flnl]

= MVS/Extended Architecture Licensed
» - Linkage Editor and Loader Program
™ User’s Guide

Urr

AMODE
° ,Fp 3]‘bif
MVS/XA RM(
24-bit

Order Number Data Facility Product Version 1
GC26-4011-2 5665-284 Release 1.2

€

Order Number
GC26-4011-2

MVS/Extended Architecture
Linkage Editor and Loader
User’s Guide

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)
This is a major revision of, and makes obsolete, GC26-49011-1.

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. This publication was
formerly titled / i i i

Loader

.

The changes for this edition are summarized under "Summary of
Changes™ following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editgrial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370, 30xx, and 4300

ibli ,» GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available

in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or

imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, vour order will be delayed because publications are not
stocked there.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

©® Copyright International Business Machines Corpor#tion 1982,
1984, 1987

‘Y,

This publication supports Data Facility Product, a component of
MVS/Extended Architecture (MVS/XA), and provides application
programmers with the information necessary to use the linkage
editor and loader to prepare the output of a language translator
for execution. Additional information on the operation and use
of the linkage editor and loader is directed to the system
programmer responsible for installing and maintaining the
operating system.

This publication contains an introduction and two major parts:

"Introduction™ defines the functions and gives
;ecgmmendations for the use of the linkage editor and
oader.

"Part I. Linkage Editor™ describes the processing facilities
and operation of the linkage editor:

"Chapter 1. Overview" describes object and load modules
and gives a general overview of linkage editor
processing.

"Chapter 2. Uses of the Linkage Editor"™ provides
descriptions of the functions of the linkage editor, and
explains its relationship to the operating systen.

"Chapter 3. Defining Input to the Linkage Editor"
describes how to define the primary input data set, how
to use the automatic library call mechanism, and how to
include other data sets as input.

"Chapter 4. Specifying JCL to Run a Linkage Editor Job"™
explains the job control language necessary to run a
linkage editor job step.

"Chapter 5. Specifying an Operation with Control
Statements™ summarizes the various linkage editor
control statements that can be used in running the job.

"Chapter 6. Editing a Control Section™ describes how to
change external symbols, replace control sections,
delete control sections or entry names, order control
sections or named common areas, and align control
sections or named common areas on page boundaries.

"Chapter 7. Invoking the Linkage Editor"™ gives the macro
instructions used by ‘a problem program to invoke the
linkage editor.

"Chapter 8. Interpreting Linkage Editor Output™
describes how to interpret the output load modules and
diagnostic information produced by the linkage editor.

"Appendix A. Sample Linkage Editor Program™ contains
fgg; sample programs illustrating the use of the linkage
editor.

"Appendix B. Linkage Editor Requirements and Capacities”
describes the record-processing capacities of the
linkage editor, the types of devices that can be used
for the intermediate data set, and the amount of virtual
storage the linkage editor requires.

"Appendix C. Designing and Specifying Overlay Programs™
describes how to use the overlay facilities of the

Preface iii

linkage editor to minimize the amount of virtual storage
required.

. "Part I1. Loader™ includes function descriptions and
operating instructions for the loader program:

= "Chapter 9. Overview and Uses of the Loader™ describes
the functional characteristics of the loader, its
compatibility with the linkage editor, and the
restrictions on its use.

- "Chapter 10. Preparing Input for the Loader"™ explains
how to prepare an input deck for the loader, including
how to specify EXEC statements and how to use DD
statements to define loaded program data.

- "Chapter 11. Invoking the Loader™ shows how to use the
EXEC statement or specified macro instructions to invoke
the loader program.

- "Chapter 12. Interpreting Loader Output™ describes how
to interpret the diagnostic and error messages, and the
optional storage map, produced by the loader progranm.

- "Appendix D. Loader Storage Considerations™ describes
the virtual storage space required by the loader
program.

- "Appendix E. Loader Return Codes™ lists the return codes
that can result from loader processing and defines their
meanings.

The diagnostic messages issued by both the linkage editor and
the loader program are described in MVS/Extended Architecture
» Volumes 1 and 2, GC28-1376 and
GC28-1377. The description of each message includes an
:xptan:tion, a system action, and a problem determination action
o be taken.

CREREWVADLIE RNUWLEDGE

In order to use this book efficiently, you should be familiar
with MVS/Extended Architecture job control language.

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

s MVS/Extended Architecture JCL describes the job control
language used to run the linkage editor and loader programs.

/ 5 3
describes the diagnostic messages issued by the linkage
editor and loader programs.

RELATED PUBLICATIONS

Within the text, references are made to the publications listed
in the table below:

iv MVS/XA Linkage Editor and Loader User's Guide

short Title Publication Title order Number
(as it appears
in the text)
Data MVS/Extended Architecture GC26-4013
Administration Data Administration Guid
Guide
Data MVS/Extended Architectur LYB8-1195
Areas—JES3 Data Areas—JES3
Initialization MVS/Extended Architecture GC28-1149
and Tuning System Programming Library:?
Initialization and Tunin
JCL gXS/Extended Architecture GC28-1148
JeL ,
Linkage Editor MVS/Extended Architecture LY26-3902
Logic Linkage Editor Logic
Loader Logic MVS/Extended Architecture LY26-3901
Loader lLogic
Routing and MVS/Extended Architecture GC28-1194%
Descriptor Message Library: Routing
Codes and Descriptor Codes
Service Aids MVS/Extended Architecture GC28-1159
System Programming Library:
Service Aids
SMP System 0S/VS System Modification GC28-0673
Programmer's Program (SMP) Svste
Guide Programmer's Guide
SMP/E User's SMP/E User's Guide 5C28-1302
Guide
Supervisor MVS/Extended Architecture GC28-1154
Services and System Programming Library:
Macro Supervisor Services and
Instructions Macro Instructions
System Codes MVS/Extended Architecture GC28-1157
Message Library: System
Codes
System MVS/Extended Architecture GC26-4009
Generation Installation: System
Reference Generation
System Messages MVS/Extended Architecture GC28-1376
Message Library: System GC28-1377
Messaqes, Volumes 1 and 2
TS0 Command MVS/Extended Architecture GC28-0646
Language IS0 Command language
Reference Reference(0S/VS2 TSO
Command lLanguage Reference,
as updated by Supplement
S$D23-0259 for MVS/XA)
TSO0/E Data MVS/Extended Architect LYB8-1191
Areas I1S0/E Data Areas (plus
supplement, LDB3-2078)
Utilities MVS/Extended Archite 6C26-4018
Data Administration:
tilities

Praeface v

NOTATIONAL CONVENTIONS

vi

A uniform system of notation describes the format of linkage
editor and loader control statements. This notation is not part
of the language; it simply provides a basis for describing the
structure of the commands. The command format illustrations in
this book use the following conventions:

L Brackets [] indicate an optional parameter.

. Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (]) represent alternative
items. No more than one of these items may be selected.

. An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

[Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

U BOLDFACE type indicates the exact characters to be entered,
except as described in the first four bullets. Such items
must be entered exactly as illustrated.

. Lowercase underscored type specifies fields to be supplied
by the user.

[BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

MVS/XA Linkage Editor and Loader User's Guide

‘/9,’:{ h

i
S

N

A

| SUMMARY OF CHANGES

| RELEASE 1.2 LIBRARY UPDATE. JANUARY 1987

| SERVICE CHANGES

Information has been added, corrected, or deleted to reflect
technical service changes.

RELEASE 1.2, FEBRUARY 1984

REVISION AND RESTRUCTURE

The contents of this manual are substantially the same as in
Release 1.0. Changes are as follows:

[The manual has been restructured for ease of use.
. References to other manuals have been updated.
. Minor technical changes have been made in Chapter 5,

"Specifying an Operation with Control Statements."™ These
changes are indicated by revision bars.

Summary of Changes vii

viii

MVS/XA Linkage Editor and Loader User's Guide

Intl‘oduction L] L[] L] L] . L[] ® L] L] L] . L] L] * L] L] L] . . L] . L] L]
Part I. Linkage Editor e 6 o o o o o s o o e o e s s o e

Chapter 1. Overview e o o e o o o o
Object and Load Modules . e e e e e
External Symbol D1ct1onary e e e e e e e
Text N .
Relocatlon chtlonary .
End Indication .. .
Linkage Editor Process1ng
Input and Qutput Sources e e e e e e e e . e
Load Module Creation e e e e e e e e e e e e e e
Assigning Addresses e e e e e e e e e e e
Resolving External References e e e e e e e e e e

.
.
.
.

Chapter 2. Uses of the L1nkage Editor * o o o o o o o o
Linkage Editor Input . . e e e e e e e e e e e e e

Links Modules e et e e e e e e e e e e e e e e
Edits Modules e e e s

Aligns Control Sectlons or Common Areas on Page
Boundaries e e e e e e e e e e

Accepts Addltlonal Input Sources C e e e e e e e e

Reserves Storage . e e e e e e e e e e e e e

Processes Pseudoreg1sters e e e e e e e e e e e e

Creates Overlay Programs . e e e e e e e e e e e

Creates Multiple Load Modules .

Provides Special Proce551ng and D1agnost1c Output

Options . . e e e e e e e e

Assigns Load Module Attr1butes .« v e

Allocates User-Specified Virtual Storage Areas

Stores System Status Index Information

Traces Processing History .

Lengthens Control Sections or Named Common Sectlons

Assigns an Authorization Code to Output Load Modules

Assigns Addressing Mode e e e e e e e e e e e e e

Assigns Residence Mode e e e e e e e e

AMODE/RMODE Hierarchy e e e e e e e e e

Assigns Read-only Attribute e e e e e e e e e e
Relationship to the Operating System C e e e e e e e

Time Sharing Option (TS0) e e e e e e e e e e e

Chapter 3. Defining Input to the L1nkage Editor e o o o
Primary Input Data Set e e e e
Object Modules e e et e e e e e e e e e e e e e e e
From Cards e e ..
As a Member of a Part:tloned Data Set e e
Passed from a Previous Job Step e e e e e
Created in a Separate Job e e e e e e e
Control Statements e e e e e e e
Object Modules and Control Statements e e e e e e e
Control Statements in the Input Stream e e e e e e
Control Statements in a Separate Data Set e e e e
Automatic Library Call e e e e e e e e e e e e e e e
SYSLIB DD Statement e e e e e e e e e e e e e e e
System Call Library e e e e e e e e e e e e e e e
Private Call Libraries . e e e e e e e e e e
Concatenation of Call L1brar1es e e e e e e e e e
Library Control Statement e e e e e e e e e e e e
Additional Call Libraries e e e e e e e e e e e
Restricted No-Call Function e e e e e e e e e e
Never-Call Function e v e e e e e e e e
NCAL Option e e e e e e e e e e e e e e e e e e
Included Data Sets e e e e e e e e e e
Including Sequent1a1 Data Sets e e e e e e e e e
Including Library Members e e e e e e e e e
Including Concatenated Data Sets e e

e o o ® e o o o

Contents

W NHOVOVOVVENODN W =

[]

13

ix

Chapter 4. Specifying JCL to Run a L:nkage Ed;tor Job

EXEC Statement—Introduction e . . . e
EXEC Statement—Job Step Options e e e e e e e e e e
Module Attributes . C e r e e e e e e e
Downward Compatible Attrlbute e e e e e e e e e
Scatter Format Attribute e e e e e e e e e e .
Not Editable Attribute e e e e e e e e e e e e e
Only-Loadable Attribute e e e e e e e e e
Overlay Attribute e e e e e e e e e e e e
Reusability Attrlbutes e e e e e e e e e .
Refreshable Attribute C e e e e e e e e e e
Test Attribute e e e e e e e e e e e e e e
Authorization Code . e e e e e e e e e e e e
Addressing Mode Attr1bute e e e e e e e e e e e

Residence Mode Attribute . e .
Combinations of Addressing Mode and Re51dence Mode

Default Attributes . C e e e e e e e e e e e e

Incompatible Attrlbutes e e e e e e e e e e e
Special Processing Options e e e e e e e e e

Exclusive Call Option e e e e e e e e e e e

Let Execute Option e e e e e e

No Automatic L1brary-Ca11 Optlon e e e e e e
Space Allocation Options C e e e e e e e e e e

SIZE Option e e e e e e e e e e e e e e e

DCBS Option C e v e e e e e e e e e e e e
Qutput Options . e e e e e e

Control Statement L1st1ng 0pt1on C e e e e e e

Module Map Option . . e e e e e e e e

Cross Reference Table Optlon e e e e e e e e e

Alternate OQutput (SYSTERM) Option e e e e e e
Incompatible Job Step Options e e e e e e e e e e

EXEC Statement—Region Parameter C e e e e e e e
EXEC Statement—Return Code BN

DD Statements e e e e e

Linkage Editor DD Statements C e e e

SYSLIN DD Statement e e e e e e e e e e e e e
SYSLIB DD Statement e e e e e e e e e e e e e e
SYSUT1 DD Statement e e e e e e e e e e e e e e
SYSPRINT DD Statement e e e e e e e e e e e
SYSLMOD DD Statement e e e e e e e e e e e e e e
SYSTERM DD Statement C e e e e e e e e e e .
Additional DD Statements e e e e e e e e e e .
Size Parameter Guidelines e e e e e e e e e e e
Cataloged Procedures . e e e e e e e e
Linkage Editor Cataloged Procedures .
Procedure LKED N C e e e e e e e e .
Procedure LKEDG . e e e e e e e .
Overriding Cataloged Procedures e e e e e e e e
Overriding the EXEC Statement e e e e e e e e
Overriding DD Statements e e e e e e e e e e e e
Adding DD Statements e e e e
Chapter 5. Speczfy1ng an Operatzon with Control Statements
General Format . e e e e e e
Format Conventions e e e e e e e e e e e e e e e
Placement Information C e e e e e e e e e e e e
ALIAS Statement e e e e e e e e e e e e e e e e
CHANGE Statement e e e e e e e e e e e e e e e
ENTRY Statement e e e e e e e e e e e e e e
EXPAND Statement e e e e

IDENTIFY Statement N
INCLUDE Statement N
INSERT Statement e e e e
LIBRARY Statement e e
MODE Statement .

e o & o e o

NAME Statement C e e e e e e e e e e e e e e e
ORDER Statement C e e e e e e e e e e e e e e
OVERLAY Statement e e e e e e e e e e e e e e
PAGE Statement e e e e e e e e e e e e e e e e
REPLACE Statement e e e e e e e e e e e e e e
SETCODE Statement e e e e e e e e e e e e e e e
SETSSI Statement e e e e e e e e e e e e e e e

x MVS/XA Linkage Editor and Loader User's Guide

Chapter 6. Editing a Control Section
Editing Conventions . .
Changing External Symbols e e e e e
Replacing Control Sections e e e e e . . .
Automatic Replacement e e e e e e e e e e
Example 1 e e e e e e e e e e e e e e e
Example 2 e e e e e e e e e e e e
REPLACE Statement e e
Deleting a Control Sectlon or Entry Name .
Ordering Control Sections or Named Common Areas
Aligning Control Sections or Named Common Areas on
Boundaries e e e e e e e e e e e e e .

s o o @
.
.

Chapter 7. Invoking the Linkage Editor « o o e

Chapter 8. Interpreting Llnkage EdltOP Output .
Output Load Module e .
OQutput Module L1brary e e e e
Member Name . e e e e e e e e e e e e
Alias Names e e e e e e e e e e e e e e
Entry Point . e e e e e e e e e e e e
Authorization Code . e e e e e e e
Residence and Address:ng Modes . e e e
Reserving Storage in the Qutput Load Module .
Processing Pseudoregisters .. e e e e
Multiple Load Module Processing e e e e e
Diagnostic Output C e e e e e e e e e e
Diagnostic Messages e e e
Module Disposition Messages e e e
Error/Harning Messages e e e e e e e e e
Sample Diagnostic Output e e e e e e e
Optional Output e e e e e e e e
Control Statement L1st1ng e e e e e e
Module Map . e e e e e e e e e
Cross- Reference Table e e e e e e e e
Load Module Format e e e e e e e

e o o e e e e @

Pal‘t II. Loadep e e o o o e o o o o o o o o o o

Chapter 9. Overview and Uses of the Loader e o o
Functional Characteristics e e e e e e e e e e
Addressing Mode e e e e e e e e e e
Residence Mode . e e e e e e e
AMODE/RMODE Comblnatlons e e e .
Implied AMODE or RMODE e e e e
Compatibility and Restrictions .
Time Sharing Option (TS0) .
Processing Object Modules in V1rtua1 Storage

Chapter 10. Preparing Input for the Loadenr . .
Input for the Loader . e e e e e e e
EXEC Statement . e e e e e e e e e e e e e
PARM Field Format e e e e e e e e e e e e
Loader Options . e e e
AMODE=mode: Spec1fy1ng Address Mode .
CALLINOCALL: Automatically Searching SYSLIB
EP=name: Specifying the Program Entry Point
LET|NOLET: Executing with Severity 2 Errors
MAP[NOMAP: Printing a Program Map . . e
NAME=name: Identifying the Loaded Program .
PRINTINOPRINT: Printing Messages on SYSLOUT

RES|NORES: Automatlcally Search1ng the L1nk Paok.Aree

Queue . .
RMODE=mode: Spe01fy1ng Re51dence Mode .
SIZE=size: Specifying Virtual Storage c e
TERMINOTERM: Sending Messages to SYSTERM

EXEC Statement Example e e e e e .

DD Statements e e e e e e e e e e e
SYSLIN DD Statement e e e e e e e e e e
SYSLIB DD Statement e e e e e e e e e e
SYSLOUT DD Statement e e e e e e e e e e e
SYSTERM DD Statement e e e e e e e e e e

Loaded Program Data e e e e e e e e e e e e

e * e o e e e ©

e o o o o s o e

.

Pt et (et o ot ot ot ot ot o fod ok ot ot o ok et
Tt ot ot et ot ot o et ot ot o fod ok fod et et ©
ONOOOUVIPDNWWNNNFHHHHOWO

[oey
nN
™9

Pt et o et rd o ot b
NNNNNNNDN
NNLDLDWNDNN

127

128
128
128
128
129
129
129
130
130
130
130
131

131
131
131
132
132
132
133
1349
1346
134
135

Contents xi

xii

Chapter 12. Interpreting Loader Output o e

Sample Input for the Loader e e e e e e e

.
.
.
.

Chapter 11. Invoking The Loader

L 2
L]
L]
.

L
L]
[
.

Appendix A. Sample Linkage Editor Programs
Sample Program COBFORT e e e e .
Job Control Language e e e e e
Linkage Editor Output e e e e e
Sample Program RPLACJOB e e e e e .
Job Control Language
Linkage Editor Control Statements

e e o o o o o

Linkage Editor Output e e e e e
Sample Program REGNOVLY e e e e e e
Job Control Language

Linkage Editor Control Statements

Linkage Editor Output e e e e
Sample Program PARTDS s e e e e e e s

Job Control Language .

Linkage Editor Control Statements

Linkage Editor Output e v e e e e

@ e e ® o ® o & o o o o ° o
e ® o ® o & ° o s o & o o s s O
e o @ © o & ° ® o * ® v ° & o O
* ® e & & & e ° & & s e & s s ®
e« @ e o @ o o o o o o o o = s O
@ o o o o o o e o o o e o o o O

e o o e o o o o o o o e o o

Appendix B. Linkage Editor Requ:rements and Capacities
Capacities . e . e e e e e
Intermediate Data Set e e e e e e e e e e e e

Appendix C. Designing and Specifyxng 0ver1ay Programs
Design of an Overlay Program .o . e e e e
Single Region Overlay Program . e
Control Section Dependency . .
Segment Dependency . RN
Length of an Overlay Program .
Segment Origin . e
Communication between Segments .
Overlay Process o .
Multiple Region 0ver1ay Program
Specification of an Overlay Program
Segment Origin e e e e e e
Region Origin N
Positioning Control Sect1ons .
Using Object Decks . e e .
Using INCLUDE Statements .
Using INSERT Statements v e
Special Options e e e e e e
OVLY Option e e e e e e
LET Option e e e e e e e e e
XCAL Option . . .
AMODE and RMODE 0pt1ons . e
Special Considerations . e e e e

. .
. . .
. .

e o o & s o o o o o
® o o e o o o & e o o
.« o
e e o o o o o o o

e e o o o
e o o o e ® e 8 s e o o s s o e @

e o e o o o o
e o o o o o o e 8 e & e o s o o
e o o o o e e ® o o o o »

® o e o o o o o e o =

e o o o o

Common Areas . e e e e
Storage Requxrements e e e e
Overlay Communication . . .
CALL Statement or CALL Macro Instructio
Branch Instruction .
Segment Load (SEGLD) Macro Instruct1on
Segment Wait (SEGWT) Macro Instruction .

.

.

e o s o e o o
o & o o o o o o

L T

.
@ ® e & & ® e ¢ ° e e e & ® e ® e e & o o o © e o e o o o

@ & o o o © ® .0 & e @ ® & & o o & ° o o

Appendix D. Loader Storage Considerations e o o o o
Appendix E. Loader Return Codes e o o o o o o o o o
GlOssary] o . * . . (] (] . . '] . °] L] (] . L] L] L] ° L]

Index ® @ e o o o o e s & o ° o o o o o o o o o o o

MVS/XA Linkage Editor and Loader User's Guide

* .

L]

e @ o & o o o ° o o o e o o e O

® ® e o o o © o o o 6 o o o o O 0

e ©

@ © e © o o ® ® © o ® o © ° & & o e e ® ° & ° e e e e e o O

/‘é/ \iﬁ\

Pt et e ot

WNHOWVOONA LIDWK N

Preparing a Source Module for Execution 4

Preparing a Source Module for Execution, and Executing the
Load Module 5

External Names and External References 6

Use of the External Symbol Dictionary 8

Input, Intermediate, and Output Sources for the Linkage
Editor 10

A Load Module Produced by the Linkage Editor 11

Linkage Editor Processing—Module Linkage 14

Linkage Editor Processing—Module Editing 15

Linkage Editor Processing—Additional Input Sources 16
System Automatic Call Libraries 28

Processing of One INCLUDE Control Statement 32

Processing of More than One INCLUDE Control Statement 33
gYSUTl 2gd SYSLMOD Device Types and Their Maximum Record
izes

ggad Mogzle Buffer Area and SYSLMOD and SYSUT1l Record
izes

Incompatible Job Step Options for the Linkage Editor 52
Linkage Editor Return Codes 53

Linkage Editor ddnames 55

?CB zequirements for Object Module and Control Statement
npu

DCB Requirements for SYSPRINT 57

DCB Requirements for Data Sets Used by Include and Library

Control Statements 59

Statements in the LKED Cataloged Procedure 61
Statements in the LKEDG Cataloged Procedure 63

Overlay Structure for INSERT Statement Example 77
Output Load Module for ORDER Statement Example 83
Overlay Structure for OVERLAY Statement Example 85
Output Load Module for PAGE Statement Example 87
Editing a Module 92

Changing an External Reference and an Entry Point 95
Automatic Replacement of Control Sections 98

Replacing a Control Section with the REPLACE Control
Statement 100

Deleting a Control Section 101

Ordering Control Sections 103

Aligning Control Sections on Page Boundaries 104
Diagnostic Messages Issued by the Linkage Editor 116
Module Map

Cross-Reference Table 118

Load Module Format 119

Loader Processing—SYSLIB Resolution 125

Loader Processing—Link Pack Area and SYSLIB

Resolution 126

Loader Processing—Automatic Editing 126

Input Deck for the Loader—Basic Format 128

Loader and Loaded Program Data Input Stream 135

Input Deck for a Load Job

Input Deck for a Compile-Load Job 136

Input Deck for Compilation and Loading of the Three
Modules 137

Using the LINK Macro Instruction to Refer to the

Loader 139

Using the LOAD and CALL Macro Instructions to Refer to
HEWLOADR (Loading HWithout Identification) 1

Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading HWith Identification) 142

Module Map Format Example 144

Linkage Editor Qutput for Sample Program COBFORT 147
Linkage Editor Output for Job Step that Created SUBONE 148
Job Control Statements for RPLACJOB 149

Linkage Editor Control Statements for RPLACJOB 149
Linkage Editor Output for Sample Program RPLACJOB 150
Overlay Tree for Multiple-Region Sample Program

REGNOVLY 151

Figures xiii

56. Job Control Statements for REGNOVLY 152
57. Linkage Editor Output for Sample Program REGNOVLY 154

58. Input Statements for IEBUPDTE Utility Program 157 A

59. Job Control Statements for PARTDS 158 § 4

60. Linkage Editor Capacities for Minimal SIZE Values (96K S
bytes, 6K bytes) 0

61. Control Section Dependencies 165

62. Single-Region Overlay Tree Structure 166

63. Length of an Overlay Module 7

64. Segment Origin and Use of Storage 169

65. Inclusive and Exclusive Segments 170

66. Inclusive and Exclusive References 171

67. Location of Segment and Entry Tables in an Overlay
Module 172

68. Control Sections Used by Several Paths 174

69. Overlay Tree for Multiple-Region Program 175

70. Symbolic Segment Origin in Single-Region Program 177

71. Symbolic Segment and Region Origin in Multiple-Region
Program

72. Common Areas before Processing 183

73. Common Areas after Processing 184

74. Branch Sequences for Overlay Programs 187

75. Use of the SEGLD Macro Instruction 188

76. Use of the SEGWT Macro Instruction 189

77. Virtual Storage Requirements 191

78. Return Codes 192

xiv MVS/XA Linkage Editor and Loader User's Guide

The linkage editor and the loader processing programs prepare
the output of language translators for execution. The linkage
editor prepares a load module that is to be brought into storage
for execution by program fetch. The loader prepares the
executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities, such
as creating overlay programs and aiding program modification.
(The linkage editor is also used to build and edit system
libraries.) The loader provides high performance loading of
programs that do not require the special processing facilities
of the linkage editor.

Use of the linkage editor is recommended in the following cases:

. If the program requires linkage editor services in addition
to the MAP, LET, NCAL, and SIZE options

U If t program uses linkage editor control statements, such
as INCLUDE; NAME, OVERLAY

. If a load module is to be produced for a program library

Use of the loader is recommended if the program only requires
the use of the following linkage editor options: MAP, LET,
NCAL, and SIZE. Because of its fewer options and because it can
process a job in one job step, the loader reduces editing and
loading time by about one-half.

Linkage editor processing is performed in a link-edit step. The
linkage editor can be used for compile-link edit-go,
compile-link edit, link-edit, and link-edit-go jobs. Loader
processing is performed in a load step, which is equivalent to
the link-edit-go steps. The loader can be used for compile-load
and load jobs.

The MVS/XA linkage editor is modified to support the following:
U AMODE/RMODE attributes
. Read-only CSECT (RSECT)

. Preservation of the high-order bit in 4-byte A-CONs and
V-CONs

Details of how each language interfaces with the linkage editor
can be found in the publication(s) describing that language.

Introduction 1

2 MVS/XA Linkage Editor and Loader User's Guide

Part I.

Linkage Editor

3

Linkage editor processing is a necessary step that follows the
source program assembly or compilation of any problem program.
The linkage editor is both a processing program and a service
program used in association with the language translators.

Every problem program is designed to fulfill a particular
purpose. To achieve that purpose, the program can generally be
divided into logical units that perform specific functions. A
logical unit of coding that performs a function, or several
related functions, is a Separate functions should be
programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic
language that best suits the function to be performed. (The
symbolic languages are Assembler, ALGOL, BASIC, COBOL, FORTRAN,
PASCAL, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a

3 the output from a language translator is an

. Before an object module can be executed, it must
be processed by the linkage editor. The output of the linkage
editor is a load module (Figure 1).

Source
Module

Figure 1.

?—’»

Object Load
Module Module

/[/7
Linkage \
Editor /

——— >

7
Language
Translator

Preparing a Source Module for Execution

An object module is in relocatable format with unexecutable
machine code. A load module (see "™ Load Module Format™ on

page 118) is also relocatable, but with executable machine code.
A load module is in a format that can be loaded into virtual
storage and relocated by program fetch (Figure 2 on page 5).

MVS/XA Linkage Editor and Loader User's Guide

A

Source Object Load
Module Module Module
7

Language

Translator

1

Program
Fetch

l

Execution

Figure 2. Preparing a Source Module for Execution, and Executing the Load Module

Any module is composed of one or more control sections.

control section is a unit of coding (instructions and data) that
is, in itself, an entity. All elements of a control section are
loaded and executed in a constant relationship to one another.

A control section is, therefore, the smallest separately
relocatable unit of a program.

Each module in the input to the linkage editor may contain
symbolic references to control sections in other modules; such
references are called external references. These references are
made by means of address constants (adcons). The symbol
referred to by an external reference must be either the name of
a control section or the name of an entry point in a control
section. Control section names and entry names are called
external names. By matching an external reference with an
external name, the linkage editor resolves references between
modules. External references and external names are called

t (Figure 3 on page 6). An external symbol is
onetthat is defined in one module and can be referred to in
another.

Chapter 1. Overview 5

Input
Module A
CSECT Al Output Load
Module AB
ENTRY All CSECT Al
CALL B1 ENTRY All
‘ —\ CALL B1
(" External Names: Linkage —
_ Input Editor /
Control Section Entry Name Module B
External 1];11 All CSECT B
CT B1
Symbols < CSE .
External References: . CAl;L All
From Al to Bl .
L From B1 to Al1l CALL A1l

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

Object modules and load modules have the same basic logical
structure. Each consists of:

[Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules, and to relocate address
constants. Control dictionary entries are generated when
external symbols, address constants, or control sections are
processed by a language translator. Each language
translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

. Text, containing the instructions and data of the program.

. An end-of-module indication: an END statement in an object
module, an end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described
in greater detail below.

Both object modules and load modules can contain data used by
the linkage editor to create CSECT identification (IDR) records.
If the language translator creating an object module supports
CSECT identification, the input object module can contain
translator data for identification records on the END statement.
Input load modules differ from object modules in the type of

data they supply. Input load modules can also provide HMASPZAP
data, linkage editor data, and user data to the identification
records that are built during linkage editor processing. During
the link-edit step, the optional IDENTIFY control statement is

6 MVS/XA Linkage Editor and Loader User's Guide

(«

used to supply the optional user data for the CSECT
identification records. See "IDENTIFY Statement™ on page 73 for
more information.

External Symbol Dictionary

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The
dictionary contains an entry for each external reference,
pseudoregister (external dummy section), entry name, named or
unnamed control section, and blank or named common area. An
entry name, pseudoregister, or named control section can be
referred to by any control section or separately processed
module; an unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives
its location, if known, within the module. Each entry in the
external symbol dictionary is classified as one of the
following:

External reference—a symbol that is defined as an external
name in another separately processed module, but is referred
to in the module being processed. The external symbol
diﬁtionary entry specifies the symbol; the location is
unknown.

—a special type of external
reference that is not to be resolved by automatic library
call unless an ordinary external reference to the same
symbol is found. The external symbol dictionary entry
specifies the symbol; the location is unknown.

—a name that defines an entry point within a
control section. The external symbol dictionary entry
specifies the symbol and its location, and identifies the
control section to which it belongs.

io ame—the symbolic name of a control
section. The external symbol dictionary entry specifies the
symbol, the length of the control section, and its location.
In this case, the location represents the origin of the
control section, which is the first byte of the control
section. This external symbol dictionary entry may also
specify the addressing mode and residence mode of the
control section and whether or not the control section is
read-only.

—a control section used to
reserve a virtual storage area that can be referred to by
other modules. The reserved storage area can be used, for
example, as a communications region within a program or to
hold data supplied at execution time. The external symbol
dictionary entry specifies the name, if there is one, and
the length of the area. If there is no name, the name field
contains blanks.

—an unnamed control section. This external
symbol dictionary entry specifies the length of the control
section and the origin. The name field contains blanks.
The external symbol dictionary entry may also specify the
addressing mode and residence mode of the control section
and whether or not the control section is read-only.

—a special facility (corresponding to the
external dummy section feature of Assembler H Version 2)
that can be used to write reenterable programs. A
pseudoregister is a dynamically obtained word in virtual
storage that can be used as a pointer to dynamically
acquired storage; that is, the space for such areas is not
reserved in the load module but is acquired during
execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the
pseudoregister.

Chapter 1. Overview 7

When processing input modules, the linkage editor resolves
references between modules by matching the referenced symbols to

defined symbols. To do this, the linkage editor searches for ﬁf“\
the external symbol definition in the external symbol dictionary \
of each input module. As shown in Figure 4, the linkage editor S

matches the external reference to Bl by locating the definition
for Bl in the external symbol dictionary of Module B. In the

same way, it matches the external reference to All by locating

ﬁhg fef%nition for All in the external symbol dictionary of
odule A.

Note: External names, including CSECT names and entry names,
must be 1 to 8 alphameric characters in length. No leading or
embqu:ddblanks are permitted, nor are the following characters
permitted:

)(OI")
All other characters in the 48-character set are permitted in
any character position of the name by the linkage editor,
including:

+ -=, %'/ and &
Special characters should be used with caution, however, because

the compilers and assemblers that produce the object decks
usually have a more limited character set.

Input / ESD for A
Module A / -
/ Symbol Type Location) ESD for B \ nput
/ Al Control Known Symbol Type Location \\ Module B
ESD zicmtl;)n Bl Control Known \\ [
\ All Entry Name | Known ?\ﬁctlon \ S
CSECT Al \\ : ame —
\ . iztf:g:lce Unknown i All o External Unknown //
ENTRY A1l Reference / CSECT BI
CALL B1 CALL A1l

Figure 4. Use of the External Symbol Dictionary

Text

The text contains the instructions and data of the module.

Note: Object module text records may not necessarily be in
ascending address sequence (it is possible that the language
translator may have created them out of order). When processing
large object modules with out-of-order text, the performance of
the linkage editor may be improved by presorting the object
module text in ascending address sequence (columns 6 through 8
of the text record).

8 MVS/XA Linkage Editor and Loader User's Guide

(

Relocation Dictionary

End Indication

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a
module is executed. An entry identifies an address constant by
indicating both its location within a control section and the
external symbol whose value must be used to compute the value of
the address constant. (The external symbol is defined in an
exﬁe;na% symbol dictionary entry in another control section or
module.

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for
references to other control sections and modules. This
dictionary is also used to adjust these address constants again
after program fetch reads an output load module from a library
and loads it into virtual storage for execution.

The end of a load module is marked by an end-of-module indicator
(EOM). The EOM cannot, unlike the assembler END instruction,
specify an entry point. Therefore, whenever a load module is
reprocessed by the linkage editor, a main entry point should be
specified on an ENTRY statement. If one is not specified, the
linkage editor will assign the first byte of the first control
section encountered as the entry point. The programmer will not
usually be concerned with the format of records in the object
deck. The record formats are described in the appendix of

LINKAGE EDITOR PROCESSING

This section discusses the input and output sources of the
linkage editor, and the way in which the linkage editor produces
a load module.

INPUT AND OUTPUT SOURCES

The linkage editor accepts two major types of input:

. Primary input, which can contain only object modules and
linkage editor control statements (called control statements
in the following text).

. Additional user-specified input, which can contain either
object modules and control statements, or load modules.
This input is either specified by the user as input, or
ipgorporated automatically by the linkage editor from a call
ibrary.

During processing, the linkage editor generates jintermediate
data. Intermediate data is placed on a direct access storage
device when virtual storage allocated for input data is
exhausted.

OQutput of the linkage editor is of two types:

. A load module, which is always placed in a library (a
partitioned data set) as a named member

. Dizgnostic output, which is produced as a sequential data
se

Figure 5 on page 10 shows the input, intermediate, and output
sources for the linkage editor program.

Chapter 1. Overview 9

LOAD MODULE CREATION

In processing object and load modules, the linkage editor f/ A
assigns consecutive relative virtual storage addresses to all NS
control sections and resolves all references between control

sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules
and input load modules processed by the linkage editor. The
control dictionaries of an output module are, therefore, a
composite of all the control dictionaries in the linkage editor
input. The control dictionaries of a load modgl:hare called the
an e

. The load module also contains all of the text
from each input module, and one end-of-module indicator (see
Figure 6 on page 1ll). See also " Load Module Format" on
page 118 for the format of a load module.

\
Primary
Input
>,
Inter-
mediate
’ o
Load PN
Module ' \
Automatic
Call
Library
Diagnostic
User-

Output
Specified P

Input

Figure 5. Input, Intermediate, and Output Sources for the
Linkage Editor

10 MVS/XA Linkage Editor and Loader User's Guide

Assigning Addresses

Each module to be processed by the linkage editor has an origin
that was assigned during assembly, compilation, or a previous
execution of the linkage editor. When several modules, each
with an independently assigned origin, are to be processed by
the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control
sections. To produce an executable output load module, the
linkage editor assigns relat1ve virtual storage addresses to
each control section by assigning an origin to the first control
section encountered and then assigning addresses, relative to
that origin, to all other control sections to be included in the
output load module. The value assigned as the origin of the
control section is used to relocate each address-dependent item
in the control section.

Although the addresses in a load module are consecutive, they
are all relative to base zero. When a load module is to be
executed, program fetch prepares the module for execution by
loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address.
Each address constant must also be readjusted, another function
of program fetch.

Object Module A
Output Load
ESD Module AB
TXT CESD
RLD TXT
END
Object Module B
ESD
RLD
TXT
EOM
RLD
END

Figure 6. A Load Module Produced by the Linkage Editor

Chapter 1. Overview 11

Resolving External References

The linkage editor also resolves external references in input
modules. Cross-references between control sections in different
modules are symbolic. They must be resolved relative to the
addresses assigned to the load module. The linkage editor
calculates the new address of each relocatable expression in a
control section and determines the assigned origin of the item
to which it refers.

12 MVS/XA Linkage Editor and Loader User's Guide

;’ ‘gs

LINKAGE EDITOR INPUT

Linkage editor input may consist of a combination of object
modules, load modules, and control statements. The primary
function of the linkage editor is to combine these modules, in
accordance with the requirements stated on control statements,
into a single output load module. Although this linking or
cgmbining of modules is its primary function, the linkage editor
also:

. Edits modules by replacing, deleting, rearranging, and
ordering control sections as directed by control statements

. Aligns control sections and named common areas on 4K-byte
page boundaries as directed by control statements

. Accepts additional input modules from data sets other than
the primary input data set, either automatically or upon
reques

. Reserves storage for the common control sections generated
by Assembler and FORTRAN language translators, and static
external areas generated by PL/I

. Computes total length and assigns displacements for all
pseudoregisters (external dummy sections)

. Creates overlay programs in a structure defined by control
statements

. Creates multiple output load modules as directed by control
statements

° Provides special processing and diagnostic output options

. Assigns module attributes that describe the structure,
content, and logical format of the output load module

. Allocates storage areas for linkage editor process1n9 as
specified by the programmer

. Stores system status index information in the directory of
the output module library (systems personnel only)

. Traces the processing history of a program

. Allows the user to lengthen a control section or named
common section without changing source code, reassembling,
or recompiling

. Allows the user to assign an authorization code to a load
module that (a) makes it a restricted resource and (b)
enables it to pass control to other restricted resources

] Assigns an addressing mode for the main entry point, all
true aliases, and each alternate entry point into the output
load module

. Assigns a residence mode for the outpdt load ﬁodule

] Indicates which control sections are read-only (relevant
only in creating a nucleus load module for MVS/XA)

Each of the linkage editor functions is described in the
following paragraphs.

Chapter 2. Uses of the Linkage Editor 13

Links Modules
Processing by the linkage editor makes it possible for the ‘A/”\
programmer to divide a program into several modules, which can ‘&&,/
be separately assembled or compiled, and each containing one or
more control sections. The linkage editor combines these
modules into one output load module (see Figure 7) with
contiguous, virtual storage addresses. During processing by the
linkage editor, references between modules within the input are
;eiolvegi The output module is placed in a library (partitioned
ata set).

COBOL \

Source
Module

Assembler

Source
Module

N ——

"IHHHHHHHH%IIE”

Object
Module

Object
Module

Load
Module

Figure 7. Linkage Editor Processing—Module Linkage

Edits Modules

Program modification is made easier by the editing functions of
the linkage editor. When the functions of a program are
changed, the programmer modifies, then compiles and link-edits
again, only the affected control sections instead of the entire
source module.

Control sections can be replaced, renamed, deleted, moved, or
ordered as directed by control statements. Control sections can
also be automatically replaced by the linkage editor. External
symbols can be changed or deleted as directed by control
statements.

Figure 8 on page 15 illustrates the module editing function of A
the linkage editor. '

14 MVS/XA Linkage Editor and Loader User's Guide

Object
Module
e

Load

Module
A
C

Control
Statements

Figure 8. Linkage Editor Processing—Module Editing

Aligns Control Sections or Common Areas on Page Boundaries

Control sections or named common areas in the output load module
can be aligned on 4K-byte page boundaries. Alignment on page
boundaries enables the programmer to use real storage more
qf:iciently and thus appreciably reduce the paging rate for the
job.

Accepts Additional Input Sources

Standard subroutines can be included in the output module, thus
reducing the work in coding programs. The programmer can
specify that a subroutine be included at a particular time
during the processing of the program by using a control
statement. MWhen the linkage editor processes a program that
contains this statement, the module containing the subroutine is
retrieved from the indicated input source and made a part of the
output module (Figure 9 on page 16).

Symbols that are still undefined after all input modules have
been processed cause the automatic library-call mechanism to
search for modules that will resolve these references. When a
module name is found that matches the unresolved symbol, the
module is processed by the linkage editor and also becomes part
of the output module (Figure 9).

Note: The linkage editor distinguishes a special type of
external reference—the weak external reference. An unresolved
weak external reference does pot cause the linkage editor to use
the automatic library-call mechanism. Instead, the reference is
left unresolved, and the load module is marked as executable.

Chapter 2. Uses of the Linkage Editor 15

Primary Input:

Object
Module
A

Control
Statements

[/l /
Linkage \
Editor /
\ " ™\

e

Additional Input:

1
Automatic Load
Call Module

Library
Cand D

Object \
Module

Object
Module
E

Object
Module E

Figure 9. Linkage Editor Processing—Additional Input Sources

Reserves Storage

The linkage editor processes common control sections generated
by the FORTRAN and Assembler language translators. The static
external storage areas generated by the PL/I compiler are
processed in the same way. The common areas are collected by
the linkage editor, and a reserved virtual storage area is
provided within the output module.

Processes Pseudoregisters

Pseudoregisters, like the external dummy sections of Assembler H
Version 2, aid in generating reenterable code. The linkage
editor processes pseudoregisters by accumulating the total
length of storage required for all pseudoregisters and recording
the displacement of each. During execution, the program
dynamically acquires the necessary storage.

16 . MVS/XA Linkage Editor and Loader User's Guide

Creates Overlay Programs

To minimize virtual storage requirements, the programmer can
organize a program into an overlay structure by dividing it into
segments according to the functional relationships of the
control sections. Two or more segments that need not be in
virtual storage at the same time can be assigned the same
relative virtual storage addresses, and can be loaded at
different times.

The programmer uses control statements to specify the
relationship of segments within the overlay structure. The
segments of the load module are placed in a library so that the
contr:ldprogram can load them separately when the load module is
executed.

Creates Multiple Load Modules

The linkage editor can also process its input to form more than
one load module within a single job step. Each load module is
placed in the library under a unique member name, as specified
by a control statement.

Provides Special Processing and Diagnostic Output Options

Assigns Load Module

The programmer can specify special processing options that
negate automatic library call or the effect of minor errors. In
addition, the linkage editor can produce a module map or
cross-reference table that shows the arrangement of control
sections in the output module and indicates how they communicate
with one another. A list of the control statements processed
can also be produced.

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the
output module not executable. Additional diagnostic data is
automatically logged by the linkage editor. The data indicates
the disposition of the load module in the output module library.

Attributes

When the linkage editor generates a load module, it places an
entry for the module in the directory of the library. This
entry contains attributes that describe the structure, content,
and logical format of the load module. The control program uses
these attributes to determine how a module is to be loaded, what
it contains, if it is executable, whether it is executable more
than once without reloading, and if it can be executed by
concurrent tasks. Some module attributes can be specified by
the programmer; others are specified by the linkage editor as a
result of information gathered during processing. See also
"Assigns Addressing Mode™ on page 19, "Assigns Residence Mode"
on page 20, and "Assigns Read-only Attribute™ on page 21.

Allocates User~Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage
to be made available to the linkage editor, the amount to be
Tseg fog fhe load module buffer, and the buffer for the output
oad module.

Chapter 2. Uses of the Linkage Editor 17

Stores System Status Index Information

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is
not generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load
modules are used to store system status index information. This
information, which is used for maintenance of the modules, is
placed in the directory with a control statement.

Traces Processing History

Tracing the processing history of a program is simplified by the
CSECT identification (IDR) records created and maintained by the
linkage editor. A CSECT identification record can contain data
that describes:

. The language translator, its level, and the translation date
for each control section

] The most recent processing by the linkage editor

. Any modification made to the executable code of any control
section

Optionally, user-supplied data associated with the executable
code of a control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections
of a program to add patch space without changing the source
code, reassembling, or recompiling.

Added space, consisting of binary zeros, is put at the end of a
specified control section by using the EXPAND control statement
(see "Chapter 5. Specifying an Operation with Control
Statements™ on page 66). Space cannot be added to a private
code or blank common section.

Assigns an Authorization Code to Output Load Modules

The authorized program facility (APF) limits the use of
sensitive system and (optionally) user services and resources to
authorized system and user programs. Authorization is defined
as access to those services and resources. The services and
resources to which access is limited are dgsgrjbed in System

13 .
Programs are authorized at the job-step level. For a job step
to gain authorization initially, the first module loaded at the
start of the job step must be an authorized module, and it must
have been loaded from an authorized library. Otherwise, the job
step is not authorized initially and cannot subsequently gain
authorization.

For a job step to maintain its authorization, all subsequent
modules invoked during the job step (via LINK, LOAD, ATTACH,
and/or XCTL macro instructions) must be loaded from an
authorized library. As the authorized program executes, the
program manager verifies that all subsequent modules for the
program come from authorized libraries. If one or more modules
are not APF authorized libraries, a 306 abend results.

A library becomes an "authorized™ library by the inclusion of
its name in a list called IEAAPF00. This list is described in
more detail in Initialization and Tuning.

A load module becomes "authorized™ by the assignment of an
authorization code to the load module during linkage-editing.

18 MVS/XA Linkage Editor and Loader User's Guide

This assignment is made via the PARM field parameter AC or via
the control statement SETCODE, which are described in the
sections that follow. See "SETCODE Statement™ on page 90.

Assigns Addressing Mode
The addressing mode (AMODE) is the attribute of an entry point
into a load module that specifies the addressing mode in effect
zhen the load module is entered at that entry point at execution
ime.

The valid addressing modes are:

24 Indicating that 264-bit addressing will be in effect
31 Indicating that 31-bit addressing will be in effect
ANY Indicating that either 24-bit or 31-bit addressing may

be in effect

The linkage editor determines the addressing mode for an entry
point (either the main entry point, its true alias, or an
alternate entry point) according to the following rules:

. The linkage editor assigns a default AMODE of 24. This is
done only in the absence of a valid, explicit specification
of the addressing mode for the entry point.

L The linkage editor assigns the AMODE values contained in the
object module's ESD. These AMODE values were specified by
the user at assembly time and represent the AMODE values
assigned to the entry points within the CSECTs and private
code for the module.

L The linkage editor assigns all the entry points into the
load module (the main entry point, its true aliases, and the
alternate entry points) the AMODE value specified as a
parameter in the PARM field of the EXEC statement. This
éggDE zalue overrides the AMODE value, if any, found in the

ata.

[The linkage editor assigns the AMODE value specified as an
operand on the MODE control statement to all of the entry
points into the load module (the main entry point, its true
aliases, and the alternate entry points). This AMODE value
overrides any value specified as a parameter in the EXEC
statement or any values found in the ESD data.

The linkage editor provides the AMODE value for each entry point
into the load module in its directory entry. In the case of a
true alias of the main entry point or an alternate entry point,
the directory entry contains the AMODE value for both the
alias/alternate entry point and the main entry point.

The AMODE value provided to the linkage editor in the ESD data
of an object module is retained in the ESD data of the load
module, for use in subsequent link-editing, except in the case
of a load module built for overlay. In building a load module
for overlay, the AMODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object
module(s) carrying that value. Use of the overriding AMODE
specifications (the parameter in the PARM field of the EXEC
statement or the operand in the MODE control statement)
establishes the AMODE value carried in the directory entry, but
does not affect the ESD data.

All entry points in load modules built for overlay are assigned
an AMODE of 24, regardless of the ESD data, the PARM field
parameter, or the MODE statement operand.

Chapter 2. Uses of the Linkage Editor 19

Assigns Residence Mode

The residence mode (RMODE) is the attribute of a load module AN
that specifies the residence mode of a load module when it is \

loaded into virtual storage for execution. ~

The valid residence modes are:

26 Indicating that the module must reside within 26-bit

addressable virtual storage (that is, below the
l6-megabyte virtual storage line)

ANY Indicating that the module may reside anywhere in

virtual storage (that is, either above or below the
l16-megabyte virtual storage line)

The linkage editor determines the residence mode for a load

module according to the following rules:

[The linkage editor assigns a default RMODE of 24. This
occurs only in the absence of a valid explicit specification
of the residence mode for the load module.

. The linkage editor assigns the RMODE specified in the object
module. This RMODE value is specified by the user to the
assembler for the control section or private code. The
RMODE value passes to the linkage editor in the ESD data.

The linkage editor assigns the RMODE value taken from the
control section or private code that contributes to the
output load module, ignoring identically named control
sections and private code that are replaced or deleted.

. As the control sections and private code that contribute to
the output load module are processed, the RMODE value for
the load module, based on the ESD data, is accumulated on a
"most restrictive™ basis. This means: PR
- If any section in the load module has an RMODE of 24, R

the RMODE for the load module is 24.
- If all sections in the load module have an RMODE of ANY,
the RMODE for the load module is ANY.

. The linkage editor assigns to the load module the RMODE
value specified as a parameter in the PARM field of the EXEC
statement. This RMODE value overrides the RMODE value, if
any, found in the ESD data.

. The linkage editor assigns to the load module the RMODE
value specified as an operand on the MODE control statement.

This RMODE value overrides the RMODE value, if any
specified as a parameter in the PARM field of the EXEC
statement as well as the RMODE value, if any, found in the
ESD data.

Load modules built for overlay are assigned an RMODE of 24,

regardless of the ESD data, the PARM field parameter, or the

MODE statement operand.

The linkage editor provides the RMODE value for the load module

in each directory entry applicable to that load module.

Except in the case of a load module built for overlay, the RMODE

value provided to the linkage editor in the ESD data of an

object module is retained in the ESD data of the load module,

for use in subsequent link-editing. In building a load module

for overlay, the RMODE value in the ESD data of the load module

is lost and can only be reintroduced by inclusion of the object

module(s) carrying that value. Use of the overriding RMODE

specifications (the parameter in the PARM field of the EXEC @ N

statement or the operand in the MODE control statement) ﬂ/ N

establishes the RMODE value carried in the directory entry, but N/

does not affect the ESD data.

20 MVS/XA Linkage Editor and Loader User's Guide

«

AMODE/RMODE Hierarchy

The following hierarchy is used to determine the addressing and
residence modes of the linkage editor output:

1. Value on the linkage editor MODE statement

2. Value of the parm field on the EXECUTE statement

3. Value in the ESD data produced by the AMODE= or RMODE=
assembler statement

6. Default value of 24

Note: An overlay module always results in an AMODE of 26 and an
RMODE of 24. A load module produced from multiple object
modules results in an RMODE of 24, if any one of the object
modules has an RMODE of 24.

Assigns Read-only Attribute

A read-only control section (RSECT) is defined by the user in
the source language which assembles the control section. The
assembler indicates in the external symbol dictionary entry for
the control section that it is read-only. The linkage editor
;ef&ectj }hat indication in the scatter table for the output

oad module.

The indication of the read-only attribute is relevant only to
the nucleus initialization program in MVS/XA. 1In all other
cases it is ignored.

RELATIONSHIP TO THE OPERATING SYSTEM

Time Sharing Option

The linkage editor has the same relationship to the operating
system as any other processing program. It can be executed
either as a job step, a subprogram, or a subtask. Control is
passed to the linkage editor in one of three ways:

L As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

. As a subprogram, with the execution of a CALL macro
instruction (after the execution of a LOAD macro
instruction), a LINK macro instruction, or an XCTL macro
instruction

U As a subtask, in multitasking systems, with the execution of
the ATTACH macro instruction

Execution of the linkage editor and the data sets used by the
linkage editor are described to the system with job control
language statements. These statements describe all jobs to be
performed by the system.

Note: Job control statements should not be confused with
linkage editor control statements. Job control statements are
processed before the linkage editor is executed; linkage editor
contr:§ statements are processed during linkage editor
execution.

(Ts0)

When the linkage editor is used under TS0, it is invoked by the
linkage editor prompter program that acts as an interface
between the user, the operating system, and the linkage editor.
Under TS0, execution of the linkage editor and definition of
data sets used by the linkage editor are described to the system
through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to
specify the linkage editor options a job requires. Complete
procedures for use of the LINK command are given in

Chapter 2. Uses of the Linkage Editor 21

The linkage editor accepts input from two major sources: the

primary input data set and additional data sets. The primary

i is made available through job control statements.
are made available either through the

automatic library call mechanism, or through user-specified

control statements. They must, however, also be defined with

job control statements.

Primary and additional input data sets may contain the following
types of data:

[One or more object modules
. One or more load modules
. Control statements

U Combinations of the above (restrictions on certain
combinations are noted where they apply)

Object modules and control statements may be contained in either
sequential or partitioned data sets. Load modules must be
contained in partitioned data sets.

This chapter describes the "linking™ functions of the linkage
editor only; the "editing"™ functions are described in "Chapter
6. Editing a Control Section™ on page 92.

PRIMARY INPUT DATA SET

OBJECT MODULES

PN

The primary input data set is required for every linkage editor lw 7
job step. It must be defined by a DD statement with the ddname -
SYSLIN. The primary input can be:

[A sequential data set
. A member of a partitioned data set

. A concatenation of sequential data sets and/or members of
partitioned data sets

The primary input data set must contain object modules and/or
control statements. The modules and control statements are
processed sequentially and their order determines the basic
order of linkage editor processing during a given execution.
However, the order of the control sections after processing does
pot gecessarily reflect the order in which they appeared in the
input.

In the examples that follow, only the statements necessary to
define the input to the linkage editor are shown; complete
examples are shown in "Appendix A. Sample Linkage Editor
Programs™ on page 165.

The primary input to the linkage editor may consist solely of
one or more object modules. The rest of this section discusses
object module input from cards, as a member of a partitioned
data set, passed from a previous job step, or created in a
separate job.

22 MVS/XA Linkage Editor and Loader User's Guide

From Cards

- Object module input to the linkage editor may be on cards. The
card deck itself is treated as a sequential data set; the cards
grflplaced in the input stream, after a DD ¥ statement, as

ollows:

//7SYSLIN DD %*
Object Deck A

Object Deck B

/%

The card input is followed by a /% statement.

An example of the JCL when card decks are used in addition to
other input is as follows:

7/SYSLIN DD DSNAME=INPUT, ...
DD *

/77
Object Deck A
Object Deck B
/%

By omitting the ddname on the second DD statement, the card
input is concatenated to the data set described on the SYSLIN DD
(statement.
As a Member of a Partitioned Data Set
An object module in a partitioned data set can be used as
primary input to the linkage editor by specifying its data set
name and member name on the SYSLIN DD statement. In the
following example, the member named TAXCOMP in the object module

library LIBROUT is to be the primary input; LIBROUT is a
cataloged data set:

/77SYSLIN DD DSNAME=LIBROUT(TAXCOMP),
Va4 DISP=(OLD,KEEP)

Th: library member is processed as if it were a sequential data
set.

Members of partitioned data sets can be concatenated with other
input data sets, as follows:

//7SYSLIN DD DSNAME=0BJLIB,DISP=(OLD,KEEP),...
Vs DD DSNAME=LIBROUT(TAXCOMP),
/77 DISP=(OLD,KEEP)
N | Library member TAXCOMP is concatenated to data set OBJLIB;
. begarse they are the primary input, both must contain object
modules.

Chapter 3. Defining Input to the Linkage Editor 23

Passed from a Previous Job Step

An object module to be used as input can be passed from a
previous job step to a linkage editor job step in the same job,
as in a compile-link-edit job. That is, the output from the
compiler is direct input to the linkage editor. In the
following example, an object module that was created in a
previous job step (STEPA) is passed to the linkage editor job
step (STEPB):

STEPA
//SYSGO DD DSNAME=&&0BJECT, DISP=(NEW, PASS), .
STEPB
//SYSLIN DD DSNAME=&&0BJECT, DISP=(OLD, DELETE)

The data set name &Z0BJECT, used in both job steps, identifies
the object module as the output of the language processor on the
SYSGO DD statement, and as the primary input to the linkage
editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a
temporary data set. These data sets exist for the duration of
the job and are automatically deleted at the end of the job. If
the data set is to be preserved for longer than the duration of
a single job, the double ampersand is not used (DSNAME=0BJECT).

The method used in the preceding example can also be used to
retrieve object modules created in previous steps. If the same
data set name is used for the output of each language processor,
one SYSLIN DD statement can be used to retrieve all the object
modules, as follows:

STEPA:

//5YSGO DD DSNAME=&&0BJMOD, DISP=(NEW, PASS), .
STEPB:

7/SYSPUNCH DD DSNAME=&&0BJMOD, DISP=(MOD, PASS)
STEPC:

//SYSLIN DD DSNAME=&&0BJMOD, DISP=(OLD, DELETE)

The two object modules from STEPA and STEPB are placed in the
same sequential data set, &&0BJMOD. The SYSLIN DD statement in
STEPC causes both object modules to be used as the primary input
to the linkage editor.

Another method can be used to accomplish this purpose:
concatenation of data sets. This method could be used if the
object modules were created in previous job steps with different
member names, as follows:

26 MVS/XA Linkage Editor and Loader User's Guide

STEPA:

/;SYSGO DD gSNgME=&&OBJLIB(MODA);DISP=(NEN:
7/ PR

STEPB:

//SYSPUNCH DD DSNAME=&8&0BJLIBC(MODB), DISP=(MOD,
4 PASS), ...

STEPC:

//7SYSLIN DD DSNAME=&&0BJLIB(MODA), DISP=COLD,
7/ DELETE)

/77 DD DSNAME=&&0BJLIB(MODB), DISP=(0LD,
/7 DELETE),VOL=REF=%.STEPB.SYSPUNCH

The object modules created in STEPA and STEPB were placed in a
partitioned data set with different member names. The two
members are concatenated in STEPC as primary input. Each member
is considered to be a sequential data set.

Created in a Separate Job

CONTROL STATEMENTS

If the only input to the linkage editor is an object module from
a previous job, the SYSLIN DD statement contains all the
information necessary to locate the object module, as follows:

//SYSLIN DD DSNAME=0BJECT, DISP=(0OLD, DELETE),
7/ UNIT=3350,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards,
in which case it is handled as described earlier.

The primary input data set may also consist solely of control
statements. HWhen the primary input is control statements, input
modules are specified on INCLUDE control statements (see
"Included Data Sets™ on page 32). The control statements may be
either placed in the input stream or stored in a permanent data
set.

In the following example, the primary input consists of control
statements in the input stream:

/7/7SYSLIN DD %
5§nkage Editor Control Statements

Chapter 3. Defining Input to the Linkage Editor 25

In the next example, the primary input consists of control
statements stored in the member INCLUDES in the partitioned data

set CTLSTMTS: A
N
//SYSLIN DD DSNAME=CTLSTMTSCINCLUDES), DISP=(OLD,
/7 KEEP), ..

In either case, the control statements can be any of those
described in "Chapter 5. Specifying an Operation with Control
it?}emegts“ on page 66, as long as the rules given there are
ollowed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The object modules and control
statements may be in either the same data set or in different
data sets. If the modules and statements are in the same data
set, this data set is described on the SYSLIN DD statement as
any data set is described.

If the modules and statements are in different data sets, the

data sets are concatenated. The control statements may be
defined either in the input stream or as a separate data set.

control Statements in the Input Stream

Control statements can be placed in the input stream and
concatenated to an object module data set, as follows:

//SYSLIN DD DSNAME=&&0BJECT, ...
/77 *

DD
binkage Editor Control Statements

Another method of handling control statements in the input
stream is to use the DDNAME parameter, as follows:

/7SYSLIN pD DSNAME=8&0BJECT, . ..
’7 DD DDNAME=SYSIN
7/SYSIN DD x

Einkage Editor Control Statements

Note: The linkage editor cataloged procedures use DDNAME=SYSIN
for the SYSLIN DD statement to allow the programmer to specify
the primary input data set required.

S

26 MVS/XA Linkage Editor and Loader User's Guide

Control Statements in a Separate Data Set

A separate data set that contains control statements may be
concatenated to a data set that contains an object module. The
control statements for a frequently used procedure (for example,
a complex overlay structure or a series of INCLUDE statements)
can be stored permanently. In the following example, the
members of data set CTLSTMTS contain linkage editor control
statements. One of the members is concatenated to data set

8&%0BJECT.
//SYSLIN DD DSNAME=&&0BJECT, DISP=C(OLD,DELETE), ...
;/ DD 2223?E=CTLSTMTS(OVLY);DISP=(0LD:
/ Peas

The control statements in the member named OVLY of the
pa;titioned data set CTLSTMTS are used to structure the object
module.

AUTOMATIC LIBRARY CALL

The automatic library-call mechanism is used to resolve external
references that were not resolved during primary input
processing. Unresolved external references found in modules
from additional data sources are also processed by this
mechanism.

Note: The following discussion of automatic library call does
not apilydto unresolved weak external references; they are left
unresolved.

The automatic library-call mechanism involves a search of the
directory of the automatic call library for an entry that
matches the unresolved external reference. When a match is
fgg:d, the entire member is processed as input to the linkage
editor.

Automatic library call can resolve an external reference when
the following conditions exist: The external reference must be
(1) a member name or an alias of a module in the call library,
and (2) it must be defined as an external name in the external
symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in
the library, but is not an external name in that member, the
member is processed but the external reference remains
unresolved unless subsequently defined.

The automatic library-call mechanism searches the call library
defined on the SYSLIB DD statement. The call library can
contain either (1) object modules and control statements or (2)
load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be
searched by the automatic library-call mechanism as directed by
the LIBRARY control statement. The library specified in the
control statement is searched for member names that match
specific external references that are unresolved at the end of
input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by
another search of the library. Any external references not
specified on a LIBRARY control statement are resolved from the
library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic
library-call mechanism. The LIBRARY statement can be used to
negate the automatic library call for selected external
references unresolved after input processing; the NCAL option on
the EXEC statement can be used to negate the automatic library

Chapter 3. Defining Input to the Linkage Editor 27

SYSLIB DD STATEMENT

sSystem Call Library

call for all external references unresolved after input
processing. Use of the LIBRARY control statement and the NCAL P
option are discussed after the SYSLIB DD statement following. A

If the automatic library-call mechanism is to be used, the call
library must be a partitioned data set described by a DD
statement with a ddname of SYSLIB. Details concerning DCB
requirements and record formats for SYSLIB libraries are given
in "SYSLIB DD Statement™ on page 56. The call library may be
either a system call library or a private call library; call
libraries may be concatenated.

For an example of some of the system programs that have their
own automatic call library, see Figure 10. This library must be
defined when an object module produced by that assembler or
compiler is to be link-edited.

Program Library Name
ALGOL SYS1.ALGLIB
COBOL SYS1.COBLIB
FORTRAN SYS1.FORTLIB
PL/1 SYS1.PLIBASE
Sort/Merge SYS1.SORTLIB

Figure 10. System Automatic Call Libraries

The call library may contain input/output, data conversion,
and/or other special routines (such as Sort/Merge SYS1.SORTLIB)
that are needed to complete the module. The assembler or
compiler creates an external reference for these special
routines and the linkage editor resolves the references from the
appropriate call library.

In the following example, a FORTRAN object module created in
STEFA is to be link-edited in STEPB, and the FORTRAN automatic
call library is used to resolve external references:

STEPA:

7/3YS0BJ DD DSNAME=&&0BJMOD, DISP=(NEWN,

Va4 PASS), ...

STEPB:

//SYSLIN DD DSNAME=8&0BJMOD,DISP=(OLD, DELETE)
/7/SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR

The disposition of SHR on the SYSLIB DD statement means that
other tasks that may be executing concurrently with STEPB may
also use SYS1.FORTLIB.

£

28 MVS/XA Linkage Editor and Loader User's Guide

Private Call Libraries

The SYSLIB DD statement can also describe a private,
user-written library. 1In this case, the automatic library-call
mechanism searches the private library for unresolved external
references. In the following example, unresolved external
Fs?gasgces are to be resolved from a private library named

H

//SYSLIB DD DSNAME=PVTPROG, DISP=SHR, UNIT=3350,
Va4 VOLUME=SER=PVT002

Concatenation of Call Libraries

System call libraries and private call libraries may be
concatenated either to themselves, and/or to each other. When
libraries are concatenated, they must all be either object
mgduée libraries or load module libraries; they may not be
mixed.

If object modules from different system processors are to be
link-edited to form one load module, the call library for each
must be defined. This is accomplished by concatenating the
additional call libraries to the library defined on the SYSLIB
DD statement. In the following example, a FORTRAN object module
and a COBOL object module are to be link-edited; the two system
call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
7/ DD DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is
needed.

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call
library PVTPROG, which is not cataloged, is concatenated to the
two system call libraries:

/7 DD DSNAME=PVTPROG, DISP=SHR, UNIT=3350,
s VOLUME=SER=PVT002

Any external references not resolved from the two system
libraries are resolved from the private library.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can be used to direct the
automatic library-call mechanism to a library other than that
specified in the SYSLIB DD statement. Only external references
listed on the LIBRARY statement are resolved in this way. All
other unresolved external references are resolved from the
library in the SYSLIB DD statement.

Chapter 3. Defining Input to the Linkage Editor 29

The LIBRARY statement can also be used to specify external

references that are not

to be resolved by the automatic

library-call mechanism. The LIBRARY statement specifies the
duration of the nonresolution: either during the current
linkage editor job step, called restricted no-call; or during
this or any subsequent linkage editor job step, called

Examples of each use of the LIBRARY statement follow; a
description of the format is given in "LIBRARY Statement™ on

page 77

Additional Call Libraries

If the additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD
statement that describes the library. The LIBRARY statement
also contains, in parentheses, the external references to be
resolved from the library; that is, the names of the members to
be used from the library. If the unresolved external reference
is not a member name in the specified library, the reference
remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call
library have been rewritten. The new modules are to be tested
with the calling modules before they replace the old modules.
Because the automatic library call mechanism would otherwise
search the system call library (which is needed for other
modules), a LIBRARY statement is used, as follows:

//SYSLIB DD

//TESTLIB DD

//SYSLIN DD

7/ DD
LIBRARY

/%

DSNAME=SYS1.COBLIB, DISP=SHR
DSNAME=TEST, DISP=(0LD,KEEP), ...
DSNAME=ACCTROUT, .

*
TESTLIB(DATE, TIME)

Two external references, DATE and TIME, are resolved from the
library described on the TESTLIB DD statement. All other
unresolved external references are resolved from the library
described on the SYSLIB DD statement.

Restricted No-Call Function

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to
be no library search during the current linkage editor job step.
This is done by specifying the external reference(s) in
parentheses without specifving a ddname. The reference remains
unresolved, but the linkage editor marks the module executable.

For example, a program contains references to two large modules
that are called from the automatic call library. One of the
modules has been tested and corrected; the other is to be tested
Rather than execute the tested module again,
the restricted no-call function is used to prevent automatic
library call from processing the module as follows:

in this job step.

30 MVS/XA Linkage Editor and Loader User's Guide

ﬂ/\\
N

N ./:‘

Never-Call Function

NCAL OPTION

V24 EXEC PGM=HEWL,PARM=LET

//7SYSLIB DD DSNAME=PVTPROG, DISP=SHR,UNIT=3350,
/77 VOLUME=SER=PVT002

//SYSLIN DD DSNAME=8&PAYROL, ...

44 DD *

/*LIBRARY (OVERTIME)

As a result, the external reference to OVERTIME is not resolved
by automatic library call.

The never-call function specifies those external references that
are not to be resolved by automatic library call during this or
any subsequent linkage editor job step. This is done by
specifying an asterisk followed by the external reference(s) in
parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but
it contains an external reference to a large module (CITYTAX)
which is no longer used by this program. However, the module is
in a call library needed to resolve other references. Rather
than take up storage for a module that is never used, the
never—-call function is specified, as follows:

4 EXEC PGM=HEWL,PARM=LET

7/SYSLIB DD DSNAME=PVTPROG, DISP=SHR, UNIT=3350,
V4 VOLUME=SER=PVT002

7/7SYSLIN DD DSNAME=TAXROUT, DISP=0LD, ...

Va4 DD *
LIBRARY X(CITYTAX)
/%

As a result, when program TAXROUT is link-edited, the external
reference to CITYTAX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call
occurs to resolve external references that are unresolved after
input processing. The NCAL option is similar to the restricted
no-call function on the LIBRARY statement, except that the NCAL
option negates automatic library call for all unresolved
external references and restricted no-call negates automatic
library call for selected unresolved external references. HWith
NCAL, all external references that are unresolved after input
processing is finished, remain unresolved. The module is,
however, marked executable.

The NCAL option is a special processing parameter that is

specified on the EXEC statement as described in "No Automatic
Library-Call Option™ on page 43.

Chapter 3. Defining Input to the Linkage Editor 31

The INCLUDE control statement requests the linkage editor to use
additional data sets as input. These can be sequential data
sets containing object modules and/or control statements, or
members of partitioned data sets containing object modules
and/or control statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement
that describes the data set to be used as additional input. If
the DD statement describes a partitioned data set, the INCLUDE
statement also contains the name of each member to be used. See
"INCLUDE Statement™ on page 75 for a detailed description of the
format of the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage
editor processes the module or modules indicated. Figure 11
shows the processing of an INCLUDE statement. 1In the
illustration, the primary input data set is a sequential data
set named O0BJMOD which contains an INCLUDE statement. After
processing the included data set, the linkage editor processes

the next primary input item. The arrows indicate the flow of
processing.

If an included data set also contains an INCLUDE statement, this
specified module is also processed. However, any data following
the INCLUDE statement is not processed.

If the O0BJMOD data set shown in Figure 1l is itself included,
the data following the INCLUDE statement for OBJLIB is not

processed. Figure 12 on page 33 shows the flow of processing
for this example.

Primary Input
Data Set OBJMOD

Library OBJLIB
Member MODA

/”\/’\V/NJVAJ

Include OBJLIB (MODA)

NN

Figure 11. Processing of One INCLUDE Control Statement

32 MVS/XA Linkage Editor and Loader User's Guide

N
N

Primary Input
Data Set SYSLIN

A~ NAN

Include OBJMOD

NAAAANM

Figure 12.

Sequential
Data Set OBJMOD

Library OBJLIB
Member MODA

VAN

Include OBJLIB (MODA)

N~ AAN

not processed

Processing of More than One INCLUDE Control Statement

Including Sequential Data Sets

Sequential data sets containing object modules and/or control
statements can be specified by an INCLUDE control statement. 1In
the following example, an INCLUDE statement specifies the
ddnames of two sequential data sets to be used as additional
input:

/7ACCOUNTS DD DSNAME=ACCTROUT, DISP=(0OLD,KEEP), ...
77/ INVENTRY DD DSNAME=INVENTRY, DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=QTREND, ...
’/ DD %

INCLUDE ACCOUNTS, INVENTRY
/%

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified
for each ddname.

Another method of doing the preceding example is given in
"Including Concatenated Data Sets"™ on page 34.

Chapter 3. Defining Input to the Linkage Editor 33

Including Library Members

One or more members of a partitioned data set can be specified ﬂ/ \
on an INCLUDE control statement. The member name must be N
specified on the INCLUDE statement; no member name should appear
on the DD statement itself.

In the following example, one member name is specified on the
INCLUDE statement:

7/PAYROLL DD DSNAME=PAYROUTS, DISP=(OLD,KEEP), ...
//SYSLIN gg 25NAME=&&CHECKS.DISP=(0LD,DELETE),..
7/

INCLUDE PAYROLLCFICA)
/%

If more than one member of a partitioned data set is to be
included, the INCLUDE statement specifies all the members to be
used from each library. The member names appear in parentheses,
following the data set name of the library. The member names
are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two
@emb:rs from each of two libraries to be used as additional
input:

//PAYROLL DD DSNAME=PAYROQUTS, DISP=(OLD, KEEP), ...
;/é;;f?ﬂ DD DSNAME=ATTROUTS, DISP=(OLD,KEEP), ...
/

DD %
INCLUDE PAYROLL(FICA,TAX),ATTENDCABSENCE, OVERTIME)
7%

Each library could have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified
for each ddname.

Another method of doing this example is given in "Including
Concatenated Data Sets.™

Including Concatenated Data Sets

Several data sets can be designated as input with one INCLUDE
statement that specifies one ddname; additional data sets are
then concatenated to the data set described on the specified DD
statement. When data sets are concatenated, all records must
have the same characteristics (that is, format, record length,
block size, etc.).

SEQUENTIAL DATA SETS: 1In the following example, two sequential

data sets are concatenated and then specified as input with one
INCLUDE statement:

/7 CONCAT DD DSNAME=ACCTROUT, DISP=(OLD, KEEP), ...
Va4 DD DSNAME=INVENTRY, DISP=(OLD,KEEP), ...
//SYSLIN gg DSNAME=SALES, DISP=0LD, ...

/77 x

INCLUDE CONCAT

/% ({,\

34 MVS/XA Linkage Editor and Loader User's Guide

When the INCLUDE statement is recognized, the contents of the
sequential data sets ACCTROUT and INVENTRY are processed.

LIBRARY MEMBERS: Members from more than one library can be
designated as input with one ddname on an INCLUDE statement. In
this case, all the members are listed on the INCLUDE statement;

the partitioned data sets are concatenated using the ddname from
the INCLUDE statement:

77CONCAT DD DSNAME=PAYROUTS, DISP=(0OLD,KEEP), ...
/77 DD DSNAME=ATTROUTS, DISP=(OLD,KEEP), ...
7/SYSLIN DD DSNAME REPORT, DISP OLD,.

Ve4

DD
xINCLUDE CONCAT(FICA TAX, ABSENCE, OVERTIME)

When the INCLUDE statement is recognized, the two libraries,
PAYROUTS and ATTROUTS, are searched for the four members; the
members are then processed as input.

Chapter 3. Defining Input to the Linkage Editor 35

EXEC STATEMENT—INTRODUCTION

AN
N

This chapter summarizes those aspects of the job control

language that pertain directly to the use of the linkage editor.

The major topics covered are the EXEC statement, DD statements,

and cataloged procedures for the linkage editor. The reader

should be familiar with the job control language as described in

the publication JCL

The EXEC statement is the first statement of every job step.

For the linkage editor job step, the following topics are

pertinent:

¢ The program name of the linkage editor

. Linkage editor options passed to the job step

. Region-size requirements for the linkage editor

For an execution job step following the linkage editor job step,

the linkage editor return code is important.

The EXEC statement contains the symbolic name of the load module

to be invoked for execution. The linkage editor can be invoked

with the following program name:

HEWL

LINKEDIT is an alias name for the linkage editor and can also be P

used to invoke it. TN

For example, the following EXEC statement causes the linkage e

editor to be invoked:

/77LKED EXEC PGM=HEWL

PGM=LINKEDIT could also be used.

To ensure compatibility with the operating system, the linkage
editor can also be invoked by any of the following alias names:
IEWL, IEWLF440, IEWLF880, and IEWLF128.

EXEC STATEMENT—JOR STEP OPTIONS

The EXEC statement also contains a list of options or parameters
to be passed to the linkage editor. These options are of four
vpes:

. Module attributes, which describe the characteristics of the
output load module

U Special processing options, which affect linkage editor
processing

. Space allocation options, which affect the amount of storage
used by the linkage editor for processing and output module
library buffers

o Output options, which specify the kind of output the linkage
editor is to produce

The rest of this section describes the options in each category. .

All the options for a particular linkage editor execution are ﬁ’ N
listed in the PARM parameter on the EXEC statement. They can be N/
listed in any sequence, as long as the rules for coding =

parameters are followed.

36 MVS/XA Linkage Editor and Loader User's Guide

«

MODULE ATTRIBUTES

The module attributes describe the characteristics of the output
module, or modules. (If more than one load module is produced
by the same linkage editor job step, all output modules will
have the attributes assigned on the EXEC statement.) The
attributes for each load module are stored in the directory of
the output module library along with the member name. (The
format of the directgry entry of a partitioned data set is given
in — .

Module attributes specify whether or not the module:
. Can ever be processed by the linkage editor

. Can be brought into virtual storage only by the LOAD macro
instruction

. Is to be in overlay format
. Can be reused
. Can be placed in the link pack area; that is, is reenterable

o Can be replaced during execution by recovery management;
that is, is refreshable

U Is to be tested by the TS0 TEST command

. Is to have specified control sections aligned on page
boundaries

. Is or is not authorized to use the restricted system
resources and functions

After the descriptions of the module attributes, the default and
incompatible attributes are discussed.

| Downward Compatible Attribute

When this attribute is specified, a maximum record size of 1024
bytes is used for the output module library.

To assign the downward compatible attribute, code DC in the PARM
field as follows:

//LKED EXECPGM=IEWL ,PARM="'DC, ..."

Note: If the DC attribute is specified and the output
load module library is a data set created by the linkedit
job step, the blocksize in the data set control block
(DSCB) is set to 1024. If the DC attribute is specified
and the output load module library is an existing data
set, then the blocksize in the DSCB is set to 1024, but
only if the current blocksize in the DSCB is less than
1026. If the current blocksize in the DSCB is greater
than 1024, the load module is written using a maximum
record size of 1024 bytes; the blocksize in the DSCB is
not changed.

Scatter Format Attribute

When the scatter format attribute is specified, the linkage
editor produces a load module in a format suitable for either
scatter or block loading.

To assign the scatter format attribute, code SCTR in the PARM
field, as follows:

//LKED EXEC PGM=IEWL,PARM="'SCTR,..."

Chapter 9. Specifying JCL to Run a Linkage Editor Job 37

Notes:

1. If scatter format is not specified, the block format
attribute is assigned by the linkage editor. (The
programmer cannot specify block format.)

v

£
C

2. If SCTR is specified, the programmer should ensure that the
load module does not contain zero-length control sections,
private code sections, or common areas. The presence of
such sections in a module that is to be scatter loaded can,
under certain circumstances, cause the module to be loaded
incorrectly.

3. The SCTR attribute must be specified when the nucleus for a
VS system is link-edited. In all other instances, if the
SCTR attribute is specified, the linkage editor builds the
output load module appropriately; however, scatter load
support is not provided in VS systems and the attribute/load
module format is ignored when fetching the load module.

Not Editable Attribute

A load module which is marked NE (not editable) is not
reprocessable by the linkage editor. If a module map or
grogs-refgrence table is requested, the not-editable attr1bute
is ignored.

To assign the not-editable attribute, code NE in the PARM field,
as follows:

//LKED EXEC PGM=HEWL,PARM='NE,..."

Note: The not-editable attribute disables the EXPAND function

for the output load module and also limits to 18 the number of
consecutive iterations of AMASPZAP. 1If the EXPAND function is
required or more than 18 iterations of AMASPZAP are required, ;
the load module must be re-created.

Only-Loadable Attribute

Ooverlay Attribute

38 MVS/XA Linkage

A module with the only-loadable attribute can be brought into
virtual storage only with a LOAD macro instruction. Some
subsets of the control program use a smaller control table when
the load module is invoked with a LOAD. This reduces the
overall virtual storage requirements of the module.

The module with the only-loadable attribute must be entered by
means of a branch instruction or a CALL macro instruction. If
an attempt is made to enter the module with a LINK, XCTL, or
ATTACH macro instruction, the program making the attempt is
terminated abnormally by the control program.

To assign the only-loadable attribute, code OL in the PARM field
as follows:

7/7/LKED EXEC PGM=HEWL,PARM='0OL,..."

A program with the overlay attribute is placed in an overlay
structure as directed by linkage editor OVERLAY control
statements. The module is suitable only for block loading; it
cannot be refreshable, reenterable, or serially reusable.

If the overlay attribute is specified and no OVERLAY control
statements are found in the linkage editor input, the attribute
is negated. The condition is considered a recoverable error;)
that is, if the LET option is specified, the module is marked F
executable. ;

Editor and Loader User's Guide

The overlay attribute must be specified for overlay processing.
If this attribute is omitted, the OVERLAY and INSERT statements
are considered invalid, and the module is not an overlay
structure. This condition is also recoverable; if the LET
option is specified, the module is marked executable.

To assign the overlay attribute, code OVLY in the PARM field as
follows:

77LKED EXEC PGM=HEWL , PARM="0VLY,..."
See "Appendix C. Designing and Specifying Overlay Programs"™ on

page 163 for information on the design and specification of an
overlay structure.

Reusability Attributes

Either one of two attributes may be specified to denote the
reusability of a module. (Reusability means that the same copy
of a load module can be used by more than one task either
concurrently or one at a time.) The reusability attributes are

and serially reusable; if neither is specified, the
module is not reusable and a fresh copy must be brought into
virtual storage before another task can use the module.

The linkage editor only stores the attribute in the directory
entry; it does not check whether the module is really
reenterable or serially reusable. A reenterable module is
automatically assigned the reusable attribute. However, a
reusable module is not also defined as reenterable; it is
reusable only.

REENTERABLE: A module with the reenterable attribute can be
executed by more than one task at a time; that is, a task may
begin executing a reenterable module before a previous task has
finished executing it. This type of module cannot be modified
by itself or by any other module during execution.

If a module is to be reenterable, all the control sections
within the module must be reenterable. If the reenterable
attribute is specified, and any load modules that are not
reenterable become a part of the input to the linkage editor,
the attribute is negated.

To assign the reenterable attribute, code RENT in the PARM
field, as follows:

//LKED EXEC PGM=HEHWL,PARM='RENT,..."

SERIALLY REUSABLE: A module with the serially reusable
attribute can be executed by only one task at a time; that is, a
task may not begin executing a serially reusable module before a
previous task has finished executing it. This type of module
must initialize itself and/or restore any instructions or data
in the module altered during execution.

If a module is to be serially reusable, all its control sections
must be either serially reusable or reenterable. If the
serially reusable attribute is specified, and any load modules
that are neither serially reusable nor reenterable become a part
of the input to the linkage editor, the serially reusable
attribute is negated.

To assign the serially reusable attribute, code REUS in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM=‘REUS,..."

Chapter 4. Specifying JCL to Run a Linkage Editor Job 39

Refreshable Attribute

Test Attribute

Authorization Code

A module with the refreshable attribute can be replaced by a new P
copy during execution by a recovery management routine without .
changing either the sequence or results of processing. This NS
type of module cannot be modified by itself or by any other

module during execution. The linkage editor only stores the

attribute in the directory entry; it does not check whether the

module is refreshable.

If a module is to be refreshable, all the control sections
within it must be refreshable. If the refreshable attribute is
specified, and any load modules that are not refreshable become
a pa:tdof the input to the linkage editor, the attribute is
negated.

To assign the refreshable attribute, code REFR in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='REFR,..."

A module with the test attribute is to be tested and contains _
the testing symbol tables for the TS0 TEST command. The linkage
editor accepts these tables as input, and places them in the
output module. The module is marked as being under test. If
the test attribute is not specified, the symbol tables are
ignored by the linkage editor and are not placed in the output
module. If the test attribute is specified, and no symbol table
input is received, the output load module will not contain
symbol tables to be used by the TSO TEST command.

To assign the test attribute, code TEST in the PARM field, as
follows:

/7LKED EXEC PGM=HEWL,PARM='TEST,..."

Note: The test attribute applies to programs using either
TESTRAN or the TSO TEST command. Do not use the 'TEST' option
¥2é$§thhe load module is to be executed by either TS0 or

The output load module is assigned an authorization code that
determines whether or not the load module may use restricted
system services and resources.

To assign an authorization code through the PARM field, code the
AC parameter as follows:

77LKED EXEC PGM=HEWL,PARM='AC=n,..."

The authorization code, n, must be 1 to 3 decimal digits with a
value from 0 to 255

YAC=,..." and "AC= ' are equivalent to "AC=0'. The
authorization code assigned in the PARM field is overridden by
a2 :utho;ization code assigned through the SETCODE control
statement.

N

40 MVS/XA Linkage Editor and Loader User's Guide

Addressing Mode Attribute

) To assign the addressing mode for all the entry points into the
load module (the main entry point, its true aliases, and all the
alternate entry points), code the AMODE parameter as follows:

//LKED EXEC PGM=IEMWL,
PARM=YAMODE=xxx, ..."

The addressing mode "xxx' must be either 24, 31, or ANY.

The addressing mode assigned in the PARM field overrides the
separate addressing modes found in the ESD data for the control
sections or private code where the entry points are located.
The addressing mode assigned in the PARM field is overridden by
an addressing mode assigned in the MODE control statement.

If the AMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

If only the AMODE value is specified in the PARM field of the
EXEC statement, an RMODE value of 2% is implied.

Note: The keyword 'AMODE' may also be specified as 'AMOD'.

Residence Mode Attribute

To assign the residence mode for the output load module, code
the RMODE parameter as follows:

/7/LKED EXEC PGM=I1EMWL,
PARM="RMODE=xxx, ..."

The residence mode "xxx' must be either 24 or ANY.

residence mode accumulated from the input control sections and
private code. The residence mode assigned in the PARM field is
oxe;ridd:n by a residence mode assigned through the MODE control
statement.

(j‘ The residence mode assigned in the PARM field overrides the

If the RMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

If only an RMODE value of ANY is specified in the PARM field of
the EXEC statement, an AMODE value of 31 is implied.

If only an RMODE of 26 is specified, no overriding AMODE value
is assigned; instead, the AMODE value in the ESD data for the
main entry point, a true alias, or an alternate entry point is
used in generating its respective directory entry. If any
control section to be linked has an RMODE=24, then the load
module is marked RMODE=24.

Note: The keyword 'RMODE' may also be specified as 'RMOD®.

Combinations of Addressing Mode and Residence Mode

In generating a directory entry for the main entry point, a true
alias, or an alternate entry point, the linkage editor validates
the combination of the AMODE value and the RMODE value, as
specified by the user in the PARM field of the EXEC statement,
according to the following table:

RMODE=24 RMODE=ANY
AMODE=24 valid invalid

Chapter 4. Specifying JCL to Run a Linkage Editor Job 41

Default Attributes

RMODE=24 RMODE=ANY
AMODE=31 valid valid
AMODE=ANY | valid invalid

If the AMODE/RMODE combination resulting from the PARM field of
the EXEC statement is invalid, an error message is issued and
the linkage editor ignores the PARM field of the EXEC statement
as the source of AMODE/RMODE data.

Unless specific module attributes are indicated by the
programmer, the output module is not in an overlay structure,
and it is not tested. The module is in block format, not
refreshable, not reenterable, and not serially reusable. If
page boundary alignment is requested, its control sections are
aligned on 4K-byte page boundaries.

One other attribute is specified by the linkage editor after
processing is finished. If, during processing, severity 2
errors were found that would prevent the output module from
being executed successfully, the linkage editor assigns the
not-executable attribute. The control program will not load a
module with this attribute.

If the LET option is specified, the output module is marked
executable even if severity 2 errors occur. (The LET option is
discussed later in this section.)

If the AC parameter is not specified or is coded incorrectly,
;heddefguit authorization code of 0 is assigned to the output
oad module.

Incompatible Attributes

0f the module attributes the programmer may specify, several are
mutually exclusive. HWhen mutually exclusive attributes are
specified for a load module, the linkage editor ignores the
less-significant attributes. For example, if both OVLY and RENT
are specified, the module will be in an overlay structure and
will not be reenterable.

Certain attributes are also incompatible with other job step
options. All job step options are shown in Figure 15 on page 52
along with those options that are incompatible.

SPECIAL PROCESSING OPTIONS

The special processing options affect the executability of the
output module and the use of the automatic library-call
mechanism. These options are the exclusive call option, the let
execute option, and the no automatic-call option.

Exclusive Call Option

When the exclusive call option is specified, valid exclusive
references have been made between segments, and the linkage
editor marks the output module as executable. However, a

warning message is given for each valid exclusive reference.

To specify the exclusive call option, code XCAL in the PARM
field as follows:

/7/LKED EXEC PGM=HEWL, PARM='XCAL,OVLY,..."

42 MVS/XA Linkage Editor and Loader User's Guide

Let Execute Option

The OVLY attribute must also be specified for an overlay
program.

Note: Unless the let execute option is specified, other errors
may cause the module to be marked not executable.

When the let execute option is specified, the linkage editor
marks the output module as executable even though a severity 2
error condition was found during processing. (A severity 2
error condition could make execution of the output load module
impossible.) Some examples of severity 2 errors are:

o Unresolved external references

] Valid or invalid exclusive calls in an overlay program

. Error on a linkage editor control statement

. A library module that cannot be found

. No available space in the directory of the output module
library

To specify the let execute option, code LET in the PARM field as
follows:

/7LKED EXEC PGM=HEWL , PARM="LET,..."
Note: If LET is specified, XCAL need not be specified.

No Automatic Library-Call Option

WHhen the no automatic library-call option is specified, the
linkage editor library-call mechanism does not call library
members to resolve external references. The output module is
marked executable even though unresolved external references are
present. If this option is specified, the LIBRARY statement
need not be used to negate the automatic library call for
selected external references. Also, with this option, a SYSLIB
DD statement need not be supplied.

To specify the no automatic library-call option, code NCAL in
the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM="NCAL,..."

Note: Unless the LET option is also specified, other errors may
cause the module to be marked not executable.

SPACE ALLOCATION OPTIONS

SIZE Option

These options allow the programmer to specify the storage
available to the linkage editor, and to specify the block size
for the output module. For large modules and SMP, see SMP
Svystem Programmer's Guide; for SMP/E, see Vi ' i

The programmer can specify, through the SIZE option, the amount
of virtual storage to be used by the linkage editor and the
portion of that storage to be used as the load module buffer.

The linkage editor provides default values for the SIZE option.
The default values are used if one or both of the values are not
specified correctly by the user or are not specified at all.
These defaults should be adequate for most link-edits, relieving
the programmer from specifying the SIZE option for each

Chapter 4. Specifying JCL to Run a Linkage Editor Job 43

link-edit. The default values are: yaluel is 256K bytes and
value? is 48K bytes.

FORMAT: The format of the SIZE option is:
SIZE=(yaluel,value?2)

SIZE=(valuel)

SIZE=(yaluel,)

SIZE=(,yvalue2)

SIZE=(,)

When coded in the PARM field, yaluel and yvaluel parameters are
enclosed in parentheses as follows:

7/7LKED EXEC PGM=HEWL,
77 PARM='SIZE=(valuel,value2),...'

Both valuel and value2 may be expressed as integers specifying
the number of bytes of virtual storage or as nK, where n
represents the number of 1K (1024) bytes of virtual storage.

When determining the values for the SIZE option, it is best to
establish value2 first, then .

VALUE2: Value2 specifies the number of bytes of storage to be
allocated as the load module buffer. The allocation specified
by value2 is a part of the virtual storage specified by

The actual minimum for value2 is 6144 (6K) or the length of the
largest input load module text record, whichever is larger.
AMBLIST may be used to find the size of the load module text
records. If a value less than 6144 (6K) is specified, the
default value of 48K for yalue2 is used.

The space allocated by value2 is used for: the buffer into which
the input load module text is read, the buffer from which load
module text is written to the intermediate data set, the buffer
into which the load module text is read from the intermediate
data set, and the buffers from which the load module text is
written to the output data set. Therefore, the determination of

requires that the programmer consider the record sizes of
the data sets from which any load module text records are to be
read (SYSLIB, any data set referenced by an INCLUDE, any library
data set), the record size for the intermediate data set
(SYSUT1), and the record size for the output load module data
set (SYSLMOD).

Figure 13 on page 65 lists the direct access devices that may
contain data sets that are the source of input load module text,
the intermediate data set, and the output load module data set,
and lists the maximum record size used for each device by the
linkage editor. These maximum record sizes may always be used
in specifying yalue2 or, if the programmer can determine them,
exact sizes can be used.

44 MVS/XA Linkage Editor and Loader User's Guide

Device Maximum SYSUT1 or SYSLMOD

Device (Bytes)” ¢ (K Bytes) o0 %1%
2305-2 14660 14

3330-1 13030 12

3330-11 13030 12

3360 8368

3344 8368

3350 19069 18

3375 32760 18

3380 32760 18

Figure 13. SYSUT1 and SYSLMOD Device Types and Their Maximum
Record Sizes

The programmer must specify value2 so that the linkage editor
has sufficient space to allocate buffers that are compatible
with the record sizes for the intermediate data set and the
output load module data set.

The linkage editor optimizes the record size for the device type
of output load module data set unless one of the following
conditions exists.

1. The programmer has specified PARM='...DCBS,...', and the
SYSLMOD DD statement contains a BLKSIZE subparameter in the
DCB parameter, forcing the linkage editor to write records
having a maximum length equal to the BLKSIZE specification.

2. The output load module data set is an existing data set
having a block size less than the optimum record size,
forcing the linkage editor to write records no longer than
that block size.

3. The programmer has specified a value2 less than twice the
maximum record size for the output load module data set,
forcing the linkage editor to write records having a maximum
size of one-half valuel.

6. The intermediate data set and the output load module data
set have dissimilar record sizes, forcing the linkage editor
to write records having a maximum size determined for
compatibility between the two data sets.

The linkage editor optimizes the record size of the output load
module data set for its device type but selects a record size
compatible with the intermediate data set (see restrictions
above). Therefore, if the intermediate data set and the output
load module data set reside on the same device type, use of the
load module buffer is optimized. Also, if the data sets are on
different units of the same type, the performance of the linkage
editor is improved.

Figure 14 on page 46 shows the record sizes used for

compatibility between every combination of device types for the
intermediate and output load module data sets.

Chapter 6. Specifying JCL to Run a Linkage Editor Job 65

SYSLMOD Record Size SYSUT1 Record Size
Maximum Maximum Minimum
Reconrd Record Load Module

Device Size Device Size Buffer Area
Used Produced Used Produced (Value2)
IBM 2305-2 14K 2305-2 14K 28K

12K12 3330,3330-11 12K 26K

12K1 33640 6K 26K

14K 3350,3375,3380 14K2 28K
IBM 3330 12K 2305-2 12K2 26K
IBM 3330-11 12K 3330,3330-11 12K 26K

12K 3340 6K2 26K

12K 3350,3375,3380 12K2 26K
IBM 3340 7K 2305-2 7K?2 16K
IBM 3344 6K 3330,3330-11 12K2 12K

8K 3340 8K 16K

8K 3350,3375,3380 16K2 16K
IBM 3350 14K12 2305-2 14K 28K
IBM 337573380 12K?! 3330,3330-11 12K 26K

18K 3360 6K 36K

18K 3350,3375,3380 18K 36K

Figure 14. Load Module Buffer Area and SYSLMOD and SYSUT1

Record Sizes

Notes to Figure 14:

1 The SYSLMOD record size is reduced to less than the maximum
to make it compatible with the SYSUT1l record size.

2 The SYSUT]1 record size is reduced to less than the maximum to

to make it compatible with the SYSLMOD record size.

46 MVS/XA Linkage Editor and Loader User's Guide

Value2 should be, minimally, twice the record size for the
output load module data set. If value2 can be made larger than
twice the record size for the output load module data set, the
increase should be the larger of the record sizes for the
intermediate and output load module data sets.

The practical maximum for value2 is the length of the load
module to be built, plus 4K bytes if the length of the load
module to be built is equal to or greater than 40960 (40K). Any
space allocated to the load module buffer above this amount is
not used and does not need be allocated to value2.

If a value?2 is specified that cannot be accommodated in the
available storage, value? is reduced to the next lower 2K-byte
multiple of storage that is available. This reduction, however,
never decreases yalue2 to less than the minimum, 614644 (6K).

The optimal yalue2 is the practical maximum, as explained above.
If the entire load module is contained in storage, the
performance of the linkage editor is improved and the use of the
intermediate data set may be eliminated.

Examples of Value2 Determination

1. A load module of between 21K and 22K bytes is to be built.
The load module data set is a new data set on an IBM 3330
Disk Storage device. The intermediate data set is allocated
to an IBM 3340 Direct Access Storage device. A SYSLIB data
set is to be used, residing on a 3330. The entire load
module could be contained in the load module buffer if

were 22K bytes (the load module size). The practical
minimum for yalue2 would be 12K bytes (the size of the
largest possible input load module text record from the
SYSLIB data set). However, yalue2 should be at least as
large as two records to be written to the load module data
set (that is, 24K bytes). There is a reconciliation
necessary in this case between the two dissimilar device
types for the intermediate and output load module data sets;
but the record size of the output load module data set is an
even multiple of the record size of the intermediate data
set so no adjustment of the record sizes is made.
Therefore, the practical minimum, as well as the practical
maximum and optimal value2 in this case is 24K bytes.

2. A load module of more than 50K bytes is to be relink-edited;
however, a maximum of 40K bytes is available to be allocated
to value2. The output load module data set is an old data
set residing on a 3340, written with maximum record size.
The intermediate data set is allocated to an IBM 2305-2
Fixed Head Storage device. The link-edit involves a control
section in the SYSLIN data set that will replace a control
section in the old load module, followed by an INCLUDE
statement naming the old load module on the SYSLMOD data
set. The maximum for value2 cannot be satisfied, since only
40K bytes is available. The size of two maximum records
written to a 3360 would be 14K bytes. However, the size of
one record to be written or to be read from the intermediate
data set is 14K bytes. Therefore, the minimum for value2 in
this case is 16K bytes. This is sufficient space for one
input load module text record or one record written to or to
be read from the intermediate data set or two records
written to the output load module data set.

3. The output load module data set resides on a 2305-2. The
intermediate data set is allocated to a 3330. All load
module input comes from a 3330. Value2 in this case is 24K
bytes, because the input load module text records are, at
most, 12K bytes, the records written to and read from the
intermediate data set are 12K bytes, and the records written
to the output load module data set are 12K bytes. The
maximum record size of 14K bytes for the 2305-2 is reduced
to 12K bytes for this link-edit in order to be compatible
with the intermediate data set.

Chapter 6. Specifying JCL to Run a Linkage Editor Job 47

An alternative for yalue2 in the above example is 12K bytes.
This 12K bytes is adequate for the input load module text
records and the records written to and read from the
intermediate data set. The 12K value forces a maximum
record size of 6K bytes to be written to the output load
module data set. At 6K bytes each, two records can be
written on a 2305-2 track while, as in the above example,
:nlykone record of 12K bytes can be written on a 2305-2
rack.

4. The output load module data set is a new data set allocated
to a 3330. The programmer has specified the linkage editor
parameter DCBS, and the SYSLMOD DD statement contains
v...DCB=(...BLKSIZE=3072,...),...'. The only load module
input comes from a data set created previously in a similar
manner. The intermediate data set is allocated to a 3340.
The minimum for value2 in this case is 6K bytes; the input
load module records are 3K bytes at most, the intermediate
data set records are 7K bytes at most, and, as directed by
the programmer, the linkage editor produces records having a
maximum size of 3K bytes on the output load module data set.

VALUEl: Valuel specifies the number of bytes of virtual storage
available to the linkage editor regardless of the private area

size. The storage specified by valuel includes the allocation
specified by yalueZ2.

The absolute minimum for yaluel is the design point of the
linkage editor, 96K bytes. If a value less than the minimum for
valuel is specified, the default options for both yaluel and
value2 are used.

The practical minimum for yaluel is 98304 (96K) bytes plus any
excess in value2 over 6164 (6K) bytes, plus any additional space
required to support the blocking factor for the SYSLIN, object
module library, and SYSPRINT data sets.

The design point of the linkage editor provides for the minimum
load module buffer—é61644 (6K) bytes of virtual storage. If a
load module buffer larger than 6164 (6K) bytes is specified in

value2, valuel must be increased by the excess of that
over 6146 (6K) bytes.

The linkage editor supports three different blocking factors for
the SYSLIN, object module library, and SYSPRINT data sets; they
are 5, 10, and 40 to 1. The requirement for additional space
depends upon the blocking factor that is to be supported.

The following table shows the additional space required to
support each blocking factor.

Blocking Space

Factor Required
5t 1 0 or 0K

10 to 1 18432 or 18K
G0 to 1 28672 or 28K

Blocking factors of 1 through 4, 6 through 9, and 11 through 39
are treated as blocking factors of 5, 10, and 40, respectively.
Blocking factors greater than 40 are invalid.

The additional space requirement is determined by the largest
blocking factor among the affected data sets.

The blocking factor supported is dependent upon space available
after value2 has been allocated to the load module buffer out of
Therefore, if the space provided in is

insufficient, the next smallest blocking factor is used.

68 MVS/XA Linkage Editor and Loader User's Guide

DCBS Option

The performance of the linkage editor can be improved by the
allocation of additional storage by valuel, especially in
providing for the optimal

The maximum value that can be specified for yaluel is 9999999 or
9999K. However, the amount of virtual storage actually
allocated for yaluel is the smaller of:

J The region size
o The amount specified for valuel
Examples of Valuel Determination

1. Assume that an optimum value2 of 36K bytes has already been
determined for the link-edit. An appropriate yaluel is 126K
bytes, because an additional 30K bytes, above the minimum of
96K bytes, is needed to support the allocation of 36K bytes
to value2 and no additional storage is required to support
the blocking factors for SYSLIN, SYSPRINT, and any object
module libraries.

2. The minimum for yvaluye2 (6K bytes) is used. All the object
module libraries are blocked 5-to-1, except one that is
blocked 10-to-1. The SYSLIN and SYSPRINT data sets are
assigned blocking factors of 5. An appropriate valuel for
this link-edit is 114K bytes, the minimum plus the 18K bytes
needed to support the blocking factor of 10-to-1 on the
object module library.

The DCBS option allows the programmer to specify the block size
f:rtthe zYSLMOD data set in the DCB parameter of SYSLMOD DD
statement.

If the DCBS option is specified, the block size value in the
DSCB for the SYSLMOD data set may be overridden. If the DCBS
option is not specified, the block size value in the DSCB for
the SYSLMOD data set may not be overridden.

If the DCBS option is specified and no block size value is
provided in the DCB parameter of the SYSLMOD DD statement, the
linkage editor uses the maximum record size for the device. If
the DCBS option is not specified and a block size value is
provided in the DCB parameter of the SYSLMOD DD statement, the
block size value in the DCB parameter of the SYSLMOD DD
statement is ignored by the linkage editor.

Even though the DCBS option is specified, the linkage editor
will not allow the programmer to set the block size for the
SYSLMOD data set to a value less than the minimum; that is, 256,
or 1024 if the SCTR option is specified, or a value less than
the block size in the DSCB for an existing data set.

The block size specified by the programmer will be used unless
(1) it is larger than the maximum record size for the device, in
which case the maximum record size is used, or (2) it is less
than the minimum block size, in which case the minimum bleck
size is used.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 469

OUTPUT OPTIONS

The following example shows the use of the DCBS option for an
IBM 3350 Direct Access Storage device:

77LKED EXEC PGM=HEHWL,PARM="*XREF, DCBS"
/7/3YSLMOD DD DSNAME=LOADMOD(TEST), DISP=(NEW, KEEP),
/77 DCB=(BLKSIZE=3072),...

As a result, the linkage editor uses a 3K-byte block size for
the output module library.

These options control the optional diagnostic output produced by
the linkage editor. The programmer can request that the linkage
editor produce a list of all control statements and a module map
or cross-reference table to help in testing a program. The
format of each is described in "Chapter 8. Interpreting Linkage
Editor Output™ on page 107.

In addition, the programmer can request that the numbered
error/warning messages generated by the linkage editor appear on
the SYSTERM data set as well as on the SYSPRINT data set.

Control Statement Listing Option

Module Map Option

To request a control statement listing, code LIST in the PARM
field, as follows:

77LKED EXEC PGM=HEWL , PARM="LIST,..."
When the LIST option is specified, all control statements

processed by the linkage editor are listed in card-image format
on the diagnostic output data set.

To request a module map, code MAP in the PARM field, as follows:
/7/7LKED EXEC PGM=HEWL , PARM="MAP, ..."
When the MAP option is specified, the linkage editor produces a

mogule map of the output module on the diagnostic output data
set.

cross Referahce Table Option

To request a cross-reference table, code XREF in the PARM field,
as follows:

//LKED EXEC PGM=HEMWL,PARM="'XREF,..."

When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic
output data set. The cross-reference table includes a module
map; therefore, both XREF and MAP need not be specified for one
linkage editor job step.

50 MVS/XA Linkage Editor and Loader User's Guide

/{ N
NS

(

Alternate Output (SYSTERM) Option

To request that the numbered linkage editor error/warning
messages be generated on the data set defined by a SYSTERM DD
statement, code TERM in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TERM,..."

When the TERM option is specified, a SYSTERM DD statement must
be provided. If it is not, the TERM option is negated.

Output specified by the TERM option supplements printed
diagnostic information; when TERM is used, linkage editor
error/warning messages appear in both output data sets.

INCOMPATIBLE JOB STEP OPTIONS

When mutually exclusive job step options are specified for a
linkage editor execution, the linkage editor ignores the less
significant options. Figure 15 on page 52 illustrates the
significance of those options that are incompatible. When an X
appears at an intersection, the options are incompatible. The
option that appears higher in the list is selected.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 51

4
5
\’1/2\
4?
¢
%

Nl

Figure 15. Incompatible Job Step Options for the Linkage Editor

For example, to check the compatibility of XREF and NE, follow
the XREF column down and the NE row across until they intersect.
Because an X appears where they intersect, they are
incompatible; XREF is selected; NE is negated.

If incorrect values are specified for the SIZE parameter, the
default values are used. If incompatible options are detected,
the message

%%% OPTIONS INCOMPATIBLE »Xx

is printed. This message follows the standard module
disposition message.

If the incompatible options OVLY and AMODE or RMODE are
specified, a diagnostic message is issued.

52 MVS/XA Linkage Editor and Loader User's Guide

A

A

EXEC STATEMENT—REGION PARAMETER

s The REGION parameter specifies the maximum amount of storage
(that can be allocated to satisfy a request for storage that the
linkage editor makes. In its minimal situation, the linkage
editor requires a REGION parameter of not less than 96K bytes;
in its default situation, not less than 256K bytes; and, in its
maximal situation (see "Size Parameter Guidelines™ on page 60),
not less than 1500K bytes.

EXEC STATEMENT—RETURN CODE

The linkage editor passes a return code to the control program
upon completion of the job step. The return code reflects the
highest severity code recorded in any iteration of the linkage
editor within that job step. The highest severity code
encountered during processing is multiplied by 4 to create the
return code; this code is placed into register 15 at the end of
linkage editor processing. Figure 16 contains the return codes,
the corresponding severity code, and a description of each.

Return Severity

Code Code Description
00 0 Normal conclusion
04 1 Warning messages have been listed; execution

should be successful. For example, if the
overlay option is specified and the overlay
structure contains only one segment, a
return code of 064 is placed in register 15.

08 2 Error messages have been listed; execution
o may fail. The module is marked not executable
‘L unless the LET option is specified. For
example, if the block size of a specified
library data set cannot be handled by the
linkage editor, a return code of 08 is placed
in register 15.

(1] o 3 Severe errors have occurred; execution is
impossible. For example, if an invalid entry
point has been specified, a return code of 0C
is placed in register 15.

10 4 Terminal errors have occurred; the
processing has terminated. For example, if
the linkage editor cannot handle the blocking
factor requested for SYSPRINT, a return code
of 10 is placed in register 15.

Figure 16. Linkage Editor Return Codes

The programmer may use a return code to determine whether or not
the load module is to be executed by using the condition
parameter (COND) on the EXEC statement for the load module. The
control program compares the return code with the values
specified in the COND parameter, and the results of the
comparisons are used to determine subsequent action. The COND
parameter may be specified either in the JOB statement or the
EXEC statement (see the publication JCL).

Chapter 4. Specifying JCL to Run a Linkage Editor Job 53

DD STATEMENTS

Every data set used by the linkage editor must be described with
a DD statement. Each DD statement must have a name, unless data
sets are concatenated. The DD statements for data sets required
by the linkage editor have preassigned names; those for
additional input data sets have user-assigned names; those for
concatenated data sets (after the first) have no names.

In addition to the name, the DD statement provides the control
program with information about the input/output device on which
the data set resides, and a description of the data set itself.
All of the job control language facilities for device
description are available to the users of the linkage editor.

Besides information about the device, the DD statement also
contains a data set description which includes the data set name
and its disposition. Information for the data control block
(DCB) may also be given.

General information pertinent to the linkage editor on the data
set name and DCB information follows; information on disposition
is given in the discussion for each data set.

DATA SET NAME: The linkage editor uses either sequential or
partitioned data sets. For sequential data sets, only the name
of the data set is specified; for partitioned data sets, the
member name must also be specified either on the DD statement or
with a control statement.

When input data sets are passed from a previous job step, or
when the output load module is being tested, a recommended
practice is to use temporary data set names (that is, &&dsname).
Use of temporary names ensures that there are no duplicate data
sets with out-of-date modules. A data set with a temporary name
is automatically deleted at the end of the job. When a module
is to ge stored permanently, a data set name without ampersands
is used.

DCB INFORMATION: Before a data set can be used for input,
information describing the data set must be placed in the data
control block (DCB). If this information does not exist in the
DCB or header label, or if no labels are used (magnetic tape
does not require labels), the programmer must specify it in the
DCB parameter on the DD statement.

Record format (RECFM), logical record size (LRECL), and block
size (BLKSIZE) subparameters of the DCB parameter are discussed
as they apply to the linkage editor. Specific information on
each as it applies to the linkage editor data sets is given in
the description of the data set later in this section. Other
DCB information (tape recording technique, density, and so
forth) is described in the publication JCL.

Record Format: The following record formats are used with the
linkage editor:

F The records are fixed length.

FB The records are fixed length and blocked.

FBA The records are fixed length, blocked, and contain
American National Standards Institute (ANSI) control
characters.

FBS The records are fixed length, blocked, and written in
standard blocks.

FA The records are fixed length and contain ANSI control
characters.

FS The records are fixed length and written in standard
blocks.

56 MVS/XA Linkage Editor and Loader User's Guide

4

W

) The records are undefined length.

UA The records are undefined length and contain ANSI
control characters.

A record format of FS or FBS must be used with caution. All
blocks in the data set must be the same size. This size must be
equal to the specified block size. A truncated block can occur
only as the last block in the data set.

Note: Track overflow is never used by the linkage editor. HWhen
moving or copyving load modules, it is recommended that the track
overflow feature not be used on the target data set, as errors
may occur in fetching the load modules for execution.

LOGICAL RECORD AND BLOCK SIZE: Blocking is allowed for input
object module data sets and the diagnostic output data set. The
blocking factors used to determine buffer allocations are 5, 10,
and 40. The BLKSIZE must therefore be a multiple of LRECL. See
the description of blocking factors in the discussion of the
SIZE option.

When the DCBS option is specified, a block size should be
specified for the output load module library (see "SYSLMOD DD
Statement™ on page 57).

LINKAGE EDITOR DD STATEMENTS

SYSLIN DD Statement

The linkage editor uses six data sets; of these, four are
required. The DD statements for these data sets must use the
preassigned ddnames given in Figure 17. The descriptions that
follow give pertinent device and data set information for each
linkage editor data set.

Data Set ddname Required
Primary input data set SYSLIN Yes
Automatic call library SYSLIB Only if the

automatic library
call mechanisnm is

used
Intermediate data set SYSUT1 Yes
Diagnostic output data set | SYSPRINT | Yes
Output module library SYSLMOD Yes

Alternate output data set SYSTERM Only if the TERM
option is specified

Figure 17. Linkage Editor ddnames

The SYSLIN DD statement is always required; it describes the
primary input data set that can be assigned to a direct access
device, a magnetic tape unit, or the card reader. The data set
may be either sequential or partitioned; in the latter case, a
member name must be specified.

If SYSLIN is assigned to a card reader or "pseudo card reader,”
input records must be unblocked and 80 bytes long. (A pseudo
card reader is defined as input from a tape or a direct access
device in card reader mode.)

Chapter 4. Specifying JCL to Run a Linkage Editor Job 55

SYSLIB DD Statement

SYSUT1 DD Statement

This data set must contain object modules and/or control
statements. Load modules used in the primary input data set are
considered a severity 4 error.

The recommended disposition for the primary input data set is
SHR or OLD.

The DCB requirements are shown in Figure 18.

DCB Requirements

LRECL BLKSIZE RECFM
80 80 F,FS
80 400,800, 32001 FB,FBS

1These are the maximum block sizes allowed for each of the
optimal blocking factors (5, 10, and 40). Which maximum is
applicable depends on the value given to valuel and value2 of
the SIZE option.

Figure 18. DCB Requirements for Object Module and Control
Statement Input

The SYSLIB DD statement is required when the automatic
library-call mechanism is to be used. This DD statement
describes the automatic call library, which must be assigned to
a direct access device. The data set must be partitioned, but
member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and:load module
libraries must not be mixed. If only object modules are used,
the call library may also contain control statements.

The DCB requirements for object module call libraries are given
in Figure 18. The DCB requirement for load module call
lib:raries is a record format of U; the block size used for
storage allocation is equal to the maximum for the device used,
not the record read. Note that the linkage editor recognizes
object and load module call libraries solely from their record
format, and not from the data within them.

This data set must not be assigned to SYSOUT.

The SYSUT1 DD statement is always required; it describes the
intermediate data set, which is a sequential data set assigned
to a direct access device. Space must be allocated for this
da?: set, but the DCB requirements are supplied by the linkage
editor.

56 MVS/XA Linkage Editor and Loader User's Guide

I

AN

R

&

(

SYSPRINT DD Statement

The SYSPRINT DD statement is always required; it describes the
diagnostic output data set, which is a sequential data set
assigned to a printer or to an intermediate storage device. If |,
an intermediate storage device is used, the data records contain
a carriage control character as the first byte.

The usual specification for this data set is SYSOUT=A. The
programmer may assign a block size. The record format assigned
bytthe linkage editor depends on whether blocking is used or
not.

Figure 19 shows the DCB requirements for SYSPRINT. The only
information that can be supplied by the programmer is the block
size.

DCB Requirements for SYSPRINT

LRECL BLKSIZE RECFM
121 121 FA
121 n x 121 where pn FBA
is less than or
equal to 40

Note: The value specified for BLKSIZE, either on the DCB
parameter of the SYSPRINT DD statement or in the DSCB (data set
control block) of an existing data set, must be a multiple of
121; if i1t is not, the linkage editor issues a message to the
operator's console and terminates processing.

Figure 19. DCB Requirements for SYSPRINT

SYSLMOD DD Statement

The SYSLMOD DD statement is always required; it describes the
output module library, which must be a partitioned data set
assigned to a direct access device.

A member name may be specified on the SYSLMOD DD statement. If
a member name is specified, it is used only if a name was not
specified on a NAME control statement. This member name must
conform to the rules for the name on the NAME control statement.
This would imply the replacement of an identically named member
in the output load module library, if one exists.

If SYSLMOD is to be referenced by an INCLUDE statement, the
member name on the DD statement, if present, must be the name of
an existing member.

If the member is to replace an identically named member in an
existing library, the disposition should be OLD or SHR. If the
member is to be added to an existing library, the disposition
should be MOD, OLD, or SHR. If no library exists and the member
is the first to be added to a new library, the disposition
should be NEW or MOD. If the member is to be added to an
existing library that may be used concurrently in another region
or partition, the disposition should be SHR.

The record format U is assigned by the linkage editor. See
"Appendix D. Loader Storage Considerations™ on page 190.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 57

Procedures used by the linkage editor to assign block size are:
1. If the data set is new: ﬁ(«\
a. Hithout the DCBS option specified: NS

. The DSCB (data set control block) reflects the
maximum block size available for the device type if
it is not restricted by value2 of the size
parameter.

. If SCTR is specified, the block size is 1024.

b. With the DCBS option specified, the DSCB block size is
the smaller of:

. The maximum track size for the device.

. The value of the BLKSIZE subparameter on the DCB
parameter of the SYSLMOD DD statement.

] The actual output buffer length (half the number
specified for yalue2 if the size option was
utilized).

c. The minimum DSCB block size is 256 without the SCTR
option specified and 1024 with the SCTR option.

2. HWhen the DSCB block size already exists (not a new data set
and the SCTR option is specified, 1026 is used.

3. HWhen the DSCB block size already exists and the DCBS or SCTR
option is not specified, the larger of the existing black
sizes or 256 is used. :

4. See "DCBS Option"™ on page 49 for the procedure when the DSCB
block size exists and the DCBS option is specified.

Note: MWhen a new data set is created at linkage editor time
without the DCBS option specified, the DSCB reflects the maximum
block size available for the device type.
If the SYSLMOD DD statement is used as a source of load module
input, the SYSLMOD data set is read with a record format of U in
all cases.
In the following example, the SYSLMOD DD statement specifies a
permanent library on an IBM 3350 Disk Storage Device:
/7SYSLMOD DD DSNAME=USERLIB(TAXES), DISP=MOD,
Vo4 UNIT=3350,...
The linkage editor assigns a record format of U, and a logical
record and block size of 18K bytes, the maximum for a 3350.
However, consider the following example:
77LKED EXEC PGM=HEWL , PARM="XREF, DCBS"
/77SYSLMOD DD DSNAME=USERLIB(TAXES), DISP=MOD,
Ved UNIT=3340,DCB=(BLKSIZE=3072),...
The linkage editor still assigns a record format of U, but the
logical record and block size are now 3K bytes rather than 7K
bytes, because of the use of the DCBS option. P
&kv/

58 MVS/XA Linkage Editor and Loader User's Guide

(

- SYSTERM DD Statement

The SYSTERM DD statement is optional; it describes a data set
that is used only for numbered error/warning messages. Although
intended to define the terminal data set when the linkage editor
is being used under the Time Sharing Option (TS0) of MVS, the
SYSTERM DD statement can be used in any environment to define a
data set consisting of numbered error/warning messages that
supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement
and specifying TERM in the PARM field of the EXEC statement.
When SYSTERM output is defined, numbered messages are then
written to both the SYSTERM and SYSPRINT data sets.

The following example shows how the SYSTERM DD statement could
be used to specify the system output unit:

/7/SYSTERM DD SYSOUT=A

The DCB requirements for SYSTERM (LRECL=121,BLKSIZE=121, and
RECFM=FBA) are supplied by the linkage editor. If necessary,
the linkage editor will modify the DSCB (data set control block)
of an existing data set to reflect these values.

ADDITIONAL DD STATEMENTS

Each ddname specified on an INCLUDE or a LIBRARY control
statement must also be described with a DD statement. These DD
statements describe sequential or partitioned data sets,
assigned to magnetic tape units or direct access devices (not
pseudo card readers).

The ddnames are specified by the user with any other necessary
jnfgrmatiogé The DCB requirements for these data sets are shown
in Figure .

LRECL BLKSIZE RECFM

Object modules and-/or 80 80 F,FS
control statements 80 400,800,32001 FB,FBS
Load modules Ignored Maximum]

for device,

or one-half

of »

whichever

is smaller

DCB Requirements for Data Sets Used by Include and
Library Control Statements

Figure 20.

Note to Figure 20:

1 These are the maximum block sizes allowed for each of the
optimal blocking factors (5, 10, 40). HWhich maximum is
applicable depends on the values given to yaluel and yalue2
of the SIZE option.

When concatenated data sets are included, each data set must
contain records of the same format, record size, and block size.
If the data sets reside on magnetic tape, the tape recording
technique and density must also be identical.

If the SYSLMOD DD statement is used as a source of load module
i??ut, the SYSLMOD data set is read with a record format of U in
a cases.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 59

SIZE PARAMETER GUIDELINES

This section gives guidelines for determining appropriate SIZE
parameter values for a linkage editor job step.

First—determine VYalue2 of the SIZE parameter.
Value2=[6K|é6144|flgl(ath) | (cxd)|(cxe)]

where:

a is the length of the load module to be built.

b is 0, if the length of the load module to be built is <
40K bytes.
is 46K, if the length of the load module to be built is 2
40K bytes.

c is an integer equal to or greater than 2, such that cxd
or c¥e is < 999999 or 9999K bytes (¢ is the integer that
represents the number of buffers to be reserved for
SYSLMOD).

d is the track capacity of the SYSLMOD device, or 18K
whichever is larger.

e is the block size of the SYSLMOD data set.

f is the length of the largest text record in load module
input.

] is the track capacity of the SYSUT1 device, or 18K

whichever is larger.

Selecting the largest of the above parameters provides optimal
results.

Second—determine Yaluel of the SIZE parameter.
Valuel = h + J + Kk
Valuel must range between h and 9999K or 9999999

where:

h = 96K
j is the excess of VYalue2 over 6K
k is the additional storage required to support the
g¢gg§}3$ factor for SYSLIN, object module libraries, and
H

Blocking Factor K (Bytes)

5 to 1 0
10 to 1 18
40 to 1 28

Third—determine the REGION parameter.
REGION = Equal to or greater than Valuel

60 MVS/XA Linkage Editor and Loader User's Guide

—
A \‘

“_

2N

CATALOGED PROCEDURES

To facilitate the operation of the system, the control program
allows the programmer to store EXEC and DD statements under a
unique member name in a procedure library. Such a series of job
control language statements is called a cataloged procedure.
These job control language statements can be re-called at any
time to specify the requirements for a job. To request this
procedure, the programmer places an EXEC statement in the input
stream. This EXEC statement specifies the unique member name of
the procedure desired.

The specifications in a cataloged procedure can be temporarily
overridden, and DD statements can be added. The information
altered by the programmer is in effect only for the duration of
the job step; the cataloged procedures themselves are not
altered permanently. Any additional DD statements supplied by
the pzogrammer must follow those that override the cataloged
procedure.

LINKAGE EDITOR CATALOGED PROCEDURES

Procedure LKED

Two linkage editor cataloged procedures are provided: a
single-step procedure that link-edits the input and produces a
load module (procedure LKED), and a two-step procedure that
link-edits the input, produces a load module, and executes that
module (procedure LKEDG). Many of the cataloged procedures
provided for language translators also contain linkage editor
steps. The EXEC and DD statement specifications in these steps
are similar to the specifications in the cataloged procedures
described in the following paragraphs.

The cataloged procedure named LKED is a single-step procedure
that link-edits the input, produces a load module, and passes
the load module to another step in the same job. The statements
in this procedure are shown in Figure 21; the following text
describes these statements.

//LKED EXEC PGM=HEWL,PARM='XREF,LIST,LET,NCAL"',REGION=96K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&&GOSET(GO0), SPACE=(1024,(50,20,1)),
/77 UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

77 SPACE=(1024,(200,20))

Figure 21. Statements in the LKED Cataloged Procedure

STATEMENT NUMBERS: The 8-digit numbers on the right side of
each statement (not shown in Figure 21) are used to identify
each statement and would be used, for example, when permanently
modifying the cataloged procedure with the system utility
program IEBUPDTE For a description of this utility progranm,
see

EXEC STATEMENT: The PARM field specifies the XREF, LIST, LET,
and NCAL options. If the automatic library-call mechanism is to
be used, the NCAL option must be overridden, and a SYSLIB DD
statement must be added. Overriding and adding DD statements is
discussed later in this section.

Chapter 6. Specifying JCL to Run a Linkage Editor Job 61

SYSPRINT STATEMENT: The SYSPRINT DD statement specifies the
SYSOUT class A, which is either a printer or an intermediate
storage device. If an intermediate storage device is used,
American National Standard Institute control characters
accompany the data to be printed.

SYSLIN STATEMENT: The specification of DDNAME=SYSIN allows the
programmer to specify any input data set as long as it fulfills
the requirements for linkage editor input. The input data set
must be defined with a DD statement with the ddname SYSIN. This
data set may be either in the input stream or reside on a
separate volume.

If the data set is in the input stream, the following SYSIN
statement is used:

//LKED.SYSIN DD %

If this SYSIN statement is used, it may be anywhere in the job
step DD statements as long as it follows all overriding DD
statements. The object module decks and/or control statements
should follow the SYSIN statement, with a delimiter statement
(/%) at the end of the input.

If the data set resides on a separate volume, the following
SYSIN statement is used:

7/LKED.SYSIN DD (parameters describing the input data set)

If this SYSIN statement is used, it may be anywhere in the job
step DD statements as long as it follows all overriding DD
statements. Several data sets may be concatenated, as described
in “ngpter 3. Defining Input to the Linkage Editor™ on

page .

SYSLMOD STATEMENT: The SYSLMOD DD statement specifies a
temporary data set and a general space allocation. The
disposition allows the next job step to execute the load module.
If the load module is to reside permanently in a library, these
general specifications must be overridden.

SYSUT1 STATEMENT: The SYSUT1 DD statement specifies that the
intermediate data set is to reside on a direct access device,
but not the same device as either the SYSLMOD or the SYSLIN data
sets. Again, a general space allocation is given.

SYSLIB STATEMENT: Note that there is no SYSLIB DD statement.
If the automatic library-call mechanism is to be used with a
cataloged procedure, a SYSLIB DD statement must be added; also,
the gCﬁL option in the PARM field of the EXEC statement must be
negated.

INVOKING THE LKED PROCEDURE: To invoke the LKED procedure, code
the following EXEC statement:

//steppame EXEC LKED

where stepname is optional and is the name of the job step.

The following example shows a sample JCL sequence for using the
LKED procedure in one step to link-edit object modules to

produce a load module, then execute the load module in a
subsequent step.

62 MVS/XA Linkage Editor and Loader User's Guide

.

/,

Procedure LKEDG

//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD %

(Object module decks and/or control statements)
/7EXSTEP EXEC PGM=%. LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

/7% (If data is supplied for the execution step)

Note: LESTEP invokes the LKED procedure and EXSTEP executes the

load module produced by LESTEP.

The cataloged procedure named LKEDG is a two-step procedure that
link-edits the input, produces a load module, and executes that
load module. The statements in this procedure are shown in
Figure 22. The two steps are named LKED and GO. The

specifications in the statements in the LKED step are identical

to the specifications in the LKED procedure.

/7/LKED EXEC PGM=HEHWL,PARM="XREF,LIST,NCAL"',REGION=96K
//SYSPRINT DD SYSOUT=A

/7/SYSLIN DD DDNAME=SYSIN

/7SYSLMOD DD DSNAME=&&GOSET(GO0) , SPACE=(1024,(50,20,1)),
V4 UNIT=(SYSDA, DISP=(MOD, PASS)

//5YSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

/77 SPACE=(1024,(200,20))

/77G0 EXEC PGM=,LKED.SYSLMOD,COND=(4,LT,LKED)
Figure 22. Statements in the LKEDG Cataloged Procedure

GO STEP: The EXEC statement specifies that the program to be

executed is the load module produced in the LKED step of this

This module was stored in the data set described on the
SYSLMOD DD statement in that step. (If a NAME statement was
used to specify a member name other than that used on the
SYSLMOD statement, use the LKED procedure.)

The condition parameter specifies that the execution step is to

be bypassed if the return code issued by the LKED step is
greater than 4.

INVOKING THE LKEDG PROCEDURE: To invoke the LKEDG procedure,
code the following EXEC statement:

/7/stepname EXEC LKEDG
where stepname is optional and is the name of the job step.

The following example shows a sample JCL sequence for using the

LKEDG procedure to link-edit object modules, produce a load

module, and execute that load module.

Chapter 6. Specifying JCL to Run a Linkage Editor Job 63

//TWOSTEP EXEC LKEDG.
(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *
(Object module decks and/or control statements)
/%
(DD statements for the GO step)
//G0.SYSIN DD *
(Data for the GO step)
re.3

OVERRIDING CATALOGED PROCEDURES

overriding the EXEC

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure. These new
specifications remain in effect only for the duration of the job
step. For a detailed description of overriding cataloged
procedures, see the publication JCIL.

Statement

The EXEC statement in a cataloged procedure is overridden by
specifying the changes and additions on the EXEC statement that
invokes the cataloged procedure. The stepname should be
specified when overriding the EXEC statement parameters.

For example, the REGION parameter can be increased as follows:
/7/LESTEP EXEC LKED,REGION.LKED=136K

The rest of the specifications on the EXEC statement of
procedure LKED remain in effect.

If the PARM field is to be overridden, all the options specified
in the cataloged procedure are negated. That is, if XREF, LIST,
or NCAL is desired when overriding the PARM field, it must be
respecified. In the following example, the OVLY option is added
and the NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED='0OVLY, XREF,LIST'

As a result, the XREF and LIST options are retained, but the
NCAL option is negated; when NCAL is negated, a SYSLIB DD
statement must be added.

If you use the LKEDG procedure and want to execute the load
module just built, an efficient way is to specify the parameter
LET . in the LKED step and invoke the LKEDG procedure with the
following EXEC statement:

//steppame EXEC LKEDG,PARM.LKED='XREF,LIST,NCAL,LET’',
44 COND.GO=(8,LT,LKED)

66 MVS/XA Linkage Editor and Loader User's Guide

AN
[}
\ ;
s

w S

(

overriding DD Statements

Each DD statement that is used to override a DD statement in the
LKED step of either the LKED procedure or the LKEDG procedure
must begin with //LKED.ddname... .

Any of the DD statements in the cataloged procedures can be
overridden as long as the overriding DD statements are in the
same order as they appear in the procedure. If any DD
statements are not overridden, or overriding DD statements are
included but are not in sequence, the specifications in the
cataloged procedure are used.

Only those parameters specified on the overriding DD statement
are affected; the rest of the parameters remain as specified in
the procedure. In the following example, the output load module
is to be placed in a permanent library:

7//LIBUPDTE EXEC LKED
7/LKED.SYSLMOD DD DSNAME=LOADLIB(PAYROLL),DISP=0LD
//LKED.SYSIN DD DSNAME=0BJMOD, DISP=(OLD,DELETE)

Unit and volume information should be given if these data sets
are not cataloged.

As a result of the statements in the example, the LKED procedure
is used to process the object module in the 0BJMOD data set.

The output load module is stored in the data set LOADLIB with
the name PAYROLL. The SPACE parameter on the SYSLMOD DD
§tat::ént and the other specifications in the procedure remain
in effect.

ADDING DD STATEMENTS

DD statements for additional data sets can be supplied when
using cataloged procedures. These additional DD statements must
follow any overriding DD statements.

Each additional DD statement for the LKED step must begin with
77LKED.ddname... and, for the GO step, must begin with

/77G0.ddname... .

In the following example, the automatic library-call mechanism
is to be used along with the LKEDG procedure:

/7/CPSTEP EXEC LKEDG,PARM.LKED="XREF,LIST?®
//LKED.SYSLMOD DD DSNAME=LOADLIB(TESTER),DISP=0LD,...
7//LKED.SYSLIB DD DSNAME=SYL1.PL1LIB, DISP=SHR
7/7LKED.SYSIN DD %

(Object module decks and/or control statements).

/%
//G0.SYSIN DD *

(Data for execution step)

/%

The NCAL option is negated, and a SYSLIB DD statement is added
b:t¥een the overriding SYSLMOD DD statement and the SYSIN DD
statement.

Chapter 4. Specifying JCL to Run a Linkage Editor Job 65

General Format

Format Conventions

This chapter summarizes the linkage editor control statements.
The description of each statement includes:

. Hhat the statement does

U The format of the statement

. Placement of the statement in the input
. Notes on use, if any

U One or more examples that include job control language
statements, when necessary

The control statements are described in alphabetic order.

Before using this chapter, the user should be familiar with the
fgllowing information on general format, format conventions, and
placement.

Each linkage editor control statement specifies an gperation and
one or more operands. Nothing must be written preceding the
operation, which must begin in or after column 2. The operation
must be separated from the operand by one or more blanks.

A control statement can be continued on as many cards as

necessary by terminating the operand at a comma, and by placing

a nonblank character in column 72 of the card. Continuation

must begin in column 16 of the next card. A symbol cannot be

ialit; that is, it cannot begin on one card and be continued on
e next.

Comments can be written in a utility statement, but they must be
separgfedkfrom the last parameter of the operand field by one or
more anks.

The following conventions are used in the formats to describe
the coding of the linkage editor control statements:

U Boldface type indicates the exact characters to be entered.
Such items must be entered exactly as illustrated (in
uppercase, if applicable).

U Lowercase underscored type specifies fields to be supplied
by the user.

. Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown.

. Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

. Brackets [] indicate an optional field or parameter.

] An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

° Items separated by a vertical bar (|) represent
alter:agive items. No more than one of the items may be
selected.

66 MVS/XA Linkage Editor and Loader User's Guide

AN

Q&y/

; 25\

y\‘k /

Placement Information

Linkage editor control statements are placed before, between, or

(after modules. They can be grouped, but they cannot be placed
within a module. However, specific placement restrictions may
be imposed by the nature of the functions being requested by the
cantrol statement. Any placement restrictions are noted.

Chapter 5. Specifying an Operation with Control Statements 67

ALIAS Statement

The ALIAS statement specifies additional names for the output
library member, and can also specify names of alternative entry
points. Up to 16 names can be specified on one ALIAS statement,
or separate ALIAS statements for one library member. The names
are entered in the directory of the partitioned data set in
addition to the member name.

FORMAT: The format of the ALIAS statement is:

ALIAS {symbol lexternal namel}

specifies an alternate name for the load module. When the
module is executed, the main entry point is used as the
starting point for execution.

external name
specifies a name that is defined as a control section name
or entry name in the output module. When the module is
called for execution, execution begins at the external name
referred to.

PLACEMENT: An ALIAS statement can be placed before, between, or
after object modules or other control statements. It must
precede atNAME statement used to specify the member name, if one
is present.

Notes:

1. In an overlay program, an external name specified by the
ALIAS statement must be in the root segment.

2. No more than 16 alias names can be assigned to one output
module.

3. Each alias specified for a load module is retained in the
directory entry for the module; the linkage editor does not
delete an old alias. Therefore, each alias that is specified
must be unique; assigning the same alias to more than one
load module can cause incorrect module references.

6. Obsolete alias names should be deleted from the PDS
directory using a system utility such as IEHPROGM, to avoid
future name conflicts.

5. If the replace option is in effect for the output load
module (that is, the load module built in this link-edit
does or may replace an identically named load module in the
output module library), the replace option is in effect for
each ALIAS name for the load module as well as for the
primary name.

EXAMPLE: An output module, ROUT1l, is to be assigned two
alternate entry points, CODEl and CODE2. In addition, calling
modules have been written using both ROUT1 and ROUTONE to refer
to the output module. Rather than correct the calling modules,
an alternative library member name is also assigned.

ALIAS CODE1, CODE2, ROUTONE
NAME ROUT1

Because CODEl and CODE2 are entry names in the output module,
execution begins at the point referred to when these names are
used to call the module. The modules that call the output
module with the name ROUTONE now correctly refer to ROUT]1 at its
main entry point. The names CODEl, CODE2, and ROUTONE appear in
the library directory along with ROUT1.

68 WMVS/XA Linkage Editor and Loader User's Guide

AN

NS

(

CHANGE Statement

The CHANGE statement causes an external symbol to be replaced by
the symbol in parentheses following the external symbol. The
external symbol to be changed can be a control section name, an
entry name, or an external reference. More than one such
substitution may be specified in one CHANGE statement.

FORMAT: The format of the CHANGE statement is:

CHANGE externalsvmbol (newsymbol)
[,externalsvmbol (newsymbolll...

is the control section name, entry name, or external
reference that is to be changed.

is the name to which the external symbol is to be changed.

PLACEMENT: The CHANGE control statement must be placed
immediately before either the module containing the external
symbol to be changed, or the INCLUDE control statement
specifying the module. The scope of the CHANGE statement is
across the immediately following module (object module or load
module); the END record in the immediately following object
module or the end-of-module indication in the immediately
fgltowing load module delimits the scope of the CHANGE
statement.

Notes:

1. External references from other modules to a changed control
section name or entry name remain unresolved unless further
action is taken.

2. If the external symbol specified on the CHANGE statement is
misspelled, the symbol will not be changed. Linkage editor
output, such as the cross-reference listing or module map,
can be used to verify each change.

3. Hhen a REPLACE statement that deletes a control section is
followed by a CHANGE statement with the same control section
name, unpredictable results will occur.

EXAMPLE 1: Two control sections in different modules have the
name TAXROUT. Because both modules are to be link-edited
together, one of the control section names must be changed. The
module to be changed is defined with a DD statement named
OBJMOD. The control section name could be changed as follows:

//0BJMOD DD DSNAME=TAXES, DISP=(OLD, KEEP), ...
//3YSLIN DD *

CHANGE TAXROUT(STATETAX)

INCLUDE 0BJMOD

/%

As a result, the name of control section TAXROUT in module TAXES
is changed to STATETAX.

Chapter 5. Specifying an Operation with Control Statements 69

EXAMPLE 2: A load module contains references to TAXROUT that

must now be changed to STATETAX. This module is defined with a P
DD statement named LOADMOD. The external references could be [‘
changed at the same time the control section name is changed, as N~
follows:

//0BJMOD DD DSNAME=TAXES, DISP=(OLD, DELETE),...

//LOADMOD DD DSNAME=LOADLIB,DISP=0LD,...

/7/SYSLIN DD %

CHANGE TAXROUT(STATETAX)
INCLUDE 0BJMOD

CHANGE TAXROUT(STATETAX)
INCLUDE LOADMODCINVENTRY)

/%

As a result, control section name TAXROUT in module TAXES and
:xtg;g?éTngerence TAXROUT in module INVENTRY are both changed
) .

70 MVS/XA Linkage Editor and Loader User's Guide

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its
module name for execution. An ENTRY statement should be used
whenever a module is reprocessed by the linkage editor. If more
than one ENTRY statement is encountered, the first statement
§pecif§es the main entry point; all other ENTRY statements are
ignored.

FORMAT: The format of the ENTRY statement is:

ENTRY externalname

is defined as either a control section name or an entry
name in a linkage editor input module.

PLACEMENT: An ENTRY statement can be placed before, between, or
after object modules or other control statements. It must
precede the NAME statement for the module, if one is present.

Notes:

1. In an overlay program, the first instruction to be executed
must be in the root segment.

2. The external name specified must be the name of an
instruction, not a data name, if the module is to be
executed.

%ﬁ??;LE: In the following example, the main entry point is

//LOADLIB DD DSNAME=LOADLIB,DISP=0LD, ...
//SYSLIN DD *

ENTRY INIT1

INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/%

INIT1 must be either a control section name or an entry name in
the linkage editor input. The entry point specification of
READIN is ignored.

Chapter 5. Specifying an Operation with Control Statements 71

EXPAND Statement

The EXPAND statement lengthens control sections or named common
sections by a specified number of bytes.

FORMAT: The format of an EXPAND statement is

EXPAND name (>o¢x)
[yname(xxxxl)l...

is the symbolic name of a common section or control section
whose length is to be increased.

is the decimal number of bytes to be added to the length of
a common section. The maximum is 4095 for each section
indicated. Binary zeros will be added for an expanded
control section.

The EXPAND statement is followed by a message, IEW07640, that
indicates the number of bytes added to the control section and
the offset, relative to_ the start of the control section, at
which the expans1on begins. The effective length of the
expans:on is given in hexadecimal and may be greater than the

length if, after the specified expansion, padding
bytes must be added for alignment of the next control section or
named common section.

PLACEMENT: An EXPAND statement can be placed before, between,
or after other control statements or object modules. However,
the statement must follow the module containing the control or
named common section to which it refers. If the control section
or named common section is entered as the result of an INCLUDE
statement, the EXPAND statement must immediately follow the
INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase
the length of a program beyond its own design limitations. For
example, if space is added to a control section beyond the range
of its base register addressability, that space is unusable.

EXAMPLE: 1In the following example, EXPAND statements add a
250-byte patch area (initialized to zeros) at the end of control

section CSECT1 and increase the length of named common section
COM1 by 400 bytes.

7/LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,4))
//S5YSLMOD DD DSNAME=PDSX, DISP=0LD
//SYSLIN DD DSNAME=&&LOADSET, DISP=(0OLD, PASS),
Va4 UNIT=SYSDA
7/ DD *

EXPAND CSECT1(250)

EXPAND COM1(400)

NAME MOD1(R)
/ %

72 MVS/XA Linkage Editor and Loader User's Guide

A

N

S/

IDENTIFY Statement

The IDENTIFY statement specifies any data supplied by the user
to be entered into the CSECT identification (IDR) records for a
particular control section. The statement can be used either to
supply descriptive data for a control section or to provide a
means of associating system-supplied data with executable code.

FORMAT: The format of the IDENTIFY statement is:

IDENTIFY csectname('data')l,csectname('data')]...

is the symbolic name of the control section to be
identified.

specifies up to 40 EBCDIC characters of identifying
information. The user may supply any information desired
for identification purposes.

The rules of syntax for the operand field are:

1. No blanks or characters may appear between the left
parenthesis and the leading single quotation mark nor
between the trailing single quotation mark and the right
parenthesis.

2. The data field consists of from 1 to 40 characters;
therefore, a null entry must be represented, minimally, by a
single blank.

3. Blanks may appear between the leading single quotation mark
and the trailing single quotation mark. Each blank counts
as 1 character toward the 40-character limit.

4. A single quotation mark between the leading quotation mark
and the trailing quotation mark is represented by 2
consecutive quotation marks. The pair, of quotation marks
counts as 1 character toward the 40-character limit.

5. Any EBCDIC character may appear between the leading
quotation mark and the trailing quotation mark. Each
fba(:cter counts as 1 character toward the 40-character

imit.

6. The IDENTIFY statement may be continued; however, a whole
operand must appear on a single card image and at least 1
whole operand must appear on each card image of the
continued statement.

7. If a leading quotation mark is found, all characters are
absorbed until a trailing quotation mark is found or the
G0-character limit is exhausted.

8. Blanks may not appear between the CSECT name and the left
parenthesis.

9. A blank following a left parenthesis terminates the operand
field; a blank following a comma that terminates an operand
also terminates the operand field of that card image.

PLACEMENT: An IDENTIFY statement can be placed before, between,
or after other control statements or object modules. The
IDENTIFY statement must follow the module containing the control
segtion to be identified or the INCLUDE statement specifying the
module.

Note: HWhen two or more IDENTIFY statements specify the same
CSECT name, only the last statement is effective.

Chapter 5. Specifying an Operation with Control Statements 73

EXAMPLE: In the following example, IDENTIFY statements are used

1 to identify the source level of a control section, a PTF P
| application to a control section, and the functions of several {
; control sections. NS
i
|
| 77LKED EXEC PGM=HEHWL

/7SYSPRINT DD SYSOUT=A

/775YSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,5))

//SYSLMOD DD DSNAME=LOADSET,DISP=0LD

/70LDMOD DD DSNAME=0LD.LOADSET, DISP=0LD

/7/PTFMOD DD DSNAME=PTF.OBJECT,DISP=0LD

/7/7SYSLIN DD %

(input object deck for a control section named FORT)

IDENTIFY FORT('LEVEL 03")

INCLUDE PTFMOD(CSECT4)

IDENTIFY CSECT4('PTF99999")

INCLUDE OLDMOD(PROG1)

IDENTIFY CSECT1('I/0 ROUTINE"),
CSECT2('SORT ROUTINE'),

x CSECT3("SCAN ROUTINE")
/

Execution of this example produces IDR records containing the
following identification data:

. The name of the linkage editor that produced the load
maodule, the linkage editor version and modification level,
and the date of the current linkage editor processing of the
module. This information is provided automatically.

. User-supplied data describing the functions of several E\m/
control sections in the module, as indicated on the third
IDENTIFY statement.

. If the language translator used supports IDR, the
identification records produced by the linkage editor also
contain the name of the translator that produced the object
module, its version and modification level, and the data of
compilation.

The IDR records created by the linkage editor can be referenced
by using the LISTIDR function of the service aid program
AMBLIST. For instructions on how to use AMBLIST, see

79 MVS/XA Linkage Editor and Loader User's Guide

INCLUDE Statement

The INCLUDE statement specifies sequential data sets and/or
libraries that are to be sources of additional input for the
linkage editor. INCLUDE statements are processed in the order
in which they appear in the input. However, the sequence of
data sets and modules within the output load module does not
necessarily follow the order of the INCLUDE statements. If the
order of the CSECTs within the module is significant, the user
must specify the desired sequence by using order cards.

FORMAT: The format of the INCLUDE statement is:

INCLUDE ddnamel (membernamefl,...1)1
[’d_dnﬂmg[(mwt'o.ol)l]ooo

ddname
is the name of a DD statement that describes either a
sequential or a partitioned data set to be used as
additional input to the linkage editor. For a sequential
data set, ddname is all that must be specified. For a
partitioned data set, at least one member name must also be
specified.

is the name of or an alias for a member of the library
defined in the specified DD statement. The membername must
not be specified again on the DD statement.

PLACEMENT: An INCLUDE statement can usually be placed before,
between, or after object modules or other control statements.
When link-editing the nucleus, however, any ORDER statements
used should precede the INCLUDE statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other
control statements are processed.

EXAMPLE 1: 1In the following example, an INCLUDE statement
specifies two data sets to be the input to the linkage editor:

/70BJMOD DD DSNAME=&&0BJECT, DISP=(OLD, DELETE)
7//LOADMOD DD DSNAME=LOADLIB,DISP=SHR, ...
77SYSLIN DD %

/xINCLUDE 0BJMOD, LOADMOD(TESTMOD, READMOD)

Note that a DD statement must be supplied for every ddname
specified in an INCLUDE statement.

EXAMPLE 2: Two separate INCLUDE statements could have been used
in the preceding example, as follows:

INCLUDE 0OBJMOD
INCLUDE LOADMODC(TESTMOD,READMOD)

Chapter 5. Specifying an Operation with Control Statements 75

INSERT Statement

The INSERT statement repositions a control section from its
position in the input sequence to a segment in an overlay
structure. However, the sequence of control sections within a
segment is not necessarily the order of the INSERT statements.

If a symbol specified in the operand field of an INSERT
statement is not present in the external symbol dictionary, it
is entered as an external reference. If the reference has not
been resolved at the end of primary input processing, the
automatic library-call mechanism attempts to resolve it.

FORMAT: The format of the INSERT statement is:

INSERT csectnames...

is the name of the control section to be repositioned. A
particular control section can appear only once within a
load module.

PLACEMENT: The INSERT statement must be placed in the input
sequence following the OVERLAY statement that specifies the
origin of the segment in which the control section is to be
positioned. If the control section is to be positioned in the
root segment, the INSERT statement must be placed before the
first OVERLAY statement.

Note: Control sections that are positioned in a segment must
co?tain all address constants to be used during execution
unless:

J ’Th:hA-type address constants are located in a segment in the
path.

. The V-type address constants used to pass control to another
segment are located in the path. If an exclusive reference
is mad:, the V-type address constant must be in a common
segment.

. The V-type address constants used with the SEGLD and SEGHT
macro instructions are located in the segment.

EXAMPLE: The following INSERT (and OVERLAY) statements specify
the overlay structure shown in Figure 23 on page 77:

’7 EXEC PGM=HEWL,PARM="0VLY, XREF,LIST"
//SYSLIN DD %

INSERT CSA

INSERT CSB

OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

/%

76 MVS/XA Linkage Editor and Loader User's Guide

AN

g

LIBRARY Statement

ALPHA

CSE

‘Figure 23. Overlay Structure for INSERT Statement Example

The LIBRARY statement can be used to specify:

Additional automatic call libraries, which contain modules
used to resolve external references found in the program.

Restricted no-call function: External references that are
not to be resolved by the automatic library call mechanism
during the current linkage editor job step.

Never-call function: External references that are not to be
resolved by the automatic library call mechanism during any
linkage editor job step.

Combinations of these functions can be written in the same
LIBRARY statement.

FORMAT: The format of the LIBRARY statement is:

LIBRARY {ddnamg(m_mh_cnamg[;...])

*(_xignn_a.ch_f_e_ngng.e 2eselldreee

ddname

is the name of a DD statement that defines a library.

is the name of or an alias for a member of the specified
library. Only those members specified are used to resolve
references.

Chapter 5. Specifying an Operation with Control Statements 77

is an external reference that may be unresolved after
primary input processing. The external reference is not to
be resolved by automatic library call.

indicates that the external reference is never to be
resolved; if the X (asterisk) is missing, the reference is
left unresolved only during the current linkage editor run.

PLACEMENT: A LIBRARY statement can be placed before, between,
or after object modules or other control statements.

Notes:

1. If the unresolved external symbol is not a member name in
the library specified, the external reference remains
unresolved unless defined in another input module.

2. If the NCAL option is specified, the LIBRARY statement
cannot be used to specify additional call libraries.

3. Members called by automatic library call are placed in the
root segment of an overlay program, unless they are
repositioned with an INSERT statement.

4. Specifying an external reference for restricted no-call or
never—-call by means of the LIBRARY statement prevents the
external reference from being resolved by automatic
inclusion of the necessary module from an automatic call
library; it does not prevent the external reference from
being resolved if the module necessary to resolve the
reference is specifically included or is included as part of
an input module.

EXAMPLE: The following example shows all three uses of the
LIBRARY statement:

’7 EXEC PGM=HEWL,PARM="'LET, XREF,LIST"
//TESTLIB DD DSNAME=TEST, DISP=SHR, . . .
7/SYSLIN DD %

LIBRARY TESTLIB(DATE,TIME), (FICACOMP),*(STATETAX)
/%

As a result, members DATE and TIME from the additional library
TESTLIB are used to resolve external references. FICACOMP and
STATETAX are not resolved; however, because the references
remain unresolved, the LET option must be specified on the EXEC
statement if the module is to be marked executable. In
addition, STATETAX will not be resolved in any subsequent
reprocessing by the linkage editor.

78 MVS/XA Linkage Edi‘~r and Loader User's Guide

EN

MODE Statement

The MODE statement specifies the residence mode for the output
load module and/or the addressing mode for all the entry points
into the load module (the main entry point, its true aliases,
and all the alternate entry points).

FORMAT: The format of the MODE statement is as follows:

MODE modespec(,modespec)

is either of the following:

. The designation of an addressing mode for the output load
module by one of the following:

- AMODE(24)
= AMODE(31)
= AMODECANY)

U The designation of residence mode for the output load module
by one of the following:

= RMODE(24)
= RMODECANY)

PLACEMENT: The MODE control statement can be placed before,
between, or after object modules or other control statements.
It must precede the NAME statement for the module, if one is
present.

Notes:

1. The residence mode assigned by the MODE control statement
overrides the residence mode accumulated from the input
control sections and private code. The residence mode
assigned by the MODE control statement also overrides the
residence mode assigned by the RMODE parameter in the PARM
field of the EXEC statement.

2. The addressing mode assigned by the MODE control statement
overrides the separate addressing modes found in the ESD
data for the control sections within which the entry points
are located. The addressing mode assigned by the MODE
control statement overrides the addressing mode assigned by
the AMODE parameter in the PARM field of the EXEC statement.

3. If more than one MODE control statement is encountered in
the link-edit of a load module, the last valid mode
specification is used. Likewise, if a mode specification
occurs more than once within a MODE statement, the last
valid mode specification is used.

Chapter 5. Specifying an Operation with Control Statements 79

If only one value, either AMODE or RMODE, is specified in
the MODE control statement, the other value is implied

according to the following table: (f\\

! : o
} Value Specified | Value Implied
| AMODE=26 RMODE=26

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see below

RMODE=ANY AMODE=31

If only an RMODE of 24 is specified, no overriding AMODE
value is assigned; instead, the AMODE value in the ESD data
for the main entry point, a true alias, or an alternate
entry point is used in generating its respective directory
entry.

In generating a directory entry for either the main entry
point, a true alias, or an alternate entry point, the
linkage editor validates the combination of the AMODE value
and the RMODE value, as specified by the user in the MODE
control statement(s), according to the table below:

RMODE=24 RMODE=ANY

AMODE=26 valid invalid
AMODE=31 valid valid
AMODE=ANY | valid invalid e

If the AMODE/RMODE combination resulting from the MODE
control statement(s) is invalid, an error message is issued
and the linkage editor ignores the MODE control statement(s)
as the source of AMODE/RMODE data.

EXAMPLE: In the following example, an output load module, named

NEWMOD, is created; it is given a true alias of TESTMOD; the
residence mode for the load module is ANY;
for both the main entry point,

TESTMOD, is 31.

NEWMOD,

the addressing mode
and the true alias,

//SYSLMOD DD DSN=TESTLOAD, DISP=MOD,...
/7/SYSLIN DD x

MODE AMODE(31),RMODECANY)

ALIAS TESTMOD

NAME NEWMOD
/7%

80 MVS/XA Linkage Editor and Loader User's Guide

NS

NAME Statement

‘ The NAME statement specifies the name of the load module created
from the preceding input modules, and serves as a delimiter for
input to the load module. As a delimiter, the NAME statement
allows multiple load module processing in one linkage editor job
step. The NAME statement can also indicate that the load module
Igglaces an identically named module in the output module

ibrary.

FORMAT: The format of the NAME statement is:

NAME membernamel (R)1

is the name to be assigned to the load module that is
created from the preceding input modules.

(R)
indicates that this load module replaces an identically
named module in the output module library. If the module
is not a replacement, the parenthesized value (R) should
not be specified.

PLACEMENT: The NAME statement is placed after the last input
moguie or control statement that is to be used for the output
module.

Notes:
1. Any ALIAS statement used must precede the NAME statement.

2. A NAME statement found in a data set other than the primary
(;» input data set is invalid. The statement is ignored.

EXAMPLE: In the following example, two load modules, RDMOD and
WRTMOD, are produced by the linkage editor in one job step:

//SYSLMOD DD DSNAME=AUXMODS, DISP=MOD, ...
//NEWMOD DD DSNAME=&&WRTMOD, DISP=0LD
//SYSLIN gg DSNAME=&&RDMOD, DISP=0LD

/77 *

NAME RDMOD(R)

INCLUDE NEWMOD

NAME WRTMOD
/%

As a result, the first module is named RDMOD and replaces an
identically named module in the output module library AUXMODS;
the second module is named WRTMOD and is added to the library.

Chapter 5. Specifying an Operation with Control Statements 81

Il

ORDER Statement

The ORDER statement indicates the sequence in which control (3
sections or named common areas appear in the output load module. W
The control sections or named common areas appear in the
sequence in which they are specified on the ORDER statement.
When multiple ORDER statements are used, their sequence further
determines the sequence of the control sections or named common
areas in the output load module; those named on the first
statement appear first, and so forth.

FORMAT: The format of the ORDER statement is:

ORDER {common area namel(P)llcsectnamel(P}1},...

is the name of the common area to be sequenced.

is the name of the control section to be sequenced.

(P)
indicates that the starting address of the control section
or named common area is to be on a page boundary within the
load module. The control sections or common areas are
aligned on 4K-byte page boundaries.

PLACEMENT: An ORDER statement can usually be placed before,
between, or after object modules or other control statements.
When link-editing the nucleus, however, any ORDER statements
used should precede the INCLUDE statements.

Notes:

1. A control section or common area can be named on only one
ORDER statement. If the same name is used more than once, ~.
except when it is the last operand on one ORDER statement
and the first operand on the next, the name is ignored, as
is the balance of the control statement on which it appears.

2. The control sections and common areas named as operands can
appear in either the primary input or the automatic call
library, or both.

3. If a control section or a named common area is changed by a
CHANGE or REPLACE control statement and sequencing is
desired, specify the new name on the ORDER statement. The
ORDER statement refers to the control section by its new
name.

EXAMPLE: In this example, the control sections in the load
module LDMOD are arranged by the linkage editor according to the
sequence specified on ORDER statements. The page boundary
alignments and the control section sequence made as a result of
these statements are shown in Figure 24 on page 83. Assume each
control section is 1K byte in length.

82 MVS/XA Linkage Editor and Loader User's Guide

JCL and Control Statements

//
//

/*

SYSLMOD
SYSLIN
ORDER
ORDER
ORDER
INCLUDE

DD DSNAME=PVTLIB,DISP=OLD,...
DD *

ROOTSEG(P) ,MAINSEG,SEGl,SEG2
SEG3(P) ,ENTRY1

FSTPART, SESECTA, SESECTB (P)
SYSLMOD (LDMOD)

Figure 24. Output Load Module for ORDER Statement Example.

name PART1l is changed by a CHANGE statement to

Output Load Module

LDMOD

oK ROOTSEG

MAINSEG

SEG1

SEG2

4K
SEG3

ENTRY1

FSTPART

SESECTA

8K
SESECTB

The control section
FSTPART. The ORDER

statement refers to the control section by its new nanme.

Chapter 5. Specifying an Operation with Control Statements 83

OVERLAY Statement

The OVERLAY statement indicates either the beginning of an AN
overlay segment, or of an overlay region. Because a segment or L
a region is not named, the programmer identifies it by giving s

its origin (or load point) a symbolic name. This name is then
used on an OVERLAY statement to signify the start of a new
segment or region.

FORMAT: The format of the OVERLAY statement is:

OVERLAY symbol (REGION)

is the symbolic name assigned to the origin of a segment.
This symbol is not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

PLACEMENT: The OVERLAY statement must precede the first module
of the next segment, the INCLUDE statement specifying the first
module of the segment, or the INSERT statement specifying the
control sections to be positioned in the segment.

Notes:

1. The OVLY option must be specified on the EXEC statement when
OVERLAY statements are to be used.

2. The sequence of OVERLAY statements should reflect the order
of the segments in the overlay structure from top to bottom,
left to right, and region by region.
3. No OVERLAY statement should precede the root segment. -

EXAMPLE: The following OVERLAY and INSERT statements specify N
the overlay structure in Figure 25 on page 85

7/ EXEC PGM=HEWL, PARM=T'QVLY, XREF,LIST®

77SYSLIN DD DSNAME=&&0BJ, . .
77 DD %*
INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI
/%

864 MVS/XA Linkage Editor and Loader User's Guide

REGION 1 T
CTA
] ONE]
CSB CSE
[TWO } (-J-IS-F
csc CSD L
1 1
Tt T T T T T T T T T MR T T T T
REGION 2 CSH csl
L 1

Figure 25. Overlay Structure for OVERLAY Statement Example

Chapter 5. Specifying an Operation with Control Statements 85

PAGE Statement

The PAGE statement aligns a control section or named common area
on a 4K-byte page boundary in the load module.

FORMAT: The format of the PAGE statement is:

PAGE {common area namelcsectname},...

is the name of the common area to be aligned on a page
boundary.

is the name of the control section to be aligned on a page
boundary.

PLACEMENT: The PAGE statement can be placed before, between, or
after object modules or other control statements.

Notes:

1. If a control section or a named common area is changed by a
CHANGE or REPLACE control statement, and page alignment is
wanted, specify the new name in the PAGE statement.

2. The control sections and common areas named as operands can
appear in either the primary input or the automatic call
library, or both.

EXAMPLE: In this example, the control sections in the load
module LDMOD are aligned on page boundaries as specified in the
following PAGE statement:

PAGE ALIGN, BNDRY4K, EIGHTK
The job control statements and linkage editor control statements

as well as the output load module are shown in Figure 26 on
page 87. Assume each control section is 3K bytes in length.

86 MVS/XA Linkage Editor and Loader User's Guide

o

JCL And Control Statements Output Load Module

//LKED EXEC PGM=HEWL,PARM=,... LDMOD

.

. 0K
ALIGN

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,...

//SYSLIN DD *
PAGE ALIGN,BNDRY4K,EIGHTK
INCLUDE SYSLMOD (LDMOD)

/*

Empty Space
Due to Boundary
Alignment

4K
BNDRY4K

Empty Space
Due to Boundary
Alignment

8K

EIGHTK

Figure 26. Output Load Module for PAGE Statement Example

Chapter 5. Specifying an Operation with Control Statements 87

REPLACE Statement

The REPLACE statement specifies one or more of the following: (KW\

h
. The replacement of one control section with another

U The deletion of a control section
¢ The deletion of an entry name

When a control section is replaced, all references within the
input module to the old control section are changed to the new
control section. Any external references to the old control
section from other modules are unresolved unless changed.

When a control section is deleted, the control section name is
also deleted from the external symbol dictionary, unless
references are made to the control section from within the input
module. If there are any such references, the control section
name is changed to an external reference. External references
from other modules to a deleted control section also remain
unresolved.

When deleting an entry name, if there are any references to it
within the same input module, the entry name is changed to an
external reference.

FORMAT: The format of the REPLACE statement is:

REPLACE f{csectpame-1l(csectname=2)1,entrvnamel

is the name of a control sect1on If only gsgginamg_l 1s

used, the control section is deleted; if

also :sed, the first control section is replaced w1th the \ ,
second. NS

is the entry name to be deleted.

PLACEMENT: The REPLACE statement must immediately precede
either (1) the module containing the control section or entry
name to be replaced or deleted, or (2) the INCLUDE statement
specifying the module. The scope of the REPLACE statement is
across the immediately following module (object module or load
module). The END record in the immediately following object
module or the end-of-module indication in the load module
terminates the action of the REPLACE statement. If the REPLACE
statement is the last control statement in the SYSLIN data set,
and there are unresolved external references to be resolved from
SYSLIB, the REPLACE function operates on the first module from
SYSLIB by an AUTO CALL.

Notes:

1. Unresolved external references are not deleted from the
output module even though a deleted control section contains
the only reference to a symbol.

2. HWhen some but not all control sections of a separately
assembled module are to be replaced, A-type address
constants that refer to a deleted symbol will be incorrectly
resolved, unless the entry name is at the same displacement
fro:_the origin in both the old and the new control
sections.

3. If no INCLUDE statement follows the REPLACE statement, one
module may be left out of AUTO CALL. Message 1EWO132 is
issued. {

4. If the control section identified as csectname-]1 (specified
on the REPLACE statement) is misspelled, the control section

88 MVS/XA Linkage Editor and Loader User's Guide

will not be replaced or deleted. Linkage editor output,
such as the cross-reference listing and module map, can be
used to verify each change.

EXAMPLE: In the following example, assume that control section
INT7 is in member LOANCOMP and that control section INT8, which
is to replace INT7, is in data set &&NEWINT. Also assume that
control section PRIME in member LOANCOMP is to be deleted.

//NEWMOD DD DSNAME=&&NEWINT, DISP=(0LD, DELETE)
//0LDMOD DD DSNAME=PVTLIB,DISP=0LD,...
//SYSLIN DD *

ENTRY MAINENT
INCLUDE NEHWMOD
REPLACE INT7(INT8),PRIME

INCLUDE OLDMOD(CLOANCOMP)
7 %

As a result, INT7 is removed from the input module described by
the OLDMOD DD statement, and INT8 replaces INT7. All references
to INT7 in the input module now refer to INT8. Any references
to INT7 from other modules remain unresolved. If there are no
references to PRIME in LOANCOMP, control section PRIME is
deleted; the control section name is also deleted from the
external symbol dictionary.

Chapter 5. Specifying an Operation with Control Statements 89

SETCODE Statement

The SETCODE statement assigns the specified authorization code
to the output load module. The authorization code is placed in
the directory entry for the output load module.

FORMAT: The format of the SETCODE statement is as follows:

SETCODE ‘AC(authorizationcode)

is 1 to 3 decimal digits specifying a value from 0 to 255.

PLACEMENT: A SETCODE statement can be placed before, between,
or after object modules or other control statements. It must
precede the NAME statement for the module, if one is present.

Notes:

1. The authorization code assigned by the SETCODE statement
overrides the authorization code assigned by the AC
parameter in the PARM field of the EXEC statement.

2. If more than one SETCODE statement is encountered in the
link-edit of a load module, the last valid authorization
code assigned is used.

3. The operand 'AC()' results in an authorization code of
zero.

EXAMPLE: In the following example, an authorization code of 1
is assigned to the output load module MOD1.

//LKED EXEC PGM=HEWL
7//SYSPRINT DD SYSQUT=A
7/5YSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//3YSLMOD DD DSNAME=SYS1.LINKLIB,DISP=0LD
//SYSLIN DD DSNAME=&8&LOADSET, DISP=(OLD,PASS)
124 UNIT=SYSDA
/4 DD *

SETCODE AC(1)

NAME MOD1(R)
/%

90 MVS/XA Linkage Editor and Loader User's Guide

A

45\,,\1

/

kS

SETSSI Statement

(.. The SETSSI statement specifies hexadecimal information to be
] placed in the system status index of the directory entry for the
output module.

FORMAT: The format of the SETSSI statement is:

SETSSI 2200000

XXXXXXXX
represents 8 hexadecimal characters (0 through 9 and A
through F) to be placed in the 4-byte system status index
of the output module library directory entry.

PLACEMENT: The SETSSI statement can be placed before, between,
or after object modules or other control statements. If one is
present, it must precede the NAME statement for the module.

Note: A SETSSI statement must be provided whenever an
IBM-supplied load module is reprocessed by the linkage editor.
If the st:tement is omitted, no system status index information
is present.

Chapter 5. Specifying an Operation with Control Statements 91

The linkage editor performs editing functions either
automatically or as directed by control statements. These
editing functions provide for program modification on a control
section basis. That is, they make it possible to modify a
control section within an object or load module, without
recompiling the entire source program.

The editing functions can modify either an entire control
section or external symbols within a control section. Control
sections can be deleted, replaced, or arranged in sequence;
external symbols can be deleted or changed. (External symbols
are control section names, entry names, external references,
named common areas, or pseudoregisters.)

Whatever function is used, it is requested in reference to an
input module. The resulting output load module reflects the
request. That is, no actual change, deletion, or replacement is
made to an input module. The requested alterations are used to
control linkage editor processing (Figure 27).

Input Modules JCL and Control Statements Output Load Module
MODAI1
CSECTA MODA1A2
//SYSLMOD DD DSNAME=NEWLIB(MODA1A2), ... CSECTI
J //MODATWO DD DSNAME=MODA?2, ...
//SYSLIN DD DSNAME=MODAT, ...
ENTRY CSECT3
CSECTI REPLACE CSECT2(CSECTA)
’ INCLUDE MODATWO CSECT3
CSECT?2 \
CSECT3
/

Figure 27. Editing a Module

Editing Conventions

In requesting editing functions, certain conventions should be
followed to ensure that the specified modification is processed
correctly. These conventions concern the following items:

. Entry points for the new module

. Placement of control statements

. Identical old and new symbols

92 MVS/XA Linkage Editor and Loader User's Guide

y:
\

ENTRY POINTS: Each time the linkage editor reprocesses a load
module, the entry point for the output module should be
specified in one of two ways:

o Through an ENTRY control statement.

L Through the assembler-produced END statement of an input
object module, if one is present. If the entry point
specified in the assembler-produced END statement is not
defined in the object module, the entry name must be defined
as an external reference.

The entry point assigned must be defined as an external name
within the resulting load module.

PLACEMENT OF CONTROL STATEMENTS: The control statement (such as
CHANGE or REPLACE) used to specify an editing function must
precede either the module to be modified, or the INCLUDE
statement that specifies the module. If an INCLUDE statement
specifies several modules, the CHANGE or REPLACE statement
applies only to the first module included.

IDENTICAL OLD AND NEW SYMBOLS: The same symbol should not
appear as both an old external symbol and a new external symbol
in one linkage editor run. If a control section is to be
replaced by another control section with the same name, the
linkage editor handles this automatically (see "Automatic
Replacement™ on page 96).

Chapter 6. Editing a Control Section 93

CHANGING EXTERNAL SYMBOLS

The linkage editor can be directed to change an external symbol I
to a new symbol while processing an input module. External o

references and address constants within the module automatically
refer to the new symbol. External references from other modules
to a changed external symbol must be changed with separate
control statements.

Both the old and the new symbols are specified on either a
CHANGE control statement or a REPLACE control statement. The
use of the old symbol within the module determines whether the
new symbol becomes a control section name, an entry name, or an
external reference. The old symbol appears first, followed by
the new symbol in parentheses.

The CHANGE control statement changes a control section name, an
entry name, or an external reference. The REPLACE statement
changes or deletes an entry name; if the symbols on a REPLACE
statement are control section names, the entire control section
is regé?ced or deleted (see "Replacing Control Sections™ on
page .

The CHANGE statement must immediately precede either the input
module that contains the external symbol to be changed, or the
INCLUDE statement that specifies the input module. The scope of
the CHANGE statement is across the immediately following module
(object module or load module). The END record in the
immediately following object module or the end-of-module
indication in the load module terminates the action of the
CHANGE statement.

In the following example, assume that SUBONE is defined as an
external reference in the input load module. A CHANGE statement
is usgg)to change the external reference to NEWMOD (Figure 28 on
page

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=3350,
Va4 VOLUME=SER=PVT002
7/SYSLIN DD *
ENTRY BEGIN
CHANGE SUBONE(NEWMOD)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/%

I

\

94 MVS/XA Linkage Editor and Loader User's Guide

J

«

Input Module JCL and Control Statements Output Load Module
MAINROUT N MAINROUT
BEGIN ENTRY MAINEP ENTRY
CALL SUBONE //SYSLMOD DD DSNAME=PVTLIB, . .. CALL NEWMOD
. //SYSLIN DD * :
. ENTRY MAINEP .
CALL SUBONE N CHANGE SUBONE(NEWMOD), BEGIN(MAINEP) | CALL NEWMOD
INCLUDE SYSLMOD(MAINROUT) -
NAME MAINROUT(R)
J*
CALLéUBONE CALLNEWMOD
J
Figure 28. Changing an External Reference and an Entry Point
In the load module MAINROUT, every reference to SUBONE is
changed to NEWMOD. Note also that the INCLUDE statement
specifies a ddname of SYSLMOD. This allows a library to be used
both as input and as the output module library.
More than one change can be specified on the same control
statement. If, in the same example, the entry point is also to
be changed, the two changes can be specified at once (see
Figure 28).
//7SYSLMOD DD DSNAME=PVTLIB, DISP=0LD,UNIT=3350,
Vo4 VOLUME=SER=PVT002
//7SYSLIN DD *
ENTRY MAINEP
CHANGE SUBONE(NEWMOD) , BEGINC(MAINEP)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
7 %
The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point, because this is
the source of the name that is entered in the library directory
entry for the load module's entry point.
REPLACING CONTROL SECTIONS

An entire control section can be replaced with a new control
section. Control sections can be replaced either automatically
or with a REPLACE control statement. Automatic replacement acts
upon all input modules; the REPLACE statement acts only upon the
module that follows it.

Chapter 6. Editing a Control Section 95

Notes:

1. Any CSECT identification (IDR) records associated with a 4(o

particular control section are also replaced. &k//
2. (For Assembler language programmers only.) When some but

not all control sections of a separately assembled module

are to be replaced, A-type address constants that refer to a

deleted symbol will be incorrectly resolved unless the entry

name is at the same displacement from the origin in both the

old and the new control section. If all control sections of

a sgparately assembled module are replaced, no restrictions

apply.

AUTOMATIC REPLACEMENT

Example 1

Control sections are automatically replaced if both the old and
the new control section have the same name. The first of the
identically named control sections processed by the linkage
editor is made a part of the output module. All subsequent
identically named control sections are ignored; external
references to identically named control sections are resolved
with respect to the first one processed. Therefore, to cause
automatic replacement, the new control section must have the
same name as the control section to be replaced, and must be
processed before the old cantrol section.

Caution: Automatic replacement applies to duplicate control’
section names only; if duplicate entry points exist in control
sections with different names, a REPLACE control statement must
be used to specify the entry point name. If a control section
being automatically replaced contains unresolved external
references and the control section replacing it does not, the
parameter NCAL must be specified or the unresolved external
references must be explicitly deleted using the REPLACE
statement or marked for restricted no-call or never-call using
the LIBRARY statement; otherwise, the unresolved external
reference is retained.

NOTE ON OVERLAY PROGRAMS: MWhen identically named control
sections appear in modules being placed in an overlay structure,
the second and any subsequent control sections with that name
are ignored. This occurs whether the modules are in segments in
the same path or in exclusive segments. Resolution of external
references may therefore cause invalid exclusive references.
Invalid exclusive references cause the linkage editor to mark
the output module not executable unless the exclusive call
(XCAL) option is specified on the EXEC statement (see "Chapter
4. Specifying JCL to Run a Linkage Editor Job™ on page 36).

An object module deck contains two control sections, READ and
WRITE; member INOUT of library PVTLIB also contains a control
section HRITE.

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=3350,
77 VOLUME=SER=PVT002
//SYSLIN DD *

Object Deck for READ
Object Deck for WRITE

ENTRY READIN

INCLUDE SYSLMODCINOUT)

NAME INOUT(R) -
/% £

96 MVS/XA Linkage Editor and Loader User's Guide

Example 2

The output load module contains the new READ control section,

the new HWRITE control section (replacing the old WRITE control

:ectigaoﬁ? member INOUT), and all remaining control sections
rom .

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job
step in the &&0BJECT data set. Then, by including the load
module PAYROLL (a member of the partitioned data set LIB00l) as
well as the output of the language translator, the modified
control sections automatically replace the identically named
control sections (Figure 29 on page 98)

//SYSLMOD DD DSNAME=LIB002(PAYROLL),DISP=0LD,
/77 UNIT=3350,VOLUME=SER=LIB002
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//0LDLOAD DD DSNAME=LIBO001,DISP=(OLD,DELETE),
7/ UNIT=3350, VOLUME=SER=LIB001
7//SYSLIN DD DSNAME=&&O0BJECT,DISP=(0OLD, DELETE)

77 DD x
INCLUDE OLDLOAD(PAYROLL)
ENTRY INIT1

7%

Chapter 6. Editing a Control Section 97

\k 7
Input Modules JCL and Control Statements Output Load Module -
&&OBJECT)
FICA
(new) LIB002
(Payroll)
STATETAX
(new) . FICA
< . (new)
LIB0O1 °
(Payroll) //SYSLMOD DD DSNAME=LIBO02(PAYROLL),...|STATETAX
) //OLDLOAD DD DSNAME=LIBO0OL,... (new)
MAINROUT //SYSLIN DD DSNAME=&&OBJECT,...
// DD * MAINROUT
INCLUDE OLDLOAD (PAYROLL)
OVERTIME ENTRY INITL
N OVERTIME
/
FICA
(old) FEDTAX
STATETAX
(old) ILLACC
FEDTAX ;
VAKTION “/ ™
ILLACC e
VAKTION W/
"_\:/F~v-v""} -
Figure 29. Automatic Replacement of Control Sections
The output module contains the modified FICA and STATETAX
control sections and the rest of the control sections from the
old PAYROLL module. The main entry point is INIT1l, and the
output module is placed in a library named LIB002. The COBOL
automatic call library is used to resolve any external
references that may be unresolved after the SYSLIN data sets are
processed.
REPLACE STATEMENT
The REPLACE statement is used to replace control sections when
the old and the new control sections have different names. The
name of the old control section appears first, followed by the
name of the new control section in parentheses. The REPLACE £
statement must precede either the input module that contains the T
control section to be replaced, or the INCLUDE statement that K

specifies the input module. The scope of the REPLACE statement
is across the immediately following module (object module or

98 MVS/XA Linkage Editor and Loader User's Guide

load module). The END record in the immediately following
object module or the end-of-module indication in the load module
terminates the action of the REPLACE statement.

An external reference to the old control section from within the
same input module is resolved to the new control section. An
external reference to the old control section from any other
module becomes an unresolved external reference unless one of
the following occurs:

o The external reference to the old control section is changed
t: :he n:w control section with a separate CHANGE control
statement.

o The same entry name appears in the new control section or in
some other control section in the linkage editor input.

In the following example, the REPLACE statement is used to
replace one control section with another of a different name.
Assume that the old control section SEARCH is in library member
TBLESRCH, and that the new control section BINSRCH is in the
data set &&0BJECT, which was passed from a previous step
(Figure 30 on page 100).

//SYSLMOD DD DSNAME=SRCHRTN, DISP=0LD,UNIT=3350,
V24 VOLUME=SER=SRCHLIB
//SYSLIN gg DSNAME=&&0BJECT, DISP=(0LD, DELETE)
/77 3

ENTRY READIN

REPLACE SEARCH(BINSRCH)
INCLUDE SYSLMOD(TBLESRCH)
NAME TBLESRCH(R)

/%

Chapter 6. Editing a Control Section 99

Input Modules JCL and Control Statements Output Load Module
&&OBJECT .
BINSRCH //SYSLMOD DD DSNAME=SRCHRTN....
—>» //SYSLIN DD DSNAME=&&0OBJECT. ...
// DD * TBLESRCH
ENTRY READIN
REPLACE SEARCH (BINSEARCH) READIN ENTRY
r—)-INCLUDE SYSLMOD (TBLESRCH)
TBLESRCH N NAME TBLESRCH (R) :
/* CALL BINSRCH
READIN ENTRY .
. BINSRCH
CALL SEARCH
. -
SEARCH
S
//"/ ™
Figure 30. Replacing a Control Section with the REPLACE Control Statement '
“

The output module contains BINSRCH instead of SEARCH; any
references to SEARCH within the module refer to BINSRCH. Any
external references to SEARCH from other modules will not be
resolved to BINSRCH.

DELETING A CONTROL SECTION OR ENTRY NAME

The REPLACE statement can be used to delete a control section or
an entry name. The REPLACE statement must immediately precede
either the module that contains the control section or entry
name to be deleted or the INCLUDE statement that specifies the
module. Only one symbol appears on the REPLACE statement; the
appropriate deletion is made depending on how the symbol is
defined in the module.

If the symbol is a control section name, the entire control
section is deleted. The control section name is deleted from
the external symbol dictionary only if no address constants
refer to the name from within the same input module. If an
address constant does refer to it, the control section name is
changed to an external record.

The preceding is also true of an entry name to be deleted. Any
references to it from within the input module cause the entry
name to be changed to an external reference.

These editor-supplied external references, unless resolved with
other input modules, cause the automatic library call mechanism «
to attempt to resolve them. Also, the deletion of a control (%
section or an entry name may cause external references from \&w/
other input modules to be unresolved. Either condition can

cause the output load module to be marked not executable.

A\\

100 MVS/XA Linkage Editor and Loader User's Guide

If a deleted control section contains an unresolved external
reference, the reference remains.

If a REPLACE statement, used to delete a CSECT, is the last
control statement and there are external references to be
resolved from SYSLIB, the delete request operates on the first
module from SYSLIB and deletes it. The external reference
remains unresolved.

Note: MWhen a control section is deleted, any CSECT
idfntification data associated with that control section is also
deleted. '

In the following example, control section CODER is to be deleted
(Figure 31).

77/SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=3350,
/

/ VOLUME=SER=PVT002
7/SYSLIN DD *

ENTRY START1

REPLACE CODER

INCLUDE SYSLMOD(CODEROUT)

NAME CODEROUT(R)
/%

Input Module JCL and Control Statements Output Load Module
\
CODEROUT . CODEROUT
//SYSLMOD DD DSNAME=PVTLIB, ...
ENCODE //SYSLIN DD * ENCODE
ENTRY START1
REPLACE CODER
CODER INCLUDE SYSLMOD(CODEROUT)
}——b- NAME CODEROUT(R) DECODE
/*
DECODF
J
Figure 31. Deleting a Control Section

The control section CODER is deleted. If no address constants
refer to CODER from other control sections in the module, the
control section name is also deleted. If address constants

refer to CODER, the name is retained as an external reference.

Chapter 6. Editing a Control Section 101

ORDERING CONTROL SECTIONS OR NAMED COMMON AREAS

The sequence of control sections or named common areas in an
o:t:ut lgad module can be specified by using the ORDER control
statement.

Individual control sections or named common areas are arranged
in the output load module according to the sequence in which
they appear on the ORDER control statement. Multiple ORDER
control statements can be used in a job step. The sequence of
the ORDER statements determines the sequence of the control
sections or named common areas in the load module.

Any control sections or named common areas that are not
specified on ORDER statements appear last in the output load
module. If a control section or named common area is changed by
a CHANGE or REPLACE control statement, the new name must be used
on the ORDER statement.

In the following example, ORDER statements are used to specify
the sequence of five of the six control sections in an output
load module. A REPLACE statement is used to replace the old
control section, SESECTA, with the new control section, CSECTA,
from the data set &&0BJECT, which was passed from a previous
step. Assume that the control sections to be ordered are found
in library member MAINROOT (Figure 32 on page 103).

//SYSLMOD pD DSNAME=PVTLIB,DISP=0LD,
/77 UNIT=3350, VOLUME=SER=PVT002
//SYSLIN gg DSNAME=&&0BJECT, DISP=(0LD, DELETE)
/77 x

ORDER MAINEP, SEGMT1,SEG2

REPLACE SESECTA(CSECTA)

ORDER CSECTA,CSECTB

INCLUDE SYSLMOD(MAINROOT)

NAME MAINROOT
/%

102 MVS/XA Linkage Editor and Loader User's Guide

(- Input Modules JCL and Control Statements Output Load Module

&&OBJECT

MAINROOT
CSECTA 0K
MAINEP
// EXEC PGM=HEWL
SEGMTI1
MAINROOT .
CSECTB . SEG2
//SYSLMOD DD DSNAME=PVTLIB, ...
//SYSLIN DD DSNAME=&&0OBJECT, ...
SESECTA // DD * CSECTA
ORDER MAINEP (P) ,SEGMT1,SEG2
MAINEP REPLACE SESECTA (CSECTA) CSECTE
ORDER CSECTA,CSECTA,CSECTB (P)
INCLUDE SYSLMOD (MAINROOT)
LASTEP NAME MAINROOT LASTEP
/*
SEGMT1
SEG2
(Figure 32. Ordering Control Sections

In the load module MAINROOT, the control sections MAINEP,
SEGMT1, SEG2, CSECTA, and CSECTB are rearranged in the output
load module according to the sequence specified in the ORDER
statements. A REPLACE statement is used to replace control
section SESECTA with control section CSECTA from data set
&&0BJECT, which was passed from a previous step. The ORDER
statement refers to the new control section CSECTA. Control
section LASTEP appears after the other control sections in the
output load module, because it was not included in the ORDER
statement operands.

A control section or named common area can be placed on a page
boundary (to effect a lower paging rate and thus make more
efficient use of real storage) by using either the ORDER
statement or the PAGE statement.

The control section or common area to be aligned is named on
either the PAGE statement or the ORDER statement with the P
operand. Either the PAGE statement or the ORDER statement (with
the P operand) causes the linkage editor to locate the starting
address of the control section or common area on a page boundary
within the load module.

In the following example, the control sections RAREUSE and
MAINRT are aligned on page boundaries by PAGE and ORDER control

o statements. Control sections MAINRT, CSECTA, and SESECT1 are
sequenced by the ORDER control statement. Assume that each
control section, except for SESECT1 and RAREUSE, is 4K bytes in
length (Figure 22).

Chapter 6. Editing a Control Section 103

//LKED EXEC PGM=HEWL , PARM=",, . '

//SYSLMOD DD DSNAME=0WNLIB, DISP=0LD,UNIT=3350,
77 VOLUME=SER=0WN002
//SYSLIN DD %

PAGE RAREUSE

ORDER MAINRT(P),CSECTA,SESECT1
INCLUDE SYSLMOD (MAINROOT)

NAME MAINROOT

/%
Input Module JCL and Controls Statements Output Load Module
MAINROOT MAINROOT
0K
CSECTA
//LKED EXEC PGM=HEWL MAINRT
- 4K
//SYSLMOD DD DSNAME=OWNLIBE, ...
SESECT1 //SYSLIN DD *
PAGE RAREUSE 8K
BOTTOM ORDER MAINRT(P) ,CSECTA,SESECT1 SESECT1
INCLUDE SYSLMOD (MAINROOT)
. NAME MAINROOT
/ 12K
VAINRT RAREUSF
BOTTOM

Figure 33. Aligning Control Sections on Page Boundaries

The linkage editor places the control sections MAINRT and
RAREUSE on page boundaries. Control sections MAINRT, CSECTA,
and SESECT]1 are sequenced as specified in the ORDER statement.
RAREUSE, while placed on a page boundary, appears after the
control sections specified in the ORDER statement because it was
not included. The control section BOTTOM comes after RAREUSE
because it appeared after RAREUSE in the input module.

106 MVS/XA Linkage Editor and Loader User's Guide

p—

The linkage editor can be invoked by a problem program at
execution time through the use of one of the following macro
instructions.

[symboll [LINK] EP=linkeditname

PARAM=(gptionlistl.ddname listl),
viL=1

[symboll [ATTACH] EP=linkeditname
PARAM=(optionlistl.ddname listl),

VL=1
[svymboll [LOAD] EP=linkeditname
[symboll [XCTL] EP=linkeditname

EP=
specifies the symbolic name of the linkage editor. The
entry point at which execution is to begin is determined
by the control program (from the library directory entry).
Any of the symbolic names that can be used as operands of
the EXEC command's PGM parameter are acceptable as the
"linkeditname™.

PARAM=(goptionlisti,ddname listl)
specifies, as a sublist, address parameters to be passed
from the problem program to the linkage editor. The first
fullword in the address parameter list contains the
address of the option and attribute list for the load
module. The second fullword contains the address of the
ddname list. If standard ddnames are to be used, this
list may be omitted. '

specifies the address of a variable-length list
containing the options and attributes. This address
must be written even though no list is provided.

The option list must begin on a halfword boundary.
The 2 high-order bytes contain a count of the number
of bytes in the remainder of the list. If no options
or attributes are specified, the count must be zero.
The option list is free form, with each field
separated by a comma. No blanks or zeros should
appear in the list.

specifies the address of a variable-length list
containing alternative ddnames for the data sets used
during linkage editor processing. If standard
ddnames are used, this operand may be omitted.

Chapter 7. Invoking the Linkage Editor 105

The ddname list must begin on a halfword boundary.

The 2 high-order bytes contain a count of the number

of bytes in the remainder of the list. Each name of (v
; less than 8 bytes must be left justified and padded N
i with blanks. If an alternate ddname is omitted from

the list, the standard name will be assumed. If the

name is omitted within the list, the 8-byte entry

must contain binary zeros. HNames can be omitted from

the end by merely shortening the list.

The sequence of the 8-byte entries in the ddname list
is as follows:

Entry | Alternate Name For:
1 SYSLIN

2 Member name (the name under
which the output load module
is stored in the SYSLMOD data
set; this entry is used if the
name is not specified on the
SYSLMOD DD statement or if
there is no NAME control
statement)

SYSLMOD
SYSLIB

Not applicable
SYSPRINT

Not applicable o
SYSUTL
~-11 Not applicable
12 SYSTERM

Vi ~N|lNjnn|H|Ww

specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

When the linkage editor completes processing, a condition code

is returned in register 15 (see Figure 16 on page 53 for a list
of linkage editor return codes).

106 MVS/XA Linkage Editor and Loader User's Guide

The linkage editor produces two types of output: a load module
and diagnostic information. The principal output of the
linkage editor is the output load module. The linkage editor
always places this load module in a partitioned data set. 1In
addition, the linkage editor issues diagnostic information.
Error and/or warning messages, module disposition data, and
gpzionai diagnostic output are stored in the diagnostic output
ata set.

The linkage editor produces one or more load modules (see ™
Load Module Format™ on page 118) from the input processed.

Nth gore than one load module is produced, the process is

calle .

WHhether or not the linkage editor produces one or more load
modules, the following apply:

. IRe load module is stored in a partitioned data set called
e .

] The load module must have an entry point; if the programmer
has not assigned one, the linkage editor does.

. The output load module is assigned an authorization code.

U During processing, the linkage editor reserves and collects
common areas, as specified in the source language program.

. During processing, the linkage editor accumulates total
length and individual displacements for each pseudoregister
(external dummy section).

[During processing, the linkage editor collects and records
identgfication data in the CSECT identification (IDR)
records.

o During the processing of a load module, the linkage editor
deletes any private code (unnamed control section) having a
!:ngth of zero and any identification data associated with
it.

U The main entry point, each true alias, and each alternate
entry point are assigned an addressing mode (AMODE).

. The output load module is assigned a residence mode
(RMODE) .

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the
output module library. This library is a partitioned data set
that must be described by a DD statement with the name SYSLMOD.
The data set name of the library is also specified on this DD
statement. The data set can be either temporary (defined with
a double ampersand), or permanent (defined with a single or no
ampersand). If the data set name is either SYS1.LINKLIB or
SYS1.SVCLIB, it would be advisable to re-IPL the system after
linkage editor processing is complete. This ensures that the
corresponding data extent block (DEB) is updated to reflect
additional extents if secondary allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module
must be assigned a unique name, called the member name, to

Chapter 8. Interpreting Linkage Editor Output 107

distinguish one load module from another. The output module
can be assigned gliases if the programmer wants the module

either identified by more than one name or entered for AN
execution at several different points. Each member name and { ;
alias in a load module library must be unique. The library ~—

member name and aliases for each load module appear as separate
entries in the library directory, along with the module
attributes. (Some module attributes can be assigned on the
EXEC statement for each linkage editor job step; see "Module
Attributes™ on page 37.)

Member Name

The member name of the output load module may be specified on
the SYSLMOD DD statement, in a NAME statement, or both. If the
member name is not specified, the default is TEMPNAME. If this
default name has been previously assigned to a load module,
using it again will cause a failure.

ASSIGNED ON SYSLMOD DD STATEMENT: If the member name is
assigned on the SYSLMOD DD statement, the name is written in
parentheses following the data set name of the library. For

example:

//7SYSLMOD DD DSNAME=MATHLIB(SQDEV), DISP=(NEW,KEEP),
Va4 UNIT=3350,SPACE=(TRK,(100,10,1)),

7/ VOLUME=SER=LIBO002

The member name SQDEV is assigned to the load module, which is
placed in the new library named MATHLIB.

ASSIGNED ON NAME CONTROL STATEMENT: If the member name is not _
specified on the SYSLMOD DD statement, it may be assigned in a -
NAME control statement. For example:

//SYSLMOD DD DSNAME=MATHLIB,DISP=(NEW,KEEP), ...
//SYSLIN gg DSNAME=&&0BJECT, DISP=(OLD, DELETE), ...
7/ %*

NAME SQDEV
/7%

The member name SQDEV is assigned to the load module, which is
placed in the library named MATHLIB.

ASSIGNED ON BOTH: If both the SYSLMOD DD statement and the
NAME control statement specify a member name, the names should
be identical. If the names are different, the name on the NAME
control statement is used as the member name.

Note: If a "link-edit and go"™ sequence of job steps is
performed and the program name in the EXEC statement of the
"go" step contains a backward reference to the SYSLMOD DD
statement in the "link-edit"™ step, the user must ensure that
the member name specified in the SYSLMOD DD statement is valid
and is not overridden by a NAME control statement.

AN

108 MVS/XA Linkage Editor and Loader User's Guide

Alias Names

An example of an error:

/7LKED EXEC PGM=HEHNWL
/7/7SYSLMOD bD gzgg?E=&&LOADST(GO)pDISP=(NEN;
77 Y.
;/SYSLIN gg DSNAME=&&0BJECT, DISP=(OLD, DELETE), ...
7 x
NAME READ
/%
/77G0 EXEC PGM=».LKED.SYSLMOD
Remember, this example is incorrect!

The EXEC statement of the GO step specifies that the module to
be executed is described in the LKED step in the SYSLMOD
statement. The system tries to locate a member named GO;
however, the output module was assigned the name READ.

REPLACING AN IDENTICALLY NAMED LIBRARY MEMBER: The output
module can replace an identically named member in the library
in either of two ways. The SYSLMOD DD statement names an
existing data set, as follows:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
/77 KEEP), ..

Or, the NAME control statement specifies the replace function,
as follows:

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new
module of the same name.

An output module can be assigned a maximum of 16 aliases,
specified with the ALIAS control statement. The aliases exist
in addition to the member name of the output module. MWhen a
module is referred to by an alias, execution begins at the
external name specified by the alias. If the name specified by
the ALIAS statement is not an external symbol within the
module, the main entry point is used.

For example, an output module is to be assigned two additional
entry points, CODEl and CODE2. In addition, because of a
misunderstanding, calling modules have been written and tested
using both ROUTONE and ROUT1 to refer to the output module.
Rather than correct the calling modules, an alternate library
member name (alias) is also assigned.

Chapter 8. Interpreting Linkage Editor Output 109

-
//3YSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=3350, i
44 VOLUME=SER=LIB001 K&V/
;/SYSLIN gg DSNAME=&&0BJECT, DISP=(OLD, DELETE)
/ *

ALIAS CODE1,CODEZ2, ROUTONE

NAME ROUT1
/%

The names CODEl, CODE2, and ROUTONE appear in the library
directory along with ROUT1l, the member name. Because CODEl and
CODE2 are defined as external symbols within the output module,
when these names are used, execution begins at these points.
Control may be passed to the main entry point by using either
the member name ROUT1 or the alias ROUTONE.

ENTRY POINT

Every load module must have a main entry point. The programmer
may specify the entry point in one of two ways:

U On a linkage editor ENTRY control statement.

. On an Assembler language END statement, which is the last
statement in the source program. The assembler produces an
object module and an END statement for the module. The
assembler-produced END statement contains an entry point
only if the source language END statement contained one.

From its input, the linkage editor selects the entry point for
the load module as follows:

1. From the first ENTRY control statement in the input. \kw/

2. If there is no ENTRY control statement in the input, from
the first assembler-produced END statement that specifies
an entry point.

3. If no ENTRY control statement or no assembler-produced END
statement specifies an entry point, the first byte of the
first control section of the load module is used as the
entry point.

In general, the entry point should be explicitly specified,
because it is not always possible to predict which control
section will be first in the output module.

HWhen a load module is reprocessed by the linkage editor, it has
no END statement. Therefore, if the first byte of the first
control section of the load module is not a suitable entry
point, the entry point must be specified in one of two ways:

U Through an ENTRY control statement.

. Through the assembler—-produced END statement of another
input module, which is being processed for the first time.
This object module must be the first such module to be
processed by the linkage editor.

An entry point other than the main entry point may be specified

with an ALIAS control statement. The symbol specified on the

ALIAS statement must be defined as an external symbol in the

load module. Any reference to that symbol causes execution of

the module to begin at that point instead of at the main entry

point. P

In the following example, assume that CDCHECK, CODEl, and CODE2 & -
are defined as external symbols in the output module.

110 MVS/XA Linkage Editor and Loader User's Guide

Authorization Code

7/ *

D
ENTRY CDCHECK

ALIAS CODE1l,CODEZ2,ROUTONE

NAME ROUT1
/%

//SYSLIN Dg DSNAME=&&0BJECT, DISP=(0OLD, DELETE)

As a result of the preceding control statements, CDCHECK is the
main entry point; CODEl and CODE2 are additional entry points.
Any reference to ROUTONE or ROUT1 causes execution to begin at
CDCHECK; any reference to CODEl and CODE2 causes execution to

begin at these points.

Each load module link-edited is assigned an authorization code
that determines whether or not the module is allowed to use
restricted system services and resources. A nonzero code
allows the module to use restricted services and resources; a
zero code disallows that usage. The authorization code becomes
part of the directory entry for the module in the library

containing the module.

Residence and Addressing Modes

RESERVING STORAGE IN THE OUTPUT LOAD MODULE

Each entry in the library directory for the output load module
(one for the main entry point and one for each true alias or
alternate entry point) contains an indication of the residence
mode for the load module and an indication of the addressing
mode for that entry point. The entries for true aliases and
alternate entry points also contain an indication of the
addressing mode for the main entry point.

In FORTRAN, Assembler language, and PL/I, the programmer can
create control sections that reserve virtual storage areas that
contain no data or instructions. These control sections are
called "common™ or "static external" areas, and are produced in
the object modules by the language translators. These common
areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage
areas for data supplied at execution time. These common areas
are either named or unnamed (blank).

COLLECTION OF COMMON AREAS: During processing, the linkage
editor collects common areas. That is, if two or more blank
common areas are found in the input, the largest blank common
area is used in the output module; all references to a blank
common area refer to the one retained. If two or more named
common areas have the same name, the largest of the identically
named common areas is used in the output module; all references
to the named common areas refer to the one area retained.

IDENTICALLY NAMED COMMON AREAS AND CONTROL SECTIONS: If a
control section (as is generated from a BLOCK DATA subprogram
in FORTRAN, for example) and a named common area have the same
name, the length of the control section must be greater than or
equal to the length of the named common area. If the control
section is smaller in length than the named common area, a
diagnostic message is issued. The control section is regarded
as the largest of the common areas processed with that name.
All subsequent control sections and/or common areas with the

same name are ignored.

Chapter 8.

Interpreting Linkage Editor OQutput 111

PROCESSING PSEUDOREGISTERS

In PL/I, programmers can use pseudoregisters to define storage f‘ h
that will not be reserved in the load module but can be s
allocated dynamically during execution. The external dummy

sections generated by Assembler H Version 2 correspond to the
pseudoregisters of PL/I.

The linkage editor accumulates the total length of all
pseudoregisters in the input and records the displacement of
each. If two or more pseudoregisters have the same name, the
one with the longest length and the most restrictive alignment
will be retained. All other pseudoregisters with the same name
will be ignored; all references to the identically named
pseudoregisters will refer to the one retained.

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more than one load module in a
single job step. A NAME control statement in the input stream
is used as a delimiter for input to a load module. If
additional input modules follow the NAME statement in the input
stream, they are used in the formation of the next load module.

Each load module that is formed has a unique name and is placed
in the same library as a separate member. HWhen processing
multiple load modules in a single job step, the options and
attributes specified in the EXEC statement for that job step
apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output
modules, neither that module nor any of the modules yet to be
processed in the job step is processed or placed in the
library. Load modules processed before abnormal termination
have already been placed in the library.

In the following example, two load modules are produced in one

linkage editor job step: R
77/LKED EXEC PGM=HEWL , PARM="MAP,LIST"

/7SYSLMOD DD DSNAME=PAYROLL(OVERTIME),DISP=0LD,

Vo4 UNIT=3350, VOLUME=SER=LIB002

//MODTHO DD DSNAME=&&0BJECT, DISP=(0OLD, DELETE)

;;SYSLIN gg DSNAME=&&0BJECT(A),DISP=(OLD,DELETE)
*
ENTRY INIT
NAME OVERTIME
INCLUDE MODTWO(B)
ENTRY HSKEEP
, NAME VACATION
*

The first load module is produced from the object module in the
data set defined on the SYSLIN DD statement. The main entry
point is INIT and the member name is OVERTIME.

The second load module is produced from the object module
specified by the INCLUDE statement. The main entry point is
HSKEEP and the member name is VACATION.

112 MVS/XA Linkage Editor and Loader User's Guide

DIAGNOSTIC MESSAGES

If an INCLUDE statemen