
--------- - ---- - -
-=-~-=~=---- -- MVS/ESA

System Programming Library:
Application Development Macro Reference

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1857-5

-------------- - -- - ---- -------------·-
MVS/ESA
System Programming Library:
Application Development Macro Reference

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1857-5

Sixth Edition (June 1991)

This is a major revision of, and obsoletes, GC28-1857-4. See the Summary of Changes following About this Book for a
summary of the changes made to this manual. Technical changes or additions to the text are indicated by a vertical bar to the
left of the change.

This edition applies to Version 3 of MVS/System Product 5685-001 or 5685-002 and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically to the information herein; before using
this publication in connection with the operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001,
for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these available in all
countries in which IBM operates. References to IBM products in this document do not imply that functionally equivalent
products may be used. The security certification of the trusted computing base that includes the products discussed herein
covers certain IBM products. Please contact the manufacturer of any product you may consider to be functionally equivalent
for information on that product's security classification. This statement does not expressly or implicitly waive any intellectual
property right IBM may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development, Department D58, Building 921-2, PO Box 950, Poughkeepsie, NY
12602. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

©Copyright International Business Machines Corporation 1988, 1991. All rights reserved.
All Rights Reserved
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Special Notices x
Programming Interfaces x
Trademarks xi

About This Book xiii
Who Should Use this Book xiii
How This Book Is Organized xiii
How To Use This Book xiv
Related Information xiv

Summary of Changes xvii

Using the Macros

ALESERV - Control Entries In the Access List 15

ASCRE - Create Address Spaces 23

ASDES - Terminate an Address Space 33

ASEXT - Extract Address Space Parameters 35

ATSET- Set Authorization Table 37

ATIACH and ATIACHX-Create a New Task 39

AXEXT - Extract Authorization Index 55

AXFRE - Free Authorization Index 57

AXRES - Reserve Authorization Index 59

AXSET - Set Authorization Index 61

CALLDISP - Pass Control to Another Ready Task 63

CALLRTM - Call Recovery Termination Manager 65

CHANGKEY - Change Virtual Storage Protection Key 69

CIRB - Create Interruption Request Block 71

CMDAUTH - Command Authorization Service "15

COFCREAT-Create a VLF Object 81

COFDEFIN - Define a VLF Class 87

COFIDENT - Identify a VLF User 93

COFNOTIF - Notify VLF 99

COFPURGE-Purge a VLF Class 105

COFREMOV - Remove a VLF User 109

COFRETRI - Retrieve a VLF Ob)ect 113

© Copyright IBM Corp. 1988, 1991 Ill

COFSDONO - Delete DLF (Data Lookaside Facility) Object 119

CPOOL - Perform Cell Pool Services 123

CTRACE - Connect a User Application to Component Trace 133

DATOFF- DAT-OFF Linkage 139

DEQ- Release a Serially Reusable Resource 141

DOM - Delete Operator Message 149

DSGNL - Issue Direct Signal 153

DSPSERV - Create, Delete, and Control Data Spaces 155

DSPSERV - Create, Delete, and Control Hiperspaces 167

DYNALLOC- Dynamic Allocation 179

ENQ - Request Control of a Serially Reusable Resource 181

ESPIE - Extended SPIE 193

ESTAE and ESTAEX- Specify Task Abnormal Exit Extended 201

ETCON - Connect Entry Table 213

ETCRE- Create Entry Table 217

ETDEF - Create an Entry Table Descriptor (ETD) 219

ETDES - Destroy Entry Table 227

ETDIS - Disconnect Entry Table 231

EVENTS - Wait for One or More Events to Complete 233

EXTRACT - Extract TCB Information 237

FESTAE - Fast Extended STAE 241

FRACHECK ·Check User's Authorization (for RACF Release 1.8.1 or earlier) 243

FREEMAIN - Free Virtual Storage 249

GETMAIN - Allocate Virtual Storage 255

GQSCAN - Extract Information From Global Resource Serialization Queue 263

GTRACE- GTF Trace Recording 269

HSPSERV - Read from and Write to a Hiperspace

IEFQMREQ- Invoke SWA Manager In Move Mode

IOSINFO - Obtain the Subchannel Number for a UCB

IOSLOOK - Locate Unit Control Block 295

277

291

293

ITTFMTB - Generate Component Trace Format Table 297

Iv SPL: Application Development Macro Reference

LLACOPY - Library Lookaslde Refresh 301

LOAD - Bring a Load Module into Virtual Storage 305

LOCASCB- Locale ASCB 311

LXFRE- Free a Linkage Index 313

LXRES- Reserve a Linkage Index 317

MGCR- Internal START or REPLY Command 321

MODESET - Change System Status 323

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 329

NUCLKUP - Nucleus Map Lookup Service 331

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction 333

OUTADD- Create Output Descriptor 335

OUTDEL - Delete Output Descriptor 337

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 339

PGANY - Page Anywhere 347

PGFIX - Fix Virtual Storage Contents 349

PGFIXA - Fix Virtual Storage Contents 353

PGFREE - Free Virtual Storage Contents 355

PGFREEA - Free Virtual Storage Contents 357

PGSER - Page Services 359

PGSER - Fast Path Page Services 365

POST - Signal Event Completion 369

PTRACE - Processor Trace 375

PURGEDQ - Purge SRB Activity 377

QEDIT - Command Input Buffer Manipulation 381

RACDEF- Define a Resource to RACF (for RACF Release 1.8.1 or earlier) 383

RACHECK - Check RACF Authorization (for RACF Release 1.8.1 or earlier) 403

RACINIT- Identify a RACF-Defined User (for RACF Release 1.8.1 or earlier) 417

RACLIST- Build In-Storage Profiles (for RACF Release 1.8.1 or earlier) 429

RACROUTE - MVS Router Interface (for RACF Release 1.8.1 or earlier) 435

RACROUTE - Router Interface (for RACF Release 1.9) 445

RACROUTE REQUEST= AUDIT - General Purpose Security Audit Request 455

Contents V

RACROUTE REQUEST-AUTH-Check RACFAuthorlzatlon (for RACF Release 1.9) 463

RACROUTE REQUEST• DEFINE - Define a Resource to RACF (for RACF Release
1.9) 481

RACROUTE REQUEST- DIRAUTH - Checks Messages (for RACF Release 1.9) 505

RACROUTE REQUEST• EXTRACT - Replace or Retrieve Fields (for RACF Release
1.9) 511

RACROUTE REQUEST= FASTAUTH - VerHles Access to Resources (for RACF Release
1.9) 531

RACROUTE REQUEST• LIST- Build In-Storage Profiles (for RACF Release 1.9) 537

RACROUTE REQUEST•STAT ·Determine RACF Status (for RACF Release 1.9) 547

RACROUTE REQUEST=TOKENBLD ·Modify a UTOKEN (for RACF Release 1.9) 553

RACROUTE REQUEST= TOKENMAP • Access Token Fields (for RACF Release 1.9) 563

RACROUTE REQUEST .. TOKENXTR • Extract UTOKENS (for RACF Release 1.9) 569

RACROUTE REQUEST- VERIFY ..;.. Identify a RACF·Deflned User (for RACF Release
1.9) 575

RACROUTE REQUEST=VERIFYX. Bulld a UTOKEN (for RACF Release 1.9) 593

RACSTAT ·Determines the Status of RACF (for RACF Release 1.8.1 or ear.lier) 607

RACXTRT - Retrieve Fields from RACF User Prollle (for RACF Release 1.8.1 or
earlier) 611

RESERVE - Reserve a Device (Shared DASD) 627

RESMGR • Add or Delete Resource Manager 635

RESUME- Resume Execution ol a Suspended Request Block 641

RISGNL - Issue Remote Immediate Signal 643

SCHEDULE - Schedule System Services for Asynchronous Execution 645

SCHEDXIT - Schedule an Exit Routine for Execution 647

SDUMP and SDUMPX - Dump Virtual Storage 649

SETFRR - Set Up Functional Recovery Routines 673

SETLOCK - Control Access to Serially Reusable Resources 677

SETRP - Set Return Parameters 685

SPIE - Specify Program Interruption Exit 693

SPLEVEL - SET and TEST Macro Level 697

SPOST - Synchronize POST 699

SRBSTAT- Save, Restore, or Modify SRB Status 701

SRBTIMER- Establish Time Limit for System.Service 703

VI SPL: Application Development Macro Reference

STAE- Specify Task Abnormal Exit 705

STATUS- Change Subtask Status 711

STORAGE- Obtain and Release Storage 715

SUSPEND - Suspend Execution of a Request Block 723

SVCUPDTE - SVC Update 725

SWAREQ- Invoke SWA Manager In Locate Mode 733

SYMREC - Process Symptom Record 737

SYNCH and SYNCHX-Take a Synchronous Exit to a Processing Program 741

SYSEVENT- System Event 747

SYSSTATE- Set and Test Address Space Control (ASC) Mode 755

TCBTOKEN - Request or Translate the TTOKEN 757

TCTL - Transfer Control from an SRB Process 763

TESTAUTH -Test Authorization of Caller 765

TIMEUSED - Obtain Accumulated CPU or Vector Time 767

T6EXIT - Type 6 Exit 769

VSMLIST - List Virtual Storage Map 771

VSMLOC - Verify Virtual Storage Allocation 777

VSMREGN- Obtain Private Area Region Size 781

WAIT-Walt for One or More Events 783

WTL - Write To Log 787

WTO - Write to Operator 793

WTOR - Write to Operator with Reply 803

Appendix A. List of the Names of Macros Intended for Customers Use 811

Index X-1

Contents Vil

Viii SPL: Application Development Macro Reference

Figures

1. Testing the Macro Level at Execution Time 2
2. Passing User Parameters in AR Mode 5
3. User Parameter List for Callers in AR Mode 5
4. Macro Summary 6
5. Sample Macro 12
6. Continuation Coding 14
7. Rules for Adding Entries for Hiperspaces to Access Lists 17
8. Return Code Area Used by DEQ 144
9. Return Code Area Used by ENQ 185

10. FRACHECK Parameters for RELEASE= 1.6 and Later 246
11. Characteristics and Restrictions for Standard Hiperspaces 279
12. Characteristics and Restrictions for ESO Hiperspaces 283
13. RAC DEF Parameters for RELEASE= 1.6 and Later 394
14. Types of Profile Checking Performed by RACHECK 408
15. RACHECK Parameters for RELEASE= 1.6 and Later 410
16. RACINIT Parameters for RELEASE= 1.6 and Later 422
17. RACLIST Parameters for RELEASE= 1.6 and Later 431
18. Types of Profile Checking Performed by RAC ROUTE REQUEST= AUTH 469
19. RACSTAT Parameters for RELEASE= 1.6 and Later 608
20. RACXTRT Parameters for RELEASE= 1.6 and Later 620
21. Return Code Area Used by RESERVE 630
22. Return codes from ADD 637
23. Return codes from DELETE 638
24. PSWREGS Parameter List 654
25. SDUMP Reason Codes 662
26. Calculations for SYSEVENT STGTEST with No Storage Isolation 753
27. Characters Printed or Displayed on an MCS Console 788
28. MCSFLAG Flag Names 797
29. MCSFLAG Flag Names 805
30. General-Use Executable Macros 811
31. General-Use Mapping Macros 814
32. Product-Sensitive Executable Macros 816
33. Product-Sensitive Mapping Macros 816

© Copyright IBM Corp. 1988, 1991 Ix

Special Notices

Special Notices

Programming Interfaces

References In this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not
Intended to state or imply that only IBM's program or other product may be used. Any
functionally equivalent program which does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY 10577.

This book is intended to help customers to do coding of macros that are available to
authorized assembler language programs. It contains detailed information, such as the
function, syntax, and parameters, needed to code the macros. This book primarily
documents general-use programming interfaces and associated guidance information
provided by MVS System Product Version 3.

General-use programming interfaces allow the customer to write programs that request
or receive the services of MVS System Product Version 3.

However, this book also documents product-sensitive programming interface
Information.

Product-sensitive programming Interfaces are provided to allow the customer
installation to perform tasks such as tailoring, monitoring, modification, or diagnosis of
this IBM product. Use of such, interfaces creates dependencies on the detailed design
or implementation of the IBM product. Product-sensitiv~ interfaces should be used only
for these specialized purposes. Because of their dependencies on detailed design and
implantation, it is to be expected that programs written to such interfaces may need to
be changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive programming interface information is explicitly Identified where it
occurs, either as an introductory statement to a chapter or section that is entirely
product-sensitive programming interface information, or is marked as follows:

I PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Description of the interface.

I

l..__ ___ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ----~J

X SPL: Application Development Macro Reference

Special Notices

Trademarks
The following are trademarks of International Business Machines Corporation.

• BookMaster™
• ESA/370™
• Hiperbatch™
• Hiperspace™
• IBM™
• MVS/ESA™
• MVS/SP™
• MVS/XA™

Figures XI

Xii SPL: Application Development Macro Reference

About This Book

This book describes some of the authorized macros that the system provides. Authorized
macros are available only to authorized programs - programs that reside in an
APF-authorized library or that run in supervisor state with system key 0-7.

Some of the macros included in this book are not authorized, but are included because they
are of greater interest to the system programmer than the general applications
programmer. Macros are also included in this book if they have one or more authorized
parameters - parameters that are available only to authorized programs.

Programmers using assembler language can use these macros to invoke the system
services that they need. This book includes the detailed information - such as the function,
syntax, and parameters - needed to code the macros.

Who Should Use this Book
This book is for the programmer who is using assembler language to code a system
program. A system program is usually one that runs in supervisor state with system key
0-7 or resides on an APF-authorized library.

The book assumes a knowledge of the computer, as described in IBM ESA/370 Principles of
Operation, as well as an in-depth knowledge of assembler language programming.
Assembler language programming is described in the following books:

• Assembler H Version 2 Application Programming Guide, SC26-4036
• Assembler H Version 2 Application Programming: Language Reference, GC26-4037

Using this book also requires you to be familiar with the operating system and the services
that programs running under it can invoke.

How This Book Is Organized

© Copyright IBM Corp. 1988, 1991

This book includes an introduction that describes information related to all macros. Most of
the book, however, consists of descriptions of individual macros. The macro descriptions
are presented in alphabetical order. Each description includes:

• A general description of the service that the macro performs.
• A table of syntax rules that you must follow when you code the macro.
• A list of the parameters you can specify and an explanation of each parameter.

xiii

How To Use This Book

Related Information

This book Is one of a set of books that describe developing applications in assembler
language. This book is the macro reference book for people writing programs that run in
supervisor state with system key 0-7 or reside on an APF-authorized library. Use this book
to code the macros you need.

The following table shows the books that describe developing applications in assembler
language and how this book fits with the others:

Book Use this book to:

Application Development Find out how to use system services provided by macros available
Guide, GC28-1821 to all assembler language programs. If you are relatively new to

assembler language programming, this book is a good place to
start.

Application Development Learn how to code macros that are available to all assembler
Macro Reference, language programs. This book is for all assembler language
GC28-1822 programmers.

SPL: Application Find out how to use system services provided by macros that are
Development Guide, available only to programs running in supe_rvisor state with key 0-7
GC28-1852 or that are APF-authorized programs. This book is for experienced

assembler language programmers; it assumes, for example, that
you are familiar with the information in Application Development
Gulde.

SPL: Application Learn how to code macros that are available only to programs
Development Macro running in supervisor state with key 0-7 or that are APF-authorized
Reference, GC28-1857 programs. This book is for experienced assembler language

programmers.

SPL: Application Find out how to use access registers, cross memory services, data
Development - Extended spaces, and hiperspaces™ to extend the storage available to
Addressability, GC28-1854 programs. This book is for experienced assembler language

programmers.

SPL: Application Find out how to code assembler language programs that run in
Development 31-Bit 31-bit addressing mode. This book is for all assembler language
Addressing, GC28-1820 programmers who need information about developing programs for

31-bit addressing mode.

Where necessary, this book references information in other books, using shortened
versions of the book title. The following table shows the complete titles and the order
numbers:

Title Order Number

A Structured Approach to Describing and Searching Problems SC34-2129

The Considerations of Physical Security In a Computer Environment G520-2700

Data Security Controls and Procedures - A Philosophy for DP G320-5649
Installations

ESA/370: Principles of Operation SA22-7200

MVSIDFP Version 3 Re/ease 2: General Information GC26-4552

Note: For the titles and order numbers of referenced DFP books, see
this GIM.

MVSIESA Diagnosis: Data Areas, Volumes 1 - 5 LY28-1043to LY28-1047

MVSIESA Diagnosis: System Reference LY28-1011

MVSIESA Diagnosis: Using Dumps and Traces LY28-1843

MVSIESA Interactive Problem Control System (/PCS) Command GC28-1834
Reference

XIV SPL: Application Development Macro Reference

Title Order Number

MVS/ESA Interactive Problem Control System (/PCS) Planning and GC28-1832
Customization

MVS/ESA Interactive Problem Control System (/PCS) User's Guide GC28-1833

MVS/ESA JCL Reference GC28-1829

MVS/ESA JCL User's Guide GC28-1830

MVS/ESA Message Library: System Messages Volume 1 and 2 GC28-1812, GC28-1813

MVSIESA Message Library: System Codes GC28-1815

MVS/ESA Operations: JES3 Commands SC23-0074

MVS/ESA Operations: System Commands GC28-1826

MVSIESA Planning: Dump and Trace Services GC28-1838

MVSIESA Planning: Global Resource Serialization GC28-1818

MVS!ESA Service Aids GC28-1844

MVS!ESA System Programming Library: Application Development GC28-1820
31-Bit Addressing

MVSIESA System Programming Library: Initialization and Tuning GC28-1828

MVS/ESA System Programming Library: System Modifications GC28-1831

MVS/ESA System Programming Library: Installation Exits GC28-1836

OS/VS Mass Storage System Extensions Messages SH35-0041

OS/VS2 MVS RACF Command Language Reference SC28-0733

Resource Access Control Facility (RACF) General Information Manual GC28-0722

Resource Access Control Facility (RACF) Macros and Interfaces SC28-1345

Security Assessment Questionnaire GX20-2381

System Programming Library: RACF SC28-1343

MVS System/370 ESA Vector Operations SA22-7125

Notes:

1. All references to RACF in this publication indicate the program product Resource
Access Control Facility.

2. All references to Assembler H in this publication indicate the program product
Assembler H Version 2.

3. All references to RMF in this publication indicate the program product Resources
Measurement Facility.

About This Book XV

XVI SPL: Application Development Macro Reference

Summary of Changes

© Copyright IBM Corp. 1988, 1991

Summary of Changes
for GC28-1857-5
MVS System Product Version 3 Release 1.3

Changed Information: This revision contains maintenance changes, technical corrections,
and services updates.

Summary of Changes
for GC28-1857-4
MYS/System Product Version 3 Release 1.3

New Information: Appendix A contains a list of the names of the macros intended for
customer use. The macros identified in this appendix are provided to allow a customer
installation to write programs that use the services of MVS. Only those macros identified in
this appendix should be used to request or receive the services of MVS.

Changed Information: Numerous services updates have been made throughout the book.

Moved Information: The descriptions for the following macros have been moved to
Application Development Macro Reference, GC28-1822:

• BLSABDPL
• BLSQMDEF
• BLSQMFLD
• BLSQSHDR
• BLSRDRPX
• BLSRESSY
• BLSRPRD

Summary of Changes
for GC28-1857-3
as updated September 18, 1990
by Technical Newsletter GN28-1437

Changed Information: This technical newsletter contains changes in support of APAR
OY27049 as well as maintenance revisions.

Summary of Changes
for GC28-1857-3
as updated February 8, 1990
by Technical Newsletter GN28-1392

Changed Information: This technical newsletter contains maintenance revisions.

Summary of Changes
for GC28-1857-3
MYS/System Product Version 3 Release 1.3

New Information: This revision documents the following new macros:

• CMDAUTH verifies RACF authorization of commands.
• LLACOPY refreshes LLA directories.
• RACROUTE for RACF 1.9.
• COFSDONO causes the data lookaside facility (DLF) to delete a DLF object that is no

longer needed.

Changed Information: This revision also documents changes in the following macros:

• TIMEUSED can now be used by unauthorized as well as authorized programs.
• MGCR now passes a user security token to the system.
• The HSPALET parameter on HSPSERV allows a program to take advantage of faster

transfer of data between expanded storage and central storage.

xvii

• The SHARE parameter on DSPSERV creates a new type of hlperspace named a shared
standard hiperspace.

• The DSPSERV LOAD and DSPSERV OUT services allow a program to load an area of a
data space into central storage or page an area out from central storage.

Storage ~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

This book uses the term central storage for the storage that has been called real
storage. In the 3090 processor, storage consists of:

Central storage + expanded storage = processor storage

Virtual storage consists of pages contained in processor storage and auxiliary storage.

This revision also includes maintenance throughout the book.

Summary of Changes
for GC28-1857-2
MYS/System Product Version 3 Release 1 ;Oe

New Information: This revision documents the following new macros:

• SCHEDXIT in support of APAR numbers OY19162, OY19163, OY19164, and OY19165.

Changed Information: This revision also documents changes in the following macros:

• DSPSERV and ALESERV support SCOPE= COMMON data spaces in response to APAR
OY20855.

• The EXTEND service of DSPSERV allows a variable request for extension of data space
or hiperspace storage. This supports APAA OY19885.

• A new service, STGTEST on the SYSEVENT macro, provides information about
processor storage.

• A new parameter on the LOAD macro, ADRNAPF, allows a program to load an
authorized module into an unauthorized library.

• New parameters on the SDUMP macro allow users to include specific data in a dump
and to suppress duplicate SVC dump data.

This revision also includes maintenance throughout the book.

Summary of Changes
for GC28-1857-1
MYS/System Product Version 3 Release 1.0e

New Information: This revision documents the following new macros:

• HSPSERV
• DSPSERV for hiperspaces

Changed Information: This revision also documents changes In the following macros:

• ALESERV
• ETDEF
• DSPSERV for data spaces

XViii SPL: Application Development Macro Reference

Summary of Changes
for GC28-1857-0
MYS/System Product Version 3 Release 1.0

This book contains information previously presented in MVS!Extended Architecture System
Programming Library: System Macros and Facilities, Volume 2 (GC28-1857-4). The
following summarizes the changes to that information.

New Information: For MYS/System Product Version 3, this revision describes the following
new macros:

ALES ERV
ASCRE
ASDES
AS EXT
ATTACHX
BLSRDRPX
BLSRPRD
CHANGE KEY
COFCREAT

COFDEFIN
COFIDENT
COFNOTIF
COFPURGE
COFREMOV
COFRETRI
CTRACE
DSPSERV
ESTAEX

ET DEF
ITTFMTB
RESMGR
SDUMPX
STORAGE
SYNCHX
SYSSTATE
TCBTOKEN
TIMEUSED

Changed Information: For MYS/System Product Version 3, this revision documents
changes in the following macros:

ATSET
ATTACH
AXFRE
AX RES
AX SET
BLSABDPL
BLSQMFLD
CALLRTM
CPOOL
ESTAE
ET CON
ETC RE
FREE MAIN
GETMAIN

LOCASCB
PCLINK
PGSER
POST
RAC DEF
RACHECK
RACINIT
RAC LIST
RAC ROUTE
RACXTRT
RESUME
RISGNL
SCHEDULE
SDUMP

SETFRR
SETLOCK
SETRP
SPLEVEL
SRBSTAT
SVCUPDTE
SYMREC
SYNCH
TCTL
VSMLIST
VSMLOC
WTO
WTOR

This revision also includes minor maintenance and editorial changes throughout.

Moved Information: The macros CBPZDIAG, CBPZLOG, CBPZPPDS, IOSDDT, and
IOSDML Tare now described only in System Modifications.

The macros FRACHECK, RACHECK, RACROUTE, and RACSTAT have moved from part II of
MVS!Extended Architecture Supervisor Services and Macro Instructions (GC28-1154) to this
book.

The VRADATA macro, previously described in MVS!Extended Architecture System
Programming Library: System Macros and Facilities, has moved to MVSIESA™ Application
Development Macro Reference.

Summary of Changes XIX

XX SPL: Application Development Macro Reference

Using the Macros

To request system services, programs use macros. The system restricts the use of most of
the macros in this book to programs that are in supervisor state with system key 0-7 or that
are from an APF-authorized library. A few of these macros are not restricted by the system
but are included in this book because your installation might want to restrict the functions
they perform. Some macros are totally restricted. Others are not totally restricted but
contain one or more parameters that are restricted.

The programs that use the macros in this book must be assembler language programs.
When you code a macro, the assembler processes it by using the macro definitions supplied
by IBM and placed in the macro library when the system is generated.

The assembler expands the macro into executable machine instructions and/or data fields
in the form of assembler language statements. The executable machine instructions
typically consist of a branch around the data fields, instructions that load registers, and an
instruction that gives control to the system. The instruction that gives control to the system
can be a branch, a supervisor call, or a PC instruction. The macro expansion appears as
part of the assembler output listing.

The data fields, which are derived from parameters of the macro, are used at execution
time by the control program routine that performs the MVS service associated with the
macro.

Selecting the Macro Level

© Copyright IBM Corp. 1988, 1991

MVS/System Product Version 3 {MVS/SP™ Version 3) supports all MVS/System Product
Version 2 macros. Therefore, programs that issue macros and that run on a version 2
system should also run on a version 3 system.

There are certain version 3 macros that cannot execute on MVS/System Product Version 1.
This means that programs that issue macros and that run on a version 3 system might not
run on a version 1 system. A version 1 system cannot process all the macro parameters
that work on a version 3 system. These macros are called downward incompatible. When
you try to run a version 3 program on a version 1 system, the program might not execute as
expected. The macros described in this book that are downward incompatible are:

• ATTACH
• ESTAE
• EVENTS
• FESTAE
• SCHEDULE SCOPE= GLOBAL
• SDUMP
• SETLOCK RELEASE TYPE= ALL
• CALLDISP
• WTOR

Callers executing in 31-bit addressing mode must use the version 2 expansion of the
downward incompatible macros.

The SPLEVEL macro solves the problem associated with downward incompatible macros.
The SPLEVEL macro allows you to use the version 3 macro library when you assemble
programs and to select either the version 1 or version 3 expansion of the macro.

Existing programs that issue version 2 macros will execute properly on a version 3 system.
If you change these programs to use new facilities of version 3, change the SPLEVEL macro
to specify SET= 3. Resetting the SPLEVEL to 3 ensures that your programs use the macro
expansion that supports the new facilities.

1

Before issuing a downward-incompatible macro, a program can specify the macro level by
invoking SPLEVEL and using the SET=n option.

If n = 1, the assembler generates the MVS/System Product Version 1 Release 3
expansion of the macro code.

If n = 2, the assembler generates the version 2 expansion of the macro code.

If n = 3, the assembler generates the version 3 expansion of the macro code.

A program can also select the level of the macro at execution time, based on the system
that is operating. The example in Figure 1 shows one method of selecting the macro level
at execution time. The example uses the WTOR macro but would work for any downward
incompatible macro. The example first tests the CVTOSEXT bit in CVTDCB and the CVTXAX
bit in CVTOSLVO. Both are 1 when MVS/SP Version 3 is operating. If either is 0, then the
example tests the CVTMVSE bit in byte CVTDCB of the communications vector table (CVT),
which is a 1 when MVS System Product Version 2 is operating.

* DETERMINE WHICH SYSTEM IS EXECUTING
*

TM CVTDCB,CVTOSEXT
BNO SP2CHK
TM CVTOSLV0,CVTXAX
BNO SP2CHK

*
* INVOKE THE SP3 version OF THE MACRO
*
SP3 SPLEVEL SET=3

WTOR
B CONTINUE

*
SP2CHK TM

BNO
*

CVTDCB,CVTMVSE
SPl

* INVOKE THE SP2 version OF THE MACRO
I *

SP2 SPLEVEL SET=2
WTOR
B CONTINUE

*
* INVOKE THE SPl version OF THE MACRO
*
SPl SPLEVEL SET=l

WTOR ...
*
CONTINUE SPLEVEL SET

Figure 1. Testing the Macro Level at Execution Time

Addressing Mode and the Macros
A program can execute in 24-bit addressing mode or 31-bit addressing mode. Regardless
of the addressing mode that a program executes in, it can invoke most of the macros
described in this book, including RACROUTE. However, the following macros require the
program to be executing in 24-bit addressing mode and the parameters to be passed in
24-bit addressable storage:

• RACDEF
• RACHECK
• RACINIT
• RACLIST
• SPIE
• STAE

2 SPL: Application Development Macro Reference

In general, a program executing in 24-bit addressing mode cannot pass parameter
addresses that are higher than 16 megabytes. However, there are exceptions: for example,
a program executing in 24-bit addressing mode can:

• Free storage above 16 megabytes using the FREEMAIN macro

• Allocate storage above 16 megabytes using the GETMAIN macro

• Perform cell pool services for cell pools located in storage above 16 megabytes using
the CPOOL macro

• Perform page services for storage locations above 16 megabytes using the PGSER
macro

If a program running in 31-bit addressing mode issues a macro, parameter addresses can
be above or below 16 megabytes unless otherwise stated in the individual macro
description. The macros that have restrictions on parameter addresses above 16
megabytes are:

ATTACH
CALLRTM
CPOOL
DEQ
DSG NL
ENQ
EXTRACT
GETMAIN
PGFIX
PGFIXA
PGFREE

PGFREEA
PGSER
PURGEDQ
RESERVE
RESUME
SDUMP
STATUS
TCTL
VSMLIST
VSMREGN

A program running in 31-bit addressing mode must use the MVS/SP Version 2 or later of the
following macros:

ATTACH
CALLO ISP
ESTAE
EVENTS
FESTAE

MODESET
SETRP
SYNCH
WTOR

Address Space Control (ASC) Mode
A program can execute in either primary ASC mode or AR (access register) ASC mode.
See SPL: Application Development- Extended Addressability for more detailed
information.

Some macros can generate code that is appropriate for programs in either primary ASC
mode or AR ASC mode. A global variable tells these macros which type of code to
generate. The SYSSTATE macro allows you to test or to set this variable.

When you assemble a program, the initial value of this variable indicates primary ASC
mode. If you do. not change the variable, macros that test it will generate code appropriate
for primary ASC mode. Thus, if your program receives control in primary ASC mode, you
do not need to change the variable. If, however, your program receives control in AR ASC
mode, you might have to issue SYSSTATE ASCENV =AR before issuing any macro that tests
the variable. To ensure that your programs always generate code appropriate for their ASC
mode, IBM recommends that:

• All programs that use macros issue SYSSTATE before issuing any other macros.
Programs in primary ASC mode must issue SYSSTATE ASCENV= P. Programs in AR
ASC mode must issue SYSSTATE ASCENV=AR.

• If your program switches from one ASC mode to another, issue SYSSTATE immediately
after the mode switch to indicate the new ASC mode.

Using the Macros 3

Using X-Macros

Once a program has issued SYSSTATE, there is no need to rnissue it unless the program
switches ASC mode. Figure 4 on page 6 lists the macros that check the SYSTATE global
variable.

Some MVS services support callers in both primary and AR ASC mode. When the caller is
in AR mode, the macro service must generate larger parameter lists; the increased size of
the list reflects the addition of ALETs to qualify addresses, as described under "ALET
Qualification" on page 5. Some services offer two macros, one for callers in primary mode
and one for callers in AR mode. The name of the macro for the AR mode caller is the same
as the name of the macro for primary mode callers, except the AR mode macro name ends
with an "X". This book refers to these macros as X-macros. The X-macros described in
this book are:

• ATTACHX
• ESTAEX
• SDUMPX
• SYNCHX

The only way these macros know that a caller is in AR mode is by checking the global
symbol that the SYSSTATE macro sets. Each of these macros (and corresponding
non-X-macro) checks the symbol. If SYSSTATE ASCENV= AR has been issued, the macro
issues code that is valid for callers in AR mode. If it has not been issued, the macro
generates code that is not valid for callers in AR mode. When your program returns to
primary mode, use the SYSSTATE ASCENV= P macro to reset the global symbol.

The rules for using all X-macros, except ESTAEX, are:

• Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode.
Some parameters on the non-X-macros are not valid for callers in AR mode. Check the
macro descriptions in this book for these exceptions.

• Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X-macro, the system substitutes the X-macro and
sends a message describing the substitution.

IBM recommends that you always use the ESTAEX macro. However, if your program is in
primary mode, where the primary, secondary, and home address spaces are the same, you
can use EST AE.

Passing Parameters in AR Mode
Some macros that you can issue in AR mode include control parameters, user parameters,
or both. Control parameters are parameters that control the operation of the macro service
(You may also see control parameters referred to as system parameters). User parameters
are parameters that the macro service passes to a routine that the macro service invokes
on behalf of the caller. For example, the PARAM keyword on the ATTACH macro defines
user parameters. The ATTACH macro service passes these parameters to the routine that
it attaches. All other parameters on the ATTACH macro are control parameters that control
the operation of the ATTACH macro service.

The address space where you can place parameters varies with the individual macros:

• All macros allow you to place parameters in the current primary address space.
• Some macros require you to place parameters into the current primary address space.
• Some macros allow you to place parameters in any address space.

Before issuing any macro described in this book, read the macro description to find out
where the macro allows parameters to be located.

4 SPL: Application Development Macro Reference

ALET Qualification

User Parameters

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, acce,§S register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address space
where the parameters reside. The general purpose register must identify where, within the
address space, the parameters reside.

The only ALETs that MVS macros accept are:

• Zero (0), which specifies that the parameters reside in the caller's primary address
space

• An ALET for a public entry on the caller's dispatchable unit access list (DU-AL).

MVS macros do not accept the following ALETs and you must not attempt to pass them to a
macro:

• One (1), which signifies that the parameters reside in the caller's secondary address
space

• An ALET that is on the caller's primary address space access list (PASN-AL)
• An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this book uses the term AR/GPR n to mean a general purpose register and its
corresponding access register. For example, to identify general purpose register 1 and
access register 1, this book uses AR/GPR 1.

The macro services shown in Figure 2 allow a caller in AR mode to pass information in the
form of a parameter list (or parameter lists) to another routine. Figure 2 identifies the
parameter that receives the ALET-qualified address(es) of the parameter list(s) and tells
you where the target routine finds the ALET-qualified address(es).

Figure 2. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH and PARAM,VL=1 AR/GPR 1 contains the address of a list of addresses and
ATTACHX ALETs. (See Figure 3 for the format of the list.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte area, which
contains the address and ALET of the parameter list.

When a caller in AR mode passes ALET-qualified addresses to the called program through
PARAM,VL= 1 on the ATTACH/ATTACHX macro, the system builds a list formatted as
shown in Figure 3. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list has the
high order bit on to indicate the size of the list. For example, Figure 3 shows the format of
a list where an AR mode issuer of ATTACHX codes the PARAM parameter as follows:

PARAM={A,B,C),VL=l

GPRI
ARI

0

0

1

Figure 3. User Parameter List for Callers in AR Mode

@A

@B

@C

ALETA

ALETB

ALETC

Using the Macros 5

Register Usage

Macro Summary

After the caller issues a macro, the macro might use some registers as work registers or
might change the contents of some registers. When control returns to the caller, each
register will contain one of the following values or have the following status:

• The register content is unchanged and is the same as it was before the macro was
issued.

• The register contains a value placed there by the macro for the caller's use. Examples
of such values are return codes and tokens.

• The macro used the register as a work register. The register content is not the same as
it was before the macro was issued and is not meaningful to the caller.

To retain the original contents of registers the macro uses or changes, the caller must save
and restore those registers.

Figure 4 on page 6 lists the macros described in this book. For each macro, the table
indicates:

• Whether a program in AR ASC mode can issue the macro
• Whether a program in cross memory mode can issue the macro
• Whether the macro tests the SYSSTATE global variable
• Whether the macro tests the SPLEVEL global variable

Notes:

1. Cross memory mode means that at least one of the following conditions is true:

PASN#:SASN - The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN#:HASN - The primary address space (PASN) and the home address space
(HASN) are different.

SASN#:HASN - The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see MVSIXA SPL: Application Development Guide.

2. A program running in primary ASC mode when PASN = SASN = HASN can issue any of
the macros listed in the table. If you intend to use ATTACH, SDUMP, or SYNCH, and are
in AR mode, IBM recommends that you use the corresponding X-macro (ATTACHX,
SDUMPX, and SYNCHX) instead.

Before using any of the macros listed in Figure 4, read the individual macro description to
see if any restrictions or limitations apply to your use of the macro.

Figure 4 (Page 1 of 5). Macro Summary

Macro Can be issued Can be Issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL

memory mode

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

AS DES Yes Yes Yes No

AS EXT Yes Yes No No

ATSET No Yes No No

ATTACH Yes No Yes Yes
(See note 1)

ATTACHX Yes No Yes Yes

AX EXT No Yes No No

6 SPL: Application Development Macro Reference

Figure 4 (Page 2 of 5). Macro Summary

Macro Can be Issued Can be Issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL

memory mode

AXFRE No Yes No No

AX RES No Yes No No

AX SET No Yes No No

CALLDISP No Yes No No
-

CALLRTM No Yes No No

CHANG KEY No No No No

CIRB No No No No

CMDAUTH No No No No

COFCREAT Yes Yes Yes Yes

COFDEFIN Yes Yes Yes Yes

COFIDENT Yes Yes Yes Yes

COFNOTIF Yes Yes Yes Yes

COFPURGE Yes Yes Yes Yes

COFREMOV Yes Yes Yes Yes

COFRETRI Yes Yes Yes Yes

COFSDONO No No Yes Yes

CPOOL No Yes No No

CT RACE No No Yes Yes

DATOFF Yes No No No

DEQ No No No No

DOM No No No No

DSG NL No Yes No No

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No No

ENQ No No No No

ESPIE No No No No

ESTAE No No Yes Yes
(See note 2 on
page 10)

ESTAEX Yes Yes Yes Yes

ET CON No Yes No No

ETC RE No Yes No No

ET DEF Yes Yes No No

ETD ES No Yes No No

ETDIS No Yes No No

EVENTS No No No No

EXTRACT No No No No

FESTAE No No No Yes

FRACHECK No No No No

FREEMAIN Yes Yes Yes No
(See note 3)

GETMAIN Yes Yes Yes No
(See note 3)

GQSCAN No Yes No No

Using the Macros 7

Figure 4 (Page 3 of 5). Macro Summary

Macro Can be issued Can be Issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL

memory mode

GTRACE No No No No

HSPSERV Yes Yes (See note 4) No

IEFQMREQ No No No No

IOSINFO No No No No

IOSLOOK No No No No

ITTFMTB No / No No No

LLACOPY No No Yes Yes

LOAD No No No No

LOCASCB Yes Yes Yes No

LXFRE No Yes No No

LXRES No Yes No No

MGCR No No No No

MODESET No Yes No No

NIL No No No No

NUCLKUP No No No No

OIL No No No No

OUT ADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PG ANY No No No No
1--·

PGFIX No Yes No No

PGFIXA No No No No

PG FREE No Yes No No

PGFREEA No No No No

PGSER No Yes No No

POST No Yes No No

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RACDEF No No No No

RACHECK No No No No

RACINIT No No No No

RACLIST No No No No

RAC ROUTE No No No No

RACSTAT No No No No

RACXTRT No No No No

RESERVE No No No No

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDULE Yes Yes Yes Yes

SCHEDXIT No Yes No No

8 SPL: Application Development Macro Reference

Figure 4 (Page 4 of 5). Macro Summary

Macro Can be laaued Canbelasued Checks Checks
In AR ASC mods In croaa SYSSTATE SPLEVEL

memory mode

SDUMP Yes Yes Yes Yes
(See note 1)

SDUMPX Yes Yes Yes Yes

SETFRR Yes Yes Yes Yes

SETLOCK Yes Yes Yes Yes

SETRP Yes Yes Yes No

SPIE No No No No

SP LEVEL Yes Yes No No

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STAE No No No No

STATUS No No No No

STORAGE Yes Yes No No

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SYMREC No No No No

SYNCH Yes No Yes No
(See note 1)

SYNCHX Yes No Yes No

SYSEVENT No No No No

SYSSTATE Yes Yes No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes Yes No No

T6EXIT No No No No

VSMLIST No Yes No No

VSMLOC No Yes No No

VSMREGN No Yes No No

WAIT No Yes No No

WTL No No No No

WTO No No No Yes

Using the Macros 9

Figure 4 (Page 5 of 5). Macro Summary

Macro Can be issued Can be issued Checks Checks
in AR ASC mode in cross SYSSTATE SPLEVEL

memory mode

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:

ATTACH or A TT ACHX
SDUMP or SDUMPX
SYNCH or SYNCHX

IBM recommends that programs in AR ASC mode use the X-macros (ATTACHX, SDUMPX, and
SYNCHX). If, however, a program in AR mode issues ATTACH, SDUMP, or SYNCH after issuing
SYSSTATE ASCENV =AR, the system substitutes the corresponding X-macro and issues a
message telling you that it made the substitution.

2. The only programs that can use ESTAE are programs that are in primary mode with
(PASN=SASN = HASN). IBM recommends that you always use ESTAEX instead of ESTAE.

3. IBM recommends that AR mode callers use the STORAGE macro instead of using GETMAIN or
FREE MAIN.

4. If you use the HSPALET parameter, HSPSERV macro checks SYSSTATE.

10 SPL: Application Development Macro Reference

Macro Forms
You can code most macros in three forms: standard, list, and execute. Some macros also
have a modify form. When you code a macro, you use the MF parameter to select one of
the forms. The list, execute and modify forms are for reenterable programs that need to
change values in the parameter list of the macro. The standard form is for programs that
are not reenterable, or for programs that do not change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can make the
change dynamically.

However, using the standard form and changing the parameter list dynamically might cause
errors .. For example: after storing a new value into the in-line, standard form of the
parameter list, a reenterable program operating under a given task might be interrupted by
the system before the program can invoke the macro.

In a multiprogramming environment, another task can use the same reenterable program,
and that task might change the in-line parameter list again before the first task regains
control. When the first task regains control, it invokes the macro. However, the in-line
parameter list now has the wrong values.

A program that runs in a multiprogramming environment can avoid this error by using the
list, modify, and execute forms of the macros. One technique is:

1. Use the list form of the macro, which expands to the parameter list. Place the list form in
the section of your program where you keep non-executable data, such as program
constants. Do not code it in the instruction stream of your program.

2. In the Instruction stream, code a GETMAIN or a STORAGE macro to obtain some virtual
storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you obtained.

4. To change the parameter list, code the modify form of the macro. Use the address
parameter of the modify form to reference the parameter list in the virtual storage area
that you obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address parameter
of the execute form to reference the parameter list in the virtual storage area that you
obtained.

With this technique, the parameter list is safe even if the first task is interrupted and a
second task intervenes. When the program runs under the second task, it cannot access
the parameter list in the virtual storage of the first task.

Using the Macros 11

Coding the Macros

name

b

MATH
~HIST
V ~GEOG

,DATA=data addr

In this book, each macro description includes a syntax table near the beginning of the
macro description. The table shows how to code the macro. The syntax table does not
explain the meanings of the parameters; the meanings are explained in the parameter
descriptions that follow the syntax table.

The syntax tables assume that the standard begin, end, and continue columns are used.
Thus, column 1 is assumed as the begin column. To change the begin, end, and continue
columns, use the ICTL instruction to establish the coding format you want to use. If you do
not use ICTL, the assembler recognizes the standard columns. To code the ICTL
instruction, see Assembler H Version 2 Application Programming: Language Reference.

Figure 5 shows a sample macro, TEST, and summarizes all the coding information that is
available for it. The table is divided into three columns, A, 8, and C.

name: symbol. Begin name in column 1 .

One or more blanks must precede TEST.

One or more blanks must follow TEST.

datq addr: RX-type address, or register C2l - C12l

@)---_,.,.. .. ,LNG-data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
~--~ ... - ,FMT-DEC
V::Y ,FMT =BIN

,PASS=value

,grade

Figure 5. Sample Macro

Default: FMT-HEX

value: symbol, decimal digit, or register (1) or (2) - C12).
Default: PASS=65

grade: symbol, decimal digit, or register C1) or (2) - (12).

• The first column, A , contains those parameters that are required for that macro. If a
single line appears in that column, A1 , the parameter on that line is required and you
must code it. If two or more lines appear together, A2, you must code the parameter
appearing on one and only one of the lines.

• The second column, B, contains those parameters that are optional for that macro. If a
single line appears in that column, 81, the parameter on that line is optional. If two or
more lines appear together, 82, the entire parameter is optional but, if you elect to make
an entry, code one and only one of the lines.

• The third column, C, provides additional information about coding the macro.

12 SPL: Application Development Macro Reference

When substitution of a variable is required in column C, the following classifications are
·used:

symbol

decimal digit

register (2)-(12)

register (OJ

register (1)

RX-type address

A-type address

default

any symbol valid in the assembler language. That is, an alphabetic
character followed by 0-7 alphameric characters, with no special
characters and no blanks.

any decimal digit up to the value indicated in the parameter
description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

one of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or
address indicated in the parameter description. You must set the
unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

general purpose register 0, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must
set the unused high-order bits to zero. Designate the register as (0)
only.

general purpose register 1, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must
set the unused high-order bits to zero. Designate the register as (1)
only.

any address that is valid in an RX-type instruction (for example, LA).

any address that can be written in an A-type address constant.

a value that is used in default of a specified value; that is, the value
the system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following rules:

• If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT= HEX), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, grade), substitute the
indicated value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA= data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the table from top to bottom.

• Code commas and parentheses exactly as shown.

• Positional parameters (parameters without equal signs) appear first; you must code
them in the order shown. You may code keyword parameters (parameters with equal
signs) in any order.

• If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Using the Macros 13

Continuation Lines
You can continue the parameter field of a macro on one or more additional lines according
to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in
column 72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 6 shows an
example of each method.

1 10 16 44 72

+ + + + +
NAME1 OP1 OPERAND1 • OPERAND2, OPERAND3, OPERAND4, OPERANDS. OPERAND6, OPX

ERAND7 THIS IS ONE WAY
NAME2 OP2 OPERAND1.0PERAND2, THIS IS ANOTHER WAY X

OPERAND3. OPERAND4, X
OPERANDS. OPERAND6. OPERAND?

Figure 6. Continuation Coding

14 SPL: Application Development Macro Reference

ALESERV - Control Entries in the Access List

©Copyright IBM Corp. 1988, 1991

The ALESERV macro manages the contents of access lists. An access list is a table in
which each entry identifies an address space, a data space, or a hiperspace to which a
program (or programs) has access. Access list entry tokens (ALETs) index the entries in
the access list.

On the ALESERV macro, address spaces, data spaces, and hiperspaces are identified
through STOKENs, an identifier similar to an address space identifier (ASID). SPL:
Application Development- Extended Addressability describes STOKENs, ALETs and how
to pass them, access lists, and the EAX-checking that might occur when you issue the
ALESERV macro to add an entry for an address space. See that book for help in using
ALE SE RV.

Use the ALESERV macro to:

• Add an entry to a DU-AL or PASN-AL for a SCOPE= SINGLE data space, a SCOPE= ALL
data space, or a hiperspace (ADD parameter)

Note: You access data spaces and address spaces directly through ESA/370
instructions. You access hiperspaces through the HSPSERV macro.

• Add an entry to all PASN-ALs for a SCOPE= COMMON data space (ADD parameter)
• Add the primary address space to the DU-AL (ADDPASN parameter)
• Delete an entry from a DU-AL or PASN-AL (DELETE parameter)
• Obtain a STOKEN for a specified ALET (EXTRACT parameter)
• Locate an ALET for a specified STOKEN (SEARCH parameter)
• Obtain the STOKEN of the home address space (EXTRACTH parameter)

To add a hiperspace entry to an access list, the processor must have the move-page facility
installed. If this feature is not on the processor, the system rejects the ALESERV ADD
request with an return code X'70'.

The requirements for the caller are:

Authorization:

Dispatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Serialization:
Control parameters:

To request the following ALESERV services, the program must be
supervisor state or PSW key 0 - 7:

• Make ADD and DELETE requests for the PASN-AL
• Use the CHKEAX =NO parameter
• Make ADD and DELETE requests for SCOPE= ALL and

SCOPE=COMMON data spaces and shared hiperspaces and expanded
storage only (ESO) hiperspaces for the DU-AL

Problem state programs with PSW key 8 - F can request all other ALESERV
services.
Task or SRB
PASN = HASN or PASN not= HASN
Any
Primary or access register (AR)
Enabled and unlocked for ADD, ADDPASN, and DELETE requests
Control parameters can reside in any addressable area.

At exit, the ARs and general purpose registers (GPRs) 2 through 13 are preserved. GPR 15
contains the return code. In addition, for SEARCH and EXTRACT requests, GPR O contains
the reason code for SEARCH and EXTRACT.

ALESERV is also described in Application Development Macro Reference, with the
exception of the CHKEAX parameter.

15

The standard form of the ALESERV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ALESERV.

AL ESE RV

b One or more blanks must follow ALESERV.

ADD
Valid parameters (Required parameters are underlined)
AL, STOKEN, ACCESS, ALET, CHKEAX,

ADDPASN
DELETE
EXTRACT
SEARCH
EXTRACTH

,ACCESS= PUBLIC
,ACCESS= PRIVATE

,AL= WORKUNIT
,AL=PASN

,ALET = alet-addr

,STOKEN = stoken-addr

,CHKEAX=YES
,CHKEAX=NO

,RELATED= any-value

RELATED
ALET,RELATED
ALET,CHKEAX,RELATED
ALET,STOKEN,RELATED
AL,ALET,STOKEN,RELATED
STOKEN, RELATED

Default: ACCESS= PUBLIC

Default: AL=WORKUNIT

alet-addr: RX-type address or register (2) - (12).

stoken-addr: RX-type address.

Default: CHKEAX =YES.

any-value: Any valid macro parameter specification.

The parameters are explained as follows:

ADD
requests that the system add an entry to the access list and return the ALET. You are
required to use two parameters:

• STOKEN specifies the space for which the entry is to be added.
• ALET specifies the address of the location where the system returns the ALET.

You can also specify whether the access list is DU-AL or PASN-AL (AL parameter) and,
for address spaces, whether the entry is PUBLIC or PRIVATE (ACCESS parameter).
The defaults are DU-AL and PUBLIC.

To add an entry for a SCOPE= COMMON data space to all PASN-ALs in the system, use
the AL=PASN parameter.

To add an entry for an address space, the problem state, PSW key 8 - F caller must
have EAX-authority to the target address space. The supervisor state or PSW key 0 - 7
caller can use the CHKEAX= NO parameter, which adds an entry for the address space
without requiring the caller to have EAX-authority.

Adding an entry for a hiperspace requires that the processor have the move-page
facility installed. If a program issues ALESERV ADD for a hiperspace and the
processor does not have the feature, the system rejects the ALESERV ADD request with
a return code X'70'.

To ensure the integrity of hiperspaces, the system has certain rules for adding entries
for hiperspaces to access lists. The following table summarizes the rules for problem
state, PSW key 8 - F programs and supervisor state or PSW key 0 - 7 programs.

Do not use ALESERV ADD for a hiperspace unless you have the move-page facility
installed.

16 SPL: Application Development Macro Reference

Figure 7. Rules for Adding Entries for Hiperspaces to Access Lists

Function Type of A problem state, key 8 - F A supervisor state or key 0-7
hlperspace program: program:

Add entries non-shared Can add entries for the Can add entries if the caller's
to the standard hiperspaces it owns. home and owner's home
DU-AL address space is the same.

shared Cannot add entries. Can add entries.
standard
and ESO

Add entries Non-shared Cannot add entries. Can add entries if its PASN-AL
to the standard is the same as the PASN-AL of
PASN-AL the owner's home address

space.

Shared Cannot add entries. Can add entries for shared
standard standard hiperspaces. Can
and ESO add entries for ESO

hiperspaces if no unauthorized
program can run in the primary
address space.

An access list entry for an ESO hlperspace should never be available to an
unauthorized program.

The following notes are for users of data-in-virtual and hiperspaces.

• Once you add an entry for a standard hiperspace, you cannot use that hiperspace
as a data-in-virtual object.

• If a DIV ACCESS is in effect for a standard hiperspace, you cannot add an entry for
that hiperspace.

ADDPASN
requests that the system add the primary address space to the DU-AL without requiring
a user to have EAX-authority to the address space. The entry is a public entry. ALET,
required with ADDPASN, receives the ALET that identifies the entry.

DELETE
requests that the system delete an entry from the DU-AL or the PASN-AL. ALET,
required with DELETE, identifies the entry to be deleted.

To delete an entry for an address space, the problem state, PSW key 8 - F caller must
have EAX-authority to the target address space. The supervisor state or PSW key 0 - 7
caller can use the CHKEAX =NO parameter, which deletes an entry for the address
space without requiring the caller to have EAX-authority.

When the request is for a SCOPE= COMMON data space, ALESERV deletes the entry
from all PASN-ALs in the system.

EXTRACT
requests that the system find the STOKEN associated with the specified ALET. The
caller can obtain the STOKEN for any space that is represented by a valid entry on the
current access list. STOKEN is a required parameter.

SEARCH
requests that the system search through the DU-AL or PASN-AL for an ALET that
corresponds to a specified STOKEN. Specify whether the search is to be through the
DU-AL or the PASN-AL. (AL= WORKUNIT is the default.) ALET and STOKEN are
required parameters.

EXTRACTH
requests that the system find the STOKEN of the home address space. STOKEN is a
required parameter.

ALESERV - Control Entries in the Access List 17

,ACCESS- PUBLIC
,ACCESS= PRIVATE

specifies whether the access list entry you are adding is PUBLIC or PRIVATE. You
cannot add a PRIVATE entry for a data space or hiperspace. The default is
ACCESS= PUBLIC.

,AL• WORKUNIT
,AL=PASN

specifies whether the access list is a DU-AL (WORKUNIT) or a PASN-AL (PASN). The
default is AL=WORKUNIT.

For the ADD request, AL identifies the type of access list.

For the SEARCH request, AL specifies whether the system is to search through the
DU-AL or the PASN-AL.

Figure 7 on page 16 describes the rules for adding entries for hiperspaces to the
DU-AL and PASN-AL.

,ALET"' alet-addr
specifies the four-byte ALET. For the ADD and ADDPASN request, ALET specifies the
returned ALET for the access list entry that the system added.

For the DELETE request, ALET specifies the ALET for the access list entry to be
deleted. Do not specify an ALET of 0, 1, or 2.

For the EXTRACT request, the system returns the STOKEN that corresponds to the
specified ALET.

For the SEARCH request, ALET (as input) specifies the point in the access list where
the system is to begin the search. The following values are valid as beginning entries:

• Minus One (-1) - Start at the beginning of the DU-AL or PASN-AL.
• Valid ALET - Start the search with the next ALET in the access list.

As output from the SEARCH request, the ALET parameter specifies the searched-for
ALET, if present. Otherwise, ALET is unchanged and register 15 contains a reason
code that specifies that an ALET for that STOKEN is not on the access list.

,STOKEN = stoken-addr
specifies an eight-byte identifier of an address space, data space, or hiperspace. For
ADD processing, STOKEN identifies the space that the program wants to access.

For the EXTRACT request, the system returns the STOKEN that corresponds to the
specified ALET.

For the SEARCH request, STOKEN identifies the STOKEN for which the system is to
return the corresponding ALET.

For the EXTRACTH request, the system returns the STOKEN of the home address
space.

,CHKEAX .. YES
,CHKEAX=NO

specifies that A LESE RV does (CHKEAX =YES) or does not (CHKEAX =NO) check the
EAX authority of the caller to the address space to be added to or deleted from the
access list. The default is CHKEAX=YES.

,RELATED .. any-value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

18 SPL: Application Development Macro Reference

When control is returned from ALESERV ADD, register 15 contains one of the following
return codes:

Code Meaning
0 ALESERV ADD has completed successfully.

8 The caller is not EAX-authorized to the specified space; the entry is not added. The ALET
returned is invalid.

C The current AL cannot be expanded. There are no free ALEs and the maximum size has been
reached.

10 ALESERV could not obtain storage for an expanded access list.

18 The caller tried to add to the PASN-AL in problem state, PSW key 8 - F.

1C The caller is locked.

20 The caller is disabled.

24 AR 1 contained an ALET of 1 on input or access register 1 contained an ALET for the PASN-AL.

38 The input STOKEN is invalid.

4C The space represented by the Input STOKEN is invalid for cross memory access.

50 Invalid ALESERV parameter list.

54 The caller tried to add a data space to an access list as a private entry.

5C The caller was not authorized to add a data space or a hiperspace to an access list.

60 An unexpected error occurred. The request was not completed.

64 The caller tried to add an entry using CHKEAX= NO in problem state, PSW key 8- F.

68 The caller attempted to add a hiperspace under conditions which are not allowed. See
Figure 7 on page 16 for a summary of the rules for adding hiperspaces to an access list.

6C The caller tried to add an entry for a SCOPE= COMMON data space to a DU-AL.

70 The caller tried to add an entry for a hiperspace and did not have the move-page facility
installed.

When control is returned from ALESERV ADDPASN, register i5 contains one of the following
return codes:

Code Meaning
O ALESERV ADDPASN has completed successfully.

C The current AL cannot be expanded. There are no free ALEs and the maximum size has been
reached.

10 ALESERV could not obtain storage for an expanded access list.

1C The caller is locked.

20 The caller is disabled.

24 AR 1 contained an ALET of 1 on Input or access register 1 contained an ALET for a PASN-AL.

50 The ALESERV parameter list is invalid.

60 An unexpected error occurred; the request was not completed.

When control is returned from ALESERV DELETE, register i5 contains one of the following
return codes:

Code Meaning
O ALESERV DELETE has completed successfully.

8 The caller is not EAX-authorized to the address space specified by the ALET. The entry is not
deleted.

14 The input ALET corresponds to an invalid access list entry.

1C The caller is locked.

20 The caller is disabled.

24 AR 1 contained an ALET of 1 on Input or an ALET for the caller's PASN-AL.

28 The caller specified an invalid ALET.

2C The caller attempted to delete ALET 0, 1, or 2

ALESERV - Control Entries in the Access List 19

Code Meaning
30 A problem state, PSW key 8 - F caller attempted to delete an entry from the PASN-AL.

60 An unexpected error occurred. The request was not completed.

64 The caller tried to delete an entry using CHKEAX =NO in problem state, PSW key 8- F.

When control is returned from ALESERV EXTRACT, register 15 contains one of the following
return codes:

Code Meaning
O ALESERV EXTRACT has completed successfully. Register O contains one of the following

reason codes:

00 - The access list entry is a public entry.
04 - The access list entry is a private entry.

14 The input ALET corresponds to an invalid ALE.

24 AR 1 contained an ALET of 1 on input or contains an ALET for the caller's PASN-AL.

28 The caller specified an invalid ALET.

3C An ALET value of 1 was specified for the ALESERV EXTRACT request.

40 The space associated with the input ALET is invalid for cross memory access.

44 The ALE associated with the input ALET represents addressing capability to a deleted or
terminated space.

50 The ALESERV parameter list is invalid.

58 The ALET the caller specified represents an invalid capability.

60 An unexpected error occurred. The request was not completed.

When control is returned from ALESERV SEARCH, register 15 contains one of the following
return codes:

Code Meaning
O ALESERV SEARCH has completed successfully. Register O contains one of the following

reason codes:

00 - The access list entry is a public entry.
04-The access list entry is a private entry.

24 AR 1 contained an ALET of 1 on input or an ALET for the caller's PASN-AL.

28 The caller specified an ALET that is not valid on the specified access list.

34 The caller specified a STOKEN not represented on the specified access list.

48 The caller specified AL= WORKUNIT but the input ALET indexes into the PASN-AL, or the
caller specified AL= PASN and the ALET indexes into the DU-AL.

60 An unexpected error occurred. The request was not completed.

When control is returned from ALESERV EXTRACTH, register 15 contains one of the
following return codes:

Code Meaning
o ALESERV EXTRACTH has completed successfully.

24 AR 1 contained an ALET of 1 on input or contains an ALET associated with the caller's
PASN-AL.

60 An unexpected error occurred. The request was not completed.

Example of Adding an Entry to a DU-AL
To add an entry to a DU-AL for a data space, issue the following:

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
*

DSPCSTKN DS CL8
DSPCALET DS F

20 SPL: Application Development Macro Reference

DATA SPACE STOKEN
DATA SPACE ALET

ALESERV (List Form)
The list form of ALESERV assigns the correct amount of storage for the ALESERV parameter
list.

The list form is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ALESERV.

ALES ERV

fl One or more blanks must follow ALESERV.

MF=L

,RELATED= any-value

The parameters are explained as follows:

MF•L
specifies the list form of ALESERV.

,RELATED - any-value
specifies information used to self document macros by 'relating' functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid macro parameter
expression.

ALESERV - Control Entries in the Access List 21

ALESERV (Execute Form)
The execute form of ALESERV uses a remote parameter list that can be generated by the
list form of ALESERV.

The execute form of the ALESERV macro is written as follows:

name

b

AL ESE RV

b

ADD

ADDPASN
DELETE
EXTRACT
SEARCH
EXTRACTH

,ACCESS= PUBLIC
,ACCESS= PRIVATE

,AL= WORKUNIT
,AL=PASN

,ALET = alet-addr

,STOKEN = stoken-addr

,CHKEAX=YES
,CHKEAX=NO

,RELATED= any·value

,MF= (E,cntl-addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ALESERV.

One or more blanks must follow ALESERV.

Valid parameters (Required parameters are underlined)
AL, STOKEN, ACCESS, ALET, CHKEAX, MF,
RELATED
ALET, MF, RELATED
ALET,MF,CHKEAX,RELATED
ALET,STOKEN,MF,RELATED
AL,~,STOKEN,RELATED,MF

STOKEN,MF,RELATED

DefauH: ACCESS= PUBLIC

DefauH: AL= WORKUNIT

alet-addr: RX-type address or register (2) - (12).

stoken-addr: RX-type address.

DefauH: CHKEAX =YES.

any-value: Any valid macro parameter specification.

cntl-addr: RX-type address or register (2)-(12).

The parameters are explained under the standard form of ALESERV with the following
exceptions:

,MF== (E,cnt/ addr)
specifies the execute form, which uses a remote parameter list. cntl addr specifies the
address of the remote parameter list, generated by the list form of the macro.

22 SPL: Application Development Macro Reference

ASCRE - Create Address Spaces

© Copyright IBM Corp. 1988, 1991

The ASCRE macro creates an address space. The address space is full-function; that is, it
starts after the system is initialized and has all of the system services. The caller of the
ASCRE macro can establish cross memory linkages between the creating address space
and the new address space.

Use either the ASNAME or STPARM parameter to name the new address space and specify
the first program that will execute in it.

Use the INIT parameter to specify an address space initialization routine to perform such
actions as loading modules and building control blocks.

Optionally, you can use the AXLIST, TKLIST, and LXLIST parameters to set up cross
memory linkages that allow programs in the created address space to use the services of
programs in the creator's address space.

• The AXLIST parameter specifies the location of a list of authorization index (AX) values
that the caller obtained through the AXRES macro.

• The TKLIST parameter specifies the location of the list of tokens that represents the
entry tables built by the creating address space.

• The LXLIST parameter specifies the location of a list of linkage index (LX) values that
the caller obtained through the LXRES macro.

The requirements for the caller are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASC mode:
Serialization:
Control parameters:

Supervisor state
Task
PASN = HASN or PASN not = HASN
Any
Primary or AR
Enabled and unlocked
For callers in primary mode, control parameters must be in the primary
address space.
For callers in AR address space control (ASC) mode, the parameters can
be in the primary address space (qualified by an ALET of 0) or in any
space addressable through public entries in the caller's dispatchable unit
access list (DU-AL).

The caller in AR ASC mode must have issued SYSSTATE ASCENV=AR to tell ASCRE to
generate code and addresses appropriate for callers in AR mode.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FRR)
established.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
0
1

2 -13
14
15

Contents
Reason code
If the return code is 4, GPR 1 contains the address of the ASCB for the new
address space. Otherwise, GPR 1 is used as a work register by the macro.
Unchanged
Used as a work register by the macro
Return code

23

When control returns to the caller, the access registers (ARs) contain:

Register Contents
O Used as a work register by the macro
1 Contains a O if the return code is 4; otherwise, used as a work register by the

macro.
Unchanged 2·13

14 • 15 Used as work registers by the macro

See SPL: Application Development Guide - Extended Addressability for information on
initializing address spaces, which gives an example of creating an address space, including
coding the ASCRE macro.

The standard form of the ASCRE macro is written as follows:

name

b

ASCRE

b

ASNAME =as-name
STPARM = start-parm-addr

,INIT = init-rtn-addr or lnit-rtn-name

,ODA= output-data-addr

,TRMEXIT=rtn name

,UTOKEN =user token addr

,ASPARM = parm-area-addr

,A TIR =attribute-list

,AXLIST = ax-list-addr

, TKLIST = token-list-addr

,LXLIST= lx-list-addr

,RELATED= value

24 SPL: Application Development Macro Reference

name: symbol. Begin name In column 1.

One or more blanks must precede ASCRE.

One or more blanks must follow ASCRE.

as-name: One to seven characters, enclosed In apostrophies.
Note: Code either ASNAME or STPARM.
start-parm-addr: RX-type address or register (2) - (12).

inlt-rtn-addr: RX-type address or register (2) - (12).
init-rtn-name: One to eight characters, enclosed in
apostrophes.

output-data-addr: RX-type address or register (2) - (12).

rtn name: RX-type address or register (2) - (12).

user token addr: RX-type address or register (2) - (12).
Note: Specify UTOKEN only if you specify TRMEXIT.

parm-area-addr: RX-type address or register (2) - (12).

attribute-list: List of options, separated by commas.

ax-list-addr: RX-type address or register (2) - (12).

token-list-addr: RX-type address or register (2) - (12).
Note: You must also specify LXLIST.

lx-list-addr: RX-type address or register (2) - (12).
Note: Specify LXLIST only if you specify TKLIST.

value: Any valid macro parameter specification.

The parameters are explained as follows:

ASNAME =as-name
specifies the address space name (which is the same as the name of the procedure in
SYS1 .PROCLIB that specifies the first program to execute in the new address space.)
The operator uses this name to issue certain commands, such as the DISPLAY
command that displays information about the address space. The name must contain
one to seven characters, enclosed by apostrophes. The first character must be
alphabetic or national; other characters can be alphabetic, national, or numeric.

You must specify either STPARM or ASNAME. Use ASNAME if you are adding a
procedure to SYS1.PROCLIB and you are not passing parameters to JCL.

STPARM = start-parm-addr
specifies the address of a parameter string that is input to an internal START command
that the system uses to start the address space. The string consists of a two-byte
length field, followed by up to 124 bytes of parameter data. The length field identifies
the length of the parameter data (not including the length field itself). The parameter
data consists of START command parameters, for example "GTF,,,JES2". It must begin
with the address space name, which corresponds to the procedure in SYS1 .PROCLIB
that specifies the first program that is to execute in the new address space.

If you do not need special DD definitions for data sets, specify the common system
address space procedure IEESYSAS. In the parameter data, specify the system-defined
procedure IEESYSAS in the following format:

IEESYSAS.x,PROG=y

where:

• x is name of the address space.
• y is the name of the first program to execute in the new address space.

You must specify either STPARM or ASNAME.

,INIT= init-rtn-name or init-rtn-addr
specifies the address of an eight-character string containing the name of the address
space initialization routine. init-rtn-name is a string of up to eight alphanumeric
characters, enclosed in apostrophes; The first character of the name must be
alphabetic or national; other characters can be alphabetic, national, or numeric. If the
name is less than eight characters, left-justify the name and pad with blanks on the
right to make up the eight characters.

The routine, which can perform functions such as loading modules, must reside in
either the LPA (PLPA, MLPA, fixed LPA) or in SYS1 .LINKLIB. If the routine uses the two
ECBs (EAERIMWT and EAEASWT) that the system provides for communication between
the creating address space and the initialization routine, it must be in 31-bit addressing
mode.

INIT is a required parameter. If you do not need an initialization routine, you can
specify the dummy module IEFBR14 on the INIT parameter.

,ODA= output-data-addr
specifies the address of a 24-byte area that contains output information from the ASCRE
macro. The output information, mapped by the macro IHAASEO, consists of:

• Eight bytes for the STOKEN of the created address space

If you use the ASDES macro to terminate the created address space, you can obtain
the STOKEN from this field.

• Four bytes for the address of the ASCB of the created address space

• Four bytes for the address of the two contiguous ECBs (EAERIMWT and EAEASWT).

The creator of the address space and the created address space can use these two
ECBs for communicating and synchronizing. They are mapped by IEZEAECB. A
program must be in 31-bit addressing mode when it references them.

• Eight bytes (not part of the programming interface)

ODA is required.

ASCRE - Create Address Spaces 25

,TRMEXIT=rtn name
specifies the address of the termination routine - a routine that gets control when the
created address space terminates. The routine receives control in 31-bit addressing
mode as an asynchronous exit in the creator's address space under the creator's TCB.
If you specify UTOKEN, on entry to the routine, register 1 contains the address of a copy
of the token specified by the UTOKEN parameter. If the ASDES macro terminates the
address space, the termination routine does not receive control.

On entry to the routine:

• GPR 1 contains the address of a copy of the 64-bit token that the UTOKEN
parameter supplies.

• GPR 13 contains the address of a standard 18-word save area.
• GPR 14 contains the return address.
• GPR 15 contains the entry point address.

If you specify TRMEXIT, you can also specify UTOKEN.

,UTOKEN = user token addr
specifies the address of a 64-bit token of your choice that the termination routine can
use to identify the created address space. Do not specify UTOKEN unless you specify
TRMEXIT. If you specify TRMEXIT without specifying UTOKEN, the termination routine
does not have the user data.

,ASPARM == parm-araa-addr
specifies the address of a parameter string that the new address space can obtain
through the ASEXT macro. The parameter string consists of a halfword length field,
followed by up to 254 bytes of parameter data. The length field contains the length of
the parameter data (not including the length field itself).

,ATTR=attr
specifies some attributes of the created address space. Attributes specified on the
execute form of the ASCRE macro are added to the options specified on the list form.

Options for the ATTR parameter are as follows:

NONURG
specifies that the address space will be used by non-urgent services. Specify
either NONURG or HIPRI. NONURG is the default.

HIPRI
indicates that the address space is for a high-priority service. Specify either
NONURG or HIPRI. NONURG is the default.

PERM
specifies that the system does not terminate the created address space when the
TCB that represents the creating program terminates. If you do not specify PERM,
the system terminates the created address space when it terminates the TCB.

,AXLIST = ax-list-addr
specifies the address of a list of halfwords containing the AX values that ASCRE is to
set for the created address space. These values determine the PT and SSAR authority
for programs. (This list was obtained through the AXRES macro.) The first entry In the
list describes the number of AX values in the list (from 1 to 32).

Using this parameter has the same effect as a program in the created address space
issuing the ATSET macro once for each AX value in the list.

, TKLIST == token-list-addr
specifies the address of a list of fullword tokens that represent the entry tables that the
system is to connect to the linkage table of the created address space. The first entry
in the list describes the number of token values that follow (from 1 to 32). The ETCRE
macro returned these tokens in register 0. Using this parameter has the same effect as
a program in the created address space issuing the TKLIST parameter on the ETCON
macro.

When you specify TKLIST, you must also specify LXLIST.

26 SPL: Application Development Macro Reference

,LXLIST == tx-list-addr
specifies the address of a list of values that represent indexes into the linkage table.
Each linkage index {LX) value represents an entry in the linkage table. The system
connects the entry tables specified by the TKLIST parameter to the LX values specified
in this list. The first entry in the list describes the number of LX values that follow {from
1 to 32). The number of LX values must be the same as the number of entry table
tokens. Using this parameter has the same effect as a program in the created address
space issuing the LXLIST parameter on the ETCON macro.

When you specify TKLIST, you must also specify LXLIST.

,RELATED• value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The following table gives the return codes from register 15 and the associated reason codes
from register 0:

Return Reason Meaning
code coda

0 0 The address space has been created.

0 4 The address space creation has been scheduled.

4 4 The address space has been created synchronously; there was an
error accessing the ODA.

4 8 The address space creation is scheduled; there was an error
accessing ODA.

8 4 The caller is not in supervisor state.

8 8 The caller is not enabled.

8 12 The caller is not in task mode.

8 16 The caller is not unlocked.

8 20 GRP O has an invalid function code on input.

8 24 ASCRE could not establish recovery.

12 4 ASCRE cannot reference the parameter list.

12 8 The parameter list has an invalid version number.

12 12 The reserved field in the parameter list is not 0.

16 4 ASCRE cannot reference the INIT parameter.

16 8 The initialization routine is not specified or is specified incorrectly.

20 4 ASCRE cannot reference the STPARM or ASNAME parameter.

20 8 Neither STPARM or ASNAME was specified.

20 12 The STPARM length is not 1-124.

24 4 The reserved attribute bit is set.

24 8 Both HIPRI and NONURG are specified.

28 4 ASCRE cannot reference the UTOKEN.

28 8 UTOKEN is specified without TRMEXIT.

32 4 ASCRE cannot reference the ASPARM parameter.

32 8 The ASPARM length is not 0-254.

36 4 ASCRE cannot reference AXLIST.

36 8 The AXLIST length is not 1-32 elements.

40 4 ASCRE cannot reference LXLIST.

40 8 The LXLIST length is not 1-32 elements.

44 4 ASCRE cannot reference the TKLIST parameter.

44 8 The TKLIST length is not same as LXLIST length.

ASCRE - Create Address Spaces 27

Return Reason Meaning
code code

48 8 The DISPLAY A procedure name is invalid.

52 4 A storage shortage prevented the creation of an address space.
Resubmit the failed job because the shortage might have been caused
by a temporary strain on workload. If the problem persists, you might
have to re-evaluate your installation-defined storage thresholds.

52 8, 12, 16 Record the return and reason codes and inform your technical support
personnel.

56 16 The caller specified an invalid address space.

60, 64, 68, Any Record the return and reason codes and inform your technical support
72 personnel.

28 SPL: Application Development Macro Reference

ASCRE (List Form)
The list form of the ASCRE macro constructs a non-executable parameter list. This list, or a
copy of it for reentrant programs, can be referred to by the execute form of the macro.

The list form of the ASCRE macro is written as follows:

name

ASCRE

ASNAME =as-name
STPARM = start-parm-addr

,INIT=init-rtn-addr or init-rtn-name

,ODA= output-data-addr

,TRMEXIT = rtn-name

,UTOKEN = user-token-addr

,ASPARM = parm-area-addr

,A TTR =attribute-list

,AXLIST = ax-list-addr

,TKLIST = token-list-addr

,LXLIST = lx-list-addr

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ASCRE.

One or more blanks must follow ASCRE.

as-name: One to seven characters, enclosed In
Note: Code either ASNAME or STPARM.
start-parm-addr: RX-type address.
Note: Code either ASNAME or STPARM.

init-rtn-addr: A-type address.
init-rtn-name: One to eight characters, enclosed in
apostrophes.

output-data-addr: A-type address.

rtn-name: A-type address.

user-token-addr: A-type address.
Note: Specify UTOKEN only if you specify TRMEXIT.

parm-area-addr: A-type address.

attribute-list: List of options, separated by commas.

ax-1/st-addr: A-type address.

token-1/st-addr: A-type address.
Note: You must also specify LXLIST.

lx-list-addr: A-type address.
Note: Specify LXLIST only if you specify TKLIST.

value: Any valid macro parameter specification.

ASCRE - Create Address Spaces 28

The parameters are explained under the standard form of the ASCRE macro with the
following exception:

,MF""L
specifies the list form of ASCRE.

30 SPL: Application Development Macro Reference

ASCRE (Execute Form)

The execute form of the ASCRE macro can refer to and modify a remote parameter list built
by the list form of the macro.

The execute form of the macro is written as follows:

name

b

ASCRE

b

ASNAME =as-name
STPARM = start-parm-addr

,INIT = init-rtn-addr or init-rtn-name

,ODA= output-data-addr

,TRMEXIT = rtn-name

,UTOKEN = user-token-addr

,ASPARM = parm-area-addr

,ATTA= attribute-list

,AXLIST = ax-list-addr

,TKLIST = token-list-addr

,LXLIST = lx-list-addr

,RELATED= value

,MF= (E,cntl-addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ASCRE.

One or more blanks must follow ASCRE.

as-name: One to seven characters, enclosed in apostrophes.
Nole: Code either ASNAME or STPARM.
start-parm-addr: RX-type address or register (2) - (12).

init-rtn-addr: RX-type address or register (2) - (12).
init-rtn-name: One to eight characters, enclosed in
apostrophes.

output-data-addr: RX-type address or register (2) - (12).

rtn-name: RX-type address or register (2) - (12).

user-token-addr: RX-type address or register (2) - (12).
Note: Specify UTOKEN only if you specify TRMEXIT.

parm-area-addr: RX-type address or register (2) - (12).

attribute-list: List of options, separated by commas.

ax-list-addr: RX-type address or register (2) - (12).

token-list-addr: RX-type address or register (2) - (12).
Note: You must also specify LXLIST.

lx-list-addr: RX-type address or register (2) - (12).
Note: Specify LXLIST only if you specify TKLIST.

value: Any valid macro parameter specification.

cntl-addr: RX-type address or register (2) - (12)

The parameters are explained under the standard form of the ASCRE macro with the
following exception:

,MF= {E,cntl-addr)
specifies the execute form of the ASCRE macro. cntl-addr is the address of the remote
parameter list that the list form of the macro provided.

ASCRE - Create Address Spaces 31

32 SPL: Application Development Macro Reference

ASDES - Terminate an Address Space

© Copyright IBM Corp. 1988, 1991

The ASDES macro terminates an address space that was created through the ASCRE
macro.

SPL: Application Development - Extended Addressability describes how to create and
terminate address spaces.

Requirements for the caller of ASDES are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Seriallzatlon:
Control parameters:

Supervisor state
Task
PASN = HASN or PASN not = HASN
Any
Primary or AR
Enabled and unlocked
For callers in primary mode, control parameters
must be in the primary address space.
For callers in AR mode, the parameters can be
in any space addressable through public entries in
the caller's dispatchable unit access list (DU-AL).

Additionally, callers in access register (AR) mode must have issued SYSSTATE
ASCENV=AR to tell ASDES to generate code and addresses appropriate for callers in AR
mode.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FAR)
established.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
O Reason code
1
2 -13
14
15

Used as a work register by the macro
Unchanged
Used as a work register by the macro
Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 -13 Unchanged
14 - 15 Used as work registers by the macro

33

The syntax of the ASDES macro is as follows: -

name name: symbol. Begin name in column 1.

One or more blanks must precede ASDES.

AS DES

f> One or more blanks must follow ASDES.

STOKEN = stoken-addr stoken-addr: RX-type address or registers (2) - (12).

,RELATED= value value: Any valid macro parameter specification.

The parameters are explained as follows:

STOKEN,.. stoken-addr
specifies the address of an eight-byte area that contains the STOKEN of the address
space you want to terminate. The system returned the STOKEN in the 24-byte area
requested by the ODA parameter on the ASCRE macro that created the address space.
STOKEN is a required parameter.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return codes and reason codes {in decimal form) are in the following table:

Return Reason Meaning
code code

0 0 Address space is terminated.

8 4 Caller is not in supervisor state.

8 8 Caller is not enabled.

8 12 Caller is not in task mode.

8 16 Caller is not unlocked.

8 20 GPR 0 had invalid function code.

8 24 ASDES could not establish recovery.

12 4 ASDES could not reference the STOKEN parameter.

12 8 STOKEN does not map to a valid address space. Address space might have
already terminated.

16 4 The address space was not created by ASCRE.

34 SPL: Application Development Macro Reference

ASEXT - Extract Address Space Parameters

© Copyright IBM Corp. 1988, 1991

The ASEXT macro returns to the caller the address of a copy of a parameter string that the
creating program made available at the time it created the primary address space. Use this
macro only if the primary address space was created through the ASCRE macro and the
ASPARM parameter on the ASCRE macro was specified.

The requirements for the caller are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:

ASC mode:
Serlallzation:
Control parameters:

Supervisor state
Task or SRB
PASN = HASN or PASN not = HASN
24-bit or 31-bit. To reference the copy of the parameter string, the user
must be in 31-bit addressing mode.
Primary or AR
Enabled and unlocked
The control parameter must be in the primary address space.

The caller must not have an enabled unlocked task (EUT) functional recovery routine (FRR)
established.

The syntax of the ASEXT macro is as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ASEXT.

AS EXT

b One or more blanks must follow ASEXT.

ASPARM

,RELATED= value value: Any valid macro parameter specification.

The parameters are explained as follows:

ASP ARM
requests the address of a copy of the parameter string (including the halfword length
field) that the creator of the address space specified on the ASPARM parameter on the
ASCRE macro. ASPARM is required.

,RELATED== value
specifies information used to self-document macros by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

35

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1

2 -13
14
15

Address of the extracted parameter string if the return code is O; otherwise,
contains a O.
Unchanged
Used as a work register by the macro
Return code

When control returns to the caller, the access registers (ARs) contain:

Register
0
1

2 -13
14 -15

Contents
Used as a work register by the macro
AR 1 contains a 0, which indicates that the parameter string copy is
addressable in the primary address space.
Unchanged
Used as work registers by the macro

The return codes and reason codes for AXEXT are as follows:

Return Reason Meaning
code code

0 0 The ASEXT service has completed successfully.

8 4 The caller is not in supervisor state.

8 8 The caller is not enabled.

8 12 The caller is not in task mode.

8 16 The caller is not unlocked.

8 20 GPR 0 on input has an invalid function code.

8 24 AXEXT is unable to establish recovery.

12 4 GPR 1 has an invalid extract code on input.

16 4 An unexpected error occurred while ASEXT was in progress.

36 SPL: Application Development Macro Reference

ATSET - Set Authorization Table

©Copyright IBM Corp. 1988, 1991

The ATSET macro sets up an entry in the authorization table or in the authorization table
bits. ATSET sets the PT and SSAR authority in the authorization table entry of the home
address space. The authorization index value (AX) determines what entry is set.

The extended authorization index (EAX) determines what authorization table bits are set.
To an address space the EAX authority and SSAR authority are the same.

To enter ATSET, register 13 must point to a standard register save area addressable in
primary mode.

These are the requirements for the caller:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serlallzatlon:
Control parameters:

Supervisor state or PKM 0-7
Task or SRB
PASN = HASN or PASN not = HASN
Any
Primary
Enabled and unlocked
Must be addressable in the caller's primary address space

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and ,
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 -13 Unchanged
14 Used as a work register by the macro
15 Return code

This is the standard form of the A TSET macro:

name

b

ATSET

b

AX=axvalue

,PT=NO
,PT=YES

,SSAR=NO
,SSAR=YES

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede ATSET.

One or more blanks must follow ATSET.

ax value: RX-type address or general register (0) - (12).

DelauH: PT= NO

DelauH: SSAR = NO

value: Any valid macro keyword specification.

37

These are the parameters:

AX= ax value
specifies the AX value for which the PT and SSAR authority are to be set. The RX-type
address points to the address of a half word containing the AX value. It is addressable
in primary mode. When the register form is used, the AX value must be in bits 16-31.
Bits 0-15 are ignored.

,PT=NO
,PT=YES

specifies, YES or NO, whether program transfer (PT) is allowed into the home address
space by routines executing with the specified AX.

,SSAR=NO
,SSAR=VES

specifies, YES or NO, whether routines, executing with the specified AX, are allowed to
establish secondary addressability to the home address space. It also specifies, YES
or NO, whether routines with the specified EAX are allowed to access the address
space through access registers.

,RELATED= value
specifies information used to self-document macros. It "relates" functions or services
to corresponding functions or services. The user can use any valid coding value. The
format and contents are at the user's discretion.

Note: Every time you invoke the ATSET macro, you must set PT and SSAR authority.
Specify: PT=YES.

When control returns, register 15 contains this return code:

Hexadecimal
Code

0

38 SPL: Application Development Macro Reference

Meaning

The selected authorization table entry has been set

ATTACH and ATTACHX- Create a New Task

©Copyright IBM Corp. 1988, 1991

The ATTACH macro creates a new task. EP, EPLOC or DE indicate the entry point of the
new task. The entry point name must be a member name or an alias in a directory of a
partitioned data set, or it must have been specified in an IDENTIFY macro. When the
specified entry point cannot be located, the new subtask is abnormally terminated.

For information about selecting a macro for an MVS/SP version, other than the current
version, see" Selecting the Macro Level" on page 1.

If your program is in access register (AR) mode, use the ATTACHX macro. ATTACH and
ATTACHX have the same parameters. However:

• The STAI parameter is not valid for callers in AR mode.

• For callers in AR mode issuing ATTACHX, addresses in the caller's parameter list (on
the PARAM parameter) can be in address spaces other than the primary.

This chapter includes information about the ATTACH and ATTACHX macros:

• The syntax of the ATTACH macro, and ATTACH parameters
• The standard form of the ATTACHX macro and callers in AR mode
• The list form of the ATTACH and ATTACHX macros
• The execute form of the ATTACH and ATTACHX macros

These are the requirements for the caller:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASC mode:
Serialization:

Supervisor state or Problem state
Task
PASN = HASN
Any
Primary or AR
Enabled and unlocked

Control parameters: Parameter lists, and any data pointed to by the parameter lists, must
reside in the caller's primary address space. For callers in AR mode, the
parameter list address is qualified by an ALET of 0.
For callers in AR address space control (ASC) mode, the user's parameter
list (PARAM parameter) can be in the primary address space (qualified by
an ALET of 0) or in any space addressable through public entries in the
caller's dispatchable unit access list (DU-AL).

On entry to the attached routine, the high order bit, bit 0, of GPR 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. When bit 0 is 0, the issuer is
executing in 24-bit addressing mode. When bit 0 is 1, the issuer is executing in 31-bit
addressing mode.

The address of the task control block for the new task is returned in GPR 1. The new task is
a subtask of the originating task. The originating task is the active task when the ATTACH
macro is issued. The limit and dispatching priorities of the new task are the same as those
of the originating task (unless modified in the ATTACH macro).

The load module, containing the program to be given control, is brought into virtual storage
unless a usable copy is available in virtual storage. The issuing program can provide: an
event control block, in which termination of the new task is posted; an exit routine to be
given control, when the new task is terminated; and a parameter list the address of which is
passed in GPR 1 to the new task. The subtask is automatically removed from the system
upon completion of its execution, unless the ECB or ETXR parameters are coded. When the
ECB parameter is specified in the ATTACH macro, the ECB must be in storage. You can
wait, using the WAIT macro. The control program can post it on behalf of the terminating
task.

The ATTACH macro can specify that ownership of virtual subpools is to be assigned to the
new task, or that the subpools are to be shared by the originating task and the new task.

When the issuer is executing in 31-bit, all input parameters to the ATTACH macro can
reside in storage above 16 megabytes addressing mode. DCB is an exception.

39

For a description of the ATTACH, see also Application Development Macro Reference. The
SM, SVAREA, KEY, DISP, TIO, NSHSPV, NSHSPL, and RSAPF parameters are restricted to
supervisor state or PSW key 0-7 programs.

This is the standard form of the ATTACH macro:

name

b

ATTACH

b

EP=entry name
EPLOC=entry name addr
DE= list entry addr

,DCB=dcb addr

,LPMOD =limit prior nmbr

,DPMOD=disp prior nmbr

,PARAM = addr
,PARAM=addr,VL=1

,ECB=ecb addr

,ETXR =exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpool list addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr

,STAI= (exit addr)
,STAI= (exit addr,parm addr)
,ESTAI =(exit addr)
,ESTAl=(exitaddr,parm addr)

,PURGE=QUIESCE

,PURGE=NONE
,PURGE=HALT

,ASYNCH=NO

,ASYNCH =YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=SUPV

,SVAREA=YES

40 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: Symbol.
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas.
For example, PARAM=addr,addr,addr

ecb addr: A-type address, or register (2) - (12).

exit rtn addr: A-type address, or register (2) - (12).

subpool nmbr: Symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

subpool nmbr: Symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

Default: SZERO=YES

deb addr: A-type address, or register (2) - (12).

exit addr: A-type address, or register (2) - (12).
parm addr: A-type address, or register (2) - (12).
Note: AR mode callers must not use STAI.

Note: PURGE may be specified only if STAI or ESTAI is
specified.
Default for STAI: PURGE=QUIESCE
Default for ESTAI: PURGE= NONE

Note: ASYNCH may be coded only if STAI or ESTAI is
specified.
Default for STAI: ASYNCH = NO
Default for ESTAI: ASYNCH =YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM= NO

Default: SM = PROB

Default: SVAREA =YES

,SVAREA=NO

,KEY=PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

,TIO= task Id

,NSHSPV = subpool nmbr
,NSHSPL = subpool llst addr

,RSAPF=NO
,RSAPF=YES

,ALCOPY =YES
,ALCOPY=NO

,RELATED= value

These are the parameters:

EP - entry name
EPLOC - entry name addr
DE• list entry addr

Default: KEY= PROP

Default: DISP =YES

task id: Decimal digits 0-255, or register (2) - (12).
Default: TIO= 0

subpool nmbr: Symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

Default: RSAPF =NO

Default: ALCOPY=NO

value: Any valid macro keyword specification.

specifies the entry name, the address of the entry name, or the address of the name
field of a 60-byte entry name list. The entry name is constructed using the BLDL macro.
When EPLOC is coded, entry name addr points to an eight-byte field. When the name is
less than eight characters, left-Justify the name and pad with blanks on the right to
make up the eight characters.

Notes:

1. ATTACH processing can attach a load module in 24-bit or 31-bit addressing mode
physically resident above or below 16 megabytes virtual. The AMODE and RMODE,
load module attributes located in the directory entry for the load module, provide
this information. The RMODE indicates the place of the module; the AMODE
indicates the addressing mode of the module. When the AMODE of the entry point is
ANY, it is attached with the same addressing mode as the caller.

2. When you use the DE parameter with the ATTACH m~cro, DE specifies the address
of a list created by a BLDL macro. The BLDL and the ATTACH must be issued from
the same task; otherwise, the system terminates the program with an abend code of
106 and a return code of 15. Do not Issue an ATTACH or a DETACH between
Issuances of BLDL and ATTACH.

After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

ATTACH and ATTACHX- Create a New Task 41

The contents of the GPRs on entry to the subtask are:

Register

0

1

2 -12

13

14

15

Contents

Us.ed as a work register by the system.

Address of the user parameter list if specified on either the PARAM or
MF= E parameters; otherwise unchanged.

Used as work registers by the system.

Address of a standard save area.

Return address. Bit 0 is 0 If the subtask routine gets control in 24-bit
addressing mode; bit O is 1 if the subtask routine gets control In 31-bit
addressing mode.

Entry point address of the subtask routine.

The contents of the ARs on entry to the subtask are:

Register

0

1

2 -12

13 -15

,DCB - deb addr

Contents

Used as a work register by the system.

Zero if you specified an user parameter list on either the PARAM or
MF= E parameters; otherwise unchanged.

Used as work registers by the system.

Zeroes.

specifies the address of the data control block for the partitioned data set containing the
entry name.

Note: The DCB must be opened before the ATTACH macro is executed. The DCB must
reside in storage below 16 megabytes.

,LPMOD =limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. When this parameter is
omitted, the current limit priority of the originating task is assigned as the limit priority
of the new task.

,DPMOD - disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. When
the result is greater, the limit priority is assigned as the dispatching priority.

When a register is designated, a negative number must be in two's complement form in
the register. When this parameter is omitted, the dispatching priority assigned is
smaller than the new task's limit priority or the originating task's dispatching priority.

,PARAM ""addr
,PARAM = addr,VL = 1

specifies the address(es) to be passed to the attached program. Each address is
expanded inline to a fullword on a fullword boundary, in the order designated. When the
program is given control, Register 1 contains the address of the first word.

VL= 1 should be designated when the called program can be passed a variable number
of parameters.
VL = 1 causes the high-order bit of the last address to be set to 1. The bit can be
checked to find the end of the list.

,ECB • ecb addr
specifies the address of an event control block for the new task. The system uses this to
indicate the termination of the new task. The ECB must be in storage. This enables the
issuer of the attach to wait on it, using the WAIT macro, and enables the system to post
It on behalf of the terminating task. The return code, (when the task terminates
normally), or the completion code, (when the task terminates abnormally), is placed in
the event control block. When this parameter is coded, a DETACH macro must be

42 SPL: Application Development Macro Reference

Issued to remove the subtask from the system after the subtask terminates. The
system assumes that the ECB is in the home address space.

,ETXR =exit rtn addr
specifies the address of the end-of-task exit routine. It is given control after the new
task normally or abnormally terminates. The exit routine is given control when the
originating task becomes active after the subtask terminates. It must be in virtual
storage. When this parameter is coded, a DETACH macro must be issued to remove
the subtask from the system after the subtask terminates.

The exit routine runs asynchronously under the originating task. The routine receives
control in the addressing mode of the issuer of the ATTACH macro. The system
abnormally ends a task with completion code X' 72A' if the task attempts to create two
subtasks with the same exit routine in different addressing modes. Upon entry, the
routine has an empty dispatchable unit access list (DU-AL). To establish addressability
to a data space created by the originating task and shared with the terminating subtask,
the routine can issue the ALESERV macro with the ADD parameter, and specify the
STOKEN of the data space.

These are the contents of the general purpose registers, GPRs, when the exit routine is
given control:

Register
0
1
2-12
13
14
15

Contents
Used as a work register by the system
Address of the task control block for terminated task
Used as work registers by the system
Address of a save area provided by the system
Return address
Address of the exit routine

This is the contents of ARs when the exit routine receives control:

Register
0
1
2-12
13-15

Contents
Used as a work register by the system
Zero
Used as work registers by the system
Zeroes

The exit routine is responsible for saving and restoring the registers.

,GSPV • subpool nmbr
,GSPL • subpool llst addr

specifies a virtual storage subpool number, or address of a list of virtual storage
subpool numbers, each less than 128. Ownership of each of the specified subpools is
assigned to the new task. Subpool zero is an exception. It can be specified but it cannot
be transferred. When a task transfers ownership of a subpool, it can no longer obtain or
release the associated virtual storage areas.

When GSPL is specified, the first byte of the list contains the number of remaining bytes
in the list. Each of the following bytes contains a virtual storage subpool number.

,SHSPV • subpool nmbr
,SHSPL • subpool /ist addr

specifies a virtual storage subpool number or the address of a list of virtual storage
subpool numbers, each less than 128. Programs of the originating task and the new
task can use the associated virtual storage areas.

When SHSPL is specified, the first byte of the list contains the number of remaining
bytes in the list. Each of the following bytes contains a virtual storage subpool number.

,SZERO•YES
,SZERO•NO

specifies whether subpool O is to be shared (YES) or not to be shared (NO) with the
subtask.

ATIACH and ATTACHX-Create a New Task 43

,TASKLIB•dcb addr
specifies the address of the DCB for the library to be used as the attached task's
library. Otherwise, the task library is propagated from the originating task. Searching
LINKLIB indicates the end of the search. When the DCB address specifies LINKLIB, no
other library is searched.

Note: The DCB must be opened before the ATTACH macro is executed and must
reside in storage below 16 megabytes.

,STAI- exit addr
,STAI• exit addr,parm addr
,ESTAI •exit addr
,ESTAI =exit addr,parm addr

specifies whether or not a STAI or ESTAI SCB is to be created. STAl/ESTAI SCBs
queued to the originating task are propagated to the new task.

The exit addr specifies the address of the STAI or ESTAI exit routine. This routine
receives control when the subtask abnormally terminates. The exit routine must be in
virtual storage at the time of abnormal termination. The parm addr is the address of a
parameter list to be used by the STAI or ESTAI exit routine.

ATTACH processing passes control to the ESTAI exit routine in the addressing mode of
the caller of the ATTACH service routine. The ESTAI exit routine can execute in either
24-bit or 31-bit addressing mode. A STAI exit routine can execute only in 24-bit
addressing mode. When a caller, in 31-bit addressing mode or in AR mode, specifies
the STAI parameter on the ATTACH macro, the caller is abended with an X'52A'
completion code.

,PURGE• QUIESCE
,PURGE• NONE
,PURGE== HALT

specifies the action to be taken with regard to 110 operations when the subtask
abnormally termin~tes. NONE indicates that no action is specified. HALT indicates
halting of 1/0 operations. QUIESCE indicates quiescing of 110 operations.

,ASYNCH-NO
,ASYNCH -YES

specifies whether or not asynchronous exits are to be allowed when a subtask
abnormally terminates ..

ASYNCH =YES must be coded when:

• Supervisor services, thllt require asynchronous interruptions to complete their
normal processing, are to be requested by the EST Al exit routine.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE= NONE is specified and the CHECK macro is issued in the ESTAI exit
routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: An ABEND recursion develops, when ASYNCH =YES is specified, and ABEND is
scheduled because of an error in asynchronous exit handling.

,TERM•NO
,TERM•YES

specifies whether or not the exit routine associated with the ESTAI request is scheduled
in these situations:

• CANCEL
• Forced LOGOFF
• Job step timer expirations
• Wait time limit for job step exceeded
• ABEND condition. Incomplete task detached when STAE option is not specified on

DETACH
• Attaching task abnormally terminates

44 SPL: Application Development Macro Reference

,SM•PROB
,SM-SUPV

PROB specifies that the system is to run in problem program mode. SUPV specifies
that the system is to run in supervisor mode when executing the attached task.

,SVAREA =YES
,SVAREA=NO

specifies whether or not a save area is needed for the attaching task. YES specifies
that the ATIACH routine obtains a 72-byte save area. When the attaching and attached
task share subpool zero, the save area is obtained there. Otherwise, it is obtained from
a new 4K-byte block. NO specifies that no save area is needed.

,KEY•PROP
,KEY•ZERO

ZERO specifies that the protection key of the newly created task should be zero. PROP
specifies that the protection key of the newly created task should be copied from the
TCB for the task using ATIACH.

,DISP=YES
,DISP=NO

YES specifies that the subtask is dispatchable. NO specifies that the subtask is
nondispatchable.

Note: When DISP =NO is specified, before the ATTACl-I processing can be completed
for the new task, the attaching task must use the STATUS macro to make the task
dispatchable.

, TIO -= task id
specifies the task identifier to be placed in the TCB field of the attached task.

,NSHSPV • subpool nmbr
,NSHSPL = subpool list addr

specifies the virtual storage subpool number 236 or 237, or the address of a list of
virtual storage subpool numbers 236 and 237. The subpools specified are not shared
with the subtask.

When NSHSPL is specified, the first byte of the list contains the number of bytes
remaining in the list. Each of the subsequent bytes contains a virtual storage subpool
number.

,RSAPF=YES
,RSAPF=NO

specifies that the attached subtask comes from an unauthorized library. When it comes
from an APF-authorized library and is link-edited with the APF-authorized attribute, ttie
step begins execution with APF authorization.

RSAPF = YES when these conditions are met:

• The caller is running in supervisor state, system key (0-7), or both
• The caller is running non-APF authorized
• The task is attached in the problem program state and with a non-system key.

Specify RSAPF =NO when the APF authorization of the step is to remain unchanged.

,ALCOPY=NO
,ALCOPY =YES

specifies the EAX value for the new task and determines the contents of its access list.
ALCOPY=NO gives the new task an EAX of zero and a null access list. ALCOPY=YES
gives the new task:

• The same EAX as the caller
• A copy of the caller's DU-AL

The default is ALCOPY =NO.

ATTACH and ATTACHX- Create a New Task 45

,RELATED= (value)
specifies Information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the Information
specified are at the discretion of the user. They can be any valid coding values.

When control is returned, register 15 contains one of these return codes:

Hexadecimal
Code

00

Notes:

04

08

oc

14

18

Meaning

Successful completion.

ATIACH is issued in a STAE exit. Processing not completed.

Insufficient storage available for control block for STAl/ESTAI request. Processing
not completed.

Invalid exit routine address or invalid parameter list address specified with STAI
parameter. Processing not completed.

Authorized task specifying JSTCB =YES is not a job step task. Processing not
completed.

Attempt to create a new subtask results in the job step tasks and non-job step
tasks in becoming subtasks of the current task. Processing not completed.

1. Upon return, for any return code, register 1 is set to zero. The 00 is an exception.

2. After control is returned to the originating task, the program manager, processing for
ATTACH, is performed under the new subtask. It is possible for the originating task to
obtain return code 00, and still not have the subtask successfully created. For example,
when the entry name cannot be found by the program manager. In such cases, the new
subtask is abnormally terminated.

Example 1
Operation: Attach program SYSPROGM, runs with protection key 0 and in supervisor
mode. Subpool 0 is not to be shared, and the new task is not to have a save area.

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO,SVAREA=NO

Example 2
Operation: Attach the program name addressed in register 7. The new task is to run in
problem program mode, a save area is to be provided, subpool 0 is not to be shared, a task
library DCB is provided, and the new task is to be nondispatchable.

ATTACH EPLOC=(7),SM=PROB,SVAREA=YES,SZERO=NO, X
DISP=NO,TASKLIB=(8)

Example 3
Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

Example4
Operation: Cause PROGRAM1 to be attached, share subpool 5, supply WORD1 so that the
originating task can know when the subtask is complete, and establish EXIT1 as an ESTAI
exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

46 SPL: Application Development Macro Reference

Example 5
Operation: Cause PROGRAM1 to be attached, and share subpool zero. The subtask is to
receive control:

• With the same extended authorization index EAX as the caller.
• With a copy of the caller's dispatchable unit access list DU-AL.

TESTCASE CSECT

ATTACH EP=PROGRAMl,SZERO=YES,ALCOPY=YES

END TESTCASE

ATTACH and ATTACHX- Create a New Task 47

ATTACHX - Create a New Task
The ATTACHX macro creates a new task for callers in AR mode or primary mode. It
indicates the entry point in the program to be given control when the new task becomes
active.

The caller in AR mode must issue the SYSSTATE ASCENV=AR to tell ATTACHX to generate
code and addresses appropriate for callers in AR mode. Parameters for the ATTACHX
macro are the same as those for the ATTACH macro.

These are the requirements for the caller:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:
Control parameters:

Supervisor state or Problem state
Task
PASN = HASN
Any
Primary or AR
Enabled and unlocked
Parameter lists, and any data pointed to by the parameter lists, must
reside in the caller's primary address space. For callers in AR mode, the
parameter list address is qualified by an ALET of 0.
For callers in AR address space control (ASC) mode, the user's parameter
list (PARAM parameter) can be in the primary address space (qualified by
an ALET of O) or in any space addressable through public entries in the
caller's dispatchable unit access list (DU-AL).

The format of the PARAM parameter list for callers in AR mode differs from the format for
callers in primary mode.

System parameter lists, and data pointed to by those parameter lists, must reside in the
caller's primary address space. Addresses on the user's parameter list (PARAM
parameter) can be in any address space.

This is the standard form of the ATTACHX macro:

name

b

ATIACHX

b

EP =entry name
EPLOC =entry name addr
DE= list entry addr

,DCB= deb addr

,LPMOD =limit prior nmbr

,DPMOD = disp prior nmbr

,PARAM=addr
,PA RAM= addr,VL = 1

,ECB = ecb addr

,ETXR =exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpool list addr

,SHSPV=subpoo/ nmbr
,SHSPL = subpool list addr

48 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH or ATTACHX.

One or more blanks must follow ATTACH or ATIACHX.

entry name: symbol.
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2 - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas.
For example, PARAM=addr,addr,addr

ecb addr: A-type address, or register (2) - (12).

exit rtn addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr

,STAI= (exit addr)
,STAI= (exit addr,parm addr)
,ESTAI= (exit addr)
,ESTAI =(exit addr,parm addr)

,PURGE= QUIESCE
,PURGE= NONE
,PURGE=HALT

,ASYNCH=NO
,ASYNCH =YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=SUPV

,SVAREA =YES
,SVAREA=NO

,KEY=PROP
,KEY=ZERO

,OISP=YES
,DISP=NO

,TID=task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
,RSAPF=YES

,ALCOPY =YES
,ALCOPY=NO

,RELATED= value

Default: SZERO =YES

deb addr: A-type address, or register (2) - (12).

exit addr: A-type address, or register (2) - (12)
parm addr: A-type address, or register (2) - (12)
Note: AR mode callers must not use STAI.

Note: Specify PURGE only if you specify ESTAI.
Default for ESTAI: PURGE= NONE

Note: Specify SYNCH only if you specify ESTAI.
Default for ESTAI: ASYNCH=YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM= NO

Default: SM = PROB

Default: SVAREA =YES

Default: KEY= PROP

Default: DISP =YES

task id: decimal digits 0-255, or register (2) - (12).
Default: TID=O

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoo/ list addr: A-type address, or register (2) - (12).

Default: RSAPF = NO

Default: ALCO PY= NO

value: any valid macro keyword specification.

The parameters are explained under ATTACH. The parameters must be ALET-qualified
when a program in AR mode passes a parameter list to the attached task through the
PARAM parameter. These are the parameters:

PARAM=addr
PARAM•addr,VL=1

specifies address(es) the caller passes to the attached task. ATTACHX expands each
address inline to a fullword boundary and builds a parameter list with the addresses in
the order specified. When the attached task receives control, register 1 contains the
address of the parameter list. When PARAM is not specified, ATTACHX passes GPR1
and AR1 unchanged to the attached routine.

For programs in AR mode, the addresses passed to the system are in the first half of
the parameter list and their associated ALETs are in the last half of the list.

ATTACH and ATTACHX- Create a New Task 49

To pass a variable number of parameters, designate VL = 1. It tells the system to set
the high-order bit of the last address to 1. The 1 in the high-order bit identifies the last
address parameter, but not the last entry in the list. For more information about
passing user parameters, see " User Parameters" on page 5.

The contents of the ARs on entry to the subtask are:

Register Contents

0

1

2·12

13-15

Example

Used as a work register by the system.

Zero if you specified a user parameter list on either the PARAM or MF= E
parameters; otherwise unchanged.

Used as work registers by the system.

Zeroes.

Operation: With the caller in AR ASC mode, cause PROGRAM1 to be attached and share
subpool zero. The subtask is to receive control:

• With the same extended authorization index EAX as the caller
• With a copy of the caller's dispatchable unit access list DU-AL
• Executing in AR ASC Mode.

TESTCASE CSECT

SYSSTATE ASCENV=AR

ATTACHX EP=PROGRAMl,SZERO=YES,ALCOPY=YES

END TESTCASE

50 SPL: Application Development Macro Reference

ATTACH and ATTACHX (List Form)
Both, control and user parameter lists are used in the ATTACH and ATTACHX macros. The
control parameter list is constructed with the list form of ATTACH or ATTACHX. The user
parameter list, is constructed with the list form of the CALL macro. Refer to this parameter
list in the execute form of ATTACH or ATTACHX.

The parameter lists for callers in AR mode, for the same number of addresses, are twice
the size of the parameter lists for callers in primary mode. The system qualifies each
address on the parameter list with an ALET. ALET identifies the address space.

This is the list form of the ATTACH or ATTACHX macro:

name

b

ATTACH
ATTACHX

b

EP =entry name
EPLOC =entry name addr
DE= list entry addr

,DCB=dcb addr

,LPMOD =limit prior nmbr

,DPMOD= disp prior nmbr

,ECB=eeb addr

,ETXR =exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpool list addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=deb addr

,STAI= (exit addr)
,STAI= (exit addr,parm addr)
,ESTAI =(exit addr)
,ESTAI =(exit addr,parm addr)

,PURGE= QUIESCE

,PURGE= NONE
,PURGE= HALT

,ASYNCH=NO
,ASYNCH =YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=SUPV

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH or ATTACHX.

One or more blanks must follow ATTACH or ATTACHX.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.

disp prior nmbr: symbol or decimal digit.

eeb addr: A-type address.

exit rtn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

DefauH: SZERO =YES

deb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.
Note: STAI Is valid only for callers in primary mode.

Note: PURGE may be specified only if STAI or ESTAI is
specified.
DefauH for STAI: PURGE=QUIESCE
DefauH for ESTAI: PURGE= NONE

Note: ASYNCH can be specified only when STAI or ESTAI
is specified.
DefauH for STAI: ASYNCH =NO
DefauH for ESTAI: ASYNCH=YES
Note: TERM can be specified only when ESTAI is specified.
Default: TERM = NO

Default: SM = PROB

ATTACH and ATTACHX- Create a New Task 51

,SVAREA=YES
,SVAREA=NO

,KEY=PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

,TIO= task id

,NSHSPV = subpoo/ nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
,RSAPF=YES

,ALCOPY=YES
,ALCOPY=NO

,RELATED= value

,SF=L

Default: SV AREA= YES

Default: KEY= PROP

Default: DISP =YES

task id: decimal digits 0-255.
Default: TIO= O

subpool nmbr: symbol, decimal digit.
subpool list addr: A-type address.

DefauH: RSAPF = NO

Default: ALCO PY= NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ATTACH or ATTACHX macro.
This is the exception:

,SF=L
specifies the list form of the ATTACH or ATTACHX macro.

Note: When the RSAPF parameter is not specified on the list form of ATTACH or ATTACHX,
the default is RSAPF =NO. When RSAPF =YES is specified on the list form or on a previous
execute form using the same SF= list, RSAPF =NO is ignored for any subsequent execute
forms of ATTACH or ATT ACHX.

Once RSAPF is specified, it is in effect for all users of that list.

52 SPL: Application Development Macro Reference

ATTACH and ATTACHX (Execute Form)
Two parameter lists are used in ATTACH and ATTACHX: a control parameter list and an
optional user parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH or ATTACHX. When only the
user parameter list is remote, parameters that require use of the control parameter list
cause that list to be constructed inline as part of the macro expansion.

This is the execute form of the ATTACH or A TT ACHX macro:

name

b

ATIACH
ATIACHX

b

EP=entry name
EPLOC =entry name addr
DE= list entry addr

,DCB= deb addr

,LPMOD =limit prior nmbr

,DPMOD=disp prior nmbr
,PARAM=addr
,PARAM = addr,VL = 1

,ECB = ecb addr

,ETXR =exit rtn addr

,GSPV=subpool nmbr
,GSPL = subpoo/ list addr

,SHSPV=subpoo/ nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr

,STAI= (exit addr)
,STAI= (exit addr,parm addr)
,ESTAI =(exit addr)
,ESTAI =(exit addr,parm addr)

,PURGE= QUIESCE

,PURGE= NONE
,PURGE=HALT

,ASYNCH=NO

,ASYNCH =YES

,TERM=NO
,TERM=YES

,SM=PROB
,SM=SUPV

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH or ATIACHX.

One or more blanks must follow ATIACH or ATIACHX.

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit. or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).
addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas.
For example, PARAM =addr,addr,addr

ecb addr: RX-type address, or register (2) - (12).

exit rtn addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).
Note: AR mode callers must not use ST Al.

Note: PURGE may be specified only when STAI or ESTAI is
specified.

Note: ASYNCH may be specified only when STAI or ESTA! is
specified.

Note: TERM may be specified only when ESTAI is specified.

Default: SM= PROB

ATIACH and ATIACHX- Create a New Task 53

,SVAREA =YES
,SVAREA=NO

,KEY=PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

,TIO= task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
,RSAPF=YES

,ALCO PY= YES
,ALCOPY=NO

, RELATED= value

,MF= (E,prob addr)
,SF= {E,ctr/ addr)
,MF={E,prob addr),SF=(E,ctrl addr)

Default: SVAREA =YES

Default: KEY= PROP

Default: DISP =YES

task id: decimal digits 0-255, or register (2) - (12).
Default: TID=O

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

Default: RSAPF = NO

Default: ALCO PY= NO

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).
ctr/ addr: RX-type address, or register (2) - (12) or (15).

The parameters are explained under the standard form of the ATTACH macro, with these
exceptions:

,MF= (E,prob addr)
,SF .. (E,ctr/ addr)
,MF• (E,prob addr),SF = (E,ctr/ addr)

specifies the execute form of the ATTACH or A TT ACHX macro. It uses a remote user
parameter list, a remote control parameter list, or both. When no parameter list is
provided, user or control parameters are provided in parameter lists expanded inline.

Notes:

1. When STAI is specified on the execute form, these fields are overlaid In the control
parameter list: exit addr, parm addr, PURGE, and ASYNCH. When parm addr Is not
specified, zero is used. When PURGE or ASYNCH are not specified, defaults are used.

2. When ESTAI is specified on the execute form, these fields are overlaid: exit addr, parm
addr, PURGE, ASYNCH, and TERM. When parm addr is not specified, zero Is used.
When PURGE, ASYNCH, or TERM are not specified, defaults are used.

3. The STAI or ESTAI must be completely specified on either the list or execute form, but
not on both forms.

4. When SZE RO is not specified on the list or execute form, the default Is SZE RO= YES.
When SZERO =NO is specified on either the list form or a previous execute form using
the same SF= list, SZE RO= YES is ignored for any subsequent execute forms of the
macro. Once SZERO= NO is specified, it is in effect for all users of that list.

5. When RSAPF =YES is specified on the I ist form or on a previous execute form of the
ATTACH or ATTACHX macro using the same SF= list, RSAPF=NO is ignored for any
subsequent execute forms of the macro.

54 SPL: Application Development Macro Reference

AXEXT - Extract Authorization Index

© Copyright IBM Corp. 1988, 1991

The AXEXT macro returns the authorization index value, AX, of the address space.

These are the requirements for the caller:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASC mode:
Serialization:
Control parameters:

Supervisor state or PKM 0-7
Task or SRB
PASN = HASN or PASN not = HASN
Any
Primary
Enabled and unlocked
Control parameters must be in the primary address space.

Register 13 must point to a standard register save area addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Contents Register
0
1

Bits 16-31 contain the extracted AX; bits 0-15 are set to 0.
Used as a work register by the macro
Unchanged 2 -13

14
15

Used as a work register by the macro
Return code

This is the standard form of the AXEXT macro:

name

b

AX EXT

b

ASID = asid value

,RELATED= value

These are parameters:

ASID = as id value

name: symbol. Begin name in column 1.

One or more blanks must precede AXEXT.

One or more blanks must follow AXEXT.

asid value: RX-type address or register (0) - (12).
Default: current PASID.

value: any valid macro keyword specification.

specifies the ASID of the address space from where the AX is to be extracted. When
the RX-type address is used, it points to a halfword containing the ASID. When the
register form is used, bits 16-31 contain the ASID and bits 0-15 are set to zero. When
ASID is not specified, the current PASID is assumed.

,RELATED= value
specifies information used to self document macros by "relating" functions or services
to corresponding functions or services. The format and content of the information are
set at the discretion of the user. They can be any valid coding values.

55

When control returns, register 15 contains this return code:

Hexadecimal
Code

0

56 SPL: Application Development Macro Reference

Meaning

The AX value of the specified address space was successfully obtained.

AXFRE - Free Authorization Index

© Copyright IBM Corp. 1988, 1991

The AXFRE macro returns one or more authorization index (AX) values to the system. The
AX value can be used as an extended authorization index (EAX) value. The caller must
ensure that the AXs to be returned are no longer being used by any address space as an AX
or an EX, otherwise, the caller abnormally terminates. On completion of the AXFRE macro,
all authorization of the freed AX values in authorization tables for the entire system are
purged. The caller must be dispatched in the address space that owns the AX.

These are the requirements for the caller:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Serlallzatlon:
Control parameters:

Supervisor state or PKM = Oto 7
SRB or task
PASN = HASN
Any
Primary
Enabled and unlocked
For callers in primary mode, control parameters must be in the primary
address space.

Register 13 must point to a standard register save area addressable in primary mode.
When the macro is issued, the list of AX values passed to the AXFRE macro must also be
addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
O - 1 Used as work registers by the macro
2 - 13 Unchanged
14 Used as a work register by the macro
15 Return code

This is the standard form of the AXFRE macro:

name name: symbol. Begin name in column 1.

b One ore more blanks must precede AXFRE.

AXFRE

b One or more blanks must follow AXFRE.

AXLIST =list addr list addr: RX-type address or register (0) - (12).

,RELATED= value value: any valid macro keyword specification.

57

These are the parameters:

AXLIST = /lst addr
specifies the address of a variable length list of halfword entries that contain the AX
values to be freed. The first halfword must contain the number of values in the list.

,RELATED'"" value
specifies information used to self document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the Information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains one of the these return codes:

Hexadecimal
Code

0

4

58 SPL: Application Development Macro Reference

Meaning

The specified authorization index or indexes are successfully freed.

The specified authorization index or indexes are not successfully freed. One or
more of the indexes are unavailable for use.

AXRES - Reserve Authorization Index

© Copyright IBM Corp. 1988, 1991

The AXRES macro reserves one or more authorization index (AX) values for the caller's
use. The AX values are owned by the current home address space.

The AXSET macro sets the AX of the home address space to the value (or values) that is
reserved by the AXRES macro.

The caller can use the value returned by the system as an AX through the AXSET macro, or
as an extended authorization index (EAX) through the ETDEF, ETCRE, and ETCON macros.
The AX value associated with a program determines whether that program is permitted to
issue the PT instruction with another address space as the target, and/or set another
address space as its secondary address space through the SSAR instruction. The EAX
value determines whether a program running with the EAX can access data in another
address space through a private access list entry.

These are the requirements for the caller:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Serialization:
Control parameters:

Supervisor state or PKM = Oto 7
SRB or task
PASN = HASN
Any
Primary
Enabled and unlocked
For callers in primary mode, control parameters must be in the
primary address space.

The parameter list passed to the AXRES macro must be addressable in primary mode when
the macro expansion is executed. Register 13 must point to a standard register save area
addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
0 -1
2 -13
14
15

Contents
Used as work registers by the macro
Unchanged
Used as a work register by the macro
Return code

This is the standard form of the AXRES macro:

name name: symbol. Begin name in column 1.

b One or more blanks must precede AXRES.

AX RES

b One or more blanks must follow AXRES.

AXLIST=/ist addr list addr: RX-type address or register (0) - (12).

, RELATED= value value: any valid macro keyword specification.

59

The parameters are explained as follows:

AXLIST =list addr
specifies the address of a variable length list, addressable in primary mode, of
halfword entries in which requested AX values are to be returned. The first halfword
must contain the number of values to be returned. Enough halfwords must follow the
first entry to contain the requested number of values. If the requested number of AX
values is not available, the caller is abnormally terminated.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains this return code:

Hexadecimal
Code

0

60 SPL: Application Development Macro Reference

Meaning

The AX value or values were successfully reserved.

AXSET - Set Authorization Index

© Copyright IBM Corp. 1988, 1991

The AXSET macro sets the authorization index (AX) of the home address space to the value
specified by the caller. The AX must be reserved. The address space in which the AX is
being changed cannot own connected space switch entry tables. All routines that
subsequently execute, with a PASID of the address space for the AX being changed, execute
with the new AX.

These are the requirements for the caller:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serlallzatlon:
Control parameters:

Supervisor state or PKM = 0-7
Task or SRB
PASN = HASN or PASN not = HASN
Any
Primary
Enabled and unlocked
Primary

Register 13 must point to a standard register save area addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 -13 Unchanged
14 Used as a work register by the macro
15 Return code

This is the standard form of the AXSET macro:

name name: symbol. Begin name in column 1.

b One or more blanks must precede AXSET.

AXSET

b One or more blanks must follow AXSET.

AX=AX value AX value: RX-type address or register (0) - (12).

,RELATED= value value: any valid macro keyword specification.

These are the parameters:

AX=AX value
specifies the new AX value. The RX-type address specifies a halfword containing the
new AX. When the register form is used, the register must contain the new AX in bits
16-31, and bits 0-15 must be zero.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

61

When control returns, register 15 contains this return code:

Hexadecimal
Code

0

62 SPL: Application Development Macro Reference

Meaning

The AX of the home address space is set to the value specified by the caller.

CALLDISP - Pass Control to Another Ready Task

© Copyright IBM Corp. 1988, 1991

The CALLDISP macro saves the caller's status in the current TCB/RB, and passes control to
another ready task. The task with the highest priority is the one that receives control.
When the original task is redispatched, control is returned to the next sequential instruction.

These are the requirements for the caller:

• When BRANCH = NO

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:
Control parameters:

• When BRANCH = YES

Authorization:
Dispatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Serialization:
Control parameters:

None
Task
PASN = HASN
Any
Primary
Enabled and unlocked
None

Supervisor state or PKM = O
Task
PASN = HASN or PASN not = HASN
Any
Any
Enabled and unlocked
None

When control returns to the caller:

• The cross memory mode is unchanged.
• When FIXED=NO is specified, registers 14-1 are destroyed; otherwise registers are

unchanged.
• No locks are held.
• Control returns enabled.
• PCLINK status is saved and restored.

This is the standard form of the CALLDISP macro:

name

b

CALLDISP

b

BRANCH=NO
BRANCH=YES

,FIXED=YES
,FIXED=NO

,FRRSTK =SAVE
,FRRSTK = NOSAVE

name: symbol. Begin name in column 1.

One or more blanks must precede CALLDISP.

One or more blanks must follow CALLDISP.

Delault: BRANCH= NO

Default: (Available only when BRANCH=YES is coded)
FIXED=YES

Delault: (Available only when BRANCH=YES is coded)
FRRSTK = NOSAVE

63

These are the parameters:

BRANCH•NO
BRANCH=YES

specifies whether the branch entry (BRANCH= YES) or the SVC entry (BRANCH =NO)
of CALLDISP is to be used. The default is BRANCH= NO.

BRANCH= YES is restricted to key O supervisor state callers. Routines in cross
memory mode must specify BRANCH= YES. See SPL: Application Development Guide
for more information about the requirements for using the BRANCH= YES option of the
CALLDISP Macro.

Routines that are unlocked, have no enabled unlocked task FRRs on the stack, and are
not i.n cross memory mode, can use BRANCH= NO.

,FIXED-YES
,FIXED•NO

specifies that the code invoking branch entry CALLDISP Is In fixed storage
(FIXED= YES) or in pageable storage (FIXED= NO). For FIXED= NO, registers 14-1 are
altered.

,FRRSTK =SAVE
,FRRSTK • NOSAVE

specifies that the current FRR stack be saved and restored (FRRSTK =SAVE), when at
least one of the FRRs is an enabled unlocked task (Eun FRR, or purged
(FRRSTK = NOSAVE).

When FRRSTK=SAVE is specified:

• The caller cannot hold any locks or an abend results.

• When EUT FRRs exist, the current FRR stack is saved and the caller can hold either
the LOCAL or CML lock.

• When no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend
occurs.

• Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs are
deleted.

For more information, see "Suspension and Resumption of Request Blocks" in SPL:
Application Development Guide for an explanation of the CALLDISP function used with
SUSPEND/RESUME processing.

Example1
Operation: Pass control to another ready task.

CALLDISP

Example2
Operation: A non-page-fixed task with an enabled, unlocked task FRR gives control to
another ready task. When the task regains control, the contents of registers 14, 15, 0, and 1
have been destroyed.

CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

84 SPL: Application Development Macro Reference

CALLRTM - Call Recovery Termination Manager

© Copyright IBM Corp. 1988, 1991

The CALLRTM macro schedules abnormal termination for a task or address space. The
system selects the appropriate recovery or termination process according to the status of
the system and the requests of its invokers.

See also: "Invoking the Recovery Termination Manager" in SPL: Application Development
Guide.

These are the requirements for the caller:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:

Serlallzatlon:

Control parameters:

Savearea

Key 0, Supervisor state
Task or SRB
Any cross memory mode
Any
Home, primary, or secondary. When TYPE=ABTERM is specified in a
mode other than home mode, ASID must be specified.
• When TYPE= ABTERM and TCB = 0, or equals the address of the

current task, the caller must be disabled for 110 and external interrupts.
• When TYPE= ABTERM and TCB does not equal 0 or the address of the

current task, the caller must hold the local lock.
• When TYPE= MEMTERM, the user has no disablement or locking

requirements.
Must reside in the currently addressable space. When TYPE= ABTERM
and TCB does not equal 0 or the address of the current task, the dump
options must reside in fixed or DREF storage.

• When TYPE=ABTERM is specified and the ASID parameter is omitted,
there are no savearea requirements

• When TYPE= ABTERM is specified with ASID, or when
TYPE= MEMTERM is specified, the invoker must provide the address of
an 18-word savearea in register 13.

When the caller is executing in 31-bit addressing mode, all input parameters, except the
TCB, can reside in storage above 16 megabytes.

This is the standard form of the CALLRTM macro:

name

CALLRTM

b

TYPE= ABTERM
TYPE= MEMTERM

,COMPCOD =comp code

,REASON= code

,ASID=asid

,TCB = tcb addr

,DUMP=YES
,DUMP=NO

name: symbol. Begin name in column 1.

One or more blanks must precede CALLRTM.

One or more blanks must follow CALLRTM.

comp code: symbol, decimal digit, or register (2) - (12).

code: a symbol, decimal or hexadecimal number, or register
(2) - (12).

asid: decimal digits 0-32,765 or register (2) - (15).

tcb addr: 0, or register (2) - (12).
Note: This parameter can only be specified with
TYPE=ABTERM.

DefauR: DUMP= YES
Note: This parameter can only be specified with
TYPE= ABTERM.

65

,STEP=NO
,STEP=YES

,DUMPOPT=parm list addr
,DUMPOPX = parm list addr

These are the parameters:

TYPE= ABTERM
TYPE= MEMTERM

Defautt: STEP= NO
Note: This parameter can only be specified with
TYPE= ABTERM.

parm list addr: register (3)- (15).
parm list addr:·register (3)-(15).

specifies whether the services of the recovery termination manager are directed
towards task termination (ABTERM) or address space termination (MEMTERM). For
MEMTERM, all recovery processing is skipped in the address space.

TYPE= ABTERM is supported in home mode when ASID is specified.

To specify TYPE= ABTERM and TCB = 0, the user must be disabled for 1/0 and external
interrupts. To specify TYPE= ABTERM but not TCB = 0, the user must be holding the
local lock.

In a cross memory environment, when ASID is not specified, the TCB must reside in the
home address space. When ASID is specified, the TCB must be in the same address
space as the ASCB.

,COMPCOD = compcode
specifies the system completion code associated with the abnormal termination. This
parameter can be specified as a hexadecimal code (x'BOA'.), a decimal code (2058), or
a register containing a hexadecimal code. In all cases, the result is hexadecimal.

,REASON= code
specifies additional information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is a 32-bit hexadecimal
number or 31-bit decimal number. In all cases the result is hexadecimal.

The system uses the SDWACRC field of the SOWA to pass the reason code to the
recovery routine.

,ASID=asid
specifies the address space identifier of the address space to be terminated (for
MEMTERM) or the address space identifier of the address space containing the TCB of
the task to be terminated (for ABTERM). When this parameter is omitted or when zero
is specified, the current address space is assumed. When this parameter is specified,
an 18-word work area must be supplied and its address must be passed in register 13.

Note: The contents of register 2 is destroyed when this parameter is used.

, TCB = tcb addr
specifies the TCB address of the task to be terminated. In a cross memory
environment, when ASID is not specified, the TCB must reside in the home address
space. When ASID is specified, the TCB must be in the same address space as the
ASCB.

Note: The TCB resides in storage below 16 megabytes.

,DUMP=YES
,DUMP=NO

specifies whether a dump is (YES) or is not (NO) to be taken. When the DUMPOPT or
DUMPOPX parameter is not specified, the contents of the dump are defined by the
//SYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement and the system or
user-defined defaults.

,STEP=NO
,STEP-YES

specifies whether the job step is (YES) or is not (NO) to be abnormally terminated.

66 SPL: Application Development Macro Reference

,DUMPOPT =pa rm list addr
,DUMPOPX = parm list addr

specifies the address of a parameter list of dump options. To create the parameter list,
use the list form of the SNAP or SNAPX macro; or build the parameter list by coding
your own data constants. DUMPOPT specifies the address of a parameter list that the
SNAP macro creates. DUMPOPX specifies the address of a parameter list that the
SNAPX macro creates.

The system dump options, specified by the CHNGDUMP operator command, can add to
or override this parameter list. All recovery routines entered for the failure can also
add to the list of dump options. The TCB, DCB, and STRHDR options available on SNAP
or SNAPX are ignored when they appear in the parameter list. The TCB is for the task
that receives the ABEND. The DCB is provided by the ABDUMP routine. When a
//SYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement is not provided, the
DUMPOPT or DUMPOPX parameter is ignored.

Note: The contents of register 3 is destroyed when this parameter is used.

Register 15 contains one of these return codes for TYPE=ABTERM:

Hexadecimal
Code

0

4

8

18

1C

28

Meaning

The ABTERM request was processed successfully.

The task has already been scheduled for termination by a previous ABTERM
request.

An asynchronous unit of work has been scheduled to terminate the task.

The ASID value is invalid.

The TCB passed to RTM is invalid.

An SRB could not be obtained.

Register 15 contains one of these return codes for TYPE= MEMTERM:

Hexadecimal
Code

0

18

2C

Example 1

Meaning

The MEMTERM request was processed successfully.

The ASID value is invalid.

The address space cannot be terminated by the MEMTERM request.

Operation: Terminate the current address space with a completion code of 123.

CALLRTM TYPE=MEMTERM,COMPCOD=l23,ASID=O

Example 2
Operation: Schedule the TCB, addressed in register 8, for abnormal termination. The
abnormal termination of the TCB takes place in the address space identified by the ASID,
specified in register 5. It has a completion code of 123.

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5},TCB=(8)

CALLRTM - Call Recovery Termination Manager 67

68 SPL: Application Development Macro Reference

CHANGKEY - Change Virtual Storage Protection Key

© Copyright IBM Corp. 1988, 1991

The CHANGKEY macro changes the protection key and fetch protection status of one or
more pages of virtual storage. The CHANGKEY function is available only for use by
programs that execute in supervisor state and key zero. Callers can be enabled or
disabled.

CHANGKEY is valid for virtual storage that is obtained by a GETMAIN or a STORAGE
macro. The storage must be obtained in page multiples from subpools that are available to
programs in problem program state. Callers must provide an 18-word save area and place
the address of the save area in register 13. If the caller is disabled, the save area must be
in fixed storage.

The CHANGKEY macro is written as follows:

name

b

CHANG KEY

b

R,BA =page addr,EA =page addr
L,LISTAD =list addr

name: symbol. Begin name in column 1.

One or more blanks must precede CHANGKEY.

One or more blanks must follow CHANGKEY.

page addr: A-type address or register (1) - (12).
Note: The R-type macro expansion alters the contents of
register 2. EA should not be specified as (1).
list addr: A-type address or register (1) - (12).

,KEY= stor key stor key: Decimal digit i-ib or register (0) or register (3) - (12).

,BRANCH=YES Required.

The parameters are explained as follows:

R,BA =page addr,EA =page addr
L,LISTAD =list addr

specifies the type of CHANGKEY request:

R indicates a request to change the key of a single area of virtual storage.

L indicates a request to change the key of one or more areas of virtual storage.

BA specifies the address of the first byte of the first page of the virtual storage area
whose key is to be changed.

EA specifies the address of the first byte of the last page of the virtual storage area
whose key is to be changed.

Notes:

1. BA must be less than or equal to EA.

2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the
addressing mode of the issuer of the macro.

LISTAD specifies the address of the first double-word of a variable length parameter list
in fixed storage. The first word of each element is defined as BA above and the second
word of each element as EA above. If the high-order bit of the second word is one, then
that element is the last element in the parameter list.

69

,KEY= stor key
specifies the new storage key and fetch protection status for the virtual storage areas
specified. If the stor key specification is a decimal digit, the system assumes you want
fetch protection. If you do not want fetch protection, specify the protection key in bits
24-27 of a register and leave bit 28 at zero to indicate no fetch protection.

,BRANCH= YES
The only entry available into the CHANGKEY service routine is branch entry.

Note: The requestor must have addressability to the CVT.

Upon completion of the CHANGKEY macro, register 15 contains a zero return code. If a
caller requested that the key be changed to key 0, the caller is abended with a code X'08F'.

Example 1
Operation: Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.

CHANGKEY R,BA=(REG5),EA=(REG5),KEY=8,BRANCH=YES

Example 2
Operation: Change the storage key and ensure fetch protection of two noncontiguous
pages of virtual storage addressed by PAGE1 and PAGE2 respectively.

CHANGKEY L,LISTAD=PLIST,KEY=lO,BRANCH=YES

PLIST DC 2A(PAGE1)
DC A(PAGE2)
DC All (XI 80 I)
DC AL3 (PAGE2)

70 SPL: Application Development Macro Reference

FIRST ELEMENT IN LIST
BA PART OF SECOND ELEMENT
INDICATES LAST ELEMENT IN LIST
EA PART OF SECOND ELEMENT

CIRB - Create Interruption Request Block

© Copyright IBM Corp. 1988, 1991

The CIRB macro causes the exit effector routine to create an interruption request block
(IRB). Other parameters of this macro specify the building of a register save area and/or a
work area to contain interruption queue elements. For information about asynchronous exit
routines, see SPL: Application Development Guide.

These are the requirements for the caller:

• When BRANCH = NO

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:
Control parameters:

• When BRANCH = YES

Authorization:
Dlspatchable unit mode:
Cross memory mode:
A mode:
ASCmode:
Serialization:
Control parameters:

For BRANCH= YES:

None
Task
PASN = HASN
Any
Primary
Enabled and unlocked
Must be in primary address space

Supervisor state and PSW key = 0
Task or IRB
PASN = HASN
Any
Primary
LOCAL lock
Must be in primary address space

• The caller must pass a TCB address in register 4.
• The caller must include the CVT mapping macro.
• Control is returned in supervisor state, key zero, with the same lock as held on entry.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
0
1
2 -13
14 -15

Contents
Used as a work register by the macro
The address of the created IRB
Unchanged
Used as work registers by the macro

71

This is the standard form of the CIRB macro:

name

b

CIRB

EP =entry point addr

,KEY=PP
,KEY=SUPR

,MODE=PP
,MODE=SUPR

,SVAREA=NO
,SVAREA=YES

,RETIQE=YES
,RETIQE=NO

,ST AB= (DYN)

, WKAREA =work area size

,BRANCH=NO
,BRANCH=YES

,RETRN=NO
,RETRN=YES

,AMO DE= CALLER
,AMO DE= DEFINED

These are the parameters:

EP =entry point addr

name: symbol. Begin name in column 1.

One or more blanks must precede CIRB.

One or more blanks must follow CIRB.

entry point addr: RX-type address, or register (0) or (2) - (12).

DefauH: KEY= PP

Default: MODE= PP

Default: SVAREA=NO

Default: RETIQE =YES

workarea size: Decimal digit, or register (2) - (12).
Default: zero

Default: BRANCH= NO

Default: RETRN =NO
Note: This parameter has meaning only when RETIQE= NO is
specified.

Default: AMO DE= CALLER

specifies the address of the entry point of the user's asynchronous exit routine.

,KEY=PP
,KEY=SUPR

specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro (PP).

,MODE=PP
,MODE=SUPR

specifies whether the asynchronous exit routine executes in pro!:>lem program (PP) or
supervisor (SUPR) mode.

,SVAREA=NO
,SVAREA =YES

specifies whether to obtain a 72-byte register save area from the virtual storage
assigned to the problem program. When a save area is requested, CIRB places the
save area address in the IRB. The address of this area is passed to the user routine
via register 13.

72 SPL: Application Development Macro Reference

,RETIQE=YES
,RETIQE ==NO

specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

,STAB==DYN
specifies that the IRB (including the work area) is to be freed by EXIT.

Note: When the STAB parameter is omitted from the CIRB macro, the IRB remains
available for later use by the task issuing the macro.

,WKAREA = workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area
can be used to build IQEs. The first four bytes of the obtained work area contain the
address of the next available IQE (RBNEXAV field). The maximum size is 255 double
words.

,BRANCH=NO
,BRANCH== YES

specifies whether branch linkage (YES) or SVC linkage (NO) to CIRB is provided.

,RETRN=NO
,RETRN==YES

specifies whether the IQE is (YES) or is not (NO) returned to the available queue when
the asynchronous exit terminates.

,AM ODE= CALLER
,AMODE =DEFINED

specifies the addressing mode where the exit routine is to be given control.

When CALLER is specified, the exit routine receives control in the same addressing
mode as the caller.

When DEFINED is specified, the addressing mode of the exit routine is pointer defined.
The addressing mode is determined by the setting of the high order bit of the entry
point address for the exit routine. When the bit is set, the addressing mode is 31-bit;
when the bit is not set, the addressing mode is 24-bit.

Example 1
Operation: Create an iRB to be used in scheduling an asynchronous exit. The exit is
scheduled via the IQE interface to the exit effector. It receives control in the supervisor
state. The IRB is to be freed when it terminates. The exit receives control at the IQERTN
label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO

Example 2
Operation: Create an IRB to be used in scheduling an asynchronous exit. The ROE
interface to the exit effector is used to schedule the routine. The exit gets control at the
RQETEST label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO

CIRB - Create Interruption Request Block 73

74 SPL: Application Development Macro Reference

CMDAUTH - Command Authorization Service

© Copyright IBM Corp. 1988, 1991

The CMDAUTH macro verifies the RACF authorization of commands received from a
console. Each parameter corresponds to a RACROUTE parameter.

There is a list and an execute form, but no standard form of the CMDAUTH macro.

The requirements for the caller are:

Authorization:

Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Interrupt status:
Locks:
Control parameters:

One of the following:

• Supervisor state and key O
• APF authorized

Task
HASN = PASN = SASN
24- or 31-bit addressing mode
Primary
Enabled for 1/0 and external interrupts
No locks held
Must be addressable in the caller's primary address space

When control is returned from CMDAUTH, register 15 contains one of the following return
codes:

Code Meaning
O Command issuer is authorized to issue the command.

4 No authorization decision was made.

8 Command issuer is not authorized to issue the command.

When control is returned from CMDAUTH, register 0 contains a return code from the
security product that is installed on the system. If the security product is RACF, see the
description of the return codes listed with "RACROUTE REQUEST= AUTH - Check RACF
Authorization (for RACF Release 1.9)" on page 477 for further information.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Return code from the security product.
1 Address of error messages if MSGRTN =YES is specified; otherwise, used as

a work register by the macro.
2 • 13 Unchanged
14 Used as a work register by the macro
15 Return code from CMDAUTH.

75

CMDAUTH (List Form)
Use the list form of the CMDAUTH macro to construct a nonexecutable control program
parameter list.

The list form of the CMDAUTH macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede CMDAUTH.

CMDAUTH

b One or more blanks must follow CMDAUTH.

,MF= (L, cntl addr) cntl addr: RX-type address or register (2) - (12).

The parameters for the list form of the CMDAUTH macro are explained as follows:

,MF= (L,cntl addr)
specifies the list form of CMDAUTH. cntl addr defines the area into which the system
stores the parameter list.

76 SPL: Application Development Macro Reference

CMDAUTH (Execute Form)
The execute form of the CMDAUTH macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the CMDAUTH macro is written as follows:

name

b

CMDAUTH

b

ENTITY = entity name addr

,ATTR = accessleveladdr

,LOGSTR =log string addr

,UTOKEN = utoken addr

,CNTLBLK = cntl blk addr

,CBLKTYPE = CIB
,CBLKTYPE = SSCM

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,MSGSUPP =YES
,MSGSUPP=NO

,MSGRTN =YES
,MSGRTN=NO

,MSGSP = subpool number

,MF= (E, cntl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede CMDAUTH.

One or more blanks must follow CMDAUTH.

entity name addr: RX-type address or register (2) - (12).

access level addr: RX-type address or register (2) - (12).

log string addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.

utoken addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.

cntl blk addr: RX-type address or register (2) - (12).
Note: See usage note (following) for usage information.

Note: See usage note (following) for usage information.

reqstor addr: RX-type address or register (2) - (12).

subsys addr: RX-type address or register (2) - (12).

Default: NO

Default: NO

Default: 229.

cnt/ addr: RX-type address or register (2) - (12).

Usage Note: You must specify one of the following parameter combinations:

• UTOKEN and LOGSTR
• CNTLBLK and CBLKTYPE

You cannot specify both of the preceding combinations. Also note that:

• UTOKEN is not valid with CNTLBLK and CBLKTYPE
• LOGSTR is optional with CNTLBLK and CBLKTYPE
• CNTLBLK Is not valid with UTOKEN and LOGSTR
• CBLKTYPE is not valid with UTOKEN and LOGSTR

You can use CNTLBLK and CBLKTYPE to obtain authorization information without having to
specify the UTOKEN and LOGSTR for the command. See the description of the CBLKTYPE
parameter for further information.

CMDAUTH - Command Authorization Service 77

The parameters are explained as follows:

ENTITY= entity name addr
specifies the address of a required 39-byte input field containing the resource name for
the command whose authority you are checking. If the entity name is less than 39
bytes, left-Justify it and pad it on the right with blanks.

ENTITY corresponds to the RACROUTE REQUEST=AUTH parameter, ENTITY.

,ATTR •access level addr
specifies the SAF access level for the command whose authority you are checking. The
bits set In the 1-byte field indicate the access level. The following settings apply:

• 02- READ
• 04-UPDATE
• 08 - CONTROL

ATIR corresponds to the RACROUTE REQUEST=AUTH parameter, ATIR.

LOGSTR =log string addr
specifies the address of a required Input field containing the command text of the
command whose authority you are checking. The first byte of the input field must
contain the length of the command text.

LOGSTR corresponds to the RAC ROUTE REQUEST= AUTH parameter, LOGSTR.

UTOKEN • utoken addr
specifies the address of the UTOKEN that RACROUTE will use for command
authorization.

UTOKEN corresponds to the RACROUTE REQUEST=AUTH parameter, UTOKEN.

CNTLBLK • cntl blk addr
specifies the address of the control block the system passes as input to CMDAUTH.

CBLKTVPE • CIB

PRODUCT·SENSITIVE PROGRAMMING INTERFACE

CBLKTVPE • SSCM

.__ _____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE _____ _.

specifies the type of control block whose address you specify on the CNTLBLK
parameter.

You can use the CIB as input when you need authorization information for START,
STOP, or MODIFY commands.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Use the SSCM as the control block input for any subsystems that use the CMDAUTH
macro during SSI command exit (function code 10) processing.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ____ ___,

,REQSTOR = reqstor addr
specifies the address of an 8-byte character field containing the control point name.
(This address identifies a unique control point within a set of control points that exists
in a subsystem.) If the control point name is less than eight bytes, left-justify it and pad
it on the right with blanks.

If you code this operand and RACF is installed, change the RACF router table to match
the operand.

78 SPL: Application Development Macro Reference

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing the calling subsystem's
name, version, and release level. If the subsystem's name Is less than eight bytes,
left-justify it and pad it on the right with blanks.

If you code this operand and RACF is installed, change the RACF router table to match
the operand.

,MSGSUPP =YES
,MSGSUPP =NO

indicates whether you want to suppress write-to-operator (WTO) messages from SAF
and RACF. The default is NO.

,MSGRTN - YES
,MSGRTN=NO

indicates whether you want CMDAUTH to return error messages to the caller. If you
specify YES, CMDAUTH returns the address of the messages to register 1. The default
is NO.

,MSGSP = subpool number
specifies the number of the subpool into which you want error messages returned. The
default is 229.

,MF""' (E,cnt/ addr)
specifies the execute form of CMDAUTH. This form generates the code to store the
parameters into the parameter list and execute the CMDAUTH macro. cntl addr defines
the area into which the system stores the parameter list.

Example
Operation: Verify the authorization of a command. Register 4 points to the data set name
and register 3 points to the access level setting.

OO_CMOAUTH CMOAUTH ENTITY=(R4),ATTR=(R3),SUBSYS=SUB_NAME,
REQSTOR=REQ NAME,UTOKEN=UTOKEN ADOR,
LOGSTR=LOG_STR,MF=(E,CMDAUTH_LIST)

CMDAUTH - Command Authorization Service 79

80 SPL: Application Development Macro Reference

COFCREAT - Create a VLF Object

© Copyright IBM Corp. 1988, 1991

The COFCREAT macro allows your application to add an object, on behalf of an end user, to
a class of VLF objects. Before issuing COFCREAT, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

When you issue COFCREAT to create a VLF object, you must provide the UTOKEN for a
currently-identified end user, as well as the major name, minor name, and object parts list
for the object to be placed in VLF storage. The object parts list describes the ALET,
location, and size of each source area that is to be made part of the VLF object. To issue
COFCREAT, your program must be running under a task with the same home ASIC as the
issuer of the COFIDENT macro that identified the user.

To ensure that VLF does not create an object if the permanent source data changes between
the time you obtain the object from permanent storage and the time you create the object,
VLF requires that you issue COFRETRI to try to retrieve the object before you issue
COFCREAT.

Thus, normal processing of an end user request for an object includes the following steps:

1. Issue the COFRETRI macro to attempt to retrieve the object.

2. Examine the return code from COFRETRI. VLF can only create an object after you have
tried to retrieve it and when COFRETRI completed with one of the following conditions:

• Object not found (return code 8)
• Best available object found (return code 2)
• Best available object found, but target area is not large enough (return code 6)

3. If the return code is 8, create the object. (Processing return codes 2 or 6 might also
require you to create the object.) Between issuing the COFRETRI and the COFCREAT
for the object, do not issue any COFRETRI macro with the same UTOKEN.

To ensure the integrity of the data, the working storage that your application uses to create
the VLF object must not be key 8 storage, and you must perform the following steps:

1. Change to (or remain in) supervisor state.

2. Issue a BLDL macro for the PCS member using the same DDNAME used to identify the
user to VLF. VLF guarantees that no manipulations with allocation can allow the user to
alter the data sets associated with a DDNAME used to identify a VLF user. In such a
case, VLF invalidates that user's token (UTOKEN).

3. Save the "K" value from a successful BLDL to pass to VLF as the CINDEX value on
COFCREAT.

4. Perform secure 110 to read the object from DASO. Performing secure 110, which
protects the data from malicious tasks, has the following requirements:

a. The DCB used for 110 must not be in key 8 storage.
b. The 110 buffers must not be in key 8 storage.

5. Issue the COFCREAT macro to create the VLF object.

6. If necessary, copy the object to key 8 storage to enable the user program to access it.

Failure to follow these rules compromises the integrity of data objects in VLF storage.
Depending on the nature of the class of VLF objects, incorrect data could cause severe
system integrity problems.

For non-PCS classes, you can issue COFCREAT with the REPLACE option. If you specify
REPLACE, VLF does not require that COFRETRI precede COFCREAT. Because VLF cannot
then guarantee that the source object has not changed, your application must ensure that
the source object remains unchanged between the time when you reference the source
object to create the object parts list and the time when you receive control back from
COFCREAT.

81

If you do not specify REPLACE and issue COFCREAT for an object that already exists in VLF
storage, VLF returns a successful completion code but does not replace the object data. In
this case, VLF.assumes that the data you supply is identical to the data that already exists in
its storage.

If you specify REPLACE and issue COFCREAT for an object that already exists in VLF
storage, VLF does replace the existing object with the parts specified in the object parts list.

Environment:

To Invoke COFCREAT, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

Restrictions:

• If you do not specify REPLACE, you must issue the COFRETRI macro before you issue
COFCREAT on behalf of the user.

• If you specify REPLACE, you must ensure that the source object cannot change until VLF
has processed the COFCREAT macro for the object.

The standard form of the COFCREAT macro is written as follows:

name

COFCREAT

b

MAJOR= major
CINDEX = cindex

,DDNAME=ddname

,REPLACE= YES
,REPLACE= NO

,MINOR= minor

,UTOKEN = utoken

,OBJPRTL = objprtl

,OBJPLSZ = objplsz

,RETCODE = retcod

,RSNCODE = rsncod

name: symbol. Begin name in column 1.

One or more blanks must precede COFCREAT

One or more blanks must follow COFCREAT

major: Rx-type address or register (2) - (12).
cindex: Rx-type address or register (2) - (12).

ddname: Rx-type address or register (2) - (12).
Specify DDNAME only with CINDEX.

Specify REPLACE only with MAJOR.
Default: REPLACE= NO

minor: Rx-type address or register (2) - (12).

utoken: Rx-type address or register (2) - (12).

objprtl: Rx-type address or register (2) - (12).

objplsz: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

MAJOR ... major
specifies the major name of the object to be created.

The length of the major name must be the same as the length specified by MAJLEN on
the COFDEFIN macro that defined the class of objects. Specify MAJOR only for a
non-PDS class. (For a PDS class, you must use CINDEX and DDNAME.)

82 SPL: Application Development Macro Reference

CINDEX - cindex
identifies a one-byte field that contains the concatenation Index of the major name
associated with the object being created. CINDEX is required for a PDS class. The
index is the zero-origin relative number of the major name for the object in the major
name list of the user creating the object. This list Is the one supplied to VLF on the
COFIDENT macro that identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the "K"
(concatenation index) value returned when your application issued a BLDL to locate a
member.

When you specify CINDEX, you must also specify DDNAME.

DDNAME • ddname
specifies the 8-character DDNAME of the concatenated data set list. DDNAME is
required for a PDS class. This DDNAME must be the same as the one supplied to VLF
on the COFIDENT macro that identifies the user to VLF. It represents the major name
search order for this identified user.

When you specify DDNAME, you must also specify CINDEX.

,REPLACE• YES
,REPLACE• NO

indicates that an object existing in VLF should (REPLACE= YES) or should not
(REPLACE= NO) be replaced by the parts in the input object parts list. If the object
does not exist in VLF, then VLF creates a new object.

,MINOR• minor
specifies the minor name of the object. The length of the significant portion of the name
depends on the MINLEN value defined for the class on the COFDEFIN macro, either
explicitly or by default. (For a PDS class, the length Is always 8.)

,UTOKEN • utoken
specifies the required 16-character user token returned from the COFIDENT macro for
the user on whose behalf your application is Issuing COFCREAT.

,OBJPRTL • ob/prtl
specifies the required object parts list. The object parts list describes the source areas
from which VLF can obtain consecutive parts of the object.

The object parts list consists of a fullword containing the number of object parts,
followed by three words for each part:

1. A fullword that contains the ALET that currently addresses the part. An ALET of 1,
referencing the SASN of the caller, or ALETs referencing entries on the PASN
access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the part.

3. A fullword that contains the length of the part.

The number of parts list entries must be from 1 to 16. If your program is not running in
access register (AR) ASC mode, the ALET(s) must be zero.

,OBJPLSZ = ob/plsz
specifies the required fullword field that contains the size (in bytes) of the object parts
list.

,RETCODE • retcod
an optional parameter that specifies the location where the system Is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary,

,RSNCODE • rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register O. If
you specify a storage location, It must be on a fullword boundary.

COFCREAT- Create a VLF Object 83

Return Codes and Reason Codes
The hexadecimal return codes from COFCREAT are as follows:

Return Meaning
code

00 The CREATE function completed without error.

02 No VLF object was created. See reason codes for details.

04 The requested major name is not in the user's search order.

OA The parameter list cannot be accessed.

oc The class to which the user is identified is not currently defined.

10 A user token was specified but the user is not currently identified to VLF.

12 The DDNAME is not the same as the DDNAME specified on the COFIDENT macro that
returned this user token.

14 VLF incurred a program check when it tried to access the object parts list.

18 An input parameter contained an invalid value.

1C There was not enough storage available to create this object.

28 VLF is not active.

2C There was an unexpected error in VLF.

The hexadecimal reason codes from COFCREAT are as follows:

Reason Return Meaning
code code

00 00 The VLF object has been created.

02 02 No VLF object was created because the create request specified an
ineligible major name.

04 02 No VLF object was created. A retrieve request was not done for this minor
name, a time-out occurred for the pending create, or the pending create
was invalidated by a notification that the object might have changed.

nn5000 14 VLF was unable to access OBJPRTL(nn), where nn is a hexadecimal
number indicating the part in which the access failure occurred.

00 18 The class to which the user is identified is a PDS class, but CINDEX was not
specified.

02 18 OBJPLSZ was larger than the maximum allowable size, or the number of
parts in the object parts list was greater than 16.

04 18 REPLACE was specified, but the class to which the user is identified is a
PDS class.

OA 18 The major name cannot be accessed by the specified ALET. The ALET is a
SASN ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

OB 18 The minor name cannot be accessed by the specified ALET. The ALET is a
SASN ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

oc 18 The object parts list cannot be accessed by the specified ALET. The ALET
is a SASN ALET, or the ALET is not on the dispatchable unit access list
(DU-AL).

OD 18 A part in the object parts list cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

84 SPL: Application Development Macro Reference

COFCREAT (List Form)

The list form of the COFCREAT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFCREAT

COFCREAT

b One or more blanks must follow COFCREAT

MF= (L,mfctrl) mfctrl: symbol.
MF= (L,mfctrl,mfattr) mfattr: 1- to 60-character input string

Default: OD

The parameters of the list form are explained as follows:

MF= (L,mfctr/)
MF= (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFCREAT- Create a VLF Object 85

COFCREAT (Execute Form)
The execute form of the COFCREAT macro is written as follows:

name

b

COFCREAT

b

MAJOR= ma/or
,CINDEX = cindex

,DDNAME = ddneme

,REPLACE=YES
,REPLACE=NO

,MINOR= minor

,UTOKEN = utoken

,OBJPRTL = ob/prtl

,OBJPLSZ = ob/plsz

,RETCODE = retcod

,RSNCODE = rsncod

,MF= (E,mfctrl)

name: symbol. Begin name In column 1.

One or more blanks must precede COFCREA T

One or more blanks must follow COFCREAT

ma/or: Rx-type address or register (2) - (12).
clndex: Rx-type address or register (2) - (12).

ddname: Rx-type address or register (2) - (12).
Specify DDNAME only with CINDEX.

Specify REPLACE only with MAJOR.
Default: REPLACE= NO

retcod: Rx-type address or register (2) - (12).

utoken: Rx-type address or register (2) - (12).

objprtl: Rx-type address or register (2) - (12).

ob/plsz: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFCREAT macro, with the
following exception:

,MF• (E,mfctrl)
Specifies the execute form of the COFCREAT macro. This form generates the code to
store the parameters Into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

86 SPL: Application Development Macro Reference

COFDEFIN - Define a VLF Class

© Copyright IBM Corp. 1988, 1991

COFDEFIN creates a class of VLF objects. Before issuing COFDEFIN, or any VLF macro,
you need to understand the information on using the virtual lookaside facility (VLF) that
appears in SPL: Application Development Guide.

When you define a class of VLF objects, the system allocates virtual storage for the class
and generates the necessary control blocks. If the class has already been defined, VLF
rejects the request.

To obtain the attributes of the class, the system uses the input parameters of the macro and
the description of the class in the active COFVLFxx parmlib member. The maximum amount
of virtual storage available for the class can be controlled by the MAXVIRT keyword on the
CLASS statement in COFVLFxx. When the MAXVIRT keyword is not used, the default is 4096
pages.

Environment:

To invoke COFDEFIN, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFDEFIN macro is written as follows:

name

b

COFDEFIN

b

CLASS= class

,MAJ LEN= maj/en

,MINLEN =min/en

,TRIM=ON
,TRIM=OFF

,AUTHRET =NO
,AUTHRET=YES

, RETCODE = retcod

,RSNCODE = rsncod

name: symbol. Begin name in column 1.

One or more blanks must precede COFDEFIN

One or more blanks must follow COFDEFIN

class: RX-type address or register (2) - (12).

ma}/en: RX-type address or register (2) - (12).

majlen: RX-type address or register (2) - (12).

Default: ON

Default: NO

retcod: RX-type address or register (2) - (12).

rsncod: RX-type address or register (2) - (12).

The parameters of the standard form are as follows:

CLASS= class
specifies a 7-byte field that identifies the name of the class of VLF objects to be created.
The name, which can be from 1 to 7 characters, can consist of any combination of upper
case alphabetic and numeric characters and @, #. and $. The name must match the
name of a class described in the active COFVLFxx parmlib member.

87

IBM-supplied VLF class names begin with the uppercase letters A-1. Choose names for
Installation-supplied VLF classes that begin with J-Z, numeric characters, or @, #, or $.

,MAJ LEN== majlen
identifies a 1-byte field specifying the length, from 1to64 bytes, of the major names in
this class. This parameter is required for a non-PDS class. For a PDS class, the length
is always 50. ·

,MINLEN •min/en
identifies a 1-byte field specifying the length, from 1 to 64 bytes, of the minor names in
this class. This parameter is required for a non-PDS class. For a PDS class, the length
is always 8.

,TRIM•ON
,TRIM=OFF

an optional parameter that specifies how you want VLF to manage virtual storage for
the objects in the class. If you specify TRIM= ON, which is the default, VLF
automatically removes the least recently used objects when it needs space. If you
specify TRIM= OFF, VLF removes objects only when it is specifically notified. Allowing
VLF to manage the storage (TRIM= ON) ensures that, if space is limited, the most
recently used objects tend to remain in virtual storage.

,AUTHRET ==NO
,AUTHRET =YES

an optional parameter that Indicates whether tasks that issue the COFRETRI macro to
retrieve objects from the class must be in supervisor state or have PSW key mask 0-7.
To restrict retrieves for the class to such tasks, specify AUTHRET= YES. The default is
AUTHRET= NO.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary,

,RSNCODE • rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register O. If
you specify a storage location, it must be on a fullword boundary,

Return Codes and Reason Codes
The hexadecimal return codes from COFDEFIN are as follows:

Return Meaning
code

00 The class is defined to VLF.

02 A define request for this class Is already In progress or the class is already defined.

04 The define request failed. The class state is not valid.

08 A purge request for the same class has overridden the define request. The class is not
defined at this time.

oc There was no description for the class in the active COFVLFxx parmlib member.

10 One or more parameters are not valid. See the reason code.

18 The parameter list ALET is not valid.

28 VLF is not active.

2C There was an unexpected error in VLF.

88 SPL: Application Development Macro Reference

The hexadecimal reason codes from COFDEFIN are as follows:

Reaaon Return Meaning
code code

00 00 The define request was successful.

04 02 A define request for the same class is currently in progress.

08 02 The class is already defined. You must issue COFPURGE for the class
before you can redefine the class.

oc 02 The class is already defined. You must issue COFPURGE for the class
before you can redefine the class. VLF has changed the existing class
definition to require that issuers of COFRETRI for the class be In supervisor
state or have PSW key mask 0-7.

00 08 A purge request for the same class was issued before the define request
completed.

04 08 The class was being purged when you issued COFDEFIN.

04 10 The value for MAJLEN is not within the allowed range.

08 10 The value for MINLEN is not within the allowed range.

oc 10 The values for both MAJLEN and MINLEN are not within the allowed range.

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

COFDEFIN - Define a VLF Class 89

COFDEFIN (List Form)

The list form of the COFDEFIN macro is written as follows:

name name: symbol. Begin name In column 1.

One or more blanks must precede COFDEFIN

COFDEFIN

b One or more blanks must follow COFDEFIN

MF= (L,mfctrl) mfctrl: symbol.
MF= {L,mfctrl,mfattr) mfattr: 1- to 60-character input string

Default: OD

The parameters of the list form are as follows:

MF• (L,mfctrl)
MF= (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates _mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

90 SPL: Application Development Macro Reference

COFDEFIN (Execute Form)

The execute form of the COFDEFIN macro is written as follows:

name

b

COFDEFIN

b

CLASS=c/ass

,MAJ LEN= maj/en

,MINLEN =min/en

,TRIM=ON
,TRIM=OFF

,AUTHRET =YES
,AUTHRET=NO

,RETCODE = retcode

, RSNCODE = rsncod

, MF= (E,mfctrl)

name: symbol. Begin name in column 1.

One or more blanks must precede COFDEFIN

One or more blanks must follow COFDEFIN

class: RX-type address or register (2) - (12).

majlen: RX-type address or register (2) - (12).

maj/en: RX-type address or register (2) - (12).

Default: ON

Default: NO

retcode: RX·type address or register (2) - (12).

rsncod: RX-type address or register (2) - (12).

mfctrl: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the COFDEFIN macro, with the
following exceptions:

,MF= (E,mfctrl)
Specifies the execute form of the COFDEFIN macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

COFDEFIN - Define a VLF Class 91

92 SPL: Application Development Macro Reference

COFIDENT - Identify a VLF User

© Copyright IBM Corp. 1988, 1991

The COFIDENT macro allows an individual user to access a particular class of VLF objects.
Before issuing COFIDENT, or any VLF macro, you need to understand the information on
using the virtual lookaside facility (VLF) that appears in SPL: Application Development
Guide.

You must issue COFIDENT to identify the class and user before VLF can retrieve or create
objects on behalf of that user. With COFIDENT, you also specify to VLF the search order it is
to use to locate objects for the user.

As part of COFIDENT processing, VLF returns a unique user token (UTOKEN). The user
token identifies the user (through an associated home ASID), class, and search order.
Other VLF functions, such as retrieving or creating objects, require you to supply this user
token.

The value of the user token returned by the successful completion of this function is never
zero. Thus, you can check a saved user token field for zero to determine if an end user has
been identified to VLF.

Before obtaining the user token, you must ensure that the user is authorized to access the
objects. Open the DDNAME or perform authority checking before you issue the COFIDENT
macro.

If the end user has private data sets in a DDNAME concatenation (data sets not defined for
this class in the active COFVLFxx parmlib member), they are not eligible data sets. That is,
VLF does not use them as a source of VLF objects.

If you have control over the search orders, VLF works most efficiently when private data
sets (or ineligible major names for non-PDS classes) are either not allowed or follow the
eligible names rather than precede them.

Environment:

To invoke COFIDENT, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

Restrictions:

• The storage area to be used for the parameter list must reside in the caller's primary
address space. The ALET used to qualify this storage must be 0.

• When you specify DDNAME, you must issue the COFIDENT macro from a task running
under the same home ASID as the task that allocated the DDNAME.

• When SCOPE= HOME is specified or defaulted, the returned user token (UTOKEN) is
valid only for tasks with the same home ASID as the issuer of the COFIDENT macro.
Subsequent VLF macros (COFCREAT, COFRETRI, or COFREMOV) that supply this user
token must have the same home ASID.

• When SCOPE= SYSTEM is specified, the issuers of the COFCREAT and COFREMOV
macros must have the same home ASID as the issuer of COFIDENT. However, the
COFRETRI macro can be issued by tasks that have a home ASID that is different from
the home ASID of the issuer of the COFIDENT macro. VLF treats a COFRETRI macro
issued with this UTOKEN as if the request had come from the task that issued the
COFIDENT macro. Any task that supplies the UTOKEN can retrieve objects created with
the UTOKEN unless the COFDEFIN macro that defined the class specified
AUTHRET =YES. In this case, only supervisor state tasks, or tasks running with PSW
key mask 0-7, can retrieve objects from the class.

93

The standard form of the COFIDENT macro is written as follows:

name

COFIDENT

DDNAME = ddname
MAJNLST = majnlst

,CLASS= class

,SCOPE= HOME
,SCOPE= SYSTEM

,UTOKEN = utoken

,RETCODE = retcod

,RSNCODE = rsncod

name: symbol. Begin name in column 1.

One or more blanks must precede COFIDENT

One or more blanks must follow COFIDENT

ddname: Rx-type address or register (2) - (12).
ma/nlst: Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

Default: HOME

utoken: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

DDNAME ... ddname
Specifies, for a PDS class, the ddname of a concatenated data set list. When VLF
locates objects on behalf of this user, it uses the order in which data sets appear in this
data set list as its search order. Note that the concatenated data set list can contain
private data sets; VLF creates objects, however, only from eligible data sets (data sets
included in the class description in the active COFVLFxx parmlib member). Specify
DDNAME only for PDS classes.

Note: Before you Issue COFIDENT, you must verify that the end user Is authorized to
access any data sets referenced by this DDNAME. Open the DDNAME before issuing
the COFIDENT macro to ensur~ that tre end user has authority to access the data sets
in the DDNAME concatenation.

If you specify DDNAME, do not specify MAJNLIST.

MAJNLST- majnlst
defines, for non-PDS classes, the search order VLF is to use to locate objects for this
user. Each entry in the list must match a major name defined for the class through
EMAJ in the active COFVLFxx parmlib member.

MAJNLST is required for a non-PDS class. The list that majnlst points to consists of a
4-byte field containing the number of entries In the list, followed by a contiguous list of
from 1 to 256 major names. The list must contain at least one entry.

Each name in the list must be the same length, padded with blanks on the right if
necessary. The length of each name In the list must be equal to the length supplied for
MAJLEN on the COFDEFIN macro when the class was defined.

Note that the variable name of the major name list may be ALET qualified, but that an
ALET of 1, referencing the SASN of the caller, or ALETs referencing entries on the
PASN access list of the caller, are not allowed.

If you specify MAJNLST, do not specify DDNAME.

,CLASS - class
specifies the required seven-character name of a VLF class, already defined to VLF
through the COFDEFIN macro.

94 SPL: Application Development Macro Reference

,SCOPE-HOME
,SCOPE= SYSTEM

an optional parameter that indicates the scope of services that can retrieve objects
with the UTOKEN returned by this COFIDENT. The default is HOME.

HOME indicates that only services with the same home ASID as the task issuing the
COFIDENT macro can retrieve objects with the returned user token (UTOKEN).

SYSTEM indicates that services with a home ASID different from that of the task issuing
the COFIDENT macro can retrieve objects with the returned user token (UTOKEN). In
this case, a COFRETRI macro issued with this UTOKEN is treated as if the request had
come from the task that issued the COFIDENT macro. SCOPE= SYSTEM allows a
service running under a particular home ASID to control a set of VLF objects and allow
all tasks in the system to access those objects.

,UTOKEN = utoken
specifies a required 16-character output variable that contains the unique user token
value that VLF returns to identify this user. Subsequent requests to create or retrieve
VLF objects on behalf of this user must supply this token to VLF.

,RETCODE"' retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE == rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

Return Codes and Reason Codes
The hexadecimal return codes from COFIDENT are as follows:

Return Meaning
code

00 Successful completion. The user has been identified to VLF with the specified major
name search order.

02 The user is already identified to VLF for this class.

04 The identify request cannot be completed. Another identify request from the same home
ASID is currently in progress for the same class and DDNAME.

08 No major names in the search order contain objects that are eligible objects for VLF.

oc The class has not been defined to VLF.

10 VLF could not obtain the list of partitioned data sets for the input DDNAME. The task
invoking VLF might not have been running under the same home ASID as the task that
allocated the DDNAME.

14 There was an incorrect input parameter. Either the DDNAME keyword was not specified
for an input PDS class, or the DDNAME keyword was specified for a non-PDS class.

18 There was an error in the parameter list.

1C An error was detected during processing of the DDNAME for a PDS class. Seethe
reason codes.

28 VLF is not active.

2C There was an unexpected error in VLF.

COFIDENT- Identify a VLF User 95

The hexadecimal reason codes from COFIDENT are as follows:

Reason Return Meaning
code code

00 00 Successful completion. The user has been identified to VLF with the
specified major name search order.

08 02 The user is already identified to VLF for this class. The user token from the
previous IDENTIFY has been returned in the UTOKEN field.

08 18 The number of major names in a search order is not in the range 1-256.

04 1C The DDNAME was not open.

08 1C The DDNAME was not allocated.

12 1C The DDNAME concatenation was changed without deallocating the
DDNAME. VLF no longer accepts user identification requests that specify
the DDNAME.

oc 18 The input major name list was qualified using either a SASN ALET or an
ALET not on the caller's dispatchable unit access list (DU-AL).

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

96 SPL: Application Development Macro Reference

COFIDENT (List Form)

The list form of the COFIDENT macro is written as follows:

name name: symbol. Begin name in column 1.

fl One or more blanks must precede COFIDENT

COFIDENT

fl One or more blanks must follow COFIDENT

MF= (L,mfctrl) mfctrl: symbol.
MF= (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: OD

The parameters of the list form are explained as follows:

MF• (L,mfctrl)
MF• (L,mfctrl ,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter Is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
llst area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter llst to a doubleword boundary.

COFIDENT - Identify a VLF User 97

COFIDENT (Execute Form)
The execute form of the COFIDENT macro is written as follows:

name

b

COFIDENT

b

DDNAME = ddname
MAJNLST = majn/st

,CLASS=c/ass

,SCOPE= HOME
,SCOPE= SYSTEM

,UTOKEN = utoken

,RETCODE = retcod

,RSNCODE = rsncod

,MF= (E,mfctrl)

name: symbol. Begin name In column 1.

One or more blanks must precede COFIDENT

One or more blanks must follow COFIDENT

ddname: Rx-type address or register (2) - (12).
majnlst: Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

Default: HOME

utoken: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFIDENT macro, with the
following exceptions:

,MF= (E,mfctr/)
Specifies the execute form of the COFIDENT macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

98 SPL: Application Development Macro Reference

COFNOTIF - Notify VLF

© Copyright IBM Corp. 1988, 1991

The COFNOTIF macro allows an application using VLF to notify VLF that some set of VLF
objects is no longer valid because of changes to the permanent data. Before issuing
COFNOTIF, or any VLF macro, you need to understand the information on using the virtual
lookaside facility (VLF) that appears in SPL: Application Development Guide. •

You can issue COFNOTIF to notify VLF about the following kinds of changes:

• One or more major names have been deleted. You must specify FUNC = DELMAJOR
and MAJLIST.

You might need to specify MAJNUM and MAJLEN, and you also might need to specify
CLASS.

• One or more minor names have been changed. You must specify FUNC = DELMINOR
(for a deletion), FUNC =ADD MINOR (for an addition), or FUNC = UPDMINOR (for a
change). You must also specify MAJOR and MINLIST.

You might need to specify MINNUM and MINLEN, and you also might need to specify
CLASS.

• A volume is no longer in use. You must specify FUNC= PURGEVOL and VOLUME.

Note that an update to a minor name with one or more alias names means that you must
specify the minor name and each alias name. VLF views each alias name as a separate
minor name and thus needs to know about the update under each name.

Environment:

To invoke COFNOTIF, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFNOTIF macro is written as follows:

name

COFNOTIF

FUNC =DEL MAJOR
FUNC= DELMINOR
FUNC = ADDMINOR
FUNC = UPDMINOR
FUNC = PURGEVOL

,MAJ LIST= majlist

,MAJNUM = majnum

,MAJ LEN= majlen

name: symbol. Begin name in column 1.

One or more blanks must precede COFNOTIF

One or more blanks must follow COFNOTIF

majlist: Rx-type address or register (2) - (12).
You must specify MAJLIST=maj/ist when you specify
FUNC =DEL MAJOR.

majnum: Rx-type address or register (2) - (12).

majlen: Rx-type address or register (2) - (12).

99

,MAJOR=major

,MINLIST= min/ist

,MINNUM = minnum

,MINLEN =min/en

,VOLUME= volume

,CLASS= class

, RETCODE = retcod

,RSNCODE = rsncod

major: Rx-type address or register (2) - (12).
You must specify MAJOR=major when you specify
FUNC=DELMINOR, FUNC=ADDMINOR, or
FUNC = UPDMINOR.

minlist: Rx-type address or register (2) - (12).
You must specify MINLIST = minlist when you specify
FUNC=DELMINOR, FUNC=ADDMINOR, or
FUNC = UPDMINOR.

minnum: Rx-type address or register (2) - (12).

min/en: Rx-type address or register (2) - (12).

volume: Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

FUNC = DELMAJOR
FUNC = DELMINOR
FUNC = ADDMINOR
FUNC = UPDMINOR
FUNC = PURGEVOL

is a required parameter that indicates the nature of the change that you are reporting.
The meaning of each value is as follows:

• FUNC = DELMAJOR specifies that one or more major names have been deleted.

• FUNC = DELMINOR specifies that one or more minor names have been deleted from
a major name.

• FUNC=ADDMINOR specifies that one or more minor names have been added to a
major name.

• FUNC = UPDMINOR specifies that the objects corresponding to one or more existing
minor names have been changed.

• FUNC = PURGEVOL specifies that a physical storage device has been logically
disconnected from the system, or that all of the information on the device has been
deleted or replaced.

,MAJLIST = majlist
identifies the list of major names with which the change Is associated. When you
specify FUNC = DELMAJOR, you must specify MAJLIST to identify the major name(s)
VLF is to delete. If the list contains more than one major name, you must also specify
MAJNUM. Each major name In the list must be the same length. If the major name
length is not 64, you must also specify MAJLEN.

Use the following structure to specify the major name for a PDS class:

• 6-character volume serial name (padded with blanks if necessary)
• PDS name (a maximum of 44 characters), padded with blanks to equal 64 or the

MAJLEN value

For example, assume that you want to delete the major name MYPDS that resides on
volume VOL 123. Specify VOL 123MYPDS, padded with blanks as required.

,MAJNUM = majnum
an optional halfword parameter that contains the number of major names in the major
name list. The default is 1.

100 SPL: Application Development Macro Reference

,MAJLEN = majlen
an optional halfword parameter that contains the length of each input major name. The
default is 64.

Note: VLF uses the length you specify to scan the major name list. The length of the
significant part of the name (the part VLF uses to search its storage for objects with that
major name) depends on the value specified for the major name on the COFDEFIN
macro that defined the class. If the COFDEFIN length is greater than the COFNOTIF
length, VLF pads the name on the right with blanks.

,MAJOR= major
identifies the major name associated with the change to one or more minor names.
When you specify FUNC=DELMINOR, FUNC=ADDMINOR, or FUNC=DELMINOR, you
must specify MAJOR. If the length is not 64, you must also specify MAJLEN.

Use the following structure to specify the major name for a PDS class:

• 6-character volume serial name (padded with blanks if necessary)
• PDS name (a maximum of 44 characters), padded with blanks to equal 64 or the

MAJLEN value

For example, assume that you want to delete the major name MYPDS that resides on
volume VOL 123. Specify VOL 123MYPDS, padded with blanks as required.

,MINLIST = minlist
identifies the list of minor names with which the change is associated. When you
specify FUNC = DELMINOR, FUNC = ADDMINOR, or FUNC = UPDMINOR, you must
specify MINLIST. If the list contains more than one minor name, you must also specify
MINNUM. If the length is not 64, then you must also specify MINLEN. Each name in the
list must be the same length.

,MINNUM = minnum
an optional halfword parameter that contains the number of minor names in the minor
name list. The default is 1.

,MINLEN =min/en
an optional halfword parameter that contains the length of each name in the input minor
name list. The default is 64.

Note: VLF uses the length you specify to scan the minor name list. The length of the
significant part of the name (the part VLF uses to search its storage for objects with that
minor name) depends on the value specified for the minor name on the COFDEFIN
macro that defined the class. If the COFDEFIN length is greater than the COFNOTIF
length, VLF pads the name on the right with blanks.

,VOLUME= volume
specifies the volume serial number of a resource that was logically removed from the
system. Specifying VOLUME causes VLF to purge any objects related to the resource
identified.

Specify VOLUME only for objects with major names that correspond to PDS names and
only when you also specify FUNC = PURGEVOL.

,CLASS= class
specifies the name of a 7-byte field that identifies the name of the class associated with
the change. CLASS is an optional parameter. Specify CLASS only for a non-PDS class.
If you omit CLASS or specify a PDS class, VLF assumes that the change being reported
applies to all PDS classes.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

COFNOTIF - Notify VLF 101

Return Codes and Reason Codes
The hexadecimal return codes from COFNOTIF are as follows:

Return Meaning
code

00 Successful completion. VLF now reflects the indicated changes.

02 No changes to VLF storage occurred.

18 Parameter list error. See the reason codes.

1C An error occurred while accessing an input major name. The reason code indicates the
position of the major name in the input major name list.

20 An error occurred while accessing an input minor name. The reason code indicates the
position of the minor name in the input minor name list.

28 VLF is not active.

2C There was an unexpected error in VLF. I

The hexadecimal reason codes from COFNOTIF are as follows:

Re aeon Return Meaning
code code

00 00 VLF now reflects the indicated changes.

08 02 No changes to VLF storage were necessary.

oc 02 The specified class was not defined to VLF. This code is only returned for
an input class that does not have a major name to PDS correspondence.

10 02 The specified class is not defined in the active COFVLFxx parmlib member.

00 18 The parameter list ALET is either a SASN ALET or is not on the caller's
dispatchable unit access list (DU-AL).

08 18 The input major name was qualified using either a SASN ALET or an ALET
not on the caller's dispatchable unit access llst (DU-AL).

oc 18 The input minor name was qualified using either a SASN ALET or an ALET
not on the caller's dispatchable unit access list (DU-AL).

nnnn 1C An error occurred while accessing a major name In the input major name
list; nnnn identifies the list position of the major name that caused the
error. COFNOTIF processing terminates.

nnnn 20 An error occurred while accessing a minor name in the input minor name
I ist; nnnn identifies the list position of the minor name that caused the
error. COFNOTIF processing terminates.

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply It to the appropriate
IBM support personnel.

102 SPL: Application Development Macro Reference

COFNOTIF (List Form)
The list form of the COFNOTIF macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFNOTIF

COFNOTIF

b One or more blanks must follow COFNOTIF

MF= (L,mfctrl) mfctrl: symbol.
MF= (L,mfctr/,mfattr) mfattr: 1- to 60-character input string

Default: OD

The parameters of the list form are explained as follows:

MF• (L,mfctr/)
MF= (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mtattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFNOTIF - Notify VLF 103

COFNOTIF (Execute Form)
The execute form of the COFNOTIF macro is written as follows:

name

COFNOTIF

b

FUNC= DELMAJOR
FUNC= DELMINOR
FUNC = ADDMINOR
FUNC= UPDMINOR
FUNC = PURGEVOL

,MAJ LIST= majlist

,MAJNUM = majnum

,MAJLEN =ma/fen

,MAJOR= ma/or

,MINLIST= mini/st

,MINNUM = minnum

,MINLEN=m/n/en

,VOLUME= volume

,CLASS=class

,RETCODE = retcod

,RSNCODE = rsncod

,MF= (E,mfctrl)

name: symbol. Begin name in column 1.

One or more blanks must precede COFNOTIF

One or more blanks must follow COFNOTIF

ma/list: Rx-type address or register (2) - (12).
You must specify MAJLIST =ma/list when you specify
FUNC = DELMAJOR.

ma/num: RX-type address or register (2) - (12).

ma/fen: RX-type address or register (2) - (12).

ma/or: Rx-type address or register (2) - (12).
You must specify MAJOR= ma/or when you specify
FUNC = DELMINOR, FUNC = ADDMINOR, or
FUNC =- UPDMINOR.

mini/st: Rx-type address or register (2) - (12).
You must specify MINLIST= mini/st when you specify
FUNC = DELMINOR, FUNC = ADDMINOR, or
FUNC = UPDMINOR.

minnum: FIXED(15) field or register (2) - (12).

min/en: FIXED(15) field or register (2) - (12).

volume: Rx-type address or register (2) - (12).

class: Rx-type address or register (2) - (12).

retcod: Rx-type address or register (2) - (12).

rsncod: Rx-type address or register (2) - (12).

mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFNOTIF macro, with the
following exceptions:

,MF= {E,mfctr/)
Specifies the execute form of the COFNOTIF macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

104 SPL: Application Development Macro Reference

COFPURGE - Purge a VLF Class

© Copyright IBM Corp. 1988, 1991

The COFPURGE macro requests that VLF purge {delete) a class of VLF objects. Before
issuing COFPURGE, or any VLF macro, you need to understand the information on using the
virtual lookaside facility (VLF) that appears in SPL: Application Development Guide.

When you issue COFPURGE, VLF deletes the class immediately. Any transaction in process
for the purged class fails; VLF issues a failure return code that is appropriate for the
transaction. To reinstate the class, you must issue another COFDEFIN for the class, which
you can do at any time. Once you have reinstated the class, you must reidentify the users
of the class.

Note that the system can also delete a class for control purposes even if no user requests it.
Your application learns that the system has purged a class when it issues a COFIDENT,
COFREMOV, COFCREAT, or COFRETRI macro specifying that class. There are specific
return and reason code combinations to distinguish a class that is not defined from other
error indicators.

Environment:

To invoke COFPURGE, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFPURGE macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede COFPURGE

COFPURGE

One or more blanks must follow COFPURGE

CLASS= class class: RX-type address or register (2) - (12).

,RETCODE = retcod retcod: RX-type address or register (2) - (12).

,RSNCODE = rsncod retcod: RX-type address or register (2) - (12).

The parameters of the standard form are as follows:

CLASS= class >.

specifies the required name of the class of VLF objects to be deleted.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

105

Return Codes and Reason Codes
The hexadecimal return codes from COFPURGE are as follows:

Return Meaning
code

00 Successful completion. The class is no longer described to VLF.

02 The specified class was not described in the active COFVLFxx parmlib member.

28 VLF is not active.

The hexadecimal reason codes from COFPURGE are as follows:

Reason Return Meaning
code code

00 00 The purge was successful.

04 02 The specified class was not described in the active COFVLFxx parmlib
member.

106 SPL: Application Development Macro Reference

COFPURGE (List Form)
The list form of the COFPURGE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFPURGE

COFPURGE

b One or more blanks must follow COFPURGE

MF= (L,mfctrl) mfctrl: symbol.
MF= (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: OD

The parameters of the list form are as follows:

MF= (L,mfctr/)
MF== (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFPURGE- Purge a VLF Class 107

COFPUROE (Execute Form)
The execute form of the COFPURGE macro is written as follows:

name name: symbol. Begin name in column 1.

fl One or more blanks must precede COFPURGE

COFPURGE

fl One or more blanks must follow COFPURGE

CLASS= class class: RX-type address or register (2) - (12).

,RETCODE = retcode retcode: RX-type address or register (2) - (12).

,RSNCODE = rsncod rsncod: RX-type address or register (2) - (12).

,MF= (E,mfctrl) mfctrl: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the COFPURGE macro, with the
following exceptions:

,MF= (E,mfctrl)
Specifies the execute form of the COFPURGE macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

108 SPL: Application Development Macro Reference

COFREMOV - Remove a VLF User

© Copyright IBM Corp. 1988, 1991

COFREMOV terminates an end user's access to the class of VLF objects associated with the
specified user token (UTOKEN). Before issuing COFREMOV, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

You issue COFREMOV when your program determines that an end user should no longer
have access to the class of VLF objects. You must supply the same user token (UTOKEN)
on COFREMOV that VLF returned on the COFIDENT macro that identified the user. You
must issue COFREMOV from a task that has the same home ASID as the task that issued the
COFIDENT to identify the user.

After you have removed the user, VLF rejects, with a reason code that indicates an unknown
UTOKEN, any subsequent VLF requests that specify the UTOKEN.

Environment:

To invoke COFREMOV, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFREMOV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFREMOV

COFREMOV

b One or more blanks must follow COFREMOV

UTOKEN = utoken utoken: Rx-type address or register (2) - (12).

, RETCODE = retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE = rsncod rsncod: Rx-type address or register (2) - (12).

The parameters of the standard form are explained as follows:

UTOKEN = utoken
specifies a required 16-character input parameter that contains the user token value
{obtained from the COFIDENT macro) for the user you are removing from VLF.

,RETCODE = retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register 0. If
you specify a storage location, it must be on a fullword boundary.

109

Return Codes and Reason Codes
The hexadecimal return codes from COFREMOV are as follows:

Return Meaning
code

0 Successful completion. The record of the identified user corresponding to the input
UTOKEN has been removed. Subsequent requests to access VLF objects with this
UTOKEN will fail.

02 An unknown user token was specified.

18 The ALET of the input parameter is not valid.

28 VLF is not active.

2C There was an unexpected error in VLF.

The hexadecimal reason codes from COFREMOV are as follows:

Reason Return Meaning
code code

0 0 Successful completion. The record of the identified user corresponding to
the input UTOKEN has been removed. Subsequent requests for access to
VLF objects with this UTOKEN will fail.

10 02 An unknown user token was specified.

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

110 SPL: Application Development Macro Reference

COFREMOV (List Form)
The list form of the COFREMOV macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede COFREMOV

COFREMOV

b One or more blanks must follow COFREMOV

MF= (L,mfctr/) mfctrl: symbol.
MF= (L,mfctrl,mfattr) mfattr: 1- to 60-character input string.

Default: OD

The parameters of the list form are explained as follows:

MF= (L,mfctr/)
MF= {L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFREMOV - Remove a VLF User 111

COFREMOV (Execute Form)
The execute form of the COFREMOV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFREMOV

COFREMOV

b One or more blanks must follow COFREMOV

,UTOKEN = utoken utoken: Rx-type address or register (2) - (12).

,RETCODE = retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE = rsncod retcod: Rx-type address or register (2) - (12).

,MF= (E,mfctr/) mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFREMOV macro, w.ith the
following exceptions:

,MF== (E,mfctrl)
Specifies the execute form of the COFREMOV macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

112 SPL: Application Development Macro Reference

COFRETRI - Retrieve a VLF Object

© Copyright IBM Corp. 1988, 1991

The COFRETRI macro enables an application using VLF to obtain a copy of a VLF object on
behalf of an end user. Before issuing COFRETRI, or any VLF macro, you need to
understand the information on using the virtual lookaside facility (VLF) that appears in SPL:
Application Development Guide.

Before you issue COFRETRI to retrieve an object on behalf of a user, you must issue
COFIDENT to identify the user. COFIDENT relates to COFRETRI in the following ways:

• It returns the user token you must supply on COFRETRI.
• It establishes the major name search order for this user.
• It defines whether COFRETRI must be issued under a task with a home ASID that

matches the home ASID of the issuer of COFIDENT (COFIDENT was issued with
SCOPE= HOME) or whether the task invoking COFRETRI can have a different home
ASID (COFIDENTwas issued with SCOPE=SYSTEM).

Environment:

To invoke COFRETRI, a program can be in cross memory mode and must be:

• In enabled, unlocked task mode with no EUT FRRs in effect.

• In supervisor state or with PSW key mask 0-7. If the COFDEFIN macro that defined the
class specified (or defaulted to) AUTHRET= NO, the program can be in problem state.

• In either 24-bit or 31-bit addressing mode, but all addresses passed must be full 31-bit
addresses.

• In primary address space control (ASC) mode or access register ASC mode.

The standard form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFRETRI

COFRETRI

b One or more blanks must follow COFRETRI

MINOR= minor minor: Rx-type address or register (2) - (12).

,UTOKEN = utoken utoken: Rx-type address or register (2) - (12).

,TLIST = tlist tlist: Rx-type address or register (2) - (12).

,TLSIZE = tlsize tlsize: Rx-type address or register (2) - (12).

,OBJSIZE = objsize objsize: Rx-type address or register (2) - (12).

,CINDEX = cindex cindex: Rx-type address or register (2) - (12).

,RETCODE = retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE = rsncod rsncod: Rx-type address or register (2) - (12).

113

The parameters of the standard form are explained, as follows:

MINOR• minor
is a required parameter that identifies the minor name of the object. VLF assumes that
the length of the minor name is the same as that specified on the MINLEN parameter
when the COFDEFIN macro was issued to define the class. If the class of objects was
defined with major name to PDS name correspondence, then the minor name length is
8.

,UTOKEN • utoken
is the required 16-character user token that identifies the user for whom you are
retrieving a VLF object. VLF returned the user token when you issued the COFIDENT
macro to identify the user to VLF.

, TLIST • tlist
is a required parameter that defines the target area list. The target area list describes
target areas into which consecutive areas of the object are to be stored.

The target area list consists of a fullword containing the number of target areas,
followed by three words for each area:

1. A fullword that contains the ALET that currently addresses the target area. An
ALET of 1, referencing the SASN of the caller, or ALETs referencing entries on the
PASN access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the target area.

3. A fullword that contains the length of the target area.

An address of 0 signifies that VLF is to ignore the specified length; that is, VLF is not to
retrieve that part of the object. The maximum number of parts is 16.

, TLSIZE - t/s/ze
is a required parameter, a fullword that contains the size (in bytes) of the target area
llst.

,OBJSIZE ==obj size
is a required parameter, a fullword that that VLF is to use to return the size (in bytes) of
the object it retrieves.

,CINDEX = cindex
is a required parameter, a one-byte field that VLF is to use to return the concatenation
index of the major name associated with the object it retrieves. The index is the
zero-origin relative number of the major name for the object in the major name list of
the user retrieving the object. This list is the one that was supplied when the
COFIDENT macro identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the "K"
(concatenation index) value returned when a BLDL is performed to locate a member.

,RETCODE • retcod
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE == rsncod
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register O. If
you specify a storage location, it must be on a fullword boundary.

114 SPL: Application Development Macro Reference

Return Codes and Reason Codes
The hexadecimal return codes from COFRETRI are as follows:

Return Meaning
code

00 The VLF object was successfully retrieved. OBJSIZE contains the size of the VLF object.
CINDEX contains the zero-origin concatenation index number for the object (the
zero-origin relative entry number in the major name list supplied on the COFIDENT
macro).

02 A VLF object has been retrieved that might be the correct object for the user, but the
object might also exist in earlier major names in the user's major name list. OBJSIZE
contains the size of the VLF object. CINDEX contains the zero-origin concatenation index
number for the object (the zero-origin relative entry number in the major name list
supplied on the COFIDENT macro). Issue a BLDL to determine whether the object
returned by VLF is the correct object based on the user's major name search order. If
the object does exist on DASO in an earlier name in the user's major name search order,
then take two steps. First, use the alternate method to acquire the object for the user.
Second, issue a COFCREAT macro to create the VLF object.

04 The VLF object was retrieved, but the target areas did not receive the entire object.
OBJSIZE contains the size of the VLF object. CINDEX contains the zero-origin
concatenation index number for the object (the zero-origin relative entry number in the
major name list supplied on the COFIDENT service). Increase the size of the target area,
then issue COFRETRI again.

06 A VLF object has been retrieved that might be the correct object for the user, but the
object might also exist in earlier major names in the user's major name list.
Additionally, the target areas did not receive the entire object. OBJSIZE contains the
size of the VLF object. CINDEX contains the zero-origin concatenation index number for
the object (the zero-origin relative entry number in the major name list supplied on the
COFIDENT service). Use the same steps as for return code 02 to determine if the object
is the correct one. If it is, increase the size of the target area, then issue COFRETRI
again.

08 The object does not exist in VLF.

OA The parameter list cannot be accessed.

oc The class to which the user is identified is not currently defined.

OE The user has insufficient authorization. To retrieve an object for the class, the caller
must be a task running in supervisor state or with PSW key mask 0-7.

10 An unknown user token was specified. The most likely reason for this is that the user
has been removed from VLF identification because the user's major name list has
changed. It is also possible you have not supplied the correct token. In either case, you
must issue the COFIDENT macro; you must re-identify the user to VLF before you can
retrieve objects for the user.

14 VLF incurred a program check when it tried to access the TLIST. You might, for example,
have specified a larger target area to VLF than was actually available or specified a
target area the user had no authority to modify.

18 An input parameter contains an invalid value.

28 VLF is not active.

2C There was an unexpected error.

COFRETRI - Retrieve a VLF Object 115

The hexadecimal reason codes from COFRETRI are as follows:

Reason Return Meaning
code code

00 08 VLF could not find a matching object to retrieve.

04 08 A retrieve was attempted for a major name that has changed or been
deleted.

nn4000 14 VLF could not access TLIST(nn), where nn is a hexadecimal number
indicating the part in which the access failure occurred.

02 18 TLSIZE is greater than the maximum allowable size, or the number of target
areas is greater than 16.

OB 18 The object specified on MINOR cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

oc 18 TLIST cannot be accessed by the specified ALET. The ALET is a SASN
ALET, or the ALET is not on the dispatchable unit access list (DU-AL).

OD 18 A target area in the target list cannot be accessed by the specified ALET.
The ALET is a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

nnnn 2C The reason code associated with return code X'2C' (44 decimal) is for
internal diagnostic purposes only. Record it and supply it to the appropriate
IBM support personnel.

116 SPL: Application Development Macro Reference

COFRETRI (List Form)

The list form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFRETRI

COFRETRI

b One or more blanks must follow COFRETRI

MF= (L,mfctr/) mfctrl: symbol.
MF= (L,mfctrl,mfaitr) mfattr: 1- to SO-character input string.

Default: OD

The parameters of the list form are explained as follows:

MF .. (L,mfctr/)
MF= (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFRETRI - Retrieve a VLF Object 117

COFRETRI (Execute Form)
The execute form of the COFRETRI macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede COFRETRI

COFRETRI

One or more blanks must follow COFRETRI

MINOR= minor minor: Rx-type address or register (2) - (12).

,UTOKEN = utoken utoken: Rx-type address or register (2) - (12).

,TLIST = tlist tlist: Rx-type address or register (2) - (12).

,TLSIZE = tlsize t/size: Rx-type address or register (2) - (12).

,OBJSIZE =obj size objsize: Rx-type address or register (2) - (12).

,CINDEX = cindex cindex: Rx-type address or register (2) - (12).

, RETCODE = retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE = rsncod rsncod: Rx-type address or register (2) - (12).

,MF= (E,mfctr/) mfctrl: Rx-type address or register (2) - (12).

The parameters are explained under the standard form of the COFRETRI macro, with the
following exceptions:

,MF= (E,mfctr/)
Specifies the execute form of the COFRETRI macro. This form generates the code to
store the parameters into the parameter list and execute the function of creating a new
class of VLF objects. mfctrl specifies the location of the parameter list.

118 SPL: Application Development Macro Reference

COFSDONO - Delete DLF (Data Lookaside Facility) Object

© Copyright IBM Corp. 1988, 1991

Use the COFSDONO macro to cause DLF to delete a DLF object that is no longer needed.

The requirements for the caller are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:
Control parameters:

Supervisor state or with PSW key mask 0-7.
Task mode.
PASN=HASN
31-bit addressing.
Primary ASC mode.
Enabled.

Note: Use of hiperbatch requires expanded storage and a processor that has the
move-page facility installed.

The standard form of the COFSDONO macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFSDONO.

COFSDONO

b One or more blanks must follow COFSDONO.

OBJNAME=name addr name addr: RX-type address or register (2) - (12).

, RETCODE = ret addr ret addr: RX-type address or register (2) - (12).

,RSNCODE=rsn addr rsn addr: RX-type address or register (2) - (12).

,MF=S

The parameters are explained as follows:

OBJ NAME== name addr
the 64-character name of the DLF object. The name is a 6-character volume serial
number followed by one to 44-character data set name, left-justified. Pad the
64-character field on the right with blanks (X"40"').

,RETCODE =rat addr
an optional parameter that specifies the location where the system is to place the
return code. The system copies the return code into the location from register 15. If
you specify a storage location, it must be on a fullword boundary.

,RSNCODE = rsn addr
an optional parameter that specifies the location where the system is to place the
reason code. The system copies the reason code into the location from register O. If
you specify a storage location, it must be on a fullword boundary.

,MF=S
specifies the standard form of the macro. The standard form generates code to put the
parameters into an in-line parameter list and invoke the desired service.

119

When control is returned, register 15 contains a hexadecimal return code and regist~r.O
contains a hexadecimal reason code, as follows:

Return Code
0
2
28
2C

120 SPL: Application Development Macro Reference

Reason Code
0
0
0
(nnnn)

Meaning
Success. The DLF object has been deleted.
The object did not exist in DLF.
DLF is not active.
Unexpected error in DLF. The reason code associated with
return code X'2C' is for IBM only. It should be recorded and
supplied to the appropriate IBM support personnel.

COFSDONO (List Form)
The list form of the COFSDONO macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFSDONO

COFSDONO

b One or more blanks must follow COFSDONO

MF= (L,mfctrl) mfctrl: symbol.
MF= (L,mfctrl,mfattr) attr: 1- to 60-character input string.

Default: OD

The parameters of the list form are explained as follows:

MF• (L,mfctr/)
MF• (L,mfctrl,mfattr)

Specifies the list form of the macro, which defines an area for a parameter list. This
parameter is required for the list form. If you specify the list form, the system ignores
any other parameters.

mfctrl specifies the location of the parameter list. The system generates the parameter
list area at the present value of the location counter and equates mfctrl to this location
counter value. (If you specify name on the macro, the system also equates the name
you specify to the same location counter value.)

mfattr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code mfattr, the system provides a value
of OD, which forces the parameter list to a doubleword boundary.

COFSDONO - Delete DLF (Data Lookaside Facility) Object 121

COFSDONO Macro (Execute Form)
The execute form of the COFSDONO macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede COFSDONO.

COFSDONO

b One or more blanks must follow COFSDONO.

OBJNAME=name addr name addr: RX-type address or register (2) - (12).

,RETCODE = ret addr ret addr: RX-type address or register (2) - (12).

,RSNCODE=rsn addr rsn addr: RX-type address or register (2) - (12).

,MF= (E,ctr/ addr) ctr/ addr: RX-type address or register (2) - (12).

Parameters for the execute form of COFSDONO are described in the standard form of the
macro with the following exceptions:

,MF ... (E,mfctrl)
Specifies the execute form of the COFSDONO macro. This form generates the code to
store the parameters into the parameter list and execute the function of deleting a DLF
object. mfctrl specifies the location of the parameter list.

122 SPL: Application Development Macro Reference

CPOOL - Perform Cell Pool Services

© Copyright IBM Corp. 1988, 1991

The CPOOL macro creates a cell pool, obtains a cell from the pool, returns a cell to the cell
pool, deletes a previously built cell pool, or places the starting and ending addresses of the
cell pool extents in a buffer.

Requirements for the BUILD, GET, DELETE, and FREE requests are:

Authorization:

Dlspatchable unit mode:
CroH memory mode:
Amode:
ASCmode:

Serialization:

Control parameters:

For the BUILD request, use LINKAGE= BRANCH only if the caller is in
supervisor state and key 0. To use the TCB or KEY parameters or create a
cell pool in a subpool greater than 127, the caller must be supervisor state,
or key 0-7, or APF-authorized.
For all GET, FREE, and DELETE requests, the caller can be problem state
or supervisor state.
Task or SRB
PASN not = HASN is supported.
Any
Primary
Secondary, if LINKAGE= BRANCH
For GET, UNCOND requests, the caller must not be disabled when the
specified cell pool is in a disabled reference (DREF) subpool. Otherwise,
there is no requirement.
Except for TCB, parameters can reside in storage above 16 megabytes if
the caller is in 31-bit addressing mode.

Requirements for the LIST request are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:
Control parameters:

Use VERIFY only if the caller is supervisor state.
Task or SRB
PASN not = HASN is supported.
Any
Primary or secondary
No requirement
Parameters can reside in storage above 16 megabytes it the caller is in
31-bit addressing mode.

On entry to this macro, users who specify the BUILD, DELETE, LIST, or REGS= SAVE
parameters must pass the address of a 72-byte save area in register 13.

The CPOOL macro is also described in Application Development Macro Reference with the
exception of the KEY, TCB, LINKAGE, and VERIFY parameters.

The CPOOL macro is written as follows:

name

b

CPOOL

b

BUILD
GET
FREE
DELETE
LIST

,UNCOND
,u
,COND
,C

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.
'

Vali~ parameters (Required parameters are underlined)

PCELLCT,SCELLCT,CSIZE,SP,LOC,CPID,KEY,TCB,HDR,LINKAGE
UNCOND,COND,CPID,CELL,REGS,LINKAGE
CPID,CELL,REGS
CPID,LINKAGE
CPID, WORKAREA,VERIFY

Default: UNCOND

123

,PCELLCT=primary cell count

,SCELLCT =secondary cell count

,CSIZE=cell size

,SP=subpool number

,LOC=BELOW
,LOC =(BELOW.ANY)
,LOC=ANY
,LOC=RES
,LOC =(RES.ANY)

,CPID=poo/ id

,CELL= cell addr

,KEY=key number

,TCB = tcb addr

,LINKAGE= SYSTEM
,LINKAGE= BRANCH

,REGS=SAVE
,REGS=USE

,WORKAREA = (workarea,length)

,VERIFY=NO
,VERIFY= YES

cell count: symbol, decimal number, or register (0), (2) - (12).

Default: PCELLCT

cell size: symbol, decimal number, or register (0), (2) - (12).

subpool number: symbol, decimal number, or register (0), (2) -
(12).
Default: SP= 0

Default: LOC =RES

pool id: RX-type address or register (0), (2) - (12).

cell addr: RX-type address or register (0), (2) - (12).

key number: decimal numbers 0-15 or register (0), (2) - (12).

tcb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type
address, or
register (0), (2) - (12).
Default: 'CPOOL CELL POOL'.

Default: LINKAGE=SYSTEM
Note: Do not specify LINKAGE with FREE or LIST requests or
the GET request with the COND parameter.

Default: REGS=SAVE

workarea: symbol, RX-type address, or register (0), (2) - (12).
length: symbol or decimal number.

Default: VERIFY=NO.

The parameters are explained as follows:

BUILD
GET
FREE
DELETE
LIST

specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the
cells together.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

LIST places the beginning and ending addresses of the extents of a cell pool in a work
area provided by the caller.

124 SPL: Application Development Macro Reference

,UNCOND
,U
,COND
,c

when used with GET specifies whether the request for a cell is conditional or
unconditional.

If you specify COND or C and no more free cells are available in the cell pool, the
system returns to the caller without a cell. The system places a zero in the field
specified by the CELL parameter.

If you specify UNCOND or U and no more free cells are available in the cell pool, the
system obtains more storage for the cell pool. CPOOL then obtains a new cell for the
caller. An unconditional CPOOL GET request fails only if enough storage is not
available to extend the cell pool.

,PCELLCT =primary cell count
specifies the number of cells expected to be needed in the initial extent of the cell pool.

,SCELLCT =secondary cell count
specifies the number of cells expected to be in each secondary or non-initial extent of
the cell pool.

,CSIZE =cell size
specifies the number of bytes in each cell of the cell pool. If CSIZE is a multiple of 8,
the cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides
on word boundaries. The minimum value of CSIZE is 4 bytes.

,SP= subpoof number
specifies the subpool from which the cell pool is to be obtained. If a register or variable
is specified, the subpool number is taken from bits 24-31.

,LOC=BELOW
,LOC = {BELOW,ANY)
,LOC=ANY
,LOC = {ANY,ANY)
,LOC=RES
,LOC = {RES,ANY)

specifies the location of virtual storage and central storage for the cell pool. This is
helpful for users with 24-bit dependencies. The location of central storage specified in
this parameter is the location of the storage after it is fixed, either by definition or by
PGFIX, PGFIXA, or PGSER. When you specify the LOC parameter, the location of
central storage is guaranteed only when the area is fixed.

LOC =BELOW indicates that virtual and central storage are to be allocated below 16
megabytes.

LOC =(BELOW.ANY) indicates that virtual storage is to be allocated below 16
megabytes and central storage can be anywhere.

LOC= ANY and LOC =(ANY.ANY) indicate that both virtual and central storage can be
located anywhere.

LOC =RES indicates that the location of virtual and central storage depends on the
location of the issuer of the macro. If the issuer resides below 16 megabytes, virtual
and central storage are allocated below 16 megabytes; if the issuer resides above "16
megabytes, virtual and central storage can be located anywhere.

LOC =(RES.ANY) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual storage is
allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual
storage is allocated anywhere. Central storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform services for cell
pools located in storage above 16 megabytes by specifying LOC =ANY or
LOC= (ANY.ANY).

CPOOL - Perform Cell Pool Services 125

,CPID =pool id
specifies the address or register to contain the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
subsequent GET, FREE, DELETE, and LIST requests.

,CELL= cell addr
specifies the address or register where the cell address is returned to the user by a
GET or a FREE request.

,KEY= key number
specifies the key in which storage is to be obtained. If a register is specified, the key is
taken from bits 28-31. This parameter is valid for subpools 227, 228, 229, 230, 231, and
241.

,TCB = tcb addr
specifies the TCB address for task related storage requests. The TCB must be within
the currently addressable address space. If the caller specifies zero as the TCB
address, the CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL
request is for private area storage and the caller does not specify TCB, the default is
the TCB address in PSATOLD.

Note: The TCB resides in storage below 16 megabytes.

,HDR=hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,LINKAGE= SYSTEM
,LINKAGE= BRANCH

specifies the type of linkage used in CPOOL processing. LINKAGE= SYSTEM indicates
that the linkage is through a PC instruction, LINKAGE= BRANCH indicates branch
entry. For BUILD and DELETE this processing is between the caller and CPOOL
processing; for GET UNCOND, the linkage is within CPOOL processing.

,REGS=SAVE
,REGS=USE

indicates whether or not registers 2-12 are to be saved for a GET or FREE request. If
REGS= SAVE is specified, the registers are saved in a 72-byte user-supplied save area
pointed to by register 13. If REGS= U3E is specified, the registers are not saved.

, WORKAREA = (workarea,length)
specifies the address of a pointer to the work area (not the address of the work area)
and also specifies the length of that area. The length must be at least 1024 bytes. The
system places the beginning and ending addresses of the extents of the cell pool in this
work area. WORKAREAapplies only to the LIST request and is required.

CPOOL LIST might not be able to return all of the beginning address/ending address
pairs at once, depending on how many address pairs there are and how large the work
area is. Thus, in order to complete a CPOOL LIST request, your program may have to
issue CPOOL LIST more than once. If GPOOL LIST uses up all the space in the work
area, but still has more information to return, it indicates (with a return code) that there
are more address pairs. Your program can then reissue CPOOL LIST to get more
information, and keep reissuing CPOOL LIST until all of the information is returned.

CPOOL LIST must be able to tell the difference between the beginning of a request (that
is, the first time your program issues CPOOL LIST to get some information about a cell
pool) and the continuation of a request (that is, when your program issues CPOOL LIST
to get more information). Your program tells CPOOL LIST that it is beginning a new
request by setting the first bit of word O in the work area to 1.

Until your program has obtained all the information about a cell pool that it needs from
CPOOL LIST, it should not change the setting of that bit, nor should it issue a GET,
FREE, or DELETE request for that cell pool. (If your program does issue a GET or FREE
request before it has obtained all of the information it needs from CPOOL LIST, it must
begin a new CPOOL LIST request; that is, set the first bit of word Oto 1 and start all

126 SPL: Application Development Macro Reference

over again. If your program deletes the cell pool, it can no longer issue the CPOOL
LIST for that cell pool.)

CPOOL LIST uses the second through fourth words (words 1-3) in the work area to
return information to your program:

• Word 1 has a return code:

O - indicates the request completed successfully.

1 - indicates the system filled the work area, but has more information to give.

2 - indicates that your program passed one or more invalid parameters.

3 - indicates that the system found an invalid or inaccessible cell pool. In this
case, the work area contains whatever starting address/ending address pairs
were in it before the the system found the invalid or inaccessible cell pool.

• Word 2 contains a pointer to the first starting address/ending address pair in the list
of address pairs.

• Word 3 contains the number of address pairs in the list.

VERIFY=NO
VERIFY=YES

To make sure the virtual storage control blocks are backed by central storage and
accessible, specify VERIFY= YES. The default is VERIFY= NO. Use VERIFY only if your
program is in supervisor state.

Nole: If GET U,LINKAGE=SYSTEM,REGS=USE is specified, the caller's secondary ASID
will not be preserved. In all other cases the secondary ASID is unchanged.

Contents of the Registers on Return from CPOOL
After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

The contents of the registers on return from CPOOL BUILD are:

Register Comment
0 Contains the cell pool id.
1 Used as a work register by the macro.
2·13 Unchanged
14·15 Used as work registers by the macro.

The contents of the registers on return from CPOOL GET are:

Register Comment
0 Contains the cell pool id.
1 Address of the obtained cell for either an UNCOND request or a successful

2-4
COND request. It contains a zero for unsuccessful COND requests.
Unchanged, if REGS=SAVE is specified; otherwise used as work registers by
the macro.

5·12 Unchanged, if REGS=SAVE or COND REGS=USE is specified; otherwise
used as work registers by the macro.

13
14·15

Unchanged
Used as work registers by the macro.

The contents of the registers on return from CPOOL FREE are:

Register Comment
0 Contains the cell pool id.
1 Used as a work register by the macro.
2-4 Unchanged, if REGS= SAVE is specified; otherwise, used as work registers

by the macro.
5·13 Unchanged
14-15 Used as work registers by the macro.

CPOOL - Perform Cell Pool Services 127

The contents of the registers on return from CPOOL DELETE are:

Register
0
1
2-13
14-15

Comment
Contains the cell pool id.
Used as a work register by the macro.
Unchanged
Used as work registers by the macro.

The contents of the registers on return from CPOOL LIST are:

Register
O and 1
2-13
14 and 15

Example 1

Comment
Used as work registers by the macro.
Unchanged
Used as work registers by the macro.

Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in
the initial extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=l0,SCELLCT=20,CSIZE=40,SP=2

Example 2
Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.

CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM

Example 3
Operation: Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)

Example 4
Operation: Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage.

CPOOL DELETE,CPID=(2),LINKAGE=SYSTEM

128 SPL: Application Development Macro Reference

Examples
Operation: Request that the system place the starting and ending addresses of a cell pool
in a buffer. Assume that the cell pool ID has been saved in POOLID.

LA 1,WKAREA Get the address of the work area
ST l,WKPTR And save it (to pass to CPOOL LIST)

*
* (Note that the first parameter passed with WORKAREA
* is a pointer to the work area, not the work area itself.)
*

OI FLAGBYTE,X'80' Turn on the "first call" flag
LOOP LA 13,SAVEAREA Get address of save area in reg 13

CPOOL LIST,WORKAREA=(WKPTR,1050),CPID=POOLID

*
*
*
*
*
*
*

*

*

LA 15, 2 Get a return code value
C 15,RCODE Check the return code
BE USRERROR Branch if there was a user error

If the return code does not indicate a user error,
some information was returned in the work area. Note
that if CPOOL LIST found that the first extent it looked
at was invalid, the buffer may not actually contain any
address pairs (i.e. ENTRIES may contain 0).

BAL 14,PROCESS

LA 15,1
C 15,RCODE

BE LOOP

Process the information returned
by CPOOL LIST
Get a return code value
If CPOOL LIST could not return all
the information at once,
Call it again to get more information

* Data declarations
*
WKAREA OS
FLAGBYTE OS

OS
RC ODE OS
BUFPTR OS
ENTRIES OS

OS
WKPTR OS
POOLID OS
SAVEAREA OS

0cu050
Cll
CL3
F
F
F
CL1034
F
F
CL72

Work area/buffer for CPOOL LIST
Byte containing first call flag

CPOOL LIST return code
Pointer to output buffer
Number of address pairs in buffer
Control info and address pairs
Pointer to the work area
Cell pool ID
Register save area for CPOOL LIST

CPOOL - Perform Cell Pool Services 129

CPOOL (List Form)
The list form of the CPOOL macro builds a non-executable parameter list that can be
referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT =primary cell count

,SCELLCT =secondary cell count

,GSIZE =cell size

,SP= subpool number

,LOC=BELOW
,LOG= (BELOW.ANY)
,LOC=ANY
,LOC=RES
,LOG= (RES, ANY)

,CPID=poo/ id

,KEY=key number

,TCB = tcb addr

,HDR=hdr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal.
Note: PCELLCT must be specified on either the list or the
execute form of the macro.

Default: PGELLGT

cell size: symbol, decimal number.
Note: CSIZE must be specified on either the list or the execute
form of the macro.

subpool number: symbol, decimal number.
Default: SP= O

Default: LOC =RES

pool id: A-type address.

key number: decimal numbers 0 - 15.

tcb addr: A-type address or register.
Default: TCB address in PSATOLD.

hdr: c•.aracter string enclosed in single quotes, A-type
address.

The parameters are explained under the standard form of the CPOOL macro with the
following exception:

,MF=L
specifies the list form of the CPOOL macro.

130 SPL: Application Development Macro Reference

CPOOL (Execute Form)
The execute form of the CPOOL macro is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT =primary cell count

,SCELLCT =secondary cell count

,CSIZE =cell size

,SP=subpool number

,LOC=BELOW
,LOC =(BELOW.ANY)
,LOC=ANY
,LOC=RES
,LOC =(RES.ANY)

,CPID =pool id

,KEY=key number

,TCB = tcb addr

,HDR=hdr

,LINKAGE= SYSTEM
,LINKAGE= BRANCH

,MF= (E,ctrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal number, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the
execute format of the macro.

Default: PCELLCT

cell size: symbol, decimal number, or register (0), (2) - (12).
Note: CSIZE must be specified on either the list or the execute
form of the macro.

subpool number: symbol, decimal number, or register (0), (2) -
(12).
Default: SP= a

Default: LOC =RES

pool id: RX-type address or register (0), (2) - (12).

key number: decimal numbers 0 - 15 or register (0), (2) - (12)°.

tcb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type
address, or
register (0), (2) - (12).

Default: LINKAGE=SYSTEM

ctr/ prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro with the
following exception:

,MF= (E,ctrl prog}
specifies the execute form of the CPOOL macro.

CPOOL - Perform Cell Pool Services 131

132 SPL: Application Development Macro Reference

CTRACE - Connect a User Application to Component Trace

© Copyright IBM Corp. 1988, 1991

The CTRACE macro connects a user application to component trace (DEFINE parameter).
Once the application is connected to component trace:

• An MVS operator can use the MVS commands TRACE CT and REPLY to activate and
deactivate tracing for the application. Also, the operator can use DISPLAY TRACE to
obtain the status of the application. For information about how to use the TRACE CT,
REPLY, and DISPLAY TRACE commands, see System Commands.

• The interactive problem control system (IPCS) can format and display the trace
information through the CTRACE subcommand. For a description of the CTRACE
subcommand, see IPCS Command Reference.

Before the application terminates, it should use the CTRACE macro to disconnect itself from
component trace {DELETE parameter). This action prevents the system from reporting
inaccurate status information on the DISPLAY TRACE command display.

Planning: Dumps and Trace Services describes how to take advantage of the services of
component trace.

The caller must ensure that register 13 points to a standard 72-byte save area. Other
requirements for the caller are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serlallzatl.on:

Supervisor state and key o
Task
PASN = HASN = SASN
31-bit
Primary
Enabled and unlocked

Registers 0, 1, 14, and 15 are not preserved.

The standard form of the CTRACE macro is written as follows:

name

b

CTRACE

b

DEFINE
DELETE

,NAME=name

,STARTNAM = sname

,ASIDS=NO
,ASIDS=YES

,BUFFER=NO
,BUFFER= YES

,JOBS=NO
,JOBS=YES

,MINOPS =options
,MINOPS =NONE

,FMTTAB=fmtabs

name: symbol. Begin name in column 1.

One or more blanks must precede CTRACE.

One or more blanks must follow CTRACE.

name: RX-type address or register (2) - (12).

sname: RX-type address or register (2)-(12).
Required on DEFINE.

Default: ASIDS =NO.

Default: BUFFER= NO.

Default: JOBS= NO.

options: RX-type address.
Default: MINOPS =NONE.

fmtabs: RX-type address or register (2) - (12).

133

,FMTTAB=NONE Default: FMTT AB= NONE.

,RC=rc re: RX-type address or register (2) - (12).

,RSNCODE = rsncode rsncode: RX-type address or register (2) - (12).

,MF=(S)

The parameters are explained as follows:

DEFINE
connects the application to component trace. NAME and STARTNAM are required
parameters on the DEFINE request; ASIDS, BUFFER, JOBS, MINOPS, FMTTAB,
RSNCODE, RC, and MF are optional parameters.

DELETE
disconnects the application from component trace. NAME is a required parameter on
the DELETE request; RSNCODE, RC, and MF are optional parameters.

,NAME=name
specifies the external name of the application to be connected or disconnected. The
name must begin with an alphabetic or national character and contain up to eight
alphanumeric or national characters. (The first three letters must not be SYS because
these are reserved for IBM use.) NAME is required for both DEFINE and DELETE.

The operator uses this name on the COMP parameter on the TRACE CT command to
start and stop the tracing of the application.

,STARTNAM == sname
specifies the name of the application start/stop routine that the system invokes when
the operator issues the TRACE CT command. The routine, or an alias, must reside in
SYS1.LINKLIB or SYS1.LPALIB. STARTNAM is required on the DEFINE request.

The start/stop routine should perform any functions required to activate or deactivate
tracing for the application. Such functions might include obtaining storage for the
application's trace buffers or determining the events that the application will trace. For
information on writing this start/stop routine, see SPL: Application Development Guide.

,ASIDS ==YES
,ASIDS=NO

allows the operator to restrict the address spaces that the component traces by ASIDs
(ASIDS=YES). On the ASID parameter on the REPLY command, in response to the
TRACE CT command, the operator can specify up to 16 ASIDs that the system will trace
for the application. If you specify ASIDS =NO (or use the default), the operator cannot
request tracing by ASIDs.

,BUFFER== YES
,BUFFER=NO

allows the operator to specify the size of a trace buffer area (BUFFER= YES) on the
TRACE CT command. If you code BUFFER= NO (or use the default), the operator
cannot specify the size of the buffer area on the TRACE CT command

,JOBS==YES
,JOBS=NO

allows the operator to restrict the jobs that the application traces by job names
(JOBS= YES). On the JOBS parameter on the REPLY command, in response to the
TRACE CT command, the operator can specify up to 16 jobs that the system will trace
for the application. If you code JOBS= NO on CTRACE (or use the default), the operator
cannot specify the jobs that the application is to trace.

134 SPL: Application Development Macro Reference

,MIN OPS== options
,MINOPS"' NONE

specifies a list of options that are in effect while the application is connected to
component trace. These options cannot be turned off by the TRACE CT command;
specify those options that you do not want an operator to be able to turn off. The
character string for the options list must not exceed 255 bytes. The default is
MINOPS=NONE.

,FMTTAB = fmtabs
,FMTTAB =NONE

specifies the name of the load module in SYS1.MIGLIB that contains the IPCS format
table for the application. Use the ITTFMTB macro, described in this book, to create this
format table.

The default (FMTT AB= NONE) specifies that IPCS is not to format the trace.

,RC=rc
identifies the location where the system is to place the return code from the CTRACE
macro. The system copies the return code into the location from register 15.

,RSNCODE = rsncode
identifies the location where the system is to place the reason code from the CTRACE
macro. The system copies the reason code into the location from register 0.

,MF•S
specifies the standard form, which places parameters into an inline parameter list and
invokes the CTRACE macro service.

When control returns from CTRACE, register 15 contains one of the following return codes:

Hexadecimal
Code

0

4

8

Meaning

CTRACE was successful.

CTRACE was unsuccessful.

• For the DEFINE request, the application was already defined to component
trace.

• For the DELETE request, the application is not connected to component trace.

CTRACE was unsuccessful; look for the following reason codes in
register 0:

xxxx06xx - Insufficient storage for a DEFINE operation.

xxxx07xx - CTRACE could not establish a recovery environment.

CTRACE- Connect a User Application to Component Trace 135

CTRACE (List Form)
The list form of the CTRACE macro is written as follows:

name

CT RACE

,MF= (L,cntl)
,MF= (L,cntl,attr)

name: symbol. Begin name in column 1.

One or more blanks must precede CTRACE.

One or more blanks must follow CTRACE.

cntl: symbol.
attr: 1- to 60-character input string.
Default: OD

The parameters are explained as follows:

,MF=(L,cnt/)
,MF= (L,cnt/,attr)

cntl is the name of a storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
OD, which forces the parameter list to a doubleword boundary.

136 SPL: Application Development Macro Reference

CTRACE (Execute Form)
The execute form of the CTRACE macro can refer to and modify the parameter list
constructed by the list form of the CTRACE macro.

The execute form of the CTRACE macro is written as follows:

name

CT RACE

b

DEFINE
DELETE

,NAME=name

,STARTNAM = sname

,ASIDS=NO
,ASIDS=YES

,BUFFER=NO
,BUFFER=YES

,JOBS=NO
,JOBS=YES

,MINOPS =options
,MINOPS=NONE

,FMTT AB= fmtabs
,FMTT AB= NONE

,RC=rc

,RSNCODE = rsncode

,MF= (E,cnt/)
,MF= (E,cnt/,COMPLETE)

name: symbol. Begin name in column 1.

One or more blanks must precede CTRACE.

One or more blanks must follow CTRACE.

name: RX-type address or register (2) - (12).

sname: RX-type address or register (2)-(12).
Required on DEFINE.

Default: ASIDS =NO.

DefauH: BUFFER= NO.

DelauH: JOBS=NO.

options: RX-type address.
Delaun: MINOPS =NONE.

fmtabs: RX-type address or register (2) - (12).
Defaun: FMTTAB=NONE.

re: RX-type address or register (2) - (12).

rsncode: RX-type address or register (2) - (12).

cntl: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the CTRACE macro with the
following exception:

,MF• (E,cntl)
,MF• (E,cntl,COMPLETE)

cntl is the name of a storage area for the parameter list.

COMPLETE specifies that the system is to check the macro parameter. syntax .and
supply defaults on parameters that you do not use.

CTRACE - Connect. a User Application to Component Trace 137

138 SPL: Application Development Macro Reference

DATOFF- DAT-OFF Linkage

© Copyright IBM Corp. 1988, 1991

The DATOFF macro transfers control to a specified routine in the DAT-OFF section of the
nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT. Callers
must include the IHAPSA mapping macro with the DATOFF macro. Callers can be in
primary or access register (AR) address space control (ASC) mode. The macro destroys
the contents of general registers 0, 14, and 15.

The DATOFF macro is written as follows:

name

DATOFF

index

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede DATOFF.

One or more blanks must follow DATOFF.

Note: See the description of the parameters for the valid
options.

value: any valid macro keyword specification.

The parameters are explained as follows:

index
specifies the function that is to be given control in the DAT-OFF section of the nucleus.
The possible values for index, along with the associated functions, are as follows:

Index

INDCDS

INDMVCLO

INDMVCLK

INDXCO

INDUSR1

INDUSR2

INDUSR3

INDUSR4

Function

DAT-OFF compare double and swap

General DAT-OFF move character long

General DAT-OFF move character long in user key

General DAT-OFF exclusive OR character

User-written

User-written

User-written

User-written

For each of the system-defined index values (INDCDS, INDMVCLO, INDMVCLK, and
INDXCO), the user must supply information in certain registers, as shown in the
following lists. All register values must be 31-bit addresses.

INDCDS

Registers

2,3

4,5

6

Information

First 64-bit operand in even-odd pair of registers (target
data)

Third 64-bit operand in even-odd pair of registers (source
data)

Location of second operand, a doubleword in storage
(target address)

Note: Register 6 contains a real address.

139

INDMVCLO

INDMVCLK

INDXCO

Registers

2

3

4

5

Information

Location into which the characters are to be moved

Length of the area into which the characters are to be
moved

Location of the area from which the characters are to be
moved

Length of the area from which the characters are to be
moved

Note: Registers 2 and 4 contain real addresses.

Registers

2

3

4

5

6

Information

Location into which the characters are to be moved

Length of the area into which the characters are to be
moved

Location of the area from which the characters are to be
moved

Length of the area from which the characters are to be
moved

Bits 24-27 contain the PSW key in which the MVCL is to be
executed.

Note: Registers 2 and 4 contain real addresses.

Registers

2

3

4

Information

Location of the results of exclusive OR character
processing

Bits 24-31 contain one less than the number of bytes on
which the exclusive OR is to be performed.

Location of the operand on which the exclusive OR is to
be performed

Note: Registers 2 and 4 contain real addresses.

There are four DAT-OFF indexes that users can define. These indexes are INDUSR1,
INDUSR2, INDUSR3, and INDUSR4. User written DAT-OFF functions are restricted as
follows:

• The user of the DATOFF macro instruction must be in key 0, supervisor state, and
executing with DAT turned off.

• The DAT-OFF function must have the attributes AMODE = 31 and RMODE =ANY.

• The DAT-OFF function must preserve register 0 because register 0 contains the
return address of the module that issued the DATOFF macro.

• The DAT-OFF function must use branch instructions to link to other DAT-OFF
functions.

• The DAT-OFF function must use BSM 0,14 to return.

Note: See SPL: Application Development Guide for information about how to insert a
user-written function in the nucleus.

,RELATED= value
specifies information used to document the macro and to relate the service performed
to some corresponding service or function. The format of the information specified can
be any valid coding values that the user chooses.

140 SPL: Application Development Macro Reference

DEQ - Release a Serially Reusable Resource

© Copyright IBM Corp. 1988, 1991

DEQ removes control of one or more serially reusable resources from the active task.
Register 15 is set to O if the request is satisfied. An unconditional request to release a
resource from a task that is not in control of the resource or a request that contains invalid
parameters results in abnormal termination of the task.

Nole: When global resource serialization is active, it searches the SYSTEM inclusion
resource name list and the SYSTEMS exclusion resource name list for every resource
specified with a scope of SYSTEM or SYSTEMS. A resource whose name appears on one of
these resource name lists might have its scope changed from the scope that appears on the
macro. (See Planning: Global Resource Serialization for additional information about global
resource serialization.)

The description of the entire DEQ macro follows. The DEQ macro also appears in
Application Development Macro Reference with the exception of the RMC, GENERIC, TCB,
and UCB parameters. These parameters are restricted in use to programs that run in
supervisor state, key 0-7, or with APF authorization, and are, therefore, described only here.

Except for TCB and UCB, all input parameters to this macro can reside in storage above 16
megabytes for callers executing in 31-bit addressing mode.

The standard form of the DEQ macro is written as follows:

name

b

DEQ

b

qnameaddr

,rname addr

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC= YES

,TCB = tcb addr

,UCB= ucb addr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).
Note: rname length must coded if a register is specified for
rname addr.

Default: STEP

Default: RMC=NONE

Default: GENERIC=NO
Note: If GENERIC= YES is specified, you must also specify
RET=HAVE above.

tcb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.

ucb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

141

The parameters are explained as follows.

specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an .8-character name. The qname must be
the same name specified for the resource in an ENO macro.

,rname addr
specifies the address in virtual storage of the name used in conjunction with qname and
scope to represent the resource acquired by a previous ENO macro. The name can be
qualified and must be from 1 to 255 bytes long. The rname must be the same name
specified for the resource in an ENQ macro.

,rname length
specifies the length of the rname described above. The length must have the same
value as specified in the previous ENO macro. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of 0. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified
above.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro requesting the resource.

specifies the end of the resource description.

Note: Multiple resources can be specified with the DEO macro. You can repeat qname
addr, rname addr, rname length, and the scope until there is a maximum of 255 characters
including the parentheses.

,RET=HAVE
,RET=-NONE

HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources or if ENQ
was executed with ECB. A return code is set if the resource is not held. NONE specifies
an unconditional request to release all the resources. RET= NONE is the default. The
active task is abnormally terminated if it has not been assigned control of the
resources.

In either case, if the resources requested for release were originally queued with the
ECB parameter specified, they are released with return code 0.

,RMC=NONE
,RMC=STEP
,GENERIC= NO
,GENERIC• YES

RMC specifies that the reset must-complete function is not to be used (NONE) or that
the requesting task is to release the resources and terminate the must complete
function (STEP). The NONE or STEP subparameter must agree with the subparameter
specified in the SMC parameter of the corresponding ENO macro.

GENERIC specifies whether or not (YES or NO) all resources with the specified qname
are to be released. In order for the resource to be released, the task must have control
of or be in ECB wait for the resource. (ECB was specified on the original ENO.) If the
task is waiting for a resource, but is not in an ECB wait, the task remains queued and
waiting.

142 SPL: Application Development Macro Reference

The following return codes are associated with a GENERIC DEQ:

Hexadecimal
Code

0

4

8

,TCB = tcb addr

Meaning

One or more resources which the task had control of or was in ECB wait for have
been released.

One or more resources were unconditionally requested by the task, but the task
was not assigned control. The task is not removed from the wait condition.
However, other resources with the same qname might have been released.

No resources were found for the specified qname.

specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the DEQ is to be done. The
caller (not the directed task) is abnormally terminated if the RET parameter is omitted
and an attempt is made to DEQ a resource not requested or not owned by the directed
task, except when ECB was specified on the original ENQ. If ECB was specified on the
ENO and the resource is not owned by the directed task, the TCB DEQ request releases
the resources with a zero return code.

Note: The TCB resides in storage below 16 megabytes.

,UCB= ucb addr
specifies the address of a fullword that contains the address of a UCB for a reserved
device that is now being released. This parameter is used to release a device reserved
with the RESERVE macro. The UCB parameter is optional.

Note: The UCB resides in storage below 16 megabytes.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

Return codes are provided by the control program only if RET =HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing
the return codes as shown in Figure 8.

DEQ- Release a Serially Reusable Resource 143

Address
Returned in
Register 15

~
0

12

24

36

,....,_

2 3

_,...~

Return
Codes

i
RC 1

RC 2

RC 3

.,...

4

J

I l"----1

12

Return codes are
1 2 bytes a pa rt,
starting 3 bytes
from the address
in register 15.

I '------'---1 --'---'---RC N__,____,DD
Figure 8. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro. The return codes are shown
below.

Hexadecimal
Code

0

4

8

144 SPL: Application Development Macro Reference

Meaning

The resource has been released.

The resource has been requested for the task, but the task has not been assigned
control. The task is not removed from the wait condition. (This return code could
result if DEQ is issued within an exit routine which was given control because of
an interruption.)

Control of the resource has not been requested by the active task, or the resource
has already been released.

Example 1
Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset
the "must-complete" state.

DEQ (MAJORl,MINORl,8,STEP),RMC=STEP

Example 2
Operation: Conditionally release control of the resource in Example 2 of ENQ.

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Example 3
Operation: Unconditionally release control of the resource {device) in Example 1 of
RESERVE.

DEQ (MAJOR3,MINOR3,,SYSTEMS),UCB=(R3)

Example 4
Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to
the current TCB. The length of the rname is explicitly defined as 8 characters.

DEQ (MAJORl,MINORl,8,STEP),RET=HAVE

DEQ - Release a Serially Reusable Resource 145

DEQ (List Form)
Use the list form of the DEQ macro to construct a control program parameter list. The
number of qname, rname, and scope combinations in the list form of DEQ must be equal to
the maximum number of qname, rname, and scope combinations in any execute form of
DEQ that refers to that list form. The list form of the DEQ macro is written as follows:

name

b

DEQ

b

qnameaddr

,rname addr

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC= NO
,GENERIC= YES

,TCB=O

,UCB= ucb addr

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede DEC.

One or more blanks must follow DEQ.

qname addr: A-type address.

rname addr: A-type address.

rname length: symbol or decimal digit.

Default: STEP

Default: RET = NONE

Default: RMC =NONE

Default: GENERIC= NO
Note: If GENERIC=YES is specified, you must also specify
RET =HAVE above.

Note: TCB cannot be specified with RMC above, and must be
specified on the list form If used on the execute form.

ucb addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the DEQ macro, with the following
exception:

,MF=L
specifies the list form of the DEQ macro.

146 SPL: Application Development Macro Reference

DEQ (Execute Form)
A remote control program parameter list is used in, and can be modified by, the execute
form of the DEQ macro. The parameter list can be generated by the list form of either the
DEQ or the ENQ macro.

The execute form of the DEQ macro is written as follows:

name

b

DEQ

b

qname addr

,rname addr

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC= NO
,GENERIC=YES

,TCB=tcb addr

,UCB= ucb addr

, RELATED= value

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Note: (and) are the beginning and end of a parameter list.
The entire list is optional. If nothing in the list is desired, then
(,), and all parameters between (and) should not be
specified. If something in the list is desired, then (,), and all
parameters in the list should be specified as indicated at the
left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digits, or register (2) - (12).

Note: See note opposite (above.

Note: If GENERIC= YES is specified, you must also specify
RET=HAVE above.

tcb addr: RX-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above, and must be
specified on the execute form if used on the list form.

ucb addr: RX-type address, or register (2) - (12).

va1ue: any valid macro keyword specification.

ctr/ addr: RX-type address, or register (1) - (12).

The parameters are explained under the standard form of the DEQ macro, with the following
exception:

,MF ... (E,ctrl addr)
specifies the execute form of the DEQ macro using a remote control program
parameter list.

DEQ- Release a Serially Reusable Resource 147

148 SPL: Application Development Macro Reference

DOM - Delete Operator Message

© Copyright IBM Corp. 1988, 1991

The DOM macro is used to delete an operator message or group of messages from the
display screen of the operator's console. It can also prevent messages from ever
appearing on any operator's console. When a program no longer requires that a message
be displayed, it can issue the DOM macro to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message may or may not
be displayed. If the message is being displayed, it is removed when space is required for
other messages. If the message is not yet displayed, it is removed before it gets displayed.

When a WTO or WTOR macro is issued, the system assigns an identification number to the
message and returns this number (32 bits right-justified) to the issuing program in register
1. When the display of this message is no longer needed, the issuing program can issue the
DOM macro using the identification number that was returned in general register 1.

The DOM macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DOM.

DOM

b One or more blanks must follow DOM.

MSG=addr addr: register (1) - (12). or an address.
MSG LIST= list addr
TOKEN=addr

,COUNT=addr

,SYSID=addr

,SCOPE= SYSTEM
,SCOPE= SYSTEMS

list addr: symbol, RX-type address, or register (1) - (12).
addr: register (1) - (12), or an address.

addr: register (2) - (12), or an address.

addr: register (2) - (12), or an address.

The parameters are explained as follows:

MSG-addr
The field or register that contains the 32-bit identification number of a message to be
deleted.

MSGLIST =list addr
specifies the address of a list of one or more fullwords, each word containing the 32-bit
identification number of a message to be deleted.

TOKEN-addr
specifies a field or register containing a 4-byte token that is associated with messages
to be deleted. When you issue WTO or WTOR to write a message, you can choose a
token value, and specify it as an input parameter to WTO(R) via the TOKEN parameter.
WTO(R) returns control to the application with a message id in register 1. To delete the
message by the TOKEN method, ignore the message id returned by WTO(R) in register
1, and specify the token value instead, using the TOKEN parameter when you issue
DOM. TOKEN is an alternate method for identifying messages, which is independent of
the register 1 message id.

With TOKEN, authorized users may delete any messages originally issued under the
same ASID and system id. Unauthorized users may delete only those messages that
were originally issued under the same jobstep TCB, ASID, and system id. The value of
the token may not be the same as the id that was returned in register 1 after a WTO or
WTOR. TOKEN is mutually exclusive with MSG, MSGLIST, and COUNT.

149

COUNT ...
specifies a field or register containing the one-byte count of 4-byte message ids
associated with this request. The count must be from 1 to 60. If COUNT is specified, the
issuer must not set the high order bit on in the last entry of the DOM parameter list. If
COUNT Is not specified, the message ids are treated as 3-byte ids. If an address is
used, the address points to a 1-byte field that contains the count. COUNT is Invalid with
SYSID and TOKEN

SYSID•addr
specifies a field or register containing the 1-byte id of the system on which the message
was issued. If no message ids are specified, (that is, MSG or MSGLIST is not specified)
all messages issued from the specified system are deleted. If message Ids are
specified, (that Is, MSG or MSGLIST has been specified), messages indicated by the
MSG or MSGLIST parameter issued from the specified system are deleted.

SYSID is invalid with COUNT. SYSID can be used with the TOKEN parameter to delete
all messages originally Issued from a particular system with the specified TOKEN.
Authorized users may delete any messages originally issued under the same ASID
when TOKEN and SYSID are specified. Unauthorized users may delete only those
messages that were originally Issued under the same jobstep TCB and ASID when
TOKEN and SYSID are specified. If an address is used, the address points to a 1-byte
field which contains the system id.

SCOPE== SYSTEM
SCOPE• SYSTEMS

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

specifies how to process the DOM request. If SCOPE= SYSTEMS is specified, the DOM
request is to be communicated to other processors. If SCOPE= SYSTEM is specified,
the DOM request is not to be communicated to other processors. If SCOPE is not
specified, the DOM request defaults to SCOPE= SYSTEMS .

....__ ____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ____ ___,

Notes:

1. For any DOM parameters that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

2. Any authorized DOM parameters that are specified by an unauthorized program will
cause a 157 ABEND.

150 SPL: Application Development Macro Reference

Example 1
Operation: Delete an operator message. The message id is in register 1.

DOM MSG=(l)

Example 2
Operation: Delete a list of operator messages.

DOM MSGLIST=ID2

Example 3
Operation: Delete four operator messages. The number of messages to be deleted is
stored in the field named FOUR, and ID3 is the address of the list of message ids for the four
messages.

DOM.MSGLIST=ID3,COUNT=FOUR

Example4
Operation: Delete a single message issued on a particular system. The message ID is in
register 1, and the one-byte system id is stored in the field named TWO.

DOM MSG=(l),SYSID=TWO

Example 5
Operation: Delete all messages issued on a particular system. The one-byte system id is
stored in the field named SYSNAME.

DOM SYSID=SYSNAME

Example&
Operation: Delete all messages issued with a particular token on a particular system. The
four-byte token is stored in TOKEN1, and the one-byte system id is in TWO.

DOM TOKEN=TOKENl,SYSID=TWO

DOM - Delete Operator Message 151

152 SPL: Application Development Macro Reference

DSGNL - Issue Direct Signal

© Copyright IBM Corp. 1988, 1991

The DSGNL macro uses the signal processor (SIGP) to modify or sense the physical state of
a specific processor in a multiprocessing configuration. The SIGP instruction order codes
specified on the DSGNL macro are defined as direct services. Additional SIGP order codes
defined as remote services are available through the RISGNL and RPSGNL macros. See
Principles of Operation for an explanation of the order codes.

Programs executing in cross memory mode can issue this macro.

The DSGNL macro is written as follows:

name

b

DSG NL

b

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
STATUS
PREFIX
(0)

,CPU= PCCA addr

name: symbol. Begin name in column 1.

One or more blanks must precede DSGNL.

One or more blanks must follow DSGNL.

PCCA addr: RX-type address, or register (1).

addr: RX-type address, or register (2). ,PARAM = addr
,PARAM=(2) Note: This parameter is required with PREFIX and STATUS

only. It cannot be specified with any of the other parameters.

The parameters are explained as follows:

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
PREFIX
STATUS
(0) specifies the action to be performed. If (0) is specified, the code indicating the desired

function has already been loaded into bits 24-31 of register 0. (Only the direct class
functions are valid.) The actions and codes are:

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
PREFIX
STATUS

Order Code Action
01 State of specified processor is to be sensed
04 Start function
05 Stop function
06 Restart function
09 Stop and store status function
OB Initial processor reset function
OC Processor reset function
OD Set prefix from address
OE Store status at address

153

,CPU== PCCA addr
specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA resides in storage below 16 megabytes.

,PARAM = addr
,PARAM=(2)

allows an address to be passed to the specified processor. If addr is coded, the word at
that location is loaded into register 2 and passed to the specified processor. The
contents of that location must contain a real address. If (2) is coded, the contents of
register 2 is passed to the processor. Register 2 must also contain a real address.

When this parameter is used with PREFIX, the word passed to the specified processor
is the address to which the processor's prefix register is to be set.

When this parameter is used with STATUS, the word passed to the specified processor
is the real address at which the processor's status is to be stored.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

oc

14

Meaning

Function successfully initiated, but not necessarily completed.

Function not completed because the access path to the addressed processor was
busy or the addressed processor was in a state where it could not accept and
respond to the order code.

Function unsuccessfully initiated or successful SIGP SENSE request. Status is
returned in register 0.

Specified processor is either not installed, not configured into the system, or
powered off.

MSSF is currently inoperative.

With a return code of 8, register O contains status information from the SIGP macro. The bit
settings and meanings follow:

Bits Meaning
0 Equipment check
1-21 Unassigned, contains zeros
22 Incorrect state
23 Invalid parameter
24 External call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 MSSF currently inoperative
30 Invalid order code
31 Receiver check

Example
Operation: The processor whose PCCA address is in register 1 will be placed in the STOP
state.

DSGNL STOP,CPU=(l)

154 SPL: Application Development Macro Reference

DSPSERV - Create, Delete, and Control Data Spaces

© Copyright IBM Corp. 1988, 1991

DSPSERV for hlperspaces ------------------------...

To control the use of hiperspaces, use the variation of the DSPSERV macro described
under "DSPSERV- Create, Delete, and Control Hiperspaces" on page 169.

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a range of
up to two gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through ESA/370 instructions. Unlike an address space, a data space can hold
only data or programs stored as data. For more information on data spaces and how to use
them, see SPL: Application Development- Extended Addressability.

Use the DSPSERV macro to:

• Create a data space (CREATE parameter)
• Delete a data space (DELETE parameter)
• Release an area of a data space (RELEASE parameter)
• Increase the current size of a data space (EXTEND parameter)
• Load an area of a data space into central storage (LOAD parameter)
• Take (that is, page out) from central storage an area of a data space (OUT parameter)

If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

Requirements for callers of DSPSERV are as follows:

Authorization:

Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serlallzatlon:

Control parameters:

To request the following DSPSERV services, a program must be supervisor
state or PSW key 0-7:

• Create a data space with disabled referenced (DREF) storage
• Create and delete a SCOPE=ALL and SCOPE= COMMON data space
• Assign a storage key to a data space
• Assign data space ownership to a TCB
• Load an area of a SCOPE= ALL or SCOPE= COMMON data space into

central storage
• Page out of central storage an area of a SCOPE= ALL or

SCOPE= COMMON data space
• Extend the current size of a data space it does not own

Problem state programs with PSW key S-F can request all other DSPSERV
services for data spaces.
Task or SRB
Any
31-bit addressing
Primary or access register (AR)
Enabled, unless you specify DSPSERV RELEASE with DISABLED=YES,
and unlocked
Control parameters must be in the primary address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

155

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
O Reason code if the return code in GPR 15 is not O; otherwise, used as a work

1
2 -13
14
15

register by the macro
Used as a work register by the macro
Unchanged
Used as a work register by the macro
Return code

When control returns to the.caller, the access registers (ARs) contain:

Register
0-1
2 -13
14 -15

Contents
Used as a work register by the macro
Unchanged
Used as a work register by the macro

DSPSERV is also described in Application Development Macro Reference, with the
exception of the LOAD and OUT requests and the DREF, SCOPE, KEY, CALLERKEY,
TTOKEN, and DISABLED parameters. These parameters are restricted to supervisor state
or PSW key 0-7 programs.

156 SPL: Application Development Macro Reference

The standard form of the DSPSERV macro is written as follows:

name

b

DSPSERV

b

CREATE

RELEASE
DELETE
EXTEND
LOAD
OUT

,STOKEN = stoken-addr

,TYPE= BASIC

. NAME= name-addr

,GENNAME =NO
,GENNAME = COND
,GENNAME =YES

,OUTNAME = outname-addr

,ST ART= start-addr

,BLOCKS= (max-addr,init-addr)
,BLOCKS= (max,init)
,BLOCKS= max
,BLOCKS= (O,init)
,BLOCKS=O
,BLOCKS= (O,init-addr)
,BLOCKS= (size-addr)
,BLOCKS= (size)

,DREF=NO
,DREF=YES

,SCOPE= SINGLE
,SCOPE=ALL
,SCOPE= COMMON

,CALLERKEY
,KEY=key-addr

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr

,ORIGIN= origin-addr

,NUMBLKS = numblks-addr

,VAR=NO
,VAR=YES

,DISABLED= NO
,DISABLED= YES

,MF=S

name: symbol. Begin name in column 1.

One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)
STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS,
DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN,
NUMBLKS
STOKEN, START, BLOCKS, DISABLED
STOKEN. TTOKEN
STOKEN, BLOCKS, VAR, NUMBLKS
STOKEN,START,BLOCKS
STOKEN,START,BLOCKS

stoken-addr: RX-type address or register (2) - (12).

Default: TYPE= BASIC

name-addr: RX-type address or register (2) - (12) .

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).

start-addr: RX-type address or register (2) - (12).

max-addr: RX-type address or register (2) - (12).
init-addr: RX-type addrers or register (2) - (12).
max: Number up to 524288.
init: Number up to 524288.
O specifies the installation default size.
Default for CREATE: BLOCKS= 0
size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

Default: DREF=NO

Default: SCOPE=SINGLE

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT =YES

ttoken-addr: RX-type address or register (2) - (12).

origin-addr: RX-type address or register (2) - (12).

numb/ks-addr: RX-type address or register (2) - (12).

Default: VAR= NO

Default: DISABLED= NO

DSPSERV - Create, Delete, and Control Data Spaces 157

The CREATE, RELEASE, DELETE and EXTEND parameters, which designate the services of
the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a data space. Creating a data space is somewhat like
issuing a GETMAIN for storage. The entire data space is in the same storage key.
When you specify CREATE, you must specify the NAME and STOKEN parameters.

Optional parameters when you create a data space are: TYPE, OUTNAME, GENNAME,
BLOCKS, DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned to the
system. Although the data contained in the virtual storage is discarded, the user's
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the hiperspace, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW key must
be zero or equal to the key of the storage the system is to release. A supervisor state
or PSW key 0 - 7 caller must have its home or primary address space the same as the
owner's home address space, and its PSW key must be zero or equal to the key of the
storage the system is to release.

If your program is disabled for 1/0 and external interrupts, use DISABLED=YES;
otherwise, use DISABLED= NO (the default).

Use DSPSERV RELEASE instead of using the MVCL instruction for these reasons:

• DSPSERV RELEASE is faster than MVCL for very large areas.

• Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage.

DELETE
Requests that the system delete a data space. STOKEN is the only required parameter
on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any data space it owns, providing its
PSW key matches the storage 1<ey of the data space.

A supervisor state or key 0-7 program can delete any data space it owns and other data
spaces, if its home or primary address space is the same as the owner's.

EXTEND
Requests that the system increase the current size of a data space. Use EXTEND only
for a data space that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references data space
storage beyond the current size, the system rejects the request; it terminates the caller
with an OC4 abend code.

STOKEN (identifying the data space) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

If the caller is problem state with PSW key 8 through F, the TCB that represents it must
own the data space. Otherwise, the TCB that represents the caller must be in the home
or primary address of the owner of the data space.

158 SPL: Application Development Macro Reference

The system rejects the EXTEND request if you specified VAR= NO {or took the default)
and the extended size would:

• Exceed the maximum size specified when the data space was created.

• For a data space with a storage key greater than 7, extend the cumulative data
space and hiperspace totals beyond the installation limits for the owning address
space.

LOAD

OUT

Requests that the system load some areas of a data space into central storage. The
system fills the request depending on how many central storage frames are available.
When you specify LOAD, you must also specify the STOKEN, START, and BLOCKS
parameters.

Tells the system that it can page some areas of a data space out of central storage.
When you specify OUT, you must also specify the STOKEN, START, and BLOCKS
parameters.

,STOKEN = stoken-addr
Specifies the address of the eight-byte STOKEN for the data space.

DSPSERV CREATE returns the STOKEN as output. STOKEN is required input for all
other DSPSERV services.

, TYPE= BASIC
Specifies that the system should create a data space rather than a hiperspace.
TYPE= BASIC is the default.

,NAME= name-addr
Specifies the address of the eight-byte variable or constant that contains the name of
the data space. NAME is required for DSPSERV CREATE.

Data space names are from one to eight bytes long. They can contain letters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

Data space and hiperspace names must be unique within the home address space of
the owner. No other data space or hiperspace in the home address space can have the
same name. Therefore, in choosing names for your data spaces, you must avoid using
the same names that IBM uses for data spaces. IBM uses the following names for data
spaces and hiperspaces:

• Names that begin with A through I, where the first three characters are any IBM
component prefix.

• Names that begin with SYSAxxxx through SYSlxxxx, where the fourth through sixth
characters are any IBM component prefix.

• Names that begin with numbers or the characters SYSDS.

Use the following names for your data spaces:

• Problem state programs can use data space names that begin with @, #, $, or the
letters J through Z, with the exception of SYS. The system abends problem state
programs that begin names with SYS.

• Supervl•or state programs and programs with PSW key 0 • 7 can use data space
names that begin with@,#,$, or the letters J through Z. In addition, they can use
names that begin with SYSJ through SYSZ. The system abends programs that
begin names with SYSDS.

Use names that begin with SYSJ through SYSZ to ensure that the names of the data
spaces that belong to supervisor state programs and programs with PSW key O - 7
do not conflict with the names of data spaces that belong to problem state
programs.

To ensure that the names for your data spaces are unique, ask the system to generate
a unique name. See the GENNAME parameter.

DSPSERV - Create, Delete, and Control Data Spaces 159

,GENNAME =NO
,GENNAME = COND
,GENNAME =YES

Specifies whether or not you want the system to generate a name for the data space to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME
parameter. For example, if you supply 'XYZDATA' on the NAME parameter, the name
becomes 'nCCCCXYZ' where 'n' is the numeral, 'CCCC' is the 4-character string
generated by the system, and XYZ comes from the name you supplied on NAME. See
NAMES for more information about naming conventions.

GENNAME=NO

GENNAME = COND

GENNAME =YES

The system does not generate a name. You must supply a name
unique within the address space. GENNAME =NO is the default.

The system generates a unique name only if you supply a name that
is already being used. Otherwise, the system uses the name you
supply.

The system takes the name you supply on the NAME parameter and
makes it unique.

If you want the system to return the unique name it generates, use the OUTNAME
parameter.

,OUTNAME = outname-addr
Specifies the address of the eight-byte variable where the system returns the data
space name it generated if you specify GENNAME =YES or GENNAME = COND. The
OUTNAME parameter is optional on DSPSERV CREATE.

,START= start-addr
Specifies the address of a four-byte variable containing the beginning address of a
block of storage in a data space. The address must be on a four-kilobyte boundary.
START is required on RELEASE, LOAD, and OUT requests.

,BLOCKS= (max-addr,init-addr)
,BLOCKS= {max,init)
,BLOCKS= max
,BLOCKS= {O,init)
,BLOCKS=O
,BLOCKS= {O,init-addr)
,BLOCKS= size-addr
,BLOCKS= size

Specifies the size of the data space or the size of an area within the data space.

BLOCKS=size-addr in MVS/SP3.1.0 is incompatible with BLOCKS=(size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you coded
BLOCKS= (register) in MVS/SP3.1.0, and then recompile the program to run on later
releases of MVS, you must change the specification to BLOCKS= ((register)) before you
recompile.

For a CREATE request, specifies the maximum size (in blocks) to which the data space
can expand (max-addr or max) and the initial size of the data space (init-addr or init.). A
block is a unit of 4K bytes. You cannot extend the data space beyond its maximum
size.

max-addr specifies the address of a field that contains the maximum size of the data
space to be created. max is the number of blocks (up to 524,288) to be used for the
data space.

init-addr specifies the address of the initial size of the data space. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default.
The IBM-defined default maximum is 239 blocks. Your installation can use the

160 SPL: Application Development Macro Reference

installation exit, IEFUSI, to change the IBM default. The system returns the maximum
size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default is
BLOCKS= 0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

For a RELEASE request, BLOCKS is a required parameter that defines contiguous
storage (in blocks of 4K bytes) that the system is to release (size-addr or size). The
minimum size is 1 block and the maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request. BLOCKS is a required parameter that defines the amount of
increase of the current size of the data space.

For LOAD and OUT requests, BLOCKS is a required parameter that defines the amount
of data space storage that the system is to load into central storage or page out of
central storage.

BLOCKS= size-addr in MVS/SP3.1.0 is incompatible with BLOCKS= (size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you coded
BLOCKS= (register) in MVS/SP3.1.0, and then recompile the program to run on later
releases of MVS, you must change the specification to BLOCKS= ((register)) before you
recompile.

,DREF-NO
,DREF-YES

Specifies whether (YES) or not (NO) disabled programs can reference the data space.
If you specify NO, only enabled programs can reference the data space. If a disabled
program references the data space,. the system might abend the program. If you
specify YES, both an enabled and a disabled program can reference the data space.

DREF is an optional parameter when you create a data space. The default, DREF =NO,
specifies that only enabled programs can reference the data space.

,SCOPE= SINGLE
,SCOPE=ALL
,SCOPE .. COMMON

Specifies whether the data space is a SCOPE= SINGLE, SCOPE= ALL, or a
SCOPE= COMMON data space. A SCOPE= SINGLE data space may be referenced only
by the owning address space. SCOPE= ALL and SCOPE= COMMON data spaces can
be referenced by programs in many address spaces.

Any program can create and delete SCOPE= SINGLE data spaces. Only supervisor
state and key 0-7 programs can create and delete SCOPE= ALL and
SCOPE= COM MON data spaces.

If an address space contains a task that owns a SCOPE= ALL or SCOPE= COMMON
data space, the address space should be non-swappable.

SCOPE is an optional parameter for DSPSERV CREATE; the default is SCOPE= SINGLE.

,CALLERKEY
,KEY= key-addr

Specifies the address of the eight-bit variable or constant that contains the storage key
of the data space to be created. The key must be in bits 0-3 of the field. The system
ignores bits 4-7. CALLERKEY specifies that the data space have the storage key that
matches the PSW key of the caller.

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the default.

,FPROT=YES
,FPROT=NO

Specifies whether the data space should (YES) or should not (NO) be fetch-protected. If
you specify YES, the entire data space is fetch-protected. Fetch protection means a
program must be in the key of the data space storage (or key 0) to reference data in the
data space.

FPROT is an optional parameter for DSPSERV CREATE. The default, FPROT= YES,
specifies that the data space is fetch-protected.

DSPSERV-Create, Delete, and Control Data Spaces 161

,TTOKEN = ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that identifies the
TCB that is (for the CREATE request) to become the owner of the data space or is (for
the DELETE request) the owner of the data space. Use this parameter when you assign
ownership of a data space or when you delete a data space that belongs to another
task. A program can assign ownership of a data space only when it creates it.

Before a program creates a data space and assigns ownership, it must know the
TTOKEN of the TCB that is to be the new owner. The new owner must reside in the
caller's home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is to be the owner of the
data space.

An SRB cannot own a data space. It can create one, but it must assign the data space
to a TCB. The system abends SRB mode callers if they do not include the TTOKEN
parameter on create requests.

,ORIGIN= origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new data space. The system returns the beginning address of the
data space at origin-addr. The system tries to start all data spaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS = numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:

• For DSPSERV CREATE, the maximum size (in blocks) of the newly-created data
space

• For DSPSERV EXTEND, the size by which the system extended the data space

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a data space, you specify BLOCKS=O or do not specify the
BLOCKS parameter, the system uses the default that your installation established in the
SMF installation exit IEFUSI. The system returns this default value at numblks-addr.

VAR=YES
VAR=NO

Specifies whether or not your request for the system to extend the amount of storage
available in a data space is a variable request. When you use DSPSERV EXTEND for a
data space, the system might not be able to extend the data space the amount you
request because that amount might cause the system to exceed one of the following:

• The maximum size of the data space, as specified on the BLOCKS parameter when
the data space was created.

• For a data space with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit on the IEFUSI installation exit, or took the IBM default.)

If you specify VAR= YES (the variable request) and the system cannot satisfy your
request, the system extends the data space to one of the following sizes, depending on
which is smaller:

• The maximum size specified on the BLOCKS parameter when the data space was
created

• The largest size that would still keep the combined total of data space and
hiperspace storage within the limits established by the installation for an address
space

If you specify VAR= NO (the default), the system:

• Abends the caller if the extended size would exceed the maximum size specified
when the data space was created

162 SPL: Application Development Macro Reference

• Rejects the request if the data space has storage key 8 - F and the request would
extend the cumulative data space and hiperspace totals beyond the installation
limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the data space.

,DISABLED = NO
,DISABLED• YES

Specifies that the caller is enabled for 110 and external interrupts (DISABLED= NO) or
disabled for these interrupts (DISABLED= YES). DISABLED= NO is the default.

,MF-S
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

Return and reason codes from DSPSERV CREATE:

Return Reason Meaning
code code

00 DSPSERV CREATE completed successfully.

04 xxOOOCxx DSPSERV CREATE completed successfully. You specified a size of 2
gigabytes (524,288 blocks). However, because the processor did not
support a data space with zero origin; a data space of one less block
(524,287 blocks) was created.

08 xx0005xx Creation of data space would violate installation criteria. See Systom
Modifications.

08 xx0009xx Specified data space name is not unique within the address space.

08 xx0012xx The system's set of generated names for data spaces and hiperspaces has
been temporarily exhausted.

oc xx0006xx The system cannot create any additional data spaces at this time because
of a shortage of resources.

oc xx0007xx The system cannot obtain addressability to its data structures.

1D xx0012xx An unauthorized caller tried to create a shared standard hiperspace.

1D xx0014xx An attempt was made to create either a SCOPE= ALL or SCOPE= COMMON
data space, or a shared scroll hiperspace while the owning address space
was swappable.

Return and reason codes from DSPSERV EXTEND:

Return Reason Meaning
code code

00 DSPSERV EXTEND completed successfully.

08 xx0502xx Extending the data space would cause the data space and hiperspace limits
for the address space to be exceeded.

08 xx0503xx You are using VAR=YES to extend the current size of the data space;
however, the data space is already the maximum size.

Example of Creating a Data Space
Create a data space named TEMP with a size of 10 million bytes.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X

*
DSPCNAME DC
DSPCSTKN DS
DSPCORG DS
DSPCSIZE EQU
DSPBLCKS DC
*

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

CL8'TEMP
CL8
F
10000000
A((DSPCSIZE+4095)/4096)

DATA SPACE NAME
DATA SPACE STOKEN
DATA SPACE ORIGIN RETURNED
10 MILLION BYTES OF STORAGE
NUMBER OF BLOCKS NEEDED FOR
A 10 MILLION BYTE DATA SPACE

DSPSERV- Create, Delete, and Control Data Spaces 163

DSPSERV (List Form)
Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

The list form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DSPSERV.

DSPSERV

b One or more blanks must follow DSPSERV.

MF=(L,/istaddr)
MF= (L,tist addr,attr)

list addr: symbol.
attr: 1- to 60-character input string. Default: OD

,PLISTVER=O
,PLISTVER = 1

Default: PLISTVER = 0

The parameters are explained as follows:

MF= {L,/ist addr)
MF= {L,/ist addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
OD, which forces the parameter list to a doubleword boundary.

,PLISTVER = 0
,PLISTVER = 1

Specifies the macro version associated with DSPSERV.

PLISTVER is an optional parameter that determines which parameter list the system
generates. init-addr on the BLOCKS parameter is associated with macro version 1 that
produces a 60-character parameter list; all other parameters are associated with the
macro version 0 that produces a 56-character parameter list. Therefore, if you use the
BLOCKS= (max-addr,init-addr) parameter on subsequent execute forms of DSPSERV,
you must specify PLISTVER = 1 on the list form. PLISTVER = 0 is the default.

164 SPL: Application Development Macro Reference

DSPSERV (Execute Form)
The execute form of the DSPSERV macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the DSPSERV macro is written as follows:

name

DSPSERV

CREATE

RELEASE
DELETE
EXTEND
LOAD
OUT

,STOKEN = stoken-addr

,TYPE= BASIC

,NAME= name-addr

,GENNAME =NO
,GENNAME = COND
,GENNAME =YES

,OUTNAME = outname-addr

,ST ART= start-addr

,BLOCKS= (max-addr,init-addr)
,BLOCKS= (max,init)
,BLOCKS=max
,BLOCKS= (O,init)
,BLOCKS=O
,BLOCKS= (O,init-addr)
,BLOCKS= (size-addr)
,BLOCKS= (size)

,DREF=NO
,DREF=YES

,SCOPE= SINGLE
,SCOPE=ALL
,SCOPE= COMMON

,CALLER KEY
,KEY= key-addr

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr

,ORIGIN= origin-addr

,NUMBLKS = numb/ks-addr

name: symbol. Begin name in column 1.

One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)
STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS,
DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN,
NUMBLKS
STOKEN, START, BLOCKS, DISABLED
STOKEN, TTOKEN
STOKEN,BLOCKS,VAR,NUMBLKS
STOKEN,START,BLOCKS
STOKEN,START,BLOCKS

stoken-addr: RX-type address or register (2) - (12).

Default: TYPE= BASIC

name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).

start-addr: RX-type address or register (2) - (12).

max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).
max: Number up to 524288.
init: Number up to 524288.
O specifies the installation default size.
Default for CREATE: BLOCKS= 0
size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

Default: DREF= NO

Default: SCOPE= SINGLE

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT =YES

ttoken-addr: RX-type address or register (2) - (12).

origin-addr: RX-type address or register (2) - (12).

numblks-addr: RX-type address or register (2) - (12).

DSPSERV- Create, Delete, and Control Data Spaces 165

,VAR=NO
,VAR=YES

,DISABLED= NO
,DISABLED= YES

,MF= (E,/ist addr)
,MF= (E,/ist addr,COMPLETE)

Default:V AR = NO

Default: DISABLED= NO

The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF= (E,list addr)
,MF= (E,/ist addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

166 SPL: Application Development Macro Reference

DSPSERV- Create, Delete, and Control Hiperspaces

©Copyright IBM Corp. 1988, 1991

To control the use of dataspaces, use the variation of the DSPSERV macro described
under "DSPSERV- Create, Delete, and Control Data Spaces" on page 155.

The DSPSERV macro creates, deletes, and controls hiperspaces. A hiperspace is a range
of up to two gigabytes of contiguous virtual storage addresses that a program can use as a
buffer. A hiperspace can hold user data and programs stored as data. Data is not directly
addressable; to manipulate data in a hiperspace, you use the HSPSERV macro to bring the
data into the address space in blocks of 4K bytes.

Supervisor state or PSW key 0 through 7 programs have a choice of creating a standard
hiperspace or an ESO hiperspace. The standard hlperspace is backed with expanded
storage and auxiliary storage, if necessary. The HSTYPE =SCROLL parameter creates a
standard hiperspace. The ESO hiperspace is backed only with expanded storage.
HSTYPE =CACHE creates an ESQ hiperspace. For more information on hiperspaces and
how to use them, see SPL: Application Development- Extended Addressability. To learn
the restrictions for the use of hiperspaces, see the description of the HSPSERV macro later
in this book.

Use the DSPSERV macro to:

• Create a hiperspace (CREATE parameter)
• Delete a hiperspace (DELETE parameter)
• Release an area of a hiperspace (RELEASE parameter)
• Increase the current size of a hiperspace (EXTEND parameter)

If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

Requirements for callers of DSPSERV are as follows:

Authorization:

Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:

Control parameters:

To request the following DSPSERV services, a program must be supervisor
state or PSW key 0-7:

• Create and delete an ESO or a shared standard hiperspace
• Release storage in a shared or ESO hiperspace
• Extend the current size of a shared or ESO hiperspace
• Assign a storage key to a hiperspace
• Assign hiperspace ownership to a TCB

Problem state programs with PSW key 8-F can request all other DSPSERV
services.
Task or SRB
Any
31-bit addressing
Primary or access register (AR)
Enabled, unless you specify DSPSERV RELEASE with DISABLED=YES,
and unlocked
Control parameters must be in the primary address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

167

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if the return code in GPR 15 is not O; otherwise, used as a work

1
2-13
14
15

register by the macro
Used as a work register by the macro
Unchanged
Used as a work register by the macro
Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2-13 Unchanged
14 -15 Used as work registers by the macro

DSPSERV is also described in Application Development Macro Reference, with the
exception of the KEY, CALLERKEY, TTOKEN, HSTYPE, SHARE, DISABLED, and CASTOUT
parameters. These parameters are restricted to supervisor state or PSW key 0-7 programs.

168 SPL: Application Development Macro Reference

The standard form of the DSPSERV macro is written as follows:

name

DSPSERV

b

CREATE

RELEASE
DELETE
EXTEND

,STOKEN = stoken-addr

,TYPE= HIPERSPACE

,HSTYPE =SCROLL
,HSTYPE =CACHE

,SHARE=NO
,SHARE=YES

,CASTOUT=YES
,CASTOUT=NO

,NAME= name-addr

,GENNAME =NO
,GENNAME = COND
,GENNAME =YES

,OUTNAME = outname-addr

,START= start-addr

,BLOCKS= (max-addr,init-addr)
,BLOCKS= (max,init)
,BLOCKS= max
,BLOCKS= (O,init)
,BLOCKS=O
,BLOCKS= (0,init-addr)
,BLOCKS= (size-addr)
, BLOCKS= (size)

,CALLERKEY
,KEY= key-addr

,FPROT=YES
,FPROT=NO

, TTOKEN = ttoken-addr

,ORIGIN= origin-addr

,NUMBLKS = numblks-addr

,VAR=NO
,VAR=YES

,DISABLED= NO
,DISABLED= YES

,MF=S

name: symbol. Begin name in column 1.
One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)
STOKEN,NAME,TYPE,HSTYPE,CASTOUT,SHARE
GENNAME, OUTNAME, BLOCKS, CALLERKEY,
KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS
STOKEN, ST ART, BLOCKS, DISABLED
STOKEN, TTOKEN
STOKEN, BLOCKS, VAR, NUMBLKS

stoken-addr: RX-type address or register (2) - (12).

Default: HSTYPE =SCROLL

Default: SHARE= NO

Default: CASTOUT =YES

name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).

start-addr: RX-type address or register (2) - (12).

max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).
max: Number up to 524288.
init: Number up to 524288.
O specifies the installati011 default size.
Default for CREATE: BLOCKS= 0
size-addr: RX-type address or register (2) - (12).
size: Number up to 5?4288.

Default: CALLERKEY
key-addr: RX-type address or register (2) - (12).

Default: FPROT =YES

ttoken-addr: RX-type address or register (2) - (12).

origin-addr: RX-type address or register (2) - (12).

numblks-addr: RX-type address or register (2) - (12).

Default: VAR=NO

Default: DISABLED= NO

DSPSERV- Create, Delete, and Control Hiperspaces 169

The CREATE, RELEASE, DELETE, and EXTEND parameters, which designate the services of
the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a hiperspace. Creating a hlperspace is somewhat like
issuing a GETMAIN for storage. The entire hiperspace is In the same storage key.
When you specify CREATE, you must also specify the NAME, TYPE= HIPERSPACE, and
STOKEN parameters. To create an ESO or a shared standard hiperspace, your
program must be supervisor state or have PSW key 0 - 7.

Optional parameters when you create a hiperspace are: HSTYPE, CASTOUT,
GENNAME, OUTNAME, BLOCKS, KEY, CALLERKEY, FPROT, TTOKEN, ORIGIN, SHARE,
and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned to the
system. Although the data contained in the virtual storage is discarded, the user's
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the hiperspace, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW key must
be zero or equal to the key of the storage the system is to release. A supervisor state
or PSW key O - 7 caller must have its home or primary address space the same as the
owner's home address space, and its PSW key must be zero or equal to the key of the
storage the system is to release.

If your program is disabled for 110 and external interrupts, use DISABLED= YES;
otherwise, use DISABLED= NO (the default).

Use DSPSERV RELEASE instead of using the MVCL instruction for these reasons:

• DSPSERV RELEASE is faster than MVCL for very large areas.

• Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage.

DELETE
Requests that the system delete a hiperspace. STOKEN is the only required parameter
on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any hiperspace it owns and for which its
PSW key matches the key of the hiperspace.

A supervisor state or key 0-7 program can delete any hiperspace it owns and other
hiperspaces, if its home or primary address space is the same as the owner's.

EXTEND
Requests that the system increase the current size of a hiperspace. Use EXTEND only
for a hiperspace that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references hiperspace
storage beyond the current size, the system rejects the request; it terminates the caller
with an OC4 abend code.

STOKEN (identifying the hiperspace) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

170 SPL: Application Development Macro Reference

If the caller is problem state and PSW key 8 through F, it must own the hiperspace.
Otherwise, the TCB that represents the caller must be in the home or primary address
of the owner of the hiperspace.

The system rejects the EXTEND request if you specified VAR= NO (or took the default)
and the extended size would:

• Exceed the maximum size specified when the hiperspace was created.

• For a hiperspace with a storage key greater than 7, extend the cumulative data
space and hiperspace totals beyond the installation limits for the owning address
space.

,STOKEN = stoken-addr
Specifies the address of the eight-byte STOKEN for the hiperspace. DSPSERV CREATE
returns the STOKEN as output. STOKEN is required input for all other DSPSERV
requests.

,TYPE= HIPERSPACE
Specifies that the system is to create a hiperspace.

,HSTYPE =SCROLL
,HSTYPE =CACHE

Specifies the type of hiperspace the system is to create: HSTYPE =SCROLL creates a
standard hiperspace, the type of storage area that your program can scroll through.
HSTYPE =CACHE creates an ESO hiperspace, one that acts as a high-speed cache for
storing data. HSTYPE =SCROLL is the default.

,SHARE=NO
,SHARE=YES

Specifies whether the system is to create a non-shared standard hiperspace
(SHARE= NO) or a shared standard hiperspace (SHARE= YES). Generally, a program
can share a non-shared standard hiperspace only with programs that are dispatched in
the owner's home address space. However, a program not dispatched in the owner's
home address space and using an ALET, can access this non-shared standard
hiperspace through the owner's home PASN-AL. A program can share a shared
standard hiperspace with programs that are dispatched in any address space.

,CASTO UT= YES
,CASTO UT= NO

Specifies that the system is to persist (CASTOUT =NO) or not persist (CASTOUT =YES)
in retaining a copy of the data in the hiperspace. When the system needs the expanded
storage for its own needs, it is less likely to take the expanded storage from a
hiperspace created with CASTOUT =NO than from one created with CASTOUT =YES.

CASTOUT= YES indicates that the system can discard the data when it needs the
expanded storage for other purposes. CASTOUT =NO specifies that the system is to
give the data in the ESO hiperspace more priority when searching for pages to remove
from expanded storage when a shortage arises.

Note: Specifying CASTOUT= NO places a heavy demand on expanded storage. The
system might discard the pages regardless of CASTOUT= NO. For example, if the
system swaps out the address space that owns the hiperspace, it discards pages
without regard to CASTOUT. (To prevent the loss due to a swapped-out address space,
make the address space that owns the hiperspace non-swappable.)

CASTO UT= YES is the default.

,NAME= name-addr
Specifies the address of the eight-byte variable or constant that contains the name of
the hiperspace. NAME is required for DSPSERV CREATE.

Hiperspace names are from one to eight bytes long. They can contain letters, numbers,
and @, #. and$, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

DSPSERV - Create, Delete, and Control Hiperspaces 171

Names of hiperspaces and data spaces must be unique within the home address space
of the owner. No other hiperspace or data space in the home address space can have
the same name. Therefore, in choosing names for your hiperspaces, you must avoid
using the same names that IBM uses for data spaces and hiperspaces. IBM uses the
following names:

• Names that begin with A through I, where the first three characters are any IBM
component prefix.

• Names that begin with SYSAxxxx through SYSlxxxx, where the fourth through sixth
characters are any IBM component prefix.

• Names that begin with numbers or the characters SYSDS.

Use the following names for vour hlperspaces:

• Problem state programs can use hiperspace names that begin with @, #. $, or the
letters J through Z, with the exception of SYS. The system abends problem state
programs that begin names with SYS.

• Supervisor state programs and programs with PSW key 0 • 7 can use hiperspace
names that begin with @, #. $, or the letters I through Z. In addition, they can use
names that begin with SYSJ through SYSZ. The system abends programs that
begin names with SYSDS.

Use names that begin with SYSJ through SYSZ to ensure that the names of the
hiperspaces that belong to supervisor state programs and programs with PSW key 0
- 7 do not conflict with the names of hiperspaces that belong to problem state
programs.

To ensure that the names for your hiperspaces are unique, use the GENNAME
parameter to generate a unique name.

,GENNAME =NO
,GEN NAME ... COND
,GENNAME =YES

Specifies whether or not you want the system to generate a name for the hiperspace to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME parameter
(or the whole name if it has three or fewer characters). For example, if you supply
'XYZDATA' on the NAME parameter, the name becomes 'nCCCCXYZ' where 'n' is the
numeral, 'CCCC' is the 4-character string generated by the system, and XYZ .comes
from the name you supplied on NAME. See NAME for more Information about naming
conventions.

GENNAME=NO

GENNA ME= COND

GENNAME=YES

The system does not generate a name. You must supply a name unique
within the address space. GEN NAME= NO is the default.

The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

The system takes the name you supply on the NAME keyword and makes it
unique.

If you want the system to return the unique name it generates, use the OUTNAME
parameter.

,OUTNAME = outname-addr
Specifies the address of the eight-byte variable where the system returns the name it
generates for the hiperspace if you specify GENNAME =YES or GENNAME = COND.
The OUTNAME parameter is optional on DSPSERV CREATE.

,START= start-addr
Specifies the address of a four-byte variable containing the beginning address of a
block of storage in a hiperspace. The address must be on a four-kilobyte boundary. A
block is a unit of 4K bytes. START is required on a RELEASE request.

172 SPL: Application Development Macro Reference

,BLOCKS ... (max-addr,init-addr)
,BLOCKS= (max,init)
,BLOCKS= max
,BLOCKS= (O,init)
,BLOCKS=O
,BLOCKS= (O,init-addr)
,BLOCKS= size-addr
,BLOCKS= size

Specifies the address of a four-byte variable that contains the size of the hiperspace or
the size of an area within the hiperspace.

For a CREATE request, specifies the maximum size (in blocks) to which the hiperspace
can expand (max-addr or max) and the initial size of the hiperspace (init-addr or init.).
A block is a unit of 4K bytes. You cannot extend the hiperspace beyond its maximum
size.

max-addr specifies the address of a field that contains the maximum size of the
hiperspace to be created. max is the number of blocks (up to 524,288) to be used for
the hiperspace.

init-addr specifies the address of the initial size of the hiperspace. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default.
The IBM-defined default maximum is 239 blocks. Your installation can use the
installation exit IEFUSI to change the IBM default. The system returns the maximum
size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default is
BLOCKS= 0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

For a RELEASE request, BLOCKS and START are required parameters that define
contiguous storage (in 4K blocks) that the system is to release. BLOCKS specifies the
size of an area to be released (size-addr or size). The minimum size is 1 block and the
maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the amount of
increase to the current size of the hiperspace.

,CALLER KEY
,KEY= key-addr

Specifies the address of the eight-bit variable or constant that contains the storage key
of the hiperspace to be created. The key must be in bits 0-3 of the field. The system
ignores bits 4-7. CALLERKEY specifies that the hiperspace is to have the storage key
that matches the PSW key of the caller.

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the default.

,FPROT=YES
,FPROT=NO

Specifies whether the hiperspace should (YES) or should not (NO) be fetch-protected. If
you specify YES, the entire hiperspace is fetch-protected. Fetch protection means a
program must be in the key of the hiperspace storage (or key 0) to reference data in the
hiperspace.

FPROT is an optional parameter for DSPSERV CREATE. The default, FPROT=YES,
specifies that the hiperspace is fetch-protected.

,TTOKEN = ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that identifies the
TCB that is (for the CREATE request) to become the owner of the hiperspace or is (for
the DELETE request) the owner of the hiperspace. Use this parameter when you assign
ownership of a hiperspace or when you delete a hiperspace that belongs to another
task. A program can assign ownership of a hiperspace only when it creates it.

DSPSERV - Create, Delete, and Control Hiperspaces 173

Before a program creates a hiperspace and assigns ownership, it must know the
TTOKEN of the TCB that is to be the new owner. The new owner must reside in the
caller's home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is the owner.

An SRB cannot own a hiperspace. A program that the SRB represents can create one,
but it must assign the hiperspace to a TCB. The system abends SRB mode callers if
they do not include the TTOKEN parameter on create requests.

,ORIGIN== origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new hiperspace. The system returns the beginning address of the
hiperspace at origin-addr. The system tries to start all hiperspaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS = numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:

• For DSPSERV CREATE, the maximum size (in blocks) of the newly-created
hiperspace

• For DSPSERV EXTEND, the size by which the system extended the hiperspace

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a hiperspace, you specify BLOCKS= O or do not specify the
BLOCKS parameter, the system uses the default that your installation established in the
SMF user exit IEFUSI.

VAR=YES
VAR=NO

Specifies whether or not your request for the system to extend the amount of storage
available in a hiperspace is a variable request. When you use DSPSERV EXTEND for a
hiperspace, the system might not be able to extend the hiperspace the amount you
request because that amount might cause the system to exceed one of the following:

• The maximum size of the hiperspace, as specified on the BLOCKS parameter when
the hiperspace was created.

• For a hiperspace with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit in the IEFUSI installation exit, or took the IBM default.)

If you specify VAR =YES (the variable request) and the system is unable to satisfy the
request, the system extends the hiperspace to one of the following sizes, depending on
which is smaller:

• The maximum size specified on the BLOCKS parameter when the hiperspace was
created

• The largest size that would still keep the combined total of data space and
hiperspace storage within the limits established by the installation for an address
space

If you specify VAR= NO (the default), the system:

• Abends the caller if the extended size would exceed the maximum size specified
when the hiperspace was created

• Rejects the request if the hiperspace has storage key 8 - F and the request would
extend the cumulative data space and hiperspace totals beyond the installation
limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the hiperspace.

174 SPL: Application Development Macro Reference

,DISABLED= NO
,DISABLED"" YES

Specifies that the caller is enabled for 110 and external interrupts (DISABLED= NO) or
disabled for these interrupts (DISABLED= YES). DISABLED= NO is the default.

,MF=S
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

Return and reason codes from DSPSERV CREATE:

Return Reason Meaning
code code

00 DSPSERV CREATE completed successfully.

04 xxOOOCxx DSPSERV CREATE completed successfully. You specified a size of
2-gigabytes (524,288 blocks). However, because the processor did not
support a hiperspace with zero origin; a hiperspace of one less block
(524,287 blocks) was created.

08 xx0005xx Creation of hiperspace would violate Installation criteria. See System
Modifications.

08 xx0009xx The specified hiperspace name is not unique within the address space.

08 xx0010xx ESO hiperspace creation rejected because there is no expanded storage on
the system.

08 xx0012xx The system's set of generated names for data spaces and hiperspaces has
been temporarily exhausted.

oc xx0006xx The system cannot create any additional hiperspaces at this time because
of a shortage of resources.

oc xx0007xx The system cannot obtain addressability to its own hiperspaces.

Return and reason codes from DSPSERV EXTEND:

Return Reason Meaning
code code

00 DSPSERV EXTEND completed successfully.

08 xx0502xx Extending the hiperspace size would cause the data space ancj hiperspace
limits for the address space to be exceeded.

08 xx0503xx You are using VAR=YES to extend the current size of the hiperspace;
however, the hiperspace is already the maximum size.

Example of Creating a Hlperspace
Create a hiperspace named TEMP with a size of 10 million bytes.

DSPSERV CREATE,NAME=HSPCNAME,STOKEN=HSPCSTKN, X

*
HSPCNAME DC
HSPCSTKN OS
HSPCORG OS
HSPCSIZE DC
HSPBLCKS DC
*

TYPE=HIPERSPACE,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG

CL8'TEMP
CL8
F
F'l00G0000'
A((HSPCSIZE+4095)/4096)

HIPERSPACE NAME
HIPERSPACE STOKEN
HIPERSPACE ORIGIN RETURNED

NUMBER OF BLOCKS NEEDED FOR
A 10 MILLION BYTE HIPERSPACE

DSPSERV - Create, Delete, and Control Hiperspaces 175

DSPSERV (List Form)
Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

The list form of the DSPSERV macro is written as follows:

name name: symbol. Begin name in column ~.

b One or more blanks must precede DSPSERV.

DSPSERV

b One or more blanks must follow DSPSERV.

MF= (L,f/st addr)
MF= (L,/ist addr,attr)

list addr: symbol.
attr: 1- to 60-character input string. Defautt: OD

,PLISTVER=O
, PLISTVER = 1

Defautt: PLISTVER == 0

The parameters are explained as follows:

MF- (L,/ist addr)
MF ... (L,list addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
OD, which forces the parameter list to a doubleword boundary.

,PLISTVER -1
,PLISTVER • 0

Specifies the macro version associated with DSPSERV.

PLISTVER is an optional parameter that determines which parameter list the system
generates. Only init-addr on the BLOCKS parameter is associated with macro version
1 that produces a 60-character parameter list; all other parameters are associated with
the macro version O that produces a 56-character parameter list. Therefore, if you use
the BLOCKS= (max-addr,init-addr) parameter on subsequent execute forms of
DSPSERV, you must specify PLISTVER = 1 on the list form. PLISTVER = 0 is the default.

176 SPL: Application Development Macro Reference

DSPSERV (Execute Form)
The execute form of the DSPSERV macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the DSPSERV macro is written as follows:

name

b

DSPSERV

b

CREATE

RELEASE
DELETE
EXTEND

,STOKEN = stoken-addr

,TYPE= HIPERSPACE

,HSTYPE =SCROLL
,HSTYPE =CACHE

,SHARE=NO
,SHARE=YES

,CASTOUT=YES
,CASTOUT=NO

,NAME= name-addr

,GENNAME =NO
,GENNAME = COND
,GENNAME =YES

,OUTNAME = outname-addr

,START= start-addr

,BLOCKS= (max-addr,init-addr)
,BLOCKS= (max,init)
,BLOCKS=max
,BLOCKS= (O,init)
,BLOCKS=O
,BLOCKS= (O,init-addr)
,BLOCKS= (size-addr)
,BLOCKS= (size)

,KEY= key-addr
,CALLERKEY

,FPROT=YES
,FPROT=NO

,TTOKEN = ttoken-addr

,ORIGIN= origin-addr

,NUMBLKS = numblks-addr

name: symbol. Begin name in column 1.

One or more blanks must precede DSPSERV.

One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)
STOKEN, NAME, TYPE, HSTYPE, SHARE, CASTOUT,
GENNAME, OUTNAME, BLOCKS, CALLERKEY,
KEY, FPROT, TTOKEN, ORIGIN, and NUMBLKS
STOKEN, §!Afll, BLOCKS, DISABLED
STOKEN, TTOKEN
STOKEN,BLOCKS,VAR,NUMBLKS

stoken-addr: RX-type address or register (2) - (12).

Default: HSTYPE =SCROLL

Default: SHARE= NO

Default: CASTOUT =YES

name-addr: RX-type address or register (2) - (12).

Default: GENNAME =NO

outname-addr: RX-type address or register (2) - (12).

start-addr: RX-type address or register (2) - (12).

max-addr: RX-type address or register (2) - (12).
init-addr: RX-type address or register (2) - (12).
max: Number up to 524288.
init: Number up to 524288.
O specifies the installation default size.
De:ault for CREATE: BLOCKS=O
size-addr: RX-type address or register (2) - (12).
size: Number up to 524288.

key-addr: RX-type address or register (2) - (12).
Default: CALLERKEY

Default: FPROT =YES

ttoken-addr: RX-type address or register (2) - {12).

origin-addr: RX-type address or register (2) - (12).

numblks-addr: RX-type address or register (2) - (12).

DSPSERV- Create, Delete, and Control Hiperspaces 177

,VAR=NO
,VAR=YES

,DISABLED=NO
,DISABLED= YES

,MF= (E,/ist addr)
,MF= (E,/ist addr,COMPLETE)

DefauH: VAR= NO

Default: DISABLED= NO

The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF= (E,/ist addr)
,MF= (E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

178 SPL: Application Development Macro Reference

DYNALLOC - Dynamic Allocation

See SPL: Application Development Guide for the description of this macro.

©Copyright IBM Corp. 1988, 1991 179

180 SPL: Application Development Macro Reference

ENQ - Request Control of a Serially Reusable Resource

© Copyright IBM Corp. 1988, 1991

ENQ assigns control of one or more serially reusable resources to a task. If any of the
resources are not available, the task might be placed in a wait condition until all of the
requested resources are available. Once control of a resource has been assigned to a task,
it remains with that task until one of the programs running under that task issues a DEQ
macro to release the resource or the task terminates.

ENQ identifies the resource by a pair of names, the qname and the rname, and a scope
value. The scope value determines what other tasks, address spaces, or systems can use
the resource. All programs that share the resource must use the qname, rname, and scope
value consistently. You can request either shared or exclusive use of a resource.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has been
previously requested by the active task in another ENQ macro.

ENQ with the MASID and MTCB parameters allows a further conditional control of a
resource. One task, called the "issuing task" can issue an ENQ macro for a resource
specifying the ASID and TCB of another task, called the "matching task". MTCB and MASID
parameters are specified with RET =HAVE, RET =TEST, and/or ECB to provide additional
return codes. If the issuing task does not receive control of the resource, it may receive a
return code indicating that the resource is controlled by the matching task. Upon receiving
this return code, the issuing task could use the resource, if serialization between itself and
the matching task has been pre-arranged through a protocol.

Issuing two ENQ macros for the same resource without an intervening DEQ macro causes
the task to abend, unless the second ENO designates RET=TEST, USE, CHNG, or HAVE. If
the task terminates, either normally or abnormally, while the task still has control of any
serially reusable resources, all requests made by this task will automatically have DEQ
processing performed for them. If resource input addresses are incorrect, the task
abnormally terminates.

Global resource serialization counts and limits the number of concurrent resource requests
from an address space. If an unconditional ENO (an ENQ that uses the RET =NONE option)
causes the count of concurrent resource requests to exceed the limit, the caller abends with
a system code of X'538'. For more information, see the section on limiting concurrent
requests for resources in Application Development Guide.

181

The description of the ENQ macro follows. The ENQ macro is also described in Application
Development Macro Reference with the exception of the SMC, ECB, and TCB parameters.
These parameters are restricted in use to programs that run in supervisor state, PSW key
0..7, or APF authorized and are therefore only described here.

name

f>

ENQ

f>

qnameaddr

,rnameaddr

,E
,s

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB = ecb addr
,TCB = tcb addr

,MASID = matching-asid addr
,MTCB = matchlng-tcb addr

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E

rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rname
Note: rname length must be coded if a register is specified for
rnameaddr.

Default: STEP

Default: RET=NONE

ecb addr: A-type address, or register (2) - (12).
tcb addr: A-type address, or register (2) - (12).
Default: SMC= NONE
Note: ECB cannot be specified with RET above. ECB and TCB
can be specified together. If TCB is specified but not ECB, then
RET = CHNG, TEST or USE must be specified above.

matching-asid addr: A-type address, or register (2) - (12).
matchlng-tcb addr: A-type address, or register (2) - (12).

va/u9: any valid macro keyword specification.

The parameters are explained as follows:

(
specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. Every program issuing
a request for a serially reusable resource must use the same qname, rname, and scope
to represent the resource.

182 SPL: Application Development Macro Reference

,rname addr

,E
,s

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified and must be from 1 to 255
bytes long and contain any hexadecimal character.

specifies whether the request is for exclusive (E) or shared (S) control of the resource.
If the resource is modified while under control of the task, the request must be for
exclusive control; if the resource is not modified, the request should be for shared
control.

,rname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of O. If you specified 0, the
length of the rname must be contained in the first byte at the rname addr specified
above.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same qname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by more than one address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macros specify the same qname and rname, but one specifies STEP
and the other specifies SYSTEM or SYSTEMS, they are treated as requests for different
resources.

When global resource serialization is active, scope conversion can occur. This could
result in two requests with different scopes referring to the same resource. See
Planning: Global Resource Serialization for details.

specifies the end of the resource description.

Note: Multiple resources can be specified in the ENO macro. You can repeat the qname
addr, rname addr, type of control, rname length, and scope until there is a maximum of 255
characters including the parentheses.

,RET•CHNG
,RET=HAVE
,RET-TEST
,RET•USE
,RET•NONE

specifies the type of request for all of the resources named above.

CHNG • the status of the resource specified is changed from shared to exclusive
control.

HAVE· control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same task.

TEST· the availability of the resources is to be tested, but control of the resources
is not requested.

USE • control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not
available, the active task is not placed in a wait condition.

ENO - Request Control of a Serially Reusable Resource 183

NONE • control of all the resources is unconditionally requested.

See "Return Codes" on page 185 for an explanation of the return codes for these
requests.

,SMC=NONE
,SMC=STEP
,ECB = ecb addr
,TCB • tcb addr

specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or that it is
to place other tasks for the step nondispatchable until the requesting task has
completed its operations on the resource (STEP).

When SMC= STEP is specified with RET =HAVE and the requesting task already has
control of the resource, the SMC function is turned on and the task continues to control
the resource.

SMC= and TCB = are mutually exclusive with the MASID parameter, therefore,
hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENO using the SMC
or TCB operands.

The return codes and status of the set must-complete function for the various RET=
specifications are as follows:

Hexadecimal Code SMC Status
RET = CHNG 0 on

RET=HAVE

RET=TEST

RET=USE

4 off
8 off
14
0
8
14
0
4
8
14
0
4
8
14
18

off
on
on
off
off
off
off
off
on
off
off
off
off

ECB specifies the address of an ECB, and conditionally requests all of the resources
named in the macro. If the return code for one or more requested resources is
hexadecimal 4 or 24 and the request is not nullified by a corresponding DEO, the ECB is
posted when all the requested resources (specifically, those that initially received a
return code of 4 or 24) are assigned to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the fullword that
is used as an ECB. If the operand ls a register, then the register contains the address
of theECB.

TCB specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the ENO is to be done.

Note: The TCB resides in storage below 16 megabytes.

,MASID = matchfng-asid addr
specifies the matching task (by defining a matching ASID) for the ENO, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the ENO macro. If the MASID parameter is an
A-type address, the address is the name of a fullword containing the ASID. If the
operand is a register, then the register contains the ASID.

Note: MASID can only be specified if MTCB is also specified.

184 SPL: Application Development Macro Reference

Address
Returned in
Register 15

+ 0

12

24

36

;-..,, ./'~ ,,....

,MTCB = matching-tcb addr
specifies the matching task {by defining a matching TCB) for the ENO, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the ENO macro.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the ENO and returns a return
code indicating whether the resource can be used. If the task specified by MASID and
MTCB parameters is using the resource, global resource serialization records a
request for the resource, suspends the issuing task until the resource is available, or
optionally returns a return code indicating that an ECB will be posted when the
resource can be used.

The MASID and MTCB parameters are specified with RET= HAVE, RET=TEST, and/or
ECB = parameters to elicit additional return codes that provide information about the
owner of the resource. If the MTCB parameter is an A-type address, the address is the
name of a fullword containing the TCB. If the operand is a register, then the register
contains the TCB.

Note: MTCB can only be specified if MASID is also specified.

,RELATED= value
specifies information used to self-document macros by 'relating'. functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return Codes
Return codes are provided by the control program only if you specify RET =TEST,
RET =USE, RET = CHNG, RET =HAVE, or ECB =; otherwise return of the task to the active
condition indicates that control of the resource has been assigned to the task. If all return
codes for the resources named in the ENO macro are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a storage area containing the
return codes, as shown in Figure 9.

2 3

Return
Codes

i
RC 1

RC 2

RC 3

,._

4

).

' Jr--

12

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

Figure 9. Return Code Area Used by ENQ

ENO - Request Control of a Serially Reusable Resource 185

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENO macro. The return codes are shown
below.

Hexadecimal
Code

0

4

8

14

18

20

24

28

44

186 SPL: Application Development Macro Reference

Meaning

For RET=TEST, the resource is immediately available. For RET=USE,
RET =HAVE, or ECB =, control of the resource has been assigned to the active
task. For RET = CHNG, the status of the resource has been changed to exclusive.
The ECB is not posted.

For RET =TEST or RET =USE, the resource is not immediately available. For
RET = CHNG, the status cannot be changed to exclusive. For ECB =, the ECB will
be posted when available.

For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request for
control of the same resource has been made for the same task. The task has
control of resource. For RET=CHNG, the resource has not been enqueued. If bit
3 is on - shared control of resource; if bit 3 of the first byte of the ENQ parameter
list is off -- exclusive control. The ECB is not posted.

A previous request for control of the same resource has been made for the same
task. The task does not have control of resource. The ECB Is not posted.

For RET =HAVE, RET =USE, or ECB =, the limit for the number of concurrent
resource requests has been reached. The task does not have control of the
resource unless some previous ENQ or RESERVE request caused the task to
obtain control of the resource. The ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the
resource. The issuer of the ENQ macro may use the resource but it must ensure
that the owning task does not terminate while the issuer of the ENQ macro is
using the resource. If the issuer of the ENQ requested exclusive control, then this
return code indicates that the matching task is the only task that currently owns
the resource. If the issuer of the ENQ requested shared control and the owning
task had requested shared control, this return code may indicate that a previous
task had requested exclusive control. The issuing task must issue a DEQ to
cancel this ENQ. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing
task may use the resource but must ensure that the matching task does not
terminate while the issuing task is using the resource. The issuing task must
issue a DEQ to cancel the ENQ.

The issuing task cannot obtain exclusive control of the resource using the
MASID/MTCB ENQ. The matching task's involvement with other tasks precludes
control by the issuing task. This task must not issue a DEQ to cancel the ENQ.
The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB ENQ in one or more
of the following ways:

• Another task has already issued this ENQ for this resource specifying the
same MASIO/MTCB.

• The MASID/MTCB parameters specify a task that acquired control of the
resource by using the MASID/MTCB ENQ.

• The matching task requested ownership of the resource but has not yet been
granted ownership.

The ECB will not be posted. Return code 44 is never given by an ENQ RET=TEST,
return code 4 is given instead.

Example 1
Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step
nondispatchable until the requesting task has completed Its operations on the resource.

ENQ (MAJORl,MINORl,E,8,STEP),SMC=STEP

Example 2
Operation: Conditionally request control of a sharable resource in behalf of another task.
The resource is known by more than one address space, and is only wanted if immediately
available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

ENQ - Request Control of a Serially Reusable Resource 187

ENQ (List Form)
Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro, therefore, the number of qname, rname, and
scope combinations in the list form of the ENQ macro must be equal to the maximum
number of qname, rname, and scope combinations in any execute form of the macro that
refers to that list form.

The list form of the ENQ macro is written as follows:

name

b

ENQ

b

qname addr

,rname addr

,E
,S

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB = ecb addr
,TCB=O

,MASID=O
,MTCB=O

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Defautt: E

rname length: symbol or decimal digit.
Defautt: assembled length of rname

Defautt: STEP

Defautt: RET=NONE

ecb addr: A-type address.
Defautt: SMC= NONE
Note: ECB cannot be specified with RET above.
Note: TCB or ECB must be specified on the list form if it is
used on the execute form. ECB and TCB can be specified
together. lfTCB is specified but not ECB, then RET=CHNG,
TEST or USE must be specified above.

value: any valid macro keyword specification.

188 SPL: Application Development Macro Reference

The parameters are explained under the standard form of the ENQ macro, with the following
exception:

,MF==L
specifies the list form of the ENQ macro.

The list form of this macro generates a prefix followed by the parameter list, however the
label specified in MF= L does not include an offset prefix area. If MASID, MTCB, TCB, or
ECB is specified, these labels are offset; allowance must be made for the parameter list
prefix.

ENO - Request Control of a Serially Reusable Resource 189

ENQ (Execute Form)
A remote control program parameter list is used in and can be modified by the execute form
of the ENO macro. The parameter list can be generated by the list form of ENO.

The execute form of the ENQ macro is written as follows:

name

ENQ

b

qname addr

,rnameaddr

.E

.s

,rname length

,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC= STEP
,ECB = ecb addr
,TCB = tcb addr

,MASID = matchlng-asid addr
,MTCB = matching-tcb addr

,RELATED= value

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list.
The entire list is optional. If nothing in the list is desired then (,
), and all parameters between (and) should not be specified.
If something in the list is desired, the (,), and all parameters
in the list should be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).

Note: See note opposite (above.

ecb addr: RX-type address, or register (2) - (12).
tcb addr: RX-type address, or register (2) - (12).
Note: ECB cannot be specified with RET above.
Note: ECB and TCB can be specified together. If TCB Is
specified but not ECB, then RET=CHNG, TEST or USE must be
specified above.

matching-asld addr: Rx-type address, or register (2)-(12).
matching-tcb addr: Rx-type address, or register (2)-(12).

value: any valid macro keyword specification.

ctr/ addr: RX-type address, or register (1) - (12).

190 SPL: Application Development Macro Reference

The parameters are explained under the standard form of the ENQ macro, with the
following exceptions:

,MF= (E,ctrl addr)
specifies the execute form of the ENQ macro using a remote control program
parameter list.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=O) must be specified
in the list form. If MASID and MTCB are specified, MASID = 0 and MTCB = 0 must be
specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the
label specified in MF= L does not include an offset prefix area. If MASID, MTCB, TCB, or
ECB is specified, these labels are offset; allowance must be made for the parameter list
prefix.

ENQ - Request Control of a Serially Reusable Resource 191

192 SPL: Application Development Macro Reference

ESPIE - Extended SPIE

SET Option

© Copyright IBM Corp. 1988, 1991

The ESPIE macro extends the function of the SPIE (specify program interruption exits)
macro to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit addressing
mode can issue the ESPIE macro. Only callers in 24-bit addressing mode can issue the
SPIE macro. For additional information concerning the relationship between the SPIE and
the ESPIE macros, see "Interruption Services"in SPL: Application Development Guide.

The ESPIE macro performs the following functions using the options specified:

• Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro.

• Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment) by
executing the RESET option of the ESPIE macro

• Determines the current SPIE/ESPIE environment by executing the TEST option of the
ESPIE macro

The following description of the ESPIE macro also appears in Application Development
Macro Reference with the exception of interruption type 17. This interruption type
designates page faults, and its use is restricted to programs that are APF-authorized or
execute in key 0-7.

The SET option of the ESPIE macro is written as follows:

name

b

ESPIE

b

SET

,exitaddr

,(interruptions)

,PARAM =list addr

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address or register (2) - (12).

interruptions: decimal numbers 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

list addr: A-type address or register (2) - (12).

The parameters are explained as follows:

SET
indicates that an ESPIE environment is to be established.

,exit addr
specifies the address of the exit routine to be given control when program interruptions
of the type specified by interruptions occur. The exit routine will receive control in the
same addressing mode as the issuer of the ESPIE macro.

193

,(interruptions)
indicates the interruption types that are being trapped. The interruption types are:

Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17

Interruption Type
Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide
Page fault

These interruption types can be designated as one or more single numbers, as one or
more pairs of numbers (designating ranges of values), or as any combination of the two
forms. For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates
interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to O. Interruption types not specified above (except for type 17) are handled
by the control program. The control program forces an abend with the program check
as the completion code. If an ESTAE-type recovery routine is also active, the SOWA
indicates a system-forced abnormal termination. The registers at the time of the error
are those of the control program.

Note: For ESPIE and SPIE - If you are using vector instructions and an interruption of
8, 12, 13, 14, or 15, occurs, your recovery routine can check the exception extension
code (the first byte of the two-byte interruption code in the EPIE or PIE) to determine
whether the exception was a vector or scalar type of exception.

,PARAM =list addr
specifies the fullword address of a parameter list that is to be passed by the caller to
the exit routine.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return from the SET option of the ESPIE macro, the registers contain the following
information:

Register
0
1
2-13
14
15

Content
Used as a work register by the macro.
Token representing the previously active SPIE/ESPIE. environment
Unchanged.
Used as a work register by the macro.
Return code of 0.

194 SPL: Application Development Macro Reference

RESET Option

Example 1
Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the
location of the exit routine to be given control and PARMLIST is the location of the
user-parameter list to be used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

Example 2
Operation: Give control to the exit routine located at EXIT when a page fault occurs.

ESPIE SET,EXIT,(17)

The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment and
restores the SPIE/ESPIE environment specified by token.

The RESET option of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ESPIE.

ESPIE

b One or more blanks must follow ESPIE.

RESET

,token token: RX-type address or register (1) or (2) - (12).

The parameters are explained as follows:

RESET
indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by token Is to be re-established.

,token
specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE trap was established using the SET option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIES are deleted.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return from ESPIE RESET, the contents of the registers are as follows:

Register Contents
O Used as a work register by the macro.
1 Token identifying the new active SPIE/ESPIE environment.
2-13 Unchanged.
14 Used as a work register by the macro.
15 Return code of 0.

ESPIE - Extended SPIE 195

TEST Option

Example
Operation: Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESPIE RESET.TOKEN

The TEST option of the ESPIE macro determines the active SPIE/ESPIE environment and
returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ESPIE.

ESPIE

b One or more blanks must follow ESPIE.

TEST

,parm addr parm addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

,parm addr
specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

0 Address of the exit routine (31-bit address with the high-order bit set to 0)

Address of the user-defined parameter list

2

3

Mask of program interruption types

Zero

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

196 SPL: Application Development Macro Reference

On return from ESPIE TEST, the registers contain the following information:

Register Contents
O Used as a work register by the macro.
1-13 Unchanged.
14 Used as a work register by the macro.
15 Return code as follows:

Example

Code Meaning

0 An ESPIE exit is active and the four-word parameter list contains the
the information specified in the description of the parm addr
parameter.

4 A SPIE exit is active. Word 1 of the parameter list described under
parm addr contains the address of the current PICA. Words 0, 2, and
3 of the parameter list contain no relevant information.

8 No SPIE or ESPIE is active. The contents of the four-word parameter
list contain no relevant information.

Operation: Identify the active SPIE/ESPIE environment. Return the information about the
exit routine in the four-word parameter list, PARMLIST. Also return, in register 15, an
indication of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

ESPIE - Extended SPIE 197

ESPIE (List Form)
The list form of the ESPIE macro builds a non-executable problem program parameter list
that can be referred to or modified by the execute form of the ESPIE macro. The list form of
ESPIE is valid only for ESPIE SET.

The list form of the ESPIE macro is written as follows:

name

ESPIE

SET

,exit addr

,(interruptions)

,PARAM =list addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address.
Note: This parameter must be specified on either the list or the
execute form of the macro.

interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4). (7, 10))
combinations: (2, 3, 4, (7, 10))

list addr: A-type address.

The parameters are explained under the standard form of the ESPIE macro with the
following exception:

,MF=L
specifies the list form of the ESPIE macro.

Example
Operation: Build a non-executable problem program parameter list that will cause control
to be transferred to the exit routine, EXIT, for the interruption types specified in the execute
form of the macro. Provide the address of the user parameter list, PARMLIST.

LISTl ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

198 SPL: Application Development Macro Reference

ESPIE (Execute Form)
The execute form of the ESPIE macro can refer to and modify the parameter list constructed
by the list form of the ESPIE macro. The execute form of ESPIE is valid only for ESPIE SET.

The execute form of the ESPIE macro is written as follows:

name

ESPIE

SET

,exit addr

,(interruptions)

,PARAM =list addr

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: RX-type address or register (2) - (12).
Note: This parameter must be specified on either the list or the
execute form of the macro.

interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

list addr: RX-type address or register (1) or (2) - (12).

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ESPIE macro with the
following exception:

,MF= (E,ctrl addr)
specifies the execute form of the ESPIE macro using a remote control program
parameter list.

Example
Operation: Give control to a installation exit routine for interruption types 1, 4, 6, 7, and 8.
The exit routine address and the address of a user parameter list for the exit routine are
provided in a remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LISTl)

ESPIE - Extended SPIE 199

200 SPL: Application Development Macro Reference

ESTAE and EST AEX - Specify Task Abnormal Exit Extended

© Copyright IBM Corp. 1988, 1991

The ESTAE macro allows the user to intercept a scheduled ABEND. Control is given to a
user-specified recovery routine that can, for example, perform pre-termination processing,
diagnose the cause of ABEND, and specify a retry address to try to avoid the termination.
These recovery routines operate in both problem program and supervisor modes.

The addressing mode in which the ESTAE macro expansion executes becomes the
addressing mode in which the ESTAE exits and retry routines execute (that is, the ESTAE
exits and retry routines execute in the same addressing mode as the issuer of the ESTAE
macro.)

ESTAEX is the preferred interface. You can use ESTAE, however, if your program is in
primary mode, and the primary, secondary, and home address spaces are the same.
Depending on whether you code ESTAE or ESTAEX, the system passes the address of the
user-specified parameter list differently. The SDWAPARM field in the SOWA contains either
the address of the parameter list (ESTAE), or the address of a doubleword that contains the
address and ALET of the parameter list (ESTAEX). See "Key Fields in the SOWA" in SPL:
Application Development Guide

For information about how to select the macro for an MVS/SP version other than the current
version, see" Selecting the Macro Level" on page 1. If you are executing in 31-bit
addressing mode, you must use the MVS/XA™ version of this macro.

The descriptions of ESTAE and ESTAEX in this book are:

• The standard form of the ESTAE macro, which includes general information about the
ESTAE and ESTAEX macros, with some specific information about the ESTAE macro.
The syntax of the ESTAE macro is presented, and all ESTAE parameters are explained.

• The standard form of the ESTAEX macro, which includes information specific to the
ESTAEX macro. The syntax of the ESTAEX macro is prest:.-.tt:d.

• The list form of ESTAE and ESTAEX

• The execute form of EST AE and EST AEX

Comments in the syntax identify parameters that are not valid for certain ASC modes.

The description of the ESTAE macro follows. The ESTAE macro is also described in
Application Development Macro Reference with the exceptim: of the CANCEL, BRANCH,
SVEAREA, KEY, RECORD, and TOKEN parameters. These!'.>"' 1:->1eters are restricted in use,
and, therefore, are described only in here.

"ESTAE-Type Recovery Routines" in SPL: Application ;Jeveloprnent Guide provides more
information.

201

The standard form of the EST AE macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE.

ESTAE

b One or more blanks must follow ESTAE.

exitaddr
0

exit addr: A-type address, or register (2) - (12).

,CT
.ov

,PARAM =list addr

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE= QUIESCE
,PURGE= HALT

,ASYNCH =YES
,ASYNCH=NO

,CANCEL= YES
,CANCEL=NO

,TERM=NO
,TERM=YES

,BRANCH=NO
,BRANCH= YES,SVEAREA =save
addr

,KEY=SAVE
,KEY= storage key

,RECORD=NO
,RECORD=YES

,TOKEN= token addr

, RELATED= value

Defaun: CT

list addr: A-type address, or register (2) - (12).

Defaun: XCTL =NO

Defaun: PURGE= NONE

Defaun: ASYNCH==YES

Default: CANCEL= YES

Defaun: TERM= NO

DefauH: BRANCH= NO
save addr: A-type address, or register (2) - (12) or (13).

storage key: any numeral in the range 0-15.

Defaun: RECORD= NO

token addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

exit addr
0

,CT
,OV

specifies the 31-blt address of an ESTAE recovery routine to be entered If the task
issuing this macro terminates abnormally. The recovery routine executes in the
addressing mode of the issuer of the ESTAE. If you specify 0, the most recent ESTAE
routine is deleted.

specifies the creation of a new ESTAE exit (CT) or indicates that parameters passed in
this ESTAE macro are to overlay the data contained in the previous ESTAE routine
(OV).

202 SPL: Application Development Macro Reference

,PARAM ==list addr
specifies the 31-bit address of a user-defined list containing data to be used by the
ESTAE routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

specifies that the ESTAE environment will be deleted (NO) or will not be deleted (YES) if
this program issues an XCTL macro.

,PURGE= NONE
,PURGE= QUIESCE
,PURGE= HALT

specifies that all outstanding requests for 1/0 operations are not to be saved when the
ESTAE routine gets control (HALT) or that 110 processing is to be allowed to continue
normally when the ESTAE routine gets control (NONE) or that all outstanding requests
for 110 operations are to be saved when the ESTAE routine is taken (QUIESCE). If
QUIESCE is specified, the user's retry routine can restore the outstanding 110 requests.

PURGE= NONE specifies that all control blocks affected by input/output processing can
continue to change during EST AE routine processing. If you specify PURGE= NONE,
and the ABEND was originally scheduled because of an error in input/output
processing, an ABEND recursion develops when an input/output interruption occurs,
even if the ESTAE routine is in progress. Thus, it will appear that the ESTAE routine
failed when, in reality, input/output processing caused the failure.

Notes:

1. You should understand PURGE processing before using this parameter. For information
on PURGE processing, see System Programming Reference.

2. If you specify PURGE= HALT, or PURGE= QUIESCE but 1/0 is not restored,

• While using SAM or ISAM, only the input/output event on which the purge is done
will be posted. Subsequent event control blocks (ECBs) will not be posted. If you
issue further data management macros, such as GET/PUT, READ/WRITE or CLOSE,
after a PURGE is issued during ESTAE recovery, a wait may occur in an access
method module.

• While using ISAM,

- The ISAM check routine will treat purged 110 as normal 110.

Part of the data set might be destroyed if the data set was being updated or
added to when the failure occurred.

,ASYNCH = YES
,ASYNCH=NO

specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user's ESTAE routine is executing.

ASYNCH =YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE routine.

• PURGE= QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE= NONE is specified and the ESTAE routine issues the CHECK macro for any
access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH =YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,CANCEL= YES
,CANCEL=NO

specifies whether you want to allow the recovery routine to be interrupted by cancel or
detach processing.

ESTAE and ESTAEX- Specify Task Abnormal Exit Extended 203

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL= NO. If a cancel
or detach is attempted against a recovery routine for which you have specified
CANCEL= NO, MVS defers cancel and detach processing until the recovery routine
returns control to the system.

Usage Notes:

1. If a recovery routine that runs under the CANCEL= NO option can be called by an
unauthorized program running under the same task, IBM recommends that you
specify ASYNCH =NO for each ESTAE(X) macro that the recovery routine issues.
This also includes any EST AE(X) macros issued by programs that the recovery
routine calls.

2. If a recovery routine running under the CANCEL= NO option calls an unauthorized
program, cancel and detach processing is also deferred for the called program.

,TERM=NO
,TERM=YES

specifies that the ESTAE routine will be scheduled (YES) or will not be scheduled (NO)
in the following situations:

• Cancel by operator

• Forced logoff

• Expiration of job step timer

• Exceeding of wait time limit for job step

• ABEND condition because of DETACH of an incomplete subtask when the STAE
option was not specified on the DETACH

• ABEND of the attaching task when the ESTAE macro was issued by a subtask

• ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the ESTAE routine is entered because of one of the preceding reasons, re-try is
not permitted. If a dump is requested at the time of ABEND, it is taken before entry into
the ESTAE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs for the
task to be detached:

• All ESTAE routines are entered.

• The most recently established STAE routine is entered.

• All STAl/ESTAI routines are entered unless one of the STAI routines issues return
code 16.

In these cases, entry to the routine occurs before dumping and re-try is not permitted.

,BRANCH=NO
,BRANCH= YES,SVEAREA =save addr

specifies that an SVC entry to the ESTAE service routine is to be performed (NO) or that
a branch entry is to be performed (YES). The save area is a 72-byte area used to save
the general registers. If the caller is not in key zero, the KEY parameter must be
specified.

BRANCH and SVEAREA are not valid on ESTAEX.

,KEV=SAVE
,KEY= storage key

specifies that supervisor state users who are not in key zero can use the branch entry
interface to the ESTAE service routine.

If the user specifies KEY= SAVE, the system saves the current PSW protection key in
register 2 and issues a set protection key instruction (SPKA) to change to protection
key zero. When the EST AE service routine returns control, it restores the original PSW
key from register 2. Therefore, the user should save register 2 before the macro

204 SPL: Application Development Macro Reference

expansion and restore it afterwards. Specifying KEY= SAVE destroys the contents of
register 2 during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may specify it
directly in the form KEY= (0-15) to eliminate saving and restoring the original
protection key. This procedure eliminates an IPK instruction and prevents the use of
register 2 in the macro expansion.

KEY is not valid on ESTAEX.

,RECORD=NO
,RECORD -YES

specifies that the system diagnostic work area (SOWA) is not to be written to
SYS1 .LOGREC (NO) or that the entire SOWA (including the fixed length base, the
variable length recording area, and the recordable extensions) is to be written to
SYS1.LOGREC (YES).

,TOKEN= token addr
specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented because the
ESTAE cannot be canceled or overlaid unless the same token is specified.

With CT (create): ESTAE processing places the token created for this request in the
location specified by token addr as well as in the ESTAE parameter list.

With OV (overlay): ESTAE processing locates the specified ESTAE routine for the
current RB and replaces the routine information. If there are any newer ESTAE
routines for the RB, they are deleted.

With 0 (cancel): ESTAE processing locates the specified ESTAE routine for the current
RB and deletes the routine. Any newer ESTAE routines for the RB are deleted.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and content of the information
specified are at the discretion of the user, and may be any valid coding values.

ESTAE and EST AEX - Specify Task Abnormal Exit Extended 205

Control returns to the instruction following the ESTAE macro. When control returns,
register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

oc

10

14

18

1C

20

24

28

206 SPL: Application Development Macro Reference

Meaning

Successful completion of ESTAE request.

ESTAE OV was specified but ESTAE CT was performed. Register O contains one
of the following reason codes:

Hexadecimal
Code Meaning

00

04

08

oc

No valid SCB existed.

The last SCB was not owned by the user's RB.

The last SCB was not created at the current linkage stack
level.

The last SCB was not an ESTAE SCB.

Delete (an exit address equal to zero) was specified, and either

• There are no exits for this TCB,
• The most recent exit is not owned by the caller,
• The most recent exit is not an ESTAE exit, or
• The ESTAE was created with the TOKEN parameter and on a delete request,

either
- The token was not specified or
- The token does not match.

An unexpected error was encountered while processing this request.

ESTAE was unable to obtain storage for an SCB.

ESTAE OV request was invalid for one of the following reasons:

• ESTAE OV with the TOKEN parameter was specified but
No SCB exists or

- The see is not an ESTAE SCB created with the matching token value by
the current RB.

• ESTAE OV without the TOKEN parameter was specified but the SCB was
created with the TOKEN parameter.

ESTAE was unable to access the input parameter list.

XCTL =YES was rejected because the linkage stack was not at the same level as
it was when the RB was created.

Delete (an exit address equal to zero) was specified but rejected because no
ESTAEs were active for the current linkage stack level.

EST AE OV was specified but rejected because no EST AEs were active for the
current linkage stack level.

Example 1
Operation: If an error occurs, pass control to the ESTAE routine specified by register 4,
allow asynchronous exit processing, do not allow special error processing, do not branch
enter, and default to CT (create) and PURGE= NONE.

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

Example 2
Operation: If an error occurs, pass control to the ESTAE routine specified by register 4.
The address of the ESTAE parameter list is in register 2. Place the token associated with
this ESTAE routine in TOKENFLD.

ESTAE (4),PARM=(2),TOKEN=TOKENFLD

Example 3
Operation: If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt 1/0, allow special error processing, branch enter, use the
72-byte save area at SADDR, and execute the execute form of the macro. EXEC is the label
of the ESTAE parameter list built by a list form of the macro elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E,EXEC)

Example 4
Operation: Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PUST, 1/0 will be halted, no asynchronous
exits will be taken, ownership will be transferred to the new request block resulting from
any XCTL macros.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 5
Operation: Provide the pointer to the recovery code in the register called EXITPTR, place
the address of the ESTAE parameter list in register 9. Register 8 points to the area where
the ESTAE parameter list (created with the MF= L option) was moved.

ESTAE (EXITPTR),PARAM=(9),MF=(E,(8))

ESTAE and ESTAEX - Specify Task Abnormal Exit Extended 207

ESTAEX - Specify Task Abnormal Exit Extended
The ESTAEX macro provides all of the function that ESTAE provides. Any program, whether
its in AR mode, primary mode, or cross memory mode can issue ESTAEX. Callers of the
ESTAEX macro must be enabled. IBM recommends that you always use ESTAEX instead of
using ESTAE.

For callers in AR mode:

• Before issuing ESTAEX, issue SYSSTATE ASCENV=AR. The ASCENV=AR parameter
on the SYSST ATE macro ensures that EST AEX generates code appropriate for AR mode.

• ESTAEX system parameters must be located in the caller's primary address space.

• User parameters, specified on the PARAM keyword, can be located in any address
space.

The parameters on the standard form of the ESTAEX macro are the same as for the
standard form of the ESTAE macro, except BRANCH, SVEAREA, and KEY, which are not
valid for ESTAEX.

The standard form of the ESTAEX macro Is written as follows:

name

b

ESTAEX

b

exltaddr
0

,CT
,ov

,PARAM =list addr

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE= QUIESCE
,PURGE= HALT

,ASYNCH =YES
,ASYNCH=NO

,CANCEL=YES
,CANCEL=NO

,TERM=NO
,TERM=YES

,RECORD=NO
,RECORD=YES

, TOKEN= token addr

,RELATED= value

208 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAEX.

One or more blanks must follow ESTAEX.

exit addr: A-type address, or register (2) - (12).

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL = NO

DefauH: PURGE= NONE

Default: ASYNCH =YES

Default: CANCEL= YES

DefauH: TERM= NO

Default: RECORD= NO

token addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained under the syntax for the standard form of the ESTAE macro.
However, when control is returned to the instruction following the ESTAEX, the return code
in register 15 may be different. The following are the return codes for ESTAEX:

Hexadecimal
Code

00

04

08

oc

10

14

18

1C

20

24

28

2C

30

34

Meaning

Successful completion of ESTAEX request.

ESTAEX OV was specified but ESTAEX CT was performed. Register o contains
one of the following reason codes:

Hexadecimal
Code Meaning

00

04

08

oc

No valid SCB existed.

The last SCB was not owned by the user's RB.

The last SCB was not created at the current linkage stack
level.

The last SCB was not an ESTAE SCB.

An invalid type of EST AEX request was detected.

Delete (an exit address equal to zero) was specified, and either

• There are no exits for this TCB,
• The most recent exit is not owned by the caller,
• The most recent exit is not an ESTAE exit, or
• The ESTAE was created with the TOKEN parameter and on a delete request,

either
- The token was not specified or
- The token does not match.

An unexpected error was encountered while processing this request.

ESTAEX was unable to obtain storage for an SCB.

ESTAEX OV was requested either

• With the TOKEN parameter specified and the SCB is not owned by the current
RB or

• Without the TOKEN parameter specified but the SCB was created with the
TOKEN parameter.

ESTAEX was unable to access the input parameter list.

XCTL =YES was ignored because the linkage stack was not at the same level as it
was when the RB was created.

Delete (an exit address equal to zero) was specified but rejected because no
ESTAEs were active for the current linkage stack level.

The caller was disabled.

The caller was locked.

The caller had FRRs on the current FRR stack.

The caller was in SRB mode.

ESTAE and ESTAEX- Specify Task Abnormal Exit Extended 209

ESTAE and ESTAEX (List Form)
The list form of ESTAE or ESTAEX is used to construct a remote control parameter list.

The list form of EST AE or EST AEX is written as follows:

name

ESTAE
ESTAEX

exitaddr

,PARAM =list addr

,PURGE= NONE
,PURGE= QUIESCE
,PURGE= HALT

,ASYNCH =YES
,ASYNCH=NO

,CANCEL=YES
,CANCEL=NO

,TERM=NO
,TERM=YES

,RECORD=NO
,RECORD=YES

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE or ESTAEX.

One or more blanks must follow ESTAE or ESTAEX.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE= NONE

Defautt: ASYNCH =YES

Defautt: CANCEL= YES

Delautt: TERM= NO

Delautt: RECORD= NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ESTAE or ESTAEX macro with
the following exception:

,MF=L
specifies the list form of the ESTAE or ESTAEX macro.

210 SPL: Application Development Macro Reference

EST AE or ESTAEX (Execute Form)
A remote control parameter list is used in, and can be modified by, the execute form of the
ESTAE or ESTAEX macro. The control parameter list can be generated by the list form of
the ESTAE or ESTAEX macro. Any combination of exit addr, PARAM, XCTL, PURGE,
ASYNCH, TERM, RECORD, and TOKEN can be specified to dynamically change the contents
of the remote ESTAE or ESTAEX parameter list. If the TOKEN parameter was previously
specified and is to be used again without change, TKNPASS =YES must be coded. Any
fields not specified on the macro remain as they were before the current ESTAE or ESTAEX
request was made.

The execute form of the ESTAE or ESTAEX macro is written as follows:

name

b

ESTAE
ESTAEX

b

exltaddr
0

,CT
.ov

, PARAM =list addr

,XCTL=NO
,XCTL=YES

,PURGE= NONE
,PURGE= QUIESCE
,PURGE=HALT

,ASYNCH =YES
,ASYNCH=NO

,CANCEL= YES
,CANCEL=NO

,TERM=NO
,TERM=YES

,BRANCH=NO
,BRANCH= YES,SVEAREA =save
addr

,KEY=SAVE
,KEY=storage key

,RECORD=NO
,RECORD=YES

,TOKEN=token addr

,TKNPASS=NO
,TKNPASS=YES

,RELATED= value

,MF=(E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE or ESTAEX.

One or more blanks must follow ESTAE or ESTAEX.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

Default: CANCEL= YES

Note: BRANCH and SVEAREA are not valid on ESTAEX.

save addr: RX-type address, or register (2) - (12) or (13).

storage key: any numeral in the range 0-15.
Note: KEY is not valid on EST AEX.

token addr: RX-type address, or register (2) - (12).

Default: TKNPASS = NO

value: any valid macro keyword specification.

ctr/ addr: RX-type address, or register (1) or (2) - (12).

ESTAE and ESTAEX-SpeclfyTask Abnormal Exit Extended 211

The parameters are explained under the standard form of the ESTAE or ESTAEX macro,
with the following exceptions:

,TKNPASS =NO
,TKNPASS =YES

specifies that a previously-specified token, indicated in the parameter list, should be
ignored (NO), or should remain part of the specification (YES).

,MF= (E,ctr/ addr)
specifies the execute form of the ESTAE or ESTAEX macro using a remote control
parameter list.

212 SPL: Application Development Macro Reference

ETCON - Connect Entry Table

©Copyright IBM Corp. 1988, 1991

The ETCON macro connects one or more previously created entry tables to the specified
linkage table indexes in the current home address space. If an entry table is connected to a
system linkage index (an index reserved with the SYSTEM= YES option of the LXRES
macro), the entry table is connected to the linkage table of every address space, both
present and future.

The restrictions on the use of the ETCON macro are as follows:

• If an entry table contains entries that cause address space switches, the entry table
owner must have previously established authorization to issue PT and SSAR
instructions to the home address space.

• An entry table can be connected only once to a single linkage table.

• The linkage index and the entry table being connected must be under the same
ownership.

Any violation of these restrictions causes the caller to be abnormally terminated.

The connection created by the ETCON macro remains in effect until one of the following
occurs:

• The ETOIS macro removes the connection.

• The entry table owner terminates.

• The address space to which the table is connected terminates unless the connection
was to a system linkage index.

• The system is re-IPLed.

The caller must be in supervisor state or PKM 0-7, executing in primary mode, enabled,
and uniocked. The parameter iist passed to the ETCON macro must be addressable in
primary mode at the time the macro is issued. Register 13 must point to a standard register
save area that must also be addressable in primary mode.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 - 13 Unchanged
14 Used as a work register by the macro
15 Return code

213

The ETCON macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ET CON

b One or more blanks must follow ETCON.

TKLIST = addr addr: RX-type address or register (0) - (12).

,LXLIST = addr addr: RX-type address or register (0) - (12).

,RELATED= value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST •address
specifies the address of a list of fullword tokens representing the entry tables to be
connected to the linkage table. The first entry in the list must be the number of tokens
that follow (from 1 to 32). The tokens are the values returned in register O when the
ETCRE macro is issued.

,LXLIST • addr
specifies the address of a list of linkage index values to which the specified entry tables
are to be connected. The list contains fullword entries, the first of which must be the
number of linkage index values that follow (from 1 to 32). The number of linkage
indexes must be the same as the number of tokens. The first entry table is connected
to the first linkage index; the second entry table is connected to the second linkage
index, and so on.

,RELATED-value
specifies information used to self document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code

0

214 SPL: Application Development Macro Reference

Meaning

The specified connections were successfully made.

ETCON (List Form)

The list form of the ETCON macro constructs a non- executable parameter list. This list, or a
copy of it for reentrant programs, can be referred to by the execute form of the macro.

The list form of the ETCON macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ET CON

b One or more blanks must follow ETCON.

TKLIST = addr addr: A-type address.

,LXLIST=addr addr: A-type address.

,RELATED= value value: any valid macro keyword specification.

,MF=L

The parameters are explained under the standard form of the ETCON macro, with the
following exception:

,MF•L
specifies the list form of the ETCON macro.

ETCON - Connect Entry Table 215

ETCON (Execute Form)
The execute form of the ETCON macro can refer to and modify a remote parameter list
created by the list form of the macro.

The execute form of the ETCON macro Is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ETC ON

b One or more blanks must follow ETCON.

TKLIST=addr addr: RX-type address or register (0) - (12).

,LXLIST=addr addr: RX-type address or register (0) - (12).

, RELATED= value value: any valid macro keyword specification.

, MF= (E,cntl addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETCON macro with the
following exception:

,MF= {E,cnt/ addr)
specifies the execute form of the ETCON macro. This form uses a remote parameter
list.

216 SPL: Application Development Macro Reference

ETCRE - Create Entry Table

© Copyright IBM Corp. 1988, 1991

The ETCRE macro builds a program call entry table based upon descriptions of each entry.
A token representing the created entry table is returned to the requestor. You must use this
token in all subsequent references to the entry table.

Before issuing ETCRE, the caller must create the ETD parameter list that ETCRE uses as
input. The parameter list defines the names and characteristics of the program call (PC)
routines that the entry table will define. To create the parameter list, the caller can issue
the ETDEF macro or can code the data constants needed to define the list. If data constants
are coded, the caller can use mapping macro IHAETD to map them.

The created entry table is owned by the cross memory resource ownership task in the
current home address space. When the cross memory resource ownership task terminates,
entry tables are disconnected and freed.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The ETD specified by ENTRIES must also be addressable in primary
mode when the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Reg Isler Contents
0 The 32-bit token associtated with the new entry table
1 Used as a work register by the macro
2-13 Unchanged
14 Used as a work register by the macro
15 Return code

Nole: Programs written before MVS/SP Version 3, which use data constants to define the
parameter list (the resulting ETD was called a format 0 ETD) and which use IHAETD to map
the data area, will still work. For information about the format O ETD, see Diagnosis: Data
Areas.

The ETCRE macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede ETCRE.

ETC RE

b One or more blanks must follow ETCRE.

ENTRIES=addr addr: RX-type address or register (0) - (12).

,RELATED=va/ue value: any valid macro keyword specification.

217

The parameters are explained as follows:

ENTRIES• addr
specifies the address of the parameter list that defines the PC routines.

An entry index value that does not have a description results in an invalid entry In the
entry table. If the program name field in an ETD entry contains zeroes, an invalid entry
is created for that entry index. A program call to an invalid entry causes the caller to
be abnormally terminated. The ETCRE caller is abnormally terminated if any of the
reserved fields are nonzero or if the system cannot locate the specified program name.

,RELATED- value
specifies Information used to self-document macros by relating functions or services to
corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

tt•udeclmal
Code

Meaning

0 The entry table is successfully created.

Example
The following example shows the relationship between the ETCRE and the ETDEF macros.
ETDEF builds an entry table descriptor (ETD) that contains two ETD entries. The first entry,
associated with PROGRAM1, is for a PC routine that runs in supervisor state. The second
entry, associated with PROGRAM2, is for a PC routine that runs in problem state.

*
* CREATE THE ENTRY TABLE
*

LA 2,ETSTART
ETCRE ENTRIES=(2)

*
* DEFINE START OF ETD
*
ETSTART ETDEF TYPE=INITIAL START ETD
*
* DEFINE ENTRIES
*
ETEX2 ETDEF TYPE=ENTRY,PROGRAM='PROGRAMl' ,AKM=(0:15)

ETDEF TYPE=ENTRY,PROGRAM='PROGRAM2',AKM=(0:7)
*
* DEFINE END OF ETD
*

ETDf{ TYPE=FINAL

218 SPL: Application Development Macro Reference

ETDEF - Create an Entry Table Descriptor (ETD)

©Copyright IBM Corp. 1988, 1991

The ETDEF macro builds and modifies the parameter that the ETCRE macro uses to build an
entry table. The parameter, called the entry table descriptor (ETD), consists of a header,
followed by one or more entries, called ETD entries, each one describing a PC routine. The
address of the ETD is input to the ENTRIES parameter on the ETCRE macro.

The TYPE parameter on the ETDEF macro determines which process the ETDEF macro is to
perform:

• ETDEF TYPE= INITIAL generates the header for the ETD. (Issue this macro once for
each ETD.)

• ETDEF TYPE= ENTRY generates one ETD entry. (You can issue this macro up to 128
times for each ETD.)

• ETDEF TYPE= FINAL terminates the ETD. (Issue this macro once for each ETD.)

• ETDEF TYPE= SET,ETEADR replaces the entire contents of an existing ETD entry.

• ETDEF TYPE=SET,HEADER changes an existing ETD header.

You can create an ETD at time of compile through TYPE= INITIAL, TYPE= ENTRY, and
TYPE= FINAL parameters and initialize the information for the entries at time of execution
through TYPE= SET,ETEADR. Therefore, ETDEF with the TYPE= INITIAL, TYPE= ENTRY,
and TYPE= FINAL parameters works like a list form of the macro. However, unlike the
execute form of a macro, which changes only the values you specify, the TYPE= SET form
of ETDEF completely replaces the contents of an ETD entry, taking the default values for any
parameters you omit. This section describes the two forms separately.

Although ETDEF is the preferred programming interface, if you have an existing ETD and
you want to update the parameters (for example, change the user parameter), you might
choose to use the IHAETD mapping macro instead of ETDEF. If you change an existing ETD,
without using any of the function of MVS/SP version 3, you can use iHAETD with the format
number of "O". The format of IHAETD is in Diagnosis: Data Areas under "ETD".

Note: When changing code to use ETDEF in place of the IHAETD mapping macro, be sure to
specify PC= BASIC so that the PC does not become a stacking PC. If you want to change an
existing PC routine to a stacking PC, be sure to change the PT instruction in the PC routine
to a PR.

The caller of the ETDEF macro has the following requirements:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:

Problem or Supervisor state
Task or SRB
PASN = HASN or PASN not = HASN
31-bit or 24-bit
Primary
Not applicable

The ETDEF macro does not use any registers, except for those you use to specify
parameters.

219

TYPE= INITIAL, TYPE= ENTRY, and TYPE= FINAL Parameters
The ETDEF macro with the TYPE= INITIAL, TYPE= ENTRY, and TYPE= FINAL options works
like a list form of a macro. This form is described as follows:

name

ET DEF

f>

TYPE= INITIAL
TYPE=ENTRY

TYPE=FINAL
,AKM =key-list

,ARR=arr

,ASYNCH =YES
,ASYNCH=NO

,CANCEL= YES
,CANCEL=NO

,ASCMODE=PRIMARY
,ASCMODE =AR

,EAX = eax-value

,EK= entry-key

,EKM =key-list

,PARM1 = user-parm1

,PARM2 = user-parm2

,PC=STACKING
,PC=BASIC

,PROGRAM= pgm-name

,ROUTINE= rtn-addr

,PKM=OR
,PKM =REPLACE

,RAMODE=31
,RAMODE=24

, RELATED= value

,SASN=OLD
,SASN=NEW

,SSW ITCH= NO
,SSWITCH =YES

220 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede ETDEF.

One or more blanks must follow ETDEF.

Valld parameters (Required parameters are underlined)
RELATED
PROGRAM or ROUTINE, AKM, EKM, ARR, ASCMODE, EAX,
EK, PARM1, PARM2, PC, PKM, SASN, SSWITCH, STATE,
RELATED,ASYNCH,CANCEL
RELATED
key-list: List of keys or key ranges where a key is a number 0 -
15.

arr: A-type address, or alphanumeric character string
enclosed by single quotation marks.

Default: ASYNCH =YES
Valid only when ARR is also coded.

Defaun: CANCEL= YES
Valid only when ARR is also coded.

Default: ASCMODE =PRIMARY

eax-value: Half-word decimal digit.

entry-key: Decimal digit O - 15.
key-list: List of keys or key ranges where a key is a number O -
15.
Note: EKM is required with PKM =REPLACE.

user-parm1: A-type address or string of up to 4 characters
enclosed by single quotation marks.

user-parm2: A-type address or string of up to 4 characters
enclosed by single quotation marks.

Delaun:· PC= STACKING

pgm name: String of up to 8 alphanumeric characters,
optionally enclosed by single quotation marks.
rtn addr: A-type address.

Default: PKM =OR

Default: RAMODE=31

value: Any valid macro parameter specification.

Default: SASN =OLD

Default: SSWITCH =NO

,STATE= PROBLEM
,STATE= SUPERVISOR

Default: ST A TE= PROBLEM

TYPE= INITIAL
generates the header for the ETD.

TYPE=ENTRY
generates an ETD entry. The system uses the defaults for any parameters you do not
specify on the ETDEF TYPE= ENTRY macro. When you later specify ETDEF
TYPE= SET, that macro initializes the entire ETD entry.

TYPE=FINAL
specifies that the ETD is complete.

,AKM =key-list
specifies a list of keys (0 through 15) or key ranges, optionally enclosed in parentheses,
that identifies the authorized keys in which a problem program can use the PC routine.
For example, AKM = (2,(3),5:8,(10:12), 15) would authorize keys 2, 3, 5, 6, 7, 8, 10, 11, 12,
and 15.

,ARR=arr
specifies the associated recovery routine (ARR) that receives control if the stacking-PC
routine abends. You can use the A-type address of the routine, or the name of the
routine (an alphanumeric character string) enclosed in single quotation marks. If you
use the name of the program, the program must be on the active LPA queue (FLPA or
MLPA) or be in the PLPA or nucleus. The recovery routine will be entered in 31-bit
mode. ARR is not valid with PC= BASIC.

,ASYNCH =YES
,ASYNCH-NO

specifies whether or not the ARR can be interrupted by asynchronous exits.
ASYNCH =YES specifies that the ARR can be interrupted by asynchronous exits.
ASYNCH =NO specifies that the ARR cannot be interrupted by asynchronous exits.
ASYNCH=YES is the default. ASYNCH is valid only with ARR.

,CANCEL= YES
,CANCEL-NO

specifies whether or not the ARR can be interrupted by CANCEL/DETACH processing.
CANCEL= YES specifies that the ARR can be interrupted by CANCEL/DETACH
processing. CANCEL= NO specifies that the ARR cannot be interrupted by
CANCEL/DETACH processing. CANCEL=YES is the default. CANCEL is valid only with
ARR. To specify CANCEL= NO, one of the following conditions must be true for the
stacking PC routine protected by the ARR:

• The stacking PC routine runs in supervisor state.
• The entry key for the stacking PC routine is a system key
• The stacking PC routine runs with a system key valid for the entry key mask that

will either replace or be ORed with the PKM.

,ASCMODE =PRIMARY
,ASCMODE =AR

specifies that the stacking PC routine will execute in primary ASC mode
(ASCMODE=PRIMARY) or in ARASC mode (ASCMODE=AR). ASCMODE=AR is not
valid with PC= BASIC. ASCMODE =PRIMARY is the default.

,EAX == eax-value
specifies the extended authorization index (EAX) that the stacking PC routine uses.
Specify an EAX that is owned by the home address space of the issuer of the ETCRE
macro. An EAX of X' 0000' means the PC routine is not EAX-authorized. If EAX is not
specified, the PC routine has the same EAX as the issuer of the PC instruction. EAX is
not valid with PC= BASIC.

ETDEF - Create an Entry Table Descriptor (ETD) 221

,EK• entry-key
specifies the PSW key (0 through 15) that the PC routine will run in. EK is not valid with
PC= BASIC.

,EKM •key-list
specifies a list of keys (0 through 15) or key ranges, optionally enclosed in parentheses,
that Identify the entry key mask (EKM). When the PC routine is Invoked, the keys
specified identify either the additional keys that are to be ORed into the PKM (if
PKM =OR is also specified or taken as the default) or the keys that should replace the
PKM (if PKM =REPLACE is specified). EKM is required when you specify
PKM =REPLACE.

,PARM1 • user-parm1
specifies the address or character string to be placed in the first word of the latent
parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary address
space. The latent parameter address is set In general register 4 as a result of the PC
instruction, although AR4 is unchanged by the PC Instruction. If the PC routine runs In
AR mode, set the access register corresponding to the latent parameter area to O
before the PC routine attempts to use it.

,PARM2 • user-parm2
specifies the address or character string to be placed in the second word of the latent
parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary address
space. The latent parameter address is set in general register 4 as a result of the PC
instruction, although AR4 Is unchanged by the PC instruction. If the PC routine runs in
AR mode, set the access register corresponding to the latent parameter area to 0
before the PC routine attempts to use it.

,PROGRAM= pgm-name
,ROUTINE== rtn-address

specifies the PC routine. When you specify PROGRAM, the PC routine must be on the
active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The same restriction
applies also to ROUTINE, unless this is a space-switching PC or the PC is to be used
only in the address space that established it. In other words, the PC routine for a
space-switching PC can reside in the private area of the address space In which it will
run, but the ROUTINE paramE:ter muat be used to specify it.

On TYPE=ENTRY or TYPE=SET,ETEADR, either PROGRAM or ROUTINE is required.

,PC• STACKING
,PC•BASIC

indicates that this is a stacking PC (STACKING) or not a stacking PC (BASIC). Some
parameters apply only to a stacking PC. STACKING is the default.

,PKM•OR
,PKM •REPLACE

indicates either that the entry key mask (EKM) is ORed with the PSW key mask (PKM)
or replaces the current PKM. PKM =REPLACE Is not valid with PC= BASIC. PKM =OR
Is the default.

,RAMODE•31
,RAMODE•24

specifies the AMODE of the routine specified on the ROUTINE parameter. RAMODE is
valid only with ROUTINE. RAMODE=31 is the default.

,SASN•OLD
,SASN•NEW

specifies whether the stacking PC routine will execute with SASN equal to the caller's
PASN (SASN=OLD), or with SASN equal to the PASN of the stacking PC routine
(SASN = NEW). SASN =NEW is not val id with PC= BASIC. SASN =OLD is the default.

222 SPL: Application Development Macro Reference

TYPE =SET Parameter

,SSWITCH =NO
,SSWITCH =YES

specifies whether or not the PC routine switches address spaces. If SSWITCH =NO is
specified, the PC does not switch address spaces. If SSWITCH =YES is specified, the
PC routine will execute in the address space of the creator of the entry table with the
authority of that address space. SSWITCH =NO is the default.

,STATE= PROBLEM
,STATE .. SUPERVISOR

specifies which state the PC routine will receive control in either problem state
(PROBLEM) or supervisor state (SUPERVISOR). The default is STATE= PROBLEM.

,RELATED= any-value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

An example of using the ETDEF macro follows the description of the TYPE= SET parameter.

The ETDEF macro with the SET parameter works similar to the execute form of a macro with
this important distinction: the TYPE= SET form totally replaces an ETD entry and takes
default values for ALL parameters you omit. The normal execute form of a macro changes
only the values you specify. SET is described as follows:

name

b

ETDEF

b

TYPE= SET,ETEADR = entry-addr

TYPE= SET,HEADER = header-addr

,AKM =key-list

,ARR=arr

,ASYNCH =YES
,ASYNCH=NO

,CANCEL=YES
,CANCEL=NO

,ASCMODE =PRIMARY
,ASCMODE =AR

,EAX = eax-va/ue

,EK= entry-key

,EKM =key-list

name: symbol. Begin name in column 1.

One or more blanks must precede ETDEF.

One or more blanks must follow ETDEF.

Valid parameters (Required parameters are underlined)
PROGRAM or ROUTINE, AKM, EKM, ARR, ASCMODE, EAX,
EK, PARM1, PARM2, PC, PKM, RAMODE, SASN, SSWITCH,
STATE,RELATED,ASYNCH,CANCEL
entry-addr: RX-type address or register (1) - (15).
NUMETE, RELATED
header-addr: RX-type address or register (1) - (15).

key-list: List of keys or key ranges where a key is a decimal
digit 0- 15.

arr: A-type address, register (2)-(12), or alphanumeric
character string, enclosed by single quotation marks.

Defautt: ASYNCH =YES
Valid only when ARR is also coded.

Defautt: CANCEL= YES
Valid only when ARR is also coded.

Default: ASCMODE =PRIMARY

eax-value: Half-word decimal digit or register (2)-(12)

entry-key: Decimal digit O - 15.

key-list: List of keys or key ranges where a key is a decimal
digit 0-15.
Note: EKM is required with PKM =REPLACE.

ETDEF - Create an Entry Table Descriptor (ETD) 223

,NUMETE = nbr-of-entrles

,PARM1 = user-parm1

,PARM2= user-parm2

,PC=STACKING
,PC=BASIC

,PROGRAM= pgm-name

,ROUTINE= rtn-addr

,PKM=OR
,PKM =REPLACE

,RAMODE=31
,RAMODE=24

,RELATED= value

,SASN=OLD
,SASN=NEW

,SSWITCH =NO
,SSWITCH =YES

,STATE= PROBLEM
,STATE= SUPERVISOR

TYPE• SET,ETEADR = entry-addr

nbr-of-entr/es: Symbol, decimal number, or register (2)·(12).
Note: NUMETE is required with HEADER.

user-parm1: A-type address, register (2)·(12), or string of up to
4 characters enclosed by single quotation marks.

user-parm2: A-type address, register (2)·(12), or string of up to
4 characters enclosed by single quotation marks.

Default: PC= STACKING

pgm name: String of up to 8 alphanumeric characters,
optionally enclosed by single quotation marks.
rtn addr: A-type address or registers (2)·(12)

Default: PKM =OR

Default: RAMODE=31

value: Any valid macro parameter specification.

Default: SASN =OLD

Detaun: SSWITCH = NO

Delaun: STATE= PROBLEM

specifies the address of the ETD entry. ETDEF TYPE= SET,ETEADR sets the entire ETD
entry that you generated through ETDEF TYPE= ENTRY macro. ETDEF
TYPE= SET,ETEADR will set the ETD entry to the parameters you specify and to the
defaults on all parameters you omit. That is, the system uses the default value, not the
existing value, for any parameter that you omit.

TYPE• SET,HEADER • header-addr
changes the size of the ETD. Use TYPE=SET,HEADER to decrease the size of the ETD
from the size you originally established on ETDEF TYPE= INITIAL.

,NUMETE • nbr-of-entries
specifies the number of contiguous entries in the ETD. nbr-of-entries is a decimal value
from 1 to 128. NUMETE is required with the HEADER parameter. Use It to specify the
number of entries you will use. It does not change the physical size of the table.

224 SPL: Application Development Macro Reference

Example: Define an entry table that has three entries. The PC routine called PCPGM
receives control from a program with PSW key authorization of 8, the PC routine named
OTHERTN receives control from a program with PSW authorization keys of 0 through 15,
and the third PC routine called PCRTN receives control in PSW authorization key 0. The
fourth ETDEF is there to show that the number of entries can be changed with ETDEF SET.
(Perhaps, due to some input parameter, only a subset of all possible PC routines are set up.
On another invocation of the program, perhaps all entries would be used.) The entries use
all defaults other than those on the AKM parameter.

MYPGM CSECT

*

MYETDS
FIRST
SECOND
THIRD
FOURTH

*
*

LOAD EP='PCPGM'
LR 2,0
ETDEF TYPE=SET,HEADER=MYETDS,NUMETE=3
ETDEF TYPE=SET,ETEADR=FIRST,ROUTINE=(2),AKM=8
ETCRE ENTRIES=MYETDS
RETURN

DATA DEFINITIONS FOR PROGRAM

ETDEF TYPE=INITIAL
ETDEF TYPE=ENTRY,ROUTINE=0,AKM=8
ETDEF TYPE=ENTRY,PROGRAM=OTHERTN,AKM=0:15
ETDEF TYPE=ENTRY,ROUTINE=PCRTN,AKM=0
ETDEF TYPE=ENTRY,ROUTINE=0,AKM=0
ETDEF TYPE=FINAL

PCRTN OS 0H

* PC ROUTINE CODE

END MYPGM

Note that the combination of TYPE= INITIAL, ENTRY, and FINAL is essentially the list form
of the macro and TYPE= SET is the execute form.

ETDEF - Create an Entry Table Descriptor (ETD) 225

226 SPL: Application Development Macro Reference

ETDES - Destroy Entry Table

© Copyright IBM Corp. 1988, 1991

The ETDES macro destroys a previously-created entry table. Only the address space that
owns the entry table can destroy it. At the time ETDES is issued, the entry table must not be
connected to any linkage tables unless PURGE= YES is coded. If any outstanding
connections still exist and PURGE= YES is not coded, the entry table is not destroyed and
the caller is abnormally terminated.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The parameter list passed to ETDES must also be addressable in primary
mode at the time ETDES is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 - 13 Unchanged
14 Used as a work register by the macro
15 Return code

The ETDES macro is written as follows:

name

b

ET DES

b

TOKEN=addr

,PURGE=NO
,PURGE=YES

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: RX-type address or register (0) - (12).

Default: PURGE= NO

value: any valid macro keyword specification.

The parameters are explained as follows:

TOKEN=addr
specifies the address of the fullword token (returned by the ETCRE macro) associated
with the entry table to be destroyed.

,PURGE=NO
,PURGE=YES

specifies whether (YES) or not (NO) the entry table is to be disconnected from all
linkage tables and then destroyed.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding services. The format and contents of the information specified can be
any valid coding values.

227

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

0

4

228 SPL: Application Development Macro Reference

Meaning

The specified entry table was destroyed. There were no connections to linkage
indexes.

The specified entry table was destroyed. There were connections to linkage
indexes, PURGE=YES was specified, and the entry table was disconnected.

ETDES (List Form)

The list form of the ETDES macro constructs a non-executable parameter list. The execute
form of the macro can refer to this parameter list, or a copy of it for reentrant programs.

The list form of the ETDES macro is written as follows:

name

ETD ES

TOKEN=addr

,PURGE=NO
,PURGE=YES

, RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: A-type address.

Default: PURGE= NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ETDES macro with the
following exception:

,MF=L
specifies the list form of the ETDES macro.

ETDES - Destroy Entry Table 229

ETDES (Execute Form)
The execute form of the ETDES macro can refer to and modify a remote parameter list
created by the list form of the macro.

The execute form of the ETDES macro Is written as follows:

name

f>

ETDES

f>

TOKEN=addr

,PURGE=NO
,PURGE=YES

,RELATED= value

,MF=(E,cnt/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: RX-type address or register (0) - (12).

Default: PURGE=NO

value: any valid macro keyword specification.

cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETDES macro with the
following exception:

,MF• (E,cntl addr)
specifies the execute form of the ETDES macro. This form uses a remote parameter
list.

230 SPL: Application Development Macro Reference

ETDIS - Disconnect Entry Table

© Copyright IBM Corp. 1988, 1991

The ETDIS macro disconnects one or more entry tables from the home address space's
linkage table.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable
in primary mode. The parameter list passed by the requestor must also be addressable in
primary mode at the time the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 • 13 Unchanged
14 Used as a work register by the macro
15 Return code

The ETDIS macro is written as follows:

name name: symbol. Begin name in column 1.

f> One or more blanks must precede ETD!S.

ETDIS

f> One or more blanks must follow ETDIS.

TKLIST = addr addr: RX-type address or register (0) - (12).

,RELATED= value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = addr
specifies the address of a list of 1 to 32 fullword tokens, returned by the ETCRE macro,
identifying the entry tables to be disconnected from the home address space's linkage
table. The first entry of the list must be a fullword count of the number of tokens (1 to
32) in the list.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code

0

Meaning

The entry table is successfully disconnected.

231

232 SPL: Application Development Macro Reference

EVENTS - Wait for One or More Events to Complete

© Copyright IBM Corp. 1988, 1991

The EVENTS macro is a functional specialization of the WAIT ECBLIST= macro facility with
the advantages of notifying the program that events have completed and the order in which
they completed.

The macro performs the following functions:

• Creates and deletes EVENTS tables.
• Initializes and maintains a list of completed event control blocks.
• Provides for single or multiple ECB processing.

The description of the EVENTS macro follows. The EVENTS macro is also described in
Application Development Macro Reference with the exception of the BRANCH= YES
parameter. This parameter is restricted to programs that run in supervisor state, key 0, and
own the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space other than
the home address space. LOCAL lock means the local lock of the home address space.
When written in lower case, local lock means any local-level lock, either the LOCAL or a
CML lock.

For information about how to use this macro on an MVS/SP version other than the current
version, see" Selecting the Macro Level" on page 1.

The EVENTS macro is written as follows:

name

b

EVENTS

b

ENTRIES=n
ENTRIES=addr

ENTRIES= DEL,TABLE =tab addr
TABLE= tab addr

,ECB = ecb addr
,LAST= last addr

,WAIT=YES
.WAIT=NO

,BRANCH=NO
,BRANCH=YES

The parameters are explained below:

ENTRIES•n
ENTRIES= addr

name: symbol. Begin name in column 1.

One or more blanks must precede EVENTS.

One or more blanks must follow EVENTS.

n: decimal digits 1-32767
addr: register (2) - (12).

tab addr: symbol, RX-type address, or register (2) - (12).
Note: If the ENTRIES parameter is specified as indicated in the
first two formats, no other parameters may be specified.

ecb addr: symbol, RX-type address, or register (2) - (12).
last addr: symbol, RX-type address, or register (2) - (12).
Note: If LAST is specified, WAIT must also be specified.

Default: BRANCH= NO

specifies either a register or a decimal number from 1 to 32,767 which specifies the
maximum number of completed ECB addresses that can be processed in an EVENTS
table concurrently.

Note: When this parameter is specified, no other parameter should be specified.

233

ENTRIES== DEL,TABLE =tab addr
specifies that the EVENTS table whose address is specified by TABLE= tab addr is to
be deleted. The user is responsible for deleting all of the tables he creates; however,
all existing tables are automatically freed at task termination.

Notes:

1. When this parameter is specified, no other parameter should be specified.

2. TABLE resides in 24-bit addressable storage.

TABLE== tab addr
specifies either a register number or the address of a word containing the address of
the EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

,WAIT= NO
,WAIT=YES

specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS TABLE (specified by the TABLE= parameter).

,ECB = ecb addr
specifies either a register number or the address of a word containing the address of
an event control block. The EVENTS macro should be used to initialize any event-type
ECB. To avoid the accidental destruction of bit settings by a system service such as an
access method, the ECB should be initialized after the system service that will post the
ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.

Notes:

1. Register 1 should not be specified for the ECB address.

2. This parameter may not be specified with the LAST= parameter.

3. The ECB can reside above or below 16 megabytes.

4. If only ECB initialization is being requested, neither WAIT= NO nor WAIT= YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST= last addr
specifies either a register number or the address of a word containing the address of
the last EVENT parameter list entry processed.

Notes:

1. Register 1 should not be specified for the LAST address.

2. This parameter should not be specified with the ECB = parameter.

3. The WAIT macro must also be specified.

4. LAST resides in 24-bit addressable storage.

,BRANCH=NO
,BRANCH= YES

specifies that an SVC entry (BRANCH= NO) or a branch entry (BRANCH= YES) is to be
performed.

234 SPL: Application Development Macro Reference

Example 1
The following shows total processing via EVENTS

EVENTS and ECB Initialization

EVENTS ENTRIES=leee

ST

WRITE

Rl,TABADD

ECBA

LA

EVENTS

R2,ECBA ...

TABLE=TABADD,ECB=(R2)

Parameter List Processing

EVENTS TABLE=TABADD,WAIT=YES

LR
B

LOOPl EVENTS
LR

LOOP2 EQU

R3,Rl PARMLIST ADDR
LOOP2 GO TO PROCESS ECB
TABLE=TABADD,WAIT=YES,LAST=(R3)
R3,Rl SAVE POINTER
* PROCESS COMPLETED EVENTS

TM 0(R3),X'80' TEST FOR MORE EVENTS
BO LOOPl IF NONE, GO WAIT
LA R3,4(.R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table

EVENTS TABLE=TABADD,ENTRIES=DEL

TABADD DS F

Example2
Processing One ECB at a Time.

EVENTS ENTRIES=10
ST 1,TABLE

NEXTREC GET
ENQ
READ
LA
EVENTS

WRITE
LA

RETEST EVENTS
LTR
BNZ

TPDATA,KEY
(RESOURCE,ELEMENT,E,,SYSTEM)
DECBRW,KU,,'S' ,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=YES

DECBRW,K,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=NO
1,1
NEXTREC

B RETEST

TABLE OS F

EVENTS - Wait for One or More Events to Complete 235

236 SPL: Application Development Macro Reference

EXTRACT - Extract TCB Information

© Copyright IBM Corp. 1988, 1991

The EXTRACT macro causes the control program to provide information from specified
fields of the task control block or a subsidiary control block for either the active task or one
of its subtasks. The control program places the information in an area that the problem
program provides. For a description of this area see "Providing an EXTRACT Answer
Area" in SPL: Application Development Guide. When EXTRACT is issued, its parameter list
can reside in 24- or 31-bit addressable storage.

Notes:

Product-Sensitive Programming Interface

1. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it is the user's
responsibility to ensure that the TIOT contains the UCB address. To find the UCB
address, see the topic "Finding the UCB Address" in SPL: Application Development
Guide.

~------- End of Product-Sensitive Programming Interface _______ ___,

2. Programs that reside in 24- and 31-bit addressable storage can issue the standard form
of the macro.

The standard form of the EXTRACT macro is written as follows:

name

EXTRACT

b

answeraddr

,'S'.
,tcb addr

,FIELDS= (tcb info)

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer e.ddr: A-type address, or register (2) - (12).

tcb addr: A-type address, or register (2) - (12).
Default: 'S'.

tcb info: any combination of the following, separated by
commas:

ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

The parameters are explained as follows:

answer addr
specifies the address of the answer area to contain the requested information. The
area is one or more fullwords, starting on a fullword boundary. The number of
fullwords must be the same as the number of fields specified in the FIELDS parameter,
unless ALL is coded. If ALL is coded, seven fullwords are required.

,'S'.
,tcb addr

specifies the address of a fullword on a fullword boundary containing the address of a
task control block for a subtask of the active task. If 'S'. is coded or is the default, no
address is specified and the active task is assumed.

237

,FIELDS= (tcb info)
specifies the task control block information requested:

ALL

GRS

FRS

AETX

PRI

CMC

TIOT

COMM

requests information from the GRS, FRS, reserved, AETX, PRI, CMC, and
TIOT fields. (If ALL is specified, 7 words are required just for ALL.)

is the address of the save area used by the control program to save the
general registers 0-15 when the task is not active.

is the address of the save area used by the control program to save the
floating point registers 0, 2, 4, and 6 when the task is not active.

is the address of the end of task exit routine specified in the ETXR parameter
of the ATTACH macro used to create the task.

is the current limit (third byte) and dispatching (fourth byte) priorities of the
task. The two high-order bytes are set to zero.

is the task completion code. If the task is not complete, the field is set to
zero.

is the address of the task input/output table.

is the address of the command scheduler communications list. The list
consists of a pointer to the communications event control block and a pointer
to the command input buffer, and a token. (If a token exists, the high order
bit of the token field is set to one). The token is used only with internal
START commands. See "Issuing an Internal START or REPLY Command" in
SPL: Application Development Guide.

TSO is the address of a byte in which a high bit of 1 indicates a TSO address
space, and a high bit of 0 indicates a non-TSO address space.

PSB is the address of the TSO protected step block.

TJID is the address space identifier (ASID) for a TSO address space, and zero for
a non-TSO address space.

ASID is the address space identifier.

Example 1

Operation: Provide information from all the fields of the indicated TCB except ASID.
WHERE is the label of the answer area, ADDRESS is the label of a fullword that contains the
address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 2

Operation: Provide information from the current TCB, as above.

EXTRACT WHERE,'S' ,FIELDS=(ALL,TSO,COMM,PSB,TJID)
Example 3

Operation: Provide information from the command scheduler communications list.
ANSWER is the label of the answer area and TCBADDR is the label of a fullword that
contains the address of the subtask TCB from which information is to be extracted.

EXTRACT ANSWER,TCBADDR,FIELDS=(COMM)

238 SPL: Application Development Macro Reference

EXTRACT (List Form)
The list form of the EXTRACT macro is used to construct a remote control program
parameter list.

The list form of the EXTRACT macro is written as follows:

name

b

EXTRACT

b

answeraddr

,'S'.
,tcb addr

,FIELDS= (tcb info)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: A-type address.

tcb addr: A-type address.
Default: 'S'.

tcb info: any combination of the following, separated by
commas:

ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

The parameters are explained under the standard form of the EXTRACT macro, with the
following exception:

,MF=L
specifies the list form of the EXTRACT macro.

EXTRACT - Extract TCB Information 239

EXTRACT (Execute Form)
The execute form of the EXTRACT macro uses, and can modify, a remote control program
parameter list. If the FIELDS parameter, restricted in use, is coded in the execute form, any
TCB information specified in a previous FIELDS parameter is canceled and must be
respecified if required for this execution of the macro.

The execute form of the EXTRACT macro is written as follows:

name

b

EXTRACT

b

answer addr

,'S'.
,tcb addr

,FIELDS= (tcb info)

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: RX-type address, or register (2) - (12).

tcb addr: RX-type address, or register (2) - (12).

tcb info: any combination of the following, separated by
commas:

ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EXTRACT macro, with the
following exception:

,MF= (E,ctr/ addr)
specifies the execute form of the EXTRACT macro using a remote control program
parameter list.

240 SPL: Application Development Macro Reference

FEST AE - Fast Extended ST AE

© Copyright IBM Corp. 1988, 1991

The FESTAE macro allows an SVC to establish an ESTAE recovery routine with minimal
overhead and no locking requirements. The ESTAE routine activated by FESTAE receives
control in the same sequence and under the same conditions as though created by the
ESTAE macro. The FESTAE macro can be issued in cross memory mode as long as the
currently addressable address space is the home address space. For more information,
see SPL: Application Development Guide.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode. FESTAE users executing in
31-bit addressing mode must recompile using the MVS/XA FESTAE macro expansion so that
the exit routine gets control in 31-bit addressing mode.

For information about how to use this macro on an MVS/SP version other than the current
version, see " Selecting the Macro Level" on page 1.

The FESTAE macro expansion has no external linkage. The macro is written as follows:

name

FESTAE

b

O,WRKREG =work reg addr
EXIT ADR =exit addr

,RBADDR=svrb addr

,TC BA DOR= tcb addr

,PARAM =list addr

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE= HALT
,PURGE= QUIESCE

,ASYNCH =YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RECORD=NO
,RECORD=YES

,ERR ET= label

name: symbol. Begin name in column 1.

One or more blanks must precede FESTAE.

One or more blanks must follow FESTAE.

work reg addr: Register (1) - (14).
exit addr: Register (1) - (14).

svrb addr: Register (1) - (14).

tcb addr: Register (1) - (14).

list addr: Register (1) - (14).

Default: XCTL =NO

Default: PURGE= NONE

Default: ASYNCH =YES

Default: TERM= NO

Default: RECORD= NO

label: any valid assembler name.

The parameters are explained as follows:

O,WRKREG =work reg addr
specifies that the current ESTAE routine be canceled if it was created by FESTAE. An
error occurs if the current ESTAE routine was not created by FESTAE. A work register
must be specified for use by the FESTAE macro expansion.

241

,EXITADR •exit addr
specifies a register that contains the address of an ESTAE routine to be entered If the
task terminates abnormally. This register is used subsequently as a work register.

,RBADDR • svrb addr
specifies a register that contains the address of the current SVRB prefix. RBADDR
must be specified If EXITADR has also been specified. The specified register is not
altered.

,TCBADDR • tcb addr
specifies the register containing the current TCB address. This register is not altered,
and Its specification results in the generation of more efficient code.

Note: The TCB resides in storage below 16 megabytes.

,PARAM •list addr
specifies the register containing the address of a user-defined parameter list that
contains data to be used by the ESTAE routine. The routine receives this address when
it Is scheduled for execution.

The use of this parameter list is optional, but the user should zero out any spurious
data it might contain whether or not he intends to use it. If the user does not select the
PARAM option, the routine receives instead the 24-byte parameter area in the SV!\B. In
this case, the user must locate this SVRB parameter area and initialize It with
appropriate data.

,ERRET • /abe/
specifies a label within the CSECT issuing the FESTAE for which addressability has
been established. The FESTAE macro branches to this label if it is returning a code
other than zero. This option saves the user the instructions necessary to check the
return code. If the user does not specify the ERRET option, control returns instead to
the instruction immediately following the FESTAE macro. The return code is in register
15.

All the other FESTAE parameters have the same meaning as their ESTAE counterparts.

Upon conclusion of FESTAE processing, control resumes at the instruction following the
FESTAE macro. Register 15 then contains one of the following return codes:

Hexadecimal
Code

00

08

oc

Example

Meaning

Successful completion of the FEST AE request.

A previous create has been Issued with FESTAE for this SVRB; the request has
been ignored.

Cancel has been specified under one of the following conditions:

1. There is no exit for this TCB.
2. The most recent exit is not owned by the caller.
3. The most recent exit was not created by FESTAE.

Operation: In case of an abnormal termination, execute the ESTAE routine specified by
register 2, allow asynchronous processing, do not allow special error processing, default to
PURGE=NONE, and pass the parameter list pointed to by register 7 to the ESTAE routine.

FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), X
PARAM=(REG7),ASYNCH=YES,TERM=NO

242 SPL: Application Development Macro Reference

FRACHECK - Check User's Authorization (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

Note: The RACROUTE macro is the preferred programming interface.

This macro description applies to RACF Release 1.8.1 or earlier. Your program can Invoke
the FRACHECK macro directly; however, IBM recommends that you Invoke the equlvalent
function through the RACROUTE macro, using the REQUEST=FASTAUTH parameter. See
"RACROUTE - MVS Router Interface (for RACF Release 1.8.1 or earlier)" on page 439 for
the applicable RACROUTE macro description.

If you have RACF Release 1.9 installed on your system, you can still Invoke the FRACHECK
macro directly; however, to use the new Release 1.9 functions, you must use the
RACROUTE macro and specify REQUEST= FASTAUTH. See the following for the applicable
descriptions of RACROUTE and RACROUTE REQUEST= FASTAUTH:

• "RACROUTE- Router Interface (for RACF Release 1.9)" on page 449
• "RACROUTE REQUEST= FASTAUTH-Verifies Access to Resources (for RACF Release

1.9)" on page 539.

The FRACHECK macro checks a user's authorization for access to a resource. FRACHECK
verifies access to those resources whose RACF profiles have been brought into main
storage by the RACLIST facility. FRACHECK is a branch entered service that does not save
registers upon entry. FRACHECK uses but does not restore registers 0-5, 14, and 15
FRACHECK does not alter registers 6-13.

CAUTION:
The FRACHECK macro executes in the addressing mode of the caller. Therefore, to access
proflles that reside above 16 megabytes, the program that Issues FRACHECK must be
running in 31-bit addressing mode when it issues FRACHECK.

243

The standard form of the FRACHECK macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede FRACHECK.

FRACHECK

b One or more blanks must follow FRACHECK.

ENTITY= entity addr entity addr: A-type address or register (2) - (12).

,CLASS= 'c/assname'
,CLASS= c/assname addr

,ATTR=READ
,ATTA= UPDATE
,A TTR =CONTROL
,A TTR =ALTER
,ATTR=reg

,ACEE= acee addr

,WKAREA=area addr

,APPL= 'applname'
,APPL=app/name addr

,INSTLN = parm list addr

,RELEASE= number

c/assname: DASDVOL or T APEVOL.
c/assname addr: A-type address or register (2) - (12).

reg: registers (2) - (12).
Default: A TTR = READ

acee addr: A-type address or register (2) - (12).

area addr: A-type address or register (2) - (12).

applname addr: A-type address or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

The parameters are explained as follows:

ENTITY = entity addr
specifies that RACF authorization checking is to be performed for the resource whose
name is pointed to by the specified address. The resource name is a 6-byte volume
serial number for CLASS= 'DASDVOL' or CLASS= 'TAPEVOL'. The name must be left
justified and padded with blanks. The length of all other resource names is determined
from the class descriptor tables.

,CLASS = 'classname'
,CLASS = c/assname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If you specify an address, the address must point to an 8-byte field
containing the classname.

,ATTR =READ
,ATTR =UPDATE
,ATTR =CONTROL
,A TTR =ALTER
,ATTR =(reg)

specifies the access authority required by the user or group accessing the resource:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to read or write.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-VSAM data sets and other resources, RACF
user or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

244 SPL: Application Development Macro Reference

If you specify a register, the register must contain one of the following codes in the
low-order byte of the register:

X'02'-READ
X'04' - UPDATE
X'OB' - CONTROL
X'BO' - ALTER

,ACEE = acee addr
specifies the address of the accessor control environment element (ACEE) to be used
to check authorization and to locate the in-storage profiles (RACLIST output) for the
specified classes. If you specify an ACEE, it is used for authorization checking. If the
specified ACEE has an in-storage profile list for the specified class, it is used to locate
the resource. If you do not specify an ACEE or if there is no in-storage profile list for
the specified class in the ACEE, RACF uses the TASK ACEE (TCBSENV) pointer in the
extended TCB. Otherwise, or if the TASK ACEE pointer is zero, RACF uses the main
ACEE for the address space to obtain the list of the in-storage profiles. The ASXBSENV
field of the address space extension block points to the main ACEE.

,WKAREA =area addr
specifies the address of a 16 word work area that FRACHECK will use which contains
the following information:

Word 12 contains the reason code that ICHRFCOO will pass back to the FRACHECK
caller via Register 0.

Word 13 contains the return code that FRACHECK passes back to the caller in
register 15.

Word 14 contains the address of the in-storage profile used to determine
authorization, or zero if no profile was found.

Word 15 contains a value provided by a pre-processing installation exit, or zero if
there was no pre-processing exit. This will be passed back to the caller in register
1.

,APPL= 'applname'
,APPL ... applname addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If you specify an address, the address should point to an 8-byte
area containing the application name, left justified and padded with blanks, if
necessary.

,INSTLN = parm list addr
specifies the address of an area that contains information for the FRACHECK
installation exit. This address is passed to the exit routine when the exit is given
control. Application or installation programs use the INSTLN parameter to pass
information to the FRACHECK installation exit.

,RELEASE =1.611.711.811.8.1
specifies the RACF release level of the parameter list that FRACHECK generates.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 10 on page 246.

When you specify the RELEASE parameter, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
FRACHECK macro, specify CHECK subparameter on the execute form of the macro.

FRACHECK (for RACF Release 1.8.1 or earlier) 245

Parameters for RELEASE = 1.6 and Later
The RELEASE values tor which a specific parameter is valid are marked with an 'X'.

Figure 10. FRACHECK Parameters for RELEASE= 1.6 and Later

Parameter RELEASE• 1.6 RELEASE•1.7 RELEASE• 1.8 or 1.8.1

ACEE= x x x
APPL= x x x
ATTR= x x x
CLASS= x x x
ENTITY= x x x
INSTLN= x x x
RELEASE= x x x
WKAREA= x x x

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register 0 may contain a reason code:

Hexadecimal
Code Meaning

00

04

08

oc
10

14

64

246 SPL: Application Development Macro Reference

The user or group is authorized to use the resource.

Reason
Code Meaning

0 The FRACHECK return code indicates if the caller is authorized or
not authorized to the resource, but the access attempt is not within
the scope of the audit/global audit specification.

4 The FRACHECK return code indicates if the caller is authorized or
not authorized to the resource, but the access attempt is within the
scope of the audit/global audit specification. The FRACHECK
caller should log the attempt by issuing a RACHECK for the
resource that the caller is attempting to access.

The resource or classname is not defined to RACF.

The user or group is not authorized to use the resource.

Reason
Code Meaning

0 The FRACHECK return code indicates if the caller is authorized or
not authorized to the resource, but the access attempt is not within
the scope of the audit/global audit specification.

4 The FRACHECK return code indicates if the caller is authorized or
not authorized to the resource, but the access attempt is within the
scope of the audit/global audit specification. The FRACHECK
caller should log the attempt by issuing a RACHECK for the
resource that the caller is attempting to access.

RACF Is not active.

FRACHECK installation exit error occurred.

RACF CVT does not exist (RACF is not installed or insufficient level of RACF
is installed).

Indicates that you specified the CHECK subparameter of the RELEASE
parameter on the execute form of the FRACHECK macro; however, the list
form of the macro does not have the proper RELEASE parameter. Macro
processing terminates.

FRACHECK (List Form)

The list form of the FRACHECK macro is written as follows:

name

fl

FRACHECK

fl

E"jTITY =entity addr

,CLASS= 'ctassname'
,CLASS=c/assname addr

,ATIR=READ
,ATIR=UPDATE
,ATIR =CONTROL
,ATIR=ALTER

,ACEE= acee addr

,WKAREA=area addr

,APPL= 'applname'
,APPL= applname addr

,INSTLN = parm list addr

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede FRACHECK.

One or more blanks must follow FRACHECK.

entity addr: A-type address.

classname: DASDVOL or TAPEVOL.
classname addr: A-type address.

Default: ATIR=READ

acee addr: A-type address.

area addr: A-type address.

apptname addr: A-type address.

parm list addr: A-type address.

number: 1.8.1, 1.8, 1.7, or 1.6
Defaun: RELEASE= 1.6

The parameters are explained under the standard form of the FRACHECK macro, with the
following exception:

,MF =L
specifies the list form of the FRACHECK macro.

FRACHECK (for RACF Release 1.8.1 or earlier) 247

FRACHECK (Execute Form)
The execute form of the FRACHECK macro is written as follows:

name

FRACHECK

ENTITY= entity addr

,CLASS=c/assname addr

,ATTR=(reg)

,ACEE= acee addr

,WKAREA=area addr

,APPL= applname addr

,INSTLN = parm list addr

,RELEASE= (number, CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF= (E,ctr/ addr)

name: symbol. Begin name In column 1.

One or more blanks must precede FRACHECK.

One or more blanks must follow FRACHECK.

entity addr: RX-type address or register (2) - (12).

classname addr: RX-type address or register (2) - (12).

reg: register (2) - (12).

acee addr: RX-type address or register (2) - (12).

area addr: RX-type address or register (2) - (12).

applname addr: RX-type address or register (2) - (12).

parm list addr: RX-type address or register (2) - (12).

number: 1.8.1, 1.8, 1.7, or 1.6
Defaun: RELEASE= 1.6

ctr/ addr: RX-type address or register (1) - (12).

The parameters are explained under the standard form of the FRACHECK macro, with the
followin_g exception:

,MF ... (E,ctrl addr)
specifies the execute form of the FRACHECK macro, using a remote control program
parameter list.

,RELEASE • (number,CHECK)
,RELEASE -1.e11.111.a11.a.1
,RELEASE== (,CHECK)

specifies the RACF release level of the parameter list that FRACHECK generates.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be Issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 10.

When you specify the RELEASE parameter, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
FRACHECK macro, specify the CHECK subparameter on the execute form of the macro.

When you request CHECK processing and the size of the list-form expansion Is not
large enough to accommodate all parameters defined by the RELEASE parameter, the
execute form of the macro will not be generated. Instead, FRACHECK generates a
return code of X '64'.

248 SPL: Application Development Macro Reference

FREEMAIN - Free Virtual Storage

© Copyright IBM Corp. 1988, 1991

The FREEMAIN macro releases one or more areas of virtual storage, or an entire virtual
storage subpool, previously assigned to the active task as a result of a GETMAIN macro.
FREEMAIN is supported in a cross memory environment.

The active task is abnormally terminated if the specified virtual storage does not start on a
doubleword boundary or, for an unconditional request, if the specified area or subpool is not
currently allocated to the active task. Register 15 is set to 0 to indicate successful
completion. For a conditional FREEMAIN, register 15 is set to 4 if the specified area or
subpool is not currently allocated to the active task.

In the parameters discussed below, EU, LU, and VU specify unconditional requests and
result in the same processing as E, L, and V, respectively. The two formats for these
requests are available to maintain compatibility with the GETMAIN formats. Users of the
FREEMAIN macro who are freeing virtual storage with addresses greater than 16
megabytes must use either the RC or RU form of the macro. All addresses specified with
the RC or RU form of the macro are treated as 31-bit addresses.

The FREEMAIN macro is available to callers in either primary address space control (ASC)
mode or access register (AR) ASC mode. Callers in AR mode, however, are limited to
requests to release global (common area) storage and must use the branch entry. Before
invoking the FREEMAIN macro in AR mode, the caller must issue SYSSTATE ASCENV= AR
to tell the system to generate FREEMAIN code that is appropriate for AR ASC mode.

The description of the FREEMAIN macro follows. The FREEMAIN macro is also described in
Application Development Macro Reference with the exception of the BRANCH and KEY
parameters. These parameters are restricted to programs running supervisor state, key O
and, therefore, are only described here.

The standard form of the FREEMAIN macro is written as follows:

name

b

FREE MAIN

b

LC.LA= length addr

LU,LA= length addr

L,LA =length addr

vc
vu
v
EC,LV =length value
EU,L V =length value
E,LV=length value
RC,L V =length value
RC,SP=subpoo/ nmbr
RU,LV =length value
RU.SP= subpool nmbr
R,LV =length value
R,SP = subpool nmbr

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal number, or register (2) - (12).
If R is specified, register (0) may also be specified.
subpool nmbr: symbol, decimal number, or register (0) or (2) -
(12).

Notes:

1. If R,SP = (0) is specified with no other parameters, the high
order byte of register 0 must contain the subpool number
and the low order 3 bytes must contain zero.

2. If RC.SP= subpoo/ numbr or RU,SP = subpool nmbr or
R,SP=subpool nmbr is specified, no other parameters
except RELATED can be specified.

3. RC and RU are the only parameters that can be used to
free storage above 16 megabytes.

249

,A=addr addr: A-type address, or register (2) - (12).

,SP= subpool nmbr

,BRANCH=YES

,BRANCH= (YES, GLOBAL)

,KEY=nmbr

,RELATED= value

Note: If R, RC, or RU is coded, register (1) can also be
specified.

subpool nmbr: symbol, decimal number, or register (2) - (12).
If R,SP = (0) is specified, the high order byte of register O must
contain the subpool number and the low order 3 bytes must
contain the length value.

Note: BRANCH= (YES, GLOBAL) may be specified with RC or
RU above.
Also, the macro expansion uses register 4 for the address of
the global
save areas pointed to by the CVT. The previous contents of
register 4
is overridden.

nmbr: decimal numbers 0-15, or register (2) - (12).
Note: This parameter may be specified only with BRANCH and
RC or RU above.

value: any valid macro keyword specification.

The parameters are explained below:

LC,LA = length addr
LU,LA •length addr
L,LA •length addr
vc
vu
v
EC,LV • length value
EU,LV •length value
E,LV •length value
RC,LV =length value
RC,SP - subpool nmbr
RU,LV"' length value
RU,SP ... subpool nmbr
R,LV •length value
R,SP • subpool nmbr

specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list requests and
specify release of one or more areas of virtual storage. The length of each virtual
storage area is indicated by the values in a list beginning at the address specified in
the LA parameter. The address of each of the virtual storage areas must be provided in
a corresponding list whose address is specified in the A parameter. All virtual storage
areas must start on a doubleword boundary.

VC, VU, and V Indicate conditional (VC) and unconditional (VU and V) variable requests
and specify release of single areas of virtual storage. The address and length of the
virtual storage area are provided at the address specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element requests
and specify release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area
is provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register requests
and specify release of single areas of virtual storage from the subpool indicated, or
specifies release of the entire subpool indicated. If the release is not for the entire
subpool, the address of the virtual storage area is indicated in the A parameter. The
length of the area is indicated in the LV parameter. The virtual storage area must start
on a doubleword boundary.

250 SPL: Application Development Macro Reference

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if
the virtual storage being freed is not allocated to the active task. However some
abends cannot be prevented. An unconditional request indicates that the task is to
be abnormally terminated in this situation.

2. Callers in either 24-bit or 31-bit addressing mode can use RC or RU to free storage
above 16 megabytes.

3. If the address of the area to be freed is greater than 16 megabytes, you must use
RC or RU.

LA specifies the virtual storage address of one or more consecutive fullwords starting
on a fullword boundary. One word is required for each virtual storage area to be
released; the high-order bit in the last word must be set to 1 to indicate the end of the
list. Each word must contain the required length in the low-order three bytes. The
fullwords in this list must correspond with the fullwords in the associated list specified
in the A parameter. The words must not be in the area to be released. If this rule is
violated and if the words are the last allocated items on a virtual page, the whole page
is returned to storage and the FREEMAIN abends with an OC4.

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of
8. If R is coded, LV = (0) may be designated; the high-order byte of register 0 must
contain the subpool number, and the low-order three bytes must contain the length (in
this case, the SP parameter is invalid).

,A=addr
specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. The input must not reside within the area to be released. If this rule
is violated and if the input is within the area and is the last allocated item on a virtual
page, the whole page is returned to storage and the FREEMAIN abends with an OC4.

• if E, EC, EU, R, RC, or RU is designated, one word, which contains the address of
the virtual storage area to be released, is required.

• If V, VC, or VU is coded, two words are required; the first word contains the address
of the virtual storage area to be released, and the second word contains the length
of the area to be released.

• If L, LC, or LU is coded, one word is required for each virtual storage area to be
released; each word contains the address of one virtual storage area.

• If R, RC, or RU is coded, any of the registers 1 through 12 can be designated, in
which case the address of the virtual storage area, not the address of the fullword,
must have previously been loaded into the register.

,SP= subpool nmbr
specifies the subpool number of the virtual area to be released. The subpool number
can be between O and 255. The SP parameter is optional and if omitted, subpool O is
assumed. If R is coded, SP= (0) can be designated, in which case the subpool number
must be previously loaded into the low-order byte of register 0.

For subpool freemains, the SP parameter specifies the number of the subpool to be
released. Subpool freemains can be issued only for the following subpools: 1-127, 203,
204, 213, 214, 223, 224, 229, 230, 233, 236, 237, 240, and 250-253; and if the caller is in
key 0, supervisor state. Any attempt to issue a subpool freemain for any other subpool
causes a 478 or 40A abend. (See SPL: Application Development Guide for a list of the
characteristics of the valid subpools.) If R,SP = (0) is specified with no other
parameters, the high-order byte of register O must contain the subpool number and the
low-order 3 bytes must contain zero.

Note: Callf--s executing in supervisor state and key zero, who specify subpool 0, will
free storag.., r..., subpool 252. Therefore, when requesting a dump of this storage via
the SDUMP mat;(O, they must specify subpool 252 rather than 0.

FREEMAIN - Free Virtual Storage 251

,BRANCH= YES
,BRANCH== (YES, GLOBAL)

specifies that a branch entry is to be used. If (YES,GLOBAL) is specified, the entry
point to service global storage requests without the need for the local address space
lock will be used. The caller must be disabled.

If BRANCH= YES is specified, the caller must pre-load register 4 with the TCB address,
pre-load register 7 with the ASCB address, and hold the local address space lock of the
ASCB address specified in register 7 prior to entry. Register 3 will be destroyed if RC
or RU was specified.

Callers in cross memory mode can use the BRANCH= YES parameter of the FREEMAIN
macro. If the caller is in cross memory mode, the storage is freed in the currently
addressable address space. The caller must hold the CML lock for the currently
addressable address space; load register 7 with the address of the ASCB of the
currently addressable address space; and load register 4 with zero or the address of a
TCB in the currently addressable address space. If register 4 contains a zero, the
storage that is freed is associated with the current job step task that owns the cross
memory resources in the currently addressable address space (that is, the TCB
anchored in ASCBXTCB).

If BRANCH= (YES, GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control is returned to
the caller. Additionally, the SP parameter may only designate subpools 226, 227, 228,
231,239,241,245,247,or248.

,KEY== key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage was
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be freed in the specified storage protection key.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

When control is returned, register 15 contains one of the following return codes. A code
other than 0 is possible only for conditional forms.

Hexadecimal
Code

00

04

08

oc

Example 1

Meaning

Virtual storage was freed.

Not all virtual storage was freed.

Part of area being freed is still fixed. This condition usually causes an A78, A05,
or AOA abend.

Page table is paged out.

Operation: Free 400 bytes of storage addressed by register 2 via a branch entry. If the
storage is successfully freed, register 15 contains O; otherwise, register 15 contains a
nonzero value.

FREEMAIN EC,LV=400,A=(2),BRANCH=YES

Example 2
Operation: Free 48 bytes of the storage (addressed by register 5) in subpool 231. Register
3 has been preset to contain the storage key of the storage to be released. If the request is
unsuccessful, the caller is abnormally terminated.

FREEMAIN RU,LV=48,A=(5),SP=231,KEY=(3),BRANCH=(YES,GLOBAL)

252 SPL: Application Development Macro Reference

FREEMAIN (List Form)
Use the list form of the FREEMAIN macro to construct a nonexecutable control program
parameter list.

The list form of the FREEMAIN macro is written as follows:

name

b

FREEMAIN

b

LC
LU
L
vc
vu
v
EC
EU
E

,LA= length addr
,LV=length value

,A=addr

,SP= subpool nmbr

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address.
length value: symbol or decimal number.
Notes:
1. LA may only be specified with LC, LU, or Labove.
2. LV may only be specified with EC, EU, or E above.

addr: A-type address.

subpool nmbr: symbol or decimal number.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the FREEMAIN macro, with the
following exceptions:

,MF=L
specifies the list form of the FREEMAIN macro.

FREEMAIN - Free Virtual Storage 253

FREEMAIN (Execute Form)
A remote control program parameter list is used in, and can be modified by, the execute
form of the FREEMAIN macro. The parameter list can be generated by the list form of either
a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro is written as follows:

name

b

FREEMAIN

b

LC
LU
L
vc
vu
v
EC
EU
E

,LA=length addr
. ,LV=/ength value

,A=addr

,SP=subpool nmbr

,BRANCH= YES

,RELATED= value

,MF=(E,ctr/ prog)

name: symbol. Begin name in column 1.

One or more blanks .must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal number, or register (2) - (12).
Notea:
1. LA may only be specified with LC, LU, or Labove.
2. LV may only be specified with EC, EU, or E above.

sddr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal number, or register (0) or (2) -
(12).

value: any valid macro keyword specification.

ctr/ prog: RX-type address, or register (1) or (2) • (12).

The parameters are explained under the standard form of the FREEMAIN macro, with the
following exceptions:

,MF• {E,ctr/ prog)
specifies the execute form of the FREEMAIN macro using a remote control program
parameter list.

254 SPL: Application Development Macro Reference

GETMAIN - Allocate Virtual Storage

© Copyright IBM Corp. 1988, 1991

The GETMAIN macro requests the control program to allocate one or more areas of virtual
storage to the active task. For task related subpools, the virtual storage areas are allocated
from the specified subpool in the virtual storage area assigned to the associated job step.
The virtual storage areas each begin on a doubleword or page boundary and are not
cleared to 0 when allocated. The total of the lengths specified must not exceed the length
available. For most subpools, the storage will be released when the task assigned
ownership terminates, or through the use of the FREEMAIN or STORAGE RELEASE macro.
For information on the use of the GETMAIN macro, see SPL: Application Development
Guide.

The options R, LC, LU, VC, VU, EC, or EU can be used by callers in either 24-bit or 31-bit
addressing mode. If one of these options is specified, storage area addresses and lengths
will be treated as 24-bit addresses and values. The parameter list addresses and the
pointers to the length and address lists in the parameter lists (if present) will be treated as
31-bit addresses if the caller's addressing mode is 31-bit; otherwise, they will be treated as
24-bit addresses.

The options RU, RC, VRU, and VRC can be used by callers in either 24-bit or 31-bit
addressing mode. However, all values and addresses will be treated as 31-bit values and
addresses. The GETMAIN macro is also described in Application Development Macro
Reference with the exception of the BRANCH and KEY parameters. These parameters are
restricted in use to programs running supervisor state and key O.

The GETMAIN macro is available to callers in either primary address space control (ASC)
mode or access register (AR) ASC mode. Callers in AR mode, however, are limited to
requests to obtain global (common area) storage and must use the branch entry. Before
issuing the GETMAIN macro in AR mode, issue SYSSTATE ASCENV=AR to tell the system
to generate GETMAIN code that is appropriate for AR mode.

The description of the GETMAIN macro follows.

name

b

GETMAIN

b

LC,LA=length addr,A=addr
LU,LA=length addr,A=addr
VC,LA =length addr,A = addr
VU,LA=length addr,A=addr
EC,LV =length value.A= addr
EU,LV =length value.A= addr
RC,LV =length value
RU,LV=length value
R,L V =length value
VRC,LV =(maximum length value,

minimum length value)
VRU,LV =(maximum length value,

minimum length value)

,SP=subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal number, or register (2) - (12).
If RC or RU is specified, register (0)
may also be specified.
addr: A-type address or register (2) - (12).
Note: RC, RU, VRC, or VRU must be
used for address greater than 16 megabytes.

maximum length value: symbol, decimal number, or register
(2) - (12).
minimum length value: symbol decimal number, or register (2)
- (12).

subpool nmbr: symbol, decimal number, or register (2) - (12).
Note: If R,LV=(O) is specified above, SP may not be specified.

Defaun: BNDRY=DBLWD
Note: This parameter may not be specified with R above.

255

,BRANCH==YES

,BRANCH== (YES, GLOBAL)

,KEY==key number

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=(ANY)
,LOC= (ANY.ANY)
,LOC=RES
,LOC =(RES.ANY)

,RELATED= value

The parameters are explained below:

LC,LA- length addr, A= addr
LU,LA = length addr, A .. addr
VC,LA =length addr, A= addr
VU,LA ... length addr, A - addr
EC,LV=length value, A-=addr
EU,LV •length value, A ... addr
RC,LV •length value
RU,LV =length value
R,LV= length value

Note: BRANCH== (YES.GLOBAL) may only be specified with
RC,
RU, VRC, or VRU above. Also, the macro expansion uses
register 4 for the address of the global save area pointed to by
the CVT. The previous contents of register 4 is overridden.
The macro expansion also uses register 3.

key number: decimal numbers 0-15, or register (2) - (12).
Defaun: KEY= o
Note: This parameter may be specified only with BRANCH and
RC, RU, VRC, or VRU; and subpools 226, 227, 228, 229, 230,
231, and 241.

Defaun: LOC = RES
Note: This parameter can only be used with RC, RU
VRC, orVRU.
On all other forms, LOC =BELOW is used.

value: any valid macro keyword specification.

VRC,LV =(maximum length value,minimum length value)
VRU,LV =(maximum length value,minimum length value)

specifies the type of GETMAIN request:

LC and LU indicate conditional {LC) and unconditional {LU) list requests, and specify
requests for one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas is returned in a list
beginning at the address specified in the A parameter. No virtual storage is allocated
unless all of the requests in the list can be satisfied.

VC and VU indicate conditional {VC) and unconditional {VU) variable requests, and
specify requests for single areas of virtual storage. The length of the single virtual
storage area is between the two values at the address specified in the LA parameter.
The address and actual length of the allocated virtual storage area are returned by the
control program at the address indicated in the A parameter.

EC and EU indicate conditional {EC) and unconditional {EU) element requests, and
specify requests for single areas of virtual storage. The length of the single virtual
storage area is indicated by the parameter, LV= length value. The address of the
allocated virtual storage area is returned at the address indicated in the A parameter.
RU and R indicate unconditional register requests. RC, RU, and R specify requests for
single areas of virtual storage. The length of the single virtual area is indicated by the
parameter, LV= length value. The address of the allocated virtual storage area is
returned in register 1.

VRC and VRU indicate variable register conditi.onal {VRC) and unconditional (VRU)
requests for a single area of virtual storage. The length returned will be between the
maximum and minimum lengths specified by the parameter LV= (maximum length
value, minimum length value). The address of the allocated virtual storage is returned
in register 1 and the length in register 0.

256 SPL: Application Development Macro Reference

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if
virtual storage is not allocated to the active task. An unconditional request
indicates that the task is to be abnormally terminated in this situation.

2. The LC, LU, VC, VU, EC, EU, and R forms of the GETMAIN macro can only be used
to obtain virtual storage with addresses below 16 megabytes. The RC, RU, VRC,
and VRU forms of the GETMAIN macro can be used to obtain virtual storage with
addresses above 16 megabytes.

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes,
with the high-order byte set to 0. The lengths should be multiples of 8; if they are not,
the control program uses the next higher multiple of 8. If VC or VU was coded, two
words are required. The first word contains the minimum length required, the second
word contains the maximum length. If LC or LU was coded, one word is required for
each virtual storage area requested; the high-order bit of the last word must be set to 1
to indicate the end of the list. The list must not overlap the virtual storage area
specified in the A parameter.

LV =length value specifies the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the control program uses the next higher
multiple of 8. If R is specified, LV= (0) may be coded; the low-order three bytes of
register O must contain the ler.gth, and the high-order byte must contain the subpool
number. LV= (maximum length value, minimum length value) specifies the maximum
and minimum values of the length of the storage request.

The A parameter specifies the virtual storage address of consecutive fullwords, starting
on a fullword boundary. The control program places the address of the virtual storage
area allocated in one or more words. If E was coded, one word is required. If LC or LU
was coded, one word is required for each entry in the LA list. If VC or VU was coded,
two words are required. The first word contains the address of the virtual storage area,
and the second word contains the length actually allocated. The list must not overlap
the virtual storage area specified in the LA parameter.

,SP= subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be
allocated. The subpool number must be a valid subpool number between 0 and 255.
See "Virtual Storage Management" in SPL: Application Development Guide for a list of
the valid subpools. If this parameter is omitted, subpool O is assumed.

Notes:

1. Callers executing in supervisor state and key zero, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this
storage via the SDUMP macro, they must specify subpool 252 rather than 0.

2. Storage requested from subpool 250 is always assigned from subpool 0 regardless
of the caller's state or PSW key.

,BNDRY = DBLWD
,BNDRY =PAGE

specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

If the request specifies one of the LSQA or SQA subpools, the system Ignores the
BNDRY= PAGE keyword. Requests for storage from these subpools are then fulfilled
from a single page, unless the request is greater than a page. See SPL: Application
Development Guide for a list of the LSQA and SQA subpools.

,BRANCH-YES
,BRANCH = (YES,GLOBAL)

specifies that a branch entry is to be used. If (YES.GLOBAL) is specified, the entry
point to service global storage requests without the need for the local lock is used. The
caller must be disabled. If BRANCH= YES is specified, the caller must pre-load
register 4 with the TCB address, pre-load register 7 with the ASCB address, and hold

GETMAIN - Allocate Virtual Storage 257

the local lock prior to entry. The contents of register 3 is destroyed if RC, RU, VRC, or
VRU is specified.

Callers in cross memory mode can use the BRANCH= YES parameter of the GETMAIN
macro. If the caller is in cross memory mode, the storage is allocated in the currently
addressable address space. The caller must hold the CML lock for the currently
addressable address space; load register 7 with the address of the ASCB of the
currently addressable address space; and load register 4 with zero or the address of a
TCB in the currently addressable address space. If register 4 contains a zero, the
allocated storage is associated with the current job step task that owns the cross
memory resources in the currently addressable address space (that is, the TCB
anchored in ASCBXTCB).

If BRANCH= (YES, GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control returns to the
caller. The caller must be disabled. Additionally, the SP parameter may only
designate subpools 226, 227, 228, 231, 239, 241, 245, 247, or 248. Branch entry is
available only to callers in supervisor state and PSW key 0.

,KEY= key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage is to be
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be obtained in the specified storage protection
key. The KEY parameter cannot be specified unless the BRANCH parameter is also
specified.

,LOC=BELOW
,LOC =(BELOW ,ANY)
,LOC=ANY
,LOC = (ANY,ANY)
,LOC-RES
,LOC = (RES,ANY)

specifies the location of virtual storage and central (also called real) storage. This is
especially helpful for callers with 24-bit dependencies. When LOC is specified, central
storage is allocated anywhere until the storage is fixed (by the PGFIX, PGFIXA, or
PGSER macros). You can specify the location of central storage (after the storage is
fixed) and virtual storage (whether or not the storage is fixed) in the following manner.

LOC =BELOW indicates that central and virtual storage are to be located below 16
megabytes. LOC =BELOW must not be used to allocate disabled reference (DREF)
storage.

LOC= (BELOW.ANY) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere.

LOC =ANY and LOC =(ANY.ANY) indicate that virtual and central storage can be
located anywhere.

Note: When you specify LOC =ANY, the actual location of the virtual storage (that is,
whether it is above or below 16Mb) depends on the subpool you specify on the SP
parameter:

• Some subpools (for example, subpool 226) are supported only below 16Mb. For
these subpools, GETMAIN locates virtual storage below 16Mb, regardless of how
you specify LOC.

• Some subpools (for example, 203-204) are supported only above 16Mb. For these
subpools, GETMAIN locates virtual storage above 16Mb. If you specify
LOC =BELOW for one of these subpools, the system abends your program.

All other subpools are supported both above and below 16Mb. For these subpools,
specifying LOC= ANY causes GETMAIN to try to allocate virtual storage above 16Mb. If
the attempt fails, GETMAIN tries to allocate virtual storage below 16Mb. If this attempt
also fails, GETMAIN does not allocate any storage.

258 SPL: Application Development Macro Reference

LOC =RES indicates that the location of virtual and central storage depends on the
location of the caller. If the caller resides below 16 megabytes, virtual and central
storage are to be located below 16 megabytes. If the caller resides above 16
megabytes, virtual and central storage are to be located anywhere. LOC =RES must
not be used (or defaulted) to allocate disabled reference (DREF) storage when the
caller resides below 16 megabytes.

LOC = (RES,ANY) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is to be
located below 16 megabytes; if the caller resides above 16 megabytes, virtual storage
can be located anywhere. In either case, central storage can be located anywhere.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

When control is returned on conditional type requests (LC, EC, VC, RC, VRC), register 15
contains one of the following return codes:

Hexadeclmal
Code

00

04

08

oc

Meaning

Virtual storage requested was allocated

No virtual storage was allocated

Central storage was not available for backing the request

Page table is paged out

The contents of registers 0, 1, and 15 are not preserved when the GETMAIN macro is
issued.

Example 1
Operation: Obtain 248 bytes of storage from the user's region via a branch entry. If the
routine is in supervisor state, subpool 252 is used; otherwise, subpool O is used. If the
storage cannot be obtained, the caller is abnormally terminated.

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES

Example2
Operation: Obtain one page of storage from the common service area, and cause the
acquired storage to be initialized with a storage key of 9. A return code of O (if successful)
or 4 (if unsuccessful) is returned.

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL),BNDRY=PAGE,KEY=9

Example 3
Operation: Obtain 400 bytes of storage from subpool 10. H the storage is available, the
address will be returned in register 1 and register 15 will contain O; if storage is not
available, register 15 will contain 4.

GETMAIN RC,LV=400,SP=10

GETMAIN..,.. Allocate Virtual Storage 259

Example4
Operation: Obtain 48 bytes of storage from default subpool 0. If the storage is available,
the address will be stored In the word at AREAADDR; if the storage is not available, the task
will be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR OS F

Example 5
Operation: Obtain a maximum of 4096 or a minimum of 1024 bytes of virtual storage, with
addresses above or below 16 megabytes. Indicate that if the storage is fixed, the frames
used to back the virtual may also be located either above or below 16 megabytes. If the
storage is available, the address will be returned in register 1 and the length of the storage
allocated will be returned in register O; if the storage is not available, the task will be
terminated.

GETMAIN VRU,LV=(4096,1024),LOC=ANY

260 SPL: Application Development Macro Reference

GETMAIN (List Form)
Use the list form of the GETMAIN macro to construct a control program parameter list. The
list form of the GETMAIN macro cannot be used to allocate virtual storage with addresses
greater than 16 megabytes.

The list form of the GETMAIN macro is written as follows:

name

b

GETMAIN

b

LC
LU
vc
vu
EC
EU

,LA= length addr
,LV=length value

,A=addr

,SP= subpool nmbr

,BNDRY = DBLWD
,BNDRY=PAGE

,RELATED= value

,MF=L

name: Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address.
length value: symbol or decimal number.
Notes:
1. LA may not be specified with EC or EU above.
2. LV may not be specified with LC, LU, VC or VU above.

addr: A-type address.

subpool nmbr: symbol or decimal number.

Default: BNDRY = DBLWD

value: any valid macro keyword specification.

The parameters are explained under the standard form of the GETMAIN macro, with the
following exception:

,MF=L
specifies the list form of the GETMAIN macro.

GETMAIN - Allocate Virtual Storage 261

GETMAIN (Execute Form)
A remote control program parameter list is used in, and can be modified by, the execute
form of the GETMAIN macro. The parameter list can be generated by the list form of either
a GETMAIN or a FREEMAIN. The execute form of the GETMAIN macro cannot be used to
allocate virtual storage with addresses greater than 16 megabytes.

The execute form of the GETMAIN macro is written as follows:

name

b

GETMAIN

b

LC
LU
vc
vu
EC
EU

,LA= length addr
,LV =length value

,A=addr

,SP=subpool nmbr

,BNDRY =DBL WO
,BNDRY =PAGE

,BRANCH=YES

,RELATED= value

,MF= (E,ctr/ prog)

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal number, or register (2) - (12).
Note: LA may not be specified with EC or EU above.
Note: LV may not be specified with LC, LU. VC, or VU above.

addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal number, or register (O) or (2) -
(12).

Default: BNDRY = DBLWD

value: any valid macro keyword specification.

ctr/ prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro, with the
following exception:

,MF .. (E,ctr/ prog)
specifies the execute form of the GETMAIN macro using a remote control program
parameter list.

262 SPL: Application Development Macro Reference

GQSCAN - Extract Information From Global Resource Serialization Queue

© Copyright IBM Corp. 1988, 1991

Use the GQSCAN macro to obtain the status of resources and requestors of those
resources. The GQSCAN macro, in conjunction with the ISGRIB mapping macro, enables
you to obtain resource information from system control blocks without knowing the exact
structure or location of the control blocks.

The issuer of the GQSCAN macro must be executing in primary mode. To use
SCOPE= GLOBAL and SCOPE= LOCAL, you must be in supervisor state or key 0 and you
should be aware that improper use of these parameters degrades system performance.

Global resource serialization counts and limits the number of outstanding global resource
serialization requests. A global resource serialization request is any ENO, RESERVE, or
GQSCAN that causes an element to be inserted into a queue in the global resource
serialization request queue area. See "Limiting Global Resource Serialization Requests" in
SPL: Application Development Guide.

Register 13 must contain the address of an 18-word save area, which can be provided
through the use of standard linkage conventions.

On return, register 0 contains two halfword values. The first (high order) halfword contains
the length of the fixed portion of each RIB returned; the second (low order) halfword
contains the length of each RIBE returned. Register 1 contains the number of RIBs that
were copied into the area provided. Register 15 contains the return code. In order to
interpret the data that the GQSCAN service routine returns in the user-specified area, you
must include the ISGRIB mapping macro as a DSECT in your program. ISGRIB maps the
resource information block (RIB) and the resource information block extent (RIBE) as shown
in Diagnosis: Data Areas.

The standard form of the GQSCAN macro is written as follows:

name

b

GQSCAN

b

AREA=(area addr,area size)

,REQLIM =value

,REQLIM =MAX

,SCOPE=ALL
,SCOPE= STEP
,SCOPE= SYSTEM
,SCOPE= SYSTEMS
,SCOPE= LOCAL
,SCOPE= GLOBAL

,RESERVE= YES

,RESERVE= NO
,RESNAME = (qname
addr[,rname addr,
rname length],
[GENERICISPECIFIC],
qname length)

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

area addr: A-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

value: symbol, decimal digit, register (2) - (12), or the word
MAX.
DefauH: REQLIM =MAX

Default: SCOPE= STEP

Default: All resources requested with RESERVE and all
resources requested with ENQ.

qname addr: RX-type address or register (2) - (12).
rname addr: RX-type address or register (2) - (12).
rname length: decimal digit, register (12).
Default: assembled length of rname.
DefauH: qname length of eight.

263

,SYSNAME = (sysname addr
[,as id value])

,QUIT=YES
,QUIT=NO

,REQCNT =value
,OWNER CT= value,WAITCNT =
value
,OWNERCT= value
,WAITCNT =value

,TOKEN= addr

sysname addr: RX-type address or register (2) - (12).
asid value: symbol, decimal digit, or register (2) - (12).
Notes: rname addr can be provided only when qname addr is
used. rname length must be coded if a register is specified for
rname addr. An asid value can be coded only when the
sysname addr is used.

Default: QUIT= NO
Note: QUIT=YES is mutually exclusive with all parameters but
TOKEN.

value: decimal digit or register (2) - (12).
Default: REQCNT = 0

addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

AREA""" (area addr,area size)
specifies the location and size of the area where information extracted from the global
resource serialization resource queues is to be placed. The minimum size is the
amount needed to describe a single resource, approximately 296 bytes, which is the
length of the fixed portions of the RIB and the maximum size rname rounded up to a
fullword value.

,REQLIM ==value
,REQLIM =MAX

specifies the maximum number of owners and waiters to be returned for each resource,
which can be any value between 0 and 2' 5-1. MAX specifies 2' 5-1.

,SCOPE==ALL
,SCOPE= STEP
,SCOPE= SYSTEM
,SCOPE= SYSTEMS
,SCOPE== LOCAL
,SCOPE= GLOBAL

specifies that you want information only for resources having the indicated scope.
STEP, SYSTEM, or SYSTEMS is the scope specified on the resource request. If you
specify SCOPE=ALL (meaning STEP, SYSTEM, and SYSTEMS), the systemr.E!turns
information for all resources the system recognizes that have the specified RESNAME,
RESERVE, or SYSNAME characteristics. If you specify SCOPE= LOCAL, information is
returned about this system's resources that are not being shared with other systems in
the ring. If you specify SCOPE= GLOBAL, information is returned about resources that
are being shared with other systems in the ring. Remember that entries in the
resource name lists can cause the scope to change.

,RESERVE= YES
,RESERVE== NO
,RESNAME = (qname addr[,rname addr,rname length],[GENERICISPECIFIC], qname length)
,SYSNAME =(sys name addr [,as id value])

For most requests, RESERVE= YES specifies that information is to be returned for
resources requested with the RESERVE macro. If a RESERVE macro is issued for a
device that is not shared, global resource serialization treats the RESERVE request as
an ENO and the GOSCAN macro does not return information for the resource request
when RESERVE= YES.

RESERVE= NO specifies that information is to be returned for resources requested with
the ENO macro.

RESNAME (with rname) indicates the name of one resource.

The qname addr specifies the virtual storage address of the 8-character major name of
the requested resource.

264 SPL: Application Development Macro Reference

The rname addr specifies the virtual storage address of a 1 to 255-byte minor name
used in conjunction with the major name to represent a single resource. Information
returned is for a single resource unless you specify SCOPE= ALL, in which case it
could be for three resources (STEP, SYSTEM, and SYSTEMS) or SCOPE= LOCAL in
which case it could be for two resources (STEP and SYSTEM) if there is a matching
name in each of these categories. If the name specified by rname is defined by an EQU
assembler instruction, the rname length must be specified.

The rname length specifies the length of the minor name. If you use the register form,
the low-order (rightmost) byte contains the length. The length must match the rname
length specified on ENQ or RESERVE.

GENERIC specifies that the rname of the requested resource must match but only for
the length specified. For example, an ENO for SYS1 .PROCLIB would match the
GQSCAN rname specified as SYS1 for an rname length of 4.

SPECIFIC specifies that the rname of the requested resource must exactly match the
GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the length of the qname in the resource name that must
match the GQSCAN name.

SYSNAME specifies that information is to be returned for resources requested by tasks
running on an MVS system whose system name matches the one specified by
SYSNAME, where sysname addr is the address of an 8-byte field that contains the
system name, and asid value specifies a 4-byte address space identifier, right justified.
Information returned includes only those resources whose sysname addr and asid
value match the ones specified. SYSNAME = O or SYSNAME = (O,asld value), specifies
that the system name is that of the system on which GQSCAN is issued.

,QUIT=YES
,QUIT=-NO

indicates whether or not you want to terminate the current global resource serialization
queue scan. If QUIT=YES is specified with TOKEN, GQSCAN processing terminates
the current GAS queue scan and releases the storage allocated to accumulate the
information specified in the token.

,REQCNT.., value
,OWNERCT= value,WAITCNT= value
,OWNERCT == value
,WAITCNT= value

specifies that you only want information about resources that fall Into the following
categories:

• The total number of requestors (that is, owners plus waiters) is greater than or
equal to REQCNT.

• The total number of owners is greater than or equal to OWNERCT.

• The total number of waiters is greater than or equal to WAITCNT.

If you do not specify REQCNT, you can specify both OWNERCT and WAITCNT. If you
specify REQCNT, you cannot specify either OWNERCT or WAITCNT.

,TOKEN=addr
specifies the address of a fullword of storage that the GQSCAN service routine can use
in subsequent invocation to provide you with any remaining information. If the token is
zero, the scan starts at the beginning of the resource queue. You must zero the token
each time you want the scan to start over. If the token is not zero, the scan resumes at
the point from which it left off.

•

GQSCAN - Extract Information From Global Resource Serialization Queue ~65

When GQSCAN returns control, register 15 contains one of the following return codes:

Hexadecimal
Code

0

4

8

c

10

14

266 SPL: Application Development Macro Reference

Meaning

Queue scan processing is complete. Data is now in the area you specified. On a
resumed GQSCAN, the code signifies that there are no more resources to match
your request.

Queue scan processing is complete. No resources matched your request.

The area you specified was filled before queue scan processing completed. If you
specified TOKEN, process the information in the area and issue GQSCAN again
specifying the TOKEN returned to you. If you did not specify TOKEN, you must
begin again and either specify a larger area or specify a TOKEN.

Queue scan encountered an abnormal situation while processing. The
information in your area is not meaningful. The values in registers 0 and 1 are
also meaningless.

An invalid SYSNAME was specified as input to queue scan. The information in
your area is not meaningful.

The area you specified was filled before queue scan processing completed. Your
request specified TOKEN=, but you have too many outstanding ENO or RESERVE
and GQSCAN requests. The information in your area is valid but incomplete. The
scan cannot be resumed.

GQSCAN (List Form)
The list form of the GQSCAN macro is used to construct a non-executable parameter list.
This parameter list, or a copy of it for reentrant programs, can be referred to by the execute
form of the GQSCAN macro.

The list form of the GQSCAN macro is written as follows:

name

b

GO SCAN

b

AREA= (area addr, area size)

,REOLIM =value
,REQLIM =MAX

,SCOPE=ALL
,SCOPE= STEP
,SCOPE= SYSTEM
,SCOPE= SYSTEMS

,RESERVf=YES
,RESERVE= NO
,RESNAME = (qname addr [,rname
addr, rname length],
[GENERICISPECIFIC],
qname length)

,SYSNAME = (sysname addr[,asid
value])

,QUIT=YES
,QUIT=NO

,REOCNT =value

,OWNER CT= value
,WAITCNT=value

,TOKEN=addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GOSCAN.

area addr: A-type address.
area size: symbol, decimal digit.
Notes:
1. This parameter cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of
the macro.

value: symbol, decimal digit or the word MAX.
Delautt: REQLIM =MAX

Defautt: SCOPE= STEP

Defautt: All resources requested with RESERVE and all
resources requested with ENO.
qname addr: A-type address.
rname addr: A-type address.
rname length: decimal digit.
Defautt: assembled length of rname.
Defautt: qname length of eight.
sysname addr: A-type address.
asid value: symbol, decimal digit.
Notes: rname addr can be provided only when qname addr is
used. rname length must be provided if a register is specified
for rname addr. An asid value can be coded only when the
sysname addr is used.

Default: QUIT= NO
Note: Only TOKEN and MF= L can be specified with
OUIT=YES.

value: decimal digit.
Default: REOCNT = 0

addr: RX-type address.

The parameters are explained under the standard form of the GQSCAN macro with the
following exception:

,MF==L
specifies the list form of the GQSCAN macro.

GOSCAN - Extract Information From Global Resource Seriaiization ueue 267

GQSCAN (Execute Form)
The execute form of the GQSCAN macro can refer to and modify a remote parameter list
built by the list form of the macro. There are no defaults for any of the parameters in the
execute form of the macro.

The execute form of the GQSCAN macro is written as follows:

name

b

GQSCAN

AREA= (area addr,area size)

,REQLIM =value
,REQLIM =MAX

,SCOPE=ALL
,SCOPE= STEP
,SCOPE= SYSTEM
,SCOPE= SYSTEMS
,SCOPE= LOCAL
,SCOPE= GLOBAL

,RESERVE= YES
,RESERVE=NO
,RESNAME = (qname addr[.rname
addr,rname length],
[GENERICISPECIF/C],
qname length)
,SYSNAME = (sysname addr[.asid
value])

,QUIT=YES
,QUIT=NO

,REQCNT =value

,OWNERCT =value
,WAITCNT=value

, TOKEN = addr

,MF= (E,parm list addr)

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

area addr: RX-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Notes:
1. AREA cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of
the macro.

value: symbol, decimal digit, register (2) - (12), or the word
MAX.

Note: SCOPE=LOCAL and SCOPE=GLOBAL cannot be
coded on the list form of this macro.

DefauH: All resources requested with RESERVE
and all resources requested with ENQ.
qname addr: RX-type address or register (2) - (12).
rname addr: RX-type address or register (2) - (12).
rname length: decimal digit, register (2) - (12).
Default: assembled length of rname.
sysname addr: RX-type address or register (2) - (12).
asid value: symbol, decimal digit, or register (2) - (12).
Note: rname addr can be provided only when qname addr is
used. rname length must be provided if a register is specified
for rname addr. An asid value can be coded only when the
sysname addr is used.

Default: QUIT= NO
Note: Only TOKEN and MF= (E, parm list addr) can be
specified with QUIT=YES.

value: decimal digit or register (2) - (12).

addr: RX-type address of register (2) - (12).

parm list addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the GQSCAN macro with the
following exception:

,MF= (E,parm list addr)
specifies the execute form of the GQSCAN macro. This form uses a remote parameter
list defined by parm list addr.

268 SPL: Application Development Macro Reference

GTRACE - GTF Trace Recording

© Copyright IBM Corp. 1988, 1991

Use the GTRACE macro to record system or application errors through the generalized
trace facility (GTF). The GTRACE macro provides two separate functions, depending on the
keyword specified:

• GTRACE TEST indicates whether the operator requested a specific user event.
• GTRACE DATA generates GTF trace records for specific events.

Refer to Service Aids and Planning: Dump and Trace Services for information about using
GTF.

Refer to Diagnosis: Using Dumps and Traces for descriptions of GTF records.

The following description of the GTRACE macro is divided into two sections, one for each
function of the macro. The TEST function has only one form, while the DAT A function has
standard, list, and execute forms.

269

GTRACE TEST

The TEST function of the GTRACE macro indicates whether the operator requested a
particular user event in response to the USRP option. The system returns the test result as
a return code in register 15.

GTRACE DATA always records data for any specified event If any user tracing Is active. By
issuing GTRACE TEST and checking the return code, you can determine whether you should
subsequently Issue GTRACE DATA to write the record: If the return code Indicates that
tracing has been requested by USRP for the specified user event, then Issue GTRACE
DATA.

Requirements
The requirements for the caller are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
AMODE:
ASCmode:
Interrupt Status:
Locks:
Control parameters:

Restrictions and Limitations
None.

Register Information

Problem or supervisor state, any PSW key
Task or SRB
PASN = HASN = SASN
24- or 31-bit
Primary
Enabled or disabled for 110 and external interrupts
No requirement
Control parameters must be in the primary address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the registers contain:

Register Contents
0 Unchanged
1 Used as a work register by the macro
2 • 13 Unchanged
14 Used as a work register by the macro
15 Return code

Programming Requirements
• Include the CVT and the MCHEAD mapping macros.
• When you code the CVT mapping macro, you must not specify PREFIX=YES.

Performance Implications
None.

270 SPL: Application Development Macro Reference

Syntax Diagram
The TEST function of the GTRACE macro is coded as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede GTRACE.

GTRACE

b One or more blanks must follow GTRACE

TEST=YES

,ID=id id: symbol, decimal digit, or hexadecimal number.

Parameter Descriptions
The parameters are explained as follows:

TEST=YES
specifies the test function of the GTRACE macro.

,ID=id
specifies the event ID for the user event that is to be tested. Decimal event IDs O
through 1023 (X' 3FF') are available for user events. You can specify the ID in decimal
or in hexadecimal. Use the expression X' id' to specify a hexadecimal number.

Return Codes
Return codes are as follows:

---- --- -

Return Meaning
Code

0 Tracing has not been requested by USRP for the specified user event.

4 Tracing has been requested by USRP for the specified user event.

GTRACE - GTF Trace Recording 271

GTRACE DATA
The DAT A function of the GTRACE macro records system or problem program data In the
GTF trace buffers. GTRACE DAT A can trace up to 256 bytes of data.

GTRACE DATA writes the record to the GTF data set even if the record's event ID (EID) is
excluded from a USRP list in the GTF trace options. Therefore, before using GTRACE DATA
to record data, you might want to issue GTRACE TEST to determine if GTF should store data
for this event ID.

Requirements
The requirements for the caller are:

Authorization:
Dlspatchable unit mode:
CroH memory mode:
AMODE:

ASCmode:
Interrupt Status:
Locks:
Control parameters:

Restrictions and Limitations
None.

Register Information

Problem or supervisor state, any PSW key
Task or SRB
PASN = HASN = SASN
24- or 31-bit. The caller must be In 31-blt mode for GTRACE to
record data above 16 megabytes.
Primary
Enabled or disabled for 1/0 and external Interrupts
No requirement
Control parameters must be in the primary address space

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the registers contain:

Register
0
1
2 -14
15

Contents
Unchanged
Used as a work register by the macro
Unchanged
Return code

Programming Requirements
None.

Performance Implications
None.

272 SPL: Application Development Macro Reference

Syntax Diagram
The standard form of the DAT A function of the GTRACE macro is coded as follows:

name name: symbol. Begin name in column 1.

f> One or more blanks must precede GTRACE.

GTRACE

f> One or more blanks must follow GTRACE

DATA=addr addr: A-type address of register (2) - (12)

,LNG=nbr

,10=/d

,FID=fidnama

,PAGEIN=NO
,PAGE IN= YES

nbr: symbol, decimal number, hexadecimal number, or
register (2) - (12)

id: symbol, decimal number, or hexadecimal number.

fidname: symbol, decimal number, hexadecimal number, or
register (2) - (12)

Default: PAGEIN =NO

Parameter Descriptions
The parameters are explained as follows:

DATA•addr
specifies the virtual storage address of the data that is to be recorded.

,LNG-nbr
specifies the number of data bytes (1. through 256) to be recorded from the address
specified by the DATA parameter. You can specify the number in decimal or in
hexadecimal. If the number is hexadecimal, use the expression X' nbr' to specify the
number.

Note: When you specify LNG, the trace record contains the number of bytes that you
specify plus 12 bytes, which is the size of the trace record header. The header consists
of a 4-byte ASCB address followed by an 8-byte jobname. Thus, if you specify
LNG= 256, the trace record has 268 (256 + 12) bytes.

,ID=id
specifies the event ID that is to be recorded with the data bytes. Decimal event ids O
through 1023 (X'3FF') are available for user events. You can specify the ID in decimal
or in hexadecimal. Use the expression X'id' to specify a hexadecimal number.

,FID • fidname
specifies the format appendage that controls the formatting of this record. Formatting
occurs when the trace output is processed by GTF trace. The format appendage name
is formed by appending the 2-dlglt FID value to the names AMDUSR, HMDUSR, and
IMDUSR. Assign FID values as follows:

XX'OO'
XX'01 to XX'50'

The record is to be dumped In hexadecimal.
The record contains user format identifiers.

Note: If you code FID without any fidname, or if you omit the FID parameter, the
system supplies a default fidname of zero.

,PAGEIN•NO
,PAGEIN ==YES

specifies that paged-out user data is to be processed (YES) or not to be processed
(NO). To insure that all user data is traced, specify YES.

GTRACE - GTF Trace Recording 273

Return Codes
Return codes are as follows:

Return Meaning
Code

0 GTF is active. The data was recorded in GTF trace buffers.

4 GTF is not active. No data was recorded.

8 The value of the LNG keyword is not valid. It must be a number from 1 through 256.
No data was recorded.

c The value of the DATA keyword is not valid. It does not represent an area of storage
that the calling program can refer to. No data was recorded.

10 The value of the FID keyword is not valid. It must be a number from X'O' through
X' FF'. No data was recorded.

18 All GTF buffers are full. No data was recorded.

1C The address of the parameter list for GTF is not valid. The parameter list is not in
storage that the caller can refer to, or its format is not valid. No data was recorded.

20 Some of the data to be recorded was paged out. No data was recorded. This return
code is not valid with PAGEIN=YES.

Example
Operation: Use GTRACE to record 200 bytes of user data plus 12 bytes for the trace record
header. The user data is found at symbolic address AREA. Use an event identifier of 37.
Use the formatting appendage named IMDUSR40 to control the formatting.

GTRACE DATA=AREA,LNG=200,ID=37,FID=X'40'

274 SPL: Application Development Macro Reference

GTRACE DATA (List Form)
Use the list form of the GTRACE DATA macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an area of
storage that the execute form of the macro uses to store the parameters.

Syntax Diagram
The list form of the DATA function of the GTRACE macro is written as follows:

name

b

GTRACE

b

DATA=addr

,LNG=nbr

,FID=f/dname

,MF=L

Parameter Descriptions

name: symbol. Begin name in column 1.

One or more blanks must precede GTRACE.

One or more blanks must follow GTRACE.

addr: A-type address or register (2) - (12)

nbr: symbol, decimal number, hexadecimal number, or
register (2) - (12)

fidname: symbol, decimal number, hexadecimal number, or
register (2) - (12)

The parameters are described under the standard form of the GTRACE DATA macro, with
the following exception:

,MF•L
specifies the list form of the GT RACE DAT A macro.

GTRACE - GTF Trace Recording 275

GTRACE DATA (Execute Form)
Use the execute form of the GTRACE DAT A macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax Diagram
The execute form of the DAT A function of the GTRACE macro is written as follows:

name

. GTRACE

DATA=addr

,LNG=nbr

,ID=id

,FID=fidname

,PAGEIN=NO
,PAGEIN=YES

,MF= (E,parm list addr)

Parameter Descriptions

name: symbol. Begin name in column 1.

One or more blanks must precede GTRACE .

One or more blanks must follow GTRACE.

addr: A-type address or register (2) - (12)

nbr: symbol, decimal number, hexadecimal number, or
register (2) - (12)

id: symbol, decimal number, or hexadecimal number.

fidname: symbol, decimal number, hexadecimal number, or
register (2) - (12)

Note: If you omit the FID parameter on the execute form of
GTRACE, the FID value defaults to zero. This default overlays
the FID value that you specify on the list form of GTRACE. If
you want the system to obtain the FID value from the remote
problem-program parameter list, then you must specify the
FID parameter as a null value by coding FID = without any
fidname.

Default: PAGEIN=NO

parm list addr: A-type address or register (2) - (12)

The parameters are described under the standard form of the GTRACE DATA macro, with
the following exception:

,MF== (E,parm list addr)
specifies the execute form of the GTRACE DATA macro using a remote
problem-program parameter list.

276 SPL: Application Development Macro Reference

HSPSERV - Read from and Write to a Hiperspace

HSPSERV transfers data between virtual storage areas in address spaces and hiperspaces.
It reads data from a hiperspace to an address space and it writes data to a hiperspace from
an address space.

A hiperspace can be either a standard hlperspace, of which there are two types, shared and
non-shared, or an ESO (expanded storage only) hiperspace:

• The non-shared standard hiperspace, and the shared standard hiperspace are backed
with expanded storage and, if necessary, auxiliary storage. Through the buffer area in
the address space, your program can view or scroll through the hiperspace. HSPSERV
SWRITE and HSPSERV SREAD transfer data to and from a standard hiperspace. You
create a standard hiperspace through the HSTYPE =SCROLL parameter on the
DSPSERV macro. The description of HSPSERV macro for standard hiperspaces begins
on this page.

• The ESO hiperspace is backed only with expanded storage. It is a high-speed buffer
area or cache for data that your program needs. HSPSERV CWRITE and HSPSERV
CREAD transfer data to and from an ESO hiperspace. You create an ESO hiperspace
through the HSTYPE =CACHE parameter on the DSPSERV macro. The description of
the HSPSERV macro for ESO hiperspaces begins on 282.

The STOKEN parameter identifies the specific hiperspace to be read from or written to. The
HSPALET parameter specifies an optional ALET for the hiperspace. The RANGLIST
parameter identifies the storage range(s) in the address space and the storage range(s) in
the hiperspace. A storage range consists of contiguous 4K byte blocks starting on a 4K byte
boundary.

If you code the HSPALET parameter on the HSPSERV macro, you must first code the
SYSSTATE macro to indicate the ASC mode of your program.

HSPSERV is also described in Application Development Macro Reference, with the
exception of the parameters that are valid only for supervisor state or PSW key 0 through 7
programs: CREAD, CWRITE, ADDRSP, and KEEP. For more information about hiperspaces
and data spaces see SPL: Application Development- Extended Addressability.

Read and Write Services for Standard Hiperspaces

© Copyright IBM Corp. 1988, 1991

The requirements for the caller who specifies SREAD and SWRITE are:

Authorization:
Dispatchable unit mode:
Cross memory mode:

Amode:
ASC mode:
Serlallzation:
Control parameters:

Supervisor state or problem state, any PSW key
Task or SRB
Can be in cross memory mode, except for a non-shared standard
hiperspace for which an ALET is not used (that is, the H.3PALET parameter
is omitted).
31-bit addressing
Primary or AR
Enabled and unlocked
The control parameters must be in the caller's primary address space. If
the caller's PSW key is not zero, the PSW key must match the storage key
associated with the control parameters.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

277

When control returns to the caller, the general purpose registers (GPRs) contain:

Realster Contents
0 Reason code
1 Used as a work register by the macro
2 • 13 Unchanged
14 Used as a work register by the macro
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Realstar Contents
0 • 1 Used as work registers by the macro
2 -13 Unchanged
14·15 Used as work registers by the macro

If you coded the HSPALET parameter, HSPSERV processing might have changed the.
contents of the parameter list and the list of ranges.

278 SPL: Application Development Macro Reference

The following figure describes the characteristics and restrictions for the use of standard
hiperspaces, the hiperspaces that allow your program to scroll through large areas of data.

Non-shared standard hiperspace:

• For problem state and PSW key 8-F callers:
- If on ALET is not used, the caller's TCB must own the hiperspace.
- If an ALET is used, any TCB in the caller's home address space can own the hiperspace.

• For supervisor state or PSW key 0-7 callers, any TCB in the caller's home address space
can own the hiperspace.

• If an ALET is used:
- The ALET must be used for a hiperspace on the caller's DU-AL or PASN-AL.
- The cross memory mode can be any.

• If an ALET is not used, the cross memory mode must be PASN•HASN.
• For PSW key 0 callers, con hove any storage key end con be fetch protected.
• For PSW key 1-F callers requesting SWRITE or SREAD RELEASE-YES, must have matching storage key.
• For PSW key 1-F callers requesting SREAD RELEASE-NO, can have non-matching storage key

only if hiperspace is not fetch-protected.

Shared standard hiperspace:

• Problem state and PSW key 8-F callers must use an ALET.
• Any task in the system can own the hiperspace. If the owning task is not in the caller's home

or primary address space, the owner's home address space must be non-swappable.
• If an ALET is used, it must be for a hiperspace on the caller's DU-AL or PASN-AL.
• The cross memory mode can be any.
• For PSW key 0 callers, can have any storage key and can be fetch protected.
• For PSW keys 1-F callers requesting SWRITE or SREAD RELEASE-YES. must have matching

storage key.
• For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key

only if hiperspace is not fetch protected.

Address Space

9_
HSPSERV SWRITE. ..

HSPSERV SREAD •••

D
Area in address space:

• Must be in private subpool.
• Must be within the home address space.
• Must not be within a DREF subpool.
• Can't be page-fixed.
• Must be on a 4K-byte boundary.
• Can't be part of a VIO window.
• For PSW key 0 callers, can have any storage key.

Standard
Hiperspoce

Area of standard hiperspace:

• Must be on 4K boundary.
• Can map a data-in-virtual object on permanent storage.
• For SWRITE requests, cannot have o DIV SAVE current for

the area of the hiperspace.
• If an ALET is used, cannot hove a DIV SAVE current for

any part of the hiperspace.

• For PSW key 1-F callers, must have a matching storage key with
one exception: for SWRITE callers, if the oreo is not fetch-protected,
it can have any storage key.

Figure 11. Characteristics and Restrictions for Standard Hiperspaces

HSPSERV - Read from and Write to a Hlperspace 279

The standard form of the HSPSERV macro for standard hlperspaces is written as follows:

name name: symbol. Begin name In column 1.

One or more blanks must precede HSPSERV.

HSPSERV

b One or more blanks must follow HSPSERV.

SREAD
SW RITE

,STOKEN = stoken-addr

,HSPALET = alet-addr

,NUMRANGE=n
,NUMRANGE = num-addr

,RANGLIST =list addr

,RELEASE= NO
,RELEASE= YES

,RETCODE = ret-addr

,RSNCODE = rsn-addr

,MF=S

stoken-addr: RX-type address or register (2) - (12).

alet-addr: RX-type address or register (2) - (12).

n: Number from 1 to 50.
num-addr: RX-type address or register (2) - (12).
DefauH: NUMRANGE=1.

list addr: RX-type address or register (2) - 12).

Default: RELEASE= NO.

ret-addr: RX-type address or register (2) - (12).

rsn-addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

SREAD
Requests that the system read data from a standard hlperspace to an address space.

STOKEN and RANGLIST are required parameters on the SREAD request. NUMRANGE,
HSPALET, RELEASE, RSNCODE, and RETCODE are optional parameters.

SW RITE
Requests that the system write data to a standard hiperspace from an address space.

Notes

• When HSPSERV returns to the caller after the SWRITE operation, the contents of the
address space storage range are not preserved. You can use the address space
area again.

• If the hiperspace maps a data-in-virtual object, do not Issue an SWRITE request
while a DIV SAVE request is current.

STOKEN and RANGLIST are required parameters on the SWRITE request. NUMRANGE,
HSPALET, RETCODE, and RSNCODE are optional parameters.

,STOKEN = stoken-addr
Specifies the address of the eight-character variable that contains the STOKEN for the
standard hiperspace from which the data is to be read or into which the data Is to be
written. Restrictions on standard hiperspaces are described in Figure 11 on page 279.

,HSPALET .. alet-addr
Specifies either the address of a fullword or a register that contains the ALET for the
hiperspace that Is to be accessed. The ALET must be for a hlperspace that Is on the
caller's DU-AL or PASN-AL.

The HSPALET parameter is optional except for the following case: If the caller accesses
a shared hiperspace, is in problem state and has PSW key 8 - F, HSPALET is required.

280 SPL: Application Development Macro Reference

Use of the HSPALET parameter requires that the caller provide a 144-byte save area in
the caller's primary address space. AR/GPR 13 must provide addressability to this
area regardless of the caller's ASC mode. GPR 13 must contain the address of the area
and AR 13 must contain 0.

If you code HSPALET, do not code RELEASE= YES.

If you code HSPALET, and you have an FRR recovery routine that gains control while
HSPSERV is executing, your recovery routine cannot attempt retry at the time of error.

,NUMRANGE = n
,NUMRANGE- num-addr

Specifies the number of entries, from 1 to 50, or specifies a fullword that identifies the
number of entries in the range list (that the RANGLIST parameter points to), or specifies
a register containing the address of a fullword containing the number of entries. The
default is NUMRANGE = 1.

If you omit NUMRANGE, then HSPSERV reads or writes one virtual range.

,RANGLIST =list addr
Specifies a fullword that contains an address of a list of ranges (up to 50) that the
system is to read or write, or specifies a register that contains the address of the
fullword pointer to the range list. The range list consists of a number of entries
(specified by NUMRANGE) where each entry consists of three words as follows:

First Word The starting virtual address in the address space into which the data
is to be read or from which the data is to be written.

Second Word The starting virtual address in the hiperspace from which the system
is to read or into which the system is to write.

Third Word The number of blocks the system is to read or write.

Note that the address is the block number followed by 12 binary zeroes.

An example of how to code the RANGLIST parameter when NUMRANGE=3 is as
follows:

NUMRANGE•3, RANGLIST=(5)

or

NUMRANGE=3, RANGLIST=RANGADDR

Register 5 l }
-~

12 Bytes

RANGADDR AddrSp Loe Hiper Loe Blocks
(fullword)

AddrSp Loe Hiper Loe Blocks

AddrSp Loe Hiper Loe Blocks

.......

...!:

Restrictions on the areas in the address space and the hiperspace are described in
Figure 11 on page 279.

The range list must be addressable in the caller's primary address space.

,RELEASE• NO
,RELEASE== YES

Specifies whether or not the system is to release the hiperspace pages after it
completes the SREAD operation. RELEASE is valid only with SREAD.

RELEASE= NO specifies that the system does not release the hiperspace pages after it
completes the SREAD operation. Unless a subsequent SWRITE request changes the
data, the same data will be available again on the next SREAD request. RELEASE= NO
is the default.

HSPSERV - Read from and Write to a Hiperspace 281

RELEASE= YES specifies that, after the SREAD request, the system is to release the
storage that backed the data in the hiperspace. If you code RELEASE= YES, do not
code HSPALET.

,RSNCODE • rsn-addr
Specifies the location where the system is to copy the reason code from register 0.

,RETCODE- ret-addr
Specifies the location where the system is to copy the return code from register 15.

,MF•S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the service.

When control is returned from HSPSERV SREAD or HSPSERV SWRITE, register 15 contains
one of the following return codes:

Code Meaning
00 HSPSERV completed successfully.
08 The system rejected the HSPSERV request. See the reason codes.
OC System failure due to environmental problems.

For the SREAD and SWRITE requests, the system might return one of the following reason
codes in register O with a "08" return code:

Reason codes: Description:

xxxx05xx

xxxx06xx

The system rejects the request. A hiperspace page is unavailable
because of a system error.

The system rejects the request. An address space page is unavailable
because of a system error.

Read and Write Services for ESO Hiperspaces
The requirements for the caller who requests CREAD and CWRITE are:

Authorization:
Dlepatchable unit mode:
Cro11 memory mode:
Amocle:
ASCmode:
Serlallzatlon:
Control parameter&:

Supervisor state or PSW key O - 7
Task or SRB
Any
31-bit addressing
Primary or AR mode
Enabled or disabled; no locking requirements
The parameter list and range list must be in non-pageable storage. If the
caller specifies HSPALET and is disabled, the save area must also be in
non-pageable storage. The parameter list, range llst, and save area must
all be in the common area or in the private area of the caller's primary
address space.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, If the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the macro
2 - 13 Unchanged
14 Used as a work register by the macro
15 Return code

282 SPL: Application Development Macro Reference

When control returns to the caller, the access registers (ARs) contain:

Register
0-1
2-13
14 -15

Contents
Used as work registers by the macro
Unchanged
Used as work registers by the macro

The following figure describes the characteristics and restrictions for the use of ESO
hiperspaces, the hiperspaces that act as a high-speed buffer or cache for data.

The ESQ hiperspace:

• Owner can be any task in the caller's home or primary address
space or in a non-swappable address space.

• For PSW key 0 callers, can have any storage key.
• For PSW key 1-F callers, with CWRITE requests, must have

matching storage key.
• For PSW key 1-F callers with CREAD requests where storage key

does not match caller's PSW key, must not be fetch-protected.

Address Space

HSPSERV CWRITE •••

HSPSERV CREAD •••

II
I I

--------------------1 Area of ESO hiperspace:

ESQ
Hiperspace

D
I

Area in address space:
• Must be on a 4K boundary.

• Must be on a 4K-byte boundary.
• Must be within the home, primary or CSA.
• Can't be part of a VIO window.
• Can't map a data-in-virtual object.
• For PSW key D callers, can have any storage key.
• For PSW key 1-F callers on CREAD requests, must have a matching storage

key.
• For PSW key 1-F callers on CWRITE requests, if the area does not have a

matching storage key, it must not be fetch-protected and KEEP=NO
cannot be specified.

Figure 12. Characteristics and Restrictions for ESO Hiperspaces

HSPSERV - Read from and Write to a Hiperspace 283

The s.tandard form of the HSPSERV macro for ESO hiperspaces follows.

CAUTION:
Code the parameters on the HSPSERV CREAD and HSPSERV CWRITE macros very
carefully. Read the requirements for the address space buffer and the hlperepace, as Hated
In Figure 12 on page 283. For performance reasons, the system does not verify the
location of the addresses you specify on these macros. Incorrect coding can cause damage
to the system.

name name: symbol. Begin name In column 1.

f> One or more blanks must precede HSPSERV.

HSPSERV

f> One or more blanks must follow HSPSERV.

CREAD
CW RITE

,STOKEN = stoken-addr

,HSPALET = a/et-addr

,NUMRANGE=n
,NUMRANGE = num-addr

,RANGLIST =list addr

,ADDRSP =HOME
,ADDRSP =PRIMARY
,ADDRSP =COMMON

,KEEP=YES
,KEEP=NO

, RETCODE = ret-addr

,RSNCODE = rsn-addr

,MF=S

stoken-addr: RX-type address or register (2) - (12).

alet-addr: RX-type address or register (2) - (12).

n: A number from 1 to 50.
num-addr: RX-type address or register (2) - (12).
Defaun: NUMRANGE=1.

list addr: RX-type address or register (2) - (12).

Default: ADDRSP =HOME.

Defaun: KEEP= YES.

ret-addr: RX-type address or register (2) - (12).

rsn-addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

CREAD
Requests that the system read data from an ESO hlperspace

If all blocks requested to be read are available in the hlperspace, then the system
performs the read operation. However, if one or more of the blocks to be read are no
longer available in the hiperspace, then the system returns a falling return code. See
return code 08. In this case, the system does not tell you which blocks It successfully
reads, if any.

STOKEN and RANGLIST are required parameters on the CREAD request. ADDRSP,
NUMRANGE, RSNCODE, and RETCODE are optional parameters.

CW RITE
Requests that the system write data to an ESO hiperspace. If the system cannot write
all the requested blocks to the hiperspace, then it doesn't write any and rejects the
request (See return code 08). In this case, the data in the specified range In the
hiperspace is unpredictable. Therefore, after an unsuccessful write, do not Issue
another CREAD against the failing hlperspace range of virtual storage until an
intervening CWRITE is successful.

284 SPL: Application Development Macro Reference

STOKEN and RANGLIST are required parameters on the CWRITE request. ADDRSP,
NUMRANGE, KEEP, RSNCODE, and RETCODE are optional parameters.

,STOKEN - stoken-addr
Specifies the address of the a-character variable that contains the STOKEN tor the ESO
hiperspace from which the data Is to be read or Into which the data is to be written.
Restrictions on the hiperspace are described in Figure 12 on page 283.

,HSPALET- a/et-addr
Specifies either the address of a fullword or a register that contains the ALET for the
hiperspace that is to be accessed. The ALET must be for a hiperspace that is on the
caller's DU-AL or PASN-AL.

Use of the HSPALET parameter requires that the caller provide a 144-byte save area in
non-pageable storage In the caller's primary address space or in the common area.
AR/GPA 13 must provide addressability to this area regardless of the caller's ASC
mode. GPA 13 must contain the address of the area and AR 13 must contain O.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET, and you have an FAR recovery routine that gains control while
HSPSERV is executing, your recovery routine cannot attempt retry at the time of error.

,NUMRANGE • n
,NUMRANGE • num-addr

Specifies a fullword that identifies the number of entries in the range list (that the
RANGLIST parameter points to), or specifies a register containing the address of a
fullword containing the number of entries, or specifies the number of entries, from 1 to
50. The default Is NUMRANGE = 1.

If you omit NUMRANGE, then HSPSERV reads or writes one virtual range.

,RANGLIST • /ist addr
Specifies a fullword that contains the address of a parameter area In non-pageable
storage that contain a list of up to 50 ranges that the system is to read or write, or
specifies a register that contains the address of the fullword pointer to the range list.

The range list consists of a number of entries (specified by NUMRANGE) where each
entry consists of three words as follows:

First Word

Second Word

Third Word

The starting virtual address In the address space Into which the data
Is to be read or from which the data is to be written.

The starting virtual address in the hlperspace from which the system
Is to read or into which the system is to write.

The number of blocks the system is to read or write.

An example of how to code the RANGLIST parameter when NUMRANGE = 3 is as
follows:

NUMRANGE•3, RANGLJST-(5)

[

or

NUMRANGE•3, RANGLIST•RANGADDR

}
-l } 12 Bytes __,.

~
Register 5

RANGADDR AddrSp Loe Hiper Loe Blocks
(fullword)

AddrSp Loe Hiper Loe Blocks

AddrSp Loe Hiper Loe Blocks

Restrictions on the areas in the address space and the hiperspace are described In
Figure 12 on page 283.

HSPSERV - Read from and Write to a Hiperspace 285

The range list must be In the common area or in the private area of the caller's primary
address space.

,ADDRSP =HOME
,ADDRSP •PRIMARY
,ADDRSP- COMMON

Specifies the location of the virtual storage range from which the system is to read or
into which the system is to write. The location can be the caller's home address space
(ADDRSP =HOME), the caller's primary address space (ADDRSP =PRIMARY), or the
CSA (ADDRSP=COMMON). The default is ADDRSP=HOME.

,KEEP=YES
,KEEP=NO

Specifies whether or not the system preserves the source data in the virtual storage of
the address space after it completes the CWRITE request. KEEP is valid only on the
CWRITE request.

If you specify KEEP= YES, the data in the specified address space is unchanged and
available for reference. The default is KEEP= YES.

If you specify KEEP= NO, the system might not preserve the data in the address space.
If your program will reuse the same virtual storage area after the CWRITE request
completes, use KEEP= NO.

,RSNCODE ... rsn-addr
Specifies the location where the system is to copy the reason code from register o.

,RETCODE • ret-addr
Specifies the location where the system Is to copy the .return code from register 15.

,MF•S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the macro service.

When control is returned from HSPSERV, register 15 contains one of the following return
codes:

Code Meaning
00 HSPSERV completed successfully.
08 The system rejected the HSPSERV request. See the reason code.

For the CREAD and CWRITE reque:;ts, the system might return one of the following reason
codes with a "08" return code:

Reason codes: Description:

xxxx01xx The hiperspace data you requested is not available (CREAD request).

xxxx02xx The system rejects the request because an address space page is not
currently backed by central (also called real) or expanded storage. You
can repeat the HSPSERV request after you reference the range(s), which
causes the system to page the storage in (CWRITE request).

xxxx03xx The system rejects the request because the necessary system resources
are not currently available (CWRITE request).

xxxx04xx The system rejects the request.

xxxx05xx

xxxx06xx

286 SPL: Application Development Macro Reference

The system rejects the request. A hiperspace page is unavailable
because of a system error.

The system rejects the request. An address space page Is unavailable
because of a system error.

HSPSERV Macro (List Form)
The list form of the HSPSERV macro creates a control parameter list. The modify and
execute forms of the macro modify this parameter list.

The list form of the HSPSERV macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede HSPSERV.

HSPSERV

b One or more blanks must follow HSPSERV.

MF= (L,list addr)
MF= (L,//st addr,attr)

list addr: symbol.
attr: 1- to 60-character input string. Default: OD

,PLISTVER = vernum vernum: parameter list version O or 1
Default: Version that allows all specified parameters

Parameters for the list form of HSPSERV are as follows:

MF= (L,/ist addr)
MF .. (L,list addr,attr)

Specifies the list form of HSPSERV. The list form defines an area that the system uses
as a parameter list. list addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
OD, which forces the parameter list to a doubleword boundary.

,PLISTVER = vernum
specifies the macro version associated with HSPSERV. PLISTVER is an optional
parameter that determines which parameter list the system generates. Specify O if you
use parameters only from this group:

ADDRSP
CREAD
CWRITE
KEEP
MF
NUMRANGE
PLISTVER
RANG LIST
RELEASE
RETCODE
RSNCODE
SREAD
STOKEN
SWRITE

If you use the HSPALET parameter, specify 1.

The default is the version that allows all of the parameters specified on the invocation
to be processed.

HSPSERV - Read from and Write to a Hiperspace 287

HSPSERV Macro (Modify Form)
The modify form of the HSPSERV macro changes parameters in the control parameter list
that the system created through the list form of the macro.

The modify form of the HSPSERV macro is written as follows:

name

HSPSERV

f>

SREAD
SWRITE
CREAD
CWRITE

,$TOKEN= stoken-addr

,HSPALET = alet-addr

,NUMRANGE = 1
,NUMRANGE = num-addr

,RANGLIST =list addr

,RELEASE= NO
,RELEASE=YES

,ADDRSP =HOME
,ADDRSP =PRIMARY
,ADDRSP =COMMON

,KEEP=YES
,KEEP=NO

,RETCODE = ret-addr

,RSNCODE = rsn-addr

,MF= (M,/lst addr,COMPLETE)
,MF= (M,/ist addr,NOCHECK)

name: symbol. Begin name in column 1.

One or more blanks must precede HSPSERV.

One or more blanks must follow HSPSERV.

stoken-addr: RX-type address or register (2) - (12).

alet-addr: RX-type address or register (2) - (12).

Defauft: NUMRANGE=1.
num-addr: RX-type address or register (2) - (12).

list addr: RX-type address or register (2) - (12).

Default: RELEASE= NO.

Defauft: ADDRSP =HOME.

Defaun: KEEP= YES.

ret-addr: RX-type address or register (2) - (12).

rsn-addr: RX-type address or register (2) • (12).

list addr: RX-type address or register (2) - (12).
Defaun: COMPLETE.

Parameters for the modify form of HSPSERV are described in the standard form of the
macro with the following exceptions:

,MF• (M,llst addr,COMPLETE)
,MF• (M,/ist addr,NOCHECK)

Specifies the modify form of the macro. list-addr is the address of a non-pageable
storage area for the parameter list that the system generated from the list form of the
macro.

COMPLETE specifies that the system checks for required parameters and supplies the
optional parameters that you did not specify. NOCHECK specifies that the system does
not check for required parameters and does not supply the optional parameters that
you did not specify. COMPLETE is the default.

288 SPL: Application Development Macro Reference

HSPSERV Macro (Execute Form)
The execute form of the HSPSERV macro changes parameters In the control parameter list
that the system created through the list form of the macro and performs the specified
operation.

The execute form of the HSPSERV macro is written as follows:

name

b

HSPSERV

b

SREAD
SW RITE
CREAD
CW RITE

,STOKEN = stoken-addr

,HSPALET= alet-addr

,NUMRANGE=1
,NUMRANGE = num-addr

,RANG LIST= list-addr

,RELEASE= NO
, RELEASE= YES

,ADDRSP =HOME
,ADDRSP =PRIMARY
,ADDRSP =COMMON

,KEEP=YES
,KEEP=NO

,RETCODE = ret-addr

,RSNCODE = rsn-addr

,MF= (E,/ist-addr,COMPLETE)
,MF= (E,/ist-addr,NOCHECK)

name: symbol. Begin name in column 1.

One or more blanks must precede HSPSERV.

One or more blanks must follow HSPSERV.

stoken-addr: RX-type address or register (2) - (12).

a/et-addr: RX-type address or register (2) - (12).

Default: NUMRANGE = 1.
num-addr: RX-type address or register (2) - (12).

list-addr: RX-type address or register (2) - (12).

Default: RELEASE= NO.

Defautt: ADDRSP =HOME.

DefauH: KEEP= YES.

ret-addr: RX-type address or register (2) - (12).

rsn-addr: RX-type address or register (2) - (12).

list-addr: RX-type address or register (2) - (12).
Default: COMPLETE.

Parameters for the execute form of HSPSERV are described in the standard form of the
macro with the following exceptions:

,MF== (E,/ist-addr,COMPLETE)
,MF• (E,/ist-addr,NOCHECK)

Specifies the execute form of the macro. This form generates code to place the
parameters into the parameter list. list-addr is the address of a non-pageable storage
area for the parameter list.

COMPLETE specifies that the system checks for required parameters and supplies the
optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters and does
not supply the optional parameters that you did not specify.

HSPSERV - Read from and Write to a Hiperspace 289

290 SPL: Application Development Macro Reference

IEFQMREQ- Invoke SWA Manager in Move Mode

©Copyright IBM Corp. 1988, 1991

This macro is used to invoke the Move SWA manager in move mode. The IEFQMREQ
macro, which has no parameters, is written as follows:

name name:

b One or more blanks must precede IEFQMREQ.

IEFQMREQ

b One or more blanks must follow IEFQMREQ.

Register 1 must contain the address of the queue manager parameter area (QMPA).
Register 13 must contain the address of a standard 18 word save area.

For additional information on the use of IEFQMREQ, see SPL: Application Development
Guide.

291

292 SPL: Application Development Macro Reference

IOSINFO - Obtain the Subchannel Number for a UCB

© Copyright IBM Corp. 1988, 1991

The IOSINFO macro obtains the subchannel number for a specified unit control block (UCB).
The macro returns the subsystem identification word {SID), which identifies the subchannel
number of the UCB, in a user-specified location. The SID is a fullword value whose first
halfword contains X'0001' and ending halfword contains the subchannel number.

The issuer of IOSINFO must be executing:

• In 31-bit addressing mode
• In either task mode or SRB mode
• Locked or unlocked

Additionally, the issuing program must include the CVT and IHAPSA mapping macros. All
addresses must be 31-bit addresses.

Before entry to this macro, register 13 must contain the address of a standard 18-word save
area.

The IOSINFO macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede IOSINFO.

IOSINFO

b One or more blanks must follow IOSINFO.

FUNCTN = SUBCHNO

,UCB=ucb addr ucb addr: A-type address or register (0) - (15).

,OUTPUT= output addr output addr: A-type address or register (0) - (14).

,RTNCODE = rtncode addr rtncode addr: A-type address or register (0) - (15).

The parameters are explained as follows:

FUNCTN == SUBCHNO
specifies that a subchannel number is to be obtained.

,UCB= ucb addr
specifies the address of a fullword on a fullword boundary containing the address of a
unit control block (UCB).

,OUTPUT= output addr
specifies the address of a fullword on a fullword boundary that will contain the
subsystem identification word (SID) upon completion.

The SID is a fullword value that identifies the subchannel. The first halfword is X'0001 ',
and the last halfword contains the subchannel number.

The output address must reside in 31-bit addressable storage.

,RTNCODE = rtncode addr
specifies the address of a fullword on a fullword boundary that will contain the return
code upon completion.

The return code address must reside in 31-bit addressable storage.

293

After completion, the contents of the registers are as follows:

• Register O is used as a work register by the macro.
• Register 1 (unless the return code is 4) contains the SID.
• Registers 2-13 are unchanged.
• Register 14 is used as a work register by the macro.
• Register 15 contains a return code.

When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

Meaning

The address specified on the OUTPUT parameter contains the SID.*

The UCB was disassociated from the subchannel at the time of the IOSINFO
service routine invocation.

• In some cases, the subchannel number in the SID might not be valid. Any disassociation
of the UCB and the subchannel means the subchannel number in the SID is not valid. If the
UCB is disassociated from the subchannel after the IOSINFO service .routine invocation, no
notification can be given.

Example 1
Operation: Obtain the subchannel number for a UCB whose address is in register 1.
Specify the SID output to be placed in register 2 and the return code to be placed in register
3.

IOSINFO FUNCTN=SUBCHNO,UCB=(l},OUTPUT=(2},RTNCODE=(3}

Example 2
Operation: Obtain the subchannel number for a UCB whose address is in location ADDR.
Specify the SID output to be placed in location ADDX and the return code to be placed in
register 3.

IOSINFO FUNCTN=SUBCHNO,UCB=ADDR,OUTPUT=ADDX,RTNCODE=(3}

Example 3
Operation: Obtain the subchannel number for a UCB whose address is in register 2.
Specify the SID output to be placed in register 3 and the return code to be placed in location
ADDR.

IOSINFO FUNCTN=SUBCHNO,UCB=(2),0UTPUT=(3},RTNCODE=ADDR

294 SPL: Application Development Macro Reference

IOSLOOK - Locate Unit Control Block

©Copyright IBM Corp. 1988, 1991

The IOSLOOK macro locates the unit control block (UCB) associated with a device number.
To use IOSLOOK, you must be executing in supervisor state. Register 13 must point to a
16-word save area where the macro stores registers 0 through 15 at offset 0. You must also
include a DSECT for both the CVT (using the CVT mapping macro) and the IOCOM (using the
IECDIOCM mapping macro).

The IOSLOOK macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede IOSLOOK.

IOSLOOK

b

DEV=(reg)

,UCB=(reg)

One or more blanks must follow IOSLOOK.

reg: Register (O) - (12), (14), (15).
Defaun: DEV=(6).

reg: Register (0) - (12).
DefauH: UCB= (7).

The parameters are explained as follows:

DEV==(reg)
specifies a general purpose register, symbolic or absolute, that contains the
hexadecimai device number, right justified. If this parameter is omitted, register 6 is
assumed.

,UCB- (reg)
specifies a general purpose register, symbolic or absolute, that will be used to return
the address of the UCB common segment. If this parameter is omitted, register 7 is
assumed.

If the UCB address cannot be found, then the contents of this register are unpredictable.

Note: The UCB must reside in 24-bit addressable storage.

When control returns, register 15 contains one of the following return codes.

Hexadecimal
Code

00

04

Example

Meaning

UCB address was found

Device number was invalid or no UCB exists.

Operation: Find the UCB address for device 250. Register 2 contains the value
X'00000250'. The UCB address is to be returned in register 5 and UCBPTR is equated to 5.

IOSLOOK DEV=(2),UCB=(UCBPTR)

295

296 SPL: Application Development Macro Reference

ITTFMTB - Generate Component Trace Format Table

© Copyright IBM Corp. 1988, 1991

ITIFMTB generates a table called the component trace format table. It can also generate a
map of the table. IPCS uses this table to control the formatting of trace data for program
events that occur when the system runs. When you use ITTFMTB to generate Information in
the table, you are specifying the formatting style of the trace data. For information on IPCS,
see /PCS User's Guide and /PCS Planning and Customization.

Invoke the macro once to define the beginning of the table and once to define the end of the
table. In between, you can invoke the macro repeatedly to define the individual formats for
the various traceable events.

The ITTFMTB macro is written as follows:

name

b

ITTFMTB

b

MAP
TABLEDATA=tabname
EVENTDATA = eventid
TABLEEND

,ENTRYLENGTH = elength

• LOCBUFNAME = bufname
,LOCBUFADDR = bufaddr

,FIL TERNAME = pgmname
,FIL TERADDR = pgmaddr

,MNEMONIC= mnemonic

,DESCRIPTION= text

,MODELNAME =mode/name
,MODELADDR = modeladdr

,FORMATNAME = pgmname
,FORMATADDR = pgmaddr

,OFFSETASID =(ids)

,OFFSET JOBNAME =(offsets)

,VIEWSUMMARY = scode

, VIEWFULL = fcode

name: symbol. Begin name in column 1.

One or more blanks must precede ITTFMTB

One or more blanks must follow ITTFMTB

Required choice. Select one of four options.
tabname: Symbol up to eight characters long.
eventid: A-type address.

Optional with TABLEDATA and not otherwise allowed.
elength: A-type address.

Required choice with TABLEDATA and not otherwise allowed .
bufname: Symbol up to eight characters long.
bufaddr: A-type address.

Optional choice with TABLEDATA and not otherwise allowed.
pgmname: Symbol up to eight characters long.
pgmaddr: A-type address.

Required with EVENTDATA and not otherwise allowed.
mnemonic: Symbol up to '32 characters long.

Required with EVENTDATA and not otherwise allowed.
text: Symbol up to 32 characters long.

Optional choice with EVENTDATA and not otherwise allowed.
mode/name: Symbol up to eight characters long.
modeladdr: A-type address.

Optional choice with EVENTDATA and not otherwise allowed.
pgmname: Symbol up to eight characters long.
pgmaddr: A-type address.

Optional with EVENTDATA and not otherwise allowed.
ids: One or more A-type addresses, separated by commas.

Optional with EVENTDATA and not otherwise allowed.
offsets: One or more A-type addresses, separated by commas.

Optional with EVENTDATA and not otherwise allowed.
scode: A-type address.

Optional with EVENTDATA and not otherwise allowed.
fcode: A-type address.

297

,COMPONENTDAT A= cdata

,EXCEPTION
,NOEXCEPTION

Optional with EVENTDATA and not otherwise allowed.
cdata: A-type address.

Optional choice with EVENTDATA and n • otherwise allowed.

The parameters are explained as follows:

name
Is an optional 1 to 8 alphanumeric character input string, starLlg in column 1, that is
the assembler label on the ITTFMTB macro.

MAP
Specifies that a map of a format table is to be generated.

TABLEDATA =tab name
Specifies that the definition of an initialized format table is to be started. When you
specify TABLEDATA, you also specify the name to be associated with the table and
certain data that appears only once in the table.

EVENTDATA = avantid
Specifies the event identifier that is associated with a component trace event.

TABLEEND
Specifies the end of the definition of the format table.

,LOCBUFNAME = bufname
Specifies the name of the locate buffer exit routine that is loaded by the IPCS CTRACE
subcommand. IPCS calls this routine to locate a component's trace buffers in a dump.

,LOCBUFADDR = bufaddr
Specifies the address of the locate buffer exit routine. IPCS calls this routine to locate a
component's trace buffers in a dump.

,FIL TERNAME = pgmname
Specifies the name of the component filter exit routine that is loaded by the IPCS
CTRACE subcommand. IPCS calls this routine to provide component-specific filtering
for that component's trace entries. No component filter exit is supplied if you do not
specify one.

,FIL TERADDR = pgmaddr
Specifies the address of the component filter exit routine. IPCS calls this routine to
provide component-specific filtering for that component's trace entries. No component
filter exit is supplied if you do not specify one.

,ENTRYLENGTH = elength
When e/ength is not zero, this parameter specifies the length of the fixed-length
component trace entries that the component maintains. When elength is zero, it
indicates that the component trace entries vary in length. A default of zero is assumed.

,MNEMONIC= mnemonic
Specifies a mnemonic name for the type of event being described. This name is the
first information to be formatted on a line associated with an event entry of this type.
The name permits the reader of formatted component traces to rapidly scan the output
for patterns of events and events of particular interest.

,DESCRIPTION= text
Specifies descriptive, literal text to be associated with the type of trace entry being
described. When this type of trace entry is formatted, the text appears at the end of the
first line of the output. It helps the reader of the output to understand the significance of
an entry, without having to access separate reference materials.

,MODELNAME =mode/name
Specifies the name of the model that is to be used to format this trace entry. No model
is used if MODELNAME or MODELADDR is not specified.

298 SPL: Application Development Macro Reference

,MODELADDR = modeladdr
Specifies the address of the model to be used to format this trace entry. No model is
used if MODELADDR or MODELNAME is not specified.

,FORMATNAME = pgmname
Specifies the name of the formatter routine that formats this trace entry. No formatter
routine is called if FORMATNAME or FORMATADDR is not specified.

,FORMATADDR = pgmaddr
Specifies the address of the formatter routine that formats this trace entry. No
formatter routine is called if FORMATADDR or FORMATNAME is not specified.

,OFFSETASID =(ids)
If you want ASID filtering to be performed (as requested by an IPCS CTRACE
subcommand), use this parameter to specify the offsets to the ASID fields. The ASID
fields occur at various offsets in the trace entry. Specify up to 5 offsets. An offset value
may not exceed decimal 65,535. If you do not specify OFFSETASID, ASID filtering is not
performed

,OFFSET JOBNAME = (offsets)
If you want job name filtering to be performed (as requested by an IPCS CTRACE
subcommand), use this parameter to specify the offsets to the job name fields. The job
name fields occur at various offsets in the trace entry. Specify up to 5 offsets. An offset
value may not exceed decimal 65,535. If you do not specify OFFSET JOBNAME, job
name filtering is not performed.

,VIEWSUMMARY = scode
Specifies the halfword view that the model processor uses to format summary fields
from the trace entry. A default of X'SOOO' for scode Is used if you do not specify this
parameter.

'VIEWFULL = fcode
Specifies a halfword view (used by model processor) to format all fields from the trace
entry. A default of X'0200' for fcode is used if you do not specify this parameter.

,COMPONENTDATA = cdata
This parameter is reserved for use by the component. If this parameter is not specified,
a default of zero is assumed for cdata indicating that no component data is associated
with the trace entry.

,EXCEPTION
,NOEXCEPTION

EXCEPTION specifies that this trace entry records an exceptional event. When the IPCS
CTRACE subcommand is invoked with the EXCEPTION filtering option, only trace
entries with the EXCEPTION attribute are formatted.

NOEXCEPTION specifies that the trace entries being described record normal events.
These entries will not be formatted when the IPCS CTRACE subcommand is invoked
with the EXCEPTION of the filtering option. The default is NOEXCEPTION.

ITTFMTB - Generate Component Trace Format Table 299

300 SPL: Application Development Macro Reference

LLACOPY - Library Lookaside Refresh

© Copyright IBM Corp. 1988, 1991

The LLACOPY macro obtains new PCS directory entries from DASO and uses them to
synchronously refresh the LLA directory. LLACOPY returns the new directory entries to the
caller. LLACOPY uses BLDL list entries to update the LLA directory.

The requirements for the caller are:

Authorization:
Dlapatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serlalizatlon:
Control paramete_ra:

Supervisor state, key 0
Task mode
PASN = HASN = SASN
24-bit or 31-bit addressing mode
Primary
Enabled, unlocked
Not applicable

The standard form of the LLACOPY macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede LLACOPY.

LLACOPY

b One or more blanks must follow LLACOPY.

DCB= deb addr deb addr: RX-type address or register (2) - (12).

,BLDLLIST =list addr list addr: RX-type address or register (2) - (12).

,RETCODE = ret code ret code: RX-type address or register (2) - (12).

,RSNCODE = rsn code rsn code: RX-type address or register (2) - (12).

,MF=S

The parameters are explained as follows:

DCB= deb addr
specifies the address of an open DCB that LLACOPY uses to issue BLDL to obtain new
directory entries.

,BLDLLIST- /ist addr
specifies the address of a list of PCS member names in the format required by BLDL.

,RETCODE- ret code
specifies the output variable into which the system copies the return code from general
purpose register 15.

,RSNCODE • rsn code
specifies the output variable Into which the system copies the reason code from
general purpose register 0.

,MF•S
specifies the standard form of LLACOPY. The standard form places the parameters into
an in-line parameter list.

301

When LLACOPY returns control to the system, register 15 contains one of the following
return codes:

Code Meaning
o LLACOPY found all requested directory entries and copied the new entries Into the

caller's BLDL directory. If LLA was available, LLACOPY refreshed the LLA directory for
the given members in the PDS concatenation that the open DCB defined.

4 LLACOPY did not find all the requested directory entries, and may not have found any
entries. It copies into the caller's BLDL list entries which it did find. If LLA was
available, LLACOPY refreshed the LLA display for the entries which H found, and
removed from the LLA directory any members whose directory entries it did not find.

8 LLACOPY failed because of either an 110 error or storage constraints. LLACOPY does
not update the BLDL directory or refresh the LLA directory.

When LLACOPY returns control to the system, and you have received a return code of 8,
register 0 may contain one of the following reason codes:

Code Meaning
0 LLACOPY detected a permanent 110 error when trying to search the directory.

4 LLACOPY did not have sufficient virtual storage to complete.

Example
Operation: Request LLACOPY to use the DCB you define when it performs a BLDL in your
address space.

USERDCB DCB
B LIST OS
RETNCODE OS
RSONCODE OS

LLACOPY BLDLLIST=B LIST,DCB=USERDCB,
RETCODE=RETNCODE,RSNCODE•RSONCODE

DDNAME=LLACOPY,MACRF=R,DSORG=PO
CL76 BLDL LIST
F
F

302 SPL: Application Development Macro Reference

LLACOPY (List Form)
The list form of the LLACOPY macro constructs a nonexecutable control program parameter
list.

The list form of the LLACOPY macro is written as follows:

name name: symbol. Begin name in column 1.

b
LLACOPY

One or more blanks must precede LLACOPY.

b One or more blanks must follow LLACOPY.

,MF= (L,cnt/ addr) cntl addr: symbol.
,MF= (L,cntl addr, parm/ attr) parml attr: 1- to 60-character string.

Default: OD

The parameters are explained under the standard form of the LLACOPY macro with the
following exception:

,MF= (L,cntt addr)
,MF= (L,cnt/ addr, parml attr)

specifies the list form of LLACOPY. cntl addr defines the area into which the system
stores the parameter list.

parml attr, which is optional, defines a character string up to 60 characters long. It
contains any special attributes for the parameter list. The default is OD.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler OS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
OD, which forces the parameter list to a doubleword boundary.

LLACOPY - Library Lookaside Refresh 303

LLACOPY (Execute Form)
'' "' 't

The execute form of the LLACOPY macro can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the LLACOPY macro is written as follows:

name

f>
LLACOPY

f>

DCB=dcb addr

,BLDLLIST =list addr

,RETCODE = ret code

,RSNCODE=rsn code

,MF= (E,cntl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LLACOPY.

One or more blanks must follow LLACOPY.

deb addr: RX-type address or register (2) • (12).

list addr: RX-type address or register (2) • (12).

ret code: RX-type address or register (2) • (12).

rsn code: RX-type address or register (2) - (12).

cntl addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the LLACOPY macro with the
following exception:

,MF• (E,cntl addr)
specifies the execute form of LLACOPY. cntl addr identifies the location of the
parameter list.

304 SPL: Application Development Macro Reference

LOAD - Bring a Load Module into Virtual Storage

© Copyright IBM Corp. 1988, 1991

The LOAD macro is used to bring the load module containing the specified entry name into
virtual storage, if a usable copy is not available In virtual storage. Load services places the
load module in storage above or below the 16 megabytes line depending on the RMODE of
the module, which is specified in the directory entry for the module.

The responsibility count for the load module is increased by one. On output, the high-order
byte of register 1 contains the authorization code of the loaded module and the low-order
three bytes contain the module's length in doublewords. Control is not passed to the load
module; instead, the virtual storage address and the addressing mode of the designated
entry point is returned in register O. The load module remains in virtual storage until the
responsibility count is reduced to O through task terminations or until the effects of all
outstanding LOAD requests for the module have been canceled (using the DELETE macro
described In Application Development Macro Reference), and there is no other requirement
for the module.

Load sets the high-order bit of the entry point address in register Oto indicate the module's
AMODE, which is obtained from the directory entry for the module. If the module's AMODE
is 31-bit, it sets the indicator to 1; if the module's AMODE Is 24-bit, it sets the indicator to O;
and if the module's AMODE is ANY, It sets the indicator to correspond to the caller's
AM ODE.

The GLOBAL, EOM, ADDR, and ADRNAPF parameters are restricted to authorized users
(APF-authorized, in PSW key 0-7, or in supervisor state).

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set or must have been specified in an IDENTIFY macro. If the entry name
was previously specified in an IDENTIFY macro, no attempt is made to bring in an additional
copy of the module. If the specified entry name cannot be located, the task is abnormally
terminated.

The LOAD macro is written as follows:

nsme

LOAD

EP=entryname
EPLOC =entry name addr

DE= list entry addr

,DCB= deb addr

,ERRET =err rtn addr

,LSEARCH =NO
,LSEARCH=YES

,ADDR =load addr
,ADRNAPF =load addr

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
*entry nsme addr: RX-type address or register (2) - (12);
A-type
address or register (2) - (12).
*list entry sddr: RX-type address, or register (2) - (12); A-type
address or register (2) - (12).

*deb addr: RX-type address, or register (1) or (2) - (12); A-type
address or register (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

Default: LSEARCH = NO

load addr: A-type address or register (2) - (12).

305

,GLOBAL= YES
,GLOBAL= (YES,P)
,GLOBAL= (YES,F)
,GLOBAL=NO

,EOM=NO
,EOM=YES

,LOADPT = addr

,RELATED= value

Defauft: GLOBAL= NO
If GLOBAL=YES is specified, the defautt is GLOBAL=(YES,P).

Defauft: EOM =NO
Note: GLOBAL must be specified with EOM =YES.

addr: A-type address or register (2) - (12).
Note: ADDR and ADRNAPF cannot be specified with LOADPT.

value: any valid macro keyword specification.

If you code any of the parameters: LSEARCH, ADDR, ADRNAPF, GLOBAL, EOM, or LOADPT, you will
obtain a macro-generated parameter list Therefore, except for the error routine address, all
addresses must be specified as A-type addresses or registers (2) - (12).

The parameters are explained below:

EP •entry name
EPLOC- entry name addr
DE• list entry addr

specifies the entry name, the address of the name, or the address of the name field in a
60-byte list entry for the entry name that was constructed using the BLDL macro. If
EPLOC is coded, the name must be padded to eight bytes, if necessary.

Note: When you use the DE parameter with the LOAD macro, DE specifies the address
of a list that was created by a BLDL macro. The LOAD and the BLDL must be Issued
from the same task. Otherwise, the system might terminate the program with an abend
code of 106 and a return code of 15. Therefore, do not issue an ATTACH or DETACH
between issuances of BLDL and LOAD.

,DCB - deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used In the
BLDL mentioned above.

If the DCB parameter is omitted or if DCB= O is specified when the LOAD macro Is
issued by the job step task, the data sets referred to by either the STEPLIB or JOBLIB
DD statement are first searched for the entry name. If the entry name Is not found, the
link library is searched.

If the DCB parameter is omitted or if DCB= O Is specified when the LOAD macro Is
Issued by a subtask, the data sets associated with one or more data control blocks
referred to by the TASKLIB operand of previous ATTACH macros in the subtask chain
are first searched for the entry name. If the entry name Is not found, the search is
continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET ==err rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend
code that would have resulted had the task abended, and register 15 contains the
reason code that is associated with the abend. The routine does not receive control
when input parameter errors are detected.

,LSEARCH •NO
,LSEARCH .. YES

specifies whether (YES) or not (NO) you want the library search limited to the job pack
area and to the first library in the normal search sequence.

306 SPL: Application Development Macro Reference

,ADDR = load addr
,ADRNAPF • /oad addr

specifies that the module is to be loaded beginning at the designated address. The
address must specify a doubleword boundary. Storage for the module must have been
previously allocated in the requestor's key. The system does not search for the module
and does not maintain a record of the module. once it is loaded. If you code ADDA or
ADANAPF, you must also code the DCB parameter (not DCB= 0) and you must not code
GLOBAL or LOADPT.

Note: The AMODE of the load module must agree with this address. If the user
specifies an address above 16 megabytes in virtual, the load module must have an
AMODE of ANY.

If your program requires that the module be in an APF-authorized library, use ADDA;
otherwise, use ADANAPF.

• For the ADDA parameter, the system checks that the module being loaded is in an
APF-authorized library.

• For the ADANAPF parameter, the system does not check that the module resides in
an APF-authorized library. Therefore, if the module is not in an APF-authorized
library, the program must make sure that the loaded programs receive control only
in problem state.

,GLOBAL• YES
,GLOBAL= (YES,P)
,GLOBAL'"' (YES,F)
,GLOBAL=NO

specifies whether the module is to be loaded into the pageable common service area
(CSA) (GLOBAL= (YES,P) or GLOBAL= YES), loaded into fixed CSA
(GLOBAL= (YES,F)), or not loaded into CSA (GLOBAL= NO). (The module must not
have been previously loaded into CSA with different attributes by the same job step, the
module must also be reentrant and must reside in an APF-authorized library.) For
GLOBAL= (YES,F), the module must not be marked as requiring alignment on a page
boundary. If you code the GLOBAL parameter, you cannot code the ADDA or ADANAPF
parameter.

If the requested module resides in the link pack area, the LOAD request performs as
though the GLOBAL parameter was omitted. The LOAD request locates the module in
the link pack area, allows access to it, but does not load a copy of the desired module
into the common service area.

Note: A load request with the GLOBAL option does not cause the loaded module to be
implicitly known to other address spaces. The loaded module can be accessed by
other address spaces, however, only the requesting task is accountable for it (and may
therefore delete it).

,EOM==YES
,EOM=NO

indicates whether a module in global storage is to be deleted when the address space
terminates (EOM =YES) or when the task terminates (EOM =NO). If you code EOM, you
must also code GLOBAL.

,LOADPT = addr
specifies that the starting address at which the module was loaded is to be returned to
the caller at the indicated address. If you code LOADPT, you cannot code ADDA or
ADANAPF.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any va.lid coding values.

LOAD - Bring a Load Module into Virtual Storage 307

Example 1
Operation: Bring a load module with entry name PGMLKRUS into virtual storage. Let the
system find the module from available libraries.

LOAD EP=PGMLKRUS

Example 2
Operation: Bring a load module with entry name PGMEOM into pageable CSA storage and
return the load address at location PGMLPT.

LDPGM LOAD EP=PGMEOM,EOM=YES,LOADPT=PGMLPT,GLOBAL=(YES,P)

PGMLPT OS A LOAD ADDRESS RETURNED HERE

308 SPL: Application Development Macro Reference

LOAD (List Form)
The list form of the LOAD macro builds a non-executable parameter list that can be referred
to by the execute form of the LOAD macro.

The list form of the LOAD macro is written as follows:

name

LOAD

EP =entry name
EPLOC =entry name addr
DE= list entry addr

,DCB= deb addr

,LSEARCH =NO
,LSEARCH =YES

,ADDA= load addr
,ADRNAPF =load addr

,GLOBAL= YES
,GLOBAL= (YES,P)
,GLOBAL= (YES,F)
,GLOBAL=NO

,EOM=NO

,EOM=YES

,LOADPT=addr

,RELATED= value

,SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

Default: LSEARCH = NO

load addr: A-type address.

Default: GLOBAL= NO
If GLOBAL= YES is specified, the default GLOBAL= (YES,P).

Default: EOM = NO
Note: GLOBAL must be specified with EOM=YES.

addr: A-type address.
Note: ADDA and ADRNAPF cannot be specified with LOADPT.

value: any valid macro keyword specification.

The parameters are explained under the standard form of LOAD macro with the following
exception:

,SF•L
specifies the list form of the LOAD macro.

LOAD - Bring a Load Module into Virtual Storage 309

LOAD (Execute Form)
The execute form of the LOAD macro can refer to and modify the parameter list constructed
by the list form of the macro.

The execute form of the LOAD macro is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC =entry name addr
DE= list entry addr

,DCB=dcb addr

,ERRET=err rtn addr

,LSEARCH =NO
,LSEARCH=YES

,ADDR =load addr
,ADRNAPF =load addr

,GLOBAL= YES
,GLOBAL= (YES,P)

,GLOBAL= (YES,F)
,GLOBAL=NO

,EOM=NO
,EOM=YES

,LOADPT=addr

,RELATED= value

,SF= (E,list addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: RX-type address or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

Default: LSEARCH =NO

load addr: RX-type address or register (2) - (12).
Note: For an RX-type address, the operand is treated as the
address of a field that contains the actual load address.

Defautt: GLOBAL= NO
Note: If GLOBAL=YES is specified, the default is
GLOBAL= (YES,P).

Default: EOM = NO
Note: GLOBAL must also be specified with EOM =YES.

addr: RX-type address or register (2) - (12).
Note: ADDR and ADRNAPF cannot be specified with LOADPT.

value: any valid macro keyword specification.

list addr: RX-type address or register (2) - (12) or (15).

The parameters are explained under the standard form of LOAD macro with the following
exception:

,SF= (E,list addr)
specifies the execute form of the LOAD macro.

310 SPL: Application Development Macro Reference

LOCASCB - Locate ASCB

©Copyright IBM Corp. 1988, 1991

The LOCASCB macro is used to locate the ASCB address associated with a specified ASID
or STOKEN. If the caller is concerned that the ASCB might terminate while being
referenced, the caller should provide serialization to prevent ASCB termination by holding
the CMS lock.

Programs executing in cross memory mode can invoke the LOCASCB macro. When using
the ASID parameter, the program must be in primary or secondary ASC mode. For the
STOKEN parameter, the program must be in primary or in AR ASC mode.

For callers in AR mode, the LOCASCB parameter list can be located In any addressable
address space.

The LOCASCB macro uses registers 0, 1, 14, and 15, and is written as follows:

name

b

LOCASCB

b

ASID = asid addr
STOKEN = stoken addr

name: symbol. Begin name in column 1.

One or more blanks must precede LOCASCB.

One or more blanks must follow LOCASCB.

asid addr: RX-type address or register (0) - (15).
stoken addr: RX-type address

The parameter is explained as follows:

ASID =as id addr
specifies the RX-type address of a halfword that contains the ASID for which the ASCB
is to be returned or the register that contains the ASID in bits 16-31. (Bits 0-15 of the
register are ignored.) If the caller specifies (1), the ASID need not be copied into
register 1 by the macro expansion.

When LOCASCB returns control, register 1 contains the results of the locate operation
as follows:

• If register 1 is positive, it contains the ASCB address.
• If register 1 is negative or zero, the specified ASID is invalid.

STOKEN = stoken addr
Specifies the RX-type address of the STOKEN that identifies the address space for
which the ASCB is to be returned.

When LOCASCB returns control, general purpose register 1 contains the results of the
locate operation as follows:

• If the value is not zero, it is the ASCB address.
• If the value is zero, the specified STOKEN is invalid.

When LOCASCB returns control to an AR mode caller, the general purpose
register/access register 1 pair contains the ASCB address.

311

Return Codes
If you specified the ASID parameter, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

Meaning

Macro was successful.

ASID was invalid.

If you specified the STOKEN parameter, register 15 contains one of the following return
codes:

Hexadecimal
Code

00

04

08

312 SPL: Application Development Macro Reference

Meaning

Macro was successful.

STOKEN did not map to a valid ASID. Causes might be that the STOKEN you
specified identifies a data space; or the address space represented by the
STOKEN has terminated.

STOKEN was invalid

LXFRE - Free a Linkage Index

© Copyright IBM Corp. 1988, 1991

The LXFRE macro frees one or more linkage indexes. You cannot free a linkage index that
was reserved with the SYSTEM option. (See the LXRES macro). Before issuing the LXFRE
macro, disconnect all entry tables associated with the linkage index, unless you specify
FORCE= YES. If you do not disconnect the entry tables and do not specify FORCE= YES,
linkage indexes are not freed and the routine is abnormally terminated.

The requester must be in supervisor state or PKM 0-7 executing in primary mode enabled
and unlocked. Register 13 must point to a standard register save area that must be
addressable in primary mode. The parameter list passed to this macro must also be
addressable in primary mode when the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 - 13 Unchanged
14 Used as a work register by the macro
15 Return code

The standard form of the LXFRE macro is written as follows:

name

b

LXFRE

b

LXLIST =list addr

,FORCE=NO
,FORCE=YES

,RELATED=value

name: symbo!. Begin name in column 1.

One or more blanks must precede LXFRE.

One or more blanks must follow LXFRE.

list addr: RX-type address or register (0) - (12).

Default: FORCE= NO

value: any valid macro keyword specification.

The parameters are explained as follows:

LXLIST= list addr
specifies the address of a variable length list of fullword entries. The first word in the
list must contain the number (1 to 32) of linkage indexes to be freed. Each entry
following the first must contain a linkage index value specified in the form returned by
the LXRES macro.

,FORCE=NO
,FORCE=YES

specifies whether (YES) or not (NO) the linkage index is to be freed even if entry tables
are currently connected to it. Any connected entry tables are disconnected before the
linkage index is freed. FORCE= NO is the default.

313

,RELATED ... value
specifies information used to self-document macros by "relating" .functions or services
to corresponding functions or services. The format and contents of the information
specified can be any valid coding values.

When LXFRE returns control, register 15 contains contains one of the following return
codes:

Hexadecimal
Code

0

4

8

314 SPL: Application Development Macro Reference

Meaning

The specified linkage indexes were freed. No entry tables were connected.

The specified linkage indexes were freed. Entry tables were connected, but
FORCE was specified and was successfully executed.

Some of the specified linkage indexes were freed. Entry tables were connected.
FORCE was specified but one or more of the necessary disconnects failed. No
action by the issuer of LXFRE is required in this situation.

LXFRE (List Form)

The list form of the LXFRE macro is used to construct a non-executable parameter list. The
execute form of the LXFRE macro can refer to or modify the parameter list.

The list form of the LXFRE macro is written as follows:

name

b

LXFRE

b

LXLIST =list addr

,FORCE=NO
,FORCE=YES

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LXFRE.

One or more blanks must follow LXFRE.

list addr: A-type address.

Default: FORCE= NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the LXFRE macro with the
following exception:

,MF•L
specifies the list form of the LXFRE macro.

LXFRE - Free a Linkage Index 315

LXFRE (Execute Form)
The execute form of the LXFRE macro can refer to and modify a remote parameter list
created by the list form of the macro.

The execute form of the LXFRE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede LXFRE.

LXFRE

b One or more blanks must follow LXFRE.

LXLIST =list addr list addr: RX-type address or register (0) - (12l.

,FORCE=NO Default: FORCE= NO

,RELATED=va/ue value: any valld macro keyword specification.

,MF=(E,cnt/ addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the LXFRE macro with the
following exception:

,MF•(E,cnt/ addr)
specifies the execute form of the LXFRE macro. This form uses a remote parameter
list.

316 SPL: Application Development Macro Reference

LXRES - Reserve a Linkage Index

©Copyright IBM Corp. 1988, 1991

The LXRES macro reserves one or more linkage indexes for the caller's use. The reserved
linkage indexes are owned by the cross memory resource ownership task of the current
home address space. The linkage index reservation applies across all linkage tables in the
system and remains in effect until one of the following happens:

• An LXFRE macro explicitly frees a reserved linkage index.
• The cross memory resource ownership task terminates.
• The operator re-IPLs the system.

The requester must be in supervisor state or PKM 0-7 executing in primary mode enabled
and unlocked. Register 13 must point to a standard register save area that must be
addressable in primary mode. The parameter list passed to the LXRES macro must also be
addressable in primary mode at the time the macro is issued.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the macro
2 • 13 Unchanged
14 Used as a work register by the macro
15 Return code

The standard form of the LXRES macro is written as follows:

name

b

LXRES

b

LXLIST =list addr

,SYSTEM=NO
,SYSTEM= YES

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: RX-type address or register (0) - (12).

Default: SYSTEM= NO

value: any valid macro keyword specification.

The parameters are explained as follows:

LXLIST = list addr
specifies the address of a variable-length list of fullword entries. The first fullword in
the list must contain the number (1 to 32) of linkage index values to be returned. The
list must be long enough to contain the requested number of values. The linkage index
values are returned in the list entries in the proper position for ORing with the entry
index to form a PC number.

,SYSTEM=NO
,SYSTEM= YES

specifies whether (YES) or not (NO) the linkage indexes are being reserved for system
connections. If YES is specified, a subsequent ETCON macro specifying the linkage
index causes all address spaces to be connected to the entry table.

317

,RELATED• value
specifies information used to self-document macros by "relating" functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On return, register 15 contains the following return code:

Hexadecimal
Code

0

318 SPL: Application Development Macro Reference

Meaning

The specified linkage Indexes were successfully reserved.

LXRES (List Form)
The list form of the LXAES macro Is used to construct a non-executable parameter list. The
execute form of the macro can then refer to this list or a copy of it for reentrant programs.

The list form of the LXRES macro is written as follows:

name

b

LXRES

b

LXLIST =I/st addr

,SYSTEM=NO
,SYSTEM= YES

,RELATED= value

,MF=L

name~ symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: A-type address.

Default: SYSTEM =NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the LXRES macro with the
following exception:

,MF•L
specifies the list form of the LXRES macro.

LXRES- Reserve a Linkage Index 319

LXRES (Execute Form)
The execute form of the LXRES macro can refer to and modify a remote parameter list
constructed by the list form of the macro.

The execute form of the LXRES macro is written as follows:

name

b

LXRES

b

LXLIST =list addr

,SYSTEM=NO
,SYSTEM= YES

,RELATED=va/ue

,MF={E,cnt/ addr)

name:symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: RX-type address or register (0) • (12).

Default: SYSTEM= NO

value: any valid macro keyword specification.

cntl addr: RX-type address or register (0) - (12).

The parameters are explained as under the standard form of the LXRES macro with the
following exception:

,MF-(E,cnt/ addr)
specifies the execute form of the LXRES macro and cntl addr Is the name or address of
the list form of the macro.

320 SPL: Application Development Macro Reference

MGCR - Internal START or REPLY Command

© Copyright IBM Corp. 1988, 1991

The MGCR macro starts a program or subsystem from within your program and passes 31
bits of information, in the form of a token, to the started program. The MGCR macro can
also issue a reply to a WTOR macro. In other words, use MGCR to issue an internal START
or REPLY command.

The caller must have PSW key 0-7, and must include mapping macro IEZMGCR.

The MGCR macro is written as follows:

name name: symbol. Begin name In column 1.

b One or more blanks must precede MGCR.

MGCR

b One or more blanks must follow MGCR.

command-buffer-address command-buffer-address: RX-type address or register (1) or
(2) - (12).

The parameters are explained as follows:

command-buffer-address
specifies the address of a command buffer (mapped by the IEZMGCR macro) that
contains the following information.

Notes:

Name
flags1

length

flags2

text

ptoken

utoken

Length
1 byte

1 byte

2 bytes

up to 126
bytes
31 bits right­
Justified
80 bytes

Contents
If bit 0 is one, then flags2 must contain meaningful information.
Bits 1-7 must be zero.
Length of the buffer up to but not including the program token
field.
X'OOOO' - neither a program token nor a user security token
are present.
X'0800' - a program token is present.
X'0008' - a user security token is present.
X'0808' - both a program token and a user security token are
present.
Command, operands, and optional comments as follows:
command operands comments
An optional field containing any desired information, such as
an identifier that Indicates the Issuing program.
Indicates which user security token the system takes to use
for a command issued from an MCS console. The possibilities
are console, CTAS, *FAIL, or "undefined-user" ACEE.

1. Register O must contain zero.
2. The command buffer can be located in 24-blt or 31-bit addressable storage.
3. A program token is meaningful only with the START command.

Register 15 contains one of the following return codes as the result of a START command.
No return codes result from the REPLY command.

Hexadecimal
Code

00

08

Meaning

START command processed successfully. Register O contains the right-justified
ASID of the started address space.

START command failed.

321

Example 1
Operation: Issue an internal START command forthe catalogued procedure labeled PROG.
In this example, security tokens are defined, which are assumed to be set elsewhere prior
to issuing the MGCR.

*

INPUT
SECYUSE
LENGTH
SECFLGS
CMD
PTO KEN
UTOKEN

SR R0,R0
MGCR INPUT

OS 0H
DC X'80'
DC ALl(PTOKEN-INPUT)
DC X'0808'
DC C'S PROG'
DC AL4(DATA)
DC CL80

Example 2

Clear register 0
Issue macro with parameter list
defined at label INPUT

Security tokens present
Length of input command
Security token flags
The actual input command
Security token
UTOKEN

Operation: Issue an internal REPLY command in response to an action message. Security
tokens are not in use.

ISSUMGCR EQU
xc
MVC
MVC
LA
STC
SR
MGCR

*
MGCRPL(MGCRLTH),MGCRPL Clear the parameter list
MGCRTEXT(L'TXTINSRT),TXTINSRT Move in the reply buffer
REPLY,CTXTRPID Insert the reply ID
REGl,(MGCRTEXT-MGCRPL)+L'TXTINSRT Get MGCRPL length
REGl,MGCRLGTH Save length in the MGCRPL
REG0,REG0 Clear register zero
MGCRPL Issue the command

MGCR IEZMGCR DSECT=NO Mapping of MGCR parameter list
ORG MGCRTEXT

COMMAND OS CL6
REPLY OS CL2
REPLYMSG OS CL3

ORG

322 SPL: Application Development Macro Reference

Storage for REPLY verb
Reply ID
WTOR response

MODESET - Change System Status

© Copyright IBM Corp. 1988, 1991

The MODESET macro is used to change system status by altering the PSW key and/or PSW
problem state indicator. The MODESET macro has two forms: the form that generates an
SVC and the form that generates inline code

The form that generates inline code can execute in supervisor or problem program state. If
a problem state caller's key is marked as authorized in the PSW-key mask the inline form
can execute in problem state. The inline form can be used by programs executing in cross
memory mode. If the key you specify is TCB, RBT1, or RBT234, you must also ensure that
current addressability is to the home address space.

The form that generates an SVC is executable by users in supervisor state, under PSW key
0-7, or APF-authorized. The SVC form cannot be used in cross memory mode.

The macro does not generate any return codes.

323

lnllne Code Generation
The standard form of the MODESET macro that generates inline code is written as follows:

name

b

MODES ET

b

EXTKEY=key
KEYADDR =new key addr
KEY REG= new key reg

,SAVEKEY =old key addr

, WORKREG =work reg

,RELATED=value

324 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

key: one of the following:

ZERO KEY2
TCB KEYS
RBT1 KEY4
RBT234 KEY7

new key addr: RX-type address or regls~er (2).

new key reg: register 1·15 without parentheses; may be
symbolic.

old key addr: RX-type address or register (2).

Notes:

1. If KEYAODR=(2) is specified above, then SAVEKEY=c(2)
cannot be specified.

2. The WORKREG parameter Is required If SAVEKEY=A-type
address is specified.

3. If WORKREG and SAVEKEY are specified with KEYREG,
the KEYREG register should be different from the
WORKREG register. Also, if SAVEKEY is specified with
KEYREG, the KEYREG register should not be register 2.

work reg: decimal digits 0·15 without parentheses.

Notes:

1. WORKREG Is required If the following are specified:

EXTKEY=TCB
EXTKEY = RBT234
EXTKEY = RBT1
KEYADDR =A-type address

2. The WORKREG parameter should be register 1-15 if one of
these four parameters is specified because WORKREG is
used as a base register on the SPKA instruction.
WORKREG = 0 sets the PSW key to zero.

value: any valid macro keyword specification.

The parameters are explained as follows:

EXTKEY-key
specifies the key to be set in the current PSW or the address of the key.

ZERO - Key of zero is to be set.

TCB - Key is to be obtained from the caller's TCB.

RBT1 - Key from the active RB of type 1 SVC routine issuing MODESET.

RBT234 - Key from the active RB preceding SVRB of type 2, 3, or 4 SVC routine
issuing MODESET.

KEY2 - Key of 2 is to be set.

KEY3 - Key of 3 is to be set.

KEY 4 - Key of 4 is to be set.

KEY7 - Key of 7 is to be set.

KEYADDR =new key addr
specifies a location 1 byte in length which contains the key in bit positions 0-3. If
register (2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are
ignored). This parameter permits a previously saved key to be restored. If TCB, RBT1
or RBT234 is specified as the key address, the TCB mapping macro IKJTCB is required.
The user is expected to establish addressability to the TCB with a USING statement.

KEYREG •new key reg
specifies a register that contains a key value in bit positions 24-27.

,SAVEKEY •old key addr
specifies a location 1 byte in length where the current PSW key is to be saved, in bit
positions 0-3. If register (2) is specified, the key is left in register 2.

, WORKREG ==work reg
specifies the register into which the contents of register 2 are to be saved while
performing the SAVEKEY function, or the working register to be used by the EXTKEY or
KEYADDR function. If WORKREG = 2 is specified, no register saving takes place.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

MODESET - Change System Status 325

SVC Generation
· The standard form of the. MODESET macro that generates an SVC Is written as follows:

name

b

MODES ET

b

KEY=ZERO
KEY=NZERO

,MODE= .PROB
,MODE=SUP

,RELATED= value

name: symbol. Begin name In column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

Note: KEY is required if MODE Is not specified.

Nole: MODE is required if KEY Is not specified.

value: any valid macro keyword specification.

The parameters are explained as follows:

KEY•ZERO
KEY•NZERO

specifies that the PSW key (bits 8-11) Is to be either set to zero (ZERO) or set to the
value in the caller's TCB (NZERO).

,MODE•PROB
,MODE-= SUP

specifies that the PSW problem state indicator (bit 15) is to be either turned on (PROB)
or turned off (SUP). If the MODESET operation completes with a problem state PSW,
only the key specified by the problem state PSW will be authorized.

Example 1
Operation: Save the current PSW key, and change the key to that of the active TCB.

MODESET EXTKEY=TCB,SAVEKEY=KEYSAVE,WORKREG=l

Example2
Operation: Change to supervisor mode and key zero.

MODESET KEY=ZERO,MODE=SUP

Example3
Operation: Save the current key at location KEY and set the key to the value contained in
bits 24-27 of register 3.

MODESET KEYREG=REG3,SAVEKEY=KEY,WORKREG=4

326 SPL: Application Development Macro Reference

MODESET (List Form)

The list form of the MODESET macro that generates an SVC is written as follows:

name

b

MODESET

b

KEY=ZERO
KEY=NZERO

,MODE=PROB
,MODE=SUP

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

Note: KEY is required if MODE is not specified.

Note: MODE is required if KEY is not specified.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the MODESET macro, with the
following exception:

,MF•L
specifies the list form of the MODESET macro.

MODESET - Change System Status 327

MODESET (Execute Form)
The execute.form of the MODESET macro that generates an SVC is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede MODESET.

MODESET

b One or more blanks must follow MODESET.

RELATED= value, value: any valid macro keyword specification.

MF ... (E,list addr) list addr: RX-type address, or register (1).

The parameters are explained under the standard form of the MODESET macro, with the
following exception:

MF• (E,list addr)
specifies the execute form of the MODESET macro, using a parameter list address.

328 SPL: Application Development Macro Reference

NIL- Provide a Lock Via an AND IMMEDIATE (NI) Instruction

©Copyright IBM Corp. 1988, 1991

The NIL macro is used to provide a lock on a byte of storage on which an AND IMMEDIATE
(NI) instruction is to be executed. Because the byte of storage exists in a multiprocessing
environment, the possibility exists that the byte might be changed by another processor at
the same time. Storage modification during NIL processing is accomplished by using the
compare and swap (CS) instruction.

For details on the AND IMMEDIATE and compare and swap instructions, see Principles of
Operation.

The NIL macro is written as follows:

name

f>

NIL

f>

byte addr

,mask

,REF= stor addr

,WREGS = (reg1 ,reg2,reg3)
. WREGS= (reg1 ,reg2)
,WREGS = (reg1 .,reg3)
, WREGS = (,reg2,reg3)
,WREGS= (reg1)
, WREGS = (,reg2)
, WREGS = (.,reg3)

name: symbol. Begin name in column 1.

One or more blanks must precede NIL.

One or more blanks must follow NIL.

byte addr: RX-type address.

mask: symbol or self defining term.

stor addr: RX-type address.

reg1: symbol, or decimal digits 0-15.
reg2: symbol, or decimal digits 1-15 .
reg3: symbol, or decimal digits 0-15.
Default for reg1: 0
Default for reg2: 1
Default for reg3: 2

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the AND function is to be applied.

,mask
specifies the value to be ANDed to the byte at the address specified above.

,REF== stor addr
specifies the address of a storage location on a fullword boundary. This address
provides the means by which the compare and swap instruction may be executed. The
address must be less than or equal to the byte address specified above, and the
difference between the addresses must be less than 4095. The two addresses must be
addressable via the same base register.

, WREGS == (reg1 ,reg2,reg3)
, WREGS = (reg1 ,reg2)
,WREGS = (reg1 ,,reg3)
,WREGS-(,reg2,reg3)
,WREGS• (reg1)
, WREGS = (,reg2)
,WREGS • (,,reg3)

specifies the work registers to be used to perform the compare and swap instruction.
reg1 is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and
reg3 is used to contain the mask.

329

Example
Operation: Turn off bit TNVLXMET in byte TNVLCS1. The reference field, TNVLFW3;
specifies the word being updated.

NIL TNVLCS1,X'FF'-TNVLXMET,REF=TNVLFW3

330 !)PL: Application Development Macro Reference

NUCLKUP - Nucleus Map Lookup Service

© Copyright IBM Corp. 1988, 1991

The NUCLKUP macro can be used either to retrieve the address and AMODE of a nucleus
CSECT or ENTRY or to retrieve the name and address of the nucleus CSECT, which is
pointed to by a given address within the CSECT.

This macro runs in the key and state of the caller. On entry to this macro, register 13 must
point to a 72-byte register save area. Users must include the CVT mapping macro.

The NUCLKUP macro is written as follows:

name

NUCLKUP

b

BYNAME,NAME=name id
BYADDR,NAME=name toe

,ADDR=addr

name: symbol. Begin name in column 1.

One or more blanks must precede NUCLKUP.

One or more blanks must follow NUCLKUP.

name id: 8-byte literal (enclosed in apostrophes), or the
address of the 8-byte literal which can be either an RX-type
address, or register (1) - (12).
name foe: RX-type address or register (1) - (12).

addr: RX-type address, or register (0) or (2) - (12).

The parameters are explained as follows.

BYNAME
BYADDR

specifies the function to be performed. If BYNAME is specified, the user supplies the
name of a CSECT or ENTRY and receives the address and AMODE of that CSECT or
ENTRY. If BYADDR is specified, the user supplies an address within a CSECT and
receives the name and address of the CSECT.

,NAME•name id
,NAME• name foe

specifies the name or the location of the name of the CSECT depending on the option
requested. If the user specifies BYNAME, name Id contains the 8-character name to be
searched for or the address of that name. If the user specifies BYADDR, name foe will
contain the address of the 8-byte area in which the CSECT name is to be returned.

,ADDR•addr
contains the address to be searched for if BYADDR is specified; contains the address of
the CSECT or ENTRY that is returned if BYNAME is specified.

The NUCLKUP service routine sets bit O of the word containing the address returned on
a BYNAME request to indicate the AMODE. For example, if the requestor's AMODE is
31-bit and the AMODE of the CSECT is ANY, the NUCLKUP service routine sets bit 0 to
1. The setting of bit O is summarized in the following table:

Requestor's AMODE AMODE of CSECT

24 31 ANY

24 e 1 e
31 e 1 1

331

When control is returned, the registers contain the following information:

Register
0

2-14

15

Meaning
For a BYNAME request, the address and AMODE of the CSECT or ENTRY; for a
BYADDR request, the 31-bit address of the CSECT

For a BYNAME request, the high-order byte is zero and the low-order three bytes
contain the length from the entry point to the end of the CSECT; for a BY ADDR
request, unchanged

Unchanged

Return code

The return codes in register 15 are as follows:

Hexadecimal
Code

0

4

8

Example

Meaning

The request was satisfied.

The request was not satisfied.

For a BYNAME request, the name was not found and the location containing the
address was set to zero.

For a BY ADDR request, the address was not found in the nucleus and the location
containing the name was set to zero.

The request was not satisfied because the type of request was not specified
correctly. The locations containing the name and address were set to zero.

Operation: Place the address and AMODE of entry point IEAVESTU in register 0.

NUCLKUP BYNAME,NAME='IEAVESTU',ADDR=(0)

332 SPL: Application Development Macro Reference

OIL- Provide a Lock Via an OR IMMEDIATE (01) Instruction

©Copyright IBM Corp. 1988, 1991

The OIL macro is used to provide a lock on a byte of storage on which an or immediate (01)
instruction is to be executed. Because the byte of storage exists in a multiprocessing
environment, the possibility exists that the byte might be changed by another processor at
the same time. Storage modification during OIL processing is accomplished by using the
compare and swap (CS) instruction.

For details on the or immediate and compare and swap instructions, see Principles of
Operation.

The OIL macro is written as follows:

name

b

OIL

b

byte addr

,mask

,REF= stor addr

,WREGS= (reg1 ,reg2,reg3)
,WREGS= (reg1 ,reg2)
,WREGS= (reg1 ,.reg3)
, WREGS = (,reg2,reg3)
,WREGS= (reg1)
, WREGS = (,reg2)
, WREGS = (,.reg3)

name: symbol. Begin name in column 1.

One or more blanll;s must precede OIL.

One or more blanks must follow OIL.

byte addr: RX-type address.

mask: symbol or self defining term.

stor addr: RX-type address.

reg1: symbol, or decimal digits 0-15.
reg2: symbol, or decimal digits 0-15.
reg3: symbol, or decimal digits 0-15.
Default for reg1: O
Default for reg2: 1
Default for reg3: 2

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the OR function is to be applied.

,mask
specifies the value to be ORed to the byte at the address specified above.

,REF ... stor addr
specifies the address of a storage location on a fullword boundary. This address
provides the means by which the compare and swap instruction may be executed. The
address must be less than or equal to the byte address specified above, and the
difference between the addresses must be less than 4095. The two addresses must be
addressable via the same base register.

, WREGS = (reg1 ,reg2,reg3)
,WREGS = (reg1 ,reg2)
,WREGS = (reg1 .,reg3)
,WREGS- (,reg2,reg3)
,WREGS= (reg1)
,WREGS= (,reg2)
, WREGS = (,.reg3)

specifies the work registers to be used to perform the compare and swap Instruction.
reg1 is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and
reg3 is used to contain the mask.

333

Example
Operation: Turn on bit TVNLXMET in byte TVNLCS1. The reference field TVNL specifies
the area containing the word being updated.

OIL TVNLCSl,TVNLXMET,REF=TVNL

334 SPL: Application Development Macro Reference

OUT ADD - Create Output Descriptor

© Copyright IBM Corp. 1988, 1991

Use the OUT ADD macro to create an output descriptor for a system output (sysout) data set.
For information about using the OUTADD macro, see "Dynamic Output" in SPL: Application
Development Guide.

The OUTADD macro has no standard form. Use the list form to generate a storage
declaration for the input parameter list to dynamic output. Use the execute form to modify
the parameter list and invoke dynamic output.

The list form of the OUT ADD macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede OUTADD.

OUT ADD

b One or more blanks must follow OUTADD.

MF=L

The parameters of the list form, which are both required, are explained as follows:

name
The list form defines the storage area to be used as the input parameter list to the
OUT ADD macro. name specifies the symbolic address of this storage.

MF-=L
specifies the list form of the OUT ADD macro.

Example
Operation: Use the list form of the OUT ADD macro to generate the input parameter list that
is to be used by the execute form of the OUT ADD macro. Locate the parameter list at
symbolic location, PARML.

PARML OUTADD MF=L

335

OUTADD (Execute Form)
The execute form of the OUT ADD macro modifies and executes the parameter list that was
built with the list form of the OUT ADD macro.

The execute form of the OUTADD macro is written as follows:

name

OUT ADD

b

NAME= descriptor name addr
SYSNAME =descriptor name addr

,TEXTPTR =tu pointer addr

,ENQ =CONDITIONAL
,ENQ =UNCONDITIONAL

,MF= (E,/lst addr)

name: symbol. Begin name in column 1.

One or more blanks must precede OUT ADD.

One or more blanks must follow OUTADD.

descriptor name addr: Rx-type address or register (2)-(12).

tu pointer addr: Rx-type address or register (2)-(12).

Default: ,ENQ =UNCONDITIONAL

list addr: Rx-type address or register (2)-(12).

The parameters are explained as follows:

NAME• descriptor name addr
specifies the address of an eight-character field. This field contains the the name of the
output descriptor that is to be added. It is mutually exclusive with SYSNAME. NAME or
SYSNAME must be specified.

SYSNAME •descriptor name addr
specifies the address of an eight-character field that a system-generated output
descriptor name is to be returned in. SYSNAME is mutually exclusive with NAME.
SYSNAME or NAME must be specified.

, TEXTPTR =tu pointer addr
specifies the address of the text unit pointer list. It is a required parameter.

,ENQ ==CONDITIONAL
,ENQ- UNCONDITIONAL

specifies whether the create request is to be conditional or unconditional.

,MF• (E,list addr)
specifies the execute form of the OUT ADD macro. list addr is the address of the
parameter list.

Example
Operation: Use the execute form of the OUT ADD macro to modify and execute a parameter
list at symbolic location PLIST. The output descriptor Is at symbolic location, DESCR2. The
text unit pointer list is at symbolic location, TEXTL.

OUTADD NAME=DESCR2,TEXTPTR=TEXTL,MF=(E,PLIST)

336 SPL: Application Development Macro Reference

OUTDEL - Delete Output Descriptor

© Copyright IBM Corp. 1988, 1991

Use the OUTDEL macro to delete an output descriptor for a system output (sysout) data set.
For information about using the OUTDEL macro, see "Dynamic Output" in SPL: Application
Development Guide.

The OUTDEL macro has no standard form. Use the list form to generate a storage
declaration for the input parameter list to dynamic output. Use the execute form to modify
the parameter list and invoke dynamic output.

The list form of the OUTDEL macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede OUTDEL.

OUTDEL

b One or more blanks must follow OUTDEL.

,MF=L

The parameters of the list form, which are both required, are explained as follows:

name
specifies the symbolic name to be associated with the storage declaration generated by
the list form. It is a required parameter.

,MF•L
specifies the list form of the OUTDEL macro.

Example
Operation: Use the list form of the OUTDEL macro to generate the input parameter list that
is to be used by the execute form of the OUTDEL macro. Locate the parameter list at
symbolic location, PARML.

PARML OUTDEL MF=L

337

OUTDEL (Execute Form)
The execute form of the OUTDEL macro modifies and executes the parameter list that was
built by using the list form of the OUTDEL macro.

The execute form of the OUTDEL macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede OUTDEL.

OUTDEL

b One or more blanks must follow OUTDEL.

NAME=descriptor name addr descriptor name addr: Rx-type address or register (2)-(12).

,MF= (E,list addr) list addr: Rx-type address or register (2)-(12).

The parameters are explained as follows:

NAME ... descriptor name addr
specifies the address of an eight-character field. This field contains the the name of the
output descriptor that is to be deleted.

,MF• (E,list addr)
specifies the execute form of the OUTDEL macro. list addr Is the address of the
parameter list.

Example
Operation: Use the execute form of the OUTDEL macro to modify and execute a parameter
list at symbolic location PLIST. The output descriptor is at symbolic location, DESCR2.

OUTDEL NAME=DESCR2,MF=(E,PLIST)

338 SPL: Application Development Macro Reference

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information

STACK Option of PCLINK

© Copyright IBM Corp. 1988, 1991

Routines that receive control as a result of a basic PC instruction use the PCLINK macro to
provide a standardized method of maintaining basic PC linkage information. PCLINK has
three forms:

• PCLINK STACK saves some of the environment when a routine gets control as a result
of a basic PC instruction.

• PCLINK UNSTACK restores that environment before the routine issues a PT instruction
to return control to the calling routine.

• PCLINK EXTRACT retrieves information from the saved environment.

Note: Do not issue PCLINK for a routine that receives control as the result of a stacking PC
instruction.

To use PCLINK STACK you must be in primary mode and supervisor state. You must not
change registers 13-4 between the time you get control and the time you issue PCLINK
STACK.

The STACK option of the PCLINK macro is written as follows:

name

b

PCLINK

b

STACK

,INKEY=ZERO

,OUTKEY =CALLER
,OUTKEY=ZERO
,OUTKEY=KEYn

,SAVE=YES
,SAVE=NO

,RELATED=va/ue

name: symbol. Begin name in column 1.

One or more blanks must precede PCLINK.

One or more bianks mus\ foiiow PCLiNK.

Default: OUTKEY =CALLER

n: Any valid PSW key value from 0-F.

Default: SAVE=YES

value: any valid macro keyword specification.

The parameters are explained as follows:

STACK
saves some of the environment when a routine gets control as a result of a basic PC
instruction. STACK is a required parameter.

,INKEY =ZERO
specifies that the PSW key is zero upon entry to PCLINK. If this parameter is not
specified, the PSW key is temporarily changed to zero.

339

,OUTKEY •CALLER
,OUTKEY •ZERO
,OUTKEY ... KEYn

specifies the setting of the PSW key after the PCLINK macro has completed. Specifying
CALLER causes the PSW key to be restored to the value it had on entry. Specifying
ZERO sets the PSW key to zero. Specifying a key value indicates a specific value for
the key. You may specify any key value from Oto F.

,SAVE•YES
,SAVE•NO

specifies whether (YES) or not (NO) to preserve registers 8 - 12. The save area used is
different from the area addressed by register 13. SAVE=YES is the default.
Processing is more efficient if you code SAVE= NO.

,RELATED• value
specifies information used to self-document macros by "relating" functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On completion of PCLINK STACK, the registers are as follows:

RO,R1 Unchanged

R2

R3,R4

R5

R6,R7

R8-R12

R13

R14

R15

Bits 0-23 contain bits 8-31 from register 2 at the time the macro was issued.
Bits 24-31 contain the PCLINK caller's PSW key.

Unchanged

Linkage register to return from PCLINK STACK

Unchanged

Unchanged if SAVE= YES Unpredictable if SAVE= NO

0, to ensure that the first save area created after the basic PC does not point
to a previous save area.

Stack token to uniquely identify the stack entry created. This token is
required for the UNSTACK and EXTRACT forms of PCLINK.

Unchanged

340 SPL: Application Development Macro Reference

UNSTACK Option of PCLINK
To use PCLINK UNSTACK, you must be in supervisor state. In addition, if you specify
PCLINK UNSTACK,THRU and the token contained in the specified register indicates the
stack element most recently queued for that unit of work, you must be in primary mode and
the PASID must be the same as when the stack element was created.

The UNSTACK option of the PCLINK macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PCLINK.

PCLINK

b One or more blanks must follow PCLINK.

UNSTACK

,THRU =(reg)
,TO= (reg)
,PURGE=YES

,INKEY=ZERO

,OUTKEY =STACK
,OUTKEY =ZERO

,SAVE=YES
,SAVE=NO

. ERRET=addr

, RELATED= value

reg: Register (0) - (15).

Default: OUTKEY =STACK

Default: SAVE=YES

addr: RX-type address or register (0) - (13) or (15) .

value: any valid macro keyword specification.

The parameters are explained as follows:

UNSTACK
restores the environment before the routine issues a PT instruction to return control to
the calling routine. UNSTACK is a required parameter.

,THRU=(reg)
specifies that the stack element identified by the token contained in the specified
register, as well as all more recently stacked elements, are to be removed from the
requestor's stack. The stack element specified by the token is used to restore
registers. If the system cannot process the request, the routine specified by the ERRET
parameter gets control; if the ERRET parameter is not specified, the requester is
abnormally terminated.

Processing is more efficient if you issue a separate PCLINK UNSTACK,THRU for each
stack element you want to dequeue rather than unstacking several elements at a time.

If the token you specify represents the most recently enqueued stack element, the
PASID when UNSTACK,THRU is issued must be the same as the PASID when PCLINK
ST ACK was issued for that element.

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 341

When a PCLINK UNSTACK,THRU is completed, the PSW program mask is restored from
the stack element identified by the token and the registers are as follows:

RO-R1

R2

R3

R4-R7

R8-R12

R13,R14

R15

,TO= (reg)

Unchanged

Bits 24-27 contain the PSW key from the stack element identified by the
token

As saved by PCLINK STACK

Unchanged

Unchanged if SAVE= YES is specified Unpredictable if SAVE= NO is
specified

As saved by PCLINK STACK

Unchanged

specifies that all stack elements stacked more recently than the element identified by
the token contained in the specified register are to be removed from the stack. The
element identified by the token remains on the stack. If the system cannot process the
request, the routine specified by the ERRET parameter gets control; if the ERRET
parameter is not specified, the requestor is abnormally terminated.

Use the TO parameter for stack cleanup in an FRR or ESTAE retry routine or in an FRR
that is going to retry.

When a PCLINK UNSTACK.TO is completed, the registers are as follows:

RO,R1

R2

R3-R7

R8-R12

R13

R14-R15

,PURGE=YES

Unpredictable

Unchanged if INKEY=ZERO is specified and ERRET is not specified,
otherwise, PSW key of PCLINK caller

Unchanged

Unchanged if SAVE= YES is specified Unpredictable if SAVE= NO is
specified

Unchanged

Unpredictable

specifies that each stack element is to be freed until no more exist on the requestor's
stack. Any element that resides in a terminated address space as well as elements
stacked prior to it are not freed, but the stack pointer indicates an empty stack and the
PCLINK request returns normally to the caller.

The ERRET parameter cannot be used with PURGE.

When the PCLINK UNSTACK.PURGE is completed, the registers are as follows:

RO,R1

R2

R3-R7

R8-R12

R13

R14-R15

,INKEY =ZERO

Unpredictable

Unchanged if INKEY=ZERO is specified, otherwise PSW key of PCLINK
caller

Unchanged

Unchanged if SAVE= YES is specified Unpredictable if SAVE= NO is
specified

Unchanged

Unpredictable

specifies that the PSW key is zero on entry to PCLINK. If this parameter is not
specified, the key is temporarily changed to zero.

342 SPL: Application Development Macro Reference

,OUTKEY •ST ACK
,OUTKEY •ZERO

specifies the setting of the PSW key after the PCLINK request is completed. Specifying
OUTKEY=ZERO returns to the caller in key zero. Specifying OUTKEY=STACK
restores the key to the value contained in the stack element identified by token.
OUTKEY=STACK is the default.

This parameter is valid only with PCLINK UNSTACK,THRU.

,SAVE=YES
,SAVE=NO

specifies whether (YES) or not (NO) registers 8 - 12 are to be preserved. The save area
used for these registers is not the area pointed to by register 13.

,ERRET = addr
specifies the address of an exit routine to be given control if PCLINK UNSTACK
encounters an error. ERRET is valid only with the TO and THRU parameters.

The ERRET exit routine receives control in the addressing mode of the caller of
PCLINK. When an ERRET exit routine gets control, the cross memory state is the same
as when the PCLINK macro was issued. The registers are as follows:

RO,R1 ,R3,R13 Unpredictable

R2 PSW key of PCLINK caller

R4-R7 Unchanged

R8-R12 Unchanged if SAVE=YES is specified
Unpredictable if SAVE= NO is specified

R14 The token passed as input

R15

4 - stack was empty
8 - input token is invalid
12 - an address on the queue is invalid
16 - an ASID on the queue is invalid
20 - Unknown error

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 343

EXTRACT Option of PCLINK
To use PCLINK EXTRACT, you must either be in PSW key 0, supervisor state, or have a
PSW key mask authorized for key O.

In addition, you must have addressability to the same address space as when PCLINK
STACK was issued for the stack element from which you are extracting data.

PCLINK EXTRACT modifies registers 0, 1, 14, and 15. If ALL=YES Is specified, registers
13-4 are also modified.

The EXTRACT option of the PCLINK macro Is written as follows:

name

b

PCLINK

b

EXTRACT

,TOKEN= (reg)

,ALL=YES
,SVAREA=(reg)
,RETADR=(reg)
,PARM15= (reg)
,PARMO=(regJ
,PARM1 =(reg)
,KEY=(reg)
,ASID =(reg)
,LP=(reg)
,ENTRY= (reg)

, RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede PCLINK.

One or more blanks must follow PCLINK.

reg: Register (OJ - (15).

value: any valid macro keyword specification.

The parameters are explained as follows:

EXTRACT
retrieves information from the saved environment. EXTRACT is a required parameter.

, TOKEN - (reg)
specifies a register that contains a 32-bit stack token identifying the most recently
stacked element.

,ALL=YES
specifies that all information stored in the stack element identified by the token is to be
extracted. The stored information is placed into the same registers (registers 13, 15,
and 0-4) it was in when PCLINK STACK was issued. Registers 5 and 14 are not
restored.

,SVAREA =(reg)
specifies a register into which the address of the program call issuer's save area is to
be placed.

,RETADR •(reg)
specifies a register into which the AMODE (In which control is to be returned), the
return address, and PSW problem state bit are to be placed. These occupy bits O, 1-30,
and 31, respectively.

344 SPL: Application Development Macro Reference

,PARM15 •(reg)
,PARM1 • (reg)
,PARMO •(reg)

specifies a register into which the contents of register 15 (PARM15), register 1
(PARM1), or register 0 (PARMO) at the time PCLINK STACK was issued are to be
placed.

,KEY=(reg)
specifies a register into which the basic PC issuer's PSW key is to be placed. The key
occupies bit positions 24-27.

,ASID .. (reg)
specifies a register into which the basic PC issuer's PSW key mask (bits 0-15) and ASID
(bits 16-32) are to be placed.

,LP-(reg)
specifies a register into which the latent parameter pointer is to be placed.

,ENTRY• (reg)
specifies a register into which the contents of register 5 as established by the PCLINK
STACK macro are to be placed. Bit O of the register used by the ENTRY parameter
specifies the addressing mode of the program call routine that issued the PCLINK
macro.

,RELATED• value
specifies information used to self-document macros by "relating" functions or services
to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 345

346 SPL: Application Development Macro Reference

PGANY - Page Anywhere

© Copyright IBM Corp. 1988, 1991

Note: The PGSER macro is the preferred programming interface.

Some fixed pages are assigned within the first 16 megabytes of storage. The system
assumes that once a page has been fixed, it is likely to be fixed again. The next time that
page is loaded, the system tries to put it in the first 16 megabytes in anticipation of a fix.
Use the PGANY macro to indicate to the system that no further page fixes are planned for a
particular page and that the next time the page is loaded, the system can put it anywhere.

Entry is by means of an SVC. The caller can be in either problem or supervisor state and
must not hold any locks.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return, register contents are as follows:

R 0-1
R 2-14
R 15

Used as work registers by the macro
Unchanged
Return code

The PGANY macro is written as follows:

name

PG ANY

b

L,LA =list addr

R,A =start addr

,EA= end addr

name: symbol. Begin name in column 1.

One or more blan~.s m1_1,;t precede PGANY.

One or more blanks must follow PGANY.

list addr: RX-type address or register (1) or (2) - (12).

start addr: RX-type address or register (1), (2) - (12).

end addr: RX-type address or register (15), (2) - (12).
Note: Cannot be specified unless R is specified.
Default: EA= start addr + 1.

The parameters are explained as follows:

L
specifies that the virtual subarea list (VSL) is being supplied with this request. (See
"Input to Page Services" in SPL: Application Development Guide for a description of the
virtual subarea list.)

,LA= list addr
specifies the address of the virtual subarea list.

347

R
specifies that the necessary parameters will be passed in registers. A virtual subarea
list is not being supplied.

,A= start addr
specifies the address of the start of the virtual area.

,EA=end addr
specifies the end + 1 byte of the virtual area. ff this parameter is not coded, the
default is the start address + 1.

Note: start addr and end addr must be located in 24-bit addressable storage.

Upon completion, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

10

14

Meaning

Operation completed normally.

Parameter error, X'171' abend, operation terminated because of invalid address
in VSL entry.

Parameter error, X'171' abend, operation terminated abnormally because the VSL
list was invalid.

Environmental error, X'028' abend.

For return codes 04 and 10, registers are loaded before the abend as follows:

RO
R1
R2-R10
R11
R12
R13-R14
R15

Unpredictable
Abend code
Unpredictable
Address of input VSL list or O for R-form
O (ECB address = 0)
Current VSL entry being processed
Return code

348 SPL: Application Development Macro Reference

PGFIX - Fix Virtual Storage Contents

© Copyright IBM Corp. 1988, 1991

Note: The PGSER macro is the preferred programming interface.

The PGFIX macro makes virtual storage areas, below 16 megabytes, resident in central
(also called real) storage and ineligible for page-out while the requesting task's address
space is swapped into central storage. PGFIX ignores requests to fix storage in a system
area that has the fixed attribute (for example, the LSQA and SQA). A FIX request for a page
in the LSQA or SQA will not cause the page to be backed by central storage below 16
megabytes. A subsequent PGFREE is effective only if issued by the same task. The PGFIX
function is available only to authorized users.

PGFIX does not prevent pages from being paged out when an entire address space is
swapped out of central storage. Consequently, when using the PGFIX macro, you can not
assume a constant real address mapping for fixed pages that are susceptible to swapping.

The standard form of the PGFIX macro is written as follows:

name

b

PGFIX

b

R
L

,LA= list addr

,A= start addr

,ECB = ecb addr

,EA= end addr

,LONG=Y
,LONG=N

,RELEASE=N
,RELEASE=Y

, RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIX.

One or more blanks must follow PGFIX.

list addr: A-type address, or register (i) or (2) - (12).

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: LONG= Y

Default: RELEASE= N
Note: RELEASE=Y may only be specified with EA above.

value: any valid macro keyword specification.

The parameters are explained as follows:

R
specifies that no parameter list is being supplied with this request.

L
specifies that a parameter list is being supplied with this request.

,LA= list addr
specifies the address of the first entry of a virtual subarea list (VSL). See "Input to Page
Services" in SPL: Application Development Guide for a description of the VSL.

,A= start addr
specifies the start address of the virtual area to be fixed.

Note: start addr must be located in 24-bit addressable storage.

349

,ECB = ecb addr
specifies the address of the ECB that is used to signal event completion. If the ECB
address specified is zero, (ECB = O or ECB =(register) where the contents of the
register specified is 0), the fix request is completely satisfied before control is returned.

Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that
the list and associated ECBs are fixed in central storage before issuing the WAIT. The
PGFIX service routine ensures that the specified ECB is fixed.

,EA= end addr
specifies the end address + 1 of the virtual area to be fixed.

Note: end addr must be located in 24-bit addressable storage.

,LONG=Y
,LONG=N

specifies that the relative real time duration anticipated for the fix is long (Y) or short
(N).

,RELEASE=N
,RELEASE=V

specifies that the contents of the virtual area is to remain intact (N) or be released (Y)
before the fix is done.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Upon completion, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

10

Meaning

Operation completed normally; ECB posted complete.

Operation abnormally terminated with a X'171' abend. Operation incomplete
because of invalid address virtual subarea list entry; ECB posted complete. See
Message Library: System Codes for a complete description of the register
contents after a X'171' abend.

Operation proceeding; ECB will be posted when all requested pages are fixed in
central storage.

Operation abnormally terminated with a X'171' abend. Virtual subarea list entry
or ECB address invalid; no ECB is posted. See Message Library: System Codes
for a complete description of the register contents after a X'171' abend.

The ECB is unchanged if the request was initiated but not complete (return code 8), or if an
ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code:

0 - operation completed successfully.
4 - operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging 110 has
completed, with code:

0 - operation completed successfully.
4 - operation incomplete because of paging error; requesting TCB will be abnormally

terminated.

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

350 SPL: Application Development Macro Reference

Example 1
Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full
4096-byte page containing the specified byte is actually fixed. The storage is long fixed.

PGFIX R,A=(R3),ECB=(R5)

Example 2
Operation: Fix virtual storage without using a virtual subarea list. Storage is long fixed.

PGFIX R,A=(R3),EA=(R4),ECB=ECB1

Example 3
Operation: Fix, but not long-fix, virtual storage, and ensure that the pages fully included in
the address range are forfeited before fixing the area specified by registers 3 and 4.

PGFIX R,A=(R3),EA=(R4),ECB=(R5),LONG=N,RELEASE=Y

PGFIX - Fix Virtual Storage Contents 351

352 SPL: Application Development Macro Reference

PGFIXA - Fix Virtual Storage Contents

© Copyright IBM Corp. 1988, 1991

Note: The PGSER macro is the preferred programming interface.

The PGFIXA macro makes virtual storage areas, below 16 megabytes, resident in central
(also called real) storage and ineligible for page-out while the requesting task's address
space is swapped into central storage. The PGFIXA function is available only to key zero
and supervisor state users. The PGFIXA macro executes short-term, synchronous page
fixes. The preferred area(s) of storage are intended for long term page fixes. A long term
page fix in the V = R or non-preferred areas may delay V = R functions or CON FIG STORAGE
commands. All fix processing is assumed to be short-term and is complete when control is
returned to the issuer of the macro.

PGFIXA does not prevent pages from being paged out when an entire address space is
swapped out of central storage. Consequently, when using the PGFIXA macro, you cannot
assume a constant real address mapping for fixed pages that are susceptible to swapping.

Output
If the PGFIXA is successful, control is returned enabled to the user, all pages are fixed, and
register 15 contains a return code of zero.

If the PGFIXA is unsuccessful, the user will be abended with a system completion code of
X'171' or a system complete code of X'028'. For X'171' abends, all pages processed up to,
but not including the page causing the error, will be fixed. Register 10 will contain the
address of the pages in error_ when the abend is issued. No pages will be fixed in the event
of a X'028' abend.

Restrictions
Use of the PGFIXA macro is subject to the following restrictions:

• Can be used on!y for short term synchronous fixes.

• The user must be in supervisor state with a protection key of zero.

• The user must not hold any spin locks.

• The program mask byte in the PSW is zero and interrupts are enabled upon return from
the PGFIXA.

• The user is responsible for freeing any pages fixed via the PGFIXA. A corresponding
PGFREEA macro should be issued. In addition, an FAR should be established during the
period where fixes are outstanding. The FAR should free the frames in case there is an
unexpected error.

• DSECTs for the IHAPSA, CVT, and IHAPVT must be provided.

• The user must ensure that the end address is greater than or equal to the start address.

• The SAVE keyword can only be used with TYPE= R.

353

The standard form of the PGFIXA macro is written as follows:

name

PGFIXA

,TYPE=L
,TYPE=R

,SAVE=YES
,SAVE=NO

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIXA.

One or more blanks must follow PGFIXA.

Default: TYPE= R

Default: SAVE= YES

The parameters are explained as follows:

TYPE=L
TYPE=R

specifies the type of input. When L is specified, register 1 is to contain the address of a
virtual subarea list (VSL) fixed in storage. (See the topic "Input to Page Services" in
SPL: Application Development Guide for a description of the VSL.) By specifying
TYPE= L, registers 1 through 13 are saved. If TYPE= R is specified, then register 1
contains the address of the first byte to be fixed in a contiguous range and register 2
contains the address of the last byte to be fixed (actual end address). When TYPE= R is
specified, the registers saved depend upon what is specified on the SAVE parameter.

Note: All other users of the PGFIX, PGFIXA (TYPE= L), and PGFREEA macros must
specify the actual end address plus one.

,SAVE=YES
,SAVE=NO

specifies the registers to be saved for TYPE= R. Registers 1 through 13 are saved if
SAVE= YES is specified or if the default is taken. Registers 2 through 1 O are saved if
SAVE= NO is specified.

Example 1
Operation: Use PGFIXA to fix virtual storage without using a virtual subarea list. Registers
2 through 10 will be saved.

FIXl PGFIXA TYPE=R,SAVE=NO

Example 2
Operation: Use PGFIXA to fix virtual storage using a virtual subarea list. Registers 1
through 13 will be saved.

FIX2 PGFIXA TYPE=L

354 SPL: Application Development Macro Reference

PGFREE - Free Virtual Storage Contents

© Copyright IBM Corp. 1988, 1991

Note: The PGSER macro Is the preferred programming interface.

The PGFREE macro makes virtual storage pages, below 16 megabytes, that were fixed via
the PGFIX macro eligible for page-out. The PGFREE function is available only to authorized
users. PGFREE must be issued by the same task that Issued the PGFIX, otherwise PGFREE
has no effect.

Note: A fixed page is not considered pageable until the number of PGFREEs issued for the
page Is equal to the number of PGFIXes previously issued for that page. That is, a page is
not automatically made pageable as the result of issuing a PGFREE macro.

The standard form of the PGFREE macro is written as follows:

name

PG FREE

b

L

,LA= list addr

R

,A= start addr

,ECB = ecb addr

,EA= end addr

,ANYWHER=N
,ANYWHER=Y

,RELEASE=N
,RELEASE=Y

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFREE.

One or more blanks must follow PGFREE.

list addr: A-type address, or register (1) or (2) - (12).

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: ANYWHER = N

Default: RELEASE= N
Note: RELEASE=Y may only be specified with EA above.

value: any valid macro keyword specification.

The parameters are explained as follows:

L
specifies that a parameter list is being supplied with this request.

,LA= list addr
specifies the address of the first entry of a virtual subarea list (VSL). See "Input to Page
Services" in SPL: Application Development Guide for a description of the VSL.

R
specifies that no parameter list Is being supplied with this request.

,A== start addr
specifies the start address of the virtual area to be freed.

Note: start addr must be located in 24-bit addressable storage.

355

,ECB - ecb addr
specifies the address of the ECB that was used in a prior PGFIX request. This
parameter is used if there is any possibility that the ECB for the previously issued
PGFIX was not posted complete.

,EA - end addr
specifies the end address + 1 of the virtual area to be freed.

Note: end addr must be located in 24-bit addressable storage.

,ANYWHER==N
,ANYWHER=Y

On subsequent page-ins, assign real frames below 16 megabytes in anticipation of a
page fix (N) or on subsequent page-ins, assign real frames anywhere (Y). The
ANYWHER option takes effect only when the page fix count goes to zero. The default is
ANYWHER=N.

,RELEASE•N
,RELEASE-Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

10

Example 1

Meaning

Operation completed normally.

Operation abnormally terminated. Operation incomplete because of invalid
address in virtual subarea list entry.

Operation abnormally terminated. Virtual subarea list entry or ECB address
invalid.

Operation: Free the storage in Example 1 of standard-form PGFIX.

PGFREE R,A=(R3)

Example 2
Operation: Free the storage in Example 2 of standard-form PGFIX.

PGFREE R,A=(R3),EA=(R4)

Example 3
Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages
fully included in the address range.

PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y

356 SPL: Application Development Macro Reference

PGFREEA - Free Virtual Storage Contents

© Copyright IBM Corp. 1988, 1991

Note: The PGSER macro is the preferred programming interface.

The PGFREEA macro makes virtual storage areas, below 16 megabytes, that were fixed by
the PGFIXA macro eligible for page-out.

The standard form of the PGFREEA macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede PGFREEA.

PGFREEA

One or more blanks must follow PGFREEA.

No additional parameters are specified.

Restrictions
Use of the PGFREEA macro is subject to the following restrictions:

• The issuer of the PGFREEA must provide a fixed virtual subarea list (VSL) or chain of
them, pointed to by register 1. For a description of the VSL, see SPL: Application
Development Guide.

• The user must be in supervisor state, protection key 0.

• The user must provide DSECTs for IHAPSA, CVT, and IHAPVT.

Output
If the PGFREEA is successful, all pages will be freed and register 15 will contain a return
code of zero. If unsuccessful, all pages up to, but not including the one that caused the
abend will be freed. The user will be abended with a system completion code of X'171 '.

357

358 SPL: Application Development Macro Reference

PGSER - Page Services

© Copyright IBM Corp. 1988, 1991

The PGSER macro and its fast path version (see "PGSER - Fast Path Page Services" on
page 365) perform the same paging services that PGANY, PGFIX, PGFIXA, PGFREE,
PGFREEA, PGLOAD, PGOUT, and PGRLSE perform for addresses below 16 megabytes.
PGSER performs these services for addresses either above or below 16 megabytes.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the caller is executing in 31-bit addressing mode.

The services are:

• Page fix equivalent to PGFIX
• Fast path to fix virtual storage
• Page free equivalent to PGFREE
• Fast path to free virtual storage
• Page load equivalent to PGLOAD
• Page out equivalent to PGOUT
• Page release equivalent to PGRLSE
• Page anywhere equivalent to PGANY

This macro is also described in Application Development Macro Reference with the
exception of the restricted parameters. The parameters FIX and FREE are restricted to
APF-authorized, key zero, or supervisor state callers. The parameters BRANCH= SPECIAL
(see "PGSER - Fast Path Page Services" on page 365) and BRANCH= Y are restricted to
enabled, supervisor state, key zero callers; users of these options must provide the address
of an 18-word save area in register 13. (See "Branch Entry to the PGSER Routine"in SPL:
Application Development Guide for more information about branch entry.) Also, users of
the BRANCH=SPECIAL and BRANCH=Y options must include the CVT and IHAPVT
mapping macros. The RELEASE option of the macro is restricted to supervisor state key
zero users if the common area is being released. Non-authorized users can release only
the private area.

Regardless of the addressing mode, all addresses passed in registers are used as 31-bit
addresses. All RX-type addresses are assumed to be in the addressing mode of the caller.

The syntax of the fast path version of PGSER is presented separately following this standard
description. The standard form of the PGSER macro is written as follows:

name

b

PG SER

b

R
L

,FIX
,FREE
,LOAD
,OUT
,RELEASE
,ANYWHER

,LA= list addr

name: symbol. Begin name in column 1.

One or more blanks must precede PGSER.

One or more blanks must follow PGSER.

list addr: RX-type address or register (1), (5) - (12) for branch
entry; or register (1), (2) - (12) for SVC entry.
Note: This parameter is valid only with L.

359

,A= start addr start addr: RX-type address or register (1), (5) - (12) for branch
entry; or register (1), (2) • (12) for SVC entry.

R
L

,EA=end addr

,TCB=tcb addr

,ECB = ecb addr

,RELEASE=Y
,RELEASE=N

,LONG=Y
,LONG=N

,BACKOUT=Y
,BACKOUT=N

,KEEPREL=Y
,KEEPREL=N

,ANYWHER=Y
,ANYWHER=N

,BRANCH=Y
,BRANCH=N

,RELATED= value

Note: This parameter is valid only with R.

Defauft: EA=start addr
end addr: RX-type address or register (2), (5) - (12) for branch
entry; or register (15), (2) - (12) for SVC entry.
Note: This parameter is valid only with R.

Defaun: TCB = O
tcb addr: RX-type address or register (4), (5) - (12).
Note: This parameter can be specified only if FIX, FREE,
LOAD, or OUT and BRANCH= Y are specified.

DefauK: If FREE or LOAD is specified, ECB=O.
ecb addr: RX-type address or register (0), (5) - (12) for branch
entry;
or register (0), (2) - (12) for SVC entry.
Note: This parameter is required if FIX is specified; is optional
if FREE or LOAD is specified; and is invalid for OUT, RELEASE,
or ANYWHER. For synchronous page fix the ECB address
must be 0.

Default: RELEASE= N
Note: This parameter may be specified only If FIX, FREE, or
LOAD is specified.

Default: LONG = Y
Note: This parameter may be specified only if FIX is specified.

Default: BACKOUT = Y
Note: This parameter may be specified only if FIX is specified.

Defauft: KEEPREL = N
Note: This parameter may be specified only if OUT is
specified.

Defaun: ANYWHER = N
Note: This parameter may be specified only if FREE is
specified.

Default: BRANCH= N

value: any valid macro keyword specification.

specifies the manner _in which the input is supplied. If R is specified, the user supplies
the starting and ending addresses of the virtual area for which the service needs to be
performed. Before processing the request, page services puts these addresses in
registers 1 and 15, respectively. If L is specified, the user supplies the address of the
page services list (PSL), which specifies the virtual area for which the service is to be
performed. Before processing the request, page services puts the address of the PSL
in register 1. See the topic "Input to Page Services" in SPL: Application Development
Guide for a description of the PSL.

,FIX
,FREE
,LOAD
,OUT
,RELEASE
,ANVWHER

indicates the function to be performed.

FIX specifies that the virtual storage areas are to reside in central (also called real)
storage and are ineligible for page-out while the address space is swapped in. This

360 SPL: Application Development Macro Reference

parameter does not prevent pages from being paged out when the entire address space
is swapped out of central storage. FIX will ignore a request to fix storage in a system
area that has the fixed attribute (for example, the LSQA and SQA). A FIX request for a
page in the LSQA or SQA will not cause the page to be backed by central storage below
16 megabytes. Requests for disabled reference storage are invalid for the FIX
parameter.

FREE specifies that the virtual storage areas that were previously fixed via the FIX
option are eligible for page-out. A fixed page is not considered pageable until the
number of FREE and FIX requests for the page are equal. Requests for disabled
reference storage are invalid for the FREE parameter.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area
specified, in anticipation of future needs. Requests for disabled reference storage are
invalid for the LOAD parameter.

OUT specifies that a page-out operation is to be initiated for the virtual storage area
specified. Requests for disabled reference storage are invalid for the OUT parameter.

RELEASE specifies the release of all physical paging resources, including both
processor storage and auxiliary storage. Functionally, RELEASE is equivalent to a
FREEMAIN macro followed by a GETMAIN macro. That is, the virtual space is
maintained, but the data is discarded. When a released page is next referred to, its
contents are binary zeros. RELEASE is the only PGSER function that is valid for
disabled reference storage.

ANYWHER applies to virtual storage areas that did not specify LOC= (BELOW,ANY) or
LOC = (ANY,ANY) or LOC =ANY on a GETMAIN request, that have been previously
fixed, and probably will not need to be fixed again. ANYWHER specifies that the virtual
storage area specified can be placed either above or below 16 megabytes central on
future page-ins.

,LA= list addr
specifies the address of the page services list (PSL) for L requests.

,A== start addr
specifies the address of the start of the virtual area for R requests.

,EA - end addr
specifies the address of the end of the virtual area for R requests.

,TCB • tcb addr
specifies either zero or the address of the TCB to be assigned ownership of fixes for a
FIX request or fixes for a FREE request. If zero is specified, no TCB is assigned
ownership of the request. Cross memory callers must c;>ecify zero.

For OUT and LOAD requests, the PGSER routine associates the request with a
particular TCB so that the request can be purged if the task terminates before the
request is complete. For SVC entry (BRANCH= N), the PGSER routine uses the current
TCB.

Note: The TCB resides in storage below 16 megabytes.

,ECB • ecb addr
specifies the address of the ECB that is used to signal event completion for an
asynchronous FIX or LOAD request. If the caller is in cross memory mode or if the
caller requests a synchronous page fix (a FIX for which the caller is suspended until the
entire FIX request is complete), the ECB must be zero (ECB = 0 or ECB = (r), where (r)
represents a register that contains zero).

For a FREE request, ECB specifies the address of the ECB that was used in a previous
FIX request. If this parameter is specified, any pages in the previous FIX request that
are not yet fixed, will not be fixed. If L is specified, the PSL chain must contain the
addresses of the virtual pages in the same order in both the FREE and the previous FIX
request. Also, the ECB for the FIX request will not be posted if it was not yet posted at
the time of the FREE request.

PGSER - Page Services 361

If the ECB parameter is not specified on a FREE request, only the fix counts for the valid
pages in storage at the time of the FREE request are decreased. This will not affect the
paging activity and the posting of the ECB associated with the original FIX request.

If an ECB is supplied on a FIX or LOAD request, the caller must check the return code
because the ECB will not be posted if the return code is zero. If an ECB is not supplied,
it is not necessary to check the return code because control returns to the caller only if
the request was successfully completed; if unsuccessful, page services abnormally
terminates the caller.

For all callers that supply an ECB, page services verifies that the ECB address is in an
area allocated via GETMAIN and if the caller is not in key 0, page services also verifies
that the ECB is in the caller's protect key. Before posting the ECB, page services again
verifies that the ECB is located in an allocated area and that the ECB is in the caller's
protect key. (This is to check that the allocated area has not been freed via FREEMAIN
and the protect key has not been changed.) It is the user's responsibility to ensure that
the page containing the ECB is not freed and that the key is not altered. If either test
fails, page services does not post the ECB.

,RELEASE=Y
,RELEASE=N

specifies that all the central and auxiliary storage associated with the virtual storage
areas is to be released to the system (Y) or that all the central and auxiliary storage
associated with the virtual storage areas is not to be released to the system (N).

,KEEPREL=Y
,KEEPREL=N

specifies that the virtual pages should be validated again after the page-out completes
(Y); or that the virtual pages will be marked invalid and the real frames freed for reuse
(N).

,LONG=Y
,LONG=N

specifies that the relative real time anticipated for the FIX is long (Y); or that the relative
real time anticipated for the FIX is short (N). (In general, the duration of a fix is long if it
can be measured in seconds.)

,BACKOUT=Y
,BACKOUT=N

specifies the procedure to follow when a non-allocated page is encountered during the
processing of a FIX request. If BACKOUT = Y, all pages fixed as part of the request are
freed before returning to the caller. If BACKOUT= N, the pages previously fixed as part
of the request are not freed and no further processing is done before returning to the
caller.

,ANYWHER=N
,ANYWHER=Y

specifies that on subsequent page-ins, page services is to assign real frames below 16
megabytes in anticipation of a page-fix (N); or on subsequent page-ins, page services is
to assign real frames anywhere (Y). The ANYWHER option takes effect only when the
page-fix count goes to zero.

,BRANCH=Y
,BRANCH=N

specifies whether or not this is a branch entry.

If BRANCH= Y is specified, it is a branch entry; and users of this option must provide
the address of an 18-word save area in register 13. Register 2 contains the ending
address.

If BRANCH= N is specified, it is an SVC entry. Register 15 contains the ending address.

Cross memory callers and callers in AR mode must use BRANCH= Y.

,RELATED= value
provides information to document the macro by relating the service performed to some
corresponding function or service. The format can be any valid coding value that the
user chooses.

362 SPL: Application Development Macro Reference

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

On return the register contents are as follows:

Register
0-4
5-13
14
15

Contents
Used as work registers by the macro.
Unchanged.
Used as work registers by the macro.
Return Code.

The return codes, given in register 15, along with the option used and the meaning follow:

Option Code
FIX 0

FIX 8

FREE 0

LOAD 0

LOAD 8

OUT 0
c

RELEASE 0

ANYWHER 0

Meaning
The operation completed normally and the ECB will not be posted.

The operation is proceeding, the ECB (if available) will be posted with X'OO'
when the requested pages are fixed.

The operation completed normally.

The operation completed normally and the ECB will not be posted. If no
ECB is supplied, the operation is completed or proceeding.

The operation is proceeding. The ECB will be posted with X'OO' when all
page-ins are complete.

The operation completed normally. At least one page in the requested
range was not paged out.

The operation completed normally.

The operation completed normally.

If a error is found in one of the parameters, the requestor is abnormally terminated with a
system abend code of X'18A' and one of the following hexadecimal reason codes is
provided in register 15:

Hexadecimal
Code

4

4

10

Meaning

A page-fix operation abnormally terminated cause of an invalid address in a PSL
entry. The ECB will not be posted.

A page-release operation abnormally terminated because either a page release
was attempted for permanently backed storage or a non-system key caller
attempted to release storage in a different key.

A page-fix, page-free, or a page-load operation abnormally terminated because
the PSL or ECB address was invalid.

Callers not authorized to use a specific service are abnormally terminated with a system
abend code of X'28A' and a hexadecimal error code of X'10' in register 15. If an
environmental error is encountered while processing the page-services request, the caller
is abnormally terminated with a system abend code of X'028' and a hexadecimal error code
of X'14' in register 15. A unique reason code is also provided in register 0 for these errors.

PGSER - Page Services 363

Example 1
Operation: Synchronously fix the page that starts at the address given in register 1 and
ends at the address given in LOADWORD. Use branch entry. No particular TCB is
associated with this request.

PGSER R,FIX,A=(l),ECB=O,EA=LOADWORD,TCB=O,BRANCH=Y

Example 2
Operation: Free the page specified in the PSL pointed to by register 2. The ECB address is
given in register 8. Use branch entry. Release all central and auxiliary storage associated
with this virtual area. Do not attempt to back the area below 16 megabytes on future
page-Ins.

PGSER L,FREE,LA=(2),ECB=(8),RELEASE=Y,ANYWHER=Y,BRANCH=Y

Example 3
Operation: Load the page specified in the PSL pointed to by register 1. Supply an ECB of
zero.

PGSER L,LOAD,LA=(l),ECB=O

Example 4
Operation: Perform a page-out for the virtual area starting at the address given in register
1 and ending at the address given in register 5. The address of the TCB is given in register
8. Use branch entry.

PGSER R,OUT,A=(l),EA=(5),TCB=(8),BRANCH=Y

Example 5
Operation: Perform a page-out for the virtual area specified in the PSL located at
LOADWORD. Use branch entry.

PGSER L,OUT,LA=LOADWORD

364 SPL: Application Development Macro Reference

PGSER - Fast Path Page Services

© Copyright IBM Corp. 1988, 1991

The fast path PGSER macro performs FIX and FREE requests for users on performance
paths. The following restrictions apply to this special fast path service:

• Short term fixes only

• No ECB

• No TCB

• No VIO window pages

• Key 0, supervisor state callers only

• Enabled

• Register 13 must point to an 18-word save area in non-pageable storage.

• If the list format of the macro is used, all user-defined short page service lists (SSLs)
must be valid in non-pageable storage.

• Users of BRANCH= SPECIAL must include the CVT and IHAPVT mapping macros.

The fast path PGSER macro does not verify any of the restricted conditions. It is the user's
responsibility to verify the restricted conditions and to provide recovery to purge FIX
requests when the task terminates before a page service request is complete.

The fast path PGSER macro is written as follows:

name

b

PGSER

b

R

L

,FIX
,FREE

,LA= list addr

,A= start addr

,EA=ending addr

,BACKOUT=Y
,BACKOUT=N

,ASCB = ascb addr

,RELATED= value

,BRANCH= SPECIAL

name: symbol. Begin name in column 1.

One or more blanks must precede PGSER.

One or more blanks must follow PGSER.

list addr: RX-type address or register (1), (5) - (12).
Note: This parameter is valid only if L is specified.

start addr: RX-type address or register (1), (5) - (12).
Note: This parameter is valid only if R is specified.

ending addr: RX-type address or register (2), (5) - (12).
Note: This parameter is valid only if R is specified.

Default: BACKOUT=Y
Note: This parameter is valid only for FIX requests.

ascb addr: RX-type address or register (5) - (12).

value: any valid macro keyword specification.

365

The parameters are explained as follows:

R
L

specify the manner in which the input is supplied. If R is specified, the user supplies
the starting and ending addresses of the virtual storage area for which the service is to
be performed. Before processing the request, page services puts these addresses in
registers 1 and 2, respectively. If Lis specified, the user supplies the address of the
short page services list (SSL), which specifies the virtual storage area for which the
service is to be performed. Before processing the request, page services puts the
address of the SSL in register 1. See the topic "Input to Page Services" in SPL:
Application Development Guide for a description of the SSL.

,FIX
,FREE

indicate the function to be performed.

FIX _specifies that the virtual storage areas are to reside in central (also called real)
storage and are ineligible for page-out while the address space is swapped in. This
parameter does not prevent pages from being paged out when the entire address space
is swapped out of central storage. FIX will ignore a request to fix storage in a system
area that has the fixed attribute (for example, the LSQA and SQA). A FIX request for a
page in the LSQA or SQA will not cause the page to be backed by central storage below
16 megabytes.

FREE specifies that the virtual storage areas that were previously fixed via the FIX
option are eligible for page-out. A fixed page is not considered pageable until the
number of FREE and FIX requests for the page are equal.

,LA= list addr
specifies the address of the short page service list (SSL) for L requests.

,A= start addr
specifies the address of the start of the virtual area for R requests.

,EA== end addr
specifies the address of the end of the virtual area for R requests.

,BACKOUT=Y
,BACKOUT=N

specify the procedure to follow if an unallocated page is encountered during the
processing of a fix request.

If BACKOUT= Y is specified, all pages fixed as part of the request will be freed before
returning to the caller.

If BACKOUT= N is specified, the pages previously fixed as part of the request will not
be freed before returning to the caller. In this situation, no further pages are processed
once an unallocated page is encountered.

,ASCB = ascb addr
specifies the address of the ASCB for the currently addressable address space.

Note: The ASCB must reside in 24-bit addressable storage.

,RELATED= value
specifies information used to document the macro and to relate the service performed
to some corresponding service or function. The format of the information specified can
be any valid coding values that the user chooses.

,BRANCH= SPECIAL
specifies a branch entry call to the fast path FIX and FREE services. If
BRANCH=SPECIAL is specified, users must provide an 18-word save area in
non-pageable storage.

366 SPL: Application Development Macro Reference

Example 1
Operation: Fix 4096 bytes of storage starting at the address BUFFER. The address of the
ASCB is in register 6.

PGSER R,FIX,A=BUFFER,EA=BUFFER+4095,BRANCH=SPECIAL,ASCB=(6)

Example 2
Operation: Free the area specified in the SSL defined at LISTSSL. Use the ASCB in
PSAAOLD.

L 5,PSAAOLD
PGSER L,FREE,LA=LISTSSL,ASCB=(S),BRANCH=SPECIAL

PGSER - Fast Path Page Services 367

368 SPL: Application Development Macro Reference

POST - Signal Event Completion

© Copyright IBM Corp. 1988, 1991

Use the POST macro to have the specified ECB (event control block) set to indicate the
occurrence of an event. If this event satisfies the requirements of an outstanding WAIT or
EVENTS macro, the waiting task is taken out of the wait state and dispatched according to
its priority. The bits in the ECB are set as follows:

Bite of the specified ECB is set toe (wait bit).
Bit 1 is set to 1 (complete bit).
Bits 2 through 31 are set to the specified completion code.

The description of the POST macro follows. The POST macro is also described in
Application Development Macro Reference, with the exception of the ASCB, ERRET,
ECBKEY, and MEMREL parameters. These parameters are restricted in use to programs
that are authorized (supervisor state, APF-authorized, or PSW key 0-7) and, therefore, are
only described here. The LINKAGE= BRANCH parameter is further restricted to to
supervisor state and key 0 users.

The standard form of the POST macro is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB=addr,ERRET=err addr
,ASCB = addr,ERRET =err addr

,ECBKEY=key

,LINKAGE= SVC
,LINKAGE= BRANCH
,LINKAGE= SYSTEM
,LINKAGE= SYSTEM,ERRET =err

addr

,BRANCH=NO
,BRANCH= YES

,MEMREL=YES
,MEMREL=NO

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12), except (10).

comp code: symbol, decimal or hexadecimal digit, or register
(0), (2) - (9), (10), or (12).
Range of values: o- 230-1
Defautt: O

addr: RX-type address, or register (2) - (9), (12).
err addr: RX-type address, or register (2) - (9), (12).
key: symbol, decimal or hexadecimal digit, or register (2) - (9),
(12).
Range of values: 0 - 15 (decimal)
DefauR: None.
Note: If the register form is specified, bits 24-27 of the register
must contain the key.

Default: LINKAGE= SVC
err addr: RX-type address or register (2) -(9), (12)

Defautt: MEMREL=YES
Note: MEMREL can be coded only if LINKAGE= BRANCH and
the ASCB and ERRET parameters are coded.

value: any valid macro keyword specification.

369

The explanation of the parameters is as follows:

ecb addr
specifies the address of the fullword event control block representing the event.

,comp code
specifies the completion code to be placed in the event control block upon completion.

,ASCB = addr ,ERRET =err addr
specifies the address of the ASCB of the address space containing the ECB being
posted, and the address of the routine to be given control when a POST failure is
detected. See the topic "Cross Memory Post" in SPL: Application Development Guide
for information on the addressing mode in which the exit routine receives control.

Note: The ASCB must reside in 24-bit addressable storage

,ASCB = addr,ERRET= err addr,ECBKEY ==key
specifies the address of the ASCB containing the ECB being posted, the address of the
routine to be given control when an error condition resulting from a POST failure is
detected, and the storage protection key of the ECB to be posted. If the ECB does not
identify a current wait condition against it, the ECB is checked against the key before it
is updated with the post completion code. Otherwise, the ECB is checked against the
protection key of the waiting task. (See "Cross Memory Post" in SPL: Application
Development Guide for information about the addressing mode in which the exit routine
receives control.)

Note: The ASCB must reside in 24-bit addressable storage

,LINKAGE= SVC
,LINKAGE• BRANCH
,LINKAGE ... SYSTEM
,LINKAGE= SYSTEM,ERRET =-err addr
,BRANCH =YES
,BRANCH=NO

specifies the type of linkage from the caller to a system service routine that POST
invokes. The default is LINKAGE= SVC.

For LINKAGE= SVC, the linkage is through an SVC instruction. This linkage is valid
when the caller is in primary ASC mode, where primary, home, and secondary are the
same address space. For SVC callers, registers 2-14 are preserved.

For LINKAGE= BRANCH, the linkage is through a branch entry. This linkage is valid
when the caller is in primary or secondary ASC mode. The calling requirements and
which registers are preserved depend on what other parameters are specified.

• If ASCB= is not specified, the caller must hold the local lock and be in non-cross
memory mode. Registers 0-9, 12, and 13 are preserved.

• If ASCB= is specified, the MEMREL parameter and the LOCAL lock determine the
calling requirements and registers saved.

If the LOCAL lock is held and MEMREL =YES is specified (or defaulted), then the
current address space must be the home address space and registers 1-9 are
preserved. If the ECBKEY parameter is not specified, register 0 is also
preserved.

If the LOCAL lock is not held or MEMREL =NO is specified, then only register 9
is preserved. The current address space can be any address space.

For LINKAGE= SYSTEM, the linkage is through a stacking PC instruction. Callers must
be enabled, unlocked, and in primary ASC mode. This linkage is valid for callers in
cross memory mode. The ECB must be in the caller's primary address space. When
you specify LINKAGE=SYSTEM and ASCB, you must also specify ECBKEY.

• ERR ET= err-addr specifies the address of the routine that gets control when the
system detects a POST failure. If the caller is not authorized, the error routine does
not receive control. When you have specified LINKAGE= SYSTEM without ASCB = ,
ERRET is only needed when you are posting an extended SVC and the primary
address space is different from the home address space.

370 SPL: Application Development Macro Reference

• When you issue LINKAGE= SYSTEM, the POST macro service issues the following
return codes:

Hexadecimal
Code

0

4

8

Meaning

Indicates a synchronous POST was done, as requested.

Indicates an asynchronous POST was scheduled. If you specified
ERRET, the error routine that you specified will receive control.

Indicates an asynchronous POST was scheduled. If you specified
ERRET, the error routine that you specified will not receive
control.

LINKAGE= SYSTEM without the ASCB parameter is intended to be used by
programs in cross memory mode.

,MEMREL =YES
,MEMREL=NO

specifies whether the error routine specified by the ERRET parameter runs in the
caller's address space (YES) or in the master scheduler's address space (NO). The
default is MEMREL=YES.

If the LOCAL lock is held and MEMREL=YES, the current address space must be the
home address space.

If the LOCAL lock is not held or MEMREL =NO, the current address space can be any
address space. Thus, when the cross memory mode and the lock status of the caller is
unknown, specify MEMREL =NO.

,RELATED-value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Example 1
Operation: Post an event control block whose address is ECB, where the address space
containing the ECB has an ASCB specified by register 5, and where ERRRTN is the routine
to be given control on error conditions.

POST ECB,ASCB=(REG5),ERRET=ERRRTN

Example 2
Operation: Post the ECB from example 1 with a hexadecimal completion code of 3FF.

POST ECB,X'3FF',ASCB=(REG5),ERRET=ERRRTN

Example 3
Operation: Post the ECB from example 1 using a stacking PC for linkage. The address of
the error routine is in register 3.

POST ECB,LINKAGE=SYSTEM,ECBKEY=0,ASCB=(REG5),ERRET=(REG3)

POST - Signal Event Completion 371

POST (List Form)

The list form of the POST macro Is written as follows:

name

b

POST

b

ecb addr

,ASCB = addr,ERRET =err addr
,ASCB = addr,ERRET =err addr

,ECBKEY =YES

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: A-type address.

addr: A-type address.
err addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the POST macro, with the
following exceptions:

,MF•L
specifies the list form of the POST macro.

,ASCB • addr,ERRET • err addr,ECBKEY •YES
specifies that the storage protection key of the ECB is defined in the execute form of the
POST macro.

Note: The ASCB resides in 24-bit addressable storage.

372 SPL: Application Development Macro Reference

POST (Execute Form)
The execute form of the POST macro is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB=addr,ERRET=err addr
,ASCB = addr,ERRET =err addr,
,ECBKEY =key

,RELATED=va/ue

,MF= (E,prob addr)

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12).

comp code: symbol, decimal or hexadecimal digit, or register
(0) or (2) - (12).
Range of values: O - 230-1

addr: RX-type address, or register (2) - (12).
err addr: RX-type address, or register (2) - (12).

key: symbol, decimal or hexadecimal digit, or register (2) -
(12).
Range of values: O - 15 (decimal).
Default: None.
Note: If the register form is specified, bits 24-27 of the register
must contain the key.

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the POST macro, with the
following exception:

,MF== (E,prob addr)
specifies the execute form of the POST macro using a remote control program
parameter list.

POST - Signal Event Completion 373

374 SPL: Application Development Macro Reference

PTRACE - Processor Trace

© Copyright IBM Corp. 1988, 1991

The PTRACE macro creates a trace table entry and places it in the system trace table. The
entry consists of an event identifier, the contents of a designated range of general registers
or storage locations, and system supplied status information.

When using this macro, the user must provide the following information:

• The type of trace entry that is to be created
• The data to be recorded in the trace entry

The PTRACE macro can only be issued with DAT-ON. The caller must be in key 0 and
supervisor state but can be in cross memory mode and in either 24 or 31-bit addressing
mode. All addresses passed to the PTRACE routine are treated as 31-bit addresses.
PTRACE users must include the IHAPSA and IHATRVT mapping macros and register 13
must point to a 72-byte save area that can be used by the PTRACE service.

The PTRACE macro is written as follows:

name name: symbol. Begin name in column 1.

fJ One or more blanks must precede PTRACE.

PTRACE

fJ One or more blanks must follow PTRACE.

TYPE=USRn n: hexadecimal digit O - F.

, REGS = (reg 1, reg2)
,REGS=(1)

,SA VEAR EA= STANDARD

Default: Rf=GS = (1)
reg1: decimal digit 2 - 12.
reg2: decimal digit 2 - 12.

The parameters are explained as follows:

TYPE=USRn
TYPE= USRn specifies a user-event explicit trace entry. The hexadecimal number, n,
identifies the entry. Trace processing places this number in the trace entry for
identification purposes.

,REGS= {reg1 ,reg2)
,REGS=(1)

defines the data to be placed in the user's trace entries. Multiple trace entries are
created if more than 5 registers or 5 words of data are requested.

If REGS= (reg1 ,reg2) is specified, the data is located in a range of registers, where
reg1 specifies the first register in the range and reg2 specifies the last register in the
range. The register number, reg2, must always be greater than or equal to the register
number, reg1. A maximum of 11 words of data can be indicated for tracing using
REGS= (reg1 ,reg2).

If REGS= (1) is specified or used as the default, register 1 must contain the 31-blt
address of a parameter list. The high order bit of this address must be set to 0. If
REGS= (1) is specified, up to 1024 words of data can be recorded. The parameter list
contains N+ 1 fullword entries. The first word contains the number of words of data (N)
to be recorded. This is followed by the N words of data to be placed in the user's trace
entries.

375

,SAVEAREA- STANDARD
SAVEAREA =STANDARD specifies that register 13 contains the address of a 72 .. byte
save area that can be used by the PTRACE routine.

When control is returned, registers 2-13 are restored to their original values, but the
original contents of registers 0, 1, 14, and 15 are destroyed. On exit, register 15 contains
the following return code:

Hexadecimal
Code

0

Example 1

Meaning

The function completed successfully.

Operation: Create a trace table entry for user event 4. Registers 5, 6, and 7 contain the
user data to be recorded.

PTRACE TYPE=USR4,REGS=(5,7),SAVEAREA=STANDARD

Example 2
Operation: Create trace table entries for user event C. Register 1 contains the address of
a parameter list containing the data to be recorded.

PTRACE TYPE=USRC,REGS=(l),SAVEAREA=STANDARD

376 SPL: Application Development Macro Reference

PURGEDQ - Purge SRB Activity

© Copyright IBM Corp. 1988, 1991

The PURGEDQ macro allows a task to purge particular SRB activity. Because an SRB
routine Is dispatched asynchronously to the actual issuance of a SCHEDULE macro, the
conditions that existed in the system at the time the SCHEDULE was issued may have totally
changed by the time the routine is dispatched. If, in this time interval, the environment that
the asynchronous routine requires to run successfully has been changed, the results are
unpredictable. For this reason, the PURGEDQ macro is available to:

• Dequeue SRBs not yet dispatched.
• Allow processing for previously scheduled SRBs to complete.
• "Clean up" each dequeued SRB.

The following requirements apply to the caller:

• Must be in task mode
• Must be in primary ASC mode
• No locks may be held.

The parameters on PURGEDQ determine the target address space and limit the scope of the
purge. When purging SRBs scheduled in the current address space, PURGEDQ waits for
dispatched SRBs to terminate. PURGEDQ does not purge or wait for terminations of SRBs
scheduled into address spaces other than the current address space once they have been
dispatched. The Issuer of PURGEDQ is not informed of SRBs that cannot be purged.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode.

See SPL: Application Development Guide for more information on using the PURGEDQ
macro, especially the ASIOTCB parameter.

The standard form of the PURGEDQ macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PURGEDQ.

PURGEDQ

b One or more blanks must follow PURGEDQ.

RMTR = RMTR addr RMTR addr: RX-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

,ASIDTCB = TCB addr TCB addr: RX-type address, or register (2) - (12).

The parameters are explained as follows:

RMTR"" RMTR addr
Limits the purge to SRBs that contain the same address in field SRBRMTR.

,ASID • ASID addr
specifies the address of a half word that contains the ASID of the target address space
into which the SRB was scheduled. If omitted, the system assumes the current address
space.

,ASIDTCB • TCB addr
Provides a method of limiting the scope of the purge. ASIDTCB specifies the address of
a double word that optionally defines a TCB address to match against the field
SRBPTCB, or an ASID to match against the field SRBPASIO, or both a TCB address and
an ASID. When a non-zero value is specified, the system purges only SRBs that match

377

the specified value. When the TCB address is non-zero, the ASID field must also be
non-zero. If the ASIDTCB parameter is omitted, SRBPASID and SRBPTCB are matched
against the current address space ID and current TCB address.

The format of the double word is:

bytes 0-1 Reserved
bytes 2-3 ASID for match with SRBPASID or zero.
bytes 4-7 TCB address for match with SRBPTCB or zero.

If TCB address is specified, ASID must also be specified.

Note: The TCB resides in storage below 16 megabytes.

Example 1
Operation: Purge all SRBs scheduled to ASID '20'X with:

• SRBPTCB equal to the current TCB (that is, the TCB issuing the PURGEOQ)
• SRBPASID equal to the current ASID
• SRBRMTR equal to the address of RMTR routine RMTRA.

PURGEDQ ASID=ASl,RMTR=RMTRA

ASl DC XL2'0020'

Example2
Operation: Purge all SRBs scheduled to ASID '21'X, regardless of what is specified in
SRBPASID and SRBPTCB, and that have SRBRMTR equal to the address of RMTR routine
RMTRB.

PURGEDQ ASID=AS2,ASIDTCB=PURGPRM1,RMTR=RMTRB

PURGPRMl DC
AS2 DC

Example 3

XL4'00000000'
XL2'0021'

Operation: Purge all SRBs scheduled to the current address space (that is, the address
space from which this PURGEDQ was issued) that have:

• SRBPASID of '12'X
• SRBPTCB equal to the the address of TCBX
• SRBRMTR equal to the address of RMTR routine RMTRC

PURGEDQ ASIDTCB=PURGPRM2,RMTR=RMTRC

PURGPRM2 OS
DC

PURGASID DC
PURGTCB DC

Example4

0CL8
XL2'0000'
XL2'0012'
A(TCBX)

Operation: Purge all SRBs scheduled into the current address space, related to the current
(terminating) task, and associated with the resource manager termination routine located at
RESCLEAN.

PURGEDQ RMTR=RESCLEAN

378 SPL: Application Development Macro Reference

PURGEDQ (List Form)

The list form of the PURGEDQ macro is used to construct a remote program parameter list.

The list form of the PURGEDQ macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PURGEDQ.

PURGEDQ

b One or more blanks must follow PURGEDQ.

RMTR = RMTR addr RMTR addr: A-type address.

,ASID = ASID addr ASID addr: A-type address.

,ASIDTCB = TCB addr TCB addr: A-type address.

,MF=L

The parameters are explained under the standard form of the PURGEDQ macro, with the
following exception:

,MF=L
specifies the list form of the PURGEDQ macro.

Example
Operation: Specify the resource manager termination routine located at RESCL E'AN and
produce the parameter list to be used by the execute form of the PURGEDQ macro.

STATPDQ PURGEDQ RMTR=RESCLEAN,MF=L

PURGEDQ-'- Purge SRB Activity 379

PURGEDQ (Execute Form)
The execute form of the PURGEDQ macro uses a remote control program parameter list.
The parameter list Is constructed using the list form of PURGEDQ.

The execute form of the PURGEDQ macro is written as follows:

name name: symbol. Begin name In column 1.

b One or more blanks must precede PURGEDQ.

PURGEDQ

b One or more blanks must follow PURGEDQ.

RMTR = RMTR addr RMTR addr: RX-type address, or register (2) - (12).

,ASID = ASID addr ASID addr: RX-type address, or register (2) • (12).

,ASIDTCB= TCB addr TCB addr: RX-type address, or register (2) • (12).

,MF= (E,ctr/ addr) ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the PURGEDQ macro, with the
following exception:

,MF• (E,ctr/ addr)
specifies the execute form of the PURGEDQ macro, using a remote control program
parameter list.

Example
Operation: Purge all SRBs scheduled into the address space given in register 6 and
associated with the resource manager termination routine located at RESCLEAN. Indicate
that the remote control program parameter list is located at STATPDQ.

PURGEDQ ASID=(6),RMTR=RESCLEAN,MF=(E,STATPDQ)

380 SPL: Application Development Macro Reference

QEDIT - Command Input Buffer Manipulation

© Copyright IBM Corp. 1988, 1991

The QEDIT macro generates the required entry parameters and processes the command
input buffer for the following uses:

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task.
• Setting a limit for the number of CIBs that may be simultaneously chained for a task.

The QEDIT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede QEDIT.

QEDIT

b One or more blanks must follow QEDIT.

ORIGIN= GIB addr ptr GIB addr ptr: RX-type address, or register (0),(2) - (12).

,BLOCK= GIB addr
,CIBCTR =GIB nmbr

GIB addr: RX-type address, or register (1), (2) - (12).
GIB nmbr: decimal digit, with a maximum value of 255 or
register (1), (2) - (12).

The parameters are explained as follows:

ORIGIN= GIB addr ptr
specifies the address of the pointer to the first CIB chain for the task. This address is
obtained using the EXTRACT macro. If BLOCK and CIBCTR are omitted, the caller must
be executing under PSW key 0-7; in this case, the entire GIB chain is freed. The system
prevents problem state programs from freeing the entire GIB chain.

,BLOCK= GIB addr
specifies the address of the CIB to be freed from the GIB chain for a task.

,CIBCTR =GIB nmbr
specifies the limit for the number of CIBs to be chained at any time for a task.

Notes:

1. When using any address returned from the EXTRACT macro as input to the QEDIT
macro, the user must use the IEZCOM mapping macro to establish addressability based
on the address returned by EXTRACT.

2. The CIB must reside in 24-bit addressable storage.

When control is returned, register 15 contains one of these return codes:

Hexadecimal
Code

00

04

08

Meaning

The required function was successfully completed.

The CIB to be deleted was not found on any CIB chain.

The limit for the number of CIBs to be chained was exceeded; an issuer who made
a request to tree all the CIBs on a chain was not in supervisor state and PSW key
zero: or the user provided an invalid address for the pointer to the CIB chain, an
invalid address for the CIB address, or an invalid CIB number as input to the
macro.

381

Example 1
Operation: Free the entire CIB chain, where register 8 contains the address of the pointer
to the CIB chain.

QEDIT ORGIN=(8)

Example 2
Operation: Free the CIB whose address is in register 5 from the CIB chain. Register 8
contains the address of the pointer to the CIB chain.

QEDIT ORIGIN=(8),BLOCK=(5)

382 SPL: Application Development Macro Reference

RACDEF - Define a Resource to RACF (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

Note: The RACROUTE macro is the preferred programming Interface.

This macro description applies to RACF Release 1.8.1 or earlier. Your program can Invoke
the RACDEF macro directly; however, IBM recommends that you Invoke the equivalent
function through the RACROUTE macro, using the REQUEST= DEFINE parameter. See
"RACROUTE- MVS Router Interface (for RACF Release 1.8.1 or earlier)" on page 437 lor
the applicable RACROUTE macro description.

If you have RACF Release 1.9 installed on your system, you can stlll Invoke the RACDEF
macro directly. However, if you are going to use the new Release 1.9 lunctlons, see the
following for the applicable descriptions of RACROUTE and RACROUTE
REQUEST= DEFINE:

• "RACROUTE - Router Interlace (for RACF Release 1.9)" on page 447
• "RACROUTE REQUEST== DEFINE - Define a Resource to RACF (for RACF Release 1.9)"

on page 485.

The RACDEF macro defines, modifies, or deletes resource profiles for RACF. You can also
use it for special cases of authorization checking. RACF uses the resulting profiles to
perform RACHECK authorization checking. The RACDEF caller must be authorized
(APF-authorized, in system key 0-7, or in supervisor state).

A RACF user can change or add the RACDEF parameters, OWNER, LEVEL, UACC, or AUDIT
by means of the RACDEF preprocessing and postprocessing exit routines.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in
31-bit addressing mode who want to use the RACDEF function can code the RACROUTE
macro.

383

The standard form of the RACDEF macro Is written as follows:

name

b

RAC DEF

b

ENTITY= profile name addr

,VOLSER =vol addr

,TYPE= DEFINE
,TYPE= DEFINE,NEWNAME =
newdsn addr
,TYPE= ADDVOL,OLDVOL =
old vol addr
,TYPE= CHGVOL,OLDVOL =
old vol addr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

, INSTLN = parm list addr

,CLASS= 'classname'
,CLASS=class name addr

,MENTITY =entity addr

,MCLASS= 'classname'
,MCLASS =class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER=owner id addr

,LEVEL= number
,LEVEL=reg

,UACC=ALTER
,UACC =CONTROL
,UACC =UPDATE
,UACC=READ
,UACC =EXECUTE

384 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: A-type address, or register (2) - (12).

vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS= 'DATASET' and
DSTYPE not equal to M when a discrete profile name is used.

new dsn addr: A-type address, or register (2) - (12).
old vol addr: A-type address, or register (2) - (12).

Defauft: TYPE= DEFINE

Defauft: DSTYPE = N

parm list addr: A-type address, or register (2) - (12).

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS='DATASET'

entity addr: A-type address, or register (2) - (12).

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: MCLASS='DATASET'

volser addr: A-type address, or register (2) - (12).

Defauft: MCLASS='DATASET'

Defaun: MGENER = ASIS

acee addr: A-type address, or register (2) - (12).

unit addr: A-type address, or register (2) - (12).

owner id addr: A-type address, or register (2) - (12).

Default: zero.
reg: register (2) - (12).

,UACC=NONE
,UACC=reg

,DATA= data addr

,AUDIT= NONE
,AUDIT=audit value
,AUDIT= (audit value (access
level),audit value(access
level), ...)
,AUDIT= (reg)

,RACFIND =YES
,RACFIND =NO

,CHKAUTH =YES
,CHKAUTH =NO

,GENERIC= YES
,GENERIC= ASIS

,WARNING=YES
,WARNING= NO

,RELEASE= number

,FILESEQ =reg
,FILESEQ =number

,EXPDT = expir date addr

,EXPDTX =extended expir date
addr

,RETPD=retn period addr

,ACCLVL =(access value addr)
,ACCLVL =(access value addr,

parm list addr)

,TAPELBL=STD
,TAPELBL=BLP
, T APEL BL= NL

,SECL VL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify id addr

,ENVIR =VERIFY

,RESOWN=resource owner addr

,STORCLA=storage class addr

,MGMTCLA =management class
addr

reg: register (2) - (12).

data addr: A-type address or register (2) - (12).

Note: AUDIT is valid only if TYPE= DEFINE is specified.
audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: READ

reg: register (2) - (12).

Defautt: CHKAUTH =NO

Defautt: GENERIC= ASIS

Default: WARNING= NO
Note: WARNING is valid only if TYPE= DEFINE is specified.

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

reg: register (2) - (12).
number: 1-9999

expir date addr: A-type address or register (2) - (12).

extended expir date addr: A-type address or register (2) - (12).

retn period addr: A-type address or register (2) - (12).
Defautt: see description of parameter.

access value addr: A-type address or register (2) - (12).
parm list addr: A-type address, or register (2) - (12).

Default: T APELBL = STD

addr: A-type address, or register (2) - (12).

Defautt: ERASE= NO

notify id addr: A-type address or register (2) - (12).

specifies that only verification is to be done.
Default: Normal RACDEF processing.

resource owner addr: A-type address, or register (2) - (12).

storage class addr A-type address, or register (2) - (12).

management class addr: A-type address, or register (2) - (12).

RACDEF (for RACF Release 1.8.1 or earlier) 385

The parameters are explained as follows:

ENTITY =profile name addr
specifies the address of the name of the discrete or generic profile that is to be defined
to, modified, or deleted from RACF. The profile name is a 44-byte DASO data set name
for CLASS= 'DATASET' or a 6-byte volume serial name for CLASS= 'DASDVOL' or
CLASS= 'TAPEVOL'. The lengths of all other profile names are determined by the
class descriptor table. The name must be left justified in the field and padded with
blanks.

, VOLSER = vol addr
specifies the address of the volume serial number.

• For TYPE= ADDVOL, it specifies the address of the new volume to be added to the
definition of the data set.

• For TYPE= ADDVOL and CLASS= 'TAPEVOL', it specifies the address of the new
volume being added to the tape volume set identified by ENTITY.

• For TYPE= DEFINE and CLASS= 'DATASET'' it specifies the address of the catalog
(for a VSAM data set), or of the volume on which the data set resides (for a
non-VSAM data set).

The volume serial number is optional if you specify DSTYPE = M; it is ignored if the
profile name is generic.

The field pointed to by the specified address contains the volume serial number
(padded to the right with blanks, if necessary, to make six characters).

, TYPE = DEFINE
,TYPE =DEFINE ,NEWNAME =new dsn addr
, TYPE = ADDVOL ,OLDVOL =old vol addr
,TYPE =CHGVOL ,OLDVOL =old vol addr
,TYPE =DELETE

specifies the type of action to be taken.

• TYPE= DEFINE - The definition of the resource is added to the RACF data set, and
the current user is established as the owner of the defined entity.

• TYPE= DEFINE,NEWNAME = - If you specify NEWNAME, the address points to a
44-byte field containing the new name for the data set that is to be renamed.
NEWNAME is only valid with CLASS= 'DATASET'. NEWNAME is not valid with
DSTYPE=T.

• TYPE= ADDVOL - The new volume is added to the definition of the specified
resource. For the DATASET class, the OLDVOL address specifies a previous
volume of a multi-volume data set. For the TAPEVOL class, the ENTITY address
specifies a previous volume of a tape volume set. This parameter applies only to
discrete profiles.

• TYPE= CHGVOL - The volume serial number in the definition of the specified
resource is changed from the old volume serial number identified in OLDVOL to the
new volume serial number identified in the VOLSER parameter. This parameter
applies only to discrete profiles. TYPE= CHGVOL is not valid with DSTYPE = T.

• TYPE= DELETE - The definition of the resource is removed from the RACF data set.
(For a multivolume data set or a tape volume set, only the specified volume is
removed from the definition.)

,DSTYPE =N
,DSTYPE =V
,DSTYPE =M
,DSTYPE -=T

specifies the type of data set associated with the request:

• N for non-VSAM
• v for VSAM
• M for model profile
• T for tape

386 SPL: Application Development Macro Reference

If you specify DSTYPE = T and tape data set protection is not active, the processing will
be the same as for RACDEF CLASS= 'TAPEVOL'. Specify DSTYPE only for
CLASS= 'DATASET'.

,INSTLN = parm list addr
specifies the address of an area that is to contain parameter information meaningful to
the RACDEF installation exit routines. This information is passed to the installation exit
routines when they are given control from the RACDEF routine.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACDEF installation exit routines.

,CLASS = 'classname'
,CLASS =class name addr

specifies that a profile is to be defined, modified, or deleted in the specified class. If
you specify an address, the address must point to a one-byte length field followed by
the class name (for example, DATASET or TAPEVOL). The class name should be no
longer than eight characters.

,MENTITY =entity addr
specifies the address of the name of the discrete or generic profile that is to be used as
a model in defining the ENTITY profile. The profile can belong to any class, as
specified by the MCLASS parameter, and can be either a discrete or a generic profile.
You can specify MENTITY with TYPE= DEFINE but not with
TYPE= DEFINE,NEWNAME =new dsn addr. The name is contained in a 44-byte field
pointed to by the specified address. The name is left justified in the field and padded
with blanks.

,MCLASS = 'classname'
,MCLASS = class name addr

specifies the class to which the profile defined by MENTITY= belongs. If you specify
an address, the address must point to a one-byte length field followed by the class
name. The class name should be no longer than eight characters. The default is
MC LASS= 'DATASET'.

,MVOLSER = volser addr
specifies the address of the volume serial number of the volume associated with the
profile in the MENTITY operand. The field to which the specified address points
contains the volume serial number, padded to the right with blanks, if necessary, to
make six characters.

If you specify MENTITY and CLASS= 'DATASET', you must specify MVOLSER with the
name of the VOLSER or with blanks.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

If you specify it with blanks, the discrete MENTITY data set profile name must be
unique, meaning it has no duplicates on the data base. In this case, RACF determines
the correct MVOLSER.

,__ ____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -----~

,MGENER = ASIS
,MGENER =YES

specifies whether the profile name defined by MENTITY is to be treated as a generic
name.

• If you specify MGENER = ASIS, the profile name is considered a generic only if it
contains a generic character: an asterisk (*) or a percent sign (%).

• If MGENER=YES is specified, the profile name is considered a generic, even if it
does not contain a generic character: an asterisk(*) or a percent sign(%).

MGENER is ignored if the GENCMD option on the RACF SETROPTS command is not
specified for the class (see RACF Command Language Reference).

RACDEF (for RACF Release 1.8.1 or earlier) 387

,ACEE = acee addr
specifies the address of the accessor environment element (ACEE) to be used during
RACDEF processing. If you do not specify ACEE, RACF uses the TASK ACEE pointer
(TCBSENV) in the extended TCB. If the TASK ACEE pointer is zero, RACF uses the
main ACEE. The main ACEE's address is in the ASXBSENV field in the address space
extension block.

,UNIT =unit addr
specifies the address of a field containing unit information. UNIT is valid only if you
specify TYPE= CHGVOL or TYPE= DEFINE. If you specify a unit address, the unit
information in the data set profile is replaced by the unit information pointed to by this
unit address. The unit address must point to a field containing a one-byte length field
(whose value can range from 4 through 8) followed by the actual unit information. If the
value in the length field is 4, the unit information is assumed to contain a copy of the
information in the UCBTYP field of the UCB. Otherwise the unit information is assumed
to be in the generic form (for example, 3330-1). This parameter is ignored for generic
names.

,OWNER =owner id addr
specifies the address of a field containing the profile owner's id. OWNER is valid if you
specify TYPE= DEFINE. The owner's id must be a valid (RACF-defined) userid or group
name. The address must point to an 8-byte field containing the owner's name,
left-justified and padded with blanks.

- PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: RACF does not check the validity of the owner's id if it has been added or
modified by either the RACDEF preprocessing or postprocessing exit routines, or both .

.____ ____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -------'

,LEVEL =number
,LEVEL =reg

specifies a level value for the profile. LEVEL is valid only if you specify TYPE= DEFINE.
The level number must be a valid decimal number in the range Oto 99. If you specify a
register, its low-order byte must contain the binary representation of the number.

Note: RACF does not check the validity of this number if it has been added or modified
by the RACDEF preprocessing and/or postprocessing exit routines.

,UACC =ALTER
,UACC =CONTROL
,UACC =UPDATE
,UACC =READ
,UACC =EXECUTE
,UACC =NONE
,UACC =reg

specifies a universal access authority for the profile. UACC is valid only if you specify
TYPE= DEFINE. UACC must contain a valid access authority (EXECUTE, ALTER,
CONTROL, UPDATE, READ, or NONE).

To use the EXECUTE keyword, your system must have DFP Version 3 installed.
EXECUTE authority means that the user has only the ability to execute the program; the
user cannot READ the program. If your system is not running with DFP Version 3, an
EXECUTE access attempt will be treated as NONE.

388 SPL: Application Development Macro Reference

If you specify a register, the low-order byte must contain one of the following valid
access authorities:

x·ao· -AL TEA
X'40' - CONTROL
X'20' - UPDATE
X'10' - READ
X'01' - NONE
X'08' - EXECUTE

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: RACF does not check the validity of the universal access authority if it has been
added or modified by the RACDEF preprocessing and/or postprocessing exit routine.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -----~

,DATA =data addr
specifies the address of a field that contains up to 255 characters of installation-defined
data to be placed in the profile. DATA is valid only if you specify TYPE= DEFINE. The
data address must point to a field containing a one-byte length field (whose value can
range from 0 to 255) followed by the actual installation-defined data.

,AUDIT =NONE
,AUDIT = audit value
,AUDIT =(audit value(access level},audit value(access level}, . . .)
,AUDIT =(reg)

specifies the types of accesses and the access levels that are to be logged to the SMF
data set. AUDIT is valid only if you specify TYPE= DEFINE.

For audit value, specify one of the following: At I., SLJCCFSS, or FAILURES You rnay
optionally specify an access level(access authority) following each audit value.

Access Levels:

• EXECUTE is not audited. If you specify FAILURES (READ), EXECUTE logs the READ
attempt as a failure, but allows EXECUTE access to the data set.

• READ the default access level value, logs access attempts at any level.

• UPDATE logs access attempts at the UPDATE, CONTROL, and AL TEA levels.

• CONTROL logs access attempts at the CONTROL and AL TEA levels.

• AL TEA logs access attempts at the AL TEA level only.

Note: For more information about specific audit values and access levels, please see
the RACF Command Language Reference.

RACF resolves combinations of conflicting specifications by using the most
encompassing specification. Thus, in the case of the following:

ALL(UPDATE),FAILURES(READ)

RACF assumes SUCCESS(UPDATE),FAILURES(READ).

For compatibility with previous releases, you can also specify register notation as
AUDIT= reg if the register is not given as a symbolic name ALL, SUCCESS, or
FAILURES.

Logging is controlled separately for SUCCESS and FAILURES, and can also be
suppressed or requested via the RACHECK post-processing installation exit routine.

RACDEF (for RACF Release 1.8.1 or earlier) 389

If you specify a register, its low-order byte must contain one of the following valid audit
values:

Bit Meaning
0 ALL
1 SUCCESS
2 FAILURES
3 NONE
4-5 Qualifier for SUCCESS
6-7 Qualifier for FAILURES

The qualifier codes are as follows:

00 READ
01 UPDATE
10 CONTROL
11 ALTER

Only one of bits 0-3 can be on. If you specify ALL, you can use the two qualifier fields to
request different logging levels for successful and unsuccessful events.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: RACF does not check the validity of the audit type if it has been added or
modified by the RACDEF preprocessing and/or postprocessing exit routine.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -----~

,RACFIND =YES
,RACFIND =NO

specifies whether or not a discrete profile is involved in RACDEF processing. When
you specify TYPE= DEFINE, RACFIND =YES means that a discrete profile is to be
created. When you specify TYPE= DELETE, DEFINE with NEWNAME, CHGVOL, or
ADDVOL, RACFIND =YES means that a discrete profile already exists.

RACFIND= NO means (when TYPE= DEFINE) that no discrete profile is to be created,
but some authorization checking is required. For other types of action, no discrete
profile should exist.

Note: Use the RACFIND keyword only with the DATASET class.

,CHKAUTH =YES
,CHKAUTH =NO

specifies whether RACF will verify that the user is authorized to perform the operation.

CHKAUTH =YES is valid when you specify either TYPE= DEFINE,NEWNAME = or
TYPE= DELETE.

For DSTYPE=T, specifies that RACF will verify that the user is authorized to define a
data set (TYPE= DEFINE), delete a data set (TYPE= DELETE), or add a volume
(TYPE= ADDVOL).

,RELEASE =1.611.711.811.8.1
specifies the RACF release level of the parameter list that this macro will generate.

To use the parameters associated with a release, specify the release number of that
release or a later release. If you specify an earlier release level, macro processing will
not accept the parameter, and an error message will be issued at assembly time. For
the parameters that are valid for RELEASE= 1.6 and later, see Figure 13.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACDEF macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

390 SPL: Application Development Macro Reference

,FILESEQ = number
,FILESEQ = reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The number must be in the range 1 - 9999. If you specify a register, it must
contain the file sequence number in the low-order half-word. If you do not specify
CLASS='DATASET' and DSTYPE=T, FILESEQ is ignored.

,EXPDT = expir date addr
,EXPDTX = extended expir date addr
,RETPD = retn period addr

specifies the address containing information about the data set's expiration date or
RACF security retention period.

EXPDT = expir date addr specifies the address of a three-byte field containing the data
set's expiration date. The date is given in packed decimal form as YYDDDF, where YY
is the year and DOD is the day number. The year must be in the range 01 through 99,
and the day number must be in the range 1 through 366. All fields are right justified.

EXPDTX =extended expir date addr specifies the address of a 4-byte field that contains
the address of the data set's expiration date. The date is given in packed decimal form
as CCYYDDDF, where CC is the century change greater than 19, YY is the year, and
DOD is the day number. The year must be in the range 01 through 99. The day must be
in the range 1 through 366. All fields are right justified. When you want to represent 19
for the century, specify CC as 00; when you want to represent 20 for the century, specify
CC as 01. To use this parameter, you must also specify RELEASE= 1.8.

RETPD = retn period addr specifies the address of a two-byte binary field containing the
number of days after which RACF protection for the data set expires. The value you
specify must be in the range 1 through 65533. To indicate that there is no expiration
date, specify 65534.

If you do not specify any of these parameters, a default RACF security retention period
is obtained from the RETPD keyword specified on a prior RACF SETROPTS command.

These parameters are valid only if CLASS= 'DATASET' and DSTYPE=T.

,ACCLVL = (access value addr)
,ACCLVL = (access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
address must point to a field containing a one-byte length field {with a value that can
range from 0-8) followed by an eight-character string that will be passed to the RACDEF
installation exit routines. The parameter list address points to a parameter list
containing additional information to be passed to the RACDEF installation exit routines.

RACF does not check or modify this information.

TAPELBL =STDIBLPINL
specifies the type of tape labelling to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL= BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL= NL or BLP, the user will not be
allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

The TAPELBL parameter is passed to the RACDEF installation exits.

This parameter is primarily intended for use by data management routines to indicate
the label type from the LABEL keyword on the JCL statement.

This parameter is only valid for CLASS= 'DATASET' and DSTYPE=T, or
CLASS= 'TAPEVOL'.

RACDEF (for RACF Release 1.8.1 or earlier) 391

,SECLVL- addr
specifies the address of a list of installation-defined security level identifiers. Each
Identifier is a half word, containing a value that corresponds to an installation-defined
security level name.

The Identifiers must be in the range 1 - 254. Only one identifier may be passed in the
list.

The list must start with a full word containing the number of entries in the list {currently,
only O or 1).

,ERASE= YES
,ERASE= NO

specifies whether the DASO data set, or the released space, is to be erased when it is
deleted or part of its space is to be released for reuse.

• If you specify ERASE= YES, the data set will be erased when it is deleted, or
released for reuse.

• If you specify ERASE= NO, the data set will not be erased, deleted, or released.

Note: This parameter may be overridden by the RACF SETROPTS command.

The default is ERASE= NO.

,NOTIFY= notify id addr
specifies the address of an eight-byte area containing the userid of the RACF-defined
user who is to be notified when an unauthorized attempt to access the resource
protected by this profile is detected.

,GENERIC =YES
,GENERIC • ASIS

specifies whether the resource name is treated as a generic profile name. If you
specify GENERIC with CLASS= DEFINE, NEWNAME, then GENERIC applies to both the
old and new names. GENERIC is ignored if you do not specify the GENCMD option on
the RACF SETROPTS command for the class {see RACF Command Language
Reference).

This keyword is designed primarily for use by RACF commands.

• If you specify GENERIC= YES, the resource name is considered a generic profile
name, even if it does not contain a generic character: an asterisk{*) or a percent
sign(%).

• If you specify GENERIC= ASIS, the resource name is considered a generic only if it
contains a generic character: an asterisk(*) or a percent sign(%).

,WARNING =YES
,WARNING =NO

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

WARNING is valid only if you specify TYPE= DEFINE. If you specify WARNING= YES,
access is granted to the resource and the event is logged as a warning if either the
SUCCESS and/or FAILURES logging is requested .

.___ ____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ____ __,

,ENVIR =VERIFY
specifies that only verification is to be done. If you specify ENVIR=VERIFY, you must
also specify TYPE= DEFINE, RESOWN, the current RELEASE level, and either
MGMTCLA or STORCLA, or both .

392 SPL: Application Development Macro Reference

When you specify ENVIR =VERIFY, RACDEF calls RACHECK to verify that the user
specified on the RESOWN keyword has the authority to create a data set in the
specified resource class. To verify the authority of a non-RACF defined user to the
specified resource, specify *NONE* for the RESOWNER keyword. In DFP support, the
two resource classes are the MGMTCLA and the STORCLA.

Note: If you do not specify ENVIR =VERIFY, normal RACDEF processing occurs.

,RESOWN =resource owner addr
specifies the address of a field containing the resource owner's id. If you specify
RESOWN, you must also specify TYPE= DEFINE and the current RELEASE parameter.
The resource owner's id must be either a valid (RACF-defined) userid or group name,
or *NONE*. If the resource owner's id is specified as *NONE*, then RACF performs
third-party RACHECK using USERID= *NONE*. The address must point to a 2-byte field
followed by the resource owner's name.

,STORCLA =storage class addr
specifies the address of the storage class to which the resource owner must have
authority. The address must point to a 2-byte field followed by the management class
name. If you specify STORCLA, you must also specify TYPE= DEFINE, RESOWN, the
current RELEASE parameter and ENVIR =VERIFY.

,MGMTCLA =management class addr
specifies the address of of a management class to which the resource owner must have
authority. The address must point to an 8-byte field that contains a management class
name preceded by a halfword length. If you specify MGMTCLA, you must also specify
TYPE= DEFINE, RESOWN, the current RELEASE parameter, and ENVIR =VERIFY.

RACDEF (for RACF Release 1.8.1 or earlier) 393

Parameters for RELEASE = 1.6 and Later
The RELEASE values for which a parameter is valid are marked with an 'X'.

Figure 13. RACDEF Parameters for RELEASE= 1.6 and Later

Parameter RELEASE = 1.6 RELEASE= 1.7 RELEASE= 1.8
or 1.8.1

ACEE= x x x
ACCLVL= x x
AUDIT= x x x
CHKAUTH= x x x
CLASS= x x x
DATA= x x x
DSTYPE=N, V, or M x x x
DSTYPE=T x x
ENTITY= x x x
ENVIR= x
ERASE= x x
EXPDT= x x
EXPDTX= x
FILESEQ= x x
GENERIC= x x x
INSTLN= x x x
LEVEL= x x x
MCLASS= x x
MENTITY= x x x
MGENER= x x
MGMTCLA= x
MVOLSER= x x x
NOTIFY= x x
OWNER= x x x
RACFIND= x x x
RELEASE= x x x
RESOWN= x
RETPD= x x
SECLVL= x x
STORCLA= x
TAPELBL= x x
TYPE= x x x
UACC= x x x
UNIT= x)(x
VOLSER= x x x
WARNING= x x x

394 SPL: Application Development Macro Reference

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register O may contain a reason code.

Hexadecimal
Code Meaning

00 RACDEF has completed successfully. Register O contains one of the following
reason codes:

04

08

oc

10

00 indicates a normal completion.

04 indicates RACFIND =NO was specified and no generic profile applying
to the data set was found.

RACDEF has completed processing. Register 0 contains one of the following
reason codes:

00 indicates the following:

For TYPE= DEFINE, the resource name was previously defined.

For TYPE= DEFINE,NEWNAME, the new resource name was
previously defined.

For TYPE= DELETE, the resource name was not previously
defined.

04 indicates for TYPE= DEFINE that the data set name was previously
defined on a different volume and that the option disallowing duplicate
data sets was specified at IPL.

RACDEF has completed processing. Register 0 contains one of the following
reason codes:

00 indicates the following:

For TYPE= DEFINE, the check for authority to allocate a data set
or create a profile with the specified name has been failed.

For TYPE= DELETE or TYPE= DEFINE,NEWNAME if
CHKAUTH =YES is specified, the authorization check has been
failed.

For TYPE= ADDVOL,OLDVOL the old value was not defined.

04 indicates for TYPE= DEFINE that no profile was found to protect the
data set and that the RACF protect-all option is in effect.

08 indicates TYPE= DEFINE or TYPE= ADDVOL,OLDVOL and DSTYPE = T
were specified. And the user is not authorized to define a data set on
the specified volume.

QC indicates TYPE= DEFINE and DSTYPE=T were specified. And the
user is not authorized to define a data set with the specified name.

10 indicates DSTYPE=T or CLASS=TAPEVOL was specified. and the
user is not authorized to specify LABEL= (,BLP).

20 indicates the data set owner is not authorized to use the specified DFP
storage class.

24 indicates the data set owner is not authorized to use the specified DFP
management class.

For TYPE= DEFINE,NEWNAME, the old data set name was not defined; or if
the generation data group (GOG) modeling function is active, an attempt was
made to rename a GOG n3me to a name that requires the creation of a new
profile; or if generic profile checking is active, the old data set name was
protected by a generic profile and there is no generic profile that will protect
the new data set name. This last case refers only to an attempt to rename an
existing profile, which cannot be found.

For TYPE= DEFINE with MENTITY, the model resource was not defined.

RACDEF (for RACF Release 1.8.1 or earlier) 395

64

Example 1

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACDEF macro; however, the list form of
the macro does not have the proper RELEASE parameter. Macro processing
terminates.

Operation: Invoke RACF to define a discrete profile for a non-VSAM data set residing on
the volume pointed to by register 8. Register 7 points to the data set name. All successful
requests for update authority to the data set are to be audited, as well as all unsuccessful
ones.

RACDEF ENTITY=(R7),VOLSER=(RS);GLASS='DATASET',
AUDIT=(SUCCESS(UPDATE),FAILURES),
RACFIND=YES

Example 2
Operation: Use the standard form of the RACDEF macro to define a discrete data set
profile for a non-VSAM DASO data set. The data set for which you are creating a profile is a
non-VSAM DASO data set named DSNAME. It resides on a volume id named VOLID. You
want to create a discrete profile by specifying the RACFIND keyword. In addition, you want
to notify the user called USERNAME of any access attempts that have been rejected
because they exceed the UACC of READ that you are allowing.

RACDEF ENTITY=DSNAME,VOLSER=VOLID,CLASS='DATASET' ,UACC=READ, X

RACFIND=YES,NOTIFY=USERNAME,RELEASE=l.7

Example 3
Operation: Use the standard form of the macro to check the authority of a user to define a
discrete data set profile for a non-VSAM dasd data set, but do not actually build the profile.
The name of the data set is DSNAME.

RACDEF ENTITY=DSNAME,VOLSER=VOLID,CLASS='DATASET' ,RACFIND=NO

Example 4
Operation: Use the standard form of the macro to define a generic data set profile named
PROFNAME. Use the discrete profile named MDELPROF whose volser is in MDELVOL as a
model for the new profile. Notify the user named USERNAME of any access attempts that
have been rejected because they exceed the UACC of READ which you are allowing.

RACDEF ENTITY=PROFNAME,CLASS='DATASET' ,GENERIC=YES,MENTITY=MDELPROF, X
MVOLSER=MDELVOL,UACC=READ,NOTIFY=USERNAME,RELEASE=l.7

Example 5
Operation: Use the standard form of the macro to define a tape volume profile for a volume
whose id is VOLID. Allow a universal access level of READ.

RACDEF ENTITY=VOLID,CLASS='TAPEVOL' ,UACC=READ

Example 6
Operation: Use the standard form of the macro to delete a discrete data set profile named
DSNAME located on the volume named VOLID.

RACDEF TYPE=DELETE,ENTITY=DSNAME,VOLSER=VOLID,CLASS='DATASET'

396 SPL: Application Development Macro Reference

RACDEF (List Form)
The list form of the RACDEF macro is written as follows:

name

b

RAC DEF

b

ENTITY =profile name addr

,VOLSER=vol addr

,TYPE= DEFINE
,TYPE= DEFINE,NEWNAME =
new dsn addr
,TYPE= ADDVOL,OLDVOL =
old vol addr
,TYPE= CHGVOL,OLDVOL =
old vol addr
,TYPE= DELETE

,DSTYPE=N
,D$TYPf:=V
,DSTYPE=M
,DSTYPE=T

,INSTLN =pa rm list addr

,CLASS= 'classname'
,CLASS= class name addr

,MENTITY =entity addr

,MCLASS= 'classname'
,MCLASS=class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER= owner id addr

,LEVEL= number
,LEVEL=reg

,UACC =ALTER
,UACC =CONTROL
,UACC=UPDATE
,UACC=READ
,UACC =EXECUTE
,UACC=NONE

name: symbol. Begin name in column 1.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: A-type address.
Note: ENTITY must be specified on either the list or the
execute form of the macro.

vol addr: A-type address
Note: VOLSER is required (on either LIST or EXECUTE) only
for CLASS= 'DATASET' and DSTYPE not equal to M when a
discrete profile name is used.

new dsn addr: A-type address
old vol addr: A-type address

Default: TYPE= DEFINE

Default: DSTYPE = N

parm list addr: A-type address

'classname': 1-8 character name.
class name addr: A-type address
DefauU: CLASS= 'DATASET'

entity addr: A-type address

'classname': 1-8 character name.
class name addr: A-type address
DefauU: MCLASS= 'DATASET'

volser addr: A-type address

Default: MGENER = ASIS

acee addr: A-type address

unit addr: A-type address

owner id addr: A-type address

Detault: zero.
reg: register (2) - (12).

RACDEF (for RACF Release 1.8.1 or earlier) 397

,UACC=reg

,DATA=data addr
,AUDIT= NONE
,AUDIT= audit value
,AUDIT= (audit value (access
level),audit value(access level))
,AUDIT= (reg)

,RACFIND=YES
,RACFIND=NO

,CHKAUTH=YES
,CHKAUTH =NO

,GENERIC=YES
,GENERIC= ASIS

,WARNING= YES
,WARNING=NO

,RELEASE= number

,FILESEQ =reg
,FILESEQ =number

,EXPDT = expir date addr
,RETPD = retn period addr
,EXPDTX =ex explr date addr

,ENVIR =VERIFY

,RESOWN= resource owner addr

,STORCLA =storage class addr
,MGMTCLA =management class
addr

,ACCLVL =(access value addr)
,ACCL VL = (access value addr,
parm list addr)

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL=NL

,SECL VL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify id addr

,MF=L

reg: register (2) - (12).

data addr: A-type address

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Defaun: READ
reg: register (2) - (12).

DefauH: CHKAUTH =NO

Default: GENERIC= ASIS

DefauH: WARNING=NO
Note: Warning is valid only if TYPE= DEFINE Is specified.

number: 1.8.1, 1.8, 1.7, or 1.6
Defaun: RELEASE= 1.6

reg: register (2) - {12).
number: 1-9999

expir date addr: A-type address
retn period addr: A-type address
extended expir date addr: A-type address specifies that only
verification is to be done.

Default: Normal RACDEF processing.

resource owner addr: A-type address

storage class addr: A-type address
management class addr: A-type address

DefauH: see description of parameter.

access value addr: A-type address
parm list addr: A-type address

Defaun: TAPELBL=STD

addr: A-type address

Defaun: ERASE= NO

notify id addr: A-type address

The parameters are explained under the standard form of the RACDEF macro, with the
following exception:

,MF =L
specifies the list form of the RACDEF macro.

398 SPL: Appllcati<m Development Macro Reference

RACDEF (Execute Form)
The execute form of the RACDEF macro is written as follows:

name

b

RAC DEF

b

ENTITY=profi/e name addr

,VOLSER = vol addr

,TYPE= DEFINE
,TYPE= DEFINE,NEWNAME =
new dsn addr
,TYPE= ADDVOL,OLDVOL =
old vol addr
,TYPE= CHGVOL,OLDVOL =
old voladdr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS=class name addr

,MENTITY =entity addr

,MCLASS=class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER=owner id addr

,LEVEL= number
,LEVEL=reg

,UACC =ALTER
,UACC =CONTROL
,UACC=UPDATE
,UACC=READ
,UACC =EXECUTE
,UACC=NONE
,UACC=reg

name: symbol. Begin name in column 1.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: RX-type address.
Note: ENTITY must be specified on either the list or the
execute form of the macro.

vol addr: RX-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS= 'DATASET' and
DSTYPE not equal to M when a discrete profile name is used.

new dsn addr: RX-type address, or register (2) - (12).
old vol addr: RX-type address, or register (2) - (12).

Delault: TYPE= DEFINE

Delault: DSTYPE = N

parm list addr: RX-type address, or register (2) - (12).

class name addr: RX-type address, or register (2) - (12).
DelauH: CLASS= 'DATASET'

entity addr: RX-type address, or register (2) - (12).

class name addr: RX-type address, or register (2) - (12).
DelauH: MCLASS='DATASET'

volser addr: RX-type address, or register (2) - (12).

Delault: MGENER = ASIS

acee addr: RX-type address, or register (2) - (12).

unit addr: RX-type address, or register (2) - (12).

owner id addr: RX-type address, or register (2) - (12).

DelauH: zero.
reg: register (2) - (12).

reg: register (2) - (12).

RACDEF (for RACF Release 1.8.1 or earlier) 399

,DATA= data addr
,AUDIT= NONE
,AUDIT=audit value
,AUDIT= (audit value (access
level),audit value(access level))
,AUDIT= (reg)

,RACFIND=YES
,RACFIND=NO

,CHKAUTH =YES
,CHKAUTH =NO

,GENERIC= YES
,GENERIC= ASIS

,WARNING=YES
,WARNING= NO

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (.CHECK)

,FILESEQ =reg
,FILESEQ =number

,EXPDT=expir date addr
,RETPD=retn period addr
,EXPDTX =extended expir date
addr

,ENVIR=VERIFY

,RESOWN= resource owner addr

,STORCLA =storage class addr

,MGMTCLA =management class
addr

,ACCLVL =(access value addr)
,ACCLVL =(access value addr,
parm list addr)

,T APEL BL= STD
,TAPELBL = BLP
,TAPELBL=NL

,SECLVL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify id addr

,MF= (E,ctrl addr)

data addr: RX-type address or register (2) - (12).

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: READ
reg: register (2) - (12).

Default: CHKAUTH =NO

DefauH: GENERIC= ASIS

Default: WARNING= NO
Note: Warning is valid only if TYPE= DEFINE is specified.

number: 1.8.1, 1.8, 1.7, or 1.6
DefauH: RELEASE= 1.6

reg: register (2) - (12).
number: 1-9999

expir date addr: RX-type address or register (2) - (12).
retn period addr: RX-type address or register (2) - (12).
extended expir date addr: RX-type address or register (2) -
(12).

specifies that only verification is to be done.
Default: Normal RACDEF processing.

resource owner addr: RX-type address or Register (2) - (12).

storage class addr: RX-type address or Register (2) - (12).

management class addr: RX-type address or Register (2) -
(12).

access value addr: RX-type address or register (2) - (12).
parm list addr: RX-type address, or register (2) - (12).

Default: T APEL BL= STD

addr: RX-type address, or register (2) - (12).

Default: ERASE= NO

notify id addr: RX-type address or register (2) - (12).

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RACDEF macro, with the
following exception:

,MF = (E,ctr/ addr)
specifies the execute form of the RACDEF macro using a remote control program
parameter list.

400 SPL: Application Development Macro Reference

,RELEASE • (number,CHECK)
,RELEASE =1.e11.111.a11.a.1
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 13.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACDEF macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code 'X64' will be generated.

RACDEF (for RACF Release 1.8.1 or earlier) 401

402 SPL: Application Development Macro Reference

RACHECK - Check RACF Authorization (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

Note: The RACROUTE macro is the preferred programming interface.

This macro description applies to RACF Release 1.8.1 or earlier. Your program can Invoke
the RACHECK macro directly; however, IBM recommends that you Invoke the equivalent
function through the RACROUTE macro, using the REQUEST• AUTH parameter. See
"RACROUTE- MYS Router Interface (for RACF Release 1.8.1 or earlier)" on page 437 for
the applicable RACROUTE macro description.

If you have RACF Release 1.9 Installed on your system, you can stlll Invoke the RACHECK
macro directly. However, If you are going to use the new Release 1.9 functions, see the
following for the applicable descriptions of RACROUTE and RACROUTE REQUEST• AUTH:

• "RACROUTE - Router Interface (for RACF Release 1.9)" on page 447
• "RACROUTE REQUEST• AUTH - Check RACF Authorization (for RACF Release 1.9)"

on page 467.

The RACHECK macro provides authorization checking when a user requests access to a
RACF-protected resource. The RACHECK macro is also described in the MVSIESA SPL:
Application Development Guide.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in
31-bit addressing mode, who want to use the RACHECK function, can code the RACROUTE
macro.

403

The standard form of the RACHECK macro is written as follows:

name

b

RA CHECK

b

PROFILE= profile addr
ENTITY= (resource name addr)
ENTITY= (resource name addr,CSA)

,VOLSER =vol addr

,CLASS= 'classname'
,CLASS=class name addr

,RELEASE= number

,ATTR=READ
,ATTR=UPDATE
,A TTR =CONTROL
,ATTR=ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG= NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL =old vol addr

,APPL= 'applname'
,APPL=applname addr

,ACEE=acee addr

,OWNER= owner ID addr

,ACCLVL =(access value addr)
,ACCLVL =(access value addr,
parm list addr)

,RACFIND =YES
,RACFIND =NO

,GENERIC= YES
,GENERIC= ASIS

,FILESEQ =reg
,FILESEQ =number

404 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: A-type address, or register (2) - (12).
resource name addr: A-type address, or register (2) - (12).

vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS= 'DATASET' and
DSTYPE not equal to M when a discrete profile name is used
and only when ENTITY is also coded.

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).

number: 1.8.1., 1.8, 1.7, or 1.6
Default: RELEASE = 1.6

reg: register (2) - (12).
DefauH: ATTR =READ

Default: DSTYPE = N

parm list addr: A-type address, or register (2) - (12).

Default: LOG= ASIS

old vol addr: A-type address, or register (2) - (12).

'applname': constant" Application name"
applname addr: A-type address, or register (2) - (12).

acee addr: A-type address, or register (2) - (12).

owner ID addr: A-type address, or register (2) - (12).

access value addr: A-type address or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

Default: GENERIC= ASIS

reg: register (2) - (12).
number: 1-9999

,TAPELBL =STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS=NONE
,ST A TUS =ERASE

,USERID = 'userid'
,USERID =user id addr

,GROUPID= 'groupid'
,GROUPID = groupid addr

Default: TAPELBL =STD

Default: STATUS= NONE

userid: 1-8 character userid
userid addr: A-type address or register (2) - (12)

groupid: 1-8 character groupid
groupid addr: A-type address, or register (2) - (12)

The parameters are explained as follows:

PROFILE =profile addr
ENTITY =(resource name addr)
ENTITY =(resource name addr, CSA)

PROFILE= profile addr specifies that RACF authorization checking is to be performed
for the resource whose profile is pointed to by the specified address. This profile must
be supplied by ENTITY= (xxx,CSA). A profile supplied by RACLIST is not acceptable.

ENTITY= (resource name addr) specifies that RACF authorization checking is to be
performed for the resource whose name is pointed to by the specified address. The
resource name is a 44-byte DASO data set name for CLASS= 'DATASET' or a 6-byte
volume serial number for CLASS= 'DASDVOL' or CLASS= 'TAPEVOL'. The length of all
other resource names is determined from the class descriptor tables. The name must
be left justified in the field and padded with blanks.

ENTITY= (resource name addr,CSA) specifies that RACF authorization checking is to be
performed for the indicated resource, and that a copy of the profile is to be maintained
in main storage. The storage acquired for the profile is obtained from the common
storage area (CSA), and is fetch-protected, Key 0 storage. The issuer of RACHECK
must free this storage when the profile is no longer needed. (The profile subpool
number and length are part of the profile data returned.) If you specify CSA and the
return code produced by the RACHECK macro is 00 or 08, the address of the profile is
returned in register 1.

By establishing and maintaining a resource profile, the resource manager can reduce
the 110 required to perform RACF authorization checks on highly-accessed resources.

, VOLS ER = vol addr
specifies the volume serial number, as follows:

• For non-VSAM DASO data sets and tape data sets, this is the volume serial number
of the volume on which the data set resides.

• For VSAM DASO data sets, this is the volume serial number of the catalog
controlling the data set.

The volume serial number is optional if you specify DSTYPE = M; it is ignored if the
profile name is generic.

The field to which the specified address points contains the volume serial number
padded to the right with blanks, if necessary, to make six characters. VOLS ER= is
only valid and must be supplied with CLASS= 'DATASET', (unless you specify
DSTYPE = M) and if you code ENTITY.

,CLASS = 'classname'
,CLASS = classname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If you specify an address, the address must point to a one-byte field
indicating the length of the classname, followed by the class name.

,RELEASE =1.611.711.811.8.1
specifies the RACF release level of the parameter list that this macro will generate.

RACHECK (for RACF Release 1.8.1 or earlier) 405

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For Instance, to use the STATUS parameter, you must be using RACF
1. 7 or later on your system and specify RELEASE= 1. 7 or later. For the parameters that
are valid for RELEASE= 1.6 and later, see Figure 15.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking Is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

,ATIR •READ
,ATIR =UPDATE
,ATIR •CONTROL
,ATIR =ALTER
,ATIR •reg

specifies the access authority of the user or group permitted access to the resource for
which RACF authorization checking is to be performed:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to write or read.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to the
VSAM control password. For non-VSAM data sets and other resources, RACF user
or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If you specify a register, the register must contain one of the following codes in the
low-order byte of the register:

X'02' - READ
X'04' - UPDATE
X'08' - CONTROL
X'BO' - ALTER

,DSTYPE =N
,DSTYPE •V
,DSTYPE -M
,DSTYPE =T

specifies the type of data set associated with the request:

• N for non-VSAM
• V for VSAM
• M for model profile
• T for tape

If you specify DSTYPE = T and tape data set protection is not active, the processing will
be the same as for RACHECK CLASS= 'TAPEVOL'.

Specify DSTYPE only for CLASS= 'DATASET'.

,INSTLN •pa rm list addr
specifies the address of an area that is to contain parameter Information meaningful to
the RACHECK Installation exit routine. This Information is passed to the installation
exit routine when it is given control by RACHECK.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACHECK installation exit routine.

406 SPL: Application Development Macro Reference

,LOG =ASIS
,LOG = NOFAIL
,LOG =NONE
,LOG = NOSTAT

specifies the types of access attempts to be recorded on the SMF data set:

ASIS - RACF records the event in the manner specified in the profile that protects the
resource.

NOFAIL - If the authorization check fails, the attempt is not recorded. If the
authorization check succeeds, the attempt is recorded as in ASIS.

NONE - The attempt is not to be recorded.

NOST AT - The attempt is not to be recorded and no resource statistics are to be
updated.

,OLDVOL =old vol addr
specifies a volume serial:

• For CLASS= 'DATASET', within the same multivolume data set specified by
VOLSER=.

• For CLASS= 'TAPEVOL', within the same tape volume specified by ENTITY=.

RACF authorization checking will verify that the OLDVOL specified is part of the same
multivolume data set or tape volume set.

The specified address points to the field that contains the volume serial number padded
to the right with blanks, if necessary, to make six characters.

,APPL = 'applname'
,APPL == applname addr

specifies the name of the application requesting authorization checking. The applname
is not used for the authorization checking process but is made available to the
installation exit routine{s) called by the RACHECK routine. If you specify the address,
the address must point to an 8-byte field containing the application name left justified
and padded with blanks.

,ACEE = acee addr
specifies the address of the accessor environment element {ACEE) to be used during
RACHECK processing. If you do not specify ACEE, RACF uses the TASK ACEE pointer
{TCBSENV) in the extended TCB. Otherwise, or if the TASK ACEE pointer is zero, RACF
uses the main ACEE for the address space. The ASXBSENV field of the address space
extension block points to the main ACEE.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

,OWNER = owner ID addr
specifies a profile owner id that is compared with the profile owner id in the owner field
of the RACF profile. If the owner names match, the access authority allowed for that
userid is 'ALTER'. The address must point to an 8-byte field containing the owner name,
left-justified and padded with blanks.

If you specify OWNER, any WARNING and OPERATIONS attribute processing is
bypassed.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ____ ___,

,ACCLVL =(access value addr)
,ACCLVL =(access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
access value to which the specified address points is a one byte length field, containing
the value (0-8) of the length of the following data, followed by an eight-character string
that will be passed to the RACHECK installation exit routines. The optional parameter
list to which the specified address points contains additional information to be passed

RACHECK (for RACF Release 1.8.1 or earlier) 407

to the RACHECK installation exit routines. RACF does not inspect or modify this
information.

,RACFIND =YES
,RACFIND ""NO

indicates whether or not the resource is protected by a discrete profile. The RACF
processing and the possible return codes are given in Figure 14.

Note: In all cases, a return code of X'OC' is also possible if the OLDVOL specified was
not part of the multivolume data set defined by VOLSER, or it was not part of the same
tape volume defined by ENTITY.

Figure 14. Types of Profile Checking Performed by RACHECK
Operand Generic Profile Checking Inactive

RACFIND =YES

RACFIND=NO

RACFIND not specified

,GENERIC =YES
,GENERIC = ASIS

Look for discrete profile; if found,
exit with return code 00 or 08. If
no discrete profile is found, exit
with return code 08.

No checking. Exit with return
code 04.

Look for discrete profile; if found,
exit with return code 00 or 08. If
no discrete profile is found, exit
with return code 04.

Generic Profile Checking Active

Look for discrete profile; if found,
exit with return code 00 or 08. Look
for generic profile; if found, exit with
return code 00 or 08.
Exit with return code 08 if neither a
discrete nor a generic profile is
found.

Look for generic profile; if found,
exit with return code 00 or 08. If not
found, exit with return code 04.

Look for discrete profile; if found,
exit with return code 00 or 08. Look
for generic profile; if found, exit with
return code 00 or 08.
Exit with return code 04 if neither a
discrete nor a generic profile is
found.

specifies whether the resource name is to be treated as a generic profile name. If you
specify GENERIC with CLASS= DEFINE, NEWNAME, GENERIC applies to both the old
and new names. GENERIC is ignored if you do not specify the GENCMD option on the
RACF SETROPTS command for the class (see RACF Command Language Reference).

• If you specify GENERIC= YES, the resource name is considered a generic profile
name, even if it does not contain either of the generic characters: an asterisk (*) or
a percent sign(%).

• If you specify GENERIC= ASIS, the resource name is considered a generic only if it
contains either of the generic characters: an asterisk(*) or a percent sign(%).

,FILESEQ == number
,FILESEQ = reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The value must be in the range 1 - 9999. If you specify a register, it must
contain the file sequence number in the low-order half-word. If you do not specify
CLASS= 'DATASET' and DSTYPE = T, FILESEQ is ignored.

,TAPELBL = STDIBLPINL
specifies the type of tape label processing to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL= BLP, you must have the requested authority to the profile ICHBLP in the
general resource class FACILITY. For TAPELBL=NL or BLP, you will not be allowed to
protect volumes with volume serial numbers in the format "Lnnnnn."

This parameter is primarily intended for use by data management routines to indicate
the label type from the LABEL keyword on the JCL statement.

408 SPL: Application Development Macro Reference

This parameter is valid only for CLASS= 'DATASET' and DSTYPE = T, or
CLASS= 'TAPEVOL'.

,STATUS • NONEIERASE
specifies whether or not RACHECK is to return the erase status of the given data set.
This parameter is valid only for CLASS= 'DATASET' and a DSTYPE value other than T.

,USERID ... 'userid'
,USERID • userid addr

specifies the userid that RACF uses to perform third party RACHECK. If you specify
USERID when the caller invokes RACHECK, RACF verifies that user's authority to the
given entity; RACF disregards the userid associated with the ACEE of the caller. For
third party RACHECK, RACF performs the following steps:

1. Checks to see if the USERID keyword is *NONE* and that you did not specify
GROUPID. If you did, then RACF creates a default user (null) ACEE which it uses to
perform the RACHECK.

2. If you did not, checks to see if an additional (third party) ACEE already exists,
chained off the current caller's ACEE or the ACEE specified in the "ACEE="
keyword.

3. If so, checks to see if the userid in that ACEE matches the one specified on the
USERID keyword. If so, RACHECK uses the existing ACEE and avoids RACINIT
processing.

4. If you specify USERID and RACHECK does not find an additional (third party) ACEE,
or the userid in the ACEE does not match the userid specified on the USERID
keyword, then RACHECK creates a third party ACEE based on the USERID keyword.

5. If you specify the GROUPID keyword in addition to the USERID keyword, and a third
party ACEE already exists, then the groupid of the existing third party ACEE must
also match the groupid specified on the GROUPID keyword. If the groupid keywords
do not match, RACHECK creates a third party ACEE based on the USERID keyword.

Note: If the calling program does not specify the GROUPID keyword, the internal
RACINIT function will use the default group associated with the specified userld.

Only programs that are that are APF-authorized, system key 0-7, or in supervisor state,
can use the USERID and GROUPID keywords.

Note: If the userid is *NONE* and you have not specified a GROUPID, a default user
(null) ACEE is created and used to satisfy RACHECK processing.

,GROUPID = 'group id'
,GROUPID ... groupid addr

specifies the groupid that RACF uses to perform third party RACHECK.

If the calling program wants a third party RACHECK performed on the GROUPID rather
than the USERID, then the USE RID keyword must be specified as *NONE*. Thus, when
the caller invokes third party RACHECK, RACF verifies the authority of the groupid to
the requested resource; RACF disregards the groupid associated with the ACEE of the
caller. For third party RACHECK, RACF performs the following steps:

• Checks to see if an additional (third party) ACEE already exists, chains off the
caller's ACEE, or the ACEE specified in the "ACEE=" keyword.

• If so, checks to see if the groupid matches that specified on the GROUPID keyword.
If so, RACHECK uses that ACEE and avoids RACINIT processing.

• If you specify GROUPID and RACHECK does not find an additional (third party)
ACEE, or the groupid in the ACEE does not match the groupid specified on the
GROUPID keyword, then RACHECK creates a third party ACEE based on the
GROUPID keyword.

Only programs that are that are APF-authorized, system key 0-7, or in supervisor state,
can use the USERID and GROUPID keywords.

RACHECK (for RACF Release 1.8.1 or earlier) 409

Parameters for RELEASE== 1.6 and Later
The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Figure 15. RACHECK Parameters for RELEASE= 1.6 and Later

Parameter RELEASE= 1.6 RELEASE• 1.7 RELEASE -1.a or
1.8.1

ACEE= x x x
ACCLVL= x x x
APPL= x x x
ATIR= x x x
CLASS= x x x
DSTYPE=N, V, or M x x x
DSTYPE=T x x
ENTITY= x x x
FILESEQ= x x
GENERIC= x x x
GROUPID= x
INSTLN= x x x
LOG= x x x
OLDVOL= x x x
OWNER= x x x
PROFILE= x x x
RACFIND= x x x
RELEASE= x x x
STATUS= x x
TAPELBL= x x

USERID= x
VOLSER= x x x

410 SPL: Application Development Macro Reference

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register O may contain a reason code.

Hexadecimal
Code Meaning

00 The user is authorized by RACF to obtain use of a RACF-protected resource.
Register 0 contains one of the following reason codes:

00 indicates a normal completion.

04 indicates STATUS=ERASE was specified and the data set is to be
erased when scratched.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Or the warning status of the resource was requested by the RACHECK
issuer setting bit '10' at offset 12 decimal in the RACHECK parameter
list and the resource is in warning mode.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -------'

04

08

oc

10

64

10 When CLASS=TAPEVOL, indicates the tapevol profile contains a
TVTOC.

20 When CLASS=TAPEVOL, indicates that the tapevol profile can contain
a TVTOC, but currently does not. (Scratch pool volume)

24 When CLASS=TAPEVOL, indicates that the tapevol profile does not
contain a TVTOC.

The specified resource is not protected by RACF. Register O contains the
following reason code:

00 indicates a normal completion.

The user is not authorized by RACF to obtain use of the specified
RACF-protected resource. Register O contains the following reason code:

00 indicates a normal completion.

04 indicates STATUS= ERASE was specified and the data set is to be
erased when scratched.

08 indicates DSTYPE=T or CLASS= 'TAPEVOL' was specified and the
user is not authorized to use the specified volume.

OC indicates the user is not authorized to use the data set.

10 indicates DSTYPE=T or CLASS= 'TAPEVOL' was specified and the
user is not authorized to specify LABEL= (,BLP).

1C User with EXECUTE authority to the data set profile specified
ATIR =READ, and RACF failed the access attempt.

The OLDVOL specified was not part of the multivolume data set defined by
VOLSER, or it was not part of the same tape volume defined by ENTITY.

RACINIT issued by third party RACHECK failed. Register 0 contains the
RACINIT return code.

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACHECK macro; however, the list form
of the macro does not have the proper RELEASE parameter. Macro
processing terminates.

RACHECK (for RACF Release 1.8.1 or earlier) 411

Example 1
Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set residing on the volume pointed to by register 8. Register 7 points to the data set
name and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on. Logging and statistics updates are not to
be done.

RACHECK ENTITY=((R7)),VOLSER=(R8),CLASS='DATASET', x
ATTR=ALTER,RACFIND=YES,LOG=NOSTAT

Example 2
Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set controlled by the catalog pointed to by register 8. Register 7 points to the data set
name, and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on.

RACHECK ENTITY=((R7)),VOLSER=(R8),CLASS='DATASET',
ATTR=ALTER,RACFIND=YES

Example 3

x

Operation: Perform RACF authorization checking using the standard form, for a VSAM data
set residing on the volume pointed to by register 8. Register 7 points to the data set name,
and the RACF user is requesting the data set for read only. Register 4 points to an area
containing additional parameter information.

RACHECK ENTITY=((R7)),VOLSER=(R8),CLASS='DATASET', X
DSTYPE=V,INSTLN=(R4)

Example 4
Operation: Using the standard form, perform RACF authorization checking for a tape
volume for read access only. The tape volume is pointed to by register 8 and the volume's
access level is in register 5.

RACHECK ENTITY=((R8)),CLASS='TAPEVOL' ,ATTR=READ, X
ACCLVL=((R5))

Example 5
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for READ access only for a user. Register 7 points to the data set name.

RACHECK ENTITY=((R7)),CLASS='DATASET' ,ATTR=READ X
USERID='SOMEUSER'

Example 6
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for READ access only for a group. Register 7 points to the data set name.

RACHECK ENTITY=((R7)),CLASS='DATASET',ATTR=READ X
USERID='*NONE*',GROUPID='SOMEGROUPID'

Example7
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for a user connected to a group. Register 7 points to the data set name.

RACHECK ENTITY=((R7)),CLASS='DATASET',ATTR=READ X
USERID='SOMEUSER' ,GROUPID='SOMEGROUPID'

412 SPL: Application Development Macro Reference

RACHECK (List Form)
The list form of the RACHECK macro is written as follows:

name

RACH ECK

b

PROFILE= profile addr
ENTITY= (resource name addr)
ENTITY= (resource name addr,CSA)

,VOLSER =vol addr

,CLASS= 'classname'
,CLASS=class name addr

, RELEASE= number

,ATTR=READ
,A TTR - UPDATE
,A TTR =CONTROL
,ATTR=ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

, INSTLN = parm list addr

,LOG=ASIS
,LOG= NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL =old vol addr

,APPL= 'applname'
,APPL= applname addr

,ACEE= acee addr

,OWNER= owner ID addr

,ACCLVL =(access value addr)
,ACCLVL =(access value addr,
parm list addr)

,RACFIND=YES
,RACFIND=NO

,GENERIC= YES
,GENERIC= ASIS

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: A-type address.
resource name addr: A-type address.
Note: PROFILE or ENTITY is required on either the list or the
execute form of the macro.

vol addr: A-type address.
Note: VOLSER is required on either the list or the execute form
of the macro, but only for CLASS= 'DATASET' and DSTYPE not
equal to M when a discrete profile name is used. If required,
VOLSER must be specified on either the list or the execute
form of the macro.

'classname': 1-8 character name.
class name addr: A-type address.

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

reg: register (2) - (12).
Default: A TTR =READ

Default: DSTYPE = N

parm list addr: A-type address.

Default: LOG= ASIS

old vol addr: A-type address.

applname addr: A-type address.

acee addr: A-type address.

owner ID addr: A-type address.

access value addr: A-type address

parm list addr: A-type address

DefauH: GENERIC= ASIS

RACHECK (for RACF Release 1.8.1 or earlier) 413

,FILESEQ =reg
,FILESEQ =number

,TAPELBL=STD
,TAPELBL=BLP
,TAPELBL =NL

,STATUS= NONE
,STATUS= ERASE

,USE RID= 'userid'
,USERID = userid addr

,GROUPID= 'groupid'
,GROUPID=groupid addr

,MF=L

reg: register (2) - (12).
number: 1-9999

Default: TAPELBL =STD

Default: STATUS= NONE

userid: constant RACF userid
userid addr: A-type address

groupid: constant RACF group id
groupid addr: A-type address

The parameters are explained under the standard form of the RACHECK macro with the
following exception:

,MF =L
specifies the I ist form of the RACHECK macro.

414 SPL: Application Development Macro Reference

RACHECK (Execute Form)

The execute form of the RACHECK macro is written as follows:

name

b

RACHECK

b

PROFILE= profile addr

,ENTITY= (resource name addr)
,ENTITY= (resource name addr,CSA)

,VOLSER =vol addr

,CLASS= class name addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,ATIR=READ
,ATIR=UPDATE
,ATIR=CONTROL
,ATIR=ALTER
,ATIR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN =parm list addr

,LOG=ASIS
,LOG=NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL =old vol addr

,APPL= applname
,APPL= applname addr

,ACEE= acee addr

,OWNER= owner ID addr

,ACCLVL =(access value addr)
,ACCL VL =(access value addr)

,RACFIND=YES
,RACFIND= NO

,GENERIC= YES
,GENERIC= ASIS

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: RX-type address, or register (2) - (12).

resource name addr: RX-type address, or register (2) - (12).
Note: PROFILE or ENTITY is required on either the list or the
execute form of the macro.

vol addr: RX-type address, or register (2) - (12).
Note: VOLSER is required on either the list or the execute form
of the macro, but only for CLASS= 'DATASET' and DSTYPE not
equal to M when a discrete profile name is used. If required,
VOLSER must be specified on either the list or the execute
form of the macro.

class name addr: RX-type address, or register (2) - (12).

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

reg: register (2) - (12).
Default: A TIR = READ

Default: DSTYPE = N

parm list addr: RX-type address, or register (2) - (12).

Default: LOG= ASIS

old vol addr: RX-type address, or register (2) - (12).

applname addr: RX-type address, or register (2) - (12).

acee addr: RX-type address, or register (2) - (12).

owner ID addr: RX-type address, or register (2) - (12).

access value addr: RX-type address or register (2) - (12).
access value addr: RX-type address or register (2) - (12).

Default: GENERIC= ASIS

RACHECK (for RACF Release 1.8.1 or earlier) 415

,FILESEQ =reg
,FILESEQ =number

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL =NL

,STATUS=NONE
,STATUS=ERASE

,USERID = userid
,USE RID= user id addr

,GROUPID =group id
,GROUPID =group id addr

,MF=(E,ctrl addr)

reg: register (2) - (12).
number: 1-9999

DefauH: TAPELBL =STD

Default: STATUS= NONE

userid: RACF userid declared as a constant
userid addr: RX-type address or register (2) - (12).

groupid: RACF group id declared as a constant
groupid addr: RX-type address, or register (2) - (12).

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RACHECK macro with the
following exceptions:

,MF = (E,ctrl addr)
specifies the execute form of the RACHECK macro.

,RELEASE = (number,CHECK)
,RELEASE =1.611.711.811.8.1
,RELEASE= (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 15.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code X' 64' will be generated.

416 SPL: Application Development Macro Reference

RACINIT - Identify a RACF-Defined User (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

Note: The RACROUTE macro is the preferred programming interface.

This macro description applies to RACF Release 1.8.1 or earlier. Your program can invoke
the RACINIT macro directly; however, IBM recommends that you invoke the equivalent
function through the RACROUTE macro, using the REQUEST= VERIFY parameter. See
"RACROUTE- MVS Router Interface (for RACF Release 1.8.1 or earlier)" on page 437 for
the applicable RACROUTE macro description.

If you have RACF Release 1.9 Installed on your system, you can still invoke the RACINIT
macro directly. However, If you are going to use the new Release 1.9 functions, see the
following for the applicable descriptions of RACROUTE and RACROUTE
REQUEST= VERIFY:

• "RACROUTE - Router Interface (for RACF Release 1.9)" on page 447
• "RACROUTE REQUEST= VERIFY - Identify a RACF-Defined User (for RACF Release

1.9)" on page 581.

The RACINIT macro provides and verifies a Resource Access Control Facility (RACF) user.
The macro identifies a user and verifies that the user is defined to RACF and has supplied a
valid password and/or operator identification card (OIDCARD parameter).

To issue the RACINIT macro the calling module must be "authorized" which means

• APF-authorized, or
• in system key 0-7, or
• in supervisor state.

or you must omit the NEWPASS keyword and the calling module must:

• be in the RACF-authorized caller table and
• fetched from an authorized iibrary and
• reentrant.

Note: It is recommended that if you run programs which issue the RACINIT macro, you run
those programs AFP-authorized.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in
31-bit addressing mode who want to use the RACINIT function can code the RACROUTE
macro.

The standard form of the RACINIT macro is written as follows:

name

b

RACINIT

b

USER ID= user id addr

,PASSWRD=password addr

,START=procname addr

,NEWPASS=new password addr

,GROUP= group addr

,PGMNAME=programmer name
addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACINIT.

One or more blanks must follow RACINIT.

userid addr: A-type address, or register (2) - (12).

password addr: A-type address, or register (2) - (12).

procname addr: A-type address, or register (2) - (12).

new password addr: A-type address, or register (2) - (12).

group addr: A-type address, or register (2) - (12).
Default: zero.

programmer name addr: A-type address, or register
(2) - (12).

417

,ACTINFO =account addr

,OIDCARD=oid addr

,TERMID=termina/ addr

,JOBNAME = jobname addr

,ENVIR =CREATE
,ENVIR=CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,ACEE= acee addr

,SUBPOOL = subpool number

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT=YES
,ENCRYPT= NO

,RELEASE= number

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

account addr: A-type address, or register (2) - (12).

oid addr: A-type address, or register (2) - (12).

terminal addr: A-type address, or register (2) - (12).

jobname addr: A-type address, or register (2) - (12).

Default: ENVIR=CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERM ID= parameters.
2. ENVIR=DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO=, PGMNAME=, OIDCARD=, orTERMID=
parameters.

parm list addr: A-type address, or register (2) - (12).

applname addr: A-type address, or register (2) - (12).

acee addr: A-type address, or register (2) - (12).

subpool number: decimal digit 0-255.

Default: SMC= YES

Default: PASSCHK =YES

Default: ENCRYPT=YES

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: STAT=ASIS

Default: LOG = ASIS

The parameters are explained as follows:

USERID = userid addr
identifies the user who has entered the system. The address points to a one-byte
length field, followed by the userid.

,PASSWRD •password addr
specifies the currently defined password of the user who has entered the system. The
address points to a one-byte length field, followed by the password.

,START • procname addr
specifies the PROC name of a started task. The address points to an eight-byte area
containing the PROC name (left-justified and padded with blanks, if necessary). If you
do not specify the USERID keyword, but do specify the START keyword, RACF searches
the started procedure table to determine the userid.

,NEWPASS - new password addr
specifies the password which is to replace the user's currently defined password. The
address points to a one-byte length field, followed by the password.

418 SPL: Application Development Macro Reference

,GROUP =group addr
specifies the group specified by the user who has entered the system. The address
points to a one-byte length field, followed by the group name.

,PGMNAME =programmer name addr
specifies the address of the name of the user who has entered the system. This
twenty-byte area is passed to the RACINIT installation exit routine; the RACINIT routine
does not use it.

,ACTINFO =account addr
specifies the address of a field containing accounting information. This 144 byte area is
passed to the RACINIT installation exit routine; the RACINIT routine does not use it.
The accounting field, if supplied, should have the following format:

• First byte of field contains the number (binary) of accounting fields.

• Following bytes contain accounting fields, where each entry for an accounting field
contains a one-byte length field, followed by the field.

,OIDCARD = oid addr
specifies the address of the currently defined operator identification card of the user
who has entered the system. The address points to a one-byte length field, followed by
the operator ID card.

,TERMID =terminal addr
specifies the address of the identifier for the terminal through which the user is
accessing the system. The address points to an eight byte area containing the terminal
identifier. The area must reside in a non-task-related storage subpool.

,JOBNAME = jobname addr
specifies the address of the JOB name of a background job. The address points to an
eight byte area containing the JOB name (left justified and padded with blanks, if
necessary). RACINIT authorization checking does not use the JOBNAME parameter,
but passes it to the Installation exit routine.

,ENVIR =CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

specifies the action that the user initialization component will perform regarding the
accessor environment element (ACEE):

CREATE- Verify the user and create an ACEE.

CHANGE-

DELETE -

Modify the ACEE according to other parameters specified on RACINIT.

Delete the ACEE. Use this parameter only if a previous RACINIT has
completed successfully.

,INSTLN = parm list addr
specifies the address of an area containing parameter information meaningful to the
RACINIT installation exit routine. This area is passed to the installation exit when the
exit routine is given control from the RACINIT routine.

An installation can use the INSTLN parameter if it has a user verification or a job
initiation application, and it wants to pass information from one installation module to
the RACINIT installation exit routine.

,APPL = 'applname'
,APPL = applname addr

specifies the name of the application issuing the RACINIT. If you specify an address,
the address must point to an 8-byte application name, left justified and padded with
blanks, if necessary.

,ACEE = acee addr
specifies the address of the ACEE.

For ENVIR =DELETE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be deleted. If you do not specify ACEE=,
and the TCBSENV field for the task using the RACINIT is non-zero, the ACEE to which

RACINIT (for RACF Release 1.8.1 or earlier) 419

the TCBSENV points is deleted, and TCBSENV is set to zero. If the TCBSENV and
ASXBSENV fields both point to the same ACEE, then ASXBSENV is also set to zero. If
no ACEE address is passed, and TCBSENV is zero, the ACEE to which ASXBSENV
points is deleted, and ASXBSENV is set to zero.

For ENVIR =CHANGE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be changed. If you do not specify
ACEE=, and the TCBSENV field for the task using the RACINIT is non-zero, the ACEE to
which the TCBSENV points is changed. If TCBSENV is 0, then the ACEE to which
ASXBSENV points is changed.

For ENVIR= CREATE: specifies the address of a full word into which the RACINIT
function will place the address of the ACEE created. If you do not specify an ACEE, the
address of the newly created ACEE is stored in the TCBSENV field of the task control
block. If the ASXBSENV field is set to binary zeros, the new ACEE address is also
stored in the ASXBSENV field of the ASXB. If the ASXBSENV field is non-zero, it is not
modified. The TCBSENV field is set unconditionally.

Notes:

1. If you omit USERID, GROUP, and PASSWRD and if you code ENVIR =CREATE or use
ENVIR=CREATE as the default, you will receive a return code of X'OO' and obtain
an ACEE that contains an * (X'5C') in place of the USERID and group name.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

2. If you specify ACEE with ENVIR =CREATE, RACF suppresses the creation of a
modeling table (MOEL) to reduce the amount of CSA and/or LSQA storage required
by IMS/VS and CICS/VS installations.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE _____ __.

,SUBPOOL = subpool number
specifies the storage subpool from which the ACEE and related storage are obtained.

,SMC =YES
,SMC =NO

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

specifies the use of the step-must-complete function of RACINIT processing.
SMC= YES specifies that RACINIT processing should continue to place other tasks for
the step non-dispatchable. SMC= NO specifies that the step-must-complete function is
not used.

Note: Do not use SMC= NO if DADSM ALLOCATE/SCRATCH functions execute
simultaneously in the same address space as the RACINIT function.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ----~

,PASSCHK =YES
,PASSCHK =NO

specifies whether or not the user's password is to be verified. PASSCHK=YES
specifies that RAC I NIT verifies the user's password. PASSCHK =NO specifies that the
user's password is not verified.

,ENCRYPT ==YES
,ENCRYPT =NO

specifies whether or not RACINIT will encrypt the old password, the new password, and
the OIDCARD data passed to it.

YES signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are not pre-encrypted. RACINIT encrypts the data before storing it in the
user profile or using it to compare against stored data. ENCRYPT= YES is the default
for this keyword.

420 SPL: Application Development Macro Reference

NO signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are already encrypted. RACINIT bypasses the encryption of this data before
storing it in, or comparing it against, the user profile.

Note: The exit routine ICHDEX01 can also perform the encryption.

,RELEASE =1.611.711.811.8.1
specifies the RACF release level of the parameter list that this macro will generate.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 16.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACINIT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

,STAT =ASISINO
specifies whether the statistics controlled by the installation's options on the RACF
SETROPTS command are to be maintained or ignored for this execution of RACINIT.
This parameter also controls whether a message is to be issued when the logon is
successful.

Note: Messages are always issued if the RACINIT processing is unsuccessful.

If you specify or default to STAT= ASIS, the installation's current options on the RACF
SETROPTS command control the messages and statistics.

If you specify STAT= NO, the statistics are not updated. And, if the logon is successful,
no message is issued.

The default is STAT= ASIS.

,LOG = ASISIALL
specifies when log records are to be generated.

If you specify or default to LOG= ASIS, only those attempts to create an ACEE that fail
will generate RACF log records.

If you specify LOG= ALL, any request to create an ACEE, regardless of whether it
succeeds or fails, will generate a RACF log record. The default is LOG= ASIS.

RACINIT (for RACF Release 1.8.1 or earlier) 421 ,

Parameters for RELEASE = 1.6 and Later
The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Figure 16. RAC/NIT Parameters for RELEASE= 1.6 and Later

Parameter RELEASE = 1.6 RELEASE=1.7 RELEASE ,.1.8
or 1.8.1

ACEE= x x x
ACCTINFO= x x x
APPL= x x x
ENCRYPT= x x x
ENVIR= x x x
GROUP= x x x
INSTLN= x x x
JOBNAME= x x x
LOG= x x
NEWPASS= x x x
OIDCARD= x x x
PASSCHK= x x x
PASSWRD= x x x
PGMNAME= x x x
RELEASE= x x x
SMC= x x x
START= x x x
STAT= x x
SUBPOOL= x x x
TERM ID= x x x
USERID= x x x

422 SPL: Application Development Macro Reference

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register 0 may contain a reason code.

Hexadecimal
Code

00

04

08

oc
10

14

18

1C

20

24

28

2C

30

34

64

Meaning

RACINIT has completed successfully.

The user profile is not defined to RACF.

The password is not authorized.

The password has expired.

The new password is invalid.

The user is not defined to the group.

RACINIT was failed by the installation exit routine.

The user access has been revoked.

RACF is not active.

The user's access to the specified group has been revoked.

OIDCARD parameter is required but not supplied.

OIDCARD parameter is invalid for specified user.

The user is not authorized to use the terminal. Register 0 contains one of the
following reason codes:

00 indicates a normal completion.

04 indicates the user is not authorized to access the system on this day,
or at this time of day.

08 indicates the terminal may not be used on this day, or at this time of
day.

The user is not authorized to use the application.

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACINIT macro; however, the list form of
the macro does not have the proper RELEASE parameter. Macro processing
terminates.

RACINIT (for RACF Release 1.8.1 or earlier) 423

Example 1
Operation: Use the standard form of the macro to do the following:

• Create an ACEE for the userid and its default group

• Chain the ACEE off either the current TCB or ASXB, or both, by not specifying the ACEE
keyword

• Verify that the user named USERNAME is a valid user

• Verify that the password called PASSWORD is valid

RACINIT ENVIR=CREATE,USERID=USERNAME,PASSWRD=PASSWORD

Example 2
Operation: Use the standard form to do the following:

• Verify that the user named USERNAME is a valid user

• Verify that the group named GROUPNAM is a valid group

• Verify that USERNAME is defined to the group

• Create an ACEE for the user and group and put its address in ACEEANCH

• Specify that the user's password is not required

RACINIT ENVIR=CREATE,USERID=USERNAME,GROUP=GROUPNAM,ACEE=ACEEANCH, X
PASSCHK=NO

Example 3
Operation: Use the standard form of the macro to delete the accessor environment (ACEE)
of the current task or address space, or both.

RACINIT ENVIR=DELETE

424 SPL: Application Development Macro Reference

RACINIT (List Form)
The list form of the RACINIT macro is written as follows:

name

fl

RAC I NIT

fl

USERID = userid addr

,PASSWRD =password addr

,START=procname addr

,NEWPASS=r.dW password addr

,GROUP=group addr

,PGMN>1.ME =programmer name
addr

,ACTINFO =account addr

,OIDCARD = oid addr

,TERMID=termina/ addr

,JOBNAME=jobname addr

,ENVIR =CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,ACEE= acee addr

,SUBPOOL=subpoo/ number

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT= YES
,ENCRYPT=NO

,RELEASE= number

,STAT=ASIS
,STAT=NO

name: symbol. Begin name In column 1.

One or more blanks must precede RACINIT.

One or more blanks must follow RACINIT.

userid addr: A-type address.

password addr: A-type address.

procname addr: A-type address.

new password addr: A-type address.

group addr: A-type address.

programmer name addr: A-type address.

account addr: A-type address.

oid addr: A-type address

terminal addr: A-type address.

jobname addr: A-type address.

Default: ENVI R = CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.
2. ENVIR ==DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, Olr>CARD =, or TERM ID=
parameters.

parm list addr: A-type address.

applname addr: A-type address.

acee addr: A-type address.

subpool number: decimal digit 0-255.

Default: SMC= YES

Default: PASSCHK =YES

Default: ENCRYPT= YES

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: STAT=ASIS

RACINIT (for RACF Release 1.8.1 or earlier) 425

,LOG==ASIS
,LOG==ALL

,MF=L

Default: LOG= ASIS

The parameters are explained under the standard form of the RACINIT macro, with the
following exception:

,MF al
specifies the list form of the RACINIT macro.

426 SPL: Application Development Macro Reference

RACINIT (Execute Form)
The execute form of the RACINIT macro is written as follows:

name

b

RACINIT

b

USER ID= userid addr

,PASSWRD=password addr

,START=procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD=oid addr

,TERM ID= terminal addr

,JOBNAME = jobname addr

,ENVIR=CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= applname
,APPL= applname addr

,ACEE= acee addr

,SUB POOL= subpool number

,SMC=YES
,SMC=NO

,PASSCHK =YES
,PASSCHK =NO

,ENCRYPT= YES
,ENCRYPT= NO

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

name: symbol. Begin name in column 1.

One or more blanks must precede RACINIT.

One or more blanks must follow RACINIT.

userid addr: RX-type address, or register (2) - (12).

password addr: RX-type address, or register (2) - (12).

procname addr: RX-type address, or register (2) - (12).

new password addr: RX-type address, or register (2) - (12).

group addr: RX-type address, or register (2) - (12).
Default: zero.

programmer name addr: RX-type address, or register
(2) - (12).

account addr: RX-type address, or register (2) - (12).

oid addr: RX-type address. or register (2) - (12).

terminal addr: RX-tvpe address. or register (2) - (12)

jobname addr: RX-type address, or register (2) - (12).

Default: ENVIR=CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=. START=. NEWPASS=, ACTINFO=,
PGMNAME =. OIDCARD =. or TERM ID= parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=. NEWPASS=, GROUP=.
ACTINFO =. PGMNAME =. OIDCARD =, or TERM ID=
parameters.

parm list addr: RX-type address, or register (2) - (12).

applname addr: RX-type address, or register (2) - (12).

acee addr: RX-type address. or register (2) - (12).

subpool number: decimal digit 0-255.

Default: SMC= YES

Default: PASSCHK=YES

Default: ENCRYPT= YES

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

RACINIT (for RACF Release 1.8.1 or earlier) 427

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,MF= (E,ctrl addr)

Default: STAT=ASIS

Default: LOG = ASIS

cntl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RACINIT macro, with the
following exception:

,MF • (E,ctrl addr)
specifies the execute form of the RACINIT macro using a remote control program
parameter list.

,RELEASE = (number,CHECK)
,RELEASE =1.611.711.811.8.1
,RELEASE= (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. If you specify a parameter with an Incompatible release level, the
parameter will not be accepted by macro processing. An error message will be issued
at assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 16.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACINIT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code 'X64' will be generated.

428 SPL: Application Development Macro Reference

RACLIST - Build In-Storage Profiles (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

Note: The RACROUTE macro is the preferred programming interface.

This macro description applies to RACF Release 1.8.1 or earlier. Your program can Invoke
the RACLIST macro directly; however, IBM recommends that you Invoke the equivalent
function through the RACROUTE macro, using the REQUEST• LIST parameter. See
"RACROUTE - MYS Router Interface (for RACF Release 1.8.1 or earlier)" on page 437 for
the applicable RACROUTE macro description.

If you have RACF Release 1.9 Installed on your system, you can stlll Invoke the RACLIST
macro directly. However, If you are going to use the new Release 1.9 functions, see the
following for the applicable descriptions of RACROUTE and RACROUTE REQUEST• LIST:

• "RACROUTE- Router Interface (for RACF Release 1.9)" on page 447
• "RACROUTE REQUEST= LIST- Build In-Storage Profiles (for RACF Release 1.9)" on

page 543.

RACLIST builds in-storage profiles for RACF defined resources. RACLIST processes only
those resources described by class descriptors. The primary advantage of using the
RACLIST macro is to use the resource grouping function and to improve resource
authorization checking performance.

The module calling the RACLIST macro must either be authorized (APF-authorized, in
system key 0-7, or in supervisor state) or re-entrant in the RACF-authorized caller table and
fetched from an authorized library.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in
31-bit addressing mode, who want to use the RACLIST function, can code the RACROUTE
macro.

The standard form of the RACLiST macro is written as foiiows:

name

b

RACLIST

b

CLASS= 'classname'
CLASS= classname addr

, LIST= list addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,SUB POOL= (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,RELEASE= number

name: symbol. Begin name in column 1.

One or more blanks must precede RACLIST.

One or more blanks must follow RACLIST.

c/assname addr: A-type address or register (2) - (12).

list addr: A-type address or register (2) - (12).

acee addr: A-type addre,;s or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

applname addr: A-type address or register (2) - (12).

Default:

Default: OWNER= NO

number: 1.8.1, 1.8, 1.7, or 1.6
DefauH: RELEASE= 1.6

429

The parameters are explained as follows:

CLASS ... 'classname'
CLASS = c/assname addr

specifies that RACLIST is to build an in-storage profile for the resources of the specified
class. If you specify an address, the address must point to an 8-byte field containing
the class name, left justified and padded with blanks, if necessary. A class descriptor
must define the class name; if not, the class is not considered to be defined.

,LIST =addr
specifies the address of a list of resource names for which RACLIST is to build the
in-storage profiles. The list consists of a 2-byte field containing the number of the
names in the list, followed by one or more variable length names. Each name consists
of a 1-byte length field, which is the length of the name, followed by the name. A zero
in the 2-byte field causes the operand to be omitted. If LIST= is omitted, in-storage
profiles are built for all the profiles defined to RACF in the given class as well as each
member for a resource grouping associated with the specified class.

Note: You can specify this operand only with ENVIR =CREATE. If you specify
ENVIR= DELETE, the RACLIST macro issues a return code of 18.

,ACEE = acee addr
specifies the address of the accessor control environment element (ACEE). The ACEE
points to the in-storage profiles. If you do not specify an ACEE, RACF uses the TASK
ACEE pointer in the extended TCB called the TCBSENV. Otherwise, or if the TASK
ACEE pointer is zero, RACF uses the main ACEE to obtain the list of the in-storage
profiles. The ASXBSENV field of the address space extension block points to the main
ACEE. If you do not specify an ACEE and there is no main ACEE, the in-storage profiles
are not constructed.

,INSTLN =pa rm list addr
specifies the address of an area that contains parameter information for the RACLIST
installation exit. The address is passed to the installation exit when the RACLIST
routine gives control to the exit. An application or an installation program can use the
INSTLN parameter to pass information to the RACLIST installation exit.

,APPL = 'applname'
,APPL = app/name addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If you specify an address, it should point to an 8-byte area
containing the application name, left justified and padded with blanks, if necessary.

,SUBPOOL = (sub#1,sub#2)
specifies the subpool numbers of the storage into which the components of the
in-storage profiles are to be built. Sub#1 represents the subpool of the profile index.
Sub#2 represents the subpool of the profile proper. If you do not specify the subpools
you default to subpool 255. You can use registers to specify sub#1 and sub#2.

,ENVIR =CREATE
,ENVIR = DELETE

specifies the action to be performed by the RACLIST macro.

CREATE - In-storage profiles for the specified class are to be built. The RACLIST
function issues a return code of 18 if an in-storage list currently exists for the specified
class.

DELETE - The in-storage profiles for the specified class are to be freed. If you do not
specify class, the in-storage profiles for all classes are freed.

Note: It is the responsibility of the user issuing the RACLIST macro to assure that no
multi-tasking that results in the issuing of a RACHECK, FRACHECK, RACINIT, or
RACLIST macro occurs at the same time that the RACLIST occurs.

430 SPL-: Application Development Macro Reference

,OWNER •YES
,OWNER =NO

specifies that the resource owner is to be placed in the profile access list with the
ALTER authority. If the OWNER= operand is omitted, the default is NO.

,RELEASE 1.611.711.811.8.1
specifies the RACF release level of the parameter list that this macro will generate.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time.

For the parameters that are val id for RELEASE= 1.6 and later, see Figure 17.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACLIST macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

Parameters for RELEASE= 1.6 and Later
The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Figure 17. RACLIST Parameters for RELEASE= 1.6 and Later

Parameter RELEASE•1.6 RELEASE=1.7 RELEASE= 1.6
or 1.8.1

ACEE= x x x
APPL= x x x
CLASS= x x x
ENVIR= x x x
INSTLN= x x x
LIST= x x x
OWNER= x x x
RELEASE= x x x
SUBPOOL= x x x

RACLIST (for RACF Release 1.8.1 or earlier) 431

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and·
register O may contain a reason code.

Hexadecimal
Code Meaning

00 RACLIST function completed successfully.

04 Unable to perform the requested function. Register O contains additional
codes as follows:

0 - Unable to establish an ESTAE environment.

1 - The function code (the third byte of the parameter list) does not
represent a valid function. '01' represents the RACF manager; '02'
represents the RACLIST macro.

08 The specified class is not defined to RACF.

OC An error was encountered during _RACLIST processing.

10 RACF and/or the resource class is not active.

14 RACLIST installation exit error occurred.

18 Parameter list error.

1C RACF CVT does not exist (RACF is. not installed) or an insufficient level of
RACF is installed.

64 Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACLIST macro; however, the list form of
the macro does not have the proper RELEASE parameter. Macro processing
terminates.

Note: If the resource class specified by the CLASS= operand is inactive, RACLIST does
not build the in-storage profiles and a code of OC is returned. If the resource group class is
not active, RACLIST builds an in-storage profile but only from the individual resource
profiles; resource group profiles are ignored.

Example 1
Operation: Use the standard form of the macro to build in-storage profiles for ail the
profiles in the class named CLASSNAM, and chain them off the ACEE whose address is
pointed to by ACEEADDR.

RACLIST CLASS=CLASSNAM,ACEE=ACEEADDR,ENVIR=CREATE

Example 2
Operation: Use the standard form of the macro to build in-storage profiles for all the
profiles whose names are in a list named PROFLIST and a class named CLASSNAM. Chain
them from the task ACEE or address space ACEE.

RACLIST CLASS=CLASSNAM,LIST=PROFLIST,ENVIR=CREATE

Example 3
Operation: Use the standard form of the macro to delete the in-storage profiles for the
CLASSNAM class.

RACLIST CLASS=CLASSNAM,ENVIR=DELETE

432 SPL: Application Development Macro Reference

RACLIST {List Form)

The list form of the RACLIST macro is written as follows:

name

b

RACLIST

b

CLASS= 'c/assname'
CLASS= c/assname addr

,LIST= list addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= 'app/name'
,APPL=app/name addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
.OWNER=NO

,RELEASE=number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACLIST.

One or more blanks must follow RACLIST.

c/assname addr: A-type address.

list addr: A-type address.

acee addr: A-type address.

parm list addr: A-type address.

applname addr: A-type address.

Default: 255.

Default: ENVIR=CREATE

Detaun: OWNER= NO

number: 1.8.1, 1.8, 1.7, or 1.6
Detaun: RELEASE= 1.8

The parameters are explained under the standard form of the RACLIST macro with the
following exception:

,MF •L
specifies the list form of the RACLIST macro.

RACLIST (for RACF Release 1.8.1 or earlier) 433

RACLIST (Execute Form)

The execute form of the RACLIST macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACLIST.

RACLIST

b One or more blanks must follow RACLIST.

CLASS= c/assname addr c/assname addr: RX-type address or register (2) - (12).

,LIST= list addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF= (E,,ctr/ addr)

fist addr: RX-type address or register (2) - (12).

acee addr: RX-type address or register (2) - (12).

parm list addr: RX-type address or register (2) - (12).

applname addr: RX-type address or register (2) - (12).

number: 1.8.1, 1.8, 1.7, or 1.6

Default: RELEASE= 1.6

ctr/ addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the RACLIST macro with the
following exception:

,MF - (E,ctr/ addr)
specifies the execute form of the RACLIST macro using a remote control program
parameter list.

,RELEASE= (number,CHECK)
,RELEASE• number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list that this macro will generate.

You can specify certain parameters only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by
macro processing. An error message will be issued at assembly time. For the
parameters that are valid for RELEASE= 1.6 and later, see Figure 17.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACLIST macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code of 'X64' will be generated.

434 SPL: Application Development Macro Reference

RACROUTE - MVS Router Interface (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

This macro description applies to RACF Release 1.8.1 or earlier. If you have RACF Release
1.9 Installed on your system, and you are going to use the new Release 1.9 functions, see
"RACROUTE - Router Interface (for RACF Release 1.9)" on page 445.

The RACROUTE macro invokes the System Authorization Facility (SAF) MVS router.
Depending on how your installation has written the MVS router exit, and whether RACF is
present, the MVS router directs control to the RACF router. If RACF is active, the RACF
router then invokes RACF.

Note: Various RACF functions invoked by RACROUTE require that you specify the CLASS
parameter, and that the specified CLASS be active. With few exceptions, for the
IBM-supplied portion of the table, the class specified on the CLASS parameter must be
active for the RACF router to invoke RACF. In the case of the installation-supplied portion of
the table, there are no exceptions; the class specified on the CLASS parameter must be
active for the RACF router to invoke RACF.

You can use RACROUTE to access the functions that the following RACF macros provide:
RACDEF, RACINIT, RACXTRT, RACLIST, RACHECK, and FRACHECK. In coding the
RACROUTE macro to access a particular RACF macro function, you must also use the
necessary parameters from that macro on the RACROUTE macro. For example, if you code
RAC ROUTE to access the RA CHECK function, you must code REQUEST= AUTH and any
other required parameters and any optional ones you need from the RACHECK macro.
RACROUTE validates that only the parameters applicable to the RACHECK macro have
been coded.

Notes:

1. For RACF Version 1 Release 6 and earlier, all parameters and parameter lists must
reside below 16 megabytes.

2. For RACF Version 1 Release 7 and later:
If a caller is executing in 24-bit addressing mode, all parameters and parameter lists are
assumed to reside below 16 megabytes. If a caller, however, is executing in 31-bit
addressing mode, and is calling RACF via the RACROUTE macro, RACF will assume
that all parameters and parameter lists may reside above the 16 megabytes (that is, that
all parameter addresses are true 31-bit addresses).

All parameter lists generated by the RACROUTE macro are in a format that allows
compiled code to be moved above 16 megabytes without recompilation.

This 31-bit support is available only when RACF is called via RACROUTE, FRACHECK,
or RACSTAT. Any caller that uses RACINIT, RACDEF, RACLIST or RACHECK must be in
24-bit addressing mode only. RACF does not support those callers in 31-bit mode.

435

The standard form of the RACROUTE macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUTH
REQUEST== FASTAUTH
REQUEST= DEFINE
REQUEST= VERIFY
REQUEST= LIST
REQUEST= EXTRACT

,REQSTOR = reqstor addr

,SUBSYS- subsys addr

,WORKA =work area addr

,RELATED= value

,ENVIR=VERIFY

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE
,MSGRTRN =YES
,MSGRTRN =NO

,MSGSUPP =YES
,MSGSUPP=NO

,MSGSP=subpool number

,RELEASE= number

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address or register (2) - (12).
Default: zero.
Note: If REQSTOR= is coded and RACF is installed, the RACF
router table must be updated to match the operand.

subsys addr: A-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF
router table must be updated to match the operand.

work area addr: A-type address or register (2) - (12).

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if REQUEST=VERIFY Is coded.

Default: See parameter description.
Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST=LIST is coded.

Delaull=NO

Defaull=NO

Decimal digit 0-255

number: 1.8.1, 1.8, 1.7, or 1.6

Note: In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST,
RACINIT, RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro.
Depending on the parameter REQUEST=, some of these are required, some optional, and some are
Invalid.

436 SPL: Application Development Macro Reference

The parameters are explained as follows:

REQUEST - AUTH
REQUEST = FASTAUTH
REQUEST • DEFINE
REQUEST = VERIFY
REQUEST "' LIST
REQUEST "" EXTRACT

specifies a code that determines the RACF parameter list to be issued internally as well
as the RACF routine to receive control. The permissible codes and their associated
RACF macros are as follows:

AUTH--RACHECK
FASTAUTH--FRACHECK
DEFINE -- RACDEF
VERIFY -- RACINIT
LIST -- RACLIST
fXTRACT--RACXTRT

For RACROUTE to work correctly, once you have chosen a REQUEST code you must
also code (on the RACROUTE macro) the parameters that belong to the associated
macro. Ple:Jse see the associated macro for the necessary parameters.

Notes:

1. Data areas that RACF returns to the caller will be either above or below 16-megabytes,
depending upon the caller's addressing mode and the data area in question.

2. Unless the caller specifies the ACEE= parameter on a "RACROUTE
REQUEST=VERIFY,ENVIR=CREATE" macro, the ACEE will always be placed below
16-megabytes.

3. If the caller specifies the ACEE= parameter, and is executing in 31-bit addressing mode
ano does not specify LOG= BELOW on the RACROUTE macro, the ACEE will be placed,
if possible, above 16-megabytes.

4. If the ACEE is below 16-megabytes, any area, with the exception of generic profiles,
chained off an ACEE (for example, RACLIST profiles, list-of-groups table) will be placed
below 16-megabytes. Otherwise, the area will be placed above the line. However, a
caller executing in 31-bit mode may issue a REQUEST=LIST with LOC=ABOVE, and
the profiles will be placed above the line, if possible, even if the ACEE is below the line.

5. If the caller requests that RACF return an in-storage profile In CSA as part of a
"RACROUTE REQUEST=AUTH," the profile will be returned in storage below
16-megabytes if the related ACEE is located below the line. Otherwise, the area will be
located above 16-megabytes.

6. The area returned by a "RACROUTE REQUEST= EXTRACT or EXTRACTN" request will
be located below 16-megabytes.

,REQSTOR = reqstor addr
specifies the address of an 8-byte character field containing the control point name (this
address identifies a unique control point within a set of control points that exists in a
subsystem). If you code this operand and RACF is installed, you must change the RACF
router table to match the operand. If you do not update the table, the default to bypass
RACF processing is taken.

If you omit this operand, a string of eight blanks is assumed.

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing the calling subsystem's
name, version, and release level. If you code this operand and RACF is installed, you
must change the RACF router table to match the operand. If you do not update the
table, the default to bypass RACF processing is taken.

If you omit this operand, a string of eight blanks is assumed.

RACROUTE (for RACF Release 1.8.1 or earlier) 437

,WORKA ==work area addr
specifies the address of a 512-byte work area for use by the MVS router and the RACF
front end routine.

,RELATED =value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified is at the discretion of the user, and can be any valid coding value.

,ENVIR =VERIFY
specifies that only a user verification is to be made optionally combined with updating
the user's password. The installation may handle this request through a System
Authorization Facility {SAF} installation exit. If this is not done, the RACROUTE caller
receives a return code of 4 with RACF return and reason codes of zero.

,LOC =BELOW
,LOC =ANY
,LOC =ABOVE

LOC can be coded only if REQUEST=VERIFY or REQUEST= LIST is coded.

For REQUEST= VERIFY:
specifies whether the ACEE and related data areas are to be allocated storage below
16 megabytes {LOC=BELOW), or anywhere (LOC=ANY}.

If any of the following is true, LOC =BELOW is the default, and LOC =ANY is ignored if
specified:

• The ACEE= parameter is not coded.
• The caller is executing in 24-bit mode.

In all other cases, the default is LOC =ANY.

Note: LOC=ABOVE is invalid for REQUEST= VERIFY.

For REQUEST= LIST:
specifies whether the RACLIST profiles are to reside where the ACEE is located, above
or below 16 megabytes {LOC =ANY), or whether the RACLIST profiles are to reside
above 16 megabytes {LOC =ABOVE), if possible, even if the ACEE is below 16
megabytes.

Notes:

1. LOC= BELOW is invalid for REQUEST= LIST.

2. LOC =ANY does not guarantee that storage is allocated above 16 megabytes. If any
installation SAF or RACF exit routines execute in 24-bit mode, the storage will be
below 16 megabytes.

,MSGRTRN = NOIYES
specifies whether you want to use message return processing. You can use this
parameter in conjunction with the other RACROUTE MSGxxxx parameters to store and
forward RACF messages. To use this parameter, you must also specify RELEASE= 1.8
or a later release number.

Note: This parameter only applies to RACHECK, RACDEF, and RACINIT.

,MSGSUPP = NOIYES
specifies whether you want to suppress write-to-operator (WTO) messages from within
RACF processing. You can use this parameter in conjunction with the other
RACROUTE MSGxxxx parameters to store and forward RACF messages. To use this
parameter, you must also specify RELEASE= 1.8 or a later release number.

Note: This parameter only applies to RACHECK, RACDEF, and RACINIT.

,MSGSP = subpoo/ number
specifies the number of the subpool into which you want RACF messages returned.
You can use ,MSGSP in conjunction with the other RACROUTE MSGxxxx parameters to
store and forward RACF messages.

To use this parameter, you must specify RELEASE= 1.8.

438 SPL: Application Development Macro Reference

Notes:

1. This parameter only applies to RACHECK, RACDEF, and RACINIT.

2. Only ICH4081 messages can be returned.

3. When control returns from RACROUTE, the RACROUTE parameter list field is
mapped by SAFPMSAD in the ICHSAFP mapping macro. SAFPMSAD will be
non-zero if messages have been returned. This field will contain the address of an
area which consists of two full words followed by the message itself in WTO
parameter list format. The first word is the length of the area including the two full
word header; the second word points to the next message area, if there is one, or
contains zero if no more messages areas exist. If is your responsibility to issue the
FREEMAIN macro to release these message area(s).

,RELEASE =1.611.711.811.8.1
specifies the release number. With Release 1.8, you can specify message parameters
to obtain messages from RACHECK, RACDEF, and RACINIT. To do so, you must also
specify Release= 1.8 or a later release number. If you specify the message
parameters without specifying Release= 1.8, you will receive an error message.

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register 0 may contain a reason code.

Hexadecimal
Code Meaning

00 The requested security function has completed successfully. In addition, if the
requested function was 'AUTH', the authorization request was accepted.

04 The requested function has not been processed. In addition, if the request
was 'AUTH', the MVS router could neither accept nor fail the request. The
following are some possible reasons for a request not being processed.

08

The MVS router is not active.

The RACF front end routine detected that a null action was requested for
the specified request type, resource type, and subsystem ID.

The request/resource/subsystem combination could not be found in the
router table.

RACF is not active on the system, and RACFIND =YES was not specified,
and there is no RACROUTE installation exit routine (or an exit originated
a return code of 4).

RACF is active on the system, but no profile exists for the specified
resource.

The requested function was processed by RACF, the MVS router, or the router
exit (ICHRTXOO) and failed. If the requested function was 'AUTH', the
authorization request has been failed. If RACF is inactive for an 'AUTH'
request with RACFIND =YES, then the MVS router fails the request. The
RACF or router exit return code and reason codes are returned in the first two
words of the RACROUTE input parameter list.

RACROUTE (for RACF Release 1.8.1 or earlier) 439

Example 1
Operation: Invoke the MVS router to perform authorization checking using the standard
form, for a non-VSAM data set residing on the volume pointed to by register 8. Register 7
points to the data set name and the RACF user is requesting the highest level of control
over the data set. The "RACF-indicated" bit In the data set's DSCB is on.

RACROUTE REQUEST•AUTH,WORKA=RACWK,ENTITY=((R7)), X
VOLSER=(R8),CLASS•'DATASET',ATTR•ALTER, X
RACFIND=YES

RACWK OS CL512

Example 2
Operation: Invoke the MVS router to perform authorization checking using the standard
form, for an IMS/VS transaction pointed to by register 5. The user requests only read
access. The request Is issued on behalf of the IMS/VS subsystem.

RACROUTE REQUEST=FASTAUTH,SUBSYS=SUBIMS, X

SUB IMS
FRACWK
RAC WK

WORKA•RACWK,ENTITY=(RS), X
CLASS='TIMS',WKAREA=FRACWK, X
ATTR=READ

DC CL8' IMS'
OS 16F
OS CL512

440 SPL: Application Development Macro Reference

RACROUTE (List Form)
The list form of the RACROUTE macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUTH
REQUEST= FASTAUTH
REQUEST= DEFINE
REQUEST= VERIFY
REQUEST= LIST
REQUEST= EXTRACT

,REQSTOR = reqstor addr

,SUBSYS=subsys addr

, WORKA = work area addr

,RELATED=va/ue

,ENVIR =VERIFY

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE
,MSGRTRN =YES
,MSGRTRN =NO

,MSGSUPP=YES
,MSGSUPP =NO

,MSGSP=subpoo/ number

,Release=1.6
,Release=1.7
,Release=1.8
, Release= 1.8.1

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address.
Default: zero.
Note: If REQSTOR= is coded and RACF is installed, the RACF
router table must be updated to match the operand.

subsys addr: A-type address.
Note: If SUBSYS= is coded and RACF is installed, the RACF
router table must be updated to match the operand.

work area addr: A-type address

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if REQUEST= VERIFY is coded.

Default: See parameter description.
Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST=LIST is coded.

Default: NO

Default: NO

subpool number: decimal digit 0-255

Default: 1.6

Note: In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST,
RACINIT, RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro.
Depending on the parameter REQUEST=, some of these are required, some optional, and some are
invalid.

The parameters are explained under the standard form of the RACROUTE macro with the
following exception:

,MF =L
specifies the list form of the RACROUTE macro.

RACROUTE (for RACF Release 1.8.1 or earlier) 441

RACROUTE (Execute Form)
The execute form of the RACROUTE macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUTH
REQUEST= FASTAUTH
REQUEST= DEFINE
REQUEST= VERIFY
REQUEST= LIST
REQUEST= EXTRACT

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

, WORKA = work area addr

, RELATED= value

,ENVIR =VERIFY

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE
,MSGRTRN =YES
,MSGRTRN =NO

,MSGSUPP=YES
,MSGSUPP=NO

,MSGSP = subpool number

,Release= (number, CHECK)
,Release= number
,Release= (,CHECK)

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: RX-type address or register (2) - (12).
Defautt: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF
router table must be updated to match the operand.

subsys addr: RX-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF
router table must be updated to match the operand.

work area addr: RX-type address or register (2) - (12).

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if REQUEST=VERIFY is coded.

Defaun: See parameter description.
Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST= LIST is coded.

Defautt: NO

Defaun: NO

subpool number: decimal digit 0-255

number1.8.1, 1.8, 1.7, or 1.6
Defaun: 1.6

ctr/ addr: RX-type address or register (1), (2) - (12).

Note: In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST,
RACINIT, RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro.
Depending on the parameter REQUEST=, some of these are required, some optional, and some are
invalid.

The parameters are explained under the standard form of the RACROUTE macro with the
following exception:

,MF = (E, ctr/ addr)
specifies the execute form of the RACROUTE macro where ctr/ addr is the address of
the associated parameter list.

442 SPL: Application Developme 1t Macro Reference

,RELEASE = (number,CHECK)
,RELEASE =1.611.711.811.8.1
,RELEASE= (,CHECK)

specifies the RACF release level of the parameter list that this macro will generate.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 10.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
FRACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code of 'X64' will be generated.

RACROUTE (for RACF Release 1.8.1 or earlier) 443

444 SPL: Application Development Macro Reference

RACROUTE - Router Interface (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier installed on your system, see "RACROUTE­
MVS Router Interface (for RACF Release 1.8.1 or earlier)" on page 435.

The RACROUTE macro is used to invoke the System Authorization Facility (SAF) MVS
router. If RACF is present, the MVS router directs control to the RACF router. If RACF is
active, the RACF router then invokes RACF.

You can use RACROUTE to perform the following functions:

REQUEST=AUDIT,
REQUEST= AUTH,
REQUEST= DEFINE,
REQUEST= DIRAUTH,
REQUEST= EXTRACT,
REQUEST= FASTAUTH,
REQUEST= LIST,
REQUEST=STAT,
REQUEST= TOKENBLD,
REQUEST=TOKENMAP,
REQUEST= TOKENXTR,
REQUEST= VERIFY,
REQUEST= VERIFYX

In coding the RACROUTE macro to perform a particular request, you must also use the
necessary parameters from that request type or. the RACROUTE macro. For example, if
you code RAC ROUTE to access REQUEST= AUTH, you must code REQUEST= AUTH and
any other required parameters and any optional ones you need from the RACROUTE
REQUEST= AUTH macro. RACROUTE validates that only the parameters applicable to the
RACROUTE REQUEST= AUTH macro have been coded.

Beginning with Release 1.9, when the function verifies the parameter list, the keywords with
length fields of 0 are processed as if the keyword were not specified.

Note: Three RACF functions invoked by RACROUTE (REQUEST= AUTH, REQUEST= LIST,
and REQUEST= EXTRACT) require that you specify the CLASS parameter, and that the
specified CLASS be active. In addition, the class specified on the CLASS parameter in the
class descriptor table (CDT) must be active for the RACF router to invoke RACF.

Notes:

1. If a caller is executing in 24-bit addressing mode, all parameters and parameter lists are
assumed to reside below 16 megabytes. If a caller, however, is executing in 31-bit
addressing mode, all parameters and parameter lists may reside above 16 megabytes
(that is, that all parameter addresses are true 31-bit addresses).

2. All parameter lists generated by the RACROUTE macro are in a format that allows
compiled code to be moved above 16 megabytes without recompilation.

445

The standard form of the RACROUTE macro Is written as follows:

name

b

RACROUTE

b

REQUEST= AUDIT
REQUEST= AUTH
REQUEST= DEFINE
REQUEST= DI RAUTH
REQUEST= EXTRACT
REQUEST=FASTAUTH
REQUEST= LIST
REQUEST=STAT
REQUEST= TOKENBLD
REQUEST= TOKENMAP
REQUEST= TOKENXTR
REQUEST= VERIFY
REQUEST= VERIFYX

, REQSTOR = reqstor addr

,SUBSYS = subsys addr

, WORKA = work area addr

,RELATED= value

,MSGRTRN=YES
,MSGRTRN=NO

,MSGSUPP =YES
,MSGSUPP=NO

,MSGSP = subpool number

,DECOU PL= YES
,DECOUPL =NO

,RELEASE= 1.9

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address or register (2) - (12)
Default: REQSTOR =zero
Note: If you specify REQSTOR and RACF is installed, you
must either update the RACF router table to match the
operand or specify DECOUPL=YES.

subsys addr: A-type address or register (2) - (12)
Note: If you specify SUBSYS and RACF is installed, you must
either update the RACF router table to match the operand or
specify DECOUPL =YES.

work area addr: A-type address or register (2) - (12)

va/u.3: Any valid macro keyword specified

Default: MSGRTRN =NO

Default: MSGSUPP =NO

subpool number: Decimal digit 0-255; Default is O

Default: DECOUPL =NO

For RACROUTE to work correctly, once you have chosen a REQUEST, you must also specify
the parameters that belong to that request. Please see the RACROUTE REQUEST= macros
for the necessary parameters.

The parameters are explained as follows:

Notes:

1. This request requires a standard 18 word save area that is pointed to by Register 13.

2. Data areas returned by RACF to the caller will be either above or below 16-megabytes,
depending upon the caller's addressing mode and the data area in question.

446 SPL: Application Development Macro Reference

,REQSTOR = reqstor addr
specifies the address of an 8-byte character field containing the name of the piece of
code that is making the request. (this address identifies a unique piece of code within a
set of code that exists in a subsystem). If this operand is omitted, a string of eight
blanks is assumed.

Prior to Release 1.9, if you specified this operand and RACF was installed, you had to
update the RACF router table with a matching entry. If you did not update the table,
RACF processing was bypassed. With Release 1.9 you do not have to put a matching
entry in the router table if you specify the DECOUPL keyword. (See the DECOUPL
keyword.)

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing the calling subsystem's
name, version, and release level. If this operand is omitted, a string of eight blanks is
assumed.

Prior to Release 1.9, if you specified this operand and RACF was installed, you had to
update the RACF router table with a matching entry. If you did not update the table,
RACF processing was bypassed. With Release 1.9 you do not have to put a matching
entry in the router table if you specify the DECOUPL keyword. (See the DECOUPL
keyword.)

,WORKA =work area addr
specifies the address of a 512-byte work area for use by the router and the RACF front
end routine.

,RELATED= value
specifies information used to make notes to yourself to document macros by "relating"
functions or services to corresponding functions or services. You can use any format
and put in any length and type of data you want.

,MSGRTRN =YES
,MSGRTRN =NO

specifies whether you want to use message return processing. You can use this
parameter in conjunction with the other RACROUTE MSGxxxx parameters to store and
forward messages resulting from this service.

Note: This parameter only applies to REQUEST=AUTH, REQUEST= DEFINE,
REQUEST= VERIFY, and REQUEST= VERIFYX.

,MSGSUPP =YES
,MSGSUPP =NO

specifies whether you want to suppress write-to-operator (WTO) messages from within
RACF processing. You can use this parameter in conjunction with the other
RACROUTE MSGxxxx parameters to store and forward messages resulting from this
service.

Note: This parameter applies only to RACROUTE REQUEST=AUTH, RACROUTE
REQUEST= DEFINE, RACROUTE REQUEST= VERIFY, and RACROUTE
REQUEST= VERIFYX.

,MSGSP = subpoo/ number
specifies the number of the subpool into which you want RACF messages returned.
You can use ,MSGSP in conjunction with the other RACROUTE MSGxxxx parameters to
store and forward RACF messages. If you do not specify a subpool, the default subpool
is 0.

RACROUTE (for RACF Release 1.9) 447

Notes:

1. This parameter only applies to REQUEST= AUTH, REQUEST= DEFINE,
REQUEST= VERIFY, and REQUEST=VERIFYX.

2. For RACF, only IRR1021, IRR1011, ICH4081, ICH700041, and ICH700051 messages can
be returned.

3. When control returns from RACROUTE, the RACROUTE parameter list field is
mapped by SAFPMSAD in the ICHSAFP mapping macro. SAFPMSAD will be
non-zero if messages have been returned. This field will contain the address of an
area which consists of two full words followed by the message itself in WTO
parameter list format. The first word is the length of the area including the two full
word header; the second word points to the next message area, if there is one, or
contains zero if no more messages areas exist. If is your responsibility to issue the
FREEMAIN macro to release these message area(s).

,DECOUPL •YES
,DECOUPL •NO

specifies whether you want to have the REQSTOR and SUBSYS parameters to have
corresponding entries in the router table. Prior to 1.9, if you specified REQSTOR or
SUBSYS, you had to have corresponding entries for the class in the router table. To
use this keyword, you must specify RELEASE= 1.9.

,RELEASE-1.9
specifies the release number. With Release 1.9, you can specify message parameters
to obtain messages from RACROUTE REQUEST=AUTH, RACROUTE
REQUEST= DEFINE, RACROUTE REQUEST=VERIFY, and RACROUTE
REQUEST= VERIFYX.

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes. These
return codes represent return codes from all invocations of the RACROUTE macro; for
example, REQUEST= AUTH, REQUEST= VERIFY, etc. For specific information on the
success or failure of the Invocation in question, see the section of this book that describes
that invocation.

When you execute the macro, space for return codes and their respective reason codes is
reserved in the first two words of the RACROUTE parameter list. You can access them via
the ICHSAFP mapping by loading the ICHSAFP pointer with the label that you specified on
the list form of the macro.

448 SPL: Application Development Macro Reference

Hexadecimal Meaning
Code

00 The requested security function has completed successfully. In addition, if
the requested function was 'AUTH', the authorization request was accepted.

04 The requested function has not been processed. In addition, if the request
was 'AUTH', the MVS router could neither accept nor fail the request. The
following are some possible reasons for a request not being processed.

08

The MVS router is not active.

The RACF front end routine detected that a null action was requested for
the specified request type, resource type, and subsystem ID.

The request/resource/subsystem combination could not be found in the
router table.

RACF is not active on the system, and RACFIND =YES was not
specified, and there is no RACROUTE installation exit routine (or an exit
originated a return code of 4).

RACF is active on the system, but no profile exists for the specified
resource.

The requested function was processed by RACF, the MVS router, or the
router exit (ICHRTXOO) and failed. If the requested function was AUTH, the
authorization request has been failed. If RACF is inactive for an 'AUTH'
request with RACFIND =YES, then the MVS router fails the request. The
RACF or router exit return code and reason codes are returned in the first
two words of the RACROUTE input parameter list.

Example 1
Operation: Invoke the MVS router to perform authorization checking using the standard
form, for a non-VSAM data set residing on the volume pointed to by register 8. Register 7
points to the data set name and the RACF user is requesting the highest ievei of controi
over the data set. The "RACF-indicated" bit in the data set's DSCB is on.

RACROUTE REQUEST=AUTH,WORKA=RACWK,ENTITY=((R7)), X
VOLSER=(R8),CLASS='DATASET',ATTR=ALTER, X
RACFIND=YES,RELEASE=l.9

RACWK OS CL512

Example 2
Operation: Invoke the MVS router to perform authorization checking using the standard
form, for an IMS/VS transaction pointed to by register 5. The user requests only read
access. The request is issued on behalf of the IMS/VS subsystem.

RACROUTE REQUEST=FASTAUTH,SUBSYS=SUBIMS, X

SUB IMS
FRACWK
RACWK

WORKA=RACWK,ENTITY=(R5), X
CLASS= I TIMS I' WKAREA=FRACWK, x
ATTR=READ,RELEASE=l.9

DC CL8'IMS'
OS 16F
OS CL512

RACROUTE (for RACF Release 1.9) 449

RACROUTE (List Form)
The list form of the RACROUTE macro is written as follows:

name

RACROUTE

REQUEST= AUDIT
REQUEST= AUTH
REQUEST= DEFINE
REQUEST=DIRAUTH
REQUEST= EXTRACT
REQUEST= FASTAUTH
REQUEST= LIST
REQUEST=STAT
REQUEST= TOKENBLD
REQUEST= TOKEN MAP
REQUEST= TOKENXTR
REQUEST= VERIFY
REQUEST= VERIFYX

,REQSTOR = reqstor addr

,SUBSYS=subsys addr

,WORKA=work area addr

,RELATED= value

,MSGRTRN =YES
,MSGRTRN =NO

,MSGSUPP =YES
,MSGSUPP=NO

,MSGSP=subpoo/ number

,DECOUPL=YES
,DECOUPL=NO

,RELEASE= 1.9

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address
Default: REQSTOR =zero
Note: If you specify REQSTOR and RACF is installed, you
must either update the RACF router table to match the
operand or specify DECOU PL= YES.

subsys addr: A-type address
Note: If you specify SUBSYS and RACF is installed, you must
either update the RACF router table to match the operand or
specify DECOU PL= YES.

work area addr: A-type address

value: Any valid macro keyword specified

DefauH: MSG RT RN= NO

Default: MSGSUPP =NO

subpool number: Decimal digit 0-255

Default: DECOU PL= NO

The REQUEST= parameters are explained under their respective invocations. The
RACROUTE parameters are explained under the standard form of the RACROUTE macro
with the following exception:

,MF=L
specifies the list form of the RACROUTE macro.

450 SPL: Application Development Macro Reference

RACROUTE (Execute Form)
The execute form of the RACROUTE macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUDIT
REQUEST= AUTH
REQUEST= DEFINE
REQUEST= DIRAUTH
REQUEST= EXTRACT
REQUEST= FASTAUTH
REQUEST= LIST
REQUEST=STAT
REQUEST= TOKENBLD
REQUEST= TOKEN MAP
REQUEST= TOKENXTR
REQUEST= VERIFY
REQUEST= VERIFYX

,REQSTOR=reqstor addr

,SUBSYS=subsys addr

,WORKA =work area addr

,RELATED= value

,MSGRTRN=YES
,MSGRTRN=NO

,MSGSUPP =YES
,MSGSUPP=NO

,MSGSP=subpoo/ number

,DECOUPL=YES
,DECOUPL =NO

,RELEASE= (number.CHECK)
,RELEASE= number
, RELEASE= (,CHECK)

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: RX-type address or register (2) - (12)
Default: REQSTORE=zero
Note: If you specify REQSTOR and RACF is installed, you
must either update the RACF router table to match the
operarid or sper.ify DECOU PL= YES.

subsys addr: RX-type address or register (2) - (12)
Note: If you specify SUBSYS and RACF is installed, you must
either update the RACF router table to match the operand or
specify DECOU PL= YES.

work area addr: RX-type address or register (2) - (12)

value: Any valid macro keyword specified

Default: MSGRTRN =NO

Default: MSG SUPP= NO

subpool number: Decimal digit 0-255

Default: DECOU PL= NO

number: 1.9

ctr/ addr: RX-type address or register (1), (2) - (12)

RACROUTE (for RACF Release 1.9) 451

The REQUEST= parameters are explained under their respective Invocations. The
RACROUTE parameters are explained under the standard form of the RACROUTE macro
with the following exception:

,MF•(E,ctr/ addr)
specifies the execute form of the RACROUTE macro where ctr/ addr is the address of
the associated parameter list.

,RELEASE• (number,CHECK)
,RELEASE• number
,RELEASE• (,CHECK)

specifies the RACF release level 1.9 of the parameter list to be generated by the macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the llst and execute forms of the
RACROUTE REQUEST=FASTAUTH macro can be done by specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing Is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

452 SPL: Application Development Macro Reference

RACROUTE (Modify Form)
The modify form of the RACROUTE macro is written as follows:

name

b

RACROUTE

b

REQUEST= AUDIT
REQUEST= AUTH
REQUEST• DEFINE
REQUEST= DIRAUTH
REQUEST= EXTRACT
REQUEST=FASTAUTH
REQUEST= LIST
REQUEST= STAT
REQUEST=TOKENBLD
REQUEST= T0KENMAP
REQUEST= TOKENXTR
REQUEST= VERIFY
REQUEST= VERIFYX

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA=work area addr

,RELATED=va/ue

,MSGRTRN =YES
,MSGRTRN =NO

,MSGSUPP =YES
,MSGSUPP=NO

,MSGSP=subpoo/ number

,DECOUPL =YES
,DECOUPL =NO

,RELEASE= (number, CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF= (M,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: RX-type address or register (2) - (12)
Default: REQSTOR =zero.
Note: If you specify REQSTOR and RACF is installed, you
must either update the RACF router table to match the
operand or specify DECOUPL =YES.

subsys addr: RX-type address or register (2) - (12)
Note: If you specify SUBSYS and RACF is installed, you must
either update the RACF router table to match the operand or
specify DECOUPL =YES.

work area addr: RX-type address or register (2) - (12)

value: Any valid macro keyword specified

Defaul: MSGRTRN =NO

Default: MSGSUPP=NO

subpool number: Decimal digit 0-255

Default: DECOUPL = NO

number: 1.9

ctr/ addr: RX-type address or register (1), (2) - (12)

RACROUTE (for RACF Release 1.9) 453

The REQUEST= parameters are explained under their respective Invocations .. The
RACROUTE parameters are explained under the standard form of the RACROUTE macro
with the following exception:

,MF• (M,ctr/ addr)
specifies the modify form of the RACROUTE macro where ctr/ addr is the address of the
associated parameter list. The macro updates the parameter list, but does not execute
the macro.

,RELEASE= (number,CHECK)
,RELEASE• number
,RELEASE'"" (,CHECK)

specifies the RACF release level 1.9 of the parameter list to be generated by the macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= FASTAUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code of X' 64' will be generated.

454 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUDIT - General Purpose Security Audit Request

©Copyright IBM Corp. 1988, 1991

The RACROUTE REQUEST= AUDIT macro is a general purpose security audit request
which records events in SMF type 80 records and issues messages to the network security
administrator.

RACF searches profiles in the following order: the profiles chained off the supplied ACEE,
the TCB (task control block) ACEE, the ASXB ACEE, and finally, any profiles that have been
listed via the SETROPTS RACLIST command.

To use this service, you must specify RELEASE= 1.9.

REQUEST= AUDIT is an SRB compatible service. If the caller is not in SRB mode, then the
caller must be APF-authorized. If the caller is not in supervisor state, RACROUTE issues a
modeset to switch the caller to supervisor state.

The standard form of the RACROUTE REQUEST=AUDIT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RAC ROUTE

b One or more blanks must follow RACROUTE.

REQUEST= AUDIT

,ENTITYX =extended resource name
addr

extended resource name addr: A-type address or register (2)
- (12)

,CLASS= 'class name'
,CLASS=class name addr

,EVENT= 'event name'
,EVENT= event name addr

,EVOUAL =number
,EVQUAL =reg

,ACEE= acee addr

,RELEASE= number

class name: 1-8 character name
class name addr: A-type address or register (2) - (12)

event name: 1-8 character name
event name addr: A-type address or register (2) - (12)

number: 0-99
reg: Register (2) - (12)

acee addr: A-type address or register (2) - (12)

number: 1.9

The parameters are explained as follows:

,ENTITYX =extended resource name addr
specifies the address of a structure that consists of two 2-byte length fields, followed by
the entity name.

• The first 2-byte field specifies a buffer length which can be from 0 to 255 bytes. This
length field only refers to the length of the buffer that contains the entity name; it
does not include the length of either length field.

• The second 2-byte field specifies the actual length of the entity name. This length
field only includes the length of the actual name without any trailing blanks; it does
not include the length of either length field.

455

These two length fields can be used in several different ways:

• If the length of the entity name is known, you can specify 0 in the first field and
specify the length of the entity name in the second field. Note that when you specify
the second field, each byte counts; this means the entity name specified must match
exactly the entity name on the RACF data base.

• If you choose to use a buffer area in which to place the entity name, you can specify
the first field to designate the length of the buffer. In regard to the second field, you
can do one of two things:

If you know the length of the entity name, you would specify the length in the
second field. (Note that the length of the first field can be from 0 to 255, but must
be equal to or more than the length of the second field.)

If you do not know the length of the entity name, you would specify O in the
second field, in which case RACF would be responsible for counting the number
of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format, and the
length of an entity name for a general resource class Is longer than 39 characters,
RACF uses generic profiles to match the name. This is similar to specifying
RACFIND =NO.

,CLASS• 'class name'
,CLASS- class name addr

specifies that you want RACF to perform authorization checking for a resource in this
class. You can specify the class name or the class name address. If you specify a class
name address, the address must point to an 8-byte field that contains the class name.
The class name must be left justified and padded to the right with blanks, if necessary.

,RELEASE- number
specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= AUDIT macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

,EVENT• 'event name'
,EVENT• event name addr

specifies the name of the event that you want RACF to log. You can specify the event
name or the event name address. If you specify the event name address, it must point
to an 8-byte field that contains the event name. The event name must be left justified
and padded to the right with blanks, if necessary. The only event that you can log with
Release 1.9 is APPCSEC. RACF allows this keyword only when you specify
REQUEST= AUDIT and RELEASE= 1.9.

,EVQUAL =number
,EVQUAL • reg

specifies the event code qualifier for the event that you want logged. If you specify a
register rather than a number, you mustenter the event code qualifier in the low-order
half-word of the register or the field the address in the register points to. The qualifier
can be from 0-99. See the RACF Security Administrator's Guide for a description of the
event code qualifiers for an event. RACF allows this keyword only when you specify
REQUEST= AUDIT and RELEASE= 1.9.

,ACEE= acee addr
specifies the address of an ACEE passed on a REQUEST= AUDIT. RACF searches local
profiles chained off the ACEE that have been placed there via the RACLIST macro. For
auditing purposes, RACF checks for LOGOPTIONS for the class first, then searches for
a profile to match an entity name. If RACF does not find a profile, then It does not
perform any auditing. An ACEE is required for REQUEST= AUDIT.

456 · · SPL: Application Development Macro Reference

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes Is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00

04

08

oc

10

The requested security function has completed successfully.

The class is not active.

The class was not specified.

Indicates an internal error from RACXTRT.

Reason
Code Meaning

xxyy xx - Return code from RACXTRT; yy - Reason code from RACXTRT

Parameter list error as described by the following hex reason codes

Reason
Code Meaning

0 Invalid event

4 Invalid event code qualifier

8 Invalid parameter list version

C Invalid parameter list length

10 Invalid entity

14 LOGOPTIONS not set and no profile found. No auditing done.

RACROUTE REQUEST=AUDIT (for RACF Release 1.9) 457

Example1
Operation: Invoke the RAC ROUTE REQUEST= AUDIT macro to search for a profile in the

· APPCLU class to match the entity specified in LULUPAIR. The profiles to be searched have
been placed in storage using the RACROUTE REQUEST= RACLIST macro. Be aware that if
SETROPTS LOGOPTIONS, other than MACRO, have been specified for the APPCLU class,
then those auditing options will be the ones that RACF uses. If the SUBSYS and REQSTOR
parameters are not represented in the router table, then you must specify DECOUPL=YES.
Set the auditing options so that an SMF 80 event APPCLU event code qualifier 04 (partner
session keys were not equal) is logged. A message will be sent to the security console, and
message ICH700051 will be sent to the user.

Note: The message cannot be received by anyone other than the person to whom It was
directed.

RACROUTE REQUEST=AUDIT,CLASS='APPCLU',ENTITY=LULUPAIR, X
ACEE=VTAMACEE,EVENT='APPCLU',EVQUAL=CODE04, X
WORKA=WORKADDR, REQSTOR=TPUTRECV, X
DECOUPL=YES,RTOKEN(8), X
LOG=ASIS,RELEASE=l.9

RACWK DS CL512

Example2
Operation: Invoke the RAC ROUTE REQUEST= AUDIT macro on behalf of the VT AM
resource manager to perform mandatory access checking (MAC) in the "receiving" user's
address space to ensure that the receiver's SECLABEL dominates that of the sender.
Specify that RACF should not audit the event if RACF fails the mandatory access check. The
SUBSYS and REQSTOR parameters are not represented in the router table; therefore, you
must specify DECOUPL=YES.

Note: The message cannot be received by anyone other than the person to whom it was
directed.

RACROUTE REQUEST=AUDIT,WORKA=RACWK,SUBSYS=VTAM, X
REQSTOR=TPUTRECV,DECOUPL=YES,RTOKEN(8), X
LOG=ASIS,RELEASE=l.9

RACWK DS CL512

458 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUDIT (List Form)
The list form of the RACROUTE REQUEST= AUDIT macro is written as follows:

name

RACROUTE

REQUEST= AUDIT

,ENTITYX =extended resource name
addr

,CLASS= 'class name'
,CLASS= class name addr

,EVENT= 'event name'
,EVENT= event name addr

,EVQUAL =number

,ACEE= acee addr

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

extended resource name addr: A-type address

class name: 1-8 character name
class name addr: A-type address

event name: 1-8 character name
event name addr: A-type address

number: 0-99

acee addr: A-type address

number: 1.9

The parameters are explained under the standard form of the RACROUTE macro with the
following exception:

,MF•L
specifies the list form of the RACROUTE macro.

RACROUTE REQUEST"' AUDIT (for RACF Release 1.9) 459

RACROUTE REQUEST= AUDIT (Execute Form)
The execute form of the RAC ROUTE REQUEST= AUDIT macro is written as follows:

name

b

RACROUTE

b

REQUEST= AUDIT

,ENTITYX =extended resource name
addr

,CLASS= 'class name'
,CLASS=class name addr

,EVENT= 'event name'
,EVENT= event name addr

,EVQUAL =number
,EVQUAL=reg

,ACEE= acee addr

,RELEASE= number

,MF=E

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

extended resource name addr: RX-type address or register
(2) - (12)

class name: 1-8 character name
class name addr: RX-type address or register (2) - (12)

event name: 1-8 character name
event name addr: RX-type address or register (2) - (12)

number: 0-99
reg: Register (2) - (12)

acee addr: RX-type address or register (2) - (12)

number: 1.9

The parameters are explained under the standard form of the RACROUTE macro with the
following exception:

,MF=E
specifies the execute form of the RACROUTE macro.

460 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUDIT (Modify Form)
The modify form of the RACROUTE REQUEST= AUDIT macro is written as follows:

name

RACROUTE

REQUEST= AUDIT

,ENTITYX =extended resource name
addr

,CLASS= 'class name'
,CLASS=class name addr

,EVENT= 'event name'
,EVENT=event name addr

,EVQUAL =number
,EVQUAL =reg

,ACEE= acee addr

,RELEASE= number

,MF=M

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

extended resource name addr: RX-type address or register
(2)- (12)

class name: 1-8 character name
class name addr: RX-type address or register (2) - (12)

event name: 1-8 character name
event name addr: RX-type address or register (2) - (12)

number: 0-99
reg: Register (2) - (12)

acee addr: RX-type address or register (2) - (12)

number: 1.9

The parameters are explained under the standard form of the RACROUTE
REQUEST= AUDIT macro with the following exception:

,MF==M
specifies the modify form of the RAC ROUTE REQUEST= AUDIT macro.

RACROUTE REQUEST= AUDIT (for RACF Release 1.9) 461

462 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUTH - Check RACF Authorization (for RACF Release
1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier installed on your system, see the followlng:

• "RACROUTE - MVS Router Interface {for RACF Release 1.8.1 or earlier)" on page 435

• "RACHECK - Check RACF Authorization (for RACF Release 1.8.1 or earlier)" on
page 403. (IBM recommends that you use RACROUTE with the REQUEST= AUTH
parameter rather than RACHECK.)

The RACROUTE REQUEST=AUTH macro is used to provide authorization checking when a
user requests access to a RACF-protected resource.

The standard form of the RACROUTE REQUEST= AUTH macro is written as follows:

name

RACROUTE

REQUEST= AUTH

,PROFILE= profile addr
,ENTITY= (resource name addr)
,ENTITY= (resource name addr,CSA)
,ENTITY= (resource name
addr, PRIVATE)
,ENTITY= (resource name
addr,NONE)
,ENTITYX =extended resource name
addr
,ENTITYX =(extended resource name
addr,CSA)
,ENTITYX =(extended resource name
addr,PRIVATE)
,ENTITYX =(resource name
addr,NONE)

,VOLSER=vol addr

,CLASS= 'class name'
,CLASS= class name addr

,RELEASE= number

,ATTR=READ
,ATTR=UPDATE
,A TTR =CONTROL
,ATTR=ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile addr: A-type address or register (2) - (12)
resource name addr: A-type address or register (2) - (12)

extended resource name addr: A-type address or register (2)
- (12)

vol addr: A-type address or register (2) - (12)
Note: VOLSER is required only for CLASS= DATASET and
DSTYPE not equal to M when a discrete profile name is used
and only when ENTITY is also coded.

class name: 1-8 character name
class name addr: A-type address or register (2) - (12)

number: 1.9, 18.1,1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: A TTR =READ

reg: register (2) - (12)

Default: DSTYPE = N

parm list addr: A-type address or register (2) - (12)

463

,LOG=ASIS
,LOG=NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL=o/d vol addr

,APPL= 'applname'
,APPL= app/name addr

,ACEE= acee addr

,OWNER= owner id addr

,ACCL VL =access level addr
,ACCLVL=(access /eve/
addr,parm list addr)

,RACFIND=YES
,RACFIND=NO

,GENERIC= YES
,GENERIC= ASIS

,FILESEQ =number
, FILESEQ =reg

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS=NONE
,STATUS= ERASE
,STATUS=EVERDOM

,USERID= 'userid'
,USERID = userid addr

,GROUPID = 'groupid'
,GROUPID = groupid addr

, LOGSTR =logs tr addr

,UTOKEN =token addr

, RTOKEN = rtoken addr

,RECVR=recvr addr

Default: LOG= ASIS

old vol addr: A-type address or register (2) - (12)

app/name: 1-8 character name
applname addr: A-type address or register (2) - (12)

acee addr: A-type address or register (2) - (12)

owner Id addr: A-type address or register (2) - (12)

access /eve/ addr: A-type address or register (2) - (12)

parm list addr: A-type address or register (2) - (12)

Default: GENERIC= ASIS

number: 1-9999
reg: register (2) - (12)

Default: TAPELBL=STD

Default: STATUS=NONE

userid: 1-8 character user ID
userid addr: A-type address or register (2) - (12)

groupid: 1-8 character group ID
groupid addr: A-type address or register (2) • (12)

/ogstr addr: A-type address or register (2) - (12)

token addr: A-type address or register (2) - (12)

rtoken addr: A-type address or register (2) - (12)

recvr addr: A-type address or register (2) - (12)

The parameters are explained as follows:

,PROFILE= profile addr
,ENTITY• (resource name addr)
,ENTITY= (resource name addr,CSA)
,ENTITY• (resource name addr,PRIVATE)
,ENTITY - (resource name addr,NONE)
,ENTITYX =extended resource name addr
,ENTITVX =(extended resource name addr,CSA)
,ENTITVX=(extended resource name addr,PRIVATE)
,ENTITVX •(extended resource name addr,NONE)

specifies the resource address:

• PROFILE= profile addr
specifies that RACF authorization checking is to be performed for the resource
whose profile is pointed to by the specified address. This profile must be supplied

464 SPL: Application Development Macro Reference

by a previously coded ENTITY= (xxx,CSA,PRIVATE). A profile supplied by RACLIST
is not acceptable.

• ENTITY= {resource name addr)
specifies that RACF authorization checking is to be performed for the resource
whose name is pointed to by the specified address. The resource name is a 44-byte
DASO data set name for CLASS= DATASET or a 6-byte volume serial number for
CLASS= DASDVOL or CLASS= TAPEVOL. The length of all other resource names
is determined from the class descriptor tables. The name must be left-justified in
the field and padded with blanks.

• ENTITY= {resource name addr,CSA)
specifies that RACF authorization checking is to be performed for the indicated
resource and that a copy of the profile is to be maintained in central storage. The
storage acquired for the profile is obtained from the common storage area (CSA),
and is fetch-protected, key 0 storage.

If CSA is specified and the return code produced by the RACROUTE
REQUEST= AUTH macro instruction is 00 or 08, the address of the profile is
returned in register 1.

By establishing and maintaining a resource profile, the resource manager can
reduce the 1/0 required to perform RACF authorization checks on highly-accessed
resources.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

• ENTITY= (resource name addr,PRIVATE)
PRIVATE specifies the same as CSA except that RACROUTE returns the profile in
the user private area rather than in common storage, and the name field contains
the name of the returned profile instead of the name of the resource that was
specified on the ENTITY keyword. The issuer of RACROUTE REQUEST= AUTH must
free this storage when the profile is no longer needed. {The profile subpool number
and length are returned as well as the profile data.)

• ENTITY= (resource name addr,NONE)
specifies the same as ENTITY= resource name address. However, no profile is
returned.

• ENTITYX =extended resource address
specifies the address of a structure that consists of two 2-byte length fields,
followed by the entity name.

The first 2-byte field specifies a buffer length which can be from 0 to 255 bytes.
This length field refers to the length of the buffer that contains the entity name; it
does not include the length of either length field.

The second 2-byte field specifies the actual length of the entity name. This
length field includes the length of the actual name without any trailing blanks; it
does not include the length of either length field.

These two length fields can be used in several different ways:

If the length of the entity name is known, you can specify 0 in the first field and
specify the length of the entity name in the second field. Note that when you
specify the second field, each byte counts; this means the entity name specified
must match exactly the entity name on the RACF data base.

RAC ROUTE REQUEST= AUTH (for RACF Release 1.9) 465

If you choose to use a buffer area in which to place the entity name, you can
specify the first field to designate the length of the buffer. In regard to the
second field, you can do one of two things:

- If you know the length of the entity name, you would specify the length in the
second field. (Note that the length of the first field can be from Oto 255, but
must be equal to or more than the length of the second field.)

- If you do not know the length of the entity name, you would specify 0 in the
second field, in which case RACF would be responsible for counting the
number of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

To use this keyword, you must also specify RELEASE= 1.9 or a later release
number.

• ENTITYX= (extended resource name addr,CSA,)
specifies that RACF authorization checking is to be performed for the indicated
resource, and that a copy of the profile is to be maintained in main storage. The
storage acquired for the profile is obtained from the common storage area (CSA),
and is fetch-protected, key 0 storage.

If CSA is specified and the return code produced by the RACROUTE
REQUEST= AUTH macro instruction is 00 or 08, the address of the profile is
returned in register 1.

To use this keyword, you must also specify RELEASE= 1.9 or a later release
number.

• ENTITYX= (extended resource name addr,PRIVATE)
PRIVATE specifies the same as CSA, except that RACROUTE returns the profile in
the user private area rather than in common storage, and the name field contains
the name of the returned profile instead of the name of the resource that was
specified on the ENTITY keyword.

The issuer of RACROUTE REQUEST= AUTH must free this storage when the profile
is no longer needed. (The profile subpool number and length are part of the profile
data returned.)

To use this keyword, you must also specify RELEASE= 1.9 or a later release
number.

• ENTITYX =(extended resource name addr,NONE)
specifies the same as ENTITYX= resource name address. However, no profile is
returned.

To use this keyword, you must also specify RELEASE= 1.9 or a later release
number.

Recommendation

IBM recommends that you use ENTITYX rather than ENTITY for two reasons:

• With ENTITYX, if you know the length of the entity name, ENTITYX allows you to
pass that information to RACF. Doing so can result in slightly faster processing.

• With ENTITY, the entity name you pass to RACF must be in a buffer, the size of
which is determined by the length in the CDT. If the MAXLNTH of a class increases
in the future, you would have to modify your program to use a larger buffer. By
using ENTITYX, you avoid this possible problem because you have removed the
CDT dependency from your program.

466 SPL: Application Development Macro Reference

,VOLSER =vol addr
specifies the volume serial number, as follows:

• For non-VSAM DASO data sets and tape data sets, this is the volume serial number
of the volume on which the data set resides.

• For VSAM DASO data sets, this is the volume serial number of the catalog
controlling the data set.

The volume serial number is optional if DSTYPE = M is specified; it is ignored if the
profile name is generic.

The field pointed to by the specified address contains the volume serial number padded
to the right with blanks, if necessary, to make six characters. VOLSER = is only valid
and must be supplied with CLASS= DATASET, (unless DSTYPE= Mis specified) and if
ENTITY is also coded.

,CLASS= 'class name'
,CLASS• class name addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. The address must point to a 1-byte field indicating the length of the
class name, followed by the class name.

,RELEASE= number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= AUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

,ATTR•READ
,ATTR=UPDATE
,ATTR •CONTROL
,ATTR=ALTER
,ATTR=reg

specifies the access authority of the user or group permitted access to the resource for
which RACF authorization checking is to be performed:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to write or read.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to the
VSAM control password. For non-VSAM data sets and other resources, RACF user
or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes In the
low-order byte of the register:

X'02' - READ
X'04' - UPDATE
X'08' - CONTROL
X'80' - ALTER

,DSTYPE=N
,DSTYPE=V
,DSTYPE•M
,DSTYPE=T

specifies the type of data set associated with the request:

• N for non-VSAM
• Vfor VSAM
• M for model profile
• T for tape

RACROUTE REQUEST= AUTH (for RACF Release 1.9) 467

If DSTYPE = T Is specified and tape data set protection is not active, the processing will
be the same as for RACROUTE REQUEST= AUTH CLASS= T APEVOL.

DSTYPE should only be specified for CLASS= DATASET.

,INSTLN •pa rm list addr
specifies the address of an area that is to contain parameter information meaningful to
the RACHECK installation exit routine. This information is passed to the installation
exit routine when it is given control by RACHECK.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACHECK installation exit routine.

,LOG=ASIS
,LOG- NOFAIL
,LOG=NONE
,LOG-NOSTAT

specifies the types of access attempts to be recorded on the SMF data set:

ASIS - RACF records the event in the manner specified in the profile that protects the
resource.

NOFAIL - If the authorization check fails, the attempt is not recorded. If the
authorization check succeeds, the attempt is recorded as in ASIS.

NONE - The attempt is not to be recorded.

NOSTAT- The attempt is not to be recorded and no resource statistics are to be
updated.

,OLDVOL = old vol addr
specifies a volume serial:

• For CLASS= DATASET, within the same multivolume data set specified by
VOLSER=.

• For CLASS=TAPEVOL, within the same tape volume specified by ENTITY=.

RACF authorization checking will verify that the OLDVOL specified is part of the same
multivolume data set or tape volume set.

The specified address points to the field that contains the volume serial number padded
to the right with blanks, if necessary, to make six characters.

,APPL= 'applname'
,APPL ... applname addr

specifies the name of the application requesting authorization checking. The applname
is not used for the authorization checking process but is made available to the
installation exit routine(s) called by the RACHECK routine. If the address is specified,
the address must point to an 8-byte field containing the application name left justified
and padded with blanks.

,ACEE= acee addr
specifies the address of the accessor environment element (ACEE) to be used during
RACHECK processing. If no ACEE is specified, RACF uses the TASK ACEE pointer
(TCBSENV) in the extended TCB. Otherwise, or if the TASK ACEE pointer is zero, RACF
uses the main ACEE for the address space. The main ACEE is pointed to by the
ASXBSENV field of the address space extension block.

468 SPL: Application Development Macro Reference

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

,OWNER= owner ID addr
specifies a profile owner id that is compared with the profile owner id in the owner field
of the RACF profile. If the owner names match, the access authority allowed for that
userid is ALTER. The address must point to an 8-byte field containing the owner name,
left-justified and padded with blanks.

If OWNER is specified, any WARNING and OPERATIONS attribute processing is
bypassed.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -----~

,ACCLVL =access level addr
,ACCLVL =(access level addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
access level pointed to by the specified address is a 1-byte length field, containing the
value (0-8) of the length of the following data, followed by an eight-character string that
will be passed to the RACHECK installation exit routines. The optional parameter list
pointed to by the specified address contains additional information to be passed to the
RACHECK installation exit routines. RACF does not inspect or modify this information.

,RACFIND =YES
,RACFIND =NO

indicates whether or not the resource is protected by a discrete profile. The RACF
processing and the possible return codes are given in Figure 18.

Note: In all cases, a return code of X'OC' is also possible if the OLDVOL specified was
not part of the multivolume data set defined by VOLSER, or it was not part of the same
tape volume defined by ENTITY.

Figure 18. Types of Profile Checking Performed by RACROUTE REQUEST =AUTH
Operand Generic Profile Checking Inactive Generic Profile Checking Active

RACFIND =YES

RACFIND=NO

RACFIND not specified

,GENERIC= YES
,GENERIC= ASIS

Look for discrete profile; if found,
exit with return code 00 or 08. If
no discrete profile is found, exit
with return code 08.

No checking. Exit with return
code 04.

Look for discrete profile; if found,
exit with return code 00 or 08. If
no discrete profile is found, exit
with return code 04.

Look for discrete profile; if found,
exit with return code 00 or 08. Look
for generic profile; if found, exit with
return code 00 or 08.
Exit with return code 08 if neither a
discrete nor a generic profile is
found.

Look for generic profile; if found,
exit with return code 00 or 08. If not
found, exit with return code 04.

Look for discrete profile; if found,
exit with return code 00 or 08. Look
for generic profile; if found, exit with
return code 00 or 08.
Exit with return code 04 if neither a
discrete nor a generic profile is
found.

specifies whether the resource name is to be treated as a generic profile name. If
GENERIC is specified with CLASS= DEFINE, NEWNAME, then GENERIC applies to both
the old and new names. GENERIC is ignored if the GENCMD option on the RACF
SETROPTS command is not specified for the class (see RACF Command Language
Reference).

RACROUTE REQUEST= AUTH (for RACF Release 1.9) • 469

This keyword is designed primarily for use by RACF commands.

• If GENERIC= YES is specified, the resource name is considered a generic profile
name, even if it does not contain either of the generic characters: an asterisk (*) or
a percent sign (%).

• If GENERIC= ASIS is specified, the resource name is considered a generic only if it
contains either of the generic characters: an asterisk(*) or a percent sign(%).

,FILESEQ •number
,FILESEQ •reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The value must be in the range 1 - 9999. If a register is specified, it must
contain the file sequence number in the low-order half-word. If CLASS= DATASET and
DSTYPE =Tare not specified, FILESEQ is Ignored.

,TAPELBL •STD
,TAPELBL= BLP
,TAPELBL=NL

specifies the type of tape label processing to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL = BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL=NL or BLP, the user will not be
allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

This parameter is primarily intended for use by data management routines to indicate
the label type from the LABEL keyword on the JCL statement.

This parameter is valid only for CLASS= DATASET and DSTYPE=T, or
CLASS= T APEVOL.

,STATUS ... NONE
,STATUS•ERASE
,STATUS= EVERDOM

specifies whether or not RACROUTE REQUEST= AUTH is to return the erase status of
the given data set. This parameter is valid only for CLASS= DATASET and a DSTYPE
value other than T.
specifies that mandatory (security label) access checking includes a check to see if the
user has a SECLABEL, other than the SECLABEL of this job or logon session, which
could ever dominate that of the current object. There are no restrictions on the CLASS
parameter. Be aware that choosing this option increases processing time. The default
is that mandatory access checking occurs only with the SECLABEL of the current job or
logon session.

,USERID= 'userid'
,USERID • userid address

specifies the userid that RACF uses to perform third-party RACROUTE
REQUEST=AUTH. If USERID is specified when the caller invokes RACROUTE
REQUEST=AUTH, RACF verifies that user's authority to the given entity; RACF
disregards the user ID associated with the ACEE of the caller. This is an
eight-character field that is left-justified and padded to the right with blanks. For third
party RACROUTE REQUEST= AUTH, RACF performs the following steps:

1. Checks to see if the USERID keyword is *NONE* and GROUPID is not specified. If
so, then RACF creates a default user (null) ACEE which it uses to perform the
authorization checking.

2. If not, checks to see if an additional (third party) ACEE already exists, chained off
the current caller's ACEE or the ACEE specified in the ACEE= keyword.

3. If so, checks to see if the userid in that ACEE matches the one specified on the
USERID keyword. If so, RACROUTE REQUEST= AUTH uses the existing ACEE and
avoids RAC ROUTE REQUEST= VERIFY processing.

470 SPL: Application Development Macro Reference

4. If USERID is specified and RACROUTE REQUEST= VERIFY does not find an
additional (third party) ACEE, or the user ID in the ACEE does not match the user ID
specified on the USE RID keyword, then RACROUTE REQUEST= AUTH creates a
third party ACEE based on the USERID keyword.

5. If the GROUPID keyword is specified in addition to the USERID keyword, and a third
party ACEE already exists, then the group ID of the existing third party ACEE must
also match the group ID specified on the GROUPID keyword. If the group ID
keywords do not match, RACROUTE REQUEST=AUTH creates a third party ACEE
based on the USERID keyword.

Note: If the calling program does not specify the GROUPID keyword, the internal
RACROUTE REQUEST=VERIFY function will use the default group associated with the
specified user ID.

Only programs that are APF-authorized, system key 0-7, or in supervisor state, can use
the USERID and GROUPID keywords.

,GROUPID = 'groupid'
,GROUPID =group id address

specifies the group ID that RACF uses to perform third party authorization checking.
This is an eight-character field, left-justified, and padded to the right with blanks.

If the calling program wants a third party authorization check performed on the
GROUPID rather than the USERID, then the USERID keyord must be specified as
NONE. Thus, when the caller invokes third party authorization checking, RACF
verifies the authority of the group ID to the requested resource; RACF disregards the
group ID associated with the ACEE of the caller. For third party authorization checking,
RACF performs the following steps:

• Checks to see if an additional (third party) ACEE already exists, chained off the
caller's ACEE, or the ACEE specified in the ACEE= keyword.

• If so, checks to see if the group ID matches that specified on the GROUPID keyword.
If so, RACROUTE REQUEST= AUTH uses that ACEE and avoids RAC ROUTE
REQUEST= VERIFY processing.

" If GROUPID is specified and RACROUTE REQUEST= AUTH does not find an
additional (third party) ACEE, or the group ID in the ACEE does not match the group
ID specified on the GROUPID keyword, then RACROUTE REQUEST=AUTH creates
a third party ACEE based on the GROUPID keyword.

Only programs that are APF-authorized, system key 0-7, or in supervisor state, can use
the USERID and GROUPID keywords.

,LOGSTR = logstr addr
specifies a variable length data string consisting of a 1-byte binary length field followed
by character data that is to be included in the RACF SMF PROCESS records. The
character data can be 0-255 bytes long. The RACF Report Writer will include LOGSTR
data on the PROCESS reports.

,UTOKEN = token addr
specifies the address of the UTOKEN of the user for which RACF will perform a
RACROUTE REQUEST=AUTH. The first byte contains the length of the UTOKEN, and
the second byte contains the version number.

,RTOKEN = rtoken addr
specifies the address of the RTOKEN of a unit of work. The first byte contains the
length of the RTOKEN, followed by the UTOKEN of the creator of the resource. See
UTOKEN explanation. For a mapping of the UTOKEN see ICHRUTKN in the Data Areas
Chapter of the SPL: RACF.

,RECVR = recvr addr
specifies the address of the userid of the user who has the authority to access the
resource if a resource profile does not exist to protect it. The field is 8 bytes, left
justified and padded to the right with blanks.

RACROUTE REQUEST= AUTH (for RACF Release 1.9) 471

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAF"I' pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00 The user is authorized by RACF to obtain use of a RACF-protected resource.

04

OB

OC

10

64

472 SPL: Application Development Macro Reference

Register O contains one of the following reason codes:

00 Indicates a normal completion.

04 Indicates STATUS= ERASE was specified and the data set is to be
erased when scratched. Or the warning status of the resource was
requested by the RACROUTE REQUEST= AUTH issuer setting bit '10'
at offset 12 decimal in the RACROUTE REQUEST=AUTH parameter
list and the resource is in warning mode.

10 When CLASS=TAPEVOL, indicates the tapevol profile contains a
TVTOC.

20 When CLASS=TAPEVOL, indicates that the tapevol profile can
contain a TVTOC, but currently does not. {Scratch pool volume)

24 When CLASS= TAPEVOL, indicates that the tapevol profile does not
contain a TVTOC.

The specified resource is not protected by RACF. Register 0 contains the
following reason code:

00 Indicates a normal completion.

The user is not authorized by RACF to obtain use of the specified
RACF-protected resource. Register 0 contains the following reason code:

00 Indicates a normal completion.

04 Indicates STATUS= ERASE was specified and the data set is to be
erased when scratched.

08 Indicates DSTYPE=T or CLASS=TAPEVOL was specified and the
user is not authorized to use the specified volume.

OC Indicates the user is not authorized to use the data set.

10 Indicates DSTYPE=T or CLASS=TAPEVOL was specified and the
user is not authorized to specify LABEL= {,BLP).

14 User is not authorized to open a non-cataloged data set.

18 User is not authorized to issue RACROUTE REQUEST=AUTH when
system is in tranquil state.

1C User with EXECUTE authority to the data set profile specified
ATTA= READ, and RACF failed the access attempt.

20 User's SECLABEL does not dominate that of the resource.

24 User's SECLABEL can never dominate that of the resource.

28 Resource must have a SECLABEL, and does not have one.

The OLDVOL specified was not part of the multivolume data set defined by
VOLSER, or it was not part of the same tape volume defined by ENTITY.

RACROUTE REQUEST= VERIFY issued by third party RACROUTE
REQUEST= AUTH failed. Register 0 contains the RACROUTE
REQUEST=VERIFY return code.

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST= AUTH macro;
however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

CDT Default Return Codes and Reason Codes
Normally, if a resource profile is not found, the function returns a return code of 4.
However, with Release 1.9, if a resource profile is not found, but a default return code
keyword is specified in the CDT, then the function returns that specified return code. In
some cases, the return codes may indicate that the RACLREQ keyword was specified in the
CDT (meaning that a SETROPTS RACLIST must be issued for the class); however, it was not
done.

To identify them as default return codes, each default return code will be accompanied by a
reason code of X' 200' .

Hexadecimal Meaning
Code

00 A default return code of 0 was specified in the CDT. This indicates that the
user is authorized by RACF to obtain use of a non-protected resource.
Register O contains the following reason code:

04

08

200 Indicates a normal completion

A default return code of 4 was specified in the CDT. This means the
specified resource is not protected by RACF. Register 0 contains the
following reason code:

200 Indicates a normal completion

A default return code of 8 was specified in the CDT. This means the user is
not authorized by RACF to access this non-protected resource. Register O
contains the following reason code:

200 Indicates a normal completion

Example 1
Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set residing on the volume pointed to by register 8. Register 7 points to the data set
name and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on. Logging and statistics updates are not to
be done.

RACROUTE REQUEST=AUTH,ENTITY=((R7)),VOLSER=(R8), X
CLASS='DATASET', X
ATTR=ALTER,RACFIND=YES,LOG=NOSTAT,
RELEASE=l. 9

Example 2
Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set controlled by the catalog pointed to by register 8. Register 7 points to the data set
nama, and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on.

RACROUTE REQUEST=AUTH,ENTITY=((R7)),VOLSER=(R8), X
CLASS='DATASET', X
ATTR=ALTER,RACFIND=YES,RELEASE=l.9

Example 3
Operation: Perform RACF authorization checking using the standard form, for a VSAM data
set residing on the volume pointed to by register 8. Register 7 points to the data set name,
and the RACF user is requesting the data set for read only. Register 4 points to an area
containing additional parameter information.

RACROUTE REQUEST=AUTH,ENTITY=((R7)),VOLSER=(R8), X
CLASS='DATASET', X
DSTYPE=V,INSTLN=(R4),RELEASE=l.9

RACROUTE REQUEST=AUTH (for RACF Release 1.9) 473

Example4
Operation: Using the standard form, perform RACF authorization checking for a tape
volume for read access only. The tape volume is pointed to by register 8 and the volume's
access level is in register 5.

RACROUTE REQUEST=AUTH,ENTITY=((R8)),CLASS='TAPEVOL', X
ATTR=READ, X
ACCLVL=((R5)),RELEASE=l.9

Examples
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for READ access only for a user. Register 7 points to the data set name, and A is
an 8-byte declared field padded by zeros.

RACROUTE REQUEST=AUTH,ENTITY=((R7)), X
CLASS='DATASET',ATTR=READ,RELEASE=l.9, X
USERID=A

Example&
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for READ access only for a group. Register 7 points to the data set name.

RACROUTE REQUEST=AUTH,ENTITY=((R7)), X
CLASS='DATASET',ATTR=READ,RELEASE=l.9, X
USERID='*NONE*',GROUPID='SOMEGROUPID'

Example 7
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for a user connected to a group. Register 7 points to the data set name.

RACROUTE REQUEST=AUTH,ENTITY=((R7)), X
CLASS='DATASET',ATTR=READ,RELEASE=l.9, X
USERID='SOMEUSER',GROUPID='SOMEGROUPID'

Example 8
Operation: Using the standard form, perform third party RACF authorization checking for a
data set for READ access only for a user. Register 7 points to the data set name, and A is
an 8-byte declared field padded with zeros.

RACROUTE REQUEST=AUTH,ENTITY=((R7)), X
CLASS='DATASET',ATTR=READ,RELEASE=l.9, X
USERID=A

474 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUTH (List Form)
The list form of the RACROUTE REOUEST=AUTH macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUTH

,PROFILE= profile addr
,ENTITY= resource name addr
,ENTITY= (resource name addr
,CSA.PRIVATE)
,ENTITYX =extended resource name
addr
,ENTITYX =(extended resource name
addr,CSA,PRIVATE)

,VOLSER =vol addr

,CLASS= 'class name'
,CLASS=class name addr

,RELEASE= number

,ATTR=READ
,ATTR=UPDATE
,ATTR =CONTROL
,ATTR=ALTER

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG=NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL=old vol addr

,APPL= 'applname'
,APPL= applname addr

,ACEE= acee addr

,OWNER=owner Id addr

,ACCLVL=access level addr

,RACFIND=YES
,RACFIND=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile addr: A-type address
resource name addr: A-type address

extended resource name addr: A-type address

Note: PROFILE, ENTITY, or ENTITYX is required on either the
list or the execute form of the macro.

vol addr: A-type address
Note: VOLSER is required on either the list or the execute
form of the macro, but only for CLASS= DATASET and DSTYPE
not equal to M when a discrete profile name is used. If
required, VOLSER must be specified on either the list or the
execute form of the macro.

class name: 1-8 character name
class name addt; A-type address

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: A TTR = READ

Default: DSTYPE = N

parm list addr: A-type address

Default: LOG = ASIS

old vol addr: A-type address

applname: 1-8 character name
applname addr: A-type address

acee addr: A-type address

owner id addr: A-type address

access level addr: A-type address

RACROUTE REQUEST= AUTH (for RACF Release 1.9) 475

,GENERIC= YES
,GENERIC= ASIS

,FILESEQ =number
,FILESEQ =reg

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL =NL

,STATUS=NONE
,STATUS= ERASE
,STATUS= EVERDOM

,USERID= 'userid'
,USERID = userid addr

,GROUPID= 'groupid'
,GROUPID=groupid addr

,LOGSTR = logstr addr

,UTOKEN =token addr

,RTOKEN=rtoken addr

,RECVR = recvr addr

,MF=L

Default: GENERIC= ASIS

number: 1-9999
reg: register (2) - (12)

Defautt: T APELBL =STD

Defautt: STATUS= NONE

userid: 1-8 character user ID
userid addr: A-type address

groupid: 1-8 character group ID
groupid addr: A-type address

/ogstr addr: A-type address

token addr: A-type address

rtoken addr: A-type address

recvr addr: A-type address or register (2)- (12)

The parameters are explained under the standard form of the RACROUTE REQUEST= AUTH
macro with the following exception:

,MF•L
specifies the list form of the RACROUTE REQUEST= AUTH macro.

476 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUTH (Execute Form)
The execute form of the RAC ROUTE REQUEST= AUTH macro is written as follows:

name

b

RAC ROUTE

b

REOUEST=AUTH

,PROFILE=profile addr
,ENTITY= resource name addr
,ENTITY= (resource name addr
,CSA,PRIVATE)
,ENTITYX =extended resource name
addr
,ENTITYX=(extended resource name
addr,CSA,PRIVATE)

,VOLSER=vo/ addr

,CLASS= class name addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,ATTR=READ
,ATTR= UPDATE
,ATTR =CONTROL
,ATTR=ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG= NOFAIL
,LOG=NONE
,LOG= NOST AT

,OLDVOL =old vol addr

,APPL= applname
,APPL= applname addr

,ACEE=acee addr

,OWNER= owner id addr

,ACCLVL=access level addr

,RACFIND=YES
,RACFIND=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile addr: RX-type address or register (2) - (12)
resource name addr: RX-type address or register (2) - (12)

extended resource name addr: RX-type address or register
(2) - (12)
Note: PROFILE, ENTITY, or ENTITYX required on either the
list or the execute form of the macro.

vol addr: RX-type address or register (2) - (12)
Note: VOLSER is required on either the list or the execute
form of the macro, but only for CLASS= DATASET and DSTYPE
not equal to M when a discrete profile name is used. If
required, VOLSER must be specified on either the list or the
execute form of the macro.

class name addr: RX-type address or register (2) - (12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: A TTR =READ

reg: register (2) - (12)

Default: DSTYPE = N

parm list addr: RX-type address or register (2) - (12)

Default: LOG= ASIS

old vol addr: RX-type address or register (2) - (12)

applname:
applname addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

owner id addr: RX-type address or register (2) - (12)

access level addr: RX-type address or register (2) - (12)

RACROUTE REQUEST=AUTH (for RACF Release 1.9) 477

,GENERIC= YES
,GENERIC= ASIS

,FILESEQ =number
,FILESEQ =reg

,TAPELBL=STD
,T APEL BL= BLP
,TAPELBL =NL

,STATUS=NONE
,STATUS=ERASE
,STATUS= EVERDOM

,USERID = userid addr

,GROUPID=groupid addr

,LOGSTR = /ogstr addr

,UTOKEN =token addr

,RTOKEN = rtoken addr

,RECVR = recvr addr

,MF= (E,ctrl addr)

Default: GENERIC=ASIS

number: 1-9999
reg: register (2) - (12)

Default: TAPELBL =STD

Default: STATUS= NONE

userid addr: RX-type address or register (2) - (12)

groupid addr: RX-type address or register (2) - (12)

logstr addr: RX-type address or register (2) - (12)

token addr: RX-type address or register (2) - (12)

rtoken addr: RX-type address or register (2) - (12)

recvr addr: RX-type address or register (2) - (12)

ctr/ addr: RX-type address, or register (1) or (2) - (12)

The parameters are explained under the standard form of the RAC ROUTE REQUEST= AUTH
macro with the following exceptions:

,MF= {E,ctrl addr)
specifies the execute form of the RACROUTE REQUEST= AUTH macro.

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= {,CHECK)

specifies the RACF release le•tel of tl".e parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=AUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code X'64' will be generated.

478 SPL: Application Development Macro Reference

RACROUTE REQUEST= AUTH (Modify Form)
The modify form of the RAC ROUTE REQUEST= AUTH macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= AUTH

.PROFILE= profile addr
,ENTITY= resource name addr
,ENTITY= (resource name addr
,CSA, PRIVATE)
,ENTITYX =extended resource name
addr
,ENTITYX =(extended resource name
addr,CSA,PRIVATE)

,VOLSER =vol addr

,CLASS= class name addr

,RELEASE= (number,CHECK)
,RELEASE=number
,RELEASE= (,CHECK)

,ATTR=READ
,ATTR=UPDATE
,A TTR =CONTROL
,A TTR =ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG= NOFAIL
,LOG=NONE
,LOG=NOSTAT

,OLDVOL =old vol addr

,APPL= applname
,APPL= applname addr

,ACEE= acee addr

,OWNER= owner id addr

,ACCL VL =access level addr

,RACFIND=YES
,RACFIND=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile addr: RX-type address or register (2) - (12)
resource name addr: RX-type address or register (2) - (12)

extended resource name addr: RX-type address or register
(2) - (12)
Note: PROFILE, ENTITY, or ENTITYX is required on either the
list or the execute form of the macro.

vol addr: RX-type address or register (2) - (12)
Note: VOLSER is required on either the list or the execute
form of the macro, but only for CLASS= DATASET and DSTYPE
not equal to M when a discrete profile name is used. If
required, VOLSER must be specified on either the list or the
execute form of the macro.

class name addr: RX-type address or register (2) - (12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: ATTR=READ

reg: register (2) - (12)

Default: DSTYPE = N

parm list addr: RX-type address or register (2) - (12)

Default: LOG = ASIS

old vol addr: RX-type address or register (2) - (12)

applname: 1-8 character name
applname addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

owner ID addr: RX-type address or register (2) - (12)

access level addr: RX-type address or register (2) - (12)

RACROUTE REQUEST=AUTH (for RACF Release 1.9) 479

,GENERIC= YES
,GENERIC= ASIS

,FILESEQ =number
,FILESEQ=reg

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL =NL

,STATUS= NONE
,STATUS=ERASE
,STATUS= EVERDOM

,USE RID= userld
,USERID=userld addr

,GROUPID = group/d
,GROUPID=group/d addr

,LOGSTR = logstr addr

,UTOKEN = token addr

,RTOKEN = rtoken addr

,RECVR = recvr addr

,MF= (M,ctr/ addr)

DelauH: GENERIC=ASIS

number: 1-9999
reg: register (2) - (12)

DelauH: T APELBL =STD

Default: STATUS= NONE

userld: 1-8 character user ID
userld address: RX-type address or register (2) - (12)

groupid: 1-8 character goup ID
groupid addr: RX-type address or register (2) - (12)

logstr addr: RX-type address or register (2)- (12)

token addr: RX-type address or register (2) - (12)

rtoken addr: RX-type address or register (2) - (12)

recvr addr: RX-type address or register (2) - (12)

ctr/ addr: RX-type address, or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE REQUEST=AUTH
macro with the following exceptions:

,MF ... (M,ctrl addr)
specifies the modify form of the RACROUTE REQUEST=AUTH macro.

,RELEASE - (number,CHECK)
,RELEASE= number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST=AUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done. Instead, a
return code X'64' will be generated.

480 SPL: Application Development Macro Reference

RACROUTE REQUEST= DEFINE - Define a Resource to RACF (for RACF Release
1.9)

©Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier installed on your system, see the following:

• "RACROUTE- MYS Router Interface (for RACF Release 1.8.1 or earlier)" on page 435

• "RACDEF - Define a Resource to RACF (for RACF Release 1.8.1 or earlier)" on
page 383. (IBM recommends that you use RACROUTE with the REQUEST= DEFINE
parameter rather than RACDEF.)

The RACROUTE REQUEST= DEFINE macro is used to define, modify, or delete resource
profiles for RACF. It can also be used for special cases of authorization checking. RACF
uses the resulting profiles to perform RACHECK authorization checking. The RACROUTE
REQUEST= DEFINE caller must be authorized (APF-authorized, in system key 0-7, or in
supervisor state)

A RACF user can change or add the RACROUTE REQUEST= DEFINE parameters, OWNER,
LEVEL, UACC, or AUDIT by means of the RACDEF preprocessing and postprocessing exit
routines.

The standard form of the RACROUTE REQUEST= DEFINE macro is written as follows:

name

RACROUTE

REQUEST= DEFINE

,ENTITY= profile name addr
,ENTITYX =extended profile name
addr

,VOLSER =vol addr

,TYPE= DEFINE
,TYPE= DEFINE,NEWNAME
=new resource name addr
,TYPE= DEFINE,NEWNAMX
=extended new resource name
addr
,TYPE= ADDVOL,OLDVOL
=old vol addr
,TYPE= CHGVOL,OLDVOL
=old vol addr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS= 'class name'
,CLASS= class name addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE

One or more blanks must follow RACROUTE.

profile name addr: A-type address or register (2) - (12)
extended profile name addr: A-type address or register (2) -
(12)

vol addr: A-type address or register (2) - (12)
Note: VOLSER is required only for CLASS= DATASET and
DSTYPE not equal to M when a discrete profile name is used.

Default: TYPE= DEFINE
new resource name addr: A-type address or register (2) - (12)

extended new resource name addr: A-type address or
register (2) - (12)

old vol addr: A-type address or register (2) - (12)

Default: DSTYPE = N

parm list addr: A-type address or register (2) - (12)

class name: 1-8 character name.
class name addr: A-type address or register (2) - (12)
Default: CLASS=DATASET

481

, MENTITY =entity addr
,MENTX =extended entity addr

,MCLASS= 'class name'
,MCLASS=class name addr

, MVOLSER =vols er addr

,MGENER=ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER= owner id addr

,LEVEL= number
,LEVEL=reg

,UACC =ALTER
,UACC =CONTROL
,UACC=UPDATE
,UACC=READ
,UACC =EXECUTE
,UACC=NONE
,UACC=reg

,DATA=data addr

,AUDIT= NONE
,AUDIT= audit value
,AUDIT= (audit va/ue(access
level),audit value(access level))
,AUDIT=reg

,RACFIND =YES
,RACFIND =NO

,CHKAUTH=YES
,CHKAUTH =NO

,GENERIC= YES
,GENERIC= ASIS

,WARNING= YES
,WARNING= NO

,RELEASE= number

,FILESEQ =number
,FILESEQ =reg

,EX PDT= exper-date addr
,EXPDTX =extended expir-date addr
,RETPD = retn-period addr

,ACCLVL =access value addr
,ACCLVL =(access value addr,parm
list addr)

,TAPELBL =STD
,T APEL BL= BLP
,TAPELBL=NL

482 SPL: Application Development Macro Reference

entity addr: A-type address or register (2) - (12)
extended entity addr: A-type address or register (2) - (12)

class name: 1-8 character name
class name addr: A-type address or register (2) - (12)
Default: MCLASS = DATASET

volser addr: A-type address or register (2) - (12)

Default: MGENER = ASIS

acee addr: A-type address or register (2) - (12)

unit addr: A-type address or register (2) - (12)

owner id addr: A-type address or register (2) - (12)

Default: LEVEL= zero
reg: register (2) - (12)

reg: register (2) - (12)

data addr: A-type address or register (2) - (12)

Note: AUDIT is valid only if TYPE= DEFINE is specified.
audit value: ALL, SUCCESS, or FAILURES
access /eve/: READ, UPDATE, CONTROL, or ALTER
Default: AUDIT= READ
reg: register (2) - (12)

Default: CHKAUTH=NO

Default: GENERIC=ASIS

Default: WARNING=NO
Note: WARNING is valid only ifTYPE=DEFINE is specified.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

number: 1-9999
reg: register (2) - (12)

exper-date addr: A-type address or register (2) - (12)
extended expir-date addr: A-type address or register (2) - (12)
retn-period addr: A-type address or register (2) - (12)
Default: see description of parameter

access value addr: A-type address or register (2) - (12)
parm list addr: A-type address or register (2) - (12)

Default: TAPELBL =STD

,SECL VL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify-id addr

,ENVIR =VERIFY

,RESOWN= resource owner addr

,STORCLA =storage class addr

,MGMTCLA= management type
addr

,SECLABL = addr

addr: A-type address or register (2) - (12)

Default: ERASE= NO

notify-id addr: A-type address or register (2) - (12)

Specifies that only verification is to be done
Default: Normal RACROUTE REQUEST= DEFINE processing

resource owner addr: A-type address or register (2) - (12)

storage class addr: A-type address or register (2) - (12)

management type addr: A-type address or register (2) - (12)

addr: A-type address or register (2) - (12)

The parameters are explained as follows:

,ENTITY= profile name addr
,ENTITYX =extended profile name addr

specifies the address:

• ,ENTITY= profile name addr specifies the address of the name of the discrete or
generic profile that is to be defined to, modified, or deleted from RACF. The profile
name is a 44-byte DASO data set name for CLASS= DATASET or a 6-byte volume
serial name for CLASS= DASDVOL or CLASS= TAPEVOL. The lengths of all other
profile names are determined by the class descriptor table. The name must be left
justified in the field and padded with blanks.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

• ,ENTITYX =extended profile name addr specifies the address of a structure that
consists of two 2-byte length fields, followed by the entity name.

The first 2-byte field specifies a buffer length which can be from Oto 255 bytes.
This length field only refers to the length of the buffer that contains the entity
name; it does not include the length of either length field.

The second 2-byte field specifies the actual length of the entity name. This
length field only includes the length of the actual name without any trailing
blanks; it does not include the length of either length field.

These two length fields can be used in several different ways:

If the length of the entity name is known, you can specify O in the first field and
specify the length of the entity name in the second field. Note that when you
specify the second field, each byte counts; this means RACF processes the
entity name with the exact length you specify.

If you choose to use a buffer area in which to place the entity name, specify the
first field to designate the length of the buffer. In regard to the second field, you
can do one of two things:

- If you know the length of an entity name, you would specify the length in the
second field. (Note that the length of the first field can be from O to 255, but
must be equal to or more than the length of the second field.)

- If you do not know the length of the entity name, you would specify 0 in the
second field, in which case RACF would be responsible for counting the
number of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 483

characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

To use this keyword, you must also specify RELEASE= 1.9 or a later release
number.

Recommendation

IBM recommends that you use ENTITYX rather than ENTITY for two reasons:

• With ENTITYX, if you know the length of the entity name, ENTITYX allows you to
pass that information to RACF. Doing so can result in slightly faster processing.

• With ENTITY, the entity name you pass to RACF must be in a buffer, the size of
which is determined by the length in the CDT. If the MAXLNTH of a class increases
in the future, you would have to modify your program to use a larger buffer. By
using ENTITYX, you avoid this possible problem because you have removed the
CDT-dependency from your program.

,VOLSER'"' vol addr
specifies the address of the volume serial number:

• For TYPE= ADDVOL, of the new volume to be added to the definition of the data set.

• For TYPE= ADDVOL and CLASS= TAPEVOL, of the new volume being added to the
tape volume set Identified by ENTITY or ENTITYX.

• For TYPE= DEFINE and CLASS= DATASET, of the catalog (for a VSAM data set), or
of the volume on which the data set resides (for a non-VSAM data set)

The volume serial number is optional if DSTYPE = M is specified; It is ignored if the
profile name is generic.

The field pointed to by the specified address contains the volume serial number
(padded to the right with blanks, if necessary, to make six characters)

, TYPE .. DEFINE
, TYPE= DEFINE,NEWNAME =new resource name addr
, TYPE= DEFINE,NEWNAMX =extended new resource name addr
, TYPE-= ADDVOL,OLDVOL =old vol addr
, TYPE= CHGVOL,OLDVOL =old vol addr
, TYPE"' DELETE

specifies the type of action to be taken:

• TYPE= DEFINE - The definition of the resource is added to the RACF data set, and
the current user is established as the owner of the defined entity.

• TYPE= DEFINE,NEWNAME =or NEWNAMX =

If NEWNAME is specified, the address points to a 44-byte field containing the new
name for the resource that is to be renamed. NEWNAME is only valid with
CLASS= DATASET, FILE, and DIRECTORY. NEWNAME is not valid with
DSTYPE=T.

If NEWNAMX is specified, the address points to a structure that consists of two
2-byte length fields, followed by the entity name.

The first 2-byte field specifies a buffer length which can be from 0 to 255 bytes.
This length field only refers to the length of the buffer that contains the entity
name; it does not include the length of either length field.

The second 2-byte field specifies the actual length of the entity name. This
length field only includes the length of the actual name without any trailing
blanks; it does not include the length of either length field.

These two length fields can be used in several different ways:

If the length of the entity name is known, you can specify 0 in the first field and
specify the length of the entity name in the second field. Note that when you
specify the second field, each byte counts; this means the entity name specified
will be added to the RACF data base using the specified length.

484 SPL: Application Development Macro Reference

If you choose to use a buffer area in which to place the entity name, specify the
first field to designate the length of the buffer. In regard to the second field, you
can can do one of two things:

- If you know the length of an entity name, you would specify the length in the
second field. (Note that the length of the first field can be from 0 to 255, but
must be equal to or more than the length of the second field.)

- If you do not know the length of the entity name, you would specify 0 in the
second field, in which case RACF would be responsible for counting the
number of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format,
and the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

Recommendation

IBM recommends that you use NEWNAMX rather than NEWNAME for two reasons:

With NEWNAMX, if you know the length of the entity name, NEWNAMX allows
you to pass that information to RACF. Doing so can result in slightly faster
processing.

With NEWNAME, the entity name you pass to RACF must be in a buffer, the size
of which is determined by the length in the CDT. If the MAXLNTH of a class
increases in the future, you would have to modify your program to use a larger
buffer. By using NEWNAMX, you avoid this possible problem because you have
removed the CDT-dependency from your program.

NEWNAMX is only valid with CLASS= DATASET, CLASS= FILE, or
CLASS= DIRECTORY. NEWNAMX is not valid with DSTYPE = T.

The following parameters are ignored if you specify NEWNAME or NEWNAMX:
!NSTLN, MENTITY, MENTX, MCLASS, MVOLSER, MGENER, UNIT, OWNER, LEVEL,
UACC, DATA, AUDIT, FILESEQ, EXPDT, RETPD, EXPDTX, ACCLVL, TAPELBL,
CATEGORY, SECLVL, ERASE, NOTIFY, and WARNING.

• TYPE= ADDVOL - The new volume is added to the definition of the specified
resource. For the DATASET class, the OLDVOL address specifies a previous
volume of a multi-volume data set. For the TAPEVOL class, the ENTITY or ENTITYX
address specifies a previous volume of a tape volume set. This parameter applies
only to discrete profiles.

• TYPE= CHGVOL - The volume serial number in the definition of the specified
resource is changed from the old volume serial number identified in OLDVOL to the
new volume serial number identified in the VOLSER parameter. This parameter
applies only to discrete profiles. TYPE= CHGVOL is not valid with DSTYPE = T.

• TYPE= DELETE - The definition of the resource is removed from the RACF data set.
(For a multivolume data set or a tape volume set, only the specified volume is
removed from the definition.)

,DSTYPE-N
,DSTYPE=V
,DSTYPE=M
,DSTYPE-T

specifies the type of data set associated with the request:

• N for non-VSAM
• V for VSAM
• M for model profile
• T for tape

If DSTYPE=T is specified and tape data set protection is not active, the processing will
be the same as for RACROUTE REQUEST= DEFINE CLASS= 'TAPEVOL'. Specify
DSTYPE only for CLASS= DATASET.

RACROUTE REQUEST=DEFINE (for RACF Release 1.9) 485

,INSTLN = parm list addr
specifies the address of an area that is to contain parameter information meaningful to
the RACDEF installation exit routines. This information is passed to the installation exit
routines when they are given control from the RACDEF routine.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACDEF installation exit routines.

,CLASS= 'class name'
,CLASS ... class name addr

specifies that a profile is to be defined, modified, or deleted in the specified class. If an
address is specified, the address must point to a one-byte length field followed by the
class name {for example, DATASET or TAPEVOL) The class name should be no longer
than eight characters.

,MENTITY ==entity addr
,MENTX ... extended entity address

specifies the address of the name of the discrete or generic profile that is to be used:

• ,MENTITY =entity addr specifies the address of the name of the discrete or generic
profile that is to be used as a model in defining the ENTITY or ENTITYX profile. The
profile can belong to any class, as specified by the MCLASS parameter, and can be
either a discrete or a generic profile. MENTITY can be specified with
TYPE= DEFINE but not with TYPE= DEFINE,NEWNAME =new resource name addr.
For data sets, the name is contained in a 44-byte field pointed to by the specified
address. For general resource classes, the length of the field is determined by the
CDT. The name is left justified in the field and padded with blanks.

• ,MENTX =extended entity address specifies the address of the name of the discrete
or generic profile that is to be used as a model from which to define the ENTITY or
ENTITYX profile. The structure consists of two 2-byte length fields, followed by the
entity name.

The first 2-byte field specifies a buffer length which can be from 0 to 255 bytes.
This length field only refers to the length of the buffer that contains the entity
name from which you are modeling; it does not include the length of either
length field.

The second 2-byte field specifies the actual length of the entity name from which
you are modeling. This length field only includes the length of the actual name
without any trailing blanks; it does not include the length of either length field.

These two length fields can be used in several different ways:

If the length of the entity name from which you are modeling is known, you can
specify O in the first field and specify the length of the entity name in the second
field. Note that when you specify the second field, each byte counts; this means
the entity name specified will be used as a model, using the specified length.

If you choose to use a buffer area in which to place the entity name, specify the
first field to designate the length of the buffer. In regard to the second field, you
can do one of two things:

- If you know the length of the entity name which you are using as a model,
you would specify the length in the second field. {Note that the length of the
first field can be from 0 to 255, but must be equal to or more than the length
of the second field.)

- If you do not know the length of the entity name that you are using as a
model, you would specify 0 in the second field, in which case RACF would be
responsible for counting the number of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND= NO.

486 SPL: Application Development Macro Reference

Recommendation

IBM recommends that you use MENTX rather than MENTITY for two reasons:

• With MENTX, if you know the length of the entity name, MENTX allows you to pass
that information to RACF. Doing so can result in slightly faster processing.

• With MENTITY, the entity name you pass to RACF must be in a buffer, the size of
which is determined by the length in the CDT. If the MAXLNTH of a class increases
in the future, you would have to modify your program to use a larger buffer. By
using MENTX, you avoid this possible problem because you have removed the
CDT-dependency from your program.

The profile can belong to any class, as specified by the MCLASS parameter, and can be
either a discrete or generic profile. MENTX can be specified with TYPE= DEFINE, but
not with TYPE= DEFINE,NEWNAME = or TYPE= DEFINE,NEWNAMX =.

,MCLASS = 'class name'
,MCLASS =class name addr

specifies the class to which the profile defined by MENTITY= belongs. If an address is
specified, the address must point to a one-byte length field followed by the class name.
The class name should be no longer than eight characters. The default is
MCLASS= DATASET.

,MVOLSER = volser addr
specifies the address of the volume serial number of the volume associated with the
profile in the MENTITY operand. The field pointed to by the specified address contains
the volume serial number, padded to the right with blanks, if necessary, to make six
characters.

If you specify MENTITY or MENTX and CLASS= DATASET, you must specify MVOLSER
with the name of the VOLSER or with blanks.

If you specify with blanks, the discrete MENTITY or MENTX data set profile name must
be unique, meaning it has no duplicates on the data base. In this case, RACF
determines the correct MVOLSER.

,MGENER = ASIS
,MGENER =YES

specifies whether the profile name defined by MENTITY or MENTX is to be treated as a
generic name.

• If MGENER = ASIS is specified, the profile name is considered a generic only if it
contains a generic character: an asterisk{*) or a percent sign {%)

• If MGENER =YES is specified, the profile name is considered a generic, even if it
does not contain a generic character: an asterisk{*) or a percent sign{%)

MGENER is ignored if the GENCMD option on the RACF SETROPTS command is not
specified for the class (see RACF Command Language Reference)

,ACEE= acee addr
specifies the address of the accessor environment element {ACEE) to be used during
RACDEF processing. If no ACEE is specified, RACF uses the TASK ACEE pointer
{TCBSENV) in the extended TCB. If the TASK ACEE pointer is zero, RACF uses the
main ACEE. The main ACEE's address is in the ASXBSENV field in the address space
extension block.

,UNIT= unit addr
specifies the address of a field containing unit information. UNIT is valid only if
TYPE= CHGVOL or TYPE= DEFINE is specified. If a unit address is specified, the unit
information in the data set profile is replaced by the unit information pointed to by this
unit address. The unit address must point to a field containing a one-byte length field
{whose value can range from 4 through 8) followed by the actual unit information. If the
value in the length field is 4, the unit information is assumed to contain a copy of the
information in the UCBTYP field of the UCB. Otherwise the unit information is assumed
to be in the generic form (for example, 3330-1) This parameter is ignored for generic
names.

RACROUTE REQUEST= DEFINE {for RACF Release 1.9) 487

,OWNER"' owner id addr
specifies the address of a field containing the profile owner's id. OWNER is valid if
TYPE= DEFINE is specified. The owner's id must be a valid (RACF-defined) userid or
group name. The address must point to an 8-byte field containing the owner's name,
left-justified and padded with blanks.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: RACF does not check the validity of the owner's id if it has been added or
modified by either the RACDEF preprocessing or postprocessing exit routines, or both.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ----~

,LEVEL= number
,LEVEL=reg

specifies a level value for the profile. LEVEL is valid only if TYPE= DEFINE is specified.
The level number must be a valid decimal number in the range 0 to 99. If a register is
specified, its low-order byte must contain the binary representation of the number.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: RACF does not check the validity of this number if it has been added or modified
by the RACDEF preprocessing and/or postprocessing exit routines.

,__ ____ End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE _____ __,

,UACC •ALTER
,UACC =CONTROL
,UACC- UPDATE
,UACC=READ
,UACC = EXECUTE
,UACC-NONE
,UACC=reg

specifies a universal access authority for the profile. UACC is valid only if
TYPE= DEFINE is specified. UACC must contain a valid access authority (EXECUTE,
ALTER, CONTROL, UPDATE, READ, or NONE).

To use the EXECUTE keyword, your system must be running on MVS/ESA with DFP
3.1.0 installed. EXECUTE authority means that the user has only the ability to execute
the program; the user cannot READ the program. If your system is not running with
DFP 3.1.0, an EXECUTE access attempt will be treated as NONE.

If a register is specified, the low-order byte must contain one of the following valid
access authorities:

X'80' - ALTER
X'40' - CONTROL
X'20' - UPDATE
X'10' - READ
X'01' - NONE
X'08' - EXECUTE

Note: RACF does not check the validity of the universal access authority if it has been
added or modified by the RACDEF preprocessing and/or postprocessing exit routine.

,DATA= data addr
specifies the address of a field that contains up to 255 characters of installation-defined
data to be placed in the profile. DATA is valid only if TYPE= DEFINE is specified. The
data address must point to a field containing a one-byte length field (whose value can
range from 0 to 255) followed by the actual installation-defined data.

488 SPL: Application Development Macro Reference

,AUDIT= NONE
,AUDIT= audit value
,AUDIT= (audit value(access level),audit value(access level), . ..)
,AUDIT= reg

specifies the types of accesses and the access levels that are to be logged to the SMF
data set. AUDIT is val id only if TYPE= DEFINE is specified.

For audit value, specify one of the following: ALL, SUCCESS, or FAILURES. You may
optionally specify an access level(access authority) following each audit value.

Access Levels:

• EXECUTE, this access level is not audited. If you specify FAILURES (READ), RACF
logs the READ attempt as a failure, but allows EXECUTE access to the data set.

• READ, the default access level value, logs access attempts at any level.

• UPDATE logs access attempts at the UPDATE, CONTROL, and ALTER levels.

• CONTROL logs access attempts at the CONTROL and ALTER levels.

• ALTER logs access attempts at the ALTER level only.

Note: For more information about specific audit values and access levels, please see
the RACF Command Language Reference.

RACF resolves combinations of conflicting specifications by using the most
encompassing specification. Thus, in the case of the following:

ALL(UPDATE),FAILURES(READ)
RACF assumes SUCCESS(UPDATE),FAILURES(READ)

For compatibility with previous releases, register notation can also be specified as
AUDIT= reg if the register is not given as a symbolic name ALL, SUCCESS, or
FAILURES.

Logging is controlled separately for SUCCESS and FAILURES, and can also be
suppressed or requested via the RACHECK post-processing installation exit routine.

If a register is specified, its low-order byte must contain one of the following valid audit
values:

Bit Meaning
0 ALL
1 SUCCESS
2 FAILURES
3 NONE
4-5 Qualifier for SUCCESS
6-7 Qualifier for FAILURES

The qualifier codes are as follows:

00 READ
01 UPDATE
10 CONTROL
11 ALTER

Only one of bits 0-3 can be on. If ALL is specified, the two qualifier fields can be used
to request different logging levels for successful and unsuccessful events.

Note: RACF does not check the validity of the audit type if it has been added or
modified by the RACDEF preprocessing and/or postprocessing exit routine.

,RACFIND =YES
,RACFIND ==NO

specifies whether or not a discrete profile is involved in RACDEF processing. When
TYPE= DEFINE is specified, RACFIND =YES means that a discrete profil~ is to be
created. When TYPE= DELETE, DEFINE with NEWNAME or NEWNAMX, CHGVOL, or
ADDVOL is specified, RACFIND =YES means that a discrete profile already exists.

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 489

RACFIND =NO means (when TYPE= DEFINE) that no discrete profile is to be created,
but some authorization checking is required. For other types of action, no discrete
profile should exist.

Note: The RACFIND keyword should only be used with the DATASET class.

,CHKAUTH =YES
,CHKAUTH •NO

specifies whether or not an internal RACHECK ATTR =ALTER Is to be done to verify
that the user is authorized to perform the operation.

CHKAUTH =YES is valid when either TYPE= DEFINE,NEWNAME or NEWNAMX, or
TYPE= DELETE is specified.

For DSTYPE = T, specifies that an internal RACHECK ATTR =UPDATE will be done to
verify that the user is authorized to define a data set (TYPE= DEFINE), delete a data set
(TYPE= DELETE), or add a volume (TYPE= ADDVOL)

,GENERIC= YES
,GENERIC ... ASIS

specifies whether the resource name is treated as a generic profile name. If GENERIC
is specified with CLASS= DEFINE, NEWNAME or NEWNAMX, then GENERIC applies to
both the old and new names. GENERIC is ignored if the GENCMD option on the RACF
SETROPTS command is not specified for the class (see RACF Command Language
Reference)

• If GENERIC= YES is specified, the resource name is considered a generic profile
name, even if It does not contain a generic character: an asterisk (*) or a percent
sign(%)

• If GENERIC= ASIS is specified, the resource name is considered a generic only if it
contains a generic character: an asterisk(*) or a percent sign(%)

, WARNING== YES
,WARNING= NO

WARNING is valid only if TYPE= DEFINE is specified. If WARNING= YES is specified,
access is granted to the resource and the event is logged as a warning if either the
SUCCESS and/or FAILURES logging is requested.

,RELEASE ... number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= DEFINE macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

,FILESEQ =number
,FILESEQ =reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The number must be in the range 1 - 9999. If a register is specified, it must
contain the file sequence number in the low-order half-word. If CLASS= DATASET and
DSTYPE = T are not specified, FILESEQ is ignored.

,EXPDT == exper-date addr
,EXPDTX =extended exp Ir-date addr
,RETPD = retn-period addr

specifies the address containing information about the data set's expiration date or
RACF security retention period.

• EXP OT= exper-date addr specifies the address of a three-byte field containing the
data set's expiration date. The date is given in packed decimal form as YYDDOF,
where VY is the year and DOD is the day number. The year must be in the range 01
through 99, and the day number must be in the range 1 through 366. All fields are
right justified.

490 SPL: Application Development Macro Reference

• EXPDTX =extended exp Ir-date addr specifies the address of a 4-byte field that
contains the address of the data set's expiration date. The date is given in packed
decimal form as CCYYDDDF, where CC is the century change greater than 19, VY is
the year, and DDD is the day number. The year must be in the range 01 through 99.
The day must be in the range 1 through 366. All fields are right justified. When you
want to represent 19 for the century, then you must specify CC as 00; when you
want to represent 20 for the century, then you must specify CC as 01.

• RETPD=retn-period addr. specifies the address of a two-byte binary field
containing the number of days after which RACF protection for the data set expires.
The value specified must be in the range 1 through 65533. To indicate that there is
no expiration date, specify 65534.

If you do not specify any of these parameters, a default RACF security retention period
is obtained from the RETPD keyword specified on a prior RACF SETROPTS command.

These parameters are valid only if CLASS= DATASET and DSTYPE=T.

,ACCLVL-access value addr
,ACCLVL - (access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
address must point to a field containing a one-byte length field (with a value that can
range from 0-8) followed by an eight-character string that will be passed to the RACDEF
installation exit routines. The parameter list address points to a parameter list
containing additional information to be passed to the RACDEF installation exit routines.

RACF does not check or modify this information.

, TAPELBL •STD
,TAPELBL== BLP
,TAPELBL==NL

specifies the type of tape labelling to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL= BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL= NL or BLP, the user will not be
allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

The TAPELBL parameter is passed to the RACDEF installation exits.

This parameter is primarily intended for use by data management routines to indicate
the label type from the LABEL keyword on the JCL statement.

This parameter is only val id for CLASS= DATASET and DSTYPE = T, or
CLASS= T APEVOL.

,SECLVL=addr
specifies the address of a list of installation-defined security level identifiers. Each
identifier is a half word, containing a value that corresponds to an installation-defined
security level name.

The identifiers must be in the range 1 - 254. Only one identifier may be passed in the
list.

The list must start with a full word containing the number of entries in the list (currently,
only 0 or 1)

RACROUTE REQUEST=DEFINE (for RACF Release 1.9) 491

,ERASE=YES
,ERASE•NO

specifies whether the DASO data set, or the released space, is to be erased when it is
deleted or part of its space is to be released for reuse.

• If ERASE=YES is specified, the data set will be erased when it is deleted, or
released for reuse.

• If ERASE= NO is specified, the data set will not be erased, deleted, or released.

Note: This parameter may be overridden by the RACF SETROPTS command.

The default is ERASE= NO.

,NOTIFY= notify-id addr
specifies the address of an eight-byte area containing the userid of the RACF-defined
user who is to be notified when an unauthorized attempt to acce.ss the resource
protected by this profile is detected.

,ENVIR •VERIFY
specifies that only verification is to be done. If you specify ENVIR =VERIFY, you must
also specify TYPE= DEFINE, RESOWN, the current RELEASE level, and either
MGMTCLA or STORCLA, or both .

When you specify ENVIR =VERIFY, RACROUTE REQUEST= DEFINE calls RACHECK to
verify that the user specified on the RESOWN keyword has the authority to create a
data set in the specified resource class. To verify the authority of a non-RACF defined
user to the specified resource, specify *NONE* for the RESOWNER keyword. In DFP
support, the two resource classes are the MGMTCLA and the STORCLA.

Note: If you do not specify ENVIR=VERIFY, normal RACROUTE REQUEST= DEFINE
processing occurs.

,RESOWN =resource owner addr
specifies the address of a field containing the resource owner's id. If you specify
RESOWN, you must also specify TYPE= DEFINE and the current RELEASE parameter.
The resource owner's id must be either a valid (RACF-defined) userid or group name,
or *NONE*. If the resource owner's id is specified as *NONE*, then RACF performs
third-party RACHECK using USER ID= *NONE*. The address must point to a 2-byte field
followed by the resource owner's name.

,STORCLA - storage class addr
specifies the address of the storage class to which the resource owner must have
authority. The address must point to a 2-byte field followed by the management class
name. If you specify STORCLA, you must also specify TYPE= DEFINE, RESOWN, the
current RELEASE parameter and ENVIR=VERIFY.

,MGMTCLA =management type addr
specifies the address of of a management class to which the resource owner must have
authority. The address must point to an 8-byte field that contains a management class
name preceded by a halfword length. If you specify MGMTCLA, you must also specify
TYPE=DEFINE, RESOWN, the current RELEASE parameter, and ENVIR=VERIFY.

,SECLABL = addr
specifies the address of an 8-byte left-justified character field containing the
SECLABEL.

An installation would use SECLABELs to establish an association between a specific
RACF security level (SECLEVEL) and a set of (zero or more) RACF security categories
(CATEGORY) In a 81 system, it is necessary to use SECLABELs to prevent the
unauthorized movement of data from one level to another when multiple levels of data
are in use on the system at the same time. See the RACF Security Administrator's
Guide for further information.

492 SPL: Application Development Macro Reference

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00 RACROUTE REQUEST= DEFINE has completed successfully. Register 0
contains one of the following reason codes:

04

08

00 Indicates a normal completion.

04 Indicates RACFIND =NO was specified and no generic profile
applying to the data set was found.

08 Indicates that MODEL was specified, but the SECLABEL value has
not been copied because of one of two reasons:

• SETROPTS SECLABELCONTROL is on, but issuer is not RACF
SPECIAL, or

• SETROPTS MLSTABLE is on, but SETROPTS MLQUIET is not

RACROUTE REQUEST= DEFINE has completed processing. Register 0
contains one of the following reason codes:

00 Indicates the following:

For TYPE= DEFINE, the resource name was previously defined.
For TYPE= DEFINE,NEWNAME or NEWNAMX, the new resource
name was previously defined.
For TYPE= DELETE, the resource name was not previously
defined.

04 Indicates for TYPE= DEFINE that the data set name was previously
defined on a different volume and that the option disallowing
duplicate data sets was specified in ICHSECOP at IPL.

RAC ROUTE REQUEST= DEFINE has completed processing. Register 0
contains one of the following reason codes:

00 Indicates the following:

For TYPE= DEFINE, RACF has failed the check for authority to
allocate a data set or create a profile with the specified name.

For TYPE= DELETE or TYPE= DEFINE,NEWNAME or NEWNAMX,
if CHKAUTH =YES is specified, RACF has failed the
authorization check.

For TYPE= ADDVOL,OLDVOL the old value was not defined.

04 Indicates for TYPE= DEFINE that no profile was found to protect the
data set and that the RACF protect-all option is in effect.

08 Indicates TYPE= DEFINE or TYPE= ADDVOL,OLDVOL and
DSTYPE = T were specified, and the user is not authorized to define a
data set on the specified volume, or an ADDVOL was attempted to
add a 43rd volume, but the maximum number of volumes that a data
set can span is 42.

OC Indicates TYPE= DEFINE and DSTYPE = T were specified, and the
user is not authorized to define a data set with the specified name.

10 Indicates DSTYPE=T or CLASS=TAPEVOL was specified, and the
user is not authorized to specify LABEL= (,BLP)

1C Indicates that the user is not authorized to issue RACDEF when the
system is in a tranquil state.

20 Indicates the data set owner is not authorized to use the specified
DFP storage class.

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 493
f'

OC

10

64

24 Indicates the data set owner is not authorized to use the specified
DFP management class.

For TYPE= DEFINE,NEWNAME or NEWNAMX, the old resource name was
not defined; or for CLASS= DATASET, if the generation data group (GOG)
modeling function is active, an attempt was made to rename a GOG name to
a name that requires the creation of a new profile; or if generic profile
checking is active, the old resource name was protected by a generic profile
and there Is no generic profile that will protect the new resource name. This
last case refers only to an attempt to rename an existing profile, which
cannot be found.

For TYPE= DEFINE with MENTITY or MENTX, the model resource was not
defined.

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RAC ROUTE REQUEST= DEFINE macro;
however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

Example1
Operation: Invoke RACF to define a discrete profile for a non-VSAM data set residing on
the volume pointed to by register 8. Register 7 points to the data set name. All successful
requests for update authority to the data set are to be audited, as well as all unsuccessful
ones.

RACROUTE REQUEST=DEFINE,ENTITY=(R7),VOLSER=(R8),CLASS='DATASET', X
AUDIT=(SUCCESS(UPDATE),FAILURES), X
RACFIND=YES,RELEASE=l.9

Example2
Operation: Use the standard form of the RAC ROUTE REQUEST= DEFINE macro to define a
discrete data set profile for a non-VSAM DASO data set. The data set for which you are
creating a profile is a non-VSAM DASO data set named DSNAME. It resides on a volume id
named VOLID. You want to create a discrete profile by specifying the RACFIND keyword. In
addition, you want to notify the user called USERNAME of any access attempts that have
been rejected because they exceed the UACC of READ that you are allowing.

RACROUTE REQUEST=DEFINE,ENTITY=DSNAME,VOLSER=VOLID, X
CLASS='DATASET',UACC=READ, X
RACFIND=YES,NOTIFY=USERNAME,RELEASE=l.9

Example 3
Operation: Use the standard form of the macro to check the authority of a user to define a
discrete data set profile for a non-VSAM DASO data set, but do not actually build the profile.
The name of the data set is DSNAME.

RACROUTE REQUEST=DEFINE,ENTITY=DSNAME,VOLSER=VOLID, X
CLASS='DATASET',RACFIND=NO,RELEASE=l.9

Example 4
Operation: Use the standard form of the macro to define a generic data set profile named
PROFNAME. Use the discrete profile named MDELPROF whose volser is in MDELVOL as a
model for the new profile. Notify the user named USERNAME of any access attempts that
have been rejected because they exceed the UACC of READ which you are allowing.

RACROUTE REQUEST=DEFINE,ENTITY=PROFNAME, X
CLASS='DATASET',GENERIC=YES,MENTITY=MDELPROF, X
MVOLSER=MDELVOL,UACC=READ, X
NOTIFY=USERNAME,RELEASE=l.9

494 SPL: Application Development Macro Reference

Example 5
Operation: Use the standard form of the macro to define a tape volume profile for a volume
whose id is VOLID. Allow a universal access level of READ.

RACROUTE REQUEST=DEFINE,ENTITY=VOLID,CLASS='TAPEVOL' ,UACC=READ,
RELEASE=l.9

Example 6
Operation: Use the standard form of the macro to delete a discrete data set profile named
DSNAME located on the volume named VOLID.

RACROUTE REQUEST=DEFINE,TYPE=DELETE,ENTITY=DSNAME, X
VOLSER=VOLID,CLASS='DATASET',RELEASE=l.9

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 495

RACROUTE REQUEST= DEFINE (List Form)
The list form of the RACROUTE REQUEST= DEFINE macro is written as follows:

name

b

RACROUTE

b

REQUEST= DEFINE

,ENTITY= profile name addr
,ENTITYX =extended profile name
addr

, VOLSER = vol addr

,TYPE=DEFINE
,TYPE= DEFINE,NEWNAME
=new resource name addr
,TYPE= DEFINE,NEWNAMX
=extended new resource name
addr
,TYPE= ADDVOL,OLDVOL
=old vol addr
,TYPE= CHGVOL,OLDVOL
=old vol addr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS= 'class name'
,CLASS= class name addr

,MENTITY =entity addr
,MENTX=extended entity addr

,MCLASS= 'class name'
,MCLASS=class name addr

,MVOLSER = volser addr

,MGENER=ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER= owner Id addr

,LEVEL= number
,LEVEL=reg

496 SPL: Application Development Macro Reference

name: symbol. Begin name In column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

prof/le name addr: A-type address.
extended profile name addr: A-type address
Note: ENTITY or ENTITYX must be specified on either the list
or the execute form of the macro.

vol addr: A-type address
Note: VOLSER is required (on either LIST or EXECUTE) only
for CLASS= DATASET and DSTYPE not equal to M when a
discrete profile name is used.

Defaun: TYPE= DEFINE
new resource name addr: A-type address

extended new resource name addr: A-type address

old vol addr: A-type address

Defaun: DSTYPE = N

parm list addr: A-type address

'class name': 1-8 character name.
class.name addr: A-type address
Defaun: CLASS=DATASET

entity addr: A-type address
extended entity addr: A-type address

'class name': 1-8 character name.
class name addr: A-type address
Defaun: MCLASS= DATASET

volser addr: A-type address

Default: MGENER = ASIS

acee addr: A-type address

unit addr: A-type address

owner Id addr: A-type address

Defaun: LEVEL= zero.
reg: register (2) - (12)

,UACC =ALTER
,UACC =CONTROL
,UACC =UPDATE
,UACC=READ
,UACC =EXECUTE
,UACC=NONE
,UACC=reg

,DAT A= data addr

,AUDIT= NONE
,AUDIT=aud/t value
,AUDIT= (audit value(access
leve/),audit va/ue(access /eve/))

,AUDIT=reg

,RACFIND=YES
,RACFIND=NO

,CHKAUTH =YES
,CHKAUTH =NO

,GENERIC= YES
,GENERIC= ASIS

,WARNING= YES
,WARNING=NO

,RELEASE= number

,FILESEO =number
,FILESEO =reg

,EXPDT=exper-date addr
,EXPDTX =extended explr-date
addr
,RETPD = retn-period addr

,ACCL VL =access value addr
,ACCLVL=(access value
addr,parm list addr)

,TAPELBL=STD
,TAPELBL=BLP
,TAPELBL=NL

,SECL VL = addr

,SECLABL = addr

,ERASE=YES
,ERASE=NO

,ENVIR =VERIFY

,RESOWN= resource owner addr

,STORCLA=storage class addr

,MGMTCLA =management type
addr

reg: register (2) - (12)

data addr: A-type address

audit value: ALL, SUCCESS, or FAILURES
access /eve/: READ, UPDATE, CONTROL, or ALTER

Default: AUDIT=READ
reg: register (2) - (12)

Default: CHKAUTH =NO

Default: GENERIC= ASIS

Default: WARNING=NO
Note: Warning is valid only if TYPE= DEFINE is specified.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

number: 1-9999
reg: register (2) - (12)

exper-date addr: A-type address
extended explr-date addr: A-type address

retn-perlod addr: A-type address

access value addr: A-type address
parm list addr: A-type address

Default: TAPELBL=STD

addr: A-type address

addr: A-type address

Default: ERASE= NO

Specifies that only verification is to be done.
Default: Normal RACROUTE REQUEST= DEFINE processing.

resource owner addr: A-type address

storage class addr: A-type address

management type addr: A-type address

Default: See description of parameter.

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 497

,NOTIFY= notify~id addr notify-id addr: A-type address

,MF=L

The parameters are explained under the standard form of the RACROUTE
REQUEST= DEFINE macro, with the following exception:

,MF•L
specifies the list form of the RACROUTE REQUEST= DEFINE macro.

498 SPL: Application Development Macro Reference

RACROUTE REQUEST= DEFINE (Execute Form)
The execute form of the RACROUTE REQUEST= DEFINE macro is written as follows:

name

b

RACROUTE

b

REQUEST= DEFINE

,ENTITY=profi/e name addr
,ENTITYX=extended profile name
addr

,VOLSER=vol addr

,TYPE=OEFINE
,TYPE= DEFINE,NEWNAME
=new resource name addr
,TYPE= OEFINE,NEWNAMX
=extended new resource name
addr
,TYPE= ADDVOL,OLDVOL
=old vol addr
,TYPE= CHGVOL,OLOVOL
=old vol addr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS= class name sddr

,MENTITY =entity addr
,MENTX =extended entity addr

,MCLASS=class name sddr

,MVOLSER = volser sddr

,MGENER=ASIS
,MGENER=YES

,ACEE= acee addr

,UNIT= unit sddr

OWNER= owner id sddr

,LEVEL= number
,LEVEL=reg

,UACC=ALTER

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name sddr: RX-type address
extended profile name sddr: RX-type address or register (2) -
(12)
Note: ENTITY or ENTITYX must be specified on either the llst
or the execute form of the macro.

vol sddr: RX-type address or register (2) - (12)
Nole: VOLSER Is required only for CLASS= DATASET and
DSTYPE not equal to M when a discrete profile name Is used.

Defaun: TYPE= DEFINE
new resource name addr: RX-type address or register (2) -
(12)
extended new resource name sddr: RX-type address or
register (2) - (12)

old vol sddr: RX-type address or register (2) - (12)

Defaun: DSTYPE = N

perm list sddr: RX-type address or register (2) - (12)

class name sddr: RX-type address or register (2) - (12)
Defaun: CLASS=DATASET

entity sddr: RX-type address or register (2) - (12)
extended entity sddr: RX-type address or register (2) - (12)

class name sddr: RX-type address or register (2) - (12)
Defaun: MCLASS =DATASET

volser sddr: RX-type address or register (2) - (12)

Defaun: MGENER = ASIS

acee addr: RX-type address or register (2) - (12)

unit addr: RX-type address or register (2) - (12)

owner id addr: RX-type address or register (2) - (12)

Detaun: LEVEL= zero
reg: register (2) - (12)

RACROUTE REQUEST• DEFINE (fOr RACF Release 1.9) 499

,UACC =CONTROL
,UACC=UPDATE
,UACC=READ
,UACC =EXECUTE
,UACC=NONE
,UACC=reg

,DATA=data addr

,AUDIT= NONE
,AUDIT= audit value
,AUDIT= (audit value (access
level),audit value(access level))

,AUDIT=reg

,RACFIND =YES
,RACFIND=NO

,CHKAUTH =YES
,CHKAUTH =NO

,GENERIC= YES
,GENERIC= ASIS

,WARNING= YES
,WARNING=NO

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,FILESEQ =number
,FILESEQ =reg

,EXPDT=exper-date addr
,EXPDTX =extended expir-date
addr
,RETPD = retn-period addr

,ACCL VL =access value addr
,ACCLVL=(access value
addr,parm list addr)

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL =NL

,SECLVL=addr

,SECLABL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify-id addr

,ENVIR=VERIFY

,RESOWN= resource owner addr

,STORCLA =storage class addr

,MGMTCLA =management type
addr

,MF= (E,ctrl addr)

500 SPL: Application Development Macro Reference

reg: register (2) - (12)

data addr: RX-type address or register (2) - (12)

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER

Defautt: AUDIT= READ
reg: register (2) - (12)

Defautt: CHKAUTH =NO

Defautt: GENERIC= ASIS

Defautt: WARNING= NO
Note: Warning is valid only if TYPE= DEFINE is specified.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Defautt: RELEASE= 1.6

number: 1-9999
reg: register (2) - (12)

exper-date addr: RX-type address or register (2) - (12)
extended expir-date addr: RX-type address or register (2) -
(12)
retn-period addr: RX-type address or register (2) - (12)

access value addr: RX-type address or register (2) - (12)
parm list addr: RX-type address or register (2) - (12)

Defautt: TAPELBL=STD

addr: RX-type address or register (2) - (12)

addr: RX-type address or register (2) - (12)

Default: ERASE=NO

notify-id addr: RX-type address or register (2) - (12)

Specifies that only verification is to be done.
Default: Normal RACROUTE REQUEST= DEFINE processing

resource owner addr: RX-type address or Register (2) - (12)

storage class addr: RX-type address or Register (2) - (12)

management type addr: RX-type address or Register (2) - (12)

ctr/ addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST= DEFINE macro, with the following exception:

,MF• (E,ctr/ addr)
specifies the execute form of the RACROUTE REQUEST= DEFINE macro using a
remote, control-program parameter list.

,RELEASE= (number,CHECK)
,RELEASE- number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= DEFINE macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion Is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done. Instead, a
return code X' 64' will be generated.

RACROUTE REQUEST=DEFINE (for RACF Release 1.9) 501

RACROUTE REQUEST= DEFINE (Modify Form)
The modify form of the RACROUTE REQUEST=;= OEFINE macro is written as follows:

name

b

RACROUTE

b

REQUEST= DEFINE

,ENTITY=profi/e name addr
,ENTITYX =extended profile name
addr

,VOLSER =vol addr

,TYPE= DEFINE
,TYPE= DEFINE,NEWNAME
=new resource name addr
,TYPE= DEFINE,NEWNAMX
=extended new resource name
addr
,TYPE= ADDVOL,OLDVOL
=old vol addr
,TYPE= CHGVOL,OLDVOL
=old vol addr
,TYPE= DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

, INSTLN =pa rm list addr

,CLASS= class name addr

,MENTITY =entity addr
,MENTX =extended entity addr

,MCLASS := cla$s name addr

,MVOLSER = volser addr

. ,MGENER = ASIS
,MGENER =YES

,ACEE= acee addr

,UNIT= unit addr

,OWNER= owner id addr

,LEVEL= number
,LEVEL=reg

502 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name addr: RX-type address
extended profile name addr: RX-type address or register (2) -
(12)
Note: ENTITY or ENTITYX must be specified on either the llst
or the execute form of the macro.

vol addr: RX-type address or register (2) - (12)
Note: VOLSER is required only for CLASS= DATASET and
DSTYPE not equal to M when a discrete profile name is used.

Defautt: TYPE= DEFINE
new resource name addr: RX-type address or register (2) -
(12)
extended new resource name addr: RX-type address or
register (2) - (12)

old vol addr: RX-type address or register (2) - (12)

DefauH: DSTYPE = N

parm list addr: RX-type address or register (2) - (12)

class name addr: RX-type address or register (2) - (12)
Default: CLASS= DATASET

entity addr: RX-type address or register (2) - (12)
extended entity addr: RX-type address or register (2) - (12)

class name addr: RX-type address or register (2) - (12)
DefauH: MCLASS =DATASET

volser addr: RX-type address or register (2) - (12)

DefauH: MGENER = ASIS

acee addr: RX-type address or register (2) - (12)

unit addr: RX-type address or register (2) - (12)

owner id addr: RX-type address or register (2) - (12)

Default: LEVEL= zero
reg: register (2) - (12)

.UACC=ALTER
,UACC =CONTROL
,UACC=UPDATE
,UACC=READ
,UACC=EXECUTE
,UACC=NONE
,UACC=reg

,DATA= data addr

,AUDIT= NONE
,AUDIT= audit value
,AUDIT= (audit value (access
tevel),audit va/ue(access /eve/))
,AUDIT=reg

,RACFIND=YES
,RACFIND =NO

,CHKAUTH =YES
,CHKAUTH =NO

,GENERIC=YES
,GENERIC= ASIS

,WARNING=YES
,WARNING=NO

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,FILESEQ =number
,FILESEQ =reg

,EXPDT=exper-date addr
,EXPDTX =extended expir-date
addr
,RETPD=retn-period addr

,ACCL VL =access value addr
,ACCL VL = (access value
addr,parm list addr)

,TAPELBL =STD
,TAPELBL=BLP
,TAPELBL=NL

,SECL VL = addr

,SECLABL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY= notify-id addr

,ENVIR =VERIFY

,RESOWN= resource owner addr

,STORCLA =storage class addr

,MGMTCLA =management type
addr

,MF= (M,ctrl addr)

reg: register (2) - (12)

data addr: RX-type address or register (2) - (12)

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: AUDIT= READ
reg: register (2) - (12)

Default: CHKAUTH =NO

Default: GENERIC= ASIS

Default: WARNING= NO
Note: Warning is valid only if TYPE= DEFINE Is specified.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

number: 1-9999
reg: register (2) - (12)

exper-date addr: RX-type address or register (2) - (12)
extended expir-date addr: RX-type address or register (2) -
(12)
retn-period addr: RX-type address or register (2) - (12)

access value addr: RX-type address or register (2) - (12)
parm list addr: RX-type address or register (2) - (12)

Default: TAPELBL=STD

addr: RX-type address or register (2) - (12)

addr: RX-type address or register (2) - (12)

Default: ERASE= NO

notify-id addr: RX-type address or register (2) - (12)

Specifies that only verification Is to be done.
Defauft: Normal RACROUTE REQUEST= DEFINE processing.

resource owner addr: RX-type address or register (2) - (12)

storage class addr: RX-type address or register (2) - (12)

management type addr: RX-type address or register (2) - (12)

ctr/ addr: RX-type address or register (1) or (2) - (12)

RACROUTE REQUEST= DEFINE (for RACF Release 1.9) 503

The parameters are explained under the standard form of the RACROUTE
REQUEST= DEFINE macro, with the following exception:

,MF- (M,ctrl addr)
specifies the modify form of the RACROUTE REQUEST= DEFINE macro using a remote,
control-program parameter list.

,RELEASE== (number,CHECK)
,RELEASE== number
,RELEASE ... (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST= DEFINE macro can be done by your specifying the CHECK
subparameter on the modify form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done. Instead, a
return code X' 64' will be generated .

. 504 SPL: Application Development Macro Reference

RACROUTE REQUEST= DIRAUTH - Checks Messages (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

The RACROUTE REQUEST= DIRAUTH macro works on behalf of the message transmission
managers (VTAM, TSO, and Session Manager) to ensure that the receiver of a message
meets Mandatory Access Checking (MAC) requirements. That is, the SECLABEL of the
receiver of the message must dominate (be equal to or higher) than the SECLABEL of the
sender.

All parameter lists generated by the RACROUTE REQUEST= DIRAUTH macro are in a
format that allows compiled code to be moved above 16 megabytes virtual storage without
recompilation.

Note: This request is SRB compatible.

The standard form of the RACROUTE REQUEST= DIRAUTH macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= DI RAUTH

,RTOKEN =message token addr

,LOG=ASIS
,LOG= NOFAIL

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

message token addr: A-type address or register (2) - (12)

Default= ASIS

The parameters are explained as follows:

,RTOKEN =message token addr
specifies the address of the token (RTOKEN) of a resource. The RTOKEN data contains
the user token (UTOKEN) of the creator of the resource. If the first two bytes (length
and version) are equal to 0, it is the same as not specifying the RTOKEN.

,LOG=ASIS
,LOG= NOFAIL

specifies the types of access attempts to the DIRAUTH resource class that RACF is to
record on the SMF data set.

• ASIS - RACF records the event in the manner specified on the SETR LOGOPTIONS
command for the DIRAUTH resource class.

• NOFAIL - If the authorization check fails, RACF does not record the attempt. If the
authorization check succeeds, RACF records the attempt as it does in ASIS.

505

Return Codes and Reason Codes
When control is returned, the first word of the parameter list mapped by ICHSAFP contains
the return code for the DIRAUTH function; the second word contains the reason code.

When you execute the macro, space for the return code and reason code is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping by loading the ICHSAFP pointer with the label that you specified on the execute
form of the macro.

Hexadecimal Meaning
Code

00

04

08

oc

Example 1

Receiver is authorized to view the message. Register 0 contains one of the
following reason codes:

00 Function completed successfully
04 RTOKEN passed belongs to an operator

DIRAUTH cannot make a decision. Register 0 contains one of the following
reason codes:

00 DIRAUTH class not active or ACEE does not contain TOKEN
information

08 The definition of the provided security label was not found

OC The translation of the security label to its defining security level and
categories failed

10 The SECLABEL general resource class was not active/RACLISTed

14 No defining security level exists in the SECLABEL profile

FF An unexpected error occured while checking mandatory access.

Receiver is not authorized to view the message. Register 0 contains one of
the following reason codes:

00 The security label in the user's ACEE does not currently dominate
that of the message; however, the user does possess a security label
that can dominate that of the message.

04 The user's security label does not dominate that of the message, and
the user does not possess a security label that ever will.

Invalid parameters passed to DIRAUTH. Register 0 contains one of the
following reason codes:

00 The resource token (RTOKEN) was not specified.

Operation: Invoke the RACROUTE REQUEST= DIRAUTH macro on behalf of the VTAM
resource manager to perform mandatory access checking (MAC) in the "receiving" user's
address space to ensure that the receiver's SECLABEL dominates that of the sender.
Specify that RACF should audit the event as the DIRAUTH CDT entry indicates. The
SUSBYS and REQSTOR parameters are not represented in the router table; therefore, you
must specify DECOU PL= YES.

Note: The message cannot be received by anyone other than the person to whom it was
directed.

RACROUTE REQUEST=DIRAUTH,WORKA=RACWK,SUBSYS=VTAM, X
REQSTOR=TPUTRECV,DECOUPL=YES,RTOKEN(S), X
LOG=ASIS,RELEASE=l.9

RACWK DS CL512

506 SPL: Application Development Macro Reference

RACROUTE REQUEST= DIRAUTH (List Form)
The list form of the RACROUTE REQUEST= DI RAUTH macro Is written as follows:

name

f>

RAC ROUTE

f>

REQUEST= DIRAUTH

,RTOKEN =message token addr

,LOG=ASIS
,LOG= NOFAIL

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

message token addr: A-type address

Defaun: LOG= ASIS

The parameters are explained under the standard form of the RACROUTE
REQUEST=DIRAUTH macro with the following exception:

,MF=L
specifies the list form of the RAC ROUTE REQUEST= DI RAUTH macro.

RACROUTE REQUEST= DIRAUTH (for RACF Release 1.9) 507

RACROUTE REQUEST= DI RAUTH (Execute Form)
The execute form of the RAC ROUTE REQUEST= DI RAUTH macro is written as follows:

name

b

RACROUTE

b

REQUEST= DI RAUTH

,RTOKEN =message token addr

,LOG=ASIS
,LOG=NOFAIL

,MF=(E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

message token addr: RX-type address or register (2) - (12)

Default: LOG = ASIS

ctr/ addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST= DIRAUTH macro with the following exception:

,MF= (E,ctrl addr)
specifies the execute form of the RACROUTE REQUEST= DIRAUTH macro.

508 SPL: Application Development Macro Reference

RACROUTE REQUEST= DIRAUTH (Modify Form)
The modify form of the RACROUTE REQUEST= DI RAUTH macro Is written as follows:

name

b

RAC ROUTE

b

REQUEST= DI RAUTH

,RTOKEN=message token addr

,LOG=ASIS
,LOG=NOFAIL

,MF= (M,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

message token addr: RX-type address or register (2) - (12)

Default: LOG= ASIS

ctr/ addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST= DIRAUTH macro with the following exception:

,MF=(M,ctr/ addr)
specifies the modify form of the RACROUTE REQUEST= DIRAUTH macro.

RACROUTE REQUEST=DIRAUTH (for RACF Release 1.9) 509

510 SPL: Application Development Macro Reference

RACROUTE REQUEST= EXTRACT - Replace or Retrieve Fields (for RACF
Release 1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier installed on your system, see the following:

• "RACROUTE- MVS Router Interlace (for RACF Release 1.8.1 or earlier)" on page 435

• "RACXTRT- Retrieve Fields from RACF User Profile (for RACF Release 1.8.1 or
earlier)" on page 615. (IBM recommends that you use RACROUTE with the
REQUEST= EXTRACT parameter rather than RACXTRT.)

The RACROUTE REQUEST= EXTRACT macro is used to retrieve or replace certain
specified fields from a RACF profile or to encrypt certain clear-text (readable) data.

This macro is only available to authorized callers (APF-authorized, in system key 0-7, or in
supervisor state). If you specify BRANCH=YES the requested function is SRB compatible.

Notes:

1. Encryption, replacement, and extraction are mutually exclusive.

2. The area returned by a RAC ROUTE REQUEST= EXTRACT or EXTRACTN request will be
located below 16-megabytes.

PROGRAMMING INTERFACES ----·----------------.

ONLY the following REQUEST= EXTRACT functions are general-use programming
interfaces:

• Retrieving or updating fields in the TSO segment in the user profile
• Retrieving or updating fields in the user and data set profiles
• Retrieving or updating the following installation-reserved fields:

- USERDATA
USRCNT
USRDATA
USRFLG

- USRNM

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

ONLY the following REQUEST= EXTRACT functions are product-sensitive programming
interfaces:

• Retrieving or updating fields in the base segment

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE -----~

511

The standard form of the RAC ROUTE REQUEST= EXTRACT macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= EXTRACT

,TYPE= EXTRACT
,TYPE= EXTRACTN
,TYPE=REPLACE
,TYPE= ENCRYPT

,ENTITY= profile name addr
,ENTITYX =extended profile name
addr

,RELEASE= number

,ACEE= acee addr

,VOLSER =vol addr

,GENERIC= ASIS
,GENERIC= YES

,FLDACC=YES
,FLDACC=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name addr: A-type address or register (2) • (12)
extended profile name addr: A-type address or register (2) -
(12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

acee addr: A-type address or register (2) - (12)

vol addr: A-type address or register (2) - (12)

Defautt: GENERIC= ASIS

Default: FLDACC =NO

If TYPE= EXTRACT or EXTRACTN is specified:

,SUBPOOL = subpool number

,DERIVE=YES

,CLASS= 'class name'

,CLASS= class name addr

,SEGMENT= 'segment name'
,SEGMENT=segment name addr

,FIELDS= field addr

,MATCHGN=YES
,MATCHGN=NO

,BRANCH=YES
,BRANCH=NO

If TYPE= REPLACE is specified:

,CLASS= 'class name'

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS= field addr

512 SPL: Application Development Macro Reference

subpool number: Decimal digit 0-255
Default: SUBPOOL = 229

See explanation of keyword.
Default: Normal processing

class name: 1-8 character name
DefauH: CLASS= USER
class name addr: A-type address or register (2) - (12)

segment name: 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

Default: MATCHGN =NO

DefauH: BRANCH= NO

class name: 1-8 character name
Default: CLASS= USER

segment name: 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

,SEGDATA=segment data addr segment data addr: A-type address or register (2) - (12)

If TYPE= ENCRYPT is specified:

,ENCRYPT=(data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT= (data addr,INST)
,ENCRYPT= (data addr,STDDES)

,BRANCH=YES
,BRANCH=NO

data addr: A-type address or register (2) - (12)

Default: BRANCH= NO

Note: If TYPE= ENCRYPT is specified, the only other allowable parameters are ENTITY, ENTITYX,
RELEASE, ENCRYPT, and BRANCH with ENCRYPT being required.

The parameters are explained as follows:

, TYPE• EXTRACT
,TYPE• EXTRACTN
, TYPE= REPLACE
, TYPE• ENCRYPT

specifies the function to be performed by the extract function routine.

• , TYPE= EXTRACT

With Release 1.8 and later, RACROUTE REQUEST= EXTRACT can provide
additional function: it can extract information from any field in any profile. The
profile templates in Chapter 3 of the SPL: RACF define the type and name of each
field in each profile. If you specify EXTRACT, the macro extracts information from
the profile determined by the ENTITY or ENTITYX and CLASS keywords.
Specifically, RACF extracts the fields specified in the FIELDS keyword from the
segment specified by the SEGMENT keyword. If you do not specify ENTITY or
ENTITYX, RACF retrieves the desired information from the current user's profile.

To use TYPE= EXTRACT to extract field information from a profile, you must specify
Release= 1.8 or a later release number.

Note: If you specify TYPE= EXTRACT, do not specify ENCRYPT.

Upon return, register 1 contains the address of a result area that begins with a
fullword containing the area's subpool number and length. It is your responsibility
to issue a FREEMAIN to release the area after you are through using it. See
description of SUBPOOL keyword.

The fields in the result area are in the order below:

Offset (Dec) Data Length (Dec)

0 subpool of area 1

1 length of area 3

4 offset to start of optional field to contain segment data 2

6 reserved 18

24 specified or current user's use rid, if CLASS= USER 8

32 specified user's default connect group or current user's 8
current connect group, if CLASS=USER

RACROUTE REQUEST=EXTRACT (for RACF Release 1.9) 513

l

In general, RACF returns field data in the order it was specified, with a four byte
length field preceding each profile field. For example, If you were extracting the
following:

- Single field

- A 4-byte length field that contains the length of the field that follows.

- If the requested field is a variable length field, there is not an additional
length byte.

4 bytes (length of data)

- Combination field (representing one or more fields) - You would receive:

- A 4-byte length field that contains the combined length of all the fields that
follow.

- A combination field made up of 4-byte length fields followed by their
respective individual data fields.

Total length of combination field J
4 bytes (length of datal) datal

4 bytes (length of data2) data2

Single field within a repeat group - You would receive:

- A 4-byte length field that contains the combined length of all the fields that
follow.

- A 4-byte length field that indicates the length of the specified field In the first .
occurrence of the repeat group. This Is followed by a 4-byte length field that
indicates the length of the specified field in the second occurrence of the
repeat group. And so on, until all the occurrences of the repeat group are
accounted for.

l Total length of all the following fields J
Field from
first occurrence
of repeat group

Same field from
next occurrence
of repeat group

4 bytes

4 bytes

(length of datal) datal

(length of datal) datal

Combination field (representing one or more fields) within a repeat group - You
would receive:

- A 4-byte length field that contains the combined length of all the fields that
follow.

- A combination field consisting of a 4-byte length field indicating the length of
the individual data field that follows It, followed by the next 4-byte length
field indicating the length of the next individual data field. And so on, until
all the individual fields that make up the combination field are accounted for.
We then move on to the next occurrence of the repeat group and begin
again.

514 SPL: Application Development Macro Reference

Combination field
from first occurrence
of repeat group

Same combination field
from next occurrence
of repeat group

Total length of all the occurrences
of the combination field in the repeat group

4 bytes (length of datal) datal

4 bytes (length of data2) data2

4 bytes (length of datal) datal

4 bytes (length of data2) data2

Specifying the name of a repeat group count field retrieves only the 4-byte
length followed by the 4-byte repeat group count.

When a field to be extracted is empty, the following results:

- For fixed length fields - RACF returns the default as specified by the
template definitions. The default for flag fields is X' 00'. The default for
fixed length fields in the BASE segment of the profile is binary 1 (s). The
default for fixed length fields in other segments is binary zeros.

- For variable length fields - RACF returns a length of zero and no data.

If CLASS= USER, when you specify EXTRACT, the macro extracts the userid,
connect group and, optionally, the encrypted password from the user profile.

• ,TYPE= EXTRACTN specifies the function to be performed by the EXTRACT function
routine.

Note: If you specify TYPE= EXTRA CTN, do not specify ENCRYPT=.

Upon return, register 1 contains the address of a result area that begins with a
fullword containing the area's subpool number and length. To see the format of the
result area, see the explanation of TYPE= EXTRACT above.

If you specify EXTRACTN, the macro extracts information from the profile that
follows the profile determined by the ENTITY or ENTITYX and CLASS keywords.
From that next profile, RACF extracts the fields specified in the FIELDS keyword
from the segment specified by the SEGMENT keyword. In addition, RACF returns
the name of the profile from which it extracted the data.

• ,TYPE= REPLACE specifies the function to be performed by the EXTRACT function
routine.

Note: If you specify TYPE= REPLACE, do not specify ENCRYPT= .

Use of the REPLACE option to update a profile requires a thorough knowledge of the
inter-relationships of fields within a profile and the potential relationships between
profiles. For instance, if you use RACROUTE REQUEST= EXTRACT to update a
password, you should also update the password change date and password history
information.

If you specify TYPE= REPLACE, RACF takes the information in the fields specified in
the FIELDS parameter and pointed to by SEGDATA, and places that information In
the designated SEGMENT. (The SEGMENT is within the profile determined by the
ENTITY or ENTITYX and CLASS keywords.) If you do not specify ENTITY or
ENTITYX, RACF returns an error code. If you specify TYPE= REPLACE, you must
specify FIELDS and SEGDATA =. If you want to replace a SEGMENT other than the
BASE segment, you must specify the SEGMENT keyword with the segment you
want. If you do not specify SEGMENT, the segment defaults to the BASE segment.

if you want to create a TSO segment, you can do so by specifying the RACROUTE
REQUEST= EXTRACT macro in the following way:

TYPE= REPLACE SEGMENT= TSO

RACROUTE REQUEST= EXTRACT (for RACF Release 1.9) 515

• ,TYPE= ENCRYPT specifies the function to be performed by the extract function
routine.

If TYPE= ENCRYPT is specified, the operation performed is data encryption. The
ENCRYPT keyword specifies the data to be encrypted and the encryption method
used. The first eight bytes of the area pointed to by the ENTITY or ENTITYX operand
will be used by the DES (Data Encryption Standard) encryption routine. If ENTITY or
ENTITYX is not specified, the userid from the current ACEE will be used instead. If
TYPE= ENCRYPT is specified, no work area will be returned.

,ENTITY= profile name addr
,ENTITYX =extended profile name addr

specifies the address:

• ,ENTITY= profile name addr

For Release 1.7 or earlier (limited to USER), specifies the address of an area eight
bytes long that contains the resource name (USERID for CLASS= USER) for which
profile data is to be extracted, or the userid to be used when encrypting. The name
must be left-justified in the field and padded with blanks. If this parameter is not
specified, a default value of zero will indicate that RACF should use the userid from
the current ACEE.

For Release 1.8 and later, specifies the address of a resource name for which
profile data is to be extracted or replaced for TYPE= EXTRACT, EXTRACTN, or
REPLACE, or the data to be encrypted when TYPE= ENCRYPT with DES is specified.
The area is 8 bytes long for USER and GROUP; 17 bytes long for
CLASS=CONNECT; and 44 bytes long for DATASET. The lengths of all other profile
names are determined by the class descriptor table. The name must be
left-justified in the field and padded with blanks. If this parameter is not specified, a
default value of zero indicates to RACF to use the userid from the current ACEE.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39
characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

• ,ENTITYX =extended profile name addr
specifies the address of a structure that consists of two, 2-byte length fields,
followed by the entity name.

The first 2-byte field specifies a buffer length which can be from 0 to 255 bytes.
This length field refers to the length of the buffer that contains the entity name; it
does not include the length of either length field.

The second 2-byte field specifies the actual length of the entity name. This
length field includes the length of the actual name without any trailing blanks; it
does not include the length of either length field.

These two length fields can be used in several different ways:

If the length of the entity name is known, you can specify O in the first field and
specify the length of the entity name in the second field. Note that when you
specify the second field, each byte counts; this means the entity name specified
must match exactly the entity name on the RACF data base.

If you choose to use a buffer area in which to place the entity name, you can
specify the first field to designate the length of the buffer. In regard to the
second field, you can do one of two things:

- If you know the length of the entity name, you would specify the length in the
second field. (Note that the length of the first field can be from Oto 255, but
must be equal to or more than the length of the second field.)

- If you do not know the length of the entity name, you would specify O in the
second field, in which case RACF would be responsible for counting the
number of characters in the entity name.

Note: If your RACF installation is not using the restructured data base format, and
the length of an entity name for a general resource class is longer than 39

516 SPL: Application Development Macro Reference

characters, RACF uses generic profiles to match the name. This is similar to
specifying RACFIND =NO.

Recommendation

IBM recommends that you use ENTITYX rather than ENTITY for two reasons:

• With ENTITYX, if you know the length of the entity name, ENTITYX allows you to
pass that information to RACF. Doing so can result in slightly faster processing.

• With ENTITY, the entity name you pass to RACF must be in a buffer, the size of
which is determined by the length in the CDT. If the MAXLNTH of a class increases
in the future, you would have to modify your program to use a larger buffer. By
using ENTITYX, you avoid this possible problem because you have removed the
CDT dependency from your program.

,RELEASE== number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= EXTRACT macro can be done by specifying the CHECK
subparameter on the execute form of the macro.

,ACEE= acee addr
specifies an alternate ACEE for RACF to use rather than the current ACEE. For
example, if the ENTITY or ENTITYX parameter has not been specified, RACF refers to
the ACEE during extract processing of user data.

,VOLSER = volser addr (only valld wlth,CLASS= DATASET)
specifies the volume serial as follows:

• For non-VSAM DASO data sets and tape data sets, specifies the volume serial
number of the volume on which the data set resides.

• For VSAM DASO data sets and tape data sets, specifies the volume serial number of
the catalog controlling the data set.

The field pointed to by the volser address contains the volume serial number. If
necessary, you must pad it to the right with blanks so it contain six characters.

,GENERIC ... ASIS
,GENERIC= YES

When CLASS is DATASET, specifies whether RACF is to treat the entity name as a
generic profile name.

• If you specify GENERIC= YES, RACF considers the entity name a generic profile
name, even if it does not contain any of the generic characters {an asterisk, percent
sign, or ampersand).

• If you specify GENERIC= ASIS, RACF considers the entity name a generic only if it
contains one or both of the generic characters.

,FLDACC=NO
,FLDACC =YES

Specifies whether field level access checking should be performed. If you specify
FLDACC= YES, the RACF data base. manager will check to see that the user running
your program has the authority to extract or modify the fields that have been specified
in the RAC ROUTE REQUEST= EXTRACT macro.

Notes:

1. For field level access checking to occur, you must specify RELEASE= 1.8 or later
when you code the macro. In addition, before the program executes, the security
administrator must activate the FIELD class. If these conditions are not satisfied,
the RACF manager behaves as though you had specified FLDACC =NO.

2. In addition, the security administrator must issue the RDEFINE and PERMIT
commands to designate those users who will have the authority to access the fields
designated in the RACROUTE REQUEST= EXTRACT macro.

RACROUTE REQUEST=EXTRACT (for RACF Release 1.9) 517

3. If you specify FLDACC =NO or omit the parameter, the manager Ignores field level
access checking.

,SUBPOOL = subpool number
specifies the storage subpool from which the extract function routine obtains an area
needed for the extraction. If this parameter is not specified, it defaults to 229. Note that
all storage is obtained in the key of the caller. All the rules that apply to subpools and
key and all their attributes are documented in the MVSIESA Application Development
Gulde.

Note: Take some care in selecting a subpool. If you select a fetch-protected subpool or
subpool 0, this may result in the program's not being able to access or free the
retrieved data.

,DERIVE• YES
specifies that the desired field will be obtained from the DFP segment of the
appropriate profile.

DERIVE requests are limited to the DFP segment of the DATASET and USER profiles.
The following is an explanation of the DERIVE processing for both a DATASET and
USER request.

• DATASET

Specifying the DERIVE=YES keyword with CLASS= DATASET and
FIELDS= RESOWNER causes RACF to perform additional processing other than
simply extracting the data set resource owner from the data set profile.

DFP uses this retrieved information for authority checking when allocating a new
data set.

To process the request, RACF first attempts to extract the RESOWNER field from the
DATASET profile specified by the ENTITY or ENTITYX keyword. If the profile exists
and the RESOWNER field contains data, RACF checks to see If that data is the
userid of a USER or GROUP currently defined to RACF. If so, RACF returns that
userid along with a reason code which indicates whether the userld Is that of a
USER or GROUP.

If RACF does not find a profile that matches the DATASET name specified by the
ENTITY or ENTITYX keyword, RACF attempts to locate the generic DATASET profile
that protects that DATASET name.

If it finds the generic profile, and the RESOWNER field contains data, RACF checks
to see If that data is the .userid of a USER or GROUP currently defined to RACF. If
so, RACF returns that userld along with a reason code which indicates whether the
userld is that of a USER or GROUP.

If RACF does not find a generic profile or the retrieved data is neither a USER or
GROUP, RACF returns the high-level qualifier from the name specified on the
ENTITY or ENTITYX keyword along with a reason code which indicates If that
high-level qualifier matches a defined USER or GROUP, or neither.

You would specify a DERIVE request for RESOWNER as follows:

RACROUTE Request= EXTRACT,
ENTITY=data set name,
VOLSER=mydasd,
CLASS=DATASET,
FIELDS='RESOWNER', SEGMENT•'DFP',
DERIVE=YES, RELEASE=l.9

Note: You must specify all the keywords In the example for the DERIVE request to
work.

• USER

The purpose of specifying the DERIVE= YES keyword with CLASS= USER Is to
obtain the desired DFP field information (STORCLAS or MGMTCLAS) from the
profile of the user. If the user's profile does not contain the desired DFP fields,
RACF then goes to the user's default group and attempts to obtain the information

518 SPL: Application Development Macro Reference

for the remaining fields from the GROUP profile (the remaining fields being those
that did not contain information in the USER profile.)

You would specify a DERIVE request for information from a USER profile as follows:

RACROUTE Request= EXTRACT,
ENTITY=user name,
CLASS=USER,
FIELDS='STORCLAS', SEGMENT='DFP',
DERIVE=YES, RELEASE=l.9

RACF only processes the DERIVE keyword if it is specified with the DATASET or USER
class. In addition, for DERIVE processing to occur, SEGMENT= DFP must also be
specified.

,CLASS- 'class name'
specifies the class the entity is in. The class name can be USER, GROUP, CONNECT,
DATASET, or any general resource class defined in the class descriptor table.

,SEGMENT= 'segment name'
,SEGMENT-segment name add

specifies the RACF profile segment that RACF is to update or from which it is to extract
data. Segment-name-address is a fullword. If you specify SEGMENT, you must also
specify the CLASS and FIELDS keywords. If you allow the SEGMENT parameter to
default, RACF assumes that you want to extract information from the BASE segment.

,FIELDS= field addr
Specifies the address of a variable length list. The first field is a 4-byte field that
contains the number of profile field names in the list that follows. Each profile field
name Is eight bytes long, left-justified, and padded to the right with blanks. The
allowable field names for each type of profile are in the template listings in Chapter 3 of
the SPL: RACF. To see how to specify the FIELDS keyword, see the TYPE= REPLACE
example below.

The following options exist:

• The count field can contain numbers from 1 - 255.
• The field names can be any of the field names in the template listings.

If you specify TYPE= EXTRACT or EXTRACTN, RACF retrieves the contents of the
named fields from the RACF profile indicated by the CLASS= and ENTITY= or
ENTITYX = parameters, and returns the contents in the result area. (See the EXTRACT
keyword for an explanation of the result area.)

You can specify TYPE= REPLACE. RACF replaces or creates the indicated fields in the
profile specified on the CLASS and ENTITY or ENTITYX keywords with the data pointed
to by the SEGDAT A keyword.

Notes:

1. Do not replace a repeat group count field. Doing so will cause unpredictable
results.

2. You cannot replace an entire repeat group, a single occurrence of a repeat group,
or a single existing field in a repeat group. If you attempt to do so, RACF adds the
data to the existing repeat group(s).

The only thing you can do is retrieve all occurrences of specified fields within a
repeat group or add a new occurrence of a repeat group.

3. If you add occurrences of a repeat group, RACF places those additions at the
beginning (front) of the repeat group.

RACROUTE REQUEST= EXTRACT (for RACF Release 1.9) 519

The following example of TYPE= REPLACE replaces fields In the BASE segment. It
shows one way to code the macro and the declares necessary to make the macro work.

RACROUTE REQUEST=EXTRACT,TYPE=REPLACE,
CLASS= I USER I •

ENTITY=USERID,
FIELDS=FLDLIST,
SEGDATA=SEGDLIST,
SEGMENT=BASE,
RELEASE=l.9

USERID DC AL1(4), C'BILL'
FLDLIST DC A(3)

DC CLB'AUTHOR'
DC CLS'DFLTGRP'
DC CLB'NAME'

SEGDLIST DC AL4(6),CL6'JSMITH'
DC AL4(8),CL8'SECURITY'
DC AL4(11),CL11'BILL THOMAS'

When the replacement action takes place, the following occurs:

• 'JSMITH' will be placed in the AUTHOR field in the profile.
• 'SECURITY' will be placed in the DFL TGRP field in the profile.
• 'BILL THOMAS' will be placed in the 'NAME' field in the profile.

In this example, RACROUTE REQUEST= EXTRACT retrieves the UACC from a fully
qualified generic dataset profile. RACROUTE places the information in a workarea in
SUBPOOL 1.

RACROUTE TYPE=EXTRACT
CLASS='DATASET',
ENTITY=DSN,
FIELDS=FLDS,
GENERIC=YES,
SUBPOOL=l,
RELEASE=l.9

DSN DC CL44'SYS1.LINKLIB'
FLDS DC A(l),

DC CL8 'UACC'

,MATCHGN •YES
,MATCHGN =-NO

specifies that you want to extract data from a profile that matches the name specified
on the ENTITY or ENTITYX keyword. If you specify MATCHGN=YES, RACF extracts
data from the discrete profile, if one exists; if a discrete profile does not exist, RACF
extracts data from the best-matching generic profile.

If you specify MATCHGN =NO, RACF only extracts data from a profile (discrete or
generic) that exactly matches the name specified on the ENTITY or ENTITYX keyword.

,BRANCH== YES
,BRANCH=-NO

specifies whether you want RACF to use a branch entry.

If you specify BRANCH= YES with TYPE= EXTRACT, the call is SRB compatible, (task
mode callers can also use it) and RACF only searches profiles RACLISTed to a data
space. This means the following:

• The only candidates for branch entry EXTRACT are general resource profiles
because they are the only profiles that can be RACLISTed. If your installation has
MVS 3.1.3 installed, you can use the SETROPTS RACLIST command to effect a
global listing of profiles in a data space.

520 SPL: Application Development Macro Reference

• RACF can only extract the following fields of the general resource profile: UACC,
AUDIT, LEVEL, GAUDIT, OWNER, INSTDATA, APPLDATA, SECLEVEL, LOGDAYS,
LOGTIME, LOGZONE, NOTIFY, ACLCNT, USERID, USERACS, NUMCTGY,
CATEGORY, SECLABEL, SESSKEY, SLSFLAGS, SLSLOCK, KEYDATE, KEYINTVL.

• If an ACEE is passed on branch entry EXTRACT, then RACF searches RACLISTed
profiles in the following order:

- those off the ACEE

those off the TCB ACEE

those off the ASXB ACEE

if the profile is not found off any ACEE, then RACF searches globally RACLISTed
profiles

You can only specify BRANCH= YES with TYPE= EXTRACT or ECTRACTN, or
TYPE= ENCRYPT. Specifying BRANCH= YES with TYPE= ENCRYPT results In a call
which is SRB compatible; there is no change In function.

,SEGDATA-segment data addr
specifies the address of a list of data items to be placed Into the respective fields
named by the FIELDS= parameter. You use the SEGDATA parameter when you
specify TYPE= REPLACE. If you specify SEGDATA, you must also specify CLASS,
FIELDS, and RELEASE= 1.9. The stored data is paired in the following format:

• a 4-byte length field that contains the length of the data field that follows
• a data field of variable length

Each length field is followed immediately by a data field until you reach the end of the
replacement data. The count field, which is pointed to by the first field in the FIELDS
parameter, contains the total number of length-data pairs.

,ENCRYPT• (data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT• (data addr,INST)
,ENCRYPT• (data addr,STDDES)

specifies the data to be encrypted, and a method of encryption. The address points to a
one-byte length field followed by from 1 to 255 bytes of clear-text data to be encrypted.
The second subparameter specifies the encryption method: the DES algorithm, the
RACF hashing algorithm, whatever scheme the installation uses (INST value), or the
NBS standard DES algorithm (STDDES). Upon return to the macro Issuer, the first
subparameter will now contain the address of an area that contains a one-byte length
followed by the encrypted version of the data. Neither the address itself nor the length
is changed.

Note: When the DES or STDDES algorithm is used, RACF actually encrypts the data
pointed to by the ENTITY or ENTITYX profile, (the userid If no ENTITY or ENTITYX s
specified) using the data as the encryption key. Data Is one-way encrypted, that Is, no
facility is provided to recover the data in readable form. If HASH Is specified, then the
RACF hashing algorithm is used and data is masked instead of encrypted.

RACROUTE REQUESTo=EXTRACT (for RACF Release 1.9) 521

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00 The extraction, replacement, or encryption completed successfully.

04

08

c
10

14

522 SPL: Application Development Macro Reference

Reason code - For Derive requests

0 - Some of the values are derived from the USER profile, and
some may be derived from the GROUP profile.

4 - High-level qualifier returned as RESOWNER, and it matched a
valid USER

8 - DFP data returned from an EXTRACT request from USER profile
was actually from the user's default group.

C - High-level qualifier returned as RESOWNER, and it matched a
valid GROUP

24 - RESOWNER field matched a valid USER

28 - RESOWNER field matched a valid GROUP

An ESTAE environment was not able to be established, or if Register 0
contains a reason code of 1, neither EXTRACT, EXTRACTN, REPLACE, nor
ENCRYPT was specified for TYPE=.

For TYPE= EXTRACT, TYPE= EXTRACTN, or TYPE= REPLACE the profile
could not be found. The hexadecimal reason codes are:

O - No profile found
4 - Field level access checking failed
8 - Segment not found (does not apply to TYPE= REPLACE)
C - Class not RACLISTed (branch EXTRACT)
10 - Class not active (branch EXTRACT)
14 - Neither the RESOWNER field nor the high level qualifier matched a

valid USER or GROUP

RACF is inactive.

The extract operation failed. Register O contains the RACF manager return
code which caused termination. This return code is not used for the encrypt
function. The manager return code and reason codes are returned in the
low order and high order halfwords of RO.

An ACEE address was not found when required, or if found, was not for a
defined user. The hexadecimal reason codes are:

O - No ACEE exists
4 - ACEERACF bit is off

18

64

A parameter list error was encountered. The hexadecimal reason codes
are:

4 - No fields for request type REPLACE
8 - Invalid type specified
C - Invalid number of fields
10 - Invalid class name specified
14 - Invalid version in parameter list
18 - Invalid subpool specified
1 C - Invalid parameter length
20 - No segdata specified
24 - Invalid entity name specified
2C - No encryption data
30 - Invalid encryption method
34 - No ENTITY specified with TYPE= REPLACE or TYPE= EXTRACTN
38 - Multiple profiles no volume specified
3C - Profile found wrong volser specified
40 - No encryption key supplied for DES or STDDES

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST= EXTRACT
macro; however, the list form of the macro does not have the proper
RELEASE parameter. It also indicates that the TYPE parameters specified
on the list and execute forms may not be the same TYPE. Macro processing
terminates.

Example 1
Operation: The following is an example of a RACROUTE REQUEST= EXTRACT which looks
for an APPCLU profile that has been RACLISTed off the VTAMACEE to match the entity
named in LULU PAIR. Specifying BRANCH= YES means that the function will not invoke an
SVC. Thus, it is now SRB compatible. If the function finds a profile to match the entity name,
it returns the data in the fields specified in FLDLIST.

RACROUTE REQUEST=EXTRACT,TYPE=EXTRACT,BRANCH=YES,CLASS='APPCLU', X
ENTITY=LULUPAIR,ACEE=VTAMACEE,SEGMENT='SESSION', X
FIELDS=FLDLST,MATCHGN=YES,WORKA=WORKADDR,RELEASE=l.9

Example 2
Operation: The following is an example of a RACROUTE REQUEST= EXTRACT which will
DES encrypt the data in RACDATA using the data in SESSNKEY as the encryption key. The
function will overlay the data in RANDATA with the encrypted data. Specifying
BRANCH=YES means that the function will be compatible with SRB mode and will not issue
any SVCS.

RACROUTE REQUEST=EXTRACT,TYPE=ENCRYPT,BRANCH=YES, X
ENTITY=RANDATA,ENCRYPT=(SESSNKEY,STDDES), X
WORKA=WORKADDR,RELEASE=l.9

RACROUTE REQUEST= EXTRACT (for RACF Release 1.9) 523

RACROUTE REQUEST= EXTRACT (List Form)
The list form of the RAC ROUTE REQUEST= EXTRACT macro is written as follows:

name

b

RACROUTE

b

REQUEST= EXTRACT

,TYPE= EXTRACT
,TYPE= EXTRACTN
,TYPE= REPLACE
,TYPE= ENCRYPT

,ENTITY=profile name addr

,ENTITYX =extended profile name
addr

,RELEASE= number

,ACEE= acee addr

,VOLSER =vol addr

,GENERIC= ASIS
,GENERIC= ONLY

,FLDACC=YES
,FLDACC=NO

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name addr: A-type address.

extended profile name addr: A-type address

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

acee addr: A-type address or register (2) - {12)

vol addr: A-type address

Default: GENERIC= ASIS

DefauH: FLDACC = NO

If TYPE= EXTRACT or EXTRACTN is specified:

,SUB POOL= subpool number

,DERIVE=YES

,CLASS= 'class name'

,CLASS=class name addr

,SEGMENT= 'segment name'
,SEGMENT=segment name addr

,FIELDS= field addr

If TYPE= REPLACE is specified:

,CLASS= 'class name'

,SEGMENT=segment name addr

,FIELDS=field addr

524 SPL: Application Development Macro Reference

subpool number: Decimal digit 0-255
Default: SUB POOL= 229

See explanation of keyword.
Default: Normal processing

class name: 1-8 character name
Defaun: CLASS= USER

class name addr: A-type address or register (2) - (12)

segment name: 1-8 character name
segment name addr: A-type address or register (2) - {12)

field addr: A-type address

class name: 1-8 character name
DefauH: CLASS= USER

segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

,MATCHGN =YES
,MATCHGN=NO

,BRANCH=YES
,BRANCH=NO

,SEGDATA=segment data addr

If TYPE= ENCRYPT is specified:

,ENCRYPT= (data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT=(data addr,INST)
,ENCRYPT= (data addr,STDDES)

,BRANCH= YES
,BRANCH=NO

Defauft: MATCHGN=NO

Defaun: BRANCH= NO

segment data addr: A-type address or register (2) - (12)

data addr: A-type address

Default: BRANCH= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST= EXTRACT macro with the following exception:

,MF=L
specifies the I ist form of the RAC ROUTE REQUEST= EXTRACT macro.

RACROUTE REQUEST= EXTRACT (for RACF Release 1.9) 525

RACROUTE REQUEST= EXTRACT (Execute Form)
The execute form of the RACROUTE REQUEST= EXTRACT macro is written as follows:

name

b

RACROUTE

f>

REQUEST= EXTRACT

,TYPE= EXTRACT
,TYPE= EXTRACTN
,TYPE= REPLACE
,TYPE= ENCRYPT

,ENTITY= profile name addr

,ENTITYX =extended profile name
addr

,RELEASE= (number.CHECK)
,RELEASE= number
.RELEASE= (,CHECK)

,ACEE= acee addr

,VOLSER =vol addr

,GENERIC= ASIS
,GENERIC= ONLY

,FLDACC =YES
,FLDACC=NO

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name addr: RX-type address or register (2) - (12)

extended profile name addr: RX-type address or register (2) -
(12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

acee addr: RX-type address or register (2) - (12)

vol addr: RX-type address or register (2) - (12)

Default: GENERIC= ASIS

Default: FLDACC =NO

ctr/ addr: RX-type address register (1), or register (2) - (12)

If TYPE= EXTRACT or EXTRACTN is specified:

,SUB POOL= subpool number

,DERIVE= YES

,CLASS= 'class name'

,CLASS= class name addr

,SEGMENT= segment name addr

,FIELDS= field addr

,MATCHGN=YES
,MATCHGN=NO

,BRANCH=YES
,BRANCH=NO

If TYPE= REPLACE is specified:

,CLASS= class name addr

526 SPL: Application Development Macro Reference

subpool number: Decimal digit 0-255
Default: SUBPOOL = 229

See explanation of keyword.
Default: Normal processing

class name: 1-8 character name
Default: CLASS= USER

class name addr: RX-type address or register (2) - (12)

segment name addr: RX-type address or register (2) - (12)

field addr: RX-type address or register (2) - (12)

Default: MATCHGN =NO

Default: BRANCH=NO

class name addr: 1-8 character name
Default: CLASS= USER

,SEGMENT= 'segment name'
,SEGMENT= 'segment name addr'

,FIELDS= field addr

,SEGDATA=segment data addr

If TYPE= ENCRYPT is specified:

,ENCRYPT= (data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT= (data addr,INST)
,ENCRYPT= (data addr,STDDES)

,BRANCH=YES
,BRANCH=NO

segment name: 1-8 character name
segment name addr: RX-type address or register (2) - (12)

field addr: RX-type address or register (2) - (12)

segment data addr: RX-type address or register (2) - (12)

data addr: RX-type address or register (2) - (12)

Default: BRANCH= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST= EXTRACT macro with the following exception:

,MF= (E,ctr/ addr}
specifies the execute form of the RAC ROUTE REQUEST= EXTRACT macro using a
remote control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE - number
,RELEASE= (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST.,.. EXTRACT macro can be done by specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

RACROUTE REQUEST=EXTRACT (for RACF Release 1.9) 527

RACROUTE REQUEST= EXTRACT (Modify Form)
The modify form of the RACROUTE REQUEST= EXTRACT macro is written as follows:

name

b

RACROUTE

b

REQUEST= EXTRACT

,TYPE= EXTRACT
,TYPE= EXTRACTN
,TYPE= REPLACE

,TYPE= ENCRYPT

,ENTITY= profile name addr

,ENTITYX =extended profile name
addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,ACEE = acee addr

,VOLSER =vol addr

,GENERIC= ASIS
,GENERIC= ONLY

,FLDACC =YES
,FLDACC=NO

,MF=(M,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

profile name addr: RX-type address or register (2) - (12)

extended profile name addr: RX-type address or register (2) -
(12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

acee addr: RX-type address or register (2) - (12)

vol addr: RX-type address or register (2) - (12)

Default: GENERIC= ASIS

Default: FLDACC =NO

ctr/ addr: RX-type address register (1), or register (2) - (12)

If TYPE= EXTRACT or EXTRACTN is specified:

,SUBPOOL = subpool number

,DERIVE=YES

,CLASS='c/ass name'

,CLASS=c/ass name addr

,SEGMENT= segment name addr
,FIELDS= field addr

,MATCHGN=YES
,MATCHGN=NO

,BRANCH= YES
,BRANCH=NO

If TYPE= REPLACE is specified:

,CLASS= 'class name'

528 SPL: Application Development Macro Reference

subpool number: Decimal digit 0-255
Default: SUBPOOL = 229

See explanation of keyword.
Default: Normal processing

class name: 1-8 character name
Defautt: CLASS= USER

class name addr: RX-type address or register (2) - (12)

segment name addr: RX-type address or register (2) - (12)
field addr: RX-type address or register (2) - (12)

Default: MATCHGN =NO

Default: BRANCH= NO

class name: 1-8 character name
Default: CLASS=USER

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS= field addr

,SEGDATA=segmentdata addr

If TYPE= ENCRYPT is specified:

,ENCRYPT=(data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT= (data addr,INST)
,ENCRYPT=(data addr,STDDES)

,BRANCH=YES
,BRANCH=NO

segment name: 1-8 character name
segment name addr: RX-type address or register (2) - (12)

field addr: RX-type address or register (2) - (12)

segment data addr: RX-type address or register (2) - (12)

data addr: RX-type address or register (2) - (12)

Default: BRANCH= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST= EXTRACT macro with the following exception:

,MF-{M,ctr/ addr)
specifies the modify form of the RACROUTE REQUEST= EXTRACT macro using a
remote control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE• number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST= EXTRACT macro can be done by specifying the CHECK
subparameter on the modify form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done.

RACROUTE REQUEST=EXTRACT (for RACF Release 1.9) 529

530 SPL: Application Development Macro Reference

RACROUTE REQUEST=FASTAUTH-Verifies Access to Resources (for RACF
Release 1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earller Installed on your system, see the followlng:

• "RACROUTE- MYS Router Interface (for RACF Release 1.8.1 or earller)" on page 435

• "FRACHECK- Check User's Authorization {for RACF Release 1.8.1 or earller)" on
page 243. (IBM recommends that you use RACROUTE with the REQUEST=FASTAUTH
parameter rather than FRACHECK.)

The RACROUTE REQUEST=FASTAUTH macro is used to check a user's authorization for
access to a resource. RACROUTE REQUEST=FASTAUTH verifies access to those
resources whose RACF profiles have been brought into main storage by the RACROUTE
REQUEST= RACLIST facility. RACROUTE REQUEST=FASTAUTH is a branch entered
service that does not save registers upon entry. Registers 0-5, 14, and 15 are used by the
RACROUTE REQUEST=FASTAUTH macro and are not restored. Registers 6-13 are not
altered by RACROUTE REQUEST=FASTAUTH.

CAUTION:
The RACROUTE REQUEST• FASTAUTH macro executes In the addressing mode of the
caller. Therefore, to access proflles that reside above 16 megabytes, the program that
Issues RACROUTE REQUEST• FASTAUTH must be running In 31-blt addressing mode when
It Issues RACROUTE REQUEST•FASTAUTH.

The standard form of the RACROUTE REQUEST= FASTAUTH macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= FASTAUTH

,ENTITY= entity addr

,CLASS= 'class name'
,CLASS= class name addr

,ATTR=READ
,ATTR=UPDATE
,A TTR =CONTROL
,A TTR =Al TER
,ATTR=reg

,ACEE= acee addr

,WKAREA=area addr

,APPL= 'applname'
,APPL= applname addr

,INSTLN = parm list addr

,RELEASE= number

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

entity addr: A-type address or register (2) - (12)

class name: DASDVOL or TAPEVOL
class name addr: A-type address or register (2) - (12)

Defautt: ATTR=READ

reg: registers (2) - (12)

acee addr: A-type address or register (2) - (12)

area addr: A-type address or register (2) - (12)

applname: 1-8 character name
applname addr: A-type address or register (2) - (12)

parm list addr: A-type address or register (2) - (12)

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Defautt: RELEASE= 1.6

531

The parameters are explained as follows:

,ENTITY - profile name addr
specifies that RACF authorization checking is to be performed for the resource whose
name is pointed to by the specified address. The resource name is a 6-byte volume
serial number for CLASS= DASDVOL or CLASS= T APEVOL. The name must be left
justified and padded with blanks. The length of all other resource names is determined
from the class descriptor tables.

,CLASS- 'class name'
,CLASS== class name addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to an 8-byte field
containing the classname.

,ATTR•READ
,ATTA= UPDATE
,ATTA• CONTROL
,ATTR=ALTER
,ATTA-reg

specifies the access authority required by the user or group accessing the resource:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to read or write.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-VSAM data sets and other resources, RACF
user or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02'-READ
X'04' - UPDATE
X'08' - CONTROL
X'80' - AL TEA

,ACEE== acee addr
specifies the address of the accessor control environment element (ACEE) to be used
to check authorization and to locate the in-storage profiles (REQUEST= LIST) output)
for the specified classes. If an ACEE is specified, it is used for authorization checking.
If the specified ACEE has an in-storage profile list for the specified class, it is used to
locate the resource. If an ACEE is not specified or if there is no in-storage profile list
for the specified class in the ACEE, RACF uses the TASK ACEE (TCBSENV) pointer in
the extended TCB. Otherwise, or if the TASK ACEE pointer is zero, RACF uses the
main ACEE for the address space to obtain the list of the in-storage profiles. The main
ACEE is pointed to by the ASXBSENV field of the address space extension block.

,WKAREA=area addr
specifies the address of a 16-word work area to be used by RACROUTE
REQUEST=FASTAUTH which contains the following information:

Word 12 contains the reason code that ICHRFCOO will pass back to the RACROUTE
REQUEST= FASTAUTH caller via Register 0.

Word 13 contains the return code that RACROUTE REQUEST= FASTAUTH passes
back to the caller in register 15.

Word 14 contains the address of the in-storage profile used to determine
authorization, or zero if no profile was found.

Word 15 contains a value provided by a pre-processing installation exit, or zero if
there was no pre-processing exit. This will be passed back to the caller in register
1.

532 SPL: Application Development Macro Reference

,APPL- 'applname'
,APPL= app/name addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If an address is specified, it should point to an 8-byte area
containing the application name, left justified and padded with blanks, if necessary.

,INSTLN == parm list addr
specifies the address of an area that contains information for the RACROUTE
REQUEST= FASTAUTH installation exit. This address is passed to the exit routine
when the exit is given control. The INSTLN parameter is used by application or
installation programs to pass information to the RACROUTE REQUEST=FASTAUTH
installation exit.

,RELEASE= number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RAC ROUTE REQUEST= FASTAUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal
Code Meaning

00 The user or group is authorized to use the resource.

04

08

oc
10

Reason
Code Meaning

0 The RACROUTE REQUEST=FASTAUTH return code indicates If
the caller is authorized or not authorized to the resource, but the
access attempt is not within the scope of the audit/global audit
specification.

4 The RACROUTE REQUEST=FASTAUTH return code indicates if
the caller is authorized or not authorized to the resource, but the
access attempt is within the scope of the audit/global audit
specification. The RACROUTE REQUEST=FASTAUTH caller
should log the attempt by issuing a RAC ROUTE REQUEST= AUTH
for the resource that the caller is attempting to access.

The resource or classname is not defined to RACF.

The user or group is not authorized to use the resource.

Reason
Code Meaning

0 The RACROUTE REQUEST=FASTAUTH return code indicates if
the caller is authorized or not authorized to the resource, but the
access attempt is not within the scope of the audit/global audit
specification.

4 The RACROUTE REQUEST=FASTAUTH return code indicates if
the caller is authorized or not authorized to the resource, but the
access attempt is within the scope of the audit/global audit
specification. The RACROUTE REQUEST=FASTAUTH caller
should log the attempt by issuing a RACROUTE REQUEST= AUTH
for the resource that the caller is attempting to access.

RACF is not active.

RAC ROUTE REQUEST= FASTAUTH installation exit error occurred.

RACROUTE REQUEST=FASTAUTH (for RACF Release 1.9) 533

14

24

64

534 SPL: Application Development Macro Reference

RACF CVT does not exist (RACF Is not installed or insufficient level of RACF
is Installed).

Indicates the profile has a conditional access list, the port-of-entry field In
the security token is blank-filled, and the port-of-entry class is active.

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST= FAST AUTH
macro; however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

RACROUTE REQUEST= FASTAUTH (List Form)

The list form of the RAC ROUTE REQUEST= FASTAUTH macro is written as follows:

name

b

RACROUTE

b

REQUEST= FASTAUTH

,ENTITY= entity addr

,CLASS= 'class name'
,CLASS= class name addr

,ATIR=READ
,ATIR=UPDATE
,ATIR =CONTROL
,ATIR=ALTER

,ACEE= acee addr

,WKAREA=area addr

,APPL= 'applname'
,APPL= applname addr

,INSTLN = parm list addr

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

entity addr: A-type address

class name: DASDVOL or TAPEVOL.
class name addr: A-type address

Delauft: ATIR=READ

acee addr: A-type address

area addr: A-type address

applname addr: A-type address

parm list addr: A-type address

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Delauft: RELEASE= 1.6

The parameters are explained under the standard form of the RACROUTE
REQUEST= FASTAUTH macro, with the following exception:

,MF•L
specifies the list form of the RACROUTE REQUEST= FASTAUTH macro.

RACROUTE REOUEST=FASTAUTH (for RACF Release 1.9) .535

RACROUTE REQUEST= f ASTAUTH (Execute form)
The execute form of the RACROUTE REQUEST= FAST AUTH macro is written as follows:

name

b

RAC ROUTE

b

REQUEST=FASTAUTH

,ENTITY= entity addr

,CLASS= class name addr

,ATIR=READ
,ATIR=UPDATE
,ATIR=CONTROL
,ATIR=ALTER
,ATIR=reg

,ACEE= acee addr

,WKAREA=area addr

,APPL= applname addr

,INSTLN =pa rm list addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (.CHECK)

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.
REQUEST=FASTAUTH.

entity addr: RX-type address or register (2) - (12)

class name addr: RX-type address or register (2) - (12)

reg: register (2) - (12)

acee addr: RX-type address or register (2) - (12)

area addr: RX-type address or register (2) - (12)

applname addr: RX-type address or register (2) - (12)

parm list addr: RX-type address or register (2) - (12)

number: 1.9, 1.8.1, 1.8, 1.7, 1.6
Delaull: RELEASE= 1.6

ctr/ addr: RX-type address or register (1) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST=FASTAUTH macro, with the following exception:

,MF== {E,ctr/ addr)
specifies the execute form of the RACROUTE REQUEST= FASTAUTH macro, using a
remote control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE ... (,CHECK)

specifies the RACF release level of the parameter list to be generated by the macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RAC ROUTE REQUEST= FASTAUTH macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

536 SPL: Application Development Macro Reference

RACROUTE REQUEST= LIST - Build In-Storage Profiles (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier Installed on your system, see the following:

• "RACROUTE - MVS Router Interface (for RACF Release 1.8.1 or earlier)" on page 435

• "RACLIST- Build In-Storage Profiles (for RACF Release 1.8.1 or earlier)" on page 429.
(IBM recommends that you use RACROUTE with the REQUEST= LIST parameter rather
than RACLIST.)

RACROUTE REQUEST= LIST is used to build in-storage profiles for RACF defined
resources. RACROUTE REQUEST= LIST processes only those resources described by
class descriptors. The primary advantage of using the RACROUTE REQUEST= LIST macro
is to use the resource grouping function and to improve resource authorization checking
performance.

The module calling the RACROUTE REQUEST=LIST macro must either be authorized
(APF-authorized, in system key 0-7, or in supervisor state) or re-entrant in the
RACF-authorized caller table and fetched from an authorized library.

Note: If the ACEE is below 16-megabytes, any area, with the exception of generic profiles,
chained off an ACEE (for example, RACLIST profiles, list-of-groups table) will be placed
below 16-megabytes. Otherwise, the area will be placed above the line. However, a caller
executing in 31-bit mode may issue a REQUEST= LIST with LOC =ABOVE, and the profiles
will be placed above 16-megabytes, if possible, even if the ACEE is below 16-megabytes.

The standard form of the RACROUTE REQUEST= LIST macro is written as follows:

name

b
RACROUTE
b

REQUEST= LIST

,CLASS= 'class name'
,CLASS= class name addr

,LIST= list addr

,FILTER= filter addr

,ACEE= aoee addr

,INSTLN =pa rm list addr

,APPL= 'applname'
,APPL= applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR=CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

,RELEASE= number

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

class name: 1-8 character name
class name addr: A-type address or register (2) - (12)

list addr: A-type address or register (2) - (12)

filter addr: A-type address or register (2) - (12)

acee addr: A-type address or register (2) - (12)

parm list addr: A-type address or register (2) - (12)

applname 1~8 character name
applname addr: A-type address or register (2) - (12)

sub#1,sub#2: Decimal digit 0-255

Default: ENVIR=CREATE

Default: OWNER= NO
Default: See parameter description

Note: LOC can be coded only if REOUEST=VERIFY or
REQUEST= LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

537

The parameters are explained as follows:

CLASS - 'class name'
CLASS- class name addr

specifies that RACROUTE REQUEST= LIST is to build an in-storage profile for the
resources of the specified class. If an address is specified, the address must point to
an 8-byte field containing the class name, left justified and padded with blanks, if
necessary. The class name must be defined by a class descriptor; if not, the class is
not considered to be defined.

,LIST-addr
specifies the address of a list of resource names for which RACROUTE
REQUEST=LIST is to build the in-storage profiles. The list consists of a 2-byte field
containing the number of the names in the list, followed by one or more variable length
names. Each name consists of a 1-byte length field, which is the length of the name,
followed by the name. A zero in the 2-byte field causes the operand to be omitted. If
LIST= is omitted, in-storage profiles are built for all the profiles defined to RACF in the
given class as well as each member for a resource grouping associated with the
specified class.

Note: This operand can be specified only with ENVIR =CREATE. If ENVIR =DELETE is
specified, the RACROUTE REQUEST= LIST macro issues a return code of 18.

,FILTER - filter addr
specifies the address of a generic filter string which RACF uses to search the RACF
data set and select profile names for which RACROUTE REQUEST= LIST will build
in-storage profiles. The filter consists of a 2-byte length field followed by the filter
string. The filter string length must not exceed the length of the profile name as it Is
specified in the class descriptor table.

The following generic characters have special meaning when used as part of the filter
string:

• % - (1 Character in a name)

You can use the percent sign to represent any one character in the profile name,
including a generic character. For example, if you specify DASO%% as a filter
string, it can represent profile names such as DASD01, DASD2A, and DASD%5. If
you specify%%%%% as a filter string, it can represent profile names such as
DASD1, DASD2, DASO%, TAPE%, MY%%%, TAPE* and%%%%*.

• * - (0 - n characters in a qualifier)

You can use a single asterisk to represent any zero or more characters In a
qualifier, including generic characters. For example, AF*.CD can represent profile
names such as AF.CD, ABEF.CD, and ABX.CD. A single asterisk can also represent
an entire qualifier. For example, ABC.* represents profile names such as ABC.D,
AFC.DEF, ABC.%%%, and ABC.%/DE. RACF generic profiles do not allow a* in
the high level qualifier; however, the FILTER operand does allow it.

• ** - (0 - n qualifiers in a name)

You can use a double asterisk to represent zero or more qualifiers in the profile
name. For example, AB.*" .CD represents profile names such as AB.CD,
AB.DE.EF.CD, and AB.XYZ.CD. You can also specify •• as the only characters in the
filter-string to represent any entire profile name. You cannot specify other
characters with** within a qualifier. For example, you can specify USER1.**, but
not USER1 .A**.

Notes:

1. You cannot specify FILTER with LIST on the same RACLIST invocation because the
two keywords are mutually exclusive.

2. You can only specify the FILTER keyword with ENVIR =CREATE. If you specify
ENVIR = DELETE, RACLIST returns a return code of 18.

538 SPL: Application Development Macro Reference

,ACEE• acee addr
specifies the address of the accessor control environment element (ACEE). The ACEE
points to the in-storage profiles. If an ACEE is not specified, RACF uses the TASK
ACEE pointer in the extended TCB called the TCBSENV. Otherwise, or if the TASK
ACEE pointer is zero, RACF uses the main ACEE to obtain the list of the in-storage
profiles. The main ACEE is pointed to by the ASXBSENV field of the address space
extension block. If an ACEE is not specified and there is no main ACEE, the in-storage
profiles are not constructed.

,INSTLN == parm list addr
specifies the address of an area that contains parameter information for the RACLIST
installation exit. The address is passed to the installation exit when the exit is given
control by the RACLIST routine. The INSTLN parameter can be used by an application
or an installation program to pass information to the RACLIST installation exit.

,APPL• 'applname'
,APPL- app/name addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If an address is specified, it should point to an 8-byte area
containing the application name, left justified and padded with blanks, if necessary.

,SUBPOOL - (sub#1,sub#2)
specifies the subpool numbers of the storage into which the components of the
in-storage profiles are to be built. Sub#1 represents the subpool of the profile index.
Sub#2 represents the subpool of the profile proper. If the subpools are not specified
they default to subpool 255. Registers can be used to specify sub#1 and sub#2.

,ENVIR •CREATE
,ENVIR = DELETE

specifies the action to be performed by the RACROUTE REQUEST= LIST macro.

CREATE - In-storage profiles for the specified class are to be built. The RACROUTE
REQUEST= LIST function issues a return code of 18, if an in-storage list currently exists
for the specified class.

DELETE - The in-storage profiles for the specified class are to be freed. If class is not
specified, the in-storage profiles for all classes are freed.

Note: It is the responsibility of the user issuing the RACROUTE REQUEST= LIST macro
to assure that no multi-tasking that results in the issuing of a RACROUTE
REQUEST= AUTH, RACROUTE REQUEST= FASTAUTH, RAC ROUTE
REQUEST=VERIFY, RACROUTE REQUEST=LIST macro occurs at the same time that
the RACROUTE REQUEST= LIST occurs.

,OWNER•YES
,OWNER=NO

specifies that the resource owner is to be placed in the profile access list with the
ALTER authority. If the OWNER= operand is omitted, the default is NO.

,LOC=BELOW
,LOC=ANY
,LOC•ABOVE

LOC can be coded only if REQUEST= VERIFY or REQUEST= LIST is coded.

For REQUEST= VERIFY:
specifies whether the ACEE and related data areas are to be allocated storage below
16 megabytes (LOC=BELOW), or anywhere (LOC=ANY).

RACROUTE REQUEST= LIST (for RACF Release 1.9) 539

If any of the following is true, LOC =BELOW is the default, and LOC =ANY is ignored if
specified:

• The ACEE= parameter is not coded.
• The caller is executing in 24-bit mode.

In all other cases, the default is LOC =ANY.

Note: LOC=ABOVE is invalid for REQUEST= VERIFY.

For REQUEST= LIST:
specifies whether the RACROUTE REQUEST=LIST profiles are to reside where the
ACEE Is located, above or below 16 megabytes (LOC =ANY), or whether the
RACROUTE REQUEST= LIST profiles are to reside above 16 megabytes
(LOC =ABOVE), If possible, even if the ACEE is below 16 megabytes.

Notes:

1. LOC=BELOW is invalid for RACROUTE REQUEST= LIST.

2. LOC=ANY does not guarantee that storage is allocated above 16 megabytes. If any
installation SAF or RACF exit routines execute in 24-bit mode, the storage will be
below 16 megabytes.

,RELEASE= number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= LIST macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

540 SPL: Application Development Macro.Reference

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00 RACROUTE REQUEST=LIST function completed successfully.

04 Unable to perform the requested function. Register 0 contains additional
codes as follows:

08

oc
10

14

18

20

1C

0 - Unable to establish an ESTAE environment.

1 - The function code (the third byte of the parameter list) does not
represent a valid function. '01' represents the RACF manager; '02'
represents the RACROUTE REQUEST= LIST macro.

The specified class is not defined to RACF.

An error was encountered during RACROUTE REQUEST= LIST processing.

RACF and/or the resource class is not active.

RACLIST installation exit error occurred.

Parameter list error. Register 0 contains additional codes as follows:

0 - No ACEE found
4- Class already RACLISTed
8 - Invalid name length in list of names
C - LIST or FILTER specified on delete request
10 - Invalid request type (not DEFINE or DELETE)
14 - LIST and FILTER specified (they are mutually exclusive)

Invalid filter sequence

RACF CVT does not exist (RACF is not installed) or an insufficient level of
RACF is installed.

64 Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST= LIST macro;
however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

Note: If the resource class specified by the CLASS= operand is inactive, RACROUTE
REQUEST= LIST does not build the in-storage profiles and a code of OC is returned. If the
resource group class is not active, RACROUTE REQUEST= LIST builds an in-storage profile
but only from the individual resource profiles; resource group profiles are ignored.

RACROUTE REQUEST=LIST (for RACF Release 1.9) 541

Example 1
Operation: Use the standard form of the macro to build in-storage profiles for all the
profiles in the class named CLASSNAM, and chain them off the ACEE whose address is
pointed to by ACEEADDR.

RACROUTE REQUEST=LIST,CLASS=CLASSNAM,ACEE=ACEEADDR,ENVIR=CREATE,
RELEASE=l.9

Example 2
Operation: Use the standard form of the macro to build in-storage profiles for all the
profiles whose names are in a list named PROFLIST and a class named CLASSNAM. Chain
them from the task ACEE or address space ACEE.

RACROUTE REQUEST=LIST,CLASS=CLASSNAM,LIST=PROFLIST,ENVIR=CREATE,
RELEASE=l.9

Example 3
Operation: Use the standard form of the macro to delete the in-storage profiles for the
CLASSNAM class.

RACROUTE REQUEST=LIST,CLASS=CLASSNAM,ENVIR=DELETE,RELEASE=l.9

542 SPL: Application Development Macro Reference

RACROUTE REQUEST= LIST (List Form)

The list form of the RAC ROUTE REQUEST= LIST macro is written as follows:

name

b

RACROUTE

b

REQUEST= LIST

,CLASS= 'class name'
,CLASS=class name addr

,LIST= list addr

,FIL TEA= filter addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

class name: 1-8 character name
class name addr: A-type address

list addr: A-type address

filter addr: A-type address

acee addr: A-type address

parm list addr: A-type address

applname addr: A-type address

sub#1,sub#2: Decimal digit 0-255
Default: 255.

Default: ENVIR = CREATE

Delautt: OWNER= NO

Delautt: See parameter description

Note: LOC can be coded only if REQUEST= VERIFY or
REQUEST=LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

The parameters are explained under the standard form of the RACROUTE REQUEST= LIST
macro with the following exception:

,MF=L
specifies the list form of the RACROUTE REQUEST= LIST macro.

RACROUTE REQUEST=LIST (for RACF Release 1.9) 543

RACROUTE REQUEST= LIST (Execute Form)
The execute form of the RACROUTE REQUEST= LIST macro Is written as follows:

name

RACROUTE

REQUEST= LIST

,CLASS= class name addr

,LIST= list addr

,FIL TEA= filter addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF=(E,.ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

class name addr: RX-type address or register (2) - (12)

list addr: RX-type address or register (2) - (12)

filter addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

parm list addr: RX-type address or register (2) - (12)

applname addr: RX-type address or register (2) - (12)

sub#1,sub#2: Decimal digit 0-255

DefauU: See parameter description

Note: LOC can be coded only if REQUEST= VERIFY or
REQUEST=LIST Is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

ctr/ addr: RX-type address or register (2) - (12)

The parameters are explained under the standard form of the RACROUTE REQUEST= LIST
macro with the following exception:

,MF - (E,ctr/ addr}
specifies the execute form of the RACROUTE REQUEST= LIST macro using a remote
control program parameter list.

,RELEASE- (number1CHECK)
,RELEASE• number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking Is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= LIST macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing Is requested, if the size of the list-form expansion Is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute .form of the macro, the execute form of the macro will not be done.

544 · SPL: Application Development Macro Reference

RACROUTE REQUEST= LIST (Modify Form)
The modify form of the RACROUTE REQUEST= LIST macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RACROUTE

b One or more blanks must follow RACROUTE.

REQUEST= LIST

,CLASS= class name addr

,LIST= list addr

,FILTER= filter addr

,ACEE= acee addr

,INSTLN = parm list addr

,APPL= applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR =CREATE
,ENVIR =DELETE

,OWNER=YES
,OWNER=NO

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF=(M,ctr/ addr)

class name addr: RX-type address or register (2) - (12)

list addr: RX-type address or register (2) - (12)

filter addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

parm list addr: RX-type address or register (2) - (12)

app/name addr: RX-type address or register (2) - (12)

sub#1,sub#2: Decimal digit 0-255

Default: See parameter description

Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST=LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

ctr/ addr: RX-type address or register (2) - (12)

The parameters are explained under the standard form of the RACROUTE REQUEST= LIST
macro with the following exception:

,MF-{M,ctr/ addr}
specifies the modify form of the RACROUTE REQUEST= LIST macro using a remote
control program parameter list.

,RELEASE== (number,CHECK)
,RELEASE= number
,RELEASE• {,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST= LIST macro can be done by your specifying the CHECK
subparameter on the modify form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done.

RACROUTE REQUEST=LIST (for RACF Release 1.9) 545

546 SPL: Application Development Macro Reference

RACROUTE REQUEST= STAT • Determine RACF Status (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

This macro description applies to RACF Release 1.9. Do not attempt to execute a program
with new Release 1.9 functions until you have Installed RACF Release 1.9. II you have
RACF Release 1.8.1 or earlier Installed on your system, see "RACSTAT ·Determines the
Status of RACF (for RACF Release 1.8.1 or earlier)" on page 607.

The RACROUTE REQUEST=STAT macro is used to determine if RACF is active and
optionally determine if RACF protection is in effect for a given resource class. The
RACROUTE REQUEST= ST AT macro can also be used to determine if a resource class
name is defined to RACF.

RACROUTE REQUEST=STAT is a branch entered service that uses standard linkage
conventions.

To use this service, you must also specify RELEASE= 1.9.

The standard form of the RACROUTE REQUEST= ST AT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RACROUTE

b One or more blanks must follow RACROUTE.

REQUEST= STAT

,CLASS= 'class name'
,CLASS=c/ass name addr

class name: DATASET, DASDVOL, or TAPEVOL, or any class
defined in the RACF class descriptor table
class name addr: A-type address or register (2) - (12)

,ENTRY= entry addr entry addr: A-type address or register (2)- (12)

,RELEASE= number number: 1.9

The parameters are explained as follows:

,CLASS• 'class name'
,CLASS - class name addr

specifies the classname for which RACF authorization checking is performed. The
name can be explicitly defined on the macro by enclosing the name in quotes. If
specified, the address must point to an 8-byte field containing the classname, left
justified and padded with blanks if necessary. If CLASS= is omitted, the status of
RACF is returned.

,ENTRY"" entry addr
specifies the address of a 4-byte area that is set to the address of the specified class in
the RACF class descriptor table. This operand is ignored when the CLASS= operand
is omitted.

,RELEASE= number
specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=STAT macro can be done by specifying the CHECK
subparameter on the execute form of the macro.

547

Return Codee
When you execute the macro, space for the return code and reason codes Is reserved In the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal
Code Meaning

00 RACF is active and, if CLASS= was specified, the class is active.

04 RACF is active; the class is ln~tive.

08 RACF is active; the class is not defined to RACF.

OC RACF is inactive and, if CLASS= was specified, the class is active.

10 RACF is inactive; the class Is inactive.

14 RACF is Inactive; the class is not defined to RACF.

18 RACF CVT does not exist (RACF is not Installed) or an insufficient level of
RACF is installed.

64 Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST=STAT macro;
however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

Note: The class descriptor entry for the specified class Is returned to the caller (in the
4-byte area addressed by the entry addr), for return codes 00, 04, OC, and 10.

Example 1
Operation: Determine If the DASDVOL class is active and retrieve the address of Its class
descriptor. A fullword, CDADDR, contains the class descriptor address.

RACROUTE REQUEST=STAT,CLASS•'OASOVOL',ENTRY=COAOOR,RELEASE=l.9

548 SPL: Application Development Macro Reference

RACROUTE REQUEST= STAT (List Form)
The list form of the RACROUTE REQUEST= ST AT macro is written as follows:

name

RAC ROUTE

REQUEST= STAT

,CLASS= 'class name'
,CLASS= class name addr

,ENTRY= entry addr

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

class name: DATASET, DASDVOL, or TAPEVOL.
class name addr: A-type address

entry addr: A-type address

number: 1.9

The parameters are explained under the standard form of the RACROUTE REQUEST= ST AT
macro with the following exception:

,MF-L
specifies the list form of the RACROUTE REQUEST= ST AT macro.

RACROUTE REQUEST=STAT (for RACF Release 1.9) 549

RACROUTE REQUEST= STAT (Execute Form)
The execute form of the RACROUTE REQUEST= ST AT macro is written as follows:

name

b

RACROUTE

b

REQUEST=STAT

,CLASS= 'class name'
,CLASS= class name addr

,ENTRY= entry addr

,RELEASE= (numberCHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

class name: DATASET, DASDVOL, or TAPEVOL.
class name addr: RX-type address or register (2) • (12)

entry addr: RX-type address or register (2) • (12)

number: 1.9

ctr/ addr: RX-type address or register (1) • (12)

The parameters are explained under the standard form of the RACROUTE REQUEST=STAT
macro, with the following exception:

,MF= {E,ctr/ addr)
specifies the execute form of the RAC ROUTE REQUEST= ST AT macro, using a remote
control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= {,CHECK)

specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACSTAT macro can be done by specifying the CHECK subparameter on the execute
form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

550 SPL: Application Development Macro Reference

RACROUTE REQUEST= STAT (Modify Form)
The modify form of the RAC ROUTE REQUEST= STAT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RACROUTE

b One or more blanks must follow RACROUTE.

REQUEST= STAT

,CLASS= 'class name'
,CLASS=c/ass name addr

,ENTRY= entry addr

,RELEASE= (numberCHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,MF= (M,ctr/ addr)

class name: DATASET, DASDVOL, or T APEVOL.
class name addr: RX-type address or register (2) - (12)

entry addr: RX-type address or register (2) - (12)

number: 1.9

ctr/ addr: RX-type address or register (1) - (12)

The parameters are explained under the standard form of the RACROUTE REQUEST= STAT
macro, with the following exception:

,MF= (M,ctr/ addr)
specifies the execute form of the RACROUTE REOUEST=STAT macro, using a remote
control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= {,CHECK)

specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACSTAT macro can be done by specifying the CHECK subparameter on the modify
form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the modify form of the macro will not be done.

RACROUTE REQUEST=STAT (for RACF Release 1.9) 551

552- SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENBLD • Modify a UTOKEN (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

Whereas the RACROUTE REQUEST=VERIFYX is used to build a TOKEN, TOKENBLD is
used to modify an existing token. The TOKNIN keyword specifies the location of the existing
token from which a modified token is to be built. Note that the modification does not change
the input token; instead, the function builds a new modified token from the parameters
provided. The TOKNOUT keyword specifies the location where the new modified token will
be built.

The following order of priority exists when replacing the fields in the existing TOKEN:

• Keywords specified on the request

• The SUSER, SNODE, and SGROUP fields within the token specified by the STOKEN
keyword.

• All fields within the token specified by the TOKNIN keyword.

Thus, if you do not want certain fields overridden, do not specify keywords for those fields.

To issue the RACROUTE REQUEST=TOKENBLD macro, the calling module must be
'authorized' which means

• APF-authorized, or
• In system key 0-7, or
• in supervisor state

To use this service, you must also specify RELEASE= 1.9.

The standard form of the RACROUTE REQUEST= TOKENBLD macro is written as follows:

name

RACROUTE

REQUEST=TOKENBLD

,USERID = userid addr

,GROUP= group addr

,TERM ID= terminal addr

,RELEASE= number

,TOKNIN =Input token addr

,TOKNOUT =output token addr

,STOKEN=stoken addr

,SECLABL = seclabel addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERID =submitting userld addr

,SGROUP=submitting group addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must precede RACROUTE.

userld addr: A-type address or register (2) - (12)

group addr: A-type address or register (2) - (12)
Default: GROUP=zero

terminal addr: A-type address or register (2) - (12)

number: 1.9

input token addr: A-type address or register (2) - (12)

output token addr: A-type address or register (2) - (12)

stoken addr: A-type address or register (2) - (12)

seclabel addr: A-type address or register (2) - (12)

execution node addr: A-type address or register (2) - (12)

submitting node addr: A-type address or register (2) - (12)

submitting userid addr: A-type address or register (2) - (12)

submitting group addr: A-type address or register (2) - (12)

553

, POE= port of entry addr

,SESSION= TSO
,SESSION= NJEBATCH
,SESSION= RJEBATCH
,SESSION= INTBATCH
,SESSION= EXTBATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER
,SESSION= NJEUNKN

,TRUSTED=YES
,TRUSTED=NO

port of entry addr: A-type address or register (2) - {12)

Default: SESSION= TSO

Default: TRUSTED= NO

The parameters are explained as follows:

,USERID ... userid addr
specifies the identification of the operator who has entered the system. The address
points to a 1-byte length field, followed by the userid.

,GROUP ... group addr
specifies the group of the user who has entered the system. The address points to a
1-byte length field, followed by the group name.

,TERM ID= terminal addr
specifies the address of the identifier of the terminal through which the user is
accessing the system. The address points to an 8-byte area containing the terminal
identifier. The area must reside in a non-task-related storage subpool.
specifies the RACF release level of the parameter list to be generated by this macro.

To use the parameters associated with a release, you must specify the release number
of that release or a later release number. If you specify an earlier release level, the
parameter will not be accepted by macro processing, and an error message will be
issued at assembly time.

When you specify the RELEASE keyword, checking is done at assembly time.

,TOKNIN =input token addr
specifies the address of the UTOKEN or RTOKEN that is to be used as a base for the
output token.

The UTOKEN fields are mapped in ICHRUTKN in the Data Areas chapter of the SPL:
RACF.

, TOKNOUT =output token addr
specifies the address of the caller-provided area for the modified token data. The first
byte of TOKNOUT contains the actual token length. This provides for downward
compatibility with all versions of the token map.

If you specify an STOKEN, the USERID in the STOKEN becomes the SUSER in
TOKNOUT, unless you specified the SUSER keyword, in which case, that keyword
becomes SUSER in TOKNOUT. In the same way, if you specified NODE in the STOKEN,
that becomes the SNODE in TOKNOUT, unless you specified the SNODE keyword.
Likewise, if you specified GROUP in the STOKEN, that becomes SGROUP in the
TOKNOUT, unless you specified the SGROUP keyword. These are the only fields that
are used from the STOKEN. In all cases, the specified keywords on the request
override the fields of the STOKEN, if one is specified.

554 SPL: Application Development Macro Reference

,STOKEN .. stoken addr
specifies the address of the submittor's UTOKEN The first byte contains the length of
the UTOKEN, and the second byte contains the version number. See the ICHRUTKN
mapping in the Data Areas Chapter of the SPL: RACF for the current version and
release.

If you specify an STOKEN, the USERID in the STOKEN becomes the SUSER in
TOKNOUT, unless you specified the SUSER keyword, in which case, that keyword
becomes SUSER in TOKNOUT. In the same way, if you specified NODE in the STOKEN,
that becomes the SNODE in TOKNOUT, unless you specified the SNODE keyword.
Likewise, if you specified GROUP in the STOKEN, that becomes SGOUP in the
TOKNOUT, unless you specified the SGROUP keyword. These are the only fields that
are used from the STOKEN. In all cases, the specified keywords on the request
override the fields of the STOKEN, if one is specified.

,SECLABL == seclabel addr
specifies the address of an 8-byte left-justified field, padded to the right with blanks
which contains the SECLABEL.

An installation would use SECLABELs to establish an association between a specific
RACF security level (SECLEVEL) and a set of (zero or more) RACF security categories
(CATEGORY). In a 81 system, it is necessary to use SECLABELs to prevent the
unauthorized movement of data from one level to another when multiple levels of data
are in use on the system at the same time. See the RACF Security Administrator's
Guide for further information.

,EXENODE - execution node addr
specifies the address of an area that contains a one byte length field followed by the
name of the node on which the unit of work is to be executed. The node name cannot
exceed eight bytes.

,SNODE= submitting node addr
specifies the address of an area that contains a 1-byte length field followed by the name
of the node from which the unit of work was submitted. The node name cannot exceed
eight bytes.

,SUSERID •submitting userid addr
specifies the address of an area that contains a one byte length field followed by the
userid of the user who submitted the unit of work. The userid cannot exceed eight
bytes.

,SGROUP ==submitting group addr
specifies the address of an area that contains a 1-byte length field followed by the
groupid of the user who submitted the unit of work. The groupid cannot exceed eight
bytes.

,POE== port of entry addr
specifies the address of the port of entry into the system, that is, the name of the input
device through which the job was submitted.

The port of entry will be a part of the user's security token (UTOKEN). A flag in the
UTOKEN uniquely identifies the RACF general resource class to which the data in the
POE field belongs: TERMINAL, CONSOLE, or JESINPUT. The RACF class JESINPUT
provides the conditional access support for commands/jobs entered into the system
through a JES input device and the CONSOLE class performs the same task for
commands/jobs that originate from a console. The TERMINAL class covers the
commands/jobs that originate from a VTAM session, for example, TSO.

,SESSION - type
specifies the session type(s) to be associated with the request. You can specify mutiple
sessions, separated by commas, if necessary. For example,
SESSION= CONSOPER,SYSAS. Session types are literals.

RACROUTE REOUEST=TOKENBLD (for RACF Release 1.9) 555

The allowable session types are:

• SYSAS = session type is a system address space
• COMMAND = session type is a command
• TSO = session type is a TSO logon
• CONSOPER = session type is console operator
• STARTED = session type is started procedure of started task
• MOUNT = session type is mount
• XBM = session type is execution batch monitor job
• NJEBATCH = session type is batch job from Network Job Entry (NJE)
• RJEBATCH = session type is batch job from Remote Job Entry (RJE)
• INTBATCH = session type is batch job from Internal Reader (INT)
• EXTBATCH = session type is batch job from External Reader (EXT)
• NJEOPER = session type is network job entry
• NJSYSOUT = session type is network sysout
• RJEOPER = session type is remote job entry
• NJEUNKN = session type is unknown user from NJE

,TRUSTED-YES
,TRUSTED= NO

specifies whether or not the submitter of the unit of work is a member of the trusted
computer base.

For further information on the trusted computer base, see the MVS!ESA Planning: 81
Security.

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes.

Hexadecimal Meaning
Code

00

556 SPL: Application Development Macro Reference

RACROUTE REQUEST=TOKENBLD has completed successfully.

In addition, the following return code and reason codes have been saved in
the ICHSAFP return and reason code fields:

When you execute the macro, space for the return code and reason code is
reserved in the first two words of the RACROUTE parameter list. You can
access them via the ICHSAFP mapping by loading the ICHSAFP pointer with
the label that you specified on the execute form of the macro.

Return code: 08 Indicates TOKENBLD REQUEST successful

Reason code: 10 TOKNOUT area specified was larger than expected, on
return the token length field contains the expected length.

Reason code: 14 STOKEN area specified was larger than expected; on
return the token length field contains the expected length.

Reason code: 20 TOKNIN area specified was larger than expected; on
return the token length field contains the expected length.

08

Example 1

The requested function could not be performed.

In addition, the following return code and reason codes have been saved in
the ICHSAFP return and reason code fields:

Return code: 00. Error occurred before function could initiate.

Reason code: 00 Recovery environment could not be established.

Return code: 08 TOKENBLD REQUEST error

Reason code: 00 TOKNOUT (required) keyword missing.

Reason code: 04 TOKNOUT area was too small, on return the
token length field contains the expected length

Reason code: 08 An error occurred when translating a token
within TOKENBLD.

Reason code: OC STOKEN area was too small, on return the
token length field contains the expected length.

Reason code: 18 A token was specified with an undefined
version.

Reason code: 1C TOKNIN area was too small, on return the token
length field contains the expected length.

Operation: The following example shows a RACROUTE REQUEST= TOKENBLD macro can
be specified to replace a SECLABEL in an existing token.

RACROUTE REQUEST=TOKENBLD,
SUBSYS=address of caller subsytem,
REQSTOR=address of caller subsystem control point,
TOKNOUT=address of caller-supplied token area,
TOKIN=address of input token,
SECLABEL=address of session owner SECLABEL,
RELEASE=l.9

Note: Additional keywords such as WORKA, required by RACF to complete the request are
specified on RACROUTE itself.

RACROUTE REQUEST=TOKENBLD (for RACF Release 1.9) 557

RACROUTE REQUEST= TOKENBLD (List Form)
The list form of the RACROUTE REQUEST=TOKENBLD macro is written as follows:

name

b

RACROUTE

b

REQUEST= TOKENBLD

,USE RID= userid addr

,GROUP=group addr

,TERMID =terminal addr

,RELEASE= number

, TOKNIN =input token addr

,TOKNOUT=output token addr

,STOKEN = stoken addr

,SECLABL =sec/abet addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERID=submitting userid addr

,SGROUP =submitting group addr

,POE= port of entry addr

,SESSION= TSO
,SESSION= NJEBATCH
,SESSION= RJEBATCH
,SESSION= INTBATCH
,SESSION= EXTBATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER
,SESSION= NJEUNKN

,TRUSTED= YES
,TRUSTED= NO

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: A-type address

group addr: A-type address

terminal addr: A-type address

number: 1.9

input token addr: A-type address

output token addr: A-type address

stoken addr: A-type address

sec/abe/ addr: A-type address

execution node addr: A-type address

submitting node addr: A-type address (2) - (12)

submitting userid addr: A-type address

submitting group addr: A-type address

port of entry addr: A-type address

Default: SESSION =TSO

Default: TRUSTED= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST= TOKENBLD macro, with the following exception:

,MF=L
specifies the list form of the RACROUTE REQUEST=TOKENBLD macro.

558 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENBLD (Execute Form)
The execute form of the RACROUTE REQUEST= TOKENBLD macro is written as follows:

name

b

RACROUTE

b

REQUEST= TOKENBLD

,USERID = userid addr

,GROUP=group addr

,TERMID =terminal addr

,RELEASE= number

,TOKNIN =input token addr

,TOKNOUT=output token addr

,STOKEN = stoken addr

,SECLABL = seclabel addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERID =submitting user id addr

,SGROUP =submitting group addr

,POE= port of entry addr

,SESSION= TSO
,SESSION= NJEBATCH
,SESSION= RJEBATCH
,SESSION= INTBATCH
,SESSION= EXTBATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER
,SESSION= NJEUNKN

,TRUSTED= YES
,TRUSTED= NO

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP= zero

terminal addr: RX-type address or register (2) - (12)

number: 1.9

input token addr: RX type address or register (2) - (12)

output token addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

seclabel addr: RX-type address or register (2) - (12)

execution node addr: RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) - (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) - (12)

Default: SESSION =TSO

Default: TRUSTED= NO

cnt/ addr: RX-type address or register (1) or (2) - (12)

RACROUTE REQUEST=TOKENBLD (for RACF Release 1.9) 559

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENBLD macro, with the following exception:

,MF- (E,ctr/ addr)
specifies the execute form of the RACROUTE REQUEST= TOKENBLD macro using a
remote control program parameter list.

,RELEASE•number
specifies the RACF release level of the parameter list to be generated by this macro.

560 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENBLD (Modify Form)
The modify form of the RACROUTE REQUEST= TOKENBLD macro is written as follows:

name

b

RACROUTE

b

REQUEST= TOKENBLD

,USERID = userid addr

,GROUP= group addr

,TERMID=termina/ addr

,RELEASE= number

,TOKNIN =input token addr

,TOKNOUT =output token addr

,STOKEN = stoken addr

,SECLABL = sec/abe/ addr

,EXE NODE= execution node addr

,SNODE= submitting node addr

,SUSERID =submitting userid addr

,SGROUP =submitting group addr

,POE= port of entry addr

,SESSION= TSO
,SESSION= NJEBATCH
,SESSION= RJEBATCH
,SESSION= INTBATCH
,SESSION= EXTBATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER
,SESSION= NJ EUN KN

,TRUSTED=YES
,TRUSTED=NO

,MF=(M,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must precede RACROUTE.

userid addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP= zero

terminal addr: RX-type address or register (2) - (12)

number: 1.9

input token addr: RX-type address or register (2) - (12)

output token addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

sec/abe/ addr: RX-type address or register (2) - (12)

execution node addr: RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) - (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) - (12)

Default: SESSION =TSO

Delautt: TRUSTED= NO

cntl addr: RX-type address or register (1) or (2) - (12)

RACROUTE REQUEST=TOKENBLD (for RACF Release 1.9) 561

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENBLD macro, with the following exception:

,MF-(M,ctr/ addr)
specifies the modify form of the RACROUTE REQUEST=TOKENBLD macro using a
remote control program parameter list.

,RELEASE- number
specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking Is done at assembly time.

562 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKEN MAP - Access Token Fields (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

This macro is used to map a token. REQUEST= TOKEN MAP accepts a token in either
internal or external format as input. Internal format refers to the format returned from a
RACROUTE REQUEST= VERIFYX or a RACROUTE REQUEST= TOKENXTR. External format
refers to that which is mapped by the ICHRUTKN macro. RACROUTE
REQUEST= TOKEN MAP is the only interface used to map token data.

The primary purpose of the RACROUTE REQUEST= TOKENMAP function is to allow a caller
to access individual fields within the UTOKEN. The caller only needs to provide the proper
length for the corresponding version of a token, and SAF/RACF will map it correctly using
this macro.

To use this service, you must also specify RELEASE= 1.9.

The standard form of the RACROUTE REQUEST= TOKEN MAP macro is written as follows:

name

f>

RACROUTE

f>

REQUEST= TOKENMAP

,TOKNIN =input token addr

,TOKNOUT=output token addr

,FORMOUT =INTERNAL
,FORMOUT =EXTERNAL

,RELEASE= number

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

input token addr: A-type address or register (2) - (12)

output token aadr: A-type address or register (2) - (12)

Default: FORMOUT =EXTERNAL

number: 1.9

The parameters are explained as follows:

,TOKNIN •input token addr
specifies the address of the UTOKEN or RTOKEN that is to be converted to internal or
external format.

The UTOKEN fields are mapped in ICHRUTKN in the Data Areas chapter of the SPL:
RACF.

,TOKNOUT •output token address
specifies the address of the user provided area for the converted token data. The first
byte of TOKNOUT contains the actual token length. This provides for downward
compatibility with all versions of the token map.

,FORMOUT-= EXTERNAL
,FORM OUT- INTERNAL

specifies the format of the output token area. Internal format is that which is returned
form a RACROUTE REQUEST= VERIFYX or a RAC ROUTE REQUEST= TOKENXTR.
External format is that which is mapped by the ICHRUTKN macro.

,RELEASE= number
specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

563

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=TOKENBLD macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason code is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping by loading the ICHSAFP pointer with the label that you specified on the execute
form of the macro.

Hexadecimal Meaning
Code

00

9C7

564 SPL: Application Development Macro Reference

Reason described by the following hex reason codes

Reason
Code
0
4
8
c

Meaning
Request was successful
TOKEN not converted
TOKEN version not defined, assume the most current
TOKNOUT area too large, token was successfully extracted

This ABEND code is described by the following hex reason codes

Reason
Code
4
8
c
10

Meaning
TOKNIN required parameter missing (for tokenmap)
TOKNOUT required parameter missing
TOKNOUT area too small
TOKVERS=O

Example1
Operation: The following is an example of how to invoke the TOKENMAP function:

RACROUTE REQUEST=TOKENMAP,
TOKIN=address of input TOKEN to translate
TOKNOUT=address of area for output TOKEN,
FORMOUT=INTERNAL/EXTERNAL (format of output TOKEN

MF=E (Execute)
RELEASE=l.9

default is EXTERNAL)

Note: Additional keywords specified on the RACROUTE macro are required.

Example 2
Operation: Assume that the caller is Print Services Facility {PSF) and needs to map
information from the UTOKEN to determine which type of label to put on the output printed
data. The caller invokes the RACROUTE REQUEST= TOKEN MAP macro to convert a
UTOKEN in internal format into a token in external format so PSF can access the various
fields of the UTOKEN.

RACROUTE REQUEST=TOKENMAP,TOKNIN=((2)), X
WORKA=RACWK,TOKNOUT=((5)), X
RELEASE=l.9

RACWK OS CL512

RACROUTE REQUEST=TOKENMAP (for RACF Release 1.9) 565

RACROUTE REQUEST= TOKENMAP (List Form)
The list form of the RACROUTE REQUEST= TOKENMAP macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= TOKENMAP

, TOKNIN = input token addr

,TOKNOUT=output token addr

,FORMOUT =INTERNAL
,FORMOUT =EXTERNAL

,RELEASE= number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

input token addr: A-type address

output token addr: A-type address

Default: FORMOUT =EXTERNAL

number: 1.9

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENMAP macro with the following exception:

,MF=L
specifies the list form of the RACROUTE REQUEST=TOKENMAP macro.

566 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKEN MAP (Execute Form)
The execute form of the RACROUTE REQUEST= TOKENMAP macro is written as follows:

name

b

RACROUTE

b

REQUEST=TOKENMAP

,TOKNIN =Input token addr

,TOKNOUT=output token addr

,FORMOUT =INTERNAL
,FORMOUT =EXTERNAL

,RELEASE= number

,MF=(E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

input token addr: RX-type address or register (2) - (12)

output token addr: RX-type address or register (2) - (12)

Defaun: FORMOUT =EXTERNAL

number: 1.9

cntl addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENMAP macro with the following exception:

,MF=- (E,ctr/ addr)
specifies the execute form of the RACROUTE REQUEST= TOKEN MAP macro.

RACROUTE REOUEST=TOKENMAP (for RACF Release 1.9) 567

RACROUTE REQUEST= TOKENMAP (Modify Form)
The modify form of the RACROUTE REQUEST= TOKEN MAP macro is written as follows:

name

b

RACROUTE

b

REQUEST= TOKENMAP

, TOKNIN = input token addr

, TOKNOUT =output token addr

,FORMOUT =INTERNAL
,FORMOUT =EXTERNAL

,RELEASE= number

,MF=(M,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

input token addr: RX-type address or register (2) - (12)

output token addr: RX-type address or register (2) - (12)

DelauU: FORMOUT =EXTERNAL

number: 1.9

cntl addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE macro with the
following exception:

,MF==(M,ctrl addr)
specifies the modify form of the RACROUTE macro.

568 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENXTR • Extract UTOKENS (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

This macro is used to extract a UTOKEN from the current task or address space ACEE; SAF
performs the extraction. Any information not available from the ACEE will be returned as
blanks. The ICHRUTKN macro maps the UTOKEN.

To use this service, you must also specify RELEASE= 1.9.

The standard form of the RACROUTE REQUEST= TOKENXTR macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RACROUTE

One or more blanks must follow RACROUTE.

REQUEST=TOKENXTR

,ACEE= acee addr acee addr: A-type address or register (2) - (12)

,TOKNOUT=output token addr output token addr: A-type address or register (2) - (12)

,RELEASE= number number: 1.9

The parameters are explained as follows:

,ACEE- acee addr
specifies the address of the ACEE from which information is to be extracted.

If you do not specify the ACEE keyword, then TOKENXTR extracts the information it
needs from the TCBSENV field of the task control block if it Is non-zero; if it is zero,
TOKENXTR extracts information it needs from the ASXBSENV field.

,TOKNOUT• return token addr
specifies the address where the requestor wants TOKENXTR to return the UTOKEN that
was extracted from the ACEE. The first byte of storage at the address specified must
contain the number of bytes of available storage. The second byte must contain the
version of the token.

The UTOKEN fields are mapped in ICHRUTKN in the Data Areas chapter of the SPL:
RACF.

,RELEASE ... number
specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

569

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason code is reserved In the '
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping by loading the ICHSAFP pointer with the label that you specified on the execute
form of the macro.

Hexadecimal Meaning
Code

00

9C7

Reason described by the following hex reason codes

Reason
Code
0
4
8
c

Meaning
Request was successful
Invalid {down level) ACEE supplied
No ACEE available
TOKNOUT area length was too large

The ABEND code is described by the following hex reason codes

Reason
Code Meaning

8 Required parameter missing
C TOKNOUT length too small

Example 1
Operation:· The following is an example of how to invoke the TOKENXTR function:

RACROUTE REQUEST=TOKENXTR,
TOKNOUT=address of area for output TOKEN,
RELEASE=l.9

Note: Additional keywords specified on the RACROUTE macro are required.

Example 2
Operation: Assume that the caller is Print Services Facility {PSF) and it needs to extract
information from the ACEE to determine which type of label to put on output printed data.

RACROUTE REQUEST=TOKENXTR,TOKNOUT=((2)), X
WORKA=RACWK, X
RELEASE=!. 9

RACWK OS CL512

570 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENXTR (List Form)
The list form of the RACROUTE REQUEST= TOKENXTR macro is Written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RAC ROUTE

b One or more blanks must follow RACROUTE.

REQUEST= TOKENXTR

,ACEE=acee addr acee addr: A-type address

,TOKNOUT=output token addr output token addr: A-type address

,RELEASE= number number: 1.9

,MF=L

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENXTR macro with the following exception:

,MF==L
specifies the list form of the RACROUTE REQUEST=TOKENXTR macro.

RACROUTE REQUEST=TOKENXTR (for RACF Release 1.9) 571

RACROUTE REQUEST= TOKENXTR (Execute Form)
The execute form of the RACROUTE REQUEST= TOKENXTR macro Is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

RACROUTE

One or more blanks must follow AACROUTE.

REQUEST=TOKENXTR

,ACEE= acee addr acee addr: RX-type address or register (2) - (12)

,TOKNOUT=output token addr output token addr: RX-type address or register (2) - (12)

,RELEASE= number number: 1.9

,MF=E

The parameters are explained under the standard form of the RACROUTE
REQUEST= TOKENXTR macro with the following exception:

,MF•E
specifies the execute form of the RACROUTE REQUEST=TOKENXTR macro.

572 SPL: Application Development Macro Reference

RACROUTE REQUEST= TOKENXTR (Modify Form)
The modify form of the RACROUTE REQUEST= TOKENXTR macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACROUTE.

RACROUTE

b One or more blanks must follow RACROUTE.

REQUEST= TOKENXTR

,ACEE= acee addr acee addr: RX-type address or register (2) - (12)

, TOKNOUT =output token addr output token addr: RX-type address or register (2) - (12)

,RELEASE= number number: 1.9

,MF=M

The parameters are explained under the standard form of the RACROUTE
REQUEST=TOKENXTR macro with the following exception:

,MF=M
specifies the modify form of the RACROUTE REQUEST= TOKENXTR macro.

RACROUTE REOUEST=TOKENXTR (for RACF Release 1.9) 573

574 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFY - Identify a RACF-Defined User (for RACF
Release 1.9)

© Copyright IBM Corp. 1988, 1991

If you have RACF Release 1.8.1 or earlier Installed on your system, see the following:

• "RACROUTE- MYS Router Interface {for RACF Release 1.8.1 or earlier)" on page 435

• "RACINIT - Identify a RACF-Defined User {for RACF Release 1.8.1 or earlier)" on
page 417. {IBM recommends that you use RACROUTE with the REQUEST=VERIFY
parameter rather than RACINIT.)

The RACROUTE REQUEST= VERIFY macro is used to provide Resource Access Control
Facility (RACF) user identification and verification. The macro identifies a user and verifies
that the user is defined to RACF and has supplied a valid password and/or operator
identification card (OIDCARD parameter).

With RACF Release 1.9, a subsystem can use REQUEST= VERIFY and the new keywords to
create an ACEE. If RACF is not active, not installed, or your installation has a RACF release
prior to 1.9, then SAF, using the new keywords, will build a default ACEE to satisfy the
request. The purpose of this use of REQUEST= VERIFY is for job submission, user
verification checking, and propagation of security information from user session to unit of
work.

To issue the RACROUTE REQUEST= VERIFY macro the calling module must be
"authorized" which means

• APF-authorized, or
• in system key 0-7, or
• in supervisor state.

or the NEWPASS keyword must be omitted and the calling module must:

• be in the RACF-authorized caller table and
• fetched from an authorized library and
• reentrant.

Notes:

1. It is recommended that if you run programs which issue the RACROUTE
REQUEST=VERIFY macro, you run those programs AFP-authorized. See the SPL:
RACF for important information on the authorized caller table.

2. Unless the caller specifies the ACEE= parameter on a RAC ROUTE
REQUEST=VERIFY,ENVIR=CREATE macro, the ACEE will always be placed below
16-megabytes.

3. If the caller specifies the ACEE= parameter, and is executing in 31-bit addressing mode
and does not specify LOC =BELOW on the RACROUTE macro, the ACEE will be placed,
if possible, above 16-megabytes.

675

The standard form of the RACROUTE REQUEST= VERIFY macro is written as follows:

name

RACROUTE

REQUEST= VERIFY

,USERID = userid addr

,PASSWRD=password addr

,START= procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD =old addr

,TERMID=termlna/ addr

,JOBNAME=/obname addr

,ENVIR =CREATE
,ENVIR =VERIFY
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,ACEE= acee addr

,SUBPOOL =subpool number

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT= YES
,ENCRYPT= NO

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

578 SPL: Appllcatlon Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userld addr: A-type address or register (2) - (12)

password addr: A-type address or register (2) - (12)

procname addr: A-type address or register (2) - (12)

new password addr: A-type address or register (2) - (12)

group addr: A-type address or register (2) - (12)
Default: GROUP= zero

programmer name addr: A-type address or register (2) - (12)

account addr: A-type address or register (2) - (12)

old addr: A-type address or register (2) - (12)

terminal addr: A-type address or register (2) - (12)

jobname addr: A-type address or register (2) - (12)

DefauU: ENVIR=CREATE

Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERM ID=
parameters.

parm list addr: A-type address or register (2) - (12)

applname: 1-8 character name
applname addr: A-type address or register (2) - (12)

acee addr: A-type address or register (2) - (12)

subpool number: Decimal digit 0-255

Default: SMC= YES

Default: PASSCHK=YES

Default: ENCRYPT= YES

Default: See parameter description

Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST=LIST is coded.

,RELEASE= number

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = sec/abe/ addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERID =submitting userid addr

,SGROUP=submitting group addr

,POE= port of entry addr

,LOGSTR = logstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED=NO

,REMOTE=YES
,REMOTE=NO

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6
Defautt: STAT= ASIS

Default: LOG= ASIS

utoken addr: A-type address or register (2) - (12)

stoken addr: A-type address or register (2) - (12)

seclabel addr: A-type address or register (2) - (12)

execution node addr: A-type address or register (2) - (12)

submitting node addr: A-type address or register (2) - (12)

submitting userid addr: A-type address or register (2) - (12)

submitting group addr: A-type address or register (2) - (12)

port of entry addr: A-type address or register (2) - (12)

logstr addr: A-type address or register (2) - (12)

Default: SESSION= TSO

Default: TRUSTED=NO

Delautt: REMOTE= NO

The parameters are explained as follows:

,USERID = userid addr
specifies the user identification of the user who has entered the system. The address
points to a 1-byte length field, followed by the userid which can be up to 8 characters.

,PASSWRD =password addr
specifies the currently defined password of the user who has entered the system. The
address points to a 1-byte length field, followed by the password which can be up to 8
characters.

,START=procname addr
specifies the PROC name of the started task for which the RACROUTE
REQUEST= VERIFY is being performed. The address points to an 8-byte area
containing the PROC name (left-justified and padded with blanks, if necessary). If
START= is specified, REQUEST=VERIFY processing searches the started procedure
table for the userid (and groupid) to use for this REQUEST= VERIFY request. If the
USERID and GROUP keywords are specified, REQUEST= VERIFY will only use those
values if it cannot obtain a userid from the started procedure table.

If START is specified, PASSWRD and OIDCARD should not be specified.

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 577

,NEWPASS =-new password addr
specifies the password which is to replace the user's currently defined password. The
address points to a 1-byte length field, followed by the password which can be up to 8
characters.

,GROUP= group addr
specifies the group specified by the user who has entered the system. The address
points to a 1-byte length field, followed by the group name which can be up to 8
characters.

,PGMNAME ... programmer name addr
specifies the address of the name of the user who has entered the system. This twenty
byte area is passed to the RACINIT installation exit routine; it is not used by the
RACINIT routine.

,ACTINFO =account addr
specifies the address of a field containing accounting information. This 144 byte area is
passed to the RACINIT installation exit routine; it is not used by the RACINIT routine.
The accounting field, if supplied, should have the following format:

• First byte of field contains the number {binary) of accounting fields.

• Following bytes contain accounting fields, where each entry for an accounting field
contains a 1-byte length field, followed by the field.

,OIDCARD ... oid addr
specifies the address of the currently defined operator identification card of the user
who has entered the system. The address points to a 1-byte length field, followed by
the operator ID card.

,TERMID= terminal addr
specifies the address of the identifier for the terminal through which the user is
accessing the system. The address points to an 8-byte area containing the terminal
identifier. The area must reside in a non-task-related storage subpool.

,JOBNAME = jobname addr
specifies the address of the JOB name of a background job. The address points to an
eight byte area containing the JOB name {left justified and padded with blanks, if
necessary). The JOBNAME parameter is used by RACINIT during authorization
checking to verify the user's authority to submit the job. It is passed to the installation
exit routine.

,ENVIR =CREATE
,ENVIR = VERIFY
,ENVIR =CHANGE
,ENVIR =DELETE

specifies the action to be performed by the user initialization component regarding the
accessor environment element {ACEE). The default is CREATE.

CREATE-

VERIFY-

CHANGE-

DELETE -

The user should be verified and an ACEE created.

Only a user verification is to be made; however, it can be optionally
combined with updating the user's password. The installation can do this
through a System Authorization Facility (SAF) installation exit. If the
installation does not use SAF to satisfy this request, the RACROUTE
caller receives a return code of 4, with RACF return and reason codes of
zero.

The ACEE should be modified according to other parameters specified
on RAC ROUTE REQUEST= VERIFY.

The ACEE should be deleted. This parameter should only be used if a
previous RACROUTE REQUEST=VERIFY has completed successfully.

,INSTLN = parm list addr
specifies the address of an area containing parameter information meaningful to the
RACINIT installation exit routine. This area is passed to the installation exit when the
exit routine is given control from the RACINIT routine.

578 SPL: Application Development Macro Reference

The INSTLN parameter can be used by an installation having a user verification or job
initiation application, and wanting to pass information from one installation module to
the RACINIT installation exit routine.

,APPL• 'applname'
,APPL= app/name addr

specifies the name of the application issuing the RACROUTE REQUEST= VERIFY. If an
address is specified, the address must point to an 8-byte application name, left justified
and padded with blanks, if necessary.

,ACEE= acee addr
specifies the address of the ACEE.

For ENVIR =DELETE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be deleted. If ACEE= is not specified,
and the TCBSENV field for the task using the RACROUTE REQUEST= VERIFY is
non-zero, the ACEE pointed to by the TCBSENV is deleted, and TCBSENV is set to zero.
If the TCBSENV and ASXBSENV fields both point to the same ACEE, then ASXBSENV is
also set to zero. If no ACEE address is passed, and TCBSENV is zero, the ACEE
pointed to by ASXBSENV is deleted, and ASXBSENV is set to zero.

For ENVIR =CHANGE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be changed. If ACEE= is not specified,
and the TCBSENV field for the task using the RACROUTE REQUEST=VERIFY is
non-zero, the ACEE pointed tc by the TCBSENV is changed. If TCBSENV is 0, then the
ACEE pointed to by ASXBSENV is changed.

For ENVIR =CREATE: specifies the address of a full word into which the RACROUTE
REQUEST= VERIFY function will place the address of the ACEE created. If an ACEE is
not specified, the address of the newly created ACEE is stored in the TCBSENV field of
the task control block. If the ASXBSENV field is set to binary zeros, the new ACEE
address is also stored in the ASXBSENV field of the ASXB. If the ASXBSENV field is
non-zero, it is not modified. The TCBSENV field is set unconditionally.

Notes:

1. If you omit USERID, GROUP, and PASSWRD and if you code ENVIR=CREATE or if
ENVIR =CREATE is used as the default, you will receive a return code of X'OO' and
obtain an ACEE that contains an * (X'5C') in place of the USERID and group name.

2. If ACEE is specified with ENVIR=CREATE, RACF suppresses the creation of a
modeling table (MOEL) to reduce the amount of CSA and/or LSQA storage required
by IMSNS and CICSNS installations.

,SUBPOOL = subpool number
specifies the storage subpool from which the ACEE and related storage are obtained.
The default subpool is 255.

,SMC=YES
,SMC=NO

specifies the use of the step-must-complete function of RACROUTE REQUEST= VERIFY
processing. SMC= YES specifies that RACROUTE REQUEST= VERIFY processing
should continue to place other tasks for the job step as non-dispatchable. SMC= NO
specifies that the step-must-complete function is not used.

Note: SMC= NO should not be used if DADSM ALLOCATE/SCRATCH functions execute
simultaneously in the same address space as the RACROUTE REQUEST= VERIFY
function.

,PASSCHK ==YES
,PASSCHK =NO

specifies whether or not the user's password is to be verified. PASSCHK =YES
specifies that RACROUTE REQUEST=VERIFY verifies the user's password.
PASSCHK =NO specifies that the user's password is not verified.

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 579

,ENCRYPT- YES
,ENCRYPT= NO

specifies whether or not RACROUTE REQUEST= VERIFY will encrypt the old password,
the new password, and the OIDCARD data passed to it.

YES signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are not pre-encrypted. RACROUTE REQUEST=VERIFY encrypts the data
before storing it in the user profile or using it to compare against stored data.
ENCRYPT= YES is the default for this keyword.

NO signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are already encrypted. RACROUTE REQUEST=VERIFY bypasses the
encryption of this data before storing it in, or comparing it against, the user profile.

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

Note: The exit routine ICHDEX01 can also perform the encryption.

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ____ ___,

,LOC=BELOW
,LOC=ANY

For REQUEST= VERIFY:
specifies whether the ACEE and related data areas are to be allocated storage below
16 megabytes (LOC=BELOW), or anywhere (LOC=ANY)

If any of the following is true, LOC =BELOW is the default, and LOC =ANY is ignored if
specified:

• The ACEE= parameter is not coded.
• The caller is executing in 24-bit mode.

In all other cases, the default is LOC=ANY.

,RELEASE - number
specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST= VERIFY macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

,STAT=ASIS
,STAT=NO

specifies whether the statistics controlled by the installation's options on the RACF
SETROPTS command are to be maintained or ignored for this execution of RACROUTE
REQUEST= VERIFY. This parameter also controls whether a message is to be issued
when the logon is successful.

Note: Messages are always issued if the RAC ROUTE REQUEST= VERIFY processing
is unsuccessful.

If ST AT= ASIS is specified or taken by default, the messages and statistics are
controlled by the installation's current options on the RACF SETROPTS command.

If STAT= NO is specified, the statistics are not updated. And, if the logon is successful,
no message is issued.

The default is ST AT= ASIS.

,LOG=ASIS
,LOG==ALL

specifies when log records are to be generated.

If LOG= ASIS is specified or defaulted to, only those attempts to create an ACEE that
fail will generate RACF log records.

580 SPL: Application Development Macro Reference

If LOG= ALL is specified, any request to create an ACEE, regardless of whether it
succeeds or fails, will generate a RACF log record. The default is LOG= ASIS.

,UTOKEN ... utoken addr
specifies the address of the UTOKEN of the user for which RACF will perform a
RACROUTE REQUEST= VERIFY. The first byte contains the length of the UTOKEN, and
the second byte contains the version number. The version number is 01.

The UTOKEN fields are mapped in ICHRUTKN in the Data Areas chapter of the SPL:
RACF.

,STOKEN = stoken addr
specifies the address of the submittor's UTOKEN The first byte contains the length of
the UTOKEN, and the second byte contains the version number. The version number is
01. See explanation of UTOKEN.

,SECLABL =sec label addr
specifies the address of an 8-byte left-justified character field containing the
SECLABEL.

,EXENODE =execution node addr
specifies the address of an area that contains a one byte length field followed by the
name of the node on which the unit of work is to be executed. The node name cannot
exceed eight bytes.

,SNODE ... submitting node addr
specifies the address of an area that contains a one byte length field followed by the
name of the node from which the unit of work was submitted. The node name cannot
exceed eight bytes.

,SUSERID =submitting userid addr
specifies the address of an area that contains a one byte length field followed by the
userid of the user who submitted the unit of work. The userid cannot exceed eight
bytes.

,SGROUP =submitting group addr
specifies the address of an area that contains a one byte length field followed by the
groupid of the user who submitted the unit of work. The groupid cannot exceed eight
bytes.

,POE= port of entry addr
specifies the address of the port of entry into the system. The address points to the
name of the input device through which the job was submitted. The port of entry is an 8
character field which is left-justified and padded with blanks.

The port of entry will be a part of the user's security token (UTOKEN). A flag in the
UTOKEN will uniquely identify the RACF general resource class to which the data in the
POE field belongs: TERMINAL, CONSOLE, or JESINPUT.

,LOGSTR = logs tr addr
specifies the address of a one byte length field followed by character data that will be
written to the SMF data set together with RACF audit information.

,SESSION= type
specifies the session type(s) to be associated with the request. You can specify
multiple sessions, separated by commas, if necessary. For example,
SESSION= CONSOPER,SYSAS. Session types are literals. When the SESSION keyword
is used in combination with the POE keyword, SESSION determines the class with
which the POE keyword will be connected. The default session type is TSO.

The allowable session types are:

• SYSAS = session type is a system address space
• COMMAND = session type is a command
• TSO = session type is a TSO logon
• CONSOPER = session type is console operator
• STARTED = session type is started procedure of started task
• MOUNT = session type is mount

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 581

• XBM = session type is execution batch monitor job
• BATCH = session type is batch
• NJEOPER = session type is network job entry
• RJEOPER = session type is remote job entry
• INTBATCH = session type is a job that entered system via internal reader
• EXTBATCH = session type is a job that entered system via external reader
• NJEBATCH = session type is a job that entered system via Network Job Entry
• RJEBATCH = session type is a job that entered system via Remote Job Entry

, TRUSTED= YES
,TRUSTED= NO

specifies whether or not the submitter of the unit of work is a member of the trusted
computer base.

,REMOTE=VES
,REMOTE==NO

specifies whether or not the job came through the network.

Return Codes and Reason Codes
When you execute the macro, space for the return code and reason codes is reserved in the
first two words of the RACROUTE parameter list. You can access them via the ICHSAFP
mapping macro by loading the ICHSAFP pointer with the label that you specified on the list
form of the macro.

Hexadecimal Meaning
Code

00

04

08

oc
10

14

18

1C

20

24

28

2C

30

34

582 SPL: Application Development Macro Reference

RAC ROUTE REQUEST= VERIFY has completed successfully.

The user profile is not defined to RACF.

The password is not authorized.

The password has expired.

The new password is invalid.

The user is not defined to the group.

RACINIT was failed by the installation exit routine.

The user access has been revoked.

RACF is not active. For a RACROUTE, this is not an error condition; it means
that the requested function could not be performed because RACF was not
active.

The user's access to the specified group has been revoked.

OIDCARD parameter is required but not supplied.

OIDCARD parameter is invalid for specified user.

The user is not authorized to the port of entry. Register 0 contains one of the
following reason codes:

00 Indicates a normal completion.

04 Indicates the user is not authorized to access the system on this day,
or at this time of day.

08 Indicates the port of entry may not be used on this day, or at this time
of day.

Note: The port of entry now refers to TERMINALS, the JESINPUT
class, and the CONSOLE class ports of entry.

The user is not authorized to use the application.

38

3C

40

44

48

4C

50

54

58

SECLABEL checking occurred. Register O contains one of the following
reason codes:

04 MLACTIVE requires a SECLABEL; none was specified

08 Indicates the user is not authorized to the SECLABEL

OC The system was in a multi-level secure status, and the dominance
check failed

RACROUTE REQUEST= VERIFYX SAF error occurred. Reserved return code
not set by RACF.

RACROUTE REQUEST=VERIFY SAF error occurred. Reserved return code
not set by RACF. SAF saves the return code in the first full word of the
RACROUTE parameter list mapped by the ICHSAFP macro. One of the
following reason codes may also be stored in the second full word.

00 Indicates that an internal TOKENMAP failed while translating. an
input token

04 Indicates a UTOKEN was specified, but its length was too small. On
return, the length byte will be set with the minimum length required.

08 Indicates a STOKEN was specified, but its length was too small. On
return, the length byte will be set with the minimum length required.

OC Indicates a UTOKEN was specified, but its length was too large. On
return, the length byte will be set with the correct length required.
For a RACROUTE, this is not an error condition, but additional
information on a SAF return code 0.

10 Indicates a STOKEN was specified, but its length was too large. On
return, the length byte will be set with the correct length required.
For a RACROUTE, this is not an error condition, but additional
information on a SAF return code 0.

14 Indicates that a token was specified, but the version was not defined.

A token error occurred in RACF. Register 0 contains one of the following
reason codes:

00 Indicates that an internal TOKENMAP failed while translating an input
token.

04 Indicates a UTOKEN was specified, but its length was too small. On
return, the length byte will be set with the minimum length required.

08 Indicates a STOKEN was specified, but its length was too small. On
return, the length byte will be set with the minimum length required.

OC Indicates that a token was specified, but the version was not defined.

Indicates that an unprivileged user issued a RACINIT in a tranquil state
(MLQUIET).

Indicates that RACF denied access to the submitter's node.

Indicates that a surrogate submit attempt failed. Register 0 contains one of
the following reason codes:

04 Indicates the SURROGAT class was inactive.

08 Indicates the submitter is not permitted by the user's SURROGAT
class profile.

OC Indicates that the submitter is not authorized to the SECLABEL under
which the job is to run.

Indicates that a JESJOBS check failed.

RJE or NJE operator FACILITY class profile not found. For a RACROUTE, this
is not an error condition; it means that the requested function could not be
performed because RACF was not active.

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 583

64

Example 1

Indicates that the CHECK subparameter of the RELEASE keyword was
specified on the execute form of the RACROUTE REQUEST= VERIFY macro;
however, the listform of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

Operation: Use the standard form of the macro to do the following:

• Create an ACEE for the userid and its default group

• Chain the ACEE off either the current TCB or ASXB, or both, by not specifying the ACEE
keyword

• Verify that the user named USERNAME is a valid user

• Verify that the password called PASSWORD is valid

RACROUTE REQUEST=VERIFY ENVIR=CREATE,USERIO=USERNAME,PASSWRO=PASSWORO,
RELEASE=l.9

Example2
Operation: Use the standard form to do the following:

• Verify that the user named USERNAME is a valid user

• Verify that the group named GROUPNAM is a valid group

• Verify that USERNAME is defined to the group

• Create an ACEE for the user and group and put its address in ACEEANCH

• Specify that the user's password is not required

RACROUTE REQUEST=VERIFY,ENVIR=CREATE,USERIO=USERNAME, X
GROUP=GROUPNAM,ACEE=ACEEANCH, X
PASSCHK=NO,RELEASE=l.9

Example 3
Operation: Use the standard form of the macro to delete the accessor environment (ACEE)
of the current task or address space, or both.

RACROUTE REQUEST=VERIFY,ENVIR=DELETE,RELEASE=l.9

' 584 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFY (List Form)
The list form of the RACROUTE REQUEST=VERIFY macro is written as follows:

name

b

RACROUTE

b

REQUEST= VERIFY

,USE RID= user id addr

,PASSWRD=password addr

,START=procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD = oid addr

,TERMID =terminal addr

,JOBNAME = jobname addr

,ENVIR =CREATE
,ENVIR =VERIFY
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN =pa rm list addr

,APPL= 'applname'
,APPL=applname addr

,ACEE= acee addr

,SUBPOOL = subpool number

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT=YES
,ENCRYPT= NO

,LOC=BELOW
,LOC=ANY

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: A-type address

password addr: A-type address

procname addr: A-type address

new password addr: A-type address

group addr: A-type address

programmer name addr: A-type address

account addr: A-type address

oid addr: A-type address

terminal addr: A-type address

jobname addr: A-type address

DefauH: ENVIR =CREATE

Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERM ID= parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERMID =
parameters.

parm list addr: A-type address

applname: 1-8 character name
applname addr: A-type address

acee addr: A-type address

subpool number: Decimal digit 0-255

DelauH: SMC= YES

Default: PASSCHK=YES

Default: ENCRYPT=YES

DelauH: See parameter description

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 585

,LOC=ABOVE

,RELEASE= number

,STAT=ASIS
,STAT= NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = sec/abe/ addr

,EXENODE=execution node addr

,SNODE= submitting node addr

,SUSERID=submitting userid addr

,SGROUP=submitting group addr

,POE= port of entry addr

,LOGSTR=/ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED= YES
,TRUSTED=NO

,REMOTE=YES
,REMOTE=NO

,MF=L

Note: LOC can be coded only if REQUEST= VERIFY or
REQUEST=LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: STAT=ASIS

Default: LOG= ASIS

utoken addr: A-type address (2) - (12)

stoken addr: A-type address (2) - (12)

seclabel addr: A-type address (2) - (12)

execution node addr: A-type address (2) - (12)

submitting node addr: A-type address (2) - (12)

submitting userid addr: A-type address (2) - (12)

submitting group addr: A-type address (2) - (12)

port of entry addr: A-type address (2) - (12)

logstr addr: A-type address (2) - (12)

Default: SESSION= TSO

Default: TRUSTED=NO

Default: REMOTE= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST=VERIFY macro, with the following exception:

,MF=L
specifies the I ist form of the RACROUTE REQUEST= VERIFY macro.

586 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFY (Execute Form)
The execute form of the RACROUTE REQUEST= VERIFY macro is written as follows:

name

b

RACROUTE

b

REQUEST= VERIFY

,USERID = userld addr

,PASSWRD=password addr

,START=procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

.OIDCARD =old addr

,TERMID =terminal addr

,JOBNAME = jobname addr

,ENVIR =CREATE
,ENVIR =VERIFY
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= applname addr

,ACEE= acee addr

,SUBPOOL = subpool number

,SMC=YES
,SMC=NO

,PASSCHK =YES
,PASSCHK=NO

,ENCRYPT= YES
,ENCRYPT= NO

,LOC=BELOW
,LOC=ANY

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userld addr: RX-type address or register (2) - (12)

password addr: RX-type address or register (2) - (12)

procname addr: RX-type address or register (2) - (12)

new password addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP= zero

programmer name addr: RX-type address or register
(2) - (12)

account addr: RX-type address or register (2) - (12)

old addr: RX-type address or register (2) - {12)

terminal addr: RX-type address or register (2) - (12)

jobname addr: RX-type address or register (2) - (12)

Defaul: ENVIR=CREATE

Notes:
1. ENVIR =CHANGE may not be specified with USERID = ,
PASSWRD =, START=, NEWPASS =, ACTINFO =,
PGMNAME =, OIDCARD =, or TERMID = parameters.
2. ENVIR =DELETE may not be specified with APPL= ,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERMID =
parameters.

parm list addr: RX-type address or register (2) - (12)

applname addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

subpool number: Decimal digit 0-255

Defaul: SMC= YES

Defaul: PASSCHK=YES

Defaul: ENCRYPT= YES

Defaul: See parameter description

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 587

,LOC=ABOVE

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = sec/abel addr

.EXENODE=execution node addr

,SNODE= submitting node addr

,SUSERID=submitting userid addr

,SGROUP=submitting group addr

,POE= port of entry addr

,LOGSTR = logstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED=NO

,REMOTE=YES
,REMOTE=NO

,MF=(E,ctr/ addr)

588 SPL: Application Development Macro Reference

Note: LOC can be coded only if REQUEST= VERIFY or
REQUEST= LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: ST AT= ASIS

Default: LOG = ASIS

utoken addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

seclabel addr: RX-type address or register (2) - (12)

execution node addr: RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) - (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) - (12)

logstr addr: RX-type address or register (2) - (12)

Default: SESSION= TSO

Default: TRUSTED= NO

Default: REMOTE=NO

cntl addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST=VERIFY macro, with the following exception:

,MF• (E,ctrl addr)
specifies the execute form of the RACROUTE REQUEST=VERIFY macro using a remote
control program parameter list.

,RELEASE - (number,CHECK)
,RELEASE= number
,RELEASE== (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=VERIFY macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

RACROUTE REQUEST= VERIFY (for RACF Release 1.9) 589

RACROUTE REQUEST= VERIFY (Modify Form)
The modify form of the RACROUTE REQUEST=VERIFY macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= VERIFY

,USERID = userid addr

,PASSWRD=password addr

,ST ART= procname addr

,NEWPASS =new password addr

,GROUP=group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD=oid addr

,TERMID=termina/ addr

,JOBNAME = jobname addr

,ENVIR=CREATE
,ENVIR =VERIFY
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL = app/name
,APPL= applname addr

,ACEE= acee addr

,SUBPOOL = subpool number

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT= YES
,ENCRYPT=NO

,LOC=BELOW
,LOC=ANY

590 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: RX-type address or register (2) - (12)

password addr: RX-type address or register (2) - (12)

procname addr: RX-type address or register (2) - (12)

new password addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP= zero

programmer name addr: RX-type address or register (2) - (12)

account addr: RX-type address or register (2) - (12)

oid addr: RX-type address or register (2) - (12).

terminal addr: RX-type address or register (2) - (12)

Jobname addr: RX-type address or register (2) - (12)

Defautt: ENVIR =CREATE

Notes:
1. ENVIR =CHANGE may not be specified with USERID = ,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERMID =
parameters.

parm list addr: RX-type address or register (2) - (12)

applname: 1-8 character name
applname addr: RX-type address or register (2) - (12)

acee addr: RX-type address or register (2) - (12)

subpool number: Decimal digit 0-255

Defautt: SMC= YES

Defautt: PASSCHK=YES

Default: ENCRYPT= YES

Default: See parameter description

,LOC=ABOVE

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = seclabel addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERIO =submitting userid addr

,SGROUP=submitting group addr

,POE= port of entry addr

,LOGSTR = /ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED=NO

,REMOTE=YES
,REMOTE=NO

,MF= (M,ctrl addr)

Note: LOC can be coded only if REQUEST=VERIFY or
REQUEST= LIST is coded.

number: 1.9, 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

Default: STAT=ASIS

Default: LOG= ASIS

utoken addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

seclabel addr: RX-type address or register (2) - (12)

execution node addr: RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) - (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) - (12)

logstr addr: RX-type address or register (2) - (12)

Default: SESSION= TSO

Default: TRUSTED= NO

Default: REMOTE= NO

cnt/ addr: RX-type address or register (1) or (2) - (12)

RACROUTE REQUEST=VERIFY (for RACF Release 1.9) 591

The parameters are explained under the standard form of the RACROUTE .
REQUEST= VERIFY macro, with the following exception:

,MF•{M,ctr/ addr)
specifies the modify form of the RACROUTE REQUEST= VERIFY macro using a remote
control program parameter list.

,RELEASE• (number,CHECK)
,RELEASE• number
,RELEASE• (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

When you specify the RELEASE keyword, checking Is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST= VERIFY macro can be done by your specifying the CHECK
subparameter on the modify form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done.

592 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFYX - Build a UTOKEN (for RACF Release 1.9)

© Copyright IBM Corp. 1988, 1991

The RACROUTE REQUEST= VERIFYX macro is used to build a UTOKEN. VERIFYX builds
the UTOKEN based on the information passed in the parm list. In addition, VERIFYX handles
the propagation of userid and surrogate userid information.

You should be aware of two things about the workings of VERIFYX:

• If the caller specifies an already existing STOKEN to VERIFYX, and if the caller
additionally specifies any UTOKEN keywords on the request, be aware that the UTOKEN
keywords that are specified will override the corresponding parameters in the STOKEN
that was passed. Thus, if the caller specified an STOKEN, the caller should not specify
any additional parameters unless the caller wants to supplement STOKEN information.

• If RACF is not active or not installed, then SAF builds a default UTOKEN to satisfy the
VERIFYX request. This will be indicated by a bit in the mapped UTOKEN being turned on.
If SAF cannot build a complete UTOKEN, it returns a UTOKEN containing all the
information available from the RACROUTE parameter list. SAF returns the default
UTOKEN at the address specified on the UTOKEN keyword. If a valid SECLABEL was not
specified on the call, and could not be obtained from SAF/RACF profiles, SAF returns a
default SECLABEL of SYSHIGH if the caller specified TRUSTED= YES, and a value of
SYSLOW if the caller specified TRUSTED= NO.

RACF activates the default SECLABELs when the installation sets the SETROPTS
MLACTIVE option.

With Release 3.1.3, SAF ensures that correct propagation of security information involving
the unit of work takes place.

To issue the RACROUTE REQUEST= VERIFY macro, the calling module must be
'authorized' which means

• APF-authorized, or
• in system key 0-7, or
• in supervisor state.

or the NEWPASS keyword must be omitted and the calling module must:

• be in the RACF-authorized caller table and
• fetched from an authorized library and
• reentrant.

Note: It is recommended that if you run programs which issue the RACROUTE
REQUEST= VERIFYX macro, you run those programs AFP-authorized. See SPL: RACF for
information on the authorized caller table.

To use this service, you must also specify RELEASE= 1.9.

593

The standard form of the RAC ROUTE REQUEST= VERIFYX macro is written as follows:

name

b

RACROUTE

b

REQUEST= VERIFYX

,USERID = userid addr

,PASSWRD =password addr

,START=procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD=oid addr

,TERMID=termina/ addr

,JOBNAME = jobname addr

,ENVIR =CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= 'applname'
,APPL=app/name addr

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK =NO

,ENCRYPT= YES
,ENCRYPT= NO

,RELEASE= number

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

594 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: A-type address or register (2) - (12)

password addr: A-type address or register (2) - (12)

procname addr: A-type address or register (2) - (12)

new password addr: A-type address or register (2) - (12)

group addr: A-type address or register (2) - (12)
Default: GROUP=zero

programmer name addr: A-type address or register (2) - (12)

account addr: A-type address or register (2) - (12)

oid addr: A-type address or register (2) - (12).

terminal addr: A-type address or register (2) - (12)

jobname addr: A-type address or register (2) - (12)

Default: ENVIR =CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USER ID=,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERM ID= parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USER ID=, PASSWRD =, ST ART=, NEWPASS = , GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERM ID=
parameters.

parm list addr: A-type address or register (2) - (12)

applname: 1-8 character name
app/name addr: A-type address or register (2) - (12)

Default: SMC= YES

Default: PASSCHK=YES

Default: ENCRYPT= YES

number: 1.9

Default: ST AT= ASIS

Default: LOG = ASIS

utoken addr: A-type address or register (2) - (12)

,STOKEN = stoken addr

,SECLABL = sec/abel addr

,EXENODE=execution node addr

,SNODE= submitting node addr

,SUSERID =submitting userid addr

,SGROUP=submitting group addr

,POE= port of entry addr

,LOGSTR = /ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED=NO

,REMOTE= YES
,REMOTE=NO

stoken addr: A-type address or register (2) - (12)

sec/abel addr: A-type address or register (2) - (12)

execution node addr: A-type address or register (2) - (12)

submitting node addr: A-type address or register (2) - (12)

submitting userid addr: A-type address or register (2) - (12)

submitting group addr: A-type address or register (2) - (12)

port of entry addr: A-type address or register (2) - (12)

/ogstr addr: A-type address or register (2) - (12)

Default: SESSION= TSO

Default: TRUSTED=NO

Default: REMOTE= NO

The parameters are explained as follows:

,USERID • userid addr
specifies the identification of the user who has entered the system. The address points
to a 1-byte length field, followed by the userid which can be up to 8 characters long.

,PASSWRD - password addr
specifies the currently defined password of the user who has entered the system. The
address points to a 1-byte length field, followed by the password which can be up to 8
characters long.

,START-procname addr
specifies the PROC name of a started task for which the RACROUTE
REQUEST=VERIFYX is being performed. The address points to an 8-byte area
containing the PROC name (left-justified and padded with blanks, if necessary). If
ST ART= is specified, REQUEST= VERIFYX processing searches the started
procedures table for the user id and group to use for this REQUEST= VERIFYX request.
If the USERID and GROUP keywords are specified, REQUEST=VERIFYX will only use
those values f it is unsuccessful in obtaining a userid and group form the started
procedures table.

If START is specified, PASSWRD and OIDCARD should not be specified.

,NEWPASS •new password addr
specifies the password which is to replace the user's currently defined password. The
address points to a 1-byte length field, followed by the password which can be up to 8
characters long.

,GROUP• group addr
specifies the group of the user who has entered the system. The address points to a
1-byte length field, followed by the group name which can be up to 8 characters long.

RACROUTE REOUEST=VERIFYX (for RACF Release 1.9) 595

,PGMNAME - programmer name addr
specifies the address of the name of the user who has entered the system. This twenty
byte area is passed to the RACINIT installation exit routine; it is not used by the
RACINIT routine.

,ACTINFO ==account addr
specifies the address of a field containing accounting information. This 144 byte area is
passed to the RACINIT installation exit routine; it is not used by the RACINIT routine.
The accounting field, if supplied, should have the following format:

• First byte of field contains the number (binary) of accounting fields.

• Following bytes contain accounting fields, where each entry for an accounting field
contains a 1-byte length field, followed by the field.

,OIDCARD = oid addr
specifies the address of the currently defined operator identification card of the user
who has entered the system. The address points to a 1-byte length field, followed by
the operator ID card.

, TERM ID - terminal addr
specifies the address of the identifier for the terminal through which the user is
accessing the system. The address points to an 8-byte area containing the terminal
identifier. The area must reside in a non-task-related storage subpool.

,JOBNAME - jobname addr
specifies the address of the JOB name of a background job. The address points to an
eight byte area containing the JOB name (left justified and padded with blanks, if
necessary). The JOBNAME parameter is used by RACINIT during authorization
checking to verify the user's authority to submit the job. It is passed to the Installation
exit routine.

,INSTLN = parm list addr
specifies the address of an area containing parameter information meaningful to the
RACINIT installation exit routine. This area is passed to the installation exit when the
exit routine is given control from the RACINIT routine.

The INSTLN parameter can be used by an installation having a user verification or job
initiation application, and wanting to pass information from one installation module to
the RACINIT installation exit routine.

,APPL• 'applname'
,APPL== applname addr

specifies the name of the application issuing the RACROUTE REQUEST=VERIFYX. If
an address is specified, the address must point to an 8-byte application name, left
justified and padded with blanks, if necessary.

,SMC ... YES
,SMC=NO

specifies the use of the step-must-complete function of RACROUTE
REQUEST=VERIFYX processing. SMC=YES specifies that RACROUTE
REQUEST=VERIFYX processing should continue to place other tasks for the step
non-dispatchabie. SMC= NO specifies that the step-must-complete function is not used.

Nole: SMC= NO should not be used if DADSM ALLOCATE/SCRATCH functions execute
simultaneously in the same address space as the RACROUTE REQUEST=VERIFYX
function.

,PASSCHK •YES
,PASSCHK .. NO

specifies whether or not the user's password is to be verified. PASSCHK=YES
specifies that RACROUTE REQUEST=VERIFYX verifies the user's password.
PASSCHK =NO specifies that the user's password is not verified.

596 SPL: Application Development Macro Reference

,ENCRYPT= YES
,ENCRYPT= NO

specifies whether or not RACROUTE REQUEST=VERIFYX will encrypt the old
password, the new password, and the OIDCARD data passed to it.

YES signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are not pre-encrypted. RACROUTE REQUEST= VERIFYX encrypts the data
before storing it in the user profile or using it to compare against stored data.
ENCRYPT= YES is the default for this keyword.

NO signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are already encrypted. RACROUTE REQUEST=VERIFYX bypasses the
encryption of this data before storing it in, or comparing it against, the user profile.

Note: The exit routine ICHDEX01 can also perform the encryption.

,RELEASE= number
specifies the RACF release level of the parameter list to be generated by this macro.

To use the parameters associated with a release, you must specify the release number
of that release or a later release number. If you specify an earlier release level, the
parameter will not be accepted by macro processing, and an error message will be
issued at assembly time.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=VERIFYX macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

,STAT=ASIS
,STAT=NO

specifies whether the statistics controlled by the installation's options on the RACF
SETROPTS command are to be maintained or ignored for this execution of RACROUTE
REQUEST= VERIFYX. This parameter also controls whether a message is to be issued
when the logon is successfui.

Note: Messages are always issued if the RACROUTE REQUEST= VERIFYX processing
is unsuccessful.

If ST AT= ASIS is specified or taken by default, the messages and statistics are
controlled by the installation's current options on the RACF SETROPTS command.

If STAT= NO is specified, the statistics are not updated. And, if the logon is successful,
no message is issued.

The default is STAT=ASIS.

,LOG=ASIS
,LOG=ALL

specifies when log records are to be generated.

If LOG= ASIS is specified or defaulted to, only those attempts to create an ACEE that
fail will generate RACF log records.

If LOG= ALL is specified, any request to create an ACEE, regardless of whether it
succeeds or fails, will generate a RACF log record. The default is LOG= ASIS.

,UTOKEN = utoken addr
specifies the address of the UTOKEN of the user for which RACF will perform a
RACROUTE REQUEST= VERIFY. The first byte contains the length of the UTOKEN, and
the second byte contains the version number. The version number is 01.

The UTOKEN fields are mapped in ICHRUTKN in the Data Areas chapter of the SPL:
RACF.

,STOKEN = stoken addr
specifies the address of the submittor's UTOKEN. The first byte contains the length of
the UTOKEN, and the second byte contains the version number. The version number is
01. See explanation of UTOKEN.

RACROUTE REQUEST=VERIFYX (for RACF Release 1.9) 597

,SECLABL - seclabel addr
specifies the address of an 8-byte left-justified character field containing the
SECLABEL.

,EXENODE .. execution node addr
specifies the address of an area that contains a one byte length field followed by the
name of the node on which the unit of word is to be executed. The node name cannot
exceed eight bytes.

,SNODE== submitting node addr
specifies the address of an area that contains a one byte length field followed by the
name of the node from which the unit of work was submitted. The node name cannot
exceed eight bytes.

,SUSERID •submitting userid addr
specifies the address of an area that contains a one byte length field followed by the
userid of the user who submitted the unit of work. The userid cannot exceed eight
bytes.

,SGROUP"" submitting group addr
specifies the address of an area that contains a one byte length field followed by the
groupid of the user who submitted the unit of work. The groupld cannot exceed eight
bytes.

,POE== port of entry addr
specifies the address of the port of entry into the system. The accress points to the
name of the input device through which the job was submitted. The port of entry is an 8
character field which is left-justified and padded with blanks.

The port of entry will be a part of the user's security token (UTOKEN). A flag in the
UTOKEN will uniquely identify the RACF general resource class to which the data in the
POE field belongs: TERMINAL, CONSOLE, or JESINPUT.

When both the POE and TERM ID keywords are specified, the POE keyword will take
precedence.

,LOGSTR - logstr addr
specifies the address of a one byte length field followed by character data that will be
written to the SMF data set together with RACF audit information.

,SESSION ... type
specifies the session type(s) to be associated with the request. You can specify
multiple sessions, separated by commas, if necessary. For example,
SESSION= CONSOPER,SYSAS. Session types are literals. When the SESSION keyword
is used in combination with the POE keyword, SESSION determines the class with
which the POE keyword will be connected.

The allowable session types are:

• SYSAS = a system address space
• COMMAND = a command
• TSO = a TSO logon
• CONSOPER = a console operator
• STARTED = a started procedure of started task
• MOUNT = a mount command
• XBM = a execution batch monitor job
• BATCH = a batch job
• NJEOPER = network job entry
• RJEOPER = remote job entry

,TRUSTED= YES
,TRUSTED• NO

specifies whether or not the submitter of the unit of work is a member of the trusted
computer base.

598 SPL: Application Development Macro Reference

,REMOTE= YES
,REMOTE== NO

specifies whether or not the job came through the network.

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes.

Hexadecimal Meaning
Code

00

04

RACROUTE REQUEST=VERIFYX has completed successfully.

When you execute the macro, space for the return code and reason code is
reserved in the first two words of the RACROUTE parameter list. You can
access them via the ICHSAFP mapping by loading the ICHSAFP pointer with
the label that you specified on the execute form of the macro.

Return code: 3C Request completed successfully, but a VERIFYX error
occurred in SAF.

Reason code: 20 UTOKEN area specified was too large; on return, the
length field will contain the length used.

Reason code: 24 STOKEN area specified was too large; on return, the
length field will contain the length used.

The requested function could not be performed.

In addition, the following return code and reason codes have been saved in
the ICHSAFP return and reason code fields:

Return code: 00 No security decision could be made.

Reason code: 00 The RACF Router was not loaded; the request, resource,
subsystem combination could not be found in the RACF
ROUTER table; RACF is not active, no successful exit
processing; or RACF is not most current release.

08 The requested function failed.

In addition, the following return code and reason codes
have been saved in the ICHSAFP return and reason code
fields:

Return code: 00 Default ACEE/token building error.
Reason code: 00 SAF failed to set up a recovery

environment.
Return code: 3C VERIFYX error occurred in SAF.
Reason code: 04 Old password required. Message

IRR1011 issued.
Reason code: 08 Userid required. Message IRR1011

issued.
Reason code: OC Propagation checking could not

complete.
Reason code: 10 Required UTOKEN keyword missing.
Reason code: 14 Required UTOKEN keyword length that

was specified was too small. On return,
the token length field has the minimum
required length.

Reason code: 18 An internal TOKENMAP request to
decrypt an input token failed.

Reason code: 1C STOKEN keyword length that was
specified was too small. On return, the
token length field has the minimum
required length.

Reason code: 28 The token that was specified had an
undefined version (0).

RACROUTE REQUEST=VERIFYX (for RACF Release 1.9) 5,9

Example1
Operation: The following example shows a RAC ROUTE REQUEST= VERIFYX coded to
handle verification checking for a batch job that has been submitted with a valid USERID,
GROUPIO, SECLABEL, and PASSWORD. The UTOKEN area will be filled with the verified job
information.

RACROUTE REQUEST=VERIFYX,
SUBSYS=address of caller subsystem,
REQSTOR=address of caller subsystem control point,
SESSION=BATCH,
PASSWRD=address of password supplied,
UTOKEN=address of call-supplied UTOKEN area,
EXENODE=address of execution node,
USERID=addess of session owner userid,
GROUP=addess of session owner group name,
SECLABEL=address of session owner SECLABEL,
STOKEN=address of submitter utoken area,
TRUSTED=NO,
,RELEASE=l.9

Note: Additional keywords such as WORKA, required by RACF to complete the request, are
specified on RACROUTE itself.

600 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFYX (List Form)
The list form of the RACROUTE REQUEST= VERIFYX macro is written as follows:

name

b

RACROUTE

b

REQUEST= VERIFYX

,USERID = userid addr

,PASSWRD=password addr

,START=procname addr

,NEWPASS =new password addr

,GROUP= group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD=oid addr

,TERMID =terminal addr

,JOBNAME = jobname addr

,INSTLN = parm list addr

,APPL= 'applname'
,APPL= applname addr

,SMC=YES
,SMC=NO

,PASSCHK =YES
,PASSCHK =NO

,ENCRYPT= YES
,ENCRYPT=NO

,RELEASE= number

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = seclabel addr

,EXENODE =execution node addr

,SNODE =submitting node addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: A-type address

password addr: A-type address

procname addr: A-type address

new password addr: A-type address

group addr: A-type address

programmer name addr: A-type address

account addr: A-type address

oid addr: A-type address

terminal addr: A-type address

jobname addr: A-type address

parm list addr: A-type address

applname: 1-8 character name
applname addr: A-type address

Default: SMC= YES

Default: PASSCHK =YES

Default: ENCRYPT= YES

number: 1.9

Default: ST AT= ASIS

Default: LOG = ASIS

utoken addr: A-type address (2) - (12)

stoken addr: A-type address (2) - (12)

seclabel addr: A-type address (2) - (12)

execution node addr: A-type address (2) - (12)

submitting node addr: A-type address (2) - (12)

RACROUTE REQUEST=VERIFYX (for RACF Release 1.9) 601

,SUSERID =submitting user Id addr

,SGROUP=submfttlng group addr

,POE= port of entry addr

,LOGSTR = /ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED= NO

,REMOTE=YES
,REMOTE=NO

,MF=L

submitting userld addr: A-type address (2) - (12)

submitting group addr: A-type address (2) - (12)

port of entry addr: A-type address (2) - (12)

/ogstr addr: A-type address (2) - (12)

Default: SESSION =TSO

Default: TRUSTED=NO

Default: REMOTE= NO

The parameters are explained under the standard form of the RACROUTE
REQUEST= VERIFYX macro, with the following exception:

,MF•L
specifies the list form of the RACROUTE REQUEST=VERIFYX macro.

602 SPL:·Appllcation Development Macro Reference

RACROUTE REQUEST= VERIFYX (Execute Form)
The execute form of the RACROUTE REQUEST= VERIFYX macro Is written as follows:

name

b

RAC ROUTE

b

REQUEST= VERIFYX
,USERID = userld addr

,PASSWRD=password addr

,START= procname addr

,NEWPASS =new password addr

,GROUP=group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD=oid addr

,TERMID=termina/ addr

,JOBNAME = Jobname addr

,ENVIR =CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

,iNSTLN =perm list addr

,APPL= applname
,APPL= spplnsme addr

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK =NO

,ENCRYPT= YES
,ENCRYPT= NO

,RELEASE= (number,CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,STAT=ASIS
,STAT=NO

name: symbol. Begin name In column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: RX-type address or register (2) - (12)

password addr: RX-type address or register (2) - (12)

procname addr: RX-type address or register (2) - (12)

new password addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP=zero

programmer name addr: RX-type address or register (2) - (12)

account addr: RX-type address or register (2) - (12)

old addr: RX-type address or register (2) - (12)

terminal addr: RX-type address or register (2) - (12)

Jobname sddr: RX-type address or register (2) - (12)

Default: ENVIR=CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.
2. ENVIR =DELETE may not be specified with APPL= ,
USERID=, PASSWRD=, START=, NEWPASS=, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERM ID=
parameters.

parm list addr: RX-type address or register (2) - (12)

applname: 1-8 character name
spplname addr: RX-type address or register (2) - (12)

Default: SMC= YES

Delault: PASSCHK=YES

Default: ENCRYPT= YES

number: 1.9

Default: STAT= ASIS

RACROUTE REQUEST= VERIFYX (for RACF Release 1.9) 603

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL =sec/abet addr

,EXENODE=executlon node addr

,SNODE=submitting node addr

,SUSERID =submitting userid addr

,SGROUP =submitting group addr

,POE= port of entry addr

,LOGSTR = /ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED=NO

,REMOTE=YES
,REMOTE=NO

,MF=(E,ctr/ addr)

Default: LOG = ASIS

utoken addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

sec/abe/ addr: RX-type address or register (2) - (12)

execution node addr:. RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) - (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) - (12)

logstr addr: RX-type address or register (2) - (12)

Default: SESSION=TSO

Default: TRUSTED= NO

Default: REMOTE= NO

cnt/ addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST=VERIFYX macro, with the following exception:

,MF• (E,ctrl addr)
specifies the execute form of the RAC ROUTE REQUEST= VERIFYX macro using a
remote control program parameter list.

,RELEASE= (number,CHECK)
,RELEASE• number
,RELEASE= (,CHECK)

specifies the RACF release level 1.9 of the parameter list t9 be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACROUTE REQUEST=VERIFYX macro can be done by your specifying the CHECK
subparameter on the execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be done.

604 SPL: Application Development Macro Reference

RACROUTE REQUEST= VERIFYX (Modify Form)
The modify form of the RACROUTE REQUEST= VERIFYX macro is written as follows:

name

b

RAC ROUTE

b

REQUEST= VERIFYX

,USERID=userid addr

,PASSWRD =password addr

,START=procname addr

,NEWPASS=new password addr

,GROUP=group addr

,PGMNAME =programmer name
addr

,ACTINFO =account addr

,OIDCARD = oid addr

,TERM ID= terminal addr

,JOBNAME = jobname addr

,ENVIR =CREATE
,ENVIR =CHANGE
,ENVIR =DELETE

,INSTLN = parm list addr

,APPL= applname
,APPL= applname addr

,SMC=YES
,SMC=NO

,PASSCHK=YES
,PASSCHK=NO

,ENCRYPT= YES
,ENCRYPT= NO

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

,STAT=ASIS
,STAT=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

userid addr: RX-type address or register (2) - (12)

password addr: RX-type address or register (2) - (12)

procname addr: RX-type address or register (2) - (12)

new password addr: RX-type address or register (2) - (12)

group addr: RX-type address or register (2) - (12)
Default: GROUP= zero

programmer name addr: RX-type address or register (2) - (12)

account addr: RX-type address or register (2) - (12)

oid addr: RX-type address or register (2) - (12)

terminal addr: RX-type address or register (2) - (12)

jobname addr: RX-type address or register (2) - (12)

Defautt: ENVIR=CREATE
Notes:
1. ENVIR =CHANGE may not be specified with USERID =,
PASSWRD=, START=, NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERM ID= parameters.
2. ENVIR =DELETE may not be specified with APPL=,
USERID =, PASSWRD =, START=, NEWPASS =, GROUP=,
ACTINFO =, PGMNAME =, OIDCARD =, or TERMID =
parameters.

parm list addr: RX-type address or register (2) - (12)

applname: 1-8 character name
applname addr: RX-type address or register (2) - (12)

Default: SMC= YES

Default: PASSCHK=YES

Default: ENCRYPT=YES

number: 1.9

Delautt: STAT= ASIS

RACROUTE REQUEST= VERIFYX (for RACF Release 1.9) 605

,LOG=ASIS
,LOG=ALL

,UTOKEN = utoken addr

,STOKEN = stoken addr

,SECLABL = sec/abe/ addr

,EXENODE =execution node addr

,SNODE= submitting node addr

,SUSERID=submittlng userid addr

,SGROUP =submitting group addr

,POE= port of entry addr

,LOGSTR = /ogstr addr

,SESSION= TSO
,SESSION= BATCH
,SESSION= XBM
,SESSION= CONSOPER
,SESSION= STARTED
,SESSION= MOUNT
,SESSION= COMMAND
,SESSION= SYSAS
,SESSION= NJEOPER
,SESSION= RJEOPER

,TRUSTED=YES
,TRUSTED= NO

,REMOTE=YES
,REMOTE=NO

,MF=(M,ctr/ addr)

Delaull: LOG= ASIS

utoken addr: RX-type address or register (2) - (12)

stoken addr: RX-type address or register (2) - (12)

sec/abe/ addr: RX-type address or register (2) - (12)

execution node addr: RX-type address or register (2) - (12)

submitting node addr: RX-type address or register (2) - (12)

submitting userid addr: RX-type address or register (2) • (12)

submitting group addr: RX-type address or register (2) - (12)

port of entry addr: RX-type address or register (2) • (12)

logstr addr: RX-type address or register (2) - (12)

Delaull: SESSION=TSO

Delaull: TRUSTED=NO

Delaull: REMOTE= NO

cntl addr: RX-type address or register (1) or (2) - (12)

The parameters are explained under the standard form of the RACROUTE
REQUEST= VERIFYX macro, with the following exception:

,MF-{M,ctr/ addr)
specifies the modify form of the RACROUTE REQUEST= VERIFYX macro using a
remote control program parameter list.

,RELEASE• {number,CHECK)
,RELEASE== number
,RELEASE• {,CHECK)

specifies the RACF release level 1.9 of the parameter list to be generated by this
macro.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and modify forms of the
RACROUTE REQUEST=VERIFYX macro can be done by your specifying the CHECK
subparameter on the modify form of the macro.

When CHECK processing is requested, if the size of the list-form expansion Is not large
enough to accommodate all parameters defined by the RELEASE keyword on the
modify form of the macro, the modify form of the macro will not be done.

606 SPL: Application Development Macro Reference

RACSTAT - Determines the Status of RACF (for RACF Release 1.8.1 or earlier)

© Copyright IBM Corp. 1988, 1991

This macro description applies to RACF Release 1.8.1 or earlier. If you have RACF Release
1.9 Installed on your system, you can still invoke the RACSTAT macro directly. See the
following for the applicable descriptions of RACROUTE and RACROUTE REQUEST= STAT:

• "RACROUTE- Router Interface (for RACF Release 1.9)" on page 445
• "RACROUTE REQUEST=STAT ·Determine RACF Status (for RACF Release 1.9)" on

page 547.

The RACSTAT macro determines if RACF is active and optionally determines if RACF
protection is in effect for a given resource class. You can also use the RACSTAT macro to
determine if a resource class name is defined to RACF.

RACSTAT is a branch entered service that uses standard linkage conventions.

Note: For RACF release 1.6 and prior releases, only callers in 24-bit addressing mode can
issue this macro.

The standard form of the RA CST AT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACSTAT.

RACSTAT

b

CLASS= 'classname'

CLASS=c/assname addr

ENTRY= entry addr

,RELEASE= number

One or more blanks must follow RACSTAT.

c/assname: DATASET, DASDVOL, or TAPEVOL, or any class
defined in the RACF class descriptor table
classname addr: A-type address, or register (2) - (12).

entry addr: A-type address, or register (2) - (12).

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

The parameters are explained as follows:

CLASS - 'c/assname'
CLASS = c/assname addr

specifies the classname for which RACF authorization checking is performed. You can
explicitly define the name on the macro by enclosing the name in quotes. If specified,
the address must point to an 8-byte field containing the classname, left justified and
padded with blanks if necessary. If you omit CLASS=, the status of RACF is returned.

ENTRY ... entry addr
specifies the address of a 4-byte area that is set to the address of the specified class in
the class descriptor table. This operand is ignored when you omit the CLASS=
operand.

,RELEASE= number
specifies the RACF release level of the parameter list that this macro will generate.

You can specify certain parameters only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by
the macro processing. An error message will be issued at assembly time. For the
parameters that are valid for RELEASE= 1.6 and later, see Figure 19.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
RACST AT macro, specify the CHECK subparameter on the execute form of the macro.

607

Parameters for RELEASE -1.6 and Later
The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Figure 19. RACSTAT Parameters for RELEASE= 1.6 and Later

Parameter RELEASE• 1.8 RELEASE-1.7 RELEAIE • 1.8 or
1.8.1

CLASS= x x x
ENTRY= x x x
RELEASE= x x x

Return Codes·
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

oc
10

14

18

Meaning

RACF is active and, if CLASS= was specified, the class is active.

RACF is active; the class is inactive.

RACF is active; the class is not defined to RACF.

RACF is inactive and, if CLASS= was specified, the class is active.

RACF is inactive; the class is inactive.

RACF is inactive; the class is not defined to RACF.

RACF CVT does not exist (RACF is not installed) or an Insufficient level of
RACF is installed.

64 Indicates that you specified the CHECK subparameter of the RELEASE
keyword on the execute form of the RACSTAT macro; however, the list form
of the macro does not have the proper RELEASE parameter. Macro
processing terminates.

Nole: The class descriptor entry for the specified class is returned to the caller (In the
4-byte area addressed by the entry addr) for return codes 00, 04, OC, and 10.

Example 1
Operation: Determine if the DASDVOL class is active and retrieve the address of Its class
descriptor. A fullword, CDADDR, contains the class descriptor address.

RACSTAT CLASS='OASDVOL',ENTRY=CDADOR

608 SPL: Application Development Macro Reference

RACSTAT (List Form)
The list form of the RACSTAT macro is written as follows:

name

b

RACSTAT

b

CLASS= 'classname'
CLASS=c/assname addr

ENTRY= entry addr,

,RELEASE= number

MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACSTAT.

One or more blanks must follow RACSTAT.

c/assname: DATASET, DASDVOL, or TAPEVOL.
c/assname addr: A-type address.

entry addr: A-type address.

number: 1.8.1, 1.8, 1.7, or 1.6
Defaun: RELEASE= 1.6

The parameters are explained under the standard form of the RACST AT macro with the
following exception:

MF -L
specifies the list form of the RACSTAT macro.

RACSTAT (for RACF Release 1.8.1 or earlier) 609

RACSTAT (Execute Form)

The execute form of the RACSTAT macro is written as follows:

name

RACSTAT

CLASS= 'c/assname'
CLASS= c/assname addr

ENTRY= entry addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACSTAT.

One or more blanks must follow RACSTAT.

c/assname: DATASET, DASDVOL, or TAPEVOL.
c/assname addr: RX-type address or register (2) - (12).

entry addr: RX-type address or register (2) - (12).

number: 1.8.1, 1.8, 1.7, 1.6
Default: RELEASE= 1.6

ctr/ addr: RX-type address or register (1) - (12).

The parameters are explained under the standard form of the RACSTAT macro, with the
following exception:

MF = (E,ctrl addr)
specifies the execute form of the RACSTAT macro, using a remote control program
parameter list.

,RELEASE = (number,CHECK)
,RELEASE= number
,RELEASE== {,CHECK)

specifies the RACF release level of the parameter list that this macro will generate.

You can specify certain parameters only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by
the macro processing. An error message will be issued at assembly time. For the
parameters that are valid for RELEASE= 1.6 and later·, see Figure 19.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
RA CST AT macro, specify the CHECK subparameter on the execute form of the macro.

When you request CHECK processing and the size of the list-form expansion is not
large enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be generated.
Instead, RACSTAT generates a return code of 'X64'.

610 SPL: Application Development Macro Reference

RACXTRT - Retrieve Fields from RACF User Profile (for RACF Release 1.8.1 or
earlier)

© Copyright IBM Corp. 1988, 1991

Nole: The RACROUTE macro is the preferred programming interface.

This macro description applies lo RACF Release 1.8.1 or earlier. Your program can Invoke
the RACXTRT macro directly; however, IBM recommends lhal you Invoke the equlvalenl
function through the RACROUTE macro, using the REQUEST- EXTRACT parameter. See
"RACROUTE- MYS Router Interface (for RACF Release 1.8.1 or earlier)" on page 435 for
the applicable RACROUTE macro description.

If you have RACF Release 1.9 Installed on your system, you can sllll Invoke the RACXTRT
macro dlreclly; however, lo use the new Release 1.9 functions, you must use the
RACROUTE macro and specify REQUEST= EXTRACT. See the following for the applicable
descriptions of RACROUTE and RACROUTE REQUEST ... EXTRACT:

• "RACROUTE - Router Interlace (for RACF Release 1.9)" on page 445
• "RACROUTE REQUEST= EXTRACT - Replace or Retrieve Fields (for RACF Release

1.9)" on page 511.

The RACXTRT macro retrieves or replaces certain specified fields from a RACF profile or
encrypts certain clear-text {readable) data.

Note: Encryption and extraction are mutually exclusive.

Nole: Only callers in 24-bit addressing mode can issue this macro. Callers executing In
31-bit addressing mode, who want to use the RACXTRT function, can code the RACROUTE
macro.

l PROGRAMMING INTERFACES

I ONLY the following RACXTRT functions are general-use programming interfaces:

• Retrieving or updating fields in the TSO segment in the user profile
• Retrieving or updating fields in the user and data set profiles
• Retrieving or updating the following installation-reserved fields:

USERDATA
USRCNT
USRDATA
USRFLG
USRNM

PRODUCT-SENSITIVE PROGRAMMING INTERFACE

ONLY the following RACXTRT functions are product-sensitive programming interfaces:

• Retrieving or updating fields in the base segment

~---- End of PRODUCT-SENSITIVE PROGRAMMING INTERFACE ----~

611

The standard form of the RACXTRT macro is written as follows:

name

RACXTRT

TYPE= EXTRACT
TYPE= EXTRACTN
TYPE= REPLACE
TYPE= ENCRYPT

,ENTITY= profile name addr

RELEASE= number

,ACEE= acee addr

, VOLSER = volser addr

,GENERIC= ASIS
,GENERIC= YES

,FLDACC =YES
,FLDACC=NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

profile name addr: A-type address, or register (12)

number: 1.6, ~.7, 1.8, or 1.8.1
Default: RELEASE= 1.6

acee addr: A-type address, or register (2) - (12)

volser addr: A-type address, or register (2) - (12)

Defautt: ASIS

Defautt: NO

If you specify TYPE= EXTRACT or EXTRACTN:

,SUBPOOL =subpool number

,DERIVE= 'YES'

,CLASS= 'class name'

,CLASS= class name addr

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS= field addr

If you specify TYPE= REPLACE:

,CLASS= 'class-name'

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS= field addr

,SEGDATA= segment data addr

If you specify TYPE= ENCRYPT:

,ENCRYPT= (data addr,DES)
,ENCRYPT=(data addr,HASH)
,ENCRYPT= (data addr,INST)

subpool number: decimal digit, 0-255
Defautt: SUBPOOL=229

see explanation of keyword
Defautt: normal processing

the entity's class name
Defautt: USER

class name addr: A-type address or register (2) - (12)

'segment name': 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

the entity's class name
Defautt: USER

'segment name': 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

segment data addr: A-type address or register (2) - (12)

data addr: A-type address or register (2) - (12)

Note: If you specify TYPE=ENCRYPT, the only other allowable parameters are ENTITY, RELEASE,
ENCRYPT, with ENCRYPT being required.

612 SPL: Application Development Macro Reference

The parameters are explained as follows:

TYPE - EXTRACT
specifies the function to be performed by the extract function routine.

With Release 1.8 and later, RACXTRT can provide additional function: it can extract
information from any field in any profile. The profile templates in Chapter 3 define the
type and name of each field in each profile. If you specify EXTRACT, the macro extracts
information from the profile determined by the ENTITY and CLASS keywords.
Specifically, RACF extracts the fields specified in the FIELDS keyword from the segment
specified by the SEGMENT keyword. If you do not specify ENTITY, RACF retrieves the
desired information from the current user's profile.

To use TYPE= EXTRACT to extract field information from a profile, you must specify
Release= 1.8.

Nole: If you specify TYPE= EXTRACT, do not specify ENCRYPT.

Upon return, register 1 contains the address of a result area that begins with a fullword
containing the area's subpool number and length. It is your responsibility to issue a
FREEMAIN to release the area after you are through using it.

The fields in the result area are in the order below:

Offset (Dec) Data Length (Dec)
1 0 subpoolofarea

1 length of area
4 offset to start of optional field to contain

segment data
6 reserved
24 specified or current user's userid, if CLASS= USER
32 specified user's default connect group or current

user's current connect group, if CLASS= USER

3
2

18
8
8

In general, RACF returns field data in the order it was specified, with a four byte length field
preceding each profile field. For example, if you were extracting the following:

l

• Single field, you would receive

A 4-byte length field that contains the length of the fields that follow.

No additional length byte if the requested field is a variable length field.

4 bytes (length of data)

• Combination field (representing one or more fields), you would receive

A 4-byte length field that contains the combined length of all the fields that follow.

A combination field made up of 4-byte length fields followed by their respective
individual data fields.

Total length of combination field _I

4 bytes (length of datal) datal

4 bytes (length of data2) data2

RACXTRT (for RACF Release 1.8.1 or earlier) 613

• Single field within a repeat group, you would receive

A 4-byte length field that contains the combined length of all the fields that follow.

A 4-byte length field that indicates the length of the specified field in the first
occurrence of the repeat group. This is followed by a 4-byte length field that
indicates the length of the specified field in the second occurrence of the repeat
group, and so on, until all the occurrences of the repeat group are accounted for.

l Total length of all the following fields

Field from
first occurrence
of repeat group

4 bytes (length of datal) datal

Same field from
next occurrence
of repeat group

4 bytes (length of datal) datal

[

• Combination field (representing one or more fields) within a repeat group, you would
receive

A 4-byte length field that contains the combined length of all the fields that follow.

A combination field consisting of a 4-byte length field indicating the length of the
individual data field that follows it, followed by the next 4-byte length field indicating
the length of the next individual data field, and so on, until all the individual fields
that make up the combination field are accounted for. We then move on to the next
occurrence of the repeat group and begin again.

Total length of combination field J
4 bytes (length of datal) datal

4 bytes (length of data2) data2

• A repeat group count field, you would receive

A 4-byte length field that contains the total length of all the fields contained in the
repeat group.

A 4-byte field that indicates the length of the fields in the first occurrence of the
repeat group. This is followed by a 4-byte length field that indicates the length of the
first data field in the repeat group followed by its data field and another 4-byte length
field that indicates the length of the next field followed by its data field. This
continues until all fields within the repeat group are accounted for. When the first
occurrence of the repeat group count field is accounted for, there is another 4 byte
field that indicates the length of the fields in the second occurrence of the repeat
group, again followed by the same field configurations until all the occurrences of
the repeat group are accounted for. The only difference between this example and
the one above is that the length of each occurrence precedes that occurrence.

614 SPL: Application Development Macro Reference

Total length of all the fields that follow

4 bytes (length of occurrence 1)

Occurrence 1 4 bytes (length of datal) datal

of repeat group 4 bytes (length of data2) data2

4 bytes (length of occurrence 2)

Occurrence 2 4 bytes (length of datal) datal

4 bytes (length of data2) data2
'

of repeat group

When a field to be extracted is empty, the following occurs:

• For fixed length fields, RACF returns the default as specified by the template definitions.
The default for flag fields is X'OO'. The default for fixed length fields is the BASE
segment of the profile in binary ones. The default for fixed length fields in other
segments is binary zeros.

• For variable length fields, RACF returns a length of zero and no data.

If CLASS= USER when you specify EXTRACT, the macro extracts the userid, connect
group, and, optionally, the encrypted password from the user profile.

TYPE = EXTRACTN
specifies the function to be performed by the EXTRACT function routine.

Note: If you specify TYPE= EXTRACTN, do not specify ENCRYPT= .

Upon return, register 1 contains the address of a result area that begins with a fullword
containing the area's subpool number and length. To see the format of the result area,
see the explanation of TYPE= EXTRACT above.

If you specify EXTRACTN, the macro extracts information from the profile that follows
the profile determined by the ENTITY and CLASS keywords. From that next profile,
RACF extracts the fields specified in the FIELDS keyword from the segment specified by
the SEGMENT keyword. In addition, RACF returns the name of the profile from which it
extracted the data.

TYPE - REPLACE
specifies the function that the EXTRACT function routine will perform.

Note: If you specify TYPE= REPLACE, do not specify ENCRYPT= .

Using the REPLACE option to update a profile requires a thorough knowledge of the
inter-relationships of fields within a profile and the potential relationships between
profiles. For instance, if you use RACXTRT to update a password, you should also
update the password change date and password history information.

If you specify TYPE= REPLACE, RACF takes the information in the fields specified in
the FIELDS parameter and pointed to by SEGDATA, and places that information in the
designated SEGMENT. (The SEGMENT is within the profile determined by the ENTITY
and CLASS keywords.) If you do not specify ENTITY, RACF returns an error code. If
you specify TYPE= REPLACE, you must specify FIELDS, SEGDATA=' and
RELEASE= 1.8 or later. If you want to replace a SEGMENT other than the BASE
segment, you must specify the SEGMENT keyword with the segment you want. If you
do not specify SEGMENT, the segment defaults to the BASE segment.

RACXTRT (for RACF Release 1.8.1 or earlier) 615

With 1.8 and later, if you want to create a TSO segment, you can do so by specifying the
RACXTRT macro In the following way:

TYPE= REPLACE SEGMENT= TSO

TYPE - ENCRYPT
specifies the function to be performed by the extract function routine.

If you specify TYPE= ENCRYPT, the operation performed is data encryption. The
ENCRYPT keyword specifies the data to be encrypted and the encryption method used.
The DES (Data Encryption Standard) encryption routine will use the first eight bytes of
the area to which the ENTITY operand points. If you do not specify ENTITY, the userid
from the current ACEE will be used Instead. If you specify TYPE= ENCRYPT, no work
area will be returned.

,SUBPOOL - subpool number
specifies the storage subpool from which the extract function routine obtains an area
needed for the extraction. If you do not specify this parameter, It defaults to 229.

,DERIVE"" YES
specifies that the desired field will be obtained from the DFP segment of the
appropriate profile. To specify DERIVE, you must also specify RELEASE= 1.8 or later.

DERIVE requests are limited to the DFP segment of the DATASET and USER profiles.
The following is an explanation of the DERIVE processing for both a DATASET and
USER request.

• DATASET

Specifying the DERIVE= YES keyword with CLASS= DATASET and
FIELDS= RESOWN ER causes RACF to perform additional processing other than
simply extracting the data set resource owner from the data set profile.

DFP uses this retrieved information for authority checking when allocating a new
data set.

To process the request, RACF first attempts to extract the RESOWNER field from the
DATASET profile specified by the ENTITY keyword. If the profile exists and the
RESOWNER field contains data, RACF checks to see if that data is the userid of a
USER or GROUP currently defined to RACF. If so, RACF returns that userld along
with a reason code which indicates whether the userid is that of a USER or GROUP.

If RACF does not find a profile that matches the DATASET name specified by the
ENTITY keyword, RACF attempts to locate the generic DATASET profile that
protects that DATASET name.

If it finds the generic profile, and the RESOWNER field contains data, RACF checks
to see if that data is the userid of a USER or GROUP currently defined to RACF. If
so, RACF returns that userid along with a reason code which indicates whether the
userid is that of a USER or GROUP.

If RACF does not find a generic profile or the retrieved data is neither a USER or
GROUP, RACF returns the high-level qualifier from the name specified on the
ENTITY keyword along with a reason code which indicates whether that high-level
qualifier matches a defined USER, a GROUP, or neither.

Specify a DERIVE request for RESOWNER as follows:

RACROUTE Request= EXTRACT,
ENTITY=data set name,
VOLSER=mydasd,
CLASS=DATASET,
FIELDS='RESOWNER', SEGMENT='DFP',
DERIVE=YES, RELEASE=l.8.1

Note: You must specify all the keywords in the example for the DERIVE request to
work.

616, SPL:,Application Development Macro Reference

• USER

The purpose of specifying the DERIVE= YES keyword with CLASS= USER is to
obtain the desired DFP field information (STORCLAS or MGMTCLAS) from the
profile of the user. If the user's profile does not contain the desired DFP fields,
RACF then goes to the user's default group and attempts to obtain the information
for the remaining fields from the GROUP profile (the remaining fields being those
that did not contain information in the USER profile.)

You would specify a DERIVE request for information from a USER profile as follows:

RACROUTE Request= EXTRACT,
ENTITY=user name,
CLASS=USER,
FIELDS='STORCLAS', SEGMENT='DFP',
DERIVE=YES, RELEASE=l.8.1

RACF only processes the DERIVE keyword if you specify it with the DATASET or USER
class. In addition, for DERIVE processing to occur, you must also specify
SEGMENT= DFP and RELEASE= 1.8.1.

,FIELDS• address
Specifies the address of a variable length list. The first field is a 4-byte field that
contains the number of profile field names in the list that follows. Each profile field
name is 8 bytes long, left-justified, and padded to the right with blanks. The allowable
field names for each type of profile are in the template listings in Chapter 3. To see
how to specify the FIELDS keyword, see the TYPE= REPLACE example below.

• If you specify Release= 1.6 or later, or allow the keyword to default, then the
following options exist:

The only acceptable value of the count field is 1.

The only acceptable field name is PASSWORD. Use this parameter when you
want to extract the user's encrypted password in addition to his/her userid and
connect group. RACF returns the encrypted password in the result area at an
offset from the start of the area specified by the halfword at offset 4. (See the
result area under TYPE= EXTRACT.)

• If you specify Release= 1.8 or later, then the following options exist:

The count field can contain numbers from 1 • 255.

The field names can be any of the field names in the the template listings.

If you specify TYPE= EXTRACT or EXTRA CTN, RACF retrieves the contents of the
named fields from the RACF profile indicated by the CLASS= and ENTITY=
parameters, and returns the contents in the result area. (See result area explained
under the EXTRACT keyword.)

With Release 1.8, you can specify TYPE= REPLACE. RACF replaces or creates the
indicated fields in the profile specified on the CLASS and ENTITY keywords with the
data pointed to by the SEGDATA keyword.

Noles:

1. Do not replace a repeat group count field. Doing so will cause unpredictable
results.

2. You cannot replace an entire repeat group, a single occurrence of a repeat group,
or a single existing field in a repeat group. If you attempt to do so, RACF adds the
data to the existing repeat group(s).

The only thing you can do is retrieve all occurrences of specified fields within a
repeat group or add a new occurrence of a repeat group.

3. If you add occurrences of a repeat group, RACF places those additions at the
beginning (front) of the repeat group.

RACXTRT (for RACF Release 1.8.1 or earlier) 817

The following example of TYPE= REPLACE replaces fields in the BASE segment. It
shows one way to code the macro and the declares necessary to make the macro work.

RACXTRT TYPE=REPLACE ,
CLASS= I USER I '

ENTITY=USERID,
FIELDS=FLDLIST,
SEGDATA=SEGDLIST,
SEGMENT=BASE

USERID DC AL1(4}, C'BILL'
FLDLIST DC A(3}

DC CLS'AUTHOR'
DC CLS'DFLTGRP'
DC CLS'NAME'

SEGDLIST DC AL4(6),CL6'JSMITH'
DC AL4(8),CL8'SECURITY'
DC AL4(11},CL11'BILL THOMAS'

When the replacement action takes place, the following occurs:

• 'JSMITH' will be placed in the 'AUTHOR' field in the profile.
• 'SECURITY' will be placed in the 'DFL TGRP' field in the profile.
• 'BILL THOMAS' will be placed in the 'NAME' field in the profile.

,ENCRYPT =(data addr, DES)
,ENCRYPT =(data addr, HASH)
,ENCRYPT =(data addr, INST)

specifies the data to be encrypted, and a method of encryption. The address points to a
one-byte length field followed by 1 to 255 bytes of clear-text data to be encrypted. The
second subparameter specifies the encryption method: the DES algorithm, the RACF
hashing algorithm, or whatever scheme the installation uses (INST value). Upon return
to the macro issuer, the first subparameter will now contain the address of an area that
contains a one-byte length followed by the encrypted version of the data. Neither the
address itself nor the length is changed.

Note: When you use the DES algorithm, RACF actually encrypts the data to which the
ENTITY profile points, the userid, using the data as the encryption key. Data is one-way
encrypted, that is, no facility is provided to recover the data in readable form. If you
specify HASH, the RACF hashing algorithm is used and data is masked instead of
encrypted.

,ENTITY= resource name addr
specifies the address of an area containing the resource name (USERID for
CLASS= USER) for which profile data is to be extracted, or the userid to be used when
encrypting. The area is 8 bytes long for USER and GROUP, 17 bytes long for
CLASS= CONNECT, and 44 bytes long for DATASET. The class descriptor table
determines the lengths of all other profile names. The name must be left-justified in the
field and padded with blanks. If you do not specify this parameter, a default value of
zero will indicate to RACF that the userid from the current ACEE will be used.

,RELEASE =1.611.711.811.8.1
specifies the RACF release level of the parameter list that this macro will generate.

To use the parameters associated with a release, specify the release number of that
release or a later release number. If you specify an earlier release level, macro
processing will not accept the parameter, and an error message will be issued at
assembly time. For the parameters that are valid for RELEASE= 1.6 and later, see
Figure 20 on page 620.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
RACXTRT macro, specify the CHECK subparameter on the execute form of the macro.

618 SPL: Application Development Macro Reference

,ACEE• acee addr
specifies an alternate ACEE for RACF to use rather than the current ACEE. For
example, if you do not specify the ENTITY parameter, RACF refers to the ACEE during
extract processing of user data. If you want to use the ACEE parameter, you must
specify RELEASE= 1.8 or later.

, VOLSER • volser addr (only valid with ,CLASS• 'DATASET')
specifies the volume serial as follows:

• For non-VSAM DASO data sets and tape data sets, specifies the volume serial
number of the volume on which the data set resides.

• For VSAM DASO data sets and tape data sets, specifies the volume serial number of
the catalog controlling the data set.

The field to which the vol-address points contains the volume serial number. If
necessary, pad it to the right with blanks so it contain six characters.

If you specify VOLSER, you must specify RELEASE= 1.8 or later.

,GENERIC • ASISIYES
When CLASS is DATASET, specifies whether RACF is to treat the entity name as a
generic profile name.

• If you specify GENERIC= YES, RACF considers the entity name a generic profile
name, even if it does not contain any of the generic characters (an asterisk or a
percent sign).

• If you specify GENERIC= ASIS, RACF considers the entity name a generic only if it
contains one or both of the generic characters.

If you specify GENERIC, you must specify RELEASE= 1.8 or later.

,FLDACC ... NOIYES
Specifies whether field level access checking should be performed. If you specify
FLDACC =YES, the RACF data base manager will check to see that the user running
your program has the authority to extract or modify the fields that have been specified
in the RACXTRT macro.

Notes:

1. For field level access checking to occur, you must specify RELEASE= 1.8 or later
when you code the macro. In addition, before the program executes, the security
administrator must activate the FIELD class. If these conditions are not satisfied,
the RACF manager behaves as though you had specified FLDACC =NO.

2. In addition, the security administrator must issue the RDEFINE and PERMIT
commands to designate those users who will have the authority to access the fields
designated in the RACXTRT macro.

3. If you specify FLDACC =NO or omit the parameter, the manager ignores field level
access checking.

,CLASS• 'class name' .
specifies the class the entity is in. The class name can be USER, GROUP, CONNECT,
DATASET, or any general resource class defined in the class descriptor table. If you
specify CLASS, you must specify RELEASE= 1.8 or later.

,SEGMENT- 'segment name'
,SEGMENT= segment name addr

specifies the RACF profile segment that RACF is to update or from which it is to extract
data. segment name addr is a fullword. If you specify SEGMENT, you must also specify
the CLASS and FIELDS keywords, and RELEASE= 1.8 or a later release number. If you
allow the SEGMENT parameter to default, RACF assumes that you want to extract
information from the BASE segment. ·

RACXTRT (for RACF Release 1.8.1 or earlier) 619

,SEGDATA .. segment data addr
specifies the address of a list of data items to be placed into the respective fields
named by the FIELDS= parameter. Use the SEGDATA parameter when you specify
TYPE= REPLACE. If you specify SEGDAT A, you must also specify CLASS, FIELDS, and
RELEASE= 1.8 or a later release number. The stored data is paired in the following
format:

• a 4-byte length field that contains the length of the data field that follows
• a data field of variable length

Each length field is followed immediately by a data field until you reach the end of the
replacement data. The count field to which the first fi.eld in the FIELDS parameter
points, contains the total number of length-data pairs.

Parameters for RELEASE= 1.6 and Later
The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Figure 20. RACXTRT Parameters for RELEASE= 1.6 and Later

Parameter RELEASE= 1.6 RELEASE..,1.7 RELEASE• 1.8 or
1.8.1

ACEE= x
CLASS= x
DERIVE=YES x
ENCRYPT= x x x
ENTITY= x x x
EXTRACT= x x x
EXTRACTN= x
FLDACC= x
FIELDS= x x x
GENERIC= x
RELEASE= x x x
REPLACE= x
SEGDATA= x
SEGMENT= x
SUBPOOL= x x x
TYPE= x x x
VOLSER= x

Return Codes and Reason Codes
When control is returned, register 15 contains one of the following return codes, and
register O may contain a reason code.

620 SPL: Application Development Macro Reference

Hexadecimal
Code Meaning

00 The extraction or encryption completed successfully.

04

08

c
10

14

18

64

Reason code - For Derive requests

0 - Some of the values are derived from the USER profile, and some may
be derived from the GROUP profile.

4 - High-level qualifier returned as RESOWNER, and it matched a valid
USER

8 - DFP data returned from an EXTRACT request from USER profile was
actually from the user's default group.

C - High-level qualifier returned as RESOWNER, and it matched a valid
GROUP

24 - RESOWNER field matched a valid USER

28 - RESOWNER field matched a valid GROUP

An ESTAE environment was not able to be established, or if Register 0
contains a reason code of 1, you specified neither EXTRACT nor ENCRYPT
for TYPE=.

For TYPE= EXTRACT, TYPE= EXTRACTN, or TYPE= REPLACE the profile
could not be found. The hexadecimal reason codes are:

0 - No profile found
4 - Field level access checking failed
8 - Segment not found
14 - Neither the RESOWNER field nor the high level qualifier matched a

valid USER or GROUP

RACF is inactive.

The extract operation failed. Register 0 contains the RACF manager return
code which caused termination. This return code is not used for the encrypt
function. The manager return code and reason codes are returned in the
low order and high order half words of RO.

An ACEE address was not found when required, or if found, was not for a
defined user. The hexadecimal reason codes are:

0 - No ACEE exists
4 - ACEERACF bit is off

A parameter list error was encountered. The hexadecimal reason codes
are:

4 - No fields for request type REPLACE
8 - Invalid type specified
C - Invalid number of fields
10 - Invalid class name specified
14 - Invalid version in parameter list
18 - Invalid subpool specified
1C - Invalid parameter length
20 - No segdata specified
24 - Invalid entity name specified
2C - No encryption data
30 - Invalid encryption method
34 - No ENTITY specified with TYPE= REPLACE or TYPE= EXTRACTN
38 - Multiple profiles no volume specified
3C - Profile found wrong volser specified

Indicates that you specified the CHECK subparameter of the RELEASE
keyword on the execute form of the RACXTRT macro; however, the list form
of the macro does not have the proper RELEASE parameter. It also
indicates that the TYPE parameters specified on the list and execute forms
may not be the same TYPE. Macro processing terminates.

RACXTRT (for RACF Release 1.8.1 or earlier) 621

RACXTRT (List Form)
The list form of the RACXTRT macro is written as follows:

name

b

RACXTRT

b

TYPE= EXTRACT
TYPE= EXTRACTN
TYPE= REPLACE
TYPE= ENCRYPT

,ENTITY= resource name addr

,RELEASE= number

,ACEE= aces addr

,VOLSER = volser addr

,GENERIC= ASIS
,GENERIC= YES

,FLDACC=YES
,FLDACC=NO

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

resource name addr: A-type address.

number: 1.8.1, 1.8, 1.7, or 1.6
Defautt: RELEASE= 1.6

aces addr: A-type address, or register (2) - (12)

volser addr : A-type address,

Defautt: ASIS

Defautt: NO

If you specify TYPE= EXTRACT or EXTRACTN:

,SUBPOOL = subpool number

,DERIVE= 'YES'

,CLASS= 'class name'

,CLASS= class name addr

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS=field addr

If you specify TYPE= REPLACE:

,CLASS= 'class name'

,SEGMENT= 'segment name'
,SEGMENT=segment name addr

,FIELDS=field addr

,SEGDATA=segment data addr

subpool number: decimal digit, 0-255
Default: SUBPOOL = 229

see explanation of keyword
Default: normal processing

class name: the entity's class name
Defautt: USER

class name addr: A-type address or register (2) - (12)

'segment name': 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address

the entity's class name
DefauU: USER

'segment name': 1-8 character name
segment name addr: A-type address or register (2) - (12)

field addr: A-type address or register (2) - (12)

segment data addr: A-type address or register (2) - (12)

622 SPL: Application Development Macro Reference

If you specify TYPE= ENCRYPT:

,ENCRYPT= (data addr,DES)
,ENCRYPT= (data addr,HASH)
,ENCRYPT=(data addr,INST)

data addr: A-type address

The parameters are explained under the standard form of the RACXTRT macro with the
following exception:

,MF•L
specifies the list form of the RACXTRT macro.

RACXTRT (for RACF Release 1.8.1 or earlier) 623

RACXTRT (Execute Form)
The execute form of the RACXTRT macro is written as follows:

name

b

RACXTRT

b

TYPE= EXTRACT
TYPE= ENCRYPT

,ENTITY= resource name addr

,RELEASE= (number.CHECK)
,RELEASE= number
,RELEASE= (.CHECK)
,ACEE= acee addr

, VOLSER = volser addr

,GENERIC= ASIS
,GENERIC= YES

,FLDACC =YES
,FLDACC=NO

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

resource name addr: RX-type address or register (2)-(12)

number: 1.8.1, 1.8, 1.7, or 1.6
Default: RELEASE= 1.6

acee addr: RX-type address or register (2) - (12)

vo/ser addr: RX-type address or register (2) - (12)

Default: ASIS

Default: NO

ctr/ addr: RX-type address, register (1), or register (2)-(12)

If you specify TYPE= EXTRACT or EXTRACTN:

,SUBPOOL = subpool number

,DERIVE= 'YES'

,CLASS= class name

,CLASS=class name addr

,SEGMENT= segment name addr
,FIELDS= field addr

If you specify TYPE= REPLACE:

,CLASS= class-name

,SEGMENT= 'segment name'
,SEGMENT= segment name addr

,FIELDS= field addr

,SEGDATA =segment data addr

If you specify TYPE= ENCRYPT:

,ENCRYPT=(data address,DES)
,ENCRYPT= (data address.HASH)
,ENCRYPT= (data address, INST)

subpool number: decimal digit, 0-255
Default: SUB POOL= 229

see explanation of keyword
Default: normal processing

the entity's class name
DefauU: USER

class name addr: RX-type address or register (2) - (12)

segment name addr: RX-type address or register (2) - (12)
field addr: RX-type address or register (2)-(12)

the entity's class name
Default: USER

'segment name': 1-8 character name
segment name addr: RX-type address or register (2) - (12)

field addr: RX-type address or register (2) - (12)

segment data addr: RX-type address or register (2) - (12)

data address: RX-type address or register (2)-(12)

624 SPL: Application Development Macro Reference

The parameters are explained under the standard form of the RACXTRT macro with the
following exception:

,RELEASE =(number,CHECK)
,RELEASE= number
,RELEASE= (,CHECK)

specifies the RACF release level of the parameter list that this macro will generate.

You can specify certain parameters only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by
the macro processing. An error message will be issued at assembly time. For the
parameters that are valid for RELEASE= 1.6 and later, see Figure 20.

The default is RELEASE= 1.6.

When you specify the RELEASE keyword, checking is done at assembly time. To get
execution-time validation of the compatibility between the list and execute forms of the
RACXTRT macro, specify the CHECK subparameter on the execute form of the macro.

When you request CHECK processing and the size of the list-form expansion is not
large enough to accommodate all parameters defined by the RELEASE keyword on the
execute form of the macro, the execute form of the macro will not be generated.
Instead, RACXTRT will generate a return code X '64'.

,MF= {E,ctr/ addr)
specifies the execute form of the RACXTRT macro using a remote control program
parameter list.

RACXTRT (for RACF Release 1.8.1 or earlier) 625

626 SPL: Application Development Macro Reference

RESERVE - Reserve a Device (Shared DASO)

© Copyright IBM Corp. 1988, 1991

The RESERVE macro reserves a device for use by a particular system; it must be issued by
each task needing device reservation. The RESERVE macro protects the issuing task from
interference by other tasks in the system and locks out other systems. The reserve actually
occurs when the first 110 is done to the device after the RESERVE macro is issued. When
the reserving program no longer needs the reserved device, it should issue a DEQ macro to
release the resource. For information about how to obtain the UCB address for a device,
see the section "Finding the UCB Address for the RESERVE Macro" in SPL: Application
Development Guide.

If a task issues two RESERVE instructions for the same device without an intervening DEQ,
an abnormal termination results unless the second RESERVE specifies the keyword
parameter RET = or ECB =. (If a restart occurs when a RESERVE is in effect for resources,
the system does not restore the RESERVE; the user's program must reissue the RESERVE.)
If a DEQ is not issued for a particular resource, termination routines release resources
reserved by a terminating task.

If global resource serialization is active, the hardware RESERVE can be suppressed leaving
a SYSTEMS ENQ depending on the contents of the resource name lists. See Planning:
Global Resource Serialization for information on resource name lists.

Global resource serialization counts and limits the number of concurrent resource requests
in an address space. If an unconditional RESERVE (a RESERVE that uses the RET=NONE
option) causes the count of global resource serialization requests to exceed the sum of a
threshold value plus a tolerance value, an authorized caller is abended with a system code
of X'538'. See "Limiting Global Resource Serialization Requests" in SPL: Application
Development Guide.

The ECB parameter is restricted in use to callers in supervisor state, PSW key 0-7, or with
APF authorization. Except for the UCB, all input parameters to this macro can reside in
storage above 16 megabytes if the issuer is executing in 31-bit addressing mode.

A RESERVE used with the MASID and MTCB operands provides a special form of the
RESERVE macro that allows a further conditional control of a resource. One task, called the
"issuing task" can issue a RESERVE macro for a resource specifying the ASID and TCB of
another task, called the "matching task". The MTCB and MASID operands are specified
with RET= HAVE and ECB= to provide additional return codes. If the issuing task does not
acquire control of the resource, it may receive a return code indicating that the resource is
controlled by the matching task. Upon receiving this return code, the issuing task could use
the resource, if serialization between itself and the matching task has been accomplished
by some pre-arranged protocol known to both the issuing and matching tasks.

627

The standard form of the RESERVE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RESERVE.

RESERVE

b One or more blanks must follow RESERVE.

qnameaddr qname addr: A-type address, or register (2) - (12).

,rname addr rname addr: A-type address, or register (2) - (12).

DefauU: E
,E
,S

,rname length rname length: symbol, decimal digit, or register (2) - (12).

,SYSTEMS
)

,RET=TEST
,RET=USE
,RET=HAVE
,RET=NONE

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,UCB= ucb addr ucb addr: A-type address, or register (2) - (12).

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED= value

matching-asid addr: A-type address, or register (2) - (12).
matching-tcb addr: A-type address, or register (2) - (12).

value:. any valid macro keyword specification.

The parameters are explained as follows:

(
specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. The name should not
start with SYS, so that it will not conflict with system names. Every task issuing
RESERVE against the same resource must use the same qname and rname to
represent the resource.

,rname addr

,E
,S

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified, and must be from 1 to 255
bytes long.

specifies whether the request is for exclusive (E) or shared (S) control of the resource.
If the resource is modified while under control of the task, the request must be for
exclusive control; if the resource is not modified, the request should be for shared
control.

628 SPL: Application Development Macro Reference

,rname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 to 255 to
override the assembled length, or you may specify a value of 0. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified
above.

,SYSTEMS
specifies that the resource is shared among systems.

specifies the end of the resource description.

,RET=TEST
,RET=USE
,RET=HAVE
,RET=NONE

RET=TEST, RET= USE, and RET= HAVE specify a conditional request for all the
resources named above, as follows:

• RET =TEST - the availability of the resources is to be tested, but control of the
resources is not requested.

• RET =USE - control of the resources is to be assigned to the active task only if the
resources are immediately available.

• RET= HAVE - control of the resources is requested only if a request has not been
made previously for the same task.

RET =NONE specifies an unconditional request for all the resources named above.

,ECB = ecb addr
specifies the address of an ECB, and conditionally requests the resource named in the
macro. If the return code for one or more requested resources is 4 and the request is
not nullified by a corresponding DEQ, the ECB is posted when all the requested
resources (specifically, those that initially received a return code of 4) are assigned to
the requesting task.

,UCB= ucb addr
specifies the address of a fullword that contains the address of the UCB for the device
to be reserved. The UCB must be allocated to the job step before RESERVE is issued
unless the issuer is in supervisor state, system key, or APF-authorized.

,MASID = matching-asid addr
specifies the matching task (by defining a matching ASID) for the RESERVE, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the RESERVE macro.

Note: MASID can only be specified if MTCB is also specified.

,MTCB == matching-tcb addr
specifies the matching task (by defining a matching TCB) for the RESERVE, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the RESERVE macro.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the RESERVE and returns a
return code indicating whether the resource can be used. If the task specified by
MASID and MTCB parameters is using the resource, global resource serialization
records a request for the resource, suspends the issuing task until the resource is
available, or optionally returns a return code indicating that an ECB will be posted
when the resource can be used.

The MASID and MTCB parameters are specified with RET=HAVE, RET=TEST, and/or
ECB = parameters to elicit additional return codes that provide information about the
owner of the resource.

Note: MTCB can only be specified if MASID is also specified.

RESERVE - Reserve a Device (Shared DASO) 629

Address
Returned in
Register 15

i
0

12

24

36

~

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return codes are provided by the control program only if you specify RET=TEST,
RET =USE, RET =HAVE, or ECB =; otherwise, return of the task to the active condition
indicates that control of the resource has been assigned to the task. If return code for the
resource named in the RESERVE macro is O, register 15 contains 0. If the return code is not
O, register 15 contains the address of a storage area containing the return code, as shown
in Figure 21.

2 3

Return
Codes

i
RC 1

RC 2

RC 3

4

<;t

<

I;

1,..,

12

~

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

Figure 21. Return Code Area Used by RESERVE

The return code is placed in the parameter list resulting from the macro expansion. The
return codes are shown below.

Hexadecimal
Code Meaning

O For RET =TEST, the resource was immediately available. For RET =USE,
RET = HAVE, or ECB = , control of the resource has been assigned to the
active task.

4 For RET=TEST or RET=USE, the resource is not immediately available.
For ECB =, the ECB will be posted when available.

8 A previous request for control of the same resource has been made for the
same task. Task has control of resource.

14

630 SPL: Application Development Macro Reference

If bit 3 is on - shared control of resource; if bit 3 is off - exclusive control.

A previous request for control of the same resource has been made for the
same task. Task does not have control of resource.

18

20

24

28

44

Example

For RET = HAVE, RET = USE, or ECB = , the I imit for the number of
concurrent resource requests has been reached. The task does not have
control of the resource unless some previous ENQ or RESERVE request
caused the task to obtain control of the resource. The ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns
the resource. The issuer of the RESERVE macro may use the resource but it
must ensure that the owning task does not terminate while the issuing task
is using the resource. If the issuing task requested exclusive control then
this return code indicates that the matching task is the only task that
currently owns the resource. If the issuer of the RESERVE requested shared
control and the owning task had requested shared control, this return code
may indicate that a previous task had requested exclusive control. The
issuing task must issue a DEQ to cancel this RESERVE. The ECB will not be
posted.

The issuing task will have exclusive control after the ECB is posted. The
issuing task may use the resource but must ensure that the matching task
does not terminate while the issuing task is using the resource. The issuing
task must issue a DEQ to cancel the RESERVE.

The issuing task cannot obtain exclusive control of the resource using the
MASID/MTCB RESERVE. The matching task's involvement with other tasks
precludes control by the Issuing task. This task must not issue a DEQ to
cancel the RESERVE. The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB RESERVE in
one or more of the following ways:

• Another task has already issued this RESERVE for this resource
specifying the same MASID/MTCB.

• The MASID/MTCB parameters specify a task that acquired control of the
resource by using the MASID/MTCB RESERVE.

• The matching task requested ownership of the resource but has not yet
been granted ownership.

The ECB will not be posted. Return code 44 is never given by a RESERVE
RET =TEST, return code 4 is given instead.

Operation: Unconditionally reserve exclusive control of a device. The length of the rname
is allowed to default.

RESERVE (MAJOR3,MINOR3,E,,SYSTEMS),UCB=(R3)

RESERVE - Reserve a Device (Shared DASO) 631

RESERVE (List Form)
The list form of the RESERVE macro is written as follows:

name

b

RESERVE

b

qname addr

,rname addr

,E
,s

,rname length

,SYSTEMS

,RET=TEST
,RET=USE
,RET=HAVE
,RET=NONE

,ECB = ecb addr

,UCB=ucb addr

,MASID=O
,MTCB=O

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

qname addr: A-type address.

rname addr: A-type address.

rname length: symbol or decimal digit.

ecb addr: A-type address.

ucb addr: A-type address or 0.

value: A-type address.

The parameters are explained under the standard form of the RESERVE macro, with the
following exception:

,MF=L
specifies the list form of the RESERVE macro.

Note: If you specify the ECB parameter on the execute form of the macro, you must also
specify it on the list form of the macro. The list form of this macro generates a prefix
followed by the parameter list, however the label specified in MF= L does not include an
offset prefix area. If MASID, MTCB, TCB, or ECB are specified, these labels are offset;
allowance must be made for the parameter list prefix.

632 SPL: Application Development Macro Reference

RESERVE (Execute Form)

The execute form of the RESERVE macro is written as follows:

name

b

RESERVE

b

qnameaddr

,rname addr

,E
,S

,rname length

,SYSTEMS

,RET=TEST
,RET=USE
.RET=HAVE
,RET=NONE

,ECB=ecb addr

,UCB= ucb addr
,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED=va/ue

,MF= (E, ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

Note: (and) are the beginning and end of a parameter list.
The entire list is optional. If nothing in the list is desired, the (,
), and all parameters between (and) should not be specified.
If something in the list is desired, then(,), and all parameters
in the list should be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).
Note: rname length must be coded if a register is specified for
rname addr above.

ecb addr: RX-type address, or register (2) - (12).

ucb addr: RX-type address, or register (2) - (12).
matching-asid addr: A-type address. or register (2) - (12).
matching-tcb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

ctr/ addr: RX-type address, or register (1) - (12).

RESERVE - Reserve a Device (Shared DASO) 633

The parameters are explained. under the standard form of the RESERVE macro, with the
following exception:

,MF= (E,ctrl addr)
specifies the execute form of the RESERVE macro using a remote control program
parameter list.

Note: If the ECB parameter is specified on the execute form of the macro, it must also be
specified on the list form of the macro. If MASID and MTCB are specified, MASID=O and
MTCB=O must be specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the
label specified in MF= L does not include an offset prefix area. If MASID, MTCB, TCB, or
ECB are specified, these labels are offset; allowance must be made for the parameter list
prefix.

634 SPL: Application Development Macro Reference

RESMGR - Add or Delete Resource Manager

© Copyright IBM Corp. 1988, 1991

RESMGR adds or deletes a resource manager that receives control whenever a task or a
dynamic address space terminates. To invoke RESMGR, you must be enabled, in
supervisor state, and unlocked. You can be in 24-bit or 31-bit addressing, and in primary or
access register mode.

When you invoke RESMGR in access register mode, the parameter list must be in the
primary address space and it must be qualified by an ALET of 0.

The standard form of the RESMGR macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede RESMGR

RES MGR

fl One or more blanks must follow RESMGR

ADD
DELETE

, TOKEN= tokaddr

,TYPE= ADDRSPC
,TYPE=TASK

,ASID =CURRENT
,ASID=ALL
,ASID=asid

,TCB=CURRENT
,TCB=ALL
,TCB=tcbaddr

,ROUTINE= (LINK, pg name)
,ROUTINE= (BRANCH, pgaddr)
,ROUTINE= (PC, pcnum)

,ECB = ecbaddr

,PARAM = paddr

,RELATED= value

tokaddr: A-type address, or register (2) - (12).

asid: A constant or register (2) - (12).

tcbaddr: A-type address or register (2) - (12).

pgname: C-type constant, A-type address, or register (2) - (12).
pgaddr: A-type address, or register (2) - (12).
pcnum: a constant or register (2) - (12).

ecbaddr: A-type address, or register (2) - (12).

paddr: A-type address, or register (2) - (12).

value: Any valid macro keyword specification.

The parameters are explained as follows:

ADD
DELETE

specifies whether a resource manager is to be added or deleted. You must specify the
same values on TYPE, TCB and ASID on DELETE as you specified on those parameters
on ADD. On DELETE, you must specify the token that ADD returned so the system can
identify the resource manager that you want to delete. TOKEN has no default. You
must specify either ADD or DELETE unless you specify MF= (E,list-addr) to indicate the
execute form of RESMGR.

,TOKEN== tokaddr
specifies the address of the full word where you want the system to store the token that
it returns after an ADD. The token represents the resource manager that the system
added. On DELETE, however, you store the token in this full word before invoking the
delete function. TOKEN is required.

635

,TYPE• ADDRSPC
,TYPE•TASK

specifies whether the resource manager is an address space resource manager
(ADDRSPC) or a task resource manager (TASK). The default is address space.

,ASID =CURRENT
,ASID•ALL
,ASID•asid

specifies the id of the address space that is to be monitored for termination. If you
specify ALL, the system monitors all address spaces. If you specify CURRENT, the
system monitors the home address space. If you specify an asid, the system monitors
only that address space.

,TCB•CURRENT
,TCB=ALL
, TCB • tcbaddr

specifies the TCB address of the task that is to be monitored for termination. If you
specify ALL, the system monitors all tasks in the specified address space. If you
specify CURRENT, the system monitors the current task. If you specify a tcr•-iddr, the
system monitors only that task. If a specific task is to be monitored, the TCB you
specify must be in the home address space. A program in SRB mode cannot issue
TCB =CURRENT.

,ROUTINE={LINK, pgname)
,ROUTINE== (BRANCH, pgaddr)
,ROUTINE= (PC, pcnum)

specifies:

• the type of linkage to be used by the system when giving control to the resource
manager program.

• the resource manager program to receive control when the task or address space
terminates.

The resource manager always receives control in 31-bit addressing mode and in
primary ASC mode. Resource managers never receive control in cross memory mode.
The chapter on resource management in SPL: Application Development Guide
describes the registers on entry, the resource manager parameter list (RMPL), and
some of the responsibilities of the resource manager.

If you specify PC, the resource manager receives control through a PC instruction.
pcnum is the PC number of the PC instruction that gives control to the resource
manager. The address space in which the termination occurs must have the authority
to issue PC. That is, the PC number must be globally defined.

If you specify BRANCH, the resource manager receives control through a branch
instruction and the resource managers (whether address space termination resource
managers or task termination resource managers) must reside in common storage.

If you specify LINK, the resource manager must reside in a link list library.

If you specify ADD, you must specify ROUTINE.

,ECB- ecbaddr
The processing to delete a resource manager might not be complete when RESMGR
returns. If you require notification after DELETE has completed, code ECB. The ECB
will be posted when DELETE is completed. Note, however, that DELETE may already
be complete upon return, in which case the system does not post any completion ECB.
Check the return code from RESMGR before you wait on the ECB.

The system associates the completion ECB with the home address space of the DELETE
requestor. If you specify ECB, you must also specify DELETE. You must also specify
either of the following when you specify ECB:

• TYPE=ADDRSPC and ASID=ALL
• TYPE=TASK and ASID=ALL and TCB=ALL.

636 SPL: Application Development Macro Reference

,PARAM == paddr
specifies the address of parameter data to be used by the resource manager when it
receives control. The parameter data must reside in the caller's primary address
space. PARAM is valid only with ADD.

,RELATED== value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Return codes from the ADD function are as follows:

Figure 22. Return codes from ADD

Return Meaning
Code

0 The resource manager was successfully established. The word provided by the TOKEN
parameter contains the token required to delete the resource manager.

12 The resource manager was not established. The caller did not provide the address of a
word to contain the token of the new resource manager.

16 The resource manager was not established. The caller did not provide the resource
manager description via the ROUTINE parameter.

20 The resource manager was not established. The TCB address provided did not
represent a valid TCB.

24 The resource manager was not established. The ASID provided did not represent a
valid ASCB.

28 The resource manager was not established. The request type was not ADD or DELETE.

32 The resource manager was not established. The dynamic resource manager service
was unable to obtain storage for a work area it needed in order to process the request.

36 The resource manager was not established. A lock was held on entry to the dynamic
resource manager service routine.

40 The resource manager was not established. It is invalid to establish a task resource
manager for a specific task which is not in the home address space of the requestor.

44 AN unrecoverable error occurred while processing the request.

48 The resource manager was not established. The dynamic resource manager service
was unable to obtain storage for a resource manager element needed to maintain
information about the dynamic resource manager.

52 The resource manager was not established. The caller is not authorized to use the
RESMGR function.

56 The resource manager was not established. The TCB was already in termination and
no more dynamic resource managers can be established for it.

60 The resource manager was not established. The ASCB was already in termination and
no more dynamic resource managers can be established for it.

RESMGR - Add or Delete Resource Manager 637

Return codes from the DELETE function are as follows:

Figure 23. Return codes from DELETE

Return Meaning
Code

0 The resource manager was successfully deleted. An t;:CB is never posted for this return
code.

4 The resource manager is currently in use. It has been queued for deletion. The ECB, If
provided, will be posted when the delete process has completed.

8 The resource manager was queued for deletion by a previous request. It is still active
and will be deleted as soon as it is no longer In use.

12 The resource manager was not deleted. The caller did not provide a token to the
dynamic resource manager service.

16 The resource manager was not deleted. The token provided did not represent a
currently established resource manager.

20 The resource manager was not deleted. The TCB address provided did not represent a
valid TCB.

24 The resource manager was not deleted. The ASID provided did not represent a valid
ASCB.

28 The resource manager was not deleted. The request type was not ADD or DELETE.

32 The resource manager was not deleted. The dynamic resource manager service was
unable to obtain storage for a work area it needed In order to process the request.

36 The resource manager was not deleted. A lock was held on entry to the dynamic
resource manager service routine.

40 The resource manager was not deleted. It is invalid to delete a task resource manager
for a specific task that is not in the home address space of the requestor.

44 An unrecoverable error occurred while processing the request.

48 The resource manager was not deleted. The ECB parameter was specified but is not
supported for the particular type of delete request.

52 The resource manager was not deleted. The caller is not authorized to use the
RESMGR function.

Example
Operation: The following RESMG1":t macros establish a resource manager that receives
control tor every address space termination and every task termination. This resource
manager is equivalent to having included.the name IAMARESM in the IEAVTRML table.

RESMGR ADD,TYPE=ADDRSPC,ASID=ALL,
ROUTINE=(LINK,'IAMARESM')

RESMGR ADD,TYPE=TASK,ASID=ALL,TCB=ALL,
ROUTINE=(LINK,'IAMARESM')

638 SPL: Application Development Macro Reference

RESMGR (List Form)
The list form of the RESMGR macro is written as follows:

name

b

RESMGR

b

ADD
DELETE

,TOKEN= tokaddr

,TYPE= ADDRSPC
,TYPE=TASK

,ASIO =CURRENT
,ASID=ALL
,ASID=asid

,TCB =CURRENT
,TCB=ALL
,TCB = tcbaddr

,ROUTINE= (LINK, pgname)
,ROUTINE= (BRANCH, pgaddr)
,ROUTINE=(PC, pcnum)

. ECB = ecbaddr

,PARAM = paddr

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RESMGR

One or more blanks must follow RESMGR

tokaddr: A-type address, or register (2) - (12).

asid: a constant.

tcbaddr: A-type address

pgname: C-type constant or A-type address.

pgaddr: A-type address.

pcnum: A constant.

ecbaddr: A-type address .

paddr: A-type address.

value: Any valid macro keyword specification.

The parameters are explained under the standard form of the RESMGR macro with the
following exceptions:

,MF=L
specifies the list form of the RESMGR macro.

RESMGR - Add or Delete Resource Manager 639

RESMGR (Execute Form)
The execute form of the RESMGR macro is written as follows:

name

RESMGR

ADD
DELETE

,TOKEN= tokaddr

,TYPE= ADD.RSPC
,TYPE=TASK

,ASID =CURRENT
,ASID=ALL
,ASID=asid

,TCB =CURRENT
,TCB=ALL
, TCB = tcbaddr

,ROUTINE= (LINK, pgname)
,ROUTINE= (BRANCH, pgaddr)
,ROUTINE= (PC, pcnum)

,ECB=ecbaddr

,PARAM = paddr

,RELATED= value

,MF= (E,llstaddr)

name: symbol. Begin name in column 1.

One or more blanks must precede RESMGR

One or more blanks must follow RESMGR

tokaddr: A-type address, or register (2) • (12).

asid: A constant or register (2) • (12).

tcbaddr: RX-type address or register (2) • (12).

pgname: a C-type constant, RX-type address, or register (2) •
(12).
pgaddr: RX-type address, or register (2) • (12).
pcnum: A constant, an expression, or register (2) • (12).
ecbaddr: RX-type address, or register (2) • (12).

paddr: RX-type address, or register (2) • (12).

value: Any valid macro keyword specification.

/istaddr: RX-type address, or register (2) • (12).

The parameters are explained under the standard form ofthe RESMGR macro with the
following exceptions:

,MF= (E,listaddr)
E specifies the execute form of the RESMGR macro and listaddr specifies the address
of the parameter list.

640 SPL: Application Development Macro Reference

RESUME - Resume Execution of a Suspended Request Block

© Copyright IBM Corp. 1988, 1991

The RESUME macro causes suspended RBs to resume execution. Callers in AR mode can
issue RESUME. However, the caller must have current addressability to the address space
of the task being resumed. That is, the address space must be the current address space.
For restrictions on using the RESUME macro, see "Resuming Execution of a Suspended
Request Block" in SPL: Application Development Guide.

The RESUME macro is coded as follows:

name

b

RESUME

b

TCB=(4)
TCB = tcbaddr

,RB=(5)
,RB=rbaddr

,RETURN=Y
,RETURN=N

,MODE=UNCOND
,MODE=COND

,ASYNC=Y
,ASYNC=N

name: symbol. Begin name in column 1.

One or more blanks must precede RESUME.

One or more blanks must follow RESUME.

Default: TCB address contents of register (4).
tcbaddr: A-type address or registers (2) - (12).

Default: RB address contents of register (5).
rbaddr: A-type address or registers (2) - (12).

Default: RETURN= Y

Default: MODE= UNCOND.

Default: ASYNC = N

,ASCB = ascbaddr Default: ASCB address of the home address space.
ascbaddr: RX-type address or registers (1) or (2) - (3) or (6) -
(12).

The parameters are explained as follows:

TCB=(4)
TCB = tcbaddr

specifies the TCB address of the task to be resumed. Register (4) is the default; it is
assumed to contain the TCB address.

Nole: The TCB resides in storage below 16 megabytes.

,RB=(5)
,RB=rbaddr

specifies the address of the RB to be resumed. Register (5) is the default; it is assumed
to contain the address of the RB to be resumed. The RB operand determines which RB
will have its suspend count decremented (that is, which RB will be made ready for
resumption of execution).

Nole: The RB resides in storage below 16 megabytes.

,RETURN=Y
,RETURN=N

specifies whether control is to be returned to the caller (RETURN= Y) or not
(RETURN= N). RETURN= N causes RESUME to make the specified TCB/RB
dispatchable and gives the specified TCB/RB control directly. Only programs running
under an SRB in primary ASC mode can issue RETURN= N. If you specify RETURN= N,
you must also specify MODE= UNCOND and ASYNC = N and must not specify ASCB.

641

,MODE .. UNCOND
,MODE=COND

If MODE= COND is specified, the action RESUME takes if the function cannot be
completed synchronously depends on the ASYNC option. If ASYNC=Y is specified,
RESUME makes a conditional attempt to acquire an SRB. If an SRB is available, it is
scheduled to complete the RESUME function asynchronously. If ASYNC = N is specified
explicitly or as a default, and the RESUME cannot immediately complete the function, it
places return code 04 in register 15 and returns to the caller.

If MODE= UNCOND is specified, the action RESUME takes also depends on the ASYNC
option. If ASYNC = Y is specified, RESUME makes an unconditional request for an SRB
and completes the RESUME function asynchronously. If ASYNC=N is specified
explicitly or as a default, RESUME unconditionally obtains the CML lock of the ASCB
whose TCB or RB is to be resumed. The TCB or RB is resumed before control returns
to the caller.

,ASYNC=Y
,ASYNC=N

specifies whether the RESUME is to be completed asynchronously (Y) or not (N).

,ASCB ... ascbaddr
specifies the address of the ASCB whose TCB or RB is to be resumed. The caller must
establish current addressability to the address space before calling RESUME. If this
option is not specified, the home address space is assumed. This option must be
specified if ASYNC = Y is specified.

Nole: The ASCB resides in storage below 16 megabytes.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

Meaning

A normal, synchronous RESUME completed the function.

For MODE= COND and ASYNC = N, the RESUME cannot complete the function.

For MODE= COND or MODE= UNCOND and ASYNC = Y, an SRB is completing the
function asynchronously.

For MODE= COND and ASYNC = Y the SRB pool is empty and RESUME cannot
complete the function.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
0-1
2-3
4-5
6-10
11 -14
15

Example

Contents
Used as work registers by the macro
Unchanged
Used as work registers by the macro
Unchanged
Used as work registers by the macro
Return code if RETURN= Y was specified; otherwise, used as a work register
by the macro.

Operation: Resume execution of the task specified in the address labeled CURRTCB. Use
the request block address in register 5. Pass control back to the task (the issuer is
currently in SRB mode, and this step terminates SRB mode processing).

RESUME TCB=CURRTCB,RB=(5),RETURN=N

642 SPL: Application Development Macro Reference

RISGNL - Issue Remote Immediate Signal

© Copyright IBM Corp. 1988, 1991

The RISGNL macro uses the emergency signal (EMS) order code of the signal processor
(SIGP) instruction to invoke the execution of a specified software program on a specific
processor in a multiprocessing configuration. The program may be requested to execute in
parallel or serially with the function requesting the program. The specified software
program (receiving routine) gets control disabled, in key 0, and supervisor state. The
receiving routine cannot enable, request locks, or issue SVCs. In addition, the receiving
routine must return via the address in register 14. The RISGNL macro can be invoked by
programs executing in cross memory mode.

Additional SIGP order codes are available via the DSGNL macro. See Principles of
Operation for an explanation of the order codes.

The RISGNL macro is written as follows:

name

RISGNL

PARALLEL
SERIAL

,CPU= PCCA addr

,EP =entry name addr

,PARM= parm addr

name: symbol. Begin name in column 1.

One or more blanks must precede RISGNL.

One or more blanks must follow RISGNL.

PCCA addr: RX-type address, or register (1).

entry name addr: RX-type address, or register (12).

parm addr: RX-type address, or register (11).

The parameters are explained as follows:

PARALLEL
SERIAL

specifies that control is to be returned to the caller when the specified receiving routine
has been given control (PARALLEL) or has completed execution (SERIAL) on the
designated processor.

,CPU - PCCA addr
specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be performed.

Note: The PCCA must reside in 24-bit addressable storage.

,EP =entry name addr
specifies the address of the receiving routine to be executed on the specified
processor. The receiving routine will get control in the same addressing mode as the
macro issuer.

,PARM= parm addr
specifies the address of a user-defined fullword parameter to be passed to the
receiving routine. When the receiving routine receives control, general purpose
register one points to a fullword parameter.

643

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

14

Example 1

Meaning

Specified receiving routine has been given control or has completed execution, as
requested.

Function not initiated because addressed processor not online. If it appeared to
be online, it is no longer in the configuration.

Processor alive bit was turned off during the remote immediate window spin
routine.

Operation: The routine whose address is in register 12 is to be given control on the
processor whose PCCA address is in register 1. Return control to the caller when the
specified receiving routine has been given control.

RISGNL PARALLEL,CPU=(l},EP=(12}

Example 2
Operation: The routine whose address is in register 12 is to be given control on the
processor whose PCCA address is in register 1. The routine will complete before the caller
of RISGNL receives control again. Register 11 contains the address of a parameter to be
passed to the receiving routine.

RISGNL SERIAL,CPU=(l},EP=(l2},PARM=(ll}

644 SPL: Application Development Macro Reference

SCHEDULE - Schedule System Services for Asynchronous Execution

© Copyright IBM Corp. 1988, 1991

The SCHEDULE macro schedules system services for asynchronous execution. These
services may be scheduled for execution in any address space and may be scheduled at
either global or local priorities.

Services scheduled at a global priority have a priority that is greater than, and independent
of, any address space priority. Services scheduled at a local priority have the priority of the
specific address space they execute in, but still have a priority greater than that of any task
within the address space. To use SCHEDULE you must be in supervisor state, PSW key
zero.

The addressing mode of the SRB routine is specified in the SRBEP field of the SRB control
block. The user is required to set the correct AMODE. If bit O of the SRBEP field is set to 1,
the SRB gets control in 31-bit addressing mode; if bit 0 is set to 0, the SRB routine gets
control in 24-bit addressing mode. The addressing mode of the SRB's FRR is specified in
the SRBFRRA field of the SRB control block. The user is required to set the correct AMODE.
If bit O of the SRBFRRA field is set to 1, the FRR (and its retry routine) get control in 31-bit
addressing mode. If bit 0 of the SRBFRRA field is set to 0, the FRR (and its retry routine) get
control in 24-bit addressing mode.

Programs executing in primary ASC mode or access register ASC mode, including
programs that are in cross memory mode, can issue the SCHEDULE macro.

For information on using this macro on an MVS/SP version other than the current version,
see " Selecting the Macro Level" on page 1.

The SCHEDULE macro is written as follows:

name

b

SCHEDULE

b

SRB = SRB addr

,SCOPE= LOCAL
,SCOPE= GLOBAL

,LLOCK=YES
,LLOCK=NO

,FRR=YES
,FRR=NO

,DISABLED

name: sympol. Begin name in column 1.

One or more blanks must precede SCHEDULE.

One or more blanks must follow SCHEDULE.

SRB addr: RX-type address, or register (1) or (2) - (12).

Default: SCOPE= LOCAL

Default: LLOCK =NO

Defautt: FRR = NO

The parameters are explained as follows:

SRB = SRB addr
specifies the address of the service request block (SRB).

,SCOPE- LOCAL
,SCOPE= GLOBAL

specifies whether the service is to be scheduled at a local or global priority.

645

,LLOCK=VES
,LLOCK=NO

specifies whether the SRB is to receive control with the LOCAL lock held.

Note: CML (cross memory local) lock means the local lock of an address space other
than the home address space. LOCAL lock means the local lock of the home address
space. When written in lower case, local lock means any local-level lock, either the
LOCAL or a CML lock.

,FRR=YES
,FRR=NO

specifies whether the SRB is to receive control with recovery established. If FRR =YES
is specified, the user must include in the SRB field (SRBFRRA) the FRR exit address.
When the SRB receives control, the FRR will have been added to the FRR stack. When
FRR =YES is specified, the 24 byte FRR parameter area address will be passed to the
SRB routine in register 2.

,DISABLED
specifies that the calling program is running disabled. DISABLED should be specified
only when the calling program is physically disabled for interrupts.

Example 1
Operation: Schedule an SRB at a global priority.

SCHEDULE SRB={l),SCOPE=GLOBAL

Example 2
Operation: Schedule an SRB at a local priority.

SCHEDULE SRB={l),SCOPE=LOCAL

Example 3
Operation: Schedule an SRB at a global priority specifying that the SRB is to receive
control with the LOCAL lock held and recovery established. The issuer of the SCHEDULE
macro is disabled.

SCHEDULE SRB={l),SCOPE=GLOBAL,LLOCK=YES,FRR=YES,DISABLED

646 SPL: Application Development Macro Reference

SCHEDXIT - Schedule an Exit Routine for Execution

© Copyright IBM Corp. 1988, 1991

The SCHEDXIT macro schedules an asynchronous exit routine for execution under a
specific task. To use asynchronous exit routines, the caller must complete a three-stage
process that consists of:

1. Identifying the exit routine to the system by initializing an interrupt request block (IRB)
2. Scheduling the exit routine for execution by initializing an interrupt queue element (IQE)
3. Adding the exit routine's IRB block to the specified task's dispatching queue.

Before using this macro, read the description of the three-stage process for asynchronous
exit routines in SPL: Application Development Guide.

To schedule an exit routine for execution, the caller must invoke the exit effector through
one of two methods: using SCHEDXIT, or branching directly to the exit effector. The method
that the caller should use depends primarily on where the IQE resides:

• When the IQE resides in 31-bit storage, the caller must use SCHEDXIT.

• When the IQE resides in 24-bit storage, the caller can use SCHEDXIT only if the IQE
address passed is a clean 31-bit address (that is, the high-order byte of the address is
zero). Otherwise, the caller must use branch entry to the exit effector to schedule the
routine for execution.

The requirements for the caller are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
SeriaHzation:
Control parameters:

Supervisor state with PSW key O
Task or SRB
PASN = HASN or PASN not = HASN
31-bit
Primary
Must hold the local lock

None

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
0
1
2-13
14 -15

Contents
Used as a work register by the macro
True (non-complemented) IQE address
Unchanged
Used as work registers by the macro

The standard form of the SCHEDXIT macro is written as:

name name: symbol. Begin name in column 1.

One or more blanks must precede SCHEDXIT.

SCHEDXIT

One or more blanks must follow SCHEDXIT.

IQE = iqe-address iqe-address: RX-type address or register (2) - (12).

647

The parameter is explained as follows:

IQE= iqe-address
specifies the address of the interrupt queue element (IQE) that defines the task under
which the exit routine will execute.

648 SPL: Application Development Macro Reference

SDUMP and SDUMPX - Dump Virtual Storage

© Copyright IBM Corp. 1988, 1991

The SDUMP macro invokes SVC dump to provide a fast unformatted dump of virtual storage
to a data set. It is intended for use by authorized routines that encounter errors.

If your program is in primary ASC mode, you can use either SDUMP or SDUMPX. If your
program runs in access register (AR) mode, use SDUMPX instead of SDUMP. SDUMPX
provides all of the function of SDUMP but generates code and addresses that are
appropriate for AR mode. Make sure that the SYSSTATE ASCENV =AR macro has been
issued to let SDUMP know that the caller is in AR mode.

Descriptions of SDUMP and SDUMPX in this book are:

• The standard form of the SDUMP macro

Includes general information about the SDUMP and SDUMPX macros, with some specific
information about the SDUMP macro. The syntax of the SDUMP macro is presented, and
all SDUMP parameters are explained.

• The standard form of the SDUMPX macro

Includes information specific to the SDUMPX macro. The syntax of the SDUMPX macro
is presented and parameters that are valid only on the SDUMPX macro are described.

• The list form of the SDUMP and SDUMPX macros

Comments in the syntax identify parameters that are not valid for certain ASC modes.

• The execute form of the SDUMP and SDUMPX macros

Comments In the syntax identify parameters that are not valid for certain ASC modes.

The SDUMP macro cannot dump data space storage. To dump data space storage, issue
SDUMPX and include either the LISTD or SUMLISTL parameter.

For information about how to select this macro for an MVS/SP version other than the current
version, see " Selecting the Macro Level" on page 1.

Except for the DCB, all input parameters to this macro can reside in storage above 16
megabytes if the caller is executing in 31-bit addressing mode.

SVC dump is available only to authorized programs. Issuers of SDUMP with entry by SVC
must be authorized via APF or have a PSW key 0-7. Branch entry callers must be key zero,
supervisor state, and must be in SRB mode, or own a lock, or be disabled (with supervisor
bit on) or be in enabled unlocked task FRR mode.

The caller can initiate an SVC dump in an address space other than the primary. A branch
entry is available for callers who wish a dump of their own or another address space, but
cannot issue an SVC.

When SVC dump is entered, the specified parameter list and all areas the list points to
(except the DCB and ECB) must be in the currently addressable primary address space. If
the caller is in access register mode, the parameter list address must be qualified by an
ALET of zero. Both the DCB and ECB, If specified, are assumed to be addressable in the
home address space.

649

If options requiring address constants (ADCONs) are not specified, the standard form of the
SDUMP macro produces reentrant code for routines that reside in the link pack area. The
following parameters do not require ADCONs and produce reentrant code for routines that
reside in the link pack area:

HDRAD
IDAD
SDATA
TYPE
HOR
ID
BRANCH
SUSPEND
QUIESCE
BUFFER

SVC dump allows programs in page-protected storage (such as the nucleus, PLPA, and
MLPA) to issue the standard form of the SDUMP macro without causing a protection
exception.

The standard form of the SDUMP macro is written as follows:

name

b

SOU MP

b

HOR= 'dump title'
HDRAD =dump title addr

,DCB=dcb addr

,ASID = ASID addr
,ASIOLST =list addr

,TYPE= (type code)

,PLISTVER= 1
,PLISTVER=2

,SYMREC =symptom record addr

,ID= 'identifier'
,IDAD =identifier addr.

,PSWREGS = parm list addr

,ECB=ecb addr

,SRB = srb addr

650 SPL: Appllcatlon Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede SOUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

ASID addr: A-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).

type code: any of the following, separated by commas:
XMEM, XMEME, NOLOCAL, FAILRC
Note: XMEM and XMEME are mutually exclusive codes.

decimal digit 1: Use up to a 68-byte parameter list.
decimal digit 2: Use 136-byte parameter list.

addr: RX-type address, or register (2) - (12).

identifier: from 1 to 50 characters.
identifier addr: RX-typa address, or register (2) - (12).

parm list addr: RX-type address, or register (2) - (12).

ecb addr: A-type address, or register (2) - (12).
Note: If ECB is specified, ASID or ASIDLST, BRANCH= YES,
and LISTA must also be specified.

srb addr: A-type address, or register (2) - (12).

,SDATA=(data code)

,STORAGE= (strt addr,end addr)

,LIST= list addr
,LISTA=/ist addr

,SUBPLST = subpoo/ id list addr

,KEY LIST= storage key list addr

,BUFFER=NO
,BUFFER=YES

,QUIESCE= YES
,QUIESCE= NO

,BRANCH=NO
,BRANCH= YES

,SUSPEND=NO
,SUSPEND=YES

,SUM LIST= list addr
,SUMLSTA =list addr

data code: any combination of the following, separated by
commas:
ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA,
NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,
NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT
DEFAULTS/DEF$, NODEFAULTS/NODEFS, 10

Notes:

1. Executing the SDUMP macro results in the ALLPSA, SQA,
10, and SUMDUMP storage areas being dumped unless
excluded by the NOALLPSA, NOSQA, NODEFAULTS, or
NOSUMDUMP parameter.

2. The PSA and 10 options are not required unless
NODEFAUL TS is specified, because they are dumped as a
default in all SVC dumps.

3. DEFAULTS does not need to be specified. All SVC dumps
will include the default SDATA options unless
NODEFAUL TS has been specified.

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).

list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas.

subpool id list addr: RX-type address, or register (2) - (12).

storage key list addr: RX-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Default: BUFFER= NO

Default: QUIE:SCE = YC:S

Default: BRANCH= NO
Note: If BRANCH=YES is specified, ASID or ASIDLST must
also be specified.

Default: SUSPEND= NO

list addr: RX-type address, or register (2) - (12).

The parameters are explained as follows:

HOR = 'dump title'
HDRAD =dump title addr

specifies the title or address of the title to be used for the dump. If HOR is specified, the
title must be 1-100 characters enclosed in apostrophes, although the apostrophes do
not appear in the actual title. If HDRAD is specified, the first byte at the indicated
address specifies the length of the title in bytes.

If these keywords are specified with BRANCH= YES or ASID/ ASIDLST (that is, causing
a scheduled dump), the title is moved to SVC dump storage before control returns to the
caller. There is no requirement to synchronize with the completion of the dump.

,DCB= deb addr
specifies the address of a previously opened data control block for the data set that is
to contain the dump. If this parameter is omitted, one of the SYS 1.DUMP data sets is
used. The data control block must be addressable from all the address spaces in which
the SVC dump routine executes. The control blocks built by OPEN must also be
addressable from the address spaces. The DCB must support EXCP.

SDUMP and SDUMPX - Dump Virtua~ Storage 651

The DCB must reference device types supported by SVC dump. Eligible device types
are unlabeled 9-track 2400-series tape devices {or tape devices compatible with the
2400-series) and any direct access devices supported by the system that have a track
size of at least 4160 bytes. (4160 bytes equals 1 SVC dump output record.) The IBM
3850 Mass Storage System is not supported as a dump data set.

SVC dump does not close the dump data set. The caller should use the CLOSE macro
to close the data set and cause an end-of-file mark or a tape mark to be placed after the
dump data. SVC dump sets up the DCB so that CLOSE works correctly and positions
the end-of-file mark or tape mark at the correct place on the data set. For tape data
sets, the caller can write a tape mark to separate multiple dumps without using the
CLOSE macro.

Note: The DCB resides in storage below 16 megabytes.

,ASID = ASID addr
,ASIDLST =list addr

specifies the address of a halfword or a list of halfwords containing the hexadecimal
address space identifier of an address space to be dumped. If register notation is used,
the low order halfword of the register contains the address space identifier of the
address space to be dumped. If both parameters are omitted, the current address
space will be dumped. If O is specified for the address space identifier, a dump is
scheduled for the home address space of the issuer of the SDUMP macro. No private
area storage will be included in the dump for the specified address space{s) if either of
the following events occurred:

• No SDATA parameters were specified that apply to the private area of the
requested address space{s).

• The CHNGDUMP operator command was used to set an overriding parameter in the
system dump options list that limits SVC dumps to areas outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The high order
bit of the halfword containing the last identifier of the list must be set to 1, and all other
high order bits must be set to o.

,TYPE=XMEM
,TYPE=XMEME
, TYPE= NOLOCAL
,TYPE= FAILRC

specifies that the caller's cross memory mode is to be used to decide the address
spaces to dump {XMEM or XMEME) or that the caller cannot allow SDUMP to obtain a
local lock {NOLOCAL) or that SVC dump should return a reason code with the return
code to the DUMP command processor when the requested dump was not taken
{FAILRC).

XMEM requests SVC dump to use the caller's cross memory mode at the time the
SDUMP macro is executed.

XMEME requests SVC dump to use the caller's cross memory mode at the time of the
error for which the dump is being taken. ·

The home address space is dumped for both keywords. The relevant primary and
secondary address spaces are also dumped if they are unique. If a cross memory local
lock was held, the address space whose local lock is held is als0 dumped.

NOLOCAL indicates that the caller is in an environment that cannot tolerate SDUMP
obtaining a local lock. This option has meaning only when BRANCH= YES is specified
and the caller is enabled and unlocked {for example, in an enabled unlocked task FRR
or in SRB or cross memory mode).

FAILRC requests that the caller receive special information from SVC dump whenever
the dump fails. Some information is already placed in SDWASDRC as a result of the
SVC dump failure. When the caller receives control again after a dump failure (return
code 8) and the caller has specified TYPE= FAILRC, the reason code is combined with
the return code and passed to the caller in either register 15 or the ECB. The reason
code is in byte 3; the return code is in byte 4. When the return code is in the ECB, the

652 SPL: Application Development Macro Reference

POST flag is set on. DUMP passes back a return code in register 15 and places the
reason code in the SOWA. The reason code explains why the dump failed.

,PLISTVER = 112
specifies the length of the parameter list used. When PLISTVER = 1 is specified,
SDUMP uses a parameter list of up to 68 bytes. PLISTVER = 2 specifies a 136-byte
parameter list. If SYMREC, ID, IDAD, PSWREGS, or SDATA= DEFAULTS,
NODEFAUL TS, or 10 is specified, SDUMP defaults to use PLISTVER = 2.

,SYMREC =symptom record addr
specifies the address of a valid symptom record for DAE to use for dump suppression.
DAE suppresses the SVC dump if the primary symptom string found in the symptom
record matches previously known symptoms and suppression has been enabled by the
installation.

The caller must build the symptom record and fill in at least the 'SR' identifier and the
primary symptom string, which should uniquely identify the error.

SVC dump issues an abend with a completion code of '233'X then returns to the caller
with a return code of 8 if the symptom record identifier is not 'SR' or if the first byte of
the symptom record and the last byte of the secondary symptom string are not
addressable.

SVC dump will not include the symptom record in the dump. The caller can use the
SUM LIST keyword to include the symptom record in the dump.

See the dump analysis and elimination (DAE) section in SPL: Application Development
Guide for more information on symptom strings and how to build them.

The ADSR macro maps the symptom record. See Data Areas for a macro mapping of
the ADSR.

,ID= 'identifier'
,IDAD = identifier addr

specifies an identifier that is mcludea m dump message iEA9i i E, which is issued at the
completion of the dump. The identifier must be from one to 50 printable characters. If
ID is specified, the identifier must be enclosed in apostrophes, although the
apostrophes do not appear in the actual identifier. If IDAD is specified, the first byte at
the indicated address specifies the length of the identifier in bytes. If the length of the
identifier is greater than 50, SVC dump issues an abend with a completion code of
'233'X then returns to the caller with a return code of 8. If the length of the identifier is
zero, SVC dump will continue processing as if the ID or IDAD parameter was not
specified.

,PSWREGS = list addr
specifies a psw or register area to be passed to SVC dump. This area may contain a
PSW, control registers 3 and 4, all the general purpose registers (GPRs), and all the
access registers (ARs). When PSWREGS is specified, SVC dump will include the
following information in the summary dump portion of the dump:

• The PSWREGS parameter list

• If the PSW is provided, 4K of storage before and 4K after the PSW address from the
primary address space.

• 4K of storage before and 4K of storage after each of the GPRs from the primary and
secondary address spaces.

• If the ARs are provided, they also are used to include 4K of storage before and 4K of
storage after each of the GPRs. GPRs will be used to locate storage; ARs (if
provided along with a PSW in AR mode) will be used to identify the source address
space or data space.

Note: If the control registers are provided, they will be used to determine the primary
and secondary address spaces. If no control registers are provided, then the storage
will be dumped from the caller's primary and secondary address spaces.

The PSWREGS parameter allows programs running in a non-abend environment, where
there is no SOWA, to request SVC dump and dump suppression services similar to
those available in an abend environment, where an SOWA is present.

SDUMP and SDUMPX - Dump Virtual Storage 653

The parameter list for the PSWREGS parameter must reside in the address space
currently addressable by SVC dump. The caller must provide at least the length and
the mask field. Each bit in the mask refers to a data area. If a bit is set, SVC dump
expects that the data area is supplied. If a mask bit is off and any lower-order mask bit
is on, the corresponding storage area must be included in the parameter list. If a mask
bit is off, but no lower-order mask bits are set, then the storage area need not be
supplied.

The following diagram describes the parameter list:

Figure 24. PSWREGS Parameter List

Offset in Hex Length Field Description

00 2 The total length of the PSWREGS parameter list
02 2 Bit mask describing data areas included in the psw/register area

1 ... Bit 1: On - The PSW is included in the psw/register area
.1 .. Bit 2: On - Control registers 3 & 4 are included in the

psw/register area
.. 1. Bit 3: On - General purpose registers are included in the

psw/register area
... 1 Bit 4: On - Access registers are included in the psw/register area .

Bits 5 - 16: Initialize these bits to zero.
04 6 PSW: Data only supplied if the PSW mask bit is set
oc 6 Control registers 3 and 4: Data only supplied if mask bit is set.
14 64 General purpose registers O - 15: Data only supplied if mask bit is

set.
54 64 Access registers O - 15: Data only supplied if mask bit is set.

,ECB - ecb addr
If an A-type operand is specified, ecb addr specifies the address of a fullword
containing the address of an event control block that is posted on completion of a
scheduled dump. If a register operand is used, the register must contain the actual
address of the event control block. If this parameter is omitted, the caller is not notified
of the completion of the scheduled dump. The fullword and the event control block
must be addressable from the home address space. The fullword address that points to
the event control block must be a valid 24-bit or 31-bit address.

Note: The ECB will be posted only if a scheduled dump is taken and the return code
from SDUMP is 0. Refer to SPL: Application Development Guide for a description of a
scheduled dump.

,SRB == srb addr
specifies that the system is to dispatch the SRB that srb addr refers to when dumping
completes. The SRB parameter is valid only when you specify ASID, ASIDLST, LISTA,
TYPE=XMEM, TYPE=XMEME, SUBPLST, or BRANCH=YES. Thus, SRB= is valid
only when you request a scheduled (asynchronous) dump. When you specify the ECB
parameter, SRB is not valid.

When you obtain storage for the SRB, also obtain 24-bytes for SDUMP's return code
and reason code. If, in addition to the return and reason codes, you want the name of
the dump data set passed to the SRB routine, obtain an area of 84 bytes. Store the
address of the 24-byte or 84-byte area into field SRBPARM. Use macro IHASDST to
map the area.

Note: If SDUMP cannot initiate its asynchronous processing for a scheduled dump, it
will not schedule the SRB specified by SRB = srb addr.

,SDATA-(data code)
specifies the system control program information to be dumped:

ALLNUC-

ALLPSA­

CSA-

654 SPL: Application Development Macro Reference

The DAT-ON and DAT-OFF nuclei. The read only (page-protected)
area of the nucleus and the DAT-OFF nucleus will not be included in
the dump unless this keyword is specified.

All of the prefixed storage areas in the system.

The common service area subpools (subpools 227, 228, 231 and 241)~

GRSQ-

LPA-

Global resource serialization control blocks are included in the dump.

The active link pack area modules and SVCs for each address space
being dumped.

LSQA - The local system queue area for each address space being dumped
(subpools 203-205, 213-215, 223-225, 233-235, and 253-255).

NOALLPSA or NOALL

NOSQA-

The prefixed storage area for one processor is dumped. This is either
the processor at the time of the error or the processor at the time of
the dump.

The system queue area is not dumped.

NOSUMDUMPorNOSUM

NUC-

PSA-

RGN-

A summary dump is not included in the SVC dump.

The non-page protected areas of the DAT-ON nucleus. (The ALLNUC
parameter must be specified to obtain the entire nucleus, including
the page-protected areas of the DAT-ON nucleus and the DAT-OFF
nucleus.)

The prefixed storage area for one processor is dumped. This is either
the processor at the time of the error or the processor at the time of
the dump.

The allocated pages in the private area of each address space being
dumped. This includes the following areas:

Subpools

0-127, 251, 252

Storage

All virtual storage in the address space allocated
to these subpools, that resides below and above
the 16 megabytes line

203-205, 213-215, 223-225, 233-235, 253-255

236 and 237

All virtual storage allocated to the LSQA and
ELSQA

All virtual storage allocated to the SWA and
ESWA

SVC dump does not dump all the obtained storage in an address
space if the RGN option of SDATA is specified. This reduces the
number of page faults that occur during SVC dump processing,
decreases the time required to take a dump, and reduces the size of
dumps on tape or DASO.

For storage that is not related to data-in-virtual, only obtained pages
that have something stored into them are dumped. This eliminates
the pages of storage that are in a freshly obtained state.

For storage that is related to data-in-virtual, pages that are in central
storage are dumped, as we!I as pages that have been changed since
the last DIV macro (that specified the SAVE service) executed.

When the RGN option of SDAT A is coded on the SDUMP macro, SVC
DUMP determines which category a page belongs to. The categories
are:

1. A copy of the page cannot be found in virtual storage.

2. All copies in virtual storage are at the same level as the copy on
permanent storage.

3. At least one copy of the page has been found in virtual storage
that is at a later level than the copy on permanent storage.

4. The system cannot determine the status of the page.

SVC dump does not dump pages in the first category. It dumps pages
in category 2 that are in central storage and all of category 3. If the
page is in category 4, SVC dump references the page again. If the

SDUMP and SDUMPX- Dump Virtual Storage 655

SQA-

page is still in category 4, it is not dumped. If the page is no longer in
category 4, It is treated like any other page in its category.

The entire system queue area.

SUMDUMP or SUM

SWA-

TAT-

A summary dump is to be included with the SVC dump output. The
trace table is included in the non-summary portion of the dump if this
option is specified or used as a default.

The type of summary dump depends on how you specify the BRANCH
and SUSPEND parameters:

• If you specify BRANCH= YES and SUSPEND= NO, you get a
disabled summary dump.

• If you specify BRANCH= YES and SUSPEND= YES, you get a
suspend summary dump.

• If you specify BRANCH= NO, you get an enabled summary dump.

For a description of the dump contents, see Diagnosis: Using Dumps
and Traces.

The scheduler work area subpools for each address space being
dumped (subpools 236 and 237). This Includes all virtual storage
allocated above and below the 16 megabytes line.

The system trace table, the GTF trace records, and master trace data
if these types of traces are active.

DEFAULTS or DEFS The following default SDATA options are included In the SVC
dump:

• ALLPSA
• SQA
• SUMDUMP
• 10
• Any default SDAT A options specified by the CHNGDUMP

command When CHNGDUMP is in ADD mode.

Notes:

1. DEFAULTS does not need to be specified. All SVC dumps
include the default SDATA options unless NODEFAULTS is
specified.

2. DEFAULTS and NODEFAUL TS are mutually exclusive.

NODEFAUL TS or NODEFS

656 SPL: Application Development Macro Reference

The SDATA defaults are NOT included in the SVC dump.
Specifying NODEFAULTS reduces the size of an SVC dump by
excluding the following default SDATA options:

• ALLPSA
• SQA
• SUMDUMP
• 10
• Any default SDATA options specified by the CHNGDUMP

command when CHNGDUMP is in ADD mode.

If a data area relating to an SDATA option is required in the
dump, the programmer can code that SDATA option on the
SDUMP macro invocation. All keywords and SDATA options are
valid when NODEFS is coded.

The following considerations relate to the NODEFAULTS option:

• When NODEFAUL TS is not coded, SVC dump includes all of
the default areas.

• DEFAULTS and NODEFAUL TS are mutually exclusive.

• When NODEFAUL TS is specified, the dump will still contain
some default system areas that are included In all dumps.

10-

IPCS requires that these areas be included in the dump so
that the dump reader can complete some basic diagnostic
procedures.

The 10 data areas are included in the SVC dump. This is an
SDAT A default option and does not need to be specified unless
NODEFAUL TS is specified. The NODEFAUL TS option excludes
the 10 data areas from the SVC dump. If a programmer wants to
use the NODEFAULTS option, but still wants the 10 data areas
dumped, the 10 SDATA option should be coded.

,STORAGE= (strt addr,end addr)
,LIST= list addr
,LIST A= listaddr

-

specifies one or more pairs of starting and ending addresses (STORAGE), a list of
starting and ending addresses (LIST), or a list of ASIDs and storage ranges (LISTA).
Each starting address must be less than its corresponding ending address.

When LIST or STORAGE is specified, the list must contain an even number of
addresses, and each address must occupy one fullword. In the list, the high order bit of
the fullword containing the last ending address of the list must be set to 1; all other high
order bits must be set to 0.

When LISTA is specified, the first fullword of the storage list contains the number of
bytes (including the first word) in the list. LISTA specifies a list of ASIDs and storage
ranges as follows:

4 b t yes

Length of the list (X 484 bytes)

First ASID l~umber of ranges to be
dumped - this ASID

Range 1 starting address

Rari_g_e 1 endiri_g_ address

Range 2 starting address

Range 2 ending address

Last AS!D Number of ranges to be
dumped - this ASID

Range 1 starting address
Ran_g_e 1 endin_g_ address

Note: If LISTA or SUBPLST is specified for a scheduled dump request and if the list
does not exceed 484 bytes in size, SVC dump will move the list to SVC dump storage.
The caller can free or reuse this space on return from SVC dump. No synchronization
with SVC dump completion is required. If the list exceeds 484 bytes, SVC dump will not
move the list and synchronization with SVC dump completion is required.

SDUMP and SDUMPX- Dump Virtual Storage 657

,SUBPLST .. subpoo/ id list address
specifies a list of ASIDs with associated subpool ids corresponding to subpools of
virtual storage that are to be included in the SVC dump.

The first fullword of the list contains the number of bytes {including the first word) in the
list. The list can contain a maximum of 200 bytes consisting of unique ASIDs and
subpool ids. If the list contains duplicate ASIDs or subpool ids, the length can exceed
200 bytes because SDUMP stores the unique subpool ids in a 200-byte work area.

The structure of the list for each ASID follows:

• The first word contains the ASID in bits 0-15 and the number of subpools associated
with this ASID {n) in bits 16-31. If 0 is specified as the ASID, the caller's home ASID
is used.

• The next n halfwords contain the subpool ids {right justified) corresponding to the
virtual storage to be included in the SVC dump. The manner in which these
subpools are dumped depends on whether they are private or common area
subpools.

If a private area subpool {related to a TCB) is specified, all virtual storage
associated with this subpool, for all TCBs in the specified address space, is
dumped.

If a common area subpool is specified, all of the virtual storage allocated in the
subpool is dumped.

SVC dump does not dump all the obtained storage in an address space if the SUBPLST
list keyword for private subpools is coded. This reduces the number of page faults that
occur during SVC dump processing and the time required to take a dump. It also
reduces the size of dumps on tape or DASO.

For storage that is not related to data-in-virtual, only obtained pages that have
something stored into them are dumped. This eliminates the pages of storage that are
in a freshly obtained state.

For storage that is related to data-in-virtual, only pages that are in central storage are
dumped, as well as pages that have been changed since the last data-in-virtual SAVE
operation.

When SUBPLST for private subpools is coded, SVC dump determines which category a
page belongs to. The categories are:

1. A copy of the page cannot be found in virtual storage.

2. All copies in virtual storage are at the same level as the copy on permanent
storage.

3. At least one copy of the page has been found in virtual storage that is at a later
level than the copy on permanent storage.

4. The system cannot determine the status of the page.

SVC dump does not dump pages in the first category. It dumps pages in category 2 that
are in central storage and all of category 3. If the page falls into category 4, SVC dump
references the page again. If the page is still in category 4, it is not dumped. If the page
is no longer in category 4, it is treated like other page in its category.

Notes:

1. SVC dump ignores unassigned subpool ids and ASIDs.

2. If an invalid subpool or ASID {ASID greater than ASVTMAX) is specified, the caller
receives a 233 ABEND and SDUMP processing terminates the dump.

3. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not force a
scheduled dump. However, if any of the ASIDs are different, a scheduled {or
asynchronous) dump results.

4. SDUMP callers executing in key 0 and supervisor state, who request storage from
subpool O via GETMAIN obtain that storage from subpool 252 instead. Therefore,
when these callers want to dump this storage, they must specify subpool 252 rather
than subpool 0.

658 SPL: Application Development Macro Reference

,KEYLIST =storage key list addr
specifies the address of a list of storage keys associated with the virtual storage to be
dumped. If the key of a subpool specified in SUBPLST does not match a key in this list,
the data in the subpool is not dumped. SUBPLST must be specified if the KEYLIST
option is used. If KEYLIST is not specified, all virtual storage (regardless of key)
associated with the requested subpools will be included in the dump.

The list contains one-byte entries and starts on a halfword boundary. The first byte
indicates the length of the list (including this byte). The list has a maximum length of
16 bytes so that up to 15 keys can be specified. Callers should specify each key in the
leftmost four bits of each byte, except the length byte.

Callers who want to dump the storage corresponding to all 16 keys should not specify
this parameter.

If the KEYLIST option is specified, only the storage with keys matching the keys in the
list is dumped.

,BUFFER=NO
,BUFFER= YES

specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the
dump. (The SQA buffer does not include the SDUMP parameter list or any data pointed
to by the parameter list.) Callers who specify BUFFER= YES on the SOU MP or
SDUMPX macro will obtain a dump of a 4K buffer reserved in the SQA for the callers of
SVC dump. You can reserve the buffer by setting the high-order bit of the CVTSDBF
field in the Communications Vector Table (CVT). Once you have reserved the buffer,
you can fill it with data before issuing SDUMP or SDUMPX. Programs that are involved
with volatile data, data that might change before SDUMP or SDUMPX can dump it,
should use this buffer.

The CVTSDBF field of the CVT points to the buffer. Before using the buffer, use
compare and swap logic to check the high-order bit of CVTSDBF. If the bit is on (B'1'),
the buffer is in use, and you should continue processing as though a dump could not be
taken. If the bit is off (B'O'), set the bit to B'1'. You can then fill the buffer and issue
SDUMP.

,QUIESCE= YES
,QUIESCE= NO

specifies that the system is to be set non-dispatchable until the contents of the SQA and
the CSA are dumped (YES), or that the system is to be left dispatchable (NO). If the
SDATA parameter does not specify SQA or CSA, the QUIESCE= YES request is ignored.

Note: Summary dumps (SUM DUMP) for branch entries (BRANCH= YES) always cause
the system to be set non-dispatchable until the summary dump is written.

,BRANCH=NO
,BRANCH= YES

specifies that a branch entry is to be used for interfacing with SVC dump to schedule a
dump (YES), or that an SVC instruction is to be generated for interfacing with SVC
DUMP (NO). For BRANCH= NO, the caller cannot be in cross memory mode, and must
be in task mode with no locks held. For BRANCH= YES, the caller can be in either
cross memory mode or non-cross memory mode and must be in PSW key 0, supervisor
state, and one of the following:

SRB mode
Holding any lock

If BRANCH= YES is specified and the caller has not specified at least one of the
following keywords: ASID, ASIDLST, TYPE= XMEM, TYPE= XMEME, or LISTA, the
dump is scheduled to the current home address space.

Routines that issue SDUMP with BRANCH= YES must provide a 72-byte save area
pointed to by register 13.

SDUMP and SDUMPX - Dump Virtual Storage 659

For BRANCH= YES entry by reentrant recovery routines, SDUMP processing moves the
data supplied by the following parameters to a system area:

HOR
HDRAD
ID
IDAD
ASIDLIST
STORAGE
LIST
LISTA
SUBPLST
KEYLIST

This enables the recovery routine to free its storage on return from SDUMP although
the dump has not completed.

,SUSPEND- NO
,SUSPEND= YES

specifies that a suspend summary dump is requested (YES) or not requested (NO).
SUSPEND=YES must be used together with the BRANCH=YES and
SDATA=SUMDUMP parameters. This keyword should be used by routines that can
experience page faults but that want to save volatile system dump information in a
virtual storage buffer.

,SUM LIST= list addr
,SUMLSTA =list addr

I

specifies a list of starting and ending addresses of areas to be included in a summary
dump (SUMLIST) or specifies a combined list of ASIDs and storage ranges (SUMLSTA).
SUMDUMP must be specified as an SDATA parameter and each starting address must
be less than its corresponding ending address.

For SUMLIST, the storage list must contain an even number of addresses, and each
address must occupy one fullword. In the list, the high order bit of the fullword
containing the last ending address of the list must be set to 1, and all other high order
bits must be set to 0.

For SUMLSTA, the first fullword of the list contains the number of bytes (including the
first word) in the list. SUMLSTA specifies a list of ASIDs and storage ranges as follows:

4 b t yes ~
Length of the list

First ASID l Number of ranges to be
dumped - this ASID

Range 1 starting address

Ron_g_e 1 endir:!.9_ address

Range 2 starting address

Range 2 ending address

Lost ASID I Number of ranges ta be
dumped - this ASID

Range 1 starting address

Ron_g_e 1 endir:!.9_ address

660 SPL: Application Development Macro Reference

Restriction:

• The maximum number of ASIDs that the combined TYPE= XMEM, TYPE= XMEME,
LISTA, ASIDLST, ASID, and SUBPLST parameters can specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can specify.

When BRANCH= YES and SUSPEND= NO are also specified, the list must be addressable
using the addressability established when SVC dump was entered. The lists themselves and
all ranges specified must reference paged-in data. Paged-out data is not dumped by
summary dump.

When BRANCH= YES and SUSPEND= YES are also specified, the lists must be addressable
using the addressability established when SVC dump was entered. The lists and referenced
data can either be in paged in or paged out areas. The maximum amount of summary dump
data with this type of dump is 1M.

When BRANCH= NO is also specified, the lists must be addressable in all address spaces
in which the dump will be taken (those address spaces specified by ASID, ASIDLST, LISTA,
or TYPE= XMEM, TYPE= XMEME, or SUBPLST). The lists and referenced data can be in
paged-in or paged-out areas. The maximum amount of summary dump data possible with
this type of dump is dependent only on the size of the dump data set.

Each ASID specified with SUMLSTA must represent a valid, swapped-in address space in
order for the data to be dumped.

Programming Notes:
The total number of distinct ASIDs that can be specified by TYPE= XMEM, TYPE= XMEME,
LISTA, ASID, SUBPLST and ASIDLST is fifteen. If more than fifteen are requested, only the
first fifteen are processed. There is no restriction on the number of ASIDs specified by the
SUMLSTA parameter, nor do SUMLSTA ASIDs contribute toward the fifteen ASID limit.

If BRANCH= NO was specified and no ASIDs other than the current ASID were requested,
register 15 contains one of the following return codes when control is returned:

Hexadecimal
Code

00

04

08

Meaning

A complete dump was taken.

A partial dumo was taken because the dump data set did not have sufficient
space.

The system was unable to take a dump.

If BRANCH= YES or any ASID other than the current ASID was requested, register 15
contains one of the following return codes when control is returned:

Hexadecimal
Code

00

08

Meaning

A dump was scheduled .. If an ECB was supplied, it will be posted on completion of
the dump.

The system was unable to schedule a dump.

If an ECB was supplied, one of the following codes is returned in the ECB:

Hexadecimal
Code

00

Notes:

04

08

Meaning

A complete dump was taken.

A partial dump was taken.

The system was unable to take a dump.

1. The ECB will not be posted unless the return code from SDUMP is 0.

2. When a return code of 8 is received, a reason code is returned. The reason code is in
the following locations:

• In the SDWASDRC field of the SOWA.

• In either the ECB or register 15, provided that the FAILRC parameter is specified.

SDUMP and SDUMPX - Dump Virtual Storage 661

• In the SDSTATUS field. This field is pointed to by the SRBPARM field that is in the
SRB parameter list. The parameter list is passed to SDUMP by using the SRB
keyword.

The reason codes are as follows:

Figure 25 (Page 1 of 2). SDUMP Reason Codes

Hexadecimal Meaning
Reason Code

0 No SVC dump was requested.

1 An SVC dump was successfully started.

2 An SVC dump was suppressed because another SVC dump was in progress.

3 An SVC dump was suppressed by a request by the installation (for example:
DUMP=NO at IPL or CHNGDUMP SET,NODUMP).

4 An SVC dump was suppressed by a SLIP NODUMP command.

5 An SVC dump was suppressed because a SYS1.DUMP data set was not available.
(Only for synchronous dumps.}

6 An SVC dump was suppressed because an 110 error occurred during the
initialization of the SYS1 .DUMP data set. (Only for synchronous dumps.)

8 An SVC dump was suppressed because an SRB could not be scheduled to
activate the dump tasks in the requested address spaces.

9 An SVC dump was suppressed because a terminating error occurred in
SDUMP(X) before the first dump record was written.

A An SVC dump was suppressed because a status stop SRB condition was detected.
(This prevents dump 1/0 from completing.)

B An SVC dump was suppressed by DAE.

15 The parameter list address is zero.

16 The parameter list is not a valid SVC dump or SNAP parameter list.

17 The caller-supplied data set is not supported.

18 The start address is greater than the end address in a storage list.

19 The caller-supplied header is longer than 100 characters.

1A The 4K buffer was requested, but not locked.

18 A storage list overlaps the 4K buffer.

1C The caller-supplied DCB is invalid.

1E An ASID in the ASID list is syntactically invalid.

22 The 4K buffer was requested with an SDUMP already in progress.

25 An invalid subpool ID was specified in the subpool list.

28 Part of the parameter list is inaccessible.

29 The caller-supplied DCB is inaccessible.

2A The caller-supplied storage list is inaccessible.

2B The caller-supplied header data is inaccessible.

2C The caller-supplied ECB is inaccessible.

2D The caller's ASID list is inaccessible.

2E The caller's SUMLIST/A is inaccessible.

2F The caller's SUBPOOL list is inaccessible.

30 The caller's storage key list is inaccessible.

31 Copies of the SLIP register and PSW are inaccessible.

32 The caller-supplied SRB is inaccessible.

33 The version number in the parameter list is not valid.

34 The caller's LISTD is inaccessible.

662 SPL: Application Development Macro Reference

Figure 25 (Page 2 of 2). SDUMP Reason Codes

Hexadecimal Meaning
Reason Code

35 The caller's SUMLSTL is inaccessible.

36 The parameter list contains conflicting parameters.

37 The ID is tonger than 50 characters.

38 The ID is not addressable.

39 The psw/register area is an incorrect length.

3A The PSWREGS area is not addressable.

3B The symptom record is invalid.

3C The symptom record is not addressable.

3D The DEB for the caller-supplied DCB is inaccessible.

FF An SVC dump was suppressed for some other unspecified reason.

Example 1
Operation: This example shows how SVC dump can be branch entered to initiate a dump in
an address space by callers who cannot issue an SVC. Areas to be dumped are requested
via three parameters (BUFFER, SDATA, and STORAGE). The dump has the title indicated in
the HDR parameter, the caller requests to be notified of the completion of the scheduled
dump via the ECB parameter, and the dump is going to a private data set (indicated by the
DCB option).

SDUMP HDR='USER DATA FOR TEST A' ,DCB=TESTADCB,BUFFER=YES, X
ASID=TSTAASID,ECB=(S),QUIESCE=YES,BRANCH=YES, X
STORAGE={A,B,C,D,(9),E),SDATA=(ALLPSA,SQA,LSQA)

Example 2
Operation: This example show!'; how SVC dump can be invoked via a branch entry to
initiate a dump of several address spaces by callers who cannot issue an SVC. Areas to be
dumped are requested via four parameters (BUFFER, SDATA, LIST, and SUMLIST). The
address spaces to be dumped are described by the ASIDLST parameter. Note that areas
specified by SUMLIST only apply to the current address space. The LIST addressed by the
LIST keyword must be addressable from any address space. The dump has the title
indicated in the HDR parameter, and the caller requests to be notified of the completion of
the scheduled dump via the ECB parameter.

SDUMP HDR='USER DATA FOR TEST B', X
BUFFER=YES,ASIDLST=TSTALIST,ECB=(B), X
QUIESCE=YES,BRANCH=YES,LIST=(9), X
SDATA=(ALLPSA,NUC,SQA,SUMDUMP), X
SUMLIST=TSTSLIST

TSTALIST DC X'OOOOOOOABOOB'
TSTSLIST DC X'0000000080400000'

SDUMP and SDUMPX - Dump Virtual Storage 663

SDUMPX - Dump Virtual Storage
The SDUMPX macro provides a dumping capability for system routines that are running in
access register mode. This macro is similar to the SDUMP macro, except that it generates
code and addresses that are appropriate for access register mode. All parameters on the
SDUMP macro are valid for the SDUMPX macro. The LISTD and SUMLSTL parameters,
however, are valid only on the SDUMPX macro. These two parameters are described in this
section.

If you are in access register mode, before you issue the SDUMPX macro, issue the
SYSSTATE ASCENV= AR macro to tell the SDUMPX macro to generate.code appropriate for
access register mode.

The standard form of the SDUMPX macro is written as follows:

name

b

SDUMPX

b

HOR= 'dump title'
HDRAD =dump title addr

,DCB= deb addr

,ASID = ASIO addr
,ASIDLST =list addr

,TYPE= (type code)

,PLISTVER = 1
,PLISTVER = 2

,SYMREC =symptom record addr

,ID=' identifier'
,IDAD =identifier addr

,PSWREGS = parm list addr

,ECB = ecb addr

,SRB = srb addr

664 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP or SDUMPX.

One or more blanks must follow SDUMP or SDUMPX.

dump title: from 1 to 100 characters.
dump title addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

ASID addr: A-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).

type code: any of the following, separated by commas:
XMEM, XMEME, NOLOCAL, FAILRC
Note: XMEM and XMEME are mutually exclusive codes.

decimal digit 1: Use up to 104-byte parameter list.
decimal digit 2: Use 136-byte parameter list.

addr: RX-type address, or register (2) - (12).

identifier: from 1 to 50 characters.
identifier addr: RX-type address, or register (2) - (12).

parm list addr: RX-type address, or register (2) - (12).

ecb addr: A-type address, or register (2) - (12).
Note: If ECB is specified, ASID or ASIDLST must also be
specified.

srb addr: A-type address, or register (2) - (12).

,SDATA=(data code)

,STORAGE= (strt addr,end addr)

,LIST= list addr
,LISTA= list addr
,LISTD=listaddr

,SUBPLST = subpool id list addr

,KEY LIST= storage key list addr

,BUFFER=NO
,BUFFER=YES

,QUIESCE= YES
,QUIESCE= NO

,BRANCH=NO
,BRANCH=YES

,SUSPEND= NO
,SUSPEND= YES

,SUMLIST =list addr
,SUMLSTA =list addr
,SUMLSTL =list addr

data code: any combination of the following, separated by
commas:
ALLNUC,ALLPSA,CSA,GRSQ,LPA,LSQA,
NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,
NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT
DEFAULTS/DEFS, NODEFAUL TS/NODEFS, 10

Notes:

1. Executing the SDUMP macro results in the ALLPSA, SQA,
10, and SUMDUMP storage areas being dumped unless
excluded by the NOALLPSA, NOSQA, NODEFAUL TS, or
NOSUMDUMP.

2. The PSA and 10 options are not required unless
NODEFAULTS is specified, because they are dumped as a
default in all SVC dumps.

3. DEFAULTS does not need to be specified. All SVC dumps
will include the default SDATA options unless
NODEFAULTS has been specified.

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).

list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE= (strt addr,end addr,strt addr,end addr)

subpool id list addr: RX-type address, or register (2) - (12).

storage key list addr: RX-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Delault: BUFFER= NO

Default: QUIESCE= YES

Default: BRANCH= NO
Note: If BRANCH= YES is specified, ASID or ASIDLST must
also be specified.

Delault: SUSPEND= NO

list addr: RX-type address or register (2) - (12).

SDUMP and SDUMPX - Dump Virtual Storage 665

The parameters for the SDUMPX macro are explained under the standard form of the
SDUMP macro, with the following exceptions:

,LISTD = list addr
specifies a list of address ranges, qualified by STOKENs, of areas to be included in the
SVC dump. Specify the STOKENs and address ranges as follows:

Length of list

First STOKEN (8 bytes)

Number of ranges to be dumped - this STOKEN

Range I starting address

Range 1 ending address

Range n starting address

Range n ending address

'v

Last STOKEN (8 bytes)

Number of ranges to be dumped - this STOKEN

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

The first fullword of the list contains the number of bytes (including the first word) in the
list.

STOKEN refers to any address/data space. SVC dump does not dump data space
storage that has not been referenced.

LISTD causes a scheduled dump when the caller performs one of the following actions:

• Requests a SCOPE= SINGLE data space that is owned by a task in an address
space other than the caller's primary address space.

• Requests an address space other than the primary

• Uses the ECB or SRB parameter

666 SPL: Application Development Macro Reference

,SUMLSTL = fist addr
specifies a list of address ranges, qualified by ALETs, of areas to be included in a
summary dump. Specify the ALETs and address ranges as follows:

------- 4 bytes --------•

Length oflist

First ALET (4 bytes)

Number of ranges to dump for this ALET

Range I starting address

Range I ending address

Range n starting address

Range n ending address

Last ALET (4 bytes)

Number of ranges to dump for this ALET

Range I starting address

Range I ending address

Range n starting address

Range n ending address

The first fullword of the list contains the number of bytes (including the first word) in the
list.

ALET refers to entries in either a DU-AL or a PASN-AL, and associated with any
addressidata space that the caller has addressability to. SVC dump does not dump
data space storage that has not been referenced.

SDUMP and SDUMPX - Dump Virtual Storage 667

SDUMP and SDUMPX (List Form)
Use the list form of the SDUMP or SDUMPX macro to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE parameter.
Therefore, the number of starting and ending address pairs in the list form of SDUMP or
SDUMPX must be equal to the maximum number of addresses specified in the execute form
of the macro.

The list form of the SDUMP or SDUMPX macro is written as follows:

name

b

SDUMPX

b

HOR= 'dump title'
HDRAD=dump title addr

,DCB=dcb addr

,PLISTVER = 1

,PLISTVER=2

,SYMREC=symptom record addr

,ID=' identifier'
,IDAD=identifier addr

,PSWREGS = parm list addr

,SDATA=(data code)

,STORAGE= (strt addr,end addr)

,LIST= list addr
,LIST A= lishiddr
,LISTD =list addr

,SUBPLST = subpool id list addr

668 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP or SDUMPX.

One or more blanks must follow SDUMP or SDUMPX.

dump title: from 1 to 100 characters.
dump title addr: A-type address.

deb addr: A-type address.

decimal digit 1: Use up to 68-byte parameter list (up to
104-byte for SDUMPX).
decimal digit 2: Use 136-byte parameter list.

addr: RX-type address, or register (2) - (12).

identifier: from 1 to 50 characters.
identifier addr: RX-type address, or register (2) - (12).

parm list addr: RX-type address, or register (2) - (12).

data code: any combination of the following, separated by
commas:
ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA,
NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,
NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TAT
DEFAUL TS/DEFS, NODEFAUL TS/NODEFS, 10

Notes:

1. Executing the SDUMP macro results in the ALLPSA, SQA,
10, and SUMDUMP storage areas being dumped unless
excluded by the NOALLPSA, NOSQA, NODE FAUL TS, or
NOSUMDUMP parameter.

2. The PSA and 10 options are not required unless
NODEFAUL TS is specified, because they are dumped as a
default in all SVC dumps.

3. DEFAULTS does not need to be specified. All SVC dumps
will include the default SDATA options unless
NODEFAUL TS has been specified.

strt addr: A-type address.
end addr: A-type address.

list addr: A-type address.

Notes:

1. One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE= (strt addr,end addr,strt addr,end addr)

2. LISTD is valid on SDUMPX macro only.

subpool id list addr: A-type address, or register (2) - (12).

,KEYLIST =storage key list addr

,BUFFER=NO
,BUFFER=YES

,QUIESCE= YES
,QUIESCE= NO

,SUSPEND=NO
,SUSPEND=YES

,TYPE= (type code)

,MF=L

storage key list addr: A-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Default: BUFFER= NO

Default: QUIESCE=YES

Default: SUSPEND= NO

type code: Any combination of the following, separated by
commas:
XMEM or XMEME, NOLOCAL.

The parameters are explained under the standard form of the SDUMP or SDUMPX macro,
with the following exception:

,MF=L
specifies the list form of the SDUMP or SDUMPX macro.

Note: If SYMREC, ID, IDAD, PSWREGS, SDATA = NODEFS, SDATA = DEFS or SD A TA= 10 is
not u~ed on the list form of the macro, but may be coded on the execute form, use
PLISTVER = 2 when specifying MF= L to generate a 136-byte parameter list.

SDUMP and SDUMPX - Dump Virtual Storage 669

SDUMP and SDUMPX (Execute Form)
A remote control program parameter list is referred to and can be modified by the execute
form of the SDUMP or SDUMPX macro.

If you code one or more of the SDAT A parameters on the execute form of the macro, any
SDAT A parameters coded on the list form are lost.

The execute form of the SDUMP or SDUMPX macro is written as follows:

name

b

SDUMPX

HOR= 'dump title'
HDRAD=dump title addr

,DCB= deb addr

,ASID = AS/D addr
,ASIDLST =list addr

,TYPE= (type code)

,PLISTVER = 1

,PLISTVER=2

,SYMREC=symptom record addr

,ID= 'identifier'
,IDAD =identifier addr

,PSWREGS = parm list addr

,ECB = ecb addr

,SDATA=(data code)

,STORAGE= (strt addr,end addr}

670 SPL: Application Development Macro Reference

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP or SDUMPX.

One or more blanks must follow SDUMP or SDUMPX.

dump title: from 1to100 characters.
dump title addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).

type code: any of the following, separated by commas:
XMEM or XMEME, NOLOCAL

decimal digit 1: Use up to 68-byte parameter list (up to
104-byte for SDUMPX).
decimal digit 2: Use 136-byte parameter list.

addr: RX-type address, or register (2) - (12).

identifier: from 1 to 50 characters.
identifier addr: RX-type address, or register (2) • (12).

parm list addr: RX-type address, or register (2) - (12).

ecb addr: RX-type address, or register (2) • (12).

data code: any combination of the following, separated by
commas:
ALLNUC,ALLPSA,CSA,GRSQ,LPA,LSQA,
NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,
NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT
DEFAUL TS/DEFS, NODEFAUL TS/NODEFS, 10

Notes:

1. Executing the SDUMP macro results in the ALLPSA, SQA,
10, and SUMDUMP storage areas being dumped unless
excluded by the NOALLPSA, NOSQA, NODEFAUL TS, or
NOSUMDUMP parameter.

2. The PSA and 10 options are not required unless NODEFS is
specified, because they are dumped as a default in all SVC
dumps.

3. DEFAULTS does not need to be specified. All SVC dumps
will include the default SDATA options unless
NODEFAULTS has been specified.

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, registers (2) • (12).

,LIST= list addr
,LISTA=list addr
,LISTD=list addr

,SUBPLST = subpool id list addr

,KEYLIST =storage key list addr

,BUFFER=NO
,BUFFER=YES

,QUIESCE= YES
,QUIESCE=NO

,BRANCH=NO
,BRANCH=YES

,SUSPEND=NO
,SUSPEND= YES

,SUM LIST= list addr
,SUMLSTA =list addr
,SUMLSTL = list addr

,MF= (E,ctrl addr)

list addr: RX-type address, or register (2) - (12).

Notes:

1. One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE= (strt addr,end addr,strt addr,end addr)

2. LISTD is valid on SDUMPX macro only.

subpool id list addr: RX-type address, or register (2) - (12).

storage key list addr: RX-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Note: If BRANCH= YES is specified, ASID or ASIDLST must
also be specified.

Default: SUSPEND= NO

list addr: RX-type address or register (2) - (12).

Note: SUMLSTL is valid on SDUMPX only.

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SDUMP or SDUMPX macro,
with the following exception:

,MF= (E, ctrf addr)
specifies the execute form of the SDUMP or SDUMPX macro using a remote control
program parameter list.

Example 1
Operation: The execute form is used to change SDATA areas, BUFFER, and QUIESCE
options in the SDUMP or SDUMPX parameter list. The list form of SDUMP was previously
used to create the basic SDUMP parameter list located by register 1.

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(1))

Example2
Operation: This example shows a dump request from SUBSYSTEM1. This dump will be
suppressed if the symptoms in the symptom record match a previous dump's symptoms,
and if the installation has enabled dump suppression. The dump will not include the SDATA
options specified on CHNGDUMP or the ALLPSA or SQA data areas. The dump will include
the 10 data areas and a summary dump which will contain the psw/register data.

SDUMP ID='SUBSYSTEM1',SYMREC=(8),SDATA=(NODEFS,10),PSWREGS=(9)

SDUMP and SDUMPX - Dump Virtual Storage 671

672 SPL: Application Development Macro Reference

SETFRR - Set Up Functional Recovery Routines

© Copyright IBM Corp. 1988, 1991

The SETFRR macro gives authorized programs the ability to define their recovery in the
FRR (functional recovery routine) LIFO stack, which is used during processing of the system
recovery manager. Any program function can use SETFRR to define its own unique
recovery environment.

The SETFRR macro can be used to add, delete, or replace FRRs in the LIFO stack, or to
purge all FRRs in the stack. The macro also optionally returns to the user the address of a
parameter area that is eventually passed to the FRR when an error occurs. The parameter
area can be used to keep information that might be useful to the FRR. The exit and retry
routines execute in the same addressing mode as the SETFRR macro expansion and
service routine. This is the addressing mode of the issuer of the macro.

The issuer of the SETFRR macro can be in any cross memory mode but must be in
supervisor state key zero. When the EUT =YES parameter is not specified, the caller must
also be either locked, disabled, or in SRB mode.

Callers in AR mode can issue the SETFRR macro. Before issuing the SETFRR macro in AR
mode, an AR mode caller must issue SYSSTATE ASCENV=AR to tell the SETFRR macro to
generate code appropriate for AR mode. For AR mode callers, the SETFRR parameter list
can be located in any address spar:e.

All SETFRR users must include the DSECTs for the FRR stack (via the IHAFRRS mapping
macro) and the PSA (via the IHAPSA mapping macro) before using the SETFRR macro.

Support of the SETFRR macro sets the high-order bit of the recovery exit routine address to
the addressing mode of the issuer. This bit setting determines the addressing mode of both
the recovery exit routine and the retry routine.

SPL: Application Development Guide describes the !r.terface to an FRR under "System
Environment"; guidelines for writing an FRR appear in SPL: Application Development Guide
under "Recovery Routine Guidelines".

Note: FRRs need not restore registers upon return.

673

The SETFRR macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SETFRR.

SETFRR

b One or more blanks must follow SETFRR.

A,FRRAD=FRR addr
R,FRRAD = FRR addr
D

FRR addr: A-type address, or register (2) - (12).

p

,WRKREGS = (reg1 ,reg2) reg1: decimal digits 1-15.
reg2: decimal digits 1-15.

,PARMAD = parm area addr

,CANCEL= YES
,CANCEL=NO

,EUT=YES

,MODE=
(
FULLXM
PRIMARY
HOME

GLOBAL
LOCAL
GLOBAL.LOCAL
LOCAL.GLOBAL
)

,RELATED= value

parm area addr: A-type address, or register (2) - (12).
Note: This parameter may only be specified with A or R above.

Default: CANCEL =YES

Default: MODE= HOME

value: any valid macro keyword specification.

The explanation of the parameter is as follows:

A,FRRAD =FR RAD addr
R,FRRAD - FR RAD addr
D
p

specifies the operation to be performed on the FRR LIFO stack:

A an FRR address is to be added to the stack.
R the FRR address last added to the stack is to be replaced by another FRR address.
D the FRR address last added to the stack is to be deleted.
P all entries in the stack are to be purged.

FRRAD specifies the address of a fullword containing the FRR address that is to be
added or replaced. The parameter specifies the FRR address in a register or specifies
the address of a storage location containing the FRR address.

,WRKREGS = (reg1 ,reg2)
specifies two unique general purpose registers to be used as work registers in the code
generated by the SETFRR macro expansion.

,PARMAD = parm area addr
specifies the address of a fullword to receive the address of the 24-byte parameter area
provided by the system to the issuer of SETFRR. If a register is specified, the address
of the 24-byte parameter area is placed in the register. This parameter area is

674 SPL: Application Development Macro Reference

associated with the FAR address that has either been added to or has replaced an FAR
address on the stack. This parameter area is passed to the FAR when an error occurs.

,CANCEL- YES
,CANCEL=NO

specifies whether you want to allow the recovery routine to be interrupted by cancel or
detach processing.

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL= NO. If a cancel
or detach is attempted against a recovery routine for which you have specified
CANCEL= NO, MVS defers cancel and detach processing until the recovery routine
returns control to the system.

Usage Notes:

1. If a recovery routine that runs under the CANCEL= NO option can be called by an
unauthorized program running under the same task, IBM recommends that you
specify ASYNCH =NO for each ESTAE(X) macro that the recovery routine issues.
This also includes any ESTAE(X) macros issued by programs that the recovery
routine calls.

2. If a recovery routine running under the CANCEL= NO option calls an unauthorized
program, cancel and detach processing is also deferred for the called program.

,EUT-YES
used only with A and R, specifies that the new FRR can be used in any environment.
EUT=YES is used by routines that are not certain of their environment; for example, a
routine that can be called by an SRB or by a task that is executing enabled and might
not hold any locks. While the FRR remains in effect, no SVCs can be issued, no new
asynchronous exits are dispatched, and no vector instructions can be executed.

,MODE== options
specifies the environment in which the FRR is to get control and also, optionally,
identifies the FRRs that free critical resources. The normal or expected addressing
environment is identified by FULLXM, PRIMARY, or HOME. The restricted or critical
resource freeing addressing environment is identified by LOCAL, GLOBAL, or both.
Parentheses are not needed if only one option is chosen.

FULLXM
specifies that the FAR exit must be entered in the same cross memory environment
that existed when the SETFRR was issued.

PRIMARY
specifies that the FRR exit must be entered in primary addressing mode with both
the PASID and SASID the same as the PASID that existed when the SETFRR was
issued, the home address space must be unchanged, and the PSW key mask must
be the same as when the SETFRR was issued.

HOME
specifies that the FAR exit must be entered in primary addressing mode with
PASID = SASID = HASID, and the PSW key mask either the same as that at the time
of the error for SRB mode, or the task storage protect key for TCB mode.

If neither FULLXM, PRIMARY, nor HOME is coded, HOME is the default.

GLOBAL
specifies that the FRR frees a critical global resource. If the FAR cannot be
entered in its normal addressing environment (for example, if the secondary
address space is no longer valid), it must be entered in GLOBAL restricted
addressing environment to free critical resources. To enter the FAR, a global spin
lock must be held.

If it cannot be entered either as an FRR or as a resource manager, the FAR is
skipped.

SETFRR - Set Up Functional Recovery Routines 675

LOCAL
specifies that the FRR frees a critical local resource. If the FRR cannot be entered
in its normal addressing environment then it must be entered in LOCAL restricted
addressing environment to free resources.

In order for the FRR to be entered in LOCAL restricted addressing environment, a
local lock must be held.

If it cannot be entered either as an FRR or as a resource manager, the FRR is
skipped.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Example 1
Operation: Add an FRR to the FRR stack and return the address of the parameter list to the
issuer of the SETFRR. The FRR address contained in register (R5) is placed on the FRR
stack in the next available FRR entry. On return, register (R2) contains the address of the
parameter list associated with this FRR entry. Registers R3 and R4 are work registers used
in the code generated by SETFRR in performing its operations.

SETFRR A,FRRAD=(R5),PARMAD=(R2),WRKREGS=(R3,R4)

Example 2
Operation: Delete the last FRR added to the FRR stack.

SETFRR D,WRKREGS=(l,6)

676 SPL: Application Development Macro Reference

SETLOCK - Control Access to Serially Reusable Resources

© Copyright IBM Corp. 1988, 1991

The SETLOCK macro is used to control access to serially reusable resources. Each kind of
serially reusable resource is assigned a separate lock. To use SETLOCK, you must be
executing in supervisor state with PSW key zero. The SETLOCK macro can be used by
programs executing in cross memory mode or in access register mode. Before you invoke
the SETLOCK macro in access register mode, issue SYSSTATE ASCENV=AR, to tell the
SETLOCK macro to generate code appropriate for access register mode. A DSECT for the
PSA (via the IHAPSA mapping macro) must be included in the CSECT using the SETLOCK
macro.

SETLOCK can be used to:

• Obtain a specified lock
• Release a specified lock
• Test a specified lock or to determine if the lock is held on the requestor's processor

For information on using this macro on an MVS/SP version other than the current version,
see " Selecting the Macro Level" on page 1.

Locks are discussed under "Locking" in SPL: Application Development Guide. CML (cross
memory local) lock means the local lock of an address space other than the home address
space. LOCAL lock means the local lock of the home address space. When written in lower
case, local lock means any local-level lock, either the LOCAL or a CML lock.

Notes:

1. In MVS/SP Version 3 and later versions, a locked routine is not allowed to issue an SVC,
or invoke a routine that would issue an SVC on the locked routine's behalf.

2. The contents of access registers 0, 1, 14, and 15 are volatile across the macro
invocation.

677

OBTAIN Option
The OBTAIN option of SETLOCK macro is written as follows:

name

b

SETLOCK

b

OBTAIN

,TYPE=CPU
,TYPE=CMS
,TYPE=CML,ASC8=(11)
,TYPE=LOCAL

,MODE=COND
,MODE= UNCOND

,REGS=SAVE
,REGS=USE

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

Note: MODE cannot be specified with TYPE= CPU.

Note: Registers 11-14 will be destroyed if this parameter is
omitted.

value: any valid macro keyword specification.

The parameters are explained as follows:

OBTAIN
specifies thatthe designated lock is to be obtained on the caller's behalf.

,TYPE=CPU
,TYPE=CMS
,TYPE=CML, ASCB={11)
,TYPE= LOCAL

specifies the type of lock that is to be obtained on the caller's behalf.

678 SPL: Application Development Macro Reference

The types available are:

CPU is the processor lock. It is a pseudo spin lock providing MVS-recognized
disablement. There is one CPU lock per processor and no processor can
request another processor's lock. The lock is always available. Users not
holding a spin lock can obtain the CPU lock to become disabled for 1/0 and
external interruptions.

CMS is the cross memory services lock. It is a global suspend lock used to
serialize functions between address spaces where this serialization is not
provided by one or more of the global spin locks. The caller must hold the
CML or LOCAL lock to obtain the CMS lock.

CML is the cross memory local lock. It is a local level suspend type lock used
to serialize resources in an address space other than the home address
space.

LOCAL

,ASCB=(11)

The requestor of a CML lock must have authority to access the specified
address space before requesting the lock. To establish authority, the
requestor sets the primary or secondary address space to the one
specified by the ASCB = (11) parameter. This address space must be
non-swappable before the SETLOCK request.

is the lock that serializes resources in the home address space pointed to
by PSAAOLD. It is a local level suspend lock.

specifies that the address of the ASCB whose local lock is requested has been loaded
into register 11 before the SETLOCK request. This parameter must be specified if
TYPE= CML is specified and is val id only for CML lock requests

Note: If the requestor specifies OBTAIN, TYPE= CML and the ASCB = (11) parameter
points to the home address space, the request is treated as though the LOCAL lock
were being obtained

The return registers are:

11 Unchanged if ASCB is specified, otherwise used as a work register by the
macro.

12 Used as a work register by the macro.
13 Return code.
14 Return address.

,MODE=COND
,MODE= UNCOND

specifies whether the lock is to be conditionally or unconditionally obtained.

COND

UNCOND

specifies that the lock is to be conditionally obtained. That is, if the lock
is not owned on another processor, it is acquired on the caller's behalf.
If the lock is already held, control is returned indicating that the caller
holds the lock or that another unit of work on another processor owns
the lock.

specifies that the lock is to be unconditionally obtained. That is, if the
lock is not owned on another processor, it is acquired on the caller's
behalf. If the lock is already held by the caller, control is returned to the
calling program indicating that it already owns the lock. If the lock is
held on another processor, the caller's processor spins on the lock until
it is released or suspends the SETLOCK caller until the lock is available.

SETLOCK - Control Access to Serially Reusable Resources 679

,REGS-SAVE
,REGS=USE

specifies the use of general purpose registers 11through14. If you omit REGS, the
SETLOCK service uses general purpose registers 0, 1, 14, and 15.

SAVE specifies that register contents are to be saved. Registers 11through14 are
saved in the area pointed to by register 13, and are restored upon completion
of the SETLOCK request. The save area consists of at least 5 words (These
words hold the contents of the four registers and the return code that is to be
placed in register 15).

Note: The save area used for the REGS= SAVE parameter must be a
different area than the standard linkage save area used by the program.

USE specifies that registers 14, 15, 0, and 1 are to be used by the macro service.
Registers 11, 12, and 13 are saved in registers 15, 0, and 1, respectively, and
are restored upon completion of the SETLOCK request. Register 14 is used
as a link register; register 15 contains the return code.

Note: If neither SAVE nor USE is specified, registers 11-14 are destroyed and
register 13 contains the return code.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

When control is returned, register 15 (register 13, if neither SAVE nor USE is specified)
contains one of the following return codes:

Hexadecimal
Code

00

Notes:

04

08

10

Meaning

The lock was successfully obtained.

The lock was already held by the caller. The lockword id matches the caller's id.

The conditional obtain process was unsuccessful. The lockword id does not
match the caller's id. This means that the lock is owned by another processor. In
the case of a shared/exclusive lock, this return code means that the lock was not
immediately available with the scope requested.

A level error was detected. This return code is supplied on a conditional obtain
only. A level error detected on an unconditional obtain results in an abnormal
termination.

1. See the topic "Locking" in SPL: Application Development Guide for a description of the
types of level errors that the lock manager can and cannot detect.

2. For an unconditional request, if the caller holds the lockword on a different level, the
lock manager abnormally terminates the caller with a 073 ABEND.

680 SPL: Application Development Macro Reference

RELEASE Option
The RELEASE option of the SETLOCK macro is written as follows:

name

b

SETLOCK

b

RELEASE

,TYPE=CPU
,TYPE=CMS
,TYPE= LOCAL
,TYPE=ALL

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

,TYPE= CML,ASCB = (11)

,REGS=SAVE
,REGS=USE

,RELATED= value value: any valid macro keyword specification.

The parameters are explained under the OBTAIN option of the SETLOCK macro, with the
following exceptions:

RELEASE
specifies that the lock is to be released.

,TYPE=ALL
specifies the type of lock to be released.

ALL indicates that all locks currently held on the processor are to be released.

Notes:

1. For information on using this macro on an MVS/SP version other than the current
version, see" Selecting the Macro Level" on page 1.

2. If you specify RELEASE, TYPE= CML and the ASCB =(ii) J.)arameter specifies the home
address space and the lock you are holding is home's local lock, then SETLOCK
processing treats the CML release request as a RELEASE, TYPE= LOCAL.

When control is returned, register 15 {register 13 if r.sither SAVE nor USE is specified)
contains one of the following return codes:

Hexadecimal
Code

00

04

OB

oc

Meaning

The lock was successfully released.

The lock was not owned. The lock was free when the release request was issued.

The release process was unsuccessful. The lockword id does not match the
caller's id. This means that the lock was owned by a different processor.

The release process was unsuccessful. The caller does not own the specified
local or CML lock. This return code applies to LOCAL or CML release only.

SETLOCK - Control Access to Serially Reusable Resources 681

Example
Operation: Release the local lock.

SETLOCK RELEASE,TYPE=LOCAL,RELATED=(TCBRQ,MODl(NAMEl), X
MOD2(NAME2))

682 SPL: Application Development Macro Reference

TEST Option
The TEST option of the SETLOCK macro is written as follows:

name

b

SETLOCK

b

TEST

,TYPE=CPU
,TYPE=CMS
,TYPE= LOCAL
,TYPE=ALL
,TYPE=CML
,TYPE= ALOCAL

,ASCB=(11)

,LOCKHLD=(reg)

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

Note: ASCB can only be specified with TYPE= CML.

reg: any valid register value
Note: LOCKHLD can only be specified with TYPE= CML,
TYPE= ALOCAL, TYPE= CPU

,BRANCH= (HELD,addr)
,BRANCH= (NOTHELD,addr)

addr: RX-address.

,RELATED= value value: any valid macro keyword specification.

The parameters are explained under the OBTAIN or RELEASE option of the SETLOCK
macro, with the following exceptions:

TEST
specifies that the designated lock is to be checked to determine if it is currently held on
the requesting processor.

,TYPE=CML
, TYPE= ALOCAL

The types are:

CML

A LOCAL

,ASCB=(11)

specifies that the requestor wishes to determine whether a CML lock
is held. The ASCB = {11) parameter or the LOCKHLD =(reg)
parameter must be specified with TYPE= CML.

specifies that the requestor wishes to determine whether a local lock
is held, either home's LOCAL or a CML. The LOCKHELD= (reg)
parameter may be specified with TYPE= ALOCAL. ASCB may not be
specified with TYPE= ALOCAL.

specifies that the register 11 contains the ASCB address that is to be checked to
determine if the requestor owns its local lock as a CML lock. This parameter is only
valid with TYPE=CML.

,LOCKHLD ==(reg)
specifies that the a designated register is to be used as a work register by the macro.
This parameter is valid only for TYPE= CML and TYPE= CPU.

If TYPE= CML is specified, and if a CML lock is held, this register will contain the ASCB
address of the CML locked address space.

SETLOCK- Control Access to Serially Reusable Resources 683

If TYPE= CPU is specified, this register will be loaded with the current CPU lock use
count for this processor.

,BRANCH - (HELD,addr)
,BRANCH -(NOTHELD,addr)

specifies that the return code setting of the macro is to be suppressed and replaced by
a direct branch to the specified address or the specified label.

If (HELD,addr) is specified, the address is branched to if the specified lock is held on
the requesting processor.

If (NOTHELD,addr) is specified, the address is branched to if the specified lock is not
currently held on the requesting processor.

When control is returned, register 15 contains one of the following return codes (If the
BRANCH= parameter was omitted):

Hexadecimal
Code

00

04

Meaning

The lock was held by the requestor, or at least one lock was held {if TYPE= CMS
or TYPE=ALL was specified).

The lock was not held by anybody, or no lock was held {if TYPE= CMS or
TYPE= ALL was specified).

Note: TYPE= CMS is used to determine if at least one cross memory services lock is held,
but cannot be used to determine which one or if all are held.

Example 1
Operation: If a local lock is not held, branch to DSRLLINT, otherwise, execute the next
sequential instruction.

SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT)

Example2
Operation: Put the current CPlJ lock use count for this processor into register 3.

SETLOCK TEST,TYPE=CPU,LOCKHLD=(3)

684 SPL: Application Development Macro Reference

SETRP - Set Return Parameters

© Copyright IBM Corp. 1988, 1991

The SETRP macro is used within a recovery routine to indicate the various requests. It may
be used only if a system diagnostic work area (SOWA) was passed to the recovery routine.
The macro is valid for functional recovery routines (FRRs) and ESTAE type recovery
routines.

If you are executing in 31-bit addressing mode, you must use the MVS/ESA version of this
macro.

The SETRP macro is also described in Application Development Macro Reference with the
exception of the RECORD, RECPARM, FRELOCK, CPU, SERIAL, and RETRY parameters.
These parameters are restricted in use to programs executing as FRRs in supervisor state
or key 0-7 and, therefore, are only described here.

Note: This macro requires that the IHASDWA mapping macro be assembled as a DSECT in
the caller's program. The SOWA is addressable when the recovery routine is entered; when
the SETRP macro is issued, the same address space must be addressable.

Programs in primary, secondary, and access register (AR) mode can issue SETRP. If your
program is in AR mode, issue the SYSSTATE ASCENV =AR macro before you issue SETRP.
SYSSTATE ASCENV =AR tells the system to generate code appropriate for AR mode.
(SETRP defaults to primary/secondary mode.) There is one exception to using SETRP: If
your program is in secondary mode, do not use the DUMPOPX parameter.

For more information on how to use SETRP, see the chapter on recovery routines in SPL:
Application Development Guide.

The SETRP macro is written as follows:

name

b

SETRP

b

WKAREA= (reg)

,REGS= (reg1)
,REGS= (reg1,reg2)

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

,DUMPOPT = parm list addr
,DUMPOPX = parm list addr

,RC=O
,RC=4
,RC=16

, RET ADDA =retry addr

name: symbol. Begin name in column 1.

One or more blanks must precede SETRP.

One or more blanks must follow SETRP.

reg: decimal digits 1-12.
DefauH: WKAREA=(1)

reg1: decimal digits 0-12, 14, 15.
reg2: decimal digits 0-12, 14, 15.
Note: If reg1 and reg2 are both specified, order is 14, 15, 0-12.

DefauH: DUMP= IGNORE

parm list addr: RX-type address, or register (2) - (12).
Note: Specify these parameters only if you specify
DUMP=YES.

DefauH: RC=O

retry addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if RC=4 is
specified above.

685

,RETREGS=NO
,RETREGS =YES
,RETREGS=YES,RUB=info addr

,FRESDWA=NO
,FRESDWA=YES

,COMPCOD =code
,COMPCOD =(code, USER)
,COMPCOD= (code,SYSTEM)

,FRELOCK =(locks)

,REASON= code

,CPU=reg

,RECORD= IGNORE
,RECORD=YES
,RECORD=NO

,REC PARM= record list addr

,SERIAL= YES
,SERIAL=NO

,RETRY=FRR
,RETRY= ERROR

,RETRY15=NO
,RETRY15=YES

,REMREC=NO
,REM REC= YES

,FRLKRTY=NO
,FRLKRTY=YES

The parameters are explained below:

, WKAREA =(reg)

info addr: RX-type address, or register (2) - (12).
Default: RETREGS = NO
Note: This parameter may be specified only if RC=4 is
specified above. If RETREGS=YES is specified for a FRR, all
registers are restored from SDWASRSV with the exception of
register 15. Register 15 always contains the entry point of the
retry routine.

Default: FRESDWA=NO
Note: This parameter may be specified only if RC=4 ls
specified above.

code: symbol, decimal digit, or register (2) - (12).
Default: COMPCOD =(code, USER)

locks: any combination of the following, separated by commas:

CPU
LOCAL

CMS
CML(cm/ascb)

cmlascb: RX-type address or register (2) - (12).

code: symbol, decimal or hexadecimal number, or register (2)
- (12).

reg: decimal digits 2-12.

Default: RECORD= IGNORE

record list addr: RX =type address, or register (2) - (12).
Note: This parameter may be specified only if
RECORD= IGNORE or RECORD= YES is specified above.

Default: RETRY= FRR

Default: RETRY15=NO

Default: REM REC= NO

Default: FRLKRTY=NO

specifies the address of the SOWA passed to the recovery exit. If this parameter is
omitted, the address of the SOWA must be in register 1.

,REGS=(reg 1)
,REGS= (reg 2)

specifies the register or range of registers to be restored from the save area pointed to
by the address in register 13. If REGS is specified, a branch on register 14 instruction
will also be generated to return control to the system. If REGS is not specified, the user
must code his own return.

686 SPL: Application Development Macro Reference

,DUMP• IGNORE
,DUMP•YES
,DUMP=NO

specifies that the dump option fields will not be changed (IGNORE), will be zeroed (NO),
or will be merged with dump options specified in previous dump requests, if any (YES).
If IGNORE is specified, a previous exit had requested a dump or a dump had been
requested via the ABEND macro, and the previous request will remain intact. If NO is
specified, no dump will be taken.

,DUMPOPT =pa rm list addr
,DUMPOPX ... pa rm list addr

specifies the address of a parameter list of dump options. You can create the
parameter list through the list form of the SNAP or SNAPX macro, or you can create a
compatible list. DUMPOPT specifies the address of a parameter list that the SNAP
macro creates. DUMPOPX specifies the address of a parameter list that the SNAPX
macro creates. A program in secondary mode cannot use the DUMPOPX parameter.

If the specified dump options include subpools for storage areas to be dumped, up to
seven subpools can be dumped. Subpool areas are accumulated and wrapped, so that
the eighth subpool area specified replaces the first. The TCB, DCB, and STRHDR
options available on SNAP or SNAPX are ignored if they appear in the parameter list.
The TCB used will be the one for the task that suffered the error. The DCB used will be
one created by the system, and either SYSABEND, SVSMDUMP, or SYSUDUMP will be
used as a DDNAME.

,REASON= code
specifies the reason code that the user wishes to pass to subsequent recovery exits.
The value range for code is any 32-bit hexadecimal number or 31-bit decimal number.
See Application Development Macro Reference for information about how a user can
change this code.

,RC•O
,RC=4
,RC=16

specifies the return code the recovery routine sends to the system to indicate what
further action is required:

Hexadecimal
Code

0

4

16

Meaning

Continue with termination, causes entry into previously-specified
recovery routine, if any.

Retry using the retry address specified.

Suppress further ESTAl/STAI processing (for ESTAI only)

,RETADDR =retry addr
specifies the address of the retry routine to which control is to be given.

,RETREGS =NO
,RETREGS =YES
,RETREGS =YES ,RUB ... reg info addr

specifies the contents of the registers to be restored on entry to the retry routine.
RETREGS =NO (the default) indicates that you do not want the system to restore any
register contents from the SOWA. If YES is specified, the contents of the SDWASRSV
field will be used to initialize registers 0-14 when an FRR requests retry and registers
0-15 when an ESTAE requests retry. For ESTAE exits, this field contains the registers
at the last interruption of the RB level at which retry will occur. For ESTA! exits, the
contents of SDWASRSV must be set by the user either before SETRP is issued or by use
of the RUB parameter; any field not set will cause the corresponding register to contain
0 on entry to the retry routine.

RUB specifies the address of an area that contains register update information. The
system will move the data specified in this area into the SOWA and into the general
purpose registers before entry to the retry routine.

SETRP - Set Return Parameters 687

The maximum length of the RUB is 66 bytes:

• The first two bytes represent the registers to be updated, register O corresponding
to bit 0, register 1 corresponding to bit 1, and so on. The user indicates which of the
registers are to be stored in the SOWA by setting the corresponding bits in these
two bytes.

• The remaining 64 bytes contain the update information for the registers, In the order
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only one
register is being updated, this field consists of only 4 bytes for that one register.

For example, if only registers 4, 6, and 9 are being updated:

• Bits 4, 6, and 9 of the first two bytes are set.

• The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4 bytes are
for register 4, followed by 4 bytes for register 6, and 4 final bytes for register 9.

,FRESDWA •NO
,FRESDWA •YES

specifies that the entire SOWA be freed {YES) or not be freed {NO) before entry into the
retry routine.

,COMPCOD •comp code
,COMPCOD =(comp code,USER)
,COMPCOD == (comp code,SYSTEM)

specifies the user or system completion code that the user wants to pass to subsequent
recovery exits.

,FRELOCK = (locks)
specifies the locks to be freed and the corresponding lockwords that are placed in the
SOWA:

CPU
CMS
LOCAL
CML{cm/ascb)

Notes:

Processor lock
Cross memory services lock
Storage lock of the storage the caller Is executing in
Cross memory local lock, where cmlascb Indicates the ASCB
address of the address space for which the local lock is to be
freed

1. If FRLKRTY =NO is specified or taken as a default, the specified locks are freed
only on percolation, not on retry. Specifying FRLKRTY= YES allows the locks listed
in FRELOCK to be freed on retry.

2. Certain MVS services may require you to free one or more of the other locks shown
in the syntax diagram. If a specific MVS service calls for one of these lock types,
code SETRP as shown in the diagram.

,CPU=(reg)
specifies the register that contains the logical processor identification of the processor
holding the resource that this processor is waiting for.

,RECORD• IGNORE
,RECORD= YES
,RECORD-NO

specifies that the entire SOWA {fixed, base, variable areas, and extensions) is to be
written on SYS1 .LOGREC {YES), is not to be written on SYS1 .LOGREC (NO), or is to be
written as indicated prior to the SETRP macro {IGNORE).

688 SPL: Application Development Macro Reference

,RECPARM =record list addr
specifies the address of a user-supplied record parameter list used to update the SOWA
with recording information. The parameter list consists of three 8-byte fields:

• The first field contains the load module name.

• The second field contains the CSECT name (assembly module name).

• The third field contains the recovery routine name (assembly module name). If the
recovery routine label is not the same as the assembly module name, the label can
be placed in the SDWARRL field.

The three fields are left-justified, and padded with blanks.

,SERIAL= YES
,SERIAL=NO

specifies whether the percolation from an SRB mode FRR to a related task recovery
routine (ESTAE or FRR) is to be serialized (YES) or not serialized (NO) with respect to
unlocked task recovery. See "SRB to Task Percolation" in SPL: Application
Development Guide.

If the task is already in recovery for another error when SERIAL= YES is specified, the
percolation request is deferred pending a requested task retry from any recovery
routine covering mainline code. If such a retry is not requested, the task is terminated
and all deferred percolations are purged. Only the last FRR to receive control when an
error occurs can specify SERIAL= YES.

,RETRY=FRR
,RETRY= ERROR

specifies the cross memory environment in which the retry routine gets control.

RETRY= FRR, the default, specifies that the retry routine gets control in the cross
memory environment that exists at the time of entry to the FRR.

RETRY= ERROR specifies that the retry routine gets control in the cross memory
environment that existed at the time of the error. Do not specify RETRY= E:RHOR it the
cross memory status at the time of the error is not available, that is, if SDWARPIV is set
to one. (Be careful not to create a loop by retrying to an erroneous cross memory state
with RETRY= ERROR.)

,RETRY15 =YES
,RETRY15 =NO

In an FRR environment only, specifies that register 15 is restored from SDWASRSV if
RETRY15 =YES. Otherwise, it contains the entry point address of the retry routine.

This parameter may be specified only when RC=4 is specified. If RETRY15=YES is
not coded on any SETRP invocation prior to returning to the system, the effect is that of
specifying RETRY15 =NO.

,REMREC=YES
,REMREC=NO

In an FRR or ESTAE environment, specifies that the FRR/ESTAE entry for the currently
running FRR/ESTAE routine be removed (REM REC= YES) or not removed
(REM REC= NO). This parameter may be specified only when RC= 4 is specified,
indicating a retry request.

The entry is removed before control returns to the retry point. If REM REC= YES is not
coded on any SETRP invocation before the system receives control, the effect is that of
specifying REM REC= NO. The REMREC parameter may be used to remove a recovery
routine that has been established with a token, although the token cannot be specified
when you code the SETRP macro.

,FRLKRTY =YES
,FRLKRTY = NO

In an FRR environment only, specifies that the locks specified on FRELOCK be freed
(FRLKRTY =YES) or not be freed (FRLKRTY =NO) on retry.

SETRP - Set Return Parameters 689

This parameter may be specified only when RC=4 is specified. If FRLKRTY=YES is
not coded on any SETRP invocation prior to returning to the system, the effect is that of
specifying FRLKRTY =NO.

Notes:

1. The variable recording area (SDWAVRA) contains the variable i.nformation that is
supplied by the user. This consists of footprints or other information about the execution
environment at the time of the failure. The execute form of the VRADATA macro and the
IHAVRA mapping macro can be used to supply this data in a key-length-data format to
simplify later decoding. The variable recording area is preceded by the following
control information:

• A two-byte length field (SDWAVRAL), filled in by the system, specifying the total
length available to the user. This is 255 bytes, the length of the SDWAVRA field.

• A one-byte flag field (SDWADPVA), filled in by the user, specifying the format of the
data to be dumped. The flags used to specify the format are:

SDWAHEX for hexadecimal format
SDWAEBC for EBCDIC format
SDWAVRAM for key-length-data

More than one of these flags can be set. If the SDWAEBC flag is set, the EREP
program formats the SDWAVRA in EBCDIC and hexadecimal for SYS1.LOGREC
output.

• A one-byte length field (SDWAURAL), filled in by the user, specifying the actual
length of the data.

2. The FRESDWA parameter cannot be specified or defaulted for a functional recovery
routine (FRR). The SOWA is always released before an FRR's retry routine gets control.

3. The SERIAL parameter is relevant only for FRRs established for SRBs that have a
related task.

4. The SERIAL and RETRY parameters are mutually exclusive.

5. SETRP does the following in response to requests to alter the completion code and/or
reason code:

• If the COMPCOD parameter is altered, SETRP places the new completion code in the
SDWACMPC field of the SOWA and sets the SDWACCF flag to indicate that a
recovery exit altered the completion code.

• If the REASON parameter is specified, SETRP places the new reason code in
SDWACRC and sets the SDWAREAF flag to indicate that a recovery exit altered the
reason code.

The following table indicates which parameters are available to functional recovery routines
(FRRs) and which parameters are available to ESTAE-type recovery routines.

Parameter FRR ESTAE-type recovery routines
WKAREA x x
REGS x x
DUMP x x
REASON x x
RC=O x x
RC=4 x x
RC=16 x
RETADDR x x
RETREGS x x
RUB x x
FRESDWA x
COMPCOD x x
FRELOCK x
CPU x
RECORD x x
RECPARM x x
SERIAL x
RETRY x

690 SPL: Application Development Macro Reference

Example 1
Operation: Cause a restart interruption on the processor identified by the contents of
register 7. In this example, the interrupted function is spinning on a lock currently being
held by the processor identified in register 7.

SETRP CPU= (7)

Example 2
Operation: The first FRR established for an SRB routine requests percolation, freeing of the
CML lock (the ASCB address is in register 2), and serialization of percolation to the related
task.

SETRP RC=O,FRELOCK=(CML(2)),SERIAL=YES

Example 3
Operation: An FRR requests retry with the retry routine getting control in the same cross
memory mode as the time of FRR entry. The retry address is in register 3.

SETRP RC=4,RETADDR=(3),RETRY=FRR

SETRP - Set Return Parameters 691

692 SPL: Application Development Macro Reference

SPIE - Specify Program Interruption Exit

© Copyright IBM Corp. 1988, 1991

Note: The ESPIE macro is the preferred programming interface.

The SPIE macro specifies the address of an interruption exit routine and the program
interruption types that are to cause the exit routine to get control. If the program
interruption types specified can be masked, the corresponding program mask bit in the PSW
(program status word) is set to 1.

Only callers in 24-bit addressing mode can issue the SPIE macro. If a caller in 31-bit
addressing mode issues a SPIE macro, the caller is abended with a system completion code
of X'30E'. Callers in 31-bit addressing mode must use the ESPIE macro, which performs the
same function as the SPIE macro for callers in both 24-bit and 31-bit addressing mode.

Note: In MVS/370 the SPIE environment existed for the life of the task. In later versions of
MVS, the SPIE environment is deleted when the request block that created it is deleted.
That is, when a program running under MVS/XA completes, any SPIE environments created
by the program are deleted. This might create an incompatibility with MVS/SP Version 1 for
programs that depend on the SPIE environment remaining in effect for the life of the task
rather than the request block.

The SPIE macro is not supported in cross memory mode.

The following description of the SPIE macro also appears in Application Development
Macro Reference, with the exception of interruption type 17. This interruption type
designates page faults and its use is restricted to authorized programs. For more
information about the SPIE macro, see the chapter on interruptions in SPL: Application
Development Guide.

The standard form of the SPIE macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SPIE.

SPIE

b One or more blanks must follow SPIE.

exit addr

,(interrupts) exit addr: A-type address, or register (2) - (12).

interrupts: decimal numbers 1-15, or 17 expressed as

sing le values: (2,3,4, 7,8,9,10)

ranges of values: ((2,4),(7, 10))

combinations: (2,3,4,(7, 10))

The parameters are explained as follows:

exit addr
specifies the address of the exit routine to be given control when a specific program
interruption occurs. The exit routine receives control in 24-bit addressing mode.

693

,(interrupts)
indicates the type of interruption for which the exit routine is to be given control. The
interruption types are as follows:

Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17

Notes:

Interruption Type
Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide
Page fault

1. If a specified program interruption type is maskable, the corresponding bit is set to
1. Interruption types not specified above are handled by the system.

2. The system returns the address of the previous PICA or a PICA in which the first
word contains binary zeroes in register 1. If no previous SPIE environment existed,
the system returns zeros in register 1.

3. If an exit address is zero or no parameters are specified, the current SPIE and any
previously active ESPIE environments are canceled.

4. If you are using vector instructions and an interruption of 8, 12, 13, 14, or 15 occurs,
your recovery routine can check the exception extension code {the first byte of the
two-byte interruption code in the EPIE or PIE) to determine whether the exception
was a vector or scalar type of exception.

Example
Operation: Give control to an exit routine for interruption 17. DOITSPIE is the address of
the SPIE exit routine.

SPIE DOITSPIE,(17)

694 SPL: Application Development Macro Reference

SPIE (List Form)
Use the list form of the SPIE macro to construct a control program parameter list In the form
of a program interruption control area.

The list form of the SPIE macro is written as follows:

name

b

SPIE

b

exitaddr

,(interrupts)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address.

interrupts: decimal numbers 1-15, or 17, expressed as

single values: (2,3,4, 7,6,9,10)

ranges of values: ((2,4),(7, 10))

combinations: (2,3,4,(7, 10))

The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF=L
specifies the list form of the SPIE macro.

SPIE - Specify Program Interruption Exit 695

SPIE (Execute Form)
A remote control program parameter list is used in, and can be modified by, the execute
form of the SPIE macro. The PICA (program interruptions control area) can be generated by
the list form of SPIE, or you can use the address of the PICA returned in register 1 following
a previous SPIE macro. If this macro is being issued to reestablish a previous SPIE
environment, code only the MF parameter.

The address of the remote control program parameter list associated with any previous
SPIE environment is returned by the SPIE macro.

The execute form of the SPIE macro is written as follows:

name

SPIE

b

exit addr

,(interrupts)

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: RX-type address, or register (2) - (12).

interrupts: decimal numbers 1-15, or 17, expressed as

single values: (2,3,4,7,8,9, 10)

ranges of values: ((2,4),(7, 10))

combinations: (2,3,4,(7, 10))

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF= {E,ctrl,addr)
specifies the execute form of the SPIE macro using a remote control program
parameter list.

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is canceled.

696 SPL: Application Development Macro Reference

SPLEVEL - SET and TEST Macro Level

© Copyright IBM Corp. 1988, 1991

Specific macros supplied in the macro lib,rary are identified as downward incompatible (to
MVS/SP Version 1 or 2). Unless you take specific action, these macros generate downward
incompatible statements.

It is possible to generate downward compatible expansions of these macros by using the
SPLEVEL macro. The downward incompatible macros interrogate a global symbol (set by
SPLEVEL) during assembly to determine the type of expansion to be generated. See "
Selecting the Macro Level" on page 1 for additional information about the downward
incompatible macros and Assembler H Version 2 Application Programming: Language
Reference for information about global set symbols.

Existing programs that issue MVS/SP Version 2 macros will execute properly in SP Version
3. MVS/SP Version 3 macros will execute properly without your issuing the SPLEVEL
macro.

The SPLEVEL macro is written as follows:

name

SPLEVEL

SET=n
SET
TEST

name: symbol. Begin name in column 1.

One or more blanks must precede SPLEVEL.

One or more blanks must follow SPLEVEL.

n: 1, 2 or 3.
Default: SET= 3

The parameters are explained as follows:

SET=n
SET
TEST

specifies whether the macro level is being set or tested.

If SET=n is specified, the SPLEVEL routine sets a global set symbol equal ton, where n
must be 1, 2 or 3. If a user codes one of the downward incompatible macros, one of the
following macro expansions is generated:

• The MVS/SP Version 1 macro expansion if n = 1
• The MVS/SP Version 2 macro expansion if n = 2
• The MVS/SP Version 3 macro expansion if n = 3

If SET is specified without n, the SPLEVEL routine uses the default value, 3.

The TEST option is used to determine the macro level that is in effect. The results of
the test request are returned to the user in the global set symbol, &SYSSPLV. If TEST is
specified and if SPLEVEL SET has not been issued during this assembly, the SPLEVEL
routine puts the default value into the global set symbol. If SPLEVEL SET has been
issued, the previous value of nor the default value is already in the global set symbol.

697

Example 1
Operation: Select the SP Version 1 version of a specific downward Incompatible macro.

SPLEVEL SET=l

Example2
Operation: Use SPLEVEL to select the MVS/SP Version 3 version of the MVS macros:

* Determine which level of MVS is executing
TM CVTDCB,CVTOSEXT
BNO SP2
TM CVTOSLV0,CVTXAX
BNO SP2

* The Version 3 level of MVS is executing
SP3 EQU *

SPLEVEL SET=3
SAC 512
SYSSTATE ASCENV=AR
DSPSERV CREATE ...
ALESERV ADD ..•
B CONTINUE

* A Version 1 or 2 level of MVS is executing
SP2 EQU *

SPLEVEL SET=2
GETMAIN .•..
SPLEVEL SET=3

CONTINUE EQU *

A good coding practice is to always reset SPLEVEL to the default value after you have
changed it as soon as the special value is not needed. Consider the case where, later In
your program, you have another sequence like this with some other macros. The default
value should be the one in effect through most of the program, except when specifically
required to be otherwise.

698 SPL: Application Development Macro Reference

SPOST - Synchronize POST

© Copyright IBM Corp. 1988, 1991

The SPOST macro is used in a cross-memory post environment to ensure that all
outstanding cross-memory post requests to the current address space have completed.
SPOST resolves a synchronization problem that arises when it becomes necessary to free
an ECB that is a potential target for a cross-memory post request. Before issuing SPOST,
you must stop any new posts from being initiated.

For explanation of the parameters in a cross-memory post request, see the POST macro.

The SPOST macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SPOST.

SPOST

b One or more blanks must follow SPOST.

Note: SPOST contains no optional or required parameters.

Example
Operation: Execute the SPOST macro with a comment.

SPOST , ISSUE SPOST

699

700 SPL: Application Development Macro Reference

SRBST AT - Save, Restore, or Modify SRB Status

© Copyright IBM Corp. 1988, 1991

The SRBSTAT macro allows the caller to save, restore, and modify the status of an SRB in a
caller-supplied save area. The caller must be running in SRB mode to use the SAVE or
RESTORE option. The caller can be running either in SRB or TCB mode to use the MODIFY
option. In either mode, the caller must be in supervisor state, key 0, primary ASC mode,
have authority to issue a SSAR instruction to the home address space, and be enabled and
unlocked. Register 13 must point to a 72-byte save area addressable in the primary
address space. Control returns from the SRBSTAT macro in primary ASC mode.

The SRBSTAT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SRBSTAT.

SRBSTAT

b One or more blanks must follow SRBSTAT.

SAVE
RESTORE
MODIFY

,STSV = stsv addr

,STSV=O

,NEWFRR = addr

,PRGAT=pat addr

stsv addr: RX-type address or register (1) - (12), register (1)
preferred.

addr: RX-type address or register (0) or (2) - (12), register (0)
preterred.

pat addr: RX-type address or register (2) - (12), register (2)
preferred.

The parameters are explained as follows:

SAVE
RESTORE
MODIFY

specifies whether a save, restore, or modify operation is requested. For SAVE or
RESTORE, only the following status is saved or restored:

• General and floating point registers
• Control registers 3 and 4
• CPU affinity mask
• Related ASID/TCB
• Timing information
• FRR stack
• PCLINK stack header

If SAVE is specified, only caller's registers 1 and 15 are destroyed. Register 1 is used
to hold an FRR parameter area address if NEWFRR is also specified and register 15 is
used for a return code. The PCLINK stack header is saved and zeroed.

If RESTORE is specified, registers 0-13 are restored. The contents of register 14 are
the same as when RESTORE was entered. The current PCLINK stack header must be
zero; the saved one is restored.

On entry to RESTORE, the PCLINK stack header must be zero. RESTORE cannot be
used in an FRR. Note that RESTORE returns to its caller and not to the caller of SAVE.
Note that SRBSTAT does not save and restore access registers, extended authorization
index (EAX) value, and linkage stack and access list status.

701

,STSV = stsv addr
specifies the address of the save area to be used for the SAVE, RESTORE, or MODIFY
operation. The save area can be in private pageable storage, but it must be
addressable from the home address space and it must begin on a double word
boundary. For RESTORE or MODIFY, the save area must contain valid status.

,STSV=O
specifies that the current status is to be modified. This parameter is valid only with
MODIFY.

For MODIFY, an existing SRB status save area or the current status is modified. Only
the purge ASID/TCB information can be modified. All registers are saved and restored
except register 15, which contains a return code.

Hexadecimal
Code

00

,NEWFRR = addr

Meaning

The modify function was successfully completed.

specifies the address of an FRR established with MODE= FULLXM. For SAVE, the
address of the FRR parameter area is returned to the caller in register 1. The first word
of the parameter area contains the address of the SRB status save area being used.

For RESTORE, the FRR address is used only if the saved status cannot be reinstated on
the current processor. An SRB with the FRR option is scheduled specifying this FRR.

For MODIFY, this parameter is invalid.

,PRGAT =pat addr
specifies the address of a 6-byte area of storage, currently addressable in the primary
address space, that contains the new purge ASID/TCB. Bytes 1 and 2 contain the ASID;
bytes 3-6 contain the TCB address. This parameter is required with MODIFY but is
invalid with SAVE or RESTORE.

702 SPL: Application Development Macro Reference

SRBTIMER- Establish Time Limit for System Service

© Copyright IBM Corp. 1988, 1991

The SRBTIMER macro is used to establish a time limit for a system service running in SRB
mode. Time accumulates while the service is running; when the time limit expires, the
service abends with a system completion code of X'05B'. The service can retry following
the 05B ABEND.

The caller can cancel an established time limit by reissuing the macro and specifying a time
limit of zero. The caller can also override the established time limit with a subsequent
SRBTIMER macro.

The caller must be in supervisor state, SRB mode, and key 0. Register 13 must point to a
72-byte save area. Programs running in primary ASC mode and in either 24-bit or 31-bit
addressing mode can issue the SRBTIMER macro. Programs running in AR ASC mode
cannot issue SRBTIMER. The save area must be addressable in the addressing mode in
which the macro is issued.

The SRBTIMER macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SRBTIMER.

SRBTIMER

b One or more blanks must follow SRBTIMER.

LIMIT=stor addr stor addr: RX-type address or register (0) or (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

LIMIT= store addr
specifies the virtual storage address of a doubleword field on a doubleword boundary
that contains the time limit. The time limit is in the form of a signed 64-bit binary
number and must be positive in order for time to elapse. A negative number causes
immediate expiration of the time limit. Bit 51 of the binary number is approximately
equivalent to one microsecond. If you specify a value greater than 208 days, the
control program changes the value to 208 days. The resolution of the timer is model
dependent. See Principles of Operation for details concerning the timer facility.

,ERRET =err rtn addr
specifies the address of the routine to be given control when the SRBTIMER function
encounters damaged clocks.

Register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

oc
10

Meaning

The time limit was successfully established.

The current processor has an operative CPU timer, but not all processors have an
operative CPU timer.

The current processor has an inoperative CPU timer, but not all processors have
an inoperative CPU timer.

All processors in the system have an inoperative CPU timer.

The issuer is not in SRB mode. No timing is performed.

703

704 SPL: Application Development Macro Reference

STAE - Specify Task Abnormal Exit

© Copyright IBM Corp. 1988, 1991

Note: The ESTAE macro is the preferred programming interface.

The STAE macro enables the user to intercept a scheduled ABEND and to have control
returned to him at a specified exit routine address. The STAE macro operates in both
problem program and supervisor modes.

Note: The STAE macro is not supported for users executing in 31-bit addressing mode.
Such users will be abended.

The standard form of the ST AE macro is written as follows:

name

b

STAE

b

0
exit addr

,CT
,OV

,PARAM =list addr

Xr.TI =NO
,XCTL=YES

,PURGE= QUIESCE
, PURGE= HALT
,PURGE=NONE

,ASYNCH=NO
,ASYNCH =YES

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede STAE.

One or more blanks must follow STAE.

exit addr: A-type address, or register (2) - (12).

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL =NO

Default: PURGE= QUIESCE

Default: ASYNCH =NO

value: any valid macro keyword specification.

The parameters are explained as follows:

0
exit addr

specifies the address of a STAE exit routine to be entered if the task issuing this macro
terminates abnormally. If 0 is specified, the most recent STAE request is canceled.

,CT
,OV

specifies the creation of a new ST AE exit (CT) or indicates that the parameters passed
in this STAE macro are to overlay the data contained in the previous STAE exit (OV).

,PARAM =list addr
specifies the address of a user-defined parameter list containing data to be used by the
STAE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

specifies that the STAE macro will be canceled (NO) or will not be canceled (YES) if an
XCTL macro is issued by this program.

705

,PURGE= QUIESCE
,PURGE= HALT
,PURGE= NONE

specifies that all outstanding requests for 1/0 operations are not saved when the STAE
exit is taken (HALT), that 1/0 processing is allowed to continue normally when the STAE
exit is taken (NONE), or that all outstanding requests for 1/0 operations are saved when
the STAE exit is taken (QUIESCE). For QUIESCE, at the end of the STAE exit routine,
the user can code a retry routine to handle the outstanding 1/0 requests.

Note: If any IBM-supplied access method, except EXCP, is being used, the PURGE= NONE
option is recommended. If you use PURGE= NONE, all control blocks affected by
input/output processing can continue to change during STAE exit routine processing.

If PURGE= NONE is specified and the ABEND was originally scheduled because of an error
in input/output processing, an ABEND recursion develops when an input/output interruption
occurs, even if the exit routine is in progress. Thus, it appears that the exit routine failed
when, in reality, input/output processing caused the failure.

/SAM Notes: If ISAM is being used and PURGE= HALT is specified or PURGE= QUIESCE is
specified but 1/0 is not restored:

• Only the input/output event on which the purge is done is posted. Subsequent event
control blocks (ECBs) are not posted.

• The ISAM check routine treats purged 1/0 as normal 1/0.

• Part of the data set may be destroyed if the data set is being updated or added to when
the failure occurred.

,ASYNCH=NO
,ASYNCH =YES

specifies that asynchronous exit processing is allowed (YES) or is not allowed (NO)
while the STAE exit is executing.

ASYNCH =YES must be coded if:

• The STAE exit routine requests any supervisor services that require asynchronous
interruptions to complete their normal processing.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE=NONE is specified and the CHECK macro is issued in the STAE exit routine for
any access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH =YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion develops when an asynchronous
interruption occurs. Thus, it appears that the exit routine failed when, in reality,
asynchronous exit handling caused the failure.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Control returns to the instruction following the STAE macro; register 15 contains one of
the following return codes:

Hexadecimal
Code

00

04

08

oc

·10

706 SPL: Applicatfon Development Macro Reference

Meaning

Successful completion of STAE request.

STAE was unable to obtain storage for STAE request.

Attempt was made to cancel or overlay a nonexistent STAE request.

Exit routine or parameter list address was invalid, or STAI request was missing a
TCB address.

Attempt was made to cancel or overlay a STAE request of another user, or an
unexpected error was encountered while processing this request.

Example
Operation: Request an overlay of the existing STAE recovery exit with the following
options: new exit address is ADDR, parameter list is at PUST, halt 110, do not take
asynchronous exits, transfer ownership to the new request block resulting from any XCTL
macros.

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

STAE-Specify Task Abnormal Exit 707

STAE (List Form)

The list form of the STAE macro is used to construct a remote control program parameter
list.

The list form of the STAE macro is written as follows:

name

b

STAE

b

exitaddr

,PARAM =list addr

,PURGE= QUIESCE
,PURGE= HALT
,PURGE= NONE

,ASYNCH=NO
,ASYNCH =YES

,RELATED= value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede STAE.

One or more blanks must follow STAE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE= QUIESCE

Default: ASYNCH =NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the STAE macro, with the
following exception:

,MF=L
specifies the list form of the STAE macro.

708 SPL: Application Development Macro Reference

STAE (Execute Form)
A remote control program parameter list is used in, and can be modified by, the execute
form of the STAE macro. The control program parameter list can be generated by the list
form of the STAE macro. If you want to dynamically change the contents of the remote
STAE parameter list, you can do so by coding a new exit address and/or a new parameter
list address. If exit address or PARM= is coded, only the associated field in the remote
STAE parameter list is changed. The other field remains as it was before the current STAE
request was made.

The execute form of the ST AE macro is written as follows:

name

b

STAE

b

exit addr
0

,CT
,OV

,PARAM =list addr

,XCTL=NO
,XCTL=YES

,PURGE=QUIESCE
,PURGE= HALT
,PURGE= NONE

,ASYNCH=NO
,ASYNCH =YES

,RELATED= value

,MF= (E,ctr/ addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ST AE.

One or more blanks must follow STAE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

value: any valid macro keyword f.pecification.

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the STAE macro, with the
following exception:

,MF= (E, ctr/ addr)
specifies the execute form of the ST AE macro using a remote control program
parameter list..

Example
Operation: Provide the pointer to the recovery code in the register called EXITPTR, and the
address of the STAE exit parameter list in register 9. Register 8 points to the area where
the STAE parameter list (created with the MF= L option) was moved.

STAE (EXITPTR),PARAM=(9),MF=(E,(8))

STAE - Specify Task Abnormal Exit 709

710 SPL: Application Development Macro Reference

STATUS - Change Subtask Status

© Copyright IBM Corp. 1988, 1991

You can use the STATUS macro to change the dispatchability status of one of your
program's subtasks.

The STATUS macro is also described in the Application Development Macro Reference,
with the exception of the SRB, ASID, and TASK parameters, which are restricted in use and
available only to supervisor state, key zero callers. These restricted parameters allow the
caller to manipulate the dispatchability of TCBs, SRBs, ASCBs, or a STEP.

The SYNCH operand of STATUS STOP is not supported in MVS/XA or MVS/ESA™ Programs
that issue STATUS STOP, SYNCH should be changed to issue STATUS STOP without the
SYNCH operand. Users who specify the SYNCH operand with STATUS STOP will receive an
MNOTE of severity 12 at assembly time.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode.

The description of the STATUS macro is divided into two parts: the START/STOP option, and
the SET/RESET option.

The START/STOP options of the STATUS macro are written as follows:

name

STATUS

START
STOP

,TCB = tcb addr
,SRB
,SRB, ASID = AS/D addr
,SRB, TASK= YES
,SRB,TASK =NO
,SRB,TASK = YES,ASID = AS/D

addr
,SRB,TASK = NO,ASID = ASID addr

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more Olanks must follow STATUS.

tcb addr: RX-type address, or register (2) - (12), or 0.
ASID addr: RX-type address, or register (2) - (12).
Note: ASID may only be specified with START.
Default: TASK= YES

value: any valid macro keyword specification.

The parameters are described as follows:

START
STOP

specifies that the appropriate START/STOP count is to be adjusted and the
dispatchability bits are to be set/reset.

711

,TCB=tcb addr
,SRB
,SRB,ASID = ASID addr

specifies the status of the stop/start function:

TCB

SRB

TASK=

,RELATED= value

specifies the address of a fullword on a fullword boundary containing the
address of the TCB that is to have its START/STOP count adjusted.

Note: The TCB resides in storage below 16 megabytes.

specifies that the STOP function affects the dispatchability of
system-level SRBs only; all other tasks in the address space are
set/reset nondispatchable. For START, the ASID addr specifies the
address of a halfword containing the address space identifier. If ASID is
passed in a register, it must be in bit positions 16-31, and bits 0-15 must
be zero.

specifies whether the STATUS, STOP, and START functions affect the
dispatchability of all other tasks in the address space. TASK=YES is the
default. If TASK= YES is specified or defaulted, STATUS sets or resets
task dispatchability in the address space. TASK= NO requests STATUS
to ignore setting or resetting task dispatchability. TASK= NO modifies
only system level SRB dispatchability and not TCB dispatchability.
TASK= NO has the following restrictions:

• Issuers of STATUS must ensure that the dispatchability of all other
tasks in the address space need not be modified.

• Issuers must be in key 0.

• Issuing programs must include the IHAASCB mapping macro.

specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

712 SPL: Application Development Macro Reference

SET/RESET Options
The SET/RESET options of the STATUS macro are written as follows:

name

b

STATUS

b

SET
RESET

,MC

,MC, STEP

,SD

,ND

,STEP
,STEP,(mask)
,tcb addr.(mask)
,,(mask)

,E

,ASID = ASID addr

• RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

Note: If MC or MC.STEP is specified, no other parameters can
be specified.
mask: for SD, any of decimal digits 1-32 (except 18), separated
by commas; for ND, any of decimal digits 1-16 (except 14),
separated by commas.

tcb addr: RX-type address, or register (2) - (12).
Default: STEP

Note: This parameter can only be specified with tcb
addr,(mask).

ASID addr: RX-type address, or register (2) - (12).
Note: For SET, this parameter can only be specified with tcb
addr,(mask).

value: any valid macro keyword specification .

The parameters are explained as follows:

SET
RESET

specifies that the TCBs or ASCBs are to be set or reset nondispatchable.

,MC
,MC,STEP
,SD
,ND

specifies the nondispatchability status:

ND specifies that the primary nondispatchability bits are affected by this request.

SD specifies that the secondary nondispatchability bits are affected by this request.

MC and MC,STEP specifies that all TCBs in the job step TCBs (except the issuer's TCB)
are to be set/reset nondispatchable.

STATUS - Change Subtask Status 713

,STEP
,STEP,(mask)
,tcb addr,(mask)
,,(mask)

specifies more information on the nondispatchability status:

STEP specifies that all job step TCBs (except the issuer's TCB) are to be set/reset
nondispatchable.

tcb addr indicates that the specified TCB (except the issuer's TCB) and all its subtasks
are to be set/reset nondispatchable.

(mask) specifies the nondispatchability bits that are to be set/reset.

,E specifies that only the specified TCB is to be set/reset nondispatchable.

,ASID ""ASID addr
specifies the address of a halfword containing the address space identifier. If ASID is
passed in a register, it must be in bit positions 16-31, and bits 0-15 must be zero.

,RELATED== value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Example
Operation: Set primary nondispatchability bit 3 for the specified TCB and all its subtasks.

STATUS SET,ND,TCBADDR,(3)

714 SPL: Application Development Macro Reference

STORAGE - Obtain and Release Storage

The STORAGE macro requests that the system obtain or release an area of virtual storage.
The two forms of the macro are:

• STORAGE OBTAIN, which obtains virtual storage.
• STORAGE RELEASE, which releases virtual storage.

The requirements for the caller are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:

Supervisor state, key O - 7, or problem state
Task or SRB
PASN = HASN or PASN not = HASN
Any
Primary or AR
Enabled; caller can hold local lock or CML lock of target address space.

The STORAGE macro uses general purpose registers (GPRs) 0, 1, 14, and 15 and access
register (AR) 1 as parameter and linkage registers. It preserves GPRs 2-13 and ARs 2-13.

The STORAGE macro is also described in Application Development Macro Reference, with
the exception of the KEY and ALET parameters. These parameters are restricted to
programs running in supervisor state or key O and, therefore, are only described here.

OBTAIN Option of STORAGE

©Copyright IBM Corp. 1988, 1991

The STORAGE macro with the OBTAIN parameter requests that the system allocate an area
of virtual storage to the active task. The virtual storage area begins on a doubleword or
page boundary and is not necessarily cleared to zeroes when allocated. The length you
specify must not exceed the length available; the length available depends on how much
storage has already been allocated, and, for subpools O - 127, 240, 250, 251, and 252, the
region size. For some subpoois, the system reieases the storage when the owning task
terminates. Other subpools require that you issue STORAGE RELEASE or FREEMAIN to
release them. See SPL: Application Development Guide for a list of subpools and their
attributes.

The STORAGE macro is written as follows:

name

b

STORAGE

b

OBTAIN

,LENGTH= length value
,LENGTH= (max length.min length)

,ADDR = stor addr

,SP= subpool number

,ALET =a/et-value

,BNDRY=DBLWD
,BNDRY =PAGE

name: symbol. Begin name in column 1.

One or more blanks must precede STORAGE.

One or more blanks must follow STORAGE.

length value: symbol, decimal number, or register (2)-(12).
max length: symbol, decimal number, or register (2)-(12).
min length: symbol, decimal number, or register (2)-(12).

stor addr: RX-type address or register (1)-(12).
Default:: ADDR=(1).

subpoo/ number: symbol, decimal number, or register (2)-(12).
Default:: SP= 0.

a/et-value: decimal number, RX-type address, or access
register.
Default: ALET = 0.

Default: BNDRY = DBLWD

715

,KEY= key number

,LOC=BELOW
,LOC=(BELOW, ANY)
,LOC=ANY
,LOC=(ANY, ANY)
,LOC=RES
,LOC=(RES, ANY)

,RTCD = rtcd addr

,COND=YES
,COND=NO

,RELATED= value

key number: decimal number or register (2)-(12).
Default: KEY= 0
Note: KEY is valid only with SP.

Default: LOC = RES

rtcd addr: RX-type address or register (2)-(12) or (15).
Default: RTCD=(15).

Default: COND=NO.

value: Any valid macro parameter specification.

The parameters are explained as follows:

OBTAIN
requests that the system obtain virtual storage.

,LENGTH= length value
,LENGTH= (max length,min length)

specifies the amount of storage the system is to obtain. length value specifies the
length, in bytes, of the requested virtual storage. max length and min length specify the
maximum and minimum amounts of storage. These numbers should be a multiple of 8;
if they are not, the system uses the next higher multiple of 8.

,ADDA= stor addr
specifies the location where the system is to return the address of the storage it
allocates.

,SP= subpool number
specifies the subpool number for the storage. (See SPL: Application Development
Guide for a list of valid subpools.) If you specify a register, the subpool number must
be in bits 24-31 of the register, with bits 0-23 set to zero. If you omit this parameter, the
system uses subpool 0.

Notes:

1. Callers executing in supervisor state and key zero, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this
storage via the SDUMP macro, they must specify subpool 252 rather than 0.

2. Storage requested from subpool 250 is always assigned from subpool O regardless
of the caller's state or PSW key.

,ALET- a/et-value
specifies the ALET of the target address space - that address space in which the
storage is to index an entry obtained. The ALET must have the value 1 or 2, or be on
the caller's dispatchable unit access list (DU-AL) and, if the ALET indexes a private
entry, the caller must be authorized to the target address space through the extended
authorization index (EAX). For more information, see SPL: Application Development­
Extended Addressability. If you omit this parameter, the system assumes storage is in
the primary address space.

,BNDRY ... DBLWD
,BNDRY =PAGE

specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

716 SPL: Application Development Macro Reference

If the request specifies one of the LSQA or SQA subpools, the system ignores the
BNDRY= PAGE keyword. Requests for storage from these subpools are then fulfilled
from a single page, unless the request is greater than a page. See SPL: Application
Development Guide for a list of the LSQA and SQA subpools.

The default is BNDRY= DBLWD.

,KEY= key-number
Indicates the protection key of the storage. If you pass the key in a register, it must be
in bits 24-27 in that register. KEY is valid only with SP and only applies to subpools
227-231 and 241. KEY allows you to obtain both global and local storage in the
specified storage protection key.

The default for KEY is 0.

,LOC==BELOW
,LOC =(BELOW ,ANY)
,LOC•ANY
,LOC •(ANY ,ANY)
,LOC=RES
,LOC = (RES,ANY)

specifies the location of virtual and central (also called real) storage. This parameter is
especially helpful for callers with 24-bit dependencies. In all cases when LOC is
specified, central storage is allocated anywhere until the storage is fixed (by definition
or by the PGFIX, PGFIXA, or PGSER macro.) You can specify the location of central
storage (after the storage is fixed) and virtual storage (whether or not the storage is
fixed) in the following manner.

LOC =BELOW indicates that central and virtual storage are to be located below 16
megabytes.

LOC =(BELOW.ANY) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere.

LOC =ANY and LOC =(ANY.ANY) indicate that virtual and central storage can be
located anywhere.

LOC =RES indicates that the location of virtual and central storage depends on the
location of the caller. If the caller resides below 16 megabytes, virtual and central
storage are located below 16 megabytes; if the caller resides above 16 megabytes,
virtual and central storage are to be located anywhere.

LOC =(RES.ANY) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
located below 16 megabytes; if the caller resides above 16 megabytes, virtual storage
can be located anywhere. In either case, central storage can be located anywhere.

Notes:

1. A caller cannot allocate virtual storage below 16 megabytes from the following
subpools: 203-205, 213-215, 223-225, 247, and 248. Thus, a caller cannot specify
LOC =BELOW and LOC =(BELOW.ANY) for these subpools. Also, a caller residing
below 16 megabytes cannot specify LOC = RES and LOC = (RES,ANY) for these
subpools. When you specify LOC =ANY, the actual location of the virtual storage
(that is, whether it is above or balow 16Mb) depends on the subpool you specify on
the SP parameter:

• Some subpools (for example, subpool 226) are supported only below 16Mb. For
these subpools, STORAGE OBTAIN locates virtual storage below 16Mb,
regardless of how you specify LOC.

• Some subpools (for example, 203-204) are supported only above 16Mb. For
these subpools, STORAGE OBTAIN locates virtual storage above 16Mb. If you
specify LOC = BELOW for one of these subpools, the system abends your
program.

All other subpools are supported both above and below 16Mb. For these subpools,
specifying LOC=ANY causes STORAGE OBTAIN to try to allocate virtual storage
above 16Mb. If the attempt fails, it tries to allocate virtual storage below 16Mb. If
this attempt also fails, it does not allocate any storage.

STORAGE- Obtain and Release Storage 717

,RTCD = rtcd addr
specifies the location where the. system is to store the return code. This parameter is
valid only for conditional requests.

,COND=NO
,COND=YES

specifies whether the request is unconditional or conditional.

COND ==YES specifies that the task does not abend if the system cannot allocate the
storage. (However, the system cannot prevent some abends.) If you specify
COND =YES, also specify RTCD to define the location where the system is to store a
return code.

COND =NO specifies that the system abends the task if it cannot allocate the virtual
storage. COND =NO is the default.

,RELATED= value
specifies information used to self-document macro by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

When control returns from the OBTAIN request, GPR 15 contains one of the following return
codes:

• o - Virtual storage was allocated.
• 4- No virtual storage was allocated.
• 8 - Central storage was not available for backing the request.
• C - A page table needed to satisfy a request for LSQA is paged out.

718 SPL: Application Development Macro Reference

The RELEASE Option of STORAGE
The STORAGE macro with the RELEASE parameter requests that the system release an
area of virtual storage or an entire virtual storage subpool, previously allocated through the
STORAGE or GETMAIN macro. The system abends the active task if the specified virtual
storage does not start on a doubleword boundary or, for an unconditional request, if the
specified area or subpool is not currently allocated to the active task.

name

STORAGE

b

RELEASE

,LENGTH= length value,ADDR = stor
addr
,LENGTH= length va/ue,ADDR = stor
addr,SP = subpool number
,SP=subpoo/ number

,ALET =a/et-value

,KEY= key number

,RTCD=rtcd addr

,COND=YES
,COND=NO

,RELATED= value

name: symbol. Begin name in column 1.

One or more blanks must precede STORAGE.

One or more blanks must follow STORAGE.

length value: symbol, decimal number, or register (2)-(12).
stor addr: RX-·type address or register (1)-(12).
subpool number: symbol, decimal number, or register (2)-(12).

a/et-value: decimal number, RX-type address, access register.
Default: ALET=O.

key number: decimal number or register (2)-(12).
DefauH: KEY= 0
Note: KEY is valid only with SP.

rtcd addr: RX-type address or registers (2)-(12), (15)
Default: RTCD= (15).

Default: COND =NO

value: Any valid macro parameter specification.

STORAGE - Obtain and Release Storage 719

The parameters are explained as follows:

RELEASE
requests that the system release virtual storage.

,LENGTH= length value
specifies the number of bytes of storage that the system is to release. If you specify
LENGTH, you must also specify ADDR. To free an entire subpool, use SP instead of
LENGTH and ADDR.

,ADDR = stor addr
specifies the address of the storage to be released. If you specify ADDR, you must also
specify LENGTH. To free an entire subpool, use SP instead of LENGTH and ADDR.

,SP= subpool number
specifies the subpool number for the storage to be released. The subpool number must
be a valid subpool number between 0 and 255. See SPL: Application Development
Guide for a list of valid subpools. If you specify the subpool in a register, the subpool
number must be in bits 24-31 of the register, with bits 0-23 set to zero. If you omit this
parameter, the system uses subpool 0.

If you specify SP to request that the system release all of the storage in a subpool, do
not specify LENGTH and ADDR. (This action is called a "subpool release".) Issue
subpool releases only for the following subpools: 1-127, 203, 204, 213, 214, 223, 224,
229, 230, 233, 236, 237, 240, and 250-253; and if the caller is in key 0, subpool 0. If you
try to issue a subpool release for any other subpool, an abend occurs with a reason
code of 478 or 40A. See SPL: Application Development Guide for a list of the
characteristics of valid subpools.

Note: Callers executing in supervisor state and key zero, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this storage
via the SDUMP macro, they must specify subpool 252 rather than 0.

,ALET = a/et-value
specifies the ALET of the address space in which the storage is to be released. The
ALET must be 1 or 2, or be on the caller's dispatchable unit access list (DU-AL) and, if
the ALET is PRIVATE, the caller must be authorized through the extended authorization
index (EAX) to the address space. For additional information, see SPL: Application
Programming - Extended Addressability. If you omit this parameter, the system
assumes storage is to be obtained in the primary address space.

,KEV= key-number
Indicates the protection key of the storage. If you pass the key in a register, it must be
in bits 24-27 in that register. KEY is valid only with SP and only applies to subpools
227-231and241. KEY allows you to release both global and local storage in the
specified storage protection key.

The default for KEY is 0.

,RTCD = rtcd addr
specifies the location where the system is to store the return code. This parameter is
only valid for conditional requests.

,COND=NO
,COND=YES

specifies whether the request is unconditional or conditional.

COND =YES specifies that the task does not abend if the system cannot release the
storage. However, the system cannot prevent some abends. The RTCD parameter
specifies the location where the system is to store a return code. COND =NO specifies
that the system abend the active task if it cannot release the storage.

COND =NO is the default.

,RELATED= value
specifies information used to self-document macro by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

720 SPL: Application Development Macro Reference

When control returns from the COND =YES release request, general register 15 contains
one of the following return codes:

• O - Virtual storage was released.
• 4 - Not all virtual storage was released.
• 8 - Part of the area being freed is still fixed.
• C - Page table is paged out.

Examples of the OBTAIN and RELEASE Options
Example 1: Code the instructions to obtain 1000 bytes of virtual storage from subpool 203
- above 16 megabytes, if available. The system returns the address of the storage in
register 3. If the request fails, the system abends the caller.

LA 2,1000
STORAGE OBTAIN,LENGTH=(2),ADDR=(3),SP=203,LOC=ANY,COND=NO
ST 3,STRGA

To release the 1000 bytes obtained above from subpool 203, and abend the caller if the
request fails, issue:

LA 2,1000
STORAGE RELEASE,LENGTH=(2),ADDR=STRGA,SP=203,COND=NO

STRGA DS F

Example 2: Code the instructions to obtain 4096 bytes of virtual storage from subpool 227
- above 16 megabytes, if possible. The address is returned at location STRGA. The
protection key is 5. The system is to store the return code at location MY _RC.

STORAGE OBTAIN,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL, X
KEY=5,LOC=ANY,COND=YES,RTCD=MY_RC

To release the 4096 bytes obtained above from subpool 227, issue:

L 2,KEY_5
STORAGE RELEASE,LENGTH=ONE PAGE,ADDR=STRGA,SP=MY SUBPOOL, X

KEY=(2),COND=YES,RTCD=MY_RC -

MY RC DS F
STRGA DS F
KEY_5 DC X'00000050'
ONE_PAGE EQU 4096
MY_SUBPOOL EQU 227

Note that, when the caller passes the key in a register, the key must be in bits 24-27. Note
also, that KEY= KEY _5 is not valid, as KEY _5 is not a register.

STORAGE - Obtain and Release Storage 721

Example 3: Code the instructions to obtain 4096 bytes of virtual storage from subpool 227.
Indicate that, if the system cannot obtain 4096 bytes, the caller can settle for as little as 1024
bytes. The system returns the address of the storage obtained at location STRGA. The
protection key is 5. The system is to store the return code at location MY _RC.

STORAGE OBTAIN,LENGTH=(ONE_PAGE,ONE_K), ADDR=STRGA, X
SP=MY_SUBPOOL,KEY=5,LOC=ANY,COND=YES,RTCD=MY_RC

ST 0,STRG_LEN

To release the storage obtained above in subpool 227, issue:

L 2,KEY_5
L 3,STRG LEN
STORAGE RELEASE,LENGTH=(3),ADDR=STRGA,SP=MY SUBPOOL,

KEY=(2),COND=YES,RTCD=MY_RC -

STRG_LEN DS
MY_RC DS
STRGA DS
KEY_5 DC
ONE_K EQU
ONE_PAGE EQU
MY_SUBPOOL EQU

F
F
F
x•00000050•
1024
4096
227

x

Example 4: Code the instructions to set up an 18-word save area, such as one that a
program in AR address space control (ASC) mode would obtain to call a program in primary
mode. The program issuing the STORAGE macro is in 31-bit addressing mode, and the
code is reentrant.

PGM
PGM
PGM

*

*

CSE CT
AMODE 31
RMODE ANY
BAKR 14,0

SAC 512
LAE 12,0(15,0)
USING PGM,12
STORAGE OBTAIN,LENGTH=72
LAE 13,0(1,0)
MVC 4(4,13),=C'FlSA'

SAVE CALLER'S ARS, GPRS AND RETURN
ADDRESS ON LINKAGE STACK
SWITCH TO AR ASC MODE
SET UP PROGRAM BASE REGISTER AND AR

GET REENTRANT SAVEAREA
PUT SAVEAREA ADDRESS IN AR/GPR 13
PUT ACRONYM INTO SAVEAREA TO
INDICATE STATUS SAVED ON LINKAGE STACK

* BEGIN PROGRAM CODE HERE

To release this save area, issue the following instructions:

LAE 1,0(0,13) COPY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(l),LENGTH=72 FREE SAVEAREA

SLR 15,15
PR

722 SPL: Application Development Macro Reference

SET RETURN CODE OF ZERO
RETURN TO CALLER, RESTORE CALLERS STATUS

SUSPEND - Suspend Execution of a Request Block

© Copyright IBM Corp. 1988, 1991

The SUSPEND macro places a request block {RB) in a suspended state until an expected
event occurs, causing the task to resume processing.

The SUSPEND macro is written as follows:

name

b

SUSPEND

b

RB= PREVIOUS
RB=CURRENT

name: symbol. Begin name in column 1.

One or more blanks must precede SUSPEND.

One or more blanks must follow SUSPEND.

Default: PREVIOUS

The parameters are explained as follows:

RB= PREVIOUS
RB=CURRENT

specifies which RB on the TCB to suspend. The previous RB is the caller's RB. The
current RB is the first RB on the TCB chain.

After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

When control returns to the caller, the general purpose registers {GPRs) contain:

Register
0
1
2. 10
11 . 15

Example

Contents
Address of the suspended TCB
Address of the suspended RB
Unchanged
Used as work registers by the macro

Operation: Suspend the execution of the most recently chained request block of the current
task.

SUSPEND RB=CURRENT

723

724 SPL: Application Development Macro Reference

SVCUPDTE - SVC Update

© Copyright IBM Corp. 1988, 1991

The SVCUPDTE macro provides a means to dynamically replace or delete SVC table
entries. Callers who use this service are responsible for providing recovery. Improper
deletion or replacement of system provided SVC routines causes unpredictable results and
might terminate the system.

The resource name, SYSZSVC TABLE, is available as the operand of an ENQ or DEQ macro,
to be used when you must serialize the execution of a program that uses the SVCUPDTE
macro.

The caller may be in either 24 or 31-bit addressing mode.

Users of this macro must:

• Be in supervisor state and key 0,

• Ensure that register 13 contains the address of a 72-byte save area,

• Ensure that the code for the SVC routine added to the SVC table has the correct
attributes for the type of SVC specified, and

• Include the CVT mapping macro.

See SPL: Application Development Guide for additional information about the SVCUPDTE
macro.

The SVCUPDTE macro is written as follows:

name

fl

SVCUPDTE

fl

num

,REPLACE
,DELETE
,EXTRACT

,TYPE=1
,TYPE=2
,TYPE=3
,TYPE=4
,TYPE=5
,TYPE=6

,EP=addr

,EPNAME =entry-name

,LOCKS=(/name, /name,. ..)

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

num: symbol, decimal number, hexadecimal number (for
example, X'02'), or register (2) - (12). Do not specify num with
extract.
Note: num cannot be 109, 116, 122 or 137, which are for
extended SVCs.

Note: This parameter is not valid with DELETE or EXTRACT.

addr: A-type address, decimal number, hexadecimal number,
or register (2) - (12). addr should be a full 31-bit value with
AMODE in bit 0.

entry-name: symbol
Note: EP and EPNAME are not valid with TYPE=5 and are not
needed with the DELETE option.

/name: CMS or LOCAL.
Note: LOCKS is invalid with DELETE and EXTRACT, and
cannot be specified with TYPE=6.

725

,APF=YES
,APF=NO

Default: APF =NO
Note: APF is not valid with DELETE.

,AR=YES
,AR=NO

Note: AR is valid only with REPLACE.
Default: AR=NO.

,NPRMPT=YES
,NPRMPT=NO

Default: NPRMPT =NO
Note: NPRMPT is not valid with DELETE.

, RELATED= value value: any valid macro keyword specification.

The parameters are explained as follows:

num
specifies the number of the SVC that is being inserted or deleted.

,REPLACE
,DELETE

specifies the function to be performed. REPLACE indicates that a SVC table entry is to
be inserted in the SVC table. This could be a new SVC or a replacement for an existing
SVC. DELETE indicates that the specified SVC number is to be deleted from the SVC
table. The SVCUPDTE routine deletes the number by placing the address of the SVC
error routine into the table entry. When you execute an SVC instruction with a deleted
SVC number, the result is an abnormal termination with an X'Fxx' abend. (xx is the
hexadecimal representation of the number specified.) However, if you issue an
SVCUPDTE macro with a deleted SVC number, no abend results.

,TYPE=1
,TYPE=2
,TYPE=3
,TYPE=4
,TYPE=S
,TYPE=&

specifies the SVC type for a REPLACE request. See the topic "Programming
Conventions for SVC Routines" in SPL: Application Development Guide for information
concerning the characteristics and restrictions for each type of SVC.

,EXTRACT
indicates that the user has supplied an EP or EPNAME and wishes to have the SVC
number of that routine returned in register 0. The num parameter is not valid with this
option.

,EP=addr
specifies the entry point address of the SVC routine. The addressing mode of the entry
point is defined by bit 0 of the entry point address of the SVC routine. If bit 0 = 1, the
SVC routine will be entered in 31-bit addressing mode; if bit 0 = 0, the SVC routine will
be entered in 24-bit addressing mode.

,EPNAME =entry-name
specifies the entry name of the SVC routine. The entry name must be the load module
name or alias of a module in LPA or the entry name of a module link edited into the
nucleus. The AMODE of the SVC routine is determined when the SVC routine is link
edited.

Note: The service routine must obtain a 72-byte work area to support this option.

,LOCKS= (/name,lname, ...)
specifies the lock(s) required when the SVC routine executes. The lock(s) specified can
be CMS or LOCAL.

Notes:

1. TYPE= 6 cannot specify any locks.

2. TYPE= 1 must not specify LOCAL.

726 SPL: Application Development Macro Reference

,APF=VES
,APF=NO

specifies whether or not the SVC is to be APF-authorized.

,AR=VES
,AR-NO

specifies whether or not the SVC can be issued by a program in access register mode.
If you specify NO, a program that issues the SVC while in access register mode abends
with a completion code of X'OF8'. This parameter is valid only with REPLACE.

,NPRMPT =YES
,NPRMPT=NO

indicates whether or not the SVC can be preempted for 1/0 interruptions.

,RELATED= value
provides information to document the macro by relating the function performed to
another service or function. The format can be any valid coding value that the user
chooses.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

0 The macro completed successfully.

4 The macro was coded incorrectly. For example, the user requested
REPLACE without specifying an SVC number.

8 The DELETE parameter was not specified correctly.

OC A REPLACE request contained incorrect information. For example, the user
specified an SVC type that was not 1 through 6.

10 A REPLACE request contained illogical information. For example:

• A type 5 SVC specified an entry point.
• A type 6 SVC specified a lock.
• Neither an entry point nor an EPNAME was provided for a REPLACE

request that is not a type 5.
• Both an entry point and an EPNAME are provided.
• The entry point provided is zero.
• The CMS lock was requested without the LOCAL lock.

14 The function specified was not REPLACE, DELETE, or EXTRACT.

18 The user has attempted to update an extended SVC router entry in the SVC
table (num was specified as 109, 116, 122, or 137).

1C Unable to locate the entry point address for an EPNAME specification.

20 An EXTRACT request contains illogical information. For example:

• Neither an entry point address nor an EPNAME is specified.
• Both an entry point address and an EPNAME are specified.
• An SVC number is specified.
• The entry point address specified is zero.

24 Unable to locate the SVC routine for the EXTRACT request.

28 An error occurred while updating the SVC table.

SVCUPDTE - SVC Update 727

Example 1
Operation: Delete SVC 200 from the SVC table.

SVCUPDTE 200,DELETE

Example2
Operation: Insert SVC 201 in the SVC table. This is a type 2 SVC, with entry point at
location SVCADDR. The SVC cannot be preempted for 1/0 interruptions.

SVCUPDTE 201,REPLACE,NPRMPT=NO,TYPE=2,EP=SVCADDR

Example 3
Operation: Replace SVC 202 in the SVC table. This is a type 1 SVC with entry point at the
location in register 2.

SVCUPDTE 202,REPLACE,TYPE=l,EP=(2)

Example4
Operatiqn: Replace SVC 203 In the SVC table. SVC 203 is a type 4 SVC requiring the
LOCAL lock. The routine has been loaded into LPA with the name MYSVC.

SVCUPDTE 203,REPLACE,TYPE=4,LOCKS=LOCAL,EPNAME=MYSVC

Example 5
Operation: Determine the SVC number associated with the name IGC062. The SVC number
is to be returned in register 0.

SVCUPDTE ,EXTRACT,EPNAME=IGC062

Example&
Operation: Replace SVC 202 in the SVC table. This is a type 3 SVC with entry point at
explicit location X'FFECOO'. Note that this example uses a symbol as the SVC number.

SVCUPDTE SVCNUM,REPLACE,TYPE=3,EP=X'FFEC00'

SVCNUM EQU 202

728 SPL: Application Development Macro Reference

SVCUPDTE (List Form)
The list form of the SVCUPOTE macro builds a non-executable parameter llst that can be
referred to by the execute form of the SVCUPDTE macro.

The list form of the SVCUPDTE macro is written as follows:

name

b

SVCUPDTE

b

num

,REPLACE
,DELETE
,EXTRACT

,TYPE=1
,TYPE=2
,TYPE=3
,TYPE=4
,TYPE=5
,TYPE=6

,EP=addr

,EPNAME =entry-name

,AR=YES
,AR=NO

,LOCKS= (/name, /name, ...)

,NPRMPT=YES
,NPRMPT=NO

,RELATED=va/ue

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

num: symbol, decimal number, hexadecimal number {for
example X'02').
Note: This parameter must be specified on the execute and the
list form of the macro. Do not specify num with EXTRACT.

Note: This parameter is not valid with DELETE.

addr: A-iype address, decimal number, or hexadecimal
number.

entry-name:symbol
Note: EP and EPNAME are not valid with TYPE= 5 and are not
needed with the DELETE option. This parameter must be
supplied on either the execute or the list form.

Note: AR is valid only with REPLACE.
DelauH: AR=NO.

/name: CMS or LOCAL.
Note: This option is not valid with DELETE or EXTRACT and
must not be specified with TYPE= 6.

Default: NPRMPT=NO
Nole: NPRMPT is not valid with DELETE.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the SVCUPDTE macro with the
following exception:

,MF=L
specifies the list form of the SVCUPDTE macro.

SVCUPDTE - SVC Update 729

Example1
Operation: Use the list form of the macro to replace SVC 202 in the SVC table. It Is a type 2
SVC with entry point at location SVCADDR. The SVC routine needs the local lock.

SVCUPDTE 202,REPLACE,TYPE=2,LOCKS=LOCAL,MF=L,EP=SVCADDR

Example2
Operation: Use the list form of the macro to replace SVC 201 in the SVC table. The routine
is a type 2 SVC.

SVCUPDTE 201,REPLACE,TYPE=2,MF=L

730 SPL: Application Development Macro Reference

SVCUPDTE (Execute Form)
The execute form of the SVCUPDTE macro is written as follows:

name

b

SVCUPDTE

b

num

,EP=addr

,RELATED= value

,MF= (E,addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

register (2) - (12).
Note: This parameter must be supplied on either the execute
or the list form of the macro with REPLACE or DELETE, and it
must not be specified with EXTRACT.

addr: register (2) - (12).
Note: This parameter is not valid with TYPE= 5 and must be
supplied on either the execute or the list form of the macro.
This parameter is not needed with the delete option.

value: any valid macro keyword specification.

addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the SVCUPDTE macro with the
following exception:

,MF= (E,addr)
specifies the execute form of the SVCUPDTE macro.

Example
Operation: Use the execute form of the SVCUPDTE macro to perform the function specified
by the remote control parameter list whose address is given in register 2.

SVCUPDTE MF=(E,(2))

SVCUPDTE - SVC Update 731

732 SPL: Application Development Macro Reference

SWAREQ - Invoke SWA Manager in Locate Mode

©Copyright IBM Corp. 1988, 1991

The SWAREQ macro has no standard form. It only has a list, an execute, and a modify form.
The MF parameter, which indicates the form of the macro, is required.

When you invoke this macro in execute form, it uses the two parameters, FCODE and EPA,
to modify the parameter list, which is at the location you specify by the addr value in the
MF= (E,addr) parameter. After ensuring the validity of the parameters, it invokes the SWA
manager in locate mode. The SWA manager obtains its input from the parameter list, and
performs the !unction associated with the specified FCODE. If you do not specify any
parameters, the macro assumes the parameter list already exists, and it simply invokes the
SWA manager. Register 13 must contain the address of a standard 18-word save area.

The modify form of SWAREQ is functionally the same as the execute form, except that the
macro only modifies the parameter list without invoking the SWA manager. The list form of
SWAREQ generates the parameter list that is modified by the other two forms of the macro,
and it does not invoke the SWA manager.

The list form of the SWAREQ macro is written as follows:

name

b

SWAREQ

b

. FCODE = fncde

,EPA=addr

,MF=L

name: symbcl. Begin name in column 1.

One or more blanks must precede SWAREQ.

One or more blanks must follow SWAREQ .

fncde: function code

addr: address of the pointer to the EPA.
In the list form, this address may only be specified
symbolically.

The parameters are explained as follows:

,FCODE = fncde
specifies the function code for the locate mode request. Valid codes are:

RL Read/Locate
WL Write/Locate

For more information about the meaning of each code, see SPL: Application
Development Guide.

,EPA=addr
specifies the address of the pointer to the extended parameter area (EPA).

,MF=L
specifies the list form of the SWAREQ macro.

733

SWAREQ (Execute Form)
The execute form of the SWAREQ macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SWAREQ.

SWAREQ

b

,FCODE = fncde

,EPA=addr

,UNAUTH=YES
,UNAUTH=NO

One or more blanks must follow SWAREQ.

fncde: function code

addr: external parameter area pointer address.
It may be specified symbolically, as a register enclosed in
parentheses, or as a symbol equated to a register enclosed in
parentheses.

Default: UNAUTH =NO.

,MF= (E,addr) addr: RX-type address or register (1) - (12).

The parameters are explained under the list form of the SWAREQ macro, with the following
exceptions:

,UNAUTH •YES
,UNAUTH=NO

specifies that the system is to invoke the unauthorized form of the SWA manager. The
unauthorized form of the SWA manager provides the output of the RL function of the
authorized SWA manager. If you also specify the FCODE parameter, the SWAREQ
macro checks the syntax of the FCODE parameter but does not use the function code.

To use SWAREQ, you must be authorized, holding no locks, in task mode, and not in
cross memory mode. However, when you are using SWAREQ to perform a Read
Locate, you can override these restrictions by specifying UNAUTH =YES.

You must also issue the macro IEFZB505 LOCEPAX=YES.

,MF= {E,addr)
E specifies the execute form of the SWAREQ macro, and addr specifies the address of
the parameter list.

734 SPL: Application Development Macro Reference

SWAREQ (Modify Form)

The modify form of the SWAREQ macro is written as follows:

name

SWAREQ

,FCODE = fncde

,EPA=addr

,MF=(M,addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SWAREQ.

One or more blanks must follow SWAREQ.

fncde: function code

addr: external parameter area pointer address.
It may be specified symbolically, as a register enclosed in
parentheses, or as a symbol equated to a register enclosed in
parentheses.

addr: RX-type address or register (1) - (12) .

The parameters are explained under the list form of the SWAREQ macro, with the following
exceptions:

,MF= (M,addr)
M specifies the modify form of the SWAREQ macro, and addr specifies the address of
the parameter list.

SWAREQ - Invoke SWA Manager in Locate Mode 735

736 SPL: Application Development Macro Reference

SYMREC - Process Symptom Record

© Copyright IBM Corp. 1988, 1991

The SYMREC macro updates the symptom record with system environment information and
then logs the symptom record in the SYS1 .LOGREC data set. The symptom record is a data
area in the user's application that has been mapped by the ADSR macro and that is
referenced by a parameter of the SYMREC macro. The data in the symptom record is a
description of a programming failure and a description of the environment in which the
failure occurred. As the application detects errors during execution, it stores diagnostic
information into the symptom record and issues SYMREC to log the information.

The caller can be enabled or disabled for interrupts. If disabled, the input data to SYMREC
must be in fixed storage or in disabled reference (DREF) storage. The caller must be in
primary ASC mode and can hold any locks.

While the SYMREC macro can be issued in 24-bit or 31-bit addressing mode, the addresses
passed to the SYMREC service must be 31-bit addresses. Register 13 must contain the
address of a standard 18-word save area.

When SYMREC is invoked, it checks that all the required input fields of the ADSR symptom
record are set by the caller. If the required input fields are not set, SYMREC issues
appropriate return and reason codes {described in SPL: Application Development Guide).

The SYMREC macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SYMREC.

SYMREC

b One or more blanks must follow SYMREC.

SR=addr addr: A-type address or register (2) - (12).

The parameters are explained as follows:

SR=addr
specifies the address of the symptom record. The SR keyword is required.

When SYMREC returns control, registers 15 and O contain the following hexadecimal return
codes and reason codes, respectively:

Return Code Reason Code

0000

0000

0004

0164

Explanation

Symptom record component completed successfully
and the symptom record was recorded.

Successful completion of the SYMREC macro service
routine.

One or more errors detected on the SYMREC macro
statement. The entire input record was recorded.
Following are specific reasons why the symptom
record component processed unsuccessfully:

The input symptom record was successfully copied.
However, an attempt to write section 1 information
from the completed symptom record failed. The area
was found non-accessible to a write request.

737

Return Code Reason Code Explanation

0008 One or more errors detected on the SYMREC macro
statement. A partial symptom record was recorded.
Following are specific reasons why the symptom
record component processed unsuccessfully:

0158 Total length of the input symptom record exceeds the
maximum.

015C Optional segments of the input symptom record were
found non-accessible. The record includes the
accessible entries of the input symptom record.

oooc Serious error on the SYMREC macro statement. No
symptom record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

0104 The first 2 bytes of the input symptom record do not
contain the SR operand.

0108 The input symptom record does not contain the
required entries for section 2.

010C The input symptom record does not contain the
required entries for section 2.1.

0114 The input symptom record does not contain the
required entries for section 3.

0128 Portions of the input symptom record were found
non-accessible to a write request.

012C Required portions of the input symptom record were
found non-accessible to a write request.

0134 Input symptom record address is in non-accessible
storage.

0144 Program attributes of the job issuing the SYMREC
macro are not written in accordance with the
symptom record component standards.

0010 Serious error in the symptom record component.
Error is not related to SYMREC macro statement. No
symptom record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

OF04 Insufficient space in the LOGREC buffer to
accommodate the symptom record.

OF08 SYMREC macro service routine could not acquire
storage for its workarea and a copy of the symptom
record.

OFOC Failure occurred while moving the symptom record
to the LOGREC buffer.

OF10 SYMREC macro service routine has a logic error.

OF14 SYMREC macro service routine has shut itself down.
It has exceeded the maximum allowable logic errors
for the service routine.

OF18 SYMREC macro service routine has shut itself down.
It has exceeded the maximum allowable incomplete
SYMREC requests for processing.

0014 Symptom record component is not operable.

738 SPL: Application Development Macro Reference

SYMREC (List Form)
The list form of the SYMREC macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SYMREC.

SYMREC

b One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit).

,MF=(L)

The parameters are explained under the standard form of the SYMREC macro with the
following exception:

,MF=L
specifies the list form of the SYMREC macro.

SYMREC - Process Symptom Record 739

SYMREC (Execute Form)
The execute form of the SYMREC macro is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede SYMREC.

SYMREC

b One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit) or register (2) - (12).

,MF= (E,/ist addr) list addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the SYMREC macro with the
following exception:

,MF= {E,/ist addr)
specifies the execute form of the SYMREC macro. This form uses a remote parameter
list.

740 SPL: Application Development Macro Reference

SYNCH and SVNCHX - Take a Synchronous Exit to a Processing Program

©Copyright IBM Corp. 1988, 1991

The SYNCH macro takes a synchronous exit to a processing program. After the processing
program has been executed, the program that issued the SYNCH macro regains control.
The SYNCH macro is also described in Application Development Macro Reference with the
exception of the KEYADDR, STATE, KEYMASK, and XMENV parameters. These parameters
are restricted to programs in supervisor state, key 0-7, or APF-authorized.

If you are executing in 31-bit addressing mode, you must use the MVS/SP Version 2 of this
macro, or a later version.

The SYNCH macro is intended for use by primary mode programs only. If your program
runs in access register (AR) mode, use SYNCHX, which provides the same function as
SYNCH. Descriptions of SYNCH and SYNCHX in this book are:

• The standard form of the SYNCH macro, which includes general information about the
SYNCH and SYNCHX macros and some specific information about the SYNCH macro.
The syntax of the SYNCH macro is presented, and all SYNCH parameters are explained.

• The standard form of the SYNCHX macro, which presents information specific to the
SYNCHX macro and callers in AR mode.

• The list form of the SYNCH and SYNCHX macros.

• The execute form of the SYNCH and SYNCHX macros.

If the caller is in AR mode, the system passes the following values, unchanged, to the
processing program:

• ARs 2 - 13

• Bits 16 and 17 of the current PSW indicating the ASC mode (primary or AR mode, where
primary= secondary= home)

• Extended authorization index (EAX)

Parameters for SYNCH and SYNCHX must be in the caller's primary address space. Callers
in AR mode must qualify the parameter list address with an ALET of 0.

On entry to the processing program, the high-order bit, bit 0, of register 14 is set to indicate
the addressing mode of the Issuer of the SYNCH macro. If bit 0 is 0, the issuer is executing
in 24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The SYNCH macro is written as follows:

name

b

SYNCH

b

entry point addr

,RESTORE=NO
,RESTORE=YES

,KEY ADDR = addr
,KEYADDR = NOKEYADDR

,STATE= PROB
,STATE=SUPV

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE= NO

addr: RX-type address, or register (2) - (12)
Default: KEY ADDR =NO KEY ADDR
(The key in the TCB is used.)

Delault: ST A TE= PROB

741

,KEYMASK=addr
,XMENV = addr

,AMODE=24
,AMODE=31
,AMO DE= DEFINED
,AMODE =CALLER

addr: RX-type address, or register (0) - (12).
addr: RX-type address or register (0) - (12)

Default: AMODE =CALLER
Note: AMODE =DEFINED can only be specified if the entry
point is provided in a register.

The parameters are explained as follows:

entry point addr
specifies the address of the entry point of the processing program to receive control.

,RESTORE= NO
,RESTORE= YES

specifies whether registers 2-13 are to be restored when control is returned to the
issuer of SYNCH.

,KEYADDR=addr
,KEYADDR == NOKEYADDR

addr specifies the address of a one-byte area that contains the key in which the exit is
to receive control. The key must be in bits 0-3; bits 4-7 must be zero. If
KEYADDR=addr is not specified, the key in the TCB is used as the default.

,STATE=PROB
,STATE=SUPV

specifies the state in which the requested program receives control. PROB specifies
problem state and SUPV specifies supervisor state.

,KEYMASK = addr
specifies the address of a halfword, which along with the protect key of the currently
active TCB, will be an operand in an OR instruction. The results of that instruction
produce the PKM of the routine to which your program will take a synchronous exit.

If you specify KEYMASK, do not specify XMENV.

,XMENV = addr
specifies the address of a parameter list that the caller passes to the SYNCH macro
service. The parameter list contains values that set up a cross memory environment
for the new PRB. The parameter list consists of a 10-byte list of values that determine
some of the characteristics the PRB will have when it receives control. The parameter
list must reside in the primary address space and the AR that qualifies the address
must be set be set to 0. The format of the parameter list is as follows:

Bytes Content of field

0-1 The value X'OA'

2-3 PKM value, which along with the protect key of the currently active TCB, will be an
operand in an OR instruction. The results of that instruction produce the PKM of the
routine to which the synchronous is to be taken.

4-5 SASN - defining the secondary address space for the exit routine

6-7 Extended authorization index (EAX) for the exit routine

8-9 PASN - defining the primary address space for the exit routine

If you specify XMENV, do not specify KEYMASK.

742 SPL: Application Development Macro Reference

,AMODE=24
,AMODE=31
,AM ODE= DEFINED
,AM ODE= CALLER

specifies the addressing mode in which the requested program is to receive control.

If AMODE = 24 is specified, the requested program will receive control in 24-bit
addressing mode.

If AMODE = 31 is specified, the requested program will receive control in 31-bit
addressing mode.

If AMODE =DEFINED is specified, the user must provide the entry point using a
register, not an RX-type address. The requested program will receive control in the
addressing mode indicated by the high-order bit of the entry point address. If the bit is
off, the requested program will receive control in 24-bit addressing mode; if the bit is
set, the requested program will receive control in 31-bit addressing mode.

If AMODE =CALLER is specified, the requested program will receive control in the
addressing mode of the caller.

Example 1
Operation: Take a synchronous exit to a processing program whose entry point address is
specified in register 8.

SYNCH (8)

Example 2
Operation: Take a synchronous exit to a processing program labeled SUBRTN and restore
registers 2-13 when control is returned.

SYNCH SUBRTN,RESTORE=YES

Example 3
Operation: Take a synchronous exit to a processing program whose entry point address is
specified in register 5, modify the program's protect key by the KEYADDR and KEYMASK
values, and restore registers 2-13 when control returns.

SYNCH (5),RESTORE=YES,KEYADDR=KEYBYTE,KEYMASK=MSKADDR

KEYBYTE DC X'80'
MSKADDR DC X'0080'

Example4
Operation: Take a synchronous exit to the program located at the address given in register
8 and restore registers 2-13 when control returns. Indicate that this program is to execute
in 24-bit addressing mode.

SYNCH (8),RESTORE=YES,AMODE=24

SYNCH and SYNCHX-Take a Synchronous Exit to a Processing Program 743

SYNCHX - Take a Synchronous Exit to a Processing Program
The SYNCHX macro allows a program running in primary or AR mode to take a
synchronous exit to a processing program. This macro is the same as the SYNCH macro,
except that, for callers in AR mode, it generates code and addresses that are appropriate in
AR mode. All parameters on the SYNCH macro are valid for the SYNCHX macro.

Before you issue the SYNCHX macro, issue the SYSSTATE ASCENV=AR macro to tell the
SYNCHX macro to generate code appropriate for AR mode.

The SYNCHX macro is written as follows:

name

SYNCHX

entry point addr

,RESTORE=NO
,RESTORE=YES

,KEYADDR = addr
,KEY ADDR = NOKEY ADDR

,STATE=PROB
,STATE=SUPV

,KEY MASK= addr
,XMENV=addr

,AMODE=24
,AMODE=31
,AMODE =DEFINED
,AMO DE= CALLER

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCHX.

One or more blanks must follow SYNCHX.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE= NO

addr: RX-type address, or register (2) - (12)
Default: KEY ADDR =NO KEY ADDR
(The key in the TCB is used.)

Default: STATE= PROB

addr: RX-type address, or register (0) - (12).
addr: RX-type address or register (0) - (12)

Default: AMO DE= CALLER
Note: AMO DE= DEFINED can only be specified if the entry
point is provided in a register.

The parameters are described under the syntax of the standard form of the SYNCH macro.

744 SPL: Application Development Macro Reference

SYNCH and SYNCHX (List Form)
The list form of the SYNCH or SYNCHX macro Is used to construct a control program
parameter list.

The list form of the SYNCH or SYNCHX macro is written as follows:

name

b

SYNCH or SYNCHX

b

,RESTORE= NO
,RESTORE=YES

,STATE= PROB
,STATE=SUPV

,KEYMASK = addr
,XMENV = eddr

,AMODE=24
,AMODE=31
,AMODE =DEFINED
,AMODE =CALLER

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH or SYNCHX ..

One or more blanks must follow SYNCH or SYNCHX.

DefauH: RESTORE= NO

Defaun: STATE=PROB

addr: A-type address.
addr: RX-type address or register (0) - (12)

DefauH: AMODE =CALLER

The parameters are explained under the standard form of the SYNCH macro with the
following exception:

,MF=L
specifies the list form of the SYNCH macros.

Example
Operation: Use the list form of the SYNCH macro to specify that registers 2-13 are to be
restored when control returns from executing the SYNCH macro and that the addressing
mode of the program is to be defined by the high-order bit of the entry point address.
Assume that the execute form of the macro specifies the program address.

SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

SYNCH and SYNCHX-Take a Synchronous Exit to a Processing Program 745

SYNCH and SYNCHX (Execute Form)
The execute form of the SYNCH or SYNCHX macro uses a remote program parameter list
that can be generated by the list form of SYNCH or SYNCHX.

The execute form of the macro is written as follows:

name

SYNCH

entry point addr

,RESTORE= NO
,RESTORE=YES

,KEY ADDR = addr
,KEYADDR = NOKEYADDR

,STATE=PROB
,STATE= SUPV

,KEYMASK = addr
,XMENV = addr

,AMODE=24
,AMODE=31
,AMODE= DEFINED
,AMO DE= CALLER

,MF= (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH or SYNCHX.

One or more blanks must follow SYNCH or SYNCHX.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE= NO

addr: RX-type address, or register (2) - (12).

DefauH: STATE= PROB

addr: RX-type address, or register (0) - (12).
addr: RX-type address or register (0) - (12)

DefauH: AMO DE= CALLER
Note: AMODE =DEFINED can only be specified if the entry
point is provided in a register.

ctr/ addr: RX-type address or register (1), (2) - (12)

The parameters are explained under the standard form of the SYNCH macro with the
following exceptions:

,KEYADDR • NOKEYADDR
indicates that the default(the key in the TCB) should be used instead of the key in the
parameter list defined by a list form of the macro.

,MF ... (E,ctr/ addr)
specifies the execute form of the SYNCH macro using a list generated by the list form of
SYNCH.

Example
Operation: Use the execute form of the SYNCH macro to take a synchronous exit to the
program located at the address given in register 8 and restore registers 2-13 when control
returns. Indicate that the program is to receive control in the same addressing mode as the
caller and that the parameter list is located at SYNCHL2.

SYNCH (8),RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

7 46 SPL: Application Development Macro Reference

SYSEVENT - System Event

© Copyright IBM Corp. 1988, 1991

The SYSEVENT macro provides the interface to the system resource manager (SAM). By
using SYSEVENT mnemonics, you can notify SAM of an event or ask SAM to perform a
specific function.

Include the CVT mapping macro as a DSECT in the calling program. If a specific SYSEVENT
requires additional parameters, load register 1 with the address of a parameter list before
issuing the macro.

Callers who use ENTRY= BRANCH must:

• Be in supervisor state, PSW key O

• Hold the LOCAL lock for TRAXERPT, TRAXFRPT, and TRAXRPT. (There are no locking
requirements for the other SYSEVENTs.)

• Provide the address of a serialized 72-byte save area in register 13

Callers who use ENTRY=SVC with STGTEST can be problem state with any PSW key. All
other uses of SYSEVENT with ENTRY= SVC require that the caller be APF authorized,
supervisor state, or PSW key 0.

Additional restrictions concerning the use of each SYSEVENT, including input and output
requirements, follow the description of the parameters.

The SYSEVENT macro is written as follows:

name

b

SYSEVENT

b

sysevent mnemonic

,ENTRY=SVC
,ENTRY= BRANCH

,TYPE=BLOCK
,TYPE=BYTE

name: symbol. Begin name in column 1.

One or more blanks must precede SYSEVENT.

One or more blanks must follow SYSEVENT.

sysevent mnemonic: symbol.
Note: See the description of the parameters for the valid
options.

Defaults:
ENTRY= BRANCH for the following SYSEVENTs:

TRAXERPT
TRAXFRPT
TRAXRPT

ENTRY=SVC for the following SYSEVENTs:

DONTSWAP OKSWAP
TRANSWAP STGTEST

Note: TYPE=BLOCK and TYPE= BYTE are valid only
for SYSEVENT STGTEST.
Default: TYPE= BLOCK

747

SVSEVENT mnemonics

The parameters are explained as follows:

sysevent mnemonic
identifies the SYSEVENT being requested.

,ENTRY=SVC
,ENTRY= BRANCH

specifies the type of interface to SRM {SVC or branch).

Only users who do not hold a lock can specify ENTRY=SVC. This is the default for
DONTSWAP, OKSWAP, TRANSWAP, and STGTEST.

ENTRY= BRANCH is required if the caller holds a lock and for all "fast path"
SYSEVENTs. The "fast path" SYSEVENTs include TRAXERPT, TRAXFRPT, and
TRAXRPT. ENTRY= BRANCH is the default for these "fast path" SYSEVENTs. For
branch entry, callers must provide a 72-byte save area and place the address of the
save area in register 13.

TYPE-BYTE
TYPE=BLOCK

indicates whether SYSEVENT STGTEST is to return values that reflect either available
central and expanded storage, or available expanded storage. TYPE= BYTE requests
central and expanded storage; TYPE= BLOCK requests expanded storage.

A description of the SYSEVENTs available for use follows. These mnemonics are grouped
according to the basic function that they perform.

Notify SRM of Transaction Completion
The SYSEVENTs TRAXRPT, TRAXFRPT, and TRAXERPT notify SRM that a subsystem
transaction has completed and provide the transaction's starting time or elapsed time and,
optionally, its resource utilization. This performance data can be reported using the
resource management facility {RMF).

To obtain reports, an IEAICSxx member of parmlib must be in effect and RMF workload
activity reporting must be active. See SPL: Initialization and Tuning for additional
information concerning IEAICSxx.

In addition to the general requirements for SYSEVENTs, TRAXRPT, TRAXFRPT, and
TRAXERPT require the user to:

• Provide a parameter list

• If the issuing program is disabled, ensure that the parameter list and save area are
fixed

• Provide error recovery

A description of the individual mnemonics follows:

TRAXRPT
notifies SRM that a transaction has completed and provides its start time. Register 1
must point to a serialized parameter list with the following format:

Offset In Hex Length Field Description
00 8 Transaction start time in store clock instruction {STCK) format
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification or blanks
20 8 Transaction class or blanks

Note: You can obtain this parameter list by using the IHATRBPL mapping macro in
your program.

The names must be in ECBDIC format, left-justified, and padded with blanks. Note that
the subsystem name is restricted to four characters in length even though the

748 SPL: Application Development Macro Reference

parameter list provides an eight-character field. Use the first four characters of the
field for the sybsystem name.

TRAXFRPT
notifies SRM that a transaction has completed and provides the elapsed time. Because
the issuer calculates the elapsed time before issuing the macro, this path is shorter
than the path for TRAXRPT. Register 1 must point to a serialized parameter list with
the following format:

Offset In Hex Length Field Description
00 4 Transaction elapsed time (1.024 milliseconds units)

Reserved - must be zero 04
08
10
18
20

4
8
8
8
8

Subsystem name
Transaction name or blanks
User identification or blanks
Transaction class or blanks

Note: You can obtain this parameter list by including the mapping macro IHATRBPL in
your program. The names must be in EBCDIC format, left-justified, and padded with
blanks. Note that the subsystem name is restricted to four characters in length.

TRAXERPT
notifies SRM that a transaction has completed, provides its start time, and includes
resource utilization data for determining service consumption. Register 1 must point to
a serialized parameter list in the following format:

Offset in Hex
00
08
10
18
20
28
30
38

40
44

45

Length
8
8
8
8
8
8
8
8

4

3

Field Description
Transaction start time in STCK format
Subsystem name
Transaction name or blanks
User identification or blanks
Transaction class or blanks
Task (TCB) time in STCK format or zeros

SRB time in STCK format or zeros
Main storage occupancy in page seconds (pages times msec,
where msec is task (TCB) time in 1.024 millisecond units)
Logical 1/0 count or zeros
X'OO' if the previous field contains the logical 110 count
X'80' if the previous field contains the device connect
time interval (DCTI)
Reserved must be zero

Note: You can obtain this parameter list by including the mapping macro IHATREPL in
your program.

The names must be in EBCDIC format, left-justified, and padded with blanks. Note that
the subsystem name is restricted to four characters in length.

When SYSEVENT processing is completed, the subsystem regains control at the
instruction following the SYSEVENT macro. Register 15 contains one of the following
return codes:

Hexadecimal
Code

00

08

oc

10

Meaning

Data for the transaction has been reported successfully to the SRM.

Processing could not be completed at this time. No queue elements are available
for recording the data. No data is reported to the SRM, but an immediate reissue
could be successful.

Reporting is temporarily suspended for one of the following reasons:

• RMF workload activity reporting is not active.

• There is no installation control specification (IEAICSxx parmlib member with
RPGN specified for some subsystem other than TSO) in effect. The TOD clock
is stopped. No data is reported, but a later reissue could be successful.

Reporting is inoperative. The TOD clock is in error or the reporting interface is
not installed. No data is reported.

SYSEVENT- System Event 749

Example 1
Operation: Use the SYSEVENT TRAXRPT to report transaction data providing transaction
identifiers and the transaction start time.

Transaction begins
(TRAXOES)

STCK INITTIME

Process transaction
Transaction completes

LA Rl3,SVAREA
LA Rl,PARMS
MVC 0(8,Rl),INITTIME
MVC 8(32,Rl),TRAXOESC

SYSEVENT TRAXRPT

INITTIME OS 0
PARMS OS 50
SVAREA OS 18F
TRAXOESC OS CL32

Example 2

Initialize transaction identifiers

Save start time

Provide 72-byte save area
Point to parameter area
Move in start time
Get subsystem name, transaction
name, userid, and class

Operation: Use the SYSEVENT TRAXERPT to report transaction data, providing transaction
identifiers, start time and resource utilization data.

Transaction begins
(TRAXOESC)

STCK INITTIME

Process transaction
(TRAXOESC)

Transaction completes
LA Rl3,SVAREA
LA Rl,PARMS
MVC 0(8,Rl),INITTIME
MVC 8(64,Rl),TRAXOESC

SYSEVENT TRAXERPT

INITTIME OS 0
PARMS OS 90
SVAREA OS 18F
TRAXOESC OS CL64

750 SPL: Application Development Macro Reference

Initialize transaction identifiers

Save start time

Accumulate resource utilization data

Provide 72-byte save area
Point to parameter area
Move in start time
Get subsystem name, transaction
name, user id, class, and
resource utilization data

Control Swapping

Example 3
Operation: Use the SYSEVENT TRAXFRPT to report transaction data, providing transaction
identifiers and calculating the elapsed time.

Transaction begins

Process transaction

Transaction completes
LA Rl3,SVAREA
LA Rl,PARMS
MVC 0(4,Rl),TOTLTIME
XC 4(4,Rl),4(Rl)
MVC 8(32,Rl),TRAXDESC

SYSEVENT TRAXFRPT

TOTL TIME OS F
PARMS OS 50
SVAREA OS 18F
TRAXOESC OS CL32

Initialize transaction identifiers (TRAXOESC)

Calculate elapsed time (TOTLTIME)

Calculate elapsed time (TOTLTIME)
Provide 72-byte save area
Point to parameter area
Move in elapsed time
Clear reserved field
Get subsystem name, transaction name,
user id, and class

The SYSEVENTs DONTSWAP, OKSWAP, and TRANSWAP control swapping. The choice of
mnemonic depends on the period of time for which the address space is to be
non-swappable.

For a short period of time (less than one minute), use DONTSWAP to make it non-swappable
and OKSWAP to make it swappable.

For an extended period of time (more than one minute), use TRANSWAP to make the
address space non-swappable and OKSWAP to make it swappable.

A description of the individual mnemonics follows:

DONTSWAP
notifies SAM that the address space from which this SYSEVENT is issued cannot be
swapped out until the system receives a matching OKSWAP for each DONTSWAP
issued or until the jobstep ends.

No input parameters are required. One of the following codes will be returned in
register 1, byte 3:

Hexadecimal
Code

00

04

08

Meaning

The request was honored.

The request was not honored because it was not for the current address space.

The request was not honored because the issuer was not authorized or the
outstanding count of DONTSWAP requests had reached its maximum.

SYSEVENT - System Event 751

OKSWAP
notifies SAM that the address space from which the SYSEVENT was Issued can be
considered for swapping.

No input parameters are required. One of the following codes will be returned in
register 1, byte 3:

Hexadecimal
Code

00

04

08

TRANSWAP

Meaning

The request was honored.

The request was not honored because It was not tor the current address space.

The request was not honored because the Issuer was not authorized.

forces a swap out. After the subsequent swap-in, frames are allocated from preferred
storage anq the address space is non-swappable. TRANSWAP prevents programs from
allocating frames In reconfigurable storage. If the program issuing SYSEVENT depends
on the transition to complete, you should ensure that register 1 contains the address of
an ECB. SYSEVENT will then post this ECB when it swaps out the address space. If no
dependency exists, set register 1 to O (zero).

One of the following codes will be returned In register 1, byte 3:

Hexadecimal
Code

00

04

Meaning

The request was honored. If an ECB was specified, your program should Issue a
WAIT macro specifying the same ECB.

The transition was previously done or the address space is permanently
non-swappable.

If an ECB was specified, the following POST codes may occur in the last three bytes of
the ECB:

Meaning Hexadecimal
Code

000000 The transition is complete.

000004 The address space became non-swappable before It could be swapped out.

Example 1
Operation: Make the current address space non-swappable for a time period of less than
one minute.

SYSEVENT DONTSWAP

SYSEVENT OKSWAP

Example2
Operation: Make the current address space non-swappable for an indefinite period of time.

LA Rl,ECBWORD Supplies an ECB
SYSEVENT TRANSWAP
LTR R15,R15
BNZ FAILED
WAIT ECB=ECBWORD

FAILED Processing from FAILED label

752 SPL: Application Development Macro Reference

Obtain System Measurement Information
STGTEST provides information about the current physical use of resources. This is not an
indication of how much virtual storage your installation will allow you to obtain. For more
information on obtaining virtual storage for hiperspaces or data spaces, see DSPSERV.

The user must supply the address of a storage area large enough to store the requested
data.

A description of the individual mnemonics follows:

STGTEST
returns information about the amount of storage available in the system. The purpose
of SYSEVENT STGTEST is to help an application decide whether to use an additional
virtual storage area, such as a hiperspace. Information is about either central and
expanded or only expanded storage.

When you use this information, be aware of the dynamic nature of storage. Output of
the SYSEVENT STGTEST represents the current state of storage and does not reserve
this storage for the caller or guarantee that ii will be available for use.

TYPE=BYTE
TYPE=BLOCK

specifies whether the system is to provide information about central storage and
expanded storage (through TYPE= BYTE), or expanded storage (through
TYPE= BLOCK). The default is TYPE= BLOCK.

Register 1 must contain the address of a three-word output area where SRM is to return the
information. After SRM returns, each word contains a storage amount that represents a
specific number of frames. Before you choose a number to use as the basis for decision, be
aware of how your decision affects the performance of the system. General rules are:

• Use of the first number will affect system performance very little, if at all.
• Use of the second number might affect system performance to some degree.
• Use of the third number might substantially affect system performance.

If you base decisions on the value in the second or third word, SRM may have to take
processor storage away from other programs and replace it with auxiliary storage.

If the requesting address space does not have storage isolation: SRM calculates the values
that it returns to the three words in different ways depending on whether the request is
TYPE= BYTE or TYPE= BLOCK, and whether the application's address space has storage
isolation. Figure 26 describes the values in the three words when storage isolation is not in
effect. Values are returned in units of 4K bytes.

Figure 26. Calculations for SYSEVENT STGTEST with No Storage Isolation

Condition Values for TYPE= BYTE Values for TYPE= BLOCK

Word One Amount of central and expanded Amount of expanded storage not in
storage not in use use

Word Two The value in word one, plus all The value in word one, plus all
expanded and central storage frames expanded storage frames that
that belong to address spaces that belong to address spaces that have
have been inactive for more than n been inactive for more than n
seconds, where n is the value set on seconds, where n is the value set on
ESCTBDS in IEAOPTxx member of ESCTBDS in IEAOPTxx member of
parmlib. parmlib.

Word Three The value in word two, plus some The value in word two, plus some
auxiliary storage slots not in use1 auxiliary storage slots not in use1

1 SRM will not recommend an amount that will cause an auxiliary storage shortage. See the section on prevention of storage shortages in SPL:
Initialization and Tuning.

SYSEVENT - System Event 753

If the requesting address space has storage isolation: To calculate the values for
applications that have storage isolation, SRM first calculates the values for each word as If
storage isolation were not in effect. It then modifies the values depending on:

• The number of frames the address space already has
• The minimum and (optionally) the maximum values specified through the PWSS

keyword in the IEAIPSxx member of parmlib

Example
An application needs a standard hiperspace. Before it makes the request, the application
uses SYSEVENT STGTEST to find out how much expanded storage is available. The values
that SRM returns determine how large a hiperspace the application will create.

Operation: Obtain a report on the available expanded storage in the system.

LA 1,ESPARM
SYSEVENT STGTEST,TYPE=BLOCK

ESPARM OS 3F

The application will base its decision on the numbers in the first and second words of the
output area.

754 SPL: Application Development Macro Reference

SYSSTATE-Set and Test Address Space Control (ASC) Mode

© Copyright IBM Corp. 1988, 1991

Certain macros that support callers in both access register (AR) and primary address space
control (ASC) mode need to know which ASC mode your program is running in. The macros
that support callers in AR mode generate the code and addresses that are appropriate for
AR mode; macros that support callers in primary mode generate the code and addresses
that are appropriate for callers in primary mode. These macros use the SYSSTATE TEST
macro to test a global symbol that is set through the SYSSTATE ASCENV macro. The name
of the global symbol is &SYSASCE.

A good programming practice is to issue the SYSSTATE ASCENV=AR macro at the time
your program changes ASC mode to AR mode. Then, when your program returns to
primary mode, issue SYSSTATE ASCENV= P.

See Figure 4 on page 6 for a list of the macros that check the setting of the global symbol.

The requirements for the caller are:

Authorization:
Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Serialization:

Supervisor state or problem state
Task or SRB
Not applicable
Any
Any
None

The SYSST ATE macro is written as follows:

name

SYSSTATE

b

ASCENV=P
ASCENV=AR

TEST

name: symbol. Begin name in column 1.

One or more bianks must precede SYSSTATE.

One or more blanks must follow SYSSTATE.

Default: ASCENV = P
Note: If you specify TEST, do not specify ASCENV.

Note:lf you specify ASCENV, do not specify TEST.

The parameters are explained as follows:

ASCENV=P
ASCENV=AR

specifies the ASC mode in which your program is running.

If your program is in AR mode, use ASCENV =AR. If your program is in primary mode,
use ASCENV=P.

TEST
determines the current ASC mode. SYSSTATE TEST checks the global symbol that was
set by the the most recent invocation of SYSSTATE ASCENV. Depending on the setting
of the global symbol, the caller of SYSSTATE TEST generates code and addresses
appropriate for primary mode or AR mode.

Example: To change the ASC mode to AR mode and set the global symbol, issue:

SAC 512
SYSSTATE ASCENV=AR

755

756 SPL: Application Development Macro Reference

TCBTOKEN - Request or Translate the TTOKEN

© Copyright IBM Corp. 1988, 1991

The TTOKEN is the 16-byte identifier of a task. Unlike a TCB address, each TTOKEN is
unique within the IPL; the system does not reassign this same identifier to any other TCB.

The TCBTOKEN macro provides five mutually exclusive services depending on how you
specify the TYPE parameter:

• TYPE= TOTTOKEN gives you the TTOKEN for the task associated with a specified TCB
address.

• TYPE= TOTCB gives you the TCB address for a specified TTOKEN.
• TYPE= CURRENT gives you the TTOKEN for the current task.
• TYPE= PARENT gives you the TTOKEN for the task that attached the current task.
• TYPE= JOBSTEP gives you the TTOKEN for the job step task.

Typical situations when you would use TYPE= TOTTOKEN are:

• When you create a data space and want to assign ownership of the data space to a
second task.

In this case, you know the TCB address for the second task, but you don't know its
TTOKEN (for input to the DSPSERV CREATE macro). Use TYPE=TOTTOKEN to obtain
theTTOKEN.

• When you want to delete a data space you do not own.

In this case, you know the TCB address for the other task, but you don't know its
TTOKEN (for input to the DSPSERV DELETE macro). Use TYPE= TOTTOKEN to obtain
the TTOKEN.

• When you want to know whether the owner of a data space still exists.

In this case, you know the TTOKEN for the owning task. If the system returns the TCB
address in response to the TYPE=TOTCB parameter, the task still exists.

SPL: Application Development Extended Addressability describes STOKENs and TTOKENs.

Requirements
The requirements for the caller are:

Authorization:
Dlspatchable unit mode:
Cross memory mode:
Amode:
ASCmode:
Interrupt Status:
Locks:

Control parameters:

Restrictions and Limitations
None

Register Information

Problem or supervisor state, any PSW key
Task or SRB
Any
31-bit
Primary or AR
Enabled or disabled for 110 and external interrupts
For TOTIOKEN and TOTCB requests, the caller must hold the local
lock or CML lock of the specified address space. For CURRENT,
PARENT, and JOBSTEP requests, there is no requirement.
Control parameters can reside in the primary address space or in
an address/data space that is addressable through a public entry
on the caller's dispatchable unit access list (DU-AL).

When the system returns control to the caller, the contents of some registers are
unpredictable. Therefore, if the caller depends on these registers containing the same
value before and after issuing the macro, the caller must save these registers before
issuing the macro and restore them after the system returns control.

757

When control returns to the caller, the general purpose registers (GPRs) contain:

Contents Register
0 -1
2 -13

Used as work registers by the macro
Unchanged

14
15

Used as a work register by the macro
Return code

When control returns to the caller, the ARs contain:

Contents Register
0-1
2 -13

Used as work registers by the macro.
Unchanged

14 -15 Used as work registers by the macro

Programming Requirements
None

Performance Implications
None

Syntax Diagram
The standard form of the TCBTOKEN macro is written as follows:

name

b

TCBTOKEN

b

TYPE= TOTTOKEN
TYPE=TOTCB
TYPE= CURRENT
TYPE=PARENT
TYPE= JOBSTEP

,TCB=tcb addr

,TTOKEN = ttoken addr

name: symbol. Begin name in column 1.

One or more blanks must precede TCBTOKEN.

One or more blanks must follow TCBTOKEN.

Note: See the table following this diagram for
information on parameter usage with TYPE.

tcb addr: RX-type address or register (2) - (12).

ttoken addr: RX-type address.

,ASCB = ascb addr
,STOKEN = stoken addr

ascb addr: RX-type address or register (2) - (12).
stoken addr: RX-type address.
Default: Home address space.

,RELATED= value value: Any valid macro parameter specification.

The following table shows how the parameters may be specified with the TYPE keywords.

Parameters TYPE= TYPE= TYPE= TYPE= TYPE==
TOTTOKEN TOTCB CURRENT PARENT JOBSTEP

TCB required required not valid not valid not valid

TTOKEN required required required required required

ASCB optional optional not valid not valid not valid

STOKEN optional not valid not valid not valid not valid

RELATED optional optional optional optional optional

758 SPL: Application Development Macro Reference

Parameter Descriptions
The parameters are explained as follows:

TYPE== TOTTOKEN
TYPE=TOTCB
TYPE= CURRENT
TYPE= PARENT
TYPE= JOBSTEP

specifies the type of TCB information requested, as follows:

TOTTOKEN The system returns the TTOKEN of the task whose TCB address is
specified in the TCB parameter. The TTOKEN is returned at the address
specified by the TTOKEN parameter.

TOTCB The system returns the TCB address for the task whose TTOKEN is
specified in the TTOKEN parameter. The TCB address is returned at the
address specified by the TCB parameter.

CURRENT The system returns the TTOKEN of the currently active task. The
TTOKEN is returned at the address specified by the TTOKEN parameter.

PARENT The system returns the TTOKEN of the task that attached the currently
active task. The TTOKEN is returned at the address specified by the
TTOKEN parameter.

JOBSTEP The system returns the TTOKEN of the job step task for the address
space in which the currently active task is running. The TTOKEN is
returned at the address specified by the TTOKEN parameter.

,TCB = tcb addr
specifies the TCB address. For TYPE=TOTTOKEN, tcb addr contains the TCB address
that is to be translated to a TTOKEN. For TYPE =TOTCB, tcb addr points to a fullword
where the system returns the TCB address for the task whose TTOKEN is specified by
the TTOKEN parameter.

,TTOKEN = ttoken addr
specifies the address of the 16-byte TTOKEN. For TYPE= TOTTOKEN,
TYPE=CURRENT, TYPE= PARENT, and TYPE=JOBSTEP, ttoken addr is the address at
which the TTOKEN associated with the specified TCB is returned. For TYPE= TOTCB,
ttoken addr is the address of the TTOKEN for the task whose TCB address is to be
obtained.

,ASCB = ascb addr
,STOKEN = stoken addr

identifies the address space of the TCB. ASCB specifies the address of the fullword
containing the ASCB address. STOKEN specifies the address of the 8-byte STOKEN
that identifies the address space in which the TCB resides. If you do not specify either
ASCB or STOKEN, TCBTOKEN uses the home address space by default.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

TCBTOKEN - Request or Translate the TTOKEN 759

Return Codes
When TCBTOKEN returns control, register 15 contains one of the following return codes:

Hexadecimal
Code
00

04

08

oc
10

14

18

1C

20

24

28

2C

30

34

Example 1

Meaning

TCBTOKEN services completed successfully.

The input STOKEN or TTOKEN does not represent a valid address space.

No local lock was held.

A local lock was held, but not the local lock of the associated address space.

The TCB could not be referenced.

The TCB did not pass the acronym check.

The TCB has terminated.

The TCB associated with the TTOKEN represents a different task than when the
TTOKEN was obtained.

An unexpected error occurred.

The contents of access register 1, used to address the parameter list, were not
valid.

The parameter list is not valid.

The ASCB address is the address of the wait ASCB. The system cannot obtain the
TTOKEN.

The task is scheduled for termination, but has not yet terminated.

The caller is not running in task mode. This return code is valid only tor
TYPE= CURRENT, TYPE=PARENT, orTYPE=JOBSTEP.

Operation: Obtain the TTOKEN for the task whose TCB address is specified in THEIR_TCB.
The task resides in the address space whose ASCB address is specified in register 4. Store
the returned TTOKEN in THEIR_ TOKEN.

TCBTOKEN TYPE=TOTTOKEN,TCB=THEIR_TCB,TTOKEN=THEIR_TTOKEN,ASC8=(4)

Example 2
Operation: Obtain the TTOKEN for the currently active task and store it in
CURRENT_ TTOKEN.

TCBTOKEN TYPE=CURRENT,TTOKEN=CURRENT_TTOKEN

Example 3
Operation: Obtain the TCB address of the job step TCB and store it in
JOBSTEP _ TCB_ADDR.

TCBTOKEN TYPE=JOBSTEP,TTOKEN=JOBSTEP_TTOKEN
TCBTOKEN TYPE=TOTCB,TTOKEN=JOBSTEP_TTOKEN,TCB=JOBSTEP_TCB_ADDR

760 SPL: Application Development Macro Reference

TCBTOKEN (List Form)

Use the list form of the TCBTOKEN macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage that the execute form of the macro uses to store the parameters.

Syntax Diagram
The list form of the TCBTOKEN macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede TCBTOKEN.

TCBTOKEN

b One or more blanks must follow TCBTOKEN.

,RELATED= value value: Any valid macro parameter specification.

,MF=L

Parameter Descriptions
The parameters are explained below:

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

,MF-L
specifies the list form of the TCBTOKEN macro.

TCBTOKEN - Request or Translate the TIOKEN 761

TCBTOKEN (Execute Form)
Use the execute form of the TCBTOKEN macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax Diagram
The execute form of the TCBTOKEN macro is written as follows:

name

b

TCBTOKEN

b

TYPE= TOTIOKEN
TYPE=TOTCB
TYPE= CURRENT
TYPE=PARENT
TYPE=JOBSTEP

,TCB = tcb addr

,TIOKEN = ttoken addr

,ASCB = ascb addr
,STOKEN=stoken addr

,RELATED=va/ue

,MF= (E,cntl-addr)

name: symbol. Begin name In column 1.

One or more blanks must precede TCBTOKEN.

One or more blanks must follow TCBTOKEN.

Note: See the table following this diagram for
information on parameter usage with TYPE.

tcb addr: RX-type address or register (2) - (12).

ttoken addr: RX-type address.

ascb addr: RX-type address or register (2) - (12).
stoken addr: RX-type address.
DefauH: Home address space.

value: Any valid macro parameter specification.

cntl-addr: RX-type address or register (1) - (12).

The following table shows how the parameters may be specified with the TYPE keywords.

Parameters TYPE= TYPE= TYPE= TYPE= TYPE-
TO TIO KEN TOTCB CURRENT PARENT JOBSTEP

TCB required required not valid not valid not valid

TI OKEN required required required required required

ASCB optional optional not valid not valid not valid

ST OKEN optional not valid not valid not valid not valid

RELATED optional optional optional optional optional

Parameter Descriptions
The parameters are the same as those for the standard form of the TCBTOKEN macro with
the following addition:

,MF== (E,cntl-addr)
specifies the execute form of the TCBTOKEN macro. This form uses a remote
parameter list. The cntl-addr specifies the address of the remote parameter list that the
list form of the macro generates.

762 SPL: Application Development Macro Reference

TCTL - Transfer Control from an SRB Process

© Copyright IBM Corp. 1988, 1991

The TCTL (transfer control) macro allows an SRB process to exit from its processing and to
pass control directly to a task. The caller must be in primary ASC mode.

The TCTL macro is coded as follows:

name

b

TCTL

b

TCB=(4)
TCB = tcbaddr

name: symbol. Begin name in column 1.

One or more blanks must precede TCTL.

One or more blanks must follow TCTL.

Default: TCB address contents of register (4)
tcbaddr: A-type address or registers (2) - (12).

The parameters are explained as follows:

TCB=(4)
TCB = tcbaddr

specifies the task designated for dispatching. Register (4) is the default; it is assumed
to contain the appropriate TCB address.

Note: The TCB resides in storage below 16 megabytes.

The TCTL macro uses registers as follows:

Register
0-3
4
5-14
15

Example

Use
Work registers
TCB address
Work registers
EPA of the TCTL routine

Operation: From SRB mode processing, terminate the SRB and give control to the task
specified in register 4.

TCTL TCB=(4)

763

764 SPL: Application Development Macro Reference

TESTAUTH - Test Authorization of Caller

© Copyright IBM Corp. 1988, 1991

The TEST AUTH macro is used on behalf of a privileged or sensitive function to verify that its
caller is appropriately authorized.

TESTAUTH supports the authorized program facility (APF) - a facility that permits the
identification of programs that are authorized to use restricted functions. In addition,
TESTAUTH provides the capability for testing for system key 0-7 and supervisor state.

The TESTAUTH macro is written as follows:

name

b

TESTAUTH

b

FCTN=fctn
FCTN = fctn,AUTH =au th

,STATE=NO
,STATE=YES

,KEY=NO
,KEY=YES

,RBLEVEL=2
,RBLEVEL= 1

,BRANCH=NO
,BRANCH= YES

name: symbol. Begin name in column 1.

One or more blanks must precede TESTAUTH.

One or more blanks must follow TEST AUTH.

fctn: decimal digit O or 1 or register (2) - (12).
auth: decimal digit O or 1, or register (2) - (12).
Default: FCTN = 0

Default: ST A TE =NO

Default: KEY= NO

Default: RBLEVEL = 2

Default: BRANCH =NO

The parameters are explained as follows:

FCTN=fctn
FCTN = fctn ,AUTH = auth

specifies the authorization (via APF) of a program.

FCTN = 0 specifies that APF-authorization is not checked.

FCTN = 1 specifies that APF-authorization is checked.

AUTH = O specifies that the job step is not authorized to perform any restricted function.

AUTH = 1 specifies that the job step is authorized to perform restricted functions.

Note: If FCTN = 1 is specified by itself (that is, without the AUTH parameter), the JSCB is
used to check for authorization. AUTH should only be coded when it is not possible for
TESTAUTH to acquire the code from the JSCB.

,STATE=NO
,STATE=YES

specifies whether or not (YES or NO) a check is to be made for supervisor/problem
program state. (Supervisor state is authorized, problem program state is not
authorized.)

765

,KEY•NO
,KEY=VES

specifies whether or not (YES or NO) a check is to be made of the protection keys.
(Protection keys 0-7 are authorized, protection keys 8-15 are not authorized.)

Note: TEST AUTH is used to test one or more of three conditions FCTN,ST ATE, or KEY. If
any of the requested conditions are tested favorably, a return code of O Is returned in
register 15. If all of the requested conditions are tested unfavorably, the return code is set
to 4.

,RBLEVEL•2
,RBLEVEL=1

specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2), or a type
1 SVC (RBLEVEL = 1). If the TEST AUTH caller is not an SVC, specify RBLEVEL = 1.

,BRANCH•NO
,BRANCH= YES

specifies a branch entry (YES) or an SVC entry (NO). If BRANCH= YES is specified,
registers 2 and 3 are modified by the TESTAUTH routine. Only SVC routines can use
BRANCH= YES.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

Example 1

Meaning

Task is authorized.

Task is not authorized.

Operation: Test jobstep for APF authorization.

TESTAUTH FCTN=l

Example 2
Operation: Test for APF authorization and supervisor state, and do not check protection
keys.

TESTAUTH STATE=YES,KEY=NO,FCTN=l

766 SPL: Application Development Macro Reference

TIMEUSED - Obtain Accumulated CPU or Vector Time

© Copyright IBM Corp. 1988, 1991

The TIMEUSED macro returns an eight-byte hexadecimal number in a doubleword storage
area that you specify. The number is the total CPU or vector time used by the current TCB
or SRB up until you issue the macro. The format of the number is time-of-day (TOD) clock
or microseconds time format.

If you use the SRBSTAT save and restore services, the number includes the interval
between dispatch and save, and between restore and TIMEUSED. It does not include the
interval between save and restore. If you have not yet issued restore, the number includes
only the interval between save and TIMEUSED.

The requirements for the caller are:

Authorization:

Dispatchable unit mode:
Cross memory mode:
Amode:
ASCmode:

Serialization:
Control parameters:

Supervisor state, PSW key 0 when you specify LINKAGE= BRANCH.
Supervisor or problem stale, any key when you specify
LINKAGE= SYSTEM.
Task or SRB when LINKAGE= BRANCH. Task when LINKAGE= SYSTEM.
Any
31-bit addressing mode
Primary or secondary when LINKAGE= BRANCH. Primary or AR (access
register) when LINKAGE= SYSTEM.
Enabled or disabled, unlocked
N/A

Register 13 must point to a 72-byte save area when you specify LINKAGE= BRANCH.

TIMEUSED is also documented in the Application Development Macro Reference, but
without the LINKAGE= BRANCH parameter. That parameter is available only to authorized
callers.

The TIMEUSFD mar.rn i'3 wriHel"l as follows:

name

TIMEUSED

STORA DR= addr

, LINKAGE= SYSTEM
,LINKAGE= BRANCH

, RELATED= value

,CPU=TOD
,CPU=MIC

,VECTOR= TOD
,VECTOR= MIC

name: symbol. Begin name in column 1.

One or more blanks must precede TIMEUSED.

One or more blanks must follow TIMEUSED.

addr: RX-type address or register (2)-(12).

Default: LINKAGE= BRANCH

value: Any valid macro parameter specification

Default: CPU= TOD if you do not specify either the CPU
or VECTOR keywords.

767

The parameters are explained as follows:

STORADR = addr
specifies the 31-bit address of a doubleword area where the accumulated CPU or vector
time is returned.

,LINKAGE= SYSTEM
,LINKAGE= BRANCH

specifies the type of linkage used in TIMEUSED processing. LINKAGE= BRANCH
indicates branch entry. You may specify or default to LINKAGE= BRANCH if you are a
key zero supervisor state program running under a TCB or SRB. LINKAGE= SYSTEM
indicates the linkage is by a PC instruction.

,RELATED= value
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

,CPU=TOD
,CPU=MIC

specifies that TIMEUSED should return the total CPU time in either TOD clock format
(CPU= TOD) or in microseconds (CPU= MIC). You may specify CPU= MIC only if
LINKAGE= SYSTEM. If you specify either CPU= option, you may not specify the
VECTOR parameter.

, VECTOR= TOD
, VECTOR= MIC

specifies that TIMEUSED should return the total vector time in either TOD clock format
(VECTOR=TOD) or in microseconds (VECTOR=MIC). You may specify VECTOR=
only if LINKAGE=SYSTEM. If you specify either VECTOR= option, you may not specify
the CPU parameter.

Register 15 contains the following hexadecimal return codes from TIMEUSED:

Hexadecimal
Code

00

04

08

Example 1

Meaning

The service completed successfully.

The CPU timer is not useable.

Unexpected error

Operation: Using the unauthorized TIMEUSED service, request the total CPU time in TOD
clock format to be stored at the address in register 2.

TIMEUSED STORADR=(2),LINKAGE=SYSTEM,CPU=TOD

Example 2
Operation: Using the unauthorized TIMEUSED service in task mode, request the total
vector time in microseconds to be stored at the address in register 2.

TIMEUSED STORADR=(2),LINKAGE=SYSTEM,VECTOR=MIC

Example 3
Operation: Using the authorized TIMEUSED service, request the total CPU time in TOD
clock format to be stored at the address in register 2.

TIMEUSED STORADR=(2),LINKAGE=BRANCH

768 SPL: Application Development Macro Reference

T&EXIT - Type 6 Exit

© Copyright IBM Corp. 1988, 1991

The T6EXIT macro returns control from a Type 6 SVC routine to the SVC first level interrupt
handler (FLIH). This exit macro can only be used in a Type 6 SVC.

The T6EXIT macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede T6EXIT.

TSEXIT

b One or more blanks must follow T6EXIT.

RETURN= CALLER Default: RETURN =CALLER

RETURN= DISPATCH

RETURN=SRB

The explanation of the RETURN parameter is as follows:

RETURN=
specifies how the Type 6 SVC has chosen to exit.

CALLER specifies that the return is directly to the caller or issuer of the SVC. CALLER
is the default return option.

DISPATCH specifies that the return should be through the dispatcher. This function is
for the use of routines that have suspended the current task.

No registers are returned to the caller.

SRB specifies that the system should immediately dispatch an SRB. This SRB must:

• Be initialized by the Type 6 SVC

• Be pointed to by register 1

• Execute in the same address space as the SVC. The SRB has the same format as
the SCHEDULE SRB.

Note: No registers are returned to the caller.

Example
Operation: Terminate Type 6 SVC processing and return control from the Type 6 SVC to the
caller of the SVC.

T6EXIT RETURN=CALLER

769

770 SPL: Application Development Macro Reference

VSMLIST - List Virtual Storage Map

© Copyright IBM Corp. 1988, 1991

The VSMLIST macro provides information about the allocation of virtual storage. All
addresses returned by the macro are 31-bit addresses. The information is returned in a
work area that you specify. You must set bytes 0-3 of the work area to zero before the first
invocation of this macro for a specific request. The format of the work area is described
under "Virtual Storage Management" in SPL: Application Development Guide.

This macro can be used in cross memory mode. All addresses are associated with the
current address space.

The following information can be requested:

• The ranges of virtual storage allocated to the SQA, by subpool, and the free space within
those ranges

• The ranges of virtual storage allocated to the CSA, by subpool, and the free space within
those ranges

• The ranges of CSA space that are unallocated

• The ranges of virtual storage allocated to the LSQA in the current address space, by
subpool, and the free space within those ranges

• The ranges of virtual storage allocated to private area subpools, by TCB, and the free
space within those ranges

• The ranges of private area that are unallocated

• On entry to this macro, register 13 must contain the address of a 72-byte save area.
VSMLIST preserves registers 2-13.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode.

771

The VSMLIST macro is written as follows:

name

b

VSMLIST

b

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP= sp list addr

,WKAREA = (addr,length}

,TCB = (tcb addr)
,TCB = (tcb addr,ALL)
,TCB=(, ALL)

,SPACE=ALLOC
,SPACE= FREE
,SPACE= UNALLOC

,LOC=ANY
,LOC=BELOW

,REAL

,LINKAGE= SYSTEM
I lf\.IVA~C-DDAt..l('L..I

1'-ll'll'\.r1._ uu

name: symbol. Begin name in column 1.

One or more blanks must precede VSMLIST.

One or more blanks must follow VSMLIST.

sp list addr: RX-type address or register (0), (2)

addr: RX-type address or register (0), (2)
length: symbol, decimal digit, or register (0), (2) - (12).

Default: TCB address in PSATOLD.
tcb addr: RX-type address or register (0), (2) - (12).
Note: The TCB parameter is required only for SRB routines, if
SP= PVT or SP= sp list addr and the list contains private area
subpools.

Default: SPACE=ALLOC
Note: SPACE= UNALLOC can be specified only for SP= CSA or
SP=PVT.

Default: LOC =ANY

Default: LINKAGE= SYSTEM

The parameters are explained as follows:

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP= sp list addr

specify the storage areas for which information is requested. The following subpools
are listed for the specified storage areas:

• SQA: 226, 239, 245, 247, 248
• CSA: 227, 228, 231, 241
• LSQA: 205, 215, 225, 255
• PVT:O, 1-127,229,230,236, 237, 251, 252

GETMAIN/FREEMAIN/STORAGE processing translates the original subpool numbers
that were specified on the GETMAIN, FREEMAIN, or STORAGE macros to internal
subpool numbers as shown below:

Original Subpool Number

203,204

213,214

223,224

233-235, 253, 254

240,250

772 SPL: Application Development Macro Reference

Internal Subpool Number

205

215

225

255.

0

VSMLIST reports the translated internal subpool numbers, not the original subpool
numbers. In addition, VSMLIST does not report invalid subpool numbers (subpool
numbers greater than 255) or undefined subpool numbers.

If SP=sp list addr is specified, the user must supply the address of a subpool list. The
first halfword of the list contains the number of entries in the list. Each of the following
halfwords in the list contains a subpool number. If a valid subpool number appears
more than once in the subpool list, it is reported only once.

,WKAREA = (addr,length)
indicates the address and length of a user-supplied work area. The system uses this
work area to hold the parameter list, control information, and data that is to be returned
to the caller. The work area should begin on a word boundary and be a minimum of 4K
bytes in length.

You must set bytes 0-3 of this work area to zero before the first invocation of VSMLIST
for a specific request. See "Virtual Storage Management" in SPL: Application
Development Guide for a description of the work area.

,TCB = (tcb addr)
,TCB = (tcb addr,ALL)
, TCB =(,ALL)

specify the TCB associated with the virtual storage allocated to the private area
subpools. The TCB must be located in the currently addressable address space. If ALL
is specified, the storage associated with the TCB and all of its subtasks is reported.

Notes:

1. If ALL is specified and the TCB is high in the task structure (for example, the TCB
for RCT), more than one region could be listed. The regions in the private area are
the RCT region, the V=V region, and the V= R region (for V= R jobs).

2. The TCB resides in storage below 16 megabytes.

,SPACE= ALLOC
,SPACE= FREE
,SPACE= UNALLOC

specify whether allocated, allocated and free, or unallocated storage is to be reported.

ALLOC indicates that the virtual addresses and lengths of blocks of storage allocated to
the specific area are to be listed.

FREE indicates that in addition to the information supplied by ALLOC, the virtual
addresses and lengths of free space within the allocated blocks are to be listed.

UNALLOC indicates that the virtual addresses and lengths of unallocated blocks of
storage are to be listed. Both TCB and REAL are ignored when UNALLOC is specified.

Note: An allocated block of storage is a block that is a multiple of 4K in size and
contains some storage that has been allocated via a GETMAIN or STORAGE macro.
The free storage is the storage within an allocated block that has not been allocated via
a GETMAIN or STORAGE macro. An unallocated block of storage is a block that is a
multiple of 4K in size and contains no allocated storage.

,LOC=ANY
,LOC=BELOW

indicate which virtual storage control blocks are to be searched. If LOC =ANY is
specified, all of the virtual storage control blocks are searched. If LOC= BELOW is
specified, only those queues with virtual storage below 16 megabytes are searched.

,REAL
indicates that the high order bit of the address field of the allocated block descriptor is
to be used to inform the caller which LOC parameter was used. If the storage block
was allocated using any LOC specification of GETMAIN or STORAGE except
LOC =(,BELOW), the indicator is turned on; if the storage block was allocated using the
LOC= (,BELOW) parameter of the GETMAIN or STORAGE macros, the indicator is
turned off. If REAL is not specified the indicator remains off (zero).

VSMLIST - List Virtual Storage Map 773

,LINKAGE= SYSTEM
,LINKAGE• BRANCH

indicate whether the VSMLIST routine uses a PC instruction (LINKAGE=SYSTEM) or
branch entry (LINKAGE= BRANCH) for linkage and whether the VSMLIST routine
provides serialization and recovery.

If LINKAGE=SYSTEM is specified, the VSMLIST routine provides linkage using a PC
instruction and also provides recovery and serialization. The user cannot hold a lock
higher than the local lock.

The caller's secondary ASID is preserved when a PC is issued; however, the caller
cannot be in secondary addressing mode when issuing the macro.

Note: Serialization is not provided across calls to VSMLIST.

If LINKAGE= BRANCH is specified, the VSMLIST routine uses branch entry for linkage
and does not provide recovery or serialization. Before issuing VMLIST, provide
serialization as follows:

• For SQA or CSA requests, issue the SETLOCK macro as follows:

SETLOCK OBTAIN,TYPE=VSMFIX

When the system returns control to your program, issue the SETLOCK macro as
follows:

SETLOCK RELEASE,TYPE=VSMFIX

• For LSQA or PVT requests, obtain the LOCAL lock.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

0

4

8

c

Meaning

The macro executed successfully and all the information has been placed in the
data portion of the work area.

The macro executed successfully, but additional information has not been
reported because there was not enough room in the data portion of the work area.
To o!:lta!n the missing infnrmation, the user can continue to issue the macro, with
the same options, until the return code in register 15 is 0.

An error occurred in scanning virtual storage control blocks. The information in
the data area is valid, but incomplete. This return code is obtained only by users
who specify LINKAGE= SYSTEM.

The work area was too small or either invalid parameters or invalid control
information was detected. This return code is obtained only by users who specify
LINKAGE= BRANCH. Users who specify LINKAGE= SYSTEM will receive a X'C78'
a bend.

Note: Bytes 0-3 of the work area also contain the return code. Prior to the first invocation
of the VSMLIST macro, the user must set these bytes to zero. If the return code is 4 and the
user wants to re-invoke the VSMLIST macro, these bytes must not be changed.

774 SPL: Application Development Macro Reference

Example 1
Operation: List the ranges of the allocated and free storage in the SQA. Specify the
address of the VSM work area in register 2 and the length of the work area in register 3.

VSMLIST SP=SQA,SPACE=FREE,WKAREA=((2),(3))

Example 2
Operation: List the ranges of the allocated storage in the CSA. Specify the address of the
work area in register 2 and the length of the work area in register 3. Provide branch entry
linkage.

VSMLIST SP=CSA,SPACE=ALLOC,WKAREA=((2),(3)),LINKAGE=BRANCH

Example 3
Operation: List the ranges of unallocated storage in the private area. The variable X
contains the address of the work area, which has a length of 4096 bytes.

VSMLIST SP=PVT,SPACE=UNALLOC,WKAREA=(X,4096)

Example 4
Operation: List the ranges of allocated storage, below 16 megabytes, in each of the
subpools specified in the subpool list at location Y. The variable X contains the address of
the work area, which has a length of 4096 bytes.

VSMLIST SP=Y,SPACE=ALLOC,WKAREA=(X,4096),LOC=BELOW

VSMLIST - List Virtual Storage Map 775

776 SPL: Application Development Macro Reference

VSMLOC - Verify Virtual Storage Allocation

© Copyright IBM Corp. 1988, 1991

The VSMLOC macro verifies that a given storage area has been allocated using the
GETMAIN or STORAGE macros. All addresses communicated between the caller and the
VSMLOC routine must be 31-bit addresses. You can use VSMLOC in cross memory mode.
All addresses are associated with the current address space.

The VSMLOC macro is written as follows:

name

b

VSMLOC

b

SQA
CSA
LSQA
PVT
CPOOLFIX
CPOOLPAG
CPOOLLCL

,AREA= (addr,length)

,AREA= (addr)

,TCB=addr

,LINKAGE= SYSTEM
,LINKAGE= BRANCH

name: symbol. Begin name in column 1.

One or more blanks must precede VSMLOC.

One or more blanks must follow VSMLOC.

addr: RX-type address or register (0) - (12).
length: symbol, decimal digit or register (0), (2) - (12). Use
only with SQA, CSA, LSQA, and PVT.

addr: RX-type address or register (0) - (12). Use only with
CPOOLFIX, CPOOLPAG, and CPOOLLCL.

addr: RX-type address or regii::ter (0) - (12). Can only be
specified with PVT.

Default: LINKAGE= SYSTEM

The parameters are explained as follows:

SQA
CSA
LSQA
PVT

used to verify that storage for SQA, CSA, LSQA, or PVT (private area storage) has
been allocated in the current address space.

CPOOLFIX
used to verify that storage for a global fixed cell pool has been allocated. Users who
obtain their storage from subpools 226, 227, 228, 239, or 245 should specify this
keyword.

CPOOLPAG
used to verify that storage for a global pageable cell pool has been allocated. Users
who obtain storage from subpools 231, 241, 247, or 248 should specify this keyword.

CPOOLLCL
used to verify that storage for a local cell pool has been allocated. Users who obtain
storage from subpools 0-127, 203-205, 213-215, 223-225, 229, 230, 233-237, 240, 250-255
should specify this keyword.

777

,AREA= (addr,/ength}
indicates the start of the virtual storage area (addr) and the length of the virtual
storage area (length) to be verified.

,AREA== (addr)
indicates the start of the virtual storage area (addr) to be verified.

,TCB=addr
indicates that VSMLOC is to place the address of the TCB associated with the verified
storage in the register or storage area specified by the TCB parameter. If the return
code from VSMLOC is not zero, the register or storage area specified by the TCB
parameter is set to zero. The TCB parameter can only be specified with PVT.

,LINKAGE"' SYSTEM
,LINKAGE= BRANCH

indicates the type of linkage that VSMLOC is to use and also indicates whether the
VSMLOC routine is to provide recovery and serialization.

If LINKAGE= SYSTEM is specified, the VSMLOC routine uses a basic PC instruction for
linkage and provides recovery and serialization. The following restriction applies: If
LSQA, PVT, or CPOOLLCL is specified, the user can hold only the local lock.

The caller's secondary ASID is preserved when a basic PC is issued; however, the
caller cannot be in secondary addressing mode when issuing the macro.

If LINKAGE= BRANCH is specified, the VSMLOC routine uses branch entry linkage and
does not provide recovery or serialization. Before issuing VSMLOC, provide
serialization as follows:

• For CSA, SQA, and CPOOLFIX requests, issue the SETLOCK macro as follows:

SETLOCK OBTAIN,TYPE=VSMFIX

When the system returns control to your program, issue the SETLOCK macro as
follows:

SETLOCK RELEASE,TYPE=VSMFIX

• For CPOOLPAG requests, issue the SETLOCK macro as follows:

SETLOCK OBTAIN,TYPE=VSMPAG

When the system returns control to your program, issue the SETLOCK macro as
follows:

SETLOCK RELEASE,TYPE=VSMPAG

• For LSQA, CPOOLLCL, and private area storage requests, obtain the LOCAL lock.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

0

4

8

12

Meaning

The virtual storage specified has been allocated in the given storage area.

The virtual storage is not in the specified area or overlaps free space or different
subpools in the given area.

An error occurred in processing virtual storage control blocks. This return code
is obtained only by users who specify LINKAGE=SYSTEM.

The input is invalid. This return code is obtained only by users who specify
LINKAGE= BRANCH. Users who specify LINKAGE= SYSTEM will receive a X'C78'
abend.

If the return code in register 15 is 0, byte 3 in register 0 contains the subpool ID. If the
return code in register 15 is not 0, byte 3 in register O contains 0.

Note: Users should mask off bytes 0-2 before attempting to use the subpool ID returned in
register 0.

778 SPL: Application Development Macro Reference

Example 1
Operation: Verify that the virtual storage, starting at the address given in register 2 and
having a length specified in register 3, has been allocated in the SQA.

VSMLOC SQA,AREA=((2),(3))

Example 2
Operation: Verify that the 8-bytes of virtual storage starting at X have been allocated in the
CSA. Use a PC instruction for linkage and let VSMLOC provide recovery and serialization.

VSMLOC CSA,AREA=(X,8),LINKAGE=SYSTEM

Example 3
Operation: Verify that the 8-bytes of virtual storage starting at the address specified in
register 2 have been allocated in the LSQA. Use branch entry for linkage.

VSMLOC LSQA,AREA=((2),8),LINKAGE=BRANCH

Example 4
Operation: Verify that the virtual storage, starting at X and having a length specified in
register 3, has been allocated in private area storage. Use branch entry for linkage.

VSMLOC PVT,AREA=(X,(3)),LINKAGE=BRANCH

Example 5
Operation: Verify that the 100 bytes of virtual storage starting at the address specified in
register 1 have been allocated in private area storage. The address of the TCB associated
with the storage verified is returned in register 4.

VSMLOC PVT,AREA=((l),100),TCB=(4),LINKAGE=BRANCH

VSMLOC - Verify Virtual Storage Allocation 779

780 SPL: Application Development Macro Reference

VSMREGN - Obtain Private Area Region Size

© Copyright IBM Corp. 1988, 1991

The VSMREGN macro provides the virtual starting address and sizes of the private area
regions associated with a given TCB in the current address space.

VSMREGN runs in the state and key of the caller. You can use VSMREGN in cross memory
mode. All addresses communicated between VSMREGN and the caller are 31-bit
addresses, associated with the current address space. If the TCB default is not used, the
caller must hold the local lock.

Except for the TCB, all input parameters to this macro can reside in storage above 16
megabytes if the issuer is executing in 31-bit addressing mode.

The VSMREGN macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede VSMREGN.

VSMREGN

b One or more blanks must follow VSMREGN.

WKAREA = addr addr: RX-type address or register (0) - (12).

,TCB = tcb addr Default: (except for SRB routines) TCB
tcb addr: RX-type address or register (0), (2) - (12).

The parameters are written as follows:

WKAREA = addr
indicates the virtual address of a 16-byte work area, which is used by VSMREGN to
return the requested information. The format of the work area is:

Bytes
0-3
4-7
8-11
12-15

,TCB = tcb addr

Meaning
Virtual address of the region below 16 megabytes
Length of the region below 16 megabytes
Virtual address of the region above 16 megabytes
Length of the region above 16 megabytes

indicates the virtual address of the TCB to be used to identify the region (the region
control task (ACT) region, the V = V region, or the V = R region). SRB routines and
routines whose currently addressable address space is not the home address space
must specify the TCB operand. They cannot use tho default value.

Note: The TCB resides in storage below 16 megabytes.

When control returns from the VSMREGN routine, register 15 contains the following return
code:

Hexadecimal
Code

0

Meaning

Successful completion

781

Example 1
Operation: Find the virtual address and length of the private area of the TCB whose
address is In PSATOLD. Return the Information In the work area whose address Is given In
register 2.

VSMREGN WKAREA=(2)

Example 2
Operation: Find the virtual address and length of the private area of the TCB specified in
register 3. Return this Information In the work area whose address is given in register 2.

VSMREGN WKAREA=(2),TCB=(3)

Example 3
Operation: Find the virtual address and length of the private area of the TCB whose
address is X. Return this Information in the work area whose address is given In register 2.

VSMREGN WKAREA=(2},TCB=X

Example 4
Operation: Find the virtual address and length of the private area of the TCB whose
address is given In register 3. Return this Information In the work area whose address Is X.

VSMREGN WKAREA=X,TCB•(3)

782 SPL: Application Development Macro Reference

WAIT - Wait for One or More Events

© Copyright IBM Corp. 1988, 1991

The WAIT macro is used to inform the system that performance of the active task cannot
continue until one or more specific events, each represented by a different ECB (event
control block), have occurred. Bit 0 and bit 1 of each ECB must be set to O before it is used.
The caller must be enabled, unlocked, and in primary address space control (ASC) mode.

The system takes the following action:

• For each event that has already occurred (each ECB is already posted), the count of the
number of events is decreased by 1.

• If the number of events is O by the time the last event control block is checked, control is
returned to the instruction following the WAIT macro.

• If the number of events is not Oby the time the last ECB is checked, control is not
returned to the issuing program until sufficient ECBs are posted to bring the number to
0. Control is then returned to the instruction following the WAIT macro.

The WAIT macro is written as follows:

name name: symbol. Begin name In column 1.

b One or more blanks must precede WAIT.

WAIT

b One or more blanks must follow WAIT.

event nmbr. event nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Default: 1

ECB = ecb addr
ECBLIST = ecb list addr

,LONG=NO
,LONG=YES

,LINKAGE= SVC
,LINKAGE= SYSTEM

,EUT= NOSAVE
,EUT=SAVE

,RELATED= value

Value range: 0-255

ecb addr: RX-type address, or register (1) or (2) - (12).
ecb list addr: RX-type address, or register (1) or (2) - (12).

Default: LONG =NO

DefauH: LINKAGE= SVC

Default: EUT = NOSAVE

value: Any valid macro keyword specification.

The parameters are explained as follows:

event nmbr,
specifies the number of events waiting to occur.

ECB = ecb addr
ECBLIST = ecb list addr

specifies the address of an ECB on a fullword boundary or the address of a virtual
storage area containing one or more consecutive fullwords on a fullword boundary.
Each fullword contains the address of an ECB; the high order bit in the last fullword
must be set to 1 to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or is
omitted. The number of ECBs in the list specified by the ECBLIST form must be equal
to or greater than the specified number of events.

783

If you specify ECBLIST, ecb list addr and all ECBs on the list must be in the home
address space.

,LONG==NO
,LONG=YES

specifies whether the task is entering a long wait (YES) or a regular wait (NO).

,LINKAGE= SVC
,LINKAGE= SYSTEM

specifies whether the caller is in cross memory mode (LINKAGE= SYSTEM) or not
(LINKAGE= SVC).

When the caller is not in cross memory mode (the primary, secondary, and home
address spaces are the same), use LINKAGE= SVC. With this parameter, linkage is
through an SVC instruction.

When the caller is in cross memory mode (the primary, secondary, and home address
spaces are not the same), use LINKAGE= SYSTEM. With this parameter, linkage is
through a PC instruction. Note that the ECB must be in the home address space.

,RELATED=va/ue
specifies information used to self-document macros by "relating" functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macros
that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

The RELATED parameter may be used, for example, as follows:

WAITl WAIT l,ECB=ECB,RELATED=(RESUMEl,

RESUMEl POST

'WAIT FOR EVENT')

ECB,0,RELATED=(WAITl,
'RESUME WAiTER' j

Note: Each of these macros will fit on one line when coded, so there is no need for a
continuation indicator.

,EUT = NOSAVE
,EUT=SAVE

specifies whether EUT FRRs, if present, should be preserved around the WAIT
processing. Specify this keyword only if you specify LINKAGE= SYSTEM.

CAUTION:
A job step with all of Its tasks in a WAIT condition is terminated upon expiration of the time
limits that apply to it.

Example: You have previously initiated one or more activities to be completed
asynchronously to your processing. As each activity was initiated, you set up an ECB in
which bits 0 and 1 were set to 0. You now wish to suspend your task via the WAIT macro
until a specified number of these activities have been completed.

Completion of each activity must be made known to the system via the POST macro. POST
causes an addressed ECB to be marked complete. If completion of the event satisfies the
requirements of an outstanding WAIT, the waiting task is marked ready and will be executed
when its priority allows.

784 SPL: Application Development Macro Reference

Example 1
Operation: Wait for one event to occur (with a default count).

WAIT ECB=WAITECB

WAITECB DC F'O'

Example 2
Operation: Wait for 2 events to occur.

WAIT 2,ECBLIST=LISTECBS

LISTECBS DC A(ECBl)
DC A(ECB2)
DC X'80'
DC AL3(ECB3)

Example 3
Operation: Enter a long wait for a task.

WAIT 1,ECBLIST=LISTECBS,LONG=YES

LISTECBS DC A(ECBl)
DC A(ECB2)
DC X'80'
DC AL3(ECB3)

WAIT-Wait for One or More Events 785

786 SPL: Application Development Macro Reference

WTL - Write To Log

©Copyright IBM Corp. 1988, 1991

Note: IBM recommends you use the WTO macro with the MCSFLAG = HRDCPY parameter
instead of WTL, because WTO supplies more data than WTL.

The WTL macro causes a message to be written to the system log. The message can
include any character that can be used in a C-type (character) DC statement, and is
assembled as a variable-length record.

The description of the WTL macro follows. The WTL macro is also described in Application
Development Macro Reference with the exception of the OPTION parameter. The use of the
OPTION parameter is restricted to users who are authorized (APF-authorized, in system key
0-7, or in supervisor state). If the OPTION keyword is used by a non-authorized user, it is
ignored.

Note: The exact format of the output of the WTL macro varies depending on the job entry
subsystem (JES2 or JESS) that is being used, the output class that is assigned to the log at
system initialization, and whether DLOG is in effect for JESS. In JESS, system log entries
are preceded by a 2S-character prefix that includes a time stamp and routing information. If
the combined prefix and message exceeds 126 characters, the log entry is truncated at the
first blank or comma encountered when scanning backward from the 126th character of the
combined prefix and message. See Operations: JES3 Commands for information about the
format of the log entry when using JESS.

The standard form of the WTL macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede WTL.

WTL

b One or more blanks must follow WTL.

'msg' msg: Up to 126 characters if OPTION= NOPREFIX is specified.
Up to 128 characters if OPTION= PREFIX is specified.

,OPTION= PREFIX
,OPTION= NOPREFIX

DelauH: OPTION= NOPREFIX

The parameters are explained as follows:

'msg'
specifies the message to be written to the system log. The message must be enclosed
In apostrophes, which will not appear in the system log. See Figure 27 for a list of the
printable EBCDIC characters passed to display devices or printers.

Note: If the msg text exceeds 126 characters, truncation occurs at the last embedded
blank before the 126th character; when there are no embedded blanks, truncation
occurs after the 126th character.

787

,OPTION• PREFIX
,OPTION== NOPREFIX

specifies whether the WTL text contains a prefix identifying the system log record. If
PREFIX is specified, the text already contains a prefix. If NOPREFIX is specified or if
this parameter is omitted, a 2-character prefix will be added by the control program.
The OPTION keyword is ignored by any program running in the JES3 primary address
space.

Hex EBCDIC Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character Code Character
40 (space) 78 # 99 r 05 N
4A ¢ 7C @ A2 s 06 0
48 70 A3 t 07 p

4C < 7E A4 u 08 a
40 (7F A5 v 09 R
4E + 81 a A6 w E2 s
4F I 82 b A7 x E3 T
50 & 83 c AB y E4 u
5A 84 d A9 z E5 v
58 $ 85 e C1 A E6 w
5C 86 f C2 8 E7 x
50 87 g C3 c EB y

5E 88 h C4 0 E9 z
5F -. 89 C5 E FO 0
60 91 j C6 F F1 1
61 92 k C7 G F2 2
68 93 I ca H F3 3
6C % 94 m C9 I F4 4
60 95 n 01 J F5 5
6E > 96 0 02 K F6 6
6F ? 97 p 03 L F7 7
7A 98 q 04 M F8 8

F9 9
t=inuro ?7 r"horo,..f1:u·~ Drinforl nr nic-nlotu:u4 nn an AAr:_C: r.nnc-n/o
• •::r -·. _ ·--·-·- , _ -·-,.,·-1-- _,. _. --··--·-

Notes:

1. If the display service or printer is defined to JES3, the following characters are
translated to blanks:

11. . II
•I-,•

2. The system recognizes the following hexadecimal representations of the U.S. national
characters:@ as X'7C'; $as X'58'; and# as X'78'. In countries other than the U.S., the
U.S. national characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the$
character generates a X'4A'.

When control is returned, register 15 contains one of the following return codes:

• 00 - Successful completion.
• 04 - WTL processing was not successful. Register O contains one of the following

reason codes:
04- Recovery could not be established.
08 - System log is not active.
12 - WTL limit reached.
16- Record size too small.

788 SPL: Application Development Macro Heference

Example 1
Operation: Write a message to the system log.

WTL 'THIS IS THE STANDARD FORMAT FOR THE WTL MACRO'

Example 2
Operation: Write a message to the system log specifying a prefix to identify the system log
record.

WTL 'QL THIS FORMAT OF THE WTL USES THE OPTION KEYWORD',OPTION=PREFIX

WTL - Write To Log 789

WTL (List Form)

The list form of the WTL macro Is used to construct a control program parameter llst. The
message parameter must be provided in the list form of the macro.

The list form of the WTL macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede WTL.

WTL

b One or more blanks must follow WTL.

'msg' msg: Up to 126 characters.

,MF=L

The 'msg' parameter is explained under the standard form of the WTL macro. The OPTION
keyword is not permitted on the list form of the WTL macro. A description of the MF
parameter follows:

,MF•L
specifies the list form of the WTL macro.

Note: If msg text exceeds 126 characters, truncation occurs at the last embedded blank
before the 126th character; when there are no embedded blanks, truncation occurs after the
126th character.

Example
Operation: Build a parameter list for a message to be written to the system log.

LOGMSG WTL I FUNCTION xxx COMPLETE I ,MF=L

790 SPL: Application Development Macro Reference

WTL (Execute Form)

The execute form of the WTL macro uses a remote control program parameter list. The
parameter list can be generated by the list form of WTL. You cannot modify the message In
the execute form.

The execute form of the WTL macro is written as follows:

name

b

WTL

b

MF= (E,ctr/ addr)

,OPTION= PREFIX
,OPTION= NOPREFIX

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

ctr/ addr: RX-type address, or register (1) or (2) - (12).

Default: OPTION= NOPREFIX

The OPTION parameter is explained under the standard form of the WTL macro; this
parameter is explained as follows:

MF= (E,ctr/ addr)
specifies the execute form of the WTL macro. This form uses a remote control program
parameter list.

Example
Operation: Write a message constructed in the list form of WTL.

WTL MF=(E,LOGMSG)

WTL - Write To Log 791

792 SPL: Application Development Macro Reference

WTO - Write to Operator

©Copyright IBM Corp. 1988, 1991

The WTO macro causes a message to be written to one or more operator consoles.

An authorized user (supervisor state with protection key 0-7) can issue a multiple line WTO
message of up to 255 lines with one WTO macro. If you are coding more than one multiple
line message, and you want to connect the messages, you must ensure that the left-most
three bytes of register 0 are set correctly. For the first request (of up to 255 lines), these
three bytes must be zero. For subsequent requests, the first three bytes of register O may
contain the message identifier that the WTO service routine returns in register 1 after the
first request. The CONNECT parameter provides another way to connect multi line WTO
messages. Therefore, an authorized user can actually issue connect messages that total
more than 255 lines.

Do not use the MSGTYP parameter unless you are familiar with multiple console service
(MCS), because using this parameter improperly might interfere with the message routing
scheme.

The standard form of the WTO macro is written as follows:

name

b

WTO

b

'msg'
('text')
('text',line type)
('text',line type,. . .,
'text',line type)

,ROUTCDE =(routing code)

,DESC =(descriptor code)

,AREAID =id char

,MSGTYP = (msg type)

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 126 characters.
text: Up to 126 characters.
Note: 'msg' or ('text ... ') must be the first parameter you code.
The permissible line types, text lengths, and maximum
numbers are shown below:
line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

E
or
None 1 E type

The maximum total number of lines that can be coded in one
instruction is 255.

routing code: decimal digit from 1 to 128. The routing code is
one or more codes, separated by commas, or a hyphen to
indicate a range.

descriptor code: decimal digit from 1to11. The descriptor
code is one or more codes, separated by commas.

id char: alphabetic character A - J, Z.

msg type: any of the following

N
y

SESS
JOBNAMES
STATUS

SESS,JOBNAMES
SESS,STATUS
JOBNAMES,STATUS
SESS,JOBNAMES,STATUS

793

,MCSFLAG =(flag name)

,CONNECT= connect field

,CONSID =console Id

,KEY=key

,TOKEN= token

flag name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST
CMD

HRDCPY
QREGO
NOTIME
NOC PY
BUSY EXIT

connect field: RX-type address or register (2) - (12)

console id: RX-type address or register (2) - (12)

key: RX-type address or register (2) - (12)

token: RX-type address or register (2) - (12)

The parameters are explained as follows:

'msg'
('text')
('text',llne type)
('text',llne type, ... , 'text',llne type)

c

L

specifies the message or multiple-line message to be written to one or more operator
consoles.

The first format is used to write a single-line message to the operator. In the format,
the message must be enclosed In apostrophes, which do not appear on the console. It
can Include any character that can be used In a character (C-type) DC Instruction.
When a program issues a WTO macro, the system translates the text; only standard
printable EBCDIC characters, shown in Figure 27 on page 788 are passed to the
display devices. All other characters are replaced by blanks. If the terminal does not
have dual-case capabillty, it prints lowercase characters as uppercase. The message
is assembled as a variable-length record.

The second and third formats are used to write a muitipie-iine message to the operator.
For a problem program the message can be up to ten lines long; the system truncates
the message at the end of the tenth line. The ten-line limit does not include the control
line (message IEE9321). as explained under line type C below. The message can be up
to 255 lines long for an authorized program.

Note: If the second format is coded without repetition, for example, ('text'), the
message appears as a single-line message.

The text is one line of the multiple-line message. A line consists of a character string
enclosed in apostrophes (which do not appear on the operator console). Any character
valid in a C-type DC instruction can be coded. The maximum number of characters
depends on which line type is specified.

The line type defines the type of information contained in the 'text' field of each line of
the message:

indicates that the 'text' parameter is the text to be contained in the control line of the
message. The control line normally contains a message title. C may only be coded for
the first line of a multiple-line message. If this parameter is omitted and descriptor
code 9 is coded, the system generates a control line (message IEE9321) containing only
a message identification number. The control line remains static during framing
operations on a display console (provided that the message is displayed in an
out-of-line display area). Control lines are optional.

indicates that the 'text' parameter is a label line. Label lines contain message heading
information; they remain static during framing operations on a display console
(provided that the message is displayed in an out-of-line display area). Label lines are
optional. If coded, lines must either immediately follow the control line or another label

794 SPL: Application Development Macro Reference

D

line or be the first line of the multiple-line message if there is no control line. Only two
label lines may be coded per message. See "Embedding Label Lines In a Multlline
Message" in SPL: Application Development Gulde for additional information about how
to include multiple label lines within a message.

indicates that the 'text' parameter contains the information to be conveyed to the
operator by the multiple-line message. During framing operations on a display
console, the data lines are paged.

DE

E

indicates that the 'text' parameter contains the last line of information to be passed to
the operator. Specify DE on the last line of text of the WTO. If there is no text on the
last line, specify E.

indicates that the previous line of text was the last line of text to be passed to the
operator. The 'text' parameter, If any, coded with a line type of E Is Ignored. Specify E
on the last line of the WTO If that line has no text. If the last line has text, specify DE.

,ROUTCDE - (routing code)
specifies the routing code(s) to be assigned to the message.

The routing codes are:

Me11age Definition
Routing
Code

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM or customer-defined subsystem use
29-41 Reserved for IBM
42 General information about JES2 or JES3
43-64 Reserved for JES2 or JES3
65-96 Messages associated with particular processors
97-128 Messages associated with particular devices

If you omit the ROUTCDE, DESC, and CONSID keywords, the system uses the routing
code specified on the ROUTCODE keyword on the DEFAULT statement in the
CONSOLxx member of SYS1 .PARM LIB.

Note: Routing codes 1, 2, 3, 4, 7, 8, 10, and 42 cause hard copy of the message when
display consoles are used, or more than one console is active. All other routing codes
may go to hard copy as a PARMLIB option or as a result of a VARY HARDCPY
command.

WTO - Write to Operator 795

,DESC =(descriptor code)
specifies the message descriptor code(s) to be assigned to the message. Descriptor
codes 1 through 6 and descriptor code 11 are mutually exclusive. Codes 7 through 10
can be assigned in combination with any other code.

The descriptor codes are:

System failure 8
2 Immediate action required 9
3 Eventual action required 10
4 System Status 11
5 Immediate command response
6 Job status
7 Retain action message for life-of-task

Out-of-line message
Operator request
Dynamic status displays
Critical eventual action requested

All WTO messages with descriptor codes 1, 2, 3, or 11 are action messages that have
an @or• sign displayed before the first character of the message. This indicates a
need for operator action. On operator consoles that support color, descriptor codes
determine the color in which a message should be displayed. The colors used for
different descriptor codes are described in Operations: System Commands.

The system holds messages with descriptor codes 1, 2, 3, or 11 until you delete them.
When you no longer need messages with descriptor codes 1, 2, 3, or 11, you should
delete those messages using the DOM macro. If messages with descriptor codes 1, 2,
3, or 11 also have descriptor code 7, the system deletes them automatically at task
termination.

,AREAID =id char
specifies a display area of the console screen on which a multiple-line message is to
be written. This parameter is meaningful only for out-of-line MLWTO messages that are
to be sent to display consoles.

The character Z designates the message area (the screen's general message area,
rather than a defined display area); it is assumed nothing is specified.

Notes:

1. When you specify AREAID, you must specify descriptor codes 8 and 9.

2. If this parameter specifies an area, the area could be overlaid by a currently
running dynamic display. Support for queuing messages with descriptor code 8 is
by console id only.

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and TSO
terminal in operator mode that issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is identified by the
operating system, the message is routed only to those consoles that requested the
information.

For Y or N, the message type specifies whether flags are to be set in the WTO macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates
that the message is to be routed as specified in the ROUTCDE parameter.

796 SPL: Application Development Macro Reference

,MCSFLAG ==(flag name)
specifies one or more flag names whose meanings are shown below:

Figure 28. MCSFLAG Flag Names

Flag Name

REGO

RESP

REPLY

BRDCST

HRDCPY

QREGO

NOTIME

NOC PY

CMD

BUSYEXIT

Meaning

Queue the message to the console whose source ID is passed in register 0.
You can use register 0 to pass a 1-byte console ID (right-justified and padded
to the left with zeros) to identify the console to receive the message.
However, IBM recommends you use the CONSID parameter instead of register
0.

The WTO is an immediate command response.

This WTO is a reply to a WTOR.

Broadcast the message to all active consoles.

Queue the message for hard copy only.

Queue the message unconditionally to the console whose source ID is passed
in register 0. You can use register 0 to pass a 1-byte console ID (right-justified
and padded to the left with zeros) to identify the console to receive the
message. However, IBM recommends you use the CONSID parameter instead
of register 0.

Do not append time to the message.

Do not queue the message for hard copy.

The WTO is a recording of a system command issued for hardcopy log
purposes.

If there are no message or console buffers for either MCS or JES3, or there is
a JES3 WTO staging area excess, the WTO is terminated with a X' 20' return
code and a reason code, in register 0, equal to the number of active WTO
buffers for the issuer's address space. If BUSYEXIT is not specified, the WTO
will go into a wait state if WTO buffers are not available.

,CONNECT== connect field
specifies a field containing the 4-byte message number of the previous WTO that this
WTO is to be connected to. This message number is obtained as an output parameter
(returned in register 1) from the previous WTO. This parameter is mutually exclusive
with the CONSID parameter, and it is valid only for continuation of multiple-line
messages. When this parameter is specified in the list form, it must be coded as
CONNECT= with nothing after the=.

Note: You can still use register 0, mentioned at the beginning of the WTO macro
description, to connect WTO messages. If you specify both, however, the system uses
the CONNECT parameter. It is recommended that new users use the CONNECT
parameter.

,CONSID =console id
specifies a 4-byte field containing the ID of the console to receive a message. Use this
ID in place of a console ID in register 0. If you specify a 4-byte console ID, you must
use CONSID instead of register 0. If you specify a 1-byte console ID, you must right
justify and pad to the left with zeros.

Notes:

1. If you code the CONSID parameter using a register, the register must contain the
console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTO, code it as CONSID= with nothing
after the =.

3. Do not use both CONSID and register Oto pass a console ID, because the results
are unpredictable. Be sure to clear the low-order byte of register O if you add the
CONSID parameter to an existing invocation of WTO.

4. CONSID is mutually exclusive with the CONNECT parameter.

WTO - Write to Operator 797

,KEY=key
specifies a field containing an 8-byte key to be associated with this message. The key
must be EBCDIC if used with the MVS DISPLAY R command for retrieval purposes, but
it must not be'*'. If a register is used, it contains the address of the key. When this
parameter is specified in the list form, it must be coded as KEY= with nothing after the

,TOKEN= token
specifies a field containing a 4-byte token to be associated with this message. This field
is used to identify a group of messages that can be deleted by a DOM macro that
includes TOKEN. The token must be unique within an address space. When this
parameter is specified in the list form, it must be coded as TOKEN= with nothing after
the=.

Note: If you code the TOKEN parameter using a register, the register must contain the
token itself, rather than the address of the token.

Register Information
After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the caller issued the
macro. Therefore, if the caller depends on these registers containing the same value
before and after issuing the macro, the caller must save these registers before issuing the
macro and restore them after the system returns control.

When the WTO macro returns control, the output registers contain the following values:

Register Contents
0 Used as a work register by the macro.
1 Message identification number if the WTO macro completed normally. If you

are using the CONNECT parameter to connect WTO messages, store this
value in the 4-byte CONNECT field and set register 1 to zero. Otherwise,

2-13
14
15

register 1 is used as a work register by the macro.
Unchanged.
Used as a work register by the macro.
Return coae.

Upon return from the WTO macro, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

20

30

798 SPL: Application Development Macro Reference

Meaning

No errors encountered.

Number of lines passed was O; request is ignored. Number of lines passed was
greater than 255 and you did not specify the CONNECT parameter; only 255 lines
are processed. Message text length for a line was less than 1; all lines up to error
line are processed.

Connecting message ID passed in register O does not match any on queue.
Request is ignored.

Line type not valid. An end has been forced at the point of the error except if the
first line is an E line, in which case the request is ignored.

WTO processing has been terminated since it would have caused a wait state, and
BUSYEXIT was specified. Register 0 contains the reason code, the number of
active WTO buffers for the issuer's address space.

Required resource for routing code 11 was not available. Request is ignored for
routing code 11; if any other routing code is specified, the request is processed.

Noles:

1. You must clear register O except under the following circumstances:

• You are using register Oto pass a 1-byte console ID (right-justified and padded to the
left with zeros) with MCSFLAG =REGO. However, IBM recommends using the
CONSID parameter rather than register 0.

• You are using register 0 to pass a message identifier to connect multiple-line
messages. However, IBM recommends using the CONNECT parameter rather than
register 0.

2. If the list and execute forms of the WTO macro are in separate modules, both modules
must be assembled or compiled with the same level of WTO.

3. If the execute form of the macro specifies CONNECT, CONSID, KEY,or TOKEN then the
list form, to ensure that the parameter list is generated correctly, must specify the same
parameter(s) without data. If data is specified, the system issues an MNOTE and
ignores the data.

4. For any WTO parameters that allow a register specification, the value must be
right-justified in the register.

Example 1
Operation: Issue a WTO that describes a situation that must be resolved immediately. The
message must appear on the master console and the system maintenance console as an
immediate action message.

WTO 'THIS IS AN IMMEDIATE ACTION MESSAGE',ROUTCDE=(l,10),DESC=(2)

Example 2
Operation: Issue a message that is the response to a command. The message must
appear only on the console that entered the command. Prior to issuing the WTO, the
issuing console's identifier must be placed in register 0.

WTO 'THIS IS A COMMAND RESPONSE',DESC=(5),MCSFLAG=(REG0,RESP)

WTO - Write to Operator 799

WTO (List Form)
The list form of the WTO macro is used to construct a control parameter list.

The list form of the WTO macro is written as follows:

name

b

WTO

b

'msg'
('text')
('text',line type)
('text',line type, .. .,
'text',line type)

,ROUTCDE =(routing code)

,DESC=(descriptor code)

,AREAID=/d char

,MSGTYP = (msg type)

,MCSFLAG =(flag name)

,CONNECT=

,CONSID=

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 126 characters.
text: Up to 126 characters.
Note:'msg' or ('text ... ') must be the first parameter you code.
The permissible line types, text lengths, and maximum
numbers are shown below:
line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

E
or
None 1 E type

The maximum total number of lines that can be coded In one
instruction Is 255.

routing code: decimal digit from 1 to 128. The routing code is
one or more codes, separated by commas, or a hyphen to
indicate a range.

descriptor code: decimal digit from 1 to 11. The descriptor
code is one or more codes, separated by commas.

id char: alphabetic character A - Z.

msg type: any of the following

N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

flag name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST
CMD

HR DC PY
QREGO
NOTIME
NOC PY
BUSYEXIT

Parameter value not required for list form. Code only
,CONNECT=.
If you code CONNECT on the list form of WTO, you must code
CONNECT on the execute form.

Parameter value not required for list form. Code only
,CONSID=.
If you code CONSID on the list form of WTO, you must code
CONSID on the execute form.

800 SPL: Application Development Macro Reference

,KEY=

,TOKEN=

,MF=L

Parameter value not required for list form. Code only ,KEY=.
If you code KEY on the list form of WTO, you must code KEY on
the execute form.

Parameter value not required for list form. Code only
,TOKEN=. .
If you code TOKEN on the list form of WTO, you must code
TOKEN on the execute form.

The parameters are explained under the standard form of the WTO macro with the following
exception:

,MF=L
specifies the list form of the WTO macro.

WTO - Write to Operator 801

WTO (Execute Form)
The execute form of the WTO macro uses a remote control parameter list. The parameter
list can be generated by the list form of WTO. The message cannot be modified on the
execute form of the macro.

The execute form of the WTO macro is written as follows:

name

b

WTO

b

CONNECT= connect field

,CONSID =console id

,KEY=key

,TOKEN= token

,MF= (E,ctrl addr)

name: symbol. Begin name In column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

connect field: RX-type address or register (2) - (12)
If you code CONNECT on the execute form of WTO, you must
code CONNECT on the list form.

console id: RX-type address or register (2) - (12)
If you code CONSID on the execute form of WTO, you must
code CONSID on the list form.

key: RX-type address or register (2) - (12)
If you code KEY on the execute form of WTO, you must code
KEY on the list form.

token: RX-type address or register (2) - (12)
If you code TOKEN on the execute form of WTO, you must code
TOKEN on the list form.

ctr/ addr: RX-type address, or register (1) - (12).

This parameter is explained under the standard form of the WTO macro, with the following
exceptions:

,MF .. (E, ctr/ addr)
specifies the execute form of the WTO macro. ctr/ addr defines the area into which the
system stores the parameter list.

Example
Operation: Write a message with a pre-built parameter list pointed to by register 1.

WTO MF=(E,(1))

802 SPL: Application Development Macro Reference

WTOR - Write to Operator with Reply

© Copyright IBM Corp. 1988, 1991

The WTOR macro causes a message requiring a reply to be written to one or more operator
consoles and the hardcopy log. The macro also provides the information required by the
system to return the reply to the issuing program.

For information about how to select a macro for an MYS/SP version other than the current
version, see" Selecting the Macro Level" on page 1.

Do not use the MSGTYP parameter unless you are familiar with multiple console service
(MCS), because using this parameter improperly could impede the entire message routing
scheme.

The standard form of the WTOR macro is written as follows:

name

b

WTOR

b

'msg',reply addr,reply
length,ecb addr

,ROUTCDE =(routing code)

,MSGTYP= (msg type)

,MCSFLAG =(flag name)

,CONSID=conso/e id

,KEY=key

,TOKEN= token

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: Up to 122 characters.
reply addr: A-type address, or register (2) - (12).
reply length: symbol, decimal number, or register (2) - (12).
The minimum length is 1; the maximum length is 119.
ecb addr: A-type address, or register (2) - (12).

Note: 'msg',reply addr,reply length,ecb addr must be the tirst
parameter you code.

routing code: decimal digit from 1 to 128. The routing code is
one or more codes, separated by commas, or a hyphen to
indicate a range.

msg type: any of the following:

N
y
SESS
JOBNAMES
STATUS

SESS,JOBNAMES
SESS,STATUS
JOBNAMES,STATUS
SESS,JOBNAMES,ST ATUS

flag name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST
CMD

HRDCPY
QREGO
NOTIME
NOC PY

console id: RX-type address or register (2) - (12)

key: RX-type address or register (2) - (12)

token: RX-type address or register (2) - (12)

803

The parameters are explained as follows:

'msg', reply addr,reply length, ecb addr
'msg' specifies the message to be written to the operator's console. The message must
be enclosed in apostrophes, which do not appear on the console. It can include any
character that can be used in a character (C-type) DC instruction. When a program
issues a WTOR macro, the system translates the text; only standard printable EBCDIC
characters are passed to the display devices. See Figure 27 on page 788 for a list of
the printable EBCDIC characters. All other characters are replaced by blanks. If the
terminal does not have dual-case capability, it prints lowercase characters as
uppercase. The message is assembled as a variable-length record.

Note: All WTOR messages are action messages. An indicator appears before the first
character of an action message to indicate a need for operator action. The system
assigns descriptor code 7 to every WTOR message. Descriptor code 7 causes the
message to be retained until task termination unless you receive a reply or you delete
the message with the DOM macro. You should delete any unanswered WTOR
messages that are no longer current.

reply addr specifies the address in virtual storage of the area into which the system is
to place the reply. The reply is left-justified at this address.

reply length specifies the length, in bytes, of the reply message.

ecb addr specifies the address of the event control block (ECB) to be used by the
system to indicate the completion of the reply and the id of the replying console. After
the system receives the reply, the ECB appears as follows:

Offset Length(bytes) Contents
O 1 Completion code
1 2 Reserved
3 Console ID in hexadecimal (If you code a 4-byte console ID on

the CONSID parameter, you will receive only the
low-order byte.)

,ROUTCDE =(routing code)
specifies the routing code(s) to be assigned to the message.

The routing codes are:

Message Definition
Routing
Code

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM or customer-defined subsystem use
29-41 Reserved for IBM
42 General information about JES2 or JES3
43-64 Reserved for JES2 or JES3
65-96 Messages associated with particular processors
97-128 Messages associated with particular devices

If you omit the ROUTCDE and CONSID keywords, the system uses the routing code
specified on the ROUTCODE keyword on the DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.

804 SPL: Application Development Macro Reference

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and TSO
terminal in operator mode that issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is identified by the
operating system, the message is routed only to those consoles that requested the
information.

For Y or N, the message type specifies whether flags are to be set in the WTOR macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates
that the message is to be routed as specified in the ROUTCDE parameter.

,MCSFLAG =(flag name)
specifies one or more flag names whose meanings are shown below:

Figure 29. MCSFLAG Flag Names

Flag Name

REGO

RESP

REPLY

BRDCST

HR DC PY

QREGO

NOT I ME

NOCPY

CMD

Meaning

Queue the message to the console whose source ID is passed in register 0. You
can use register Oto pass a 1-byte console ID (right-justified and padded on the
left with zeros) to identify the console to receive the message. However, IBM
recommends you use the CONSID parameter instead of register 0.

The WTOR is an immediate command response.

This is a reply to a WTOR.

Broadcast the message to all active consoles.

Queue the message for hard copy only.

Queue the message unconditionally to the console whose source ID is passed in
register 0. You can use register Oto pass a 1-byte console ID (right-justified and
padded on the left with zeros) to identify the console to receive the message.
However, IBM recommends you use the CONSID parameter instead of register 0.

Do not append lime to the message.

Do not queue the message for hard copy.

The WTOR is a recording of a system command issued for hardcopy log
purposes.

,CONSID = console id
specifies a 4-byte field containing the ID of the console to receive a message. Use this
ID in place of a console ID in register 0. If you specify a 4-byte console ID, you must
use CONSID instead of register 0. If you specify a 1-byte console ID, you must right
justify and pad to the left with zeros.

Notes:

1. If you code the CONSID parameter using a register, the register must contain the
console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTOR, code it as CONSID = with nothing
after the =.

3. Do not use both CONSID and register Oto pass a console ID, because the results
are unpredictable. Be sure to clear the low-order byte of register 0 if you add the
CONSID parameter to an existing invocation of WTOR.

,KEY=key
specifies a field containing an 8-byte key to be associated with this message. The key
must be EBCDIC if used with the MVS DISPLAY R command for retrieval purposes, but
it must not be'*'. If a register is used, it contains the address of the key. When this
keyword is specified in the list form, it must be coded as KEY= with nothing after the

,TOKEN= token
specifies a field containing a 4-byte token to be associated with this message. This field
is used to identify a group of messages that can be deleted by a DOM macro that
includes TOKEN. The token must be unique within an address space. When this

WTOR - Write to Operator with Reply 805

keyword is specified in the list form, it must be coded as TOKEN= with nothing after
the=.

Note: If you code the TOKEN parameter using a register, the register must contain the
token itself, rather than the address of the token.

Register Information
After the caller issues the macro, the macro might use some registers as work registers or
might change the contents of some registers. When the macro returns control to the caller,
the contents of these registers are not the same as they were before the caller issued the
macro. Therefore, if the caller depends on these registers containing the same value
before and after issuing the macro, the caller must save these registers before Issuing the
macro and restore them after the system returns control.

When the WTOR macro returns control, the output registers contain the following values:

Register Contents
0 Used as a work register by the macro.
1 Message Identification number if the WTOR macro completed normally;

otherwise, used as a work register by the macro.
2·13 Unchanged.
14 Used as a work register by the macro.
15 Return code.

Upon return from the WTOR macro, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

Meaning

No errors encountered.

Number of lines passed was O; request is ignored. Message text length for a line
was less than 1; all lines up to the error line are processed.

Notes:

1. The caller must clear register 0 unless using register 0 to pass a 1-byte console ID
(right-justified and padded to the left with zeros) with MCSFLAG =REGO. However, IBM
recommends using the CONSID parameter rather than register 0.

2. If the list and execute forms of the WTOR macro are in separate modules, both modules
must be assembled or compiled with the same level of WTOR.

3. If the execute form of the macro specifies CONSID, KEY, or TOKEN then the list form, to
ensure that the parameter list is generated correctly, must specify the same
parameter(s) without data. If data is specified, the system issues an MNOTE and
ignores the data.

4. For any WTOR keywords that allow a register specification, the value must be
right-justified in the register.

Example
Operation: Send a WTOR to a console whose ID is in register 4. This example assumes that
the values in fields REPLY and REPECB have previously been set.

USING *,Rl2
*

* ISSUE A WTOR TO A CONSOLE WHOSE ID IS IN REGISTER 4. *

WTOR 'USR902A REPLY YES OR NO TO CONTINUE.' ,REPLY,Ll0,REPECB,X
CONS ID= (R4)

L10 EQU 10
REPLY DS CL10
REPECB DS F

END

806 SPL: Application Development Macro Reference

WTOR (List Form)
The list form of the WTOR macro is used to construct a control parameter list.

The list form of the WTOR macro is written as follows:

name

b

WTOR

b

'msg',reply addr,reply
length,ecb addr

,ROUTCDE= (routing code)

,MSGTYP=(msg type)

,MCSFLAG ={flag name)

,CONSID=

,KEY=

,TOKEN=

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: Up to 122 characters.
reply addr: A-type address, or register (2) - (12).
reply length: symbol, decimal number, or register (2) - (12).
The minimum length is 1; the maximum length is 119.
eob addr: A-type address, or register (2) - (12).

Notes:

1. 'msg',reply addr,rep/y length,eob addr must be the first
parameter you code.

2. If you do not code reply addr on the list form of WTOR,
mark its position with a comma, and code reply addr on
the execute form. The same is true for reply length and
eob addr.

routing code: decimal digit from 1 to 128. The routing code is
one or more codes, separated by commas, or a hyphen to
indicate a range.

msg type: any of the following:

N
y

SESS
JOBNAMES
STATUS

SESS,JOBNAMES
SESS,STATUS
JOBNAMES,STATUS
SESS,JOBNAMES,STATUS

flag name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST
CMD

HRDCPY
QREGO
NOTIME
NOC PY

Parameter value not required for list form. Code only
,CONSID=.
If you code CONSID on the list form of WTOR, you must code
CONSID on the execute form.

Parameter value not required.for list form. Code only ,KEY=.
If you code KEY on the list form of WTOR, you must code KEY
on the execute form.

Parameter value not required for list form. Code only
,TOKEN=.
If you code TOKEN on the list form of WTOR, you must code
TOKEN on the execute form.

WTOR - Write to Operator with Reply 807

The parameters are explained under the standard form of the WTOR macro with the
following exception:

,MF•L
specifies the list form of the WTOR macro.

808 SPL: Application Development Macro Reference

WTOR (Execute Form)
The execute form of the WTOR macro uses a remote control parameter list. The parameter
list can be generated by the list form of WTOR. The message cannot be modified on the
execute form of the macro.

The execute form of the WTOR macro is written as follows:

name

b

WTOR

b

reply addr,reply length,ecb addr

,CONSID=console id

,KEY=key

,TOKEN= token

, MF= (E,ctrl addr)
,MF= (E,ctr/ addr,EXTENDED)

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

reply addr: A-type address, or register (2) - (12).
reply length: symbol, decimal number, or register (2) - (12).
The minimum length is 1; the maximum length is 119.
ecb addr: A-type address, or register (2) - (12).

Notes:

1. reply addr,reply length,ecb addr must be the first
parameter you code.

2. If you do not code reply addr on the execute form of WTOR,
mark its position with a comma, and code reply addr on
the list form. The same is true for reply length and ecb
addr.

console id: RX-type address or register (2) - (12)
If you code CONSID on the execute form of WTOR, you must
code CONSID on the list form.

key: RX-type address or register (2) - (12)
If you code KEY on the execute form of WTOR, you inust code
KEY on the list form.

token: RX-type address or register (2) - (12)
If you code TOKEN on the execute form of WTOR, you must
code TOKEN on the list form.

ctr/ addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the WTOR macro, with the
following exception:

,MF ... (E,ctr/ addr)
,MF• (E,ctr/ addr,EXTENDED)

specifies the execute form of the WTOR macro. ctr/ addr defines the area into which
the system stores the parameter list.

If you specify reply addr, reply length, or ecb addr on the execute form of WTOR,
together with any of the following parameters, you must specify EXTENDED for the
system to generate the parameter list correctly:

KEY
TOKEN
CONS ID

WTOR - Write to Operator with Reply 809

Example
Operation: Using the list and execute forms of the WTOR macro, send a message to the
console whose ID was previously defined in field CONSVAL. This example assumes that
fields REPECB and REPAREA have also been previously set.

LlG EQU 10
USING *,R12
WTOR ,,,,MF=(E,MSGLIST),CONSIO=CONSVAL

MSGLIST WTOR

CONSVAL OS
REPECB OS
REPAREA OS

ENO

810 SPL: Application Development Macro Heference

'USR456A CONFLICTING VALUES SPECIFIED, SECOND VALUE IGNOX
RED, PLEASE CONFIRM (YES OR NO)',REPAREA,LlG,REPECB, X
CONS ID=, MF=L
F
F
CLlG

Appendix A. List of the Names of Macros Intended for Customers Use

The macros identified in this appendix are provided to allow a customer installation to write
programs that use the services of MVS. Only those macros identified in this appendix
should be used to request or receive the services of MVS.

Some macros are listed as both general-use and product-sensitive programming interfaces.
These macros have general-use and product-sensitive keywords, fields, or parameters.

General-Use Programming Interfaces

Executable Macros

©Copyright IBM Corp. 1988, 1991

The macros listed in this topic are general-use programming interfaces intended for
customer use. Some macros have keywords, fields, or parameters that are designed for
IBM internal use only. Such keywords, fields, or parameters are not part of the
programming interfaces for use by customers in writing programs that request or receive
the services of MVS. Please refer to the appropriate MVS product documentation for the
correct classification and use of keywords, fields, and parameters for macros.

This section lists the executable macros that are general-use programming interfaces for
the control program. The standard, execute, list, and modify forms of the macros are
programming interfaces.

Figure 30 (Page 1 of 3). General-Use Executable Macros

Name

ABEND
A LESE RV
A SC RE
ASDES
AS EXT
ATSET
ATTACH
ATTACHX
AX EXT
AXFRE
AXRES
AX SET
BLSABDPL
BLSACBSP
BLSADSY
BLSAPCQE
BLSQFXL
BLSQMDEF
BLSQMFLD
BLSQSHDR
BLSRDRPX
BLSRESSY
BLSRNAMP
BLSRPRD
BLSRPWHS
BLSRSASY
BLSRXMSP
BLSRXSSP
BLSUPPR2
CALL
CALLDISP
CALLRTM
CALLTSSR
CHANG KEY
CHAP
CIRB
CMDAUTH
COFCREAT
COFDEFIN
COFIDENT
COFNOTIF
COFPURGE
COFREMOV
COFRETRI

811

Figure 30 (Page 2 of 3). General-Use Executable Macros

Name

COFSDONO
CPOOL
CPUTIMER
CSRCESRV
CSVQUERY
CTRACE
DATOFF
DELETE
DEQ
DETACH
DIV
DOM
DSG NL
DSPSERV
DYNALLOC
ENQ
ESPIE
ESTAE
ESTAEX
ET CON
ETCRE
ET DEF
ETD ES
ETDIS
EVENTS
EXCP
EXCPVR
EXTRACT
FESTAE
FRACHECK
FREEMAIN
GETLINE
GETMAIN
GQSCAN
GTRACE
HSPSERV
IDENTIFY
IEFQMREQ
IEFSSREQ
IKJRLSA
IOSINFO
!OS!..OOK
ITTFMTB
LINK
LINKX
LLACOPY
LOAD
LOCASCB
LSEXPAND
LXFRE
LXRES
MGCR
MODESET
NIL
NUCLKUP
OIL
OUT ADD
OUTDEL
PCLINK
PG ANY
PGFIX
PGFIXA
PGFREE
PGFREEA
PG LOAD
PG OUT
PGRLSE
PG SER
POST
PTRACE
PURGE
PURGEDQ
PUTGET
PUTLINE
QEDIT
RACDEF
RACH ECK

812 SPL: Application Development Macro Reference

Figure 30 (Page 3 of 3). General-Use Executable Macros

Name

RACINIT
RACLIST
RACROUTE
RACSTAT
RACXTRT
RESERVE
RES MGR
RESTORE
RESUME
RETURN
RISGNL
SAVE
SCHEDULE
SCHEDXIT
SOU MP
SDUMPX
SETFRR
SETLOCK
SET RP
SMFCHSUB
SMFDETAL
SMFEWTM
SMFEXIT
SMFINTVL
SMFRTEST
SMFSUBP
SMFWTM
SNAP
SNAPX
SPIE
SPLEVEL
SPOST
SRBSTAT
SRBTIMER
SSA FF
STACK
STAE
STATUS
STAX
STIMER
STIMERM
STORAGE
SUSPEND
SVCUPDTE
SWAREQ
SYMREC
SYNCH
SYNCHX
SYSEVENT
SYSSTATE
TCBTOKEN
TCTL
TEST ART
TESTAUTH
TIME
TIMEUSED
TTIMER
T6EXIT
UCBDEVN
VRADATA
VSMLIST
VSMLOC
VSMREGN
WAIT
WTL
WTO
WTOR
XCTL
XCTLX

Appendix A. List of the Names of Macros Intended for Customers Use 813

Mapping Macros
This section lists the mapping macros that are general-use programming interfaces for the
control program. The data areas are programming interfaces or contain fields that are
programming interfaces.

Figure 31 (Page 1 of 3). General-Use Mapping Macros

Macro ID

AOSR
AHLFFAP
AHLWKAL
BLSABDPL
BLSACBSP
BLSADSY
BLSAPCQE
BLSQFXL
BLSRDATC
BLSRDATS
BLSRDATT
BLSRDRPX
BLSRESSY
BLSRNAMP
BLSRPRO
BLSRPWHS
BLSRSASY
BLSRXMSP
BLSRXSSP
BLSUPPR2
CVT
ICHPCGRP
ICHPISP
ICHPRCVT
I CHAR PF
ICHRUTKN
ICHSAFP
IEAVVTPC
IECOIOCM
IEESMCA
IEFAJCTB
IEFASCTB
IEFDOKEY
IEFDORC
!EFDOTU~ ... i
IEFJESCT
IEFJFCBN
IEFJFCBX
IEFJSBVT
IEFJSCVT
IEFJSIPL
IEFJSSIB
IEFJSSVT
IEFQMIDS
IEFQMNGR
IEFSSOBH
IEFSSSM
IEFSSVS
IEFTIOT1
IEFUCBOB
IEFVTSPL
IEFZB476
IEFZB400
IEFZB402
IEFZB505
IEFZB506
IEZCIB
IEZCOM
IEZEAECB
IEZJSCB
IEZMGCR
IEZWPL
IFASMFR
IGVVSMD
IHAABDPL
IHAACEE
IHAASCB
IHAASEO
IHAASSB
IHAASXB

Name

ADSR
FFAP
WKAL
BLSABDPL
BLSACBSP
BLSADSY
BLSAPCQE
BLSQFXL
BLSRDATC
BLSRDATS
BLSRDATT
BLSADRPX
BLSRESSY
BLSRNAMP
BLSRPRD
BLSRPWHS
BLSRSASY
BLSRXMSP
BLSRXSSP
BLSUPPR2
CVT
CGRP
ISP
RCVT
RRPF
RUT KN
SAFP
TPC
IOCOM
SMCA
JCT
SCT
IEFDOKEY
IEFDORC
!EFDCTUM
JESCT
JFCB
JFCBX

SSC VT
JSIPL
SSIB
SSVT
QMIDS
QMPA
SSOB
SSSM
ssvs
TIOT
UCB
VTSPL
EMPARMS
S99PARMS
IEFZB402
EPAL
EPAM
CIB
COM
EAECB
JSCB
MGCRPL
WPL

VSMD
ABO PL
ACEE
ASCB
ASEO
ASSB
ASXB

814 SPL: Application Development Macro Reference

Figure 31 (Page 2 of 3). General-Use Mapping Macros

Macro ID

IHADSAB
IHAECB
IHAEPIE
IHAETD
IHAFRRS
IHAIQE
IHAPCCA
IHAPCCAT
IHAPICA
IHAPIE
IHAPSA
IHAPSL
I HA PVT
IHARB
IHARMPL
IHASCB
IHASOST
IHASOWA
IHASMOLR
IHASRB
IHASSL
IHASVT
IHATQE
IHATRBPL
IHATREPL
IHATROB
IHATRVT
IHATTE
IHAVFPM
IHAVRA
IHAVSL
IKJCPPL
IKJCSOA
IKJCSPL
IKJDACB
IKJDAPL
IKJOAPOO
IKJOAP04
IKJDAP08
IKJOAPOC
IKJDAP10
IKJDAP14
IKJDAP18
IKJDAP24
IKJDAP28
IKJDAP2C
IKJDAP30
IKJDAP34
IKJECT
IKJEFFDF
IKJEFFGF
IKJEFFMT
IKJENDP
IKJGTPB
IKJIDENT
IKJIOPL
IKJKEYWO
IKJLSD
IKJNAME
IKJOPER
IKJPARM
IKJPGPB
IKJPOSIT
IKJPPL
IKJPSCB
IKJPTPB
IKJRSVWD
IKJSTPB
IKJSUBF
IKJTAIE
IKJTCB
IKJTERM
IKJTSMSG
IKJUPT
ISGRIB
ITTCTE
ITTCTSS

Name

OSAB
ECB
EPIE
ETDO
FARS
IOE
PCCA
PCCAVT
PICA
PIE
PSA
PSL
PVT
RB
RMPL
SCB
SDST
SOWA
SMOLA
SRB
SSL
SVT
TOE
TRBP
TREP
TROB
TRVT
TTE
VFPM
VRAMAP
VSL
CPPL
CSOA
CSPL
DAI RA CB
DAPL

ECT

GTPB

IOPL

LSD

PGPB

PPL
PSCB
PTPB

STPB

TAIE
TCB

UPT
RIB - RIBE
ITTCTE
CTSS

Appendix A. List of the Names of Macros Intended for Customers Use 815

Figure 31 (Page 3 of 3). General-Use Mapping Macros

Macro ID

ITTCTXI
MCHEAD

Name

CTXI
MC HEAD

Product-Sensitive Programming Interfaces

Executable Macros

Mapping Macros

The macros listed in this topic are product-sensitive programming interfaces intended for
customer use. Some macros have keywords, fields, or parameters that are designed for
IBM internal use only. Such keywords, fields, or parameters are not part of the
programming interfaces for use by customers in writing programs that request or receive
the services of MVS. Please refer to the appropriate MVS product documentation for the
correct classification and use of keywords, fields, and parameters for macros.

This section lists the executable macros that are product-sensitive programming interfaces
for the control program. The standard, execute, list, and modify forms of the macros are
programming interfaces.

Figure 32. Product-Sensitive Executable Macros

Name

CMDAUTH
DOM
RACDEF
RA CHECK
RACINIT
RACROUTE
RACXTRT

This section lists the mapping macros that are product-sensitive programming interfaces for
the control program. The data areas are programming interfaces or contain fields that are
--------i-- ~- ... --~----tJIUl:lli:lllllllllll:j lllL"'lli:ll..i"'l:I,

Figure 33 (Page 1 of 2). Product-Sensitive Mapping Macros

Macro ID

AMDDATA
COFZCXIT
CVT
IARRAX
IARRCE
IEECUCM
IEFALLCT
IEFDOCNP
IEFJICA
IEFJMR
IEFNEL
IEFSSCF
IEFSSCI
IEFSSCM
IEFSSDM
IEFSSEN
IEFSSET
IEFSSWT
IEFTCT
IEFUCBOB
IEZVX100
IHAABEPL
IHAASCB
IHAASVT
IHAASXB
I HA COE
IHACSD
IHADOMC
IHAGDA
IHALLE
IHALLP1
IHALLP2

Name

AMDDATA
CXT
CVT
RAX
RCE
UCM
LCT
DOCNP
JICA
JMR
NEL
SSCF
SSCI
SSCM
SSDM
SSEN
SSET
SSWT
TCT
UCB
CTXT
ABEP
ASCB
ASVT
ASXB
COE
CSD
DOMC
GOA
LLE
LLP1
LLP2

816 SPL: Appl!catlon Development Macro Reference

Figure 33 (Page 2 of 2). Product-Sensitive Mapping Macros

Macro ID Name

IHAORE ORE
IHARB RB
IHASDEPL SDEPL
IHAWQE WOE
IHAXTLST XTLST
IKJTCB TCB
IRAOUCB OUCB
ISGGVT GVT
ISGPEL PEL
ISGRNLE RNLE

Appendix A. List of the Names of Macros Intended for Customers Use 817

818 SPL: Application Development Macro Reference

Index

A
address space control

SeeASC
See ASC mode

address space control block
SeeASCB

addressing mode and the macros 2
ALESERV macro 15-22
ALET qualification of parameters 5
AR mode

passing parameters in 4
ASC mode 3

defining 3
ASC {address space control) mode

setting and testing 755
ASCB {address space control block)

locating 311
ASCRE macro 23-31
ASDES macro 33-34
ASEXT macro 35-36
asynchronous execution

scheduling system services for 645
ATSET macro 37
ATTACH and A TT ACHX macros 39-54
authorization

checking RACF 243, 403
testing caller 765

authorization index
extracting 55
reserving 59
setting 61

authorization table
setting 37

AXEXT macro 55-56
AXFRE macro 57-58
AXRES macro 59-60
AXSET macro 61-62

c
CALLDISP macro 63-64
caller

testing authorization 765
CALLRTM macro 65-67
cell pool service 123
CHANGKEY macro 69-70
CIRB macro 71-73
CMDAUTH macro 75-79
coding the macros 12
COFCREAT macro 81-86
COFDEFIN macro 87-91
COFIDENT macro 93-98
COFNOTIF macro 99-104

© Copyright IBM Corp. 1988, 1991

COFPURGE macro 105-108
COFREMOV macro 109-112
COFRETRI macro 113-118
COFSDONO macro 119-122
command authorization service (CMDAUTH)

See CMDAUTH macro
command input buffer

manipulating 381
communications vector table

See CVT
component trace

See CTRACE
component trace format table

generating 297
continuation coding

example 14
continuation lines 14
control access to serially reusable resources 677
CPOOL macro 123-131
CPU time

obtaining accumulated 767
CTRACE macro 133-137
CVT (communications vector table)

CVTSDBF field 659

D
DAT-OFF linkage 139
DATOFF macro 139-140
DEQ macro 141-147
dispatcher entry

forcing 63
DLF object

explicitly deleting 119
DOM macro 149-151
downward incompatible macros 697
DSGNL macro 153-154
DSPSERV macro 155-166

description 167
reason codes 175
return codes 175
syntax 169

DYNALLOC macro 179
dynamic allocation

See DYNALLOC macro

E
ENQ macro 181-191
entry table

connecting 213
creating 217
destroying 227
disconnecting 231

X-1

entry table descriptor
creating 219

ESPIE macro 193-199
ESTAE and ESTAEX macros 201-212
ETCON macro 213-216
ETCRE macro 217-218
ETDEF macro 219-225
ETDES macro 227-230
ETDIS macro 231
event

signalling completion 369
waiting for completion 233
waiting for one or more 783

EVENTS macro 233-235
example

of continuation coding 14
extended SPIE

See ESPIE
EXTRACT macro 237-240

F
fast extended EST AE

See FESTAE
fast path page service 365
FEST AE macro 241-242
FRACHECK macro (for RACF Release 1.8.1 or

earlier) 243-248
FREEMAIN macro 249-254
functional recovery routines

setting up 673

G
GETiviAiN r.-iaci-o
global serialization queue

extracting information 263
global symbol 697
GQSCAN macro 263-268
GTRACE macro 269-276

H

DATA function 272
TEST function 270

hiperspace
reading to 277
writing from 277

HSPSERV macro 277-289

ICHRFX02 exit routine
reason codes 246, 533

IEFQMREQ macro 291
IHATRBPL mapping macro 748, 749
IHATREPL mapping macro 749
input/output supervisor

SeelOS

X-2 SPL: Application Development Macro Reference

internal START command 321
interruption request block

creating 71
IOS (input/output supervisor)

obtaining information 293
IOSINFO macro 293-294
IOSLOOK macro 295
issue

remote immediate signal 643
ITTFMTB macro 297-299

L
Library lookaside refresh (LLACOPY)

See LLACOPY macro
linkage index

freeing 313
reserving 317

list of macros 811
LLACOPY macro 301-304
LOAD macro 305-310
load module

bringing into virtual storage 305
LOCASCB macro 311-312
lock

log

providing
via an NI instruction 329
via an 01 instruction 333

writing 787
LXFRE macro 313-316
LXRES macro 317-320

IUI
=~=
macro

addressing mode 2
ALET qualification 5
ASC mode, defining 3
coding 12
forms 11
list 811
passing parameters in AR mode 4
sample 12
selecting level 1
summary of 6
user parameters, passing 5
using 1
X-macros, using 4

mapping macro
IHATRBPL 748, 749
IHATREPL 749

MGCR macro 321-322
MODESET macro 323-328
MVS

router interface 435

N
NIL macro 329-330
nucleus map lookup service 331
NUCLKUP macro 331-332

0
OIL macro 333-334
operator message

deleting 149
order code

of SIGP instruction 153
OUT ADD macro 335-336
OUTDEL macro 337-338
output descriptor

p

creating 335
deleting 337

page anywhere
See PGANY macro

page service 359
See also PGSER macro

parameters
available to ESTAE recovery routines 686
available to FRRs 686
set return 685

PCLINK macro 339-345
PGANY macro 347-348
PGFIX macro 349-351

contents
fixing 349

PGFIXA macro 353-354
PGFREE macro 355-356
PGFREEA macro 357
PGSER macro 359-364, 365
PGSER macro {fast path) 365-367
POST macro 369-373
postprocessing exit routine

FRACHECK macro
reason codes 246

RACROUTE REQUEST= FASTAUTH macro
reason codes 533

process symptom record 737
processor trace

See PTRACE
profile

checking 415,477,479
in-storage

building for RACF 429
user

retrieving fields 611
program call

linkage information
EXTRACT 344
STACK 339
UNSTACK 341

PTRACE macro 375-376
PURGEDQ macro 377-380

Q
QEDIT macro 381-382

R
RACDEF macro {for RACF Release 1.8.1 or

earlier) 383-401
RACF

building in-storage profile 429
checking authorization 243, 403
defining a resource 383
determining if active 607
identifying a user 417
retrieving fields from user profile 611

RACHECK macro {for RACF Release 1.8.1 or
earlier) 403-416

RACINIT macro {for RACF Release 1.8.1 or
earlier) 417-428

RACLIST macro {for RACF Release 1.8.1 or
earlier) 429-434

RACROUTE macro {for RACF Release 1.8.1 or
earlier) 435-443

RACROUTE macro (for RACF Release 1.9) 445-454
RACROUTE REQUEST= AUDIT macro (for RACF Release

1.9) 455-461
RACROUTE REQUEST= AUTH macro {for RACF Release

i.9j 463-480
RACROUTE REQUEST= DEFINE macro (for RACF Release

1.9) 481-504
RACROUTE REQUEST= DI RAUTH macro (for RACF Release

1.9) 505-509
RACROUTE REQUEST= EXTRACT macro (for RACF Release

1.9) 511-529
RACROUTE REQUEST= FASTAUTH macro {for RACF

Release 1.9) 531-536
RACROUTE REQUEST= LIST macro {for RACF Release

1.9) 537-545
RACROUTE REQUEST= STAT macro (for RACF Release

1.9) 547-551
RACROUTE REQUEST= TOKENBLD macro (for RACF

Release 1.9) 553-562
RACROUTE REQUEST= TOKEN MAP macro (for RACF

Release 1.9) 563-568
RACROUTE REQUEST=TOKENXTR macro (for RACF

Release 1.9) 569-573
RACROUTE REQUEST= VERIFY macro (for RACF Release

1.9) 575-592
RACROUTE REQUEST=VERIFYX macro (for RACF Release

1.9) 593-606
RACSTAT macro (for RACF Release 1.8.1 or

earlier) 607-610
RACXTRT macro (for RACF Release 1.8.1 or

earlier) 611-625

Index X-3

recovery termination manager
calling 65

request block
suspending execution of 723

reserve
a device (shared DASO) 627

RESERVE macro 627-634
RESMGR macro 635-640
resource

defining to RACF 383
profile for RACF 429

resowner field 518
DFP 518

resume execution of a suspended request block 641
RESUME macro 641-642
retained DLF object

explicitly deleting 119
RISGNL macro 643-644

s
SCHEDULE macro 645-646
schedule system services for asynchronous execution 645
SCHEDXIT macro 647-648
SDUMP and SDUMPX macros 649-671
serially reusable resource

releasing 141
requesting control 181

service request block
See SRB

SETFRR macro 673-676
SETLOCK macro 677-684
SETRP macro 685-691
shared DASD

reserve a device 627
signal

issuing direct 153
SIGP instruction

order code 153
status information 154

specify program interruption exit
See SPIE macro

specify task abnormal exit
See STAE macro

SPIE macro 693-696
SPLEVEL macro 697-698
SPOST macro 699
SQA buffer

dumped by SDUMPX 659
SRB status 701
SRB (service request block)

purging activity 377
transferring control 763

SRBSTAT macro 701-702
SRBTIMER macro 703
STAE macro 705-709
START command

internal 321

X-4 SPL: Application Development Macro Reference

status information
of SIGP instruction 154

STATUS macro 711-714
storage

obtaining and releasing 715
STORAGE macro 715-722
subchannel number

obtaining for a UCB 293
subtask status

changing 711
SUSPEND macro 723
SVC exit

type 6 769
SVC update

See SVCUPDTE
SVCUPDTE macro 725-731
SWA manager

invoking in locate mode 733
invoking in move mode 291

SWAREQ macro 733-735
symptom record 737
SYMREC macro 737-740
SYNCH and SYNCHX macros 741-746
synchronous exit

to a processing program 741
SYSEVENT macro 747-754
SYSST ATE macro 755
system event

See SYSEVENT
system status

changing 323

-• I

task control block
See TCB

TCB (task control block)
extracting information 237

TCBTOKEN macro 757-762
description 757

TCTL macro 763
TESTAUTH macro 765-766
time limit

establishing for system service 703
TIMEUSED macro 767-768
T6EXIT macro 769

u
unit control block

locating 295
user parameters

passing 5

v
vector time

obtaining accumulated 767

virtual lookaside facility
See VLF

virtual storage
allocating 255
bringing in a load module 305
contents

fix 353
free 355

dumping 649, 664
freeing 249
freeing contents 357
listing map 771
obtaining private area region size 781
verifying allocation 777

virtual storage protection key
changing 69

VLF (virtual lookaside facility)
creating 81
defining a class 87
identifying user 93
macros

COFCREAT 81
COFDEFIN 87
COFIDENT 93
COFNOTIF 99
COFPURGE 105
COFREMOV 109
COFRETRI 113

notification of change 99
object

purging 105
removing 109
retrieving 113

VSMLIST macro 771-775
VSMLOC macro 777-779
VSMREGN macro 781-782

w
WAIT macro 783-785
write to operator

See WTO
write to operator with reply

See WTOR
WTL macro 787-791
WTO macro 793-802
WTOR macro 803-810

x
X-macros, using 4

Index X-5

X-6 SPL: Application Development Macro Reference

Readers' Comments

MVS/ESA
System Programming Library:
Appllcallon Development Macro Reference

MYS/System Product:
JES2 Version 3
JES3 Version 3

Publlcatlon No. GC28-1857·5

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to express your opinion
about it (such as organization, subject matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM products or systems,
you should talk to your IBM representative or to your IBM authorized remarketer. This form is provided for comments about
the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply, or provide your FAX telephone number if you would
prefer a FAX response.

Name

Company or Organization

Phone No.

f&" FAX (United States & Canada): 914+296-6496
f&" FAX (Other countries): 001+914+296-6496

Address

Readers' Comments
GC28-1857-5

--------- ------ -- - ------------·----·-®

' ' '
' ' ' ' ' ' '
' '
' ' ' ' ' ' ' ' ' ' ' ' ' .
' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' '
'

' ' Fold and Tape Please do not staple Fold and Tape ,

----- -- ----- -- -- ---- ----- -- -- ------- ---------------------- -- -- -- ------------------------------- ---------------------r·--- ----- -------------- -----~;i~i;r~~~----1

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1 •• 1.1 •••• 11 •• 1.1 ••• 11.1

UNITED ST ATES

' ' ' '
' ' ' '

'
' ' ' --- -- ---~~,~-~;~-~;~;--- ------- -- --------- ----- ------------------ ·;-,;;;;~-;~~-;;-;;;;;;;;-- ---- -- -- -- -------- -- ----------- ---- -- -- -~:;~-;~~~~~;-------1

I

I

Cut or F
Along L

GC28-1857-5
l Cut,

J Alor

--------- ------ -- - ---- -------------·-®

File Number: 8370-36
Program Number: 5685-001

5685-002

· Printed in U.S.A.

GC28-1857-5

111111111111111 HI 11

