BT R T S R S R TS I PP M U s 0 o Ly)
MVS/Extended Architecture Licensed
Data Administration: Program
Macro Instruction Reference

®

' Wre

AMODE

- JFP 31-bit
MVS/XA RM(

 24-bit

L
}

‘ Order Number Data Facility Product Version 1
' 'GC26-4014-2 5665-284 Release 1.2

1
]
..||

Order Number
GC26-4014-2

MVS/Extended Architecture
Data Administration:
Macro Instruction Reference

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)
This is a major revision of, and makes obsolete, GC26-4014-1.

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent publication of the page affected.
Editgrial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systenms, consult the latest IBM Svstem/370, 30xx., and 4300

» GC20-0001, for the editions that are

applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, your order will be delayed because publications are not
stocked there.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information yvou supply in any way it
believes appropriate without incurring any obligation to you.

® Copyright International Bus1ness Machlnes Corporatlon 1982,
1984, 1987 : ,

/{ R
L

This publication contains information required by system and
application programmers to use the data management access method
functions of MVS/Extended Architecture Data Facility Product,
Program Number 5665-284. It describes and defines the data
management macro instructions—except for VSAM (virtual storage
access method)—available in the assembler language. See
"Related Publications™ on page iv for the related VSAM
publications.

This publication is divided into these parts:

. "Introduction” on page 1 defines and discusses macro
instructions and the rules to be followed when when coding
them, and the notational conventions used throughout the
publication.

. "Macro Instruction Descriptions™ on page 8 defines and
discusses the functions of each macro instruction and how
each must be coded. The macro instructions are presented in
alphabetic order. The standard form of each is described
first, followed by the list and execute forms. The list and
execute forms are available only for those macro
instructions that pass parameters in a list.

. Appendix A, "Status Information Following an Input/Output
Operation™ on page 190, defines and discusses the location,
alignment, and description of the symbolic fields in the
data event control block and the event control block.

. Appendix B, "Data Management Macro Instructions Available by
Access Method" on page 202, defines and discusses the macro
instructions available for each of the data management
access methods.

. Appendix C, "Device Capacities"™ on page 203, defines and
discusses device capacities as a guide to coding the block
size and logical record length operands in the DCB macro
instruction.

. Appendix D, "DCB Exit List Format and Contents"™ on page 206,
defines and discusses the format and content of the data
control block exit list.

. Appendix E, "Control Characters™ on page 208, defines and
discusses the control characters used to control spacing and
skipping (printers) and stacker selection (card read punch
or card punch).

. Appendix F, "Data Control Block Symbolic Field Names™ on
page 211, defines and discusses the location, alignment, and
description of the data control block symbolic field names.

. Appendix G, "PDABD Symbolic Field Names™ on page 228,
defines and discusses the location, alignment, and
description of the PDABD dummy control section.

. "Glossary of Terms and Abbreviations™ on page 229 defines

and discusses the definitions of the terms and abbreviations
used in this publication.

Preface iii

PREREQUISITE KNOWLEDGE

To use this book you must have knowledge of assembler language

as described in

, GC26-4037, and Assembler H Version 2
Application Programming: Guide, SC26 4036, and of job control
language (JCL) as explained in

User's Guide, GC28-1351, and MM§_EXiﬁﬂdﬁd.ﬂﬁ&bliﬁ&iﬂﬂﬂ_lQL
Reference, GC28-1352.

If you know how to write assembler language programs and use job
control statements, vou can use this book and MY3/Extended

» GC26-4013, to write
programs that create and process data sets

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

Reference, GC26-4037
. : bl Hy . 2 Applicati P ina: Guide,

SC26-4036
e MVS/Extended Architect Data Administrati suide,
GC26-4013
o MVS/Extended Architecture Svstem Programmi i :
i 1 i , GC28-1154
e MVS/Extended Architecture JCL User's Guide, GC28-1351
o MVS/Extended Architecture JCL Reference, GC28-1352

RELATED PUBLICATIONS

Within the text, references are made to the publications listed
in the table below:

‘ Oorder
Short Title Publication Title Number
Assembler H V2 Assembler H Version 2 SC26-4036
Application Application Programming:
Programming: Guide
Guide
Assembler H V2 Assembler H Version 2 GC26-64037
Application Application Programming:
Programming: Language Reference
Language
Reference
Checkpoint/Restart| MVS/Extended Architecture GC26-4012
User's Guide Checkpoint/Restart User's

Guide :

Conversion MVS/Extended Architecture GC28-1143
Notebook Conversion Notebook
Data ‘ MVS/Extended Architecture GC26-4013
Administration Data Administration Guide
Guide

iv MVS/XA Data Administration: Macro Instruction Reference

Oorder

Short Title Publication Title Number

IBM 3262 Model 5 IBM 3262 Model 5 Printer GA24-3936

Printer Product Product Description

Description

IBM 3800 Printing |]IBM 3800 Printing Subsvstem GC26-3846

Subsystem Programmer's Guide

Programmer's

Guide

IBM 3800 Printing |]IBM 3800 Printing Subsvstem SH35-0061

Subsystem Models 3 and 8 Programmer's

Programmer's Guide

Guide

IBM 3890 Document | IBM 3890 Document Processor GA26-3612

Processor Machine Machine and Progaramming

and Programming Description

Description

IBM 4265 Printer IBM 4245 Printer Model 1 GA33-1541

Model 1 Component Component Description and

Description and Operator's Guide

Operator's Guide

IBM 4248 Printer IBM 42648 Printer Model 1 GA26-3927

Model 1 Description

Description

Initialization MVS/Extended Architecture GC28-1149

and Tuning Svstem Programming Library:
Initislisaty Tuni

JCL User's Guide MVS/Extended Architecture GC28-1351
JCL User's Guide

JCL Reference MVS/Extended Architecture GC28-1352
JCL Reference

Magnetic Tape VS/Extended Architecture GC26-4003

Labels and File Magnetic Tape Labels and

Structure File Structure

Administration Administration

Open/Close/EQV MVS/Extended Architecture LY26-3966

Logic Open/Close/EQV Logic

0S/VS IBM 3886 0S/VS IBM 3886 Optical GC264-5101

Optical Character | Character Reader Model 1

Reader Model 1 Reference

Reference

0S/VS Mass 057Y9 Mass Storage Svstem GC35-0011

Storage System (MSS) Planning Guide

(MSS) Planning

Guide

05/VS Mass 05/VS Mass Storage Svstem GC35-0016

Storage System (MSS) Services: General

(MSS) Services: Information

General

Information

05/VS Mass 057Y3 Mass Storage Svstem SH35-0036

Storage System (MSS) Extensions Services:

(MSS) Extensions Reference

Services:
Reference

Preface

\"

order
Short Title Publication Title Number
Programming Proaramming Support for the GC21-5097
Support for the IBM 3505 Car
IBM 3505 Card BM 3525 Car unch
Reader and the
IBM 3525 Card
Punch
RACF General Resource Access Control GC28-0722
Information Facility (RACF): General
Manual Information Manual
Service Aids MVS/Extended Architecture GC28-1159
Svystem Programming Library:
: : ad
Supervisor MVSsExtended Architecture GC28-1154
Services and System Programming Library:
Macro Supervisor Services and
Instructions Macro Instructions
System Codes MVSsExtended Architecture GC28-1157
Message Librarv: Svstem
Codes
System—Data MVS/Extended Architecture GC26-4010
Administration System—Data Administration
System Generation MVS/Extended Architecture GC26-4009
Installation: Svstem
Generation
System Macros and | MVS/Extended Architecture GC28-1150
Facilities Svstem Programming Librarv: and
Macros and Facili GC28-1151
Volumes 1 and 2
System Messages MVS/Extended Architecture GC28-1376
Message Librarv: Svstem and
Messages, Volumes 1 and 2 6C28-1377
Utilities MVS/Extended Architecture GC26-4018
Data Administiration:
Utilities
VSAM MVS/Extended Architecture GC26-4015
Administration VSAM Administration Guide
Guide
VSAM MYS/Extended Architecture GC26-4016
Administration: VSAM Administration: Macro
Macro Instruction | Instruction Reference
Reference

TN

vi MVS/XA Data Administration: Macro Instruction Reference

| RELEASE 1.2 LIBRARY UPDATE. JANUARY 1987

| SERVICE CHANGES

Information has been added, corrected, or deleted to reflect
technical service changes.

RELEASE 1.2, FEBRUARY 1984

This publication, formerly titled
’ 1s now t1t1ed uMi_Exigndgd

NEW PROGRAMMING SUPPORT

NEW ENHANCEMENTS

This manual has been updated to reflect the following features
for ISO/ANSI/FIPS magnetic tape labels:

. A maximum block size limit of 2048 bytes.

. The RECFM parameter of the the DCB macro no longer supports
undefined record formats.

. A new variable-length spanned data set record format for
IS0O/ANSI/FIPS data sets.

Other support information consists of magnetic tape label
symmetry restrictions

Modifications have been made to the SETPRT macro to support the
IBM 3800 Model 3 Printer in Model 1 compatibility mode.

Modifications have been made to the SETPRT macro to support the
IBM 4248 Printer.

Note: The IBM 3262 Model 5 Printer is afforded the same support
as that provided for the IBM 4248 Printer. However, the use of
an IBM 3262 Model 5 Printer dictates that entries exist in the
IBM 4248 Printer UCS Image Table for the IBM 3262 Model 5
Printer band(s)/ alias(es) used on the host system. These image
table entries must be generated by the user as part of the IBM
3262 Model 5 installation procedure.

RELEASE 1.1,0CTOBER 1983

NEW DEVICE SUPPORT

. Modifications have been made to the SETPRT macro to support
the IBM 3800 Model 3 Printer in compatibility mode.

. Modifications have been made to the section called
;Mggnetic-Tape Units"™ to support the IBM 3430 Magnetic Tape
nit.

° Modifications have been made to the SETPRT macro to support
the IBM 4245 Printer.

Summary of Changes vii

Int"oduct 10" L] L] L] . L] L2 L2 L2 o L] L] L] * . . L[] L[]
IS0, ANSI, and FIPS Labels e e e e e e e e e e e e e
Coding Aids . . e e e e e e e e e e e e e e e
Bold Type e e e e e e e e e e e
Underscored Lowercase Letters e e e e e e e e
Brackets C e
OR Sign e
Braces e
Ellipses e
Underscored Bold e e e e e e e e e e e e e e e e e e e
Blank Symbol . e e e e e e e e e e e e e e e e e
Comprehensive Example C e v e e e e e e e e e e e e e
Macro Instruction Format C e e e e e e e e e e e e e e e
Rules for Register Usage e e e e e e e e e e e e e e
Rules for Continuation Lines

Macro Instruction Descriptions e o o o o o o o o o s 8 o o
BLDL—Build a Directory Entry List (BPAM) e e e e e e
Completion Codes .
BSP—Backspace a Phy51ca1 Record (BSAM——Magnet1c Tape and
Direct Access Only) e e N . . .
Completion Codes .
BUIhDaggﬁgld a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,
an . .
BUILDRCD——Bu11d a Buffer Pool and a Record Area (QSAM)
BUILDRCD—List Form N . .
BUILDRCD—Execute Form . .
CHECK—MHWait for and Test Complet1on of a Read or erte
Operation (BDAM, BISAM, BPAM, and BSAM) . . e
CHKPT—Take a Checkpoint for Restart within a Job Step .
CLOSE—Logically Disconnect a Data Set (BDAM, BISAM, BPAM,
BSAM, QISAM, and QSAM) . e e e e
CLOSE—List Form e e e e e e e e e e e e e e e e e e e
CLOSE—Execute Form .
CNTRL—Control On—line Input/Output Dev1ce (BSAM and QSAM)
DCB—Construct a Data Control Block (BDAM)
DCB—Construct a Data Control Block (BISAM) e e e e
DCB—Construct a Data Control Block (BPAM) e e e e e
DCB—Construct a Data Control Block (BSAM) e e e e e
DCB—Construct a Data Control Block (QISAM) e e e e
DCB—Construct a Data Control Block (QSAM)
DCBD—Provide Symbol1c Reference to Data Control Blocks
(BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM) .
ESETL—End Sequential Retrieval (QISAM)
FEOV—Force End of Volume (BSAM and QSAM)
FIND—Establish the Beg1nn1ng of a Data Set Member (BPAM)
Completion Codes .
FgggagF——Return a Buffer to a Pool (BDAM, BISAM, BPAM, and
FggggagF——Return a Dynam1ca11y 0bta1ned Buffer (BDAM and
FREEPOOL—Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM;
QISAM, and QSAM) . e e e
GET—O0btain Next Loglcal Record (QISAM) . .
GET—O0btain Next Loglcal Record (QSAM) o e
GET Routine Exits e e e e e e e e e e e e e
GETBUF—Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM) .
GETPOOL—Build a Buffer Pool (BDAM, BISAM. BPAM, BSAM,
QISAM, and QSAM) . . e e e e e
MSGDISP—Message D1sp1ay (Dr1ve Ready) e e e e e
MSGDISP—Displaying a Ready Message e e e e e e e e
MSGDISP—List Form e e e e e e e e e e e e e e e e e e
MSGDISP—Execute Form e e e e e e e e e e e e e e e
Completion Codes . .
NOTE—Provide Relative Pos1t10n (BPAM and BSAM——Tape and
Direct Access Only) c e o e . .
Completion Codes e e e e e e e e e e

Contents

ONUIW N~ OO0 OUIWWWWWNNNNNN -

Pt ot ot ot fd ok e

-
=]

20

ix

0PEN——Log1cally Connect a Data Set (BDAM, BISAM. BPAM,
BSAM, QISAM, and QSAM) e e e . e e e e e e e
OPEN—List Form . e e e e e e e e e e e e e e e e
OPEN—Execute Form
PDAB——Construct a Parallel Data Access Block (QSAM)
PDABD—Provide Symbolic Reference to a Parallel Data
Access Block (QSAM) . . .
POINT—Position to a Relat1ve Block (BPAM and BSAM——Tape
and Direct Access Only) . .
Completion Codes .

PRTOV—Test for Printer Carr1age Overflow (BSAM and
QSAM—O0nline Printer and 3525 Card Punch, Print Feature)
PUT—MHWrite Next Logical Record (QISAM) e e e e e e e e

PUT Routine Exit . e e e e e e e e e
PUT—MWrite Next Logical "Record (QSAM) e e e e e e e e
PUT Routine Exit .
ngi;;wrlte a Record from an Ex1st1ng Data Set (QISAM and
PUTX Routlne Ex e e e e e e e e e e e e

READ—Read a Block (BDAM) . . A

READ—Read a Block of Records (BISAM) e e e e e
READ—Read a Block (BPAM and BSAM) . .
READ—Read a Block (Offset Read of Keyed BDAM Data Set
Using BSAM) ..
READ—List Form e e e e e e e e e e e e e e e e e e e
READ—Execute Form . e e e e e e e e
RELEX—Release Exclus1ve Control (BDAM) e e e e . .
Completion Codes .
RELSE—Release an Input Buffer (QISAM and QSAM Input)
SETL—Set Lower Limit of Sequential Retrieval (QISAM
Input) . e e e e e e e e e e e e e e e e e e
SETL: Ex1t e e e e e e
SETPRT—-Prlnter Setup (BSAM, QSAM, and EXCP) e e e e e
Return Codes . v e e e e e e e e e e e e e e
IBM 3800 Models 1 and 3 C e e e e e e e e e e e e e
SETPRT—List Form . . e e e e e e e e e e e e e e e
SETPRT—Execute Form . e
STOW—Update Partitioned Data Set D1rectory (BPAM) .
Completion Codes . . e
SYNADAF—Perform SYNAD Analys1s Functlon (BDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, and QSAM e e e e e
Completion Codes . e e e e e e e e e e e
Message Buffer Format . .
SYNADRLS—Release SYNADAF Buffer and Save Areas (BBAM,
BISAM, BPAM, BSAM, EXCP, QISAM, and QSAM) e e .
SYNCDEV—Synchronize Device . . e e e e e e e e e
SYNCDEV—List Form C e e e e e e e e e e e e e e e e
SYNCDEV—Execute Form C e e e e e e e e e e e e e e
Completion Codes .
TRUNC—Truncate an Dutput Buffer (QSAM 0utput——F1xed— or
Variable-Length Blocked Records)
Nﬁé;ﬁ§walt for One or More Events (BDAM, BISAM; BPAM, and
NRITE-—Nr:te a Block (BDAM) .
WRITE—HWrite a Logical Record or Block of Records (BISAM)
WRITE—HWrite a Block (BPAM and BSAM) .
WRITE—HWrite a Block (Create a BDAM Data Set w1th BSAM)
Completion Codes for NRITE——Nr:te a Block (Create a BDAM
Data Set with BSAM) N .
WRITE—List Form e e e e e .’. e e e e e e e e e e
WRITE—Execute Form
XLATE—Translate to and from ISCII/ASCII (BSAM and QSAM)

Appendix A. Status Information Following an Input/Output
opepat ion . L] L] . * * L] - L] . L] . L] . * L] . L]
Data Event Control Block e e e e e e e e e e e e e e
Event Control Block C e e e e e e e e e e e e e e e e

Appendix B. Data Management Macro Instructions Available
by Access Method e & o o o o 6 s o o o s s 0 s s e s &

Appendix C. Device Capacities e o o o o o s s o o o o o
Card Readers and Card Punches e e e e e e e e e e e e
Printers e e e .

x MVS/XA Data Administration: Macro Instruction Reference

(ST
et et ot et
O 00 O\ b=

121
122

123
125
126
127
128

129
129
130
133
135

137
138
139
140
140
141

142
143
144
150
155
157
159
162
163

166
167
168

169
170
172
173
174

175

176
178
181
183
184

186
187
188
189

190
190
191

202
203

203
203

Magnetic Tape Units e e e e e e e e e e e e e e e e e 203

Direct Access Devices e e e e e e e e e e e e e e e e 203
Appendix D. DCB Exit List Format and Contents e o s e 206
Appendix E. Control Characters e o o o o o o s o o o 208
Machine Code . e e e e e e e e e e e e 208
ISO/ANSI/FIPS Control Characters e e e e e e e e e e 210
Appendix F. Data Control Block Symbolic Field Names o o 211
Data Control Block—Common Fields . e e e e e e e 212
Data Control Block—BPAM, BSAM, QSAM e e e e e e e e e 213
Direct Access Storage Device Interface e e e e e e e 215
Magnetic Tape Interface e e e e e e e e e e 216
Card Reader, Card Punch Interface e e e e e e e e e 216
Printer Interface C e e e e e e e e e e e e e e 216
Access Method Interface e e e e e e e e e e e e e e 218
BSAM, BPAM Interface e e e e e e e e e e e e e e 218
QSAM Interface . e e e e e e e e e e e e e e e e 220
Data Control Block~—ISAM e e e e e e e e e e e e e e 222
Data Control Block—BDAM e e e e e e e e e e e e e e 226
Appendix G. PDABD Symbolic Field Names e e e e o o o o 228
Glossary of Terms and Abbreviations e o o e o o o o o @ 229
Index . [] L] L[] L] . L] * . L] L] L] . L] * L] L] . L] * L] ® ® * . 236

Contents xi

AN
\\'Q _,_‘/“
1. SETPRT Return Codes for Specific Printers e e e 150
2. SETPRT Return Codes for All Printers N 153
3. Reason Codes for IBM 3800 Models 1 and 3 Pr1nters
(GCM ID and CAT ID) .o 155
4. Reason Codes for All Prlnters (Bytes 0 through 2
Reserved) . o 155
5. Reason Codes for IBM 3800 Models 1 and 3 Pr1nters
(Bytes 0 through 2 Reserved) . . 156
6. Reason Codes for IBM 3800 Models 1 and 3 Pr1nters
(Bytes 0 through 2 Reserved) . . . e e e 156
7. Exception Code Bits—BISAM e e e e e e e e e e e 191
8. Exception Code Bits—QISAM C e e e e e e e e e e 193
9. Exception Code Bits—BDAM . . 195
10. Register Contents on Entry to SYNAD Routlne——QISAM 197
11. Register Contents on Entry to SYNAD Routine—BISAM 198
12. Register Contents on Entry to SYNAD Routine—BDAM,
BPAM, BSAM, and QSAM e e 199
13. Status Indicators for the SYNAD Routlne——BDAM, BPAM;
BSAM, and QSAM . e e e e e N 200
A
%

xii MVS/XA Data Administration: Macro Instruction Reference

Before using this publication, familiarize yourself with the
information in ini i ide.

IBM provides a set of macro instructions so that you can
communicate service requests to the data management access
method routines. These macro instructions are available only
when the assembler language is being used, and they are
processed by the assembler program using macro definitions
supplied by IBM and placed in the macro library when the
operating system is generated.

The assembler program expands each macro instruction into
executable, assembler language instructions or data, and shows
vou the exact macro expansion in the assembler listing. The
executable instructions generally consist of branches around
data fields, load register instructions, and either branch
instructions or supervisor calls (SVC) that transfer control to
the proper program. The data fields in each macro instruction
are parameters that are passed to the access method routine.

You can use the utility program IEBPTPCH to get a list of macro
definitions from SYS1.MACLIB, the library in which the macro
definitions are stored. For a description of IEBPTPCH, see

Before coding programs that request supervisor services,
familiarize vourself with the information contained in

i i i Also, if you are
writing programs for specialized applications such as
telecommunications, graphics, character recognition, or to use
VSAM (virtual storage access method), use the appropriate
publication listed in the preface that describes the specific
access method and/or device type you are working with.

The operation of some macro instructions depends on the options
selected when the macro instruction is coded. For these macro
instructions, either separate descriptions are provided or the
differences are listed within a single description. If no
differences are explicitly listed, none exist. The description
of each macro instruction starts on a right-hand page; the
descriptions that do not apply to the access methods being used
can be removed. Appendix B, "Data Management Macro Instructions
Available by Access Method" on page 202 lists the macro
instructions available for each access method.

IS0, ANSI. AND FIPS LABELS

This publication refers to tape labels defined by the
International Organization for Standardization (IS0), the
American National Standards Institute (ANSI), and the Federal
Information Processing Standard (FIPS). In general,
ISO/ANSI/FIPS labels are similar to IBM standard labels, and,
unless otherwise specified, the term "standard label," refers to
both IBM standard labels and ISO/ANSI/FIPS standard labels. IS0
labeled tapes are coded in the Organization Standard Code for
Information Interchange (ISCII), and ANSI labeled tapes are
coded in the American National Standards Code for Information
Interchange (ASCII), while IBM labeled tapes are coded either in
the extended binary-coded-decimal interchange code (EBCDIC) or
in binary coded decimal (BCD). For further information about
ISO/ANSI/FIPS labels, see i i

Structure.

Introduction 1

CODING AIDS

BOLD TYPE

Bold type is used for elements that you must code exactly as

they are shown.

and equal signs. Examples:

®

DCB

CLOSE ,,,,TYPE=T
MACRF=(PL,PTC)
SK,5

UNDERSCORED LOWERCASE LETTERS

These elements consist of macro names,
keywords, and these punctuation symbols:

commas, parentheses,

Underscored lowercase letters are used for elements for which
vou code values that you choose, usually according to
specifications and limits described for each parameter.
Examples:

BRACKETS

Brackets, [1, enclose optional elements that you may or may not

number
. -id
count

code as you choose. Examples:

OR SIGN

The OR sign,

BRACES

[lengthl
[MF=E]

[,REREAD|,LEAVE]
[lenathl|'s']

|, separates alternative elements. Examples:

Braces, { }, enclose alternative elements from which you must

choose one, and only one, element.

BFTEK={S|A}
{K|D}
{address|S10}

Examples:

Sometimes, alternative elements (especially complicated
Eltergatives) are grouped in a vertical stack of braces.
xample:

13}
33

MACRF={{ (R
{(wictip|

[C|P
L1)}
{(RICI,HWIC])

In the examples above, you must choose only one element from the
vertical stack.

2 MVS/XA Data Administration: Macro Instruction Reference

ELLIPSES

Ellipses, ..., indicate that elements may be repeated.

Example:

UNDERSCORED BOLD

(d&mﬂt’t(m)lltoo)

Underscored BOLD elements indicate alternative choices that are
Essumfd if you don't want to code the optional element.
xamples:

BLANK SYMBOL
The

[EROPT={ACCISKP|ABE}1
[BFALN={F|D}1

blank symbol, b, indicates omitted operands. Example:

PDAB b

COMPREHENSIVE EXAMPLE

MF=(E,{address| (1)})

In this example, MF=(E, must be coded exactly as shown.
Then, either address or (1) must be coded. (The parentheses
around the 1 are required.) Finally, the closing
parenthesis must be coded. Thus, MF=(E, (1)) might be coded.

RECFM={{ULTI[AIMI}
{VIBISIT|BSIBTI[AIMI]}
{DIB1[Al}
{FIBISITIBSIBTIIAIMI})

In this example, you must first choose one of the four
alternative elements shown on each line. Then, you must
choose one of the major elements. Assuming vou selected the
major element beginning with F, you would code F; then you
could choose one of B, S8, T, BS, or BT. Finally, you could
select either A or M. Thus, you might code any one of the
following: RECFM=FBTM, RECFM=FA, or RECFM=F.

MACRO INSTRUCTION FORMAT

Data management macro instructions are subject to the rules of
assembler language and are written in the following format:

Name Operation Operands Comments

Symbol or Macro name None, one or more
blank operands separated

by commas

Introduction 3

Use the operands to specify services and options you need and
code them according to the following general rules:

. If the operand you select is shown in bold capital letters
(for example, MACRF=WL), code the operand exactly as shown.

o If the operand vou select is a character string in bold type
(for example, if the type operand of a READ macro
instruction is SF), code the operand exactly as shown.

° If the operand is shown in underscored lowercase letters
(for example, dcb address), substitute the indicated
address, name, or value.

° If the operand is a combination of bold capital letters and
underscored lowercase letters (for example, LRECL=absexp).,
code the capital letters and equal sign exactly as shown and
substitute the appropriate address, name, or value for the
underscored lowercase letters.

. Code commas and parentheses exactly as shown.

Note: Omit the comma that follows the last operand in a
statement. Brackets and braces show how to use commas and
parentheses the same way they show how to use operands.

. Several macro instructions contain the designation 'S'. Use
the apostrophe on both sides of the § operand.

If you need to substitute a name, value, or address, the
notation you use depends on the operand you are coding. The
following two examples show how an operand can be coded:

DDNAME=symbol
In this example, you can only code a valid
assembler-language symbol for the operand.

—RX-Type Address, (2-12), or (1)
In the above example, you can substitute an RX-type
address, any general register 2 through 12, or general
register 1.

The following examples show what each notation means and how vou
can code an operand:

This notation indicates that the operand can be any valid
assembler-language symbol.

This notation indicates that the operand can be any decimal
digit :p to the maximum value allowed for the specific
operand.

(2-12)
This notation indicates that the operand can be any of the
general registers 2 through 12. All register operands must
be coded in parentheses; for example, if you code register
3, use the form (3). If you want to use one of the
registers 2 through 12, code it as a decimal digit, a
symbol (equated to a decimal digit), or an expression that
vields a value of 2 through 12.

(1)
When this notation is shown, general register)] can be used
as an operand. The register can be specified as a decimal
digit 1 enclosed in parentheses. When register 1 is used
as an operand, the instruction that loads the parameter
value into the register is not included in the macro
expansion.

(0}
When this notation is shown, general register § can be used
as an operand. The register can be specified as a decimal

9 MVS/XA Data Administration: Macro Instruction Reference

"/

digit 0 enclosed in parentheses. When register 0 is used
as an operand, the instruction that loads the parameter
value into the register is not included in the macro
expansion.

When this notation is shown, the operand can be specified
as any valid assembler-language RX-type address. The
following shows examples of each valid RX-type address:

Name Operation Operand

ALPHAl L 1,39(4,10)
ALPHA2 L REG1, 39(4,TEN)
BETAl L 2,ZETA(4)

BETA2 L REG2,ZETA(REGS)
GAMMA1 L 2,ZETA

GAMMA2 L REG2, ZETA
GAMMA3 L 2,=F'1000°"
LAMBDA1 L 3,20¢,5)

Both ALPHA instructions specify explicit addresses; REG1
and TEN are absolute symbols. Both BETA instructions
specify implied addresses, and both use index registers.
Indexing is omitted from the GAMMA instructions. GAMMAl
and GAMMA2 specify implied addresses. The second operand
of GAMMA3 is a literal. LAMBDAl specifies an explicit
address with no indexing.

When this notation is shown, the operand can be specified
as any address that can be written as a valid
assembler-language A-type address constant. An A-type
address constant can be written as an absolute value, a
relocatable symbol, or a relocatable expression. Operands
that require an A-type address are inserted inte an A-type
address constant during the macro expansion process. For
more details about A-type address constants, see Assembler

When this notation is shown, the operand can be an absclute
value or expression. An absolute expression can be an
absolute term or an arithmetic combination of absclute
terms. An absolute term can be a nonrelocatable symbol, a
self-defining term, or the length attribute reference. For
more details about_absolute expressions, see

relexp
When this notation is shown, the operand can be a
relocatable symbol or expression. A relocatable symbol or
expression is one whose value changes by n if the program
in which it appears is relocated n bytes away from its
originally assigned area of storage. For more details
abou# relocataple §ymbols and 9xpressions, see

RULES FOR REGISTER USAGE

Many macro instruction expansions include instructions that use
a base register previously defined by a USING statement. The
USING statement must establish addressability so that macro
expansion can include a branch around the in-line parameter
list, if present, and see the data fields and addresses
specified in the macro instruction operands.

Macro instructions that use a BAL or BALR instruction to pass
control to an access method routine, normally require that
register 13 contain the address of an 18-word register-save
area. The READ, WRITE, CHECK, GET, and PUT macro instructions
are of this type.

Introduction 5

Macro instructions that use a supervisor call (SVC) instruction
to pass control to an access method routine may modify-general
‘registers 0, 1, 14, and 15 without restoring them. Unless
otherwise specified in the macro instruction description, the
~ contents of these registers are undefined when the system
‘returns control to the problem program.

B
‘{\\/ //»

When an operand is specified as a register, the problem program
must have inserted the value or address to be used 1nto the
register as follows:

® Unless the macro instruction description states otherwise,
and the register is to contain a value, that value must be
placed in the low-order portion of the register. Any unused
bits in the register should be set to zero.

U If the register is to contain a 2l1-bit address, the address
must be placed in the low-order three bytes of the register,
and the high-order byte of the register should be set to
zZero.

° If the register is to contain a 31-bit address, the address
must be placed in the low-order 31 bits of the register, and
the high-order bit of the register should be set to zero.

Note that, if the macro instruction accepts the RX-type address,

the high-order byte of a register can be efficiently cleared by

coding the parameter as 0 (reg) rather than merely as (reg).

Then the macro instruction expands as:

LA parmreg, 0(reg) by macro
rather than:

LA reg,0(reg) by user
and

LR parmreg,reg by macro

RULES FOR CONTINUATION LINES

The operand field of a macro instruction can be continued on one
or more additional lines as follows:

1. Enter a continuation character (not blank, and not part of
the operand coding) in column 72 of the line.

2. Continue the operand field on the next line, starting in
ggluzn 16. All columns to the left of column 16 must be
ank.

£
N

1 For 31-bit addressing mode expansion, the high-order bit of
a register can be cleared using this same technique.

6 MVS/XA Data Administration: Macro Instruction Reference

The operand field being continued can be coded in one of two
) ways. The operand field can be coded through column 71, with no
(* blanks, and be continued in column 16 of the next line, or the
- operand field can be truncated by a comma, where a comma
normally falls, with at least one blank before column 71, and
then be continued in column 16 of the next line. An example of
each method is shown in the following illustration:

Name Operation Operand Comments

NAME1 OP1 OPERAND1, OPERANDZ2, OPERAND3, OPERANDG, OPERAND5, OPERAND6 , OPERX
AND7 , OPERANDS THIS IS ONE WAY

NAME2 O0P2 OPERAND1, OPERAND2, THIS IS ANOTHER WAY X
OPERAND3, X
OPERAND4

Introduction 7

BLDL—BUILD A DIRECTORY ENTRY LIST (BPAM)

The BLDL macro is used to complete a list of information from

the directory of a partitioned data set.

The problem program

must supply a storage area that must include information about

the number of entries in the list,

the length of each entry, and

the name of each data set member (or alias) before the BLDL

macro is issued.
alphameric order.

Data set member names in the list must be in
All read and write operations using the same
data control block must have been tested for completion before
the BLDL macro is issued.

The BLDL macro is written:

[symbol]l

BLDL

decb_address
»list address

dcb address—RX-Type Address, (2-12) or (1)
The dcb address operand specifies the address of the data
control block for an open partitioned data set, or zero can
be specified to indicate that the data set is in a job
library, step library, or link library.

RX-Type Address, (2-12), or (0)
The list address operand specifies the address of the list

to be completed when the BLDL macro is issued.
address must be on a halfword boundary.
illustration shows the format of the list:

The list

The following

List Oor
List Description List More
Address 4 Field Entry (LL bytes) Entries (FF total)
A “ N -
A
FF|LL NAME 1 TTR |K|Z|C USER DATA NAME 2 Xg
Length
(bytes) 2 2 8 3 111 0to 62

FF: This field must contain a binary value indicating the
total number of entries in the list.

LL: This field must contain a binary value indicating the
length, in bytes, of each entry in the list (must be an

even number of bytes).

known,

specify the exact length.

Otherwise,

If the exact length of the entry is
specify at

least 58 bytes (decimal) if the list is to be used with an
LOAD, or XCTL macro. The minimum length for
a list is 12 bytes.

ATTACH,

NAME :

LINK,

This field must contain the member name or alias to

be located.

The name must start in the first byte of the
name field and be padded to the right with blanks (if
necessary) to fill the 8-byte field.

8 MVS/XA Data Administration: Macro Instruction Reference

.
N

BLDL

When the BLDL macro is executed, five fields of the
directory entry list are filled in by the system. The
specified length (LL) must be at least 14 to fill in the Z
and C fields. If the LL field is 12, only the NAME, TT, R,
and K fields are returned. The five fields are:

TT:

Indicates the relative track number where the

beginning of the data set member is located.

R: Indicates the relative block (record) number on the
track indicated by TT.

K: Indicates the concatenation number of the data set.
For the first or only data set, this value is =zero.

Z: Indicates where the system found the directory entry:

Code
0

1

2
3-255

Meaning

Private library

Link library

Job, task, or step library

Job.Ztgsk, or step library of parent task n, where
n = 2-

C: Indicates the type (member or alias) for the name, the
number of note list fields (TTRNs), and the length of the
user data field (indicated in halfwords). The following
describes the meaning of the 8 bits:

Bit
0=0
0=1
1-2

3-7

Meaning
Indicates a member name.
Indicates an alias.

Indicate the number of TTRN fields (maximum of 3) in
the user data field.

Indicate the total number of halfwords in the user
data field. If the list entry is to be used with an
ATTACH, LINK, LOAD, or XCTL macro, the value in bits
3 through 7 is 22 (decimal).

USER DATA: The user data field contains the user data from
the directory entry. If the length of the user data field
in the BLDL list is equal to or greater than the user data
field of the directory entry, the entire user data field is
entered into the list. O0Otherwise, the list contains only
the user data for which there is space.

Macro Instruction Descriptions 9

BLDL
COMPLETION CODES

When the system returns control to the problem program, the
low-order byte of register 15 contains a return code; the
low-order byte of register 0 contains a reason code, as follows:

Return Reason
Code (15) Code (0) Meaning

00 (X'007") 00 (X'00') Successful completion.

04 (X'04") 00 (X'00') One or more entries in the list could
not be filled; the list supplied may be
invalid. If a search is attempted but
the entry is not found, the R field
(byte 11) for that entry is set to
zero.

08 (X'08") 00 (X'00') A permanent I/0 error was detected when
the system attempted to search the
directory.

08 (X'08') 04 (X'04') Insufficient virtual storage was
available.

08 (X'08") 08 (X'08') Invalid DEB. (Not in key 0 through 7.)

10 MVS/XA Data Administration: Macro Instruction Reference

BSP

The BSP macro causes the current volume to be backspaced one
data block (physical record). All input and output operations
must be tested for completion before the BSP macro is issued.
The BSP macro should not be used if the CNTRL, NOTE, or POINT
macro is being used. The BSP macro can be used only on data
sets created by BSAM.

Any attempt to backspace across a file mark will result in a
return code of X'04' and your tape or direct access volume will
not be repositioned. This means you cannot issue a successful
BSP macro after your EODAD routine is entered unless you first
reposition the tape or direct access volume into your data set.
(CtO?E TYPE=T would get you repositioned at the end of your data
set.

Magnetic Tape: A backspace is always made toward the beginning
of the tape.

Direct Access Device: A BSP macro must not be issued for a data
set created by using track overflow.

SYSIN or SYSOUT Data Sets: A BSP macro is ignored, but a
completion code is returned.

The BSP macro is written:

[symboll| BSP dcb address

—RX-Type Address, (2-12), or (1)
The dcb address operand specifies the address of the data
control block for the volume to be backspaced. The data
set on the volume to be backspaced must be opened before
issuing the BSP macro.

Macro Instruction Descriptions 11

BSP
COMPLETION CODES i
// ™
When the system returns control to the problem program, the NS

low-order byte of register 15 contains a return code; the
low~order byte of register 0 contains a reason code, as follows:

Return Reason
Code (15) Code (0) Meaning

00 (X'00Y) 00 (X'00') Successful completion.

04 (X'06%) 01 (X'01'") A backspacing request was ignored on a
SYSIN or SYSOUT data set.

04 (X'04") 02 (X'02") 2ackspace not supported for this device
vype.

04 (X'04°") 03 (X*03') Backspace not successful; insufficient
virtual storage was available.

06 (X*04') 04 (X'04') Backspace not successful; permanent 1/0
error.

06 (X'04°%) 05 (X*05*) Backspace into load point or beyond
st?rt of data set on the current
volume.

04 (X'04°%) 06 (X'06") Backspace detected an invalid DEB using
DEBCHECK.

04 (X'04") 07 (X'07') Backspace detected an invalid extend
value (M).

06 (X'04°%) 08 (X'08') Backspace issued while I/70 was in
progress.

/

£
N

12 MVS/XA Data Administration: Macro Instruction Reference

BUILD

provided by the problem program. The buffer pool may be used by
more than one data set through separate data control blocks.
Individual buffers are obtained from the buffer pool using the
GETBUF macro, and buffers are returned to the buffer pool using
a FREEBUF macro. See Data Administration Guide for an
explanation of the interaction of the DCB, BUILD, and GETEUF

] macros in each access method, and the buffer size requirements.

(j’ The BUILD macro is used to construct a buffer pool in an area

The BUILD macro is written:

[symboll| BUILD area address
»{number of buffers,buffer lengthl(0]}

area address—RX-Type Address, (2-12), or (1))
The area address operand specifies the address of the area
to be used as a buffer pool. The area must start on a
fullword boundary.

Thelfollowing illustration shows the format of the buffer
pool:

Area
Address

Buffer Pool
Control Buffer Buffer
Block

Buffer — Buffer

[e— 8 bytes ——>te— Length Length

Area Length

Area Length=(Buffer Length) x (Number of Buffers) +8

Macro Instruction Descriptions 13

~.

BUILD

=14

—symbol, decimal digit, absexp, or (2-12)
The number-of-buffers operand specifies the number of
buffers in the buffer pool to a maximum of 255.

—symbol,
The buffer length
of each buffer in
the buffer length
the system rounds

fullword multiple.

decimal digit, absexp, or (2-12)

operand specifies the length, in bytes,

the buffer pool. The value specified for

must be a fullword multiple; otherwise,

the value specified to the next higher
The maximum length that can be

specified is 32760 bytes. For QSAM, the buffer length must
be at least as large as the value specified in the block
size (DCBBLKSI) field of the data control block.

(0)

The number of buffers and buffer length can be specified in
general register 0. - If (0) is coded, register 0 must
contain the binary values for the number of buffers and
buffer length as shown in the following illustration.

Register 0

Number of Buffers Buffer Length

Bits: | O

. MVS/XA Data Administration: Macro Instruction Reference

N

BUILDRCD
BUILDRCD—BUJILD A BUFFER POOL AND A RECORD AREA (QSAM)
The BUILDRCD macro causes a burfer pool and a record area to be
constructed in a user-provided storage area. This macro is used
only for variable-length, spanned records processed in QSAM
locate mode. If the extended logical record interface (XLRI) is
used to process RECFM=DS or RECFM=DBS records (ISO/ANSI/FIPS
variable spanned or variable blocked spanned), you can use the
BUILDRCD macro to build a record area to a maximum length of
16777183 bytes. Use of this macro before the data set is
opened, or before the end of the DCB open exit routine, will
provide a buffer pool that can be used for a logical record
interface rather than a segment interface for variable-length
spanned records. To invoke a logical record interface, specify
BFTEK=A in the DCB. The BUILDRCD macro cannot be specified when
logical records exceed 32760 bytes.

The standard form of the BUILDRCD macro is written as follows
(the list and execute forms are shown following the description
of the standard form):

[symboll| BUILDRCD area address
snumber of buffers
sbuffer length
rrecord area address
[rrecord area lenathl

—A-Type Address or (2-12)
The area address operand specifies the address of the area
to be used as a buffer pool. The area must start on a
fullword boundary.

—symbol, decimal digit, absexp, or (2-12)
The number-of-buffers operand specifies the number of
buffers, to a maximum of 255, to be in the buffer pool.

—symbol, decimal digit, absexp, or (2-12)
The buffer—-length operand specifies the length, in bytes,
of each buffer in the buffer pool. The value specified for
the buffer length must be a fullword multiple; otherwise,
the system rounds the value specified to the next higher
fullword multiple. The maximum length that can be
specified is 32760.

—A-Type Address or (2-12)
The record area address operand specifies the address of
the storage area to be used as a record area. The area
must start on a doubleword boundary and have a length of
the maximum logical record (LRECL) plus 32 bytes.

—symbol, decimal digit, absexp, or (2-12)
The record area length operand specifies the length of the
record area to be used. The area must be as long as the
maximum length logical record plus 32 bytes for control
information. If the record area length operand is omitted,
the problem program must store the record area length in
the first four bytes of the record area.

Macro Instruction Descriptions 15

BUILDRCD

16 MVS/XA Data' Administration:

The following illustration shows the

format of the

buffer pool:

Area
Address
BUFAD BUFLG|BUFNO| BUFLTH BUFRECAD
Address of First No. of Length of Address
Available Buffer Flags |Buffers| Each of Record Buffer Buffer
Req’d Buffer Area
4 bytes 1 byte 1 byte 2 bytes 4 bytes _l_l}uffer_l Buffer
12 bytes t i
Buffer Pool Control Block Length 'Length
Area Length

BUFLG Flags:
Bit Meaning

0=1 Record area present

1=1 Buffer control block extended

2-7 Reserved

Notes:

Area Length = (Buffer Length) x (Number of Buffers) +12

1. The buffer pool control block contains the address of the
record area and a flag that indicates logical-record
interface processing of variable-length, spanned records.

2. It is the user's responsibility to release the buffer pool
and the record area after a CLOSE macro has been issued for
all the data control blocks that use the buffer pool and the

record area.

Macro Instruction Reference

7N

\& /

o
N

BUILDRCD

The list form of the BUILDRCD macro is used to construct a
program parameter list. The description of the standard form of
the BUILDRCD macro instruction provides the explanation of the
function of each operand. The description of the standard form
also indicates the operands that are totally optional and those
that are required in at least one of the pair of list and
execute forms. The format description below indicates the
optional and required operands in the list form only.

The list form of the BUILDRCD macro is written:

[symboll] BUILDRCD area address

area address—A-Type Address

number of buffers—symbol, decimal digit, or absexp
buffer lenath—symbol, decimal digit, or absexp
record area address—A-Type Address

record area lenath—symbol, decimal digit, or absexp

MF=L
The MF=L operand specifies that the BUILDRCD macro
instruction is used to create a parameter list that will be
referenced by an execute form instruction.

Note: A parameter list can be constructed by coding only the
MF=L operand (without the preceding comma); in this case, the
list is constructed for the area address, number of buffers,
buffer length, and record area address operands. If the record
arei ifngth operand is also required, the operands can be coded
as follows:

[symboll BUILDRCD ,,,0,MF=L
The preceding example shows the coding to construct a list
containing address constants with a value of 0 in each constant.

The actual values can then be supplied by the execute form of
the BUILDRCD macro.

Macro Instruction Descriptions 17

BUILDRCD

BUILDRCD—EXECUTE FORM

A remote parameter list is referred to, and can be modified by,
the execute form of the BUILDRCD macro. The description of the
standard form of the BUILDRCD macro instruction provides the
explanation of the function of each operand. The description of
the standard form also indicates the operands that are totally
optional and those that are required in at least one of the pair
of list and execute forms. The format description below
%ndicat;s the optional and required operands for the execute

orm only.

The execute form of the BUILDRCD macro is written:

[svmboll| BUILDRCD [area address]

»[record 1
»MF=(E,{list addressl|(1)})

area address—RX~-Type Address or (2-12)

number of buffers—absexp

buffer length—absexp

record area address—RX-Type Address or (2-12)

record area lenath—absexp

MF=(E,{list address|(1)})
This operand specifies that the execute form of the
BUILDRCD macro instruction is used, and an existing
parameter list (created by a list-form instruction) will be
used. The MF= operand is coded as described in the
following:
E

list address—RX-Type Address, (2-12), or (1)

18 MVS/XA Data Administration: Macro Instruction Reference

N

~
)

The CHECK macro causes the active task to be placed in the wait
condition, if necessary, until the associated input or output
operation is completed. The input or output operation is then
tested for errors and exceptional conditions. If the operation
is completed successfully, control is returned to the
instruction following the CHECK macro. If the operation is not
completed successfully, the error analysis (SYNAD) routine is
given control or, if no error analysis routine is provided, the
task is abnormally terminated. The error analysis routine is
discussed in the SYNAD operand of the DCB macro.

Thf following conditions are also handled for BPAM and BSAM
only:

When Reading: The end-of-data (EODAD) routine is given control
if an input request is made after all the records have been
retrieved. Volume switching is automatic for a BSAM data set
that is not opened for UPDAT. For a BSAM data set that is
opened for update, the end-of-data routine is entered at the end
of each volume.

When Writing: Additional space on the device is obtained when
the current space is filled and more WRITE macro instructions
have been issued.

For BPAM and BSAM, a CHECK macro must be issued for each input
and output operation, and must be issued in the same order as
the READ or WRITE macros were issued for the data set. For BDAM
or BISAM, either a CHECK or a WAIT macro can be used. For
inf9r@ation_on whgn the WAIT. macro can be used, see Data

If the ISCII/ASCII translation routines are included when the
operating system is generated, translation can be requested by
coding LABEL=(,AL) or (,AUL) in the DD statement, or it can be
requested by coding OPTCD=Q in the DCB macro or DCB subparameter
of the DD statement. If translation is requested, the check
routine automatically translates BSAM records, as they are read,
from ISCII/ASCII code to EBCDIC code, provided that the record
format is F, FB, D, DB, or U. Translation occurs as soon as the
check routine determines that the input buffer is full. For
translation to occur correctly, all input data must be in ISCII
or ASCII code.

The CHECK macro is written:z

[symboll| CHECK decb address
[,DSORG={IS|ALL}]

—RX-Type Address, (2-12), or (1)
The decb address operand specifies the address of the data
event control block created by the associated READ or HWRITE
macro or used by the associated input or output operation.

DSORG={IS|ALL}
The DSORG operand spec1f1es the type of data set
organization. The following describes the characters that
can be coded:

IS
Spfcifies that the program generated is for BISAM use
only.

ALL
Specifies that the program generated is for BDAM,
BISAM, BPAM, or BSAM use.

If the DSORG operand is omitted, the program generated is
for BDAM, BPAM, or BSAM use only.

Macro Instruction Descriptions 19

CHKPT
CHKPT—TAKE A CHECKPOINT FOR RESTART WITHIN A JOB STEP

The CHKPT macro is coded in-line in the problem program. HWhen “ xb
this macro executes, the operating system writes a checkpoint LY
entry in a checkpoint data set. The entry consists of job step
information, such as virtual-storage data areas, data set

position, and supervisor control, from the problem program. The
problem program automatically restarts with the instruction
immediately following the CHKPT macro.

For details on the CHKPT macro, see Checkpoint/Restart User's
Guide.

20 MVS/XA Data Administration: Macro Instruction Reference

The CLOSE macro causes output data set labels to be created and
volumes to be positioned as specified by the user. The fields
of the data control block are restored to the condition that
existed before the OPEN macro was issued, and the data set is
disconnected from the processing program. Final volume
positioning or disposition for the current volume can be
specified to override the positioning implied by the DD control
statement DISP parameter. Any number of dcb address operands
and associated options may be specified in the CLOSE macro.

Associated data sets for an IBM 3525 Card Punch can be closed in
any sequence, but, if one data set is closed, I/0 operations
cannot be initiated for any of its associated data sets.
Additional information about closing associated data sets is
contained in ind i i .

After a CLOSE has been issued for several data sets, a return
code of 4 indicates that at least one of the data sets, VSAM or
non-VSAM, was not closed successfully.

A FREEPOOL macro should normally follow a CLOSE macro
instruction (without TYPE=T) to regain the buffer pool storage
space and to allow a new buffer pool to be built if the DCB is
reopened with different record size attributes.

A special operand, TYPE=T, is provided for processing with BSAM.
The standard form of the CLOSE macro is written as follows (the

list and execute forms are shown following the description of
the standard form):

{svymboll| CLOSE (dcb address,[options...1]
[, TYPE=T]

deb address—A-Type Address or (2-12)
specifies the address of the data control block for the
opened data set that is to be closed.

One of these options indicates the volume positioning that
is to occur when the data set is closed. This option is
generally used with the TYPE=T operand or for data sets on
magnetic tape. However, options specified in the CLOSE
macro will override disposition specifications in the JCL
for all data sets. The options are:

REREAD
specifies that the current volume is to be positioned
to reprocess the data set. If processing was forward,
the volume is positioned to the beginning of the data
set; if processing was backward (RDBACK), the volume
is positioned to the end of the data set.
FREE=CLOSE is specified in the JCL, the data set is
not unallocated until the end of the job step.

LEAVE ,
specifies that the current volume is to be positioned
to the logical end of the data set. If processing was
forward, the volume is positioned to the end of the
data set; if processing was backward (RDBACK), the
volume is positioned to the beginning of the data set.

REWIND
specifies that the current magnetic tape volume is to
be positioned at the load point, regardless of the
direction of processing. REWIND cannot be specified
when TYPE=T is specified. If FREE=CLOSE has been
coded on the DD statement associated with the data set
being closed, coding the REWIND option will result in

Macro Instruction Descriptions 21

CLOSE

the data set being freed at the time it is closed
rather than at the termination of the job step. TN

(
FREE : L

specifies that the current data set is to be freed at

the time the data set is closed, rather than at the

time the job step is terminated. For tape data sets,

this means that the volume is eligible for use by

other tasks or to be demounted. Direct access volumes

may also be freed for use by other tasks. They may be

freed for demounting if (1) no other data sets on the

volume are open and (2) the volume is otherwise

demountable. Do not use this option with CLOSE

TYPE=T. (For other restrictions on the FREE

parameter, see JCL.)

DISP
specifies that a tape volume is to be disposed of in
the manner implied by the DD statement associated with
the data set. Direct access volume positioning and
disposition are not affected by this parameter. There
are several dispositions that can be specified in the
DISP parameter of the DD statement; DISP can be PASS,
DELETE, KEEP, CATLG, or UNCATLG.

Depending on how the DISP option is coded in the DD
statement, the current magnetic tape volume will be
positioned as follows:

DISP Parameter Action .

PASS Forward space to the end of
data set on the current
volume.

DELETE Réwind the current volume.

KEEP, CATLG, or UNCATLG The volume is positioned as s
for CLOSE REREAD. Note that
the volume is not rewound and
unloaded.

If FREE=CLOSE has been coded in the DD statement
associated with this data set, coding the DISP option
in the CLOSE macro will result in the data set being
freed when the data set is closed, rather than at the
time the job step is terminated.

Note: MWhen the option operand is omitted, DISP is assumed.
For TYPE=T, this is processed as LEAVE during execution.

The LEAVE and REREAD options are meaningless except for
magnetic tape and CLOSE TYPE=T.

TYPE=T

You can code CLOSE TYPE=T to perform some close functions
for sequential data sets on magnetic tape and direct access
volumes processed with BSAM. When you use TYPE=T, the DCB
used to process the data set maintains its open status, and
you should not issue another OPEN macro to continue
processing the same data set. This option cannot be used
in a SYNAD exit routine. ‘

The TYPE=T operand causes the system control program to
process labels, modify some of the fields in the system
control blocks for that data set, and reposition the volume
(or current volume in the case of multivolume data sets) in
much the same way that the normal CLOSE macro does. MWhen
vou code TYPE=T, you can specify that the volume either be

positioned at the end of data (the LEAVE option) or be e
repositioned at the beginning of data (the REREAD option). {
Magnetic tape volumes are repositioned either immediately N

before the first data record or immediately after the last

22 MVS/XA Data Administration: Macro Instruction Reference

CLOSE

data record; the presence of tape labels has no effect on
repositioning.

If you code the RLSE keyword with the SPACE parameter on
the DD statement that describes the output data set, it is
ignored by temporary close (CLOSE TYPE=T). If the last
operation occurring prior to the normal CLOSE (without
TYPE=T) and after the temporary close was a write, then any
unused space will be released.

Note: To use the CLOSE macro instruction supplied in the
MVS/XA macro library on MVS/370, use the SPLEVEL macro
instruction. You must use the SPLEVEL macro instruction to
ensure that the MVS/XA version of the CLOSE macro
instruction executes successfully on MVS5/370. For more
information on how to use the SPLEVEL macro, see

ilities, Volume 2.

For additional information and coding restrictions, see

Macro Instruction Descriptions 23

The list form of the CLOSE macro is used to construct a data
management parameter list. Any number of operands (data control
block addresses and associated options) can be specified.

The list consists of a one-word entry for each DCB in the
parameter list; the high-order byte is used for the options and
the three low-order bytes are used for the DCB address. The end
of the list is indicated by a 1 in the high-order bit of the
last entry's option byte. The length of a list generated by a
list-form instruction must be equal to the maximum length
required by an execute-form instruction that refers to the same
liiﬁ.d A maximum length list can be constructed by one of two
methods:

. Code a list-form instruction with the maximum number of

parameters that are required by an execute-form instruction
that refers to the list.

. Code a maximum length list by using commas in a list-form
instruction to acquire a list of the appropriate size. For
example,, coding CLOSE (,,,,,,,,,),MF=L would provide a list
of five fullwords (five dcb addresses and five options).

Entries at the end of the list that are not referenced by the
execute-form instruction are assumed to have been filled in when
the list was constructed or by a previous execute-form
instruction. Before using the execute-form instruction, you may
shorten the list by placing a 1 in the high-order bit of the
last DCB entry to be processed.

A zeroed work area on a word boundary is equivalent to CLOSE
(,DISP,...),MF=L and can be used in place of a list-form
instruction. The high-order bit of the last DCB entry must
contain a 1 before this list can be used with the execute-form
instruction.

A parameter list constructed by a CLOSE macro, list form, can be
referred to by either an OPEN or CLOSE execute-form instruction.

The description of the standard form of the CLOSE macro provides
the explanation of the function of each operand. The
description of the standard form also indicates the operands
that are completely optional and those required in at least one
of the pair of list and execute forms. The format description
?elow i?dicates the optional and required operands in the list
orm only.

The list form of the CLOSE macro is written:

[symboll| CLOSE ([dcbhb addressl,loptionls...)
[,TYPE=T]
»MF=L

dcb address—A-Type Address
option—Same as standard form

TYPE=T
The TYPE=T operand can be coded in the list-form
instruction to allow the specified option to be checked for
validity when the program is assembled.

MF=L
The MF=L operand specifies that the CLOSE macro instruction
is used to create a data management parameter list that
will be referred to by an execute-form instruction.

29 MVS/XA Data Administration: Macro Instruction Reference

N

\‘&‘MJ‘/

CLOSE

A list form of the CLOSE macro is used in and can be modified by
the execute form of the CLOSE macro. The parameter list can be
generated by the list form of either an OPEN macro or a CLOSE
macro.

The description of the standard form of the CLOSE macro provides
the explanation of the function of each operand. The
description of the standard form also indicates the operands
that are totally optional and those required in at least one of
the pair of list and execute forms. The format description
below indicates the optional and required operands in the
execute form only.

The execute form of the CLOSE macro is written:

[svmboll| CLOSE [(Idcb addressl,loptionl,...)]
[,TYPE=T]

»MF=(E,{address of list forml|(1])})

decb address—RX-Type Address or (2-12)

option—If specified, same as the standard form. If not
specified, the option specified in the list form of the CLOSE
macro will be used.

TYPE=T—Same as standard form.

MF=(E,{address of the list forml(1])})
specifies that the execute form of the CLOSE macro
instruction is being used, and the parameter list is
created by the list form of the CLOSE macro instruction.
The MF= operand is coded as described in the following:

address of the list form of the CLOSE (or OPEN) macro
instruction—RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 25

/

AN
The CNTRL macro is used to control magnetic tape drives (BSAM L
only for a data set that is not open for output), on—line card N
readers, IBM 3525 Card Punches (read and print features),
printers (BSAM and QSAM), and the IBM 3890 Document Processor
(QSAM only). For information on additional operands for the
CNTRL macro for the 3890, see_

The MACRF operand of the DCB macro must specify a C. The CNTRL
macro is ignored for SYSIN or SYSOUT data sets. For BSAM, all
input and output operations must be tested for completion before
thefC?IRL macro is issued. The control facilities available are
as follows:

Card Reader: Provides stacker selection, as follows:

QSAM—For unblocked records, a CNTRL macro should be issued
after every input request. For blocked records, a CNTRL macro
is issued after the last logical record on each card that is
retrieved. MWhether reading blocked or unblocked records, do not
issue a CNTRL macro after a GET macro has caused control to pass
to the EODAD routine. The move mode of the GET macro must be
used, and the number of buffers (BUFNO field of the DCB) must be
1. If a CLOSE macro is issued before the last card is read, the
opefator should clear the reader before the device is used
again.

BSAM—The CNTRL macro should be issued after every input
request.

Printer: Provides line spacing or a skip to a specific carriage

control channel. A CNTRL macro cannot be used if carriage

control characters are provided in the record. If the printer

contains the universal character set feature, data checks should PN

gf bigCKEd (OPTCD=U should not appear in the data control |)
ocC . o

Magnetic Tape: Provides method of forward spacing and
backspacing (BSAM only for a data set that is not open for
output). If OPTCD=H is indicated in the data control block, the
CNTRL macro can be used to perform record positioning on DOS
tapes that contain embedded checkpoint records. Embedded
checkpoint records encountered during the record positioning are
bypassed and are not counted as blocks spaced over. OPTCD=H
must be specified in a job control language DD statement. The
CNTRL macro cannot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>