

MVS 1370 GC26-4074-2
VSAM Administration:
Macro Instruction Reference

Release 1.2

Third Edition (May 1990)
This is a major revision of, and makes obsolete, GC26-4074-1.

This edition applies to Release 1.2 and Release 1.3 (available only in Brazil) of MVS/370 Data Facility
Product, Licensed Program 5665-295, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any subsequent republication of the page affected. Editorial changes that have no technical signif-
icance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli-
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM’s licensed program may be
used. Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, P.O. Box 49023, Programming Publishing, San Jose,

California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1990. All rights reserved.
Note to US Government Users — Documentation related to restricted rights — Use, duplication or dis-
closure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

C

Preface

This book is intended to help you use VSAM macro instructions to process data.

Prerequisite Knowledge

Readers of this publication are assumed to have a programming background
that includes:

*« VSAM data management
* Catalog administration

¢ Job control language

You should be familiar with the information presented in the following publica-
tions:

e MVS/370 VSAM Administration Guide, GC26-4066, describes how to use
VSAM. You should understand the information in the VSAM Administration
Guide before you use this manual.

¢ MVS/370 Catalog Administration Guide, GC26-4053, describes the adminis-
tration of tasks for catalogs and how to use the access method services com-
mands to manipulate catalogs, and the objects cataloged in them.

¢ MVS/370 JCL User's Guide, GC28-1348, and MVS/370 JCL Reference,
GC28-1350, describe the JCL parameters referred to in this publication and
describes dynamic allocation.

e MVS/370 Message Library: System Messages, GC28-1374 and GC28-1375, pro-
vides a complete listing of the messages issued by VSAM.

Referenced Publications

Within the text, references are made to the publications listed in the following

table:
Short Title Publication Title Order Number
Access Method Ser- MVS/370 Integrated Catalog GC26-4051
vices Reference Administration: Access Method
Services Reference
MVS/370 VSAM Catalog Admin-
istration: Access Method Ser- GC26-4059
vices Reference
Catalog Adminis- MVS/370 Catalog Administration GC26-4053
tration Guide Guide
Checkpoint/ Restart MVS/370 Checkpoint/Restart GC26-4054
Users Guide
Data Areas OS/VS2 Data Areas SYB8-0606
Data Facility MVS/370 Data Facility Product: GC26-4062
Product: Master Master Index
Index

© Copyright IBM Corp. 19883, 1990 i

Short Title Publication Title Order Number

Data Facility MVS/370 Data Facility Product: GC26-4052

Product: Planning Planning Guide

Guide

Debugging Hand- MVS/370 System Programming LC28-1385

book Library: Debugging Handbook through
Volumes 1 through 5 LC28-1389

Introduction to the Introduction to the IBM 3850 GA32-0038

IBM 3850 Mass Mass Storage System (MSS)

Storage System

JCL User’s Guide MVS/370 JCL User’s Guide GC28-1349

JCL Reference MVS/370 JCL Reference GC28-1350

Job Management OS/VS2 MVS System Program- GC28-0627
ming Library: Job Management

OS/VS Mass OS/VS Mass Storage System GC35-0017

Storage System (MSS) Services: Reference Infor-

Services: Reference mation

Information

RACF General Resource Access Control Facility GC28-0722

Information (RACF): General Information

7SO Command Lan- 0S/VS2 TSO Command Lan- GC28-0646

guage Reference guage Reference

TSO Terminal 0S/VS2 TSO Terminal User’s GC28-0645

User’s Guide Guide

Supervisor Services 0S/VS2 MVS System Program- GC28-0683

and Macro ming Library: Supervisor Ser-

Instructions vices and Macro Instructions

System Messages MVS/370 Message Library: GC28-1374
System Messages and
Volumes 1 and 2 GC28-1375

VSAM Adminis- MVS/370 VSAM Administration GC26-4066

tration Guide Guide

VSAM Logic MVS/370 VSAM Logic LY26-3928

Notational Conventions
A uniform system of notation describes the syntax of VSAM macro instructions.
This notation is not part of the language; it merely provides a basis for
describing the structure of the macros.
The macro syntax illustrations in this book use the following conventions:
* Brackets [] indicate optional parameters.

* Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

* Items separated by a vertical bar (|) represent alternative items. No more
than one of the items may be selected.

* An ellipsis (...) indicates that multiple entries of the type immediately pre-
ceding the ellipsis are allowed.

e Other punctuation (parentheses, commas, etc.) must be entered as shown.

v MVS/370 VSAM Administration: Macro Instruction Reference

BOLDFACE type indicates the exact characters to be entered. Such items
must be entered exactly as illustrated (in uppercase, except in TSO).

Italics type specifies fields to be supplied by the user.

BOLDFACE UNDERSCORED type indicates a default option. If the parameter
is omitted, the underscored boldface value is assumed.

A ‘ ’in the macro syntax indicates that a blank (an empty space) must be
present before the next parameter.

Preface V

C Summary of Changes

| Library Refresh, May 1990
| The list of GENCB, MODCB, SHOWCB, and TESTCB reason codes returned in
| register 0 has been updated. See Figure 5 on page 8.

| The list of logical error reason codes in the feedback field of the request param-
| eter list has been updated. See Figure 8 on page 13.

| Enhancements have been added which enable you to process a linear data set
| (LDS) on MVS/370 DFP. The recognition of an LDS on the MVS/370 DFP system
| provides compatibility of LDS usage with MVS/XA™ DFP Version 2 Release 3.0.
L | The enhancements added to MVS/370 DFP enable you to do the following:
I
I
|

¢ Process an LDS in control interval mode.

¢ Receive return and reason codes for logical errors that may occur while
processing an LDS.

| Information has been added to reflect service changes.

L Release 1.1 Library Update, December 1985

Service Changes

The title of this publication has been changed from MVS/370 VSAM Reference to
MVS/370 VSAM Administration: Macro Instruction Reference.

Many MVS/370 titles referred to in this publication have been changed.

" Information has been added to reflect technical service changes.

| MVS/XA is a trademark of the International Business Machines Corporation.

© Copyright IBM Corp. 1983, 1990 vii

Contents

Chapter 1. Macro Instruction Return Codes and Reason Codes
Return Codes and Reason Codes from OPEN
Return Codes and Reason Codes from CLOSE
OPEN/CLOSE Message Area for Multiple Reason or Warning Messages
Message Area Header e
Message List
Control Block Manipulation Macro Return Codes and Reason Codes
Record Management Return Codes and Reason Codes
Return Codes e
Asynchronous Request,
Synchronous Request
Component Codes
Reason Codes e
Reason Code (Successful Request)
Reason Code (Logical Errors)
Reason Code (Physical Errors)
Return Codes from Macros Used to Share Resources among Data Sets . . .
Return Codes from BLDVRP
Return Codes from DLVRP
Return Codes from End-of-Volume

Chapter 2. VSAM Macro Formats and Examples
ACB Macro (Generate an Access Method Control Block)
Example 1: ACBMacro
ACQRANGE Macro (Stage Data)
BLDVRP Macro (Build VSAM Resource Pool)
CHECK Macro (Wait for Completion of Request)
Example 1: Check Return Codes after an Asynchronous Request
Example 2: Check Return Codes after a Synchronous Request
Example 3: Overlap Processing
Example 4: Suspend a Request for Many Records
CLOSE Macro (Disconnect Program and Data)
CNVTAD Macro (Convert Address),
DLVRP Macro (Delete VSAM Resource Pool)
ENDREQ Macro (Terminate a Request)
Example: Release Positioning for Another Request
ERASE Macro (Delete a Record)
Example 1: Keyed-Direct Deletion
Example 2: Addressed-Sequential Deletion
EXLST Macro (Generate an Exit List)
Example: EXLST Macro e
GENCB Macro (Generate an Access Method Control Block)
Example: GENCB Macro (Generate an Access Method Control Block)
GENCB Macro (Generate an Exit List)
Example: GENCB Macro (Generate an Exit List)
GENCB Macro (Generate a Request Parameter List)
Building a Chain of Request Parameter Lists
Example: GENCB Macro (Generate a Request Parameter List)
GET Macro (Retrieve aRecord)
Example 1. Keyed-Sequential Retrieval (Forward)
Example 2: Keyed-Sequential Retrieval (Backward)

© Copyright IBM Corp. 1983, 1990

Example 3: Skip-Sequential Retrieval 63

Example 4: Addressed-Sequential Retrieval 65
Example 5: Sequential Retrieval for a Relative Record Data Set 66
Example 6: Keyed-Direct Retrieval 67
Example 7: Addressed-Direct Retrieval 68
Example 8: Switch from Direct to Sequential Retrieval 68
GETIX Macro (Retrieve an Index Record) 71
MNTACQ Macro (Mount Acquire) 72
MODCB Macro (Modify an Access Method Control Block) 74
Example: MODCB Macro (Modify an Access Method Control Block) .. 75
MODCB Macro (Modify an Exit List) 76
Example: MODCB Macro (Modify an Exit List) 76
MODCB Macro (Modify a Request Parameter List) 77
Example: MODCB Macro (Modify a Request Parameter List) 78
MRKBFR Macro (Mark Buffer) 79
OPEN Macro (Connect Program and Data) 80
Example: OPENMacro 80
POINT Macro (Position for Access) 81
Example: Position with POINT 81
PUT Macro (Storea Record) 82
Example 1: Keyed-Sequential Insertion 82
Example 2: Recording RBAs When Loading 83
Example 3: Loading a Relative Record Data Set (Skip-Sequential and
Direct Processing) 83
Example 4: Keyed-Sequential Insertion (Relative Record Data Set) ... 84
Example 5: Skip-Sequential Insertion 85
Example 6: Keyed-DirectInsertion 87
Example 7: Addressed-Sequential Addition 87
Example 8: Keyed-SequentialUpdate 88
Example 9: Keyed-DirectUpdate 89
Example 10: Addressed-Sequential Update 90
Example 11: Marking Records Inactive 90
PUTIX Macro (Store an Index Record) 92
RPL Macro (Generate a Request Parameter List) 93
Example: RPLMacro 97
SCHBFR Macro (Search Buffer) 98
SHOWCB Macro (Display Fields of an Access Method Control Block) 99
Example 1: SHOWCB Macro (Display an Access Method Control Block) 102
Example 2. SHOWCB Macro (Display an Exit List Address) 103
SHOWCB Macro (Display Fields ofan Exit List) 104
Example: SHOWCB Macro (Display the Length of an Exit List) 105
SHOWCB Macro (Display Fields of a Request Parameter List) 106
Example: SHOWCB Macro (Display a Physical Error Message) 108
TESTCB Macro (Test Fields of an Access Method Control Block) 109
Example: TESTCB Macro (Test for Data Set Attributes) 112
TESTCB Macro (Test Fields of an Exit List) 113
Example: TESTCB Macro (Use a Branch Table) 114
TESTCB Macro (Test Fields of a Request Parameter List) 115
Example: TESTCB Macro (Test a Request Parameter List) 117
VERIFY Macro (Synchronize EndofData) 118
WRTBFR Macro (Write Buffer) 119
Appendix A. List, Execute, and Generate Forms of Macros 121
List-Form Keyword 121
Execute-Form Keyword 122

X MVS/370 VSAM Administration: Macro Instruction Reference

Generate-Form Keyword 123

List, Execute and Generate Formats 123
List Form of BLDVRPo 123
Execute Form of BLDVRP 123
Execute Formof DLVRP 124
List Formof GENCB e 124
Execute FOrmof GENCB 124
Generate Formof GENCB 125
List Form of MODCB it 125
Execute Formof MODCB 125
Generate Formof MODCB 125
List Form of SHOWCB i i 125
Execute Formof SHOWCB, 126
Generate Formof SHOWCB 126
List Form of TESTCB e e e e e e e e e e 126
Execute Formof TESTCB i 126
Generate Formof TESTCB 127

Use of List, Execute, and Generate Forms 127

Examples of Generate, List, and Execute Forms in Reentrant
Environments e 127
Example: Generate Form (Reentrant) 127
Example: Remote-List Form (Reentrant) 128
Example: Execute Form (Reentrant) 128

Appendix B. Operand Notation 129

Operands with GENCB, MODCB, SHOWCB, and TESTCB 129

Appendix C. Building ParameterLists 131

The Format of the Parameter Lists 131

Building Header and Element Entries 131

Passing Control Directly to VSAM 134

Modifying and Displaying the RECLEN Field of an RPL Directly 135

Glossary of Terms and Abbreviations 137

Index e 143

Contents XI

C

Figures

10.
1.
12.
13.
14.
15.
16.

© Copyright IBM Corp. 1983, 1930

OPEN Reason Codes in the ERROR Field of the Access Method Control

BloCK . . . e e e 2
CLOSE Reason Codes in the ERROR Field of the Access Method Control
BlocK e e e e e 5
Format of the Message AreaHeader 6
Format of Individual Messages in Message List 7
GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned in
Register 0 8
Component Codes Provided inthe RPL 11
Successful Completion Reason Codes in the Feedback Field of the

Request Parameter List 12
Logical Error Reason Codes in the Feedback Field of the Request
Parameter List 13
Physical Error Reason Codes in the Feedback Field of the Request
Parameter List 19
Physical Error Message Format 20
MACRF Options e 27
OPTCD Options e e e e e e a5
FIELDS Operand Keywords for an Access Method Control Block ... 100
FIELDS Operand Keywords for a Display Request Parameter List ... 107
Reentrant Programming 127
Format of Header and Element Entries for GENCB, MODCB, SHOWCB,

and TESTCB Parameter Lists 132

xiii

L Chapter 1. Macro Instruction Return Codes and Reason
Codes

This chapter describes the return codes you may get from the macro instructions
that are used to open and close a data set, manage VSAM control blocks, and
issue data processing requests.

VSAM sets reason codes in the ACB and the RPL. These reason codes are
paired with return codes in register 15. (Register usage conventions are
doumented in the Data Administration: Macro Instruction Reference.) Codes set
in the ACB indicate open or close errors. Codes set in the RPL indicate record
management errors.

The return codes and reason codes in this manual are listed in decimal and
hexadecimal values. The decimal value is shown first, followed by the

L hexadecimal value in parentheses. Format descriptions and examples of each
macro are in Chapter 2, “VSAM Macro Formats and Examples” on page 23.

Return Codes and Reason Codes from OPEN

When your program receives control after it has issued an OPEN macro, the
return code in register 15 indicates whether all of the VSAM data sets were
opened successfully.

&r Return

Code Condition

0(0) All data sets were opened successfully.

4(4) All data sets were opened successfully, but one or more warning
messages were issued (reason codes less than X'80').

8(8) At least one data set (VSAM or non-VSAM) was not opened

successfully; the access method control block was restored to
the contents it had before OPEN was issued; or, if the data set was
already open, the access method control block

L remains open and usable and is not changed.

12(C) A non-VSAM data set was not opened successfully
when a non-VSAM and a VSAM data set were being opened at the same
time; the non-VSAM data control block
was not restored to the contents it had before OPEN was issued (and
the data set cannot be opened
without restoring the control block).

If register 15 contains 4, 8, or 12, you can find out whether a VSAM data set had
a warning message, or wasn’t opened successfully and why, by issuing
SHOWCSB to display the ERROR field in each access method control block speci-
fied in OPEN. (See "SHOWCB Macro (Display Fields of an Access Method
Control Block)” on page 99.) Figure 1 shows the possible reason codes that you
may get from OPEN in the ERROR field in the access method control block. In
addition to these reason codes, VSAM writes a message to the operator console

L and the programmer’s listing to further explain the error. For a listing of VSAM
messages, see System Messages.

© Copyright IBM Corp. 1983, 1990 1

Reason
Code

0(0)

76(4C)

92(5C)

96(60)
100(64)

104(68)

108(6C)

116(74)

118(76)

128(80)

132(84)

136(88)

140(8C)
144(90)

Condition
One of the following conditions exists:

* VSAM is processing the access method control block for some
other request.

* The access method control block address is invalid.

Warning message: The interrupt recognition flag (IRF) was detected for
a data set opened for input processing.

Warning message: Inconsistent use of CBUF processing. Sharing
options differ between index and data components.

Warning message: An unusable data set was opened for input.

Warning message: OPEN encountered an empty alternate index that is
part of an upgrade set.

Warning message: The time stamp of the volume on which a data set is
stored doesn’t match the system time stamp in the data set’s catalog
record; this indicates that extent information in the catalog record may
not agree with the extents indicated in the volume’s VTOC.

Warning message: The time stamps of a data component and an index
component do not match; this indicates that either the data or the
index has been updated separately from the other.

Warning message: The data set was not properly closed and either
OPEN’s implicit verify was unsuccessful or the user specified that
OPEN’s implicit verify should not be executed.

A previous VSAM program may have abnormally terminated. Data may
be lost if processing continues; the access method services VERIFY
command may be used to cause the data set to be properly closed.

For a description of the VERIFY command, see Access Method Services
Reference. In a cross-system shared DASD environment, a return
code of 116 can have two meanings: (1) the data set was not properly
closed, or (2) the data set is opened for output on another processor.

Warning message: The data set was not properly closed but OPEN’s
implicit verify was successfully executed.

DD statement for this access method control block is missing or
invalid.

One of the following errors occurred:

* Not enough storage was available for work areas.

* The required volume could not be mounted.

* An uncorrectable |1/0 error occurred while VSAM was reading the
job file control block (JFCB).

* The format-1 DSCB or the catalog cluster record is invalid.

* The user-supplied catalog name does not match the name on the
entry.

* The user is not authorized to open the catalog as a catalog.

Not enough virtual storage space is available in your program’s
address space for work areas, control blocks, or buffers.

The catalog indicates this data set has an invalid physical record size.

An uncorrectable 1/0 error occurred while VSAM was reading or writing
a catalog record.

Figure 1 (Part 1 of 3). OPEN Reason Codes in the ERROR Field of the Access Method

Control Block

2 MVS/370 VSAM Administration: Macro Instruction Reference

145(91)
148(94)

152(98)

160(A0)

164(A4)

168(A8)

176(BO)

180(B4)

184(B8)

188(BC)

192(C0)
193(C1)

196(C4)
200(C8)

An uncorrectable error occurred in the VSAM volume data set (VVDS).

No record for the data set to be opened was found in the available
catalog(s), or an unidentified error occurred while VSAM was searching
the catalog. For the catalog return code, see system message
IDC30091 in System Messages.

Authorization checking has failed for the following reasons:

* The password specified in the access method control block for a
specified level of access doesn’t match the password in the catalog
of that level of access.

* RACF failure. For the catalog return code, see system message
IDC3009I in System Messages.

The operands specified in the ACB or GENCB macro are inconsistent
with each other or with the information in the catalog record.

With shared resources, this code can mean:

MACREF options are inconsistent: LSR or GSR is specified with ICI,
CBIC, or UBF (see “Using Control Interval Access with Shared
Resources” in VSAM Administration Guide), or DFR is specified
without LSR or GSR (see “Deferring Write Requests” in VSAM
Administration Guide.)

MACRF DFR is specified for a data set that was defined with
SHAREOPTIONS 4 (see “Deferring Write Requests” in VSAM
Administration Guide.)

An uncorrectable 1/0 error occurred while VSAM was reading the
volume label.

The data set was not available for the type of processing you specified,
or an attempt was made to open a reusable data set with the reset
option while another user had the data set open. The data set may
have the INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was
already opened for non-CBUF processing. Or the data set has con-
flicting CBUF attributes for the data and index components of the ACB.

An error occurred while VSAM was attempting to fix a page of virtual
storage in real storage.

A VSAM catalog specified in JCL either does not exist or is not open,
and no record for the data set to be opened was found in any other
catalog.

An uncorrectable 1/0 error occurred while VSAM was completing an I/O
request.

The data set indicated by the access method control block is not of the
type that may be specified by an access method control block.

An unusable data set was opened for output.

The interrupt recognition flag (IRF) was detected for a data set opened
for output processing.

Access to data was requested via an empty path.

The Format-4 DSCB indicates that the volume is unusable. There was
an error in CONVERTV to convert the volume from either real to virtual
or virtual to real.

Figure 1 (Part 2 of 3). OPEN Reason Codes in the ERROR Field of the Access Method

Control/ Block

Chapter 1. Macro Instruction Return Codes and Reason Codes 3

204(CC) The ACB MACREF specification is GSR and caller is not operating in
supervisor protect key 0 to 7, or ACB MACRF specification is CBIC
(Control Blocks in Common) and caller is not operating in supervisor
state with protect key 0 to 7.

205(CD) The ACBCATX option or VSAM volume data set OPEN was specified
and the calling program was not authorized.

208(D0) The ACB MACREF specification is GSR and caller is using an OS/VS1
system.

212(D4) The ACB MACREF specification is GSR or LSR and the data set requires
load mode processing.

216(D8) The ACB MACRF specification is GSR or LSR and the key length of the
data set exceeds the maximum key length specified in BLDVRP.

220(DC) The ACB MACREF specification is GSR or LSR and the data set’s control
interval size exceeds the size of the largest buffer specified in BLDVRP.

224(EO) Improved control interval processing is specified and the data set
requires load mode processing.

228(E4) The ACB MACRF specification is GSR or LSR and the VSAM shared
resource table (VSRT) does not exist (no buffer pool is available).

232(E8) Reset was specified for a nonreusable data set and the data set is not
empty.

236(EC) A permanent staging error occurred in MSS (ACQUIRE).

240(F0) Format-4 DSCB and volume timestamp verification failed during

volume mount processing for output processing.

244(F4) The volume containing the catalog recovery area was not mounted and
not verified for output processing.

Figure 1 (Part 3 of 3). OPEN Reason Codes in the ERROR Field of the Access Method
Control Block

Return Codes and Reason Codes from CLOSE

When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all the VSAM data sets were closed suc-

cessfully.

Return

Code Condition

0(0) All data sets were closed successfully.

4(4) At least one data set (VSAM or non-VSAM) was not closed success-

fully.

If register 15 contains 4, you can use SHOWCB to display the ERROR field in
each access method control block to find out whether a VSAM data set wasn’t
closed successfully and why not. (See “SHOWCB Macro (Display Fields of an
Access Method Control Block)” on page 99.) Figure 2 on page 5 gives the
reason codes that the ERROR field may contain following CLOSE. In addition to
these reason codes, VSAM writes a message to the operator’s console and the
programmer’s listing to further explain the error. For a listing of these mes-
sages, see System Messages.

4 MVS/370 VSAM Administration: Macro Instruction Reference

<

Return

Code Condition

0(0) No error (set when register 15 contains 0).

4(4) The data set indicated by the access method control
block is already closed.

129(81) TCLOSE was issued against a media manager’s structure.

132(84) An uncorrectable 1/0 error occurred while VSAM was
reading the job file control block (JFCB).

136(88) Not enough virtual storage was available in your
program’s address space for a work area for CLOSE.

144(90) An uncorrectable 1/O error occurred while VSAM was
reading or writing a catalog record.

145(91) An uncorrectable error occurred in the VSAM
volume data set (VVDS).

148(94) An unidentified error occurred while VSAM was
searching the catalog.

184(B8) An uncorrectable 1/0 error occurred while VSAM was
completing outstanding 1/0 requests.

236(EC) A permanent destaging error occurred in MSS

(RELINQUISH). With temporary CLOSE, a destaging
error or a staging error (ACQUIRE) occurred.

Figure 2. CLOSE Reason Codes in the ERROR Field of the Access Method Control Block

OPEN/CLOSE Message Area for Multiple Reason or Warning

Messages

During the execution of an OPEN, CLOSE, or TYPE =T option of CLOSE, more
than one error condition may be detected. However, the ACB error flag field can
only accommodate one warning or error condition. In order to receive multiple
error or warning conditions, you may specify an optional message area. VSAM
will accumulate error messages from an OPEN, CLOSE, or TYPE=T option in
this message area.

Multiple messages will be supplied when you specify nonzero values in the
MAREA and MLEN parameters of the ACB. If MAREA or MLEN is not specified
or is zero, no error or warning information is stored into the message area. The
ACB error flag field is then the only indication for errors or warnings. If MAREA
and MLEN are specified and if the message area is too small to accommodate
all messages, the last incoming messages are dropped. However, you will be
given an indication of the number of warnings and messages that occurred.

The message area provided by VSAM is subdivided into two parts:

¢ The message area header
¢ The message list

Chapter 1. Macro Instruction Return Codes and Reason Codes 5

Message Area Header

Message List

The message area header contains statistical, pointer, and general information.
Its contents are unrelated to the individual messages. The format of the
message area header is shown in Figure 3.

Byte 0 Flag Byte
bit 0=1 Full message area header has
been stored.
bit 0=0 Only flag byte of message area
header has been stored.
(Implies that no messages
have been stored.)
bits 1-7 Reserved (set to binary zeros)
Bytes 1-2 Length of message area header (includes flag byte
and length byte)
Byte 3 Request type code:
X'01!' OPEN
X'02' CLOSE
X'03' TCLOSE
Bytes 4-11 ddname used for ACB
Bytes 12-13 Total number of messages (error or warning
conditions) issued by OPEN/CLOSE/TCLOSE
Bytes 14-15 Number of messages stored by OPEN/CLOSE/TCLOSE
into message area
Bytes 16-19 Address of message list, for example, of first
message in message area

Figure 3. Format of the Message Area Header

The function of the ACB error flag field remains unchanged regardless of
whether or not this optional message area is specified. It contains, at the end of
an OPEN, CLOSE, or TCLOSE, either X'00' (indicating no error or warning condi-
tion occurred) or a nonzero code. The nonzero code stored into the ACB error
flag byte is the OPEN/CLOSE/TCLOSE reason code corresponding to the error or
warning condition that occurred with the highest severity.

Message area header information is only stored when a warning or error condi-
tion is detected; that is, the ACB error flag field is set to a nonzero value. Fur-
thermore, the header information will consist of the flag byte only, if the length of
the message area (MLEN) is not large enough to accommodate the full message
area header. In this case, bit 0 of the flag byte will be zero. Before accessing
the message header information (bytes 1 through 19), you must test byte 0 to see
whether further information is stored or not. If MLEN =0, no header information
is stored at all, not even the flag byte. If the full message area header is stored,
bytes 1 and 2 contain the actual length of the message area header; your
program should be sensitive to this length when interrogating the message area
header.

The message list contains individual messages corresponding to detected
warning or error conditions. Bytes 16 through 19 of the message area header
point to the location of the message list within the message area. If the
message area header is not stored completely (bit 0 of byte 0 is 0), the location
of the message list is not provided. Within the message list, individual mes-
sages are stored as a contiguous string of variable-length records. Bytes 14 and
15 of the message area header contain the number of messages stored. Check

6 MvVS/370 VSAM Administration: Macro Instruction Reference

9

for a nonzero stored message count before investigating the message list.
However, messages may not be stored even if the ACB error flag contains a
nonzero value and the message area header bit 0 of byte 0 is 1. For example,
no messages will be stored if MLEN is not large enough to allow at least one
message to be stored.

The format of the individual messages is given in Figure 4.

Bytes 0-1 Length of message including these two bytes.

Byte 2 ACB error flag code corresponding to the error or warning condition
represented by this message.

Byte 3 Function type code:

Specifies whether and which dsname is stored in bytes 4 through 47 of

the message.

X'00' No dsname stored. Bytes 4-47 of the message contain binary
zeros. The error warning condition is not clearly related to a
component, or VSAM was unable to identify or obtain the
cluster name of the component in error. This code is used
only if, in addition, the ddname of the ACB does not identify a
valid DD statement or VSAM was unable to obtain the
dsname contained in the DD statement.

X'01' dsname contained in DD statement is stored. The error or
warning condition is not clearly related to a component, or
VSAM was unable to identify or obtain the cluster name of
the component in error.

X'02' dsname (cluster name) of base cluster stored. Error occurred
during OPEN/CLOSE/TCLOSE for base cluster.
X'03" dsname (cluster name) of alternate index component stored.

Error occurred during OPEN/CLOSE/TCLOSE for alternate
index component.
X'04' dsname (cluster name) of member of upgrade set stored.
Error occurred during OPEN/CLOSE/TCLOSE for this member
of the upgrade set.
Bytes 4-47 Binary zeros (function type code=X'00"') or a dsname as described by
byte 3.

Figure 4. Format of Individual Messages in Message List

Bytes 0 and 1 of each message specify the actual length of the individual
message. You must inspect the length so that you can take the variable-length
nature of the message into account in your processing.

Byte 2 of the message contains the ACB error flag code; it does not indicate that
a dsname has been stored. Depending on the condition that raised the ACB
error flag code, either no dsname or different types of dsnames (DD, base
cluster, alternate index, or upgrade set member) may be stored. (The same con-
dition may be detected both when opening the base cluster and when opening a
member of the upgrade set. For example, an I/O error may occur when trying to
obtain the dsname for the component in error.) Bytes 4 through 47 of the
message can contain a dsname, but do not specify its type. Only byte 3 of the
message specifies whether a dsname has been stored, and if so, its type.

Chapter 1. Macro Instruction Return Codes and Reason Codes 7

Control Block Manipulation Macro Return Codes and Reason Codes J

The GENCB, MODCB, SHOWCB, and TESTCB macros are executable (unlike the
ACB, EXLST, and RPL macros). They cause control to be given to VSAM to
perform the indicated task. VSAM indicates the task was completed by a return
code in register 15:

Return

Code Condition

0(0) Task completed.

4(4) Task not completed.

8(8) An attempt was made to use the execute form of a macro

to modify a keyword that isn’t in the parameter list.
(See Appendix A, “List, Execute, and Generate Forms of Macros” on page 121.)

An error can occur because you specified the operands incorrectly or, if you con-

structed a parameter list yourself, because the parameter list was coded incor-

rectly. See Appendix C, “Building Parameter Lists” on page 131, for an J
explanation of how to construct parameter lists for GENCB, MODCB, SHOWCB,

and TESTCB.

When register 15 contains 4, register 0 contains a reason code indicating the
reason VSAM couldn’t perform the task. If you construct the parameter list your-
self, you can get in register O reason codes 1, 2, 3, 10, 14, 20, and 21. Figure 5
describes each reason code that can be returned in register O.

Figure 5 (Page 1 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes J
Returned in Register 0

Reason Applicable

Code Macros' Reason VSAM Couldn’t Perform the Task

1(1) GMST The request type (generate, modify, show, or test) is invalid.

2(2) GM,ST The block type (access method control block, exit list, or
request parameter list) is invalid.

3(3) GM,ST One of the keyword codes in the parameter list is invalid.

4(4) M,S,T The block at the address indicated is not of the type you
indicated (access method control block, exit list, or request J
parameter list).

5(5) ST Access method control block fields were to be shown or
tested, but the data set is not open or it is not a VSAM data
set.

6(6) ST Access method control block information about an index
was to be shown or tested, but no index was opened with
the data set.

7(7) M,S An exit list was to be modified, but the list was not large
enough to contain the new entry; or an exit was to be modi-
fied or shown but the specified exit wasn’t in the exit list.
(With TESTCB, if the specified exit address isn’t present,
you get an unequal condition when you test for it.)

8(8) G There isn’t enough virtual storage in your program’s
address space to generate the access method control
block(s), exit list(s), or request parameter list(s) and no ’
work area outside your address space was specified.

8 MVS/370 VSAM Administration: Macro Instruction Reference

Figure 5 (Page 2 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes

Reason
Code
9(9)

10(A)

11(B)

12(C)

13(D)

14(E)

15(F)

16(10)

19(13)

20(14)

21(15)

22(16)

23(17)

Note:

Applicable

Macros'
G,S

GM

GMT

G,S

GMS,T

M,S,T

ST

G

Returned in Register 0

Reason VSAM Couldn’t Perform the Task
The work area specified was too small for generation or
display of the indicated control block or fields.

With GENCB, exit list control block type was specified and
you specified an exit without without giving an address.
With MODCB, exit list control block type was specified and
you specified an exit without giving an address; in this case,
either active or inactive must be specified, but load cannot
be specified.

Either (1) a request parameter list was to be modified, but
the request parameter list defines an asynchronous request
that is active (that is, no CHECK or ENDREQ has been
issued on the request) and thus cannot be modified; or (2)
MODCB is already issued for the control block, but hasn’t
yet completed.

An access method control block was to be modified, but the
data set identified by the access method control block is
open and thus cannot be modified.

An exit list was to be modified, and you attempted to acti-
vate an exit without providing a new exit address. Because
the exit list indicated does not contain an address for that
exit, your request cannot be honored.

One of the option codes (for MACRF, ATRB, or OPTCD) has
an invalid combination of option codes specified (for
example, OPTCD = (ADR, SKP)).

The work area specified did not begin on a fullword
boundary.

A VTAM keyword or subparameter was specified but the
AM =VTAM parameter was not specified. AM = VTAM
must be specified in order to process a VTAM version of the
control block. AM = VTAM was specified but the control
blocksubtype was not VTAM.

A keyword was specified which refers to a field beyond the
length of the control block located at the address indicated.
(For example, a VTAM keyword was specified, but the
control block pointed to was a shorter, non-VTAM block.)

Keywords were specified which apply only if MACRF=LSR
or GSR.

The block to be displayed or tested does not exist because
the data set is a dummy data set.

AM=VTAM was specified and the RPL FIELDS parameter
conflicts with the RPLNIB bit status. Either RPL

FIELDS =NIB was specified and the RPLNIB bit was off, or
RPL FIELDS =ARG was specified and the RPLNIB bit was
on.

The value specified in the length parameter exceeds the
65,535 byte limit.

' G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

Chapter 1. Macro Instruction Return Codes and Reason Codes 9

Record Management Return Codes and Reason Codes

The following record management macros give return codes and reason codes
in the feedback field of the RPL: GET, PUT, POINT, ERASE, CHECK, ENDREQ,
GETIX, PUTIX, ACQRANGE, CNVTAD, MNTACQ, MRKBFR, SCHBFR, and
WRTBFR.

The feedback field in the RPL consists of four bytes.

Return Code Function Code FDBK Code
(Register 15) (FTNCD Code)

For more information on the RPL feedback word, see VSAM Logic.

Return Codes

The meaning of the return code depends on whether processing is asynchronous
or synchronous.

Asynchronous Request
After you issue an asynchronous request for access to a data set, VSAM issues
a return code in register 15 to indicate whether the request was accepted, as

follows:

Return

Code Condition

0(0) Request was accepted.

4(4) Request was not accepted because the request parameter list

indicated by the request (RPL=address)
was active for another request.

If the asynchronous request was accepted, issue a CHECK after doing your other
processing so VSAM can indicate in register 15 whether the request was com-
pleted successfully, set a return code in the feedback field, and exit to any
appropriate exit routine. If the request was not accepted, you should either wait
until the other request is complete (for example, by issuing a CHECK on the
request parameter list) or terminate the other request (using ENDREQ). Then
you can reissue the rejected request.

Synchronous Request

After a synchronous request, or a CHECK or ENDREQ macro, the return code in
register 15 indicates whether the request was completed successfully, as follows:

10 MvVS/370 VSAM Administration: Macro Instruction Reference

Return

Code Condition
0(0) Request completed successfully.
4(4) Request was not accepted because the request parameter list

indicated by the request (RPL=address) was
active for another request.

8(8) Logical error; specific error is indicated in the feedback field
in the RPL.

12(C) Physical error; specific error is indicated in the feedback field
in the RPL.

Component Codes

Reason Codes

When a logical or physical error occurs, VSAM uses the component code field of
the RPL to identify the component being processed when the error occurred and
indicates whether the alternate index upgrade set is correct following the
request that failed. The component code can be displayed and tested by using
the SHOWCB and TESTCB macros. The codes and their meanings are given in
Figure 6.

Figure 6. Component Codes Provided in the RPL

Component What Was Being

Code Processed Upgrade Set Status
0(0) Base cluster Correct

1(1) Base cluster May be incorrect
2(2) Alternate index Correct

3(3) Alternate index May be incorrect
4(4) Upgrade set Correct

5(5) Upgrade set May be incorrect

Paired with the 0, 8, and 12 return codes in register 15 are reason codes in the
feedback field of the request parameter list.

You can examine the reason codes of the feedback field of the request param-
eter list with the SHOWCB or TESTCB macro. You may code your examination
routine immediately following the request macro. However, logical errors, phys-
ical errors, and reaching the end of the data set all cause VSAM to exit to the
appropriate exit routine, if you provide it.

Coordinate error checking in your program with your error-analysis exit routines.
If they terminate the program, for instance, you would not need to code a check
for an error after a request. But if a routine returns to VSAM to continue proc-
essing, you might check register 15 after a request to determine whether there
was an error. Even though the error was handled by an exit routine, you may
want to modify processing because of the error.

Chapter 1. Macro Instruction Return Codes and Reason Codes 11

Reason Code (Successful Request)
Successful completion of a VSAM request is defined as register 15=0 when the
request is completed. The reason code field in the feedback word of the RPL
may not be zero for a variety of reasons. Figure 7 lists these codes and the
reasons they are set.

Reason Code

When

Register

15=0(0) Condition

0(0) Request completed successfully.

4(4) Request completed successfully. For retrieval, VSAM mounted another
volume to locate the record; for storage, VSAM allocated additional
space or mounted another volume.

8(8) For GET requests, indicates a duplicate alternate key exists (applies
only when accessing a data set using an alternate index that allows
nonunique keys); for PUT requests, indicates that a duplicate key was
created in an alternate index with the nonunique attribute.

12(C) Write-buffer suggested (shared resources only).

16(10) The sequence-set record does not have enough space to allow it to
address all of the control intervals in the control area that should
contain the record. The record was written into a new control area.

20(14) Data set is not on virtual DASD for CNVTAD/MNTACQ/ACQRANGE
request.

24(18) Buffer found but not modified; no buffer writes performed.

28(1C) Control interval split indicator was detected during an addressed GET
NUP request.

32(20) Request deferred for a resource held by the terminated RPL is asyn-
chronous and cannot be restarted by TERMRPL.

36(24) Possible data set error condition was detected by TERMRPL:

* The request was abnormally terminated in the middle of its 1/0
operation.

* One of the data/index BUFCs of the string contains data that needs
to be written (BUFCMW =0N) but it was invalidated by TERMRPL.

40(28) Error in PLH data BUFC pointer was detected by TERMRPL.

Figure 7. Successful Completion Reason Codes in the Feedback Field of the Request
Parameter List

Reason Code (Logical Errors)
If a logical error occurs and you have no LERAD routine (or the LERAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. ("User-Written-Exit Routines” in VSAM Administration Guide
describes the LERAD routine.) The return code in register 15 indicates a logical
error (8), and the feedback field in the request parameter list contains a reason
code identifying the error. Register 1 points to the request parameter list.
Figure 8 on page 13 gives the reason codes in the feedback field and explains
the meaning of each.

12 MVS/370 VSAM Administration: Macro Instruction Reference

Reason Code
When
Register
15=8(8)

4(4)

8(8)

12(C)

16(10)
20(14)

Condition

End of data set encountered (during sequential or skip sequential
retrieval), or the search argument is greater than the high key of the
data set. Either no EODAD routine is provided, or one is provided,
returned to VSAM, and the processing program issued another GET.
(“User-Written-Exit Routines” in VSAM Administration Guide describes
the EODAD routine.)

You attempted to store a record with a duplicate key, or there is a
duplicate record for an alternate index with the unique key option.

A key sequence check was performed and an error was detected in
one of the following processing conditions:

* For a key-sequenced data set

— PUT sequential or skip-sequential processing

— GET sequential, single string input only

— GET skip-sequential processing and the previous request is
not a POINT

* For a relative record data set

— GET skip-sequential processing
— PUT skip-sequential processing

Record not found, or the RBA is not found in the buffer pool.

The RBA is found, but the buffer is under the exclusive control of
another request. With this condition, it is possible to also have
buffers invalidated. Or, the control interval is for a record already
held in exclusive control by another requester.

Note: If the RPL message area is correctly specified, the following
information is returned:

Offset Length Discussion
0 4 Address of RPL in exclusive control

"4 1 Flag Byte:

X'00' neither RPL is doing a control area split

X'01"' current RPL is attempting a control
area split

X'02' other RPL is doing a control area split

Figure 8 (Part 1 of 5). Logical Error Reason Codes in the Feedback Field of the Request

Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 13

Reason Code
When
Register
15=8(8)

24(18)
28(1C)

32(20)

36(24)

40(28)

44(2C)

48(30)

52(34)
64(40)

68(44)

72(48)

76(4C)

80(50)

Condition
Record resides on a volume that can’t be mounted.

Data set cannot be extended because VSAM can’t allocate additional
direct access storage space. Either there is not enough space left to
make the secondary allocation request or you attempted to increase
the size of a data set while processing with SHAREOPTIONS =4 and

DISP=SHR.

You specified an RBA that doesn’t give the address of any data
record in the data set.

Key ranges were specified for the data set when it was defined, but
no range was specified that includes the record to be inserted.

Insufficient virtual storage in your address space to complete the
request.

Work area not large enough for the data record or for the buffer (GET
with OPTCD =MVE).

Invalid options, data set attributes, or processing conditions specified
for TERMRPL request:

* CNV processing

* The specified RPL is asynchronous

* Chained RPLs

Path processing

Shared resources (LSR/GSR)

Load mode

Relative record data set

Data set contains spanned records

User not in key 0 and supervisor state
End-of-volume in process (secondary allocation)

The previous request was TERMRPL.

There is insufficient storage available to dynamically add another

string. Or, the maximum number of placeholders that may be allo-
cated to the request has been allocated, and a placeholder is not

available.

You attempted to use a type of processing (output or control interval
processing) that was not specified when the data set was opened.

You made a keyed request for access to an entry-sequenced data set,
or you issued a GETIX or PUTIX to an entry-sequenced or relative
record data set.

You issued an addressed or control interval PUT to add to a key-
sequenced data set, or you issued a control interval PUT to a relative
record data set.

You issued an ERASE request in one of the following situations:

* For access to an entry-sequenced data set.
* For access to an entry-sequenced data set via a path.
* With control interval access.

Figure 8 (Part 2 of 5). Logical Error Reason Codes in the Feedback Field of the Request

Parameter List

14 MVS/370 VSAM Administration: Macro Instruction Reference

Reason Code
When
Register
15=28(8)

84(54)

88(58)

92(5C)

96(60)

100(64)

104(68)

108(6C)

Condition
You specified OPTCD =LOC in one of the following situations:

* For a PUT request.

* In the previous request parameter list in a chain of parameter
lists.

* For UBF processing.

You issued a sequential GET request without having caused VSAM to
be positioned for it, or you changed from addressed access to keyed

access without causing VSAM to be positioned for keyed-sequential
retrieval; there was no positioning established for sequential PUT
insert for a relative record data set, or you attempted an illegal swi
between forward and backward processing.

tch

You issued a PUT for update or an ERASE without a previous GET for

update, or a PUTIX without a previous GETIX.

You attempted to change the prime key or key of reference while
making an update.

You attempted to change the length of a record while making an
addressed update.

The RPL options are either invalid or conflicting in one of the following

ways:

» SKP was specified and either KEY was not specified or BWD was

specified.

BWD was specified for CNV processing.

FWD and LRD were specified.

Neither ADR, CNV, nor KEY was specified in the RPL.
BFRNO is invalid (less than 1 or greater than the number of
buffers in the pool).

* WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID
was greater than 31 or the shared resource option was not speci-

fied.

* ICl processing was specified, but a request other than a GET or
PUT was issued.

* MRKBFR MARK=O0UT or MARK=RLS was issued but the RPL
did not have a data buffer associated with it.

* The RPL specified WAITX, but the ACB did not specify LSR or
GSR.

a

RECLEN specified was larger than the maximum allowed, equal to 0,
or smaller than the sum of the length and the displacement of the key
field; RECLEN was not equal to record (slot) size specified for a rela-
tive record data set. The automatic increase in the record size of an

upgrade index for the base cluster may cause an incorrect RECLEN
specification.

Figure 8 (Part 3 of 5). Logical Error Reason Codes in the Feedback Field of the Request

Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes

15

Reason Code
When
Register
15=8(8)

112(70)
116(74)

120(78)

124(7C)
128(80)

132(84)
136(88)

140(8C)
144(90)
148(94)

152(98)

156(9C)

160(A0)

164(A4)

Condition
KEYLEN specified was too large or equal to 0.

During initial data set loading (that is, when records are being stored
in the data set the first time it’s opened), GET, POINT, ERASE, direct
PUT, skip-sequential PUT, or PUT with OPTCD = UPD is not allowed.
For initial loading of a relative record data set, the request was other
than a PUT insert.

The request was operating under an incorrect TCB. For example, an
end-of-volume call or a GETMAIN would have been necessary to com-
plete the request, but the request was issued from a job step other
than the one that opened the data set. The request can be resub-
mitted from the correct task, if the new request reestablishes posi-
tioning.

A request was cancelled for a user JRNAD exit.

A loop exists in the index horizontal pointer chain during index search
processing.

An attempt was made in locate mode to retrieve a spanned record.

You attempted an addressed GET of a spanned record in a key-
sequenced data set.

The spanned record segment update number is inconsistent.
Invalid pointer (no associated base record) in an alternate index.

The maximum number of pointers in the alternate index has been
exceeded.

Not enough buffers are available to process your request (shared
resources only).

An invalid control interval or invalid record definition field was
detected during keyed processing, or an addressed GET UPD request
failed because the control interval flag was on. The RPL contains the
invalid control interval’s RBA.

One or more candidates were found that have a modified buffer
marked to be written. The buffer was left in write status with valid
contents. With this condition, it is possible to have other buffers
invalidated or found under exclusive control.

One of the following invalid options was specified for a
CNVTAD/MNTACQ/ACQRANGE request:

Generic key (GEN)

Load mode

Path processing

User buffers (UBF) with LSR/GSR

Key-sequenced data set, but not key processing (KEY)
Entry-sequenced data set, but not address processing (ADR)
Relative record data set, but not key processing (KEY)

RPL is chained

Key-sequenced data set has single-level imbedded index

Figure 8 (Part 4 of 5). Logical Error Reason Codes in the Feedback Field of the Request

Parameter List

16 MVS/370 VSAM Administration: Macro Instruction Reference

Reason Code
When
Register
15=8(8)

168(A8)

172(AC)

176(BO)
180(B4)

184(B8)
188(BC)
192(C0)
196(C4)
200(C8)
204(CC)
208(D0)

212(D4)

224(E0)
228(E4)

232(E8)
236(EC)
240(F0)

252(FC)
253(FD)

Condition

One of the following user parameter list errors was detected for
CNVTAD/MNTACQ/ACQRANGE request:

* No user parameter list is specified (RPLARG=0)

¢ Argument count is zero for CNVTAD/MNTACQ request

* Ending argument is less than starting argument for ACQRANGE
request

¢ Parameter list not on word boundary

ACQUIRE error returned by SVC 126 for MNTACQ/ACQRANGE
request.

Staging failure for MNTACQ/ACQRANGE request.

RBA/volume error for MNTACQ/ACQRANGE request.
(Required volume not mounted or specified RBA(s) not on mounted
volume.)

Catalog errors returned from SVC 126 for CNVTAD request.
Storage for ACQUIRE ECBs (subpool 241) is not available.

Invalid relative record number.

You issued an addressed request to a relative record data set.

You attempted addressed or control interval access through a path.
PUT insert requests are not allowed in backward mode.

The user has issued an ENDREQ macro instruction against an RPL
that has an outstanding WAIT against the ECB associated with the
RPL. This can occur when an ENDREQ is issued from a STAE or
ESTAE routine routine against an RPL that was started before the
abend. No ENDREQ processing has been done.

During control area split processing, a condition exists that prevents
the split of the index record. Index and/or Data control interval size
may need to be increased.

MRKBFR OUT was issued for a buffer with invalid contents.

Caller in cross-memory mode is not in supervisor state or RPL of
caller in SRB or cross-memory mode does not specify SYN proc-
essing.

UPAD error; ECB was not posted by user in cross-memory mode.
Validity check error for SHAREOPTIONS 3 or 4.

For shared resources, one of the following is being performed: (a) an
attempt is being made to obtain a buffer in exclusive control, (b) a
buffer is being invalidated, or (c) the buffer use chain is changing. For
more detailed feedback, reissue the request.

Record mode access not valid for an LDS.
VERIFY function not valid for an LDS.

Figure 8 (Part 5 of 5). Logical Error Reason Codes in the Feedback Field of the Request

Parameter List

When the search argument you supply for a POINT or GET request is greater
than the highest key in the data set, the reason code in the feedback field
depends on the RPL’s OPTCD values, as shown in the following table:

Chapter 1. Macro Instruction Return Codes and Reason Codes 17

Request RPLs OPTCD Reason Code When

Type Options Register 15=28(8)
POINT GEN,KEQ 16(10)
POINT GEN,KGE 4(4)
POINT FKS,KEQ 16(10)
POINT FKS,KGE 4(4)
GET GEN,KEQ,DIR 16(10)
GET GEN,KGE,DIR 16(10)
GET FKS,KEQ,DIR 16(10)
GET FKS,KGE,DIR 16(10)
GET GEN,KEQ,SKP 16(10)
GET GEN,KGE,SKP 4(4)
GET FKS,KEQ,SKP 16(10)
GET FKS,KGE,SKP 4(4)

Positioning Following Logical Errors

VSAM is unable to maintain positioning after every logical error. Whenever posi-
tioning is not maintained following an error request, you must reestablish it
before processing resumes.

Positioning may be in one of four states following a POINT or a direct request
that encountered a logical error:

Yes VSAM is positioned at the position in effect before the request in error
was issued.

No VSAM is not positioned, because no positioning was established at the
time the request in error was issued.

New VSAM is positioned at a new position.
U VSAM is positioned at an unpredictable position.
The following table shows which positioning state applies to each reason code

listed for sequential, direct, and skip-sequential processing. “N/A” indicates that
the reason code is not applicable to the type of processing indicated.

Reason Code

When Register

15=8(8) Sequential Direct Skip-Sequential
4(4) Yes N/A Yes
8(8)" Yes No New
12(C) Yes N/A Yes
16(10) No No No
20(14) U No? No?
24(18) Yes No No
28(1C) Yes No Yes
32(20) No No N/A
36(24) Yes No New
40(28) Yes No No
44(2C) Yes New Yes
64(40) No No No
68(44) Yes Yes Yes
72(48) Yes Yes Yes
76(4C) Yes Yes Yes
80(50) Yes Yes Yes
84(54) Yes Yes Yes
88(58) Yes Yes Yes
92(5C) Yes Yes Yes

18 MVS/370 VSAM Administration: Macro Instruction Reference

96(60) Yes Yes Yes

100(64) Yes Yes Yes
104(68) Yes New Yes
108(6C) Yes New Yes
112(70) Yes Yes Yes
116(74) Yes Yes Yes
120(78) Yes No No

124(7C) No No No

132(84) Yes New Yes
136(88) No No N/A
140(8C) Yes New Yes
144(90) Yes Yes Yes
148(94) Yes Yes Yes
152(98) Yes No No

156(9C) Yes No No

160(A0) N/A No N/A
192(C0) Yes Yes Yes
196(C4) Yes Yes Yes
200(C8) Yes Yes Yes
204(CC) Yes Yes Yes
208(D0) Yes Yes Yes
224(E0) N/A No N/A
228(E4) No No No

232(E8) No No No

236(EC) No No No

240(F0) Yes Yes Yes

' A subsequent GET SEQ will retrieve the duplicate record; however, a subse-
quent GET SKP for the same key will get a sequence error. In a relative
record data set, a subsequent PUT SEQ positions to the next slot (whether the
slot is empty or not).

2 PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an RBA that
could not be obtained for exclusive control.

Reason Code (Physical Errors)
If a physical error occurs and you have no SYNAD routine (or the SYNAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. The return code in register 15 indicates a physical error (12), and
the feedback field in the request parameter list contains an reason code identi-
fying the error; the RPL message area contains more details about the error.
Register 1 points to the request parameter list. The RBA field in the request
parameter list gives the relative byie address of the control interval in which the
physical error occurred. Figure 9 gives the reason codes in the feedback field
and explains what each indicates.

Reason Code

When Register

15=12(0C) Condition

4(4) Read error occurred for a data set.

8(8) Read error occurred for an index set.
12(C) Read error occurred for a sequence set.
16(10) Write error occurred for a data set.
20(14) Write error occurred for an index set.
24(18) Write error occurred for a sequence set.

Figure 9. Physical Error Reason Codes in the Feedback Field of the Request Parameter
List

Chapter 1. Macro Instruction Return Codes and Reason Codes 19

Figure 10 on page 20 gives the format of a physical error message. The format
and some of the contents of the message are purposely similar to the format and
contents of the SYNADAF message, which is described in Data Administration:
Macro Instruction Reference.

Field Bytes Length Discussion

Message 0-1 2 Binary value of 128

Length
2-3 2 Unused (0)

Message 4-5 2 Binary value of 124 (provided for

Length —4 compatibility with SYNADAF Message)
6-7 2 Unused (0)

Address of 8-11 4 The 1/0 buffer associated with the

1/0 Buffer data where the error occurred

The rest of the message is in printable format

Date 12-16 5 YYDDD (year and day)
17 1 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second,

and tenths and hundredths of a second
26 1 Comma (,)
RBA 27-34 8 Relative byte address of the record
where the error occurred
35 1 Comma (,)
Component 36-41 6 “DATA" or “INDEX"
Type
42 1 Comma (,)
Volume Serial 4348 6 Volume serial number of the
Number volume where the error occurred
49 1 Comma (,)
Job Name 50-57 8 Name of the job where error occurred
58 1 Comma (,)

Step Name 59-66 8 Name of the job step in which

error occurred
67 1 Comma (,)

Unit 68-70 3 The unit, CUU (channel and unit),

where the error occurred
71 1 Comma (,)

Device Type 72-73 2 The type of device where the error

occurred (always DA for direct access)
74 1 Comma (,)

ddname 75-82 8 The ddname of the DD statement
defining the data set where the error
occurred

83 1 Comma (,)

Channel 84-89 6 The channel command that caused
the error in the first two bytes,
followed by “_OP”

90 1 Comma (,)
Message 91-105 15 Messages are divided according

to ECB condition codes:
X'41' “INCORR LENGTH"
“UNIT EXCEPTION"
“PROGRAM CHECK"
“PROTECTION CHK"
“CHAN DATA CHK"

Figure 10 (Part 1 of 2). Physical Error Message Format

20 MVS/370 VSAM Administration: Macro Instruction Reference

‘ Field Bytes Length Discussion

“CHAN CTRL CHK”
“INTFCE CTRL CHK”
“CHAINING CHK”
“UNIT CHECK"”
If the type of unit check can be determined,
the 'UNIT CHECK' message is replaced
by one of the following:
“CMD REJECT”
“INT REQ”
“BUS OUT CK”
“EQP CHECK”
“DATA CHECK”
“OVER RUN"
“TRACK COND CK”
“SEEK CHECK”
“COUNT DATA CHK"
L “TRACK OVERRUN"
“CYLINDER END”
“NO RECORD FOUND”
“FILE PROTECT”
“MISSING A M.”
“OVERFL INCP”
X'48' “PURGED REQUEST”
X'4F' “R.HA.RO. ERROR”
For any other ECB condition code:
“UNKNOWN COND.”

106 Comma (,)
Physical 107- 14 BBCCHHR (bin, cylinder, head, and
Direct Access 120 record)
Address
121 1 Comma (,)
Access 122- 6 “VSAM"
Method 127

Figure 10 (Part 2 of 2). Physical Error Message Format

C

Return Codes from Macros Used to Share Resources among Data
Sets

VSAM has a set of macros that enables you to share 1/O buffers, 1/0 related
control blocks, and channel programs among VSAM data sets.

Chapter 1. Macro Instruction Return Codes and Reason Codes 21

Return Codes from BLDVRP

VSAM returns a code in register 15 that indicates whether the BLDVRP request
was successful:

Return

Code Condition

0(0) VSAM completed the request.

4(4) A resource pool already exists in the partition or address space
(LSR) or in the system (GSR).

8(8) There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

12(C) Buffers cannot be fixed in real storage.
PAGEFIX failed.

16(10) TYPE=GSR is specified but the program that issued BLDVRP
is not in supervisor state with protection key 0 to 7.

20(14) STRNO is less than 1 or greater than 255.

24(18) BUFFERS is specified incorrectly.

A size or number is invalid.

Return Codes from DLVRP

VSAM returns a code in register 15 that indicates whether the DLVRP request
was successful:

Return

Code Condition

0(0) VSAM completed the request.

4(4) There is no resource pool to delete.

8(8) There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

12(C) There is at least one open data set using
the resource pool.

16(10) TYPE=GSR is specified, but the program that issued DLVRP

is not in supervisor state
with protection key 0 to 7.

Return Codes from End-of-Volume

End-of-volume returns the following codes in register 15:

Return

Code Condition

0(0) Successful.

4(4) The requested volume could not be mounted.

8(8) The requested amount of space could not be allocated.
12(C) I1/0 operations were in progress when end-of-volume

was requested.
16(10) The catalog could not be updated.

22 MVS/370 VSAM Administration: Macro Instruction Reference

C

Chapter 2. VSAM Macro Formats and Examples

This chapter contains the macro instruction formats and examples for the macro
instructions.

The macros that work at assembly time allow you to specify values for subpa-
rameters as absolute numeric expressions, as character strings, as codes, and
as expressions that generate valid relocatable A-type address constants. The
macros that work at execution allow you to specify them in those ways and also
in:

* Register notation, where the expression designating a register from 2
through 12 is enclosed in parentheses; for example, (2) and (REG), where
REG is a label equated to a number from 2 through 12

* An expression of the form (S,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form

* An expression of the form (*,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form, and the
address specified by scon is indirect—that is, it gives the location of the area
that contains the value for the subparameter.

For most programming applications, you can conveniently use register notation
or absolute numeric expressions for numbers, character strings for names, and
register notation or expressions that generate valid A-type address constants for
addresses. Appendix B, “Operand Notation” on page 129, gives all the ways of
coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros.

Appendix A, “List, Execute, and Generate Forms of Macros” on page 121,
describes alternative ways of coding these macros for reentrant programs. The
standard form of these macros is described in this chapter.

© Copyright IBM Corp. 1983, 1990 23

ACB

ACB Macro (Generate an Access Method Control Block)

The syntax of the ACB macro is:

[label] | ACB [AM=VSAM]

[LBSTRNO =number]

[LBUFND =number]

[LBUFNI=number]

[LBUFSP =number]

[LCATALOG=YES|NO]

[,CRA=SCRA|UCRA]

[,DDNAME =ddname]

[LEXLST=address]

[LMACRF =([ADR][,CNV][KEY]
[,CFX|NFX]
[.DDN|DSN]
[LDFRINDF]
[,DIR][,SEQ][,SKP]
[,ICIINCI]
[LIN][,O0UT]
[NIS|SIS]
[.NRMIAIX]
[[NRS|RST]
[.NSRILSR|GSR]
[LNUB|UBF])]

[LMAREA =address]

[LMLEN=number]

[,PASSWD =address]

[,STRNO =number]

Values for ACB macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid relo-
catable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the access method
control block that is assembled and also, if you omit the DDNAME parameter,
serves as the ddname.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO =number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignhored if the object
being opened is not a path. If the number specified for BSTRNO is insuffi-
cient, VSAM will dynamically extend the number of strings as needed for the
access to the base cluster. BSTRNO can influence performance. The VSAM
control blocks for the set of strings specified by BSTRNO are allocated on
contiguous virtual storage, whereas this is not guaranteed for the strings
allocated by dynamic extension.

BUFND =number
specifies the number of I/0 buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control

24 MVS/370 VSAM Administration: Macro Instruction Reference

ACB

interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must be at
least 2, because the default for STRNO is 1). The number can be supplied by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required. Note, however, that minimum
buffer specification does not provide optimum sequential processing per-
formance. Generally, the more data buffers specified, the better the perform-
ance. Note also that additional data buffers will benefit direct inserts or
updates during control area splits and will benefit spanned record

accessing. For more information, see “"Optimizing Performance” in VSAM
Administration Guide.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for transmitting the con-
tents of index entries between virtual and auxiliary storage for keyed access.
A buffer is the size of a control interval in the index. The minimum number
is the number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is 1). You can supply the number by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required.

Additional index buffers will improve performance by providing for the resi-
dency of some or all of the high-level index, thereby minimizing the number
of high-level index records to be retrieved from DASD for key-direct proc-
essing. For more information, see “Optimizing Performance” in VSAM
Administration Guide.

BUFSP =number
specifies the maximum number of bytes of virtual storage to be used for the
data and index I/0O buffers. VSAM gets the storage in your program’s
address space. If you specify less than the amount of space that was speci-
fied in the BUFFERSPACE parameter of the DEFINE command when the data
set was defined, VSAM overrides your BUFSP specification upward to the
value specified in BUFFERSPACE. (BUFFERSPACE, by definition, is the least
amount of virtual storage that will ever be provided for I/0 buffers.) You can
supply BUFSP by way of the JCL DD AMP parameter as well as by way of
the macro. If you don’t specify BUFSP in either place, the amount of storage
used for buffer allocation is the /argest of:

¢ The amount specified in the catalog (BUFFERSPACE),
e The amount determined from BUFND and BUFNI, or

e« The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called
for by BUFND and BUFNI, the extra space is allocated as follows:

* When MACREF indicates direct access only, additional index buffers are
allocated.

¢ When MACREF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

Chapter 2. VSAM Macro Formats and Examples 25

ACB

Option
SKP

z
2]

ouT

SIS

NSR
LSR

GSR

UBF

Meaning

Skip-sequential access to a key-sequenced or a relative record data set; used
only with keyed access in a forward direction.

Processing is limited to improved control interval processing; access is faster
because fewer processor instructions are executed.

Processing other than improved control interval processing.

Retrieval of records of a key-sequenced, entry-sequenced, or a relative
record data set; (not allowed for an empty data set). If the data set is pass-
word protected, you must supply the address of the read or higher-level
password in the ACB PASSWD parameter.

Storage of new records in a key-sequenced, entry-sequenced, or relative
record data set (not allowed with addressed access to a key-sequenced data
set); update of records in a key-sequenced, entry-sequenced, or relative
record data set; deletion of records from a key-sequenced data set or rela-
tive record data set.

If the data set is password protected, you must supply the address of the
update or higher-level password in the ACB PACSWD parameter.

Normal insert strategy.

Sequential insert strategy (split control intervals and control areas at the
insert point rather than at the midpoint when doing direct PUTs); although
positioning is lost and writes are done after each direct PUT request, SIS
allows more efficient space usage when direct inserts are clustered around
certain keys.

The object to be processed is the one named in the specified ddname.

The object to be processed is the alternate index of the path specified by
ddname, rather than the base cluster via the alternate index.

Data set is not reusable.

Data set is reusable (high-used RBA is reset to 0 during OPEN). If the data
set is password protected, you must supply the address of the update or
higher-level password in the ACB PASSWORD parameter.

Nonshared resources.

Local shared resources; each partition or address space may have one
resource pool independently of other partitions or address spaces.

Global shared resources; all address spaces may have local and global
resources pools, where tasks in an address space with a local resource pool
may use either the local resource pool or the global resource pool.

Management of I/O buffers is left up to VSAM.

Management of 1/0 buffers is left up to the user; the work area specified by
the RPL (or GENCB) AREA parameter is, in effect, the 1/0 buffer—VSAM
transmits the contents of a control interval directly between the work area
and direct access storage; valid when OPTCD =MVE and MACRF=CNV are
specified; when ICl is specified, UBF is assumed.

Figure 11 (Part 2 of 2). MACRF Options

MAREA =address
specifies the address of an optional OPEN/CLOSE or TYPE =T option (CLOSE
macro) message area. See “OPEN/CLOSE Message Area for Multiple
Reason or Warning Messages” on page 5 for more information.

28 MVS/370 VSAM Administration: Macro Instruction Reference

ACB

MLEN =number
specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE
L macro) message area. Default=0; maximum=32K. See “OPEN/CLOSE
Message Area for Multiple Reason or Warning Messages” on page 5 for
more information.

PASSWD =address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
first byte of the field pointed to contains the length (in binary) of the pass-
word (maximum of 8 bytes). Zero indicates that no password is supplied. If
the data set is password protected and you don’t supply a required pass-
word in the access method control block, VSAM will give the console oper-
ator the opportunity to supply it when you open the data set.

STRNO =number

specifies the number of requests requiring concurrent data set positioning

VSAM is to be prepared to handle. The default is 1. A request is defined by
L a given request parameter list or chain of request parameter lists. See “RPL

Macro (Generate a Request Parameter List)” on page 93 and “GENCB

Macro (Generate a Request Parameter List)” on page 57 for information on

request parameter lists. When records are loaded into an empty data set,

the STRNO value in the access method control block must be 1.

VSAM dynamically extends the number of strings as needed by concurrent
requests for this ACB, and this automatic extension can influence perform-
ance. The VSAM control blocks for the set of strings specified by STRNO are
allocated on contiguous virtual storage, but this is not guaranteed for the
(, | strings allocated by dynamic extension. Dynamic string addition cannot be
[done when using the following options:

* |Load mode
e ICI
e LSR or GSR

For STRNO, you could specify the total number of request parameter lists or
chains of request parameter lists that you are using to define requests.
{(VSAM needs to remember only one position for a chain of request param-
Q eter lists.) However, each position beyond the minimum number that VSAM
needs to be able to remember requires additional virtual storage space for:

* A minimum of one data I/O buffer and, for keyed access, one index I/O
buffer (the size of an I/0 buffer is the control interval size of a data set)

* |nternal control blocks and other areas

Chapter 2. VSAM Macro Formats and Examples 29

ACB

Example 1: ACB Macro
In this example, the ACB macro is used to identify a data set to be opened and
to specify the types of processing to be performed. The access method control
block generated by this example is built when the program is assembled.

BLOCK ACB AM=VSAM,BUFND=4, BLOCK gives symbolic
BUFNI=3, address of the access
BUFSP=19456, method control block.
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,SEQ,OUT),
PASSWD=FIELD,
STRNO=2

FIELD DC FL1'6',C'CHANGE' The update password:

CHANGE has 6 characters.

The ACB macro’s parameters are:

BUFND specifies four I/0 buffers for data; BUFNI specifies three 1/0 buffers
for index entries; and BUFSP specifies 19456 bytes of buffer space, enough
space to accommodate control intervals of data that are 4096 bytes and
control intervals of index entries that are 1024 bytes.

DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

EXLST specifies that the exit list associated with this access method control
block is named EXITS.

MACRF specifies keyed-direct and keyed-sequential processing for both
insertion and update.

PASSWD specifies the location, FIELD, of the password provided. FIELD con-
tains the length of the password as well as the password itself.

STRNO specifies that two requests will require concurrent positioning.

30 MvsS/370 VSAM Administration: Macro Instruction Reference

ACQRANGE

L ACQRANGE Macro (Stage Data)

The syntax of the ACQRANGE macro is:

[label] | ACQRANGE RPL =address

RPL=address
specifies the address of the RPL that identifies your open data set and your
argument range. RPL parameters that have meaning for ACQRANGE are as
follows:

* ACB=address
identifies your VSAM data set.

e ARG=address
identifies your starting and ending arguments. Address points to a
‘ parameter list, aligned on a fullword boundary as follows:

Key-sequenced data set:

Offset Length Contents

0 4 Feedback area: Address
of an ECB WAIT list
4 K Starting full argument
(K = key length)
L 4+K K Ending full argument

(K = key length)
Entry-sequenced data set or relative record data set:

Offset Length Contents

0 4 Feedback area: Address
of an ECB WAIT list
4 4 Starting RBA/RRN
L 8 4 Ending RBA/RRN

The maximum number of argument pairs you may specify is one.

* OPTCD=({ADR|KEY}
,{ASY|SYN}
{KEQIKGE}
,FKS)
ADR is valid for an entry-sequenced data set, error for key-sequenced
data set or relative record data set.

KEY is valid for key-sequenced data set and relative record data set,
error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for MNTACQ or

ACQRANGE. You use the address placed in the parameter list feedback

~ area. This address points to a list of ECBs (in standard WAIT list format)
L which you may use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

Chapter 2. VSAM Macro Formats and Examples 31

ACQRANGE

All other OPTCD subparameters are not applicable, and, if specified, are
ignored with no error indication.

Because your request may result in the staging of numerous cylinders, a single
ECB is not sufficient for an asynchronous ACQRANGE request. The RPLECB
field is inoperative for the ACQRANGE interface. Upon return from an asynchro-
nous ACQRANGE, the feedback area of the ACQRANGE parameter contains the
address of a standard ECB WAIT list. You must then use this list in conjunction
with the WAIT macro or you may use the list in conjunction with the EVENTS
macro of MVS. An asynchronous request must conclude with either CHECK,
ENDREQ, or CLOSE. The parameter list cannot be reused until the CHECK,
ENDREQ, or CLOSE is completed.

At the conclusion of this macro, the RPL is disconnected. Any positioning in

effect prior to execution of ACQRANGE will be lost. You may have to reposition.
Chained RPLs are not supported by this macro.

32 MVS/370 VSAM Administration: Macro Instruction Reference

BLDVRP

BLDVRP Macro (Build VSAM Resource Pool)

The syntax of the BLDVRP macro is:

BLDVRP | BUFFERS =(size(number),size(number),...)
[,FIX={BFR|IOB|(BFR,IOB)}]
[LKEYLEN=/ength]

STRNO =number

[,TYPE={LSR|GSR}]

The BLDVRP macro has a standard form and list and execute forms. The
standard form builds a parameter list and passes control to VSAM to build the
resource pool. The list and execute forms are described in Appendix A, “List,
Execute, and Generate Forms of Macros” on page 121.

BUFFERS =(size(number),size(number),...)

specifies the size and number of buffers in each buffer pool in the resource
pool. The number of buffer pools in the resource pool is implied by the
number of size(number) pairs you specify.

When you process a key-sequenced data set, the index component, as well
as the data component, shares the buffers of a buffer pool. When you use an
alternate index to process a base cluster, the components of the alternate
index and the base cluster share buffers. The components of alternate
indexes in an upgrade set share buffers. Buffers of the appropriate size and
number must be provided for all these components, each of which uses the
buffer pool whose buffers are exactly the right size or the next larger size.

Note: LSR/GSR users can ensure buffer pool selection by explicitly defining
data and index control interval size(s).

size
is 512, 1024, 2048, 4096, and then in increments of 4096 to a maximum of
32K bytes.

number
is at least 3.

The size of the buffers multiplied by the number of buffers (size x number)
must be less than 16 megabytes.

FIX={BFR|IOB|(BFR,|OB)}

specifies that I/0 buffers (BFR), or I/O-related control blocks (IOB), or both,
are to be fixed in real storage. With GSR, IOB includes channel programs. If
the program that issues BLDVRP with FIX specified is not authorized to fix
areas in real storage, FIX is ignored. A program is authorized if it is in
supervisor state with protection key O to 7, or has been link-edited with
authorization (the authorized program facility is described in Supervisor Ser-
vices and Macro Instructions).

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP.

KEYLEN =/ength

specifies the maximum key length of the data sets that are to share the
resource pool. The default is 255. The keys whose lengths must be provided
for are the prime key of each key-sequenced data set and the alternate key

Chapter 2. VSAM Macro Formats and Examples 33

BLDVRP

of each alternate index that is used for processing or is being upgraded. If
none of the data sets is keyed, specify 0.

STRNO =number
specifies the total number of placeholders required for all the data sets that
are to share the resource pool. 1 is minimum; 255 is maximum.

The number should equal the potential number of requests that may be
issued concurrently for all the data sets that will share the resource pool. If
a request fails because the number of placeholders is insufficient (logical
return code 64 (X'40')), you may retry the request; it will be assigned a
placeholder if one has been released.

TYPE={LSR|GSR}
specifies whether a local (LSR) or a global (GSR) resource pool is to be built.
Only one BLDVRP TYPE=LSR may be issued for each partition or address
space. Only one BLDVRP TYPE=GSR may be issued for the system for
each of the protection keys O through 7. The program that issues BLDVRP
TYPE =GSR must be in supervisor state with protection key 0 to 7.

34 MVS/370 VSAM Administration: Macro Instruction Reference

C

C

CHECK

CHECK Macro (Wait for Completion of Request)

The syntax of the CHECK macro is:

[label] | CHECK | RPL=address

where:

label
is 1 to 8 characters that provide a symbolic address for the CHECK macro.

RPL =address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example 1: Check Return Codes after an Asynchronous Request

In this example, return codes are checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there is a logical or phys-
ical error or if the end of the data set is reached.

REQPARMS RPL OPTCD=ASY

GET RPL=REQPARMS

LTR 15,15 Was the request completed successfully?

BNZ REJECTED Zero indicates the request was accepted.

If it was not accepted, register 15
contains 4: REQPARMS is active for another
request. Continue to work on something
that is not dependent on the request.

CHECK RPL=REQPARMS CHECK would cause one of the three exits to
be taken if there was a logical or physical
error or if the end of the data set was
reached and an active exit Tist exists.

LTR 15,15 Test return indication is register 15.

BNZ FAILURE Zero indicates the request completed
successfully. If it failed, register 15
contains 8 or 12: there was a logical or
a physical error.

REJECTED ...
FAILURE

Unless you provide exit routines that terminate processing, always test register
15 after the CHECK. If a routine returns to VSAM, register 15 is reset and control
is passed back to your program immediately after the CHECK. An error analysis
routine normally issues SHOWCB or TESTCB to examine the feedback field in
the request parameter list, so that, when your processing program gets control
back, it doesn’t have to analyze the errors—but it may alter its processing if
there was an error. If you don’t provide an error analysis routine, your program
can issue SHOWCB or TESTCB to analyze an error when it gets control back fol-
lowing the CHECK.

Chapter 2. VSAM Macro Formats and Examples 35

CHECK

Example 2: Check Return Codes after a Synchronous Request
With synchronous processing, you should test register 15 after the request
because the request may not have been accepted (register 15 contains 4) or J
because an error might have occurred (8 or 12):
GET RPL=REQPARMS
LTR 15,15 Was the request completed successfully?

BNZ REJFAIL If branch is not taken, was the request
accepted and completed successfully?

REJFAIL
Example 3: Overlap Processing

In this example, the CHECK macro is used to wait for completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB

LIST RPL ACB=BLOCK, Asynchronous access.
AREA=WORK, J
AREALEN=50,
OPTCD=ASY

LooP GET RPL=LIST
LTR 15,15
BNZ NOTACCEP

Do other processing.

CHECK RPL=LIST Suspends your processing to ’
wait for completion of GET
if necessary and to cause VSAM
to indicate return codes.

LTR 15,15

BNZ ERROR

Process the record.

B LooP
NOTACCEP ... Request was not accepted.
ERROR Request failed.)
WORK DS CL50 Work area.

After issuing the request, make sure that VSAM accepted it before you go on to
other processing. When you have done as much other processing as you can,
issue the CHECK macro. VSAM will not give you back control now until the
request is complete. If you don’t want to issue CHECK until you know the
request is complete, use the ECB parameter of the RPL macro or the

I0 =COMPLETE parameter of the TESTCB macro. After you issue the CHECK,
VSAM immediately returns a code and takes an exit, if necessary. See “RPL
Macro (Generate a Request Parameter List)” on page 93 and “GENCB Macro
(Generate a Request Parameter List)” on page 57 for information on the ECB
parameter.

36 MVS/370 VSAM Administration: Macro Instruction Reference

CHECK

Example 4: Suspend a Request for Many Records
In this example, a CHECK macro is issued for the first request parameter list in a
chain of parameter lists. If an error occurred for one of the request parameter
lists in the chain and you have supplied error analysis routines, VSAM takes a
LERAD or SYNAD exit before it returns control to your program after the CHECK.

FIRST RPL ACB=BLOCK,
AREA=AREA1,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY
SECOND RPL ACB=BLOCK,
AREA=AREAZ,
AREALEN=50,
NXTRPL=THIRD,
OPTCD=ASY
THIRD RPL ACB=BLOCK, Last 1ist does not indicate a
AREA=AREA3, next list.
AREALEN=50,

OPTCD=ASY
LOOP GET RPL=FIRST Request gives the address of the
first request parameter list.
LTR 15,15

BNZ NOTACCEP

Do other processing.

CHECK RPL=FIRST
LTR 15,15
BNZ ERROR

Process the three records retrieved by the GET.

B LooP

NOTACCEP ... Request wasn't accepted.

ERROR .es Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find
out which one had an error.

AREA1 DS CL50 A single GET request causes VSAM
to put a record in each of AREAI,
AREA1, and AREA3.

AREA2 DS CL50

AREA3 DS CL50

After the CHECK, register 15 is set to indicate the status of the request. A code
of 0 indicates that no error was associated with any of the request parameter
lists. Any other code indicates that an error occurred for one of the request
parameter lists. You should issue a SHOWCB macro for each request parameter
list in the chain to find out which one had an error. VSAM doesn’t process any
of the request parameter lists beyond the one with an error.

Chapter 2. VSAM Macro Formats and Examples 37

CLOSE

CLOSE Macro (Disconnect Program and Data)
The syntax of the CLOSE macro is:

[/abel] | CLOSE (address[(options)],...)
[LTYPE=T]

where:

label
is 1 to 8 characters that provide a symbolic address for the CLOSE macro.

address
specifies the address of the access method control block or DCB for each
data set to be closed. You may specify the address in register notation
(using a register from 2 through 12—in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you specify only one address with a register, you must enclose the
expression identifying the register in two sets of parentheses: for example,
CLOSE ((2)).

options
are options parameters for use only in closing non-VSAM data sets. If any
options are specified with the address of an access method control block,
VSAM ignores them.

Note: Because the CLOSE parameters are positional, include a comma for
options (even if you don’t specify options) before a subsequent parameter.

TYPE=T
specifies that VSAM is to complete outstanding I/O operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete out-
standing I/O operations, put back into the catalog the updated information
that was brought into virtual storage when the data set was opened, and
write records in the SMF data set if you are using SMF. A temporary CLOSE
doesn’t disconnect the program from the data set, so your program can con-
tinue to process the data set without issuing an OPEN macro again.

You must close and reopen a newly created VSAM data set before you can
issue noncreate requests. A temporary close is not adequate for this
purpose.

Note: If you are sharing subtasks or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on all
RPLs before you issue a CLOSE or CLOSE TYPE =T, otherwise, concurrent data
set 1/0 activity will cause unpredictable results during a close.

38 MVS/370 VSAM Administration: Macro Instruction Reference

C

CNVTAD

CNVTAD Macro (Convert Address)

The syntax of the CNVTAD macro is:

[/abel]

CNVTAD

RPL =address

RPL=address
specifies the address of the request parameter list (RPL). The RPL identifies
your opened VSAM data set and your arguments. The following RPL param-
eters and subparameters have meaning for the CNVTAD macro:

e ACB=address

identifies your VSAM data set.

e ARG=address

identifies your arguments. The address points to a parameter list,
aligned on a fullword boundary as follows:

Key-sequenced data set:

Offset

0
3

4+(N—1)(10+K)
8+ (N—1)(10+K)

14+ (N—1)(10+K)

Length Contents

Reserved; unused

Number of arguments (N)

(N = 1to 255)

Feedback RBA

(K = key length)

Feedback volume serial number
(K = key length)

Full key argument

(K = key length)

Entry-sequenced data set or relative record data set:

Offset

0
3

4+(N—1)(14)
8+ (N—1)(14)
18 +(N—1)(14)

Length Contents

[~ B« T - N\]

Reserved; unused

Number of arguments (N)
Feedback RBA

Feedback volume serial number
RBA/RRN argument

The value for K is always 4 in an entry-sequenced or relative record data
set. Therefore, 10+K is always 14 for these two types of data sets. The
maximum number of arguments allowed is 255.

e ECB=address
specifies the address of an event control block (ECB) which you may
specify. VSAM indicates in the ECB whether or not a request is com-
plete. This parameter is optional.

Chapter 2. VSAM Macro Formats and Examples 39

CNVTAD

* OPTCD=({ADR|KEY}
,{ASY|SYN}
{KEQ|KGE}
,FKS)
ADR is only valid for entry-sequenced data sets.

KEY is only valid for key-sequenced data sets and relative record dat a
sets.

If ASY is specified, you cannot WAIT on the RPLECB field for MNTACQ or
ACQRANGE. You use the address placed in the parameter list feedback
area. This address points to a list of ECBs (in standard WAIT list format)
which you may use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTCD subparameters are not applicable, and, if specified, are
ignored with no error indications.

For a given list of discrete arguments, CNVTAD returns the volume serial
number (volser) and the RBA corresponding to each argument in the parameter
list feedback area. The data portion of your VSAM data set is not referenced
and need not be mounted even if the sequence set is embedded.

For an entry-sequenced data set, the volser is returned, and the same RBA
specified in the argument field is also returned.

Note: The RBA returned by CNVTAD in the case of a key-sequenced data set is
not the exact RBA of the record. It is, in fact, an approximate value. (For data
sets with the IMBED option, it is the RBA of the beginning of the sequence set for
the record’s control area; for data sets with NOIMBED, it is the RBA of the
record’s control interval.) When passed to MNTACQ, these RBA values cause
MNTACQ to stage the appropriate cylinders corresponding to the requested
arguments originally passed to CNVTAD. You should therefore use caution if
you are planning to use the RBAs obtained from CNVTAD for any purpose other
than as input to MNTACAQ.

At the conclusion of this macro, the RPL is disconnected. Any positioning in
effect prior to execution of this macro will be lost. You may have to reposition.
Chained RPLs are not supported by CNVTAD.

40 MVS/370 VSAM Administration: Macro Instruction Reference

DLVRP

(’ DLVRP Macro (Delete VSAM Resource Pool)

The DLVRP macro has a standard form and an execute form. The standard form
builds a parameter list and passes control to VSAM to delete the resource pool.
The execute form is described in Appendix A, “List, Execute, and Generate
Forms of Macros” on page 121.

The syntax of the DLVRP macro is:

DLVRP | TYPE={LSR|GSR}

TYPE={LSR|GSR}
specifies the type of resource pool to be deleted: local (LSR) or global
(GSR). The local resource pool is the one in the partition or address space
in which DLVRP is issued. The program that issues DLVRP TYPE=GSR
L must be in supervisor state with protection key 0 to 7.

Chapter 2. VSAM Macro Formats and Examples 41

ENDREQ

ENDREQ Macro (Terminate a Request)
The syntax of the ENDREQ macro is:

[/abel] | ENDREQ RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the ENDREQ macro.

RPL=address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: The ENDREQ macro must not be issued when records are being loaded
into a VSAM data set (load mode). ENDREQs issued while in load mode are
ignored.

Example: Release Positioning for Another Request
In this example, the ENDREQ macro is used to cause VSAM to release exclusive
control of a control interval containing a record. There are two request param-
eter lists, both of which require VSAM to have the ability to remember its posi-
tion until VSAM is explicitly requested to forget its position.

BLOCK ACB MACRF=(SEQ,
DIR),STRNO=2

SEQ RPL ACB=BLOCK, VSAM must remember its
OPTCD=SEQ position.
DIRUPD RPL ACB=BLOCK, VSAM must remember its

OPTCD=(DIR,UPD) position and maintain
exclusive control until
explicitly requested to
forget it by PUT or
ENDREQ.

Loop GET RPL=SEQ VSAM now remembers its
position for this request
only while it is processing
the request.

LTR 15,15

BNZ ERROR

GET RPL=DIRUPD VSAM can remember its
position for this request.
The control interval will
be placed in exclusive
control until either ENDREQ
OR PUT UPD IS ISSUED.

LTR 15,15

BNZ ERROR

42 MVS/370 VSAM Administration: Macro Instruction Reference

ENDREQ

Decide whether to update the record.

B FORGET No; do not update the record Yes; update
PUT RPL=DIRUPD the record, causing VSAM to forget its
position for DIRUP.
LTR 15,15
BNZ ERROR
B LooP
FORGET ENDREQ RPL=DIRUPD Cause VSAM to forget its position for
DIRUPD. Release exclusive control.
LTR 15,15
BNZ ERROR
B LOOP
ERROR XXX Request wasn't accepted or failed.

The use of ENDREQ illustrated here causes VSAM to release exclusive control of
the control interval for a record. When PUT is issued after a DIRUPD GET
request, ENDREQ need not be issued, because PUT causes VSAM to release
exclusive control (the next DIRUPD GET doesn’t depend on VSAM’s remem-
bering its position). Another result of ENDREQ is that current buffers are written
if they have been modified.

To cause VSAM to give up its position associated with a chain of request param-
eter lists, specify the first request parameter list in the chain in your ENDREQ
macro.

ENDREQ can also be used to cancel an asynchronous request, rather than sus-
pending processing with CHECK.

Note: If you are sharing subtasks or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on all
RPLs before you issue a CLOSE TYPE =T; otherwise, concurrent data set I/0
activity will cause unpredictable results during a close.

Because VSAM remembers its position after a direct GET with OPTCD =UPD or

LOC, if no PUT or ENDREQ follows, you can switch to sequential access and use
the positioning for a GET.

Chapter 2. VSAM Macro Formats and Examples 43

ERASE

ERASE Macro (Delete a Record)

The syntax of the ERASE macro is:

[/abel] | ERASE RPL =address

where:

label

is 1 to 8 characters that provide a symbolic address for the ERASE macro.

RPL =address

specifies the address of a request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

With ERASE processing of key-sequenced data sets, VSAM attempts to make the
control interval available to the control area when the last record in the control
interval is erased. Thus, key-sequenced data set control intervals can be reused
for new records whose keys fall anywhere within the control area’s range of
keys. You may suppress the process of reclaiming the control interval by setting
the RPLNOCIR bit directly in the RPL used for ERASE. The format of an RPL is
discussed in VSAM Logic. The high key control interval of a control area is

never reclaimed.

Example 1: Keyed-Direct Deletion

In this example, GET and ERASE macros are used to retrieve and delete records.
Not every record retrieved for deletion is deleted. The search argument is a full

key (5 bytes), compared equal.

DELETE ACB MACRF=(KEY,DIR,
ouT)

LIST RPL ACB=DELETE,
AREA=WORK,
AREALEN=50,
ARG=KEYFIELD,
OPTCD=(KEY,DIR,

SYN,UPD, UPD indicates deletion.

MVE, FKS,
KEQ)

LooP MVC KEYFIELD,source Search argument for retrieval, from a
table or transaction record.

GET RPL=LIST
LTR 15,15
BNZ ERROR

44 MvS/370 VSAM Administration: Macro Instruction Reference

ERASE

Decide whether to delete the record.

BE LooP No; retrieve the next record.

ERASE RPL=LIST Yes; delete the record.

LTR 15,15

BNZ ERROR

B LOOP
ERROR see Request was not accepted, or failed
WORK DS CL50 Examine the data record here.
KEYFIELD DS CL5 Search argument.

When you retrieve a record for deletion (OPTCD =UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a suc-
ceeding ERASE (or PUT) request for that record. You are not required to issue
such a request, though. Another GET request nullifies any previous positioning
for deletion or update.

Keyed-sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD =(SKP,UPD)) has the same effect as direct, but it is
faster or slower depending on the number of control intervals separating the
records being retrieved.

Example 2: Addressed-Sequential Deletion
In this example, the ERASE macro is used to delete records from a key-
sequenced data set. Not every record retrieved for deletion is deleted. Skipping
is effected by the POINT macro.

DELETE ACB MACRF=(ADR, SEQ,0OUT)
REQUEST RPL ACB=DELETE,

AREA=WORK,
AREALEN=100,
ARG=ADDR,
OPTCD=(ADR,SEQ,ASY,
UPD,MVE) UPD indicates deletion.
LooP e Decide whether you need to skip to another
position (forward or backward)
B RETRIEVE No; bypass the POINT.
MVC ADDR, source Yes; move search argument for
POINT into search-argument field.
POINT RPL=REQUEST Position VSAM to the record to
be retrieved next.
LTR 15,15
BNZ. ERROR
CHECK RPL=REQUEST
LTR 15,15
BNZ ERROR
RETRIEVE GET RPL=REQUEST
LTR 15,15
BNZ ERROR
CHECK RPL=REQUEST
LTR 15,15
BNZ ERROR

Chapter 2. VSAM Macro Formats and Examples 45

ERASE

Decide whether to delete the record.

BE Loop No; skip ERASE and CHECK.
ERASE RPL=REQUEST Yes; delete the record.
LTR 15,15
BNZ ERROR
CHECK RPL=REQUEST
LTR 15,15
BNZ ERROR
B LOOP
ERROR sss Request was not accepted, or
failed.
ADDR DS F RBA search argument for POINT.
WORK DS CL10@ Work area.

Addressed deletion is allowed only for a key-sequenced data set. The records of
an entry-sequenced data set are fixed. When records are deleted using
addressed deletion from a key-sequenced data set, the index is not updated.

46 MvVS/370 VSAM Administration: Macro Instruction Reference

9

EXLST

EXLST Macro (Generate an Exit List)

The syntax of the EXLST macro is:

[/abel] | EXLST [AM=VSAM]

[LEODAD = (address[,AIN][,L])]
[LJRNAD = (address[,AINJ[,L])]
[LLERAD =(address[,AIN][,L])]
[,SYNAD =(address[,AIN][,L])]
[LUPAD =(address[,AIN][,L])]

Values for EXLST macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid relo-

catable A-type address constants.

label

is 1 to 8 characters that provide a symbolic address for the exit list that is

established.

AM=VSAM

specifies that the access method using the control block is VSAM.

EODAD =(address[,AIN][,L])
JRNAD = (address[,AIN][,L])
LERAD =(address[,AIN][,L])
SYNAD =(address[,A|N][,L])
UPAD =(address[,A|N][,A])

specify that you are supplying a routine for the exit specified. The exits and

values that can be specified for them are:

EODAD

specifies that an exit is provided for special processing when the end of

a data set is reached by sequential access.

JRNAD

specifies that an exit is provided for journalizing transactions as you

process data records.

LERAD

specifies that an exit is provided for analyzing logical errors.

SYNAD

specifies that an exit is provided for analyzing physical errors.

UPAD

specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros do not

support the UPAD user exit routine.

address

is the address of a user-supplied exit routine. The address must imme-

diately follow the equal sign.

AN

specifies that the exit routine is active (A) or not active (N). VSAM does
not enter a routine whose exit is marked not active.

Chapter 2. VSAM Macro Formats and Examples 47

EXLST

L specifies that the address is that of an 8-byte field that contains the name
of an exit routine in a partitioned data set that is identified by a JOBLIB
or STEPLIB DD statement or in SYS1.LINKLIB. VSAM is to load the exit
routine for exit processing. If L is omitted, the address gives the entry
point of the exit routine in virtual storage.

Example: EXLST Macro
In this example, an EXLST macro is used to identify exit routines that are pro-
vided for analyzing logical and physical errors. The label, EXITS, of the EXLST
macro is used in an ACB or GENCB macro that generates an access method
control block to associate the exit list with an access method control block. The
exit list generated by this example is built when the program is assembled.
EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic

LERAD=LOGICAL, address of the exit
SYNAD=(ROUTNAME,L) Tist.

ENDUP EODAD routine.
LOGICAL LERAD routine.
ROUTNAME DC C'PHYSICAL' Pad shorter names with blanks:

C'SYN' or CL8'SYN'.

The EXLST macro’s parameters are:

* EODAD specifies that the end-of-data routine is located at ENDUP and is not
active.

* LERAD specifies that the logical error routine is located at LOGICAL and is
active.

* SYNAD specifies that the physical error routine’s name is located at
ROUTNAME.

48 MVS/370 VSAM Administration: Macro Instruction Reference

C

GENCB—ACB

GENCB Macro (Generate an Access Method Control Block)

The syntax of the GENCB macro used to generate an access method control
block is:

[label] | GENCB | BLK=ACB
[LAM=VSAM]
[,BSTRNO =number]
[LBUFND =number]
[LBUFNI=number]
[,LBUFSP =number]
[LCATALOG=YES|NO]
[,COPIES =number]
[LCRA=SCRA|UCRA]
[,DDNAME =ddname]
[LEXLST= address]
[LLENGTH=number]
[.MACRF = ([ADR][,CNV][.KEY]
[LCFX|NFX]
[.DDN|DSN]
[,DFR|NDF]
[,DIR][,SEQ][,SKP]
LICIINCI]
LIN][,0UT]
[NIS|SIS]
[NRM|AIX]
[[NRS|RST]
[LNSRILSRIGSR]
[LNUB|UBF])]
[LMAREA =address]
[LMLEN=number]
[LPASSWD =address]
[,STRNO =number]
[LWAREA =address]

The subparameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, “Operand
Notation” on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.

BLK=ACB
specifies that you are generating an access method control block.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO =number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is insuffi-

Chapter 2. VSAM Macro Formats and Examples 49

GENCB—ACB

cient, VSAM will dynamically extend the number of strings as needed for the
access to the base cluster. BSTRNO can also influence performance. The
VSAM control blocks for the set of strings specified by BSTRNO are allocated
on contiguous virtual storage, whereas this is not guaranteed for the strings
allocated by dynamic extension.

BUFND =number
specifies the number of I/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must be at
least 2, because the default for STRNO is 1). The number can be supplied by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required. A larger number for BUFND can
improve the performance of sequential access.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for transmitting index
entries between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at least 1,
because the default for STRNO is 1). You can supply the number by way of
the JCL DD AMP parameter as well as by way of the macro. The default is
the minimum number required. A larger number for BUFNI can improve the
performance of keyed-direct retrieval.

BUFSP =number
specifies the maximum number of bytes of virtual storage to be used for the
data and index I/O buffers. VSAM gets the storage in your program’s
address space. If you specify less than the amount of space that was speci-
fied in the BUFFERSPACE parameter of the DEFINE command when the data
set was defined, VSAM overrides your BUFSP specification upward to the
value specified in BUFFERSPACE. (BUFFERSPACE, by definition, is the least
amount of virtual storage that will ever be provided for /O buffers.) You can
supply BUFSP by way of the JCL DD AMP parameter as well as by way of
the macro. If you don’t specify BUFSP in either place, the amount of storage
used for buffer allocation is the /argest of:

* The amount specified in the catalog (BUFFERSPACE),
* The amount determined from BUFND and BUFNI, or

* The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called
for by BUFND and BUFNI, the extra space is allocated as follows:

¢ When MACREF indicates direct access only, additional index buffers are
allocated.

* When MACREF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

50 MvVS/370 VSAM Administration: Macro Instruction Reference

GENCB—ACB

» When MACRF indicates direct access only, the number of data buffers is
decreased to not less than the minimum number. Then, if required, the
number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

*» When MACRF indicates sequential access, the number of index buffers is
decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the number
of index buffers.

* Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index doesn’t exist or isn’t being opened, only BUFND, and not BUFNI,
enters into these calculations.

CATALOG=YES|NO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, etc.). To open a password-protected
catalog for processing with VSAM macros, you must supply its master pass-
word. When CATALOG=YES is coded, the catalog must be processed with
an SVC designed for that purpose. (Access method services, for example,
processes catalogs with SVC 26.) The request macros are invalid for proc-
essing a catalog “as a catalog.” VSAM users should alter the contents of a
catalog only by access method services commands.

COPIES =number
specifies the number of copies of the access method control block VSAM is
to generate. All the copies are identical. You can use MODCB to tailor each
one for the data set and processing you want for it. MODCB is described
later in this chapter.

CRA=SCRA|UCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key 0. If you specify UCRA, you must be authorized by the
system and you must supply the master password of the master catalog.

DDNAME =ddname
is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DD statement for the data set. You may omit DDNAME
and provide it by way of the MODCB macro before opening the data set.
MODCB is described later in this chapter.

EXLST=address
specifies the address of a list of addresses of exit routines that you are pro-
viding. The list is established by the EXLST or GENCB macro. If you use the
EXLST macro, you can specify its label here as the address of the exit list. If
you use GENCB, you can specify the address returned by GENCB in register
1. Omitting this parameter indicates that you have no exit routines. Exit rou-
tines are described in the chapter “User-Written Exit Routines” in VSAM
Administration Guide.

Chapter 2. VSAM Macro Formats and Examples 51

GENCB—ACB

LENGTH=number

specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access method control block(s). (See the WAREA

parameter.) The LENGTH value cannot exceed 65535 (X'FFFF').

MACRF = ([ADR][,CNV][,KEY]
[,CFXINFX]
[LDDN|DSN]
[,DFR|NDF]
[.DIR][,SEQ][,SKP]
[,ICIINCI]
[LIN][,0UT]
[.NIS|sIS]
[LNRM|AIX]
[,NRS|RST]
[,NSR|LSR|GSR]
[LNUB|UBF])

specifies the kind(s) of processing you will do with the data set. The subpa-
rameters must be meaningful for the data set. For example, if you specify

keyed access for an entry-sequenced data set, you cannot open the data set.
You must specify all the types of access you’re going to use, whether you
use them concurrently or by switching from one to the other. The subparam-
eters are shown in Figure 11 on page 27. They are arranged in groups, and
each group has a default value (indicated by underlining). You may specify

subparameters in any order. You may specify both ADR and KEY to process
a key-sequenced data set. You may specify both DIR and SEQ; with keyed
access, you may specify SKP as well. If you specify OUT and want merely to
retrieve some records as well as update, delete, or insert others, you need

not also specify IN.

MAREA =address

specifies the address of an optional OPEN/CLOSE or TYPE=T option (CLOSE

macro) message area.

MLEN =number

specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE

macro) message area.

PASSWD =address

specifies the address of a field that contains the highest-level password

required for the type(s) of access indicated by the MACRF parameter. The
first byte of the field contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplied. If the
data set is password protected and you don‘t supply a required password in
the access method control block, VSAM may give the console operator the

opportunity to supply it when you open the data set.

STRNO =number

specifies the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. See “"RPL Macro (Gen-
erate a Request Parameter List)” on page 93 and “GENCB Macro (Generate
a Request Parameter List)” on page 57 for information on request parameter

lists.

52 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB—ACB

WAREA =address

C

specifies the address of an area in which the access method control block(s)
is to be generated. (Otherwise, VSAM obtains virtual storage space for the

area and returns its address to you in register 1 and its length in register 0.)
The area must begin on a fullword boundary. This parameter is paired with
the LENGTH parameter, which must be given if you specify an area address.

If you did not specify an area in which the access method control block was
to be generated, VSAM returns to your program the address of the area con-
taining the control block(s) in register 1 and the length of the area in register
0. You can find out the length of each control block by dividing the length of
the area by the number of copies. The address of each control block can
then be calculated by this offset from the address in register 1. You can find
the length of an access method control block with the SHOWCB macro.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to address
all of them with one base register and to avoid repetitive requests for virtual
storage.

Example: GENCB Macro (Generate an Access Method Control Block)
In this example, a GENCB macro is used to identify a data set to be opened and
to specify the types of processing to be performed. The access method control
block generated by this example is built when the program is executed.

GENCB GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM

BUFND=4,BUFNI=3, gets the storage for it,

BUFSP=19456, because the WAREA LENGTH
DDNAME=DATASETS, parameters have been
EXLST=EXITS, omitted.
MACRF=(KEY,DIR,
SEQ,O0UT),
PASSWD=FIELD,
STRNO=2
ST 1,ACBADDR Save the address of the access

method control block.

ACBADDR DS F The address of the access method

control block is saved in ACBADDR.

FIELD DC FL1'6',C'CHANGE' CHANGE, the password, has 6 characters.

L The GENCB macro’s parameters are:

BUFND specifies four 1/0 buffers for data; BUFNI specifies three 1/0 buffers
for index entries; and BUFSP specifies 19456 bytes of buffer space, enough
space to accommodate control intervals of data that are 4096 bytes and of
index entries that are 1024 bytes.

DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

EXLST specifies that the exit list associated with this access method control
block is named EXITS.

MACREF specifies keyed direct and keyed sequential processing for both
insertion and update.

PASSWD specifies the location, FIELD, of the password provided.

STRNO specifies that two requests will require concurrent positioning.

Chapter 2. VSAM Macro Formats and Examples 53

GENCB—EXLST

GENCB Macro (Generate an Exit List)

The syntax of the GENCB macro used to generate an exit list is:

[/abel] | GENCB | BLK=EXLST

[LAM=VSAM]

[LEODAD =(address[,AIN][,L])]
[LJRNAD =(address[,AIN][,L])]
[,LERAD = (address[,AIN][,L])]
[,SYNAD = (address[,AIN][,L])]
[,COPIES =number]
[LLENGTH=number]

[,WAREA =address]

The parameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, “Operand
Notation” on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.

BLK=EXLST
specifies that you are generating an exit list.

AM=VSAM
specifies that the access method using this control block is VSAM.

[LEODAD = (address[,AIN][,L])]

[LJRNAD =(address[,AIN][,L])]

[LLERAD = (address[,AIN][,L])]

[,SYNAD = (address[,A|N][,L])]
specify that you are supplying a routine for the exit named. If none of these
is specified, VSAM generates an exit list with inactive entries for all the exits.
The exits and values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journaling as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must imme-
diately follow the equal sign.

54 Mvs/370 VSAM Administration: Macro Instruction Reference

GENCB—EXLST

specifies that the exit routine is active (A) or not active (N). VSAM does
not enter a routine whose exit is marked not active.

L specifies that the address is that of an 8-byte field that contains the name
of an exit routine in a partitioned data set that is identified by a JOBLIB
or STEPLIB DD statement or in SYS1.LINKLIB. VSAM is to load the exit
routine for exit processing. If L is omitted, the address gives the entry
point of the exit routine in virtual storage. L may precede or follow the A
or N specification.

COPIES =number
specifies the number of copies of the exit list you want generated. GENCB
generates as many copies as you specify (default is 1) when your program is
executed. All copies are the same. You can use MODCB to change some or
all of the addresses in a list. (MODCB is described later in this chapter.)

LENGTH=number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit list(s). (See the WAREA parameter.) The
LENGTH value cannot exceed 65535 (X'FFFF').

WAREA =address
specifies the address of an area in which the exit list(s) is to be generated.
(Otherwise, VSAM obtains virtual storage space for the area and returns its
address in register 1 and its length in register 0.) The area must begin on a
fullword boundary. This parameter is paired with the LENGTH parameter,
which must be given if you specify an area address.

If you do not specify an area in which the exit list is to be generated, VSAM
returns to your program the address of the area in which the exit list(s) is
generated in register 1, and the length of the area in register 0. You can find
the length of each exit list by dividing the length of the area by the number of
copies. The address of each exit list can then be calculated by this offset
from the address in register 1. You can find the length of an exit list with the
SHOWCB macro, described under “"SHOWCB Macro (Display Fields of an Exit
List)” on page 104.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH) for them enables you to address all of them
with one base register and to avoid repetitive requests for virtual storage.

Chapter 2. VSAM Macro Formats and Examples 55

GENCB—EXLST

Example: GENCB Macro (Generate an Exit List)
In this example, a GENCB macro is used to generate an exit list when the
program is executed.
EXITS GENCB BLK=EXLST,
EODAD=(EOD,N),

LERAD=LOGICAL
SYNAD=(ERROR,

A,L)
LTR 15,15
BNZ ERROR1 If error, go to the SYNAD routine.
ST 1,EXLSTADR Address of the exit list is
saved.
EOD EQU * EODAD routine.
LOGICAL EQU * LERAD routine.
ERROR DC C'PHYSICAL' Name of the SYNAD module.
EXLSTADR DS F Save area for exit-list
address.

The GENCB macro’s parameters are:
¢ BLK specifies that an exit list is to be generated.

e EODAD specifies that the end-of-data routine is located at EOD and is not
active.

¢ LERAD specifies that the logical error routine is located at LOGICAL;
because neither A nor N is specified, the LERAD routine is marked active by
default.

¢ SYNAD specifies that the physical error routine’s name is located at ERROR.

Because no area was specified in which the exit list was to be generated, VSAM
obtained virtual storage for the exit list and returned the address in register 1.
Immediately after the GENCB macro, the address of the exit list, contained in
register 1, is moved to EXLSTADR. EXLSTADR may be specified in a GENCB
macro that generates an access method control block or in a MODCB, SHOWCB,
or TESTCB macro that modifies, displays, or tests fields in an exit list.

56 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB—RPL

(— GENCB Macro (Generate a Request Parameter List)

The syntax of the GENCB macro used to generate a request parameter list is:

[fabel] | GENCB | BLK=RPL

[LACB =address]

[LAM=VSAM]

[LAREA =address]

[LAREALEN=number]

[LARG=address]

[,COPIES =number]

[LECB=address]

[LKEYLEN=number]

[LLENGTH=number]

[LMSGAREA =address]

[LMSGLEN=number]

L [LNXTRPL=address]

[LOPTCD=([ADR|CNV|KEY]
[,DIR|SEQ|SKP]
[.ARD|LRD]
[LEWD|BWD]
[LASY|SYN]
[.NSP|NUP|UPD]
[KEQ|KGE]
[,EFKS|GEN]

C [LOCIMVET)]

[LRECLEN=number]
[,TRANSID =number]
[, WAREA =address]

The parameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, “"Operand

L Notation” on page 129 gives all the ways of coding each subparameter for the
macros that work at execution.

The parameters of the GENCB macro to generate a request parameter list are
optional in some cases, but required in others. It is not necessary to omit
parameters that are not required for a request; they are ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request param-
eter list, you don’t have to zero out the address of the field containing the search
argument (ARG =address).

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.
For addressing lists generated by GENCB, see the discussion of the COPIES
parameter.

BLK=RPL
‘ specifies that you are generating a request parameter list.

ACB=address
specifies the address of the access method control block that identifies the
data set to which access will be requested. If you omit this parameter, you

Chapter 2. VSAM Macro Formats and Examples 57

GENCB—RPL

must issue MODCB to specify the address of the access method control
block before you issue a request. (MODCB is described later in this
chapter.)

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA =address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter OPTCD =MVE). If
you request that records be processed in the I/0 buffer (OPTCD =LOC),
VSAM puts into this work area the address of a data record within the I/0
buffer.

AREALEN=number
specifies the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD =MVE is the size of a data
record (or the largest data record, for a data set with records of variable
length). For OPTCD =LOC, the area should be 4 bytes to contain the
address of a data record within the 1/0 buffer.

ARG =address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD =(KEY,SEQ)), the 4 bytes are
required for VSAM to return the feedback RRN. For keyed access
(OPTCD=KEY), the search argument is a full or generic key; for addressed
access (OPTCD=ADR), it is an RBA. If you specify a generic key
(OPTCD =GEN), you must also specify in the KEYLEN parameter how many
of the bytes of the full key you are using for the generic key.

COPIES =nhumber
specifies the number of copies of the request parameter list you want gener-
ated. GENCB generates as many copies as you specify (default is 1) when
your program is executed.

The copies of a request parameter list can be used to:
e Chain lists together to gain access to many records with one request

* Define many requests to gain access to many parts of a data set concur-
rently

All copies generated are identical; you must use MODCB to tailor them to
specific requests. MODCB is described in this chapter.

ECB=address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in Data Areas). You can
use the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. This parameter is always optional.

KEYLEN=number
specifies the length, in bytes, of the generic key (OPTCD =GEN) you are
using for a search argument (given in the field addressed by the ARG
parameter). This parameter is required with a search argument that is a

58 MVs/370 VSAM Administration: Macro Instruction Reference

GENCB—RPL

generic key. The number can be 1 through 255. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the data
set when you open the data set.

LENGTH=number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter list(s). (See the WAREA param-
eter.) The LENGTH value cannot exceed 65535 (X'FFFF'). You can find out
how long a request parameter list is with the SHOWCB macro, described
later in this chapter.

MSGAREA =address
specifies the address of an area that you are supplying for VSAM to send
you a message in case of a physical error. (The format of a physical error
message is given under “Physical Errors” in the chapter “Request Macros.”)
This parameter is always optional.

MSGLEN=number
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. The size of a message is 128 bytes; if you provide less than 128
bytes, no message is returned to your program. This parameter is required
when MSGAREA is coded.

NXTRPL =address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the only or last list in the chain.
When you issue a request that is defined by a chain of request parameter
lists, indicate in the request macro the address of the first parameter list in
the chain. A single request macro can be defined by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records.

OPTCD =([ADR|CNV|KEY]

[,DIRISEQ|SKP]

[LARD|LRD]

[LFWD|BWD]

[LASY|SYN]

[,NSP|NUP|UPD]

[KEQ|KGE]

[,FKS|GEN]

[LLOC|MVE])
specifies the subparameters that govern the request defined by the request
parameter list. Each group of subparameters has a default; subparameters
are shown in Figure 12 on page 95 with defaults underlined. Only one sub-
parameter from each group is effective for a request. Some requests do not
require an subparameter from all of the groups to be specified. The groups
that are not required are ignored; thus, you can use the same request
parameter list for a combination of requests (GET, PUT, POINT, for example)
without zeroing out the inapplicable subparameters each time you go from
one request to another.

RECLEN=number
specifies the length, in bytes, of a data record being stored. If the records
you are storing are all the same length, you will not need to change RECLEN
after you set it. This parameter is required for PUT requests. For GET
requests, VSAM puts the length of the record retrieved in this field in the
request parameter list. It will be there if you update and store the record.

Chapter 2. VSAM Macro Formats and Examples 59

GENCB—RPL

TRANSID =number
specifies a number that relates modified buffers in a buffer pool. Use in
shared resource applications and a description are in “Sharing Resources”
in VSAM Administration Guide.

WAREA = address
specifies the address of an area in which the request parameter list(s) is to
be generated. (Otherwise, VSAM obtains virtual storage space for the area
and returns its address to you in register 1 and its length in register 0.) The
area must begin on a fullword boundary. This parameter is paired with the
LENGTH parameter, which must be given if you specify an area address.

If you do not specify an area in which the request parameter list is to be
generated, VSAM returns to your program the address of the area in which
the request parameter list(s) was generated in register 1, and the length of
the area in register 0. You can find the length of each list by dividing the
length of the area by the number of copies. You can then calculate the
address of each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to address
all of them with one base register and to avoid repetitive requests for virtual
storage.

Building a Chain of Request Parameter Lists
When GENCB is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCB macros or using GENCB and
MODCB macros together. When only GENCB is used, the request parameter
lists are created in reverse order, as follows:
SECOND GENCB BLK=RPL

LR 2,1
FIRST GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the request
parameter list is returned in register 1 and is loaded into register 2. FIRST
GENCB creates the first request parameter list and supplies the address of the
next request parameter list using register notation. GENCB and MODCB macros
may be used together to create a chain of request parameter lists, as follows:

GENCB BLK=RPL,COPIES=2

LR 2,0
SRL 2,1
LR 3,1
LA 4,0(2,3)

MODCB RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address
of the area in which the lists were created (and, therefore, the address of the
first one) is returned in register 1 and loaded into register 3. The SRL statement
divides the total length of the area (register 2) by 2. The LA statement loads the
address of the second request parameter list into register 4. The MODCB macro
modifies the first request parameter list (register 3) by supplying the address of
the second request parameter list (register 4) in the NXTRPL parameter.

Each request parameter list in a chain should have the same OPTCD subparam-
eters. Having different subparameters may cause logical errors. You can’t

60 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB—RPL

chain request parameter lists for updating or deleting records—only for retrieving
records or storing new records. You can’t process records in the I/O buffer with
chained request parameter lists. (OPTCD=UPD and LOC are invalid for chained
request parameter lists.)

With chained request parameter lists, a POINT, a sequential or skip-sequential
GET, or a direct GET with positioning requested (OPTCD =NSP) causes VSAM to
position itself at the record following the record identified by the last request
parameter list in the chain.

Example: GENCB Macro (Generate a Request Parameter List)
In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL,

ACCESS ACB

WORK DS
SEARCH DS
MESSAGE DS

ACB=ACCESS,
AM=VSAM,
AREA=WORK
AREALEN=125,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD)

MACRF=(SKP,0UT)
CL125

CL8

CL128

The GENCB macro’s parameters are:

* BLK specifies that a request parameter list is to be generated.

* ACB specifies that the request parameter list is associated with a data set
and processing options identified by ACCESS.

* AREA and AREALEN specify a 125-byte work area to be used for processing

records.

* ARG specifies the address of the search argument.

* MSGAREA and MSGLEN specify a 128-byte area to be used for physical-error

messages.

* OPTCD specifies the subparameters that govern the request defined by the
request parameter list identified by SKP and UPD.

Chapter 2. VSAM Macro Formats and Examples 61

GET

GET Macro (Retrieve a Record)

The syntax of the GET macro is:

[/abel] | GET RPL=address

where:

label
is 1 to 8 characters that provide a symbolic address for the GET macro.

RPL =address
specifies the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

Example 1: Keyed-Sequential Retrieval (Forward)
In this example, a GET macro is used to sequentially retrieve records by key.
Retrieval is in a forward direction. Fixed-length, 100-byte records are moved to a
work area. Processing is synchronous.

INPUT ACB MACRF=(KEY, A11 MACRF and OPTCD subparameters specified
SEQ,IN) are defaults and could have been omitted.
RETRVE RPL ACB=INPUT,
AREA=IN,

AREALEN=100,
OPTCD=(KEY, SEQ,

SYN,NUP,MVE)

LOOP GET RPL=RETRVE This GET or identical GETs can be issued,
with no change in the request parameter
list, to retrieve subsequent records in
key sequence.

LTR 15,15

BNZ ERROR

B LOOP
ERROR ... Request was not accepted, or failed.
IN DS CLlee IN contains a data record after

GET is completed.

The records are retrieved in key sequence in a forward direction. No search
argument has to be specified; VSAM is positioned at the first. record in key
sequence when the data set is opened, and the next record is retrieved automat-
ically as each GET is issued. The branch to ERROR could also be taken if the
end of the data set is reached.

62 MvVsS/370 VSAM Administration: Macro Instruction Reference

C

Example 2: Keyed-Sequential Retrieval (Backward)

This example is the same as the previous one, except that a POINT macro
instruction is issued to the last record in the data set and the records are
retrieved in a backward direction.

INPUT ACB

RETRVE RPL

EXLST1 EXLST
POINT
LTR
BNZ

LOOP GET
LTR
BNZ
B

EOD EQU

ERROR ...

IN DS

DDNAME=INPUT,
EXLST=EXLST1
ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY, SEQ,
LRD,BWD)
EODAD=EOD
RPL=RETRVE
15,15

ERROR
RPL=RETRVE
15,15

ERROR

LooOP
*

CL100

Example 3: Skip-Sequential Retrieval

Define RPL for last record
positioning and backward
processing.

Define end of data. Position to last
record (no argument is required).

Get previous record.

Come here for end of data.
Request failed.

Area for retrieved record.

GET

In this example, a GET macro is used to retrieve variable-length records syn-
chronously. Records are to be processed in the I/O buffer. The search argu-
ment is full key, compared greater-than-or-equal; key length is eight bytes.

The records are retrieved in key sequence, but some records are skipped. Skip-
sequential retrieval is similar to keyed-direct retrieval, except that you must
retrieve records in ascending sequence (with skips) rather than in a random

sequence.
GENCB

LTR
BNZ

GENCB

LTR
BNZ
LR

LOOP MvC

GET
LTR

BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP, IN)

15,15

CHECK®

2,1

BLK=RPL,
ACB=(2),
AREA=RCDADDR,
AREALEN=4,
ARG=SRCHKEY,
OPTCD=(KEY,SKP,
SYN, NUP, KGE,
FKS,LOC)
15,15

CHECK®

3,1

SRCHKEY , source

RPL=(3)
15,15

VSAM gets an area in virtual
storage to generate the access
method control block and

returns the address in register 1.

Address of the request parameter
Tist.

Search argument for retrieval, moved in
in from a table or a transaction record.

Chapter 2. VSAM Macro Formats and Examples

63

GET

BNZ ERROR
SHOWCB AREA=RCDLEN,
FIELDS=RECLEN,

LENGTH=4,
RPL=(3)
LTR 15,15
BNZ CHECKO
B LooP
ERROR
CHECK®
RCDADDR DS F
SRCHKEY DS cL8
RCDLEN DS F

Display the length of the record.

Request was not accepted, or failed.
Generation or display failed.

Work area into which VSAM puts the address
of a data record within the 1/0 buffer
(OPTCD=LOC). Search argument for retrieval.
For displaying variable record lengths.

The macros and instructions are as follows:

* The first GENCB generates an access method control block, which specifies
keyed, skip-sequential, and input processing. The address of the access
method control block is stored in register 2.

* The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

¢ MVC moves the search argument into SRCHKEY, the area defined for the

search argument.

* GET specifies that the record pointed at by the request parameter list whose
address is in register 3 is to be retrieved. Records are retrieved by a skip-
sequential search through the sequence set of the index.

64 MvVS/370 VSAM Administration: Macro Instruction Reference

GET

Example 4: Addressed-Sequential Retrieval

In this example, one GET macro is used to retrieve multiple fixed-length, 20-byte
records. The records are moved to a work area (only option).

BLOCK ACB

GENCB

SR
DR

LR

LR
LA

AR
MoDCB

LTR
BNZ

LA

Loop GET
LTR
BNZ

CHECK®
ERROR

RECAREA DS

DDNAME=INPUT,

MACRF=(ADR, SEQ, IN)

BLK=RPL,
COPIES=10,
ACB=BLOCK,

OPTCD=(ADR, SEQ,

SYN,NUP,MVE)
15,15
CHECK®

3,10

2,1

1,0

ECAREA

4,3
RPL=(2),
NXTRPL=(4),
AREA=(5),
AREALEN=20
15,15
CHECK®

2,3

5,20(5)

RPL=(2)
15,15
ERROR

LooP

CL200

Number of 1ists(10).

Address of the first list.

Length of all the lists.

Registers 0 and 1 contain length and
address of the generated control blocks
when VSAM returns control after GENCB.
Prepare for following division.

Divide number of lists into length

of all the lists.

Save the resulting length of a

single list for an offset.

Save address of the first Tist.

Address of the first work area.

Do the following 6 instructions 10 times
to set up all the request parameter lists.
The 10th time, register 4 must be set
to 0 to indicate the last request
parameter list in the chain.

Address the next Tlist.

In each request parameter list,
indicate the address of the next

1ist and the address and length

of the work area.

Address the next Tist.

Address the next work area.
Restore register 2 to address the
first 1ist before continuing to
process.

Process the 10 records that have
been retrieved by the GET.

Display the feedback field (FIELDS=FDBK)
of each request parameter list to find out
which one had an error.

Space for a work area for each of

the 10 request parameter lists.

The GENCB macro generates 10 request parameter lists; the lists are subse-
quently chained together by using the MODCB macro to modify the NXTRPL
parameter in each copy. Because SEQ is specified in each request parameter
list and no previous request has been issued against the access method control
block since it was opened, retrieval begins at the beginning of the data set.

Chapter 2. VSAM Macro Formats and Examples 65

GET

Each time the GET macro is executed, VSAM is positioned at the next record in
RBA sequence. VSAM moves each record into the work area provided for the
request parameter list that identifies the record.

If an error occurred for one of the request parameter lists in the chain and you
have supplied error-analysis routines, VSAM takes a LERAD or SYNAD exit
before returning to your program. Register 15 is set to indicate the status of the
request. A code of O indicates that no error was associated with any of the
request parameter lists. Any other code indicates that an error occurred for one
of the request parameter lists. You should issue a SHOWCB macro for each
request parameter list in the chain to find out which had an error. VSAM doesn’t
process any of the request parameter lists except the one with an error.

Example 5: Sequential Re