MVS/ESA GC28-1857-5
System Programming Library:
Application Development Macro Reference

i

MVS/System Product:
JES? Version 3
JES3 Version 3

MVS /ES A GC28-1857-5
System Programming Library:
Application Development Macro Reference

MVS/System Product:
JES?2 Version 3
JES3 Version 3

Sixth Edition (June 1991)

This is a major revision of, and obsoletes, GC28-1857-4. See the Summary of Changes following About this Book for a
summary of the changes made to this manual. Technical changes or additions to the text are indicated by a vertical bar to the
left of the change.

This edition applies to Version 3 of MVS/System Product 5685-001 or 5685-002 and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically to the information herein; before using
this publication in connection with the operation of IBM systems, consult the latest /BM System/370 Bibliography, GC20-0001,
for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these available in all
countries in which IBM operates. References to IBM products in this document do not imply that functionally equivalent
products may be used. The security certification of the trusted computing base that includes the products discussed herein
covers certain IBM products. Please contact the manufacturer of any product you may consider to be functionally equivalent
for information on that product’s security classification. This statement does not expressly or implicitly waive any intellectual
property right IBM may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development, Department D58, Building 921-2, PO Box 950, Poughkeepsie, NY
12602. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1988, 1991. All rights reserved.

All Rights Reserved

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1988, 1991

Special Notices x
Programming Interfaces x
Trademarks xi
About This Book xiii
Who Should Use this Book xiii
How This Book Is Organized xiii
How To Use This Book xiv
Related Information xiv
Summary of Changes xvii
Using the Macros 1
ALESERV — Control Entries in the Access List 15
ASCRE — Create Address Spaces 23
ASDES — Terminate an Address Space 33
ASEXT — Extract Address Space Parameters 35
ATSET — Set Authorization Table 37
ATTACH and ATTACHX— Create a New Task 39
AXEXT — Extract Authorization Index 55
AXFRE — Free Authorization index 57
AXRES — Reserve Authorization Index 59
AXSET — Set Authorization Index 61
CALLDISP — Pass Control to Another Ready Task 63
CALLRTM — Call Recovery Termination Manager 65
CHANGKEY — Change Virtual Storage Protection Key 69
CIRB — Create Interruption Request Block 71
CMDAUTH — Command Authorization Service 75
COFCREAT — Create a VLF Object 81
COFDEFIN — Define a VLF Class 87
COFIDENT — identify a VLF User 93
COFNOTIF — Notify VLF 99
COFPURGE — Purge a VLF Class 105

COFREMOV — Remove a VLF User 109

COFRETRI — Retrieve a VLF Object 113

COFSDONO — Delete DLF (Data Lookaside Facility) Object 119
CPOOL — Perform Cell Pool Services 123

CTRACE — Connect a User Application to Component Trace 133
DATOFF — DAT-OFF Linkage 139

DEQ — Release a Serially Reusable Resource 141

DOM — Delete Operator Message 149

DSGNL — Issue Direct Signal 153

DSPSERV — Create, Delete, and Control Data Spaces 155
DSPSERV — Create, Delete, and Control Hiperspaces 167
DYNALLOC — Dynamic Allocation 179

ENQ — Request Control of a Serially Reusable Resource 181
ESPIE — Extended SPIE 193

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 201
ETCON — Connect Entry Table 213

ETCRE — Create Entry Table 217

ETDEF — Create an Entry Table Descriptor (ETD) 219

ETDES — Destroy Entry Table 227

ETDIS — Disconnect Entry Table 231

EVENTS — Wait for One or More Events to Complete 233
EXTRACT — Extract TCB Information 237

FESTAE — Fast Extended STAE 241

FRACHECK - Check User’s Authorization (for RACF Release 1.8.1 or earlier) 243
FREEMAIN — Free Virtual Storage 249

GETMAIN — Allocate Virtual Storage 255

GQSCAN — Extract Information From Global Resource Serialization Queue 263
GTRACE — GTF Trace Recording 269

HSPSERV — Read from and Write to a Hiperspace 277
IEFQMREQ — Invoke SWA Manager in Move Mode 291

IOSINFO — Obtain the Subchannel Number fora UCB 293
IOSLOOK — Locate Unit Control Block 295

ITTFMTB — Generate Component Trace Format Table 297

iv SPL: Application Development Macro Reference

LLACOPY — Library Lookaside Refresh 301

LOAD — Bring a Load Module into Virtual Storage 305

LOCASCB — Locate ASCB 311

LXFRE — Free a Linkage Index 313

LXRES — Reserve a Linkage Index 317

MGCR — Internal START or REPLY Command 321

MODESET — Change System Status 323

NIL — Provide a Lock Via an AND IMMEDIATE (NI) Instruction 329

NUCLKUP — Nucleus Map Lookup Service 331

OIL — Provide a Lock Via an OR IMMEDIATE (Ol) Instruction 333

OUTADD — Create Output Descriptor 335

OUTDEL — Delete Output Descriptor 337

PCLINK — Stack, Unstack, or Extract Program Call Linkage Information 339
PGANY — Page Anywhere 347

PGFIX — Fix Virtual Storage Contents 349

PGFIXA — Fix Virtual Storage Contents 353

PGFREE — Free Virtual Storage Contents 355

PGFREEA — Free Virtual Storage Contents 357

PGSER — Page Services 359

PGSER — Fast Path Page Services 365

POST — Signal Event Completion 369

PTRACE — Processor Trace 375

PURGEDQ — Purge SRB Activity 377

QEDIT — Command Input Buffer Manipulation 381

RACDEF — Define a Resource to RACF (for RACF Release 1.8.1 or earlier) 383
RACHECK — Check RACF Authorization (for RACF Release 1.8.1 or earlier) 403
RACINIT — Identify a RACF-Defined User (for RACF Release 1.8.1 or earlier) 417
RACLIST — Build In-Storage Profiles (for RACF Release 1.8.1 or earlier) 429
RACROUTE — MVS Router Interface (for RACF Release 1.8.1 or earlier) 435
RACROUTE — Router Interface (for RACF Release 1.9) 445

RACROUTE REQUEST = AUDIT — General Purpose Security Audit Request 455

Contents

vi

RACROUTE REQUEST = AUTH — Check RACF Authorization (for RACF Release 1.9) 463

RACROUTE REQUEST = DEFINE — Define a Resource to RACF (for RACF Release
1.9) 481

RACROUTE REQUEST = DIRAUTH — Checks Messages (for RACF Release 1.9) 505

RACROUTE REQUEST = EXTRACT — Replace or Retrieve Fields (for RACF Release
1.9) 511

RACROUTE REQUEST =FASTAUTH — Verifies Access to Resources (for RACF Release
1.9) 531

RACROUTE REQUEST = LIST — Build In-Storage Profiles (for RACF Release 1.9) 537
RACROUTE REQUEST = STAT - Determine RACF Status (for RACF Release 1.9) 547
RACROUTE REQUEST = TOKENBLD - Modify a UTOKEN (for RACF Release 1.9) 553
RACROUTE REQUEST = TOKENMAP - Access Token Fields (for RACF Release 1.9) 563
RACROUTE REQUEST = TOKENXTR - Extract UTOKENS (for RACF Release 1.9) 569

RACROUTE REQUEST = VERIFY — Identify a RACF-Defined User (for RACF Release
19) 575

RACROUTE REQUEST = VERIFYX - Build a UTOKEN (for RACF Release 1.9) 593
RACSTAT - Determines the Status of RACF (for RACF Release 1.8.1 or earlier) 607

RACXTRT — Retrieve Fields from RACF User Profile (for RACF Release 1.8.1 or
earlier) 611

RESERVE — Reserve a Device (Shared DASD) 627

RESMGR - Add or Delete Resource Manager 635

RESUME — Resume Execution of a Suspended Request Block 641
RISGNL — Issue Remote Immediate Signal 643

SCHEDULE — Schedule System Services for Asynchronous Execution 645
SCHEDXIT — Schedule an Exit Routine for Execution 647

SDUMP and SDUMPX — Dump Virtual Storage 649

SETFRR — Set Up Functional Recovery Routines 673

SETLOCK — Control Access to Serially Reusable Resources 677
SETRP — Set Return Parameters 685

SPIE — Specify Program Interruption Exit 693

SPLEVEL — SET and TEST Macro Level 697

SPOST — Synchronize POST 699

SRBSTAT — Save, Restore, or Modify SRB Status 701

SRBTIMER — Establish Time Limit for System Service 703

SPL: Application Development Macro Reference

STAE — Specify Task Abnormal Exit 705

STATUS — Change Subtask Status 711

STORAGE — Obtain and Release Storage 715
SUSPEND — Suspend Execution of a Request Block 723
SVCUPDTE — SVC Update 725

SWAREQ — Invoke SWA Manager in Locate Mode 733

SYMREC — Process Symptom Record 737

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program

SYSEVENT — System Event 747

SYSSTATE — Set and Test Address Space Control (ASC) Mode 755
TCBTOKEN — Request or Translate the TTOKEN 757

TCTL — Transfer Control from an SRB Process 763

TESTAUTH — Test Authorization of Caller 765

TIMEUSED — Obtain Accumulated CPU or Vector Time 767

T6EXIT — Type 6 Exit 769

VSMLIST — List Virtual Storage Map 771

VSMLOC — Verify Virtual Storage Allocation 777

VSMREGN — Obtain Private Area Region Size 781

WAIT — Wait for One or More Events 783

WTL — Write ToLog 787

WTO — Write to Operator 793

WTOR — Write to Operator with Reply 803

Appendix A. List of the Names of Macros Intended for Customers Use

Index X-1

811

741

Contents

vii

viii spL: Application Development Macro Reference

Figures

© Copyright IBM Corp. 1988, 1991

©CONDOH»WN =

Testing the Macro Level at Execution Time 2

Passing User Parameters in AR Mode 5

User Parameter List for Callers in AR Mode 5§

Macro Summary 6

Sample Macro 12

Continuation Coding 14

Rules for Adding Entries for Hiperspaces to Access Lists 17
Return Code Area Used by DEQ 144

Return Code Area Used by ENQ 185

FRACHECK Parameters for RELEASE=1.6 and Later 246
Characteristics and Restrictions for Standard Hiperspaces 279
Characteristics and Restrictions for ESO Hiperspaces 283
RACDEF Parameters for RELEASE= 1.6 and Later 394
Types of Profile Checking Performed by RACHECK 408
RACHECK Parameters for RELEASE=1.6 and Later 410
RACINIT Parameters for RELEASE=1.6 and Later 422
RACLIST Parameters for RELEASE=1.6 and Later 431
Types of Profile Checking Performed by RACROUTE REQUEST=AUTH
RACSTAT Parameters for RELEASE=1.6 and Later 608
RACXTRT Parameters for RELEASE=1.6 and Later 620
Return Code Area Used by RESERVE 630

Return codes from ADD 637

Return codes from DELETE 638

PSWREGS Parameter List 654

SDUMP Reason Codes 662

Calculations for SYSEVENT STGTEST with No Storage Isolation 753
Characters Printed or Displayed on an MCS Console 788
MCSFLAG Flag Names 797

MCSFLAG Flag Names 805

General-Use Executable Macros 811

General-Use Mapping Macros 814

Product-Sensitive Executable Macros 816
Product-Sensitive Mapping Macros 816

469

Special Notices

Special Notices

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not
intended to state or imply that only IBM’s program or other product may be used. Any
functionally equivalent program which does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY 10577.

Programming Interfaces

This book is intended to help customers to do coding of macros that are available to
authorized assembler language programs. It contains detailed information, such as the
function, syntax, and parameters, needed to code the macros. This book primarily
documents general-use programming interfaces and associated guidance information
provided by MVS System Product Version 3.

General-use programming interfaces allow the customer to write programs that request
or receive the services of MVS System Product Version 3.

However, this book also documents product-sensitive programming interface
information.

Product-sensitive programming interfaces are provided to allow the customer
installation to perform tasks such as tailoring, monitoring, modification, or diagnosis of
this IBM product. Use of such, interfaces creates dependencies on the detailed design
or impiementation of the IBM product. Product-sensitive interfaces should be used only
for these specialized purposes. Because of their dependencies on detailed design and
implantation, it is to be expected that programs written to such interfaces may need to
be changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive programming interface information is explicitly identified where it
occurs, either as an introductory statement to a chapter or section that is entirely
product-sensitive programming interface information, or is marked as follows:

I———— PRODUCT-SENSITIVE PROGRAMMING INTERFACE '

Description of the interface.

| End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE _________|

X SPL: Application Development Macro Reference

Special Notices

Trademarks
The following are trademarks of International Business Machines Corporation.

BookMaster™
ESA/370™
Hiperbatch™
Hiperspace™
IBM™
MVS/ESA™
MVS/SP™
MVS/XA™

® © e o o o o o

Figures xi

xii spPL: Application Development Macro Reference

About This Book

This book describes some of the authorized macros that the system provides. Authorized
macros are available only to authorized programs — programs that reside in an
APF-authorized library or that run in supervisor state with system key 0-7.

Some of the macros included in this book are not authorized, but are included because they
are of greater interest to the system programmer than the general applications
programmer. Macros are also included in this book if they have one or more authorized
parameters — parameters that are available only to authorized programs.

Programmers using assembler language can use these macros to invoke the system
services that they need. This book includes the detailed information — such as the function,
syntax, and parameters — needed to code the macros.

Who Should Use this Book

This book is for the programmer who is using assembler language to code a system
program. A system program is usually one that runs in supervisor state with system key
0-7 or resides on an APF-authorized library.

The book assumes a knowledge of the computer, as described in IBM ESA/370 Principles of
Operation, as well as an in-depth knowledge of assembler language programming.
Assembler language programming is described in the following books:

* Assembler H Version 2 Application Programming Guide, SC26-4036
* Assembler H Version 2 Application Programming: Language Reference, GC26-4037

Using this book also requires you to be familiar with the operating system and the services
that programs running under it can invoke.

How This Book Is Organized

© Copyright IBM Corp. 1988, 1991

This book includes an introduction that describes information related to all macros. Most of
the book, however, consists of descriptions of individual macros. The macro descriptions
are presented in alphabetical order. Each description includes:

* A general description of the service that the macro performs.
* A table of syntax rules that you must follow when you code the macro.
* A list of the parameters you can specify and an explanation of each parameter.

xiii

How To Use This Book

This book is one of a set of books that describe developing applications in assembler
language. This book is the macro reference book for people writing programs that run in
supervisor state with system key 0-7 or reside on an APF-authorized library. Use this book

to code the macros you need.

The following table shows the books that describe developing applications in assembler
language and how this book fits with the others:

Book

Use this book to:

Application Development
Guide, GC28-1821

Find out how to use system services provided by macros available
to all assembler language programs. [f you are relatively new to
assembler language programming, this book is a good place to
start.

Application Development
Macro Reference,
GC28-1822

Learn how to code macros that are available to all assembler
language programs. This book is for all assembler language
programmers.

SPL: Application
Development Guide,
GC28-1852

Find out how to use system services provided by macros that are
available only to programs running in supervisor state with key 0-7
or that are APF-authorized programs. This book is for experienced
assembler language programmers; it assumes, for example, that
you are familiar with the information in Application Development
Guide.

SPL: Application
Development Macro
Reference, GC28-1857

Learn how to code macros that are available only to programs
running in supervisor state with key 0-7 or that are APF-authorized
programs. This book is for experienced assembler language
programmers.

SPL: Application
Development — Extended
Addressability, GC28-1854

Find out how to use access registers, cross memory services, data
spaces, and hiperspaces™ to extend the storage available to
programs. This book is for experienced assembler language
programmers.

SPL: Application
Development 31-Bit
Addressing, GC28-1820

Find out how to code assembler language programs that run in
31-bit addressing mode. This book is for all assembler language
programmers who need information about developing programs for
31-bit addressing mode.

Related Information

Where necessary, this book references information in other books, using shortened
versions of the book title. The following table shows the complete titles and the order

numbers:

Title Order Number
A Structured Approach to Describing and Searching Problems SC34-2129
The Considerations of Physical Security in a Computer Environment G520-2700
Data Security Controls and Procedures - A Philosophy for DP G320-5649
Installations

ESA/370: Principles of Operation SA22-7200
MVS/DFP Version 3 Release 2: General Information GC26-4552

this GIM.

Note: For the titles and order numbers of referenced DFP books, see

MVS/ESA Diagnosis: Data Areas, Volumes 1 -5

LY28-1043 to LY28-1047

MVS/ESA Diagnosis: System Reference LY28-1011
MVS/ESA Diagnosis: Using Dumps and Traces LY28-1843
MVS/ESA Interactive Problem Control System (IPCS) Command GC28-1834

Reference

xiv sPL: Application Development Macro Reference

Title Order Number

MVS/ESA Interactive Problem Control System (IPCS) Planning and GC28-1832
Customization
MVS/ESA Interactive Problem Control System (IPCS) User’s Guide GC28-1833
MVS/ESA JCL Reference GC28-1829
MVS/ESA JCL User’s Guide GC28-1830
MVS/ESA Message Library: System Messages Volume 1 and 2 GC28-1812, GC28-1813
MVS/ESA Message Library: System Codes GC28-1815
MVS/ESA Operations: JES3 Commands SC23-0074
MVS/ESA Operations: System Commands GC28-1826
MVS/ESA Planning: Dump and Trace Services GC28-1838
MVS/ESA Planning: Global Resource Serialization GC28-1818
MVS/ESA Service Aids GC28-1844
MVS/ESA System Programming Library: Application Development GC28-1820
31-Bit Addressing
MVS/ESA System Programming Library: Initialization and Tuning GC28-1828
MVS/ESA System Programming Library: System Modifications GC28-1831
MVS/ESA System Programming Library: Installation Exits GC28-1836
OS/VS Mass Storage System Extensions Messages SH35-0041
0S/VS2 MVS RACF Command Language Reference SC28-0733
Resource Access Control Facility (RACF) General Information Manual GC28-0722
Resource Access Control Facility (RACF) Macros and Interfaces SC28-1345
Security Assessment Questionnaire GX20-2381
System Programming Library: RACF SC28-1343
MVS System/370 ESA Vector Operations SA22-7125
Notes:

1. All references to RACF in this publication indicate the program product Resource
Access Control Facility.

2. All references to Assembler H in this publication indicate the program product
Assembler H Version 2.

3. All references to RMF in this publication indicate the program product Resources
Measurement Facility.

About This Book XV

xvi sPL: Application Development Macro Reference

Summary of Changes

© Copyright IBM Corp. 1988, 1991

Summary of Changes
for GC28-1857-5
MVS System Product Version 3 Release 1.3

Changed Information: This revision contains maintenance changes, technical corrections,
and services updates.

Summary of Changes
for GC28-1857-4
MVS/System Product Version 3 Release 1.3

New Information: Appendix A contains a list of the names of the macros intended for
customer use. The macros identified in this appendix are provided to allow a customer
installation to write programs that use the services of MVS. Only those macros identified in
this appendix should be used to request or receive the services of MVS.

Changed Information: Numerous services updates have been made throughout the book.

Moved Information: The descriptions for the following macros have been moved to
Application Development Macro Reference, GC28-1822:

* BLSABDPL
* BLSQMDEF
* BLSQMFLD
* BLSQSHDR
* BLSRDRPX
* BLSRESSY
* BLSRPRD

Summary of Changes

for GC28-1857-3

as updated September 18, 1990

by Technical Newsletter GN28-1437

Changed Information: This technical newsletter contains changes in support of APAR
0Y27049 as well as maintenance revisions.

Summary of Changes

for GC28-1857-3

as updated February 8, 1990

by Technical Newsletter GN28-1392

Changed Information: This technical newsletter contains maintenance revisions.

Summary of Changes
for GC28-1857-3
MVS/System Product Version 3 Release 1.3

New Information: This revision documents the following new macros:

* CMDAUTH verifies RACF authorization of commands.

* LLACOPY refreshes LLA directories.

* RACROUTE for RACF 1.9.

* COFSDONO causes the data lookaside facility (DLF) to delete a DLF object that is no
longer needed.

Changed Information: This revision also documents changes in the following macros:

¢ TIMEUSED can now be used by unauthorized as well as authorized programs.

* MGCR now passes a user security token to the system.

* The HSPALET parameter on HSPSERYV allows a program to take advantage of faster
transfer of data between expanded storage and central storage.

xviii

* The SHARE parameter on DSPSERV creates a new type of hiperspace named a shared
standard hiperspace.

¢ The DSPSERV LOAD and DSPSERV OUT services allow a program to load an area of a
data space into central storage or page an area out from central storage.

— Storage

This book uses the term central storage for the storage that has been called real
storage. In the 3090 processor, storage consists of:

Central storage + expanded storage = processor storage

Virtual storage consists of pages contained in processor storage and auxiliary storage.

This revision also includes maintenance throughout the book.

Summary of Changes
for GC28-1857-2
MVS/System Product Version 3 Release 1.0e

New Information: This revision documents the following new macros:
¢ SCHEDXIT in support of APAR numbers 0Y19162, 0Y19163, 0Y19164, and 0Y19165.

Changed Information: This revision also documents changes in the following macros:

* DSPSERV and ALESERYV support SCOPE =COMMON data spaces in response to APAR
0Y20855.

* The EXTEND service of DSPSERV allows a variable request for extension of data space
or hiperspace storage. This supports APAR 0Y19885.

* A new service, STGTEST on the SYSEVENT macro, provides information about
processor storage. o

* A new parameter on the LOAD macro, ADRNAPF, allows a program to load an
authorized module into an unauthorized library.

* New parameters on the SDUMP macro allow users to include specific data in a dump
and to suppress duplicate SVC dump data.

This revision also includes maintenance throughout the book.

Summary of Changes
for GC28-1857-1
MVS/System Product Version 3 Release 1.0e

New Information: This revision documents the following new macros:
* HSPSERV
* DSPSERYV for hiperspaces
Changed Information: This revision also documents changes in the following macros:

* ALESERV
e ETDEF
* DSPSERYV for data spaces

SPL: Application Development Macro Reference

Summary of Changes
for GC28-1857-0
MVS/System Product Version 3 Release 1.0

This book contains information previously presented in MVS/Extended Architecture System
Programming Library: System Macros and Facilities, Volume 2 (GC28-1857-4). The
following summarizes the changes to that information.

New Information: For MVS/System Product Version 3, this revision describes the following
new macros:

ALESERV COFDEFIN ETDEF
ASCRE COFIDENT ITTFMTB
ASDES COFNOTIF RESMGR
ASEXT COFPURGE SDUMPX
ATTACHX COFREMOV STORAGE
BLSRDRPX COFRETRI SYNCHX
BLSRPRD CTRACE SYSSTATE
CHANGEKEY DSPSERV TCBTOKEN
COFCREAT ESTAEX TIMEUSED

Changed Information: For MVS/System Product Version 3, this revision documents
changes in the following macros:

ATSET LOCASCB SETFRR
ATTACH PCLINK SETLOCK
AXFRE PGSER SETRP
AXRES POST SPLEVEL
AXSET RACDEF SRBSTAT
BLSABDPL RACHECK SVCUPDTE
BLSQMFLD RACINIT SYMREC
CALLRTM RACLIST SYNCH
CPOOL RACROUTE TCTL
ESTAE RACXTRT VSMLIST
ETCON RESUME VSMLOC
ETCRE RISGNL WTO
FREEMAIN SCHEDULE WTOR
GETMAIN SDUMP

This revision also includes minor maintenance and editorial changes throughout.

Moved Information: The macros CBPZDIAG, CBPZLOG, CBPZPPDS, |I0SDDT, and
IOSDMLT are now described only in System Modifications.

The macros FRACHECK, RACHECK, RACROUTE, and RACSTAT have moved from part Il of
MVS/Extended Architecture Supervisor Services and Macro Instructions (GC28-1154) to this
book.

The VRADATA macro, previously described in MVS/Extended Architecture System
Programming Library: System Macros and Facilities, has moved to MVS/ESA™ Application
Development Macro Reference.

Summary of Changes XiX

XX SPL: Application Development Macro Reference

Using the Macros

To request system services, programs use macros. The system restricts the use of most of
the macros in this book to programs that are in supervisor state with system key 0-7 or that
are from an APF-authorized library. A few of these macros are not restricted by the system
but are included in this book because your installation might want to restrict the functions
they perform. Some macros are totally restricted. Others are not totally restricted but
contain one or more parameters that are restricted.

The programs that use the macros in this book must be assembler language programs.
When you code a macro, the assembler processes it by using the macro definitions supplied
by IBM and placed in the macro library when the system is generated.

The assembler expands the macro into executable machine instructions and/or data fields
in the form of assembler language statements. The executable machine instructions
typically consist of a branch around the data fields, instructions that load registers, and an
instruction that gives control to the system. The instruction that gives control to the system
can be a branch, a supervisor call, or a PC instruction. The macro expansion appears as
part of the assembler output listing.

The data fields, which are derived from parameters of the macro, are used at execution
time by the control program routine that performs the MVS service associated with the
macro.

Selecting the Macro Level

© Copyright IBM Corp. 1988, 1991

MVS/System Product Version 3 (MVS/SP™ Version 3) supports all MVS/System Product
Version 2 macros. Therefore, programs that issue macros and that run on a version 2
system should also run on a version 3 system.

There are certain version 3 macros that cannot execute on MVS/System Product Version 1.
This means that programs that issue macros and that run on a version 3 system might not
run on a version 1 system. A version 1 system cannot process all the macro parameters
that work on a version 3 system. These macros are called downward incompatible. When
you try to run a version 3 program on a version 1 system, the program might not execute as
expected. The macros described in this book that are downward incompatible are:

* ATTACH

* ESTAE

* EVENTS

* FESTAE

¢ SCHEDULE SCOPE=GLOBAL
* SDUMP

* SETLOCK RELEASE TYPE=ALL
* CALLDISP

* WTOR

Callers executing in 31-bit addressing mode must use the version 2 expansion of the
downward incompatible macros.

The SPLEVEL macro solves the problem associated with downward incompatible macros.
The SPLEVEL macro allows you to use the version 3 macro library when you assemble
programs and to select either the version 1 or version 3 expansion of the macro.

Existing programs that issue version 2 macros will execute properly on a version 3 system.
If you change these programs to use new facilities of version 3, change the SPLEVEL macro
to specify SET=3. Resetting the SPLEVEL to 3 ensures that your programs use the macro
expansion that supports the new facilities.

Before issuing a downward-incompatible macro, a program can specify the macro level by
invoking SPLEVEL and using the SET=n option.

If n=1, the assembler generates the MVS/System Product Version 1 Release 3
expansion of the macro code.

If n=2, the assembler generates the version 2 expansion of the macro code.

If n=3, the assembler generates the version 3 expansion of the macro code.

A program can also select the level of the macro at execution time, based on the system
that is operating. The example in Figure 1 shows one method of selecting the macro level
at execution time. The example uses the WTOR macro but would work for any downward
incompatible macro. The example first tests the CVTOSEXT bit in CVTDCB and the CVTXAX
bit in CVTOSLVO. Both are 1 when MVS/SP Version 3 is operating. If either is 0, then the
example tests the CVTMVSE bit in byte CVTDCB of the communications vector table (CVT),
which is a 1 when MVS System Product Version 2 is operating.

* DETERMINE WHICH SYSTEM IS EXECUTING

*

™ CVTDCB, CVTOSEXT

BNO SP2CHK
™ CVTOSLVO,CVTXAX
BNO SP2CHK

*

* INVOKE THE SP3 version OF THE MACRO
*
sP3 SPLEVEL SET=3
WTOR ...
B CONTINUE
*
SP2CHK T CVTDCB,CVTMVSE
BNO SP1

*

* INVOKE THE SP2 version OF THE MACRQ
Ik
SP2 SPLEVEL SET=2

WTOR

B CONTINUE

*

* INVOKE THE SP1 version OF THE MACRO
*
SP1 SPLEVEL SET=1

WTOR

*

CONTINUE SPLEVEL SET

Figure 1. Testing the Macro Level at Execution Time

Addressing Mode and the Macros

2

A program can execute in 24-bit addressing mode or 31-bit addressing mode. Regardless
of the addressing mode that a program executes in, it can invoke most of the macros
described in this book, including RACROUTE. However, the following macros require the
program to be executing in 24-bit addressing mode and the parameters to be passed in
24-bit addressable storage:

RACDEF
RACHECK
RACINIT
RACLIST
SPIE
STAE

SPL: Application Development Macro Reference

In general, a program executing in 24-bit addressing mode cannot pass parameter
addresses that are higher than 16 megabytes. However, there are exceptions: for example,
a program executing in 24-bit addressing mode can:

* Free storage above 16 megabytes using the FREEMAIN macro
* Allocate storage above 16 megabytes using the GETMAIN macro

* Perform cell pool services for cell pools located in storage above 16 megabytes using
the CPOOL macro

* Perform page services for storage locations above 16 megabytes using the PGSER
macro .

If a program running in 31-bit addressing mode issues a macro, parameter addresses can
be above or below 16 megabytes unless otherwise stated in the individual macro
description. The macros that have restrictions on parameter addresses above 16
megabytes are:

ATTACH PGFREEA
CALLRTM PGSER
CPOOL PURGEDQ

DEQ RESERVE
DSGNL RESUME
ENQ SDUMP

EXTRACT STATUS
GETMAIN TCTL
PGFIX VSMLIST
PGFIXA VSMREGN
PGFREE

A program running in 31-bit addressing mode must use the MVS/SP Version 2 or later of the
following macros:

ATTACH MODESET
CALLDISP SETRP
ESTAE SYNCH
EVENTS WTOR
FESTAE

Address Space Control (ASC) Mode

A program can execute in either primary ASC mode or AR (access register) ASC mode.
See SPL: Application Development — Extended Addressability for more detailed
information.

Some macros can generate code that is appropriate for programs in either primary ASC
mode or AR ASC mode. A global variable tells these macros which type of code to
generate. The SYSSTATE macro allows you to test or to set this variable.

When you assemble a program, the initial value of this variable indicates primary ASC
mode. If you do not change the variable, macres that test it will generate code appropriate
for primary ASC mode. Thus, if your program receives control in primary ASC mode, you
do not need to change the variable. If, however, your program receives control in AR ASC
mode, you might have to issue SYSSTATE ASCENV = AR before issuing anv macro that tests
the variable. To ensure that your programs always generate code appropriate for their ASC
mode, IBM recommends that:

* All programs that use macros issue SYSSTATE before issuing any other macros.
Programs in primary ASC mode must issue SYSSTATE ASCENV=P. Programs in AR
ASC mode must issue SYSSTATE ASCENV=AR.

* If your program switches from one ASC mode to another, issue SYSSTATE immediately
after the mode switch to indicate the new ASC mode.

Using the Macros 3

Once a program has issued SYSSTATE, there is no need to reissue it unless the program
switches ASC mode. Figure 4 on page 6 lists the macros that check the SYSTATE global
variable.

Using X-Macros

Some MVS services support callers in both primary and AR ASC mode. When the caller is
in AR mode, the macro service must generate larger parameter lists; the increased size of
the list reflects the addition of ALETs to qualify addresses, as described under “ALET
Qualification” on page 5. Some services offer two macros, one for callers in primary mode
and one for callers in AR mode. The name of the macro for the AR mode caller is the same
as the name of the macro for primary mode callers, except the AR mode macro name ends
with an “X”. This book refers to these macros as X-macros. The X-macros described in
this book are:

e ATTACHX
e ESTAEX
e SDUMPX
SYNCHX

The only way these macros know that a caller is in AR mode is by checking the global
symbol that the SYSSTATE macro sets. Each of these macros (and corresponding
non-X-macro) checks the symbol. If SYSSTATE ASCENV = AR has been issued, the macro
issues code that is valid for callers in AR mode. If it has not been issued, the macro
generates code that is not valid for callers in AR mode. When your program returns to
primary mode, use the SYSSTATE ASCENV =P macro to reset the global symbol.

The rules for using all X-macros, except ESTAEX, are:

* Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode.
Some parameters on the non-X-macros are not valid for callers in AR mode. Check the
macro descriptions in this book for these exceptions.

* Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the X-macro and
sends a message describing the substitution.

IBM recommends that you always use the ESTAEX macro. However, if your program is in
primary mode, where the primary, secondary, and home address spaces are the same, you
can use ESTAE.

Passing Parameters in AR Mode

Some macros that you can issue in AR mode include control parameters, user parameters,
or both. Control parameters are parameters that control the operation of the macro service
(You may also see control parameters referred to as system parameters). User parameters
are parameters that the macro service passes to a routine that the macro service invokes
on behalf of the caller. For example, the PARAM keyword on the ATTACH macro defines
user parameters. The ATTACH macro service passes these parameters to the routine that
it attaches. All other parameters on the ATTACH macro are control parameters that control
the operation of the ATTACH macro service.

The address space where you can place parameters varies with the individual macros:

* All macros allow you to place parameters in the current primary address space.
* Some macros require you to place parameters into the current primary address space.
¢ Some macros allow you to place parameters in any address space.

Before issuing any macro described in this book, read the macro description to find out
where the macro allows parameters to be located.

4 spL: Application Development Macro Reference

ALET Qualification

User Parameters

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address space
where the parameters reside. The general purpose register must identify where, within the
address space, the parameters reside.

The only ALETs that MVS macros accept are:

* Zero (0), which specifies that the parameters reside in the caller’s primary address
space
* An ALET for a public entry on the caller’s dispatchable unit access list (DU-AL).

MVS macros do not accept the following ALETs and you must not attempt to pass them to a
macro:

* One (1), which signifies that the parameters reside in the caller’s secondary address
space

* An ALET that is on the caller’s primary address space access list (PASN-AL)

* An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this book uses the term AR/GPR n to mean a general purpose register and its
corresponding access register. For example, to identify general purpose register 1 and
access register 1, this book uses AR/GPR 1.

The macro services shown in Figure 2 allow a caller in AR mode to pass information in the
form of a parameter list (or parameter lists) to another routine. Figure 2 identifies the
parameter that receives the ALET-qualified address(es) of the parameter list(s) and tells
you where the target routine finds the ALET-qualified address(es).

Figure 2. Péssing User Parameters iti AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH and PARAM,VL=1 AR/GPR 1 contains the address of a list of addresses and

ATTACHX ALETs. (See Figure 3 for the format of the list.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte area, which
contains the address and ALET of the parameter list.

When a caller in AR mode passes ALET-qualified addresses to the called program through
PARAM,VL=1 on the ATTACH/ATTACHX macro, the system builds a list formatted as
shown in Figure 3. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list has the
high order bit on to indicate the size of the list. For example, Figure 3 shows the format of
a list where an AR mode issuer of ATTACHX codes the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

0| @A

o|@s

1 |@c
GPRI @ ALET A
ARl ALET ALET B
ALET C

Figure 3. User Parameter List for Callers in AR Mode

Using the Macros 5

Register Usage
After the caller issues a macro, the macro might use some registers as work registers or
might change the contents of some registers. When control returns to the caller, each
register will contain one of the following values or have the following status:

* The register content is unchanged and is the same as it was before the macro was
issued.

* The register contains a value placed there by the macro for the caller’s use. Examples
of such values are return codes and tokens. i

¢ The macro used the register as a work register. The register content is not the same as
it was before the macro was issued and is not meaningful to the caller.

To retain the original contents of registers the macro uses or changes, the caller must save
and restore those registers.

Macro Summary

Figure 4 on page 6 lists the macros described in this book. For each macro, the table
indicates:

* Whether a program in AR ASC mode can issue the macro

* Whether a program in cross memory mode can issue the macro
* Whether the macro tests the SYSSTATE global variable

* Whether the macro tests the SPLEVEL global variable

Notes:

1. Cross memory mode means that at least one of the following conditions is true:

PASN#SASN - The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN#HASN - The primary address space (PASN) and the home address space
(HASN) are different.

SASNzHASN - The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see MVS/XA SPL: Application Development Guide.

2. A program running in primary ASC mode when PASN=SASN=HASN can issue any of
the macros listed in the table. If you intend to use ATTACH, SDUMP, or SYNCH, and are
in AR mode, IBM recommends that you use the corresponding X-macro (ATTACHX,
SDUMPX, and SYNCHX) instead.

Before using any of the macros listed in Figure 4, read the individual macro description to
see if any restrictions or limitations apply to your use of the macro.

Figure 4 (Page 1 of 5). Macro Summary

Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL

memory mode

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes No No

ATTACH Yes No Yes Yes
(See note 1)

ATTACHX Yes No Yes Yes

AXEXT No Yes No No

6 sPL: Application Development Macro Reference

Figure 4 (Page 2 of 5). Macro Summary

Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL
memory mode
AXFRE No Yes No No
AXRES No Yes No No
AXSET No Yes No No
CALLDISP No Yes No No
CALLRTM No Yes No No
CHANGKEY No No No No
CIRB No No No No
CMDAUTH No No No No
COFCREAT Yes Yes Yes Yes
COFDEFIN Yes Yes Yes Yes
COFIDENT Yes Yes Yes Yes
COFNOTIF Yes Yes Yes Yes
COFPURGE Yes Yes Yes Yes
COFREMOV Yes Yes Yes Yes
COFRETRI Yes Yes Yes Yes
COFSDONO No No Yes Yes
CPOOL No Yes No No
CTRACE No No Yes Yes
DATOFF Yes No No No
DEQ No No No No
DOM No No No No
DSGNL No Yes No No
DSPSERV Yes Yes Yes Yes
DYNALLOC No No No No
ENQ No No No No
ESPIE No No No No
ESTAE No No Yes Yes
(See note 2 on
page 10)
ESTAEX Yes Yes Yes Yes
ETCON No Yes No No
ETCRE No Yes No No
ETDEF Yes Yes No No
ETDES No Yes No No
ETDIS No Yes No No
EVENTS No No No No
EXTRACT No No No No
FESTAE No No No Yes
FRACHECK No No No No
FREEMAIN Yes Yes Yes No
(See note 3)
GETMAIN Yes Yes Yes No
(See note 3)
GQSCAN No Yes No No

Using the Macros

7

Figure 4 (Page 3 of 5). Macro Summary
Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL
memory mode
GTRACE No No No No
HSPSERV Yes Yes (See note 4) No
IEFQMREQ No No No No
IOSINFO No No No No
I0SLOOK No No No No
ITTFMTB No - No No No
LLACOPY No No Yes Yes
LOAD No No No No
LOCASCB Yes Yes Yes No
LXFRE No Yes No No
LXRES No Yes No No
MGCR No No No No
MODESET No Yes No No
NIL No No No No
NUCLKUP No No No No
OlL No No No No
OUTADD No No No No
OUTDEL No No No No
PCLINK No Yes No No
PGANY No No No No
PGFIX No Yes No No
PGFIXA No No No No
PGFREE No Yes No No
PGFREEA No No No No
PGSER No Yes No No
POST No Yes No No
PTRACE No Yes No No
PURGEDQ No No No No
QEDIT No No No No
RACDEF No No No No
RACHECK No No No No
RACINIT No No No No
RACLIST No No No No
RACROUTE No No No No
RACSTAT No No No No
RACXTRT No No No No
RESERVE No No No No
RESMGR Yes Yes No No
RESUME No Yes No No
RISGNL No Yes No No
SCHEDULE Yes Yes Yes Yes
SCHEDXIT No Yes No No

8 sPL: Application Development Macro Reference

Figure 4 (Page 4 of 5). Macro Summary

Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL
memory mode
SDUMP Yes Yes Yes Yes
(See note 1)
SDUMPX Yes Yes Yes Yes
SETFRR Yes Yes Yes Yes
SETLOCK Yes Yes Yes Yes
SETRP Yes Yes Yes No
SPIE No No No No
SPLEVEL Yes Yes No No
SPOST No No No No
SRBSTAT No Yes No No
SRBTIMER No No No No
STAE No No No No
STATUS No No No No
STORAGE Yes Yes No No
SUSPEND No Yes No No
SVCUPDTE No No No No
SWAREQ No No No No
SYMREC No No No No
SYNCH Yes No Yes No
(See note 1)
SYNCHX Yes No Yes No
SYSEVENT No No No No
SYSSTATE Yes Yes No No
TCBTOKEN Yes Yes No No
TCTL No No No No
TESTAUTH No No No No
TIMEUSED Yes Yes No No
TEEXIT No No No No
VSMLIST No Yes No No
VSMLOC No Yes No No
VSMREGN No Yes No No
WAIT No Yes No No
WTL No No No No
WTO No No No Yes

Using the Macros

Figure 4 (Page 5 of 5). Macro Summary

Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL
memory mode
WTOR No No No Yes
Notes:

1. Primary mode callers can use either macro in the following macro pairs:

ATTACH or ATTACHX
SDUMP or SDUMPX
SYNCH or SYNCHX

IBM recommends that programs in AR ASC mode use the X-macros (ATTACHX, SDUMPX, and
SYNCHX). If, however, a program in AR mode issues ATTACH, SDUMP, or SYNCH after issuing
SYSSTATE ASCENV = AR, the system substitutes the corresponding X-macro and issues a
message telling you that it made the substitution.

2. The only programs that can use ESTAE are programs that are in primary mode with
(PASN=SASN=HASN). IBM recommends that you always use ESTAEX instead of ESTAE.

3. IBM recommends that AR mode callers use the STORAGE macro instead of using GETMAIN or
FREEMAIN.

4. If you use the HSPALET parameter, HSPSERV macro checks SYSSTATE.

10 sPL: Application Development Macro Reference

Macro Forms

You can code most macros in three forms: standard, list, and execute. Some macros also
have a modify form. When you code a macro, you use the MF parameter to select one of
the forms. The list, execute and modify forms are for reenterable programs that need to
change values in the parameter list of the macro. The standard form is for programs that
are not reenterable, or for programs that do not change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can make the
change dynamically.

However, using the standard form and changing the parameter list dynamically might cause
errors. For example: after storing a new value into the in-line, standard form of the
parameter list, a reenterable program operating under a given task might be interrupted by
the system before the program can invoke the macro.

In a multiprogramming environment, another task can use the same reenterable program,
and that task might change the in-line parameter list again before the first task regains
control. When the first task regains control, it invokes the macro. However, the in-line
parameter list now has the wrong values.

A program that runs in a multiprogramming environment can avoid this error by using the
list, modify, and execute forms of the macros. One technique is:

1. Use the list form of the macro, which expands to the parameter list. Place the list form in
the section of your program where you keep non-executable data, such as program
constants. Do not code it in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain some virtual
storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you obtained.

4. To change the parameter list, code the modify form of the macro. Use the address
parameter of the modify form to reference the parameter list in the virtual storage area
that you obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address parameter
of the execute form to reference the parameter list in the virtual storage area that you
obtained.

With this technique, the parameter list is safe even if the first task is interrupted and a
second task intervenes. When the program runs under the second task, it cannot access
the parameter list in the virtual storage of the first task.

Using the Macros 11

Coding the Macros

In this book, each macro description includes a syntax table near the beginning of the
macro description. The table shows how to code the macro. The syntax table does not
explain the meanings of the parameters; the meanings are explained in the parameter
descriptions that follow the syntax table.

The syntax tables assume that the standard begin, end, and continue columns are used.
Thus, column 1 is assumed as the begin column. To change the begin, end, and continue
columns, use the ICTL instruction to establish the coding format you want to use. If you do
not use ICTL, the assembler recognizes the standard columns. To code the ICTL
instruction, see Assembler H Version 2 Application Programming: Language Reference.

Figure 5 shows a sample macro, TEST, and summarizes all the coding information that is
available for it. The table is divided into three columns, A, B, and C.

name name: symbol. Begin name in column 1.
b One or more blanks must precede TEST.
TEST
b One or more blanks must follow TEST.
MATH
HIST
GEOG
,DATA=data addr data addr: RX-type address, or register (2) - (12)
———> ,LNG=data length data length: symbol or decimal digit, with a maximum value of 256.
JFMT=HEX Default: FMT=HEX
JFMT=DEC
,FMT=BIN
,PASS=value value: symbol, decimal digit, or register (1) or (2) - (12).

Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

Figure 5. Sample Macro

* The first column, A, contains those parameters that are required for that macro. If a
single line appears in that column, A1, the parameter on that line is required and you
must code it. If two or more lines appear together, A2 , you must code the parameter
appearing on one and only one of the lines.

* The second column, B, contains those parameters that are optional for that macro. If a
single line appears in that column, B1, the parameter on that line is optional. If two or
more lines appear together, B2, the entire parameter is optional but, if you elect to make
an entry, code one and only one of the lines.

¢ The third column, C, provides additional information about coding the macro.

12 sPL: Application Development Macro Reference

When substitution of a variable is required in column C, the following classifications are
-used:

symbol any symbol valid in the assembler language. That is, an alphabetic
character followed by 0-7 alphameric characters, with no special
characters and no blanks.

decimal digit any decimal digit up to the value indicated in the parameter
description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

register (2)-(12) one of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or
address indicated in the parameter description. You must set the
unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

register (0) general purpose register 0, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must
set the unused high-order bits to zero. Designate the register as (0)
only.

register (1) general purpose register 1, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must
set the unused high-order bits to zero. Designate the register as (1)

only.
RX-type address any address that is valid in an RX-type instruction (for example, LA).
A-type address any address that can be written in an A-type address constant.
default a value that is used in default of a specified value; that is, the value

the system assumes if the parameter is not coded.
Use the parameters to specify the services and options to be performed, and write them
according tc the following rules:

* |f the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT = HEX), code the parameter exactly as shown.

* |f the selected parameter is written in italics (for example, grade), substitute the
indicated value, address, or name.

* |f the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA = data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

* Read the table from top to bottom.
¢ Code commas and parentheses exactly as shown.

* Positional parameters (parameters without equal signs) appear first; you must code
them in the order shown. You may code keyword parameters (parameters with equal
signs) in any order.

¢ |f you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Using the Macros 13

14

Continuation Lines
You can continue the parameter field of a macro on one or more additional lines according
to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in
column 72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 6 shows an
example of each method.

1 10 16 b4 72

NAMET ~ OP1 OPERAND1, OPERANDZ, OPERAND3, OPERAND4, OPERANDS, OPERANDS, OPX
ERAND7 THIS IS ONE WAY

NAME2 ~ OP2 OPERAND1, OPERAND2, THIS IS ANOTHER WAY X
OPERAND3, OPERAND4, X
OPERANDS, OPERANDS, GPERAND7

Figure 6. Continuation Coding

SPL: Application Development Macro Reference

ALESERV — Control Entries in the Access List

The ALESERV macro manages the contents of access lists. An access list is a table in
which each entry identifies an address space, a data space, or a hiperspace to which a
program (or programs) has access. Access list entry tokens (ALETs) index the entries in
the access list.

On the ALESERV macro, address spaces, data spaces, and hiperspaces are identified
through STOKENS, an identifier similar to an address space identifier (ASID). SPL:
Application Development — Extended Addressability describes STOKENs, ALETs and how
to pass them, access lists, and the EAX-checking that might occur when you issue the
ALESERV macro to add an entry for an address space. See that book for help in using
ALESERV.

Use the ALESERV macro to:

* Add an entry to a DU-AL or PASN-AL for a SCOPE =SINGLE data space, a SCOPE=ALL
data space, or a hiperspace (ADD parameter)

Note: You access data spaces and address spaces directly through ESA/370
instructions. You access hiperspaces through the HSPSERV macro.

* Add an entry to all PASN-ALs for a SCOPE = COMMON data space (ADD parameter)

* Add the primary address space to the DU-AL (ADDPASN parameter)

* Delete an entry from a DU-AL or PASN-AL (DELETE parameter)

* Obtain a STOKEN for a specified ALET (EXTRACT parameter)

* Locate an ALET for a specified STOKEN (SEARCH parameter)

* Obtain the STOKEN of the home address space (EXTRACTH parameter)

To add a hiperspace entry to an access list, the processor must have the move-page facility
installed. If this feature is not on the processor, the system rejects the ALESERV ADD
request with an return code X’70’.

The requirements for the caller are:

Authorization: To request the following ALESERV services, the program must be
supervisor state or PSW key 0- 7:

* Make ADD and DELETE requests for the PASN-AL

* Use the CHKEAX =NO parameter

* Make ADD and DELETE requests for SCOPE=ALL and
SCOPE = COMMON data spaces and shared hiperspaces and expanded
storage only (ESO) hiperspaces for the DU-AL

Problem state programs with PSW key 8 - F can request all other ALESERV

services.
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN or PASN not = HASN
Amode: Any
ASC mode: Primary or access register (AR)
Serialization: Enabled and unlocked for ADD, ADDPASN, and DELETE requests
Control parameters: Control parameters can reside in any addressable area.

At exit, the ARs and general purpose registers (GPRs) 2 through 13 are preserved. GPR 15
contains the return code. in addition, for SEARCH and EXTRACT requests, GPR 0 contains
the reason code for SEARCH and EXTRACT.

ALESERYV is also described in Application Development Macro Reference, with the
exception of the CHKEAX parameter.

© Copyright IBM Corp. 1988, 1991 15

16

The standard form of the ALESERV macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ALESERV.
ALESERV
b One or more blanks must follow ALESERV.

Valid parameters (Required parameters are underlined)

ADD AL, STOKEN, ACCESS, ALET, CHKEAX,
RELATED
ADDPASN ALET, RELATED
DELETE ALET, CHKEAX, RELATED
EXTRACT ALET, STOKEN, RELATED
SEARCH AL, ALET, STOKEN, RELATED
EXTRACTH STOKEN, RELATED
,LACCESS=PUBLIC Default: ACCESS = PUBLIC
,LACCESS =PRIVATE
,AL=WORKUNIT Default: AL=WORKUNIT
,AL=PASN
,ALET =alet-addr alet-addr: RX-type address or register (2) - (12).
,STOKEN = stoken-addr stoken-addr: RX-type address.
,CHKEAX =YES Default: CHKEAX =YES.
,CHKEAX=NO
,RELATED = any-value any-value: Any valid macro parameter specification.

The parameters are explained as follows:

ADD
requests that the system add an entry to the access list and return the ALET. You are
required to use two parameters:

* STOKEN specifies the space for which the entry is to be added.
* ALET specifies the address of the location where the system returns the ALET.

You can also specify whether the access list is DU-AL or PASN-AL (AL parameter) and,
for address spaces, whether the entry is PUBLIC or PRIVATE (ACCESS parameter).
The defaults are DU-AL and PUBLIC.

To add an entry for a SCOPE= COMMON data space to all PASN-ALs in the system, use
the AL=PASN parameter.

To add an entry for an address space, the problem state, PSW key 8 - F caller must
have EAX-authority to the target address space. The supervisor state or PSW key 0 - 7
caller can use the CHKEAX=NO parameter, which adds an entry for the address space
without requiring the caller to have EAX-authority.

Adding an entry for a hiperspace requires that the processor have the move-page
facility installed. If a program issues ALESERV ADD for a hiperspace and the
processor does not have the feature, the system rejects the ALESERV ADD request with
a return code X’'70’.

To ensure the integrity of hiperspaces, the system has certain rules for adding entries
for hiperspaces to access lists. The following table summarizes the rules for problem
state, PSW key 8 - F programs and supervisor state or PSW key 0 - 7 programs.

Do not use ALESERV ADD for a hiperspace unless you have the move-page facility
installed.

SPL: Application Development Macro Reference

Figure 7. Rules for Adding Entries for Hiperspaces to Access Lists
Function Type of A problem state, key 8 - F A supervisor state or key 0-7
hiperspace program: program:
Add entries non-shared Can add entries for the Can add entries if the caller’s
to the standard hiperspaces it owns. home and owner’s home
DU-AL address space is the same.
shared Cannot add entries. Can add entries.
standard
and ESO
Add entries Non-shared Cannot add entries. Can add entries if its PASN-AL
to the standard is the same as the PASN-AL of
PASN-AL the owner’s home address
space.
Shared Cannot add entries. Can add entries for shared
standard standard hiperspaces. Can
and ESO add entries for ESO
hiperspaces if no unauthorized
program can run in the primary
address space.

An access list entry for an ESO hiperspace should never be available to an
unauthorized program.

The following notes are for users of data-in-virtual and hiperspaces.

* Once you add an entry for a standard hiperspace, you cannot use that hiperspace
as a data-in-virtual object.

* |f a DIV ACCESS is in effect for a standard hiperspace, you cannot add an entry for
that hiperspace.

ADDPASN
requests that the system add the primary address space to the DU-AL without requiring
a user to have EAX-authority to the address space. The entry is a public entry. ALET,
required with ADDPASN, receives the ALET that identifies the entry.

DELETE
requests that the system delete an entry from the DU-AL or the PASN-AL. ALET,
required with DELETE, identifies the entry to be deleted.

To delete an entry for an address space, the problem state, PSW key 8 - F caller must
have EAX-authority to the target address space. The supervisor state or PSW key 0 - 7
caller can use the CHKEAX=NO parameter, which deletes an entry for the address
space without requiring the caller to have EAX-authority.

When the request is for a SCOPE =COMMON data space, ALESERYV deletes the entry
from all PASN-ALs in the system.

EXTRACT
requests that the system find the STOKEN associated with the specified ALET. The
caller can obtain the STOKEN for any space that is represented by a valid entry on the
current access list. STOKEN is a required parameter.

SEARCH
requests that the system search through the DU-AL or PASN-AL for an ALET that
corresponds to a specified STOKEN. Specify whether the search is to be through the
DU-AL or the PASN-AL. (AL=WORKUNIT is the default.) ALET and STOKEN are
required parameters.

EXTRACTH
requests that the system find the STOKEN of the home address space. STOKEN is a
required parameter.

ALESERV — Control Entries in the Access List 17

,ACCESS = PUBLIC

,ACCESS =PRIVATE
specifies whether the access list entry you are adding is PUBLIC or PRIVATE. You
cannot add a PRIVATE entry for a data space or hiperspace. The default is
ACCESS=PUBLIC.

,AL=WORKUNIT

,AL=PASN
specifies whether the access list is a DU-AL (WORKUNIT) or a PASN-AL (PASN). The
default is AL=WORKUNIT.

For the ADD request, AL identifies the type of access list.

For the SEARCH request, AL specifies whether the system is to search through the
DU-AL or the PASN-AL.

Figure 7 on page 16 describes the rules for adding entries for hiperspaces to the
DU-AL and PASN-AL.

,ALET = alet-addr
specifies the four-byte ALET. For the ADD and ADDPASN request, ALET specifies the
returned ALET for the access list entry that the system added.

For the DELETE request, ALET specifies the ALET for the access list entry to be
deleted. Do not specify an ALET of 0, 1, or 2.

For the EXTRACT request, the system returns the STOKEN that corresponds to the
specified ALET.

For the SEARCH request, ALET (as input) specifies the point in the access list where
the system is to begin the search. The following values are valid as beginning entries:

* Minus One (-1) - Start at the beginning of the DU-AL or PASN-AL.
* Valid ALET - Start the search with the next ALET in the access list.

As output from the SEARCH request, the ALET parameter specifies the searched-for
ALET, if present. Otherwise, ALET is unchanged and register 15 contains a reason
code that specifies that an ALET for that STOKEN is not on the access list.

,STOKEN = stoken-addr
specifies an eight-byte identifier of an address space, data space, or hiperspace. For
ADD processing, STOKEN identifies the space that the program wants to access.

For the EXTRACT request, the system returns the STOKEN that corresponds to the
specified ALET.

For the SEARCH request, STOKEN identifies the STOKEN for which the system is to
return the corresponding ALET.

For the EXTRACTH request, the system returns the STOKEN of the home address
space.

,CHKEAX =YES

,CHKEAX =NO
specifies that ALESERV does (CHKEAX =YES) or does not (CHKEAX=NO) check the
EAX authority of the caller to the address space to be added to or deleted from the
access list. The defaultis CHKEAX=YES.

,RELATED = any-value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and coftents of the information
specified are at the discretion of the user, and may be any valid coding values.

18 sPL: Application Development Macro Reference

When control is returned from ALESERV ADD, register 15 contains one of the following
return codes:

Code
0

8

c

10
18
1c
20
24
38
4C
50
54
5C
60
64
68

6C
70

Meaning
ALESERV ADD has completed successfully.

The caller is not EAX-authorized to the specified space; the entry is not added. The ALET
returned is invalid.

The current AL cannot be expanded. There are no free ALEs and the maximum size has been
reached.

ALESERYV could not obtain storage for an expanded access list.

The caller tried to add to the PASN-AL in problem state, PSW key 8 - F.

The caller is locked.

The caller is disabled.

AR 1 contained an ALET of 1 on input or access register 1 contained an ALET for the PASN-AL.
The input STOKEN is invalid.

The space represented by the input STOKEN is invalid for cross memory access.
Invalid ALESERV parameter list.

The caller tried to add a data space to an access list as a private entry.

The caller was not authorized to add a data space or a hiperspace to an access list.
An unexpected error occurred. The request was not completed.

The caller tried to add an entry using CHKEAX=NO in problem state, PSW key 8 - F.

The caller attempted to add a hiperspace under conditions which are not allowed. See
Figure 7 on page 16 for a summary of the rules for adding hiperspaces to an access list.

The caller tried to add an entry for a SCOPE =COMMON data space to a DU-AL.

The caller tried to add an entry for a hiperspace and did not have the move-page facility
installed.

When control is returned from ALESERV ADDPASN, register 15 contains one of the following
return codes:

Code
0

c

10
1C
20
24
50
60

Meaning
ALESERV ADDPASN has completed successfully.

The current AL cannot be expanded. There are no free ALEs and the maximum size has been
reached.

ALESERY could not obtain storage for an expanded access list.

The caller is locked.

The caller is disabled.

AR 1 contained an ALET of 1 on input or access register 1 contained an ALET for a PASN-AL.
The ALESERYV parameter list is invalid.

An unexpected error occurred; the request was not completed.

When control is returned from ALESERV DELETE, register 15 contains one of the following
return codes:

Code
0

8

14
1C
20
24
28
2C

Meaning
ALESERV DELETE has completed successfully.

The caller is not EAX-authorized to the address space specified by the ALET. The entry is not
deleted.

The input ALET corresponds to an invalid access list entry.

The caller is locked.

The caller is disabled.

AR 1 contained an ALET of 1 on input or an ALET for the caller’'s PASN-AL.
The caller specified an invalid ALET.

The caller attempted to delete ALET 0, 1, or 2

ALESERV — Control Entries in the Access List 19

Code Meaning

30 A problem state, PSW key 8 - F caller attempted to delete an entry from the PASN-AL.
60 An unexpected error occurred. The request was not completed.
64 The caller tried to delete an entry using CHKEAX=NO in problem state, PSW key 8 - F.

When control is returned from ALESERV EXTRACT, register 15 contains one of the following
return codes:

Code Meaning
0 ALESERV EXTRACT has completed successfully. Register 0 contains one of the following
reason codes:

00 - The access list entry is a public entry.
04 - The access list entry is a private entry.

14 The input ALET corresponds to an invalid ALE.

24 AR 1 contained an ALET of 1 on input or contains an ALET for the caller’'s PASN-AL.

28 The caller specified an invalid ALET.

3C An ALET value of 1 was specified for the ALESERV EXTRACT request.

40 The space associated with the input ALET is invalid for cross memory access.

44 The ALE associated with the input ALET represents addressing capability to a deleted or
terminated space.

50 The ALESERV parameter list is invalid.

58 The ALET the caller specified represents an invalid capability.

60 An unexpected error occurred. The request was not completed.

When control is returned from ALESERV SEARCH, register 15 contains one of the following
return codes:

Code Meaning
0 ALESERV SEARCH has completed successfully. Register 0 contains one of the following
reason codes:

00 - The access list entry is a public entry.
04 - The access list entry is a private entry.

24 AR 1 contained an ALET of 1 on input or an ALET for the caller’s PASN-AL.

28 The caller specified an ALET that is not valid on the specified access list.

34 The caller specified a STOKEN not represented on the specified access list.

48 The caller specified AL=WORKUNIT but the input ALET indexes into the PASN-AL, or the
caller specified AL=PASN and the ALET indexes into the DU-AL.

60 An unexpected error occurred. The request was not completed.

When control is returned from ALESERV EXTRACTH, register 15 contains one of the
following return codes:

Code Meaning

0 ALESERV EXTRACTH has completed successfully.

24 AR 1 contained an ALET of 1 on input or contains an ALET associated with the caller’s
PASN-AL.

60 An unexpected error occurred. The request was not completed.

Example of Adding an Entry to a DU-AL
To add an entry to a DU-AL for a data space, issue the following:

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET

*

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

20 sPL: Application Development Macro Reference

ALESERV (List Form)

The list form of ALESERV assigns the correct amount of storage for the ALESERV parameter
list.

The list form is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ALESERV.
ALESERV
b One or more blanks must follow ALESERV.
MF=L

,RELATED = any-value

The parameters are explained as follows:

MF=L
specifies the list form of ALESERV.

,RELATED = any-value
specifies information used to self document macros by ‘relating’ functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid macro parameter
expression.

ALESERV — Control Entries in the Access List 21

ALESERV (Execute Form)

The execute form of ALESERV uses a remote parameter list that can be generated by the

list form of ALESERV.

The execute form of the ALESERV macro is written as follows:

name

b

ALESERV

b

name: symbol. Begin name in column 1.

One or more blanks must precede ALESERV.

One or more blanks must follow ALESERV.

ADD

ADDPASN
DELETE
EXTRACT
SEARCH
EXTRACTH

,ACCESS =PUBLIC
,ACCESS = PRIVATE

,AL=WORKUNIT
,AL=PASN

LALET = alet-addr

,STOKEN = stoken-addr

,CHKEAX =YES
,CHKEAX=NO

,RELATED = any-value

,MF = (E,cntl-addr)

Valid parameters (Required parameters are underlined)
AL, STOKEN, ACCESS, ALET, CHKEAX, MF,

RELATED

ALET, MF, RELATED

ALET, MF, CHKEAX, RELATED

ALET, STOKEN, MF, RELATED

AL, ALET, STOKEN, RELATED, MF

STOKEN, MF, RELATED

Default: ACCESS = PUBLIC

Default: AL =WORKUNIT

alet-addr: RX-type address or register (2) - (12).
stoken-addr: RX-type address.

Default: CHKEAX=YES.

any-value: Any valid macro parameter specification.

cntl-addr: RX-type address or register (2)-(12).

The parameters are explained under the standard form of ALESERV with the following

exceptions:

,MF = (E,cntl addr)

specifies the execute form, which uses a remote parameter list. qntl addr specifies the
address of the remote parameter list, generated by the list form of the macro.

22 sPL: Application Development Macro Reference

ASCRE — Create Address Spaces

© Copyright IBM Corp. 1988, 1991

The ASCRE macro creates an address space. The address space is full-function; that is, it
starts after the system is initialized and has all of the system services. The caller of the
ASCRE macro can establish cross memory linkages between the creating address space
and the new address space.

Use either the ASNAME or STPARM parameter to name the new address space and specify
the first program that will execute in it.

Use the INIT parameter to specify an address space initialization routine to perform such
actions as loading modules and building control blocks.

Optionally, you can use the AXLIST, TKLIST, and LXLIST parameters to set up cross
memory linkages that allow programs in the created address space to use the services of
programs in the creator’s address space.

* The AXLIST parameter specifies the location of a list of authorization index (AX) values
that the caller obtained through the AXRES macro.

* The TKLIST parameter specifies the location of the list of tokens that represents the
entry tables built by the creating address space.

* The LXLIST parameter specifies the location of a list of linkage index (LX) values that
the caller obtained through the LXRES macro.

The requirements for the caller are:

Authorization: Supervisor state

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN or PASN not = HASN

Amode: Any

ASC mode: Primary or AR

Serialization: Enabled and unlocked

Control parameters: For callers in primary mode, control parameters must be in the primary

address space.

For callers in AR address space control (ASC) mode, the parameters can
be in the primary address space (qualified by an ALET of 0) or in any
space addressable through public entries in the caller’s dispatchable unit
access list (DU-AL).

The caller in AR ASC mode must have issued SYSSTATE ASCENV = AR to tell ASCRE to
generate code and addresses appropriate for callers in AR mode.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FRR)
established.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Reason code

1 If the return code is 4, GPR 1 contains the address of the ASCB for the new
address space. Otherwise, GPR 1 is used as a work register by the macro.

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

23

When control returns to the caller, the access registers (ARs) contain:

Register
0
1

2-13
14 -15

Used as a work register by the macro
Contains a 0 if the return code is 4; otherwise, used as a work register by the

Used as work registers by the macro

See SPL: Application Development Guide — Extended Addressability for information on

initializing address spaces, which gives an example of creating an address space, including
coding the ASCRE macro.

The standard form of the ASCRE macro is written as follows:

name

ASCRE

name: symbol. Begin name in column 1.

One or more blanks must precede ASCRE.

One or more blanks must follow ASCRE.

ASNAME = as-name
STPARM = start-parm-addr

JINIT =init-rtn-addr or init-rtn-name

,ODA = output-data-addr

,TRMEXIT =rtn name

JUTOKEN = user token addr

,ASPARM = parm-area-addr
,/ATTR=attribute-list
,AXLIST = ax-list-addr

,TKLIST =token-list-addr

LXLIST = Ix-list-addr

,RELATED =value

as-name: One to seven characters, enclosed in apostrophies.

Note: Code either ASNAME or STPARM.
start-parm-addr: RX-type address or register (2) - (12).

init-rtn-addr: RX-type address or register (2) - (12).
init-rtn-name: One to eight characters, enclosed in
apostrophes.

output-data-addr: RX-type address or register (2) - (12).

rtn name: RX-type address or register (2) - (12).

user token addr: RX-type address or register (2) - (12).
Note: Specify UTOKEN only if you specify TRMEXIT.

parm-area-addr: RX-type address or register (2) - (12).
attribute-list: List of options, separated by commas.
ax-list-addr: RX-type address or register (2) - (12).

token-list-addr: RX-type address or register (2) - (12).
Note: You must also specify LXLIST.

Ix-list-addr: RX-type address or register (2) - (12).
Note: Specify LXLIST only if you specify TKLIST.

value: Any valid macro parameter specification.

24 spL: Application Development Macro Reference

The parameters are explained as follows:

ASNAME = as-name
specifies the address space name (which is the same as the name of the procedure in
SYS1.PROCLIB that specifies the first program to execute in the new address space.)
The operator uses this name to issue certain commands, such as the DISPLAY
command that displays information about the address space. The name must contain
one to seven characters, enclosed by apostrophes. The first character must be
alphabetic or national; other characters can be alphabetic, national, or numeric.

You must specify either STPARM or ASNAME. Use ASNAME if you are adding a
procedure to SYS1.PROCLIB and you are not passing parameters to JCL.

STPARM = start-parm-addr
specifies the address of a parameter string that is input to an internal START command
that the system uses to start the address space. The string consists of a two-byte
length field, followed by up to 124 bytes of parameter data. The length field identifies
the length of the parameter data (not including the length field itself). The parameter
data consists of START command parameters, for example "GTF,,,JES2”. It must begin
with the address space name, which corresponds to the procedure in SYS1.PROCLIB
that specifies the first program that is to execute in the new address space.

If you do not need special DD definitions for data sets, specify the common system
address space procedure IEESYSAS. In the parameter data, specify the system-defined
procedure IEESYSAS in the following format:

TEESYSAS. x, PROG=y

where:

* x is name of the address space.
* y is the name of the first program to execute in the new address space.

You must specify either STPARM or ASNAME.

LINIT = init-rtn-name or init-rtn-addr
specifies the address of an eight-character string containing the name of the address
space initialization routine. init-rtn-name is a string of up to eight alphanumeric
characters, enclosed in apostrophes; The first character of the name must be
alphabetic or national; other characters can be alphabetic, national, or numeric. If the
name is less than eight characters, left-justify the name and pad with blanks on the
right to make up the eight characters.

The routine, which can perform functions such as loading modules, must reside in
either the LPA (PLPA, MLPA, fixed LPA) or in SYS1.LINKLIB. If the routine uses the two
ECBs (EAERIMWT and EAEASWT) that the system provides for communication between
the creating address space and the initialization routine, it must be in 31-bit addressing
mode.

INIT is a required parameter. If you do not need an initialization routine, you can
specify the dummy module IEFBR14 on the INIT parameter.

,ODA = output-data-addr
specifies the address of a 24-byte area that contains output information from the ASCRE
macro. The output information, mapped by the macro IHAASEO, consists of:

* Eight bytes for the STOKEN of the created address space

If you use the ASDES macro to terminate the created address space, you can obtain
the STOKEN from this field.

* Four bytes for the address of the ASCB of the created address space
* Four bytes for the address of the two contiguous ECBs (EAERIMWT and EAEASWT).

The creator of the address space and the created address space can use these two
ECBs for communicating and synchronizing. They are mapped by IEZEAECB. A
program must be in 31-bit addressing mode when it references them.

* Eight bytes (not part of the programming interface)

ODA is required.

ASCRE — Create Address Spaces 25

,TRMEXIT = rtn name
specifies the address of the termination routine — a routine that gets control when the
created address space terminates. The routine receives control in 31-bit addressing
mode as an asynchronous exit in the creator’s address space under the creator’s TCB.
If you specify UTOKEN, on entry to the routine, register 1 contains the address of a copy
of the token specified by the UTOKEN parameter. lf the ASDES macro terminates the
address space, the termination routine does not receive control.

On entry to the routine:

* GPR 1 contains the address of a copy of the 64-bit token that the UTOKEN
parameter supplies.

* GPR 13 contains the address of a standard 18-word save area.
* GPR 14 contains the return address.
* GPR 15 contains the entry point address.

If you specify TRMEXIT, you can also specify UTOKEN.

,UTOKEN = user token addr
specifies the address of a 64-bit token of your choice that the termination routine can
use to identify the created address space. Do not specify UTOKEN unless you specify

TRMEXIT. If you specify TRMEXIT without specifying UTOKEN, the termination routine
does not have the user data.

,ASPARM = parm-area-addr
specifies the address of a parameter string that the new address space can obtain
through the ASEXT macro. The parameter string consists of a halfword length field,
followed by up to 254 bytes of parameter data. The length field contains the length of
the parameter data (not including the length field itself).

,ATTR = attr
specifies some attributes of the created address space. Attributes specified on the
execute form of the ASCRE macro are added to the options specified on the list form.
Options for the ATTR parameter are as follows:

NONURG

specifies that the address space will be used by non-urgent services. Specify
either NONURG or HIPRI. NONURG is the default.

HIPRI

indicates that the address space is for a high-priority service. Specify either
NONURG or HIPRI. NONURG is the default.

PERM

specifies that the system does not terminate the created address space when the
TCB that represents the creating program terminates. If you do not specify PERM,
the system terminates the created address space when it terminates the TCB.

,AXLIST = ax-list-addr
specifies the address of a list of halfwords containing the AX values that ASCRE is to
set for the created address space. These values determine the PT and SSAR authority
for programs. (This list was obtained through the AXRES macro.) The first entry in the
list describes the number of AX values in the list (from 1 to 32).

Using this parameter has the same effect as a program in the created address space
issuing the ATSET macro once for each AX value in the list.

,TKLIST = token-list-addr
specifies the address of a list of fullword tokens that represent the entry tables that the
system is to connect to the linkage table of the created address space. The first entry
in the list describes the number of token values that follow (from 1 to 32). The ETCRE
macro returned these tokens in register 0. Using this parameter has the same effect as

a program in the created address space issuing the TKLIST parameter on the ETCON
macro.

When you specify TKLIST, you must also specify LXLIST.

26 sPL: Application Development Macro Reference

,LXLIST = Ix-list-addr

specifies the address of a list of values that represent indexes into the linkage table.
Each linkage index (LX) value represents an entry in the linkage table. The system

connects the entry tables specified by the TKLIST parameter to the LX values specified

in this list. The first entry in the list describes the number of LX values that follow (from
1to 32). The number of LX values must be the same as the number of entry table
tokens. Using this parameter has the same effect as a program in the created address
space issuing the LXLIST parameter on the ETCON macro.

When you specify TKLIST, you must also specify LXLIST.

,RELATED = value
specifies information used to self-document macros by “relating” functions or services

to corresponding functions or services. The format and contents of the information

specified are at the discretion of the user, and may be any valid coding values.

The following table gives the return codes from register 15 and the associated reason codes
from register 0:

Return Reason Meaning

code code

0 0 The address space has been created.

0 4 The address space creation has been scheduied.

4 4 The address space has been created synchronously; there was an
error accessing the ODA.

4 8 The address space creation is scheduled; there was an error
accessing ODA.

8 The caller is not in supervisor state.

8 8 The caller is not enabled.

8 12 The caller is not in task mode.

8 16 The caller is not unlocked.

8 20 GRP 0 has an invalid function code on input.

8 24 ASCRE could not establish recovery.

12 ASCRE cannot reference the parameter list.

12 8 The parameter list has an invalid version number.

12 12 The reserved field in the parameter list is not 0.

16 4 ASCRE cannot reference the INIT parameter.

16 8 The initialization routine is not specified or is specified incorrectly.

20 4 ASCRE cannot reference the STPARM or ASNAME parameter.

20 8 Neither STPARM or ASNAME was specified.

20 12 The STPARM length is not 1-124.

24 4 The reserved attribute bit is set.

24 8 Both HIPRI and NONURG are specified.

28 4 ASCRE cannot reference the UTOKEN.

28 8 UTOKEN is specified without TRMEXIT.

32 4 ASCRE cannot reference the ASPARM parameter.

32 8 The ASPARM length is not 0-254.

36 4 ASCRE cannot reference AXLIST.

36 8 The AXLIST length is not 1-32 elements.

40 4 ASCRE cannot reference LXLIST.

40 8 The LXLIST length is not 1-32 elements.

44 4 ASCRE cannot reference the TKLIST parameter.

44 8 The TKLIST length is not same as LXLIST length.

ASCRE — Create Address Spaces

27

28

Return Reason Meaning

code code

48 8 The DISPLAY A procedure name is invalid.

52 4 A storage shortage prevented the creation of an address space.
Resubmit the failed job because the shortage might have been caused
by a temporary strain on workload. If the problem persists, you might
have to re-evaluate your installation-defined storage thresholds.

52 8,12, 16 Record the return and reason codes and inform your technical support
personnel.

56 16 The caller specified an invalid address space.

60, 64, 68, Any Record the return and reason codes and inform your technical support

72 personnel.

SPL: Application Development Macro Reference

ASCRE (List Form)

The list form of the ASCRE macro constructs a non-executable parameter list. This list, or a
copy of it for reentrant programs, can be referred to by the execute form of the macro.

The list form of the ASCRE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ASCRE.
ASCRE
b One or more blanks must follow ASCRE.
ASNAME = as-name as-name: One to seven characters, enclosed in
STPARM = starf-parm-addr Note: Code either ASNAME or STPARM.

start-parm-addr: RX-type address.
Note: Code either ASNAME or STPARM.

JUNIT = injt-rtn-addr or init-rtn-name init-rtn-addr: A-type address.
init-rtn-name: One to eight characters, enclosed in
apostrophes.
,ODA = output-data-addr output-data-addr: A-type address.
,TRMEXIT =rtn-name rtn-name: A-type address.
,UTOKEN = user-token-addr user-token-addr: A-type address.
Note: Specify UTOKEN only if you specify TRMEXIT.
,ASPARM = parm-area-addr parm-area-addr: A-type address.
,ATTR = attribute-list attribute-list: List of options, separated by commas.
,AXLIST = ax-list-addr ax-list-addr: A-type address.
,TKLIST = token-list-addr token-list-addr: A-type address.
Note: You must also specify LXLIST.
JLXLIST =Ix-list-addr Ix-list-addr: A-type address.
Note: Specify LXLIST only if you specify TKLIST.
,RELATED = value value: Any valid macro parameter specification.
JMF=L

ASCRE — Create Address Spaces 29

The parameters are explained under the standard form of the ASCRE macro with the
following exception:

,MF=L
specifies the list form of ASCRE.

30 spL: Application Development Macro Reference

ASCRE (Execute Form)

The execute form of the ASCRE macro can refer to and modify a remote parameter list built

by the list form of the macro.

The execute form of the macro is written as follows:

name

ASCRE

name: symbol. Begin name in column 1.

One or more blanks must precede ASCRE.

One or more blanks must follow ASCRE.

ASNAME = as-name
STPARM = start-parm-adadr

JUNIT = init-rtn-addr or init-rtn-name

,ODA = output-data-addr
,TRMEXIT = rtn-name

L,UTOKEN = user-token-addr

,ASPARM = parm-area-addr
LATTR = attribute-list
,AXLIST = ax-list-addr

,TKLIST = token-list-addr

JLXLIST = Ix-list-addr

,RELATED = value

,MF = (E,cntl-addr)

as-name: One to seven characters, enclosed in apostrophes.
Note: Code either ASNAME or STPARM.

start-parm-addr: RX-type address or register (2) - (12).
init-rtn-addr: RX-type address or register (2) - (12).
init-rtn-name: One to eight characters, enclosed in
apostrophes.

output-data-addr: RX-type address or register (2) - (12).

rtn-name: RX-type address or register (2) - (12).

user-token-addr: RX-type address or register (2) - (12).
Note: Specify UTOKEN only if you specify TRMEXIT.

parm-area-addr: RX-type address or register (2) - (12).
attribute-list: List of options, separated by commas.
ax-list-addr: RX-type address or register (2) - (12).

token-list-addr: RX-type address or register (2) - (12).
Note: You must also specify LXLIST.

Ix-list-addr: RX-type address or register (2) - (12).
Note: Specify LXLIST only if you specify TKLIST.

value: Any valid macro parameter specification.

cntl-addr: RX-type address or register (2) - (12)

The parameters are explained under the standard form of the ASCRE macro with the

following exception:

,MF = (E,cntl-addr)

specifies the execute form of the ASCRE macro. cntl-addr is the address of the remote
parameter list that the list form of the macro provided.

ASCRE — Create Address Spaces 31

32 sPL: Application Development Macro Reference

ASDES — Terminate an Address Space

© Copyright IBM Corp. 1988, 1991

The ASDES macro terminates an address space that was created through the ASCRE
macro.

SPL: Application Development — Extended Addressability describes how to create and
terminate address spaces.

Requirements for the caller of ASDES are:

Authorization: Supervisor state

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN or PASN not = HASN

Amode: Any

ASC mode: Primary or AR

Serialization: Enabled and unlocked

Control parameters: For callers in primary mode, control parameters

must be in the primary address space.

For callers in AR mode, the parameters can be

in any space addressable through public entries in
the caller’s dispatchable unit access list (DU-AL).

Additionally, callers in access register (AR) mode must have issued SYSSTATE
ASCENV =AR to tell ASDES to generate code and addresses appropriate for callers in AR
mode.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FRR)
established.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Reason code

1 Used as a work register by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14-15 Used as work registers by the macro

33

34

The syntax of the ASDES macro is as follows:

name

ASDES

name: symbol. Begin name in column 1.

One or more blanks must precede ASDES.

One or more blanks must follow ASDES.

STOKEN = stoken-addr

,RELATED =value

stoken-addr: RX-type address or registers (2) - (12).

value: Any valid macro parameter specification.

The parameters are explained as follows:

STOKEN = stoken-addr
specifies the address of an eight-byte area that contains the STOKEN of the address
space you want to terminate. The system returned the STOKEN in the 24-byte area
requested by the ODA parameter on the ASCRE macro that created the address space.
STOKEN is a required parameter.

,RELATED = value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return codes and reason codes (in decimal form) are in the following table:

Return Reason Meaning

code code

0 0 Address space is terminated.

8 4 Caller is not in supervisor state.

8 8 Caller is not enabled.

8 12 Caller is not in task mode.

8 16 Caller is not unlocked.

8 20 GPR 0 had invalid function code.

8 24 ASDES could not establish recovery.

12 4 ASDES could not reference the STOKEN parameter.

12 8 STOKEN does not map to a valid address space. Address space might have
already terminated.

16 4 The address space was not created by ASCRE.

SPL: Application Development Macro Reference

ASEXT — Extract Address Space Parameters

® Copyright IBM Corp. 1988, 1991

The ASEXT macro returns to the caller the address of a copy of a parameter string that the
creating program made available at the time it created the primary address space. Use this
macro only if the primary address space was created through the ASCRE macro and the
ASPARM parameter on the ASCRE macro was specified.

The requirements for the caller are:

Authorization: Supervisor state

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN = HASN or PASN not = HASN

Amode: 24-bit or 31-bit. To reference the copy of the parameter string, the user
must be in 31-bit addressing mode.

ASC mode: Primary or AR

Serialization: Enabled and unlocked

Control parameters: The control parameter must be in the primary address space.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FRR)
established.

The syntax of the ASEXT macro is as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ASEXT.
ASEXT
b One or more bianks must follow ASEXT.
ASPARM

,RELATED =value value: Any valid macro parameter specification.

The parameters are explained as follows:

ASPARM
requests the address of a copy of the parameter string (including the halfword length
field) that the creator of the address space specified on the ASPARM parameter on the
ASCRE macro. ASPARM is required.

,RELATED = value
specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

35

When control returns to the caller, the general purpose registers (GPRs) contain:
Register Contents

0 Reason code

1 Address of the extracted parameter string if the return code is 0; otherwise,
contains a 0.

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers (ARs) contain:
Register Contents

0 Used as a work register by the macro

1 AR 1 contains a 0, which indicates that the parameter string copy is
addressable in the primary address space.

2-13 Unchanged

14 - 15 Used as work registers by the macro

The return codes and reason codes for AXEXT are as follows:

Return Reason Meaning

code code

0 0 The ASEXT service has completed successfully.
8 4 The caller is not in supervisor state.

8 8 The caller is not enabled.

8 12 The caller is not in task mode.

8 16 The caller is not unlocked.

8 20 GPR 0 on input has an invalid function code.

8 24 AXEXT is unable to establish recovery.

12 4 GPR 1 has an invalid extract code on input.

16 4 An unexpected error occurred while ASEXT was in progress.

36 sPL: Application Development Macro Reference

ATSET — Set Authorization Table

The ATSET macro sets up an entry in the authorization table or in the authorization table
bits. ATSET sets the PT and SSAR authority in the authorization table entry of the home
address space. The authorization index value (AX) determines what entry is set.

The extended authorization index (EAX) determines what authorization table bits are set.
To an address space the EAX authority and SSAR authority are the same.

To enter ATSET, register 13 must point to a standard register save area addressable in
primary mode.

These are the requirements for the caller:

Authorization: Supervisor state or PKM 0-7

Dispatchable unit made: Task or SRB

Cross memory mode: PASN = HASN or PASN not = HASN

Amode: Any

ASC mode: Primary

Serlalization: Enabled and unlocked

Control parameters: Must be addressable in the caller’s primary address space

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

This is the standard form of the ATSET macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATSET.
ATSET
b One or more blanks must follow ATSET.
AX=ax value ax value: RX-type address or general register (0) - (12).
,PT=NO Default: PT=NO
,PT=YES
,8SAR=NO Default: SSAR=NO
,SSAR=YES
,RELATED =value value: Any valid macro keyword specification.

© Copyright IBM Corp. 1988, 1991 37

These are the parameters:

AX=ax value
specifies the AX value for which the PT and SSAR authority are to be set. The RX-type
address points to the address of a half word containing the AX value. It is addressable
in primary mode. When the register form is used, the AX value must be in bits 16-31.
Bits 0-15 are ignored.

,PT=NO

,PT=YES
specifies, YES or NO, whether program transfer (PT) is allowed into the home address
space by routines executing with the specified AX.

,SSAR=NO

,SSAR=YES
specifies, YES or NO, whether routines, executing with the specified AX, are allowed to
establish secondary addressability to the home address space. It also specifies, YES
or NO, whether routines with the specified EAX are allowed to access the address
space through access registers.

,RELATED = value
specifies information used to self-document macros. It “relates” functions or services
to corresponding functions or services. The user can use any valid coding value. The
format and contents are at the user’s discretion.

Note: Every time you invoke the ATSET macro, you must set PT and SSAR authority.
Specify: PT=YES.

When control returns, register 15 contains this return code:

Hexadecimal Meaning
Code
0 The selected authorization table entry has been set

38 sPL: Application Development Macro Reference

ATTACH and ATTACHX— Create a New Task

© Copyright IBM Corp. 1988, 1991

The ATTACH macro creates a new task. EP, EPLOC or DE indicate the entry point of the
new task. The entry point name must be a member name or an alias in a directory of a
partitioned data set, or it must have been specified in an IDENTIFY macro. When the
specified entry point cannot be located, the new subtask is abnormally terminated.

For information about selecting a macro for an MVS/SP version, other than the current
version, see “ Selecting the Macro Level” on page 1.

If your program is in access register (AR) mode, use the ATTACHX macro. ATTACH and
ATTACHX have the same parameters. However:
* The STAIl parameter is not valid for callers in AR mode.
¢ For callers in AR mode issuing ATTACHX, addresses in the caller’s parameter list (on
the PARAM parameter) can be in address spaces other than the primary.
This chapter includes information about the ATTACH and ATTACHX macros:

* The syntax of the ATTACH macro, and ATTACH parameters

* The standard form of the ATTACHX macro and callers in AR mode
* The list form of the ATTACH and ATTACHX macros

* The execute form of the ATTACH and ATTACHX macros

These are the requirements for the caller:

Authorization: Supervisor state or Problem state

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary or AR

Serialization: Enabled and unlocked

Control parameters: Parameter lists, and any data pointed to by the parameter lists, must

reside in the caller’s primary address space. For callers in AR mode, the
parameter list address is qualified by an ALET of 0.

For callers in AR address space control (ASC) mode, the user’s parameter
list (PARAM parameter) can be in the primary address space (qualified by
an ALET of 0) or in any space addressable through public entries in the
caller’s dispatchable unit access list (DU-AL).

On entry to the attached routine, the high order bit, bit 0, of GPR 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. When bit 0 is 0, the issuer is
executing in 24-bit addressing mode. When bit 0 is 1, the issuer is executing in 31-bit
addressing mode.

The address of the task control block for the new task is returned in GPR 1. The new task is
a subtask of the originating task. The originating task is the active task when the ATTACH
macro is issued. The limit and dispatching priorities of the new task are the same as those
of the originating task (unless modified in the ATTACH macro).

The load module, containing the program to be given control, is brought into virtual storage
unless a usable copy is available in virtual storage. The issuing program can provide: an
event control block, in which termination of the new task is posted; an exit routine to be
given control, when the new task is terminated; and a parameter list the address of which is
passed in GPR 1 to the new task. The subtask is automatically removed from the system
upon completion of its execution, unless the ECB or ETXR parameters are coded. When the
ECB parameter is specified in the ATTACH macro, the ECB must be in storage. You can
wait, using the WAIT macro. The control program can post it on behalf of the terminating
task.

The ATTACH macro can specify that ownership of virtual subpools is to be assigned to the
new task, or that the subpools are to be shared by the originating task and the new task.

When the issuer is executing in 31-bit, all input parameters to the ATTACH macro can
reside in storage above 16 megabytes addressing mode. DCB is an exception.

39

For a description of the ATTACH, see also Application Development Macro Reference. The
SM, SVAREA, KEY, DISP, TID, NSHSPV, NSHSPL, and RSAPF parameters are restricted to
supervisor state or PSW key 0-7 programs.

This is the standard form of the ATTACH macro:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ATTACH.

ATTACH

b One or more blanks must follow ATTACH.

EP=entry name entry name: Symbeol.

EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).

DE=list entry addr list entry addr: A-type address, or register (2) - (12).
,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).
,LPMOD = fimit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).
,DPMOD =disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).
,PARAM = addr addr: A-type address, or register (2) - (12).
,PARAM=addr,VL=1 Note: addr is one or more addresses, separated by commas.

For example, PARAM = addr,addr,addr

LECB=ecb addr ech addr: A-type address, or register (2) - (12).

LETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

,GSPV =subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL =subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SHSPV = subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL = subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES Default: SZERO =YES

,SZERO=NO

,TASKLIB=dcb addr deb addr: A-type address, or register (2) - (12).

,STAIl = (exit addr) exit addr: A-type address, or register (2) - (12).

,STAIl= (exit addr,parm addr) parm addr: A-type address, or register (2) - (12).

LESTAI= (exit addr) Note: AR mode callers must not use STAI.

JESTAI= (exit addr,parm addr)

,PURGE =QUIESCE Note: PURGE may be specified only if STAl or ESTAIl is
specified.

,PURGE =NONE Default for STAI: PURGE = QUIESCE

,PURGE=HALT Detault for ESTAL: PURGE = NONE

,ASYNCH=NO Note: ASYNCH may be coded only if STAl or ESTAI is
specified.

,LASYNCH=YES Default for STAl: ASYNCH=NO
Default for ESTAl: ASYNCH=YES

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES Default: TERM=NO

,SM=PROB Default: SM=PROB

,SM=SUPV

,SVAREA=YES Default: SVAREA=YES

SPL: Application Development Macro Reference

,SVAREA=NO

,KEY =PROP Default: KEY = PROP

,KEY =ZERO

,DISP=YES Default: DISP=YES

,DISP=NO

,TID=task id task id: Decimal digits 0-255, or register (2) - (12).
Default: TID=0

,NSHSPV = subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

J,NSHSPL =subpool list addr subpool list addr: A-type address, or register (2) - (12).

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

,ALCOPY=YES Default: ALCOPY =NO

,ALCOPY=NO

,RELATED =value value: Any valid macro keyword specification.

These are the parameters:

EP = entry name

EPLOC = entry name addr

DE = /ist entry addr
specifies the entry name, the address of the entry name, or the address of the name
field of a 60-byte entry name list. The entry name is constructed using the BLDL macro.
When EPLOC is coded, entry name addr points to an eight-byte field. When the name is
less than eight characters, left-justify the name and pad with blanks on the right to
make up the eight characters.

Notes:

1. ATTACH processing can attach a load module in 24-bit or 31-bit addressing mode
physically resident above or below 16 megabytes virtual. The AMODE and RMODE,
load module attributes located in the directory entry for the load module, provide
this information. The RMODE indicates the place of the module; the AMODE
indicates the addressing mode of the module. When the AMODE of the entry point is
ANY, it is attached with the same addressing mode as the caller.

2. When you use the DE parameter with the ATTACH macro, DE specifies the address
of a list created by a BLDL macro. The BLDL and the ATTACH must be issued from
the same task; otherwise, the system terminates the program with an abend code of
106 and a return code of 15. Do not issue an ATTACH or a DETACH between
issuances of BLDL and ATTACH.

After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

ATTACH and ATTACHX— Create a New Task 41

The contents of the GPRs on entry to the subtask are:

Register Contents

0 Used as a work register by the system.

1 Address of the user parameter list if specified on either the PARAM or
MF = E parameters; otherwise unchanged.

2-12 Used as work registers by the system.

13 Address of a standard save area.

14 Return address. Bit 0 is 0 if the subtask routine gets control in 24-bit

addressing mode; bit 0 is 1 if the subtask routine gets control in 31-bit
addressing mode.

15 Entry point address of the subtask routine.

The contents of the ARs on entry to the subtask are:

Register Contents

0 Used as a work register by the system.

1 Zero if you specified an user parameter list on either the PARAM or
MF = E parameters; otherwise unchanged.

2-12 Used as work registers by the system.

13-15 Zeroes.

,DCB = dcb addr
specifies the address of the data control block for the partitioned data set containing the
entry name.

Note: The DCB must be opened before the ATTACH macro is executed. The DCB must
reside in storage below 16 megabytes.

,LPMOD = /imit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. When this parameter is
omitted, the current limit priority of the originating task is assigned as the limit priority
of the new task.

,DPMOD =disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. When
the result is greater, the limit priority is assigned as the dispatching priority.

When a register is designated, a negative number must be in two’s complement form in
the register. When this parameter is omitted, the dispatching priority assigned is
smaller than the new task’s limit priority or the originating task’s dispatching priority.

,PARAM = addr

,PARAM = addr,VL =1
specifies the address(es) to be passed to the attached program. Each address is
expanded inline to a fullword on a fullword boundary, in the order designated. When the
program is given control, Register 1 contains the address of the first word.

VL =1 should be designated when the called program can be passed a variable number
of parameters.

VL=1 causes the high-order bit of the last address to be set to 1. The bit can be
checked to find the end of the list.

,ECB = ecb addr
specifies the address of an event control block for the new task. The system uses this to
indicate the termination of the new task. The ECB must be in storage. This enables the
issuer of the attach to wait on it, using the WAIT macro, and enables the system to post
it on behalf of the terminating task. The return code, (when the task terminates
normally), or the completion code, (when the task terminates abnormally), is placed in
the event control block. When this parameter is coded, a DETACH macro must be

42 spL: Application Development Macro Reference

issued to remove the subtask from the system after the subtask terminates. The
system assumes that the ECB is in the home address space.

,ETXR = exit rtn addr
specifies the address of the end-of-task exit routine. It is given control after the new
task normally or abnormally terminates. The exit routine is given control when the
originating task becomes active after the subtask terminates. It must be in virtual
storage. When this parameter is coded, a DETACH macro must be issued to remove
the subtask from the system after the subtask terminates.

The exit routine runs asynchronously under the originating task. The routine receives
control in the addressing mode of the issuer of the ATTACH macro. The system
abnormally ends a task with completion code X'72A' if the task attempts to create two
subtasks with the same exit routine in different addressing modes. Upon entry, the
routine has an empty dispatchable unit access list (DU-AL). To establish addressability
to a data space created by the originating task and shared with the terminating subtask,
the routine can issue the ALESERV macro with the ADD parameter, and specify the
STOKEN of the data space.

These are the contents of the general purpose registers, GPRs, when the exit routine is
given control:

Register Contents

0 Used as a work register by the system

1 Address of the task control block for terminated task
2-12 Used as work registers by the system

13 Address of a save area provided by the system

14 Return address

15 Address of the exit routine

This is the contents of ARs when the exit routine receives control:

Register Contents

0 Used as a work register by the system
1 Zero

2-12 Used as work registers by the system
13-15 Zeroes

The exit routine is responsible for saving and restoring the registers.

yGSPV = subpool nmbr

yGSPL = subpool list addr
specifies a virtual storage subpool number, or address of a list of virtual storage
subpool numbers, each less than 128. Ownership of each of the specified subpools is
assigned to the new task. Subpool zero is an exception. It can be specified but it cannot
be transferred. When a task transfers ownership of a subpool, it can no longer obtain or
release the associated virtual storage areas.

When GSPL is specified, the first byte of the list contains the number of remaining bytes
in the list. Each of the following bytes contains a virtual storage subpool number.

ySHSPV = subpool nmbr

,SHSPL = subpool! list addr
specifies a virtual storage subpool number or the address of a list of virtual storage
subpool numbers, each less than 128. Programs of the originating task and the new
task can use the associated virtual storage areas.

When SHSPL is specified, the first byte of the list contains the number of remaining
bytes in the list. Each of the following bytes contains a virtual storage subpool number.

,SZERO = YES

sSZERO =NO
specifies whether subpool 0 is to be shared (YES) or not to be shared (NO) with the
subtask.

ATTACH and ATTACHX— Create a New Task 43

,TASKLIB = dcb addr
specifies the address of the DCB for the library to be used as the attached task’s
library. Otherwise, the task library is propagated from the originating task. Searching
LINKLIB indicates the end of the search. When the DCB address specifies LINKLIB, no
other library is searched.

Note: The DCB must be opened before the ATTACH macro is executed and must
reside in storage below 16 megabytes.

,STAl = exit addr

,STAl= exit addr,parm addr

,ESTAIl = exit addr

,ESTAIl= exit addr,parm addr
specifies whether or not a STAI or ESTAI SCB is to be created. STAI/ESTAI SCBs
queued to the originating task are propagated to the new task.

The exit addr specifies the address of the STAI or ESTAI exit routine. This routine
receives control when the subtask abnormally terminates. The exit routine must be in
virtual storage at the time of abnormal termination. The parm addr is the address of a
parameter list to be used by the STAIl or ESTAI exit routine.

ATTACH processing passes control to the ESTAI exit routine in the addressing mode of
the caller of the ATTACH service routine. The ESTAI exit routine can execute in either
24-bit or 31-bit addressing mode. A STAI exit routine can execute only in 24-bit
addressing mode. When a caller, in 31-bit addressing mode or in AR mode, specifies
the STAI parameter on the ATTACH macro, the caller is abended with an X‘52A’
completion code.

,PURGE = QUIESCE

,PURGE = NONE

,PURGE = HALT
specifies the action to be taken with regard to I/0 operations when the subtask
abnormally terminates. NONE indicates that no action is specified. HALT indicates
halting of 1/0 operations. QUIESCE indicates quiescing of I/0 operations.

,ASYNCH=NO

,ASYNCH = YES
specifies whether or not asynchronous exits are to be allowed when a subtask
abnormally terminates.

ASYNCH = YES must be coded when:

* Supervisor services, that require asynchronous interruptions to complete their
normal processing, are to be requested by the ESTAI exit routine.

* PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

* PURGE = NONE is specified and the CHECK macro is issued in the ESTAI exit
routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: An ABEND recursion develops, when ASYNCH = YES is specified, and ABEND is
scheduled because of an error in asynchronous exit handling.

,TJERM=NO

,TJERM = YES
specifies whether or not the exit routine associated with the ESTAI request is scheduled
in these situations:

CANCEL

Forced LOGOFF

Job step timer expirations

Wait time limit for job step exceeded

ABEND condition. Incomplete task detached when STAE option is not specified on
DETACH

* Attaching task abnormally terminates

44 spL: Application Development Macro Reference

,SM =PROB

,SM = SUPV
PROB specifies that the system is to run in problem program mode. SUPV specifies
that the system is to run in supervisor mode when executing the attached task.

,SVAREA = YES

ySVAREA =NO
specifies whether or not a save area is needed for the attaching task. YES specifies
that the ATTACH routine obtains a 72-byte save area. When the attaching and attached
task share subpool zero, the save area is obtained there. Otherwise, it is obtained from
a new 4K-byte block. NO specifies that no save area is needed.

,KEY =PROP

,KEY =ZERO
ZERO specifies that the protection key of the newly created task should be zero. PROP
specifies that the protection key of the newly created task should be copied from the
TCB for the task using ATTACH.

,DISP =YES

,DISP=NO
YES specifies that the subtask is dispatchable. NO specifies that the subtask is
nondispatchable.

Note: When DISP=NO is specified, before the ATTACH processing can be completed
for the new task, the attaching task must use the STATUS macro to make the task
dispatchable.

,TID=task id
specifies the task identifier to be placed in the TCB field of the attached task.

,NSHSPV = subpool nmbr

,NSHSPL = subpool list addr
specifies the virtual storage subpool number 236 or 237, or the address of a list of
virtual storage subpool numbers 236 and 237. The subpools specified are not shared
with the subtask.

When NSHSPL is specified, the first byte of the list contains the number of bytes
remaining in the list. Each of the subsequent bytes contains a virtual storage subpool
number.

,RSAPF = YES

,RSAPF =NO
specifies that the attached subtask comes from an unauthorized library. When it comes
from an APF-authorized library and is link-edited with the APF-authorized attribute, the
step begins execution with APF authorization.

RSAPF = YES when these conditions are met:
* The caller is running in supervisor state, system key (0-7), or both

* The caller is running non-APF authorized
* The task is attached in the problem program state and with a non-system key.

Specify RSAPF =NO when the APF authorization of the step is to remain unchanged.

,ALCOPY=NO

,ALCOPY =YES
specifies the EAX value for the new task and determines the contents of its access list.
ALCOPY = NO gives the new task an EAX of zero and a null access list. ALCOPY =YES
gives the new task:

* The same EAX as the caller
* A copy of the caller’s DU-AL

The default is ALCOPY =NO.

ATTACH and ATTACHX— Create a New Task 45

,RELATED = (value)
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user. They can be any valid coding values.

When control is returned, register 15 contains one of these return codes:

Hexadecimal Meaning
Code

00 Successful completion.

04 ATTACH is issued in a STAE exit. Processing not completed.

08 Insufficient storage available for control block for STAI/ESTAI request. Processing
not completed.

0C Invalid exit routine address or invalid parameter list address specified with STAI
parameter. Processing not completed.

14 Authorized task specifying JSTCB=YES is not a job step task. Processing not
completed.

18 Attempt to create a new subtask results in the job step tasks and non-job step

tasks in becoming subtasks of the current task. Processing not completed.

Notes:
1. Upon return, for any return code, register 1 is set to zero. The 00 is an exception.

2. After control is returned to the originating task, the program manager, processing for
ATTACH, is performed under the new subtask. It is possible for the originating task to
obtain return code 00, and still not have the subtask successfully created. For example,
when the entry name cannot be found by the program manager. In such cases, the new
subtask is abnormally terminated.

Example 1
Operation: Attach program SYSPROGM, runs with protection key 0 and in supervisor
mode. Subpool 0 is not to be shared, and the new task is not to have a save area.

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO, SVAREA=NO

Example 2

Operation: Attach the program name addressed in register 7. The new task is to run in
problem program mode, a save area is to be provided, subpool 0 is not to be shared, a task
library DCB is provided, and the new task is to be nondispatchable.

ATTACH EPLOC=(7),SM=PROB,SVAREA=YES,SZERO=NO, X
DISP=NO, TASKLIB=(8)

Example 3
Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

Example 4

Operation: Cause PROGRAMT1 to be attached, share subpool 5, supply WORD1 so that the
originating task can know when the subtask is complete, and establish EXIT1 as an ESTAI
exit.

ATTACH EP=PROGRAMI,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

46 sPL: Application Development Macro Reference

Example 5 .
Operation: Cause PROGRAM1 to be attached, and share subpool zero. The subtask is to
receive control:

* With the same extended authorization index EAX as the caller.
* With a copy of the caller’s dispatchable unit access list DU-AL.

TESTCASE CSECT
ATTACH EP=PROGRAM1,SZERO=YES,ALCOPY=YES

END TESTCASE

ATTACH and ATTACHX— Create a New Task 47

ATTACHX — Create a New Task

The ATTACHX macro creates a new task for callers in AR mode or primary mode. |t
indicates the entry point in the program to be given control when the new task becomes
active.

The caller in AR mode must issue the SYSSTATE ASCENV = AR to tell ATTACHX to generate
code and addresses appropriate for callers in AR mode. Parameters for the ATTACHX
macro are the same as those for the ATTACH macro.

These are the requirements for the caller:

Authorization: Supervisor state or Problem state

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary or AR

Serialization: Enabled and unlocked

Control parameters: Parameter lists, and any data pointed to by the parameter lists, must

reside in the caller’s primary address space. For callers in AR mode, the
parameter list address is qualified by an ALET of 0.

For callers in AR address space control (ASC) mode, the user’s parameter
list (PARAM parameter) can be in the primary address space (qualified by
an ALET of 0) or in any space addressable through public entries in the
caller’s dispatchable unit access list (DU-AL).

The format of the PARAM parameter list for callers in AR mode differs from the format for
callers in primary mode.

System parameter lists, and data pointed to by those parameter lists, must reside in the
caller’s primary address space. Addresses on the user’s parameter list (PARAM
parameter) can be in any address space.

This is the standard form of the ATTACHX macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATTACH or ATTACHX.
ATTACHX
b One or more blanks must follow ATTACH or ATTACHX.
EP=entry name entry name: symbol.
EPLOC =entry name addr entry name addr: A-type address, or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).
,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).
,LPMOD = limit prior nmbr limit prior nmbr: symbol, decimal digit, or register (2) - (12).
,DPMOD =disp prior nmbr disp prior nmbr: symbol, decimal digit, or register (2 - (12).
,PARAM = addr addr: A-type address, or register (2) - (12).
,PARAM =addr,VL=1 Note: addr is one or more addresses, separated by commas.

For example, PARAM = addr,addr,addr

LECB=ecb addr ecb addr: A-type address, or register (2) - (12).
JETXR = exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

,GSPV =subpool nmbr subpool nmbr: symbol, decimal digit, or register (2) - (12).
,GSPL =subpool list addr subpool list addr: A-type address, or register (2) - (12).
,SHSPV =subpool nmbr) subpool nmbr: symbol, decimal digit, or register (2) - (12).
,SHSPL =subpool list addr subpool list addr: A-type address, or register (2) - (12).

48 sPL: Application Development Macro Reference

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr
,STAI=(exit addr)
,STAl=(exit addr,parm addr)
LESTAI = (exit addr)
LESTAI=(exit addr,parm addr)
,PURGE = QUIESCE

,PURGE = NONE

,PURGE =HALT

,ASYNCH=NO
LASYNCH=YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=S8SUpPV

,SVAREA =YES
,SVAREA=NO

,KEY =PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

,TID=task id
,NSHSPV = subpaol nmbr
,NSHSPL =subpool list addr

,RSAPF=NO
,RSAPF=YES

,LALCOPY =YES
LALCOPY =NO

,RELATED = value

Default: SZERO =YES

dcb addr: A-type address, or register (2) - (12).
exit addr: A-type address, or register (2) - (12)

parm addr: A-type address, or register (2) - (12)
Note: AR mode callers must not use STAI.

Note: Specify PURGE only if you specify ESTAL
Default for ESTAI: PURGE = NONE

Note: Specify SYNCH only if you specify ESTAI
Default for ESTAI: ASYNCH=YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM=NO

Default: SM=PROB

Default: SVAREA=YES

Default: KEY =PROP

Default: DISP =YES

task id: decimal digits 0-255, or register (2) - (12).

Default: TID=0

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).
Default: RSAPF =NO

Default: ALCOPY =NO

value: any valid macro keyword specification.

The parameters are explained under ATTACH. The parameters must be ALET-qualified
when a program in AR mode passes a parameter list to the attached task through the
PARAM parameter. These are the parameters:

PARAM = addr
PARAM = addr,VL=1

specifies address(es) the caller passes to the attached task. ATTACHX expands each
address inline to a fullword boundary and builds a parameter list with the addresses in
the order specified. When the attached task receives control, register 1 contains the
address of the parameter list. When PARAM is not specified, ATTACHX passes GPR1
and AR1 unchanged to the attached routine.

For programs in AR mode, the addresses passed to the system are in the first half of
the parameter list and their associated ALETs are in the last half of the list.

ATTACH and ATTACHX— Create a New Task 49

To pass a variable number of parameters, designate VL=1. It tells the system to set
the high-order bit of the last address to 1. The 1 in the high-order bit identifies the last
address parameter, but not the last entry in the list. For more information about
passing user parameters, see “ User Parameters” on page 5.

The contents of the ARs on entry to the subtask are:

Register Contents

0 Used as a work register by the system.

1 Zero if you specified a user parameter list on either the PARAM or MF=E
parameters; otherwise unchanged.

2-12 Used as work registers by the system.

13-15 Zeroes.

Example

Operation: With the caller in AR ASC mode, cause PROGRAM1 to be attached and share
subpool zero. The subtask is to receive control:

* With the same extended authorization index EAX as the caller
* With a copy of the caller’s dispatchable unit access list DU-AL
* Executing in AR ASC Mode.

TESTCASE CSECT
SYSSTATE ASCENV=AR
/.\TTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES

END TESTCASE

50 spPL: Application Development Macro Reference

ATTACH and ATTACHX (List Form)

Both, control and user parameter lists are used in the ATTACH and ATTACHX macros. The

control parameter list is constructed with the list form of ATTACH or ATTACHX. The user

parameter list, is constructed with the list form of the CALL macro. Refer to this parameter
list in the execute form of ATTACH or ATTACHX.

The parameter lists for callers in AR mode, for the same number of addresses, are twice
the size of the parameter lists for callers in primary mode. The system qualifies each
address on the parameter list with an ALET. ALET identifies the address space.

This is the list form of the ATTACH or ATTACHX macro:

name

b

ATTACH
ATTACHX

b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH or ATTACHX.

One or more blanks must follow ATTACH or ATTACHX.

EP=entry name
EPLOC=entry name addr
DE = list entry addr
,DCB=dcb addr
,LPMOD = [imit prior nmbr
,DPMOD = disp prior nmbi
LECB=ecb addr
LETXR =exit rtn addr

,GSPV =subpool nmbr
,GSPL =subpool list addr

,SHSPV = subpool nmbr
,SHSPL =subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr
,STAI=(exit addr)

,STAIl = (exit addr,parm addr)
JESTAI= (exit addr)
,ESTAIl=(exit addr,parm addr)
,PURGE =QUIESCE

,PURGE =NONE
,PURGE=HALT

,ASYNCH=NO
,ASYNCH=YES
,TERM=NO
,TERM=YES

,SM=PROB
,SM=SUPV

entry name: symbol.

entry name addr: A-type address.

list entry addr: A-type address.

dcb addr: A-type address.

limit prior nmbr: symbol or decimal digit.
disp prior nmbr: symbol or decimal digit.
ecb addr: A-type address.

exit rtn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

Default: SZERO=YES

dcb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.
Note: STAI is valid only for callers in primary mode.

Note: PURGE may be specified only if STAl or ESTAl is
specified.

Default for STAl: PURGE =QUIESCE

Default for ESTAI: PURGE = NONE

Note: ASYNCH can be specified only when STAIl or ESTAI
is specified.

Default for STAI: ASYNCH=NO

Default for ESTAI: ASYNCH=YES

Note: TERM can be specified only when ESTAI is specified.

Default: TERM =NO

Default: SM=PROB

ATTACH and ATTACHX— Create a New Task

51

52

,SVAREA=YES
,SVAREA=NO

,KEY =PROP
JKEY=ZERO

,DISP=YES
,DISP=NO

,TID=task id
,NSHSPV =subpool nmbr
,NSHSPL =subpool list addr

,RSAPF=NO
,RSAPF=YES

,ALCOPY =YES
,LALCOPY=NO

,RELATED =value

Default: SVAREA=YES

Default: KEY =PROP

Default: DISP=YES

task id: decimal digits 0-255.

Default: TID=0

subpool nmbr: symbol, decimal digit.
subpool list addr: A-type address.
Default: RSAPF=NO

Default: ALCOPY=NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ATTACH or ATTACHX macro.

This is the exception:

SF=L

specifies the list form of the ATTACH or ATTACHX macro.

Note: When the RSAPF parameter is not specified on the list form of ATTACH or ATTACHX,
the default is RSAPF=NO. When RSAPF=YES is specified on the list form or on a previous
execute form using the same SF =list, RSAPF=NO is ignored for any subsequent execute

forms of ATTACH or ATTACHX.

Once RSAPF is specified, it is in effect for all users of that list.

SPL: Application Development Macro Reference

ATTACH and ATTACHX (Execute Form)

Two parameter lists are used in ATTACH and ATTACHX: a control parameter list and an
optional user parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH or ATTACHX. When only the
user parameter list is remote, parameters that require use of the control parameter list
cause that list to be constructed inline as part of the macro expansion.

This is the execute form of the ATTACH or ATTACHX macro:

name

b

ATTACH
ATTACHX

b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH or ATTACHX.

One or more blanks must follow ATTACH or ATTACHX.

EP=entry name

EPLOC =entry name addr

DE = list entry addr
,DCB=dcb addr
,LPMOD =/imit prior nmbr
,DPMOD=disp prior nmbr
,PARAM = addr
,PARAM =addr,VL=1
,ECB=ecb addr
JETXR=exit rtn addr

,GSPV =subpool nmbr
,GSPL=subpool list addr

,SHSPV =subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr
,STAIl=(exit addr)
,STAIl=(exit addr,parm addr)
LESTAI=(exit addr)

LESTAI= (exit addr,parm addr)
,PURGE =QUIESCE

,PURGE =NONE
,PURGE=HALT

,ASYNCH=NO
,ASYNCH=YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=S8UPV

entry name: symbol.

entry name addr: RX-type address, or register (2) - (12).

list entry addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit , or register (2) - (12).
disp prior nmbr: symbol, decimal digit, or register (2) - (12).
addr: RX-type address, or register (2) - (12).

Note: addr is one or more addresses, separated by commas.
For example, PARAM = addr,addr,addr

ecb addr: RX-type address, or register (2) - (12).

exit rtn addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).
Note: AR mode callers must not use STAI.

Note: PURGE may be specified only when STAl or ESTAI is
specified.

Note: ASYNCH may be specified only when STAl or ESTAIl is
specified.

Note: TERM may be specified only when ESTAI is specified.

Default: SM=PROB

ATTACH and ATTACHX— Create a New Task 53

,SVAREA=YES

,SVAREA=NO Default: SVAREA=YES

,KEY =PROP Default: KEY =PROP

,KEY =ZERO

,DISP=YES Default: DISP=YES

,DISP=NO

,TID=task id task id: decimal digits 0-255, or register (2) - (12).

' Default: TID=0

,NSHSPV = subpool nmbr subpool nmbr: symbol, decimal digit, or register (2) - (12).

,NSHSPL = subpool list addr subpool list addr: RX-type address, or register (2) - (12).

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

,ALCOPY =YES Default: ALCOPY =NO

,ALCOPY =NO

,RELATED =value value: any valid macro keyword specification.
,MF =(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).
,SF =(E,ctrl addr) ctrl addr: RX-type address, or register (2) - (12) or (15).

,MF =(E,prob addr),SF = (E,ctr/ addr)

The parameters are explained under the standard form of the ATTACH macro, with these
exceptions:

sMF = (E,prob addr)

,SF = (E,ctr/ addr)

,MF = (E,prob addr),SF = (E,ctr/ addr)
specifies the execute form of the ATTACH or ATTACHX macro. It uses a remote user
parameter list, a remote control parameter list, or both. When no parameter list is
provided, user or control parameters are provided in parameter lists expanded inline.

Notes:

1. When STAl is specified on the execute form, these fields are overiaid in the control
parameter list: exit addr, parm addr, PURGE, and ASYNCH. When parm adar is not
specified, zero is used. When PURGE or ASYNCH are not specified, defaults are used.

2. When ESTAI is specified on the execute form, these fields are overlaid: exit addr, parm
addr, PURGE, ASYNCH, and TERM. When parm addr is not specified, zero is used.
When PURGE, ASYNCH, or TERM are not specified, defaults are used.

3. The STAI or ESTAI must be completely specified on either the list or execute form, but
not on both forms.

4. When SZERO is not specified on the list or execute form, the default is SZERO = YES.
When SZERO = NO is specified on either the list form or a previous execute form using
the same SF=list, SZERO=YES is ignored for any subsequent execute forms of the
macro. Once SZERO=NO is specified, it is in effect for all users of that list.

5. When RSAPF = YES is specified on the list form or on a previous execute form of the
ATTACH or ATTACHX macro using the same SF =list, RSAPF=NO is ignored for any
subsequent execute forms of the macro.

54 spL: Application Development Macro Reference

AXEXT — Extract Authorization Index

The AXEXT macro returns the authorization index value, AX, of the address space.

These are the requirements for the caller:

Authorization: Supervisor state or PKM 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN = HASN or PASN not = HASN

Amode: Any

ASC mode: Primary

Serialization: Enabled and unlocked

Control parameters: Control parameters must be in the primary address space.

Register 13 must point to a standard register save area addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Bits 16-31 contain the extracted AX; bits 0-15 are set to 0.
1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

This is the standard form of the AXEXT macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXEXT.
AXEXT
b One or more blanks must follow AXEXT.
ASID=asid value asid value: RX-type address or register (0) - (12).

Default: current PASID.

,RELATED =value value: any valid macro keyword specification.

These are parameters:

ASID = asid value
specifies the ASID of the address space from where the AX is to be extracted. When
the RX-type address is used, it points to a halfword containing the ASID. When the
register form is used, bits 16-31 contain the ASID and bits 0-15 are set to zero. When
ASID is not specified, the current PASID is assumed.

,RELATED = value
specifies information used to self document macros by “relating” functions or services
to corresponding functions or services. The format and content of the information are
set at the discretion of the user. They can be any valid coding values.

© Copyright IBM Corp. 1988, 1991 55

When control returns, register 15 contains this return code:

Hexadecimal Meaning
Code
0 The AX value of the specified address space was successfully obtained.

56 srL: Application Development Macro Reference

AXFRE — Free Authorization Index

The AXFRE macro returns one or more authorization index (AX) values to the system. The
AX value can be used as an extended authorization index (EAX) value. The caller must
ensure that the AXs to be returned are no longer being used by any address space as an AX
or an EX, otherwise, the caller abnormally terminates. On completion of the AXFRE macro,
all authorization of the freed AX values in authorization tables for the entire system are
purged. The caller must be dispatched in the address space that owns the AX.

These are the requirements for the caller:

Authorization: Supervisor state or PKM = 0to 7

Dispatchable unit mode: SRB or task

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary

Serialization: Enabled and unlocked

Control parameters: For callers in primary mode, control parameters must be in the primary

address space.

Register 13 must point to a standard register save area addressable in primary mode.
When the macro is issued, the list of AX values passed to the AXFRE macro must also be
addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

This is the standard form of the AXFRE macro:

name name: symbol. Begin name in column 1.
b One ore more blanks must precede AXFRE.
AXFRE
b One or more blanks must follow AXFRE.
AXLIST =list addr list addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

© Copyright IBM Corp. 1988, 1991 57

These are the parameters:

AXLIST = list addr
specifies the address of a variable length list of halfword entries that contain the AX

values to be freed. The first halfword must contain the number of values in the list.

,RELATED = value
specifies information used to self document macros by “relating” functions or services

to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains one of the these return codes:

Hexadecimal Meaning
Code
0 The specified authorization index or indexes are successfully freed.
4 The specified authorization index or indexes are not successfully freed. One or

more of the indexes are unavailable for use.

58 sPL: Application Development Macro Reference

AXRES — Reserve Authorization Index

The AXRES macro reserves one or more authorization index (AX) values for the caller’s
use. The AX values are owned by the current home address space.

The AXSET macro sets the AX of the home address space to the value (or values) that is
reserved by the AXRES macro.

The caller can use the value returned by the system as an AX through the AXSET macro, or
as an extended authorization index (EAX) through the ETDEF, ETCRE, and ETCON macros.
The AX value associated with a program determines whether that program is permitted to
issue the PT instruction with another address space as the target, and/or set another
address space as its secondary address space through the SSAR instruction. The EAX
value determines whether a program running with the EAX can access data in another
address space through a private access list entry.

These are the requirements for the caller:

Authorization: Supervisor state or PKM = 0to 7

Dispatchable unit mode: SRB or task

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary

Serialization: Enabled and unlocked

Control parameters: For callers in primary mode, control parameters must be in the

primary address space.

The parameter list passed to the AXRES macro must be addressable in primary mode when
the macro expansion is executed. Register 13 must point to a standard register save area
addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

This is the standard form of the AXRES macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXRES.
AXRES
b One or more blanks must follow AXRES.
AXLIST =list addr list addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

© Copyright IBM Corp. 1988, 1991 59

The parameters are explained as follows:

AXLIST = Jist addr
specifies the address of a variable length list, addressable in primary mode, of
halfword entries in which requested AX values are to be returned. The first halfword
must contain the number of values to be returned. Enough halfwords must follow the
first entry to contain the requested number of values. If the requested number of AX
values is not available, the caller is abnormally terminated.

,RELATED =value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains this return code:

Hexadecimal Meaning
Code
0 The AX value or values were successfully reserved.

60 spL: Application Development Macro Reference

AXSET — Set Authorization Index

The AXSET macro sets the authorization index (AX) of the home address space to the value
specified by the caller. The AX must be reserved. The address space in which the AX is
being changed cannot own connected space switch entry tables. All routines that
subsequently execute, with a PASID of the address space for the AX being changed, execute
with the new AX.

These are the requirements for the caller:

Authorization: Supervisor state or PKM = 0-7
Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN or PASN not = HASN
Amode: Any

ASC mode: Primary

Serlalization: Enabled and unlocked

Control parameters: Primary

Register 13 must point to a standard register save area addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

This is the standard form of the AXSET macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXSET.
AXSET
b One or more blanks must follow AXSET.
AX=AX value AX value: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

These are the parameters:

AX=AX value
specifies the new AX value. The RX-type address specifies a halfword containing the
new AX. When the register form is used, the register must contain the new AX in bits
16-31, and bits 0-15 must be zero.

,RELATED = value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

© Copyright IBM Corp. 1988, 1991 61

When control returns, register 15 contains this return code:

Hexadecimal Meaning
Code
0 The AX of the home address space is set to the value specified by the caller.

62 sPL: Application Development Macro Reference

CALLDISP — Pass Control to Another Ready Task

The CALLDISP macro saves the caller’s status in the current TCB/RB, and passes control to
another ready task. The task with the highest priority is the one that receives control.
When the original task is redispatched, control is returned to the next sequential instruction.

These are the requirements for the caller:

* When BRANCH = NO

Authorization:

Dispatchable unit mode:

Cross memory mode:
Amode:

ASC mode:
Serialization:

Control parameters:

* When BRANCH = YES

Authorization:

Dispatchable unit mode:

Cross memory mode:
Amode:

ASC mode:
Serialization:

Control parameters:

None

Task

PASN = HASN

Any

Primary

Enabled and unlocked
None

Supervisor state or PKM = 0

Task

PASN = HASN or PASN not = HASN
Any

Any

Enabled and unlocked

None

When control returns to the caller:

The cross memory mode is unchanged.
When FIXED =NO is specified, registers 14-1 are destroyed; otherwise registers are

unchanged.

No locks are held.

Control returns enabled.
PCLINK status is saved and restored.

This is the standard form of the CALLDISP macro:

name: symbol. Begin name in column 1.

One or more blanks must precede CALLDISP.

One or more blanks must follow CALLDISP.

name

b

CALLDISP

b
BRANCH=NO
BRANCH=YES
,FIXED=YES
,FIXED=NO

,FRRSTK=SAVE
,FRRSTK=NOSAVE

Default: BRANCH=NO
Default: (Available only when BRANCH=YES is coded)
FIXED=YES

Default: (Available only when BRANCH=YES is coded)
FRRSTK=NCSAVE

© Copyright IBM Corp. 1988, 1991

63

These are the parameters:

BRANCH=NO

BRANCH = YES
specifies whether the branch entry (BRANCH = YES) or the SVC entry (BRANCH =NO)
of CALLDISP is to be used. The default is BRANCH=NO.

BRANCH=YES is restricted to key 0 supervisor state callers. Routines in cross
memory mode must specify BRANCH=YES. See SPL: Application Development Guide
for more information about the requirements for using the BRANCH = YES option of the
CALLDISP Macro.

Routines that are unlocked, have no enabled unlocked task FRRs on the stack, and are
not in cross memory mode, can use BRANCH=NO.

,FIXED = YES

,FIXED =NO
specifies that the code invoking branch entry CALLDISP is in fixed storage
(FIXED = YES) or in pageable storage (FIXED=NO). For FIXED=NO, registers 14-1 are
altered.

,FRRSTK=SAVE

,FRRSTK = NOSAVE
specifies that the current FRR stack be saved and restored (FRRSTK=SAVE), when at
least one of the FRRs is an enabled unlocked task (EUT) FRR, or purged
(FRRSTK =NOSAVE).

When FRRSTK = SAVE is specified:

¢ The caller cannot hold any locks or an abend results.

* When EUT FRRs exist, the current FRR stack is saved and the caller can hold either
the LOCAL or CML lock.

* When no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend
occurs.

* Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs are
deleted.

For more information, see “Suspension and Resumption of Request Blocks” in SPL:
Application Development Guide for an explanation of the CALLDISP function used with
SUSPEND/RESUME processing.

Example 1
Operation: Pass control to another ready task.

CALLDISP

Example 2

Operation: A non-page-fixed task with an enabled, unlocked task FRR gives control to
another ready task. When the task regains control, the contents of registers 14, 15, 0, and 1
have been destroyed.

CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

64 sPL: Application Development Macro Reference

CALLRTM — Call Recovery Termination Manager

The CALLRTM macro schedules abnormal termination for a task or address space. The
system selects the appropriate recovery or termination process according to the status of
the system and the requests of its invokers.

See also: “Invoking the Recovery Termination Manager” in SPL: Application Development
Guide.

These are the requirements for the caller:

Authorization: Key 0, Supervisor state

Dispatchable unit mode: Task or SRB

Cross memory mode: Any cross memory mode

Amode: Any

ASC mode: Home, primary, or secondary. When TYPE=ABTERM is specified in a
* mode other than home mode, ASID must be specified.

Serlalization: * When TYPE=ABTERM and TCB =0, or equals the address of the

current task, the caller must be disabled for I/0 and external interrupts.
* When TYPE=ABTERM and TCB does not equal 0 or the address of the
current task, the caller must hold the local lock.
* When TYPE=MEMTERM, the user has no disablement or locking
requirements.

Control parameters: Must reside in the currently addressable space. When TYPE=ABTERM
and TCB does not equal 0 or the address of the current task, the dump
options must reside in fixed or DREF storage.

Savearea e When TYPE =ABTERM is specified and the ASID parameter is omitted,

there are no savearea requirements

* When TYPE =ABTERM is specified with ASID, or when
TYPE=MEMTERM is specified, the invoker must provide the address of
an 18-word savearea in register 13.

When the caller is executing in 31-bit addressing mode, all input parameters, except the
TCB, can reside in storage above 16 megabytes.

This is the standard form of the CALLRTM macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CALLRTM.
CALLRTM
b One or more blanks must follow CALLRTM.

TYPE=ABTERM
TYPE=MEMTERM

,COMPCOD =comp code comp code: symbol, decimal digit, or register (2) - (12).
,REASON=code code: a symbol, decimal or hexadecimal number, or register
(@ -(12).
,ASID=asid asid: decimal digits 0-32,765 or register (2) - (15).
,JCB=tcb addr tcb addr: 0, or register (2) - (12).

Note: This parameter can only be specified with
TYPE=ABTERM.

,DUMP=YES Default: DUMP =YES
,DUMP=NO Note: This parameter can only be specified with
TYPE=ABTERM.

© Copyright IBM Corp. 1988, 1991 65

66

,STEP=NO Default: STEP =NO
,STEP=YES Note: This parameter can only be specified with
TYPE =ABTERM.

,DUMPOPT =parm list addr parm list addr: register (3)- (15).
,DUMPOPX = parm list addr parm list addr: register (3)-(15).

These are the parameters:

TYPE = ABTERM
TYPE = MEMTERM

specifies whether the services of the recovery termination manager are directed
towards task termination (ABTERM) or address space termination (MEMTERM). For
MEMTERM, all recovery processing is skipped in the address space.

TYPE=ABTERM is supported in home mode when ASID is specified.

To specify TYPE=ABTERM and TCB =0, the user must be disabled for I/O and external
interrupts. To specify TYPE=ABTERM but not TCB =0, the user must be holding the
local lock.

In a cross memory environment, when ASID is not specified, the TCB must reside in the
home address space. When ASID is specified, the TCB must be in the same address
space as the ASCB.

,COMPCOD = compcode

specifies the system completion code associated with the abnormal termination. This
parameter can be specified as a hexadecimal code (x‘80A’.), a decimal code (2058), or
a register containing a hexadecimal code. In all cases, the result is hexadecimal.

,REASON = code

specifies additional information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is a 32-bit hexadecimal
number or 31-bit decimal number. In all cases the result is hexadecimal.

The system uses the SDWACRC field of the SDWA to pass the reason code to the
recovery routine.

,ASID = asid

specifies the address space identifier of the address space to be terminated (for

MEMTERM) or the address space identifier of the address space containing the TCB of
the task to be terminated (for ABTERM). When this parameter is omitted or when zero
is specified, the current address space is assumed. When this parameter is specified,
an 18-word work area must be supplied and its address must be passed in register 13.

Note: The contents of register 2 is destroyed when this parameter is used.

,TCB=tcb addr

specifies the TCB address of the task to be terminated. In a cross memory
environment, when ASID is not specified, the TCB must reside in the home address
space. When ASID is specified, the TCB must be in the same address space as the
ASCB.

Note: The TCB resides in storage below 16 megabytes.

,DUMP = YES
,DUMP =NO

specifies whether a dump is (YES) or is not (NO) to be taken. When the DUMPOPT or
DUMPOPX parameter is not specified, the contents of the dump are defined by the
//ISYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement and the system or
user-defined defaults.

,STEP=NO
,STEP =YES

specifies whether the job step is (YES) or is not (NO) to be abnormally terminated.

SPL: Application Development Macro Reference

,DUMPOPT =parm list addr
,DUMPOPX = parm list addr

specifies the address of a parameter list of dump options. To create the parameter list,
use the list form of the SNAP or SNAPX macro; or build the parameter list by coding
your own data constants. DUMPOPT specifies the address of a parameter list that the
SNAP macro creates. DUMPOPX specifies the address of a parameter list that the
SNAPX macro creates.

The system dump options, specified by the CHNGDUMP operator command, can add to
or override this parameter list. All recovery routines entered for the failure can also
add to the list of dump options. The TCB, DCB, and STRHDR options available on SNAP

or SNAPX are ignored when they appear in the parameter list. The TCB is for the task

that receives the ABEND. The DCB is provided by the ABDUMP routine. When a
//ISYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement is not provided, the
DUMPOPT or DUMPOPX parameter is ignored.

Note: The contents of register 3 is destroyed when this parameter is used.

Register 15 contains one of these return codes for TYPE = ABTERM:

Hexadecimal Meaning
Code
0 The ABTERM request was processed successfully.
4 The task has already been scheduled for termination by a previous ABTERM
request.
8 An asynchronous unit of work has been scheduled to terminate the task.
18 The ASID value is invalid.
1C The TCB passed to RTM is invalid.
28 An SRB could not be obtained.

Register 15 contains one of these return codes for TYPE=MEMTERM:

Hexadecimal Meaning
Code
0 The MEMTERM request was processed successfully.
18 The ASID value is invalid.
2C The address space cannot be terminated by the MEMTERM request.
Example 1

Operation: Terminate the current address space with a completion code of 123.
CALLRTM TYPE=MEMTERM,COMPC0OD=123,ASID=0

Example 2
Operation: Schedule the TCB, addressed in register 8, for abnormal termination. The

abnormal termination of the TCB takes place in the address space identified by the ASID,

specified in register 5. It has a completion code of 123.
CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8)

CALLRTM — Call Recovery Termination Manager

67

68 sPL: Application Development Macro Reference

CHANGKEY — Change Virtual Storage Protection Key

© Copyright IBM Corp. 1988, 1991

The CHANGKEY macro changes the protection key and fetch protection status of one or
more pages of virtual storage. The CHANGKEY function is available only for use by
programs that execute in supervisor state and key zero. Callers can be enabled or

disabled.

CHANGKEY is valid for virtual storage that is obtained by a GETMAIN or a STORAGE

macro. The storage must be obtained in page multiples from subpools that are available to
programs in problem program state. Callers must provide an 18-word save area and place
the address of the save area in register 13. If the caller is disabled, the save area must be

in fixed storage.

The CHANGKEY macro is written as follows:

name

b

CHANGKEY

b

name: symbol. Begin name in column 1.

One or more blanks must precede CHANGKEY.

One or more blanks must follow CHANGKEY.

R,BA=page addr,EA =page addr
L,LISTAD = list addr

,KEY = stor key

,BRANCH=YES

page addr: A-type address or register (1) - (12).

Note: The R-type macro expansion alters the contents of
register 2. EA should not be specified as (1).

list addr: A-type address or register (1) - (12).

stor key: Decimai digit 1-15 or register (0) or register (3) - (12).

Required.

The parameters are explained as follows:

R,BA =page addr,EA =page addr

L,LISTAD = /ist addr

specifies the type of CHANGKEY request:

R indicates a request to change the key of a single area of virtual storage.

L indicates a request to change the key of one or more areas of virtual storage.

BA specifies the address of the first byte of the first page of the virtual storage area
whose key is to be changed.

EA specifies the address of the first byte of the last page of the virtual storage area
whose key is to be changed.

Notes:

1. BA must be less than or equal to EA.

2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the
addressing mode of the issuer of the macro.

LISTAD specifies the address of the first double-word of a variable length parameter list
in fixed storage. The first word of each element is defined as BA above and the second
word of each element as EA above. If the high-order bit of the second word is one, then
that element is the last element in the parameter list.

69

70

,KEY = stor key
specifies the new storage key and fetch protection status for the virtual storage areas
specified. If the stor key specification is a decimal digit, the system assumes you want
fetch protection. If you do not want fetch protection, specify the protection key in bits
24-27 of a register and leave bit 28 at zero to indicate no fetch protection.

,BRANCH=YES
The only entry available into the CHANGKEY service routine is branch entry.

Note: The requestor must have addressability to the CVT.

Upon completion of the CHANGKEY macro, register 15 contains a zero return code. If a
caller requested that the key be changed to key 0, the caller is abended with a code X'08F’.

Example 1
Operation: Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.

CHANGKEY R,BA=(REG5),EA=(REG5),KEY=8,BRANCH=YES

Example 2
Operation: Change the storage key and ensure fetch protection of two noncontiguous
pages of virtual storage addressed by PAGE1 and PAGE2 respectively.

CHANGKEY L,LISTAD=PLIST,KEY=10,BRANCH=YES

PLIST DC 2A(PAGE1) FIRST ELEMENT IN LIST
DC A(PAGE2) BA PART OF SECOND ELEMENT
DC AL1(X'80') INDICATES LAST ELEMENT IN LIST
DC AL3(PAGE2) EA PART OF SECOND ELEMENT

SPL: Application Development Macro Reference

CIRB — Create Interruptio?Request Block

© Copyright IBM Corp. 1988, 1991

The CIRB macro causes the exit effector routine to create an interruption request block
(IRB). Other parameters of this macro specify the building of a register save area and/or a
work area to contain interruption queue elements. For information about asynchronous exit
routines, see SPL: Application Development Guide.

These are the requirements for the caller:
e When BRANCH = NO

Authorization: None

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary

Serialization: Enabled and unlocked

Control parameters: Must be in primary address space

* When BRANCH = YES

Authorization: Supervisor state and PSW key = 0
Dispatchable unit mode: Task or IRB

Cross memory mode: PASN = HASN

Amode: Any

ASC mode: Primary

Serialization: LOCAL lock

Control parameters: Must be in primary address space

For BRANCH=YES:

* The caller must pass a TCB address in register 4.
* The caller must include the CVT mapping macro.
* Control is returned in supervisor state, key zero, with the same lock as held on entry.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Used as a work register by the macro
1 The address of the created IRB

2-13 Unchanged

14 -15 Used as work registers by the macro

[a

This is the standard form of the CIRB macro:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CIRB.
CIRB
b One or more blanks must follow CIRB.
EP=entry point addr entry point addr: RX-type address, or register (0) or (2) - (12).
,KEY =PP Default: KEY =PP
,KEY =SUPR
,MODE=PP Default: MODE=PP
,MODE =SUPR
,SVAREA=NO Default: SVAREA=NO
,SVAREA=YES
,RETIQE=YES Defauit: RETIQE=YES
,RETIQE=NO
,STAB=(DYN)
,WKAREA = workarea size workarea size: Decimal digit, or register (2) - (12).

Default: zero

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES

,LRETRN=NO Default: RETRN=NO

,RETRN=YES Note: This parameter has meaning only when RETIQE=NO is
specified.

,LAMODE =CALLER Default: AMODE = CALLER

,AMODE = DEFINED

These are the parameters:

EP = entry point addr
specifies the address of the entry point of the user’s asynchronous exit routine.

,KEY =PP

,KEY = SUPR
specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro (PP).

,MODE =PP

,MODE =SUPR
specifies whether the asynchronous exit routine executes in prcblem program (PP) or
supervisor (SUPR) mode.

,SVAREA=NO

,SVAREA = YES
specifies whether to obtain a 72-byte register save area from the virtual storage
assigned to the problem program. When a save area is requested, CIRB places the
save area address in the IRB. The address of this area is passed to the user routine
via register 13.

72 sPL: Application Development Macro Reference

,RETIQE = YES

,RETIQE=NO
specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

,STAB=DYN
specifies that the IRB (including the work area) is to be freed by EXIT.

Note: When the STAB parameter is omitted from the CIRB macro, the IRB remains
available for later use by the task issuing the macro.

,WKAREA = workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area
can be used to build IQEs. The first four bytes of the obtained work area contain the
address of the next available IQE (RBNEXAYV field). The maximum size is 255 double
words.

,BRANCH=NO
,BRANCH =YES
specifies whether branch linkage (YES) or SVC linkage (NO) to CIRB is provided.

,RETRN=NO

,RETRN=YES
specifies whether the IQE is (YES) or is not {NO) returned to the available queue when
the asynchronous exit terminates.

,AMODE = CALLER
,AMODE = DEFINED
specifies the addressing mode where the exit routine is to be given control.

When CALLER is specified, the exit routine receives control in the same addressing
mode as the caller.

When DEFINED is specified, the addressing mode of the exit routine is pointer defined.
The addressing mode is determined by the setting of the high order bit of the entry
point address for the exit routine. When the bit is set, the addressing mode is 31-bit;
when the bit is not set, the addressing mode is 24-bit.

Example 1

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit is
scheduled via the IQE interface to the exit effector. It receives control in the supervisor
state. The IRB is to be freed when it terminates. The exit receives control at the IQERTN
label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=MO
Example 2
Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE

interface to the exit effector is used to schedule the routine. The exit gets control at the
RQETEST label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR, STAB=(DYN) ,BRANCH=NO

CIRB — Create Interruption Request Block 73

74 sPL: Application Development Macro Reference

CMDAUTH — Command Authorization Service

© Copyright IBM Corp. 1988, 1991

The CMDAUTH macro verifies the RACF authorization of commands received from a
console. Each parameter corresponds to a RACROUTE parameter.

There is a list and an execute form, but no standard form of the CMDAUTH macro.

The requirements for the caller are:

Authorization: One of the following:

* Supervisor state and key 0
* APF authorized

Dispatchable unit mode: Task

Cross memory mode: HASN=PASN=SASN

Amode: 24- or 31-bit addressing mode

ASC mode: Primary

Interrupt status: Enabled for /O and external interrupts

Locks: No locks held

Control parameters: Must be addressable in the caller’s primary address space

When control is returned from CMDAUTH, register 15 contains one of the following return
codes:

Code Meaning

0 Command issuer is authorized to issue the command.

4 No authorization decision was made.

8 Command issuer is not authorized to issue the command.

When control is returned from CMDAUTH, register 0 contains a return code from the
security product that is installed on the system. If the security product is RACF, see the
description of the return codes listed with “RACROUTE REQUEST = AUTH — Check RACF
Authorization (for RACF Release 1.9)” on page 477 for further information.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register Contents

0 Return code from the security product.

1 Address of error messages if MSGRTN = YES is specified; otherwise, used as
a work register by the macro.

2-13 Unchanged

14 Used as a work register by the macro

15 Return code from CMDAUTH.

75

CMDAUTH (List Form)

Use the list form of the CMDAUTH macro to construct a nonexecutable control program
parameter list.

The list form of the CMDAUTH macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CMDAUTH.
CMDAUTH
b One or more blanks must follow CMDAUTH.
JMF=(L, cntl addr) cntl addr: RX-type address or register (2) - (12).

The parameters for the list form of the CMDAUTH macro are explained as follows:

,MF=(L,cntl addr)
specifies the list form of CMDAUTH. cnt/ addr defines the area into which the system
stores the parameter list.

76 sPL: Application Development Macro Reference

CMDAUTH (Execute Form)

The execute form of the CMDAUTH macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the CMDAUTH macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CMDAUTH.
CMDAUTH
b One or more blanks must follow CMDAUTH.

ENTITY = entity name addr

entity name addr: RX-type address or register (2) - (12).

,ATTR = access level addr access level addr: RX-type address or register (2) - (12).

,LOGSTR = fog string addr log string addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.
,UTOKEN = utoken addr utoken addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.
,CNTLBLK=cntl blk addr cntl blk addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.

,CBLKTYPE=CIB
,CBLKTYPE =SSCM

Note: See usage note (following) for usage information.

,REQSTOR = reqstor addr reqstor addr: RX-type address or register (2) - (12).

,SUBSYS = subsys addr subsys addr: RX-type address or register (2) - (12).

,MSGSUPP=YES Default: NO
,MSGSUPP=NO

,MSGRTN=YES Default: NO
,MSGRTN=NO

,MSGSP = subpool number Default: 229.

,MF=(E, cntl addr) cntl addr: RX-type address or register (2) - (12).

Usage Note: You must specify one of the following parameter combinations:

* UTOKEN and LOGSTR
* CNTLBLK and CBLKTYPE

You cannot specify both of the preceding combinations. Also note that:

* UTOKEN is not valid with CNTLBLK and CBLKTYPE
* LOGSTR is optional with CNTLBLK and CBLKTYPE
o CNTLBLK is not valid with UTOKEN and LOGSTR

* CBLKTYPE is not valid with UTOKEN and LOGSTR

You can use CNTLBLK and CBLKTYPE to obtain authorization information without having to

specify the UTOKEN and LOGSTR for the command. See the description of the CBLKTYPE
parameter for further information.

CMDAUTH — Command Authorization Service 77

The parameters are explained as follows:

ENTITY = entity name addr
specifies the address of a required 39-byte input field containing the resource name for
the command whose authority you are checking. If the entity name is less than 39
bytes, left-justify it and pad it on the right with blanks.

ENTITY corresponds to the RACROUTE REQUEST = AUTH parameter, ENTITY.

,ATTR = access level addr
specifies the SAF access level for the command whose authority you are checking. The
bits set in the 1-byte field indicate the access level. The following settings apply:

e 02 - READ
* 04 - UPDATE
¢ 08 - CONTROL

ATTR corresponds to the RACROUTE REQUEST = AUTH parameter, ATTR.

LOGSTR = /og string addr
specifies the address of a required input field containing the command text of the
command whose authority you are checking. The first byte of the input field must
contain the length of the command text.

LOGSTR corresponds to the RACROUTE REQUEST = AUTH parameter, LOGSTR.

UTOKEN = utoken addr
specifies the address of the UTOKEN that RACROQUTE will use for command
authorization.

UTOKEN corresponds to the RACROUTE REQUEST = AUTH parameter, UTOKEN.

CNTLBLK = cntl blk addr
specifies the address of the control block the system passes as input to CMDAUTH.

CBLKTYPE=CIB

l PRODUCT-SENSITIVE PROGRAMMING INTERFACE]

CBLKTYPE =SSCM

L_____.____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ________._____j

specifies the type of control block whose address you specify on the CNTLBLK
parameter.

You can use the CIB as input when you need authorization information for START,
STOP, or MODIFY commands.

l PRODUCT-SENSITIVE PROGRAMMING INTERFACE]

Use the SSCM as the control block input for any subsystems that use the CMDAUTH
macro during SSI command exit (function code 10) processing.

I________.____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ______._____‘

,REQSTOR = reqstor addr
specifies the address of an 8-byte character field containing the control point name.
(This address identifies a unique control point within a set of control points that exists
in a subsystem.) If the control point name is less than eight bytes, left-justify it and pad
it on the right with blanks.

If you code this operand and RACF is installed, change the RACF router table to match
the operand.

78 spL: Application Development Macro Reference

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing the calling subsystem’s
name, version, and release level. If the subsystem’s name is less than eight bytes,
left-justify it and pad it on the right with blanks.

If you code this operand and RACF is instalied, change the RACF router table to match
the operand.

;MSGSUPP = YES
sMSGSUPP =NO

indicates whether you want to suppress write-to-operator (WTO) messages from SAF
and RACF. The defaultis NO.

,MSGRTN = YES

,MSGRTN=NO
indicates whether you want CMDAUTH to return error messages to the caller. If you
specify YES, CMDAUTH returns the address of the messages to register 1. The default
is NO.

s,MSGSP = subpool number

specifies the number of the subpool into which you want error messages returned. The
default is 229.

,MF = (E,cntl addr)
specifies the execute form of CMDAUTH. This form generates the code to store the
parameters into the parameter list and execute the CMDAUTH macro. cnt/ addr defines
the area into which the system stores the parameter list.

Example

Operation: Verify the authorization of a command. Register 4 points to the data set name

and register 3 points to the access level setting.

DO_CMDAUTH CMDAUTH ENTITY=(R4),ATTR=(R3),SUBSYS=SUB_NAME,
REQSTOR=REQ_NAME,UTOKEN=UTOKEN_ADDR,
LOGSTR=LOG_STR,MF=(E,CMDAUTH_LIST)

CMDAUTH — Command Authorization Service 79

80 sPL: Application Development Macro Reference

COFCREAT — Create a VLF Object

© Copyright IBM Corp. 1988, 1991

The COFCREAT macro allows your application to add an object, on behalf of an end user, to
a class of VLF objects. Before issuing COFCREAT, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

When you issue COFCREAT to create a VLF object, you must provide the UTOKEN for a
currently-identified end user, as well as the major name, minor name, and object parts list
for the object to be placed in VLF storage. The object parts list describes the ALET,
location, and size of each source area that is to be made part of the VLF object. To issue
COFCREAT, your program must be running under a task with the same home ASID as the
issuer of the COFIDENT macro that identified the user.

To ensure that VLF does not create an object if the permanent source data changes between
the time you obtain the object from permanent storage and the time you create the object,
VLF requires that you issue COFRETRI to try to retrieve the object before you issue
COFCREAT.

Thus, normal processing of an end user request for an object includes the following steps:
1. Issue the COFRETRI macro to attempt to retrieve the object.

2. Examine the return code from COFRETRI. VLF can only create an object after you have
tried to retrieve it and when COFRETRI completed with one of the following conditions:

* Object not found (return code 8)
* Best available object found (return code 2)
¢ Best available object found, but target area is not large enough (return code 6)

3. If the return code is 8, create the object. (Processing return codes 2 or 6 might also
require you to create the object.) Between issuing the COFRETRI and the COFCREAT
for the object, do not issue any COFRETRI macro with the same UTOKEN.

To ensure the integrity of the data, the working storage that your application uses to create
the VLF object must not be key 8 storage, and you must perform the following steps:

1. Change to (or remain in) supervisor state.

2. Issue a BLDL macro for the PDS member using the same DDNAME used to identify the
user to VLF. VLF guarantees that no manipulations with allocation can allow the user to
alter the data sets associated with a DDNAME used to identify a VLF user. In such a
case, VLF invalidates that user’s token (UTOKEN).

3. Save the “K” value from a successful BLDL to pass to VLF as the CINDEX value on
COFCREAT.

4. Perform secure I/0 to read the object from DASD. Performing secure /O, which
protects the data from malicious tasks, has the following requirements:

a. The DCB used for I/0 must not be in key 8 storage.
b. The I/0O buffers must not be in key 8 storage.

5. Issue the COFCREAT macro to create the VLF object.
6. If necessary, copy the object to key 8 storage to enable the user program to access it.

Failure to follow these rules compromises the integrity of data objects in VLF storage.
Depending on the nature of the class of VLF objects, incorrect data could cause severe
system integrity problems.

For non-PDS classes, you can issue COFCREAT with the REPLACE option. If you specify
REPLACE, VLF does not require that COFRETRI precede COFCREAT. Because VLF cannot
then guarantee that the source object has not changed, your application must ensure that
the source object remains unchanged between the time when you reference the source
object to create the object parts list and the time when you receive control back from
COFCREAT.

81

If you do not specify REPLACE and issue COFCREAT for an object that already exists in VLF
storage, VLF returns a successful completion code but does not replace the object data. In
this case, VLF assumes that the data you supply is identical to the data that already exists in

its storage.

If you specify REPLACE and issue COFCREAT for an object that already exists in VLF
storage, VLF does replace the existing object with the parts specified in the object parts list.

Environment:

To invoke COFCREAT, a program can be in cross memory mode and must be:

¢ |n enabled, unlocked task mode with no EUT FRRs in effect.

¢ In supervisor state or with PSW kéy mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit

addresses.

¢ |n primary address space control (ASC) mode or access register ASC mode.

Restrictions:

* |f you do not specify REPLACE, you must issue the COFRETRI macro before you issue

COFCREAT on behalf of the user.

* |f you specify REPLACE, you must ensure that the source object cannot change until VLF
has processed the COFCREAT macro for the object.

The standard form of the COFCREAT macro is written as follows:

name
b
COFCREAT
b

name: symbol. Begin name in column 1.

One or more blanks must precede COFCREAT

One or more blanks must follow COFCREAT

MAJOR = major
CINDEX =cindex

,DDNAME = ddname
,REPLACE=YES
,REPLACE=NO

,MINOR = minor

,UTOKEN = ufoken

,OBJPRTL =objprt!

,OBJPLSZ =objplsz
,RETCODE =retcod

,RSNCODE =rsncod

major: Rx-type address or register (2) - (12).
cindex: Rx-type address or register (2) - (12).

ddname: Rx-type address or register (2) - (12).
Specify DDNAME only with CINDEX.

Specify REPLACE only with MAJOR.
Default: REPLACE=NO

minor: Rx-type address or register (2) - (12).

utoken: Rx-type address or register (2) - (12).
objprtl: Rx-type address or register (2) - (12).
objplsz: Rx-type address or register (2) - (12).
retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

MAJOR = major

specifies the major name of the object to be created.

The length of the major name must be the same as the length specified by MAJLEN on
the COFDEFIN macro that defined the class of objects. Specify MAJOR only for a
non-PDS class. (For a PDS class, you must use CINDEX and DDNAME.)

82 sPL: Application Development Macro Reference

CINDEX = cindex
identifies a one-byte field that contains the concatenation index of the major name
associated with the object being created. CINDEX is required for a PDS class. The
index is the zero-origin relative number of the major name for the object in the major
name list of the user creating the object. This list is the one supplied to VLF on the
COFIDENT macro that identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the "K”
(concatenation index) value returned when your application issued a BLDL to locate a
member.

When you specify CINDEX, you must also specify DDNAME.

DDNAME = ddname :
specifies the 8-character DDNAME of the concatenated data set list. DDNAME is
required for a PDS class. This DDNAME must be the same as the one supplied to VLF
on the COFIDENT macro that identifies the user to VLF. It represents the major name
search order for this identified user.

When you specify DDNAME, you must also specify CINDEX.

,REPLACE = YES

,REPLACE =NO
indicates that an object existing in VLF should (REPLACE = YES) or should not
(REPLACE =NO) be replaced by the parts in the input object parts list. If the object
does not exist in VLF, then VLF creates a new object.

,MINOR = minor
specifies the minor name of the object. The length of the significant portion of the name
depends on the MINLEN value defined for the class on the COFDEFIN macro, either
explicitly or by default. (For a PDS class, the length is always 8.)

,UTOKEN = utoken
specifies the required 16-character user token returned from the COFIDENT macro for
the user on whose behalf your application is issuing COFCREAT.

,OBJPRTL = objprt!
specifies the required object parts list. The object parts list describes the source areas
from which VLF can obtain consecutive parts of the object.

The object parts list consists of a fullword containing the number of object parts,
followed by three words for each part:

1. A fullword that contains the ALET that currently addresses the part. An ALET of 1,
referencing the SASN of the caller, or ALETs referencing entries on the PASN
access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the part.
3. A fullword that contains the length of the part.

The number of parts list entries must be from 1 to 16. If your program is not running in
access register (AR) ASC mode, the ALET(s) must be zero.

yOBJPLSZ = objplsz
specifies the required fullword field that contains the size (in bytes) of the object parts
list.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary,

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

COFCREAT — Create a VLF Object 83

Return Codes and Reason Codes

The hexadecimal return codes from COFCREAT are as follows:

Return Meaning

code

00 The CREATE function completed without error.

02 No VLF object was created. See reason codes for details.

04 The requested major name is not in the user’s search order.

0A The parameter list cannot be accessed.

0C The class to which the user is identified is not currently defined.

10 A user token was specified but the user is not currently identified to VLF.

12 The DDNAME is not the same as the DDNAME specified on the COFIDENT macro that

returned this user token.

14 VLF incurred a program check when it tried to access the object parts list.

18 An input parameter contained an invalid value.

1C There was not enough storage available to create this object.

28 VLF is not active.

2C There was an unexpected error in VLF.

The hexadecimal reason codes from COFCREAT are as follows:

Reason Return Meaning

code code

00 00 The VLF object has been created.

02 02 No VLF object was created because the create request specified an
ineligible major name.

04 02 No VLF object was created. A retrieve request was not done for this minor
name, a time-out occurred for the pending create, or the pending create
was invalidated by a notification that the object might have changed.

nn5000 14 VLF was unable to access OBJPRTL(nn), where nn is a hexadecimal
number indicating the part in which the access failure occurred.

00 18 The class to which the user is identified is a PDS class, but CINDEX was not
specified.

02 18 OBJPLSZ was larger than the maximum allowable size, or the number of
parts in the object parts list was greater than 16.

04 18 REPLACE was specified, but the class to which the user is identified is a
PDS class.

0A 18 The major name cannot be accessed by the specified ALET. The ALET is a
SASN ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

0B 18 The minor name cannot be accessed by the specified ALET. The ALET is a
SASN ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

0C 18 The object parts list cannot be accessed by the specified ALET. The ALET
is a SASN ALET, or the ALET is not on the dispatchable unit access list
(DU-AL).

oD 18 A part in the object parts list cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

nnnn 2C The reason code associated with return code X'2C’ (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

84 sPL: Application Development Macro Reference

COFCREAT (List Form)

The list form of the COFCREAT macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFCREAT
COFCREAT
b One or more blanks must follow COFCREAT
MF = (L,mfctrl) mfctri: symbol.
MF = (L,mfctrl/,mfattr) mfattr: 1- to 60-character input string

Defauit: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFCREAT — Create a VLF Object 85

COFCREAT (Execute Form)

The execute form of the COFCREAT macro is written as follows:

86

name
b
COFCREAT
b

name: symbol. Begin name in column 1.

One or more blanks must precede COFCREAT

One or more blanks must follow COFCREAT

MAJOR = major
,CINDEX =cindex

,DDNAME = ddname
,REPLACE=YES
,REPLACE=NO

,MINOR = minor

JUTOKEN = utoken

,OBJPRTL =objprt!

LOBJPLSZ = objplsz
,RETCODE =retcod
,RSNCODE =rsncod

MF = (E,mfctr)

major: Rx-type address or register (2) - (12).
cindex: Rx-type address or register (2) - (12).

ddname: Rx-type address or register (2) - (12).
Specify DDNAME only with CINDEX.

Specify REPLACE only with MAJOR.
Default: REPLACE=NO

retcod: Rx-type address or register (2) - (12).
utoken: Rx-type address or register (2) - (12).
objprti: Rx-type address or register (2) - (12).
objplsz: Rx-type address or register (2) - (12).
retcod: Rx-type address or register (2) - (12).
retcod: Rx-type address or register (2) - (12).

mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFCREAT macro, with the

following exception:

,MF = (E,mfctrl)

Specifies the execute form of the COFCREAT macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

SPL: Application Development Macro Reference

COFDEFIN — Define a VLF Class

© Copyright IBM Corp. 1988, 1991

COFDEFIN creates a class of VLF objects. Before issuing COFDEFIN, or any VLF macro,
you need to understand the information on using the virtual lookaside facility (VLF) that
appears in SPL: Application Development Guide.

When you define a class of VLF objects, the system allocates virtual storage for the class
and generates the necessary control blocks. If the class has already been defined, VLF
rejects the request.

To obtain the attributes of the class, the system uses the input parameters of the macro and
the description of the class in the active COFVLFxx parmlib member. The maximum amount
of virtual storage available for the class can be controlled by the MAXVIRT keyword on the
CLASS statement in COFVLFxx. When the MAXVIRT keyword is not used, the default is 4096
pages.

Environment:

To invoke COFDEFIN, a program can be in cross memory mode and must be:
* In enabled, unlocked task mode with no EUT FRRs in effect.
* [n supervisor state or with PSW key mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

* In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFDEFIN macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFDEFIN
COFDEFIN
b One or more blanks must follow COFDEFIN
CLASS=class class: RX-type address or register (2) - (12).
,MAJLEN = majlen majlen: RX-type address or register (2) - (12).
,MINLEN=minlen majlen: RX-type address or register (2) - (12).

,TRIM=ON Default: ON

,TRIM=OFF

LAUTHRET=NO Default: NO

,AUTHRET=YES

,RETCODE =retcod retcod: RX-type address or register (2) - (12).

,RSNCODE =rsncod rsncod: RX-type address or register (2) - (12).

The parameters of the standard form are as follows:

CLASS =class
specifies a 7-byte field that identifies the name of the class of VLF objects to be created.
The name, which can be from 1 to 7 characters, can consist of any combination of upper
case alphabetic and numeric characters and @, #, and $. The name must match the
name of a class described in the active COFVLFxx parmlib member.

87

IBM-supplied VLF class names begin with the uppercase letters A-l. Choose names for
installation-supplied VLF classes that begin with J-Z, numeric characters, or @, #, or $.

,MAJLEN = majlen
identifies a 1-byte field specifying the length, from 1 to 64 bytes, of the major names in
this class. This parameter is required for a non-PDS class. For a PDS ciass, the length
is always 50. '

,MINLEN = minlen
identifies a 1-byte field specifying the length, from 1 to 64 bytes, of the minor names in
this class. This parameter is required for a non-PDS class. For a PDS class, the length
is always 8.

,TRIM =ON

,TRIM = OFF
an optional parameter that specifies how you want VLF to manage virtual storage for
the objects in the class. If you specify TRIM = ON, which is the default, VLF
automatically removes the least recently used objects when it needs space. If you
specify TRIM = OFF, VLF removes objects only when it is specifically notified. Allowing
VLF to manage the storage (TRIM = ON) ensures that, if space is limited, the most
recently used objects tend to remain in virtual storage.

,AUTHRET =NO

,AUTHRET = YES
an optional parameter that indicates whether tasks that issue the COFRETRI macro to
retrieve objects from the class must be in supervisor state or have PSW key mask 0-7.
To restrict retrieves for the class to such tasks, specify AUTHRET=YES. The default is
AUTHRET=NO.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary,

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary,

Return Codes and Reason Codes
The hexadecimal return codes from COFDEFIN are as follows:

Return Meaning

code

00 The class is defined to VLF.

02 A define request for this class is already in progress or the class is already defined.

04 The define request failed. The class state is not valid.

08 A purge request for the same class has overridden the define request. The class is not
defined at this time.

oC There was no description for the class in the active COFVLFxx parmlib member.

10 One or more parameters are not valid. See the reason code.

18 The parameter list ALET is not valid.

28 VLF is not active.

2C There was an unexpected error in VLF.

88 sPL: Application Development Macro Reference

The hexadecimal reason codes from COFDEFIN are as follows:

Reason Return Meaning

code code

00 00 The define request was successful.

04 02 A define request for the same class is currently in progress.

08 02 The class is already defined. You must issue COFPURGE for the class
before you can redefine the class.

0C 02 The class is already defined. You must issue COFPURGE for the class

before you can redefine the class. VLF has changed the existing class
definition to require that issuers of COFRETRI for the class be in supervisor
state or have PSW key mask 0-7.

00 08 A purge request for the same class was issued before the define request
completed.

04 08 The class was being purged when you issued COFDEFIN.

04 10 The value for MAJLEN is not within the allowed range.

08 10 The value for MINLEN is not within the allowed range.

ocC 10 The values for both MAJLEN and MINLEN are not within the allowed range.

nnnn 2C The reason code associated with return code X’2C’ (44 decimal) is for

internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

COFDEFIN — Define a VLF Class 89

COFDEFIN (List Form)

The list form of the COFDEFIN macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFDEFIN
COFDEFIN
b One or more blanks must follow COFDEFIN
MF = (L,mfctrl) mfetrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string
Default: 0D

The parameters of the list form are as follows:

MF = (L,mfctrl)

MF = (L,mfctrl,mfattr)
Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

90 sPL: Application Development Macro Reference

COFDEFIN (Execute Form)

The execute form of the COFDEFIN macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFDEFIN
COFDEFIN
. One or more blanks must follow COFDEFIN
CLASS=class class: RX-type address or register (2) - (12).
,MAJLEN= majlen majlen: RX-type address or register (2) - (12).
,MINLEN = minlen majlen: RX-type address or register (2) - (12).

,TRIM=ON Default: ON

,TRIM=OFF

,LAUTHRET =YES Defauit: NO

LAUTHRET =NO

,RETCODE =retcode retcode: RX-type address or register (2) - (12).

,RSNCODE =rsncod rsncod: RX-type address or register (2) - (12).
,MF = (E,mfctrl) mfetrl: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the COFDEFIN macro, with the
following exceptions:

,MF = (E,mfctrl)
Specifies the execute form of the COFDEFIN macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

COFDEFIN — Define a VLF Class 91

92 sPL: Application Development Macro Reference

COFIDENT — Identify a VLF User

© Copyright IBM Corp. 1988, 1991

The COFIDENT macro allows an individual user to access a particular class of VLF objects.
Before issuing COFIDENT, or any VLF macro, you need to understand the information on
using the virtual lookaside facility (VLF) that appears in SPL: Application Development
Guide.

You must issue COFIDENT to identify the class and user before VLF can retrieve or create
objects on behalf of that user. With COFIDENT, you also specify to VLF the search order it is
to use to locate objects for the user.

As part of COFIDENT processing, VLF returns a unique user token (UTOKEN). The user
token identifies the user (through an associated home ASID), class, and search order.
Other VLF functions, such as retrieving or creating objects, require you to supply this user
token.

The value of the user token returned by the successful completion of this function is never
zero. Thus, you can check a saved user token field for zero to determine if an end user has
been identified to VLF.

Before obtaining the user token, you must ensure that the user is authorized to access the
objects. Open the DDNAME or perform authority checking before you issue the COFIDENT
macro.

If the end user has private data sets in a DDNAME concatenation (data sets not defined for
this class in the active COFVLFxx parmlib member), they are not eligible data sets. That is,
VLF does not use them as a source of VLF objects.

If you have control over the search orders, VLF works most efficiently when private data
sets (or ineligible major names for non-PDS classes) are either not allowed or follow the
eligible names rather than precede them.

Environment:

To invoke COFIDENT, a program can be in cross memory mode and must be:
* |n enabled, unlocked task mode with no EUT FRRs in effect.
* In supervisor state or with PSW key mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

* [n primary address space control (ASC) mode or access register ASC mode.

Restrictions:

* The storage area to be used for the parameter list must reside in the caller’s primary
address space. The ALET used to qualify this storage must be 0.

¢ When you specify DDNAME, you must issue the COFIDENT macro from a task running
under the same home ASID as the task that allocated the DDNAME.

* When SCOPE =HOME is specified or defaulted, the returned user token (UTOKEN) is
valid only for tasks with the same home ASID as the issuer of the COFIDENT macro.
Subsequent VLF macros (COFCREAT, COFRETRI, or COFREMOV) that supply this user
token must have the same home ASID.

¢ When SCOPE =SYSTEM is specified, the issuers of the COFCREAT and COFREMOV
macros must have the same home ASID as the issuer of COFIDENT. However, the
COFRETRI macro can be issued by tasks that have a home ASID that is different from
the home ASID of the issuer of the COFIDENT macro. VLF treats a COFRETRI macro
issued with this UTOKEN as if the request had come from the task that issued the
COFIDENT macro. Any task that supplies the UTOKEN can retrieve objects created with
the UTOKEN unless the COFDEFIN macro that defined the class specified
AUTHRET = YES. In this case, only supervisor state tasks, or tasks running with PSW
key mask 0-7, can retrieve objects from the class.

93

The standard form of the COFIDENT macro is written as follows:

name
b
COFIDENT
b

name: symbol. Begin name in column 1.

One or more blanks must precede COFIDENT

One or more blanks must follow COFIDENT

DDNAME = ddname
MAJNLST = majnist

,CLASS =class

,SCOPE =HOME
,8COPE =SYSTEM

JUTOKEN = utoken
,RETCODE = retcod

,RSNCODE =rsncod

ddname: Rx-type address or register (2) - (12).
majnist: Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

Default: HOME

utoken: Rx-type address or register (2) - (12).
retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

DDNAME = ddname

Specifies, for a PDS class, the ddname of a concatenated data set list. When VLF
locates objects on behalf of this user, it uses the order in which data sets appear in this
data set list as its search order. Note that the concatenated data set list can contain
private data sets; VLF creates objects, however, only from eligible data sets (data sets
included in the class description in the active COFVLFxx parmlib member). Specify

DDNAME only for PDS classes.

Note: Before you issue COFIDENT, you must verify that the end user is authorized to
access any data sets referenced by this DDNAME. Open the DDNAME before issuing
the COFIDENT macro to ensure that the end user has authority to access the data sets

in the DDNAME concatenation.

If you specify DDNAME, do not specify MAJNLIST.

MAJNLST = majnist

defines, for non-PDS classes, the search order VLF is to use to locate objects for this
user. Each entry in the list must match a major name defined for the class through
EMAUJ in the active COFVLFxx parmlib member.

MAJNLST is required for a non-PDS class. The list that majnlist points to consists of a
4-byte field containing the number of entries in the list, followed by a contiguous list of
from 1 to 256 major names. The list must contain at least one entry.

Each name in the list must be the same length, padded with blanks on the right if
necessary. The length of each name in the list must be equal to the length supplied for
MAJLEN on the COFDEFIN macro when the class was defined.

Note that the variable name of the major name list may be ALET qualified, but that an
ALET of 1, referencing the SASN of the caller, or ALETs referencing entries on the
PASN access list of the caller, are not allowed.

If you specify MAJNLST, do not specify DDNAME.

,CLASS =class

specifies the required seven-character name of a VLF class, already defined to VLF

through the COFDEFIN macro.

94 sPL: Application Development Macro Reference

,SCOPE =HOME

,SCOPE = SYSTEM
an optional parameter that indicates the scope of services that can retrieve objects
with the UTOKEN returned by this COFIDENT. The default is HOME.

HOME indicates that only services with the same home ASID as the task issuing the
COFIDENT macro can retrieve objects with the returned user token (UTOKEN).

SYSTEM indicates that services with a home ASID different from that of the task issuing
the COFIDENT macro can retrieve objects with the returned user token (UTOKEN). In
this case, a COFRETRI macro issued with this UTOKEN is treated as if the request had
come from the task that issued the COFIDENT macro. SCOPE=SYSTEM allows a
service running under a particular home ASID to control a set of VLF objects and allow
all tasks in the system to access those objects.

,UTOKEN = utoken
specifies a required 16-character output variable that contains the unique user token
value that VLF returns to identify this user. Subsequent requests to create or retrieve
VLF objects on behalf of this user must supply this token to VLF.

,RETCODE = reicod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fuliword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

Return Codes and Reason Codes

The hexadecimal return codes from COFIDENT are as follows:

Return
code

Meaning

00

Successful completion. The user has been identified to VLF with the specified major
name search order.

02

The user is already identified to VLF for this class.

04

The identify request cannot be completed. Another identify request from the same home
ASID is currently in progress for the same class and DDNAME.

08

No major names in the search order contain objects that are eligible objects for VLF.

0oC

The class has not been defined to VLF.

10

VLF could not obtain the list of partitioned data sets for the input DDNAME. The task
invoking VLF might not have been running under the same home ASID as the task that
allocated the DDNAME.

14

There was an incorrect input parameter. Either the DDNAME keyword was not specified
for an input PDS class, or the DDNAME keyword was specified for a non-PDS class.

18

There was an error in the parameter list.

1C

An error was detected during processing of the DDNAME for a PDS class. See the
reason codes.

28

VLF is not active.

2C

There was an unexpected error in VLF.

COFIDENT — Identify a VLF User

95

The hexadecimal reason codes from COFIDENT are as follows:

Reason Return Meaning

code code

00 00 Successful completion. The user has been identified to VLF with the
specified major name search order.

08 02 The user is already identified to VLF for this class. The user token from the
previous IDENTIFY has been returned in the UTOKEN field.

08 18 The number of major names in a search order is not in the range 1-256.

04 1C The DDNAME was not open.

08 iC The DDNAME was not allocated.

12 1C The DDNAME concatenation was changed without deallocating the
DDNAME. VLF no longer accepts user identification requests that specify
the DDNAME.

0oC 18 The input major name list was qualified using either a SASN ALET or an
ALET not on the caller’s dispatchable unit access list (DU-AL).

nnnn 2C The reason code associated with return code X’2C’ (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

96 sPL: Application Development Macro Reference

COFIDENT (List Form)

The list form of the COFIDENT macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFIDENT
COFIDENT
b One or more blanks must follow COFIDENT
MF = (L,mfctrl) mfetrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctri,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFIDENT — Identify a VLF User 97

COFIDENT (Execute Form)

The execute form of the COFIDENT macro is written as follows:

name
b
COFIDENT
b

name: symbol. Begin name in column 1.

One or more blanks must precede COFIDENT

One or more blanks must follow COFIDENT

DDNAME =ddname
MAJNLST = majnist

,CLASS =class

,SCOPE=HOME
,SCOPE =SYSTEM

,UTOKEN = utoken
,RETCODE =retcod
,RSNCODE =rsncod

MF = (E,mfctrl)

ddname: Rx-type address or register (2) - (12).
majnist. Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

Default: HOME

utoken: Rx-type address or register (2) - (12).
retcod: Rx-type address or register (2) - (12).
rsncod: Rx-type address or register (2) - (12).

mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFIDENT macro, with the

following exceptions:

,MF = (E,mfctrl)

Specifies the execute form of the COFIDENT macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

98 spL: Application Development Macro Reference

COFNOTIF — Notify VLF

The COFNOTIF macro allows an application using VLF to notify VLF that some set of VLF
objects is no longer valid because of changes to the permanent data. Before issuing
COFNOTIF, or any VLF macro, you need to understand the information on using the virtuai
lookaside facility (VLF) that appears in SPL: Application Development Guide.

You can issue COFNOTIF to notify VLF about the following kinds of changes:

* One or more major names have been deleted. You must specify FUNC=DELMAJOR
and MAJLIST.

You might need to specify MAJNUM and MAJLEN, and you also might need to specify
CLASS.

* One or more minor names have been changed. You must specify FUNC = DELMINOR
(for a deletion), FUNC = ADDMINOR (for an addition), or FUNC=UPDMINOR (for a
change). You must also specify MAJOR and MINLIST.

You might need to specify MINNUM and MINLEN, and you also might need to specify
CLASS.

* A volume is no longer in use. You must specify FUNC=PURGEVOL and VOLUME.
Note that an update to a minor name with one or more alias names means that you must

specify the minor name and each alias name. VLF views each alias name as a separate
minor name and thus needs to know about the update under each name.

Environment:

To invoke COFNOTIF, a program can be in cross memory mode and must be:
¢ In enabled, unlocked task mode with no EUT FRRs in effect.
* In supervisor state or with PSW key mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

¢ In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFNOTIF macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFNOTIF
COFNOTIF
b One or more blanks must follow COFNOTIF

FUNC=DELMAJOR
FUNC =DELMINOR
FUNC=ADDMINOR
FUNC=UPDMINOR
FUNC=PURGEVOL

,MAJLIST = majlist majlist: Rx-type address or register (2) - (12).
You must specify MAJLIST = majlist when you specify
FUNC =DELMAJOR.

,MAJNUM = majnum majnum: Rx-type address or register (2) - (12).

,MAJLEN= majlen majlen: Rx-type address or register (2) - (12).

© Copyright IBM Corp. 1988, 1991 99

,MAJOR = major major: Rx-type address or register (2) - (12).

You must specify MAJOR = major when you specify
FUNC =DELMINOR, FUNC = ADDMINOR, or
FUNC =UPDMINOR.

,MINLIST = minlist minlist: Rx-type address or register (2) - (12).

You must specify MINLIST = minlist when you specify
FUNC = DELMINOR, FUNC = ADDMINOR, or
FUNC = UPDMINOR.

,MINNUM = minnum minnum: Rx-type address or register (2) - (12).
,MINLEN = minlen minlen: Rx-type address or register (2) - (12).
,VOLUME = volume volume: Rx-type address or register (2) - (12).
,CLASS =class class: Rx-type address or register (2) - (12).
,RETCODE =retcod retcod: Rx-type address or register (2) - (12).
,RSNCODE =rsncod rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

FUNC =DELMAJOR

FUNC =DELMINOR

FUNC =ADDMINOR

FUNC = UPDMINOR

FUNC =PURGEVOL
is a required parameter that indicates the nature of the change that you are reporting.
The meaning of each value is as follows:

FUNC=DELMAJOR specifies that one or more major names have been deleted.

FUNC = DELMINOR specifies that one or more minor hames have been deleted from
a major name.

FUNC = ADDMINOR specifies that one or more minor names have been added to a
major name.

FUNC = UPDMINOR specifies that the objects corresponding to one or more existing
minor names have been changed.

FUNC =PURGEVOL specifies that a physical storage device has been logically
disconnected from the system, or that all of the information on the device has been
deleted or replaced.

,MAJLIST = majlist
identifies the list of major names with which the change is associated. When you
specify FUNC = DELMAJOR, you must specify MAJLIST to identify the major name(s)
VLF is to delete. If the list contains more than one major name, you must also specify
MAJNUM. Each major name in the list must be the same length. If the major name
length is not 64, you must also specify MAJLEN.

Use the following structure to specify the major name for a PDS class:

* 6-character volume serial name (padded with blanks if necessary)
* PDS name (a maximum of 44 characters), padded with blanks to equal 64 or the

MAJLEN value

For example, assume that you want to delete the major name MYPDS that resides on
volume VOL123. Specify VOL123MYPDS, padded with blanks as required.

,MAJNUM = majnum
an optional halfword parameter that contains the number of major names in the major
name list. The default is 1.

100 sPL: Application Development Macro Reference

,MAJLEN = majlen

an optional halfword parameter that contains the length of each input major name. The
default is 64.

Note: VLF uses the length you specify to scan the major name list. The length of the
significant part of the name (the part VLF uses to search its storage for objects with that
major name) depends on the value specified for the major name on the COFDEFIN
macro that defined the class. If the COFDEFIN length is greater than the COFNOTIF
length, VLF pads the name on the right with blanks.

,MAJOR = major
identifies the major name associated with the change to one or more minor names.
When you specify FUNC = DELMINOR, FUNC = ADDMINOR, or FUNC =DELMINOR, you
must specify MAJOR. If the length is not 64, you must also specify MAJLEN.

Use the following structure to specify the major name for a PDS class:

* 6-character volume serial name (padded with blanks if necessary)
* PDS name (a maximum of 44 characters), padded with blanks to equal 64 or the
MAJLEN value

For example, assume that you want to delete the major name MYPDS that resides on
volume VOL123. Specify VOL123MYPDS, padded with blanks as required.

,MINLIST = minlist
identifies the list of minor names with which the change is associated. When you
specify FUNC=DELMINOR, FUNC =ADDMINOR, or FUNC = UPDMINOR, you must
specify MINLIST. If the list contains more than one minor name, you must also specify
MINNUM. If the length is not 64, then you must also specify MINLEN. Each name in the
list must be the same length.

,MINNUM = minnum
an optional halfword parameter that contains the number of minor names in the minor
name list. The default is 1.

;MINLEN = minlen
an optional halfword parameter that contains the length of each name in the input minor
name list. The default is 64.

Note: VLF uses the length you specify to scan the minor name list. The length of the
significant part of the name (the part VLF uses to search its storage for objects with that
minor name) depends on the value specified for the minor name on the COFDEFIN
macro that defined the class. If the COFDEFIN length is greater than the COFNOTIF
length, VLF pads the name on the right with blanks.

,sVOLUME = volume
specifies the volume serial number of a resource that was logically removed from the
system. Specifying VOLUME causes VLF to purge any objects related to the resource
identified.

Specify VOLUME only for objects with major names that correspond to PDS names and
only when you also specify FUNC =PURGEVOL.

,CLASS =class
specifies the name of a 7-byte field that identifies the name of the class associated with
the change. CLASS is an optional parameter. Specify CLASS only for a non-PDS class.
If you omit CLASS or specify a PDS class, VLF assumes that the change being reported
applies to all PDS classes.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RASNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

COFNOTIF — Notify VLF 101

Return Codes and Reason Codes

The hexadecimal return codes from COFNOTIF are as follows:

Return
code

Meaning

00

Successful completion. VLF now reflects the indicated changes.

02

No changes to VLF storage occurred.

18

Parameter list error. See the reason codes.

1C

An error occurred while accessing an input major name. The reason code indicates the
position of the major name in the input major name list.

20

An error occurred while accessing an input minor name. The reason code indicates the
position of the minor name in the input minor name list.

28

VLF is not active.

2C

There was an unexpected error in VLF.

The hexadecimal reason codes from COFNOTIF are as follows:

Reason Return Meaning

code code

00 00 VLF now reflects the indicated changes.

08 02 No changes to VLF storage were necessary.

oc 02 The specified class was not defined to VLF. This code is only returned for
an input class that does not have a major name to PDS correspondence.

10 02 The specified class is not defined in the active COFVLFxx parmlib member.

00 18 The parameter list ALET is either a SASN ALET or is not on the caller’s
dispatchable unit access list (DU-AL).

08 18 The input major name was qualified using either a SASN ALET or an ALET
not on the caller’s dispatchable unit access list (DU-AL).

oc 18 The input minor name was qualified using either a SASN ALET or an ALET

: not on the caller’s dispatchable unit access list (DU-AL).

nnnn 1C An error occurred while accessing a major name in the input major name
list; nnnn identifies the list position of the major name that caused the
error. COFNOTIF processing terminates.

nnnn 20 An error occurred while accessing a minor name in the input minor name
list; nnnn identifies the list position of the minor name that caused the
error. COFNOTIF processing terminates.

nnnn 2C The reason code associated with return code X’2C’ (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

102 sPL: Application Development Macro Reference

COFNOTIF (List Form)

The list form of the COFNOTIF macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFNOTIF
COFNOTIF
b One or more blanks must follow COFNOTIF
MF = (L,mfctrl) mfetrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string

Default: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFNOTIF — Notify VLF 103

COFNOTIF (Execute Form)

The execute form of the COFNOTIF macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFNOTIF
COFNOTIF
b One or more blanks must follow COFNOTIF

FUNC=DELMAJOR
FUNC = DELMINOR
FUNC = ADDMINOR
FUNC=UPDMINOR
FUNC=PURGEVOL

JMAJLIST = majlist majlist. Rx-type address or register (2) - (12).
You must specify MAJLIST = majlist when you specify
FUNC = DELMAJOR.

,MAJNUM = majnum majnum: RX-type address or register (2) - (12).
,MAJLEN = majlen majlen: RX-type address or register (2) - (12).
,MAJOR = major major: Rx-type address or register (2) - (12).

You must specify MAJOR = major when you specify
FUNC = DELMINOR, FUNC = ADDMINOR, or
FUNC = UPDMINOR.

,MINLIST = minlist minlist. Rx-type address or register (2) - (12).
You must specify MINLIST= minlist when you specify
FUNC = DELMINOR, UNC = ADDMINOR, or
FUNC =UPDMINOR.

,MINNUM = minnum minnum: FIXED(15) field or register (2) - (12).
,MINLEN = minlen minlen: FIXED(15) field or register (2) - (12).
,VOLUME = volume volume: Rx-type address or register (2) - (12).
,CLASS =class class: Rx-type address or register (2) - (12).
,RETCODE =retcod retcod: Rx-type address or register (2) - (12).
,RSNCODE =rsncod rsncod: Rx-type address or register (2) - (12).
MF = (E,mfctrl) mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFNOTIF macro, with the
following exceptions:

JMF = (E,mfctrl)
Specifies the execute form of the COFNOTIF macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctr! specifies the location of the parameter list.

104 sPL: Application Development Macro Reference

COFPURGE — Purge a VLF Class

The COFPURGE macro requests that VLF purge (delete) a class of VLF objects. Before
issuing COFPURGE, or any VLF macro, you need to understand the information on using the
virtual lookaside facility (VLF) that appears in SPL: Application Development Guide.

When you issue COFPURGE, VLF deletes the class immediately. Any transaction in process
for the purged class fails; VLF issues a failure return code that is appropriate for the
transaction. To reinstate the class, you must issue another COFDEFIN for the class, which
you can do at any time. Once you have reinstated the class, you must reidentify the users
of the class.

Note that the system can also delete a class for control purposes even if no user requests it.
Your application learns that the system has purged a class when it issues a COFIDENT,
COFREMOV, COFCREAT, or COFRETRI macro specifying that class. There are specific
return and reason code combinations to distinguish a class that is not defined from other
error indicators.

Environment:

To invoke COFPURGE, a program can be in cross memory mode and must be:
* |n enabled, unlocked task mode with no EUT FRRs in effect.
* |n supervisor state or with PSW key mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

* In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFPURGE macro is written as follows:

name name: symbo!. Begin name in column 1.
b One or more blanks must precede COFPURGE
COFPURGE
b One or more blanks must foliow COFPURGE
CLASS=class class: RX-type address or register (2) - (12).
,RETCODE =retcod retcod: RX-type address or register (2) - (12).
,RSNCODE =rsncod retcod: RX-type address or register (2) - (12).

The parameters of the standard form are as follows:

CLASS =class .
specifies the required name of the class of VLF objects to be deleted.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

©® Copyright IBM Corp. 1988, 1991 105

Return Codes and Reason Codes
The hexadecimal return codes from COFPURGE are as follows:

Return Meaning

code

00 Successful completion. The class is no longer described to VLF.

02 The specified class was not described in the active COFVLFxx parmlib member.
28 VLF is not active.

The hexadecimal reason codes from COFPURGE are as follows:

Reason Return Meaning

code code

00 00 The purge was successful.

04 02 The specified class was not described in the active COFVLFxx parmlib
member.

406 sPL: Application Development Macro Reference

COFPURGE (List Form)

The list form of the COFPURGE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFPURGE
COFPURGE
b One or more blanks must follow COFPURGE
MF = (L,mfctrl) mfctrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: 0D

The parameters of the list form are as follows:

MF = (L,mfctrl)
MF = (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFPURGE — Purge a VLF Class 107

COFPURGE (Exedute Form)

The execute form of the COFPURGE macro is written as follows:

name
b
COFPURGE
b

name: symbol. Begin name in column 1.

One or more blanks must precede COFPURGE

One or more blanks must follow COFPURGE

CLASS=class
,RETCODE =retcode
,RSNCODE = rsncod

,MF = (E,mfctrl)

class: RX-type address or register (2) - (12).
retcode: RX-type address or register (2) - (12).
rsncod: RX-type address or register (2) - (12).

mfctrl: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the COFPURGE macro, with the

following exceptions:

sMF = (E,mfctrl)

Specifies the execute form of the COFPURGE macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

108 sPL: Application Development Macro Reference

COFREMOV — Remove a VLF User

© Copyright IBM Corp. 1988, 1991

COFREMOV terminates an end user’s access to the class of VLF objects associated with the
specified user token (UTOKEN). Before issuing COFREMOV, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

You issue COFREMOV when your program determines that an end user should no longer
have access to the class of VLF objects. You must supply the same user token (UTOKEN)
on COFREMOV that VLF returned on the COFIDENT macro that identified the user. You
must issue COFREMOYV from a task that has the same home ASID as the task that issued the
COFIDENT to identify the user.

After you have removed the user, VLF rejects, with a reason code that indicates an unknown
UTOKEN, any subsequent VLF requests that specify the UTOKEN.

Environment:

To invoke COFREMOQV, a program can be in cross memory mode and must be:
* In enabled, unlocked task mode with no EUT FRRs in effect.
* In supervisor state or with PSW key mask 0-7.

* In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

* [n primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFREMOV macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFREMOV
COFREMOV
b One or more blanks must follow COFREMOV
UTOKEN = utoken utoken: Rx-type address or register (2) - (12).
,RETCODE = retcod ‘ retcod: Rx-type address or register (2) - (12).
,RSNCODE =rsncod rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

UTOKEN = utoken
specifies a required 16-character input parameter that contains the user token value
(obtained from the COFIDENT macro) for the user you are removing from VLF.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

109

Return Codes and Reason Codes

The hexadecimal return codes from COFREMOV are as foilows:

Return
code

0

Successful completion. The record of the identified user corresponding to the input
UTOKEN has been removed. Subsequent requests to access VLF objects with this
UTOKEN will fail.

02

An unknown user token was specified.

18

The ALET of the input parameter is not valid.

28

VLF is not active.

2C

There was an unexpected error in VLF.

The hexadecimal reason codes from COFREMOV are as follows:

Reason Return Meaning
code code
0 0 Successful completion. The record of the identified user corresponding to
the input UTOKEN has been removed. Subsequent requests for access to
_ VLF objects with this UTOKEN will fail.
10 02 An unknown user token was specified.
nnnn 2C The reason code associated with return code X'2C’ (44 decimal) is for

internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

110 sPL: Application Development Macro Reference

COFREMOV (List Form)

The list form of the COFREMOV macro is written as follows:

name name: symbo!. Begin name in column 1.
b One or more blanks must precede COFREMOV
COFREMOV
b One or more blanks must follow COFREMOV
MF = (L,mfctrl) mfctrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFREMOV — Remove a VLF User 111

COFREMOV (Execute Form)

The execute form of the COFREMOV macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFREMOV
COFREMOV
b One or more blanks must foilow COFREMOV
L,UTOKEN = utoken utoken: Rx-type address or register (2) - (12).
,RETCODE =retcod retcod: Rx-type address or register (2) - (12).
,RSNCODE = rsncod retcod: Rx-type address or register (2) - (12).
JMF = (E,mfctr/) mfctrl: Rx;type address or register (2) - (12).

The parameters are explained under the standard form of the COFREMOV macro, with the
following exceptions:

sMF = (E,mfctrl)
Specifies the execute form of the COFREMOV macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

112 sPL: Application Development Macro Reference

COFRETRI — Retrieve a

VLF Object

The COFRETRI macro enables an application using VLF to obtain a copy of a VLF object on
behalf of an end user. Before issuing COFRETRI, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

Before you issue COFRETRI to retrieve an object on behalf of a user, you must issue
COFIDENT to identify the user. COFIDENT relates to COFRETRI in the following ways:

It returns the user token you must supply on COFRETRI.

It establishes the major name search order for this user.

It defines whether COFRETRI must be issued under a task with a home ASID that
matches the home ASID of the issuer of COFIDENT (COFIDENT was issued with
SCOPE =HOME) or whether the task invoking COFRETRI can have a different home
ASID (COFIDENT was issued with SCOPE =SYSTEM).

Environment:

To invoke COFRETRI, a program can be in cross memory mode and must be:

In enabled, unlocked task mode with no EUT FRRs in effect.

In supervisor state or with PSW key mask 0-7. If the COFDEFIN macro that defined the
class specified (or defaulted to) AUTHRET = NO, the program can be in problem state.

In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFRETRI
COFRETRI
b One or more blanks must follow COFRETRI
MINOR = minor minor: Rx-type address or register (2) - (12).
,UTOKEN = utoken utoken: Rx-type address or register (2) - (12).
,TLIST = tlist tlist. Rx-type address or register (2) - (12).
,TLSIZE =tisize tisize: Rx-type address or register (2) - (12).
,OBJSIZE = objsize objsize: Rx-type address or register (2) - (12).
,CINDEX =cindex cindex: Rx-type address or register (2) - (12).
,RETCODE =retcod retcod: Rx-type address or register (2) - (12).
,RSNCCDE = rsncod rsncod: Rx-type address or register (2) - (12).

© Copyright IBM Corp. 1988, 1991

113

The parameters of the standard form are explained as follows:

MINOR = minor
is a required parameter that identifies the minor name of the object. VLF assumes that
the length of the minor name is the same as that specified on the MINLEN parameter
when the COFDEFIN macro was issued to define the class. If the class of objects was
defined with major name to PDS name correspondence, then the minor name length is
8.

,UTOKEN = utoken
is the required 16-character user token that identifies the user for whom you are
retrieving a VLF object. VLF returned the user token when you issued the COFIDENT
macro to identify the user to VLF.

,TLIST = tlist
is a required parameter that defines the target area list. The target area list describes
target areas into which consecutive areas of the object are to be stored.

The target area list consists of a fullword containing the number of target areas,
followed by three words for each area:

1. A fullword that contains the ALET that currently addresses the target area. An
ALET of 1, referencing the SASN of the caller, or ALETs referencing entries on the
PASN access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the target area.
3. A fullword that contains the Iength of the target area.

An address of 0 signifies that VLF is to ignore the specified length; that is, VLF is not to
retrieve that part of the object. The maximum number of parts is 16.

,TLSIZE = tisize
is a required parameter, a fullword that contains the size (in bytes) of the target area

list.

,OBJSIZE = objsize
is a required parameter, a fullword that that VLF is to use to return the size (in bytes) of

the object it retrieves.

,CINDEX = cindex
is a required parameter, a one-byte field that VLF is to use to return the concatenation
index of the major name associated with the object it retrieves. The index is the
zero-origin relative number of the major name for the object in the major name list of
the user retrieving the object. This list is the one that was supplied when the
COFIDENT macro identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the “K"
(concatenation index) value returned when a BLDL is performed to locate a member.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

114 sPL: Application Development Macro Reference

Return Codes and Reason Codes
The hexadecimal return codes from COFRETRI are as follows:

Return Meaning
code

00 The VLF object was successfully retrieved. OBJSIZE contains the size of the VLF object.
CINDEX contains the zero-origin concatenation index number for the object (the
zero-origin relative entry number in the major name list supplied on the COFIDENT
macro).

02 A VLF object has been retrieved that might be the correct object for the user, but the
object might also exist in earlier major names in the user’s major name list. OBJSIZE
contains the size of the VLF object. CINDEX contains the zero-origin concatenation index
number for the object (the zero-origin relative entry number in the major name list
supplied on the COFIDENT macro). Issue a BLDL to determine whether the object
returned by VLF is the correct object based on the user’s major name search order. If
the object does exist on DASD in an earlier name in the user’s major name search order,
then take two steps. First, use the alternate method to acquire the object for the user.
Second, issue a COFCREAT macro to create the VLF object.

04 The VLF object was retrieved, but the target areas did not receive the entire object.
OBJSIZE contains the size of the VLF object. CINDEX contains the zero-origin
concatenation index number for the object (the zero-origin relative entry number in the
major name list supplied on the COFIDENT service). Increase the size of the target area,
then issue COFRETRI again.

06 A VLF object has been retrieved that might be the correct object for the user, but the
object might also exist in earlier major names in the user’s major name list.
Additionally, the target areas did not receive the entire object. OBJSIZE contains the
size of the VLF object. CINDEX contains the zero-origin concatenation index number for
the object (the zero-origin relative entry number in the major name list supplied on the
COFIDENT service). Use the same steps as for return code 02 to determine if the object
is the correct one. If it is, increase the size of the target area, then issue COFRETRI
again.

08 The object does not exist in VLF.

0A The parameter list cannot be accessed.

0C The class to which the user is identified is not currently defined.

OE The user has insufficient authorization. To retrieve an object for the class, the caller
must be a task running in supervisor state or with PSW key mask 0-7.

10 An unknown user token was specified. The most likely reason for this is that the user
has been removed from VLF identification because the user’s major name list has
changed. It is also possible you have not supplied the correct token. In either case, you
must issue the COFIDENT macro; you must re-identify the user to VLF before you can
retrieve objects for the user.

14 VLF incurred a program check when it tried to access the TLIST. You might, for example,
have specified a larger target area to VLF than was actually available or specified a
target area the user had no authority to modify.

18 An input parameter contains an invalid value.

28 VLF is not active.

2C There was an unexpected error.

COFRETRI — Retrieve a VLF Object 115

The hexadecimal reason codes from COFRETRI are as follows:

Reason Return Meaning

code code

00 08 VLF could not find a matching object to retrieve.

04 08 A retrieve was attempted for a major name that has changed or been
deleted.

nn4000 14 VLF could not access TLIST(nn), where nn is a hexadecimal number
indicating the part in which the access failure occurred.

02 18 TLSIZE is greater than the maximum allowable size, or the number of target
areas is greater than 16.

0B 18 The object specified on MINOR cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

oc 18 TLIST cannot be accessed by the specified ALET. The ALET is a SASN
ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

oD 18 A target area in the target list cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

nnnn 2C The reason code associated with return code X’2C’ (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

116 SPL: Application Development Macro Reference

COFRETRI (List Form)

The list form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFRETRI
COFRETRI
b One or more blanks must follow COFRETRI
MF=(L,mfctrl) mfctrl: symbol.
MF = (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctri,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctr/ to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFRETRI — Retrieve a VLF Object 117

°

COFRETRI (Execute Form)

The execute form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFRETRI
COFRETRI
b One or more blanks must follow COFRETRI
MINOR = minor minor: Rx-type address or register (2) - (12).
,UTOKEN= utoken utoken: Rx-type address or register (2) - (12).
,TLIST=tlist tlist: Rx-type address or register (2) - (12).
,TLSIZE=tIsize tisize: Rx-type address or register (2) - (12).
,OBJSIZE = objsize objsize: Rx-type address or register (2) - (12).
,CINDEX = cindex cindex: Rx-type address or register (2) - (12).
,RETCODE =retcod retcod: Rx-type address or register (2) - (12).
,RSNCODE =rsncod rsncod: Rx-type address or register (2) - (12).
,MF = (E,mfctrl) mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFRETRI macro, with the
following exceptions:

sMF = (E,mfctrl)
Specifies the execute form of the COFRETRI macro. This form generates the code to

store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfetrl specifies the location of the parameter list.

118 sPL: Application Development Macro Reference

COFSDONO — Delete DLF (Data Lookaside Facility) Object

Use the COFSDONO macro to cause DLF to delete a DLF object that is no longer needed.

The requirements for the caller are:

Authorization: Supervisor state or with PSW key mask 0-7.
Dispatchable unit mode: Task mode.

Cross memory mode: PASN=HASN

Amode: 31-bit addressing.

ASC mode: Primary ASC mode.

Serialization: Enabled.

Control parameters:

Note: Use of hiperbatch requires expanded storage and a processor that has the
move-page facility installed.

The standard form of the COFSDONO macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFSDONO.
COFSDONO
b One or more blanks must follow COFSDONO.
OBJNAME =name addr name addr: RX-type address or register (2) - (12).
,RETCODE =ret addr ret addr: RX-type address or register (2) - (12).
,RSNCODE =rsn addr rsn addr: RX-type address or register (2) - (12).
MF=§

The parameters are explained as follows:

OBJNAME = name addr
the 64-character name of the DLF object. The name is a 6-character volume serial
number followed by one to 44-character data set name, left-justified. Pad the
64-character field on the right with blanks (X“40"").

,RETCODE = ret addr
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsn addr
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

MF=S§

’
specifies the standard form of the macro. The standard form generates code to put the
parameters into an in-line parameter list and invoke the desired service.

© Copyright IBM Corp. 1988, 1991 119

When control is returned, register 15 contains a hexadecimal return code and register 0
contains a hexadecimal reason code, as follows:) i

Return Code Reason Code Meaning

0 0 Success. The DLF object has been deleted.

2 0 The object did not exist in DLF.

28 0 DLF is not active.

2C (nnnn) Unexpected error in DLF. The reason code associated with

return code X‘2C’ is for IBM only. It should be recorded and
supplied to the appropriate IBM support personnel.

120 sPL: Application Development Macro Reference

COFSDONO (List Form)

The list form of the COFSDONO macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede COFSDONO
COFSDONO
b One or more blanks must follow COFSDONO
MF = (L,mfctrl) mfetrl: symbol.
MF = (L,mfetrl,mfattr) attr: 1- to 60-character input string.

Default: 0D

The parameters of the list form are explained as follows:

MF = (L,mfctrl)
MF = (L,mfctri,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

COFSDONO — Delete DLF (Data Lookaside Facility) Object 121

COFSDONO Macro (Execute Form)

The execute form of the COFSDONO macro is written as follows:

name . name:'symbol. Begin hame in column 1.
b One or more blanks must precede COFSDONO.
COFSDONO
b One or more blanks must follow COFSDONO.
OBJNAME =name addr name addr: RX-type address or register (2) - (12).
,RETCODE =ret addr ret addr: RX-type address or register (2) - (12).
,RSNCODE =rsn addr rsn addr: RX-type éddress or register (2) - (12).
JMF=(E,ctrl addr) - ctrl addr: RX-type address or register (2) - (12).

Parameters for the execute form of COFSDONO are described in the standard form of the
macro with the following exceptions:

sMF = (E,mfctrl)
Specifies the execute form of the COFSDONO macro. This form generates the code to
store the parameters into the parameter list and execute the function of deleting a DLF
object. mfctrl specifies the location of the parameter list.

122 spL: Application Development Macro Reference

CPOOL — Perform Cell Pool Services

© Copyright IBM Corp. 1988, 1991

The CPOOL macro creates a cell pool, obtains a cell from the pool, returns a cell to the cell
pool, deletes a previously built cell pool, or places the starting and ending addresses of the
cell pool extents in a buffer.

Requirements for the BUILD, GET, DELETE, and FREE requests are:

Authorization: For the BUILD request, use LINKAGE = BRANCH only if the caller is in
supervisor state and key 0. To use the TCB or KEY parameters or create a
cell pool in a subpool greater than 127, the caller must be supervisor state,
or key 0-7, or APF-authorized.

For all GET, FREE, and DELETE requests, the caller can be problem state
or supervisor state.

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN not = HASN is supported.
Amode: Any
ASC mode: Primary
Secondary, if LINKAGE = BRANCH
Serialization: For GET, UNCOND requests, the caller must not be disabled when the

specified cell pool is in a disabled reference (DREF) subpool. Otherwise,
there is no requirement.

Control parameters: Except for TCB, parameters can reside in storage above 16 megabytes if
the caller is in 31-bit addressing mode.

Requirements for the LIST request are:

Authorization: Use VERIFY only if the caller is supervisor state.

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN not = HASN is supported.

Amode: Any

ASC mode: Primary or secondary

Serialization: No requirement

Control parameters: Parameters can reside in storage above 16 megabytes if the caller is in

31-bit addressing mode.

On entry to this macro, users who specify the BUILD, DELETE, LIST, or REGS=SAVE
parameters must pass the address of a 72-byte save area in register 13.

The CPOOL macro is also described in Application Development Macro Reference with the
exception of the KEY, TCB, LINKAGE, and VERIFY parameters.

The CPOOL macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL

b * One or more blanks must follow CPOOL.

Valig parameters (Required parameters are underlined)

BUILD PCELLCT,SCELLCT,CSIZE,SP,LOC,CPID,KEY,TCB,HDR,LINKAGE
GET UNCOND,COND,CPID,CELL,REGS,LINKAGE
FREE CPID,CELL,REGS
DELETE CPID,LINKAGE
LIST CPID,WORKAREA,VERIFY

,UNCOND Default: UNCOND

U

,COND

,C

]
123

124

,PCELLCT =primary cell count

,SCELLCT =secondary cell count

,CSIZE=cell size

,SP=subpool number

,LOC=BELOW

,LOC = (BELOW,ANY)

,LOC=ANY

,LOC=RES

,LOC = (RES,ANY)
,CPID=pool id
,CELL=cell addr

,KEY =key number

,TCB=tcbh addr

,HDR=hdr

,LINKAGE =SYSTEM

,LINKAGE = BRANCH

,REGS =SAVE

,REGS=USE

JWORKAREA = (workarea,length)

,VERIFY =NO
\VERIFY =YES

cell count: symbol, decimal number, or register (0, (2) - (12).

Default: PCELLCT

cell size: symbol, decimal number, or register (0), (2) - (12).
subpool number: symbol, decimal number, or register (0), (2) -
(12).

Default: SP=0

Default: LOC=RES

pool id: RX-type address or register (0), (2) - (12).
cell addr: RX-type address or register (0), (2) - (12).
key number: decimal numbers 0-15 or register (0), (2) - (12).

tcb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type
address, or

register (0), (2) - (12).

Default: ‘CPOOL CELL POOL’.

Default: LINKAGE =SYSTEM

Note: Do not specify LINKAGE with FREE or LIST requests or
the GET request with the COND parameter.

Default: REGS =SAVE

workarea: symbol, RX-type address, or register (0), (2) - (12).

length: symbol or decimal number.

Default: VERIFY =NO.

The parameters are explained as follows:

BUILD
GET
FREE
DELETE
LIST

specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the

cells together.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
- secondary extents, and all pool control blocks.

LIST places the beginning and ending addresses of the extents of a cell pool in a work

area provided by the caller.

SPL: Application Development Macro Reference

,UNCOND

U

,COND

,C

when used with GET specifies whether the request for a cell is conditional or
unconditional.

If you specify COND or C and no more free cells are available in the cell pool, the
system returns to the caller without a cell. The system places a zero in the field
specified by the CELL parameter.

If you specify UNCOND or U and no more free cells are available in the cell pool, the
system obtains more storage for the cell pool. CPOOL then obtains a new cell for the
caller. An unconditional CPOOL GET request fails only if enough storage is not
available to extend the cell pool.

,PCELLCT =primary cell count

specifies the number of cells expected to be needed in the initial extent of the cell pool.

,SCELLCT =secondary cell count

specifies the number of cells expected to be in each secondary or non-initial extent of
the cell pool.

,CSIZE = cell size

specifies the number of bytes in each cell of the cell pooi. If CSIZE is a multiple of 8,
the cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides
on word boundaries. The minimum value of CSIZE is 4 bytes.

,SP =subpool number

specifies the subpool from which the cell pool is to be obtained. If a register or variable
is specified, the subpool number is taken from bits 24-31.

,LOC = BELOW

,LOC = (BELOW,ANY)
,LOC=ANY

,LOC = (ANY,ANY)
,LOC =RES

,LOC = (RES,ANY)

specifies the location of virtual storage and central storage for the cell pool. This is
helpful for users with 24-bit dependencies. The location of central storage specified in
this parameter is the location of the storage after it is fixed, either by definition or by
PGFIX, PGFIXA, or PGSER. When you specify the LOC parameter, the location of
central storage is guaranteed only when the area is fixed.

LOC=BELOW indicates that virtual and central storage are to be allocated below 16
megabytes.

LOC = (BELOW,ANY) indicates that virtual storage is to be allocated below 16
megabytes and central storage can be anywhere.

LOC=ANY and LOC = (ANY,ANY) indicate that both virtual and central storage can be
located anywhere.

LOC =RES indicates that the location of virtual and central storage depends on the
location of the issuer of the macro. If the issuer resides below 16 megabytes, virtual
and central storage are allocated below 16 megabytes; if the issuer resides above 16
megabytes, virtual and central storage can be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual storage is
allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual
storage is allocated anywhere. Central storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform services for cell
pools located in storage above 16 megabytes by specifying LOC= ANY or
LOC = (ANY,ANY).

CPOOL — Perform Cell Pool Services 125

,CPID=pool id
specifies the address or register to contain the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
subsequent GET, FREE, DELETE, and LIST requests.

,CELL=cell addr

specifies the address or register where the cell address is returned to the user by a
GET or a FREE request.

,KEY=key number
specifies the key in which storage is to be obtained. If a register is specified, the key is
taken from bits 28-31. This parameter is valid for subpools 227, 228, 229, 230, 231, and
241,

,TCB=tcb addr
specifies the TCB address for task related storage requests. The TCB must be within
the currently addressable address space. If the caller specifies zero as the TCB
address, the CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL
request is for private area storage and the caller does not specify TCB, the default is
the TCB address in PSATOLD.

Note: The TCB resides in storage below 16 megabytes.

,HDR = hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,LINKAGE = SYSTEM

,LINKAGE = BRANCH
specifies the type of linkage used in CPOOL processing. LINKAGE=SYSTEM indicates
that the linkage is through a PC instruction, LINKAGE = BRANCH indicates branch
entry. For BUILD and DELETE this processing is between the caller and CPOOL
processing; for GET UNCOND, the linkage is within CPOOL processing.

,REGS = SAVE

,REGS = USE
indicates whether or not registers 2-12 are to be saved for a GET or FREE request. If
REGS = SAVE is specified, the registers are saved in a 72-byte user-supplied save area
pointed to by register 13. If REGS = U3E is specified, the registers are not saved.

,WORKAREA = (workarea,length)
specifies the address of a pointer to the work area (not the address of the work area)
and also specifies the length of that area. The length must be at least 1024 bytes. The
system places the beginning and ending addresses of the extents of the cell pool in this
work area. WORKAREA applies only to the LIST request and is required.

CPOOL LIST might not be able to return all of the beginning address/ending address
pairs at once, depending on how many address pairs there are and how large the work
area is. Thus, in order to complete a CPOOL LIST request, your program may have to
issue CPOOL LIST more than once. If CPOOL LIST uses up all the space in the work
area, but still has more information to return, it indicates (with a return code) that there
are more address pairs. Your program can then reissue CPOOL LIST to get more
information, and keep reissuing CPOOL LIST until all of the information is returned.

CPOOL LIST must be able to tell the difference between the beginning of a request (that
is, the first time your program issues CPOOL LIST to get some information about a cell
pool) and the continuation of a request (that is, when your program issues CPOOL LIST
to get more information). Your program tells CPOOL LIST that it is beginning a new
request by setting the first bit of word 0 in the work area to 1.

Until your program has obtained all the information about a cell pool that it needs from
CPOOL LIST, it should not change the setting of that bit, nor should it issue a GET,
FREE, or DELETE request for that cell pool. (If your program does issue a GET or FREE
request before it has obtained all of the information it needs from CPOOL LIST, it must
begin a new CPOOL LIST request; that is, set the first bit of word 0 to 1 and start all

126 spL: Application Development Macro Reference

over again. If your program deletes the cell pool, it can no longer issue the CPOOL
LIST for that cell pool.)

CPOOL LIST uses the second through fourth words (words 1-3) in the work area to
return information to your program:

e Word 1 has a return code:
— 0 - indicates the request completed successfully.
— 1 -indicates the system filled the work area, but has more information to give.
— 2 -indicates that your program passed one or more invalid parameters.

— 3 - indicates that the system found an invalid or inaccessible cell pool. In this
case, the work area contains whatever starting address/ending address pairs
were in it before the the system found the invalid or inaccessible cell pool.

* Word 2 contains a pointer to the first starting address/ending address pair in the list
of address pairs.

* Word 3 contains the number of address pairs in the list.

VERIFY =NO

VERIFY =YES
To make sure the virtual storage control blocks are backed by central storage and
accessible, specify VERIFY =YES. The default is VERIFY=NO. Use VERIFY only if your
program is in supervisor state.

Note: If GET U,LINKAGE =SYSTEM,REGS = USE is specified, the caller’s secondary ASID
will not be preserved. In all other cases the secondary ASID is unchanged.

Contents of the Registers on Return from CPOOL

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

The contents of the registers on return from CPOOL BUILD are:

Register Comment

0 Contains the cell pool id.

1 Used as a work register by the macro.
2-13 Unchanged

14-15 Used as work registers by the macro.

The contents of the registers on return from CPOOL GET are:

Register Comment

0 Contains the cell pool id.

1 Address of the obtained cell for either an UNCOND request or a successful
COND request. It contains a zero for unsuccessful COND requests.

2-4 Unchanged, if REGS =SAVE is specified; otherwise used as work registers by
the macro.

5-12 Unchanged, if REGS =SAVE or COND REGS =USE is specified; otherwise
used as work registers by the macro.

13 Unchanged

14-15 Used as work registers by the macro.

The contents of the registers on return from CPOOL FREE are:

Register Comment

0 Contains the cell pool id.

1 Used as a work register by the macro.

2-4 Unchanged, if REGS =SAVE is specified; otherwise, used as work registers
by the macro.

5-13 Unchanged

14-15 Used as work registers by the macro.

CPOOL — Perform Cell Pool Services 127

The contents of the registers on return from CPOOL DELETE are:

Register Comment

0 Contains the cell pool id.

1 Used as a work register by the macro.
2-13 Unchanged

14-15 Used as work registers by the macro.

The contents of the registers on return from CPOOL LIST are:

Register Comment
0and1 Used as work registers by the macro.
2-13 Unchanged

14 and 15 Used as work registers by the macro.

Example 1
Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in
the initial extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=2

Example 2
Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.

CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM

Example 3
Operation: Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)

Example 4
Operation: Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage.

CPOOL DELETE,CPID=(2),LINKAGE=SYSTEM

128 sPL: Application Development Macro Reference

Example §

Operation: Request that the system place the starting and ending addresses of a cell pool

in a buffer.

* * * *

Loop

*

¥ % * * % *

Assume that the cell pool ID has been saved in POOLID.

LA 1,WKAREA Get the address of the work area
ST 1,WKPTR And save it (to pass to CPOOL LIST)

(Note that the first parameter passed with WORKAREA
is a pointer to the work area, not the work area itself.)

01 FLAGBYTE,X'80"' Turn on the "first call" flag

LA 13,SAVEAREA Get address of save area in reg 13
CPOOL LIST,WORKAREA=(WKPTR,1050),CPID=POOLID

LA 15,2 Get a return code value

C 15,RCODE Check the return code

BE USRERROR Branch if there was a user error

If the return code does not indicate a user error,

some information was returned in the work area. Note
that if CPOOL LIST found that the first extent it Tooked
at was invalid, the buffer may not actually contain any
address pairs (i.e. ENTRIES may contain 0).

BAL 14,PROCESS Process the information returned
by CPOOL LIST

LA 15,1 Get a return code value

C 15,RCODE If CPOOL LIST could not return all
the information at once,

BE LoopP) Call it again to get more information

* Data declarations

*

WKAREA
FLAGBYTE

RCODE
BUFPTR
ENTRIES

WKPTR
POOLID
SAVEAREA

DS 0CL1050 Work area/buffer for CPOOL LIST
DS CL1 Byte containing first call flag
DS CL3

DS F CPOOL LIST return code

DS F Pointer to output buffer

DS F Number of address pairs in buffer
DS CL1034 Control info and address pairs
DS F Pointer to the work area

DS F Cell pool ID

DS CL72 Register save area for CPOOL LIST

CPOOL — Perform Cell Pool Services

129

CPOOL (List Form)

130

The list form of the CPOOL macro builds a non-executable parameter list that can be
referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD

,PCELLCT =primary cell count

,SCELLCT =secondary cell count

,CSIZE =cell size

,SP=subpoo! number

,LOC=BELOW

,LOC =(BELOW,ANY)
,LOC=ANY
,LOC=RES
,LOC=(RES,ANY)
,CPID=pool id

,KEY =key number

,TCB=tcb addr

,HDR = har

cell count: symbol, decimal.

Note: PCELLCT must be specified on either the list or the
execute form of the macro.

Default: PCELLCT

cell size: symbol, decimal number.

Note: CSIZE must be specified on either the list or the execute
form of the macro.

subpool number: symbol, decimal number.
Default: SP=0

Default: LOC=RES

pool id: A-type address.
key number: decimal numbers 0 - 15.

tcb addr: A-type address or register.
Default: TCB address in PSATOLD.

hdr: cv.aracter string enclosed in single quotes, A-type
address.

The parameters are explained under the standard form of the CPOOL macro with the

following exception:

SMF=L

specifies the list form of the CPOOL macro.

SPL: Application Development Macro Reference

CPOOL (Execute Form)

The execute form of the CPOOL macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD

,PCELLCT = primary cell count

,SCELLCT = secondary cell count

,CSIZE =cell size

,SP=subpool number

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
LOC=RES
,LOC=(RES,ANY)
,CPID=pool id

,KEY = key number

,TCB=tcb addr

,HDR=hdr

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

,MF = (E,ctr/ prog)

cell count: symbol, decimal number, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the
execute format of the macro.

Default: PCELLCT

cell size: symbol, decimal number, or register (0), (2) - (12).
Note: CSIZE must be specified on either the list or the execute
form of the macro.

subpool number: symbol, decimal number, or register (0), (2) -
(12).

Default: SP=0

Default: LOC=RES

pool id: RX-type address or register (0), (2) - (12).
key number: decimal numbers 0 - 15 or register (0), (2) - (12).

tcb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type
address, or
register (0), (2) - (12).

Default: LINKAGE =SYSTEM

ctrl prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro with the

following exception:

,MF = (E,ctrl prog)

specifies the execute form of the CPOOL macro.

CPOOL — Perform Cell Pool Services 131

132 sPL: Application Development Macro Reference

E'-I'RACE — Connect a User Application to Component Trace

© Copyright IBM Corp. 1988, 1991

The CTRACE macro connects a user application to component trace (DEFINE parameter).
Once the application is connected to component trace:

* An MVS operator can use the MVS commands TRACE CT and REPLY to activate and
deactivate tracing for the application. Also, the operator can use DISPLAY TRACE to
obtain the status of the application. For information about how to use the TRACE CT,
REPLY, and DISPLAY TRACE commands, see System Commands.

* The interactive problem control system (IPCS) can format and display the trace
information through the CTRACE subcommand. For a description of the CTRACE
subcommand, see IPCS Command Reference.

Before the application terminates, it should use the CTRACE macro to disconnect itself from
component trace (DELETE parameter). This action prevents the system from reporting
inaccurate status information on the DISPLAY TRACE command display.

Planning: Dumps and Trace Services describes how to take advantage of the services of

component trace.

The caller must ensure that register 13 points to a standard 72-byte save area. Other
requirements for the caller are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:

ASC mode:
Serialization:

Supervisor state and key 0
Task
PASN=HASN=SASN
31-bit

Primary

Enabled and unlocked

Registers 0, 1, 14, and 15 are not preserved.

The standard form of the CTRACE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CTRACE.
CTRACE
b One or more blanks must follow CTRACE.
DEFINE
DELETE
,NAME =name name: RX-type address or register (2) - (12).

,STARTNAM =sname
LASIDS=NO
,ASIDS=YES

,BUFFER=NO
,BUFFER=YES

JOBS=NO
JOBS=YES

,MINOPS = options
,MINOPS = NONE

,FMTTAB =fmtabs

sname: RX-type address or register (2)-(12).
Required on DEFINE.

Default: ASIDS=NO.

Default: BUFFER = NO.

Default: JOBS=NO.

options: RX-type address.
Default: MINOPS = NONE.

fmtabs: RX-type address or register (2) - (12).

133

,FMTTAB =NONE Default: FMTTAB =NONE.

,RC=rc rc: RX-type address or register (2) - (12).
,RSNCODE =rsncode rsncode: RX-type address or register (2) - (12).
,MF = (S)

The parameters are explained as follows:

DEFINE
connects the application to component trace. NAME and STARTNAM are required
parameters on the DEFINE request; ASIDS, BUFFER, JOBS, MINOPS, FMTTAB,
RSNCODE, RC, and MF are optional parameters.

DELETE
disconnects the application from component trace. NAME is a required parameter on
the DELETE request; RSNCODE, RC, and MF are optional parameters.

,NAME = name
specifies the external name of the application to be connected or disconnected. The
name must begin with an alphabetic or national character and contain up to eight
alphanumeric or national characters. (The first three letters must not be SYS because
these are reserved for IBM use.) NAME is required for both DEFINE and DELETE.

The operator uses this name on the COMP parameter on the TRACE CT command to
start and stop the tracing of the application.

,SSTARTNAM = sname
specifies the name of the application start/stop routine that the system invokes when
the operator issues the TRACE CT command. The routine, or an alias, must reside in
SYS1.LINKLIB or SYS1.LPALIB. STARTNAM is required on the DEFINE request.

The start/stop routine should perform any functions required to activate or deactivate
tracing for the application. Such functions might include obtaining storage for the
application’s trace buffers or determining the events that the application will trace. For
information on writing this start/stop routine, see SPL: Application Development Guide.

,ASIDS =YES

,ASIDS =NO
allows the operator to restrict the address spaces that the component traces by ASIDs
(ASIDS=YES). On the ASID parameter on the REPLY command, in response to the
TRACE CT command, the operator can specify up to 16 ASIDs that the system will trace
for the application. If you specify ASIDS=NO (or use the default), the operator cannot
request tracing by ASIDs.

,BUFFER = YES

,BUFFER=NO
allows the operator to specify the size of a trace buffer area (BUFFER =YES) on the
TRACE CT command. If you code BUFFER=NO (or use the default), the operator
cannot specify the size of the buffer area on the TRACE CT command

JOBS =YES

JOBS=NO
allows the operator to restrict the jobs that the application traces by job names
(JOBS=YES). On the JOBS parameter on the REPLY command, in response to the
TRACE CT command, the operator can specify up to 16 jobs that the system will trace
for the application. If you code JOBS=NO on CTRACE (or use the default), the operator
cannot specify the jobs that the application is to trace.

134 sPL: Application Development Macro Reference

,MINOPS = options

,MINOPS = NONE
specifies a list of options that are in effect while the application is connected to
component trace. These options cannot be turned off by the TRACE CT command;
specify those options that you do not want an operator to be able to turn off. The
character string for the options list must not exceed 255 bytes. The default is
MINOPS = NONE.

,FMTTAB = fmtabs

,FMTTAB = NONE
specifies the name of the load module in SYS1.MIGLIB that contains the IPCS format
table for the application. Use the ITTFMTB macro, described in this book, to create this
format table.

The default (FMTTAB = NONE) specifies that IPCS is not to format the trace.

,RC=rc
identifies the location where the system is to place the return code from the CTRACE
macro. The system copies the return code into the location from register 15.

,RSNCODE = rsncode
identifies the location where the system is to place the reason code from the CTRACE
macro. The system copies the reason code into the location from register 0.

,MF=8§
specifies the standard form, which places parameters into an inline parameter list and
invokes the CTRACE macro service.

When control returns from CTRACE, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code
4] CTRACE was successful.
4 CTRACE was unsuccessful.

* For the DEFINE request, the application was already defined to component
trace.

* For the DELETE request, the application is not connected to component trace.

8 CTRACE was unsuccessful; look for the following reason codes in
register 0:

xxxx06xx - Insufficient storage for a DEFINE operation.
xxxx07xx - CTRACE could not establish a recovery environment.

CTRACE — Connect a User Application to Component Trace 135

CTRACE (List Form)

136

The list form of the CTRACE macro is written as follows:

name name: symbol. Begin name in column 1.
-b One or more blanks must precede CTRACE.
CTRACE
b One or more blanks must follow CTRACE.
,MF=(L,cntl) cntl: symbol. .
,MF=(L,cntl,attr) attr: 1- to 60-character input string.
Default: 0D

The parameters are explained as follows:

,MF=(L,cntl)

sMF = (L,cntl,attr)
cntl is the name of a storage area for the parameter list.
attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary

alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

SPL: Application Development Macro Reference

CTRACE (Execute Form)

The execute form of the CTRACE macro can refer to and modify the parameter list
constructed by the list form of the CTRACE macro.

The execute form of the CTRACE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CTRACE.
CTRACE
b One or more blanks must follow CTRACE.
DEFINE
DELETE
,NAME =name name: RX-type address or register (2) - (12).
,STARTNAM = sname sname: RX-type address or register (2)-(12).
Required on DEFINE.
,ASIDS=NO Default: ASIDS =NO.
,ASIDS=YES
,BUFFER=NO Default: BUFFER=NO.
,BUFFER=YES
JOBS=NO Default: JOBS=NO.
JOBS=YES
,MINOPS = options options: RX-type address.
,MINOPS =NONE Default: MINOPS = NONE.
,/FMTTAB =fmtabs fmtabs: RX-type address or register (2) - (12).
,FMTTAB = NONE Default: FMTTAB =NONE.
,RC=rc rc: RX-type address or register (2) - (12).
,RSNCODE =rsncode rsncode: RX-type address or register (2) - (12).
,MF=(E,cntl) cntl: RX-type address or register (2) - (12).

,MF = (E,cnt/, COMPLETE)

The parameters are explained under the standard form of the CTRACE macro with the

following exception:

»MF = (E,cnt/)

,MF = (E,cnt,COMPLETE)

cntl is the name of a storage area for the parameter list.

COMPLETE specifies that the system is to check the macro parameter syntax and
supply defaults on parameters that you do not use.

CTRACE — Connect a User Application to Component Trace 137

138 sPL: Application Development Macro Reference

DATOFF — DAT-OFF Linkage

The DATOFF macro transfers control to a specified routine in the DAT-OFF section of the
nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT. Callers
must include the IHAPSA mapping macro with the DATOFF macro. Callers can be in
primary or access register (AR) address space control (ASC) mode. The macro destroys
the contents of general registers 0, 14, and 15.

The DATOFF macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more bianks must precede DATOFF.
DATOFF
b One or more blanks must follow DATOFF.
index Note: See the description of the parameters for the valid
options.
,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows:

index
specifies the function that is to be given control in the DAT-OFF section of the nucleus.
The possible values for index, along with the associated functions, are as follows:

Index Function

INDCDS DAT-OFF compare double and swap

INDMVCLO General DAT-OFF move character long

INDMVCLK General DAT-OFF move character long in user key
INDXCO General DAT-OFF exclusive OR character
INDUSR1 User-written

INDUSR2 User-written

INDUSR3 User-written

INDUSR4 User-written

For each of the system-defined index values (INDCDS, INDMVCLO, INDMVCLK, and
INDXCO0), the user must supply information in certain registers, as shown in the
following lists. All register values must be 31-bit addresses.

INDCDS
Registers Information
2,3 First 64-bit operand in even-odd pair of registers (target
data)
4,5 Third 64-bit operand in even-odd pair of registers (source
data)
6 Location of second operand, a doubleword in storage

(target address)

Note: Register 6 contains a real address.

© Copyright IBM Corp. 1988, 1991 139

INDMVCLO

Registers Information

2 Location into which the characters are to be moved

3 Length of the area into which the characters are to be
moved

4 Location of the area from which the characters are to be
moved

5 Length of the area from which the characters are to be
moved

Note: Registers 2 and 4 contain real addresses.

INDMVCLK
Registers Information
2 Location into which the characters are to be moved
3 Length of the area into which the characters are to be
moved
4 Location of the area from which the characters are to be
moved
5 Length of the area from which the characters are to be
moved
6 Bits 24-27 contain the PSW key in which the MVCL is to be
executed.
Note: Registers 2 and 4 contain real addresses.
INDXCO
Registers Information
2 Location of the results of exclusive OR character
processing
3 Bits 24-31 contain one less than the number of bytes on

which the exclusive OR is to be performed.

4 Location of the operand on which the exclusive OR is to
be performed

Note: Registers 2 and 4 contain real addresses.
There are four DAT-OFF indexes that users can define. These indexes are INDUSR1,

INDUSR2, INDUSR3, and INDUSR4. User written DAT-OFF functions are restricted as
follows:

* The user of the DATOFF macro instruction must be in key 0, supervisor state, and
executing with DAT turned off.
* The DAT-OFF function must have the attributes AMODE =31 and RMODE = ANY.

* The DAT-OFF function must preserve register 0 because register 0 contains the
return address of the module that issued the DATOFF macro.

e The DAT-OFF function must use branch instructions to link to other DAT-OFF
functions.

* The DAT-OFF function must use BSM 0,14 to return.

Note: See SPL: Application Development Guide for information about how to insert a
user-written function in the nucleus.

,RELATED = value
specifies information used to document the macro and to relate the service performed
to some corresponding service or function. The format of the information specified can
be any valid coding values that the user chooses.

140 SPL: Application Development Macro Reference

DEQ — Release a Serially Reusable Resource

© Copyright IBM Corp. 1988, 1991

DEQ removes control of one or more serially reusable resources from the active task.
Register 15 is set to O if the request is satisfied. An unconditional request to release a
resource from a task that is not in control of the resource or a request that contains invalid
parameters results in abnormal termination of the task.

Note: When global resource serialization is active, it searches the SYSTEM inclusion
resource name list and the SYSTEMS exclusion resource name list for every resource
specified with a scope of SYSTEM or SYSTEMS. A resource whose name appears on one of
these resource name lists might have its scope changed from the scope that appears on the
macro. (See Planning: Global Resource Serialization for additional information about global
resource serialization.)

The description of the entire DEQ macro follows. The DEQ macro also appears in
Application Development Macro Reference with the exception of the RMC, GENERIC, TCB,
and UCB parameters. These parameters are restricted in use to programs that run in
supervisor state, key 0-7, or with APF authorization, and are, therefore, described only here.

Except for TCB and UCB, all input parameters to this macro can reside in storage above 16
megabytes for callers executing in 31-bit addressing mode.

The standard form of the DEQ macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DEQ.
DEQ
b One or more blanks must follow DEQ.
(
qname addr gname addr: A-type address, or register (2) - (12).
,rname addr rname addr: A-type address, or register (2) - (12).

,rname length

,STEP
,SYSTEM
,SYSTEMS

)
,RET=HAVE
,RET=NONE
,RMC=NONE
,RMC=STEP

,GENERIC=NO
LGENERIC=YES

,TCB=tcb addr

,UCB=ucb addr

,RELATED = value

rname length: symbol, decimal digit, or register (2) - (12).
Note: rname length must coded if a register is specified for
rname addr.

Default: STEP

Default: RMC =NONE

Default: GENERIC =NO

Note: If GENERIC = YES is specified, you must also specify
RET=HAVE above.

tcb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.

ucb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

141

The parameters are explained as follows.

(

specifies the beginning of the resource description.

gname addr
specifies the address in virtual storage of an 8-character name. The gname must be
the same name specified for the resource in an ENQ macro.

,rname addr
specifies the address in virtual storage of the name used in conjunction with gname and
scope to represent the resource acquired by a previous ENQ macro. The name can be
qualified and must be from 1 to 255 bytes long. The rname must be the same name
specified for the resource in an ENQ macro.

’

,rname length
specifies the length of the rname described above. The length must have the same
value as specified in the previous ENQ macro. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of 0. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified
above.

,STEP

,SYSTEM

,SYSTEMS
specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro requesting the resource.

specifies the end of the resource description.

Note: Multiple resources can be specified with the DEQ macro. You can repeat gname
addr, rname addr, rname length, and the scope until there is a maximum of 255 characters
including the parentheses.

,RET=HAVE

,RET=NONE
HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources or if ENQ
was executed with ECB. A return code is set if the resource is not held. NONE specifies
an unconditional request to release all the resources. RET=NONE is the default. The
active task is abnormally terminated if it has not been assigned control of the
resources.

In either case, if the resources requested for release were originally queued with the
ECB parameter specified, they are released with return code 0.

,RMC =NONE

,RMC =STEP

,GENERIC=NO

,GENERIC =YES
RMC specifies that the reset must-complete function is not to be used (NONE) or that
the requesting task is to release the resources and terminate the must complete
function (STEP). The NONE or STEP subparameter must agree with the subparameter
specified in the SMC parameter of the corresponding ENQ macro.

GENERIC specifies whether or not (YES or NO) all resources with the specified gname
are to be released. In order for the resource to be released, the task must have control
of or be in ECB wait for the resource. (ECB was specified on the original ENQ.) If the
task is waiting for a resource, but is not in an ECB wait, the task remains queued and
waiting.

142 sPL: Application Development Macro Reference

The following return codes are associated with a GENERIC DEQ:

Hexadecimal Meaning
Code
0 One or more resources which the task had control of or was in ECB wait for have

been released.

4 One or more resources were unconditionally requested by the task, but the task
was not assigned control. The task is not removed from the wait condition.
However, other resources with the same gname might have been released.

8 No resources were found for the specified gname.

,TCB=tcb addr
specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the DEQ is to be done. The
caller (not the directed task) is abnormally terminated if the RET parameter is omitted
and an attempt is made to DEQ a resource not requested or not owned by the directed
task, except when ECB was specified on the original ENQ. If ECB was specified on the
ENQ and the resource is not owned by the directed task, the TCB DEQ request releases
the resources with a zero return code.

Note: The TCB resides in storage below 16 megabytes.

,UCB = ucb addr
specifies the address of a fullword that contains the address of a UCB for a reserved
device that is now being released. This parameter is used to release a device reserved
with the RESERVE macro. The UCB parameter is optional.

Note: The UCB resides in storage below 16 megabytes.

,RELATED =value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

Return codes are provided by the control program only if RET=HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing
the return codes as shown in Figure 8.

DEQ — Release a Serially Reusable Resource 143

Address Return

RC N

Returned in Codes
Register 15
¢ 1 2 3 4 12
° J
RC 1
12
RC 2
24 [Return codes are
12 bytes apart,
starting 3 bytes
from the address
RC 3 in register 15.
36
I SN s . 1

Figure 8. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro. The return codes are shown

below.
Hexadecimal Meaning
Code

The resource has been released.
The resource has been requested for the task, but the task has not been assigned
control. The task is not removed from the wait condition. (This return code could
result if DEQ is issued within an exit routine which was given control because of
an interruption.)

8 Control of the resource has not been requested by the active task, or the resource

has already been released.

144 sPL: Application Development Macro Reference

Example 1
Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset
the “must-complete” state.

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Example 2

Operation: Conditionally release control of the resource in Example 2 of ENQ.
DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Example 3

Operation: Unconditionally release control of the resource (device) in Example 1 of
RESERVE.

DEQ (MAJOR3,MINOR3,,SYSTEMS),UCB=(R3)

Example 4
Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to
the current TCB. The length of the rname is explicitly defined as 8 characters.

DEQ (MAJOR1,MINOR1,8,STEP),RET=HAVE

DEQ — Release a Serially Reusable Resource 145

DEQ (List Form)

Use the list form of the DEQ macro to construct a control program parameter list. The
number of gname, rname, and scope combinations in the list form of DEQ must be equal to
the maximum number of gname, rname, and scope combinations in any execute form of
DEQ that refers to that list form. The list form of the DEQ macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DEQ.
DEQ
b One or more blanks must follow DEQ.
(

gname addr gname addr: A-type address.

, rname addr: A-type address.
,rname addr

, rname length: symbol or decimal digit.
,rname length

s Default: STEP
STEP

,SYSTEM
,SYSTEMS
)
,RET=HAVE Default: RET =NONE
,RET=NONE
,RMC =NONE Default: RMC = NONE
,RMC =STEP
LGENERIC=NO Default: GENERIC =NO
,GENERIC=YES Note: If GENERIC =YES is specified, you must also specify
RET=HAVE above.
,TCB=0 Note: TCB cannot be specified with RMC above, and must be
specified on the list form if used on the execute form.
,UCB=ucb addr ucb addr: A-type address.
,RELATED=value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the DEQ macro, with the following
exception:

JMF=L
specifies the list form of the DEQ macro.

146 sPL: Application Development Macro Reference

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute
form of the DEQ macro. The parameter list can be generated by the list form of either the

DEQ or the ENQ macro.

The execute form of the DEQ macro is written as follows:

name

DEQ

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

gname addr

y

,rname addr

,rname length

,STEP
,SYSTEM
,SYSTEMS

)

,RET=HAVE
,RET=NONE

,RMC =NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=tcb addr

,UCB=ucb addr
,RELATED =value

,MF = (E,ctr! addr)

Note: (and) are the beginning and end of a parameter list.
The entire list is optional. If nothing in the list is desired, then
(,), and all parameters between (and) should not be
specified. If something in the list is desired, then (,), and all
parameters in the list should be specified as indicated at the
left.

gname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digits, or register (2) - (12).

Note: See note opposite (above.

Note: if GENERIC = YES is specified, you must also specify
RET=HAVE above.

tcb addr: RX-type address, or register (2) - (12).

Note: TCB cannot be specified with RMC above, and must be
specified on the execute form if used on the list form.

uch addr: RX-type address, or register (2) - (12).

vaiue: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

exception:

,MF = (E,ctr! addr)

The parameters are explained under the standard form of the DEQ macro, with the following

specifies the execute form of the DEQ macro using a remote control program

parameter list.

DEQ — Release a Serially Reusable Resource 147

148 sPL: Application Development Macro Reference

DOM — Delete Operator Message

The DOM macro is used to delete an operator message or group of messages from the
display screen of the operator’s console. It can also prevent messages from ever
appearing on any operator’s console. When a program no longer requires that a message
be displayed, it can issue the DOM macro to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message may or may not
be displayed. If the message is being displayed, it is removed when space is required for
other messages. If the message is not yet displayed, it is removed before it gets displayed.

When a WTO or WTOR macro is issued, the system assigns an identification number to the
message and returns this number (32 bits right-justified) to the issuing program in register
1. When the display of this message is no longer needed, the issuing program can issue the
DOM macro using the identification number that was returned in general register 1.

The DOM macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DOM.
DOM
b One or more blanks must follow DOM.
MSG =addr addr: register {1) - (12). or an address.
MSGLIST =list addr list addr: symbol, RX-type address, or register (1) - (12).
TOKEN = addr addr. register (1) - (12), or an address.

,COUNT =addr addr: register (2) - (12), or an address.

,SYSID=addr addr: register (2) - (12), or an address.

,SCOPE =SYSTEM
,SCOPE=SYSTEMS

The parameters are explained as follows:

MSG = adar
The field or register that contains the 32-bit identification number of a message to be
deleted.

MSGLIST = /ist addr
specifies the address of a list of one or more fuliwords, each word containing the 32-bit
identification number of a message to be deleted.

TOKEN = addr

specifies a field or register containing a 4-byte token that is associated with messages
to be deleted. When you issue WTO or WTOR to write a message, you can choose a
token value, and specify it as an input parameter to WTO(R) via the TOKEN parameter.
WTO(R) returns control to the application with a message id in register 1. To delete the
message by the TOKEN method, ignore the message id returned by WTO(R) in register
1, and specify the token value instead, using the TOKEN parameter when you issue
DOM. TOKEN is an alternate method for identifying messages, which is independent of
the register 1 message id.

With TOKEN, authorized users may delete any messages originally issued under the
same ASID and system id. Unauthorized users may delete only those messages that
were originally issued under the same jobstep TCB, ASID, and system id. The value of
the token may not be the same as the id that was returned in register 1 after a WTO or
WTOR. TOKEN is mutually exclusive with MSG, MSGLIST, and COUNT.

© Copyright IBM Corp. 1988, 1991 149

COUNT =
specifies a field or register containing the one-byte count of 4-byte message ids
associated with this request. The count must be from 1 to 60. If COUNT is specified, the
issuer must not set the high order bit on in the last entry of the DOM parameter list. If
COUNT is not specified, the message ids are treated as 3-byte ids. If an address is
used, the address points to a 1-byte field that contains the count. COUNT is invalid with
SYSID and TOKEN

SYSID = addr
specifies a field or register containing the 1-byte id of the system on which the message
was issued. If no message ids are specified, (that is, MSG or MSGLIST is not specified)
all messages issued from the specified system are deleted. lf message ids are
specified, (that is, MSG or MSGLIST has been specified), messages indicated by the
MSG or MSGLIST parameter issued from the specified system are deleted.

SYSID is invalid with COUNT. SYSID can be used with the TOKEN parameter to delete
all messages originally issued from a particular system with the specified TOKEN.
Authorized users may delete any messages originally issued under the same ASID
when TOKEN and SYSID are specified. Unauthorized users may delete only those
messages that were originally issued under the same jobstep TCB and ASID when
TOKEN and SYSID are specified. If an address is used, the address points to a 1-byte
field which contains the system id.

I PRODUCT-SENSITIVE PROGRAMMING INTERFACE l

SCOPE = SYSTEM

SCOPE = SYSTEMS
specifies how to process the DOM request. If SCOPE=SYSTEMS is specified, the DOM
request is to be communicated to other processors. If SCOPE=SYSTEM is specified,
the DOM request is not to be communicated to other processors. If SCOPE is not
specified, the DOM request defaults to SCOPE =SYSTEMS.

I__._______._ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE _______I

Notes:

1. For any DOM parameters that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

2. Any authorized DOM parameters that are specified by an unauthorized program will
cause a 157 ABEND.

150 SPL: Application Development Macro Reference

Example 1
Operation: Delete an operator message. The message id is in register 1.

DOM MSG=(1)

Example 2
Operation: Delete a list of operator messages.

DOM MSGLIST=ID2

Example 3

Operation: Delete four operator messages. The number of messages to be deleted is
stored in the field named FOUR, and ID3 is the address of the list of message ids for the four
messages.

DOM MSGLIST=ID3,COUNT=FOUR

Example 4
Operation: Delete a single message issued on a particular system. The message ID is in
register 1, and the one-byte system id is stored in the field named TWO.

DOM MSG=(1),SYSID=TWO

Example 5
Operation: Delete all messages issued on a particular system. The one-byte system id is
stored in the field named SYSNAME.

DOM SYSID=SYSNAME

Example 6
Operation: Delete all messages issued with a particular token on a particular system. The
four-byte token is stored in TOKEN1, and the one-byte system id is in TWO.

DOM TOKEN=TOKEN1,SYSID=TWO

DOM — Delete Operator Message 151

152 SPL: Application Development Macro Reference

DSGNL — Issue Direct Signal

© Copyright IBM Corp. 1988, 1991

The DSGNL macro uses the signal processor (SIGP) to modify or sense the physical state of
a specific processor in a multiprocessing configuration. The SIGP instruction order codes
specified on the DSGNL macro are defined as direct services. Additional SIGP order codes
defined as remote services are available through the RISGNL and RPSGNL macros. See
Principles of Operation for an explanation of the order codes.

Programs executing in cross memory mode can issue this macro.

The DSGNL macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DSGNL.
DSGNL

b One or more blanks must follow DSGNL.

SENSE
START
STOP
RESTART
SSss
ICPUR
CPUR
STATUS
PREFIX
©)

,CPU=PCCA addr PCCA addr: RX-type address, or register (1).
,PARAM=addr addr: RX-type address, or register (2).

,PARAM=(2) Note: This parameter is required with PREFIX and STATUS
only. It cannot be specified with any of the other parameters.

The parameters are explained as follows:

SENSE

START

STOP

RESTART

SSS

ICPUR

CPUR

PREFIX

STATUS

(0) specifies the action to be performed. If (0) is specified, the code indicating the desired
function has already been loaded into bits 24-31 of register 0. (Only the direct class
functions are valid.) The actions and codes are:

Order Code Action

SENSE 01 State of specified processor is to be sensed
START 04 Start function

STOP 05 Stop function

RESTART 06 Restart function

888 09 Stop and store status function

ICPUR 0B Initial processor reset function

CPUR ocC Processor reset function

PREFIX oD Set prefix from address

STATUS OE Store status at address

153

,CPU=PCCA addr .
specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA resides in storage below 16 megabytes.

,PARAM = addr

,PARAM = (2)
allows an address to be passed to the specified processor. If addr is coded, the word at
that location is loaded into register 2 and passed to the specified processor. The
contents of that location must contain a real address. If (2) is coded, the contents of
register 2 is passed to the processor. Register 2 must also contain a real address.

When this parameter is used with PREFIX, the word passed to the specified processor
is the address to which the processor’s prefix register is to be set.

When this parameter is used with STATUS, the word passed to the specified processor
is the real address at which the processor’s status is to be stored.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code
00 Function successfully initiated, but not necessarily completed.
04 Function not completed because the access path to the addressed processor was

busy or the addressed processor was in a state where it could not accept and
respond to the order code.

08 Function unsuccessfully initiated or successful SIGP SENSE request. Status is
returned in register 0.

(1] Specified processor is either not installed, not configured into the system, or
powered off.

14 MSSF is currently inoperative.

With a return code of 8, register 0 contains status information from the SIGP macro. The bit
settings and meanings follow:

Bits Meaning

0 Equipment check

1-21 Unassigned, contains zeros
22 Incorrect state

23 Invalid parameter

24 External call pending

25 Stopped

26 Operator intervening

27 Check stop

28 Not ready

29 MSSF currently inoperative
30 Invalid order code

31 Receiver check

Example

Operation: The processor whose PCCA address is in register 1 will be placed in the STOP
state.

DSGNL STOP,CPU=(1)

154 sPL: Application Development Macro Reference

DSPSERV — Create, Delete, and Control Data Spaces

—— DSPSERV for hiperspaces

To control the use of hiperspaces, use the variation of the DSPSERV macro described
under “DSPSERV — Create, Delete, and Control Hiperspaces” on page 169.

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a range of
up to two gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through ESA/370 instructions. Unlike an address space, a data space can hold
only data or programs stored as data. For more information on data spaces and how to use
them, see SPL: Application Development — Extended Addressability.

Use the DSPSERV macro to:

* Create a data space (CREATE parameter)

* Delete a data space (DELETE parameter)

* Release an area of a data space (RELEASE parameter)

* Increase the current size of a data space (EXTEND parameter)

* Load an area of a data space into central storage (LOAD parameter)

* Take (that is, page out) from central storage an area of a data space (OUT parameter)

If your program is in AR mode, issue the SYSSTATE ASCENV = AR macro before you issue
DSPSERV. SYSSTATE ASCENV = AR tells the system to generate code appropriate for AR
mode.

Requirements for callers of DSPSERYV are as follows:

Authorization: To request the following DSPSERV services, a program must be supervisor
state or PSW key 0-7:

Create a data space with disabled referenced (DREF) storage
Create and delete a SCOPE=ALL and SCOPE=COMMON data space
Assign a storage key to a data space
Assign data space ownership to a TCB
Load an area of a SCOPE=ALL or SCOPE=COMMON data space into
central storage
* Page out of central storage an area of a SCOPE=ALL or
SCOPE =COMMON data space
* Extend the current size of a data space it does not own

Problem state programs with PSW key 8-F can request all other DSPSERV
services for data spaces.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

Amode: 31-bit addressing

ASC mode: Primary or access register (AR)

Serialization: Enabled, unless you specify DSPSERV RELEASE with DISABLED=YES,
and unlocked

Control parameters: Control parameters must be in the primary address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

© Copyright IBM Corp. 1988, 1991 155

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Reason code if the return code in GPR 15 is not 0; otherwise, used as a work
register by the macro

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents

0-1 Used as a work register by the macro
2-13 Unchanged

14 -15 Used as a work register by the macro

DSPSERYV is also described in Application Development Macro Reference, with the
exception of the LOAD and OUT requests and the DREF, SCOPE, KEY, CALLERKEY,
TTOKEN, and DISABLED parameters. These parameters are restricted to supervisor state
or PSW key 0-7 programs.

156 sPL: Application Development Macro Reference

The standard form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DSPSERV.

DSPSERV

b One or more blanks must follow DSPSERV.
Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS,
DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN,
NUMBLKS

RELEASE STOKEN, START, BLOCKS, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

LOAD STOKEN, START, ELOCKS

ouT STOKEN, START, BLOCKS

,STOKEN = stoken-addr
,TYPE=BASIC
NAME = name-addr
,GENNAME =NO
,GENNAME = COND
,GENNAME =YES
,OUTNAME = outname-addr
,START =start-addr
,BLOCKS = (max-addr,init-addr)
,BLOCKS = (max,init)
,BLOCKS = max
,BLOCKS = (0,/nit)
,BLOCKS =0
,BLOCKS = (0,init-addr)
,BLOCKS = (size-addr)
,BLOCKS = (size)

,DREF=NO
,DREF=YES

,SCOPE=SINGLE
,SCOPE=ALL
,SCOPE =COMMON

,CALLERKEY
,KEY =key-addr

,FPROT = YES
,FPROT=NO

,TTOKEN = ttoken-addr
,ORIGIN=origin-addr
,NUMBLKS = numblks-addr

,VAR=NO
,VAR=YES

,DISABLED=NO
,DISABLED =YES

JMF=8

stoken-addr: RX-type address or register (2) - (12).
Default: TYPE=BASIC
name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).
start-addr: RX-type address or register (2) - (12).
max-addr: RX-type address or register (2) - (12).
init-addr: RX-type addrers or register (2) - (12).

max: Number up to 524288.

init: Number up to 524288.

0 specifies the installation default size.

Default for CREATE: BLOCKS =0

size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

Default: DREF =NO

Default: SCOPE =SINGLE

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT = YES

ttoken-addr: RX-type address or register (2) - (12).
origin-addr: RX-type address or register (2) - (12).
numblks-addr: RX-type address or register (2) - (12).

Default: VAR=NO

Default: DISABLED=NO

DSPSERV — Create, Delete, and Control Data Spaces

157

158

The CREATE, RELEASE, DELETE and EXTEND parameters, which designate the services of
the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a data space. Creating a data space is somewhat like
issuing a GETMAIN for storage. The entire data space is in the same storage key.
When you specify CREATE, you must specify the NAME and STOKEN parameters.

Optional parameters when you create a data space are: TYPE, OUTNAME, GENNAME,
BLOCKS, DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user’s data be returned to the
system. Although the data contained in the virtual storage is discarded, the user’s
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the hiperspace, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW key must
be zero or equal to the key of the storage the system is to release. A supervisor state
or PSW key 0 - 7 caller must have its home or primary address space the same as the
owner’s home address space, and its PSW key must be zero or equal to the key of the
storage the system is to release.

If your program is disabled for 1/0 and external interrupts, use DISABLED =YES;
otherwise, use DISABLED = NO (the default).

Use DSPSERV RELEASE instead of using the MVCL instruction for these reasons:

* DSPSERV RELEASE is faster than MVCL for very large areas.

* Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage.

DELETE
Requests that the system delete a data space. STOKEN is the only required parameter
on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any data space it owns, providing its
PSW key matches the storage key of the data space.

A supervisor state or key 0-7 program can delete any data space it owns and other data
spaces, if its home or primary address space is the same as the owner’s.

EXTEND
Requests that the system increase the current size of a data space. Use EXTEND only
for a data space that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references data space
storage beyond the current size, the system rejects the request; it terminates the caller
with an 0C4 abend code.

STOKEN (identifying the data space) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

If the caller is problem state with PSW key 8 through F, the TCB that represents it must
own the data space. Otherwise, the TCB that represents the caller must be in the home
or primary address of the owner of the data space.

sPi: Application Development Macro Reference

The system rejects the EXTEND request if you specified VAR =NO (or took the default)
and the extended size would:

* Exceed the maximum size specified when the data space was created.

* For a data space with a storage key greater than 7, extend the cumulative data
space and hiperspace totals beyond the installation limits for the owning address
space.

LOAD
Requests that the system load some areas of a data space into central storage. The
system fills the request depending on how many central storage frames are available.
When you specify LOAD, you must also specify the STOKEN, START, and BLOCKS
parameters.

ouT
Tells the system that it can page some areas of a data space out of central storage.
When you specify OUT, you must also specify the STOKEN, START, and BLOCKS
parameters.

,STOKEN = stoken-addr
Specifies the address of the eight-byte STOKEN for the data space.

DSPSERV CREATE returns the STOKEN as output. STOKEN is required input for all
other DSPSERYV services.

,TYPE =BASIC
Specifies that the system should create a data space rather than a hiperspace.
TYPE =BASIC is the default.

,NAME = name-adadr
Specifies the address of the eight-byte variable or constant that contains the name of
the data space. NAME is required for DSPSERV CREATE.

Data space names are from one to eight bytes fong. They can contain ietters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

Data space and hiperspace names must be unique within the home address space of
the owner. No other data space or hiperspace in the home address space can have the
same name. Therefore, in choosing names for your data spaces, you must avoid using
the same names that IBM uses for data spaces. IBM uses the following names for data
spaces and hiperspaces:

* Names that begin with A through I, where the first three characters are any IBM
component prefix.

* Names that begin with SYSAxxxx through SYSIxxxx, where the fourth through sixth
characters are any IBM component prefix.

* Names that begin with numbers or the characters SYSDS.

Use the following names for your data spaces:

* Problem state programs can use data space names that begin with @, #, $, or the
letters J through Z, with the exception of SYS. The system abends problem state
programs that begin names with SYS.

* Supervisor state programs and programs with PSW key 0 - 7 can use data space
names that begin with @, #, $, or the letters J through Z. In addition, they can use
names that begin with SYSJ through SYSZ. The system abends programs that
begin names with SYSDS.

Use names that begin with SYSJ through SYSZ to ensure that the names of the data
spaces that belong to supervisor state programs and programs with PSW key 0 -7
do not conflict with the names of data spaces that belong to problem state
programs.

To ensure that the names for your data spaces are unique, ask the system to generate
a unique name. See the GENNAME parameter.

DSPSERV — Create, Delete, and Control Data Spaces 159

,GENNAME =NO

,GENNAME = COND

,GENNAME = YES
Specifies whether or not you want the system to generate a name for the data space to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME
parameter. For example, if you supply ‘XYZDATA’ on the NAME parameter, the name
becomes ‘nCCCCXYZ’ where ‘n’ is the numeral, ‘CCCC’ is the 4-character string
generated by the system, and XYZ comes from the name you supplied on NAME. See
NAMES for more information about naming conventions.

GENNAME =NO The system does not generate a name. You must supply a name
unique within the address space. GENNAME =NO is the default.

GENNAME =COND The system generates a unique name only if you supply a name that
is already being used. Otherwise, the system uses the name you
supply.

GENNAME =YES The system takes the name you supply on the NAME parameter and

makes it unique.

If you want the system to return the unique name it generates, use the OUTNAME
parameter.

,OUTNAME = outname-addr
Specifies the address of the eight-byte variable where the system returns the data
space name it generated if you specify GENNAME = YES or GENNAME = COND. The
OUTNAME parameter is optional on DSPSERV CREATE.

,START = start-addr
Specifies the address of a four-byte variable containing the beginning address of a
block of storage in a data space. The address must be on a four-kilobyte boundary.
START is required on RELEASE, LOAD, and OUT requests.

,BLOCKS = (max-addr,init-addr)
,BLOCKS = (max,init)
,BLOCKS = max
,BLOCKS = (0,init)
,BLOCKS =0
,BLOCKS = (0,init-addr)
,BLOCKS = size-addr
,BLOCKS = size
Specifies the size of the data space or the size of an area within the data space.

BLOCKS =size-addr in MVS/SP3.1.0 is incompatible with BLOCKS = (size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you coded
BLOCKS = (register) in MVS/SP3.1.0, and then recompile the program to run on later
releases of MVS, you must change the specification to BLOCKS = ((register)) before you
recompile.

For a CREATE request, specifies the maximum size (in blocks) to which the data space
can expand (max-addr or max) and the initial size of the data space (init-addr or init.). A
block is a unit of 4K bytes. You cannot extend the data space beyond its maximum
size.

max-addr specifies the address of a field that contains the maximum size of the data
space to be created. max is the number of blocks (up to 524,288) to be used for the
data space.

init-addr specifies the address of the initial size of the data space. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default.
The IBM-defined default maximum is 239 blocks. Your installation can use the

160 sPL: Application Development Macro Reference

installation exit, IEFUSI, to change the IBM default. The system returns the maximum
size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default is
BLOCKS =0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

For a RELEASE request, BLOCKS is a required parameter that defines contiguous
storage (in blocks of 4K bytes) that the system is to release (size-addr or size). The
minimum size is 1 block and the maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the amount of
increase of the current size of the data space.

For LOAD and OUT requests, BLOCKS is a required parameter that defines the amount
of data space storage that the system is to load into central storage or page out of
central storage.

BLOCKS =size-addr in MVS/SP3.1.0 is incompatible with BLOCKS = (size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you coded
BLOCKS = (register) in MVS/SP3.1.0, and then recompile the program to run on later
releases of MVS, you must change the specification to BLOCKS = ((register)) before you
recompile.

,DREF=NO

,DREF =YES
Specifies whether (YES) or not (NO) disabled programs can reference the data space.
If you specify NO, only enabled programs can reference the data space. If a disabled
program references the data space, the system might abend the program. If you
specify YES, both an enabled and a disabled program can reference the data space.

DREF is an optional parameter when you create a data space. The default, DREF=NO,
specifies that only enabled programs can reference the data space.

,SCOPE = SINGLE

,SCOPE = ALL

,SCOPE =COMMON
Specifies whether the data space is a SCOPE =SINGLE, SCOPE=ALL, or a
SCOPE = COMMON data space. A SCOPE = SINGLE data space may be referenced only
by the owning address space. SCOPE =ALL and SCOPE=COMMON data spaces can
be referenced by programs in many address spaces.

Any program can create and delete SCOPE = SINGLE data spaces. Only supervisor
state and key 0-7 programs can create and delete SCOPE =ALL and
SCOPE = COMMON data spaces.

If an address space contains a task that owns a SCOPE = ALL or SCOPE=COMMON
data space, the address space should be non-swappable.

SCOPE is an optional parameter for DSPSERV CREATE; the default is SCOPE = SINGLE.

,CALLERKEY

,KEY = key-addr
Specifies the address of the eight-bit variable or constant that contains the storage key
of the data space to be created. The key must be in bits 0-3 of the field. The system
ignores bits 4-7. CALLERKEY specifies that the data space have the storage key that
matches the PSW key of the caller.

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the default.

,FPROT = YES

,FPROT=NO
Specifies whether the data space should (YES) or should not (NO) be fetch-protected. If
you specify YES, the entire data space is fetch-protected. Fetch protection means a
program must be in the key of the data space storage (or key 0) to reference data in the
data space.

FPROT is an optional parameter for DSPSERV CREATE. The default, FPROT=YES,
specifies that the data space is fetch-protected.

DSPSERV — Create, Delete, and Control Data Spaces 161

,TTOKEN = ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that identifies the
TCB that is (for the CREATE request) to become the owner of the data space or is (for
the DELETE request) the owner of the data space. Use this parameter when you assign
ownership of a data space or when you delete a data space that belongs to another
task. A program can assign ownership of a data space only when it creates it.

Before a program creates a data space and assigns ownership, it must know the
TTOKEN of the TCB that is to be the new owner. The new owner must reside in the
caller’s home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is to be the owner of the
data space.

An SRB cannot own a data space. It can create one, but it must assign the data space
to a TCB. The system abends SRB mode callers if they do not include the TTOKEN
parameter on create requests.

,ORIGIN = origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new data space. The system returns the beginning address of the
data space at origin-addr. The system tries to start all data spaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS = numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:

* For DSPSERV CREATE, the maximum size (in blocks) of the newly-created data
space
* For DSPSERV EXTEND, the size by which the system extended the data space

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a data space, you specify BLOCKS =0 or do not specify the
BLOCKS parameter, the system uses the default that your installation established in the
SMF installation exit IEFUSI. The system returns this default value at numblks-addr.

VAR=YES

VAR=NO
Specifies whether or not your request for the system to extend the amount of storage
available in a data space is a variable request. When you use DSPSERV EXTEND for a
data space, the system might not be able to extend the data space the amount you
request because that amount might cause the system to exceed one of the following:

* The maximum size of the data space, as specified on the BLOCKS parameter when
the data space was created.

* For a data space with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit on the IEFUSI installation exit, or took the IBM defaulit.)

If you specify VAR = YES (the variable request) and the system cannot satisfy your
request, the system extends the data space to one of the following sizes, depending on
which is smaller:

* The maximum size specified on the BLOCKS parameter when the data space was
created

* The largest size that would still keep the combined total of data space and
hiperspace storage within the limits established by the installation for an address
space

If you specify VAR=NO (the default), the system:

* Abends the caller if the extended size would exceed the maximum size specified
when the data space was created

162 SPL: Application Development Macro Reference

* Rejects the request if the data space has storage key 8 - F and the request would
extend the cumulative data space and hiperspace totals beyond the installation
limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the data space.

,DISABLED =NO

,DISABLED = YES
Specifies that the caller is enabled for I/0 and external interrupts (DISABLED = NO) or
disabled for these interrupts (DISABLED =YES). DISABLED=NO is the default.

,MF=§
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

Return and reason codes from DSPSERV CREATE:

Return Reason Meaning

code code

00 DSPSERV CREATE completed successfully.

04 xx000Cxx DSPSERV CREATE completed successfully. You specified a size of 2

gigabytes (524,288 blocks). However, because the processor did not
support a data space with zero origin; a data space of one less block
(524,287 blocks) was created.

08 xx0005xx Creation of data space would violate installation criteria. See System
Modifications.

08 xx0009xx Specified data space name is not unique within the address space.

08 xx0012xx The system’s set of generated names for data spaces and hiperspaces has
been temporarily exhausted.

oC xx0006xx The system cannot create any additional data spaces at this time because
of a shortage of resources.

oC xx0007xx The system cannot obtain addressability to its data structures.

1D xx0012xx An unauthorized caller tried to create a shared standard hiperspace.

iD xx0014xx An attempt was made to create either a SCOPE=ALL or SCOPE=COMMON

data space, or a shared scroll hiperspace while the owning address space
was swappable.

Return and reason codes from DSPSERV EXTEND:

Return Reason Meaning

code code

00 DSPSERV EXTEND completed successfully.

08 xx0502xx Extending the data space would cause the data space and hiperspace limits

for the address space to be exceeded.

08 xx0503xx You are using VAR=YES to extend the current size of the data space;
however, the data space is already the maximum size.

Example of Creating a Data Space
Create a data space named TEMP with a size of 10 million bytes.

DSPSERV CREATE,NAME=DSPCNAME, STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS ,ORIGIN=DSPCORG

*

DSPCNAME DC CL8'TEMP ' DATA SPACE NAME

DSPCSTKN DS CL8 DATA SPACE STOKEN

DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF STORAGE

DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

DSPSERV — Create, Delete, and Control Data Spaces 163

DSPSERYV (List Form)

Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

The list form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DSPSERV.
DSPSERV
b One or more blanks must follow DSPSERV.
MF = (L,list addr) list addr: symbol.
MF = (L,list addr,attr) attr: 1- to 60-character input string. Default: 0D
,PLISTVER=0 Default: PLISTVER=0
,PLISTVER=1

The parameters are explained as follows:

MF = (L,/ist addr)
MF = (L,/ist addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

,PLISTVER=0
,PLISTVER=1

Specifies the macro version associated with DSPSERV.

PLISTVER is an optional parameter that determines which parameter list the system
generates. init-addr on the BLOCKS parameter is associated with macro version 1 that
produces a 60-character parameter list; all other parameters are associated with the
macro version 0 that produces a 56-character parameter list. Therefore, if you use the
BLOCKS = (max-addr,init-addr) parameter on subsequent execute forms of DSPSERV,
you must specify PLISTVER =1 on the list form. PLISTVER=0 is the default.

164 SPL: Application Development Macro Reference

DSPSERV (Execute Form)

The execute form of the DSPSERV macro can refer to and modify the parameter fist
constructed by the list form of the macro.

The execute form of the DSPSERV macro is written as follows:

name

b

DSPSERV

b

name: symbol. Begin name in column 1.

One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

CREATE

RELEASE
DELETE
EXTEND
LOAD
ouT

,STOKEN = stoken-addr
,TYPE=BASIC
,NAME = name-addr
,GENNAME =NO
,GENNAME =COND
,GENNAME =YES
,OUTNAME = outname-addr
,START =start-addr
,BLOCKS = (max-addr,init-addr)
,BLOCKS = (max,init)
,BLOCKS =max
,BLOCKS =(0,init)
,BLOCKS=0
,BLOCKS = (0,init-addr)
,BLOCKS = (size-addr)
,BLOCKS =(size)

,DREF=NO
,DREF=YES

,SCOPE=SINGLE
,SCOPE=ALL
,SCOPE=COMMON

,CALLERKEY
LKEY =key-addr

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr
,ORIGIN=origin-addr

,NUMBLKS = numblks-addr

Valid parameters (Required parameters are underlined.)
STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS,

DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN,

NUMBLKS

STOKEN, START, BLOCKS, DISABLED
STOKEN, TTOKEN

STOKEN, BLOCKS, VAR, NUMBLKS
STOKEN, START, BLOCKS

STOKEN, START, BLOCKS

stoken-addr: RX-type address or register (2) - (12).
Default: TYPE =BASIC
name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).
start-addr: RX-type address or register (2) - (12).
max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).

max: Number up to 524288.

init: Number up to 524288.

0 specifies the installation default size.

Default for CREATE: BLOCKS =0

size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

Default: DREF=NO

Default: SCOPE =SINGLE

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT=YES

ttoken-addr: RX-type address or register (2) - (12).
origin-addr: RX-type address or register (2) - (12).

numblks-addr: RX-type address or register (2) - (12).

DSPSERV — Create, Delete, and Control Data Spaces

165

VAR=NO ' Default: VAR =NO
VAR=YES

,DISABLED=NO Default: DISABLED=NO
,DISABLED=YES

,MF=(E,list addr)
,MF = (E,list addr, COMPLETE)

The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF = (E,list addr)

,MF = (E,list addr, COMPLETE)
Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

166 spL: Application Development Macro Reference

DSPSERV — Create, Delete, and Control Hiperspaces

© Copyright IBM Corp. 1988, 1991

— DSPSERV for dataspaces

To control the use of dataspaces, use the variation of the DSPSERV macro described
under “DSPSERV — Create, Delete, and Control Data Spaces” on page 155.

The DSPSERV macro creates, deletes, and controls hiperspaces. A hiperspace is a range
of up to two gigabytes of contiguous virtual storage addresses that a program can use as a
buffer. A hiperspace can hold user data and programs stored as data. Data is not directly
addressable; to manipulate data in a hiperspace, you use the HSPSERV macro to bring the
data into the address space in blocks of 4K bytes.

Supervisor state or PSW key 0 through 7 programs have a choice of creating a standard
hiperspace or an ESO hiperspace. The standard hiperspace is backed with expanded
storage and auxiliary storage, if necessary. The HSTYPE =SCROLL parameter creates a
standard hiperspace. The ESO hiperspace is backed only with expanded storage.
HSTYPE = CACHE creates an ESO hiperspace. For more information on hiperspaces and
how to use them, see SPL: Application Development — Extended Addressability. To learn
the restrictions for the use of hiperspaces, see the description of the HSPSERV macro later
in this book.

Use the DSPSERV macro to:

* Create a hiperspace (CREATE parameter)

* Delete a hiperspace (DELETE parameter)

Release an area of a hiperspace (RELEASE parameter)
Increase the current size of a hiperspace (EXTEND parameter)

If your program is in AR mode, issue the SYSSTATE ASCENV = AR macro before you issue
DSPSERV. SYSSTATE ASCENV = AR tells the system to generate code appropriate for AR
mode.

Requirements for callers of DSPSERYV are as follows:

Authorization: To request the following DSPSERV services, a program must be supervisor
state or PSW key 0-7:

¢ Create and delete an ESC or a shared standard hiperspace
* Release storage in a shared or ESO hiperspace

* Extend the current size of a shared or ESO hiperspace

* Assign a storage key to a hiperspace

* Assign hiperspace ownership to a TCB

Problem state programs with PSW key 8-F can request all other DSPSERV

services.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

Amode: 31-bit addressing

ASC mode: Primary or access register (AR)

Serialization: Enabled, unless you specify DSPSERV RELEASE with DISABLED = YES,
and unlocked

Control parameters: Control parameters must be in the primary address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

167

When control returns to the caller, the general purpose registers (GPRs) contain:
Register Contents

0 Reason code if the return code in GPR 15 is not 0; otherwise, used as a work
register by the macro

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 -15 Used as work registers by the macro

DSPSERYV is also described in Application Development Macro Reference, with the
exception of the KEY, CALLERKEY, TTOKEN, HSTYPE, SHARE, DISABLED, and CASTOUT
parameters. These parameters are restricted to supervisor state or PSW key 0-7 programs.

168 sPL: Application Development Macro Reference

The standard form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DSPSERV.

DSPSERV

b One or more blanks must follow DSPSERV.
Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, HSTYPE, CASTOUT, SHARE
GENNAME, OUTNAME, BLOCKS, CALLERKEY,
KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS

RELEASE STOKEN, START, BLOCKS, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN = stoken-addr
,TYPE =HIPERSPACE

JHSTYPE=SCROLL
,HSTYPE =CACHE

,SHARE=NO
,SHARE=YES

,CASTOUT=YES
,CASTOUT=NO

,NAME = name-adadr
,GENNAME =NO
,GENNAME = COND
,GENNAME =YES
,OUTNAME = outname-addr
,START =start-addr
,BLOCKS = (max-addr,init-addr)
,BLOCKS = (max,init)
,BLOCKS =max

,BLOCKS =(0,init)
,BLOCKS=0

,BLOCKS = (0,init-addr)
,BLOCKS = (size-addr)
,BLOCKS = (size)

L,CALLERKEY
,KEY =key-addr

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr
,ORIGIN=origin-addr
,NUMBLKS =numblks-addr

,VAR=NO
VAR=YES

,DISABLED=NO
,DISABLED=YES

JMF=8

stoken-addr: RX-type address or register (2) - (12).

Default: HSTYPE =SCROLL

Default: SHARE =NO

Default: CASTOUT=YES

name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).
start-addr: RX-type address or register (2) - (12).
max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).

max: Number up to 524288.

init: Number up to 524288.

0 specifies the installaticn default size.

Default for CREATE: BLOCKS =0

size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT=YES

ttoken-addr: RX-type address or register (2) - (12).
origin-addr: RX-type address or register (2) - (12).
numblks-addr: RX-type address or register (2) - (12).

Default: VAR=NO

Default: DISABLED=NO

DSPSERV — Create, Delete, and Control Hiperspaces

169

170

The CREATE, RELEASE, DELETE, and EXTEND parameters, which designate the services of
the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a hiperspace. Creating a hiperspace is somewhat like
issuing a GETMAIN for storage. The entire hiperspace is in the same storage key.
When you specify CREATE, you must also specify the NAME, TYPE = HIPERSPACE, and
STOKEN parameters. To create an ESO or a shared standard hiperspace, your
program must be supervisor state or have PSW key 0 - 7.

Optional parameters when you create a hiperspace are: HSTYPE, CASTOUT,
GENNAME, OUTNAME, BLOCKS, KEY, CALLERKEY, FPROT, TTOKEN, ORIGIN, SHARE,
and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user’s data be returned to the
system. Although the data contained in the virtual storage is discarded, the user’s
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the hiperspace, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW key must
be zero or equal to the key of the storage the system is to release. A supervisor state
or PSW key 0 - 7 caller must have its home or primary address space the same as the
owner’s home address space, and its PSW key must be zero or equal to the key of the
storage the system is to release.

If your program is disabled for I/0 and external interrupts, use DISABLED =YES;
otherwise, use DISABLED = NO (the default).

Use DSPSERV RELEASE instead of using the MVCL instruction for these reasons:

* DSPSERV RELEASE is faster than MVCL for very large areas.

* Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage.

DELETE
Requests that the system delete a hiperspace. STOKEN is the only required parameter
on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any hiperspace it owns and for which its
PSW key matches the key of the hiperspace.

A supervisor state or key 0-7 program can delete any hiperspace it owns and other
hiperspaces, if its home or primary address space is the same as the owner’s.

EXTEND
Requests that the system increase the current size of a hiperspace. Use EXTEND only
for a hiperspace that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references hiperspace
storage beyond the current size, the system rejects the request; it terminates the caller
with an 0C4 abend code.

STOKEN (identifying the hiperspace) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

SPL: Application Development Macro Reference

If the caller is problem state and PSW key 8 through F, it must own the hiperspace.
Otherwise, the TCB that represents the caller must be in the home or primary address
of the owner of the hiperspace.

The system rejects the EXTEND request if you specified VAR=NO (or took the default)
and the extended size would:

* Exceed the maximum size specified when the hiperspace was created.

* For a hiperspace with a storage key greater than 7, extend the cumulative data
space and hiperspace totals beyond the installation limits for the owning address
space.

,STOKEN = stoken-addr
Specifies the address of the eight-byte STOKEN for the hiperspace. DSPSERV CREATE
returns the STOKEN as output. STOKEN is required input for all other DSPSERV
requests.

,TYPE =HIPERSPACE
Specifies that the system is to create a hiperspace.

,HSTYPE =SCROLL

,HSTYPE = CACHE
Specifies the type of hiperspace the system is to create: HSTYPE=SCROLL creates a
standard hiperspace, the type of storage area that your program can scroll through.
HSTYPE = CACHE creates an ESO hiperspace, one that acts as a high-speed cache for
storing data. HSTYPE =SCROLL is the default.

,SHARE=NO

,SHARE = YES
Specifies whether the system is to create a non-shared standard hiperspace
(SHARE =NO) or a shared standard hiperspace (SHARE =YES). Generally, a program
can share a non-shared standard hiperspace only with programs that are dispatched in
the owner’s home address space. However, a program not dispatched in the owner’s
home address space and using an ALET, can access this non-shared standard
hiperspace through the owner’s home PASN-AL. A program can share a shared
standard hiperspace with programs that are dispatched in any address space.

,CASTOUT =YES

,CASTOUT=NO
Specifies that the system is to persist (CASTOUT =NO) or not persist (CASTOUT =YES)
in retaining a copy of the data in the hiperspace. When the system needs the expanded
storage for its own needs, it is less likely to take the expanded storage from a
hiperspace created with CASTOUT =NO than from one created with CASTOUT =YES.

CASTOUT = YES indicates that the system can discard the data when it needs the
expanded storage for other purposes. CASTOUT =NO specifies that the system is to
give the data in the ESO hiperspace more priority when searching for pages to remove
from expanded storage when a shortage arises.

Note: Specifying CASTOUT=NO places a heavy demand on expanded storage. The
system might discard the pages regardless of CASTOUT=NO. For example, if the
system swaps out the address space that owns the hiperspace, it discards pages
without regard to CASTOUT. (To prevent the loss due to a swapped-out address space,
make the address space that owns the hiperspace non-swappable.)

CASTOUT=YES is the default.
,NAME = name-addr

Specifies the address of the eight-byte variable or constant that contains the name of
the hiperspace. NAME is required for DSPSERV CREATE.

Hiperspace names are from one to eight bytes long. They can contain letters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

DSPSERV — Create, Delete, and Control Hiperspaces 171

Names of hiperspaces and data spaces must be unique within the home address space
of the owner. No other hiperspace or data space in the home address space can have
the same name. Therefore, in choosing names for your hiperspaces, you must avoid
using the same names that IBM uses for data spaces and hiperspaces. IBM uses the
following names:

* Names that begin with A through |, where the first three characters are any IBM
component prefix.

* Names that begin with SYSAxxxx through SYSIxxxx, where the fourth through sixth
characters are any IBM component prefix.

* Names that begin with numbers or the characters SYSDS.

Use the following names for your hiperspaces:

* Problem state programs can use hiperspace names that begin with @, #, $, or the
letters J through Z, with the exception of SYS. The system abends problem state
programs that begin names with SYS.

* Supervisor state programs and programs with PSW key 0 - 7 can use hiperspace
names that begin with @, #, $, or the letters | through Z. in addition, they can use
names that begin with SYSJ through SYSZ. The system abends programs that
begin names with SYSDS.

Use names that begin with SYSJ through SYSZ to ensure that the names of the
hiperspaces that belong to supervisor state programs and programs with PSW key 0
- 7 do not conflict with the names of hiperspaces that belong to problem state
programs.

To ensure that the names for your hiperspaces are unique, use the GENNAME
parameter to generate a unique name.

,GENNAME =NO

,GENNAME = COND

,GENNAME = YES
Specifies whether or not you want the system to generate a name for the hiperspace to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME parameter
(or the whole name if it has three or fewer characters). For example, if you supply
"XYZDATA’ on the NAME parameter, the name becomes 'nCCCCXYZ’ where 'n’ is the
numeral, ‘CCCC’ is the 4-character string generated by the system, and XYZ comes
from the name you supplied on NAME. See NAME for more information about naming
conventions.

GENNAME=NO The system does not generate a name. You must supply a name unique
within the address space. GENNAME =NO is the default.

GENNAME =COND The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME =YES The system takes the name you supply on the NAME keyword and makes it
unique.

If you want the system to return the uniqgue name it generates, use the OUTNAME
parameter.

,OUTNAME = outname-addr
Specifies the address of the eight-byte variable where the system returns the name it
generates for the hiperspace if you specify GENNAME = YES or GENNAME = COND.
The OUTNAME parameter is optional on DSPSERV CREATE.

,START = start-addr
Specifies the address of a four-byte variable containing the beginning address of a
block of storage in a hiperspace. The address must be on a four-kilobyte boundary. A
block is a unit of 4K bytes. START is required on a RELEASE request.

172 sPL: Application Development Macro Reference

,BLOCKS = (max-addr,init-addr)

,BLOCKS = (max,init)

,BLOCKS = max

,BLOCKS = (0,init)

,BLOCKS =0

,BLOCKS = (0,init-addr)

,BLOCKS = size-addr

,BLOCKS =size
Specifies the address of a four-byte variable that contains the size of the hiperspace or
the size of an area within the hiperspace.

For a CREATE request, specifies the maximum size (in blocks) to which the hiperspace
can expand (max-addr or max) and the initial size of the hiperspace (init-addr or init.).
A block is a unit of 4K bytes. You cannot extend the hiperspace beyond its maximum
size.

max-addr specifies the address of a field that contains the maximum size of the
hiperspace to be created. max is the number of blocks (up to 524,288) to be used for
the hiperspace.

init-addr specifies the address of the initial size of the hiperspace. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default.
The IBM-defined default maximum is 239 blocks. Your installation can use the
installation exit IEFUSI to change the IBM default. The system returns the maximum
size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default is
BLOCKS =0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

For a RELEASE request, BLOCKS and START are required parameters that define
contiguous storage (in 4K blocks) that the system is to release. BLOCKS specifies the
size of an area to be released (size-addr or size). The minimum size is 1 block and the
maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the amount of
increase to the current size of the hiperspace.

,CALLERKEY

,KEY = key-addr
Specifies the address of the eight-bit variable or constant that contains the storage key
of the hiperspace to be created. The key must be in bits 0-3 of the field. The system
ignores bits 4-7. CALLERKEY specifies that the hiperspace is to have the storage key
that matches the PSW key of the caller.

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the default.

,FPROT=YES

,FPROT=NO
Specifies whether the hiperspace should (YES) or should not (NO) be fetch-protected. If
you specify YES, the entire hiperspace is fetch-protected. Fetch protection means a
program must be in the key of the hiperspace storage (or key 0) to reference data in the
hiperspace.

FPROT is an optional parameter for DSPSERV CREATE. The default, FPROT=YES,
specifies that the hiperspace is fetch-protected.

,TTOKEN = ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that identifies the
TCB that is (for the CREATE request) to become the owner of the hiperspace or is (for
the DELETE request) the owner of the hiperspace. Use this parameter when you assign
ownership of a hiperspace or when you delete a hiperspace that belongs to another
task. A program can assign ownership of a hiperspace only when it creates it.

DSPSERV — Create, Delete, and Control Hiperspaces 173

Before a program creates a hiperspace and assigns ownership, it must know the
TTOKEN of the TCB that is to be the new owner. The new owner must reside in the
caller’s home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is the owner.

An SRB cannot own a hiperspace. A program that the SRB represents can create one,
but it must assign the hiperspace to a TCB. The system abends SRB mode callers if
they do not include the TTOKEN parameter on create requests.

,ORIGIN = origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new hiperspace. The system returns the beginning address of the
hiperspace at origin-addr. The system tries to start all hiperspaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS = numblks-addr

Specifies the address of the four-byte area where the system returns one of the
following:

* For DSPSERV CREATE, the maximum size (in blocks) of the newly-created
hiperspace
¢ For DSPSERV EXTEND, the size by which the system extended the hiperspace

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a hiperspace, you specify BLOCKS =0 or do not specify the
BLOCKS parameter, the system uses the default that your installation established in the
SMF user exit IEFUSI.

VAR=YES

VAR=NO
Specifies whether or not your request for the system to extend the amount of storage
available in a hiperspace is a variable request. When you use DSPSERV EXTEND for a
hiperspace, the system might not be able to extend the hiperspace the amount you
request because that amount might cause the system to exceed one of the following:

* The maximum size of the hiperspace, as specified on the BLOCKS parameter when
the hiperspace was created.

* For a hiperspace with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit in the IEFUSI installation exit, or took the IBM default.)

If you specify VAR = YES (the variable request) and the system is unable to satisfy the
request, the system extends the hiperspace to one of the following sizes, depending on
which is smaller:

* The maximum size specified on the BLOCKS parameter when the hiperspace was
created

* The largest size that would still keep the combined total of data space and
hiperspace storage within the limits established by the installation for an address
space

If you specify VAR =NO (the default), the system:

* Abends the caller if the extended size would exceed the maximum size specified
when the hiperspace was created

* Rejects the request if the hiperspace has storage key 8 - F and the request would
extend the cumulative data space and hiperspace totals beyond the installation
limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the hiperspace.

174 sPL: Application Development Macro Reference

,DISABLED =NO

,DISABLED = YES
Specifies that the caller is enabled for I/0 and external interrupts (DISABLED = NO) or
disabled for these interrupts (DISABLED = YES). DISABLED=NO is the default.

sMF=8§
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

Return and reason codes from DSPSERV CREATE:

Return Reason Meaning

code code

00 DSPSERV CREATE completed successfully.

04 xx000Cxx | DSPSERV CREATE completed successfully. You specified a size of

2-gigabytes (524,288 blocks). However, because the processor did not
support a hiperspace with zero origin; a hiperspace of one iess block
(524,287 blocks) was created.

08 xx0005xx Creation of hiperspace would violate installation criteria. See System
Modifications.

08 xx0009xx The specified hiperspace name is not unique within the address space.

08 xx0010xx ESO hiperspace creation rejected because there is no expanded storage on
the system.

08 xx0012xx The system’s set of generated names for data spaces and hiperspaces has

been temporarily exhausted.

0oC xx0006xx The system cannot create any additional hiperspaces at this time because
of a shortage of resources.

oC xx0007xx The system cannot obtain addressability to its own hiperspaces.

Return and reason codes from DSPSERV EXTEND:

Return Reason Meaning

code code

00 DSPSERV EXTEND completed successfully.

08 xx0502xx Extending the hiperspace size would cause the data space and hiperspace

limits for the address space to be exceeded.

08 xx0503xx You are using VAR=YES to extend the current size of the hiperspace;
however, the hiperspace is already the maximum size.

Example of Creating a Hiperspace
Create a hiperspace named TEMP with a size of 10 million bytes.

DSPSERV CREATE,NAME=HSPCNAME, STOKEN=HSPCSTKN, X
TYPE=HIPERSPACE,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG

*

HSPCNAME DC CL8'TEMP ! HIPERSPACE NAME

HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCORG DS F HIPERSPACE ORIGIN RETURNED

HSPCSIZE DC F'10000000'
HSPBLCKS DC A((HSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE HIPERSPACE

DSPSERV — Create, Delete, and Control Hiperspaces 175

DSPSERV (List Form)

Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

The list form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DSPSERV.
DSPSERV
b One or more blanks must follow DSPSERV.
MF = (L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D
,PLISTVER=0 Default: PLISTVER=0
,PLISTVER=1

The parameters are explained as follows:

MF = (L,list addr)
MF = (L,/ist addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

,PLISTVER=1
,PLISTVER=0

Specifies the macro version associated with DSPSERV.

PLISTVER is an optional parameter that determines which parameter list the system
generates. Only init-addr on the BLOCKS parameter is associated with macro version
1 that produces a 60-character parameter list; all other parameters are associated with
the macro version 0 that produces a 56-character parameter list. Therefore, if you use
the BLOCKS = (max-addr,init-addr) parameter on subsequent execute forms of
DSPSERYV, you must specify PLISTVER =1 on the list form. PLISTVER=0 is the default.

176 sPL: Application Development Macro Reference

DSPSERYV (Execute Form)

The execute form of the DSPSERV macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the DSPSERV macro is written as follows:

name

b

DSPSERV

b

name: symbol. Begin name in column 1.

One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

CREATE

RELEASE
DELETE
EXTEND

,STOKEN = stoken-addr
,TYPE =HIPERSPACE

,HSTYPE=SCROLL
,HSTYPE = CACHE

,SHARE=NO
,SHARE=YES

,CASTOUT=YES
,CASTOUT=NO

,NAME = name-addr

,GENNAME =NO
,GENNAME = COND
L,GENNAME =YES

,OUTNAME = outname-addr
,START =start-addr

,BLOCKS = (max-addr,init-addr)
,BLOCKS = (max,init)

,BLOCKS =max

,BLOCKS = (0,init)

,BLOCKS=0

,BLOCKS =(0,init-addr)
,BLOCKS = (size-addr)
,BLOCKS =(size)

,KEY = key-addr
,CALLERKEY

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr
,ORIGIN=origin-addr

,NUMBLKS = numblks-addr

Valid parameters (Required parameters are underlined.)
STOKEN, NAME, TYPE, HSTYPE, SHARE, CASTOUT,
GENNAME, OUTNAME, BLOCKS, CALLERKEY,

KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS

STOKEN, START, BLOCKS, DISABLED

STOKEN, TTOKEN

STOKEN, BLOCKS, VAR, NUMBLKS

stoken-addr: RX-type address or register (2) - (12).

Default: HSTYPE=SCROLL

Default: SHARE =NO

Default: CASTOUT=YES

name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).
start-addr: RX-type address or register (2) - (12).
max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).

max: Number up to 524288.

init: Number up to 524288.

0 specifies the installation default size.

Default for CREATE: BLOCKS =0

size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

key-addr: RX-type address or register (2) - (12).
Default: CALLERKEY

Detault: FPROT=YES

ttoken-addr: RX-type address or register (2) - (12).
origin-addr: RX-type address or register (2) - (12).

numblks-addr: RX-type address or register (2) - (12).

DSPSERV — Create, Delete, and Control Hiperspaces

177

,VAR=NO Default: VAR=NO
\VAR=YES

,DISABLED=NO Default: DISABLED =NO
,DISABLED=YES

,MF = (E,list addr)
,MF=(E,list addr, COMPLETE)

The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF = (E,list addr)

,MF=(E,list addr,COMPLETE))
Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

178 SPL: Application Development Macro Reference

DYNALLOC — Dynamic Allocation

See SPL: Application Development Guide for the description of this macro.

© Copyright IBM Corp. 1988, 1991 179

180 sPL: Application Development Macro Reference

ENQ — Request Control of a Serially Reusable Resource

© Copyright IBM Corp. 1988, 1991

ENQ assigns control of one or more serially reusable resources to a task. If any of the
resources are not available, the task might be placed in a wait condition until all of the
requested resources are available. Once control of a resource has been assigned to a task,
it remains with that task until one of the programs running under that task issues a DEQ
macro to release the resource or the task terminates.

ENQ identifies the resource by a pair of names, the gname and the rname, and a scope
value. The scope value determines what other tasks, address spaces, or systems can use
the resource. All programs that share the resource must use the gname, rname, and scope
value consistently. You can request either shared or exclusive use of a resource.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has been
previously requested by the active task in another ENQ macro.

ENQ with the MASID and MTCB parameters allows a further conditional control of a
resource. One task, called the “issuing task” can issue an ENQ macro for a resource
specifying the ASID and TCB of another task, called the “matching task”. MTCB and MASID
parameters are specified with RET=HAVE, RET=TEST, and/or ECB to provide additional
return codes. If the issuing task does not receive control of the resource, it may receive a
return code indicating that the resource is controlled by the matching task. Upon receiving
this return code, the issuing task could use the resource, if serialization between itself and
the matching task has been pre-arranged through a protocol.

Issuing two ENQ macros for the same resource without an intervening DEQ macro causes
the task to abend, unless the second ENQ designates RET=TEST, USE, CHNG, or HAVE. If
the task terminates, either normally or abnormailly, while the task still has control of any
serially reusable resources, all requests made by this task will automatically have DEQ
processing performed for them. If resource input addresses are incorrect, the task
abnormally terminates.

Global resource serialization counts and limits the number of concurrent resource requests
from an address space. If an unconditional ENQ (an ENQ that uses the RET=NONE option)
causes the count of concurrent resource requests to exceed the limit, the caller abends with
a system code of X'538’. For more information, see the section on limiting concurrent
requests for resources in Application Development Guide.

181

The description of the ENQ macro follows. The ENQ macro is also described in Application
Development Macro Reference with the exception of the SMC, ECB, and TCB parameters.
These parameters are restricted in use to programs that run in supervisor state, PSW key
0-7, or APF authorized and are therefore only described here.

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
gname addr gname addr: A-type address, or register (2) - (12).
,rname addr rname addr: A-type address, or register (2) - (12).
) Default: E
E
S

,rname length

,STEP
,SYSTEM
,SYSTEMS

)

,RET=CHNG
JRET=HAVE
JRET=TEST
,RET=USE
JRET=NONE

,SMC=NONE
,SMC=STEP
LECB=ecb addr
,TCB=tcb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED =value

rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rname

Note: rname length must be coded if a register is specified for
rname addr.

Default: STEP

Default: RET=NONE

ecb addr: A-type address, or register (2) - (12).

tcb addr: A-type address, or register (2) - (12).

Default: SMC =NONE)
Note: ECB cannot be specified with RET above. ECB and TCB
can be specified together. If TCB is specified but not ECB, then
RET = CHNG, TEST or USE must be specified above.

matching-asid addr: A-type address, or register (2) - (12).
matching-tcb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

(

specifies the beginning of the resource description.

gname addr

specifies the address in virtual storage of an 8-character name. Every program issuing

a request for a serially reusable resource must use the same gname, rname, and scope
to represent the resource.

182 spL: Application Development Macro Reference

srname addr

specifies the address in virtual storage of the name used in conjunction with gname to
represent a single resource. The name can be qualified and must be from 1 to 255
bytes long and contain any hexadecimal character.

specifies whether the request is for exclusive (E) or shared (S) control of the resource.
If the resource is modified while under control of the task, the request must be for
exclusive control; if the resource is not modified, the request should be for shared
control.

,rname length

specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of 0. If you specified 0, the
length of the rname must be contained in the first byte at the rname addr specified
above.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same gname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by more than one address space.
SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer tc the same
resource. If two macros specify the same gname and rname, but one specifies STEP
and the other specifies SYSTEM or SYSTEMS, they are treated as requests for different
resources.

When global resource serialization is active, scope conversion can occur. This could
result in two requests with different scopes referring to the same resource. See
Planning: Global Resource Serialization for details.

specifies the end of the resource description.

Note: Multiple resources can be specified in the ENQ macro. You can repeat the gname
addr, rname addr, type of control, rname length, and scope until there is a maximum of 255
characters including the parentheses.

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
;RET =NONE

specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is changed from shared to exclusive
control.

HAVE - control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same task.

TEST - the availability of the resources is to be tested, but control of the resources
is not requested.

USE - control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not
available, the active task is not placed in a wait condition.

ENQ — Request Control of a Serially Reusable Resource 183

NONE - control of all the resources is unconditionally requested.

See “Return Codes” on page 185 for an explanation of the return codes for these
requests.

,SMC =NONE
,SMC =STEP
,ECB = ecb addr
,TCB=tcb addr
specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or that it is
to place other tasks for the step nondispatchable until the requesting task has
completed its operations on the resource (STEP).

When SMC=STEP is specified with RET=HAVE and the requesting task already has
control of the resource, the SMC function is turned on and the task continues to control
the resource.

SMC= and TCB= are mutually exclusive with the MASID parameter, therefore,
hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using the SMC
or TCB operands.

The return codes and status of the set must-complete function for the various RET=
specifications are as follows:

Hexadecimal Code SMC Status

RET=CHNG 0 on
4 off
8 off
14 off
RET=HAVE 0 on
8 on
14 off
RET=TEST 0 off
4 off
8 off
14 off
RET=USE 0 on
4 off
8 off
14 off
18 off

ECB specifies the address of an ECB, and conditionally requests all of the resources
named in the macro. If the return code for one or more requested resources is
hexadecimal 4 or 24 and the request is not nullified by a corresponding DEQ, the ECB is
posted when all the requested resources (specifically, those that initially received a
return code of 4 or 24) are assigned to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the fullword that
is used as an ECB. If the operand is a register, then the register contains the address
of the ECB.

TCB specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the ENQ is to be done.

Note: The TCB resides in storage below 16 megabytes.

,MASID = matching-asid addr
specifies the matching task (by defining a matching ASID) for the ENQ, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the ENQ macro. If the MASID parameter is an
A-type address, the address is the name of a fullword containing the ASID. If the
operand is a register, then the register contains the ASID.

Note: MASID can only be specified if MTCB is also specified.

184 spPL: Application Development Macro Reference

,MTCB = matching-tcb addr
specifies the matching task (by defining a matching TCB) for the ENQ, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the ENQ macro.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the ENQ and returns a return
code indicating whether the resource can be used. If the task specified by MASID and
MTCB parameters is using the resource, global resource serialization records a
request for the resource, suspends the issuing task until the resource is available, or
optionally returns a return code indicating that an ECB will be posted when the
resource can be used.

The MASID and MTCB parameters are specified with RET=HAVE, RET=TEST, and/or
ECB = parameters to elicit additional return codes that provide information about the
owner of the resource. If the MTCB parameter is an A-type address, the address is the
name of a fullword containing the TCB. If the operand is a register, then the register
contains the TCB.

Note: MTCB can only be specified if MASID is also specified.

,RELATED = value
specifies information used to self-document macros by ‘relating’. functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return Codes

Return codes are provided by the control program only if you specify RET=TEST,
RET=USE, RET=CHNG, RET=HAVE, or ECB = otherwise return of the task to the active
condition indicates that control of the resource has been assigned to the task. If all return
codes for the resources named in the ENQ macro are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a storage area containing the
return codes, as shown in Figure 9.

Address Return
Returned in Codes
Register 15 l
¢ 1 2 3 4 12
RC 1
12
RC 2
24 ! Return codes are
12 bytes apart,
starting 3 bytes
from the address
RC 3 in register 15.
36
L NN 1
— "
RC N

Figure 9. Return Code Area Used by ENQ

ENQ — Request Control of a Serially Reusable Resource 185

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro. The return codes are shown

below.

Hexadecimal
Code
0

14

18

20

24

28

44

186 spL: Application Development Macro Reference

Meaning

For RET=TEST, the resource is immediately available. For RET=USE,

RET =HAVE, or ECB=, control of the resource has been assigned to the active
task. For RET=CHNG, the status of the resource has been changed to exclusive.
The ECB is not posted.

For RET=TEST or RET = USE, the resource is not immediately available. For
RET =CHNG, the status cannot be changed to exclusive. For ECB=, the ECB will
be posted when available.

For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request for
control of the same resource has been made for the same task. The task has
control of resource. For RET=CHNG, the resource has not been enqueued. If bit
3 is on -- shared control of resource; if bit 3 of the first byte of the ENQ parameter
list is off -- exclusive control. The ECB is not posted.

A previous request for control of the same resource has been made for the same
task. The task does not have control of resource. The ECB is not posted.

For RET=HAVE, RET=USE, or ECB=, the limit for the humber of concurrent
resource requests has been reached. The task does not have control of the
resource unless some previous ENQ or RESERVE request caused the task to
obtain control of the resource. The ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the
resource. The issuer of the ENQ macro may use the resource but it must ensure
that the owning task does not terminate while the issuer of the ENQ macro is
using the resource. If the issuer of the ENQ requested exclusive control, then this
return code indicates that the matching task is the only task that currently owns
the resource. If the issuer of the ENQ requested shared control and the owning
task had requested shared control, this return code may indicate that a previous
task had requested exclusive control. The issuing task must issue a DEQ to
cancel this ENQ. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing
task may use the resource but must ensure that the matching task does not
terminate while the issuing task is using the resource. The issuing task must
issue a DEQ to cancel the ENQ.

The issuing task cannot obtain exclusive control of the resource using the
MASID/MTCB ENQ. The matching task’s involvement with other tasks precludes
control by the issuing task. This task must not issue a DEQ to cancel the ENQ.
The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB ENQ in one or more
of the following ways:

* Another task has already issued this ENQ for this resource specifying the
same MASID/MTCB.

* The MASID/MTCB parameters specify a task that acquired control of the
resource by using the MASID/MTCB ENQ.

* The matching task requested ownership of the resource but has not yet been
granted ownership.

The ECB will not be posted. Return code 44 is never given by an ENQ RET=TEST,
return code 4 is given instead.

Example 1

Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step
nondispatchable until the requesting task has completed its operations on the resource.

ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP

Example 2

Operation: Conditionally request control of a sharable resource in behalf of another task.
The resource is known by more than one address space, and is only wanted if immediately
available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2) ,RET=USE

ENQ — Request Control of a Serially Reusable Resource 187

ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro, therefore, the number of gname, rname, and
scope combinations in the list form of the ENQ macro must be equal to the maximum

number of gname, rname, and scope combinations in any execute form of the macro that

refers to that list form.

The list form of the ENQ macro is written as follows:

name

ENQ

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr

;

,rname addr

E
S

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC =NONE
,SMC=STEP

JECB=ecb addr
,TCB=0

JMASID=0
,MTCB=0

,RELATED =value

MF =L

gname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E

rname length: symbol or decimal digit.
Default: assembled length of rname

Default: STEP

Default: RET=NONE

ecb addr: A-type address.

Default: SMC =NONE

Note: ECB cannot be specified with RET above.

Note: TCB or ECB must be specified on the list form if it is
used on the execute form. ECB and TCB can be specified
together. If TCB is specified but not ECB, then RET = CHNG,
TEST or USE must be specified above.

value: any valid macro keyword specification.

188 SPL: Application Development Macro Reference

The parameters are explained under the standard form of the ENQ macro, with the following
exception:

,MF=L
specifies the list form of the ENQ macro.

The list form of this macro generates a prefix followed by the parameter list, however the
label specified in MF=L does not include an offset prefix area. If MASID, MTCB, TCB, or

ECB is specified, these labels are offset; allowance must be made for the parameter list
prefix.

ENQ — Request Control of a Serially Reusable Resource 189

ENQ (Execute Form)

A remote control program parameter list is used in and can be modified by the execute form
of the ENQ macro. The parameter list can be generated by the list form of ENQ.

The execute form of the ENQ macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(Note: (and) are the beginning and end of a parameter list.
The entire list is optional. If nothing in the list is desired then (,
), and all parameters between (and) should not be specified.
If something in the list is desired, the (,), and all parameters
in the list should be specified as indicated at the left.
gname addr gname addr: RX-type address, or register (2) - (12).
,rname addr rname addr: RX-type address, or register (2) - (12).
E
S

y

,rname length

,STEP
,SYSTEM
,SYSTEMS

)

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP

LECB=ecb addr
,TCB=tcb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value

,MF=(E,ctrl addr)

rname length: symbol, decimal digit, or register (2) - (12).

Note: See note opposite (above.

ecb addr: RX-type address, or register (2) - (12).

tcb addr: RX-type address, or register (2) - (12).

Note: ECB cannot be specified with RET above.

Note: ECB and TCB can be specified together. If TCB is
specified but not ECB, then RET=CHNG, TEST or USE must be
specified above.

matching-asid addr: Rx-type address, or register (2)-(12).
matching-tcb addr: Rx-type address, or register (2)-(12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

190 SPL: Application Development Macro Reference

The parameters are explained under the standard form of the ENQ macro, with the
following exceptions:

,MF=(E,ctr| addr)
specifies the execute form of the ENQ macro using a remote control program
parameter list.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB =0) must be specified
in the list form. If MASID and MTCB are specified, MASID=0 and MTCB =0 must be
specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the
label specified in MF =L does not include an offset prefix area. If MASID, MTCB, TCB, or
ECB is specified, these labels are offset; allowance must be made for the parameter list
prefix.

ENQ — Request Control of a Serially Reusable Resource 191

192 SPL: Application Development Macro Reference

ESPIE — Extended SPIE

SET Option

© Copyright IBM Corp. 1988, 1991

The ESPIE macro extends the function of the SPIE (specify program interruption exits)
macro to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit addressing
mode can issue the ESPIE macro. Only callers in 24-bit addressing mode can issue the
SPIE macro. For additional information concerning the relationship between the SPIE and
the ESPIE macros, see “Interruption Services”in SPL: Application Development Guide.

The ESPIE macro performs the following functions using the options specified:

Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro.

Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment) by

executing the RESET option of the ESPIE macro

* Determines the current SPIE/ESPIE environment by executing the TEST option of the

ESPIE macro

The following description of the ESPIE macro also appears in Application Development
Macro Reference with the exception of interruption type 17. This interruption type
designates page faults, and its use is restricted to programs that are APF-authorized or
execute in key 0-7.

The SET option of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
,exit addr exit addr: A-type address or register (2) - (12).
,(interruptions) interruptions: decimal numbers 1 - 15 or 17 expressed as

single values: (2, 3, 4,7, 8,9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM = /ist addr list addr: A-type address or register (2) - (12).

The parameters are explained as follows:

SET
indicates that an ESPIE environment is to be established.

,exit addr

specifies the address of the exit routine to be given control when program interruptions
of the type specified by interruptions occur. The exit routine will receive control in the

same addressing mode as the issuer of the ESPIE macro.

193

,(interruptions)

indicates the interruption types that are being trapped. The interruption types are:

Number Interruption Type

1 Operation

2 Privileged operation

3 Execute

4 Protection

5 Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)
9 Fixed-point divide

10 Decimal overflow (maskable)
11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)
14 Significance (maskable)

15 Floating-point divide

17 Page fault

These interruption types can be designated as one or more single numbers, as one or
more pairs of numbers (designating ranges of values), or as any combination of the two
forms. For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates
interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to 0. Interruption types not specified above (except for type 17) are handled
by the control program. The control program forces an abend with the program check
as the completion code. If an ESTAE-type recovery routine is also active, the SDWA
indicates a system-forced abnormal termination. The registers at the time of the error
are those of the control program.

Note: For ESPIE and SPIE — If you are using vector instructions and an interruption of
8, 12, 13, 14, or 15, occurs, your recovery routine can check the exception extension
code (the first byte of the two-byte interruption code in the EPIE or PIE) to determine
whether the exception was a vector or scalar type of exception.

,PARAM = /ist addr

specifies the fullword address of a parameter list that is to be passed by the caller to
the exit routine.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return from the SET option of the ESPIE macro, the registers contain the following

information:

Register Content

0 Used as a work register by the macro.

1 Token representing the previously active SPIE/ESPIE. environment
2-13 Unchanged.

14 Used as a work register by the macro.

15 Return code of 0.

194 sPL: Application Development Macro Reference

RESET Option

Example 1

Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the
location of the exit routine to be given control and PARMLIST is the location of the
user-parameter list to be used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

Example 2
Operation: Give control to the exit routine located at EXIT when a page fault occurs.

ESPIE SET,EXIT,(17)

The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment and
restores the SPIE/ESPIE environment specified by token.

The RESET option of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
RESET
,token token: RX-type address or register (1) or (2) - (12).

The parameters are explained as follows:

RESET
indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by token is to be re-established.

,token
specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE trap was established using the SET option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIEs are deleted.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return from ESPIE RESET, the contents of the registers are as follows:

Register Contents

0 Used as a work register by the macro.

1 Token identifying the new active SPIE/ESPIE environment.
2-13 Unchanged.

14 Used as a work register by the macro.

15 Return code of 0.

ESPIE — Extended SPIE 195

TEST Option

Example
Operation: Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESPIE RESET,TOKEN

The TEST option of the ESPIE macro determines the active SPIE/ESPIE environment and
returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
TEST
,parm addr parm addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

,Jparm addr
specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

0 Address of the exit routine (31-bit address with the high-order bit set to 0)
1 Address of the user-defined parameter list

2 Mask of program interruption types

3 Zero

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

196 SPL: Application Development Macro Reference

On return from ESPIE TEST, the registers contain the following information:

Register Contents

0 Used as a work register by the macro.
1-13 Unchanged.

14 Used as a work register by the macro.
15 Return code as follows:

Code Meaning

0 An ESPIE exit is active and the four-word parameter list contains the
the information specified in the description of the parm addr
parameter.

4 A SPIE exit is active. Word 1 of the parameter list described under

parm addr contains the address of the current PICA. Words 0, 2, and
3 of the parameter list contain no relevant information.

8 No SPIE or ESPIE is active. The contents of the four-word parameter
list contain no relevant information.

Example

Operation: Identify the active SPIE/ESPIE environment. Return the information about the
exit routine in the four-word parameter list, PARMLIST. Also return, in register 15, an
indication of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

ESPIE — Extended SPIE 197

ESPIE (List Form)

The list form of the ESPIE macro builds a non-executable problem program parameter list
that can be referred to or modified by the execute form of the ESPIE macro. The list form of
ESPIE is valid only for ESPIE SET.

The list form of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET

,exit addr exit addr: A-type address.

Note: This parameter must be specified on either the list or the
execute form of the macro.

J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM = list addr list addr: A-type address.

MF=L

The parameters are explained under the standard form of the ESPIE macro with the
following exception:

JMF=L
specifies the list form of the ESPIE macro.

Example

Operation: Build a non-executable problem program parameter list that will cause control
to be transferred to the exit routine, EXIT, for the interruption types specified in the execute
form of the macro. Provide the address of the user parameter list, PARMLIST.

LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

198 sPL: Application Development Macro Reference

ESPIE (Execute Form)

The execute form of the ESPIE macro can refer to and modify the parameter list constructed
by the list form of the ESPIE macro. The execute form of ESPIE is valid only for ESPIE SET.

The execute form of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
,exit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the
execute form of the macro.

J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4,7, 8,9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM = list addr list addr: RX-type address or register (1) or (2) - (12).

,MF = (E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ESPIE macro with the
following exception:

,MF = (E,ctr/ addr)
specifies the execute form of the ESPIE macro using a remote control program
parameter list.

Example

Operation: Give control to a installation exit routine for interruption types 1, 4, 6, 7, and 8.
The exit routine address and the address of a user parameter list for the exit routine are
provided in a remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE — Extended SPIE 199

200 sPL: Application Development Macro Reference

ESTAE and ESTAE;(— Specify Task Abnormal Exit Extended

© Copyright IBM Corp. 1988, 1991

The ESTAE macro allows the user to intercept a scheduled ABEND. Control is given to a
user-specified recovery routine that can, for example, perform pre-termination processing,
diagnose the cause of ABEND, and specify a reiry address to try to avoid the termination.
These recovery routines operate in both problem program and supervisor modes.

The addressing mode in which the ESTAE macro expansion executes becomes the
addressing mode in which the ESTAE exits and retry routines execute (that is, the ESTAE
exits and retry routines execute in the same addressing mode as the issuer of the ESTAE
macro.)

ESTAEX is the preferred interface. You can use ESTAE, however, if your program is in
primary mode, and the primary, secondary, and home address spaces are the same.
Depending on whether you code ESTAE or ESTAEX, the system passes the address of the
user-specified parameter list differently. The SDWAPARM field in the SDWA contains either
the address of the parameter list (ESTAE), or the address of a doubleword that contains the
address and ALET of the parameter list (ESTAEX). See “Key Fields in the SDWA” in SPL:
Application Development Guide

For information about how to select the macro for an MVS/SP version other than the current
version, see “ Selecting the Macro Level” on page 1. If you are executing in 31-bit
addressing mode, you must use the MVS/XA™ version of this macro.

The descriptions of ESTAE and ESTAEX in this book are:

* The standard form of the ESTAE macro, which includes general information about the
ESTAE and ESTAEX macros, with some specific information about the ESTAE macro.
The syntax of the ESTAE macro is presented, and all ESTAE parameters are explained.

* The standard form of the ESTAEX macro, which includes information specific to the
ESTAEX macro. The syntax of the ESTAEX miacio is piesenied.

* The list form of ESTAE and ESTAEX
* The execute form of ESTAE and ESTAEX
Comments in the syntax identify parameters that are not valid for certain ASC modes.
The description of the ESTAE macro follows. The ESTAE macro is also described in
Application Development Macro Reference with the exceptior: of the CANCEL, BRANCH,

SVEAREA, KEY, RECORD, and TOKEN parameters. These par.meters are restricted in use,
and, therefore, are described only in here.

“ESTAE-Type Recovery Routines” in SPL: Application Sevelopment Guide provides more
information.

201

202

The standard form of the ESTAE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
exit addr exif addr: A-type address, or register (2) - (12).
0

,CT Default: CT

,0V

,PARAM = Jist addr

list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO
XCTL=YES

,PURGE = NONE Default: PURGE = NONE
,PURGE = QUIESCE

,PURGE=HALT

,LASYNCH=YES Default: ASYNCH==YES
,ASYNCH=NO

,CANCEL =YES Default: CANCEL =YES
,CANCEL =NO

,TERM=NO Default: TERM =NO
,TERM=YES

,BRANCH=NO Default: BRANCH=NO

,BRANCH =YES,SVEAREA =save
addr

,KEY =SAVE
,KEY = storage key

,RECORD=NO
,RECORD=YES

,TOKEN = token addr

,RELATED = value

save addr: A-type address, or register (2) - (12) or (13).

storage key: any numeral in the range 0-15.

Default: RECORD=NO

token addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

exit addr

0

specifies the 31-bit address of an ESTAE recovery routine to be entered if the task
issuing this macro terminates abnormally. The recovery routine executes in the
addressing mode of the issuer of the ESTAE. If you specify 0, the most recent ESTAE
routine is deleted.

,CT

, OV
specifies the creation of a new ESTAE exit (CT) or indicates that parameters passed in
this ESTAE macro are to overlay the data contained in the previous ESTAE routine
(OV).

SPL: Application Development Macro Reference

,PARAM = Jist addr
specifies the 31-bit address of a user-defined list containing data to be used by the
ESTAE routine when it is scheduled for execution.

,XCTL=NO

,XCTL=YES
specifies that the ESTAE environment will be deleted (NO) or will not be deleted (YES) if
this program issues an XCTL macro.

,PURGE = NONE

,PURGE = QUIESCE

,PURGE =HALT
specifies that all outstanding requests for 1/0 operations are not to be saved when the
ESTAE routine gets control (HALT) or that I/0 processing is to be allowed to continue
normally when the ESTAE routine gets control (NONE) or that all outstanding requests
for 1/0 operations are to be saved when the ESTAE routine is taken (QUIESCE). If
QUIESCE is specified, the user’s retry routine can restore the outstanding I/0 requests.

PURGE = NONE specifies that all control blocks affected by input/output processing can
continue to change during ESTAE routine processing. If you specify PURGE =NONE,
and the ABEND was originally scheduled because of an error in input/output
processing, an ABEND recursion develops when an input/output interruption occurs,
even if the ESTAE routine is in progress. Thus, it will appear that the ESTAE routine
failed when, in reality, input/output processing caused the failure.

Notes:

1. You should understand PURGE processing before using this parameter. For information
on PURGE processing, see System Programming Reference.

2. If you specify PURGE =HALT, or PURGE = QUIESCE but I/0 is not restored,

* While using SAM or ISAM, only the input/output event on which the purge is done
will be posted. Subsequent event control blocks (ECBs) will not be posted. If you
issue further data management macros, such as GET/PUT, READ/WRITE or CLOSE,
after a PURGE is issued during ESTAE recovery, a wait may occur in an access
method module.

* While using ISAM,
— The ISAM check routine will treat purged I/O as normal 1/0.

— Part of the data set might be destroyed if the data set was being updated or
added to when the failure occurred.

,ASYNCH = YES

,ASYNCH=NO
specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user’s ESTAE routine is executing.

ASYNCH = YES must be coded if:

* Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE routine.

* PURGE =QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

* PURGE =NONE is specified and the ESTAE routine issues the CHECK macro for any
access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH=YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,CANCEL =YES
,CANCEL=NO

specifies whether you want to allow the recovery routine to be interrupted by cancel or
detach processing.

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 203

204

To allow a recovery routine to be interrupted, specify CANCEL =YES.

To prevent a recovery routine from being interrupted, specify CANCEL=NO. If a cancel
or detach is attempted against a recovery routine for which you have specified
CANCEL =NO, MVS defers cancel and detach processing until the recovery routine
returns control to the system.

Usage Notes:

1. If a recovery routine that runs under the CANCEL = NO option can be called by an
unauthorized program running under the same task, IBM recommends that you
specify ASYNCH =NO for each ESTAE(X) macro that the recovery routine issues.
This also includes any ESTAE(X) macros issued by programs that the recovery
routine calls.

2. If a recovery routine running under the CANCEL = NO option calls an unauthorized
program, cancel and detach processing is also deferred for the called program.

,TERM=NO
,TERM = YES

specifies that the ESTAE routine will be scheduled (YES) or will not be scheduled (NO)
in the following situations:

e Cancel by operator

* Forced logoff

* Expiration of job step timer

* Exceeding of wait time limit for job step

* ABEND condition because of DETACH of an incomplete subtask when the STAE
option was not specified on the DETACH

* ABEND of the attaching task when the ESTAE macro was issued by a subtask
* ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the ESTAE routine is entered because of one of the preceding reasons, re-try is
not permitted. If a dump is requested at the time of ABEND, it is taken before entry into
the ESTAE routine.

Note: |f DETACH was issued with the STAE parameter, the following occurs for the
task to be detached:

e All ESTAE routines are entered.
* The most recently established STAE routine is entered.

e All STAI/ESTAI routines are entered unless one of the STAI routines issues return
code 16.

In these cases, entry to the routine occurs before dumping and re-try is not permitted.

,BRANCH=NO
,BRANCH = YES,SVEAREA = save addr

specifies that an SVC entry to the ESTAE service routine is to be performed (NO) or that
a branch entry is to be performed (YES). The save area is a 72-byte area used to save
the general registers. If the caller is not in key zero, the KEY parameter must be
specified.

BRANCH and SVEAREA are not valid on ESTAEX.

,KEY = SAVE
,KEY = storage key

specifies that supervisor state users who are not in key zero can use the branch entry
interface to the ESTAE service routine.

If the user specifies KEY = SAVE, the system saves the current PSW protection key in
register 2 and issues a set protection key instruction (SPKA) to change to protection
key zero. When the ESTAE service routine returns control, it restores the original PSW
key from register 2. Therefore, the user should save register 2 before the macro

SPL: Application Development Macro Reference

expansion and restore it afterwards. Specifying KEY =SAVE destroys the contents of
register 2 during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may specify it
directly in the form KEY = (0-15) to eliminate saving and restoring the original
protection key. This procedure eliminates an IPK instruction and prevents the use of
register 2 in the macro expansion.

KEY is not valid on ESTAEX.

,RECORD =NO

,RECORD = YES
specifies that the system diagnostic work area (SDWA) is not to be written to
SYS1.LOGREC (NO) or that the entire SDWA (including the fixed length base, the
variable length recording area, and the recordable extensions) is to be written to
SYS1.LOGREC (YES).

,TOKEN = token addr
specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented because the
ESTAE cannot be canceled or overlaid unless the same token is specified.

With CT (create): ESTAE processing places the token created for this request in the
location specified by token addr as well as in the ESTAE parameter list.

With OV (overlay): ESTAE processing locates the specified ESTAE routine for the
current RB and replaces the routine information. If there are any newer ESTAE
routines for the RB, they are deleted.

With 0 (cancel): ESTAE processing locates the specified ESTAE routine for the current
RB and deletes the routine. Any newer ESTAE routines for the RB are deleted.

,RELATED = value
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and content of the information
specified are at the discretion of the user, and may be any valid coding values.

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 205

Control returns to the instruction following the ESTAE macro. When control returns,
register 15 contains one of the following return codes:

Hexadecimal
Code
00

04

[1]o]

10
14
18

1C
20

24

28

206 sPL: Application Development Macro Reference

Successful completion of ESTAE request.

ESTAE OV was specified but ESTAE CT was performed. Register 0 contains one
of the following reason codes:

Hexadecimal

Code Meaning

00 No valid SCB existed.

04 The last SCB was not owned by the user’s RB.

08 The last SCB was not created at the current linkage stack
level.

0c The last SCB was not an ESTAE SCB.

Delete (an exit address equal to zero) was specified, and either

* There are no exits for this TCB,

* The most recent exit is not owned by the caller,

* The most recent exit is not an ESTAE exit, or

* The ESTAE was created with the TOKEN parameter and on a delete request,
either
— The token was not specified or
— The token does not match.

An unexpected error was encountered while processing this request.
ESTAE was unable to obtain storage for an SCB.
ESTAE OV request was invalid for one of the following reasons:

* ESTAE OV with the TOKEN parameter was specified but
— No SCB exists or
— The SCB is not an ESTAE SCB created with the matching token value by
the current RB.
* ESTAE OV without the TOKEN parameter was specified but the SCB was
created with the TOKEN parameter.

ESTAE was unable to access the input parameter list.

XCTL=YES was rejected because the linkage stack was not at the same level as
it was when the RB was created.

Delete (an exit address equal to zero) was specified but rejected because no
ESTAEs were active for the current linkage stack level.

ESTAE OV was specified but rejected because no ESTAEs were active for the
current linkage stack level.

Example 1

Operation: If an error occurs, pass control to the ESTAE routine specified by register 4,
allow asynchronous exit processing, do not allow special error processing, do not branch
enter, and default to CT (create) and PURGE = NONE.

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

Example 2

Operation: If an error occurs, pass control to the ESTAE routine specified by register 4.
The address of the ESTAE parameter list is in register 2. Place the token associated with
this ESTAE routine in TOKENFLD.

ESTAE (4),PARM=(2), TOKEN=TOKENFLD

Example 3

Operation: If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt I/0, allow special error processing, branch enter, use the
72-byte save area at SADDR, and execute the execute form of the macro. EXEC is the label
of the ESTAE parameter list built by a list form of the macro elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E ,EXEC)

Example 4

Operation: Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, I/O will be halted, no asynchronous
exits will be taken, ownership will be transferred to the new request biock resulting from
any XCTL macros.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 5

Operation: Provide the pointer to the recovery code in the register called EXITPTR, place
the address of the ESTAE parameter list in register 9. Register 8 points to the area where
the ESTAE parameter iist {created with the MF =L option)j was moved.

ESTAE (EXITPTR),PARAM=(9) ,MF=(E,(8))

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 207

ESTAEX — Specify Task Abnormal Exit Extended

The ESTAEX macro provides all of the function that ESTAE provides. Any program, whether
its in AR mode, primary mode, or cross memory mode can issue ESTAEX. Callers of the
ESTAEX macro must be enabled. IBM recommends that you always use ESTAEX instead of
using ESTAE.

For callers in AR mode:

¢ Before issuing ESTAEX, issue SYSSTATE ASCENV =AR. The ASCENV = AR parameter
.on the SYSSTATE macro ensures that ESTAEX generates code appropriate for AR mode.

¢ ESTAEX system parameters must be located in the caller’s primary address space.
* User parameters, specified on the PARAM keyword, can be located in any address
space.

The parameters on the standard form of the ESTAEX macro are the same as for the
standard form of the ESTAE macro, except BRANCH, SVEAREA, and KEY, which are not
valid for ESTAEX.

The standard form of the ESTAEX macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAEX.
ESTAEX
b One or more blanks must follow ESTAEX.
exit addr exit addr: A-type address, or register (2) - (12).
0
,CT Default: CT
,0v
,PARAM = Jist addr list addr: A-type address, or register (2) - (12).
XCTL=NO Default: XCTL=NO
XCTL=YES
,PURGE = NONE Default: PURGE = NONE
,PURGE = QUIESCE
,PURGE=HALT
,ASYNCH=YES Default: ASYNCH=YES
,ASYNCH=NO
,CANCEL =YES Default: CANCEL =YES
,CANCEL =NO
,TJERM=NO Default: TERM =NO
,TJERM=YES
,RECORD=NO Default: RECORD=NO
,RECORD=YES
,TOKEN = token addr token addr: A-type address, or register (2) - (12).
,RELATED = value value: any valid macro keyword specification.

208 spL: Application Development Macro Reference

The parameters are explained under the syntax for the standard form of the ESTAE macro.
However, when control is returned to the instruction following the ESTAEX, the return code
in register 15 may be different. The following are the return codes for ESTAEX:

Hexadecimal
Code
00

04

08
oC

10
14
18

1C
20

24

28
2C
30
34

Meaning

Successful completion of ESTAEX request.

ESTAEX OV was specified but ESTAEX CT was performed. Register 0 contains
one of the following reason codes:

Hexadecimal

Code Meaning

00 No valid SCB existed.

04 The last SCB was not owned by the user’s RB.

08 The last SCB was not created at the current linkage stack
level.

0C The last SCB was not an ESTAE SCB.

An invalid type of ESTAEX request was detected.
Delete (an exit address equal to zero) was specified, and either

* There are no exits for this TCB,

* The most recent exit is not owned by the caller,

* The most recent exit is not an ESTAE exit, or

* The ESTAE was created with the TOKEN parameter and on a delete request,
either
— The token was not specified or
— The token does not match.

An unexpected error was encountered while processing this request.
ESTAEX was unable to obtain storage for an SCB.
ESTAEX OV was requested either

* With the TOKEN parameter specified and the SCB is not owned by the current
RB or

* Without the TOKEN parameter specified but the SCB was created with the
TOKEN parameter.

ESTAEX was unable to access the input parameter list.

XCTL=YES was ignored because the linkage stack was not at the same level as it
was when the RB was created.

Delete (an exit address equal to zero) was specified but rejected because no
ESTAEs were active for the current linkage stack level.

The caller was disabled.

The caller was locked.

The caller had FRRs on the current FRR stack.
The caller was in SRB mode.

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 209

ESTAE and ESTAEX (List Form)

The list form of ESTAE or ESTAEX is used to construct a remote control parameter list.

The list form of ESTAE or ESTAEX is written as follows:

name

ESTAE
ESTAEX

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE or ESTAEX.

One or more blanks must follow ESTAE or ESTAEX.

exit addr

,PARAM = [ist addr

,PURGE =NONE
,PURGE = QUIESCE

,PURGE =HALT

JASYNCH=YES
,ASYNCH=NO

,CANCEL =YES
,CANCEL =NO

,TERM=NO
. TERM=YES

,RECORD =NO
,RECORD=YES

,RELATED =value

JMF=L

exit addr: A-type address.

list addr: A-type address.

Default: PURGE = NONE

Default: ASYNCH=YES

Default: CANCEL =YES

Default: TERM=NO

Detault: RECORD =NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ESTAE or ESTAEX macro with
the following exception:

sMF=L

specifies the list form of the ESTAE or ESTAEX macro.

210 sPL: Application Development Macro Reference

ESTAE or ESTAEX (Execute Form)

A remote control parameter list is used in, and can be modified by, the execute form of the
ESTAE or ESTAEX macro. The control parameter list can be generated by the list form of
the ESTAE or ESTAEX macro. Any combination of exit addr, PARAM, XCTL, PURGE,
ASYNCH, TERM, RECORD, and TOKEN can be specified to dynamically change the contents
of the remote ESTAE or ESTAEX parameter list. If the TOKEN parameter was previously
specified and is to be used again without change, TKNPASS = YES must be coded. Any
fields not specified on the macro remain as they were before the current ESTAE or ESTAEX
request was made.

The execute form of the ESTAE or ESTAEX macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE or ESTAEX.
ESTAE
ESTAEX
b One or more blanks must follow ESTAE or ESTAEX.
exit addr exit addr: RX-type address, or register (2) - (12).
0
,CT
, OV
,PARAM = |jst addr list addr: RX-type address, or register (2) - (12).
XCTL=NO
XCTL=YES
,PURGE = NONE
,PURGE =QUIESCE
,PURGE =HALT
,ASYNCH=YES
,ASYNCH=NO
,CANCEL =YES Default: CANCEL =YES
,CANCEL =NO
,TERM=NO
,TERM=YES
,BRANCH=NO Note: BRANCH and SVEAREA are not valid on ESTAEX.
;33¢N0H=YES’SVEAREA=SGV9 save addr: RX-type address, or register (2) - (12) or (13).
,KEY =SAVE storage key: any numeral in the range 0-15.
,KEY =storage key Note: KEY is not valid on ESTAEX.
,RECORD=NO
,RECORD=YES
,TOKEN = token addr token addr: RX-type address, or register (2) - (12).
,TKNPASS=NO Default: TKNPASS=NO
,TKNPASS=YES
,RELATED =value value: any valid macro keyword specification.
,MF = (E,ctr/ addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

ESTAE and ESTAEX — Specify Task Abnormal Exit Extended 211

The parameters are explained under the standard form of the ESTAE or ESTAEX macro,
with the following exceptions:

,TKNPASS =NO

,TKNPASS = YES
specifies that a previously-specified token, indicated in the parameter list, should be
ignored (NO), or should remain part of the specification (YES).

,MF = (E,ctr/ addr)
specifies the execute form of the ESTAE or ESTAEX macro using a remote control
parameter list.

212 SPL: Application Development Macro Reference

ETCON — Connect Entry Table

© Copyright IBM Corp. 1988, 1991

The ETCON macro connects one or more previously created entry tables to the specified
linkage table indexes in the current home address space. If an entry table is connected to a
system linkage index (an index reserved with the SYSTEM = YES option of the LXRES
macro), the entry table is connected to the linkage table of every address space, both
present and future.

The restrictions on the use of the ETCON macro are as follows:

* If an entry table contains entries that cause address space switches, the entry table
owner must have previously established authorization to issue PT and SSAR
instructions to the home address space.

* An entry table can be connected only once to a single linkage table.
* The linkage index and the entry table being connected must be under the same
ownership.

Any violation of these restrictions causes the caller to be abnormally terminated.
The connection created by the ETCON macro remains in effect until one of the following
occurs:

* The ETDIS macro removes the connection.

* The entry table owner terminates.

* The address space to which the table is connected terminates unless the connection
was to a system linkage index.

* The system is re-IPLed.

The caller must be in supervisor state or PKM 0-7, executing in primary mode, enabled,
and uniocked. The parameter iist passed to the ETCON macro must be addressable in
primary mode at the time the macro is issued. Register 13 must point to a standard register
save area that must also be addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

213

The ETCON macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST=addr addr: RX-type address or register (0) - (12).
LXLIST=addr addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = address
specifies the address of a list of fullword tokens representing the entry tables to be
connected to the linkage table. The first entry in the list must be the number of tokens
that follow (from 1 to 32). The tokens are the values returned in register 0 when the
ETCRE macro is issued.

,LXLIST = addr
specifies the address of a list of linkage index values to which the specified entry tables
are to be connected. The list contains fullword entries, the first of which must be the
number of linkage index values that follow (from 1 to 32). The number of linkage
indexes must be the same as the number of tokens. The first entry table is connected
to the first linkage index; the second entry table is connected to the second linkage
index, and so on.

,RELATED = value
specifies information used to self document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal Meaning
Code
0 The specified connections were successfully made.

214 sPL: Application Development Macro Reference

ETCON (List Form)

The list form of the ETCON macro constructs a non- executable parameter list. This list, or a

copy of it for reentrant programs, can be referred to by the execute form of the macro.

The list form of the ETCON macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST =addr addr: A-type address.
JLXLIST=addr addr: A-type address.
,RELATED =value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ETCON macro, with the
following exception:

sMF=L
specifies the list form of the ETCON macro.

ETCON — Connect Entry Table

215

ETCON (Execute Form)

The execute form of the ETCON macro can refer to and modify a remote parameter list
created by the list form of the macro.

The execute form of the ETCON macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST =addr addr: RX-type address or register (0) - (12).
,LXLIST=addr addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.
,MF = (E,cnt/ addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETCON macro with the
following exception:

,MF=(E,cntl addr)
specifies the execute form of the ETCON macro. This form uses a remote parameter
list.

216 SPL: Application Development Macro Reference

ETCRE — Create Entry Table

The ETCRE macro builds a program call entry table based upon descriptions of each entry.
A token representing the created entry table is returned to the requestor. You must use this
token in all subsequent references to the entry table.

Before issuing ETCRE, the caller must create the ETD parameter list that ETCRE uses as
input. The parameter list defines the names and characteristics of the program call (PC)
routines that the entry table will define. To create the parameter list, the caller can issue
the ETDEF macro or can code the data constants needed to define the list. If data constants
are coded, the caller can use mapping macro IHAETD to map them.

The created entry table is owned by the cross memory resource ownership task in the
current home address space. When the cross memory resource ownership task terminates,
entry tables are disconnected and freed.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The ETD specified by ENTRIES must also be addressable in primary
mode when the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register Contents

0 The 32-bit token associtated with the new entry table
1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Note: Programs written before MVS/SP Version 3, which use data constants to define the
parameter list (the resulting ETD was called a format 0 ETD) and which use IHAETD to map
the data area, will still work. For information about the format 0 ETD, see Diagnosis: Data
Areas.

The ETCRE macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCRE.
ETCRE
b One or more blanks must follow ETCRE.
ENTRIES = addr | addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

© Copyright IBM Corp. 1988, 1991 217

218

The parameters are explained as follows:

ENTRIES = adar
specifies the address of the parameter list that defines the PC routines.

An entry index value that does not have a description results in an invalid entry in the
entry table. If the program name field in an ETD entry contains zeroes, an invalid entry
is created for that entry index. A program call to an invalid entry causes the caller to
be abnormally terminated. The ETCRE caller is abnormally terminated if any of the
reserved fields are nonzero or if the system cannot locate the specified program name.

,RELATED = value
specifies information used to self-document macros by relating functions or services to
corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal Meaning
Code
0 The entry table is successfully created.
Example

The following example shows the relationship between the ETCRE and the ETDEF macros.
ETDEF builds an entry table descriptor (ETD) that contains two ETD entries. The first entry,
associated with PROGRAM1, is for a PC routine that runs in supervisor state. The second
entry, associated with PROGRAM?2, is for a PC routine that runs in problem state.

*

* CREATE THE ENTRY TABLE

*

LA 2,ETSTART
ETCRE ENTRIES=(2)

*

* DEFINE START OF ETD

*

ETSTART ETDEF TYPE=INITIAL START ETD
*

* DEFINE ENTRIES

*

ETEX2 ETDEF TYPE=ENTRY,PROGRAM='PROGRAM1’ ,AKM=(0:15)
ETDEF TYPE=ENTRY,PROGRAM='PROGRAM2' ,AKM=(8:7)

*

* DEFINE END OF ETD

*

ETDEF TYPE=FINAL

SPL: Application Development Macro Reference

ETDEF — Create an Entry Table Descriptor (ETD)

The ETDEF macro builds and modifies the parameter that the ETCRE macro uses to build an
entry table. The parameter, called the entry table descriptor (ETD), consists of a header,
followed by one or more entries, called ETD entries, each one describing a PC routine. The
address of the ETD is input to the ENTRIES parameter on the ETCRE macro.

The TYPE parameter on the ETDEF macro determines which process the ETDEF macro is to
perform:

* ETDEF TYPE=INITIAL generates the header for the ETD. (Issue this macro once for
each ETD.)

* ETDEF TYPE=ENTRY generates one ETD eniry. (You can issue this macro up to 128
times for each ETD.)

* ETDEF TYPE=FINAL terminates the ETD. (Issue this macro once for each ETD.)
* ETDEF TYPE =SET,ETEADR replaces the entire contents of an existing ETD entry.
e ETDEF TYPE =SET,HEADER changes an existing ETD header.

You can create an ETD at time of compile through TYPE =INITIAL, TYPE =ENTRY, and
TYPE=FINAL parameters and initialize the information for the entries at time of execution
through TYPE =SET,ETEADR. Therefore, ETDEF with the TYPE=INITIAL, TYPE=ENTRY,
and TYPE =FINAL parameters works like a list form of the macro. However, unlike the
execute form of a macro, which changes only the values you specify, the TYPE=SET form
of ETDEF completely replaces the contents of an ETD entry, taking the default values for any
parameters you omit. This section describes the two forms separately.

Although ETDEF is the preferred programming interface, if you have an existing ETD and
you want to update the parameters (for example, change the user parameter), you might
choose to use the IHAETD mapping macro instead of ETDEF. If you change an existing ETD,
without using any of the function of MVS/SP Version 3, you can use iHAETD with the format
number of “0”. The format of IHAETD is in Diagnosis: Data Areas under “ETD”.

Note: When changing code to use ETDEF in place of the IHAETD mapping macro, be sure to
specify PC=BASIC so that the PC does not become a stacking PC. If you want to change an
existing PC routine to a stacking PC, be sure to change the PT instruction in the PC routine
to a PR.

The caller of the ETDEF macro has the following requirements:

Authorization: Problem or Supervisor state
Dispatchable unit mode: Task or SRB

Cross memory mode: PASN = HASN or PASN not = HASN
Amode: 31-bit or 24-bit

ASC mode: Primary

Serialization: Not applicable

The ETDEF macro does not use any registers, except for those you use to specify
parameters.

© Copyright IBM Corp. 1988, 1991 219

TYPE =INITIAL, TYPE =ENTRY, and TYPE =FINAL Parameters

The ETDEF macro with the TYPE =INITIAL, TYPE=ENTRY, and TYPE =FINAL options works
like a list form of a macro. This form is described as follows:

220

name

ETDEF

name: symbol. Begin name in column 1.

One or more blanks must precede ETDEF.

One or more blanks must follow ETDEF.

TYPE=INITIAL
TYPE=ENTRY

TYPE=FINAL
LAKM = key-list

,ARR=arr

,ASYNCH=YES

LASYNCH=NO

,CANCEL =YES
,CANCEL =NO

,ASCMODE = PRIMARY
,LASCMODE =AR

JEAX = eax-value

JEK=entry-key

LEKM = key-list

,PARM1=user-parm1
,PARM2=user-parm2
,PC=STACKING
,PC=BASIC

,PROGRAM =pgm-name

,ROUTINE = rtn-addr

,PKM=0R
,PKM=REPLACE

,RAMODE =31
,RAMODE =24

,RELATED =value

,SASN=0LD
,SASN=NEW

,SSWITCH=NO
,SSWITCH=YES

SPL: Application Development Macro Reference

Valid parameters (Required parameters are underlined)
RELATED

PROGRAM or ROUTINE, AKM, EKM, ARR, ASCMODE, EAX,
EK, PARM1, PARM2, PC, PKM, SASN, SSWITCH, STATE,
RELATED, ASYNCH, CANCEL

RELATED

key-list: List of keys or key ranges where a key is a number 0 -
15.

arr: A-type address, or alphanumeric character string
enclosed by single quotation marks.

Default: ASYNCH=YES
Valid only when ARR is also coded.

Default: CANCEL =YES
Valid only when ARR is also coded.

Default: ASCMODE = PRIMARY

eax-value: Half-word decimal digit.

entry-key: Decimal digit 0 - 15.

key-list: List of keys or key ranges where a key is a number 0 -
15.

Note: EKM is required with PKM = REPLACE.

user-parm1: A-type address or string of up to 4 characters
enclosed by single quotation marks.

user-parm2: A-type address or string of up to 4 characters
enclosed by single quotation marks.

Default: PC=STACKING

pgm name: String of up to 8 alphanumeric characters,
optionally enclosed by single quotation marks.
rtn addr: A-type address.

Default: PKM=0R

Default: RAMODE = 31

value: Any valid macro parameter specification.

Default: SASN=0LD

Default: SSWITCH=NO

,STATE =PROBLEM Default: STATE =PROBLEM
,STATE =SUPERVISOR

TYPE =INITIAL
generates the header for the ETD.

TYPE=ENTRY
generates an ETD entry. The system uses the defaults for any parameters you do not
specify on the ETDEF TYPE=ENTRY macro. When you later specify ETDEF
TYPE = SET, that macro initializes the entire ETD entry.

TYPE =FINAL
specifies that the ETD is complete.

,AKM = key-list
specifies a list of keys (0 through 15) or key ranges, optionally enclosed in parentheses,
that identifies the authorized keys in which a problem program can use the PC routine.
For example, AKM =(2,(3),5:8,(10:12),15) would authorize keys 2, 3, 5, 6, 7, 8, 10, 11, 12,
and 15.

s,ARR=arr
specifies the associated recovery routine (ARR) that receives control if the stacking-PC
routine abends. You can use the A-type address of the routine, or the name of the
routine (an alphanumeric character string) enclosed in single quotation marks. If you
use the name of the program, the program must be on the active LPA queue (FLPA or
MLPA) or be in the PLPA or nucleus. The recovery routine will be entered in 31-bit
mode. ARR is not valid with PC=BASIC.

,ASYNCH = YES

,ASYNCH=NO
specifies whether or not the ARR can be interrupted by asynchronous exits.
ASYNCH = YES specifies that the ARR can be interrupted by asynchronous exits.
ASYNCH = NO specifies that the ARR cannot be interrupted by asynchronous exits.
ASYNCH = YES is the default. ASYNCH is valid only with ARR.

,CANCEL = YES

,CANCEL =NO
specifies whether or not the ARR can be interrupted by CANCEL/DETACH processing.
CANCEL = YES specifies that the ARR can be interrupted by CANCEL/DETACH
processing. CANCEL = NO specifies that the ARR cannot be interrupted by
CANCEL/DETACH processing. CANCEL=YES is the default. CANCEL is valid only with
ARR. To specify CANCEL =NO, one of the following conditions must be true for the
stacking PC routine protected by the ARR:

* The stacking PC routine runs in supervisor state.

* The entry key for the stacking PC routine is a system key

* The stacking PC routine runs with a system key valid for the entry key mask that
will either replace or be ORed with the PKM.

,ASCMODE = PRIMARY

,/ASCMODE = AR
specifies that the stacking PC routine will execute in primary ASC mode
(ASCMODE =PRIMARY) or in AR-ASC mode (ASCMODE = AR). ASCMODE=AR is not
valid with PC=BASIC. ASCMODE =PRIMARY is the default.

,EAX = eax-value
specifies the extended authorization index (EAX) that the stacking PC routine uses.
Specify an EAX that is owned by the home address space of the issuer of the ETCRE
macro. An EAX of X'0000' means the PC routine is not EAX-authorized. If EAX is not
specified, the PC routine has the same EAX as the issuer of the PC instruction. EAX is
not valid with PC=BASIC.

ETDEF — Create an Entry Table Descriptor (ETD) 221

,EK=entry-key
specifies the PSW key (0 through 15) that the PC routine will run in. EK is not valid with
PC=BASIC.

,EKM = key-list
specifies a list of keys (0 through 15) or key ranges, optionally enclosed in parentheses,
that identify the entry key mask (EKM). When the PC routine is invoked, the keys
specified identify either the additional keys that are to be ORed into the PKM (if
PKM = OR is also specified or taken as the default) or the keys that should replace the
PKM (if PKM=REPLACE is specified). EKM is required when you specify
PKM = REPLACE.

,PARM1 = user-parm1 .
specifies the address or character string to be placed in the first word of the latent
parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary address
space. The latent parameter address is set in general register 4 as a result of the PC
instruction, although AR4 is unchanged by the PC instruction. If the PC routine runs in
AR mode, set the access register corresponding to the latent parameter area to 0
before the PC routine attempts to use it.

,PARM2 = uyser-parm2
specifies the address or character string to be placed in the second word of the latent
parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary address
space. The latent parameter address is set in general register 4 as a result of the PC
instruction, although AR4 is unchanged by the PC instruction. If the PC routine runs in
AR mode, set the access register corresponding tc the latent parameter area to 0
before the PC routine attempts to use it.

,PROGRAM =pgm-name

,ROUTINE = rtn-address
specifies the PC routine. When you specify PROGRAM, the PC routine must be on the
active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The same restriction
applies also to ROUTINE, unless this is a space-switching PC or the PC is to be used
only in the address space that established it. In other words, the PC routine for a
space-switching PC can reside in the private area of the address space in which it will
run, but the ROUTINE parameter must be used to specify it.

On TYPE=ENTRY or TYPE=SET,ETEADR, either PROGRAM or ROUTINE is required.

,PC=STACKING

,PC=BASIC
indicates that this is a stacking PC (STACKING) or not a stacking PC (BASIC). Some
parameters apply only to a stacking PC. STACKING is the default.

,PKM=OR

,PKM = REPLACE
indicates either that the entry key mask (EKM) is ORed with the PSW key mask (PKM)
or replaces the current PKM. PKM = REPLACE is not valid with PC=BASIC. PKM=O0R
is the default.

,RAMODE = 31

,RAMODE =24
specifies the AMODE of the routine specified on the ROUTINE parameter. RAMODE is
valid only with ROUTINE. RAMODE =31 is the default.

,SASN=OLD

,SASN = NEW
specifies whether the stacking PC routine will execute with SASN equal to the caller’s
PASN (SASN=OLD), or with SASN equal to the PASN of the stacking PC routine
(SASN=NEW). SASN=NEW is not valid with PC=BASIC. SASN=O0LD is the default.

222 sPL: Application Development Macro Reference

TYPE = SET Parameter

,SSWITCH=NO

,SSWITCH = YES
specifies whether or not the PC routine switches address spaces. If SSWITCH=NO is
specified, the PC does not switch address spaces. If SSWITCH=YES is specified, the
PC routine will execute in the address space of the creator of the entry table with the
authority of that address space. SSWITCH=NO is the default.

,STATE = PROBLEM

,STATE = SUPERVISOR
specifies which state the PC routine will receive control in either problem state
(PROBLEM) or supervisor state (SUPERVISOR). The default is STATE =PROBLEM.

,RELATED = any-value :
specifies information used to self-document macros by “relating” functions or services
to corresponding functions or services. The format and contents of the information !
specified are at the discretion of the user, and may be any valid coding values.

An example of using the ETDEF macro follows the description of the TYPE =SET parameter.

The ETDEF macro with the SET parameter works similar to the execute form of a macro with
this important distinction: the TYPE = SET form totally replaces an ETD entry and takes
default values for ALL parameters you omit. The normal execute form of a macro changes
only the values you specify. SET is described as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDEF.
ETDEF
b One or more blanks must follow ETDEF.

Valid parameters (Required parameters are underlined)
TYPE = SET,ETEADR = entry-addr PROGRAM or ROUTINE, AKM, EKM, ARR, ASCMODE, EAX,
EK, PARM1, PARM2, PC, PKM, RAMODE, SASN, SSWITCH,
STATE, RELATED, ASYNCH, CANCEL
entry-addr: RX-type address or register (1) - (15).
TYPE = SET,HEADER = header-addr NUMETE, RELATED
header-addr: RX-type address or register (1) - (15).

,LAKM = key-list key-list: List of keys or key ranges where a key is a decimal
digit 0 - 15.
,ARR=arr arr: A-type address, register (2)-(12), or alphanumeric

character string, enclosed by single quotation marks.

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO Valid only when ARR is also coded.

,CANCEL =YES Default: CANCEL =YES

L,CANCEL=NO Valid only when ARR is also coded.

,ASCMODE =PRIMARY Default: ASCMODE = PRIMARY

,ASCMODE=AR

,EAX =eax-value eax-value: Half-word decimal digit or register (2)-(12)

LEK=entry-key entry-key: Decimal digit 0 - 15.

,EKM = key-list key-list: List of keys or key ranges where a key is a decimal
digit 0 -15.

Note: EKM is required with PKM=REPLACE.

ETDEF — Create an Entry Table Descriptor (ETD) 223

,NUMETE = nbr-of-entries nbr-of-entries: Symbol, decimal number, or register (2)-(12).
Note: NUMETE is required with HEADER.

,PARM1=user-parm1 user-parm1: A-type address, register (2)-(12), or string of up to
4 characters enclosed by single quotation marks.

,PARM2=user-parm2 user-parm2: A-type address, register (2)-(12), or string of up to
4 characters enclosed by single quotation marks.

,PC=STACKING Defauit: PC=STACKING

,PC=BASIC

,PROGRAM =pgm-name pgm name: String of up to 8 alphanumeric characters,
optionally enclosed by single quotation marks.

,ROUTINE = rtn-addr rtn addr: A-type address or registers (2)-(12)

,PKM=OR Default: PKM=0R

,PKM=REPLACE

,RAMODE =31 Default: RAMODE =31

,RAMODE =24

,RELATED =value value: Any valid macro parameter specification.

,SASN=0LD Default: SASN=0LD

,SASN = NEW

,SSWITCH=NO Default: SSWITCH=NO

,SSWITCH=YES

,STATE =PROBLEM Default: STATE = PROBLEM

,STATE = SUPERVISOR

TYPE = SET,ETEADR = entry-addr
specifies the address of the ETD entry. ETDEF TYPE = SET,ETEADR sets the entire ETD
entry that you generated through ETDEF TYPE =ENTRY macro. ETDEF
TYPE=SET,ETEADR will set the ETD entry to the parameters you specify and to the
defaults on all parameters you omit. That is, the system uses the default value, not the
existing value, for any parameter that you omit.

TYPE = SET,HEADER = header-addr
changes the size of the ETD. Use TYPE=SET,HEADER to decrease the size of the ETD
from the size you originally established on ETDEF TYPE = INITIAL.

,NUMETE = nbr-of-entries
specifies the number of contiguous entries in the ETD. nbr-of-entries is a decimal value
from 1 to 128. NUMETE Is required with the HEADER parameter. Use it to specify the
number of entries you will use. It does not change the physical size of the table.

224 sPL: Application Development Macro Reference

Example: Define an entry table that has three entries. The PC routine called PCPGM
receives control from a program with PSW key authorization of 8, the PC routine named
OTHERTN receives control from a program with PSW authorization keys of 0 through 15,
and the third PC routine called PCRTN receives control in PSW authorization key 0. The
fourth ETDEF is there to show that the number of entries can be changed with ETDEF SET.
(Perhaps, due to some input parameter, only a subset of all possible PC routines are set up.
On another invocation of the program, perhaps all entries would be used.) The entries use
all defaults other than those on the AKM parameter.

MYPGM CSECT
LOAD EP='PCPGM'
LR 2,0
ETDEF TYPE=SET,HEADER=MYETDS,NUMETE=3
ETDEF TYPE=SET,ETEADR=FIRST,ROUTINE=(2),AKM=8
ETCRE ENTRIES=MYETDS
RETURN

* DATA DEFINITIONS FOR PROGRAM

MYETDS ETDEF TYPE=INITIAL
FIRST ETDEF TYPE=ENTRY,ROUTINE=0,AKM=8
SECOND ETDEF TYPE=ENTRY,PROGRAM=0THERTN,AKM=0:15
THIRD ETDEF TYPE=ENTRY,ROUTINE=PCRTN,AKM=0
FOURTH ETDEF TYPE=ENTRY,ROUTINE=0,AKM=0

ETDEF TYPE=FINAL

*
*

PCRTN DS OH
* PC ROUTINE CODE
END MYPGM

Note that the combination of TYPE =INITIAL, ENTRY, and FINAL is essentially the list form
of the macro and TYPE = SET is the execute form.

ETDEF — Create an Entry Table Descriptor (ETD) 225

226 sPL: Application Development Macro Reference

ETDES — Destroy Entry Table

© Copyright IBM Corp. 1988, 1991

The ETDES macro destroys a previously-created entry table. Only the address space that
owns the entry table can destroy it. At the time ETDES is issued, the entry table must not be
connected to any linkage tables unless PURGE = YES is coded. If any outstanding
connections still exist and PURGE = YES is not coded, the entry table is not destroyed and
the caller is abnormally terminated.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The parameter list passed to ETDES must also be addressable in primary
mode at the time ETDES is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

The ETDES macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

TOKEN = addr
specifies the address of the fullword token (returned by the ETCRE macro) associated
with the entry table to be destroyed.

,PURGE =NO

,PURGE = YES
specifies whether (YES) or not (NO) the entry table is to be disconnected from all
linkage tables and then destroyed.

,RELATED =value
specifies information used to self-document macros by “relating” functions or services
to corresponding services. The format and contents of the information specified can be
any valid coding values.

227

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code
0 The specified entry table was destroyed. There were no connections to linkage
indexes.
4 The specified entry table was destroyed. There were connections to linkage

indexes, PURGE = YES was specified, and the entry table was disconnected.

228 SPL: Application Development Macro Reference

ETDES (List Form)

The list form of the ETDES macro constructs a non-executable parameter list. The execute
form of the macro can refer to this parameter list, or a copy of it for reentrant programs.

The list form of the ETDES macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN=addr adar: A-type ac_tdress.
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED =value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ETDES macro with the
following exception:

sMF=L
specifies the list form of the ETDES macro.

ETDES — Destroy Entry Table 229

ETDES (Execute Form)

The execute form of the ETDES macro can refer to and modify a remote parameter list
created by the list form of the macro.

The execute form of the ETDES macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN=addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE =NO
,PURGE=YES
,RELATED = value value: any valid macro keyword specification.
,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETDES macro with the
following exception:

sMF=(E,cnt/ addr)
specifies the execute form of the ETDES macro. This form uses a remote parameter
list.

230 sPL: Application Development Macro Reference

ETDIS — Disconnect Entry Table

The ETDIS macro disconnects one or more entry tables from the home address space’s
linkage table.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The parameter list passed by the requestor must also be addressable in
primary mode at the time the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0-1 Used as work registers by the macro
2-13 Unchanged

14 Used as a work register by the macro
15 Return code

The ETDIS macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede FTDIS.
ETDIS
b One or more blanks must follow ETDIS.
TKLIST =addr addr: RX-type address or register (0) - (12).
L,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = addr
specifies the address of a list of 1 to 32 fullword tokens, returned by the ETCRE macro,
identifying the entry tables to be disconnected from the home address space’s linkage
table. The first entry of the list must be a fullword count of the number of tokens (1 to
32) in the list.

,RELATED = value
specifies information used to self-document macros by “relating” functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal Meaning
Code
] The entry table is successfully disconnected.

© Copyright IBM Corp. 1988, 1991 231

232 spL: Application Development Macro Reference

EVENTS — Wait for One or More Events to Complete

© Copyright IBM Corp. 1988, 1991

The EVENTS macro is a functional specialization of the WAIT ECBLIST = macro facility with
the advantages of notifying the program that events have completed and the order in which
they completed.

The macro performs the following functions:

¢ Creates and deletes EVENTS tables.
* Initializes and maintains a list of completed event control blocks.
* Provides for single or multiple ECB processing.

The description of the EVENTS macro follows. The EVENTS macro is also described in
Application Development Macro Reference with the exception of the BRANCH=YES
parameter. This parameter is restricted to programs that run in supervisor state, key 0, and
own the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space other than
the home address space. LOCAL lock means the local lock of the home address space.
When written in lower case, local lock means any local-level lock, either the LOCAL or a
CML lock.

For information about how to use this macro on an MVS/SP version other than the current
version, see “ Selecting the Macro Level” on page 1.

The EVENTS macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more bianks must precede EVENTS.
EVENTS
b One or more blanks must follow EVENTS.
ENTRIES=n n: decimal digits 1-32767
ENTRIES =addr addr: register (2) - (12).
ENTRIES =DEL,TABLE =tab addr tab addr: symbol, RX-type address, or register (2) - (12).
TABLE=tab addr Note: If the ENTRIES parameter is specified as indicated in the
first two formats, no other parameters may be specified.
,ECB=ecb addr ecb addr: symbol, RX-type address, or register (2) - (12).
,LAST =/ast addr last addr: symbol, RX-type address, or register (2) - (12).
Note: If LAST is specified, WAIT must also be specified.
JWAIT=YES
JWAIT=NO
,BRANCH=NO Default: BRANCH=NO
,BRANCH=YES

The parameters are explained below:

ENTRIES=n

ENTRIES = addr
specifies either a register or a decimal number from 1 to 32,767 which specifies the
maximum number of completed ECB addresses that can be processed in an EVENTS
table concurrently.

Note: When this parameter is specified, no other parameter should be specified.

233

ENTRIES = DEL,TABLE = tab addr
specifies that the EVENTS table whose address is specified by TABLE =tab addr is to
be deleted. The user is responsible for deleting all of the tables he creates; however,
all existing tables are automatically freed at task termination.

Notes:

1. When this parameter is specified, no other parameter should be specified.
2. TABLE resides in 24-bit addressable storage.
TABLE = tab addr
specifies either a register number or the address of a word containing the address of

the EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

;sWAIT=NO

,WAIT =YES
specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS TABLE (specified by the TABLE = parameter).

,ECB = ecb addr
specifies either a register number or the address of a word containing the address of
an event control block. The EVENTS macro should be used to initialize any event-type
ECB. To avoid the accidental destruction of bit settings by a system service such as an
access method, the ECB should be initialized after the system service that will post the
ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.

Notes:

1. Register 1 should not be specified for the ECB address.
2. This parameter may not be specified with the LAST= parameter.
3. The ECB can reside above or below 16 megabytes.

4. If only ECB initialization is being requested, neither WAIT =NO nor WAIT=YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST = |ast addr
specifies either a register number or the address of a word containing the address of
the last EVENT parameter list entry processed.

Notes:

1. Register 1 should not be specified for the LAST address.
2. This parameter should not be specified with the ECB= parameter.
3. The WAIT macro must also be specified.

4. LAST resides in 24-bit addressable storage.
,BRANCH =NO

,BRANCH =YES

specifies that an SVC entry (BRANCH =NO) or a branch entry (BRANCH=YES) is to be
performed.

234 sPL: Application Development Macro Reference

Example 1
The following shows total processing via EVENTS

EVENTS and ECB Initialization
EVENTS ENTRIES=1000

ST R1,TABADD
WRITE ECBA
LA R2,ECBA...

EVENTS TABLE=TABADD, ECB=(R2)

Parameter List Processing
EVENTS TABLE=TABADD,WAIT=YES

LR R3,R1 PARMLIST ADDR
B Loor2 GO TO PROCESS ECB
LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
LR R3,R1 SAVE POINTER
LOOP2 EQU * PROCESS COMPLETED EVENTS
™ 0(R3),X'80' TEST FOR MORE EVENTS
BO LOOP1 IF NONE, GO WAIT
LA R3,4(,R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table
EVENTS TABLE=TABADD, ENTRIES=DEL

TABADD DS F
Example 2
Processing One ECB at a Time.
EVENTS ENTRIES=10
ST 1,TABLE
NEXTREC GET TPDATA,KEY
ENQ (RESOURCE ,ELEMENT,E, ,SYSTEM)
READ DECBRW,KU, ,'S' ,MF=E
LA 3,DECBRW
EVENTS TABLE=TABLE,ECB=(3) ,WAIT=YES
WRITE DECBRW,K,MF=E
LA 3,DECBRW
RETEST EVENTS TABLE=TABLE,ECB=(3),WAIT=NO
LTR 1,1
BNZ NEXTREC
B RETEST
TABLE DS F

EVENTS — Wait for One or More Events to Complete

235

236 sPL: Application Development Macro Reference

EXTRACT — Extract TCB Information

The EXTRACT macro causes the control program to provide information from specified
fields of the task control block or a subsidiary control block for either the active task or one
of its subtasks. The control program places the information in an area that the problem
program provides. For a description of this area see “Providing an EXTRACT Answer
Area” in SPL: Application Development Guide. When EXTRACT is issued, its parameter list
can reside in 24- or 31-bit addressable storage.

Notes:

| Product-Sensitive Programming Interface

1. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it is the user’s
responsibility to ensure that the TIOT contains the UCB address. To find the UCB
address, see the topic “Finding the UCB Address” in SPL: Application Development
Guide.

| End of Product-Sensitive Programming Interface j

2. Programs that reside in 24- and 31-bit addressable storage can issue the standard form
of the macro.

The standard form of the EXTRACT macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: A-type address, or register (2) - (12).
'S’ tcb addr: A-type address, or register (2) - (12).
,tcb addr Default: ‘S’.
,FIELDS = (tcb info) tcb info: any combination of the following, separated by
commas:
ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

The parameters are explained as follows:

answer addr
specifies the address of the answer area to contain the requested information. The
area is one or more fullwords, starting on a fullword boundary. The number of
fullwords must be the same as the number of fields specified in the FIELDS parameter,
unless ALL is coded. If ALL is coded, seven fullwords are required.

,'S.
,tcb addr
specifies the address of a fullword on a fullword boundary containing the address of a

task control block for a subtask of the active task. If ‘S’. is coded or is the default, no
address is specified and the active task is assumed.

© Copyright IBM Corp. 1988, 1991 237

,FIELDS = (tcb info)
specifies the task control block information requested:

ALL requests information from the GRS, FRS, reserved, AETX, PRI, CMC, and
TIOT fields. (If ALL is specified, 7 words are required just for ALL.)

GRS is the address of the save area used by the control program to save the
general registers 0-15 when the task is not active.

FRS is the address of the save area used by the control program to save the
floating point registers 0, 2, 4, and 6 when the task is not active.

AETX is the address of the end of task exit routine specified in the ETXR parameter
of the ATTACH macro used to create the task.

PRI is the current limit (third byte) and dispatching (fourth byte) priorities of the
task. The two high-order bytes are set to zero.

CMC is the task completion code. If the task is not complete, the field is set to
zero.

TIOT is the address of the task input/output table.

COMM is the address of the command scheduler communications list. The list
consists of a pointer to the communications event control block and a pointer
to the command input buffer, and a token. (if a token exists, the high order
bit of the token field is set to one). The token is used only with internal
START commands. See “Issuing an Internal START or REPLY Command” in
SPL: Application Development Guide.

TSO is the address of a byte in which a high bit of 1 indicates a TSO address
space, and a high bit of 0 indicates a non-TSO address space.
PSB is the address of the TSO protected step block.
TJID is the address space identifier (ASID) for a TSO address space, and zero for
a non-TSO address space.
ASID is the address space identifier.
Example 1

Operation: Provide information from all the fields of the indicated TCB except ASID.
WHERE is the label of the answer area, ADDRESS is the label of a fullword that contains the
address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)
Example 2

Operation: Provide information from the current TCB, as above.
EXTRACT WHERE,'S',FIELDS=(ALL,TSO,COMM,PSB,TJID)
Example 3
Operation: Provide information from the command scheduler communications list.

ANSWER is the label of the answer area and TCBADDR is the label of a fullword that
contains the address of the subtask TCB from which information is to be extracted.

EXTRACT ANSWER,TCBADDR,FIELDS=(COMM)

238 spL: Application Development Macro Reference

EXTRACT (List Form)

The list form of the EXTRACT macro is used to construct a remote control program

parameter list.

The list form of the EXTRACT macro is written as follows:

name

b

EXTRACT

b

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr

,‘S".
,tcb addr

,FIELDS =(tcb info)

JMF=L

answer addr: A-type address.

tcb addr: A-type address.
Default: ‘S’.

tcb info: any combination of the following, separated by
commas:

ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

The parameters are explained under the standard form of the EXTRACT macro, with the

following exception:

MF=L

specifies the list form of the EXTRACT macro.

EXTRACT — Extract TCB Information

239

EXTRACT (Execute Form)

The execute form of the EXTRACT macro uses, and can modify, a remote control program
parameter list. If the FIELDS parameter, restricted in use, is coded in the execute form, any
TCB information specified in a previous FIELDS parameter is canceled and must be
respecified if required for this execution of the macro.

The execute form of the EXTRACT macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: RX-type address, or register (2) - (12).
,'S%. tcb addr: RX-type address, or register (2) - (12).
,fcb addr
,FIELDS = (tcb info) tcb info: any combination of the following, separated by
commas:
ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID
,MF=(E,ctr/ addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EXTRACT macro, with the
following exception:

,MF = (E,ctr] addr)
specifies the execute form of the EXTRACT macro using a remote control program
parameter list.

240 sPL: Application Development Macro Reference

FESTAE — Fast Extended STAE

The FESTAE macro allows an SVC to establish an ESTAE recovery routine with minimal
overhead and no locking requirements. The ESTAE routine activated by FESTAE receives
control in the same sequence and under the same conditions as though created by the
ESTAE macro. The FESTAE macro can be issued in cross memory mode as long as the
currently addressable address space is the home address space. For more information,
see SPL: Application Development Guide.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode. FESTAE users executing in
31-bit addressing mode must recompile using the MVS/XA FESTAE macro expansion so that
the exit routine gets control in 31-bit addressing mode.

For information about how to use this macro on an MVS/SP version other than the current
version, see “ Selecting the Macro Level” on page 1.

The FESTAE macro expansion has no external linkage. The macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede FESTAE.
FESTAE
b One or more blanks must follow FESTAE.
0,WRKREG = work reg addr work reg addr: Register (1) - (14).
EXITADR =exit addr exit addr: Register (1) - (14).

,RBADDR = svrb addr svrb addr: Register (1) - (14).

,TCBADDR = fcb addr tcb addr: Register (1) - (14).

,PARAM = list addr list addr: Register (1) - (14).

XCTL=NO Default: XCTL=NO

XCTL=YES

,PURGE =NONE Default: PURGE = NONE

,PURGE=HALT

,PURGE = QUIESCE

,ASYNCH=YES Default: ASYNCH=YES

,LASYNCH=NO

,TJERM=NO Default: TERM=NO

,TERM=YES

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,ERRET = label label: any valid assembler name.

The parameters are explained as follows:

0,WRKREG = work reg addr
specifies that the current ESTAE routine be canceled if it was created by FESTAE. An
error occurs if the current ESTAE routine was not created by FESTAE. A work register
must be specified for use by the FESTAE macro expansion.

© Copyright IBM Corp. 1988, 1991 241

LEXITADR = exit addr
specifies a register that contains the address of an ESTAE routine to be entered if the
task terminates abnormally. This register is used subsequently as a work register.

,RBADDR = svrb addr
specifies a register that contains the address of the current SVRB prefix. RBADDR
must be specified if EXITADR has also been specified. The specified register is not
altered.

,TCBADDR = tcb addr
specifies the register containing the current TCB address. This register is not altered,
and its specification results in the generation of more efficient code.

Note: The TCB resides in storage below 16 megabytes.

,PARAM = Jist addr
specifies the register containing the address of a user-defined parameter list that
c