Order Number
GC26-4140-2

MVS/Extended Architecture
Data Administration Guide

Data Facility Product
5665-XA2

Licensed
Program

Version 2
Release 3.0

e MVS/Extended Architecture Licensed
Data Administration Guide Program
Order Number Data Facility Product Version 2

GC26-4140-2 5665-XA2 Release 3.0

\,,/'

| Third Edition (June 1987)
| This is a major revision of, and makes obsolete, GC26-4140-1.

| This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These

bars will be deleted at any subsequent publication of the page affected. Editorial changes
that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or imply
that only IBM’s program may be used. Any functionally equivalent program may be used
instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has ({ ™
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute

whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987

Preface

Organization

-~

This book is intended for system programmers who use the IBM data management
access methods—other than VSAM (virtual storage access method)—to process
data sets. This book does not cover such specialized applications as time sharing
option (TSO), graphics, teleprocessing, optical character readers, optical
reader—sorters, and magnetic character readers. These specialized applications are
described in separate publications listed in IBM System/370 and 4300 Processors
Bibliography, GC20-0001.

To learn about VSAM or to write programs that create and process VSAM data
sets, see:

MVS /Extended Architecture Catalog Administration Guide, GC26-4138, which
describes how to create master and user catalogs

MVS /Extended Architecture VSAM Administration Guide, GC26-4151, which
describes how to create VSAM data sets

MYVS /Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4135, and MVS/Extended Architecture VSAM
Catalog Administration: Access Method Services Reference, GC26-4136, which

describe the access method services commands used to manipulate VSAM data
sets

MVS /Extended Architecture VSAM Administration: Macro Instruction
Reference, GC26-4152, which describes how to code the macro instructions
required with VSAM data sets

This publication has 15 chapters and 4 appendixes:

Chapter 1, “Introduction to Data Administration” on page 1, provides an
overview of data set processing, including a description of four different access
methods, and a discussion of data set identification.

Chapter 2, “Data Set Storage” on page 5, discusses the characteristics of
data sets that are stored on direct access and magnetic tape devices.

Chapter 3, “Record Formats” on page 13, discusses the considerations for
creating and processing records within the various kinds of record formats.

Preface 1ii

e Chapter 4, “Selecting an Access Method” on page 33, gives an overview of
basic and sequential access methods in data management, and compares the N
functions and performance of each. N

o Chapter 5, “Specifying a Data Control Block and Initializing Data Sets” on
page 39, discusses how to specify a DCB and how to open and close data sets.
This chapter also discusses managing buffer pools and handling data set
volumes.

« Chapter 6, “Accessing Records in Data Sets” on page 59, discusses how to
use GET and PUT or READ and WRITE macros to access data records. This
chapter also discusses analyzing input and output errors.

e Chapter 7, “DCB Exit Routines” on page 73, discusses user-written exit
routines and the parameter lists they use.

o Chapter 8, “Spooling and Scheduling Data Sets” on page 75, discusses how
to route data through the input/output streams of the job entry subsystem
(JES).

o Chapter 9, “Processing a Sequential Data Set” on page 79, discusses
managing sequential data sets and buffers.

e Chapter 10, ‘“Processing a Partitioned Data Set” on page 101, discusses the
advantages and restrictions of partitioned data sets.

o Chapter 11, “Processing a Direct Data Set” on page 119, discusses the tasks
required to process BDAM data sets. !

o Chapter 12, ‘“Processing an Indexed Sequential Data Set” on page 129,
discusses the organization of and the access techniques for ISAM data sets.

o Chapter 13, “Generation Data Groups” on page 163, discusses the reasons
for using generation data groups and how to specify them.

« . Chapter 14, “I/O Device Control Macros” on page 171, discusses the macro
instructions that control input and output devices.

e Chapter 15, “Protecting Data” on page 175, discusses password and
Resource Access Control Facility (RACF) protection of non-VSAM data sets.

« Appendix A, “Direct Access Labels” on page 179, discusses the standard
label formats used on direct access volumes.

« Appendix B, “Control Characters” on page 183, discusses the use of an
optional control character to control card punches and printers.

o Appendix C, “Allocating Space on Direct Access Volumes” on page 187,
discusses methods of estimating capacities and space requirements on direct
access devices.

« Appendix D, “ISO/ANSI/FIPS Record Control Word and Segment Control

Word” on page 193, discusses the translation of ISO/ANSI/FIPS record A
control words and ISO/ANSI/FIPS segment control words. &V J

iV MVS/XA Data Administration Guide

Prerequisite Knowledge

To use this book efficiently, you should be familiar with:
o Assembler language

« Job control language

Required Publications

You should be familiar with the information presented in the following
publications:

e Assembler H Version 2 Application Programming: Guide, SC26-4036

o Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

e MVS/Extended Architecture JCL User’s Guide, GC28-1351

e MVS/Extended Architecture JCL Reference, GC28-1352

(Related Publications
| Within the text, references are made to the publications listed below:

Short Title Publication Title Order Number
Assembler H V2 Assembler H Version 2 Application SC26-4036
Application Programming: Guide
Programming: Guide
Assembler H V2 Assembler H Version 2 Application GC26-4037
Application Programming: Language Reference
Programming;:
Language Reference

| Data Administration: | MVS/Extended Architecture Data GC26-4141

| Macro Instruction Administration: Macro Instruction

| Reference Reference

-

Preface V

Vi

Short Title Publication Title Order Number

Debugging MYVS /Extended Architecture LC28-11641

Handbook Debugging Handbook, Volumes 1 LC28-1165
through 5 LC28-1166

LC28-1167
LC28-1168

Device Support Device Support Facilities User’s GC35-0033

Facilities User’s Guide and Reference

Guide and Reference

Data Facility MVS /Extended Architecture Data GC26-4267

Product: Facility Product: Version 2

Customization Customization

IBM 3262 Model 5 IBM 3262 Model 5 Printer GA24-3936

Printer Product Product Description

Description

IBM 3800 Printing IBM 3800 Printing Subsystem GC26-3846

Subsystem Programmer’s Guide

Programmer’s Guide |

IBM 3800 Printing IBM 3800 Printing Subsystem SH35-0061

Subsystem Models 3 and 8 Programmer’s

Programmer’s Guide Guide

IBM 3890 Document | IBM 3890 Document Processor GA24-3612

Processor Machine Machine and Programming

and Programming Description

Description

IBM 4245 Printer IBM 4245 Printer Model 1 GA33-1541

Model 1 Component Component Description and

Description and Operator’s Guide

Operator’s Guide

IBM 4248 Printer IBM 4248 Printer Model 1 GA24-3927

Model 1 Description Description

Initialization and MYVS /Extended Architecture GC28-1149

Tuning System Programming Library:
Initialization and Tuning

JCL User’s Guide MVS/Extended Architecture JCL GC28-1351
User’s Guide

JCL Reference MYVS/Extended Architecture JCL GC28-1352
Reference

Magnetic Tape MVS /Extended Architecture GC26-4145

Labels and File Magnetic Tape Labels and File

Structure Structure Administration

Administration

Note:

1

All five volumes may be ordered under one order number, LBOF-1015.

MVS/XA Data Administration Guide

‘/A\\\

o

-~

Short Title Publication Title Order Number
Open/Close/EOV MVS/Extended Architecture LY26-3966
Logic Open/Close/EOV Logic
0OS/VS IBM 3886 OS/VS IBM 3886 Optical GC24-5101
Optical Character Character Reader Model 1
Reader Model 1 Reference
Reference
OS/VS Mass Storage | OS/VS Mass StorageSystem GC35-0011
System (MSS) (MSS) Planning Guide
Planning Guide
OS/VS Mass Storage | OS/VS Mass Storage System GC35-0016
System (MSS) (MSS) Services: General
Services: General Information
Information
OS/VS Mass Storage | OS/VS Mass Storage System SH35-0036
System (MSS) (MSS) Extensions Services:
Extensions Services: Reference
Reference
Programming Programming Support for the IBM | GC21-5097
Support for the IBM 3505 Card Reader and the IBM
3505 Card Reader 3525 Card Punch
and the IBM 3525
Card Punch
RACF General Resource Access Control Facility GC28-0722
Information Manual (RACF): General Information
Manual
Service Aids MVS/Extended Architecture GC28-1159
System Programming Library:
Service Aids
Supervisor Services MVS/Extended Architecture GC28-1154
and Macro System Programming Library:
Instructions Supervisor Services and Macro
Instructions
System Codes MVS/Extended Architecture GC28-1157
Message Library: System Codes
System—Data MVS/Extended Architecture GC26-4149
Administration System—Data Administration
System Generation MVS/Extended Architecture GC26-4148
Installation: System Generation
System Macros and MVS/Extended Architecture GC28-1150
Facilities System Programming Library: and
Macros and Facilities, Volumes 1 GC28-1151

and 2

Preface Vil

Short Title Publication Title Order Number
System Messages MVS /Extended Architecture GC28-1376
Message Library: System and
Messages, Volumes 1 and 2 GC28-1377
Utilities MVS /Extended Architecture Data GC26-4150
Administration: Utilities

viii MVS/XA Data Administration Guide

~~

Summary of Changes

| Release 3.0, June 1987

| New Programming Support

This release provides virtual storage constraint relief by allowing VSAM control
blocks to be obtained above 16M. A new long form parameter list allows for
31-bit addresses. Changes have been made to Chapter 5, ‘“Specifying a Data
Control Block and Initializing Data Sets” to document the new long form
parameter list. The default is the standard form parameter list with 24-bit
addresses.

A new DCB exit list code, X'13', has been added to RDJFCB to retrieve
allocation information. Changes have been made to Chapter 7, “DCB Exit
Routines” to document the new DCB exist list code.

| Customization Restructure

Service Changes

Detailed information on user exits has been moved from Chapter 7, “DCB Exit
Routines” on page 73 to Data Facility Product: Customization.

Minor technical changes have been made.

Release 2.0, June 1986

RACF Protection

New information has been added in Chapter 15, “Protecting Data” on page 175
on RACEF protection for non-VSAM data sets and tape volumes. Information has
also been added on erasing RACF-protected DASD data sets.

Some technical changes have been made. These changes are reflected with change
bars.

Summary of Changes iX

Release 1.0, April 1985

//{(ﬁ \\
AN
New Device Support

Modifications have been made to the SETPRT macro to support the IBM 4248,
3262 Model 5, and 4245 printers.

Note: The IBM 3262 Model 5 printer is afforded the same support as that
provided for the IBM 4248 printer. However, the use of an IBM 3262 Model 5
printer dictates that entries exist in the IBM 4248 printer UCS Image Table for the
IBM 3262 Model 5 printer band(s)/alias(es) used on the host system. These

image table entries must be generated by the user as part of the IBM 3262 Model 5
installation procedure.

New Programming Support

Information has been added to “RACF Protection for Non-VSAM Data Sets” on
page 176 that tells you how to overwrite RACF-protected DASD data sets.

Other support information added consists of a write validity check option
enhancement for the IBM 3480.

Version 2 Publications

The Preface includes order numbers for Version 2. R

AN
S

X MVS/XA Data Administration Guide

~

Contents

Chapter 1. Introduction to Data Administrationccc0vee... 1
Overview of Data Set Processingcciiiiiiiiininnnnnnn. 1
Identifying Data Sets ...ttt e e 3
Chapter 2. Data Set Storagececeerveronroesscssaosonsasasss 5
Direct Access VOIUMESittiinit ittt e i 5
Track Characteristicsitiitiit ittt i, 6
Magnetic Tape Volumest iittiiiitenniieinnnnennnn. 8
Cataloging Data Setscuitiiiiitini ittt ittt 9
Entering a Data Set Name inthe Catalog 10
Chapter 3. Record Formatsc.cvvuereenrsceanrocnsstocnnscnns 13
Fixed-Length Records, Standard Format 14
Fixed-Length Records, ISO/ANSI/FIPSTapesc.covn... 15
Variable-Length Records, 17
Variable-Length Records—Format-Vcoou... 18
ISO/ANSI/FIPS Variable-Length Records—FormatD 23
ISO/ANSI/FIPS Variable-Length Spanned Records—Format-DS or
Format-DBS it i it e e e e 24
Undefined-Length Recordst nnnnnan.. 27
Record Format—Device Type Considerations 28
Magnetic Tapecoiiiiiiiiiiii ittt i, 29
CardReaderandPunch i iiiiiiiinnnnnnn.. 30
Printer ... e e e e 31
Direct Access Deviceiiiiiiiii i e e e 32
Chapter 4. Selectingan AccessMethodccieiiiinnrennncnnns 33
Overview of AccessMethods i, 33
Basic Direct Access Method (BDAM)cciiiiiiitiiinnnnnnn. 34
Basic Indexed Sequential Access Method (BISAM) 35
Basic Partitioned Access Method (BPAM)ccvivnnn... 35
Basic Sequential Access Method (BSAM)cciiiinn... 36
Queued Indexed Sequential Access Method (QISAM) 36
Queued Sequential Access Method (QSAM) 37
Chapter 5. Specifying a Data Control Block and Initializing Data Sets 39
Selecting Data Set Optionscouvtiiiiennnrenennnnennnnn. 41
DCB Parametersuvutmutenennennenneneeeneennenneennss 41
DD Statement Parametersc.uitiiintitiiie .. 42
Changing the DCBttt ittt it i e 43
Opening and ClosingaDataSet 44
Open/Close/BEOV EITOIS ... ootitntie ittt it 47
OPEN—Prepare a Data Set for Processingcccuu... 49

CLOSE—Terminate Processing of a Data Set

Contents X1

Volume Positioningc.oiutiiiit ittt 52

End-of-Volume Processingc.oiitiiieninenenennnannn. 53
Device Independencecciitinnintintinernenneennennnn 56
Chapter 6. Accessing RecordsinDataSetscc0ivevteeeenenns 59
Accessing Data with READ/WRITEiiiiiiiiinnnnnennns 59

READ—ReadaBlockccitiiiiiiiiiininiiiinnnennnns 60

WRITE—Write aBlockottt 61

CHECK—Test Completion of Read or Write Operation 62

WAIT—Wait for Completion of a Read or Write Operation 62

Data Event Control Block (DECB)coiiiiiiininan.. 63
Accessing Data with GET/PUTiiuiiiiieuniineiannannennnn 63

GET—RetrieveaRecordc.00iitiiiniiniinnnnnnennns. 63

PUT—WriteaRecordo iitiitiiiiiiiiiiinnneenns, 64

PUTX—Write an Updated Record 64

Parallel Input Processing (QSAM Only)oiiiinnennnnnnn. 64
Sharing Data Setsttt ittt 67
Analyzing I/O BITOIS .. ovvtvit ittt iete e ite e eennnennanaens 71

SYNADAF—Perform SYNAD Analysis Function 71

SYNADRLS—Release SYNADAF Message and Save Areas 72

ATLAS—Perform Alternate Track Location Assignment 72
Chapter 7. DCBEXxitRoutinesccceiiiiierteeceennnnnnncaes 73
Chapter 8. Spooling and SchedulingDataSetscc00vieeeennn 75
Chapter 9. Processing a Sequential Data Setccoc0iteviennnenns 79
Creating a Sequential DataSet0ttt iiinrereeenns 79
Retrieving a Sequential DataSet 80
Modifying a Sequential DataSet i, 82

Updating a Sequential Data SetinPlace 82

Extending a Sequential DataSetottt 82

Concatenating Sequential DataSets 83
Processing with Chained Scheduling, 84

Chained Scheduling Functions for DASD 86
Search Direct for Input Operationscciiitenrenneennnnnn 86
Determining the Length of a RecordonInput 87
Writing a Short Block When Using the BSAM WRITE Macro 89
Managing SAM Buffer Spaceccitiiiiiiiii i 89

Buffer Pool Constructioncciitiitinennreneennnennn 89

Buffer Control0 ittt e 93

Buffering Techniques and GET/PUT Processing Modes 98
Chapter 10. Processing a Partitioned Data Setc0.... 101
Partitioned Data Set Directoryciutiiintineennrennennn. 102
Allocating Space for a Partitioned DataSet 105
Creating a Partitioned DataSetttt rinnnnnnn. 106
Processing a Member of a Partitioned DataSet 109

BLDL—Construct a Directory Entry List 109

FIND—PositiontoaMemberiiiirvnn... 109
Retrieving a Member of a Partitioned DataSet 111
Modifying a Partitioned Data Setccviitiiintnninnnnann, 114

Updating a Member of a Partitioned DataSet 114

Processing a Partitioned Data Set ResidingonMSS 116

Xii MVS/XA Data Administration Guide

AN
e

.~

Concatenating Partitioned DataSets, 116

Partitioned Concatenationc..outiiiuernnnennnnnnnnn 116
Reading a BPAM Directory Sequentially 117
Chapter 11. Processinga Direct DataSetccciiiiiiiennns 119
Direct Data Set Organizationvuuiieneeeennnnnnns 119
CreatingaDirect DataSet iiiiiinnn. 120
Referring to a Recordina Direct DataSet 122
Adding or Updating Records on a Direct DataSet 124
Sharing Direct Data Setsttt inniieeieeeneenns 127
Chapter 12. Processing an Indexed Sequential Data Set 129
Indexed Sequential Data Set Organizationcovvnn. 129

Prime Areaciiiiii ittt e e 130

Index ATEas iiit ittt ettt i e 131

OVerflow ATEaSottt ti ittt ittt in e, 132
Creating an Indexed Sequential DataSet 133

Allocating Space for an Indexed Sequential DataSet 136
Retrieving and Updating an Indexed Sequential DataSet 144

Sequential Retrievaland Updatecc0ieenn... 144

Direct Retrievaland Update iiiiiiienninn.. 145
Adding Records to an Indexed Sequential DataSet 152

Inserting New Records into an Existing Indexed Sequential Data Set 152

Adding New Records to the End of an Indexed Sequential Data Set 152

Maintaining an Indexed Sequential DataSet 154

Indexed Sequential Buffer and Work Area Requirements 156

Controlling an Indexed Sequential Data Set Device 159
Chapter 13. GenerationDataGroupsc.cccieteiiieennnnnanns 163
Absolute Generation and Version Numbers 164
Relative Generation Number00ttt iiniennnnnnnn 164
Programming Considerations for Multiple StepJobs 165
Generation Data Group Naming for ISO/ANSI/FIPS Version 3 Labels 166
Creatinga New Generationcitiitinuinnernnerneanns 167

Allocating a Generationccvitineintennennreennenns 167

Passing a Generation ettt et e 168

Creating an ISAM Data Set as Part of a Generation Data Group 168
Retrievinga Generationciiiiiiiiiiiiiiiiiiaea., 169
Building a Generation Data GroupIndex 169
Chapter 14. 1/0 Device Control Macroscccoeeeceeccenscanses 171

CNTRL—Control an I/O Device . ..ot viiiniiiiiiiiiiennnn. 171

PRTOV—Test for Printer Overflow 172

SETPRT—Printer Setupciiiiiiiiiiiiiiieeereneeeeeeans 172

BSP—Backspace a Magnetic Tape or Direct Access Volume 173

NOTE—Return the Relative Addressof aBlock 173

POINT—PositiontoaBlock, 174

SYNCDEV—-Control Data Synchronization 174
Chapter 15. ProtectingDatacciiitiiiiitienitencnnnnnns 175
Password Protection for Non-VSAM DataSets 175
RACEF Protection for Non-VSAM DataSetsc.cccvu... 176

Erasing RACF Protected DASDDataSetsccouuvnn. 177
Appendix A. Direct AccessLabelscciiteiiiteencceeceennas 179

Contents Xiil

Volume-Label Groupc.c.iiiiiiniiiitiinennennn. 179

Initial Volume Label Formatcccciiieeiinneennn. 180
Data Set Control Block (DSCB)ottt ittt e eieee e 181
UserLabel Groupscciiiit ittt iiiitieeeeennnnn 181

User Header and Trailer Label Format 182
Appendix B. Control Characterscccvteerveccecsescnscnses 183
Machine Codec ittt 183
Extended American National Standards Institute Code 185
Appendix C. Allocating Space on Direct Access Volumes 187

Estimating Space Requirementsc.c0iiittennneennn. 188

Appendix D. ISO/ANSI/FIPS Record Control Word and Segment Control

WOrd ittt ittt iteateateseessersntenssasseascnscnnss 193
Translation of ISO/ANSI/FIPS Record Control Word 193
Translation of ISO/ANSI/FIPS Segment Control Word 194
Glossary of Terms and Abbreviationscccviiviieinennennnn. 195
Indexciviiiiiniiiiienneennsasteseosnsssssssscnsnsnsanssns 199

XiV MVS/XA Data Administration Guide

TN
\

N

Figures

21.

22.
23.
24.
25.
26.

217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

COVORNIAUL AW E

Direct Access Volume Track Formats 7
Catalog StrUCtUIE ittt ittt ittt i ittt et e e 10
Fixed-Length Recordscciitiiiinnnennnnnnn.. 14
Fixed-Length Records for ISO/ANSI/FIPS Tapes 17
Nonspanned, Format-VRecords 18
Spanned Format-VS Records (Sequential Access Method) 20
Segment Control Codesttt nnnneeennn. 21
Spanned Format-V Records for BDAM DataSets 22
Nonspanned Format-D Records for ISO/ANSI/FIPS Tapes 24
Spanned Variable-Length (Format-DS) Records for ISO/ANSI/FIPS

B o= PP 26
Undefined-Length Records e et e e 27
Tape Density (DEN) Valuescciitiiiinernnnnnnennn 29
Data Management Access Methods 33
Sources and Sequence of Operations for Completing the Data Control

BloCK . .o e e et e 40
Changing a Field in the Data Control Block 44
Opening Three Data Sets Simultaneously 50
Record Processed When LEAVE or REREAD Is Specified for CLOSE
TYPE=T PP 51
Closing Three Data Sets Simultaneously 52
Parallel Processing of Three Data Sets 66
JCL, Macro Instructions, and Procedures Required to Share a Data Set
Using Multiple DCBSttt ittt iiiteeenneeeaennnn 68
Macro Instructions and Procedures Required to Share a Data Set Using a
Single DCBt e e et e e 70
Data Management Exit Routines 73
Creating a Sequential Data Set—Move Mode, Simple Buffering 80
Creating a Sequential Data Set—Locate Mode, Simple Buffering 81
Reissuing a READ or GET for Unlike Concatenated Data Sets 84
One Method of Determining the Length of the Record When Using

BSAM to Read Undefined-Length Records 88
Constructing a Buffer Pool from a Static Storage Area 92
Constructing a Buffer Pool Using GETPOOL and FREEPOOL 93
Simple Buffering with MACRF=GL and MACRF=PM 96
Simple Buffering with MACRF=GM and MACRF=PM 96
Simple Buffering with MACRF=GL and MACRF=PL 97
Simple Buffering with MACRF=GL and MACRF=PM-UPDAT Mode 98
Buffering Technique and GET/PUT Processing Modes 98
A Partitioned DataSet i, 101
A Partitioned Data Set Directory Block 102
A Partitioned Data Set Directory Entry 103
Creating One Member of a Partitioned DataSet 106
Creating Members of a Partitioned Data Set Using STOW 108

Figures XV

xvi

39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

53.
54.
55.
56.
57.
58.
59.
60.

61.

BLDL List Formatitiuiuiintirenenennennnnnnnn 110
Retrieving One Member of a Partitioned DataSet 112
Retrieving Several Members and Subgroups of a Partitioned Data Set . 113
Updating a Member of a Partitioned DataSet 115
CreatingaDirect DataSetc..iiiiiiiinunnnnn.. 122
Adding Recordstoa Direct DataSet 125
UpdatingaDirect DataSetc.cciiiiiiiiernnnnnnnn. 126
Indexed Sequential Data Set Organization 130
Format of Track Index Entries 131
Creating an Indexed Sequential DataSet 135
Requests for Indexed Sequential Data Sets 138
Sequentially Updating an Indexed Sequential Data Set 145
Directly Updating an Indexed Sequential DataSet 148
Directly Updating an Indexed Sequential Data Set with Variable-Length
Recordsottt i ittt e e 151
Adding Records to an Indexed Sequential DataSet 153
Deleting Records from an Indexed Sequential DataSet 155
Direct AccessLabelingo, 179
Initial Volume Label i, 180
User Header and Trailer Labels 181
Direct Access Storage Device Capacities 189
Direct Access Device Overhead Formulas 190
Translation of ISO/ANSI/FIPS Record Control Word to D/DB

Record Descriptor Word ittt 193
Translation of ISO/ANSI/FIPS Segment Control Word to DS/DBS
Segment Descriptor Word 194

MVS/XA Data Administration Guide

AN

~

Chapter 1. Introduction to Data Administration

Data administration is the process of systematically and effectively organizing,
identifying, storing, cataloging, and retrieving all the information (including
programs) that your installation uses.

Data set storage control, along with an extensive catalog system, makes it possible
to retrieve data by symbolic name alone, without specifying device types and
volume serial numbers. In freeing computer personnel from maintaining
complicated volume serial number inventory lists of stored data and programs, the
catalog reduces manual intervention and the likelihood of human error.

A data set is a collection of logically related data records that are stored on a
volume and that may be classified according to installation needs. For example, a
sales department could classify its data by geographic area, by individual

salesperson, or by any other logical plan. A user can request data from a direct
access volume or a tape volume.

The cataloging system makes it possible to classify successive generations or
updates of related data. These generations can be given identical names and
subsequently be referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

Data administration provides:

o Allocation of space on direct access volumes.

o Automatic retrieval of cataloged data sets by name alone.

Overview of Data Set Processing

Input/output routines in the operating system schedule and control all data transfer
operations between virtual and auxiliary storage. These routines can:

« Read data

e Write data

o Translate data from ISCII/ASCII (International Standard Code for
Information Interchange and American National Standard Code for
Information Interchange) to EBCDIC (Extended Binary Coded Decimal

Interchange Code) and the reverse

e Block and unblock records

Chapter 1. Introduction to Data Administration 1

e Overlap reading, writing, and processing operations

AN

¢ Read and verify volume and data set labels o/
o Write data set labels
« Position and reposition volumes automatically
o Detect I/0 errors and correct them when possible
« Provide exits to user-written error and label routines
Data management programs also provide a variety of methods for gaining access to
a data set. These methods are based on data set organization and data access
technique.
You can organize your data sets in one of four ways:
e Sequential: Records are organized in physical rather than logical sequence.

Given one record, the location of the next record is determined by its physical

position in the data set. You must use the sequential data set organization for

all magnetic tape devices, but it is optional on direct access devices. Punched

cards and printed output must also be sequentially organized.
o Indexed Sequential: Records are arranged in sequence, according to a key that

is a part of every record, on the tracks of a direct access volume. An index or

set of indexes maintained by the system gives the location of certain principal o

records. This permits direct and sequential access to any record. /
o Direct: Records within the data set, which must be on a direct access volume,

may be organized in any manner you choose. All space allocated to the data

set is available for data records. No space is required for indexes. You specify

addresses by which records are stored and retrieved directly.
« Partitioned: Independent groups of sequentially organized records, called

members, are in direct access storage. Each member has a simple name stored

in a directory that is part of the data set and contains the location of the

member’s starting point. Partitioned data sets are generally used to store

programs. As a result, they are often called libraries.
Requests for input/output operations on data sets through macro instructions use
two techniques: the technique for queued access and the technique for basic access.
Each technique is identified according to its treatment of buffering and
synchronization of input and output with processing. The combination of an access
technique and a given data set organization is called an access method. In choosing]
an access method for a data set, therefore, you must consider not only its \
organization, but also what you need to specify through macros. Also, you may 1
choose a data organization according to the access techniques and processing 3
capabilities available.
The code generated by the macros for both techniques is optionally re-enterable,
depending on the form in which parameters are expressed.

g’ﬁ\\

Besides the access methods provided by the operating system, an elementary access { “

technique called execute channel program (EXCP) is also provided. To use this

2 MVS/XA Data Administration Guide

technique, you must establish your own system for organizing, storing, and
retrieving data. The primary advantage of EXCP is the complete flexibility it
allows you in using the computer directly.

An important feature of data administration is that much of the detailed
information needed to store and retrieve data, such as device type, buffer
processing technique, and length of output records, need not be supplied until the
job is ready to be executed. This device independence permits changes to those
specifications to be made without changes in the program. Therefore, you may
design and test a program without knowing the exact input/output devices that will
be used when it is executed.

Device independence is a feature of both the queued and basic access techniques
for processing sequential data sets. To some extent, you can determine the degree
of device independence. Many useful device-dependent features are available as
part of certain macro instructions; achieving device independence requires some
selectivity in their use.

Identifying Data Sets

Any information that is a named, organized collection of logically related records
can be classified as a data set. The information is not restricted to a specific type,
purpose, or storage medium. A data set may be, for example, a source program, a
library of macros, or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set
name identifies a group of records as a data set. All data sets recognized by name
(referred to without volume identification) and all data sets residing on a given
volume must be distinguished from one another by unique names. To help in this,
the system provides a means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so
that each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATAS3 is composed of three simple names. Proceeding from the
left, each simple name is a category within which the next simple name is a
subcategory. The first name is called the high-level qualifier, the last is the
low-level qualifier.

Each simple name consists of from 1 to 8 alphameric characters, the first of which
must be alphabetic. The special character period (.) separates simple names from
each other. Including all simple names and periods, the length of the data set name
must not exceed 44 characters. Thus, a maximum of 22 simple names can make up
a data set name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing
program. When the program is executed, the data set name and other pertinent
information (such as unit type and volume serial number) are specified in a job
control statement called the data definition (DD) statement. To gain access to the
data set during processing, reference is made to a data control block (DCB)
associated with the name of the DD statement. Space for a data control block that

Chapter 1. Introduction to Data Administration 3

specifies the particular data set to be used is reserved by a DCB macro when your
program is assembled. ~ \

R

4 MVS/XA Data Administration Guide ‘

Chapter 2. Data Set Storage

The operating system provides a variety of devices for collecting, storing, and
distributing data. Despite the variety, the devices have many common
characteristics. The generic term volume is used to refer to a standard unit of
auxiliary storage. A volume may be a reel of magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location, organization, and other
control information stored in the data set label or volume table of contents (for
direct access volumes only). Thus, when the name of the data set and the volume
where it is stored are made known to the operating system, a complete description
of the data set, including its location on the volume, can be retrieved. Then, the
data itself can be retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic tape and direct access
volumes, and the data sets they contain. Magnetic tape volumes can have standard
or nonstandard labels, or they can be unlabeled. Direct access volumes must use
- standard labels. Standard labels include a volume label, a data set label for each
(» data set, and optional user labels.

Keeping track of the volume where a particular data set resides can be a burden
and a source of error. To alleviate this problem, the system provides for automatic
cataloging of data sets. The system can retrieve a cataloged data set if given only
the name of the data set.

By use of the catalog, collections of data sets related by a common external name
and the time sequence in which they were cataloged (their generation) can be
identified; they are called generation data groups. For example, a data set name
LAB.PAYROLL(0) refers to the most recent data set of the group;
LAB.PAYROLL(-1) refers to the second most recent data set; and so forth. The
same data set names can be used repeatedly with no need to keep track of the
volume serial numbers used. For more information, see “Relative Generation
Number” on page 164.

Direct Access Volumes

Regardless of organization, data sets created using the operating system can be
stored on a direct access volume. Each block of data has a distinct location and a
unique address, making it possible to find any record without extensive searching.
Thus, records can be stored and retrieved either directly or sequentially.

Direct access volumes are used to store executable programs, including the
operating system itself. Direct access storage (sometimes called DASD storage) is
also used for data and for temporary working storage. One direct access storage

-

Chapter 2. Data Set Storage 5

Track Characteristics

Track Format

volume may be used for many different data sets, and space on it may be
reallocated and reused. A volume table of contents (VTOC) is used to account for ~ \
each data set and available space on the volume. “_

Each direct access volume is identified by a volume label that is stored at track O of
cylinder 0. You may specify as many as seven additional labels, located following
the standard volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that

describe the contents of the direct access volume. The VTOC can contain seven

kinds of DSCBs, each with a different purpose and a different format number. The

format 0 DSCB describes an unused (available) record in the VTOC. ‘
System—Data Administration describes format 1 through format 6 DSCBs and their |
purposes. System—Data Administration also describes the structure of the VTOC.

Each direct access volume is initialized by a utility program before being used on
the system. The initialization program generates the volume label and builds the
table of contents. For additional information on direct access labels, see
Appendix A, “Direct Access Labels’ on page 179.

When a data set is to be stored on a direct access volume, you must supply the
operating system with the amount of space to be allocated to the data set,
expressed in blocks, tracks, or cylinders. Space allocation can be independent of
device type if the request is expressed in blocks. If the request is made in tracks or
cylinders, you must be aware of such device considerations as cylinder capacity and
track size.

Although direct access devices differ in physical appearance, capacity, and speed,
they are similar in data recording, data checking, data format, and programming.
The recording surface of each volume is divided into many concentric tracks. The
number of tracks and their capacity vary with the device. Each device has some
type of access mechanism, containing read/write heads that transfer data as the
recording surface rotates past them.

Information is recorded on all direct access volumes in a standard format. Besides
device data, each track contains a track descriptor record (capacity record or
record 0) and data records.

Figure 1 shows that there are two possible data record formats—count data and
count key data—only one of which can be used for a particular data set.

6 MVS/XA Data Administration Guide

~

Count-Data Format

Count Data

Count Data B% I Count Data

Track Descriptor
Record (RO)

Data Record (R1) Data Record (Rn)

Count-Key-Data Format

Count Data

Count Key Data Bg Count Key Data

Track Descriptor
Record (RO)

Data Record (R1) Data Record (Rn)

Figure 1. Direct Access Volume Track Formats

Track Overflow

Besides device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (O if no keys are
used), and its data length.

If the records are written with keys, the key area (1 to 255 bytes) contains a record
key that specifies the data record by part number, account number, sequence
number, or some other identifier. In some cases, records are written with keys so
that they can be located quickly.

If the record overflow feature is available for the direct access device being used,
you can reduce the amount of unused space on the volume by specifying the track
overflow option in the DCB parameter of the DD statement, or the DCB macro
associated with the data set. If the overflow option is used, a block that does not
fit on the track is partially written on that track and continued on the next track.
(The track where the record is continued must be physically next and must be part
of the same extent as the track that holds the first part of the record.)

Each segment (the portion written on one track) of an overflow block has a count
area. The data length field in the count area specifies the length of that segment
only. If the block is written with a key, there is only one key area for the block. It
is written with the first segment. If the track overflow option is not used, blocks
are not split between tracks.

Actual and Relative Addressing

Two types of addresses can be used to store and retrieve data on a direct access
volume: actual addresses and relative addresses. The only advantage of using
actual addresses is the elimination of time required to convert from relative to
actual addresses and vice versa. When sequentially processing a multiple volume
data set, you can refer only to records of the current volume.

Actual Addresses: When the system returns the actual address of a record on a
direct access volume to your program, it is in the form MBBCCHHR, where:

M
is a 1-byte binary number specifying the relative location of an entry in a
data extent block (DEB). The DEB is created by the system when the data

Chapter 2. Data Set Storage 7

set is opened. Each extent entry describes a set of consecutive tracks
allocated for the data set. N
BBCCHH

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head

number for the record (its track address). The cylinder and head numbers

are recorded in the count area for each record.

is a 1-byte binary number specifying the relative block number on the track.
The block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as
unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to records
in a direct access data set: relative block addresses and relative track addresses.

The relative block address is a 3-byte binary number that shows the position of the
block relative to the first block of the data set. Allocation of noncontiguous sets of
blocks does not affect the number. The first block of a data set always has a
relative block address of 0.

The relative track address has the form TTR, where:

T

is a 2-byte binary number specifying the position of the track relative to the
first track allocated for the data set. The TT for the first track is 0.
Allocation of noncontiguous sets of tracks does not affect the number.

AN

is a 1-byte binary number specifying the number of the block relative to the
first block on the track TT. The R value for the first block of data on a track
is 1.

Magnetic Tape Volumes

Because data sets on magnetic tape devices must be organized sequentially, the
operating system does not require space allocation procedures comparable to that
for direct access devices. When a new data set is to be placed on a magnetic tape
volume, you must specify the data set sequence number if it is not the first data set
on the reel. The operating system positions a volume with IBM standard labels,
ISO/ANSI/FIPS labels, or no labels so that the data set can be read or written. If
the data set has nonstandard labels, you must provide for volume positioning in
your nonstandard label processing routines. All data sets stored on a given
magnetic tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not
specified a volume serial number, the system assigns a serial number to that volume
and to any additional volumes required for the data set. Each such volume is
assigned a serial number of the form Lxxxyy, where xxx is the data set sequence AN
number, and yy is the volume sequence number for the data set. If you specify %@
volume serial numbers for unlabeled volumes where a data set is to be stored, the

8 MVS/XA Data Administration Guide

N

system assigns volume serial numbers to any additional volumes required. If data
sets residing on unlabeled volumes are to be cataloged or passed, you should
specify the volume serial numbers for the volumes required. This ensures that data
sets residing on different volumes are not cataloged or passed under identical
volume serial numbers. Retrieving such data sets can give unpredictable errors.

Each data set and data set label group must be followed by a tapemark.
Tapemarks cannot exist within a data set. When the operating system creates a
tape with standard labels or no labels, all tapemarks are automatically written.
Two tapemarks follow the last trailer label group on a standard-label volume. On
an unlabeled volume, the two tapemarks appear after the last data set.

When the operating system creates data sets with nonstandard labels, no tapemarks
are written. If you want the operating system to retrieve a data set, you must
supply the tapemarks in your routine that creates the nonstandard-label volume.
Otherwise, tapemarks are not required after nonstandard labels, because
positioning of the tape volumes must be handled by installation routines.

For more information about magnetic tape volume labels, see Magnetic Tape Labels
and File Structure. For more information about nonstandard labels, see Data
Facility Product: Customization.

The data on magnetic tape volumes can be in either EBCDIC or ISCII/ASCIL.
ISCII/ASCII is a 7-bit code consisting of 128 characters. It permits data on
magnetic tape to be transferred from one computer to another, even though the
two computers may be products of different manufacturers.

Data management support of ISCII/ASCII and of the International Organization
for Standardization (ISO), American National Standards Institute (ANSI), and
Federal Information Processing Standard (FIPS) tape labels is such that data
management can translate records on input tapes in ISCII/ASCII into EBCDIC for
internal processing and translate the EBCDIC into ISCII/ASCII for output.
Records on such input tapes may be sorted into ISCII/ASCII collating sequence.

Cataloging Data Sets

The operating system has a catalog structure consisting of a master catalog, user
catalogs, and, optionally, OS CVOLs. Figure 2 shows the catalog structure.

Chapter 2. Data Set Storage 9

N
Master Catalog N

[USERID 5

gvscne.vnnn‘
L UCAT]___ Um Control Volume

Data Set
Data Set A Data Set UCAT.B) USERID.B >
Data Set A
Data Set Data Set
UCAT-B USERID.B

1 111111 is the volume serial of the OS CVOL.

Figure 2. Catalog Structure

There is one master catalog on each system. It is required and contains entries for
system data sets. It is also the VSAM or integrated catalog facility master catalog \ ‘
and does not have to be on the system residence volume. The master catalog S
contains a pointer to each user catalog. Both VSAM and non-VSAM data sets can

be cataloged in a user catalog.

Non-VSAM data sets can be cataloged on OS CVOLs (SYSCTLG data sets). The
master catalog contains a pointer to each OS CVOL. Data sets can be cataloged,
uncataloged, or recataloged. (For more information on using OS CVOLs, see
Catalog Administration Guide.) If a data set is not cataloged in the master catalog,
the first name of a qualified data set name indicates the user catalog or OS CVOL
in which it is cataloged. A user catalog can also be connected to the system as a
job catalog or a step catalog.

Permanent Mass Storage System (MSS) data sets should be cataloged to allow
efficient use of the mass storage volume control (MSVC) functions. For
information on MSVC, see OS/VS Mass Storage System (MSS) Services: General
Information. :

Entering a Data Set Name in the Catalog

The data set name of a non-VSAM data set can be entered in a master or user

catalog through (1) job control language (DISP parameter), (2) access method

services (DEFINE command), or (3) catalog management macro instructions

(CATALOG and CAMLST). A non-VSAM data set name can be entered in an

OS CVOL through JCL or the catalog management macros. VSAM data sets can .
only be cataloged by using access method services. f(N

\Qu_/ /

10 MVS/XA Data Administration Guide

-

Access method services is also used to establish aliases for data set names and to
connect user catalogs and OS CVOLs to the master catalog. For information on
how to use the access method services commands, see Access Method Services
Reference. For information on how to use the catalog management macro
instructions, see Catalog Administration Guide and System Data Administration.

Data set names cannot be cataloged in an OS CVOL if a name is already cataloged
whose levels match the highest or higher levels of the specified name. For example,
the qualified name A.B.C.D cannot be cataloged if the name A.B or A.B.C is
already cataloged, but the name A.B.C.D can be cataloged if AB.C or A.B.C.E is
cataloged. This restriction is not true for data sets cataloged in an integrated
catalog facility or VSAM catalog.

Chapter 2. Data Set Storage 11

~

Chapter 3. Record Formats

The record is the basic unit of information used by a processing program and can be
anything from a single character to a mass of information collected by a particular
business transaction, or measurements recorded at a given point in an experiment.
A collection of logically related records makes up a data set. Most data processing
consists of reading, manipulating, and writing individual records.

Blocking is the process of grouping records before they are written on a volume. A
block consists of one or more logical records written between consecutive
interrecord gaps (IRGs). Blocking conserves storage space on a volume by
reducing the number of IRGs in the data set and increases processing efficiency by
reducing the number of input/output operations required to process the data set.

Records are stored in one of four formats: fixed-length (format-F), variable-length
for data in EBCDIC (format-V) or for data to be translated to or from
ISCII/ASCII (format-D), or undefined-length (format-U).

Before selecting a record format, you should consider:

» The data type (for example, EBCDIC) your program will receive and the type
of output it will produce

» The input/output devices that will contain the data set
o The access method you will use to read and write the records

You identify your record format selection in the data control block using the
options in the DCB macro, the DD statement, or the data set label.

ISO/ANSI/FIPS tape records are written in format-F, format-D, format-S or
format-U with the restrictions noted under “Fixed-Length Records,
ISO/ANSI/FIPS Tapes” on page 15, “ISO/ANSI/FIPS Variable-Length
Records—Format D’ on page 23, and “Undefined-Length Records” on page 27.

Note: Data can only be in format-U for ISO/ANSI Version 1 tapes (ISO
1001-1969 and ANSI X3.27-1969).

When data management reads records from ISO/ANSI/FIPS tapes, it translates
the records into EBCDIC. When data management writes records onto
ISO/ANSI/FIPS tapes, it translates the records into ISCII/ASCII characters.
Because you use input records after they are translated and because output records
are translated when you ask data management to write them, you work only with
EBCDIC.

Chapter 3. Record Formats 13

Fixed-Length Records

Note: Translation routines supplied by the system will convert to ASCII 7-bit
code, as explained in Magnetic Tape Labels and File Structure. When the character
to be translated contains a bit in the high order position, the 7-bit translation does
not produce an equivalent character. Instead, it produces a substitute character to
note the loss in translation. This means, for example, that random binary data (such
as a dump) cannot be recorded in ISO/ANSI/FIPS 7-bit code.

The size of fixed-length (format-F) records, shown in Figure 3, is constant for all
records in the data set. The number of records within a block is constant for every
block in the data set, unless the data set contains truncated (short) blocks. If the
data set contains unblocked format-F records, one record constitutes one block.

The system automatically performs physical length checking (except for card
readers) on blocked or unblocked format-F records. Allowances are made for
truncated blocks.

Format-F records-are shown in Figure 3. The optional control character (a), used
for stacker selection or carriage control, may be included in each record to be
printed or punched.

Block Block
A A
r N\ 7 —
Blocked Record A | Record B Record C Record D | Record E | Record F
Records
AN S~
. S~
N\ >SS
AN S
\\ Record ™ <
A \ﬁ
a Data
\LOptional Control
\\ Character - 1 Byte /
#, \ I,
Block Block AN / Block
—N— I
Unblocked Record A Record B Record C Record D
Records

Figure 3. Fixed-Length Records

Fixed-Length Records, Standard Format

During creation of a sequential data set (to be processed by BSAM or QSAM) with

fixed-length records, the RECFM subparameter of the DCB macro instruction may

specify a standard format (RECFM=FS or FBS). A standard-format data set must

conform to the following specifications:

¢ All records in the data set are format-F records.

14 MVS/XA Data Administration Guide

~

« No block except the last block is truncated. (With BSAM, you must ensure
that this specification is met.)

« Every track except the last contains the same number of blocks.

« Every track except the last is filled to capacity as determined by the track
capacity formula established for the device. (These formulas are presented in
Appendix C, ‘“Allocating Space on Direct Access Volumes” on page 187.)

« The data set organization is physical sequential. A member of a partitioned
data set cannot be specified.

A sequential data set with fixed-length records having a standard format can be
read more efficiently than a data set that doesn’t specify a standard format. This
efficiency is possible because the system is able to determine the address of each
record to be read, because each track contains the same number of blocks.

You should never extend a standard-format data set (by coding DISP=MOD) if
the last block is truncated, because the extension will cause the data set to contain
a truncated block that isn’t the last block. Reading an extended data set with this
condition will result in a premature end of data condition when the truncated block
is read, giving the appearance that the blocks following this truncated block do not
exist. This type of data set on magnetic tape should not be read backward, because
the data set would begin with a truncated block. Consequently, you probably
won’t want to use this type of data set with magnetic tape. If you use one of the
basic access techniques with this type of data set, you should not use the track
overflow feature.

Standard format should not be used to read records from a data set that was
created using a RECFM other than standard, because other record formats may
not create the precise format required by standard.

If at any time the characteristics of your data set are altered from the specifications
described above, the data set should no longer be processed with the standard
format specification.

Fixed-Length Records, ISO/ANSI/FIPS Tapes

For ISO/ANSI/FIPS tapes, format-F records are the same as described above,
with three exceptions:

o Control characters, if present, must be ISO/ANSI/FIPS control characters.
For more information about control characters, see Appendix B, “Control
Characters” on page 183.

« Record blocks can contain block prefixes.
The block prefix can vary from 0 to 99 bytes, but the length must be constant
for the data set being processed. For blocked records, the block prefix
precedes the first logical record. For unblocked records, the block prefix
precedes each logical record.
Using QSAM and BSAM to read records with block prefixes requires that you
specify the BUFOFF operand in the DCB. When using QSAM, you do not

Chapter 3. Record Formats 15

have access to the block prefix on input. When using BSAM, you must
account for the block prefix on both input and output. When using either
QSAM or BSAM, you must account for the length of the block prefix in the
BLKSIZE and BUFL operands of the DCB.

When using QSAM to output DB or DBS records and BUFOFF=0 is specified,
the value of the BUFL operand, if specified, must be increased by 4. If BUFL
is not specified, then the BLKSIZE operand must be increased by 4. This
allows for a 4-byte QSAM internal processing area to be included when the
system acquires the buffers. These 4 bytes will not become part of the user’s
block.

When you use BSAM on output records, the operating system does not
recognize a block prefix. Therefore, if you want a block prefix, it must be part
of your record. Note that you cannot include block prefixes in QSAM output
records.

The block prefix, as for all the data records for ISO/ ANSI/FIPS tapes, can
only contain EBCDIC characters that correspond to the 128, seven-bit ASCII
characters. Thus, you must avoid using data types such as binary, packed
decimal, and floating point that cannot always be translated into ISCII/ASCII.
(See the Note in Chapter 3, “Record Formats” on page 13.)

Figure 4 on page 17 shows the format of fixed-length records for
ISO/ANSI/FIPS tapes and where control characters and block prefixes are
positioned if they exist.

The GET routine tests each record (except the first) for all circumflex
characters (X'5E'). If a record completely filled with circumflex characters is
detected, the end-of-block (EOB) routine is called to get the next block. A
fixed-length record must not consist of only circumflex characters. This
restriction is necessary because circumflex characters are used to pad out a
block of records when fewer than the maximum number of records are
included in a block, and the block is not truncated.

16 MVS/XA Data Administration Guide

~~

Block
A

Block
- N\ 4 A N)
Blocked Og}ior'\‘al Optional
ocl lock
Records | Prefix Record A Record B | Record C FB're:ix Record D Record E | Record F
N N >~ -
~
<
N ™~ ~ -
N
N RecAord ~
-)
a Data
LOptional Control /
Character-1 Byte /
/
Block Block \ / Block
A A \ a
4) ~ N\ s N\
Optional Optional Optional Optional
Unblocked
Block | Record A Block | Record B Block | Record C Block | Record D
Records Prefix Prefix Prefix Prefix

Figure 4. Fixed-Length Records for ISO/ANSI/FIPS Tapes

Variable-Length Records

The variable-length record formats are format-V and format-D. They can also be
spanned (format-VS or -DS), blocked (format-VB or -DB), or both (format-VBS

and -DBS). Format-D, -DS, and -DBS records are used for ISO/ANSI/FIPS tape
data sets. Figure 5 on page 18 shows blocked and unblocked variable-length

(format-V) records without spanning.

Chapter 3. Record Formats 17

Blocked Records

BDW

Block
i

Unblocked Records

~ A r L\L)
LL| 00| Record A | Record B | Record C LL | 00| Record D | Record E | Record F
f Reserved - 2 Bytes \ == -
——————Block Length - \ T~
2 Bytes \ Lk =~ _
7 RDW “Data N\
Record | LL |00 |a
7
| ‘ LOptional Control Character
Reserved - 2 Bytes //
| Record Length- Y
| 2 Bytes
' /
/
Block sow | Y BJlo\ck
- LL N A / 7 BDW Record
LL | 00 | Record B LL(| 00 Record C LL |00 Record D

i f_Reserved - 2 Bytes

Block Length - 2 Bytes

Figure 5. Nonspanned, Format-V Records

Variable-Length Records—Format-V

Format V provides for variable-length records and variable-length record segments,
each of which describes its own characteristics, and for variable-length blocks of
such records or record segments. Except when variable-length track overflow
records are specified for volumes on devices with the rotational position sensing
feature, the control program performs length checking of the block and uses the
record or segment length information in blocking and unblocking. The first 4 bytes
of each record, record segment, or block make up a descriptor word containing
control information. You must allow for these additional 4 bytes in both your input
and output buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor word
(BDW) followed by one or more logical records or record segments. The block
descriptor word is a 4-byte field that describes the block. The first 2 bytes specify
the block length LI—4 bytes for the BDW plus the total length of all records or
segments within the block. This length can be from 8 to 32760 bytes or, when you
are using WRITE with tape, from 18 to 32760. The third and fourth bytes are
reserved for possible future system use and must be 0. If the system does your
blocking—that is, when you use the queued access technique—the operating
system automatically provides the BDW when it writes the data set. If you do your

own blocking—that is, when you use the basic access technique—you must supply
the BDW.

18 MVS/XA Data Administration Guide

‘-

Record Descriptor Word: A variable-length logical record consists of a record
descriptor word (RDW) followed by the data. The record descriptor word is a
4-byte field describing the record. The first 2 bytes contain the length LL of the
logical record (including the 4-byte RDW). The length can be from 4 to 32756.
All bits of the third and fourth bytes must be 0, because other values are used for
spanned records. For output, you must provide the RDW except in data mode for
spanned records (described under “Buffer Control” on page 93). For output in
data mode, you must provide the total data length in the physical record length
field (DCBPRECL) of the DCB. For input, the operating system provides the
RDW except in data mode. In data mode, the system passes the record length to
your program in the logical record length field (DCBLRECL) of the DCB. The
optional control character (a) may be specified as the fifth byte of each record and
must be followed by at least one byte of data (the length in the RDW, in this case,
would be 6). The first byte of data is a table reference character if OPTCD=J has
been specified. The RDW, the optional control character, and the optional table
reference character are not punched or printed.

Spanned Format-VS Records (Sequential Access Method)

Figure 6 on page 20 shows how the spanning feature of the queued and basic
sequential access methods lets you create and process variable-length logical
records that are larger than one physical block and/or to pack blocks with
variable-length records by splitting the records into segments so that they can be
written into more than one block.

When spanning is specified for blocked records, the system tries to fill all blocks.
For unblocked records, a record larger than block size is split and written in two or
more blocks, each block containing only one record or record segment. Thus the
block size may be set to the one that is best for a given device or processing
situation. It is not restricted by the maximum record length of a data set. A record
may, therefore, span several blocks, and may even span volumes. Note that a
logical record spanning three or more volumes cannot be processed in update mode
(described under “Buffer Control” on page 93) by QSAM. For blocked records, a
block can contain a combination of records and record segments, but not multiple
segments of the same record. When records are added to or deleted from a data
set, or when the data set is processed again with different block size or record size
parameters, the record segmenting will change.

Chapter 3. Record Formats 19

Block

N

BDW Ve N ~
4 b\ N\
Last First Segment . :
N Intermediate Segment Last Segment | First Segment
LL i:g,_mo;?cta, of Logical LL of Logical Reec’;.)rd B LL of Logical of Logical
Record A | Hecord 8 Record B Record C
LvReserved -1 \ \ \ : \\
2 Bytes | N \ \ I "
Block Length - : N \ \\ ! .
2 Bytes | LL \ \ LL \ i LL N
e o v \)
SDwW Data SDW Data SDW Data
ter- .
First 'r:ezriate Last
Segment ||| a Segment | LL Segment LL
of Logical of Logical of Logical
Record Record Record
LOptional Control L._. Segment Control L—Segment Control
Character Code Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 7)
. Segment Length - 2 bytes LL
r N

RDW Data Portion of Logical Record B

Data Portion
of Last
Segment

Data Portion Data Portion
of of
First Segment ! Intermediate Segment

Logical Record
(In User’s Work Area) LL

LOptional Control Character
e Reserved - 2 Bytes
Record Length - 2 Bytes

Figure 6. Spanned Format-VS Records (Sequential Access Method)

Considerations for Processing Spanned Record Data Sets

When spanned records span volumes, reading errors may occur when using QSAM
if a volume that begins with a middle or last segment is mounted first or if an
FEOV macro instruction is issued followed by another GET. QSAM cannot begin
reading from the middle of the record. The errors include duplicate records,
program checks in the user’s program, and invalid input from the spanned record
data set.

When QSAM opens a spanned record data set in UPDAT mode, it uses logical
record interface (LRI) to assemble all segments of the spanned record into a single,
logical input record and to disassemble a single logical record into multiple
segments for output data blocks. A record area must be provided by using the
BUILDRCD macro instruction or by specifying BFTEK=A in the DCB.

Note: When you specify BFTEK=A, the Open routine provides a record area
equal to the LRECL specification, which should be the maximum length in bytes.
(An LRECL=0 is invalid.)

If you issue the FEOV macro when reading a data set that spans volumes, or if a
spanned multivolume data set is opened to other than the first volume, make sure
that each volume begins with the first (or only) segment of a logical record. Input
routines cannot begin reading in the middle of a logical record.

20 MVS/XA Data Administration Guide

Segment Descriptor Word: Each record segment consists of a segment descriptor
word (SDW) followed by the data. The segment descriptor word, similar to the
record descriptor word, is a 4-byte field that describes the segment. The first 2
bytes contain the length LL of the segment, including the 4-byte SDW. The length
can be from 5 to 32756 bytes or, when you are using WRITE with tape, from 18 to
32756 bytes. The third byte of the SDW contains the segment control code that
specifies the relative position of the segment in the logical record. The segment
control code is in the rightmost 2 bits of the byte. The segment control codes are
shown in Figure 7. The remaining bits of the third byte and all of the fourth byte
are reserved for possible future system use and must be 0.

Binary

Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment

Figure 7. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record
has been segmented. You or the operating system can build the SDW, depending
on which access method is used. In the basic sequential access method, you must
create and interpret the spanned records yourself. In the queued sequential access
method move mode, complete logical records, including the RDW, are processed in
your work area. GET consolidates segments into logical records and creates the
RDW. PUT forms segments as required and creates the SDW for each segment.
Data mode is similar to move mode, but allows reference only to the data portion
of the logical record (that is, to one segment) in your work area. The logical record
length is passed to you through the DCBLRECL field of the data control block. In
locate mode, both GET and PUT process one segment at a time. However, in
locate mode, if you provide your own record area using the BUILDRCD macro or
if you ask the system to provide a record area by specifying BFTEK=A, then GET,
PUT, and PUTX process one logical record at a time. (BFTEK=A or the
BUILDRCD macro cannot be specified when logical records exceed 32760 bytes.
To process logical records that exceed 32760 bytes, you must use locate mode and
specify LRECL=X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when the
data set is opened for update.

When unit record devices are used with spanned records, the system assumes that
unblocked records are being processed and the block size must be equivalent to the
length of one print line or one card. Records that span blocks are written one
segment at a time.

Note: Spanned variable-length records cannot be specified for a SYSIN data set.

Chapter 3. Record Formats 21

Null Segments

N
A 1 in bit position 0 of the SDW indicates a null segment. A null segment means "/
that there are no more segments in the block. Bits 1 to 7 of the SDW and the '
remainder of the block must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (You do not have to be concerned about null
segments unless you have created a data set using null segments.)
Spanned Variable-Length Records (Basic Direct Access Method)
The spanning feature of the basic direct access method (BDAM) lets you create
and process variable-length unblocked logical records that span tracks. The feature
also lets you pack tracks with variable-length records by splitting the records into
segments. Figure 8 shows how these segments can then be written onto more than
one track.
Track 1 Track 2 Track 3
! A ’ Block A ")
BDW ~
~ g LL
First Segment
tL| |of Logical LL| |'mermediate Segment of LL l;:sisew?m
Record A ogical Record A Record A
A AN LL = maximum] \
Reterved : NN block size \\ \ | \\
2Bytes | NN for track Y \ ! \
Block Length - '« AN \ \ ! \
2 Bytes AN AN \\ ! | \\
N\ L L A \ \ 1 \ N
N M h N \ LL ! ! LL \ :' '
’ 5 ~ \ \\ | \ N L
DW Data Sow Data ” spw Data -
X Intermediate
First Segment Last
Segment of Logical Segment
of Logical | LL Record LL of Logical| LL
Record Record
'—-g?;’ment Controt L—Segment Control
——Reserved - 1 Byte ¢ Code
Segment Control Code -
1 Byte (See Figure 7)
— Segment Length - 2 Bytes
LL
- N
BDW Data Portion of Logical Record A
Logical Record Data Portionji Data Portion 'Data Portion
(In User’'s Work of ! of i of Last
Area) First Segment | Intermediate Segment | Segment
Block Length - _4 1
2 Bytes
geBserved - Note: Not All Segment and Block Combinations are Represented
ytes
Figure 8. Spanned Format-V Records for BDAM Data Sets
When you specify spanned, unblocked record format for the basic direct access
method and when a complete logical record cannot fit on the track, the system tries P
to fill the track with a record segment. Thus the maximum record length of a data \‘3(
set is not restricted by track capacity. Furthermore, segmenting records allows a - -

22 MVS/XA Data Administration Guide

record to span several tracks, with each segment of the record on a different track.
However, because the system does not allow a record to span volumes, all segments
of a logical record in a direct data set are on the same volume.

ISO/ANSI/FIPS Variable-Length Records—Format D

For ISO/ANSI/FIPS tapes, nonspanned variable-length records are format-D
records. ISO/ANSI/FIPS records are the same as format-V records, with the
following exceptions:

Block prefix—A record block can contain a block prefix. To specify a block
prefix, code the BUFOFF operand in the DCB macro. The block prefix can
vary in length from 0 to 99 bytes but its length must remain constant for all
records in the data set being processed. For blocked records, the block prefix
precedes the RDW for first or only logical record in each block. For unblocked
records, the block prefix precedes the RDW for each logical record.

To specify that the block prefix is to be treated as a BDW by data management
for format-D or -DS records on output, code BUFOFF=L as a DCB operand.
Your block prefix must be 4 bytes long, and it must contain the length of the
block, including the block prefix. The maximum length of a format-D or -DS,
BUFOFF=L block is 9999, because the length (stated in binary by the user) is
translated to a 4-byte ASCII character decimal field on the ISO/ANSI/FIPS
tape when the block is written. It is converted back to a 2-byte length field in
binary followed by two bytes of zeros when the block is read. If you use
QSAM to write records, data management fills in the block prefix for you. If
you use BSAM to write records, you must fill in the block prefix yourself. If
you are using chained scheduling to read blocked DB or DBS records, you
cannot code BUFOFF=absolute expression in the DCB. Instead, BUFOFF=L
is required, because the access method needs binary RDWs and valid block
lengths to unblock the records.

When you use QSAM, you cannot read the block prefix into your record area
on input. When using BSAM, you must account for the block prefix on both
input and output. When using either QSAM or BSAM, you must account for
the length of the block prefix in the BLKSIZE and BUFL operands.

When you use BSAM on output records, the operating system does not
recognize the block prefix. Therefore, if you want a block prefix, it must be
part of your record.

The block prefix can only contain EBCDIC characters that correspond to the
128, seven-bit ASCII characters. Thus, you must avoid using data types, such
as binary, packed decimal, and floating point, that cannot always be translated
into ISCII/ASCII. (See the Note in Chapter 3, “Record Formats” on

page 13.) For DB and DBS records, the only time the block prefix can
contain binary data is when you have coded BUFOFF=L, which tells data
management that the prefix is a BDW. Unlike the block prefix, the RDW must
always be in binary.

Block size—Version 3 tapes have a maximum block size of 2048. This limit
may be overridden by a label validation installation exit.

Chapter 3. Record Formats 23

If you create variable-length blocks that are shorter than 18 bytes, data
management pads each one to 18 bytes when the blocks are written onto an
ISO/ANSI/FIPS tape. The padding character used is the ISCII/ASCII
circumflex character.

e Control characters—Control characters, if present, must be ISO/ANSI control
characters. For more information about control characters, see
Appendix B, “Control Characters’ on page 183.

Figure 9 shows the format of nonspanned variable-length records for
ISO/ANSI/FIPS tapes, where the record descriptor word (RDW) is located, and
where block prefixes and control characters must be placed when they are used.

Block Block
A A
r \ s
Optional ‘ Optional
Blocked | giock |Record A| Record B Record C Block | Record D Record E Record F
Records | prefix Prefix
-~
\ T—< -
\ ~ <
\ LL ~~ -~
v A N\
RDW Data
/ A N\
LL a
-
// [} t LOptional Control Character _ - -
/ Reserved - 2 Bytes e
4 . Record Length - __ ~
,/ 2 Bytes _ —~ -
/ P
/ PR Block Block
/ - - A A r
Optional Optional Optional
Unblocked Block Record C Block | Record D " Block Record E
Records Prefix Prefix Prefix

Note: Block prefixes on output records must be 4-bytes long.
Figure 9. Nonspanned Format-D Records for ISO/ANSI/FIPS Tapes

ISO/ANSI/FIPS Variable-Length Spanned Records—Format-DS or Format-DBS

For ISO/ANSI/FIPS tapes, variable-length spanned records must be specified in

the DCB RECFM parameter as DCB RECFM=DS or DBS. Format-DS and -DBS

records are similar to format-VS or -VBS records with the following exceptions:

o Segment descriptor word (SDW)—There is an additional byte preceding each
SDW for DS/DBS records. This additional byte is required for conversion of
the SDW from IBM to ISO/ANSI/FIPS format, because the ISO/ANSI SDW
(called a segment control word) is five bytes long. Otherwise, the SDW for
DS/DBS records is the same as the SDW for VS/VBS records. The SDW LL
count excludes the additional byte. (See “Processing Considerations for DS
and DBS Records” on page 25.)

24 MVS/XA Data Administration Guide

o Extended logical record interface (XLRI)—DS/DBS records may be processed
using XLRI. (See “Processing Considerations for DS and DBS Records” on
page 25.)

« The exceptions previously noted (“ISO/ANSI/FIPS Variable-Length
Records—Format D’ on page 23) for format-D records still apply.

Figure 10 on page 26 shows what spanned variable-length records for
ISO/ANSI/FIPS tapes look like when you are using IBM access methods. The
figure shows the segment descriptor word (SDW), where the record descriptor
word (RDW) is located, and where block prefixes must be placed when they are
used. If you are not using IBM access methods, see

Appendix D, “ISO/ANSI/FIPS Record Control Word and Segment Control
Word” on page 193, for a description of ISO/ANSI/FIPS record control words
and segment control words.

Processing Considerations for DS and DBS Records

When using QSAM, the same application used to process VS/VBS tape files can be
used to process DS/DBS tape files. However, you must ensure that
ISO/ANSI/FIPS requirements such as block size limitation, tape device, and
restriction to EBCDIC characters that correspond to the 128, seven-bit ASCII
characters are met. The SCW/SDW conversion and buffer positioning is handled
by the GET/PUT routines.

When using BSAM to process a DS/DBS tape file, you must allow for an
additional byte at the beginning of each SDW. The SDW LL must exclude the
additional byte. On input, you must ignore the unused byte preceding each SDW.
On output, you must allocate the additional byte for each SDW.

SDW Conversion: Sequential access method end-of-block (EOB) routines perform
conversion between ISO/ANSI/FIPS segment control word (SCW) format and
IBM segment descriptor word (SDW) format for both QSAM and BSAM
processing. On output, the binary SDW LL value (provided by you when using
BSAM and by the access method when using QSAM), is increased by 1 for the
extra byte and converted to four ISO/ANSI/FIPS numeric characters. Because
the binary SDW LL value will result in four numeric characters, the binary value
must not be greater than 9998. The fifth character is used to designate which
segment type (complete logical record, first segment, last segment, or intermediate
segment) is being processed.

On input, the four numeric characters designating the segment length are converted
to two binary SDW LL bytes and decreased by one for the unused byte. The
ISO/ANSI/FIPS segment control character maps to the DS/DBS SDW control
flags. This conversion leaves an unused byte at the beginning of each SDW. It is
set to X'00'. For more detail on this process, see Appendix D, “ISO/ANSI/FIPS
Record Control Word and Segment Control Word”” on page 193.

XLRI Mode: The extended logical record interface (XLRI) may be used with
DS/DBS files to communicate LRECL values over 32760. (XLRI is supported
only in QSAM locate mode for ISO/ANSI/FIPS tapes.) XLRI should be used for
any case where the logical record will exceed 32760 bytes. Using the LRECL=X
for ISO/ANSI/FIPS causes an 013-DC abend.

To use XLRI, specify LRECL=0K or LRECL=nK in the DCB macro. Specifying

Chapter 3. Record Formats 25

7N
N

Block Block Block
Optional | Last Seg. First Seg. of Optional . Optional | Last Seg. First Seg.
Blocked | Biock | of Log. Logical Block | ptermediate Ses. Block | of Log. of Logical
ecor Prefix Record A Record B Prefix 9 Prefix Record B Record C
-7 i / I / \
-7l yd AT / / AETIEEAN
> V2 / e I / N \
SDW DATA SDW DATA SDW DATA
P —, —— e —— p—— e —— ——
First Seg. Intermediate Last Seg.
of Logical LL|clo Seg. of Logical J LL [C|0 of Logical LLicjo
Record B Record B Record B
A
L Reserved — 1 Byte } *—Sogment Position {—— Segment Position
Indicator Indicator

——— Segment Position
Indicator — 1 Byte

Segment Length — 2 Bytes
Field Expansion Byte

Segment Length

Field Expansion
Byte

Segment Length

Field Expansion
Byte

LL

RDW (Binary) Complete Logical Record Data

p—— /. —
Logical First Seg. | Intermediate Last Seg.
Record in LRI | LL| 00 | of Logical | Segment of of Logical
Record Area Record B | Logical Record B | Record B
ﬂ L Reserved — 2 Bytes (Must Be Zero)
Record Length — 2 Bytes
LLL
RDW (Binary) Complete Logical Record Data
p— —
XLRI Forma
Logi ': td First Seg. Intermediate Last Seg.
h)9('3:" ecord 10| LLL | of Logical | Segment of of Logical
n Record B | Logical Record B | Record B
Record Area

L Record Length (3 Bytes) to 16 776 192
Reserved Byte (Must Be Zero)

Figure 10. Spanned Variable-Length (Format-DS) Records for ISO/ANSI/FIPS Tapes

DCBLRECL with the K suffix sets the DCBBFTK bit that indicates that LRECL
is coded in K units and that the DCB is to be processed in XLRI mode.

26 MVS/XA Data Administration Guide

LRECL=0K in the DCB macro specifies that the LRECL value will come from the
file label or JCL. When LRECL is from the label, the file must be opened as an
input file. The label (HDR2) value for LRECL will be converted to kilobytes and
rounded up when XLRI is in effect. When the ISO/ANSI/FIPS label value for
LRECL is 00000 to show that the maximum record length may be greater than
99999, the LRECL=nK must be used in the JCL or in the DCB to specify the
maximum record length.

The LRECL from JCL can be expressed in absolute form or with the K notation.
Absolute values, permissible only from 5 to 32760, will be converted to kilobytes
by rounding up to an integral multiple of 1024 when the DCB is for XLRI.

To show the record area size in the DD statement, code DCB=LRECL=nK. The
value nK may range from 1K to 16383K (expressed in 1024-byte multiples).
However, depending on the buffer space available, the value you can specify in
most systems will be much smaller than 16383K bytes. This value is used to
determine the size of the record area required to contain the largest logical record
of the spanned format file.

When using XLRI, the exact LRECL size is communicated in the three low-order
bytes of the RDW in the record area. This special RDW format exists only in the
record area to communicate the length of the logical record (including the 4-byte
RDW) to be written or read. (See the XLRI format of the RDW in Figure 10 on
page 26.) DCB LRECL shows the 1024-multiple size of the record area (rounded
up to the next nearest kilobyte). The normal DS/DBS SDW format is used at all
other times before conversion.

Undefined-Length Records

Format-U permits processing of records that do not conform to the F or V format.
Figure 11 shows how each block is treated as a record; therefore, any unblocking
that is required must be performed by your program. The optional control
character may be used in the first byte of each record. Because the system does
not do length checking on format-U records, your program may be designed to
read less than a complete block into virtual storage.

Record
———\

a Data

/
\ t Optional Control /

\ Character - 1 Byte 7
\ ’

\
Block \ Block ,’ Block
\ e e
Record A Record B Record C

Figure 11. Undefined-Length Records

Chapter 3. Record Formats 27

For format-U records, the user must specify the record length when issuing the pu
WRITE, PUT, or PUTX macro instruction. No length checking is performed by (f A
the system, so no error indication will be given if the specified length does not —
match the buffer size or physical record size.

In update mode, you must issue a GET or READ macro before you issue a PUTX
or WRITE macro to a data set on a direct access device. If you change the record
length when you issue the PUTX or WRITE macro, the record will be padded with
zeros or truncated to match the length of the record received when the GET or
READ macro was issued. No error indication will be given.

For Version 3 ISO/ANSI/FIPS tapes, format-U records are not supported. An
attempt to process a format-U record from a Version 3 tape will result in entering
the label validation installation exit.

ISO/ANSI Version 1 (ISO 1001-1969 and ANSI X3.27-1969) tapes containing
format-U records can be used for input only. These records are the same as the
format-U records described above, except the control characters must be
ISO/ANSI control characters, and block prefixes can be used.

Record Format—Device Type Considerations

Before executing your program, you must supply the operating system with the
record format (RECFM) and device-dependent information in a DCB macro
instruction, a DD statement, or a data set label. The DCB subparameters for the TN
DD statement differ slightly from those described here. A complete description of
the DD statement and a glossary of DCB subparameters are contained in JCL.

The record format (RECFM) parameter of the DCB macro specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), variable-spanned (RECFM=DS or -VS), or
undefined-length (RECFM=U). All record formats except U can be blocked.
Fixed-length blocked records (RECFM=FB) can be specified as standard
(RECFM=FBS), meaning that there are no truncated (short) blocks or unfilled
tracks within the data set, with the possible exception of the last block or track.
Data sets with a fixed-length, standard format are described under “Fixed-Length
Records, Standard Format” on page 14.

As an optional feature, a control character can be contained in each record. This
control character will be recognized and processed if the data set is printed or
punched. The control characters are transmitted on both tapes and direct access
volumes. The presence of a control character is indicated by M or A in the
RECFM field of the data control block. M denotes machine code; A denotes
American National Standards Institute (ANSI) code. If either M or A is specified,
the character must be present in every record; the printer space (PRTSP) or
stacker select (STACK) field of the DCB is ignored. The optional control
character must be in the first byte of format-F and format-U records and in the
fifth byte of format-V records and format-D records where BUFOFF=L. Control
character codes are listed in Appendix B, “Control Characters” on page 183.
The device-dependent (DEVD) parameter of the DCB macro specifies the type of
device where the data set’s volume resides:

=
A

« TA magnetic tape

28 MVS/XA Data Administration Guide

Magnetic Tape

PR printer

PC card punch

RD card reader

DA direct access device or Mass Storage System (MSS) virtual volumes

Note: Because the DEVD option is required only for the DCB macro expansion,
you are guaranteed the maximum device flexibility by letting it default to
DEVD=DA.

Format-F, -V, -D, and -U records are acceptable for magnetic tape. Format-V
records are not acceptable on 7-track tape if the data conversion feature is not
available. ASCII records are not acceptable on 7-track tape.

When you create a tape data set with variable-length record format-V or -D, the
control program pads any data block shorter than 18 bytes. For format-V records,
it pads to the right with binary zeros so that the data block length equals 18 bytes.
For format-D (ASCII) records, the padding consists of ASCII circumflex
characters, which are equivalent to X'5E's.

Note that there is no minimum requirement for block size. However, in
nonreturn-to-zero-inverted mode, if a data check occurs on a magnetic tape device,
any record shorter than 12 bytes in a read operation will be treated as a noise
record and lost. No check for noise will be made unless a data check occurs.

Figure 12 shows how the tape density (DEN) specifies the recording density in
bits per inch per track. When DEN is not specified, the highest density capable by
the unit will be used.

Recording Density

DEN 7-Track Tape 9-Track Tape 18-Track Tape
1 556 (NRZI) N/A N/A

2 800 (NRZI) 800 (NRZI)! N/A

3 N/A 1600 (PE)2 N/A

4 N/A 6250 (GCR)3 N/A

Notes:

1 NRZI is for nonreturn-to-zero-inverted mode.
2 PEis for phase encoded mode.
3 GCR is for group coded recording mode.

Figure 12. Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be specified as:

Chapter 3. Record Formats 29

Data conversion is to be used. Data conversion makes it possible to write 8
binary bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are
recorded. The length field of format-V records contains binary data and is
not recorded correctly without data conversion.

Even parity is to be used; if E is omitted, odd parity is assumed.

BCDIC to EBCDIC translation is required.

Card Reader and Punch

Format-F and -U records are acceptable to both the reader and the punch;
format-V records are acceptable to the punch only. The device control character,
if specified in the RECFM parameter, is used to select the stacker; it is not
punched. The first 4 bytes (record descriptor word or segment descriptor word) of
format-V records or record segments are not punched. For format-V records, at
least 1 byte of data must follow the record or segment descriptor word or the
carriage control character.

Each punched card corresponds to one physical record. Therefore, you should
restrict the maximum record size to 80 (EBCDIC mode) or 160 (column binary
mode) data bytes. When mode (C) is used for the card punch, BLKSIZE must be
160 unless you are using PUT. Then you can specify BLKSIZE as 160 or a multiple
of 160, and the system handles this as described under ‘“PUT—Write a Record” on
page 64. You can specify the read/punch mode of operation (MODE) parameter
as either card image (column binary) mode (C) or EBCDIC mode (E). If this
information is omitted, E is assumed. The stacker selection parameter (STACK)

can be specified as either 1 or 2 to show which bin is to receive the card. If it is not
specified, 1 is assumed.

For all QSAM, RECFM=FB, card punch data sets, the block size in the DCB will
be adjusted by the system to equal the logical record length. This data set will be
treated as RECFM=F. If the system builds the buffers for this data set, the buffer
length will be determined by the BUFL parameter. If the BUFL parameter was
not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length,
you must reset DCBBLKSI in the DCB and ensure that the buffers are large
enough to contain the largest block size expected. You may ensure the buffer size
by specifying the BUFL parameter before the first time the data set is opened or by
issuing the FREEPOOL macro after each CLOSE macro so the system will build a
new buffer pool of the correct size each time the data set is opened.

Punch error correction on the IBM 2540 Card Read Punch is not performed.

The IBM 3525 Card Punch accepts only format-F records for print data sets and
for associated data sets. Other record formats are allowed for the read data set, the
punch data set, and the interpret punch data set. For more information on
programming for the 3525 Card Punch, see OS and OS/VS Programming Support
Jor the IBM 3505 Card Reader and IBM 3525 Card Punch.

30 MVS/XA Data Administration Guide

«"{(7 \\\

Printer

Carriage Control Character

With the IBM 3800 Printing Subsystem, the data in the record can contain two
optional bytes—the optional control character used for carriage control, followed
by an optional table reference character used for dynamically selecting a character
arrangement table during printing. These characters are discussed below.

You may specify in the DD statement, the DCB macro, or the data set label that an
optional control character is part of each record in the data set. The 1-byte
character is used to show a carriage control function when the data set is printed or
a stacker bin when the data set is punched. Although the character is a part of the
record in storage, it is never printed or punched. Note that buffer areas must be
large enough to accommodate the character. If the immediate destination of the
record is a device, such as a disk, that does not recognize the control character, the
system assumes that the control character is the first byte of the data portion of the
record. If the destination of the record is a printer or punch and you have not
indicated the presence of a control character, the system regards the control
character as the first byte of data. A list of the control characters is in

Appendix B, “Control Characters” on page 183.

3800 Table Reference Character

Record Formats

The 3800 table reference character is a numeric character (0, 1, 2, or 3)
corresponding to the order in which the character arrangement table names have
been specified with the CHARS keyword. It is used for selection of a character
arrangement table during printing. (For more information on the table reference
character, see IBM 3800 Printing Subsystem Programmer’s Guide.)

A numeric table reference character (such as 0) selects from within the table that
font to which the character corresponds. The characters’ number values represent
the order in which the font names have been specified with the CHARS parameter.
In addition to using table reference characters to correspond to font names
specified on the CHARS parameter, you can also code table reference characters
that correspond to font names specified in PAGEDETF control structure. Valid
table reference characters vary and range between 0 and 126. Table reference
characters with values greater than 126 default to a value of 0 (zero). For
additional information, see IBM 3800 Printing Subsystem Programmer’s Guide.

Records of format-F, -V, and -U are acceptable to the printer. The first 4 bytes
(record descriptor word or segment descriptor word) of format-V records or record
segments are not printed. For format-V records, at least 1 byte of data must follow
the record or segment descriptor word or the carriage control character. The
carriage control character, if specified in the RECFM parameter, is not printed.
The system does not position the printer to channel 1 for the first record unless
specified by a carriage control character.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records,
each line corresponds to one record segment, and block size should not exceed the
length of one line on the printer.

Chapter 3. Record Formats 31

If carriage control characters are not specified, you can show printer spacing
(PRTSP) as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

For all QSAM, RECFM=FB, printer data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be
treated as RECFM=F. If the system builds the buffers for this data set, the buffer
length will be determined by the BUFL parameter. If the BUFL parameter was
not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length,
you must reset DCBBLKSI in the DCB and ensure that the buffers are large
enough to contain the largest block size expected. You may ensure the buffer size
by specifying the BUFL parameter before the first time the data set is opened or by
issuing the FREEPOOL macro after each CLOSE macro so the system will build a
new buffer pool of the correct size each time the data set is opened.

Direct Access Device
Direct access devices accept records of format-F, -V, or -U. If the records are to
be read or written with keys, the key length (KEYLEN) must be specified. In
addition, the operating system has a standard track format for all direct access

volumes. Each track contains data information and certain control information such
as:

« The address of the track

« The address of each record
o The length of each record
« Gaps between areas

A complete description of track format is contained in “Direct Access Volumes” on
page 5.

32 MVS/XA Data Administration Guide

AN

o
h.

Chapter 4. Selecting an Access Method

The operating system allows you to concentrate most of your efforts on processing
the records read or written by the data management routines. To get the records
read and written, your main responsibility is to describe the data set to be
processed, the buffering techniques to be used, and the access method. An access
method has been defined as the combination of data set organization and the
technique (queued or basic) used to gain access to the data.

Overview of Access Methods

Access methods are identified primarily by the data set organization to which they
apply. For instance, BDAM is the basic access method for direct organization.
Nevertheless, there are times when an access method identified with one
organization can be used to process a data set usually thought of as organized in a
different manner. Thus, a data set created by the basic access method for
sequential organization (BSAM) may be processed by the basic direct access
method (BDAM) and visa versa. If the queued access technique is used to process
a sequential data set, the access method is called the queued sequential access
method (QSAM).

Basic access methods are used for all data organizations, while queued access
methods apply only to sequential and indexed sequential data sets as shown in

Figure 13.

Data Set Access Technique
Organization Basic Queued
Sequential BSAM QSAM
Partitioned BPAM

Indexed Sequential BISAM QISAM
Direct BDAM

Figure 13. Data Management Access Methods

It is possible to control an I/O device directly while processing a data set with any
data organization without using a specific access method. The execute channel
program (EXCP) macro instruction uses the system programs that provide for
scheduling and queuing I/O requests, efficient use of channels and devices, data
protection, interruption procedures, error recognition, and retry. Complete details
about the EXCP macro are in System-Data Administration.

Chapter 4. Selecting an Access Method 33

Temporary data sets can be handled by a function called virtual I/O (VIO). Data
sets for which VIO is specified are located in external page storage. However, to
the access methods (BDAM, BPAM, BSAM, QSAM, and EXCP), the data sets
appear to reside on a real direct access storage device. VIO provides these
advantages:

« Elimination of some of the usual I/O device allocation and data management
overhead for temporary data sets

o Generally more efficient use of direct access storage space

To use VIO, you must specify VIO=YES in the UNITNAME macro during system
generation, and you must specify a unitname (defined in the UNITNAME macro)
on the DD statement for your data set. For additional information on VIO, see
Initialization and Tuning Guide. For information on the UNITNAME macro, see
System Generation Reference. For information on changes to the DD statement, see
JCL.

Basic Direct Access Method (BDAM)

Before you use the BDAM access method to process a data set, consider these

implications:

¢ You create a BDAM data set with the basic sequential access method (BSAM).
A special operand in the BSAM DCB macro (MACRF=WL) shows that you
want to create a BDAM data set.

» The problem program must synchronize all I/O operations with a CHECK or a
WAIT macro.

o The problem program must block and unblock its own input and output
records. (BDAM only reads and writes data blocks.)

e You can find data blocks within a data set with one of the following addressing
techniques:

— Actual device addresses.

'— Relative track address technique. This locates a track on a direct access
device relative to the beginning of the data set.

— Relative block address technique. This locates a fixed-length data block
relative to the beginning of the data set.

For more information about coding the DCB macro to process a BDAM data set,
see Data Administration: Macro Instruction Reference.

34 MVS/XA Data Administration Guide

. :

Basic Indexed Sequential Access Method (BISAM)

Before you use the BISAM access method to process an ISAM data set, consider
these implications:

« BISAM accesses only ISAM data sets.

« BISAM cannot be used to create an indexed sequential access method (ISAM)
data set.

« BISAM directly retrieves logical records by key, updates blocks of records
in-place, and inserts new records in their correct key sequence.

+ The problem program must synchronize all I/O operations with a CHECK or a
WAIT macro.

o Other DCB operands are available to reduce input/output operations by
defining work areas that contain the highest level master index and the records
being processed.

For more information about coding the DCB macro to process a BISAM data set,
see Data Administration: Macro Instruction Reference.

Basic Partitioned Access Method (BPAM)

BPAM is a subset of BSAM, which processes only the directory of a partitioned
data set. BSAM processes the data set members.

Before you use the BPAM access method to process a data set, consider these
implications:

« One complete partitioned data set must be on one direct-access volume, but
you can concatenate multiple input data sets that are on the same or different
volumes.

« When you create a partitioned data set, you must specify the SPACE
parameter on your first (or only) DD statement for the data set. This
parameter defines the size of the data set and its directory so that the system
can allocate data set space and pre-format the directory.

e You can use either the basic sequential access method (BSAM) or the queued
sequential access method (QSAM) to add or retrieve a BPAM data set member
without specifying the BLDL, FIND, or the STOW macro by coding the
DSORG=PS operand in the DCB macro. (Data set positioning and directory
maintenance are then handled by the OPEN and CLOSE macros.) But, be
advised that you are really processing the member as if it were part of a
sequential data set, so you are not using the complete capabilities of BPAM.

+ You can use the STOW macro to add, delete, change, or replace an element

4

name or alias in the directory. \
« You can process multiple data set members by passing a list of members to

BLDL. Then you can use the FIND macro to position to to a member before
processing it.

Chapter 4. Selecting an Access Method 35

For more information about coding the DCB macro to process a BPAM data set,

R
see Data Administration: Macro Instruction Reference. a

Basic Sequential Access Method (BSAM)

Before you use the BSAM access method to process a data set, consider these
implications:

The problem program must block and unblock its own input and output
records. (BSAM only reads and writes data blocks.)

The problem program must manage its own input and and output buffers. It
must give BSAM a buffer address with the READ macro, and it must fill its
own output buffer before issuing the WRITE macro.

The problem program must synchronize its own I/O operations by issuing a
CHECK macro for each READ and WRITE macro issued.

BSAM lets you process nonsequential blocks by repositioning with the NOTE
and POINT macros.

You can read and write direct access device record keys with BSAM.

For more information about coding the DCB macro to process a BSAM data set,
see Data Administration: Macro Instruction Reference.

Queued Indexed Sequential Access Method (QISAM) ./

Before you use the QISAM access method to process an ISAM data set, consider
these implications:

L

The characteristics of a QISAM data set are established when the data set is
created. You can’t change them without reorganizing the data set. The DCB
operands that establish these characteristics are: BLKSIZE, CYLOFL,
KEYLEN, LRECL, NTM, OPTCD, RECFM, and RKP.

A QISAM data set can consist of unblocked fixed-length records (F), blocked
fixed-length records (FB), unblocked variable-length records (V), or blocked
variable-length records (VB).

QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume load
mode), update a record in place, or retrieve records sequentially (QISAM, scan
mode).

You can’t use track overflow to create or extend an ISAM data set.

When you create an indexed sequential data set, you can allocate space for the
data set’s prime area, overflow area, and its cylinder/master index(es) on the

same or separate volumes. For more information about space allocation, see
JCL.

36 MVS/XA Data Administration Guide

QISAM automatically generates a track index for each cylinder in the data set
and one cylinder index for the entire data set. Specify the DCB operands
NTM and OPTCD to show that the data set requires a master index(es).
QISAM creates and maintains as many as three levels of master indexes.

You can purge records by specifying the OPTCD=L DCB option when you
create an ISAM data set. This option flags the records you want to purge with
a X'FF' in the first data byte of a fixed-length record or the fifth byte of a
variable-length record. QISAM ignores these flagged records during sequential
retrieval.

You can get reorganization statistics by specifying the OPTCD=R DCB option
when an ISAM data set is created. The problem program uses these statistics
to determine the status of the the data set’s overflow areas.

When you create an ISAM data set, you must write the records in ascending
key order.

For more information about coding the DCB macro to process a QISAM data set,
see Data Administration: Macro Instruction Reference.

Queued Sequential Access Method (QSAM)

Before you use the QSAM access method to process a data set, consider these
implications:

You can use QSAM to process all record formats except blocks with keys.
QSAM blocks and unblocks records for you automatically.

QSAM manages all aspects of I/O buffering for you automatically. The GET
macro retrieves the next sequential logical record from the input buffer, and

the PUT macro places the next sequential logical record in the output buffer.

QSAM gives you three transmittal modes: move, locate, and data. These
modes give you greater flexibility managing buffers and moving data.

For more information about coding the DCB macro to process a QSAM data set,
see Data Administration: Macro Instruction Reference.

Chapter 4. Selecting an Access Method 37

;
_

N

Chapter 5. Specifying a Data Control Block and Initializing Data Sets

Before processing can begin, you must identify the characteristics of a data set, the
volume on which it resides, and its processing requirements. During execution, this
information is made available to the operating system in the data control block
(DCB). A DCB is required for each data set and is created in a processing
program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB
macro instruction, a data definition (DD) statement, and a data set label. In
addition, you can provide or change some of the information during execution by
storing the pertinent data in the appropriate field of the data control block. The
specifications needed for input/output operations are supplied during the
initialization procedures of the OPEN macro instruction. Therefore, the pertinent
data can be provided when your job is to be executed rather than when you write
your program (see Figure 14 on page 40).

When the OPEN macro instruction is executed, the OPEN routine:

« Completes the data control block

« Loads all necessary access method routines not already in virtual storage
« Initializes data sets by reading or writing labels and control information
o Builds the necessary system control blocks

Information from a DD statement is stored in the job file control block (JFCB) by
the operating system. When the job is to be executed, the JFCB is made available
to the open routine. The data control block is filled in with information from the
DCB macro instruction, the JFCB, or an existing data set label. If more than one
source specifies information for a particular field, only one source is used. A DD
statement takes precedence over a data set label, and a DCB macro instruction
over both. However, you can change most data control block fields either before
the data set is opened or when the operating system returns control to your
program (at the data control block open exit). Some fields can be changed during
processing.

Figure 14 on page 40 illustrates the process and the sequence of filling in the data
control block from various sources. The primary source is your program, that is,
the DCB macro instruction. In general, you should use only those DCB parameters
that are needed to ensure correct processing. The other parameters can be filled in
when your program is to be executed.

When a direct access data set is opened (or a magnetic tape with standard labels is
opened for INPUT, RBBACK, or INOUT), any field in the JFCB not completed

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 39

by a DD statement is filled in from the data set label (if one exists). When opening
a magnetic tape for output, the tape label is assumed not to exist or to apply to the
current data set unless you specify DISP=MOD and a volume serial number in the
volume parameter of the DD statement. Any field not completed in the DCB is
filled in from the JFCB. Fields in the DCB can then be completed or changed by
your own DCB exit routine. Then all DCB fields are unconditionally merged into
corresponding JFCB fields if your data set is opened for output. This is done by
specifying OUTPUT, OUTIN, EXTEND, or OUTINX in the OPEN macro
instruction. The DSORG field is not merged unless this field contains zeros in the
JFCB. If your data set is opened for input (INPUT, INOUT, RDBACK, or
UPDAT is specified in the OPEN macro instruction), the DCB fields are not
merged unless the corresponding JFCB fields contain zeros.

DCB Data DQB

Macro -———@-—.' Control -‘—@-—— Exit
Block Routine

DD Job File New
Statement —@——.' Control —@—————D- Data Set

Block Label

Old
Data Set
Label

Figure 14. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it
had before the data set was opened (the buffer pool is not freed). The open and
close routines also use the updated JFCB to write the data set labels for output
data sets. If the data set is not closed when your program terminates, the operating
system will close it automatically.

The operating system requires several types of processing information to ensure
proper control of your input/output operations. The forms of macros in the
program, buffering requirements, and the addresses of your special processing
routines must be specified during either the assembly or the execution of your
program. The DCB parameters specifying buffer requirements are discussed in
“Managing SAM Buffer Space” on page 89.

Because macros are expanded during the assembly of your program, you must
supply the macro forms that are to be used in processing each data set in the
associated DCB macro. You can supply buffering requirements and related
information in the DCB macro, the DD statement, or by storing the pertinent data
in the appropriate field of the data control block before the end of your DCB exit

40 MVS/XA Data Administration Guide

routine. If the addresses of special processing routines (EODAD, SYNAD, or user
exits) are omitted from the DCB macro, you must complete them in the DCB
before they are required.

Note: A data set label to JFCB merge is not performed for concatenated data sets
at the end-of-volume time. If you want a merge, turn on the unlike attribute bit
(DCBOFPPC) in the DCB. This attribute forces the system through OPEN for
each data set in the concatenation, where a label to JFCB merge takes place.

Selecting Data Set Options

DCB Parameters

For each data set you want to process, there must be a corresponding DCB and
DD statement. The characteristics of the data set and device-dependent
information can be supplied by either source. Also, the DD statement must supply
data set identification, device characteristics, space allocation requests, and related
information as specified in JCL. You establish the logical connection between a
DCB and a DD statement by specifying the name of the DD statement in the
DDNAME field of the DCB macro, or by completing the field yourself before
opening the data set.

After you have specified the data set characteristics in the DCB macro, you can
change them only by changing the DCB during execution. The fields of the DCB
discussed below are common to most data organizations and access techniques.
(For more information about the DCB fields, see Data Administration: Macro
Instruction Reference.)

Block Size (BLKSIZE): Specifies the maximum length, in bytes, of a data block. If
the records are of format F, the block size must be an integral multiple of the
record length, except for SYSOUT data sets. (See Chapter 8, “Spooling and
Scheduling Data Sets” on page 75.) If the records are of format V, the block size
specified must be the maximum block size. If format-V records are unblocked, the
block size must be 4 bytes greater than the record length (LRECL). When
spanned variable-length records are specified, the block size is independent of the
record length. For ISO/ANSI/FIPS Version 3 records, the maximum block size is
2048.

There is no minimum requirement for block size; however, if a data check occurs
on a magnetic tape device, any block shorter than 12 bytes in a read operation or
18 bytes in a write operation is treated as a noise record and lost. No check for
noise is made unless a data check occurs. The maximum block size for an
ISO/ANSI/FIPS Version 3 tape is 2048 bytes. This limit may be overridden by a
label validation installation exit. (See Data Facility Product: Customization.)

Data Set Organization (DSORG): Specifies the organization of the data set as
physical sequential (PS), indexed sequential (IS), partitioned (PO), or direct (DA).
If the data set is processed using absolute rather than relative addresses, you must
mark it as unmovable by adding a U to the DSORG parameter (for example, by
coding DSORG=PSU). You must specify the data set organization in the DCB
macro. When creating or processing an indexed sequential organization data set or
creating a direct data set, you must also specify DSORG in the DD statement.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 41

When creating a direct data set, the DSORG in the DCB macro must specify PS or

PSU and the DD statement must specify DA or DAU. N
Key Length (KEYLEN): Specifies the length (0 to 255) in bytes of an optional key et
that precedes each block on a direct access device. The value of KEYLEN is not

included in BLKSIZE or LRECL but must be included in BUFL if buffer length is

specified. Thus, BUFL=KEYLEN+BLKSIZE.

Record Length (LRECL): Specifies the length, in bytes, of each record in the data
set. If the records are of variable length, the maximum record length must be
specified. For input, the field should be omitted for format-U records. For the
extended logical record interface for ISO/ ANSI/FIPS variable spanned records,
LRECL must be specified as LRECL=0K or LRECL=nK.

Record Format (RECFM): Specifies the characteristics of the records in the data set
as fixed-length (F), variable-length (V), ISCII/ASCII variable-length (D), or
undefined-length (U). Blocked records are specified as FB, VB, or DB. Spanned
records are specified as VS, VBS, DS, or DBS. (ISCII/ASCII records are specified
as DS or DBS.) You may also specify the records as fixed-length standard by using
FS or FBS. You can request track overflow for records other than standard format
by adding a T to the RECFM parameter (for example, by coding FBT).

The type of print control can be specified to be in ANSI format-A or in machine
code format-M, as described in Appendix B, “Control Characters” on page 183.

Write Validity Check Option (OPTCD=W): You can specify the write validity
check option in either the DCB parameter of the DD statement or the DCB macro.
After a record is transferred from main to secondary storage, the system reads the
stored record (without data transfer) and, by testing for a data check from the 1/O e
device, verifies that the record was written correctly. Be aware that the write

validity check process requires an additional revolution of the device for each

record. If the system detects any errors, it starts its standard error recovery

procedure.

For buffered tape devices, the write validity check option delays the device end
interrupt until the data is physically on tape. When you use the
write-validity-check option, you get none of the performance benefits of buffering.

DD Statement Parameters

Each of the data set description fields of the data control block, except as noted for
data set organization, can be specified when your job is to be executed. Also, data
set identification and disposition, and device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are common to most
data set organizations and devices. (See JCL.)

Device Affinity (AFF): Requests that specified data sets be allocated to the same
device.

Data Control Block (DCB): Provides, through sub parameters, information to be
used to complete those fields of the data control block that were not specified in
the DCB macro. This parameter cannot be used to change data control block fields pe
that are specified in the user’s program. \ih

42 MVS/XA Data Administration Guide

Data Definition Name (DDNAME): s the name of the DD statement and connects
the DD statement to the data control block that specifies the same DDNAME.

Data Set Disposition (DISP): Describes the status (OLD, NEW, KEEP, or
DELETE) of a data set and shows what is to be done with it at the end of the job
step.

Data Set Name (DSNAME): Specifies the name of a newly defined data set, or
refers to a previously defined data set.

Data Set Label (LABEL): Shows the type and contents of the tape label or labels
associated with the data set. The operating system verifies standard labels.
Standard labels include those specified in the DD statement as SL (standard
labels), SUL (standard user labels), AL (American National Standard labels), and
AUL (American National Standard user labels). Nonstandard labels (NSL) can be
specified only if your installation has incorporated into the operating system
routines to write and process nonstandard labels.

Space Allocation (SPACE): Designates the amount of space on a direct access
volume that should be allocated for the data set. Unused space can be released, if
requested, when your job is finished.

Input/ Output Device (UNIT): Specifies the number or type of I/0 devices to be
allocated for use by the data set.

Volume Identification (VOLUME): Identifies the particular volume or volumes, or
the number of volumes, to be assigned to the data set, or the volumes on which
existing data sets reside.

Changing the DCB

You can complete or change the DCB during execution of your program. You can
also determine data set characteristics from information supplied by the data set
labels. You can make changes or additions before you open a data set, after you
close it, during the DCB open exit routine, or while the data set is open. Naturally,
you must supply the information before it is needed.

Use the data control block DSECT (DCBD) macro to identify the DCB field
names symbolically. If you load a base register with the DCB address, you can
refer to any field symbolically.

The DCBD macro generates a dummy control section (DSECT) named IHADCB.
Each field name symbol consists of DCB followed by the first 5 letters of the
keyword operand for the DCB macro. For example, the symbolic name of the
block size operand field is DCBBLKSI. (For other DCB field names, see Data
Administration: Macro Instruction Reference.)

The attributes of each DCB field are defined in the dummy control section. Use
the DCB macro’s assembly listing to determine the length attribute and the
alignment of each DCB field.

You can code the DCBD macro once to describe all DCBs.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 43

Changing an Address in the Data Control Block: Figure 15 on page 44 shows you
how to change a field in the data control block.

OPEN
EOFEXIT CLOSE
LA
USING
MvC
INERROR STM
OUTERROR STM
TEXTDCB DCB

DCBD

(TEXTDCB, INOUT) , MODE=31

(TEXTDCB,REREAD) ,MODE=31, TYPE=T
10, TEXTDCB

IHADCB, 10
DCBSYNAD+1 (3) ,=AL3 (OUTERROR)
OUTPUT

14,12 ,SYNADSA+12

14,12 ,SYNADSA+12
DSORG=PS ,MACRF=(R,W) ,DDNAME=TEXTTAPE, Cc

EODAD=EOFEXIT, SYNAD=INERROR
DSORG=PS

Figure 15. Changing a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened for both input

and output. When the problem program no longer needs it for input, the EODAD
routine closes the data set temporarily to reposition the volume for output. The
EODAD routine then uses the dummy control section IHADCB to change the
error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10, the base
register for IHADCB. Then it moves the address OUTERROR into the
DCBSYNAD field of the DCB. Even though DCBSYNAD is a fullword field and

contains important information in the high-order byte, change only the 3 low-order

bytes in the field.

All unused address fields in the DCB, except DCBEXLST, are set to 1 when the

DCB macro is expanded. Many system routines interpret a value of 1 in an address

field as meaning no address was specified, so use it to dynamically reset any field

you don’t need.

Opening and Closing a Data Set

Although your program has been assembled, the various data management routines
required for I/O operations are not a part of the object code. In other words, your

program is not completely assembled until the DCBs are initialized for execution.
You initialize by issuing the OPEN macro instruction to open a data set. After all
DCBs have been completed, the system ensures that all required access method
routines are loaded and ready for use and that all channel programs and buffer

areas are ready.

Access method routines are selected and loaded according to data control fields

that indicate:

« Data organization

44 MVS/XA Data Administration Guide

/

A

Buffering technique

o Access technique

I/0 unit characteristics
« Record format

This information is used by the system to allocate virtual storage space and load the
appropriate routines. These routines, the channel programs and buffer areas
created automatically by the system, remain in virtual storage until the close routine
signals that they are no longer needed by the DCB that was using them.

When 1/0 operations for a data set are completed, you should issue a CLOSE
macro instruction to return the DCB to its original status, handle volume
disposition, create data set labels, complete writing of queued output buffers, and
free virtual and auxiliary storage.

| Using a Parameter List with 31-bit Addresses

— — — — ——

You can code OPEN and CLOSE with MODE=31 to specify a long form
parameter list that can contain 31-bit addresses. To use this long form parameter
list, you must be operating in 31-bit addressing mode. The default, MODE=24,
specifies a standard form parameter list with 24-bit addresses. If TYPE=J is
specified, you must use the standard form parameter list.

The standard form parameter list is 4 bytes per entry. The standard form
parameter list must reside below 16M, but the calling program may be above 16M.

The long form parameter list can reside above or below 16M. Each entry is 8 bytes
long. Option information is contained in the first byte, zeros in the next three
bytes, and the address of the ACB or DCB is contained in the last four bytes.
Although you may code MODE=31 on the OPEN or CLOSE call for a DCB, the
DCB must reside below 16M. All non-VSAM and non-VTAM ACBs must also
reside below 16M. Because the address is below 16M, the leading byte of the
4-byte ACB or DCB address must contain zeros. If the byte contains something
other than zeros, an error message is issued. If an OPEN was attempted, the data
set is not opened. If a CLOSE was attempted, the data set is not closed.

It is up to you to keep the mode specified in the MF=L and MF=E versions of the
OPEN and CLOSE macros consistent. If MODE=31 is specified in the MF=L
version of the OPEN or CLOSE macro, MODE=31 must also be coded in the
corresponding MF=E version of the macro. Unpredictable results occur if the
mode specified is not consistent.

Managing Buffer Pools When Closing Data Sets

After closing the data set, you should issue a FREEPOOL macro instruction to
release the virtual storage used for the buffer pool. If you plan to process other.
data sets, use FREEPOOL to regain the buffer pool storage space. If you expect
to reopen a data set using the same DCB, use FREEPOOL unless the buffer pool
created the first time the data set was opened will meet your needs when you
reopen the data set. (FREEPOOL is discussed in more detail in “Buffer Pool
Construction” on page 89.)

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 45

After the data set has been closed, the DCB can be used for another data set. If
you do not close the data set before a task terminates, the operating system closes
it automatically. If the DCB is not available to the system at that time, the
operating system abnormally ends the task, and data results can be unpredictable.
Note, however, that the operating system cannot automatically close any open data
sets after the normal end of a program that was brought into virtual storage by the
loader. Therefore, loaded programs must include CLOSE macro instructions for all
open data sets.

Simultaneous Opening and Closing of Mulitiple Data Sets

An OPEN or CLOSE macro instruction can be used to begin or end processing of
more than one data set. Simultaneous opening or closing is faster than issuing
separate macro-instructions; however, additional storage space is required for each
data set specified. The coding examples in Figure 16 on page S0 and Figure 18
on page 52 show the macro expansions for simultaneous open and close
operations.

Opening and Closing Data Sets Shared by More Than One Task

When more than one task is sharing a data set, the following restrictions must be
recognized. Failure to adhere to these restrictions endangers the integrity of the
shared data set.

o All tasks sharing a DCB must be in the job step that opened the DCB (see
“Sharing Data Sets” on page 67).

» Each task sharing a DCB must ensure that all the input and output operations
it starts using a given DCB are complete, before the task terminates. A
CLOSE macro instruction issued for the DCB will ensure termination of all
input and output operations.

« A DCB can be closed only by the task that opened it.

Considerations for Allocating Direct Access Data Sets

When you allocate space for a new data set on a direct access volume, the tracks
contain unknown data. A program that tries to access data on these tracks before
known data is written on them may get unpredictable results, such as program
checks or I/0 errors. The program may even appear to run correctly!

If you must access a newly allocated data set before you put known data into it, use
one of the following methods to make it appear empty:

1. At allocation time, specify a primary allocation value of zero; such as
SPACE=(TRK,(0,10)) or SPACE=(CYL,(0,50)). This method prevents
processing certain labels if user labels are requested (LABEL=(,SUL)).

2. After allocation time, run a program that opens the data set for output and
closes it without writing anything. This puts an end-of-file mark at the
beginning of the data set.

46 MVS/XA Data Administration Guide

//A \\‘
R

Considerations for Opening and Closing Data Sets

« Two or more DCBs should never be concurrently open for output to the same
data set, except with the basic indexed sequential access method (BISAM).

« If, concurrently, one DCB is open for input or update, and one for output to
the same data set on a direct access device, the input or update DCB may be
unable to read what the output DCB wrote if the output DCB extended the
data set.

o If you want to use the same DD statement for two or more DCBs, you cannot
specify parameters for fields in the first DCB and then be assured of obtaining
the default parameters for the same fields in any other DCB using the same
DD statement. This is true for both input and output and is especially
important when you are using more than one access method. Any action on
one DCB that alters the JFCB affects the other DCBs and thus can cause
unpredictable results. Therefore, unless the parameters of all DCBs using one
DD statement are the same, you should use separate DD statements.

« Associated data sets for the IBM 3525 Card Punch can be opened in any
order, but all data sets must be opened before any processing can begin.
Associated data sets can be closed in any order, but, after a data set has been
closed, I/O operations cannot be performed on any of the associated data sets.
See Programming Support for the IBM 3505 Card Reader and the IBM 3525
Card Punch for more information.

« The OPEN macro gets user control blocks and user storage in the protection
key that is specified in the TCB(TCBPKF). Therefore, any task that processes
the DCB (such as Open, Close, or EOV) must be in the same protection key

| specified in the TCB, or must be in key 0. Also, the Open and Close must be
| done in the same key.

| Note: 1If the Open is done while processing in key 0O, then user storage
| obtained by Open will be from subpool 252.

* Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned;
the system automatically requests the mounting and demounting of volumes,
depending on the availability of devices at a particular time. Additional
information on volume disposition is provided in JCL.

Open/Close/EOYV Errors

There are two classes of errors that can occur during open, close, and
end-of-volume processing: determinate and indeterminate errors. Determinate
errors are errors associated with a system completion code. For example, a
condition associated with the 213 completion code with a return code of 04 might
be detected during open processing, indicating that a format-1 DSCB could not be
found for a data set being opened. Indeterminate errors are errors that cannot be
anticipated, such as program checks.

If a determinate error occurs during the processing resulting from a concurrent

OPEN or CLOSE macro instruction, an attempt will be made to complete open or
close processing of the DCBs that are not associated with the DCB in error. Note

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 47

Installation exits

that you can also choose to abnormally end the task immediately by coding a DCB
abend exit routine that shows the “immediate termination” option (see -- Heading
id abend’ unknown --). When all open or close processing is completed, abnormal
end processing is begun. Abnormal end involves forcing all DCBs associated with

a given OPEN or CLOSE macro to close status, thereby freeing all storage devices
and other system resources related to the DCBs.

If an indeterminate error (such as a program check) occurs during open, close, or
EOV processing, no attempt is made by the system control program to complete
concurrent open or close processing. The DCBs associated with the OPEN or
CLOSE macro are forced to close status if possible, and the resources related to
each DCB are freed.

To determine the status of any DCB after an error, the OPEN (CLOSE) return
code in register 15 must be interrogated for the following values:

Return Code = Meaning

00 (X'00") All entries in the parameter list opened successfully.

04 (X'04") All entries in the parameter list have successfully completed
open, but one or more entries have a warning message.

08 (X'08") One or more entries in the parameter list were not opened
successfully. The entries with errors are restored to their
preopen status. .

12 (X'0C") One or more entries in the parameter list were not opened
successfully.

The entries with errors are not restored, and cannot be reopened without
restoration.

During task termination, the system issues a CLOSE macro for each data set that is
still open. If this is an abnormal termination for QSAM, the close routines that
would normally finish processing buffers are bypassed. Any outstanding I/0O
requests are purged. Thus, your last data records may be lost for a QSAM output
data set.

It is a good procedure to close an ISAM data set before task termination because, if
an I/0 error is detected, the ISAM close routines cannot return the problem
program registers to the SYNAD routine, causing unpredictable results.

Four installation exit routines are provided for abnormal end with ISO/ANSI/FIPS
Version 3 tapes.

» The label validation exit is entered during open/EOV if an invalid label
condition is detected, and label validation has not been suppressed. Invalid
conditions include incorrect alphameric fields, nonstandard values (for
example, RECFM=U, block size greater than 2048, or a zero generation
number), invalid label sequence, nonsymmetrical labels, invalid expiration date
sequence, and duplicate data set names.

« The validation suppression exit is entered during open/EQOV if volume security
checking has been suppressed, if the volume label accessibility field contains an

48 MVS/XA Data Administration Guide

Ve N
N

ISCII/ASCII space character, or if RACF accepts a volume and the
accessibility field does not contain an uppercase A through Z.

» The volume access exit is entered during open/EOV if a volume is not RACF
protected and the accessibility field in the volume label contains an
ISCII/ASCII uppercase A through Z.

« The file access exit is entered after positioning to a requested data set if the
accessibility field in the HDR1 label contains an ISCII/ ASCII uppercase A
through Z.

For additional information about ISO/ANSI/FIPS Version 3 installation exits, see
Data Facility Product: Customization.

OPEN—Prepare a Data Set for Processing

Processing Method

The OPEN macro instruction is used to complete a data control block for an
associated data set. The OPEN macro parameters identify the method of
processing and volume positioning in the event of an end-of-volume condition.

You can process a data set as either input or output. This is done by coding
INPUT, OUTPUT, or EXTEND as the processing method operand of the OPEN
macro. For BSAM, code INOUT, OUTIN, or OUTINX. If the data set resides on
a direct access volume, you can code UPDAT in the processing method operand to
show that records can be updated. By coding RDBACK in this operand, you can
specify that a magnetic tape volume containing format-F or format-U records is to
be read backward. (Variable-length records cannot be read backward.) If the
processing method operand is omitted from the OPEN macro instruction, INPUT is
assumed. The operand is ignored by the basic indexed sequential access method
(BISAM); it must be specified as OUTPUT or EXTEND when you are using the
queued indexed sequential access method (QISAM) to create an indexed sequential
data set. You can override the INOUT, OUTIN, UPDAT, or OUTINX at execution
time by using the LABEL parameter of the DD statement, as discussed in JCL.

Note: Unless label validation has been suppressed, OPEN for MOD (OLD
OUTPUT/OUTIN), INOUT, EXTEND, or OUTINX cannot be processed for
ISO/ANSI/FIPS Version 3 tapes, because this kind of proce<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>