T RO R TR N T RS e B PSS | T PR s
MVS/Extended Architecture Licensed

Data Facility Product . Program
Version 2: Customization

" on
Order Number Data Facility Product Version
GC26-4267-1 5665-XA2 Release 3.0

MVS/Extended Architecture Licensed
Data Facility Product Program
Version 2: Customization

o
il
4

Order Number Data Facility Product Version 2
GC26-4267-1 5665-XA2 Release 3.0

| Second Edition (June 1987)

publication was formerly entitled Interactive Storage Management Facility Customization

| This edition replaces and makes obsolete the previous edition, GC26-4267-0. This
Guide.

This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under ‘‘Summary of Changes” following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent publication of the page affected. Editorial changes
that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or imply
that only IBM’s program may be used. Any functionally equivalent program may be used
instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1986, 1987

Preface

Purpose

The purpose of this manual is to provide one book with both guidance and reference
information for customization in the Data Facility Product (DFP) for Version 2. The
areas where DFP can be customized include all of the exit locations and replaceable
modules and the interactive storage management facility (ISMF) display panels.

This manual is intended for the programmers at an installation who are responsible for
providing exit routines and modules that extend or replace IBM-supplied function.
The guidance information provided in this manual can be used by administrators who
wish to centralize customization at their installations.

Organization

This manual contains the following sections:

Chapter 1, “Introduction” on page 1 briefly describes customization by
definition, and the customization facilities available in DFP.

Chapter 2, “VSAM User-Written Exit Routines” on page 5 provides guidance
and reference information for coding VSAM user exit routines.

Chapter 3, “DCB Macro Specified User-Written Exit Routines” on page 29
provides guidance and reference information for coding DCB user exit routines.

Chapter 4, “User Exit Routines Specified with Utilities’ on page 59 provides
guidance and reference information for coding user exit routines as part of utility
programs.

Chapter 5, “Data Management Installation Exit Routines” on page 67 provides
guidance and reference information for replacing installation-level modules within
DFP

Chapter 6, “EXCP Appendages” on page 91 provides guidance and reference
information for creating EXCP appendages.

Chapter 7, “Tape Label Processing Installation Exit Routines” on page 101
provides guidance and reference information for coding tape label processing
modules.

Chapter 8, “Interactive Storage Management Facility (ISMF)”’ on page 145
describes how to customize ISMF.

Appendix A, “Example of an OPEN Installation Exit Module” on page 171
describes a sample replaceable module for IFGOEX0B.

Appendix B, “Status Information Following an Input/Output Operation” on
page 183 includes information on the data event control block, event control
block, and register and status codes following 1/O operations for non-VSAM data
sets.

Appendix C, “ISMF Command Table Format” on page 195.
Appendix D, “ISMF Line Operator Table Format” on page 197.

Preface 1l

Prerequisite Knowledge

To use this book, you should have a programming background that includes:

Assembler language

Job control language

Standard program linkage conventions

Data management access methods and macro instructions
Access method services commands

VSAM macro instructions

Interactive System Productivity Facility (ISPF) dialog manager

Required Publications

You should be familiar with the information presented in the following publications:

MVS /Extended Architecture VSAM Administration: Macro Instruction Reference,
GC26-4152, describes the macro instructions that are used with VSAM
programs.

MVS /Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4135, or MVS/Extended Architecture VSAM Catalog
Administration: Access Method Services Reference, GC26-4136, describes the
access method services commands that are used with VSAM.

MVS /Extended Architecture Catalog Administration Guide, GC26-4138, describes
the administration of tasks for catalogs and how to use the access method services
commands to manipulate catalogs, and the objects cataloged in them.

MVS /Extended Architecture JCL User’s Guide, GC28-1351, and MVS/Extended
Architecture JCL Reference, GC28-1352, describes the JCL parameters referred
to in this publication and describes dynamic allocation.

MVS /Extended Architecture Message Library: System Messages, Volumes 1 and 2,
GC28-1376 and GC28-1377, provides a complete listing of the messages issued
by MVS/XA.

MVS /Extended Architecture Data Administration Guide, GC26-4140, describes
the administration of tasks for non-VSAM data sets and how to use the macro
instructions to manipulate the data sets.

MVS/Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4141, describes the macro instructions that are used with non-VSAM data
sets.

MVS /Extended Architecture System—Data Administration, GC26-4149, describes
how to modify and extend the data management capabilities of the operating
system.

MVS /Extended Architecture Interactive Storage Management Facility User’s Guide,
GC26-4266, describes how to use the interactive storage management facility.

Interactive System Productivity Facility Dialog Management Services, SC34-2137,
describes how to use the dialog management services.

iv Data Facility Product Version 2: Customization

Related Publications

Within the text, references are made to the publications listed in the table below:

Short Title Publication Title Order Number
Access Method MVS /Extended Architecture GC26-4135
Services Reference | Integrated Catalog Administration:
Access Method Services Reference
MVS/Extended Architecture GC26-4136
VSAM Catalog Administration:
Access Method Services Reference
Catalog MVS /Extended Architecture GC26-4138
Administration Catalog Administration Guide
Guide
Checkpoint/ MVS/Extended Architecture GC26-4139
Restart User’s Checkpoint/Restart User’s Guide
Guide
Data MVS/Extended Architecture Data GC26-4140
Administration Administration Guide
Guide
Data MVS/Extended Architecture Data GC26-4141
Administration: Administration: Macro Instruction
Macro Instruction Reference
Reference
Data Areas—JES2 MVS/Extended Architecture Data LYBS-1191
Areas—JES2
Data Areas—JES3 MVS/Extended Architecture Data LYB8-1195
Areas—JES3
Data Facility MVS/Extended Architecture Data GC26-4146
Product: Master Facility Product Version 2: Master
Index Index
Data Facility MYVS /Extended Architecture Data GC26-4147
Product: Planning Facility Product Version 2:
Guide Planning Guide
Debugging MVS/Extended Architecture
Handbook System Programming Library:
Debugging Handbook
Volume 1 LC28-11641
Volume 2 LC28-1165
Volume 3 LC28-1166
Volume 4 LC28-1167
Volume 5 LC28-1168
Note:

1

All five volumes may be ordered under one order number, LBOF-1015.

Preface Vv

Short Title Publication Title Order Number
DFDSS: User’s Data Facility Data Set Services: SC26-4125
Guide and User’s Guide and Reference
Reference
Initialization and MVS/Extended Architecture GC28-1149
Tuning System Programming Library:
Initialization and Tuning
ISMF User’s MVS/Extended Architecture GC26-4266
Guide Interactive Storage Management
Facility User’s Guide
ISPF Dialog Interactive System Productivity SC34-2137
Management Facility Dialog Management
Services Services
JCL User’s Guide MVS/Extended Architecture JCL GC28-1351
User’s Guide
JCL Reference MVS/Extended Architecture JCL GC28-1352
Reference
Magnetic Tape MVS/Extended Architecture GC26-4145
Labels and File Magnetic Tape Labels and File
Structure Structure Administration
RACF General OS/VS2 MVS Resource Access GC28-0722
Information Control Facility (RACF): General
Manual Information Manual
Service Aids MVS/Extended Architecture GC28-1159
System Programming Library:
Service Aids
System—Data MVS/Extended Architecture GC26-4149
Administration System—Data Administration
System Macros MVS/Extended Architecture GC28-1150
and Facilities System Programming Library: and
System Macros and Facilities GC28-1151
Volumes 1 and 2
Installation: MVS /Extended Architecture GC26-4148
System Generation | Installation: System Generation
System Messages MVS /Extended Architecture GC28-1376
Message Library: System Messages | and
Volumes 1 and 2 GC28-1377
System MVS/Extended Architecture GC28-1152
Modifications System Programming Library:
System Modifications
TSO Command 0S/VS2 TSO Command GC28-0646
Language Language Reference with SD23-0259
Reference MVS/Extended Architecture

supplement

vi Data Facility Product Version 2: Customization

Short Title Publication Title Order Number

TSO Terminal MVS /Extended Architecture TSO GC28-1274

User’s Guide Terminal User’s Guide

Utilities MVS/Extended Architecture Data GC26-4150
Administration: Utilities

User Exits MVS /Extended Architecture GC28-1147
System Programming Library:

i User Exits o

VSAM MVS/Extended Architecture GC26-4152

Administration: VSAM Administration: Macro

Macro Instruction Instruction Reference

Reference

31-Bit Addressing MVS/Extended Architecture GC28-1158
System Programming Library:
31-Bit Addressing

Preface Vil

| Summary of Changes

| Release 3.0, June 1987

| Change of Title and Content

This manual was formerly entitled Interactive Storage Management Facility
Customization Guide.

The content of the manual now encompasses all of Version 2 DFP customization
facilities, including ISMF. The exits and replaceable modules documented in a
number of DFP books have been consolidated into this manual. Customization
information was extracted from the following manuals:

Data Administration Guide

Data Administration: Macro Instruction Reference

Data Administration: Utilities

Interactive Storage Management Facility Customization Guide
Magnetic Tape Labels and File Structure Administration
System—Data Administration

VSAM Administration Guide

New Programming Support

A new entry has been added to the DCB exit list (EXLST) to retrieve allocation
information for users of the RDJFCB macro.

DADSM extends its new 31-bit virtual address support to its exit modules. Thus,
each new exit module may reside above or below 16 Mb virtual, may return to
DADSM in any addressing mode, and will be entered in its stated addressing mode.
(See “DADSM Preprocessing and Postprocessing Exit Routines” on page 68 and
“DADSM (SCRATCH and RENAME) Installation Exit Modules” on page 74.)

The new ISMF feature, volume application, provides a volume list from which you can
perform a number of administrative tasks. With ISMF volume application, you can
now:

¢ Construct, tailor, and manipulate the volume list.

+ Monitor allocated space to determine how to use it most effectively.

+ Reduce fragmentation on a volume with DFDSS.

» Use line operators previously supported for Data Set Applications such as
COMPRESS, DUMP, COPY, RELEASE, and RESTORE.

+ Invoke a TSO CLIST against a volume.

Summary of Changes IX

Contents

Chapter 1. Introductionccc00evevenannns P |
What is Customization? ittt rnrnrorennnrecannenns 1
Types of Customizationcuiiiiintinnnnennnnnnennn 1
Customization in the MVS/XA Systemovtiiennnrnnnnnnnn 1
Customizationin DFP i ittt iiiiiiiineriennnnennnn 2
Considerations in Deciding to Customize DFP 2
Why Customize?0iuitiinieinnonnernneeneennennnnenannn 2
Programming Considerations it iiiitiennnnnnns 3
Programming Languagesc..oeeentiineneararnoacnacannn 3
Restrictions and Limitationsttt iinrnnnann. 3
Where Can You Customize in DFP? 0iititiiiinnnenneneannns 3
UserExitLocationscciuiiiiuiiiiinnrrneennerennennnas 3
Replaceable Modulescc.iniiiiiiiineereenrennonennnnns 4
Tailoring ISMF it i ittt it inatenatansanns 4
Chapter 2. VSAM User-Written Exit Routinescciv0ceveetscceneas 5§
General Guidanceciiiitiiiiitiii et et 5
Programming Considerationsttt 6
Returning to Your Main Programciiiiuininnrnnnnnnns 7
EODAD Exit Routine to Process End-of-Data 8
D TTT0T o 14 () + Lo U 8
Register Contentscouiiuiiiieenennrneenroenonnansonns 8
Programming Considerationscciutintenrennnenaennnn 8
EXCEPTIONEXITEXitRoutineciuiiiiniieniernenennnnnnn 9
9 TCTe) o 174 o) « J O A 9
Register CONtentsuviiiuinenernoensenonsnnsonsnanenas 9
Programming Considerationscuieieninenrnenennnnennn 9
JRNAD Exit Routine to Journalize Transactionsc00c... 10
DesCription it i et i ettt 10
Register Contentsuoiuiuenvuenrienrnoaroanrocenenanns 10
Programming Considerationso, 10
LERAD Exit Routine to Analyze Logical Errors 19
| D111t) o1 o) + KNP 19
Register CONtentscuoiuiieininnnronennrnennenesnsnnnnsns 19
Programming Considerationsccoiiitrenernnrreananeons 20
SYNAD Exit Routine to Analyze Physical Errors 20
) D TT:Te) o114 o) + KGO 20
Register Contentscviuiiuinrnennonennsnrsoseecasnons 20
Programming Considerationsccouiieineneinrnernrnenns 21
Example of a SYNAD User-Written Exit Routine 22
UPAD Exit Routine for User Processingccoiiiiiininnnnnn.. 24
DeSCription i e et et e 24
Register Contentscoiuiiniininiiniiiriienennnnoencnnnnnn 24
Programming Considerationscoiiininiirniniennannns 24
User-Security-Verification Routine (USVR) iviiiiinnnen. 26
Chapter 3. DCB Macro Specified User-Written Exit Routines 29
General GUIdANCEcviitiiiennernnetonnrenesoaseensonsnnas 29
Programming Considerationsc..coiiiiiiiiiiiiiinenn. 30
EODAD End-of-Data-Set Exit Routinecoiinieiann, 30
D T ur s 15) e 30

Contents Xi

Register Contentscouiiiiureroenerneenenesnsonsnsnens 30

Programming Considerations i iiiiiiiiiirnnenenn. 31
SYNAD Synchronous Error Routine Exito i, 31
11103 o 14 T) + K 31
Register Contentscouuiieenenernrernerennncerananenanns 31
Programming Considerationscciiiiiiitrnannaennsns 32
EXLST EXIt LIStccvvuuitninenenrneaantteseroeneeneanacasosnns 34
Register Contents for Exits from EXLST 0evvuinnn. 36
Allocation Retrieval List0ttt it rnrnnnannnnnns 37
DCBAbendExitcciiiiiiiiniiiiiiiiiiineninenncnenennns 37
RecoveryRequirementsc.ciitiinernennnocencenosnanes 41
DCBOPEN EXitcitiiiirieiittineeentneareenenooenaasnoaans 43
EOV Defer Nonstandard Input Trailer Label Exit 43
EOVBlock Count EXitc00ittiiiiiiinrneerenenreneaaennnns 44
EOV Exit for Physical Sequential DataSetsc.coiiiieeneenrnnen. 44
FCBImage EXititiuiiiiiiinionronenennaneanonseannns 45
JRCB ERIt . ..ottt iie ittt e i e et 46
JFCBE ERItitiiiiiiiineneeeennsootonnenaasannonsosonnnns 47
Open/Close/EOV Standard User Label Exitcccciiivnn... 47
Open/EOV Nonspecific Tape Volume Mount Exit 51
Convention for Saving and Restoring General Registers 53
Open/EOV Volume Security and Verification Exit 53
Convention for Saving and Restoring General Registers 56
QSAMParallel Input EXitc00tiiinrnreerecnnnenseennannanne 56
User Totaling for BSAM and QSAM ciiiiinnnenn. e 56
Chapter 4. User Exit Routines Specified with Utilities cetesensannns 59
GeneralGuidancettt iieiiiniii it nataanan 59
Register Contents at Entry to Routines from Utility Programs 60
Programming Considerationsccoiiiiiinnreeneenenenn. 60
Returning fromanExitRoutine oiitiiiiiiinnrnnens 60
Parameters Passed to Label Processing Routines 63
Parameters Passed to Non-Label Processing Routines 63
ProcessingUser Labelsc.coiiiiitiiiinnnrneneenennnaranans 64
Processing User Labels as Data Set Descriptorsccoveveenns 65
Exiting to a User’s TotalingRoutinec.cviiiiiiiinnn, 66
Processing User LabelsasDatac.citiiiinnnnnnnnnn- 66
Chapter 5. Data Management Installation Exit Routines cresees 67
General Guidancec.ciitiiienenrernrerareneananaaaanenn 67
Programming Considerationsciiiitiiirinnnnannnnnn 68
DADSM Preprocessing and Postprocessing Exit Routines 68
The Exit Modulesciiiiiiienrenenenenenennnennnenennns 68
The Exit Environmentccciiiiiiiiiinrnnnenennnnnnns 68
When IGGPREOO GetsControlc.coviiiiiiiinennnnnnnennnn 69
Rejectinga DADSM Requestocvvieeieoeneenennennenenns 69
Rejectinga DADSM Scratch Request c.0iveivnvnnenn. 70
Data that DADSM Passestothe Exitsccevviun.... 70
Passinga Model Format-1 DSCBcccitievrnrernenennnennn 72
When IGGPOSTO Gets Controloiviiinenenenenenreenreennns 72
System Control BIOCKSccitiiiititinereenrnrenennenennans 72
Registers at Entry to DADSM EXitscoiviiinininrnennnnnnnnn 73
Registers at Return from DADSMexitsccvveivnennennnnn. 73
Return Codes from DADSMEXItSovvtieeinrnnnrnenrannnns 74
CATALOG and DADSM Installation Exit Modules 74
CATALOG Installation Exit Moduleccviiiiiriinennnnnn. 74

Xll Data Facility Product Version 2: Customization

DADSM (SCRATCH and RENAME) Installation Exit Modules
DASD Calculation Services (DCS) Installation Exits
Data That DCS Passestothe Exits 0vvivununn.
Registers at Entrytothe DCSExitscciiininnnnn..
Registers at Return fromthe DCSEXitscoietvrinennnn.
IGBDCSX1 (DCS Precalculation Installation Exit)
IGBDCSX2 (DCS Postcalculation Installation Exit)
Data Management Abend Installation Exit (IFGO199I)
Data That OPEN/EOV Passestothe EXitccvvuenn...
Registers at Entry to the Data Management ABEND Exit
Registers at Return from the Data Management ABEND Exit
Return Codes from the Data Management ABEND Exit
DCB OPEN Installation Exit IFGOEXOB)ccivitnrennnnnn..
TheExitModule ittt iiiiiiiiiieneeernennnnnns
The Exit Environmentciuvriininennrnenrenennnnenens
Open Processing before the DCB OPEN Exit Gets Control
Open Processing after the DCB OPEN Exit Gets Control
Getting Control fromOpen ...ttt iinieenrnnennnnnnn
Data That Open Passestothe Exitcciiiuiievnennnnnn.
Defaulting the DCB Buffer Numberc0vuvnnn..
Modifying the JFCB ittt ittt ieirnenrarnennennns
Registers at Entry tothe DCBOPENExitccovvvu....
Registers at Return from the DCBOPENExit
Return Codes Fromthe DCBOPENExitcciviennnn..
Open/EOV Installation Exit for Format-1 DSCB Not Found (IFGOEX0A)
Data That OPEN/EOV Passestothe Exit
Registers at Entry to the Format-1 DSCB Not Found Exit
Registers at Return from the Format-1 DSCB Not Found Exit
Return Codes from the Format-1 DSCB Not Found Exit
IDATMSTP Datestamp ROUtINEccoiineinnnrnrenrrnnenneenns
Register Contents at Entry to IDATMSTP ccoivvnnn.,
Programming Considerationsiiiittiiierienrennnnnn.

Chapter 6. EXCP Appendagesccvvveevvennncans teesesesecatens
General Guidancec.oiititiiiiii ittt i e

Making Your Appendages Part of the System

The Authorized Appendage List JEAAPP0O0)ccovuunnn.
Abnormal-End (ABE) Appendagec.ciuiiieriinnnntnnnnennnnns
Channel-End (CHE) Appendagecouiiiinrnnneeneenennnnnnn
End-of-Extent (EOE) Appendageconiuemrinencenennenenns
Program-Controlled Interruption (PCI) Appendagec.c.....
Start-I/O (SIO) Appendageovtiieneniinrnnennenennenennns

Chapter 7. Tape Label Processing Installation Exit Routines
General GUIdancecciiiiitinenrinennreerneeenneannnenas
Programming Considerations ot renrenrnsneas
Nonstandard Labelsttt iienneernnnnnnns
Processing Tapes with Nonstandard Labels
Input Header Label Routinesciiitiitiiieiieenneenns
Input Trailer Label Routinesciiiiiiiireerrennnnnns
Output Header Label Routineso iiiiiriinneennn.
Restart Label ProcessingRoutineocviiiiiiinenen,
Output Trailer Label Routinescc.coiiiiiniineerenrnnnans
Writing Nonstandard Label Processing Routines
Programming Conventionsc.citvnineininerninncnennns
Program Functionsc.ciuiniiinininienennenennennnnes

Contents

Inserting Nonstandard Label Routines Into the Control Program 120
Automatic Volume Recognition (AVR) Nonstandard Label Processing Routine 120

Entry Conditionsc.uiiiintiiiniitiiinnennnierennens 121
ConventionScoitietinneettnnneenttnnt ettt oonnnaens 121
Inserting AVR Nonstandard Label Routines into the Control Program 121
Volume Verification and Dynamic Device Reconfiguration 121
Volume Label Verification and Volume Label Editor Routines 122
Verificationof First Record i, 123
Volume Label Editor Routinest iiiiinnnnnn. 126
Programming Conventionscc.iiiiiiniiiinrieriennans 128
Program Functionsc.cuiiiiiiii it iiniiennnnnnn. 129
Inserting Your Label Editor Routines into the Control Program 137
I1SO/ANSI/FIPS Version 3 Installation Exitsccovuvuiu... 138
WTOR Installation EXit it iiiirnernneineeraesnens 138
Label Validation Exit i, 139
Label Validation Suppression Exit i, 140
Volume Access BXitiiiiiniiiiiiiiiiieiiiiinennans 140
File Access EXitcouiitiiniiiiiiiiiiiiii it iiiiinennns 141
Installation-Written Exit Routines i, 141
Exit Parameter List—IECIEPRMo, 141
UCB Tape Class Extension—IECUCBCXccivieivnnnn. 143
UCB Tape Class Extension Data Areaciiviuenneennnn. 144
Chapter 8. Interactive Storage Management Facility ISMF) 145
General GUIdANCEitiitir ittt ittt 145
Restrictions to Customizingccitiiiiiinrernceneansnen 145
The Parts of ISMF That You Can Customize 145
Finding the Libraries You Want to Customize 146
Making Changes and TestingThem i iiieneiuinen. 147
Customizing Panelsuiiitiiirimernneinernnrenennnns 148
Modifying Panel Definition i, 148
ReStriCtioNsottt it ittt e 148
Finding the Panel You WanttoChangec.coinin.. 148
Testingthe Changes0...ccciitruinineinrnnenreennennanns 149
Changing Initial Priming Values on Data Entry Panels 149
Changing Default Values for Data Entry Panels 150
Restricting Values for SpecificInput Fields 151
RemovingFields ittt iiiiennennn 153
Changingthe Format ittt inenenanann. 153
Modifying TeXtcoiiuinert ittt ittt neneneenrnernenns 154
Adding Fieldsottt et ietenenenenennn, 154
Creating Panels ittt 155
Modifying Fieldson the List Panel iiuieiiiieninn. 156
Where Do You Make the Changes?ciiiiieiinninnnnn. 156
Special Considerationscittiiiiitintienr e nnneenns 157
Customizing MesSSagesvvtiitetnnrntenenroreneeneneenennenens 158
Modifying ISMF Messagesccovveninenrnenenronnnernnnnns 158
ReStHCtiONS i ittt ittt it ettt ittt 158
Finding the Message You WanttoChange 158
Makingthe Change00 iiiiiiiiiininnnnnnn., 159
Creating New Messagesc.vvieerinenenrnennnenenenenenanns 159
Customizing Job Skeletonscuiiiiiiiiinrniiiieennnnnn. 159
ReEStICtONSt ittt ittt e et i et e e e 159
Finding the Skeleton You WanttoChange 160
Makingthe Changesiuiiiriiiriiiiiiniinnnn., 160
Customizing Tables 0 iiiiiiiieniiiiii i, 165

Xiv Data Facility Product Version 2: Customization

Customizing the ISPF Command Tablesc.cciun.n. 166

ReStHCHONS ittt iiiiintennreneenneeneneaeennnns 166
Finding the Table You WanttoChange 166
Makingthe Changesciiiiiiiinentenenrnnrneenenennens 166
Customizing the ISMF Command and Line Operator Tables 167
ReStriCtionsc..cititiiriiiiiiieerettienearanenoanenennns 167
Findingthe Tablesiiiuiiieriiineinnenenenennenenns 167
Makingthe Changesc.iiiiiit i rnrnnenennenenns 168
Customizingthe ISMF CLISTc.0iitiitiiinnneennennernnnnn 169
Restrictionsciiitiiiiiieeiinieetiseeneneennnenanannnns 169
Findingthe CLISTc.iiiuitiriininininrnrronenacnenenns 169
Makingthe Changesc.oiiriniirenineesenennnncacnnnnn 169
Appendix A. Example of an OPEN Installation Exit Module 171
Processing in IFGOEXOBcciuitiiiiiniennenenennennennnannn 171
Requesting Partial Releasec.iiiiiiiiiiiiniiennenanns 171
Updating the SecondarySpace Datacciiiiviininnennnnns 171
Appendix B. Status Information Following an Input/Output Operation 183
DataEvent Control BIockcciiiiiiitiinunereinenennsnenas 183
Event Control BIockciitiiitiiiiiieinieitioenrneresnaren 184
Appendix C. ISMF Command Table Formatcc000000 veeesesaa 195
DGTMCTAP ...\ttt ittiretietnraeneneasnsesnsaennanaroees 195
Appendix D. ISMF Line Operator Table Format 197
DGTMLPAP ... ittt iatttrrneienenanesaonenearnennas 197
Appendix E. Exit Testing Techniques Cestetesraecnens 199
Protecting the System FromExit Errorst 199
TaKing DUMPS ... vttt it ieteienteienrnesnsasensoesnseenssns 200
Issuing the ABEND MacroinanExitc.cciiu.... 200
Setting CVTSDUMPciiiiiiiiieiiennrnrnrrensnanennenns 200
Issuing the SDUMP MACIOcvtveininearnvnnsnsensoensasansns 200
Using the Console DUMP Commandccoiveievenennnn. 200
ISSUINE MeSSagesot vit ittt iit ittt ittt ieerateeaa e 200
Appendix F. User Interfaces Cesscesssennna ceeseensanssnnas 201
M EES .. v v ittt et et i e it e e 201
1 1 Y (T . 201
Messages from Other Programsc.ciieievnrnnnncnnonens 202
EXit MESSABES .. vvvutneeneneanoneroeeennsatoasnsonsnocnsuaoenss 202
Documenting Your Exit For Usersccoviieinrneanonnnnseenns 203
Glossarycccvecvnanscvcnnas teesceseeessesacnsesanense eeess 205
Abbreviationsand Acronymsiiiiiiiii it 205
Terms and EXpressionsc.vueiuitinitneeennernasnncsnnes 210
Index C i secesesesneeseseenasessasreseanns cerees ceceessaeees 219

Contents XV

Figures

WRNAUN P W=

VSAM User-Written Exit Routines ccitieninneene.. 5
Contents of Registers at Entry to EODAD Exit Routine 8
Contents of Registers at Entry to EXCEPTIONEXIT Routine 9
Contents of Registers at Entry to JRNAD Exit Routine 10
Example of aJRNAD EXit00vitiirienrnneeneenneennnns 12
Contents of Parameter List built by VSAM for the JRNAD Exit 14
Contents of Registers at Entry to LERAD Exit Routine 19
Contents of Registers at Entry to SYNAD Exit Routine 21
Example of aSYNADExitRoutinecciiiuvinnnnn. 23
Contents of Registers at Entry to UPAD Exit Routine 24
Parameter List Passedto UPADRoutine 25
Communication with User-Security-Verification Routine 27
DCBE=XitRoutinesc.ciiuviniinnennnnneennennaeancnns 29
Register Contents for DCB-Specified ISAM SYNAD Routine 34
DCB Exit List Formatand Contentsc.c0vivrinenennnns 34
Parameter List Passed to DCB Abend ExitRoutine 38
Conditions for Which Recovery Can Be Attempted 39
Recovery WOrK Areacovevvirenreanocnncnnnsnnennsons 42
System Response to Block Count Exit Return Code 44
Defining an FCBImage fora3211coiiiiiieinnnnans 46
Parameter List Passed to User Label Exit Routine 48
System Response to a User Label Exit Routine Return Code 49
IECOENTE Macro Parameter Listc0iinienennnns 52
IECOEVSE Macro ParameterListciviutvn.. 55
User-Exit Routines Specified in Utilitiesc.ccvivie. 59
Register Contents at Entry to Utility Exit Routines 60
Return Codes That Must Be Issued by User Exit Routines 61
Parameter Lists for Non-Label Processing Exit Routines 64
System Action at OPEN, EOV,or CLOSETime 65
User Totaling Routine ReturnCodescciiviieennnnnn 66
Data Management Replaceable Modules 67

Format of DADSM Preprocessing and Postprocessing Exit Parameter List 70
Format of the DCS Precalculation and Postcalculation Exit Parameter List 75

Format of the Parameter List OAIXLcciitiiinennnn. 78
Format of DCB OPEN Installation Exit Parameter List (OIEXL) 82
Communication with the Datestamp Routine 88
EXCP ADPeNndagescovieerueeroncnssatocncsnsacsnsnens 91
Contents of Registers at Entry to EXCP Appendages 92
Entry Points, Returns, and Available Work Registers for Appendages 93
Tape Label ProcessingModulescciviiiiiiiinennn. 101
Examples of Tape Organizations with Nonstandard Labels 103
Status of Control Informationand Pointersc0vunn. 110
Format of Combined Work and Control Block Area 111
Status of Control Information and Pointers from the Control Program’s

Restart RoUtIngcci0iiiiiiiinieernrernrnnsenacencnnnns 112
General Flow of a Nonstandard Label Processing Routine after Receiving
Control fromthe OpenRoutinecoiiiiiiiienennn. 113
General Flow of a Nonstandard Label Processing Routine after Receiving
Control fromthe Close Routinec.ciiiiiinrnrnncnnnnnn 114
General Flow of a Nonstandard Label Processing Routine after Receiving
Control fromthe EOVRoutineciciiitiiinnnnnnn. 115

48.

49,
50.
51.
52.
53.

54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.
84.
8s.
86.
87.
88.

89.

90.

General Flow of a Nonstandard Label Processing Routine after Receiving

Control from the Restart Routinec.iteveneernnnresn 118
Verification of First Record When Standard Labels Are Specified 124
Verification of First Record When Nonstandard Labels Are Specified ... 125
Verification of First Record When Unlabeled Tape Is Specified 126
Editor Routine Entry Conditions from the EOV Routine 130
General Flow of an Editor Routine after Receiving Control from the Open
Routineciiiiiiiiiiiiiieretietonencenenosenonsans 132
General Flow of an Editor Routine after Receiving Control from the EOV
ROULINE ittt e iitenerentoeroennocennacanns 133
ISO/ANSI/FIPS Version 3 Exit Parameter List 142
DDNAME:s for the Panel, Message, Skeleton, and Table Libraries 147
DDNAME:s for the Load and CLIST Libraries 147
Displayingthe Panel IDccciitiiiierrnenernnnennans 148
Entry PanelforDeleteccoitiiiiiiirinnneennnanenns 149
Values in the INIT Section of the Delete Entry Panel 150
ISMF Default Values for the Delete EntryPanel 150
Page 1 of the Data Set Selection EntryPanel 151
Validity Checking on the Data Set Selection Entry Panel 152
Original Versionof the List Panelccoiuin.s. 155
Adding Date and Time tothe List Panel 155
List Panel Customized to Show Dateand Time 155
ISMFDataSetListPanelc.0ciiiiiiiiinnneenennanns 156
Column 10 of Member DGTDSO08.ccctiiiiiitiinneernananns 157
Column 10 of Member DGTDS08 After Customization. 158
Identifying the Message Numbercioiviieninn, 158
Changing the Short and Long Messagesc.oevuvuiennnens 159
Original Job Skeleton for the Copy Line Operator 161
Original Job Stream for the Copy Line Operator 162
New Skeleton to Imbed in the Job Skeleton for Copy 163
Original Skeleton with AddedImbed 164
Job Stream Generated from the Tailored Skeleton 165
Using Command Table Utility to Update ISPF Tables 166
Member Names for Line Operator and Command Tables 167
Member Names for Profile Application Command Tables 168
Control Statementin the ISMFCLISTciivvenvnnn. 169
Changing the Control Statementcciiiiinnnnennn. 170
DataEvent ControlBlockcciiiiiiiiennnnennennnn, 183
Exception Code Bits—BISAMcciitiiiiiiirnnnnnnnn. 184
Exception Code Bits—QISAMciiiiitiiiiinrnnrnnnnnnn 186
Exception Code Bits—BDAMcctintiieirninnrneenenns 188
Register Contents on Entry to SYNAD Routine—QISAM 189
Register Contents on Entry to SYNAD Routine—BISAM 190
Register Contents on Entry to SYNAD Routine—BDAM, BPAM, BSAM,

and QSAM ... e ittt i e e 191
Status Indicators for the SYNAD Routine—BDAM, BPAM, BSAM, and
L0 N P 192
Status Indicators inthe ECBcciiiiiiiiiiennnnnennnnns 193

Xviii Data Facility Product Version 2: Customization

Chapter 1. Introduction

What is Customization?

Customization consists of actions to enhance or extend a program to a greater extent
than is provided by standard system-supplied options. MVS/XA is an operating
system that consists of MVS/SP, MVS/XA DFP, and other products. Both MVS/SP
and DFP provide exit facilities for user customization.

Types of Customization

There are several types of customization:

« Your installation takes advantage of customization functions by supplying a new
module to be installed as part of the system. Such modules fall into one of the
following categories:

— The module replaces an IBM-supplied module that performs no useful
function except to give a return code. Such IBM-supplied modules are
sometimes called dummy modules. Examples are the DADSM exit routines.
If they are not replaced, no extra function is performed.

— The module replaces an IBM-supplied module that already performs a useful
function. An example is the data management abend installation exit
(IFG0199I). If such modules are not replaced, they will perform certain
functions.

— IBM does not supply a module that performs the function. Examples are the
nonstandard tape label processing modules. If they are not supplied, the
function cannot be used.

The modules described above must be reentrant and refreshable. They are
installed during system installation by using the system modification program
(SMP) or by link editing the module into the appropriate library.

» The application programmer or system programmer changes certain messages and
default values within the interactive storage management facility (ISMF).

» The application program requests certain functions and supplies the exit routines
to perform these functions. Examples are the access method functions described
in Chapter 3, “DCB Macro Specified User-Written Exit Routines” on page 29
and Chapter 2, “VSAM User-Written Exit Routines” on page 5. The
installation may supply standard modules to implement these functions but the
individual application program must request the appropriate module. These
modules do not have to be reentrant.

Customization in the MVS/XA System

When installing the MVS/XA system, initialization parameters provide a means of
tailoring or tuning the system for your particular installation requirements. How you
tune MVS/XA may affect your customizing of MVS/SP and DFP. For more
information about initialization parameters, see Initialization and Tuning.

User exits provided by MVS/SP are documented in User Exits.

Customization at a system level is also described in System Modifications.

Chapter 1. Introduction 1

Customization in DFP

Customization in DFP can be separated into two levels: one that affects the entire
installation’s processing and another that is limited to individual application program
processing.

Installation Level Customization

Replacing a System-Level Module
By definition, a replaceable module is a system-level module you are
allowed to change. Your modifications can alter processing for your
entire installation. If you choose to install system-wide processing
changes, you must consider how processing affects all users of the DFP
component affected.

Customizing ISMF
You can modify the form and content of the ISMF displays.
Customizing ISMF can be a system-wide application. Changes you
make to ISMF libraries affect all users of ISMF.

Application Program Customization

User exit locations provide a means of customizing DFP within an application
program. User-written routines can be specific to one application, or can be
standardized to be used in many of your application programs. To standardize exits
used frequently, you can maintain a library of proven exits that can be used in
application programs.

You can also customize ISMF displays for your own use. Other ISMF users would
not be affected. Customizing ISMF this way would be limited to your individual
applications.

Considerations in Deciding to Customize DFP

Why Customize?

Your installation may decide to customize DFP to

« Enforce your installation standards

o Intercept errors for analysis and additional processing
o Add specialized tape label processing

« Tailor I/0 processing

« Extend security controls

« Change or bypass processing

When your installation decides what areas need customization to meet the
requirements of your installation, you must consider the impact of your proposed
modification. Is it going to be something that will affect all users of a component or
function, or is it something that should be handled in the individual application
program? Replacing system-level modules affects your entire installation. In
conjunction with customizing DFP, you should examine the customization features
available at the system level as briefly described in “Customization in the MVS/XA
System” on page 1.

2 Data Facility Product Version 2: Customization

Programming Considerations

Most requirements for coding vary depending on the part of DFP you are
customizing. In general, be aware of the following:

e 31-bit addressing: You should refer to 31-Bit Addressing and the individual exit
routine descriptions. Some exits do not support this function.

o Use only valid interfaces. If it is not documented, it generally is not a valid
interface.

« Upon entering your exit routine, save all registers and restore them before
returning to your calling routine. Register 15 is an exception. In many cases you
must supply a return code in register 15 upon returning to your main program or
DFP processing.

o If you replace a module, make sure you thoroughly test it before making it
available to your installation.

¢ Your routine should be reentrant so that it is able to handle concurrent requests.

+ Keep an unmodified copy of any replaceable modules or ISMF libraries you
choose to modify.

Programming Languages

This document assumes you understand assembler language, ISPF dialog management
language, and JCL. The examples are coded in assembler language and your routines
may be coded in assembler language. ISMF examples use the ISPF dialog
management language and JCL.

Restrictions and Limitations

DFP is a licensed program and can be modified for your own use only. ,IBM provides
support and maintenance only for unmodified IBM-supplied modules and unmodified
ISMF libraries.

Where Can You Customize in DFP?

User Exit Locations

In DFP, user exit locations are provided as part of macros and commands where you
can specify the name and/or address of your user-written exit routine. The DCB
macro, VSAM macros, and some access methods services commands contain
parameters in which you specify the address or name of your exit routine. Some data
set utility programs also provide user exit locations for modifying data set processing.

User exits are available at various points in data set processing such as:

End-of-data

1/0 errors

Logical errors

Non-VSAM abend conditions
Waiting for 1/0 completion

At open, close, and end-of-volume

Chapter 1. Introduction 3

The chapters describing user exits are:

e Chapter 2, “VSAM User-Written Exit Routines” on page 5
o Chapter 3, “DCB Macro Specified User-Written Exit Routines” on page 29
o Chapter 4, “User Exit Routines Specified with Utilities” on page 59

Available user exits are summarized in the general guidance sections of each chapter.

Replaceable Modules

In this manual, replaceable modules refers to IBM supplied modules you can modify
or replace with your own. This category also applies to EXCP appendages, dummy
modules and tape label processing modules.

Replaceable modules are available at various stages of processing such as:

Before and after direct access device storage management (DADSM) processing
At open for VSAM datestamp processing

At open of a DCB

At open, close, and end-of-volume abend conditions

Before and after DASD calculation services

1/0 operations (appendages)

At open, close and end-of-volume for additional tape label processing

Replaceable modules are described in the following chapters:

o Chapter 5, “Data Management Installation Exit Routines” on page 67
o Chapter 6, “EXCP Appendages” on page 91
o Chapter 7, “Tape Label Processing Installation Exit Routines” on page 101

A list of modules available is included in the guidance section of each chapter.

Tailoring ISMF

Because ISMF was partially written using the procedures described in ISPF Dialog
Management Services, it can be modified using the similar techniques. You can tailor
ISMF panels, messages, job skeletons, command tables, nonexecutable CSECTs and
the CLIST. Customizing ISMF is described in Chapter 8, “Interactive Storage
Management Facility (ISMF)” on page 145.

4 Data Facility Product Version 2: Customization

Chapter 2. VSAM User-Written Exit Routines

General Guidance
VSAM user-written routines may be supplied to:

» Analyze logical errors

e Analyze physical errors

o Perform end-of-data processing

« Record transactions made against a data set
o Perform special user processing

o Perform user-security verification

VSAM user-written exit routines are identified by macro parameters in access
methods services commands and in the EXLST VSAM macro.

You use the EXLST VSAM macro to create an exit list. EXLST parameters
EODAD, JRNAD, LERAD, SYNAD and UPAD are used to specify the addresses of
your user-written routines. Only the exits marked active are executed. For more
information on the EXLST macro see VSAM Macro Instruction Reference.

You can use access methods services commands to specify the addresses of
user-written routines to perform exception processing and user-security verification
processing. For more information on exits from access methods services commands
see Access Methods Services Reference.

The exit locations available from VSAM are outlined in the following table.

Exit Routine When Available Where Specified
End-of-data-set When no more sequential records EODAD
or blocks are available parameter of
EXLST macro
Exception exit After an uncorrectable EXCEPTIONEXIT
input/output error parameter on
access methods
services
commands
Journalize After an input/output completion JRNAD
transactions against or error, change to buffer parameter of
a data set contents, shared or nonshared EXLST macro
request, program issues GET,
PUT, ERASE, shift in data in a
control interval

Figure 1 (Part 1 of 2).

VSAM User-Written Exit Routines

Chapter 2. VSAM User-Written Exit Routines 5

Exit Routine When Available Where Specified
Analyze logical After an uncorrectable logical LERAD
errors error parameter of
EXLST macro
Error analysis After an uncorrectable SYNAD
input/output error parameter of
EXLST macro
User processing WAIT for I/0 completion or fora | UPAD parameter
serially reusable request of EXLST macro
User security When opening a VSAM data set AUTHORIZATION
verification parameter on
access methods
services
commands

Figure 1 (Part 2 of 2). VSAM User-Written Exit Routines

Programming Considerations
Information

To code VSAM user exit routines you should be familiar with the contents and have
available the following DFP manuals:

VSAM Administration Guide
VSAM Macro Instruction Reference

Access Methods Services Reference
Coding Guidance
In general, you should observe these guidelines in coding your routine:

o Code your routine reentrant
« Save and restore registers (see individual routines for other requirements)
» Be aware of registers used by the VSAM request macros

« Be aware of the addressing mode (24 bit or 31 bit) your exit routine will receive
control in

o Determine if VSAM or your program should load the exit routine

If the exit routine is used by a program that is doing asynchronous processing with
multiple request parameter lists or, if the exit routine is used by more than one data
set, it must be coded so that it can handle an entry made before the previous entry’s
processing is completed. Saving and restoring registers in the exit routine or by other
routines called by the exit routine is best accomplished by coding the exit routine
reentrant; another way is to develop a technique for associating a unique save area
with each request parameter list (RPL).

If the LERAD, EODAD, or SYNAD exit routine reuses the RPL passed to it, you
should be aware that:

6 Data Facility Product Version 2: Customization

« Recursion occurs (that is, the exit routine is called again) if the request that issues
the reused RPL results in the same exception condition that caused the exit
routine to be entered originally.

« The original feedback code is replaced with the feedback code that indicates the
status of the latest request issued against the RPL. If the exit routine returns to
VSAM, VSAM (when it returns to the user’s program) sets register 15 to also
indicate the status of the latest request.

A user exit that is loaded by VSAM will be invoked in the addressing mode specified
when the module was link edited. A user exit that is not loaded by VSAM will receive
control in the same addressing mode as the caller of VSAM.

Your exit routine can be loaded within your program or by using the JOBLIB or
STEPLIB with the DD statement to point to the library location of your exit routine.

Returning to Your Main Program

Five exit routines can be entered when your main program issues a VSAM request
macro (GET, PUT, POINT, and ERASE) and the macro has not completed:
LERAD, SYNAD, EODAD, UPAD, or the exception exit routine. Entering the
LERAD, SYNAD, EODAD, or exception exit indicates that the macro failed to
complete successfully. When your exit routine completes its processing, it can return
to your main program in one of two ways:

1. The exit routine can return to VSAM (via the return address in register 14);
VSAM then returns to your program at the instruction following the VSAM
request macro that failed to complete successfully. This is the easier way to
return to your program.

2. The exit routine can determine the appropriate return point in your program, then
branch directly to that point. Note that, when VSAM enters your exit routine,
none of the registers contains the address of the instruction following the failing
macro.

You are required to use this method to return to your program if, during the error
recovery and correction process, your exit routine issued a GET, PUT, POINT, or
ERASE macro that refers to the RPL referred to by the failing VSAM macro.
(That is, the RPL parameter list has been reissued by the exit routine.) In this
case, VSAM has lost track of its reentry point to your main program. If the exit
routine returns to VSAM, VSAM issues an error return code.

If your error recovery and correction process needs to reissue the failing VSAM
macro against the RPL in order to retry the failing request or to correct it:

« Your exit routine can correct the RPL (using MODCB), then set a switch to
indicate to your main program that the RPL is now ready to retry. When your
exit routine completes processing, it can return to VSAM (via register 14), which
returns to your main program. Your main program can then test the switch and
reissue the VSAM macro and RPL.

« Your exit routine can issue a GENCB macro to build an RPL, and then copy the
RPL (for the failing VSAM macro) into the newly built RPL. At this point, your
exit routine can issue VSAM macros against the newly built RPL. When your exit
routine completes processing, it can return to VSAM (via register 14), which
returns to your main program.

Chapter 2. VSAM User-Written Exit Routines 7

EODAD Exit Routine to Process End-of-Data

Description

VSAM exits to an EODAD routine when an attempt is made to sequentially retrieve
or point to a record beyond the last record in the data set (one with the highest key
for keyed access and the one with the highest RBA for addressed access). VSAM
doesn’t take the exit for direct requests that specify a record beyond the end. If the
EODAD exit isn’t used, the condition is considered a logical error (FDBK code
X'04') and can be handled by the LERAD routine, if one is supplied (see “LERAD
Exit Routine to Analyze Logical Errors” on page 19).

Register Contents
Figure 2 gives the contents of the registers when VSAM exits to the EODAD routine.

Reg. Contents

0 Unpredictable.

1 Address of the RPL that defines the request that occasioned VSAM’s
reaching the end of the data set. The register must contain this address if
you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains the address of your
processing program’s 72-byte save area, which must not be used as a save
area by the EODAD routine if it returns control to VSAM.

14 Return address to VSAM.
15 Entry address to the EODAD routine.

Figure 2. Contents of Registers at Entry to EODAD Exit Routine

Programming Considerations
The typical actions of an EODAD routine are to:

Examine RPL for information you need, for example, type of data set
Issue completion messages

Close the data set

Terminate processing without returning to VSAM.

If the routine returns to VSAM and another GET request is issued for access to the
data set, VSAM exits to the LERAD routine.

If a processing program retrieves records sequentially with a request defined by a
chain of RPLs, the EODAD routine must determine whether the end of the data set
was reached for the first RPL in the chain. If not, then one or more records have
been retrieved but not yet processed by the processing program.

The type of data set whose end was reached can be determined by examining the RPL

for the address of the access method control block that connects the program to the
data set and testing its attribute characteristics.

8 Data Facility Product Version 2: Customization

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to
VSAM, it must provide a save area and restore registers 13 and 14, which are used by
these macros.

When your EODAD routine completes processing, return to your main program as
described in “Returning to Your Main Program” on page 7.

EXCEPTIONEXIT Exit Routine

Description

| Register Contents

You can provide an exception exit routine to monitor I/O errors associated with a
data set. You specify the name of your routine via the access method services
DEFINE command using the EXCEPTIONEXIT parameter to specify the name of
your user-written exit routine.

The following table gives the contents of the registers when VSAM exits to the
EXCEPTIONEXIT.

Reg. Contents
0 Unpredictable.
1 Address of the RPL that contains a feedback

return code and the address of a message area, if any.

2-13 Unpredictable. Register 13, by convention, contains
the address of your processing program’s 72-byte save
area, which must not be used by the routine if it returns

control to VSAM.
14 Return address to VSAM.
15 Entry address to the exception exit routine.

Figure 3. Contents of Registers at Entry to EXCEPTIONEXIT Routine

Programming Considerations

The exception exit is taken for the same errors as a SYNAD exit. If you have both an
active SYNAD routine and an EXCEPTIONEXIT routine, the exception exit routine
is processed first.

The exception exit is associated with the attributes of the data set (specified by the
DEFINE) and is loaded on every call. Your exit must reside in the LINKLIB and the
exit cannot be called when VSAM is in cross-memory mode.

When your exception exit routine completes processing, return to your main program
as described in “Returning to Your Main Program” on page 7.

For information about how exception exits are established, changed, or nullified, see
Access Method Services Reference.

Chapter 2. VSAM User-Written Exit Routines 9

JRNAD Exit Routine to Journalize Transactions

Description

A JRNAD exit routine can be provided to record transactions against a data set, to
keep track of changes in the RBAs of records, and to monitor control interval splits.

Itis
can

only available for VSAM shared resource buffering. For shared resources, you
use a JRNAD exit routine to deny a request for a control interval split. VSAM

takes the JRNAD exit each time one of the following occurs:

Register Contents

The processing program issues a GET, PUT, or ERASE

Data is shifted right or left in a control interval or is moved to another control
interval to accommodate a record’s being deleted, inserted, shortened, or
lengthened

An 1/0 error occurs
An I/0 completion occurs
A shared or nonshared request is received

The buffer contents are to be changed

Figure 4 gives the contents of the registers when VSAM exits to the JRNAD routine.

Reg. Contents

0 Unpredictable.

1 Address of a parameter list built by VSAM.
2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the JRNAD routine.

Figure 4. Contents of Registers at Entry to JRNAD Exit Routine

Programming Considerations

If the JRNAD is taken for I/O errors, a journal exit may zero out, or otherwise alter,
the physical-error return code, so that a series of operations may continue to
completion, even though one or more of the operations failed.

10 Data Facility Product Version 2: Customization

The contents of the parameter list built by VSAM, pointed to by register 1, can be
examined by the JRNAD exit routine which is described in Figure 6 on page 14.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must restore
register 14, which is used by these macros, before it returns to VSAM.

If the exit routine uses register 1, it must restore it with the parameter list address
before returning to VSAM. (The routine must return for completion of the request
that caused VSAM to exit.)

The JRNAD exit must be indicated as active before the data set for which the exit is
to be used is opened, and the exit must not be made inactive during processing. If you
define more than one access method control block for a data set and want to have a
JRNAD routine, the first ACB you open for the data set must specify the exit list that
identifies the routine.

Journalizing Transactions

For journalizing transactions (when VSAM exits because of a GET, PUT, or
ERASE), you can use the SHOWCB macro to display information in the request
parameter list about the record that was retrieved, stored, or deleted
(FIELDS=(AREA KEYLEN,RBA,RECLEN), for example). You can also use the
TESTCB macro to find out whether a GET or a PUT was for update
(OPTCD=UPD).

If your JRNAD routine only journals transactions, it should ignore reason X'0C" and
return to VSAM; conversely, it should ignore reasons X'00!, X'04', and X'08" if it
records only RBA changes.

Recording RBA Changes

For recording RBA changes, you must calculate how many records there are in the
data being shifted or moved, so you can keep track of the new RBA for each. If all
the records are the same length, you calculate the number by dividing the record
length into the number of bytes of data being shifted. If record length varies, you can
calculate the number by using a table that not only identifies the records (by
associating a record’s key with its RBA), but also gives their length.

You should provide a routine to keep track of RBA changes caused by control interval
and control area splits. RBA changes that occur by way of keyed access to a
key-sequenced data set must also be recorded if you intend to process the data set
later by direct-addressed access.

Control Interval Splits

Some control interval splits involve data being moved to two new control intervals,
and control area splits normally involve many control intervals’ contents being moved.
In these cases, VSAM exits to the JRNAD routine for each separate movement of
data to a new control interval.

You may also want to use the JRNAD exit to maintain shared or exclusive control
over certain data or index control intervals; and in some cases, in your exit routine
you may reject the request for certain processing of the control intervals. For
example, if you used this exit to maintain information about a data set in a shared
environment, you might reject a request for a control interval or control area split
because the split might adversely affect other users of the data set.

Chapter 2. VSAM User-Written Exit Routines 11

Figure 5 is a skeleton program USERPROG with a user exit routine USEREXIT. It
demonstrates the use of the JRNAD exit routine to cancel a request for a control
interval or control area split.

USERPROG CSECT
SAVE(R14,R12) Standard entry code

éLDVRP BUFFERS=(512(3)), Build resource pool

X
KEYLEN=4, X
STRNO=4, X
TYPE=LSR, X
SHRPOOL=1, X
RMODE31=ALL
OPEN (DIRACB) Logically connect KSDS1
PUT RPL=DIRRPL This PUT causes the exit routine USEREXIT
to be taken with an exit code X'60' if
there is a CI or CA split
LTR R15,R15 Check return code from PUT
BZ NOCANCEL Retcode = 0 if USEREXIT did not cancel
CI/CA split
= 8 if cancel was issued, assuming
that we know a CI or CA split
occurred
Process the cancel situation
NOCANCEL . Process the noncancel situation
CLOSE (DIRACB) Disconnect KSDS1

DLVRP TYPE=LSR,SHRPOOL=1 Delete the resource pool
RETURN Return to caller.

DIRACB ACB AM=VSAM,
DDNAME=KSDS1,
BUFND=3,
BUFNI=2,
MACRF=(KEY ,DDN,SEQ,DIR,0UT,LSR),
SHRPQOOL=1,
EXLST=EXITLST

D¢ D¢ < XK XX X

Figure 5 (Part 1 of 2). Example of a JRNAD Exit

12 Dpata Facility Product Version 2: Customization

*

DIRRPL

*

DATAREC
KEYNO

EXITLST
JRNADDR

USEREXIT

EXIT

Figure 5 (Part 2 of 2).

RPL AM=VSAM,
ACB=DIRACB,
AREA=DATAREC,
AREALEN=128,
ARG=KEYNO,
KEYLEN=4,

OPTCD=(KEY,DIR,FWD,SYN,NUP ,WAITX),

RECLEN=128

€ D¢ 2 3¢ ¢ M X<

DC CL128'DATA RECORD TO BE PUT TO KSDS1'

DC F'0'

Search key argument for RPL

EXLST AM=VSAM,JRNAD=(JRNADDR,A,L)

DC CL8'USEREXIT'
END

CSECT

CLI 20(R1),X'50"
BNE EXIT
MVI 21(R1),X'8C’

BR R14
END

Name of user exit routine
End of USERPROG

On entry to this exit routine, Rl points
to the JRNAD parameter 1ist and R14 points
back to VSAM.

Nonstandard entry code -- need not save
the registers at caller's save area and,
since user exit routines are reentrant for
most applications, save R1 and R14 at some
registers only if Rl and R14 are to be
destroyed

USEREXIT called because of CI/CA split?
No. Return to VSAM
Tell VSAM that user wants to cancel split

Nonstandard exit code -- restore Rl and
R14 from save registers

Return to VSAM which returns to USERPROG
if cancel is specified

End of USEREXIT

Example of a JRNAD Exit

Parameter List

The parameter list built by VSAM contains reason codes to indicate why the exit was
taken, and also locations where you can specify return codes for VSAM to take or not
take an action upon returning from your routine. The information provided in the
parameter list varys depending on the reason the exit was taken. Figure 6 shows the
contents of the parameter list.

The parameter list will reside in the same area as the VSAM control blocks, either
above or below the 16M line. For example, if the VSAM data set was opened and the
ACB stated RMODE31=CB, the exit parameter list will reside above the 16M line.
To access a parameter list that resides above the 16M line, you will need to use 31-bit

addressing.

Chapter 2. VSAM User-Written Exit Routines 13

Offset Bytes Description

o(xo") 4 Address of the RPL that defines the request that caused VSAM
to exit to the routine.

4(X'4') 4 Address of a 5-byte field that identifies the data set being
processed. This field has the format:

4 bytes Address of the access method control block
specified by the RPL that defines the request
occasioned by the JRNAD exit.

1 byte Indication of whether the data set is the data
(X'01') or the index (X'02') component.

Figure 6 (Part 1 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

14 Data Facility Product Version 2: Customization

Offset Bytes Description

8(X'8") 4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 8

XtocC! The RBA of the first byte of data that is being
shifted or moved.

X20* The RBA of the beginning of the control area
about to be split.

X124 The address of the I/0 buffer into which data was
going to be read.

X'28! ‘The address of the I/0 buffer from which data was
going to be written.

X2C! The address of the I/O buffer that contains the
control interval contents that are about to be
written.

X'30' Address of the buffer control block (BUFC) that
points to the buffer into which data is about to be
read under exclusive control.

X'34! Address of BUFC that points to the buffer into
which data is about to be read under shared
control.

Xr38' Address of BUFC that points to the buffer which is
to be acquired in exclusive control. The buffer is
already in the buffer pool.

X'3C! Address of the BUFC that points to the buffer
which is to be built in the buffer pool in exclusive
control.

X'40! Address of BUFC which points to the buffer whose
exclusive control has just been released.

X'44! Address of BUFC which points to the buffer whose
contents have been made invalid.

X'48' Address of the BUFC which points to the buffer
into which the READ operation has just been
completed.

X'4C' Address of the BUFC which points to the buffer

from which the WRITE operation has just been
completed.

Figure 6 (Part 2 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

Chapter 2. VSAM User-Written Exit Routines 15

Offset Bytes Description
12(X'C') 4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 12

X'oC' The number of bytes of data that is being shifted or
moved (this number doesn’t include free space, if
any, or control information—except for a control
area split, when the whole contents of a control
interval are moved to a new control interval.)

X'20' Unpredictable.
X'24! Unpredictable.
X'28' Bits O through 31 correspond with transaction IDs

0 through 31. Bits set to 1 indicate that the buffer
that was being written when the error occurred was
modified by the corresponding transactions. You
can set additional bits to 1 to tell VSAM to keep
the contents of the buffer until the corresponding
transactions have modified the buffer.

X2C! The size of the control interval whose contents are
about to be written.

X130 Size of the buffer into which data is about to be
read under exclusive control.

X'34' Size of the buffer which is about to be read into
shared status.

X'38' Size of the buffer which is to be acquired in
exclusive control. The buffer is already in the
buffer pool.

X'3C! Size of the buffer which is to be built in the buffer
pool in exclusive control. ‘

X'48' Size of the buffer into which the READ operation
has just been completed.

X'4C Size of the buffer from which the WRITE
operation has just been completed.

Figure 6 (Part 3 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

16 Data Facility Product Version 2: Customization

Offset Bytes Description
16(X'10*) 4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 16

X'oC! The RBA of the first byte to which data is being
shifted or moved.

X120" The RBA of the last byte in the control area about
to be split.

X124' The fourth byte contains the physical error code
from the RPL FDBK field. You use this fullword to
communicate with VSAM. Setting it to 0 indicates
that VSAM is to ignore the error, bypass error
processing, and let the processing program
continue. Leaving it nonzero indicates that VSAM
is to continue as usual: terminate the request that
occasioned the error and proceed with error
processing, including exiting to a physical error

analysis routine.
X'28! Same as for X'24'.
xXr2C! The RBA of the control interval whose contents are

about to be written.

X'48! The RBA of the control interval into which the
READ operation has just been completed.

X'4C! The RBA of the control interval from which the
WRITE operation has just been completed.

Figure 6 (Part 4 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

Chapter 2. VSAM User-Written Exit Routines 17

Offset Bytes Description

20(X'14Y) 1 Indication of the reason VSAM exited to the JRNAD routine:
X'00' GET request.
X'04' PUT request.
X'08' ERASE request.
Xroc RBA change.
X'10* Read spanned record segment.
X'14* Write spanned record segment.
X'18! Reserved.
X'1c Reserved.

The following codes are for shared resources only:

X'20'
X124!
X128!
Xn2C
X'30'

X1'34'

X138

X'3C'

X'40"

X'44!

X148
X'4C
X'50°
X'54'-X'FF'

Control area split.
Input error.
Output error.
Buffer write.

A data or index control interval is about
to be read in exclusive control.

A data or index control interval is about
to be read in shared status.

Acquire exclusive control of a control
interval already in the buffer pool.

Build a new control interval for the data set
and hold it in exclusive control.

Exclusive control of the indicated control
interval already has been released.

Contents of the indicated control interval
have been made invalid.

Read completed.

Write completed.

Control interval or control area split.
Reserved.

Figure 6 (Part 5 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

18 Data Facility Product Version 2: Customization

Offset Bytes Description

21(X'15Y) 1 JRNAD exit code set by the JRNAD exit routine. Indication
of action to be taken by VSAM after resuming control from
JRNAD (for shared resources only):

X'80* Do not write control interval.

X184 Treat I/O error as no error.

X'88' Do not read control interval.

X'8C! Cancel the request for control interval or control
area split.

Figure 6 (Part 6 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

LERAD Exit Routine to Analyze Logical Errors

Description

Register Contents

A LERAD exit routine should examine the feedback field in the request parameter list
to determine what logical error occurred. What the routine does after determining the

error depends on your knowledge of the kinds of things in the processing program
that may have caused the error.

Figure 7 gives the contents of the registers when VSAM exits to the LERAD exit
routine.

Note: A LERAD exit is not taken for RPLFDBK 64(40) because a PLH is not
available for register saving.

Reg. Contents
0 Unpredictable.

Address of the RPL that contains the
feedback field the routine should examine.
The register must contain this address if you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains
the address of your processing program’s 72-byte save
area, which must not be used as a save area by the
LERAD routine if the routine returns control to VSAM.

14 Return address to VSAM.
15 Entry address to the LERAD routine.
The register doesn’t contain the logical-error indicator.

Figure 7. Contents of Registers at Entry to LERAD Exit Routine

Chapter 2. VSAM User-Written Exit Routines

19

Programming Considerations

The typical actions of a LERAD routine are:

Examine the feedback field in the RPL to determine what error occurred
Determine what action to take based on error

Close the data set

Issue completion messages

Terminate processing and exit VSAM or return to VSAM.

balbali ol a o

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must restore registers 1, 13, and 14, which are used by these
macros. It must also provide two save areas; one, whose address should be loaded
into register 13 before the GENCB, MODCB, SHOWCB, or TESTCB is issued, and
the second, to separately store registers 1, 13, and 14.

If the error cannot be corrected, close the data set and either terminate processing or
return to VSAM.

If a logical error occurs and no LERAD exit routine is provided (or the LERAD exit
is inactive), VSAM returns codes in register 15 and in the feedback field of the RPL
to identify the error.

When your LERAD exit routine completes processing, return to your main program
as described in “Returning to Your Main Program” on page 7.

SYNAD Exit Routine to Analyze Physical Errors

Description

Register Contents

VSAM exits to a SYNAD routine if a physical error occurs when you request access
to data. It also exits to a SYNAD routine when you close a data set if a physical error
occurs while VSAM is writing the contents of a buffer out to direct-access storage.

Figure 8 on page 21 gives the contents of the registers when VSAM exits to the
SYNAD routine.

20 Data Facility Product Version 2: Customization

Reg. Contents
0 Unpredictable.

1 Address of the RPL that contains a feedback
return code and the address of a message area, if any.
If you issued a request macro, the RPL is the one
pointed to by the macro; if you issued an OPEN, CLOSE,
or cause an end-of-volume to be done, the RPL was built
by VSAM to process an internal request. Register 1
must contain this address if the SYNAD routine returns
to VSAM.

2-13 Unpredictable. Register 13, by convention, contains
the address of your processing program’s 72-byte save
area, which must not be used by the SYNAD routine if it

returns control to VSAM.
14 Return address to VSAM.
15 Entry address to the SYNAD routine.

Figure 8. Contents of Registers at Entry to SYNAD Exit Routine

Programming Considerations
A SYNAD routine should typically:

« Examine the feedback field in the request parameter list to identify the type of
physical error that occurred.

¢ Get the address of the message area, if any, from the request parameter list, to
examine the message for detailed information about the error

¢ Recover data if possible

o Print error messages if uncorrectable error

o Close data set

o Terminate processing

The main problem with a physical error is the possible loss of data. You should try to
recover your data before continuing to process. Input operations (ACB
MACRF=IN) are generally less serious than output or update operations
(MACRF=0UT), because your request was not attempting to alter the contents of
the data set.

If the routine cannot correct an error, it might print the physical-error message, close
the data set, and terminate the program. If the error occurred while VSAM was
closing the data set, and if another error occurs after the exit routine issues a CLOSE
macro, VSAM doesn’t exit to the routine a second time.

If the SYNAD routine returns to VSAM, whether the error was corrected or not,
VSAM drops the request and returns to your processing program at the instruction
following the last executed instruction. Register 15 is reset to indicate that there was
an error, and the feedback field in the RPL identifies it.

Physical errors affect positioning. If a GET was issued that would have positioned
VSAM for a subsequent sequential GET and an error occurs, VSAM is positioned at

Chapter 2. VSAM User-Written Exit Routines 21

the control interval next in key (RPL OPTCD=KEY) or in entry (OPTCD=ADR)
sequence after the control interval involved in the error. The processing program can
therefore ignore the error and proceed with sequential processing. With direct
processing, the likelihood of reencountering the control interval involved in the error
depends on your application.

If the exit routine issues GENCB, MODCB, SHOWCSB, or TESTCB and returns to
VSAM, it must provide a save area and restore registers 13 and 14, which are used by
these macros.

See “Example of a SYNAD User-Written Exit Routine” for the format of a
physical-error message that can be written by the SYNAD routine.

When your SYNAD exit routine completes processing, return to your main program as
described in “Returning to Your Main Program” on page 7.

If a physical error occurs and no SYNAD routine is provided (or the SYNAD exit is
inactive), VSAM returns codes in register 15 and in the feedback field of the RPL to
identify the error. For a description of these return codes, see VSAM Administration:
Macro Instruction Reference.

Example of a SYNAD User-Written Exit Routine

The example in Figure 9 on page 23 demonstrates a user-written exit routine. It is a
SYNAD exit routine that examines the FDBK field of the RPL checking for the type
of physical error that caused the exit. After the checking, special processing may be
performed as necessary. The routine returns to VSAM after printing an appropriate
error message on SYSPRINT.

22 Data Facility Product Version 2: Customization

ACB1 ACB
EXITS EXLST
RPLI RPL
PHYERR USING
*

LA

SHOWCB
*

PUT

BR
ERRCODE DC
PERRMSG DS

DS
ERRMSG DS
PRTDCB DCB
SAVE DS
SAVREG DS

EXLST=EXITS
SYNAD=PHYERR
ACB=ACB1,

MSGAREA=PERRMSG,

MSGLEN=128
*,15

13,SAVE

RPL=RPL1,
FIELDS=FDBK,
AREA=ERRCODE,
LENGTH=4

PRTDCB ,ERRMSG

14

Flol
0xL128
XL12
XL116

ooooo

This routine is nonreentrant.
Register 15 is entry address.
Save caller's register

(1, 13, 14).

Point to routine's save area.
If register l=address of RPL1,

then error did not occur for a
CLOSE.

Show type of physical error.
Examine error, perform special
processing.

Print physical error message.

Restore caller's registers
(1, 13, 14).

Return to VSAM.

RPL reason code from SHOWCB.
Physical error message.
Pad for unprintable part.

Printable format part of
message.

QSAM DCB.
SYNAD routine's save area.

Save registers 1, 13, 14.

Figure 9. Example of a SYNAD Exit Routine

Chapter 2. VSAM User-Written Exit Routines

23

UPAD Exit Routine for User Processing

Description

You can perform special processing during a VSAM request with the UPAD exit
routine. For example, VSAM takes the UPAD exit immediately prior to issuing a
WAIT for I/0O completion or for a serially reusable resource. VSAM exits to the
UPAD routine when the request’s RPL specifies OPTCD=(SYN, WAITX) and the
ACB specifies MACRF=LSR or MACRF=GSR, or MACRF=ICI.

If you are executing in cross-memory mode, you must have a UPAD routine.
Cross-memory mode is described in VSAM Administration Guide.

Register Contents

Figure 10 shows the register contents passed by VSAM when the UPAD exit routine
is entered.

Reg. Contents

0 Unpredictable.

1 Address of a parameter list built by VSAM.
2-12 Unpredictable.

13 Reserved.

14 Return address to VSAM.

15 Entry address of the UPAD routine.

Figure 10. Contents of Registers at Entry to UPAD Exit Routine

Programming Considerations

The UPAD exit routine must be active before the data set is opened. The exit must
not be made inactive during processing. If the UPAD exit is desired and many ACBs
are used for processing the data set, the first ACB that is opened must specify the exit
list that identifies the UPAD exit routine.

The contents of the parameter list built by VSAM, pointed to by register 1, can be
examined by the UPAD exit routine (see Figure 11).

24 Data Facility Product Version 2: Customization

Offset Bytes Description
oxw!) 4 Address of the RPL.
4(X'4') 4 Address of a 5-byte data set identifier. The first four bytes of

the identifier are the ACB address; the last byte identifies the
component; data (X'01'), or index (X'02").

8(X'8") 4 Address of the request’s ECB.

12(X'0C*) 4 Post flag or cross-memory action flag (see cross-memory
mode).

16(X'10') 4 Reserved.

20(X'14Y) 1 Reason code:
X'00! VSAM is about to wait.
X'04' VSAM ready to resume request processing.

X'08'-X'FC' Reserved.

Figure 11. Parameter List Passed to UPAD Routine

If the UPAD exit routine modifies register 14 (for example, by issuing a TESTCB),
the routine must restore register 14 before returning to VSAM. If register 1 is used,
the UPAD exit routine must restore it with the parameter list address before returning
to VSAM.

The UPAD routine must return to VSAM under the same TCB from which it was
called for completion of the request that caused VSAM to exit. The UPAD exit
routine cannot use register 13 as a save area pointer without first obtaining its own
save area.

The UPAD exit routine, when taken prior to a WAIT during LSR or GSR processing,
might issue other VSAM requests to obtain better processing overlap (similar to
asynchronous processing). However, the UPAD routine must not issue any
synchronous VSAM requests that do not specify WAITX, because a started request
might issue a WAIT for a resource owned by a starting request.

If the UPAD routine starts requests that specify WAITX, the UPAD routine must be
reentrant. After multiple requests have been started, they should be synchronized by
waiting for one ECB out of a group of ECBs to be posted complete rather than
waiting for a specific ECB or for many ECBs to be posted complete. (Posting of
some ECBs in the list might be dependent upon the resumption of some of the other
requests that entered the UPAD routine.)

If you are not in cross-memory mode and the UPAD routine returns with a nonzero
code, VSAM will cause a POST to be issued.

Chapter 2. VSAM User-Written Exit Routines 25

Cross-Memory Mode

If you are executing in cross-memory mode, you must have a UPAD routine. When
posting of an event is required, the UPAD routine is given control (reason code 4).

When VSAM regains control from a UPAD exit that was taken for reason code 4,
VSAM tests the return code at offset 12 in the parameter list. If it is nonzero and the
request is in cross-memory mode, VSAM indicates a logical error rather than
attempting to issue a POST. (POST would cause an abend if issued in cross-memory
mode.)

Your UPAD routine must resume the request that caused the exit to be taken and set
the appropriate return code in the parameter list before returning to VSAM.

User-Securi_ty-Verification Routine (USVR)

If you use VSAM password protection, you may also have your own routine to check
a requestor’s authority. Your routine is invoked from OPEN, rather than via an exit
list. VSAM transfers control to your routine, which must reside in SYS1.LINKLIB,
when a requester gives a correct password other than the master password.

Through the access method services DEFINE command with the AUTHORIZATION
parameter you may identify your user-security-verification routine (USVR) and
associate as many as 256 bytes of your own security information with each data set to
be protected. The user security-authorization record (USAR) is made available to the
user-security-verification routine when the routine gets control. You may restrict
access to the data set as you choose; for example, you may require that the owner of a
data set give ID when defining the data set and then allow only the owner to gain
access to the data set.

If the user-security-verification routine is being used by more than one task at a time,
you must code the user-security-verification routine reentrant or develop another
method for handling simultaneous entries.

When your user-security-verification routine completes processing, it must return (in
register 15) to VSAM with a return code of 0 for authority granted or not 0 for
authority witheld in register 15.

Figure 12 on page 27 gives the contents of the registers when VSAM gives control to
the user-security-verification routine.

26 Data Facility Product Version 2: Customization

Reg. Contents
0 Unpredictable.
1 Address of a parameter list with the following format:

44 bytes Name of the data set for which authority to
process is to be verified (the name you
specified when you defined it with access
method services).

8 bytes Prompting code (or 0’s).

8 bytes Owner identification (or 0’s).

8 bytes The password that the requester gave (it has
been verified by VSAM).

2 bytes Length of the user-security-authorization

routine (in binary).
- The user-security-authorization.
2-13 Unpredictable.
14 Return address to VSAM.

15 Entry address to the user-security-verification routine.
When the routine returns to VSAM, it indicates by the
following codes in register 15 whether the requester
has been authorized to gain access to the data set:

0 Authority granted.
not 0 Authority withheld.

Figure 12. Communication with User-Security-Verification Routine

Chapter 2. VSAM User-Written Exit Routines 27

Chapter 3. DCB Macro Specified User-Written Exit Routines

General Guidance

The DCB macro can be used to identify the location of:

e A routine that performs end-of-data procedures

« A routine that supplements the operating system’s error recovery routine

e A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro or you can complete the DCB

fields before opening the data set. Figure 13 summarizes the exits that you can
specify either explicitly in the DCB, or implicitly by specifying the address of an exit

list in the DCB.

Exit Routine When Available Where Specified

End-of-data-set When no more sequential records EODAD parameter
or blocks are available

Error analysis After an uncorrectable SYNAD parameter
input/output error

Allocation retrieval When issuing an RDJFCB macro EXLST parameter and

list instruction exit list

Block count After unequal block count EXLST parameter and
comparison by end-of-volume exit list
routine

DCB abend When an abend condition occurs EXLST parameter and
in OPEN, CLOSE, or exit list
end-of-volume routine.

DCB open When opening a data set EXLST parameter and

exit list
End-of-volume When changing volumes EXLST parameter and
exit list

FCB image When opening a data set or EXLST parameter and
issuing a SETPRT macro exit list

JFCB When opening a data set with EXLST parameter and
TYPE=]J and reading the JFCB exit list

Standard user label When opening, closing, or EXLST parameter and

(physical sequential reaching the end of a data set, and | exit list

or direct when changing volumes

organization)

Figure 13 (Part 1 of 2). DCB Exit Routines

Chapter 3. DCB Macro Specified User-Written Exit Routines 29

Exit Routine When Available Where Specified

JFCB extension When opening a data set for the EXLST parameter and
(JFCBE) 3800 exit list

Open/EOV When a scratch tape is requested EXILST parameter and
nonspecific tape during OPEN or EOV routines exit list

volume mount

Open/EOV volume | When a scratch tape is requested EXLST parameter and
security/verification | during OPEN or EOV routines exit list

QSAM parallel Opening a data set EXLST parameter and
processing exit list

User totaling (for When creating or processing a EXLST parameter and
BSAM and QSAM) data set with user labels exit list

Figure 13 (Part 2 of 2). DCB Exit Routines

Programming Considerations

Because OPEN/CLOSE/EOV enqueues on SYSZTIOT, functions that require
SYSZTIOT cannot be executed in the OPEN/CLOSE/EOV exit routines. Some of
these functions are LOCATE, OBTAIN, SCRATCH, CATALOG, and so forth.

EODAD End-of-Data-Set Exit Routine

Description

The EODAD parameter of the DCB macro specifies the address of your
end-of-data-set routine, which may perform any final processing on an input data set.
This routine is entered when an FEOV macro is issued or when a CHECK or GET
macro is issued and there are no more records or blocks to be retrieved. (This allows
you to issue WRITE macros before an FEOV macro is issued.) (On a READ request,
this routine is entered when you issue a CHECK macro to check for completion of the
read operation. For a BSAM data set that is opened for UPDAT, this routine is
entered at the end of each volume.

Register Contents

When control is passed to the EODAD routine, the registers contain the following
information:

Register Contents

0-1 Reserved .

2-13 Contents before execution of CHECK, GET, or FEOV macro
instruction

14 Address of the instruction after the last issued GET, CHECK, or FEOV
macro

15 Reserved

30 Data Facility Product Version 2: Customization

Programming Considerations

The EODAD routine is not a subroutine, but rather a continuation of the routine that
issued the CHECK, GET, or FEOV macro. After it is in your EODAD routine, you
can continue normal processing, such as repositioning and resuming processing of the -
data set, closing the data set, or processing another data set.

For BSAM, you must first reposition the data set that reached end-of-data if you want
to issue a BSP, READ, or WRITE macro. You can reposition your data set by issuing
a CLOSE TYPE=T macro instruction. If a READ macro is issued before the data set
is repositioned, unpredictable results will occur.

For BPAM, you may reposition the data set by issuing a FIND or POINT macro.
(CLOSE TYPE=T with BPAM results in no operation performed.)

For QISAM, you can continue processing the input data set that reached end-of-data
by first issuing an ESETL macro to end the sequential retrieval, then issuing a SETL
macro to set the lower limit of sequential retrieval. You can then issue GET macros
to the data set.

Your task will be abnormally ended under either of the following conditions:

¢ No exit routine is provided.

o A GET macro is issued in the EODAD routine to the DCB that caused this
routine to be entered (unless the access method is QISAM).

SYNAD Synchronous Error Routine Exit

Description

Register Contents

The SYNAD parameter of the DCB macro specifies the address of an error routine
that is to be given control when an input/output error occurs. This routine can be
used to analyze exceptional conditions or uncorrectable errors. The block being read
or written can be accepted or skipped, or processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, try to correct the error before returning
control to your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB macro the address of an
error analysis routine (called a SYNAD routine), that routine can try to correct the
error and prevent an abnormal termination. The routine is given control when the
application program issues the next access method macro after the system has
detected an uncorrectable error.

For a description of the register contents on entry to your SYNAD routine, see
Appendix B, “Status Information Following an Input/Output Operation” on
page 183.

Chapter 3. DCB Macro Specified User-Written Exit Routines 31

Programming Considerations

You can write a SYNAD routine to determine the cause and type of error that
occurred by examining:

« The contents of the general registers

o The data event control block (see Appendix B, “Status Information Following
an Input/Output Operation” on page 183)

» The exceptional condition code

o The standard status and sense indicators

You can use the SYNADAF macro to perform this analysis automatically. This macro
produces an error message that can be printed by a later PUT or WRITE macro.

After completing the analysis, you can return control to the operating system or close
the data set. If you close the data set, note that you may not use the temporary close
(CLOSE TYPE=T) option in the SYNAD routine. To continue processing the same
data set, you must first return control to the control program by a RETURN macro.
The control program then transfers control to your processing program, subject to the
conditions described below. Never attempt to reread or rewrite the record, because
the system has already attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating
system provides three automatic error options (EROPT) to be used if there is no
SYNAD routine or if you want to return control to your program from the SYNAD
routine:

o ACC—accept the erroneous block
o SKP—skip the erroneous block

o ABE—abnormally terminate the task

These options are applicable only to data errors, because control errors result in
abnormal termination of the task. Data errors affect only the validity of a block of
data. Control errors affect information or operations necessary for continued
processing of the data set. These options are not applicable to output errors, except
output errors on the printer. If the EROPT and SYNAD fields are not completed,
ABE is assumed.

If a control error or a physical I/O error is encountered for a SYSIN or SYSOUT
dataset, the EROPT options will be ignored and the task will be abnormally
terminated.

You should not use the FEOV macro against the data set for which the SYNAD
routine was entered, within the SYNAD routine.

Because EROPT applies to a physical block of data, and not to a logical record, use of
SKP or ACC may result in incorrect assembly of spanned records.

When you use READ and WRITE macros, errors are detected when you issue a
CHECK macro. If you are processing a direct or sequential data set and you return to
the control program from your SYNAD routine, the operating system assumes that
you have accepted the bad record. If you are creating a direct data set and you return
to the control program from your SYNAD routine, your task is abnormally
terminated. In the case of processing a direct data set, the return should be made to

32 Data Facility Product Version 2: Customization

the control program via register 14 to make a control block (the IOB) available for
reuse in a later READ or WRITE macro.

Your SYNAD routine can end by branching to another routine in your program, such
as a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the
macro) in your program. If your routine returns control, the conventions for saving
and restoring register contents are as follows:

o The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the contents
of registers 2 through 12. On return to your program, the contents of registers 2
through 12 will be the same as on return to the control program from the SYNAD
routine.

« The SYNAD routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

« If the SYNAD routine calls another routine or issues supervisor or data
management macros, it must provide its own save area or issue a SYNADAF
macro. The SYNADAF macro provides a save area for its own use, and then
makes this area available to the SYNAD routine. Such a save area must be
removed from the save area chain by a SYNADRLS macro before control is
returned to the control program.

If the error analysis routine receives control from the close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load mode), bit
3 of the IOBFLAGS field in the load mode buffer control table (IOBBCT) is set to 1.
The DCBWKPTS6 field in the DCB contains an address of a list of work area pointers
(ISLVPTRS). The pointer to the IOBBCT is at offset 8 in this list as shown in the
following diagram:

Work Area

oce . Pointers
1 SLVPTRS) 1088CT

0
| | []
T 4 ot 1

281 cBWKPT6 81" A uoBscT)
IOBFLAGS
- £

If the error analysis routine receives control from the CLOSE routine when indexed
sequential data sets are being processed using QISAM scan mode, bit 2 of the DCB
field DCBEXCD2 is set to 1.

Figure 14 gives the contents of registers 0 and 1 when a SYNAD routine specified in
a DCB gets control while indexed sequential data sets are being processed.

Chapter 3. DCB Macro Specified User-Written Exit Routines 33

Register BISAM QISAM

0 Address of the 0, or, for a sequence check, the address of a field
DECB containing the higher key involved in the check

1 Address of the 0
DECB

Figure 14. Register Contents for DCB-Specified ISAM SYNAD Routine

For information on QISAM error conditions and the meaning they have when the
ISAM interface to VSAM is being used, see VSAM Administration Guide.

EXLST Exit List

The EXLST parameter of the DCB macro specifies the address of a list that may
contain the addresses of special processing routines, a forms control buffer (FCB)
image, a user totaling area, an area for a copy of the JFCB, and an allocation retrieval
list. An exit list must be created if user label, data control block, end-of-volume,
block count, JFCBE, or DCB abend exits are used, or if a PDAB macro or FCB
image is defined in the processing program.

The exit list is built of 4-byte entries that must be aligned on fullword boundaries.
Each exit list entry is identified by a code in the high-order byte, and the address of
the routine, image, or area is specified in the 3 low-order bytes. Codes and addresses
for the exit list entries are shown in Figure 15.

Hex
Entry Type Code 3-Byte Address—Purpose
Inactive entry 00 Ignore the entry; it is not
active.
Input header label exit 01 Process a user input header
label.
Output header label exit 02 Create a user output header
label.
Input trailer label exit 03 Process a user input trailer
label.
Output trailer label exit 04 Create a user output trailer
label.
Data control block exit 05 Take a data control block
exit.
End-of-volume exit 06 Take an end-of-volume exit.
JFCB exit 07 JFCB address for RDJFCB
and OPEN TYPE=J SVCs.
08 Reserved.
09 Reserved.

Figure 15 (Part 1 of 3). DCB Exit List Format and Contents

34 Data Facility Product Version 2: Customization

Entry Type

Hex
Code

3-Byte Address—Purpose

User totaling area

0A

Address of beginning of
user’s totaling area.

Block count exit

0B

Take a block-count-unequal
exit.

Defer input trailer label

0oC

Defer processing of a user
input trailer label from
end-of-data until closing.

Defer nonstandard input
trailer label

0D

Defer processing a
nonstandard input trailer
label on magnetic tape unit
from end-of-data until
closing (no exit routine
address).

O0E-OF

Reserved.

FCB image

10

Define an FCB image.

DCB abend exit

11

Examine the abend condition
and select one of several
options.

QSAM parallel input

12

Address of the PDAB for
which this DCB is a member.

Allocation retrieval list

13

Retrieve allocation
information for one or more
data sets with the RDJFCB
macro.

14

Reserved.

JFCBE exit

15

Take an exit during OPEN to
allow user to examine
JCL=specified setup
requirements for a 3800
printer.

16

Reserved.

OPEN/EOQV nonspecific
tape volume mount

17

Option to specify a tape
volume serial number.

OPEN/EOV volume
security/verification

18

Verify a tape volume and
some security checks.

19-7F

Reserved.

Figure 15 (Part 2 of 3). DCB Exit List Format and Contents

Chapter 3. DCB Macro Specified User-Written Exit Routines

35

Hex
Entry Type Code 3-Byte Address—Purpose

Last entry 80 Treat this entry as the last
entry in the list. This code
can be specified with any of
the above but must always
be specified with the last
entry.

Figure 15 (Part 3 of 3). DCB Exit List Format and Contents

You can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, not to destroy the last entry
indication. The operating system routines scan the list from top to bottom, and the
first active entry found with the proper code is selected.

You can shorten the list during execution by setting the high-order bit to 1, and
extend it by setting the high-order bit to 0.

Register Contents for Exits from EXLST

When control is passed to an exit routine, the registers contain the following
information:

Register Contents
0 Variable; see exit routine description.

1 The 3 low-order bytes contain the address of the DCB currently being
processed, except when the user-label exits (X'01'-X'04'), user totaling
exit (X'0A'), DCB abend exit (X'11'), nonspecific tape volume mount
exit (X'17"), or the tape volume security/verification exit (X'18") is
taken, when register 1 contains the address of a parameter list. The
contents of the parameter list are described in the explanation of each

exit routine.
2-13 Contents before execution of the macro.
14 Return address (must not be altered by the exit routine).
15 Address of exit routine entry point.

The conventions for saving and restoring register contents are as follows:

« The exit routine must preserve the contents of register 14. It need not preserve
the contents of other registers. The control program restores the contents of
registers 2 to 13 before returning control to your program.

o The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls another
routine or issues supervisor or data management macros, it must provide the
address of a new save area in register 13.

e The exit routine must not issue an access method macro that refers to the DCB
for which the exit routine was called, unless otherwise specified in the individual
exit routine descriptions that follow.

36 Data Facility Product Version 2: Customization

Allocation Retrieval List

The RDJFCB macro uses the DCB exit list entry with code X'13! to retrieve
allocation information (JFCBs and volume serial numbers). When you issue
RDJFCB, the JFCBs for the specified data sets, including concatenated data sets, and
their volume serial numbers are placed in the area located at the address specified in
the allocation retrieval list. The DCB exit list entry contains the address of the
allocation retrieval list. For more information on RDJFCB see System-Data
Administration.

Programming conventions

The allocation retrieval list must be below the 16M line, but the allocation return area
can be above the 16M line.

When you are finished obtaining information from the retrieval areas, free the storage
with a FREEMAIN macro.

You can use the IHAARL macro to generate and map the allocation retrieval list. For
more information on the IHAARL macro see System-Data Administration.

Restrictions

When OPEN TYPE=] is issued, the X'13' exit cannot be used. The JFCB exit at
X'07! can be used instead (see “JFCB Exit” on page 46).

DCB Abend Exit

The DCB abend exit is provided to give you some options regarding the action you
want the system to take when a condition arises that may result in abnormal
termination of your task. This exit can be taken any time an abend condition arises
during the process of opening, closing, or handling an end-of-volume condition for a
DCB associated with your task.

When an abend condition arises, a write-to-programmer message about the abend is
issued and your DCB abend exit is given control, provided there is an active DCB
abend exit routine address in the DCB being processed. If STOW called the
end-of-volume routines to get secondary space to write an end-of-file mark for a
partitioned data set, or if the DCB being processed is for an indexed sequential data
set, the DCB abend exit routine will not be given control if an abend condition occurs.
The contents of the registers when your exit routine is entered are the same as for
other DCB exit list routines, except that the 3 low-order bytes of register 1 contain
the address of the parameter list described in Figure 16 on page 38. Your abend exit
routine can choose one of four options:

« To immediately terminate your task

o To delay the abend until all the DCBs in the same OPEN or CLOSE macro are
opened or closed

« To ignore the abend condition and continue processing without making reference
to the DCB on which the abend condition was encountered, or

« To try to recover from the error.

Not all of these options are available for each abend condition. Your DCB abend exit
routine must determine which option is available by examining the contents of the

Chapter 3. DCB Macro Specified User-Written Exit Routines 37

option mask byte (byte 3) of the parameter list. The address of the parameter list is
passed in register 1. Figure 16 shows the contents of the parameter list and the
possible settings of the option mask when your routine receives control. (All
information in the parameter list is in binary.)

Bit Meaning

0 Reserved for System Use
1-3 Reserved for Future Use
4 OK to Recover

5 OK to Ignore

6 OK to Delay

7 Reserved for Future Use
. Fullword Boundary
Displacement
0 System Completion Code! Return Code Option Mask
4 DCB Address
8 Open/Close/End-of-Volume Work Area Address
12| 00 Recovery Work Area Address

Vin the first 12 bits.

Figure 16. Parameter List Passed to DCB Abend Exit Routine

When your DCB abend exit routine returns control to the system control program
(this can be done using the RETURN macro), the option mask byte must contain the
setting that specifies the action you want to take. These actions and the
corresponding settings of the option mask byte are:

38 Data Facility Product Version 2: Customization

Decimal

Value Action

0 Abnormally terminate the task immediately.

4 Ignore the abend condition.

8 Delay the abend until the other DCBs being processed concurrently are

opened or closed.

12 Make an attempt to recover.

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the parameter
list) to determine which options are available. If a bit is set to 1, the corresponding
option is available. Indicate your choice by inserting the appropriate value in byte 3
of the parameter list, overlaying the bits you inspected. If you use a value that
specifies an option that is not available, the abend is issued immediately.

If the contents of bits 4, 5, and 6 of the option mask are 0, you must not change the
option mask. This unchanged option mask will result in a request for an immediate
abend.

If bit 5 of the option mask is set to 1, you can ignore the abend by placing a value of 4
in byte 3 of the parameter list. Processing on the current DCB stops. If you
subsequently attempt to use this DCB, the results are unpredictable. If you ignore an
error in end-of-volume, control is returned to your program at the point that caused
the end-of-volume condition (unless the end-of-volume routines were called by the
close routines). If the end-of-volume routines were called by the close routines, an
ABEND macro will be issued even though the ignore option was selected.

If bit 6 of the option mask is set to 1, you can delay the abend by placing a value of 8
in byte 3 of the parameter list. All other DCBs waiting for OPEN or CLOSE
processing will be processed before the abend is issued. For end-of-volume, however,
you can’t delay the abend because the end-of-volume routine never has more than one
DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a value of 12
in byte 3 of the parameter list and provide information for the recovery attempt.
Figure 17 lists the abend conditions for which recovery can be attempted. For abend
conditions that can be ignored or delayed, see System Messages.

System

Completion Return

Code Code Description of Error

117 X'38' An I/0 error occurred during

execution of a read block ID command
issued to establish tape position.

X3cC DCB block count did not agree with
the calculated block count.

Figure 17 (Part 1 of 3). Conditions for Which Recovery Can Be Attempted

Chapter 3. DCB Macro Specified User-Written Exit Routines 39

System
Completion
Code

Return
Code

Description of Error

137

X'24!

A specific volume serial number was
specified for the second or subsequent
volume of an output data set on
magnetic tape. During EOV
processing, it was discovered that the
expiration date (from the HDR1 label
of the first data set currently on the
specified volume) had not passed.
When requested to specify whether the
volume could be used in spite of the
expiration date, the operator did not
reply U.

214

X'oC!

An 1/0 error occurred during
execution of a read block ID command
issued to establish tape position.

237

X'04'

X'ocC!

Block count in DCB does not agree
with block count in trailer label.

DCB block count did not agree with
the calculated block count.

413

X'18!

X124

Data set was opened for input and no
volume serial number was specified.

LABEL=(n) was specified, where n
was greater than 1 and vol=ser was not
specified for a tape data set.

613

X'08'

X'ocC

X'10!

X'14

I/0 error occurred during reading of
tape label.

Invalid tape label was read.

I/0 error occurred during writing of
tape label.

I/0 error occurred during writing of
tape label.

713

X'04!

A data set on magnetic tape was
opened for INOUT, but the volume
contained a data set whose expiration
date had not been reached and the
operator denied permission.

717

X"1o!

1/0 error occurred during reading of
trailer label 1 to update block count in
DCB.

Figure 17 (Part 2 of 3).

40 Data Facility Product Version 2: Customization

Conditions for Which Recovery Can Be Attempted

System
Completion Return

Code Code Description of Error

737 X128 The EOV DA module was passed an
error return code in register 15 after
issuing the IEFSSREQ macro

instruction. This indicates the
subsystem (JES3) discovered a
functional or logical error that it could
not process.

813 X'04' Data set name on header label does not
match data set name on DD statement.

Figure 17 (Part 3 of 3). Conditions for Which Recovery Can Be Attempted

Recovery Requirements

For most types of recoverable errors, you should supply a recovery work area (see
Figure 18 on page 42) with a new volume serial number for each volume associated
with an error. If no new volumes are supplied for such errors, recovery will be
attempted with the existing volumes, but the likelihood of successful recovery is
greatly reduced.

"If you request recovery for system completion code 117, return code 3C, or system
completion code 214, return code 0C, or system completion code 237, return code
0C, you do not need to supply new volumes or a work area. The condition that
caused the abend is disagreement between the DCB block count and the calculated
count from the hardware. To permit recovery, this disagreement is ignored and the
value in the DCB will be used.

If you request recovery for system completion code 237, return code 04, you don’t
need to supply new volumes or a work area. The condition that caused the abend is
the disagreement between the block count in the DCB and that in the trailer label. To
permit recovery, this disagreement is ignored.

If you request recovery for system completion code 717, return code 10, you don’t
need to supply new volumes or a work area. The abend is caused by an I/O error
during updating of the DCB block count. To permit recovery, the block count is not
updated. Consequently, an abnormal termination with system completion code 237,
return code 04, may result when you try to read from the tape after recovery. You
may attempt recovery from the abend with system completion code 237, return code
04, as explained in the preceding paragraph.

System completion codes and their associated return codes are described in System
Codes.

Chapter 3. DCB Macro Specified User-Written Exit Routines 41

Bit Meaning

0 Free This Work Area

Volume Serial Numbers Are
Provided

2-7 Reserved for Future Use

Halfword Boundary
Displacement
0 Length of This Work Area Option Byte Subpoo! Number
ber of
4 :::‘ V;I:mes New Volume Serial Numbers (6 bytes each)
8
~~ [d

Figure 18. Recovery Work Area

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 18. Place a pointer to
the work area in the last 3 bytes of the parameter list pointed to by register 1 and
described in Figure 16 on page 38.

If you acquire the storage for the work area by using the GETMAIN macro, you can
request that it be freed by a FREEMAIN macro after all information has been
extracted from it. Set the high-order bit of the option byte in the work area to 1 and
place the number of the subpool from which the work area was requested in byte 3 of
the recovery work area.

Only one recovery attempt per data set is allowed during OPEN, CLOSE, or
end-of-volume processing. If a recovery attempt is unsuccessful, you may not request
another recovery. The second time through the exit routine you may request only one
of the other options (if allowed): Issue the abend immediately, ignore the abend, or
delay the abend. If at any time you select an option that is not allowed, the abend is
issued immediately.

Note that, if recovery is successful, you still receive an abend message on your listing.

This message refers to the abend that would have been issued if the recovery had not
been successful.

42 Data Facility Product Version 2: Customization

Abend Installation Exit

The abend installation exit gives you an additional option for handling error situations
that result in an abend. This exit is taken any time an abend condition occurs during
the process of opening, closing, or handling an end-of-volume condition for a DCB.
An IBM-supplied installation exit will give you the option to retry tape positioning
when you receive a 613 system completion code, return code 08 or 0C. (For
additional information about the abend installation exit, see “Data Management
Abend Installation Exit (IFG0199I)” on page 77.

DCB Open Exit

You can specify in an exit list the address of a routine that completes or modifies a
DCB and does any additional processing required before the data set is completely
open. The routine is entered during the opening process after the JFCB has been
used to supply information for the DCB. The routine can determine data set
characteristics by examining fields completed from the data set labels. When your
DCB exit routine receives control, the 3 low-order bytes of register 1 will contain the
address of the DCB currently being processed.

As with label processing routines, the contents of register 14 must be preserved and
restored if any macros are used in the routine. Control is returned to the operating
system by a RETURN macro; no return code is required.

This exit is mutually exclusive with the JFCBE exit. If you need both the JFCBE and
data control block OPEN exits, you must use the JFCBE exit to pass control to your
routines.

The DCB OPEN exit is intended for modifying or updating the DCB. System
functions should not be attempted in this exit prior to returning to OPEN processing;
in particular, dynamic allocation, OPEN, CLOSE, EOV, and DADSM functions
should not be invoked because of an existing OPEN enqueue on the SYSZTIOT
resources.

EOV Defer Nonstandard Input Trailer Label Exit

In an exit list, you can specify a code that indicates that you want to defer
nonstandard input trailer label processing from end-of-data until the data set is closed.
The address portion of the entry is not used by the operating system.

An end-of-volume condition exists in several situations. Two examples are: (1) when
the system reads a filemark or a tapemark at the end of a volume of a multivolume
data set but that volume is not the last, and (2) when the system reads a filemark or a
tapemark at the end of a data set. The first situation is referred to here as an
end-of-volume condition, and the second as an end-of-data condition, although it, too,
can occur at the end of a volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For
an end-of-data condition when this exit code is specified, the EOV routine does not
pass control to your nonstandard input trailer label routine. Instead, the close routine
passes control to your end-of-data routine.

Chapter 3. DCB Macro Specified User-Written Exit Routines 43

EOV Block Count Exit

You can specify in an exit list the address of a routine that will allow you to
abnormally terminate the task or continue processing when the end-of-volume routine
finds an unequal block count condition. When you are using standard labeled input
tapes, the block count in the trailer label is compared by the end-of-volume routine
with the block count in the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of blocks read when the
tape is used as input is contained in the DCBBLKCT field of the DCB.

The routine is entered during end-of-volume processing. The trailer label block count
is passed in register 0. You may gain access to the count field in the DCB by using
the address passed in register 1 plus the proper displacement, as explained in
Debugging Handbook. If the block count in the DCB differs from that in the trailer
label when no exit routine is provided, the task is abnormally terminated. The routine
must terminate with a RETURN macro and a return code that indicates what action is
to be taken by the operating system, as shown in Figure 19. As with other exit
routines, the contents of register 14 must be saved and restored if any macros are
used.

Return Code System Action
0 (X'00') The task is to be abnormally terminated.

4 (X'04') Normal processing is to be resumed.

Figure 19. System Response to Block Count Exit Return Code

EOV Exit for Physical Sequential Data Sets

You can specify in an exit list the address of a routine that is entered when
end-of-volume is reached in processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no EOV exits are taken.

When the end-of-volume routine is entered, register 0 contains O unless user totaling
was specified. If you specified user totaling in the DCB macro (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is
a reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of-volume (EOV) exit routine to take a checkpoint by issuing
the CHKPT macro, which is discussed in Checkpoint/Restart. If a checkpointed job
step terminates abnormally, it can be restarted from the EOV checkpoint. When the
job step is restarted, the volume is mounted and positioned as upon entry to the
routine. Restart becomes impossible if changes are made to the link pack area (LPA)
library between the time the checkpoint is taken and the time the job step is restarted.
When the step is restarted, pointers to end-of-volume modules must be the same as
when the checkpoint was taken.

44 Data Facility Product Version 2: Customization

The end-of-volume exit routine returns control in the same manner as the data control
block exit routine. The contents of register 14 must be preserved and restored if any
macros are used in the routine. Control is returned to the operating system by a
RETURN macro; no return code is required.

FCB Image Exit

You can specify in an exit list the address of a forms control buffer (FCB) image.
This FCB image can be loaded into the forms control buffer of the printer control
unit. The FCB controls the movement of forms in printers that do not use a carriage
control tape.

Multiple exit list entries in the exit list can define FCBs. The OPEN and SETPRT
routines search the exit list for requested FCBs before searching SYS1.IMAGELIB.

The first 4 bytes of the FCB image contain the image identifier. To load the FCB,
this image identifier is specified in the FCB parameter of the DD statement, by the
SETPRT macro, or by the system operator in response to message IEC127D or
IEC129D.

For an IBM 3203, 3211, 3262, 4245, or 4248 Printer, the image identifier is followed
by the FCB image described in System-Data Administration. For a 3800 FCB image,
see IBM 3800 Printing Subsystem Programmer’s Guide. For a 3800 Model 3 FCB
image, see IBM 3800 Model 3 Printing Subsystem Programmer’s Guide.

You can use an exit list to define an FCB image only when writing to an online

printer. Figure 20 on page 46 illustrates one way the exit list can be used to define
an FCB image.

Chapter 3. DCB Macro Specified User-Written Exit Routines 45

DCB .. EXLST=EXLIST

EXLIST DS OF
DC x'10°' Flag code for FCB image
DC AL3(FCBIMG) Address of FCB image
0C X'80000000' End of EXLST and a null entry
FCBIMG DC CL4'IMG1' FCB identifier
DC X'00* FCB is not a default
DC AL1(67) Length of FCB
DC X‘90’ 0ffset print line
* 16 line character positions to the right
DC X'00' Spacing is 6 lines per inch
DC 5X'00’ Lines 2-6, no channel codes
DC Xx'o1' Line 7, channel 1
DC 6X'00’ Lines 8-13, no channel codes
DC X'02' Line (or Lines) 14, channel 2
DC 5X'00' Line (or Lines) 15-19, no channel codes
DC X'03' Line (or Lines) 20, channel 3
nC 9x'00' Line (or Lines) 21-29, no channel codes
0C X'04' Line (or Lines) 30, channel 4
0C 19x'00' Line (or Lines) 31-49, no channel codes
0C X'05" Line (or Lines) 50, channel 5
DC X'o6' Line (or Lines) 51, channel 6
DC X'o7’ Line (or Lines) 52, channel 7
DC x'os’ Line (or Lines) 53, channel 8
DC X'09' Line (or Lines) 54, channel 9
DC X'0A' Line (or Lines) 55, channel 10
DC X'0B' Line (or Lines) 56, channel 11
0C x‘oc' Line (or Lines) 57, channel 12
DC 8x'00' Line (or Lines) 58-65, no channel codes
DC X'10' End of FCB image
END
/ﬁddname DD UNIT=3211,FCB=(IMG1,VERIFY)

/

Figure 20. Defining an FCB Image for a 3211

JFCB Exit

The JFCB exit is used with the RDJFCB macro and OPEN TYPE=J. The RDJFCB
macro uses the address specified in the DCB exit list entry at X'07"* to place a copy of
the JFCB for each DCB specified by the RDJFCB macro.

The area is 176 bytes and must begin on a fullword boundary. It must be located in
the user’s region. Users running in 31-bit addressing mode must ensure that this area
is located below 16 megabytes virtual. The DCB may be either open or closed when

the RDJFCB macro is executed.

If RDJFCB fails while processing a DCB associated with your RDJFCB request, your
task is abnormally terminated. You cannot use the DCB abend exit to recover from a
failure of the RDJFCB macro. For more information about the RDJFCB macro see

System-Data Administration.

46 Data Facility Product Version 2: Customization

JFCBE Exit

JCL-specified setup requirements for the IBM 3800 Printing Subsystem cause a JFCB
extension (JFCBE) to be created to reflect those specifications. A JFCBE exists if
BURST, MODIFY, CHARS, FLASH, or any copy group is coded on the DD
statement. The JFCBE exit can be used to examine or modify those specifications in
the JFCBE. The address of the routine should be placed in an exit list. (The device
allocated does not have to be a 3800.) This exit is taken during OPEN processing and
is mutually exclusive with the data control block exit. If you need both the JFCBE
and data control block exits, you must use the JFCBE exit to pass control to your
routines.

With a 3800, when you issue the SETPRT macro to a SYSOUT data set, the JFCBE
is further updated from the information in the SETPRT parameter list.

When control is passed to your exit routine, the contents of register 1 will be the
address of the DCB being processed.

The area pointed to by register 0 will also contain the 4-byte FCB identification that
is obtained from the JFCB. The FCB identification is placed in the 4 bytes following
the 176-byte JFCBE. If the FCB operand was not coded on the DD statement, this
FCB field will be binary zeros.

If your copy of the JFCBE is modified during an exit routine, you should indicate this
fact by turning on bit JFCBEOPN (X'80' in JFCBFLAG) in the JFCBE copy. On
return to OPEN, this bit indicates whether the system copy is to be updated. The
4-byte FCB identification in your area will be used to update the JFCB regardless of
the bit setting. Checkpoint/restart also interrogates this bit to determine which
version of the JFCBE will be used at restart time. If this bit is not on, the JFCBE
generated by the restart JCL will be used.

Open/Close/EQV Standard User Label Exit

When you create a data set with physical sequential or direct organization, you can
provide routines to create your own data set labels. You can also provide routines to
verify these labels when you use the data set as input. Each label is 80 characters
long, with the first 4 characters UHL1,UHL2,...,UHLS for a header label or
UTL1,UTL2,...,UTLS for a trailer label. User labels are not allowed on indexed
sequential data sets.

The physical location of the labels on the data set depends on the data set
organization. For direct (BDAM) data sets, user labels are placed on a separate user
label track in the first volume. User label exits are taken only during execution of the
OPEN and CLOSE routines. Thus you may create or examine as many as eight user
header labels only during execution of OPEN and as many as eight trailer labels only
during execution of CLOSE. Because the trailer labels are on the same track as the
header labels, the first volume of the data set must be mounted when the data set is
closed.

For physical sequential (BSAM or QSAM) data sets, you may create or examine as
many as eight header labels and eight trailer labels on each volume of the data set.
For ASCII tape data sets, you may create an unlimited number of user header and
trailer labels. The user label exits are taken during OPEN, close, and end-of-volume
processing.

Chapter 3. DCB Macro Specified User-Written Exit Routines 47

To create or verify labels, you must specify the addresses of your label exit routines in
an exit list as shown in Figure 15 on page 34. Thus you may have separate routines
for creating or verifying header and trailer label groups. Care must be taken if a
magnetic tape is read backward, because the trailer label group is processed as header
labels and the header label group is processed as trailer labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2 to 13
are the same as when the macro instruction was issued. However, if your program
does not issue the CLOSE macro, or abnormally ends before issuing CLOSE, the
CLOSE macro will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 21 shows the contents of the area.

Address of 80-byte label buffer area

Z

: r/é/ 56{/{/!?% Addr?ss of DCB being pro:ised
%{44895 /E Address of status information

12 / / / / . ' A
////// Address of user totaling image area

Figure 21. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For
input, the control program reads a user label into this area before passing control to
the label routine. For output, the user label exit routine builds labels in this area and
returns to the control program, which writes the label. When an input trailer label
routine receives control, the EOF flag (high-order byte of the second entry in the
parameter list) is set as follows:

Bit 0 = 0: Entered at end-of-volume
Bit 0 = 1: Entered at end-of-file
Bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable I/0 error has
occurred, the third entry of the parameter list contains the address of the standard
status information. The error flag (high-order byte of the third entry in the parameter
list) is set as follows:

Bit 0 = 1: Uncorrectable I/0 error
Bit 1 = 1: Error occurred during writing of updated label
Bits 2-7: Reserved

48 Data Facility Product Version 2: Customization

The fourth entry in the parameter list is the address of the user totaling image area.
This image area is the entry in the user totaling save area that corresponds to the last
record physically written on the volume. (The image area is discussed further under
“User Totaling for BSAM and QSAM” on page 56.)

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the return code as shown in Figure 22.

You can create user labels only for data sets on magnetic tape volumes with IBM
standard labels or ISO/ANSI/FIPS labels and for data sets on direct access volumes.
When you specify both user labels and IBM standard labels in a DD statement by
specifying LABEL=(,SUL) and there is an active entry in the exit list, a label exit is
always taken. Thus, a label exit is taken even when an input data set does not contain
user labels, or when no user label track has been allocated for writing labels on a
direct access volume. In either case, the appropriate exit routine is entered with the
buffer area address parameter set to 0. On return from the exit routine, normal
processing is resumed; no return code is necessary.

Routine Type Return Code System Response
Input header or 0 (X'00") Normal processing is resumed. If there
trailer label are any remaining labels in the label
group, they are ignored.
4 (X'04') The next user label is read into the label

buffer area and control is returned to
the exit routine. If there are no more
labels in the label group, normal
processing is resumed.

81 (X'08') The label is written from the label buffer
area and normal processing is resumed.

121 (X'0C') The label is written from the label] area,
the next label is read into the label
buffer area, and control is returned to
the label processing routine. If there are
no more labels, processing is resumed.

Output header or 0 (X'00') Normal processing is resumed; no label
trailer label is written from the label buffer area.

4 (X'04'") User label is written from the label
buffer area. Normal processing is
resumed.

8 (X'08") User label is written from the label

buffer area. If fewer than eight labels
have been created, control is returned to
the exit routine, which then creates the
next label. If eight labels have been
created, normal processing is resumed.

Figure 22. System Response to a User Label Exit Routine Return Code

Chapter 3. DCB Macro Specified User-Written Exit Routines 49

Note to Figure 22:

1 Your input label routines can return these codes only when you are processing a
physical sequential data set opened for UPDAT or a direct data set opened for
OUTPUT or UPDAT. These return codes allow you to verify the existing labels,
update them if necessary, then request that the system write the updated labels.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as
follows:

« When an input data set is opened, the input header label exit 01 is taken. If the
data set is on tape being opened for RDBACK, user trailer labels will be
processed.

« When an output data set is opened, the output header label exit 02 is taken.
However, if the data set already exists and DISP=MOD is coded in the DD
statement, the input trailer label exit 03 is taken to process any existing trailer
labels. If the input trailer label exit 03 does not exist, then the deferred input
trailer label exit OC is taken if it exists; otherwise, no label exit is taken. For tape,
these trailer labels will be overwritten by the new output data or by EOV or close
processing when writing new standard trailer labels. For direct access devices,
these trailer labels will still exist unless rewritten by EOV or close processing in an
output trailer label exit.

« When an input data set reaches end-of-volume, the input trailer label exit 03 is
taken. If the data set is on tape opened for RDBACK, header labels will be
processed. The input trailer label exit 03 is not taken if you issue an FEOV
macro. If a defer input trailer label exit OC is present, and an input trailer label
exit 03 is not present, the OC exit is taken. After switching volumes, the input
header label exit 01 is taken. If the data set is on tape opened for RDBACK,
trailer labels will be processed.

» When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

o When an input data set reaches end-of-data, the input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer
label exit 0C.

« When an input data set is closed, no exit is taken unless the data set was
previously read to end-of-data and the defer input trailer label exit OC is present.
If so, the defer input trailer label exit OC is taken to process trailer labels, or if the
tape is opened for RDBACK, header labels.

o When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read
backward. When you read backward, header label exits are taken to process trailer
labels, and trailer label exits are taken to process header labels. The system presents
labels from a label group in ascending order by label number, which is the order in
which the labels were created. If necessary, an exit routine can determine label type
(UHL or UTL) and number by examining the first four characters of each label.
Tapes with IBM standard labels and direct access devices can have as many as eight
user labels. Tapes with ISO/ANSI/FIPS labels can have an unlimited number of user
labels.

50 Data Facility Product Version 2: Customization

If an uncorrectable error occurs during reading or writing of a user label, the system
passes control to the appropriate exit routine, with the third word of the parameter list
flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate return
code (0 or 4). No return code is required after an output error. If an output error
occurs while the system is opening a data set, the data set is not opened (DCB is
flagged) and control is returned to your program. If an output error occurs at any
other time, the system attempts to resume normal processing.

Open/EOV Nonspecific Tape Volume Mount Exit

This user exit gives you the option of identifying a specific tape volume to be
requested in place of a nonspecific (scratch) tape volume. A X'17' in the DCB exit
list (EXLST) activates this exit. (See “EXLST Exit List” on page 34 for more
information about EXLST.) This exit, which supports only IBM standard labeled
tapes, was designed to be used with the Open/EOV volume security and verification
user exit. However, this exit can be used by itself.

Open or end-of-volume (EQV) calls this exit when either must issue mount message
IEC501A or EICS01E to request a scratch tape volume. Open issues the mount
message if you specify the DEFER parameter with the UNIT option, and you either
didn’t specify a volume serial number in the DD statement or you specified
'VOL=SER=SCRTCH'. EOV always calls this exit for a scratch tape volume
request.

This user exit gets control in the key and state of the program that issued the OPEN
or EOV, and no locks are held. After you are in control, you must provide a return
code in register 15.

Return Code Meaning

00 (X'00") Continue with the scratch tape request as if this exit had not
been called.

04 (X'04') Replace the scratch tape request with a specific volume serial
number. Do this by loading the address of a 6-byte volume
serial number into register 0.

Note: A value other than 0 or 4 in register 15 is treated as a 0.

If OPEN or EOV finds that the volume pointed to by register 0 is being used either by
this or by another job (an active ENQ on this volume), it takes this exit again and
continues to do so until you either specify another volume serial number or request a
scratch volume. If the volume you specify is available but is rejected by OPEN or
EOV for some reason (I/O errors, expiration date, password check, and so forth), this
exit is not taken again.

Chapter 3. DCB Macro Specified User-Written Exit Routines 51

When this exit gets control, register 1 points to the parameter list described by the
IECOENTE macro. Figure 23 shows this parameter list.

+ OENTID DS CL4 PLIST ID ('OENT')

+ OENTFLG DS X FLAG BYTES

+ OENTOEOV EQU X'80’ 0=0PEN, 1=EQV

+ OENTNTRY EQU X'O1' 0=1ST ENTRY ,1=SUBSEQUENT ENTRY

+ OENTOPTN DS X OPEN OPTION (OUTPUT/INPUT/...)
+ OENTMASK EQU X'OF' TO MASK OFF UNNECESSARY BITS
+ OENTRSVD DS XL2 RESERVED

+ OENTDCBA DS A ADDRESS OF USER DCB

+ OENTVSRA DS A ADDRESS OF VOLSER

+ OENTJFCB DS A ADDRESS OF 0/C/E COPY OF JFCB
+ OENTLENG EQU *-&L PLIST LENGTH

+ OENTREGS DS 6F REGISTER SAVE AREA

+ OENTAREA EQU *-OENTE MACRO LENGTH

ooooo

Figure 23. IECOENTE Macro Parameter List

OENTOEOV
set to 0 if OPEN called this exit; set to 1 if EOV called this exit.

OENTNTRY
set to 1 if this is not the first time this exit was called because the requested
tape volume is being used by this or any other job.

OENTOPTN
contains the OPEN options from the DCB parameter list (OUTPUT, INPUT,
OUTIN, INOUT, and so forth). For EOV processing, the options byte in the
DCB parameter list indicates how EOV is processing this volume. For example,
if you open a tape volume for INOUT and EOV is called during an input
operation on this tape volume, the DCB parameter list and OENTOPTN are set
to indicate INPUT.

OENTVSRA
points to the last volume serial number you requested in this exit but was in use

either by this or another job. OENTVSRA is set to 0 the first time this exit is
called.

OENTJFCB
points to the OPEN or EOV copy of the JFCB. The high order bit is always
on, indicating that this is the end of the parameter list.

OENTREGS

starts the register save area used by OPEN or EOV. Do not use this save area
in this user exit.

52 Data Facility Product Version 2: Customization

Convention for Saving and Restoring General Registers

When this user exit is entered, the general registers contain:

Register Contents

0 Variable

1 Address of the parameter list for this exit

2-13 Contents of the registers before the OPEN or EOV was
issued

14 Return address (you must preserve the contents of this
register in this user exit)

15 Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14. The
operating system restores the contents of registers 2 through 13 before it returns to
OPEN or EOV and before it returns control to the original calling program.

Do not use the save area pointed to by register 13; the operating system uses it. If
you call another routine, or issue a supervisor or data management macro in this user
exit, you must provide the address of a new save area in register 13.

Open/EOV Volume Security and Verification Exit

This user exit lets you verify that the volume that is currently mounted is the one you
want. You can also use it to bypass the OPEN or EOV expiration date, password,
and data set name security checks. A X'18' in the DCB exit list (EXLST) activates
this exit. (See “EXLST Exit List” on page 34 for more information about EXLST.)
This exit, which supports IBM standard label tapes, was designed to be used with the
OPEN/EOV nonspecific tape volume mount user exit. (See “Open/EOV
Nonspecific Tape Volume Mount Exit” on page 51 for more information about that
user exit.) However, this exit can be used by itself.

Note: This exit is available only for APF-authorized programs.

This user exit gets control in the key and state of the program that issued the OPEN
or EOV request, and no locks are held. After you are in control, you must provide a
return code in register 15.

Return Code =~ Meaning

00 (X'00") Use this tape volume. Return to OPEN or EOV as if this exit
had not been called.

Chapter 3. DCB Macro Specified User-Written Exit Routines 53

Return Code Meaning

04 (X'04'") Reject this volume and:

« Output

~— If the data set is the first data set on the volume,
request a scratch tape. This causes OPEN or EOV to
issue demount message IEC502E for the rejected
tape volume, and mount message IEC501A for a
scratch tape volume. If the nonspecific tape volume
mount exit is active, it is called.

— If the data set is other than the first one on the
volume, process this return code as if it were return
code 08.

e Input

— Treat this return code as if it were return code 08.

08 (X'08") Abnormally terminate OPEN or EOV unconditionally; no
scratch tape request is issued.

Open abnormally terminates with a 913-34 abend code, and
EOV terminates with a 937-29 abend code.

12 (X'0C") Use this volume without checking the data set’s expiration
date, but check its password and name. If the expiration date
of the current data set is in effect, the new data set can still
write over it.

16 (X'10") Use this volume. A conflict with the password, label
expiration date, or data set name does not prevent the new
data set from writing over the current data set if it is the first
one on the volume. To write over other than the first data set,
the new data set must have the same level of security
protection as the current data set.

When this exit gets control, register 1 points to the parameter list described by the
IECOEVSE macro. The parameter list is shown in Figure 24 on page S5.

54 Data Facility Product Version 2: Customization

+ OEVSID DS CL4 ID FIELD = OEVS

+ OEVSFLG DS X FLAGS BYTE

+ QEVSEOV EQU X'80' 0=0PEN, 1=EOV

+ OEVSFILE EQU X'O1' 0=1ST FILE, 1=SUBSEQ FILE
* BITS 1 THROUGH 6 RESERVED

+ QEVSOPTN DS X OPEN OPTION (OUTPUT/INPUT/...)
+ OEVSMASK EQU X'OF' MASK

+ OEVSRSVD DS XL2 RESERVED

+ OEVSDCBA DS A ADDRESS OF USER DCB

+ OEVSVSRA DS A ADDRESS OF 6-BYTE VOLSER

+ OEVSHDR1 DS A ADDRESS OF HDR1/EOF1

+ OEVSJFCB DS A ADDRESS OF 0/C/E COPY OF JFCB
+ OEVSLENG EQU *-&L PLIST LENGTH

+ OEVSREGS DS 6F REGISTER SAVE AREA

+ OEVSAREA EQU *-OEVSE MACRO LENGTH

Figure 24. IECOEVSE Macro Parameter List

OEVSFLG
a flag field containing two flags.

OEVSEOV is set to 0 if OPEN called this exit; set to 1 if EOV called this exit.

OEVSFILE is set to 0 if the first data set on the volume is to be written; set to
1 if this is not the first data set on the volume to be written. This bit is always 0
for INPUT processing.

OEVSOPTN
a 1-byte field containing the OPEN options from the DCB parameter list
(OUTPUT, INPUT, INOUT, and so forth). For EOV processing, this byte
indicates how EQV is processing this volume. For example, if you opened a
tape volume for OUTIN and EOV is called during an output operation on the
tape volume, the DCB parameter list and OEVSOPTN are set to indicate
OUTPUT.

OEVSVSRA
a pointer to the current volume serial number that OPEN or EOV is processing.

OEVSHDR1
a pointer to a HDR1 label, if one exists; or an EQF1 label, if you are creating
other than the first data set on this volume.

OEVSJFCB
a pointer to the OPEN, CLOSE, or EOV copy of the JFCB. The high-order bit
is always on, indicating that this is the end of the parameter list.

OEVSREGS
a register save area used by OPEN or EOV. Do not use this save area in this
user exit.

Chapter 3. DCB Macro Specified User-Written Exit Routines 55

Convention for Saving and Restoring General Registers

When this user exit is entered, the general registers contain:

Register Contents

0 Variable

1 Address of the parameter list for this exit.

2-13 Contents of the registers before the OPEN or EOV was
issued

14 Return address (you must preserve the contents of this
register in this user exit)

15 Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14. The
operating system restores the contents of registers 2 through 13 before it returns to
OPEN or EOV and before it returns control to the original calling program.

Do not use the save area pointed to by register 13; the operating system uses it. If
you call another routine or issue a supervisor or data management macro in this user
exit, you must provide the address of a new save area in register 13.

QSAM Parallel Input Exit

QSAM parallel input processing may be used to process two or more input data sets
concurrently, such as sorting or merging several data sets at the same time.

A request for parallel input processing is indicated by including the address of a
paralle] data access block (PDAB) in the DCB exit list. The address must beon a
fullword boundary with the first byte of the entry containing X'12" or, if it is the last
entry, X'92'. For more information on parallel input processing, see Data
Administration Guide.

User Totaling for BSAM and QSAM

When creating or processing a data set with user labels, you may develop control
totals for each volume of the data set and store this information in your user labels.
For example, a control total that was accumulated as the data set was created can be
stored in your user label and later compared with a total accumulated during
processing of the volume. User totaling helps you by synchronizing the control data
you create with records physically written on a volume. For an output data set
without user labels, you can also develop a control total that will be available to your
end-of-volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction
or in the DCB parameter of the DD statement. The area in which you collect the
control data (the user totaling area) must be identified to the control program by an
entry of X'0A' in the DCB exit list. OPTCD=T cannot be specified for SYSIN or
SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a halfword
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of
the complete area. A data set for which you have specified user totaling (OPTCD=T)
will not be opened if either the totaling area length or the address in the exit list is 0,
or if there is no X’0A’ entry in the exit list.

56 Data Facility Product Version 2: Customization

The control program establishes a user totaling save area, where the control program
preserves an image of your totaling area, when an 1/0 operation is scheduled. When
the output user label exits are taken, the address of the save area entry (user totaling
image area) corresponding to the last record physically written on a volume is passed
to you in the fourth entry of the user label parameter list. (This parameter list is
described in “Open/Close/EOV Standard User Label Exit” on page 47.) When an
end-of-volume exit is taken for an output data set and user totaling has been
specified, the address of the user totaling image area is in register 0.

When using user totaling for an output data set, that is, when creating the data set,
you must update your control data in your totaling area before issuing a PUT or a
WRITE macro. The control program places an image of your totaling area in the user
totaling save area when an I/O operation is scheduled. A pointer to the save area
entry (user totaling image area) corresponding to the last record physically written on
the volume, is passed to you in your label processing routine. Thus you can include
the control total in your user labels. When subsequently using this data set for input,
you can collect the same information as you read each record and compare this total
with the one previously stored in the user trailer label. If you have stored the total
from the preceding volume in the user header label of the current volume, you can
process each volume of a multivolume data set independently and still maintain this
system of control.

When variable-length records are specified with the totaling function for user labels,
special considerations are necessary. Because the control program determines
whether a variable-length record will fit in a buffer after a PUT or a WRITE has been
issued, the total you have accumulated may include one more record than is really
written on the volume. For variable-length spanned records, the accumulated total
will include the control data from the volume-spanning record although only a
segment of the record is on that volume. However, when you process such a data set,
the volume-spanning record or the first record on the next volume will not be
available to you until after the volume switch and user label processing are completed.
Thus the totaling information in the user label may not agree with that developed
during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data
set, control data pertaining to each of the last two records and include both totals in
your user labels. Then the total related to the last complete record on the volume and
the volume-spanning record or the first record on the next volume would be available
to your user label routines. During subsequent processing of the data set, your user
label routines can determine if there is agreement between the generated information
and one of the two totals previously saved.

When the totaling function for user labels is selected with DASD devices and

secondary space is specified, the total accumulated may be one less than the actual
written.

Chapter 3. DCB Macro Specified User-Written Exit Routines 57

Chapter 4. User Exit Routines Specified with Utilities

General Guidance

Exits can be specified with various utilities to:

o Modify physical records

e Handle 1/0 errors

o Process user input/output header and trailer labels

For more information about utilities see Utilities.

The exits are specified in a parameter of the EXITS statement in the various utilities.
The exits available from utility programs are listed in Figure 25.

Exit Routine When Available Where Specified
Modify physical After the physical record is read DATA parameter
records before and before any editing is of IEBGENER
processing by performed
IEBGENER
Input header or When the data set is opened for INHDR/INTLR
trailer label input (header) or closed (trailer) parameters of
IEBCOMPR,
IEBPTPCH,
IEBGENER
Output header or When the data set is opened for OUTHDR/OUTLR
trailer label output (header) or closed (trailer) parameters of
IEBCOMPR,
IEBGENER
Totaling Prior to IEBGENER writing of TOTAL
each physical record (sequential parameter of
data sets only) IEBGENER
1/0 error When permanent error occurs in IOERROR
IEBGENER parameter of
IEBGENER
Error detected by After unequal comparison ERROR
IEBCOMPR parameter of
IEBCOMPR
Build output record Prior to IEBGENER writing of a KEY of
key record IEBGENER

Figure 25 (Part 1 of 2).

User-Exit Routines Specified in Utilities

Chapter 4. User Exit Routines Specified with Utilities

59

Exit Routine When Available Where Specified
Process logical Before input records are PRECOMP
records of input processed by IEBCOMPR parameter of
data sets before IEBCOMPR
compared

Process IEBPTPCH | Before logical record is processed INREC/OUTREC
input/output (INREC) or before logical record parameter of
records is written (OUTREC) IEBPTPCH
Analyze or modify After output record is CREATE
IEBDG output constructed, but before it is parameter of
record placed in the output data set IEBDG

Figure 25 (Part 2 of 2). User-Exit Routines Specified in Utilities

Register Contents at Entry to Routines from Utility Programs

Reg. Contents

1 Address of the parameter list

13 Address of the register save area. The save area must not be used
by user label processing routines.

14 Return address to utility

15 Entry address to the exit routine.

Figure 26. Register Contents at Entry to Utility Exit Routines

Programming Considerations

The exit routine must reside in either the job library or link library.

Returning from an Exit Routine

An exit routine returns control to the utility program by means of the RETURN
macro instruction in the exit routine. Registers 1 through 14 must be restored before
control is returned to the utility program.

The format of the RETURN macro instruction is:

[label] RETURN | [(r,n)]

LRC=n| (15)]

60 Data Facility Product Version 2: Customization

where:

(r,r)
specifies the range of registers, from 0 to 15, to be reloaded by the utility
program from the register save area. For example, (14,12) indicates that all
registers except register 13 are to be restored. If this parameter is omitted, the
registers are considered properly restored by the exit routine.

RC

specifies a decimal return code in register 15. If RC is omitted, register 15 is
loaded as specified by (r,r).

RC values can be coded:

n
specifies a return code to be placed in the 12 low order bits of register
15.

(15)
specifies that general register 15 already contains a valid return code.

The user’s label processing routine must return a code in register 15 as shown in
Figure 27 unless:

o The buffer address was set tozero before entry to the label processing routine. In
this case, the system resumes normal processing regardless of the return code.

« The user’s label processing routine was entered after an uncorrectable output
error occurred. In this case the system attempts to resume normal processing.

Figure 27 shows the return codes that can be issued to utility programs by user exit
routines. Slightly different return codes are used for the UPDATE=INPLACE option
of the [IEBUPDTE program. (See Utilities for more information).

Return
Type of Exit Code Action

Input Header or 0 The system resumes normal
Trailer Label processing. If there are more labels in
the label group, they are ignored.

4 The next user label is read into the
label buffer area and control is
returned to the user’s routine. If there
are no more labels, normal processing
is resumed.

16 The utility program is terminated on
request of the user routine.

Output Header or 0 The system resumes normal
Trailer Label processing. No label is written from
the label buffer area.

Figure 27 (Part 1 of 3). Return Codes That Must Be Issued by User Exit Routines

Chapter 4. User Exit Routines Specified with Utilities 61

Type of Exit

Returmn
Code

Action

The user label is written from the label
buffer area. The system then resumes
normal processing.

The user label is written from the label
buffer area. If fewer than eight labels
have been created, the user’s routine
again receives control so that it can
create another user label. If eight
labels have been created, the system
resumes normal processing.

16

The utility program is terminated on
request of the user routine.

Totaling Exits

Processing continues, but no further
exits are taken.

Normal operation continues.

Processing ceases, except for EOD
processing on output data set (user
label processing).

16

Utility program is terminated.

All other exits
(except

IEBPTPCH’s exit

OUTREC)

0-11 (Set to
next multiple
of four)

Return code is compared to highest
previous return code; the higher is
saved and the other discarded. At the
normal end of job, the highest return
code is passed to the calling processor.

12 0r 16

Utility program is terminated and this
return code is passed to the calling
Processor.

ERROR

Record is not placed in the error data
set. Processing continues with the
next record.

Record is placed in the error data set
(SYSUT3).

Record is not placed in error data set
but is processed as a valid record (sent
to OUTREC and SYSUT2 if
specified).

16

Utility program is terminated.

OUTREC
(IEBPTPCH)

Record is not placed in normal output
data set.

12o0r 16

Utility program is terminated.

Figure 27 (Part 2 of 3).

62 Data Facility Product Version 2: Customization

Return Codes That Must Be Issued by User Exit Routines

Return

Type of Exit Code Action
Any other Record is placed in normal output data
number set (SYSUT2).

Figure 27 (Part 3 of 3). Return Codes That Must Be Issued by User Exit Routines

Parameters Passed to Label Processing Routines

The parameters passed to a user’s label processing routine are addresses of: the
80-byte label buffer, the DCB being processed, the status information if an
uncorrectable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to the user’s label processing routine. When the utility
program has been requested to generate labels, the user’s label processing routine
must construct a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but the
data set has no user labels, the system still takes the specified exits to the appropriate
user’s routine. In such a case, the user’s input label processing routine is entered with
the buffer address parameter set to zero.

The format and content of the DCB are presented in Data Administration: Macro
Instruction Reference.

Bit O of flag 1 in the DCB-address parameter is set to a value of 0 except when:

« Volume trailer or header labels are being processed at volume switch time.

o The trailer labels of a MOD data set are being processed (when the data set is
opened).

If an uncorrectable input/output error occurs while reading or writing a user label, the
appropriate label processing routine is entered with bit O of flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

Parameters Passed to Non-Label Processing Routines

Figure 28 shows the programs from which exits can be taken to non-label processing
routines, the names of the exits, and the parameters available for each exit routine.

Chapter 4. User Exit Routines Specified with Utilities 63

Program Exit Parameters

IEBGENER KEY Address at which key is to be placed (record
follows key); address of DCB.
DATA Address of SYSUT1 record; address of DCB.

Address of DECB; cause of the error and
IOERROR | address of DCB. (Address in lower order
three bytes and cause of error in high order
byte.)

IEBCOMPR ERROR Address of DCB for SYSUT1; address of
DCB for SYSUT2.1

PRECOMP | Address of SYSUT1 record; length of
SYSUT1 record, address of SYSUT?2 record;

length of SYSUT?2 record.
IEBPTPCH INREC Address of input record; length of the input
record.
OUTREC Address of output record; length of the output
record.

Figure 28. Parameter Lists for Non-Label Processing Exit Routines
Note to Figure 28:

1 The IOBAD pointer in the DCB points to a location that contains the address of
the corresponding data event control block (DECB) for these records. The
format of the DECB is illustrated in Appendix B, “Status Information
Following an Input/Output Operation” on page 183.

Processing User Labels

User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDTE,
and IEHMOVE. In some cases, user-label processing is automatically performed; in
other cases, you must indicate the processing to be performed. In general, user label
support allows the utility program user to:

o Process user labels as data set descriptors.
o Process user labels as data.

« Total the processed records prior to each WRITE command (IEBGENER and
IEBUPDTE only).

For either of the first two options, the user must specify standard labels (SUL) on the
DD statement that defines each data set for which user-label processing is desired.
For totaling routines, OPTCD=T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program. This function
must be performed by a user’s label processing routines. IEBUPDTE will, however,
allow you to create labels on the output data set from data supplied in the input
stream. (See Utilities for more information on the IEBUPDTE program.)

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or copies
user labels directly to a new data set. See Utilities for more information about
IEHMOVE.

64 Data Facility Product Version 2: Customization

Volume switch labels of a multivolume data set cannot be processed by IEHMOVE,
IEBGENER, or IEBUPDTE. Volume switch labels are therefore lost when these
utilities create output data sets. To ensure that volume switch labels are retained,
process multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors

When user labels are to be processed as data set descriptors, one of the user’s label
processing routines receives control for each user label of the specified type. The
user’s routine can include, exclude, or modify the user label. Processing of user labels
as data set descriptors is indicated on an EXITS statement with keyword parameters
that name the label processing routine to be used.

The EXIT keyword parameters indicate that a user routine should receive control
each time the OPEN, EOV, or CLOSE routine encounters a user label of the type
specified.

Figure 29 illustrates the action of the system at OPEN, EOV, or CLOSE time. When
OPEN, EOV, or CLOSE recognizes a user label and when SUL has been specified on
the DD statement for the data set, control is passed to the utility program. Then, if an
exit has been specified for this type of label, the utility program passes control to the
user routine. The user’s routine processes the label and returns control, along with a
return code, to the utility program. The utility program then returns control to OPEN,
EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the number of user labels in
the group and the return codes supplied by the user’s routine.

OPEN/EOV/CLOSE

I

\J

UTILITY program

]

Y]
User's label
processing
routine

Figure 29. System Action at OPEN, EOV, or CLOSE Time

Chapter 4. User Exit Routines Specified with Utilities 65

Exiting to a User’s Totaling Routine

When an exit is taken to a user’s totaling routine, an output record is passed to the
user’s routine just before the record is written. The first halfword of the totaling area
pointed to by the parameter contains the length of the totaling area, and should not be
used by the user’s routine. If the user has specified user label exits, this totaling area
(or an image of this area) is pointed to by the parameter list passed to the appropriate
user label routine.

An output record is defined as a physical record (block), except when IEBGENER is
used to process and reformat a data set that contains spanned records.

The code returned by the user’s totaling routine determines system response as shown
in Figure 30.

Codes Meaning

00 (X'00") Processing is to continue, but no further exits
are to be taken.

04 (X'04') Normal processing is to continue.

08 (X'08') Processing is to terminate, except for EOD processing on the output
data set (user label processing).

16 (X'10Y) Processing is to be terminated.

Figure 30. User Totaling Routine Return Codes

Processing User Labels as Data

When user labels are processed as data, the group of user labels, as well as the data
set, is subject to the normal processing done by the utility program. The user can
have labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or copied
by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS statement
in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an execution
of a utility program. If there are user label-processing routines, however, their return
codes may influence the processing of the labels as data. In addition, a user’s output
label-processing routine can override the action of a LABELS statement because it
receives control before each output label is written. At this time, the label created by
the utility as a result of the LABELS statement is in the label buffer, and the user’s
routine can modify it.

66 Data Facility Product Version 2: Customization

Chapter 5. Data Management Installation Exit Routines

General Guidance

This chapter discusses how installation-written exit modules can:

o Take control before and after direct access device storage management
(DADSM) processing

o Take control during Open for a DCB

e Determine whether a missing data set control block (such as for a data set that
has been moved to another volume) can be restored to a volume

o Recover from errors that may occur during the opening, closing, or handling of an
end-of-volume condition for a data set associated with the user’s task

« Bypass, limit, or override system-calculated values that assist you in selecting
optimum DASD data set block size/CI size.

o Bypass or change datestamp processing for VSAM.

« Perform special processing before or after SVC 26, 29, or 30.

The data management replaceable modules are listed in Figure 31.

Module Name Description When Available
IFGOEX0A Open/EOQV installation exit Format-1 DSCB not
found or tape
end-of-volume
IFGOEX0B DCB open installation exit At open
IFG01991 Data management abend open, close, end of
installation exit volume abnormal
conditions
IGBDCSX1 precalculation and postcalculation DASD calculation
IGBDCSX2 exit services
IGGPREQO DADSM preprocessing and DADSM functions
IGGPOSTO postprocessing exit allocate, extend,
scratch, partial release
and rename.
IDATMSTP Datestamp processing in VSAM During VSAM OPEN
IGG026DU Catalog pre-initialization exit Before or after
module CATALOG (SVC 26)
IGG029DM DADSM SCRATCH failure exit SCRATCH (SVC 29),
module after error return code
of4or8

Figure 31 (Part 1 of 2).

Data Management Replaceable Modules

Chapter 5. Data Management Installation Exit Routines 67

Module Name Description When Available

IGG029DU DADSM SCRATCH Before or after
pre-initialization exit module SCRATCH (SVC 29)

IGG030DU DADSM RENAME Before or after
pre-initialization exit module RENAME (SVC 30)

Figure 31 (Part 2 of 2). Data Management Replaceable Modules

Programming Considerations

The data management replaceable modules you decide to replace must be named the
same as the IBM-supplied modules.

In general, the data management replaceable module you replace must

o Handle multiple requests (reentrant)
¢ Reside in SYS1.LPALIB (or link edit into LINKLIB)

» Save and restore registers
Limitations and Restrictions

Be aware of the impact other products have on the modifications you install. For
example, RACF takes control at the same time as some of the installation exit
modules. There may be contention for resources.

DADSM Preprocessing and Postprocessing Exit Routines

The Exit Modules

The Exit Environment

DADSM allows an installation-written preprocessing module (exit routine) to take
control before DADSM processing, and an installation-written postprocessing module
after DADSM processing. DADSM uses an exit parameter list to communicate with
these exit routines. This parameter list is obtained from storage below the 16M line.
The format of the parameter list is shown in Figure 32 on page 70.

All DADSM functions (allocate, extend, scratch, partial release, and rename) have a
common preprocessing exit routine and a common postprocessing exit routine that the
installation exit routine can replace. These exit routines enable you to gain control
before and after DADSM processing. The preprocessing exit routine module is
IGGPREOQD; the postprocessing exit routine module is IGGPOSTO. Each is used by
all the DADSM functions just mentioned. The modules reside in SYS1.LPALIB. You
can use System Modification Program (SMP) to replace the IBM-supplied exit routine
modules with an installation exit routine you write.

The exit routines are given control in supervisor state and protect key zero with no
locks held. The exit routines may execute in either 24-bit or 31-bit addressing mode.
If they execute in 24-bit mode, be aware of the following requirement:

The scheduler work area (SWA), which contains the JFCB, may reside above
the 16M line. In this case, the IEXPTR1 field, which contains the JFCB address
for allocate, extend, and partial release, will be a 31-bit address. When your exit

68 Data Facility Product Version 2: Customization

routine is called for allocate, extend, or partial release and the JFCB resides
above the 16M line, it must be in 31-bit addressing mode before using the
IEXPTRI1 field in the exit parameter list.

The exit routines must be reentrant. DADSM or the program that invokes DADSM
(by issuing enqueue, reserve, and so forth) will have acquired the system resources
needed to serialize system functions. These enqueues may prevent other system
services from completing successfully. In particular, exit routines must not issue
dynamic allocation, OPEN, CLOSE, EOV, LOCATE, and other DADSM functions
because they issue an enqueue on the SYSZTIOT resource. If the exit routines
require access to an installation data set, the control blocks required to access that
data set (DCB, DEB) should be built during system initialization (IPL/NIP).

The type and number of resources held by DADSM depend upon the DADSM
function and the exit taken. For example, on entry to the installation preprocessing
exit (IGGPRE0Q), DADSM holds an enqueue on the VTOC and a reserve on the
device for the subject volume of a SCRATCH, RENAME, or partial release function.
DADSM releases these resources before the installation postprocessing exit
(IGGPOSTO0) takes control.

You must anticipate system resource contention when services are requested from an
exit routine. For example, RACEF services issue an enqueue on the RACF data set or
a reserve on that data set’s volume. This contention can cause system performance
problems or an interlock condition.

When IGGPRECO Gets Control

The preprocessing exit routine, IGGPREOQ9, is given control before the first VTOC
update and after the initial validity check is successful. Input to IGGPREOQO is a
parameter list, mapped by macro IECIEXPL, that contains addresses of input data
and a function code that identifies the DADSM function. IGGPREOQO is given control
once for each volume in the volume list supplied to scratch and rename. A field in the
parameter list, [EXRSVWD, may be used to pass data from the preprocessing exit
routine to the postprocessing exit routine.

A zero return code from IGGPREOQO indicates the DADSM function may proceed.

Rejecting a DADSM Request

A preprocessing exit routine may reject a DADSM request, in which case an I/O error
return code is generated for all functions except allocate and extend. A return code of
4 or 8 from IGGPREOO to allocate causes allocate to return X'B4' or X'B0’,
respectively, to its caller in register 15. Scheduler allocation treats a X'B4' as a
conditional rejection of the allocate request only for the volume being processed. If
the allocate request is not for a specific volume, another volume may be chosen and
the allocate function retried. Scheduler allocation treats a X'B0' return code from
allocate as an unconditional rejection of the allocate request. If the allocate request is
rejected, the preprocessing exit routine can put a reason code in the parameter list
field, IEXREASN, and the code will be returned by allocate to its caller, together with
the X"BO' or X'B4' return code in register 15. The reason code will appear in the
JCL error message if the allocate request is not retried. A nonzero return code from
IGGPREOQO0 to extend will cause extend to return an error return code of X'FFFF
FFEC' to its caller. If the caller is end-of-volume, an E37-0C abend will be issued.

Chapter 5. Data Management Installation Exit Routines 69

Rejecting a DADSM Scratch Request

In the integrated catalog facility environment, VSAM will delete the VVR entry first
and then call DADSM to continue with the scratch of the format-1 DSCB. If a
preprocessing exit routine rejects the DADSM request, the format-1 DSCBs will
remain while the VVR entry no longer exists. This results in a broken catalog. It is
the user’s responsibility to ensure that preprocessing exits do not reject 8 DADSM
scratch request for a VSAM data set.

Data that DADSM Passes to the Exits

The format of the parameter list (IEPL) is shown in Figure 32.

Name Offset Bytes Description

IEXID 00(X'00") 4 EBCDIC "IEPL"

IEXLENG 04(X'04") 1 Length of parameter list

IEXFUNC 05(X'05') 1 DADSM function code:

IEXALL X'01'-Allocate

IEXEXT X1'02!'-Extend

IEXSCR X'03'-Scratch

IEXPR X'04'-Partial release

IEXREN X'05'-Rename

IEXPREL X'06'-PARTREL Partial release

IEXVEXT X'07'-Extend (VSAM caller without
DEB parameter)?!

IEXEXTCD 06(X'06') 1 Extend code
X'01' Extend data set on current
volume
X'02' Extend an OS catalog on
current volume
X'04' Extend data set on new
volume
X'81' Extend VSAM data space on
current volume

IEXFLAG 07(X'07') 1 Flag byte

IEXENQ 1....... VTOC is enqueued upon entry.

IEXVIO do VIO data set

IEXMF1 I P IEXFMT1 points to DX1FMTID of

a partial format-1 DSCB (partial
DSCB passed as input to allocate,
and not JFCB is not available).

* ...X XXXX Reserved
IEXREASN 08(X'08') 2 Installation reject reason code
* 2 Reserved

Figure 32 (Part 1 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter List

1 If IEXVEXT is on, you must ensure that your installation exit modules do not attempt to use
the IEXPTR? field (DEB address is undefined for this extend function).

70 Data Facility Product Version 2: Customization

N\

Name Offset Bytes Description

IEXUCB 12(X'0C") 4 Address of UCB. The UCB address
is not available to the pre-exit for
VIO allocation.

IEXPTRI12 16(X'10*) 4 Address of the following:

o JFCB (allocate, extend, partial
release)
« Data set name (PARTREL
partial release)
o Scratch/rename input parameter
list (in user storage)
IEXPTR2 20(14) 4 Address of the following:

DSAB list (ISAM allocate)
DEB (extend on old volume)
DCB (partial release)
Partial DCB (PARTREL partial
release) DCBFDAD and
DCBDEBA are defined, the
associated DEB has been
constructed; DEBDSCBA,
DEBNMEXT, and the
DEBDASD segment(s) are
defined. DEBDVMOD is not
defined.
o Current volume list entry
(scratch/rename)
Address of the data set name
Address of the 96-byte data portion
of format-1 DSCB (preexit for
scratch; pre- and postexit for partial
release and rename; postexit for
allocate). May be supplied by preexit
of allocate, and extend on new
volume, to serve as a model if
IEXMF1 and IEXVIO are zero.
IEXFMT?2 32(X'20') 4 Address of format-2 DSCB. (ISAM
allocate post exit.)
IEXRSV00 36(X'24Y) 4 Reserved
IEXEXTBL 40(X'28") 4 Address of DADSM table (pre- and
postexit for scratch and partial
release; postexit for allocate and
extend). For VIO allocate postexit,
this is the address of DS1EXT1 in
the virtual FM1 DSCB.
IEXDCC 44(X'2C") 4 DADSM completion code (postexit)

IEXDSN 24(X'18')
IEXFMT1 28(X'1CY)

&~

Figure 32 (Part 2 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter List

Chapter 5. Data Management Installation Exit Routines 71

Name Offset Bytes Description

IEXRSVWD 48(X'30") 4 Reserved word for use by installation
exit.

Figure 32 (Part 3 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter List

Passing a Model Format-1 DSCB

The preprocessing exit for allocate and extend on a new volume may return, in the
parameter list field IEXFMT1, the address of the data portion of a model format-1
DSCB, starting with field DSIFMTID. The DSCB will be moved to the allocate or
extend work area before building the format-1 DSCB. The only fields that may be
nonzero in the area are the DSIREFD (the data-last-referenced field) and fields
currently unused. Failure to zero out all fields, except for DSIREFD and all currently
unused fields in the model format-1 DSCB, can result in the abnormal termination of
the task or lead to unpredictable results. All other fields will be initialized by allocate
or extend.

IEXFMT1 may not be supplied by IGGPREOQO for a VIO allocate request (indicated
by flag, IEXVIQO, set to one), or, if a partial DSCB instead of a JFCB has been
supplied to allocate (indicated by flag, IEXMF1, set to one). In the latter case,
IEXFMT1 is passed to IGGPREOQO initialized to the address of the DS1FMTID field
of the partial format-1 DSCB (supplied to allocate by its caller) in the allocate work
area, and DS1REFD may be initialized by IGGPREQQ. If extend was successful,
IEXFMT1 is zeroed out prior to taking the postexit, IGGPOSTO.

When IGGPOSTO Gets Control

The postprocessing exit module, IGGPOSTO, is given control after a DADSM
function has been completed or attempted. IGGPOSTO is given control if IGGPREQ0Q
was given control, whether the DADSM function was successful or not. IGGPOSTO
is not given control if IGGPREQ0 was not given control, or if the DADSM function
terminated abnormally. IGGPREOO may establish a recovery routine, if required, to
clean up system resources. The DADSM recovery routine does not give IGGPOSTO0
control. Input to IGGPOSTO is the same parameter list passed to IGGPRE(00. No
return codes from IGGPOSTO are defined.

System Control Blocks

The DADSM installation exit parameter list contains the addresses of system control
blocks. The mapping macros of those control blocks are listed below, together with
the name of the system library on which they reside. One of the macros,
ICVARXNT, is only supplied with the optional material.

2 When the scheduler work area (SWA) resides above the 16M line, you may have to modify
installation exit module references to the IEXPTR1 field. See “The Exit Environment” on
page 68 for details.

72 Data Facility Product Version 2: Customization

Macro Control Block Location
DCBD DCB SYS1.MACLIB
ICVARXNT Extent Table Optional material
IECIEXPL DADSM installation SYS1.MACLIB
exit parameter list
IECPDSCB Partial DSCB SYS1.MACLIB
IECSDSL1 DSCB SYS1.AMODGEN
IEFJFCBN JFCB SYS1.AMODGEN
IEFTIOT1 TIOT SYS1.AMODGEN
IEFUCBOB UCB SYS1.AMODGEN
IEZDEB DEB SYS1.MACLIB
IHADSAB DSAB SYS1.MACLIB

There is no mapping macro for the SCRATCH/RENAME parameter list or the
associated volume Iist.

For extend and partial release, the address of the JFCB passed to the user exit points
to a copy of the real JFCB. Updating the copied JFCB will not result in a
corresponding change to the real JFCB.

For PARTREL partial release, the DCB and DEB (see Figure 32 on page 70) have
been constructed for internal DADSM processing only.

During the X'02' extend of a VSAM data set, the exit is passed the address of a
dummy DEB. This DEB does not contain any extent information. Extent
information can be found in the catalog entry.

Registers at Entry to DADSM Exits

At entry to your exit routine, register contents are as follows:

Register Contents

1 Address of the exit parameter list
13 Address of an 18-word save area
14 Return address to DADSM

15 Address of your exit routine

Registers at Return from DADSM exits

When you return to DADSM, register contents must be as follows:

Register Contents
0-14 Same as on entry to your exit routine
15 A return code from IGGPREQ0

Chapter 5. Data Management Installation Exit Routines 73

Return Codes from DADSM Exits

No return codes are defined for IGGPOSTO. The IGGPREOQ return codes and their
meanings are as follows:

Code Meaning
00(X'00'") Indicates that you want the DADSM request to be processed

04(X'04') Indicates that no DADSM request for the current volume is to be
processed

08(X'08') Indicates that you do not want the DADSM request to be processed

CATALOG and DADSM Installation Exit Modules

The prologs of the IBM-provided exit modules provide detailed requirements for
coding your own versions. Your replacement modules must follow all the
characteristics and programming conventions for SVC routines. For information on
these characteristics and conventions, see Supervisor Services and Macro Instructions.
You may replace these modules in SYS1.AOSDO prior to system generation, or you
may replace them in SYS1.LPALIB after system generation.

The stage I system generation macro SGIEC4DM in SYS1.AGENLIB and the
appropriate link edit step of the STAGE I system generation output are other sources
of information about replacing the modules with your own versions.

You may apply PTFs to CATALOG, SCRATCH, or RENAME with SMP without
modifying your own versions of IGG026DU, IGG029DM, IGG029DU, and
IGG030DU.

CATALOG Installation Exit Module

The load module for CATALOG (SVC 26) contains module IGG026DU. The
IBM-provided IGG026DU module receives control from SVC 26 and immediately
passes control to module IGCO002F without performing any processing.

If you require special processing either before or after SVC 26, replace the
IBM-provided module with your own module. Keep in mind that it must receive
control in 31-bit addressing mode and pass control to IGCO002F in 31-bit addressing
mode.

DADSM (SCRATCH and RENAME) Installation Exit Modules

The load modules for DADSM SCRATCH (SVC 29) and DADSM RENAME (SVC
30) contain modules IGG029DU and IGG030DU, respectively. The IBM-provided
1IGG029DU module receives control from SVC 29 and immediately passes control to
module IGC0002I without performing any processing. The IBM-provided IGG030DU
module receives control from SVC 30 and immediately passes control to module
IGC00030 without performing any processing.

The load module for DADSM SCRATCH (SVC 29) also contains the module

IGG029DM. The IBM-provided IGG029DM module receives control from
1GG0290D when an error return code of either 4 or 8 is indicated, and immediately

74 Data Facility Product Version 2: Customization

passes control to the location pointed to by register 14 without performing any
processing.

If you require special processing either before or after SVC 29 or 30, replace the
appropriate IBM-provided module(s) with your own module(s). IGG029DU,
IGG030DU, and IGG029DM may request control and pass control in either 24-bit or
31-bit addressing mode. The modules may reside either above or below 16Mb virtual.
If you have replaced them, you may wish to change them to benefit fully from 31-bit
addressing support. For example, if your parameter list resides above the 16M line,
but your replacement modules are not defined as AMODE 31, DADSM copies the
parameter list, incurring additional overhead.

DASD Calculation Services (DCS) Installation Exits

DASD calculation services (DCS) retrieves DASD data set information, performs
calculations, and returns statistics to the caller of DCS. DCS provides data set
information primarily for display by ISMF (Interactive Storage Management Facility).
The values returned are designated in kilobytes (Kb) or bytes rather than cylinders or
tracks, to eliminate device dependency.

DCS allows for two installation-written exit modules, the precalculation exit
(IGBDCSX1) and the postcalculation exit (IGBDCSX2), to provide flexibility in
selecting the optimum block size/CI size. Because the access methods restrict
maximum block size to 32760, if an exit module returns an override or limit greater
than this, DCS sets the block size to 32760. DCS also verifies that exit-supplied CI
size override values do not violate VSAM restrictions.

The DCS installation exit routines receive control and execute in the calling program’s
key and system state (problem/supervisor). The exit CSECTs are linked together with
the Common Filter Services, Device Information Services, and DASD Calculation
Services CSECTs into a single load module. They must be programmed to run in
31-bit mode and must reside above the 16Mb line. DCS provides 1K bytes of
working storage for each of the exits. SYS1.SAMPLIB contains sample precalculation
and postcalculation exit routines to document usage and provide models for you.

Data That DCS Passes to the Exits

The IGBDCSIE macro maps the DCS pre/postcalculation exit parameter list. At
entry to the exits, register 1 points to a field containing the address of the parameter
list. See Figure 33.

Name Offset Bytes Description

DCSIEPL DCS exit parameter list

DCSIEDSN 00(X'00') 44 Data set name

DCSIEDSO 44(X'2C') 4 Data set organization

DCSIEKP 48(X'30") 4 Key position

DCSIELRL 52(X'34') 4 Logical record length (average record
length if VSAM)

Figure 33 (Part 1 of 2). Format of the DCS Precalculation and Postcalculation Exit
Parameter List

Chapter 5. Data Management Installation Exit Routines 75

Name Offset Bytes Description

DCSIETC 56(X'38") 4 Track capacity
DCSIEBUF 60(X'3C") 4 Buffer space
DCSIESTG 64(X'40') 4 Exit workspace address
DCSIEKL 68(X'44') 2 Key length

2

DCSIEBS 70(X'46') Block size (current physical block
size if VSAM)

DCSIECOB 72(X'48') 2 Calculated optimum block size

DCSIEVSN 74(X'4A") 6 Volume serial number

Figure 33 (Part 2 of 2). Format of the DCS Precalculation and Postcalculation Exit
Parameter List

Registers at Entry to the DCS Exits

At entry to your exit routine, register contents are as follows:

Register Contents

1 Pointer to the address of the exit parameter list
13 Address of an 18-word save area

14 Return address to DCS

15 Address of your exit routine

Registers at Return from the DCS Exits

When you return to DCS, register contents must be as follows:

Register Contents

0 Dependent upon which exit is returning and the return code in register
15.

1-14 Same as on entry to your exit routine

15 A return code from the exit routine

IGBDCSX1 (DCS Precalculation Installation Exit)

This installation exit routine gains control before DCS calculates the statistics you
requested. You can use it to either bypass or limit the DCS-calculated optimum
blocksize/Cl size. See “Registers at Entry to the DCS Exits” and “Data That DCS
Passes to the Exits” on page 75.

76 Data Facility Product Version 2: Customization

Return Codes from the Precalculation Exit

The precalculation installation exit must pass a return code back to DCS in register
15. The return codes and their meanings are as follows:

Code Meaning
00(X'00') Indicates that DCS can proceed normally

04(X'04') Indicates that DCS can proceed, using the unsigned value in register 0 as
the maximum possible value.

08(X'08') Indicates that DCS should bypass calculating statistics and use the
blocksize/Clsize provided in register 0.

IGBDCSX2 (DCS Postcalculation Installation Exit)

This installation exit routine gains control after DCS calculates the statistics you
requested. You can use it to override the DCS-calculated optimum blocksize /LI size
with a value of your own. See “Registers at Entry to the DCS Exits” on page 76 and
“Data That DCS Passes to the Exits” on page 75.

Return Codes from the Postcalculation Exit

The postcalculation installation exit must pass a return code back to DCS in register
15. The return codes and their meanings are as follows:

Code Meaning
00(X'00') Indicates that the exit accepts the calculated block size/ClI size.

08(X'08') Indicates that the exit wants to override the DCS-calculated block
size/CI size with the value specified in register 0.

Data Management Abend Installation Exit (IFG0199I)

The abend installation exit provides the ability to recover from abnormal conditions
that may occur during the opening, closing, or handling of an end-of-volume condition
for a non-VSAM data set associated with the user’s task.

When an abnormal condition occurs, control passes to the DCB abend user exit
routine if one is provided, and processing continues as specified in the DCB abend
user exit routine. (The DCB abend user exit routine gives you some options regarding
the actions you want the system to take when a condition arises that may result in
abnormal termination of your task. For additional information about the DCB abend
user exit routine, see “DCB Abend Exit” on page 37) However, if the DCB abend
user exit routine is not specified, or if it specifies immediate abnormal termination of
the task, the system passes control to the abend installation exit. If a DCB abend user
exit routine is not provided, control immediately passes to the abend installation exit.

Chapter 5. Data Management Installation Exit Routines 77

IBM supplies an installation exit module, IFG01991, in SYS1.LPALIB, that handles
abend situations caused by tape positioning errors. IFG0199I allows you to retry tape
positioning when you receive a system completion code 613 with return code 08 or
0C. To perform recovery actions for data management abend situations (other than
those caused by tape positioning errors), you can replace installation exit module
IFG0199I by modifying the source code supplied in SYS1.SAMPLIB. IFG01991
receives control in protection key zero, supervisor state. IFG0199I checks the system
completion code and the return code to determine whether the abend situation is the
result of a tape positioning error. If the system completion code is other than 613
with return code 08 or 0C, control returns to the calling module with return code 0,
indicating that the abend should continue. Otherwise, IFG0199] checks the counter
in the 4-byte work area to determine whether one attempt to reposition the tape has
been made. If no attempt to reposition the tape has been made, IFG01991 issues a
return code of 4, indicating that positioning should be retried. If one attempt to
reposition the tape has been made, IFG0199] issues message IEC613A to the
operator to determine whether to attempt repositioning. If the operator specifies that
tape positioning is to be attempted again, a return code of 4 is set, indicating that
OPEN is to rewind the tape and attempt positioning. If the operator specifies that
tape positioning is not to be retried, control is returned to the calling module with a 0
return code.

Data That OPEN/EOV Passes to the Exit
The format of the parameter list (OAIXL) is shown in Figure 34.

Word Boundary

+0(00) User Prot Key | Option Flags | Reserved Reserved
+4(ok) Address of the protected copy of the DCB

+8(08) Address of the user's DCB related to the abend
+12(0C) Address of the UCB related to the abend

+16(10) Address of the JFCB related to the abend

+20(14) Address of the TIOT entry related to the abend
+24(18) Abend code - Example '6130000C'

+28(1C) b-byte installation work area

1(01) Option flags:

Bits

0 indicates whether the DCB abend
user exit was taken

On exit was taken
Off exit was not taken

1 indicates whether to rewind the
tape volume

On rewind the tape volume
0ff do not rewind the tape volume

Figure 34. Format of the Parameter List OAIXL

78 Data Facility Product Version 2: Customization

Registers at Entry to the Data Management ABEND Exit

At entry to the exit routine, register contents are as follows:

Register
1

13

14

15

Contents

Address of the parameter list (OAIXL)
Address of an 18-word save area
Return address to OPEN/EOV
Address of the entry point to IFG01991

Registers at Return from the Data Management ABEND Exit

When you return to OPEN/EOV, register contents must be as follows:

Register
2-12
15

Contents
Same as on entry to the exit

A return code from the exit

Return Codes from the Data Management ABEND Exit
The data management ABEND exit must pass a return code back to OPEN/EOV as

follows:

Code
00(X'00")
04(X'04')

Meaning
Continue with the abend in process.

If the bit 1 option flag is on, rewind the tape volume, set the UCBFSCT
and UCBFSEQ fields in the UCB to zero, and try to recover from the
abend.

If the bit 1 option flag is off, try to recover from the abend.

For abend codes for which the installation is allowed to try to recover, see “DCB
Abend Exit” on page 37

Modifying the IBM-Supplied Installation Exit Module: Because the
IBM-supplied installation exit module handles only a particular abend situation, you
may want to modify the source code of that module to perform corrective actions for
other abend situations.

You can obtain a copy of the source code from SYS1.SAMPLIB for modification,
using the editing function that is available to you. After you have modified the source
code, link edit it into SYS1.LPALIB. The source program is written in Assembler
language and uses only macros in SYSI.MACLIB. If you replace the supplied

Chapter 5. Data Management Installation Exit Routines 79

installation module, the exit module you supply must have the entry point name
IFG0199I and it must be reenterable.

DCB OPEN Installation Exit (IFGOEXO0B)

The OPEN exit enables an installation-written module to gain control during Open for
a DCB. OPEN uses an exit parameter list to communicate with exit module. The
format of the parameter list is shown in Figure 35 on page 82.

The Exit Module

OPEN has an exit module that the installation can replace. The module name is
IFGOEXOB and it is part of load module IGC00011. IGC0001I resides in
SYS1.LPALIB. You can use System Modification Program (SMP) to replace the
IBM-supplied exit module with an installation exit you write.

The Exit Environment

IFGOEXOB is given control in supervisor state and protect key zero with no locks
held. System enqueues will have been issued to serialize system functions. These
enqueues may prevent other system services from being invoked. In particular,
dynamic allocation, OPEN, CLOSE, EOV, and DADSM functions should not be
invoked because of an enqueue on the SYSZTIOT resource. If the exit requires
access to an installation data set, the control blocks required to access that data set
(DCB, DEB) should be built during system initialization (IPL/NIP). RACF macros
may be invoked from the exit.

Open Processing before the DCB OPEN Exit Gets Control

The exit module, IFGOEXOB, is given control whenever OPEN processes a DCB.
The exit is taken after the following functions have been performed for the DCB.

o DASD data sets

— Volume mounted

— Format-1, -2, and -3 DSCBs read

— Forward merge from format-1 DSCB to JFCB
o Tape data sets

— Volume mounted

— Header labels verified

— Forward merge from header labels to JFCB
o All data sets

— Forward merge from JFCB to DCB

— User DCB OPEN installation exit (if any) taken

— RACEF or password verification processing

80 Data Facility Product Version 2: Customization

Open Processing after the DCB OPEN Exit Gets Control
The following functions have not yet been performed at the time the exit is given
control for the DCB.
+ Reverse merge from DCB to JFCB (not all fields are merged)

« Reverse merge from JFCB to format-1 DSCB for DASD data sets (not all fields
are merged)

o Header labels written (for output tape data set)

» Access-method-dependent processing (obtain buffers, GETMAIN, and build
IOBs and DEB)

o Write JFCB
o Write format-1 DSCB

Getting Control from Open

The exit is given control for each DCB being opened, even when two or more DCBs
are being opened in parallel with one invocation of OPEN.

The exit is given control from OPEN (SVC 19) and OPEN TYPE=J (SVC 22). The
exit is given control from end-of-volume (EOV; SVC 55) and from
force-end-of-volume (FEOV; SVC 31) when a concatenation of two sequential data
sets with unlike attributes is being processed. In this case, EOV gives control to
CLOSE, which gives control to OPEN. The exit is not given control from EOV when
a concatenation of two sequential data sets with like attributes is being processed. In
this case, EOV does not give control to CLOSE and OPEN. A request by the user
program for concatenation with unlike attributes is shown in the DCB by flag
DCBOFPPC (bit 4; mask X'08") in field DCBOFLGS being set to one.

Data That Open Passes to the Exit

The parameter list mapped by macro IECOIEXL is supplied to the installation exit. It
contains data and the addresses of control blocks that may be of interest to the exit.

The format of the parameter list is shown in Figure 35.

Chapter 5. Data Management Installation Exit Routines 81

Name Offset Bytes Description

OIEXL 00(x'00") 0 DCB Open installation exit
parameter list

OIEXQOPT 00(x'00") 1 Open option (last 4 bits)

OIEXRSVD 1111 X'FO' first 4 bits reserved

OIEXOOUT 1111 15 output

OIEXOQIN 0111 7 outin

O0IEXOUPD 0100 4 update

OIEXOINO ... 0011 3 inout

0IEXORDB 0001 1 read backward

OIEXOINP 0000 0 input

OIEXUKEY 01(x'01"') 1 User protect key-key of

user DCB

OIEXLTH 02(x'02"') 2 Length of OIEXL

OIEXUDCB 04(Xx'04") 4 Address of user DCB in user
protect key (OIEXUKEY)

OIEXPDCB 08(x'08"') 4 Address of protected copy of
DCB used by OPEN

OIEXJFCB 12(x'12"') 4 Address of JFCB

OIEXDSCB 16(x'16"') 4 Address of data portion of
format-1 DSCB

OIEXTIOT 20(x'20") 4 Address of TIOT entry

OIEXUCB 24(x'24") 4 Address of UCB

Figure 35. Format of DCB OPEN Installation Exit Parameter List (OIEXL)

Note that two DCB addresses are supplied. OPEN maintains a protected copy of the
user DCB. You can use OPEN’s copy of the DCB to test the DCB fields. If you
modify your copy of the DCB, OPEN updates its protected copy when it regains
control from the exit. The protect key of the user DCB is supplied in the exit
parameter list. You must use this key to either get information from or modify the
user DCB.

Be sure you determine the type of DCB and device passed to the exit before testing
access-method or device-dependent fields in the DCB. The sample exit shown in
Appendix A, “Example of an OPEN Installation Exit Module” on page 171 gives an
example of isolating a QSAM DCB being opened to a DASD or tape device.

The JFCB address supplied to the exit points to a copy of the JFCB that is in the
OPEN work area. There may be other JFCBs associated with the OPEN if ISAM or
concatenated partitioned data sets are being opened.

In the case of BDAM, ISAM, and concatenated partitioned data sets, the UCB, whose
address is supplied to the exit, may not be the only UCB associated with the DCB
being opened. The UCB should not be modified.

The TIOT address supplied is of a TIOT entry (TIOENTRY label in the IEFTIOT1
macro). In the cases of ISAM and concatenated partitioned data sets, other TIOT
entries may be associated with the DCB being opened. If concatenation of unlike
attributes is being processed, the TIOT entry may have a blank DDNAME field.

The format-1 DSCB passed to the exit is in the OPEN work area. The address is that
of the field DSIFMTID. There may be format-2 and -3 DSCBs associated with the
format-1 DSCB. There may be other format-1 through -3 DSCBs associated with the
DCB being opened in the cases of ISAM, BDAM, and concatenated partitioned data
sets. If the OPEN is to the VTOC, a format-4 DSCB address is passed to the exit;

82 Data Facility Product Version 2: Customization

this can be determined by testing field DS1IFMTID for a value of X'F4', or the data
set name in the JFCBDSNM field of 44X'04!,

Defaulting the DCB Buffer Number

Modifying the JFCB

If a value has not yet been supplied, the exit may be used to supply an
installation-determined value for DCBBUFNO (number of buffers) for QSAM DCBs.

A sample exit program that does this is shown in Appendix A, “Example of an
OPEN Installation Exit Module” on page 171.

You should not override a nonzero value in DCBBUFNO for QSAM DCBs without
knowing what dependency the user program has on that value. When a buffer pool
control block address is in the DCB field DCBBUFCA, you cannot override
DCBBUFNO; this indicates that buffers have been acquired before OPEN. If no
buffer pool control block address exists, DCBBUFCA is set to one (not zero)

You should not override a zero value in DCBBUFNO for BSAM DCBs when
DCBBUFCA is set to one without knowing what dependency the user program has
on these values. If the user program does not want OPEN to acquire buffer storage
space, it indicates this by setting DCBBUFNO to zero and DCBBUFCA to one. If
the user program wants OPEN to acquire buffer storage space, it can override
DCBBUFNO with a nonzero value. The user program is then responsible for freeing
that space after closing the DCB.

Whenever the JFCB is modified, code 4 should be returned to OPEN. This will cause
OPEN to rewrite the JFCB. The JFCB should not be modified if the user program has
set JFCNWRIT (bit 4) in byte JFCBTSDM because it indicates the JFCB should not
be written.

A sample exit program that modifies the JFCB is shown in Appendix A, ‘“Example
of an OPEN Installation Exit Module” on page 171.

Requesting Partial Release

An example of modifying the JFCB in OPEN’s work area to request partial release is
shown in Appendix A, “Example of an OPEN Installation Exit Module” on

page 171. It sets the following bits to 1, indicating a partial release request:
JFCRLSE (bits 0 and 1; mask X'C0') in byte JFCBIND1. This should be done only
for DASD physical-sequential or partitioned data sets opened for OUTPUT or
OUTIN and processed by either (1) EXCP with a 5-word devnce-dependent section
present in the DCB, (2) BSAM, or (3) QSAM.

Care should be taken in modifying the JFCB release bits. For example, a data set that
is opened for output many times, writing varying amounts of data each time, may have
to extend after each OPEN, resulting in many small extents and, perhaps, reaching the
16-extent limit. This could result in a B37 abend.

Care should also be taken in setting the JFCBSPAC bits to define the space quantity
units when the partial release flag, JFCBRLSE, is also set on. A cylinder allocated
extent may be released on a track boundary when JFCBSPAC does not indicate
cylinder units or average block length units with ROUND specified. This will cause
the cylinder boundary extent to become a track boundary extent, thereby losing the
performance advantage of cylinder boundary extents. Zeroing the release indicator
and increasing secondary allocation quantity (for example, when the data set has

Chapter 5. Data Management Installation Exit Routines 83

extended a large number of times) may prevent such a B37 abend. Setting the release
indicator could result in more space being made available to other users sharing the
volume.

Updating the Secondary Space Data

The JFCB may also be modified by updating the secondary space data. Byte
JFCBCTRI contains the space request type coded in the DD statement or merged
from the format-1 DSCB. Field JFCBSQTY contains the amount of secondary space
(in either tracks, cylinders, or average block units). Field JFCBPQTY contains the
amount of primary space (in either tracks, cylinders, or average block units).

Setting the contiguous bit (JFCONTIG) to zero may prevent an out-of-space abend

where there is enough space, but not enough contiguous space, to satisfy a request to
extend the data set.

Registers at Entry to the DCB OPEN Exit

At entry to the exit, register contents are as follows:

Register Contents

1 Address of the DCB OPEN installation exit parameter list
13 Address of an 18-word save area

14 Return address to OPEN

15 Address of the entry point to IFGOEX0B

Registers at Return from the DCB OPEN Exit

When you return to OPEN, register contents must be as follows:

Register Contents
0-14 Same as on entry to the exit
15 A return code from IFGOEX0B

Return Codes From the DCB OPEN Exit

The DCB OPEN exit must pass a return code back to OPEN in register 15. The
return codes and their meanings are as follows:

Code Meaning
00(X'00') Indicates that the JFCB has not been modified
04(X'04') Indicates that the JFCB has been modified

84 Data Facility Product Version 2: Customization

Open/EOV Installation Exit for Format-1 DSCB Not Found (IFGOEXO0A)

The function of the format-1 DSCB-not-found installation exit in OPEN and EOV is
to determine whether a missing DSCB (such as a data set that has been migrated to
another volume) can be restored to the volume. If your exit module restores the
DSCB, it indicates this when it returns control to the control program. The exit
module, IFGOEXOA, is given control whenever OPEN or EOV fails to find a
format-1 DSCB on a volume. There is an IBM-supplied exit module, IFGOEXO0A, in
SYS1.LPALIB. If you want to use your own exit module, you must replace
IFGOEXO0A. Your exit module must have an entry point name of I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>