




| Return Codes and Reason Codes from SWAREQ

[ UNAUTH=YES: If you specify UNAUTH = YES, SWAREQ cannot abend. It always returns

| to the program that invoked it. Check the return code in general register 15. If the return code
| is 0, the service is successful. Otherwise, the service failed and the non-zero return code in

| register 15 is also the reason code associated with the failure. In hexadecimal, the reason codes
| are:

| 08 — Invalid SVA in the SWA prefix
| 24 — Attempt to read a block not yet written
| 28 — Invalid pointer to the EPA

| UNAUTH=NO: If you specify UNAUTH =NO or omit UNAUTH, the service can abend if an
| error occurs or if you are holding a lock. The return, reason, and abend codes for
| UNAUTH =NO are as follows:

| When control returns after invoking SWAREQ, check the return code in general register 15. If
| the return code is 0, the service is successful. Otherwise, the service failed, and the non-zero

| return code in register 15 is also the reason code associated with the failure. There is only one

| reason code: reason code hexadecimal 38, which means that the system could not obtain the

| storage necessary to carry out the request.

| When control does not return from SWAREQ, an abend occurred. To interpret the abend

| dump, use the contents of general registers 0, 1 and 15. Register 0 contains the address of an
| area that contains diagnostic information. Register 1 contains abend code 0B0. Register 15
| has the reason code associated with the abend. The reason codes, in hexadecimal, are:

| 04 — Invalid function requested

l 08 — Invalid SVA in the SWA Prefix

| 0C — Attempt to read a block not yet written

| 10 — Invalid length for a SWA block

| 1C — Invalid block ID

| 20 — Invalid block pointer

| 24 — SVA does not correspond to any virtual address

. The IEFQMREQ Macro

| IEFQMREQ reads the SWA information into a buffer that you provide, or writes information
| from your buffer into the SWA. By specifying a function code when you invoke the macro,

| you can request the following IEFQMREQ services. Use the symbolic function codes that are
| in the IEFQMNGR mapping macro:

| Read — Reads the data area of a specified block into your buffer.

| Write — Writes information from your buffer into the block that you specify. Only the
| data area is written, not the prefix area.

| Other services (Read All, Write All, Assign, and Write Assign) are available but require special
| knowledge of the system:

I Assign — Obtains storage within the SWA for the type of block that you specify. Because
| the system has already assigned the necessary SWA blocks when your program executes,
| you would not normally use this service.

| Write Assign — Writes information from your buffer into the block that you specify, and

| automatically assigns a section of SWA storage for another block. Only the data area is

| written, not the prefix area; the system fills in the prefix area. By the time your program

| executes, the system has already assigned the SWA blocks that are necessary for your job to
| run. Thus, you would not normally use the write assign.

Virtual Storage Management 1-117




Read All — Reads the block that you specify, including the data and the prefix areas, into
your buffer.

Write Al — Writes the data that is in your buffer into the block that you specify. The data
and the prefix area are both written.

How to Invoke IEFQMREQ

1-118

The IEFQMREQ macro does not have any parameters. Before you invoke the macro you must
store input data for the macro in the queue manager parameter area (QMPA) and the external
parameter area (EPA). The input that you store in the QMPA is:

¢ The function code — The function code specifies the service to be performed.

¢ The EPA address — The EPA address, which can be in either of two QMPA fields, locates
the EPA. Fill in the first field if you are specifying a three-byte address and the second
field if you are specifying a four-byte address.

* A 4-byte EPA address indicator — Set this indicator if you are using a four-byte EPA
address.

¢ The extended EPA indicator — Some services let you specify the size of the EPA as 8 or 16
bytes. Set this indicator if you are using the 16-byte EPA size.

e The number of EPAs — This is the number of times that the function is to be performed,
and the number of EPA blocks that you are passing. For example, when you read three
different SWA blocks into three different buffers in a single invocation of IEFQMREQ, the
number that you specify in this field is 3.

e The SWA manager subpool — This field, which is necessary only for the Assign function
code, specifies the number of the subpool that contains the SWA block to be assigned. The
number must indicate subpool 236 or subpool 237.

If you want the function to be performed more than once, supply more than one EPA. For
example, you can read three different SWA blocks into three different buffers in a single
invocation of IEFQMREQ. If you supply more than one EPA, you must arrange them
contiguously in storage. When you invoke the macro, general register 1 must point to the
QMPA. The EPA input data and the EPA output data for each IEFQMREQ function code
are summarized in the following block:

SPL: System Macros and Facilities Volume 1

AT

N

s

PN
{ N



IEFMQREQ EPA | EPA Output Fields EPA Output
Function size Fields
Assign, Assign/Start 4 None SVA
Assign, Assign/Start 16 Block id, block length SVA
Read 8 or SVA, buffer address Block id
16
Write 8 or SVA, buffer address, block id None
16
Write/Assign 8 SVA for write, buffer address, write SVA for Assign
block id
Write/Assign 16 SVA for write, buffer address, write SVA for Assign
block id, length for assign, assign
block id
Readall/Move 8 or SVA, buffer address Block id
16
Writeall/Move 8 or SVA, buffer address, block id None
16

When you write a program that invokes IEFQMREQ, you must supply input data in fields that
are in the QMPA and the EPA. You also need to supply SWA block definitions as input to the
macro. When you assemble the program, the assembler needs definitions for the
communications vector table and the job entry subsystem communications block. The format
of the QMPA input data is defined in the Debugging Handbook. The format of the other input
data is defined in the following mapping macros:

IEFQMREQ Summary

IEFQMNGR — QMPA mapping macro

IEFZB506 — EPA mapping macro

IEFQMIDS — SWA block id definitions

IEFJESCT — Job entry subsystem communications block
CVT — communications vector table

To issue a move mode request, take the following steps:

1. Build a QMPA (mapped by macro IEFQMNGR), which includes specifying the function
code and setting a pointer to the EPA.

2. Build an EPA (mapped by macro IEFZB506).
3. Set register 1 to point to the QMPA.

4. Issue the IEFQMREQ macro.

Virtual Storage Management

1-119



f
|

Example of Using IEFQMREQ ,
The following program copies the JFCB from the scheduler work area into a buffer that the
program provides. The example assumes register 6 points to the TIOT:

LA 5,EPA GET ADDRESS OF THE EPA
USING SWAMMEPA,5 ESTABLISH EPA ADDRESSABILITY
LA 1,QMPA GET ADDRESS OF THE QMPA
USING IOPARAMS,1 ESTABLISH QMPA ADDRESSABILITY
XC  IOPARAMS(36),I0PARAMS INITIALIZE THE QMPA
MVI  QMPOP,QMREAD INDICATE READ FUNCTION
MVI  QMPCL,1 . INDICATE 1 EPA IS BEING PASSED
STCM  5,7,QMPACL PUT 3-BYTE EPA ADDRESS IN QMPA
XC  SWAMMEPA,SWAMMEPA INITIALIZE THE EPA
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC  SWROWVA,TIOEJFCB SVA OF JFCB MOVED TO EPA
LA 8,JFCBCOPY SET THE POINTER TO THE JFCB
ST 8,SWBUFPTR SET BUFFER POINTER IN EPA
TEFQMREQ COPY SWA BLOCK TO THE BUFFER
USING INFMJFCB,8 ESTABLISH ADDRESSABILITY TO JFCB
*
JFCBCOPY DS CL176 BUFFER TO READ THE JFCB INTO
EPA DS CL8
QMPA DS CL36
ot
TEFJESCT
1EFZB506
TEFQMNGR
TEFTIOTL
TEFJFCBN

Return Codes and Reason Codes from IEFQMREQ

When control returns after invoking IEFQMREQ, check the return code in general register 15.

If the return code is 0, the service is successful. Otherwise, the service failed, and the non-zero
return code in register 15 is also the reason code associated with the failure. There is only one
reason code: reason code hexadecimal 38, which means that the system could not obtain the
storage necessary to carry out the request.

When control does not return from IEFQMREQ, an abend occurred. To interpret the abend

dump, use the contents of general registers 0, 1 and 15. Register 0 contains the address of the
SDWA. Register 1 contains abend code 0B0O. Register 15 has the reason code associated with
the abend. The reason codes, in hexadecimal, are:

04 — Invalid function requested

08 — Invalid SVA in the SWA Prefix

0C — Attempt to read a block not yet written

10 — Invalid length for a SWA block

14 — Invalid count field

1C — Invalid block ID

24 — SVA does not correspond to any virtual address

1-120  SPL: System Macros and Facilities Volume 1

P
L

‘,:m“ P



Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual storage pages between auxiliary storage slots and real storage frames in blocks of
4096 bytes. It makes all addressable virtual storage in each address space appear as real
storage. Only the virtual pages necessary for program execution are kept in real storage. The
remainder reside on auxiliary storage. RSM employs the auxiliary storage manager (ASM) to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging space on auxiliary storage. RSM relies
on the system resource manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns real storage frames upon request from pools of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed when freed by
a user, when a user is swapped-out, or when needed to replenish the available pool. While a
virtual page occupies a real storage frame, the page is considered pageable unless it is fixed by
the FIX option of the PGSER macro instruction, a PGFIX or PGFIXA macro instruction, or
obtained from a fixed subpool. RSM also allocates virtual equals real (V=R) regions upon
request by those programs that cannot tolerate dynamic relocation. Such a region is allocated
contiguously from a predefined area of real storage and is non-pageable.

The PGSER macro instruction in MVS/XA provides all the paging services through the use of
parameters rather than separate macro instructions as in MVS/370. PGSER handles virtual
addresses above or below 16 megabytes. The macro instructions, PGFIX, PGFIXA, PGFREE,
PGFREEA, PGLOAD, PGANY, PGOUT, and PGRLSE are supported by MVS/XA to
maintain compatibility with MVS/370, but it is recommended that you use the PGSER macro
instruction. -

Users should note that MVS/XA paging services function differently from MVS/370 paging
services in the following ways:

¢ The end address (EA) specified on the PGSER macro instruction is the address of the last
byte on which the page service is to be performed (not the last byte + 1).

¢ In the register format SVC entry for the PGSER macro instruction, register 14 is used in
addition to registers 0, 1, and 15.

* If an ECB is supplied, with a page-fix or page-load request and the caller invokes PGSER,
then the return code must be checked because the ECB is not posted for a return code of 0.

¢ If an ECB is not supplied the return code need not be checked. Control will not be
returned until the request is successfully completed. If the request fails, the caller will be
abnormally terminated. ‘

e Users of the PGSER macro instruction do not need to hold the local lock.

¢ Users of BRANCH=Y or BRANCH = SPECIAL options of the PGSER macro instruction
must provide an 18-word savearea; this savearea must be in non-pageable storage if
BRANCH =SPECIAL is specified.
The paging services provided include the following:
¢ Fix virtual storage contents -- PGFIX, PGFIXA, or the FIX option of PGSER

¢ Fast path to fix virtual storage contents -- the FIX and BRANCH = SPECIAL options of
PGSER

¢ Free real storage -- PGFREE, PGFREEA, or the FREE option of PGSER

© Copyright IBM Corp. 1982, 1989 Real Storage Management 1-121




e Fast path to free real storage -- the FREE and BRANCH =SPECIAL options of PGSER
e L oad virtual storage areas into real storage -- PGLOAD or the LOAD option of PGSER

¢ Page out virtual storage areas from real storage -- PGOUT or the OUT option of PGSER
¢ Release virtual storage contents -- PGRLSE or the RELEASE option of PGSER

e Page anywhere (above or below the 16 megabyte (megabytes) line of real storage) --
PGANY or the ANYWHER option of PGSER

The PGFIX, PGFIXA, PGFREE, and PGFREEA functions as well as the FIX and FREE
options of PGSER are available only to authorized system functions and users and are
described in the following topics. PGANY, PGLOAD, PGOUT, and PGRLSE as well as the
ANYWHER, LOAD, OUT, and RELEASE options of PGSER are not restricted and are
available to all users. PGSER and PGANY are described in this publication. PGLOAD,
PGOUT, and PGRLSE are described in Supervisor Services and Macro Instructions.

Fixing/Freeing Virtual Storage Contents

Fixing virtual storage and freeing real storage are complementary functions. The PGFIX and
PGFIXA macro instructions and the FIX option of PGSER make specified storage areas
resident in real storage and ineligible for page-out as long as the requesting address space
remains in real storage. Note that page fixing ties up valuable real storage and is usually
detrimental to system performance unless the use of the fixed pages is extremely high.

The PGFREE and PGFREEA macro instructions and the FREE option of PGSER make
specified storage areas, which were previously fixed via the PGFIX macro instruction or the
FIX option of PGSER, eligible for page-out. Pages fixed by PGFIX, PGFIXA, or the FIX
option of PGSER are not considered pageable until the same number of page free and page-fix
requests have been issued for any virtual area. The fix and free requests for a page must be
issued by the same task (unless TCB=0 is specified), otherwise the page will not be freed.

When using the fix function, you have the option of specifying the relative real time duration
anticipated for the fix. Specify LONG =Y, if you expect that the duration of the fix will be
relatively long. (As a rule of thumb, the duration of a fix is considered long if the interval can
be measured on an ordinary timepiece-that is, in seconds.) Additional processing might be
required to avoid an assignment of a frame to the V=R area or an area that might be varied
offline. Specify LONG =N, if you expect the time duration of the fix to be relatively short. A
long-term fix is assumed if you do not specify this option.

In both the fix and free functions, you have the option of specifying that the contents of the
virtual area are to remain intact or be released. If the contents are to be released, specify
RELEASE =Y otherwise, specify RELEASE=N. If you specify PGFIX or the FIX option of
PGSER with RELEASE =Y, the release function is performed before the fix function. If you
specify PGFREE or the FREE option of PGSER with RELEASE =Y, the free function is
performed and those pages of the virtual subarea with zero fix counts are released; that is, the
contents of virtual areas spanning entire virtual pages that were fixed are expendable and no
page-outs for these pages are necessary.

The BRANCH =SPECIAL and the FIX or FREE options of PGSER provide the fast path
version of PGSER. The fast path version of PGSER with the FIX option ensure that specific
storage areas are resident in real storage and ineligible for page-out. These functions execute
only short-term, synchronous page fixes.

1-122 SPL: System Macros and Facilities Volume 1

N



(

Notes:

1. PGFIX and the FIX option of PGSER do not prevent pages from being paged out when
an entire virtual address space is swapped out of real storage. Consequently, the user of
PGFIX and the FIX option of PGSER cannot assume a constant real address mapping for
fixed virtual areas in most cases.

2. When using the PGFIXA macro instruction or the fast path version of PGSER with the
FIX option, or a branch entry to PGSER with the options FIX and TCB=0, fixed areas
will not automatically be freed at the end of a job; to free them, issue a PGFREEA macro
instruction or the PGSER macro instruction with the FREE and BRANCH =SPECIAL
options.

PGFIX/PGFREE Completion Considerations

Under normal circumstances, you can reverse the effect of a PGFIX by using a PGFREE when
the need for a page fix ceases. You can also reverse the effect of the FIX option of PGSER by
using the FREE option of PGSER when the need for a page fix ceases. However, a page-fix
request sometimes completes asynchronously if, for example, it requires a page-in operation. In
such cases, you might need to explicitly purge page-fix operations.

For this reason, the page-fix function provides a mechanism for signalling event completion.
The mechanism is the standard ECB together with WAIT/POST logic. The requestor supplies
an ECB address and waits on the ECB after a request if the return code indicates that all of the
pages were not immediately fixed. The ECB is posted when all requested pages are fixed in real
storage.

Note: Callers who supply an ECB and use PGSER must check the return code before waiting
since the ECB is not posted for a return code of 0.

There are two ways to explicitly purge a page fix:

e If the page fix is known to be complete, the page fix is reversed through the page-free
function.

s If there is any possibility that the page fix has not been posted as complete, issue PGFREE
or PGSER with FREE and supply an ECB address. This ECB parameter identifies the
event control block that was supplied as an input parameter with the page fix being purged.
Note that for the purpose of canceling a page-fix request that has not yet completed, the
ECB must uniquely identify the page-fix request. Consequently, to provide for explicit
purging, you must ensure that the ECB for any incomplete page fix can be located in a
purge situation, and that the ECB has not been reused at the time the page fix is to be
canceled.

The page-free function always completes immediately and requires no ECB address except for
purging considerations.

The issuer of the following instructions is responsible for freeing the fixed frames:

¢ PGFIXA
¢ PGSER, with the FIX, BRANCH, and TCB=0 options
¢ PGSER, with the FIX and BRANCH =SPECIAL options

This can be accomplished by using PGFREEA; PGSER with FREE, BRANCH, and TCB =0;
or PGSER with FREE and BRANCH =SPECIAL.

Real Storage Management  1-123




An FRR (functional recovery routine) or ESTAE recovery routine should be established during
the period these fixes are outstanding. The recovery routine should free the frames in case there
is an unexpected error.

Input to Page Services

There are two formats for providing input to page services. These are the register (R) and list
(L) formats. If you specify R, page services uses the input information supplied in registers to
perform the requested function; if you specify L, page services uses the input information
provided in a parameter list to perform the requested function. The information that you must
provide in the parameter list includes the starting and the ending addresses for which you want
the page service to be performed and an indication of the end of the list.

The list used depends on which page services macro instruction you code. Descriptions of the
parameter lists and the macros that use them follow.

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions: PGFIX,
PGFIXA, PGFREE, PGFREEA, PGLOAD, PGRLSE, and PGOUT.

The list contains one or more doubleword entries; each entry describes an area in virtual
storage. The list must be non-pageable and located in the address space to be processed. The
VSL is not required to be on a word boundary.

See Debugging Handbook for an exact description of the VSL.

Page Service List (PSL)

The page service list provides the basic input to the page service functions of the PGSER macro
with the exception of the BRANCH =SPECIAL option. Each entry in the list specifies a range
of addresses to be processed, or specifies the address of the next list entry to be processed, or is
null. The first entry also indicates the paging service that is to be performed on all the ranges
specified in the list.

The PSL has the following characteristics:

¢ The list must be in non-pageable storage.
¢ The PSL is not required to be on a word boundary.
e All addresses specified are 31-bit addresses.

See Debugging Handbook for an exact description of the PSL.

Short Page Service List (SSL)

The short page service list provides the basic input to the PGSER macro instruction with the
BRANCH = SPECIAL option. The list contains entries for the 31-bit starting and 31-bit
ending addresses of the virtual area to be fixed or freed.

The SSL has the following characteristics:

e The list must be in non-pageable storage.
¢ The SSL is not required to be on a word boundary.
o All addresses specified are 31-bit addresses.

See Debugging Handbook for an exact description of the SSL.

1-124  SPL: System Macros and Facilities Volume 1



Branch Entry to the PGSER Routine

" Branch entry to the PGSER macro instruction is available in both cross memory mode and
( non-cross memory mode for the FIX, FREE, OUT, LOAD, ANYWHER, and RELEASE
options. The caller must be enabled, in supervisor state and key 0, and must set up the PSL as
shown in Debugging Handbook. The caller does not need to hold the local lock, but must
ensure that register 13 contains the address of an 18-word savearea when the PGSER macro
instruction is issued.

The macro uses the registers as follows:

Register(s) Bit(s) Contents
0 ECB address or 0 if no ECB
1 0 0 for register format 1 for list format
1-31 Start of virtual area for register format

Pointer to the first PSL for list format

( 2 31-bit address of the last byte of the
virtual area for register format
Irrelevant for list format

3 0-15 Reserved for register format
16-23 Same as FUNC in PSL for register format
24-31 Same as FLAG?2 in PSL for register format
Irrelevant for list format

( 4 TCB address or 0 for register format
Irrelevant for list format
5-12 Not used
13 Address of standard 72-byte save area,

required for branch entry only.
For BRANCH =SPECIAL, the save area must
be non-pageable.

( 14 Pointer defined return address
: (The first bit indicates the
AMODE. If this bit is 1, the AMODE
is 31-bit; if this bit is 0, the
AMODE is 24-bit.

15 Entry point address

On return from the PGSER macro instruction, the registers are set as follows:

Register Contents
0-4 The contents are destroyed and unpredictable.
5-13 The contents are unchanged.
14 The contents are destroyed and unpredictable.
( 15 Return code

Real Storage Management 1-125




Branch Entry to MVS/370 Page Services

Branch entry is available for all MVS/370 page services (page-fix, page-free, page-load,
page-release, page-any, and page-out) in non-cross memory mode; and for all but the page-out
service in cross memory mode. The caller must be in key 0, supervisor state, and must hold the
local lock of the currently addressable address space.

Note: LOCAL lock means the local lock of the home address space. When written in lower
case, the local lock refers to either the LOCAL or CML (cross memory local) lock.

Cross Memory Mode
The pages that are candidates for page services must be addressable in the current address
space. The caller must set up registers as follows:

Register(s) Bit(s) Contents
0 0
1 0 0 for register format 1 for list format
1-7 Same as bits 1-7 of VLSFLAG! field of VSL
for register format; irrelevant for list format
8-31 24-bit starting address on which the service

is to be performed for register format; 24-bit
address of user’s first VSL for list format

2 0-7 Same as VSLFLAG?2 field in VSL for
register format; irrelevant for list format
8-31 24-bit ending address + 1 for which the

service is to be performed for register
format; irrelevant for list format

3 Irrelevant

4 0

5-6 Irrelevant

7 ASCB address of current address space

8-13 Irrelevant

14 Return address

15 Entry point to page services (contents of CVTPSXM)

On return, the page service sets the registers as follows:

Register Contents
0-14 Unchanged
15 Return code

The only return code possible is 0. - This indicates that the requested function was processed
successfully. :

Note: PGFIXA and PGFREEA can be invoked in cross memory mode.

1-126 spL: System Macros and Facilities Volume 1



‘Non-Cross Memory Mode
The caller must set up registers as follows:

Register(s)
0

1

5-13
14

15

Bit(s) Contents

ECB address or 0 if no ECB is specified

0 for register format 1 for list format

1-7 Same as bits 1-7 of VSLFLAGI field of VSL

for register format; irrelevant for list format

8-31 24-bit starting address on which the service

is to be performed for register format; 24-bit
address of user’s first VSL for list format

0-7 Same as VSLFLAG? field in VSL for

register format; irrelevant for list format

8-31 24-bit ending address + 1 for which the

service is to be performed for register
format; irrelevant for list format

Irrelevant

TCB address or 0
Irrelevant

Return address

Entry point to page-anywhere service (contents
of CVTVPSIB or PVTPSIB)

On return, the page service sets the registers as follows:

Register

0-14
15

Contents

Unchanged
Return code

The return codes are as follows:

Code

0

12

Meaning

The requested function was processed successfully.
If the function was page-fix or page-load, and an ECB was
supplied, it will be posted.

The requested function was page-fix or page-load with
an ECB. The function will be processed
asynchronously and the ECB will be

posted upon completion.

The requested function was page-out and

the function was unsuccessful for at
least one of the specified pages.

Real Storage Management

1-127



PR

fx :
A :
S
/'/ ) ™
‘\

AN
o~

.

s
/

S

1-128 SPL: System Macros and Facilities Volume 1



The Nucleus

The nucleus contains routines that execute with dynamic address translation (DAT) turned off
and routines that execute with DAT on. These routines are located in two separate load
modules. Load module IEAVNUCOn (n identifies the particular load module) contains the
DAT-ON nucleus and load module IEAVEDAT contains the DAT-OFF nucleus. See System
Initialization Logic for information concerning the manner in which the nucleus is loaded into
storage.

There are two macro instructions that provide services for the nucleus. These macro
instructions are:

Macro Function

DATOFF Provides a means of linking to routines in the DAT-OFF nucleus

NUCLKUP Provides a means of obtaining information about CSECTs in the DAT-ON
nucleus

Linking to Routines in the DAT-OFF Nucleus (DATOFF)

The DAT-OFF nucleus is not mapped in virtual storage. IPL processing loads the DAT-OFF
nucleus into consecutive real storage located at the highest available real address. Because the
DAT-OFF nucleus is not mapped in virtual storage, a special method is used to link to routines
in this area. The DATOFF macro instruction provides the means of linking to routines in the
DAT-OFF nucleus.

When using the DATOFF macro instruction, the caller specifies an index that identifies the
routine that is to receive control in the DAT-OFF nucleus. The index, entry point, and
purpose of the routines available to users in the DAT-OFF nucleus are shown in Figure 45.

Index Entry Point Purpose

INDCDS IEAVCDS Compare Double and Swap

INDMVCLO IEAVMVCO General DAT-OFF MVCL function
INDMVCLK IEAVMVKY General DAT-OFF MVCL function in user key
INDXCO0 IEAVXCO0 General DAT-OFF XC function

INDUSRI1 IEAVEURI User defined function

INDUSR2 IEAVEUR2 User defined function

INDUSR3 IEAVEUR3 User defined function

INDUSR4 IEAVEUR4 User defined function

Figure 45. DAT-OFF Routines Available to Users

All routines that execute with DAT turned off must be located in the DAT-OFF nucleus.
These routines receive control and execute in 31-bit addressing mode and must be capable of
residing either above or below the 16 megabytes line. Therefore routines that execute in the
DAT-OFF nucleus must have the attributes AMODE =31, RMODE=ANY. For information
concerning 24-bit/31-bit compatibility, see SPL: 31-Bit Addressing.

Using System Provided DAT-OFF Routines (DATOFF)
The system defined index values, INDMVCLO, INDMVCLK, INDXCO0, and INDCDS are
available to users. INDMVCLO initiates the move character long (MVCL) function,
INDMVCLK initiates the MVCL function in user key, INDCDS initiates the compare double
and swap function, and INDXCO initiates the exclusive OR (XC) function. The register usage
and linkage for these functions follows.

© Copyright IBM Corp. 1982, 1989 The Nucleus 1-129




In all cases, the DATOFF macro instruction destroys the contents of general registers 0, 14,

and 15.
- 4™

INDMVCLO- Move Character Long \

All register values must be 31-bit addresses. Before issuing the macro instruction, the user must —

load the registers as follows:

Register Use

0 Used by macro

2 Real location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Real location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

14 Used by macro

15 Used by macro

1,6-13 Unused

The user invokes the MVCL function by coding the following macro instruction:

DATOFF INDMVCLO
INDMVCLK- Move Character Long in User Key

All register values must be 31-bit addresses. Before issuing the macro instruction, the user must

load the registers as follows:

Register Use

0 Used by macro

2 Real location into which the characters are to be moved

3 Length of the area into which the characters are to be moved P

4 Real location of the area from which the characters are to be moved ‘ '

5 Length of the area from which the characters are to be moved .~

6 Bits 24-27 contain the PSW key in which the MVCL function is to be

performed.

14 Used by macro

15 Used by macro

1,7-13 Unused

The user invokes the MVCL in user key function by coding the following macro instruction:

DATOFF INDMVCLK e

N, .
N

1-130 SPL: System Macros and Facilities Volume 1



INDXCO - Exclusive OR

All register values must be 31-bit addresses. Before issuing the macro instruction, the user must

( - load the registers as follows:
' Register Use

0 Used by macro

2 Real location of first operand and location for results of exclusive OR
character operation

3 Length, in bytes, of operand pointed to by register 2. The length must be in
bits 24-31 of register 3. Allows a maximum length of 256 bytes

4 Real location of the operand to be exclusive orred with the operand pointed :c
by register 2.

14 Used by macro

15 Used by macro

1,5-13 Unused

The user invokes the XC function by coding the following macro instruction:
— DATOFF INDXCO ’

-

IEAVMVCO0- Compare Double and Swap

All register values must be 31-bit addresses. Before issuing the macro instruction, the user must
load the registers as follows:

Register use
0 Used by macro
1 Unchanged
2,3 First 64 bit operand in even-odd pair of registers (target data)
' 4,5 Third 64 bit operand in even-odd pair of registers (source data)

( 6 Real address of second operand, a doubleword in storage (target address)
7-13 Unchanged
14 Used by macro
15 Used by macro

The user invokes the CDS function by coding the following macro instruction:
DATOFF IEAVCDS

The Nucleus 1-13%




Writing User DAT-OFF Routines
As shown in Figure 45, there are four DAT-OFF indexes that users can define. These indexes
are INDUSRI1, INDUSR2, INDUSR3, and INDUSR4. The entry points corresponding to
these indexes are IEAVEURI, IEAVEUR2, IEAVEUR3, and IEAVEURA4, respectively.

User written DAT-OFF routines are restricted as follows:

L]

The user of the DATOFF macro instruction must be in key 0, supervisor state, and
executing with DAT turned on.

The DAT-OFF routine mﬁst have the attributes AMODE =31 and RMODE=ANY.

The DAT-OFF routine must preserve register 0 because register 0 contains the return
address of the module that issued the DATOFF macro.

The DAT-OFF routine must use branch instructions to link to other DAT-OFF routines.
The DAT-OFF routine must use BSM 0,14 to return.

See SPL: System Modifications for information about how user-written DAT-OFF routines are
placed in the DAT-OFF nucleus.

1-132  SPL: System Macros and Facilities Volume 1

AN
A



Obtaining Information about CSECTs in the DAT-ON Nucleus
(NUCLKUP)

IPL processing places the CSECTs located in the DAT-ON nucleus in virtual storage and
creates a map of them. The real addresses do not equal the virtual addresses and the real
addresses are not necessarily contiguous. IPL processing loads the CSECTs into storage
according to residency mode and according to whether they are read only or read/write. If the
CSECT is assembled with RMODE =ANY, it is placed in the extended nucleus. Figure 46
shows the virtual storage map of the DAT-ON nucleus.

by 1, 2
" 2

Extended
Read/write nucleus

Extended
Read-only nucleus

16 MB
Read-only nucleus

Read/write nucleus

N ~N

T o

Figure 46. Virtual Storage Map of DAT-ON Nucleus

The nucleus map look up service provides users with information about these CSECTs.
Through the use of the NUCLKUP macro instruction, users can perform two functions:

¢ Retrieve the address and addressing mode of a nucleus CSECT, given the name of the
CSECT

e Retrieve the name and entry point address of a nucleus CSECT, given an address within
the CSECT.

The Nucleus 1-133




1-134 spL: System Macros and Facilities Volume 1

£
“{_./’



Normal and Abnormal Program Termination

The supervisor offers many services that help to detect and process abnormal conditions during
system execution. The hardware detects certain types of abnormal conditions (such as an
attempt to execute an instruction with an invalid operation code) and causes program
interruptions to occur. The software detects other abnormal conditions (such as an attempt to
open a data set that is not defined to the system) and causes abnormal terminations.

The supervisor enables you to write recovery routines to handle interruptions and abnormal
conditions. The supervisor initiates the recovery termination process of your program either
when you request it (for example, by issuing an ABEND macro instruction) or when MVS/XA
detects a condition that will degrade the system or destroy data.
The services described in this section include:

¢ Invoking recovery termination (CALLRTM and ABEND macro instructions)

¢ Processing program interruptions (SPIE and ESPIE macro instructions)

¢ Intercepting system errors (SLIP command)

¢ Using system trace facilities (PTRACE)

¢ Dumping virtual storage (SDUMP macro instruction and CHNGDUMP command)

¢ Providing recovery routines (ESTAE, ATTACH with the ESTAI parameter, FESTAE, and
SETFRR macro instructions)

* Uses of resource managers

Recovery Termination Manager

The recovery termination manager (RTM) controls the flow of software recovery processing by
handling all normal and abnormal terminations of tasks and address spaces. RTM gets control
in response to events such as the following:

¢ Unanticipated program checks (except those protected by SPIE routines)
e Machine checks

¢ Invalid use of an SVC (issuing an SVC while locked, disabled, in SRB mode, or in cross
memory mode)

¢ I/O error on page-in request

¢ ABEND or CALLRTM macro instruction requesting termination of a task or address
space (see “Invoking the Recovery Termination Manager” later in this topic)

When one of these events occurs, RTM initiates recovery processing before proceeding with
abnormal termination.

Your installation-written functions can use RTM’s recovery processing by providing recovery
routines for the functions. A recovery routine is a routine that you establish to get control if
your main function terminates abnormally. The recovery routine can perform such processing
as:

¢ Documenting the error
¢ Providing a dump of the storage needed to diagnose the error
¢ Freeing resources acquired by the main function

© Copyright IBM Corp. 1982, 1989 Normal and Abnormal Program Termination 1-135




¢ Requesting a retry -- returning control to an appropriate point in the main function
e Requesting that RTM continue with the abnormal termination

To provide recovery for tasks and SRBs, RTM recognizes two types of recovery routines:
functional recovery routines (FRRs) and ESTAE-type recovery routines. See “Uses of
Resource Managers” later in this chapter for a full description.

When a function terminates abnormally, RTM gets control and generally invokes the most
recently-established recovery routine to recover for the process that was in control. If this
recovery routine cannot recover from the error (it fails or requests that termination continue),
RTM invokes the next most recently established-recovery routine. The passing of control from
one recovery routine to another is called percolation.

Note: MVS/XA functions provide their own recovery routines; thus, percolation can pass
control to both installation-written and system-provided recovery routines. If all recovery
routines percolate -- that is, no recovery routine can recover from the error -- then the process
in control (an SRB or a task) is terminated.

RTM invokes recovery routines only during abnormal termination of tasks or SRBs. RTM
also invokes resource manager routines during both normal and abnormal termination of a task
or an address space. The major purpose of a resource manager is to release any resources held
by the task or address space and make these resources available to other users. See “Uses of
Resource Managers” later in this chapter for a description of the processing such routines can
perform.

Invoking the Recovery Termination Manager
RTM can be called to perform its recovery and termination services on behalf of the caller or
on behalf of another routine. Two macro instructions -- CALLRTM and ABEND -- invoke
RTM. :

CALLRTM
A routine issues the CALLRTM macro instruction to direct the recovery termination services to
a task or address space other than itself or its callers. Only key 0 supervisor state routines can
issue CALLRTM. Control returns to the issuer of the macro instruction if TYPE=ABTERM
or TYPE=MEMTERM is specified.

TYPE=ABTERM: If the CALLRTM macro instruction specifies TYPE=ABTERM, RTM
processing is directed toward the specified task, and you should consider locking and work area
requirements:

¢ If the TCB parameter is specified as 0 (or defaulted to 0) and the ASID parameter is
omitted, the current task in the current address space is abnormally terminated. In this
situation, the caller must be disabled (for example, hold any of the spin locks) and need not
provide a work area via register 13. If dump options are supplied, they must be contained
in fixed pages. The routine must exit to the dispatcher without changing the TCB or RB
and without enabling.

¢ If the TCB parameter is specified as an address and the ASID parameter is omitted, the
task associated with the specified TCB in the current address space is abnormally
terminated. In this situation, the caller must own the LOCAL lock, and need not provide a
work area. If the caller specifies a TCB equal to the current TCB address, the caller must
also be disabled.

o [f the ASID parameter is specified, the ABTERM function is scheduled as a service request
block (SRB) to terminate the task in the specified address space. The caller, who specifies
ASID, must pass the address of an 18-word save area in register 13.

1-136 SPL: System Macros and Facilities Volume 1




.~

C

ABEND

TYPE =MEMTERM: If the CALLRTM macro instruction specifies TYPE=MEMTERM,
RTM processing is directed toward an address space and you should consider the following
locking and work area information:

¢ If the ASID parameter is nonzero, the specified address space is abnormally terminated.
The caller need not be disabled or own any locks. The caller must pass the address of an
18-word work area in register 13.

¢ If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The caller must
pass the address of an 18-word work area in register 13.

Note: The required work area is not the standard 18-word save area; therefore, standard
IBM linkage conventions do not apply to it. One aspect of this difference is that
CALLRTM does not save registers in this work area in the same order as it would in a
standard save area. All 18 words are used.

Because TYPE=MEMTERM processing circumvents all task recovery and task resource
manager processing, its use is restricted to a select group of routines that can determine that
task recovery and task resource manager clean-up are either not warranted or will not
successfully operate in the address space being terminated. These routines include:

e Paging supervisor, when it determines that it cannot swap in the LSQA for an address
space

¢ Memory create, when it determines that an address space cannot be initialized

¢ RTM or supervisor control functional recovery routine (FRR), when it determines that
uncorrectable translation errors are occurring in the address space

e RTM, when it determines that task recovery and termination cannot take place in the
current address space

¢ Region control task, when it has determined that the address space might become
permanently deadlocked -- that is, unusable -- or that the status of the address space is
unpredictable because of an error during swap-out processing

* RTM, when all tasks in the address space have terminated

e Auxiliary storage management (ASM) recovery, when it has an indeterminate error from
which it cannot recover while handling a request for either swap-in or swap-out

e SVC 34, in response to a FORCE command

In addition, the terminal control address space (TCAS) specifies TYPE=MEMTERM when the
system operator replies “FSTOP” (forced stop) to certain messages that can occur when
TSO/VTAM time sharing starts or stops. The messages are IKT001D (replying “FSTOP”
cancels terminal users already active when TSO/VTAM is starting) and IKT010D (replying
“FSTOP” cancels terminal users still active when TSO/VTAM is being stopped). In both cases,
the system operator should reply “FSTOP” to cancel users only if “SIC” (system-initiated
cancellation) is ineffective. Replying “SIC” does not cause task resource manager processing to
be bypassed.

Any routine, including supervisor state, locked, disabled, or SRB routines, can issue the
ABEND macro instruction to direct the recovery termination services to itself (cause entry into
its recovery routine) or to its callers. The issuer of ABEND should remove its own recovery
routine if it wishes its caller to be abended or to enter recovery. Control never returns to the
issuer of the macro (except as a result of a retry). See Supervisor Services and Macro
Instructions for a description of the ABEND macro instruction.

Normal and Abnormal Program Termination 1-137




Processing Program Interruptions (SPIE, ESPIE)

The SPIE macro instruction enables a problem program executing in 24-bit addressing mode to
specify an error exit routine to get control in response to one or more program error
interruptions. The ESPIE macro instruction extends the function of SPIE to callers in 31-bit
addressing mode. Callers in both 24-bit and 31-bit addressing mode can use the ESPIE macro
instruction.

Each succeeding SPIE/ESPIE macro instruction completely overrides any previous SPIE/ESPIE
macro instruction specifications for the task. The specified exit routine gets control in the key
of the TCB (TCBPKF) when one of the specified program interruptions occurs in any problem
program of the task. When a SPIE macro instruction is issued from a SPIE exit routine, the
program interruption element (PIE) is reset (zeroed). Thus, a SPIE exit routine should save any
required PIE data before issuing a SPIE.

If a caller issues an ESPIE macro instruction from within a SPIE exit routine, it has no effect
on the contents of the PIE. However, if an ESPIE macro instruction deletes the last
SPIE/ESPIE environment, the PIE is freed, and the SPIE exit cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing, the control
program will not return to the interrupted program when the SPIE program terminates.
Therefore, if the SPIE exit routine wishes to retry within the interrupted program, a SPIE
cancel should not be issued within the SPIE exit routine.

The SPIE macro instruction can be issued by any problem program being executed in the
performance of the task. The control program automatically deletes the SPIE exit routine when
the request block (RB) that created the SPIE macro instruction terminates.

The SPIE and ESPIE macro instructions and their related services are discussed in detail in
Supervisor Services and Macro Instructions. The syntax of both the SPIE and the ESPIE macro
instructions appears in Volume 2.

Interruption Types

1-138

The programmer can specify interruptions 1-15 using either the SPIE or the ESPIE macro
instruction. The installation-authorized system programmer can also specify interruption 17.
Interruption 17 designates page faults and can be specified so that a user-written SPIE/ESPIE
exit routine gets control before a supervisor routine when a problem state page fault occurs.
The user-provided SPIE/ESPIE exit routine gets control in problem program state and in the
key of the TCB (TCBPKF) when a page fault occurs for the program that issued the
SPIE/ESPIE macro instruction. The exit routine gets control in the addressing mode that was
in effect when the SPIE or ESPIE macro instruction was issued. (If a SPIE macro instruction
was issued this is 24-bit addressing mode.) The SPIE/ESPIE exit routine for interruption type
17 handles page faults at the task level. This includes all RBs executing under the task for
which the SPIE/ESPIE was issued. The exit routine resolves page faults by invoking the paging
supervisor. :

A caller in supervisor state, who issues the SPIE macro instruction is abnormally terminated
with a 30E abend completion code. A caller in supervisor state, who issues the ESPIE macro
instruction is abnormally terminated with a 46D-18 abend completion-reason code. If the caller
takes a page fault while in supervisor state, the exit routine does not get control even if a
SPIE/ESPIE macro instruction specifying interruption type 17 is in effect. Supervisor routines
resolve the page fault and continue program processing without abending the caller.

SPL: System Macros and Facilities Volume 1




If a program fault occurs while a SPIE/ESPIE specifying interruption type 17 is in effect, the
program check first level interrupt handler (FLIH) passes control to a SPIE/ESPIE service

o routine, which then passes control to the SPIE/ESPIE exit routine via an LPSW. The

( SPIE/ESPIE service routine sets up functional recovery routines (FRRs) to handle possible page

faults caused by P