
o

~rogram Product

o

GC26-4056-'
File No. S370-30

MVS/370
System Programming Library:
Data Management

Data Facility Product 5665-295

Release 1.1

--------- -------- - ---- -- -----------,-

Second Edition (October 1983)

This is a major revision of, and makes obsolete, GC26-4056-0.

This edition, applies to Release 1.1 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent replication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are periodically made to the information herein; before
'using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors,
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM pUblications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

@ Copyright International Business Machines Corporation 1983

(f~-\

~-""' .. /

PREFACE o

ORGANIZATION

o

o

This publication provides information for system programmers
about MVS/370 Data Facility Product, and how to modifY and
extend the data management capabilities of the operating system.

This publication contains 11 chapters and 5 appendixes:

• "Chapter 1. Using Catalog Management Macro Instructions,"
contains information on the macro instructions used for
retrieving catalog information from OS CVOls, and for
adding, deleting, and updating catalog entries for non-VSAM
data sets.

• "Chapter 2. Maintainin~ the Volume Table of Contents
(VTOC)," describes the structure of the VTOC and VTOC index,
and discusses how to use system macros to read a data set
control block, rename a data set, or delete a data set from
the VTOC.

• "Chapter 3. Executing Your Own Channel Programs (EXCP),"
describes how to use the EXCP macro to control device
characteristics and data organization with your own channel
programs.

• "Chapter 4. Using XDAP to Read and Write to Direct Access
Devices," describes how to use the XDAP macro to read,
verify, and update blocks without using an access method.

• "Chapter 5. Password Protecting Your Data Sets," contains
information on system password protection and how to create
and maintain the PASSWORD data set.

• "Chapter 6. Exit Routines," describes some of the
IBM-supplied exits for installation-written routines and
authorized user programs.

• "Chapter 7. System Macro Instructions," contains the system
macros used to refer to, validate, and modify system data
areas.

• "Chapter 8. Maintaining SYS1.IMAGElIB," describes how to add
a UCS or FCB image to the system image library, and how to
maintain the UCS image tables.

• "Chapter 9. JES2 Support for the IBM 1403, 3203 Model 5, and
3211 Printers," describes the JES2 support for UCS alias
names and the 3211 indexing feature.

• "Chapter 10. CATALOG, SCRATCH, and RENAME Dummy Modules,"
contains a description of the dummy modules for CATALOG,
SCRATCH, and RENAME, and how to replace them.

• "Chapter 11. Specifying Buffer Numbers for DASD Data Sets,"
contains performance considerations for using the BUFHO
keyword of the DCB macro to allocate BSAM buffers.

• "Appendix A. VTOC Access Macros," contains the format and
description of the four VTOC access macros: CVAFDIR,
CVAFDSM, CVAFSEQ, and CVAFTST.

• "Appendix B. Examples of VTOC Access Macros," contains
examples of how to use the VTOC access macros in your
programs.

• "Appendix C. Return Codes from VTOC Access Macros," contains
the return codes generated by the four VTOC access macros.

Preface iii

• "Appendix D. VTOC Error Messages and Associated Codes,"
contains the error messages and field codes issued by the
Common VTOC Access Facility (CVAF).

• "Appendix E. Example of an Open Exit Module,ft contains a
program listing for IFGOEXOB, an installation-written exit
routine that takes control during OPEN for a DCB.

The operating system provides simpler ways (for example, access
method services, job control language, utility programs, access
method routines) to perform most of the tasks discussed in this
book. The information presented here is intended to provide
greater flexibility in using the data management capabilities.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
with the following topics:

• Assembler language

• Standard program linkage conventions

• Catalog management for OS CVOls

• The utility programs IEHlIST, IEHMOVE, and IEHPROGM

• Data managem~nt access methods and macro instructions

REQUIRED PUBLICATIONS

RELATED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

• OS/VS-DOS/VSE-VM/370 Assembler Language contains more
information on coding in assembler language.

• OS/VS2 Supervisor Services and Macro Instructions contains a
description of standard linkage conventions.

• MVS/370 Access Method Services Reference for the Integrated
Catalog Facility or MVS/370 Access Method Services Reference
for VSAM Catalogs describes how to maintain catalogs.

• MVS/370 Utilities describes how to use IEHlIST to maintain
the VTOC, IEHMOVE to maintain OS CVOls, and IEHPROGM to
protect data sets.

• MVS/370 Data Management Services and MVS/370 Data Management
r1acro Instructions contain information on using access
methods and macro instructions to do input and output.

More specific prerequisite reading is listed at the beginning of
some chapters, as it relates to the particular topic.

Within the text, references are made to the pUblications listed
in the tabl~ below.

Short Title publication Title Order Number

Access Method MVS/370 Access Method GC26-4051
Services Reference Services Reference for

the Integrated Catalog
Facility

iv MVS/370 System Programming library: Data Management

()

('--'-'\

l,;;.,...,;

~h,:
U'

°i
I
I

1

I

1

1

01
I

Short Title

Access Method
Services Reference

Catalog Users Guide

Checkpoint/Restart

CVAF Diagnosis
Reference

DADSM and CVAF
Diagnosis Guide

DADSM Diagnosis
Reference

Data Facility
Product: General
Information

Data Management
Macro Instructions

Data Management
Services

Debugging Handbook

Device Support
Facilities User's
Guide and Reference

IBM System/370
Principles of
Operation

IBM 2821 Control
Unit Component
Description

IBM 3203 Printer
Component
Description and
Operator's Guide

Publication Title Order Number

MVS/370 Access Methgd GC26-4059
~ervices Refergnce for
VSAM Catalogs

MVS/370 Catalog Users GC26-4053
Guide

t)VS/370 GC26-4054
Checkeoint/Resiari

t,1VS/37g Common VTOC SY26-3933
As=s=ess Facilit~
Diagnosis Reference

MVS/370 DADSM and Common SY26-3918
~IOC Access Facilit~
~iagnosis Guide

MVS/370 DADSM Di sUjinosi:! SY26-3919
Reference

t)VS/~70 Data Eacilii~ GC26-4050
Product: General
Information

MVS/370 Data Management GC26-4057
Macro Instruction:!

MVS/370 Data Management GC26-4058
~ervice:!

OS/VS2 MVS S~stem GC28-1047
Programming Librar~: GC28-1048
Debugging Handbook 2 GC28-1049
Volumes 1-3

Dgvice Sueeor:t GC35-0033
Facilities User':! Guidg
Ind Reference

IBM S~stem/370 GA22-7000
Priocieles of Oegraiign

IBt) 28g1 CODir:gl Unit GA24-3312
Comeonent Des~rie~ion

IBM 3~03 Printer GA33-'1515
Comeonen~ DescrietioD
and Oeerator's Gyide

Preface y

Short Title Publication Title Order Number

!O IBM 3211 Printer, IBM 3211 Printerz 3216 GA24-3543
3216 Interchangeable Interchangeable Irain
Train Cartridge, and Cartridgez and 3811
3811 Printer Control Pt'i nter Control Unit
Unit Component Com~onent Descrietion
Description and and Oeerator's Guide
Operator's Guide

IBM 3800 Printing IBM 3800 Printing GC26-3846
Subsystem Subs~stem Programmer's
Programmer's Guide Guide

IBM 4245 Printer IBM 4245 Printer Model 1 GA33-1541
Model 1 Component Com~onent Descrietion
Description and and Oeerator's Guide
Operator's Guide

JCL OS/VS2 MVS JCL GC28-0692

Linkage Editor and MVS/370 Linkage Editor GC26-4061
Loader and LQader

Magnetic Tape Labels MVS/370 Magnetic Taee GC26-4064
and File Structure Labels and File

Structut"'g

Message Library: OS/VS Mgssage Librar~: GC28-1002
System Messages VS2 S~stem Messages

'<~'

Network Job Entry OS/VS2 MVS S~stem SC23-0003 \lJ
Facility for JES2 Programming Librar~:

Network Job Entr~
Facilit~ for JES2

OS/VS-DOS/VSE-VM/370 OS/VS-DOS/VSE-VM/370 GC33-4010
Assembler Language Assembler Language

OS/VS2 I/O OS/~S2 I/O Sueervisor SY26-3823
Supervisor Logic .L..2.9.i£

Open/Close/EOV Logic MVS/370 Oeen/~lose/EOV LY26-3924
~

RACF General Resource Access Control GC28-0722
Information Manual Facilit~ (RACF): General

Information ManUal

Supervisor Services OS/VS2 MVS Sueervisoc GC28-0683
and Macro Services and Macro
Instructions Instructions

System Generation MVS/370 S~stem GC26-4063
Reference Generation Rgference

o
vi MVS/370 System Programming Library: Data Management

c Short Title publication Title Order Number

System Programming OS/VS2 MVS System GC28-0681
library: Programming library:
Initialization and Initialization and
Tuning Guide Tuning Guide

System Programming OS/VS2 MVS System GC23-0002
library: JES2 Programming library:

JES2

System Programming OS/VS2 MVS System GC28-0608
library: JES3 Programming library:

JES3 I

System Programming OS/VS2 MVS System GC28-0674
library: Service Programming library:
Aids Service Aids

System Programming OS/VS2 MVS System GC28-0628
library: Supervisor Programming library:

Sueervisor

TSO Command language OS/VS2 TSO Command GC28-0646
Reference Language Reference

Utilities MVS/370 Utilities GC26-406S

VSAM Reference MVS/370 VSAM Reference GC26-4074

NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of data
management macro instructions. This notation is not part of the
language; 'it simply provides a basis for describing the
structure of the commands.

The command format illustrations in this book use the following
conventions:

• Brackets [] indicate an optional parameter.

• Braces () indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (I> represent alternative
items. Ho more than one of these items may be selected.

• An ellipsis (•••) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

• BOLDFACE type indicates the exact characters to be entered,
except as described in the bulleted notes above. Such items
must be entered exactly as illustrated.

•

•

lowercase underscored type specifies fields to be supplied
by the user.

BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

Preface vii

• Parentheses C) must enclose subfields if more than one is
specified. If only one subfield is specified, you may omit
the parentheses.

ADDRESS AND REGISTER CONVENTIONS

The following describes the meaning of each notation used to
show how an operand can be coded:

symbol
When this notation is shown, the operand can be any valid
assembler-language symbol.

When this notation is shown, general register 1 ~an be used
as an operand. When used as an operand in a macro
instruction, the register must be specified as the decimal
digit 1 enclosed in parentheses as shown above.

When this notation is shown, general register 1 can be used
as an operand. When used as an operand in a macro
instruction, the register must be specified as the decimal
digit 1 enclosed in parentheses.as shown above. When
register 1 is used, the instruction loaded into the
register is not included in the macro expansion.

(2-12)
When this notation is shown, the operand specified can be
any of the general registers Z through lZ. All registers
as operands must be coded in parentheses; for example, if
register 1 is coded, it is coded as (1). When one of the
registers Z through 12 is used, it can be coded as a
decimal digit, symbol (equated to a decimal digit), or an
expression that results in a value of 2 through 012. //"-\

RX-Type Address '~~
When this notation is shown, the operand can be specifled
as any valid assembler-language RX-type address. The
following shows examples of each valid RX-type address:

Name operation Operand

ALPHAI L 1,39C4,10)
ALPHA2 L REG1,39C4,TEN)
BETAI L 2,ZETA(4)
BETA2 L REG2,ZETACREG4)
GAMMAI L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'1000'
LAMBDAI L 3,20C,5)

Both ALPHA instructions specify explicit addresses; REGI
and TEN have been defined as absolute symbols. Both BETA
instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA
instructions. GAMMAI and GAMMA2 specify implied addresses.
The second operand of GAMMA3 is a literal. LAMBDAI
specifies an explicit address with no indexing.

A-Type Address
When this notation is shown, the operand can be specified
as any address that can be written as a valid
assembler-language A-type address constant. An A-type
address constant can be written as an absolute value, a
relocatable symbol, or a relocatable expression. Operands
that require an A-type address are inserted into an A-type
address constant during the macro expansion process. For
more details about A-type address constants, refer to 0
OS/VS-DOS/VSE-VM/370 Assembler Lanauage. (,

viii MVS/370 System Programming Library: Data Management

c

o

absexp
When this notation is shown, the operand can be an absolute
value or expression. An absolute expression can be an
absolute term or an arithmetic combination of absolute
terms. An absolute term can be a nonrelocatable symbol, a
self-defining term, or the length attribute reference. For
more details about absolute expressions, refer to
OS/VS-DOS/VSE-VM/370 Assembler Language.

relexp
When this notation is shown, the operand can be a
relocatable symbol or expression. A relocatable symbol or
expression is one whose value changes by n if the program
in which it appears is relocated n bytes away from its
originally assigned area of storage. For more details
about relocatable symbols and expressions, refer to
OS/VS-DOS/YSE-VM/370 Assembler Language.

Preface ix

SUMMARY OF AMENDMENTS

RELEASE 1.1, OCTOBER 1983

NEW DEVICE SUPPORT

SERVICE CHANGES

Information to support the following new device has been added
to Figure 34 on page 142:

• 4245 Printer

The chapter, "Maintaining SYS1.IMAGELIB," has been added. This
chapter replaces the section formerly titled, "Adding a UCS
Image or FCB Image to the System Image Library." The new
chapter contains the information previously found in the old
chapter, plus a description of the UCS image table, and
procedures for updating the image table for the 4245 printer.

Chapter 2, formerly titled "Controlling Space on DASD Volumes,"
has been renamed, "Managing the Volume Table of Contents
(VTOe)."

Minor service changes have also been made throughout the manual.

x MVS/370 System Programming Library: Data Management

/"1'~'~\

\~J

o

CONTENTS

c

Chapter 1. Using Catalog Management Macro Instructions
Catalog Order of Search •.•.•..••..••••
Return Code Considerations ...•.••...••.•
Retri evi ng Informati on from a Catalog ...•.•.•••

Retrieving Information.by Data Set Name (LOCATE and CAMLST
NAME) .•.....••••.•••....•.•.•.

Retrieving Information by Generation Data Set Name (LOCATE
and CAMLST NAME)•••.••••••.

Retrieving Information by Alias (LOCATE and CAMlST NAME)
Reading a Block by Relative Block Address (LOCATE and

CAMLST BLOCK) •...•..••.•.•.•••••
Building and Deleting Indexes ..•..•..•••

Building an Index (INDEX and CAMLST BLDX) .•••
Building a Generation Index (INDEX and CAMLST BLDG)
Deleting an Index (INDEX and CAMLST DLTX) ••..•
Assigning an Alias for an Index (INDEX and CAMLST BLDA)
Deleting an Alias for an Index (INDEX and CAMLST DLTA)

Connecting and Disconnecting OS CVOLs •••••...••
Connecting OS CVOLs (INDEX and CAMLST LNKX) ••••
Disconnecting OS CVOLs (INDEX and CAMLST DRPX)

Working with Non-VSAM Data Set Catalog Entries .•
Cataloging a Non-VSAM Data Set (CATALOG and CAMLST CAT)

Programming Considerations for Multiple-Step Jobs
Uncataloging a Non-VSAM Data Set (CATALOG and CAMLST

UNCAT) •••.••..• • .••••....
Recataloging a Non-VSAM Data Set (CATALOG and CAMLST

RECAT) .•..•••.•.•.. • ••.
OS CVOL Entry Formats . . • . .

OS CVOL Volume Index Control Entry
OS CVOL Index C~ntrol Entry .•.••.
OS CVOL Index Link Entry and Index Pointer Entry
OS CVOl Data Set Pointer Entry ••
OS CVOl Volume Control Block Pointer Entry
Volume Control Block •••.•
OS CVOL Pointer Entry •..•
OS CVDL Pointer Entry (OLD) •
DS CVDL Generation Index Pointer Entry
OS CVDL Alias Name ...•

Chapter 2. Managing the Volume Table of Contents (VTOC)
The VTOC •.•. . • • . . • .

Data Set Control Block (DSCB) Format Types
Format-O DSCB ..•. • . . .
Format-1 DSCB ..••
Format-2 DSCB ••••.•••.••••••.
Format-3 DSCB ..••
Format-4 DSCB . . • • •
Format-5 DSCB • • • •
Format-6 DSCB •.••.• •.• .

Allocating and Releasing Space
The VTOC Index .•••. • • .

An Example of a VTDC and Its Index
The VTDC Index Entry Record (VIER)

Contents of VIER Fields •
Format of a VTOe Index Entry
When a VIER Is Created
A Tree of Linked VIERs
How a Format-1 DSCB Is Found •.•••
Special Cases in the Search for a DSCB

The VTDC Pack Space Map (VPSM)
The VTDC Index Map (VIXM) •...
The VTOC Map of DSCBs (VMDS)
Structure of an Indexed VTDe
Scratch/Rename/Allocate Restrictions

Creating the VTDC and VTOC Index
Protecting a VTOC and VTDC Index •

Resource Access Control Facility (RACF) .••
Authorized Program Facility (APF) Requirements

1
2
2
3

3

6
7

8
10
10
12
13
14
15
16
16
17
18
19
19

21

22
24
24
25
26
27
28
29 '
30
30
31
32

33
33
34
34
35
35
35
35
36
36
36
36
38
38
39
40
40
40
40
41
42
42
43
43
44
44
44
44
45

Contents xi

Password Protection •••••••••••••••
Copy/Restore/Initialize Requirements ••.•.•••

Operations on Volumes Containing an Unindexed VTOC
Operations on Volumes Containing an Indexed VTOC

Using the OBTAIN, SCRATCH, and RENAME Macros
Using VTOC Access Macros

Overview of the CVAFTST Macro
Overview of the CVAFDIR Macro
Overview of the CVAFSEQ Macro
Overview of the CVAFDSM Macro
Buffer Lists •......•

Buffer List Header
Buffer List Entry •.••

The CVAF Parameter List (CVPL)
Identifying the VTOC ••.••••• • •••
How to Use the CVAFDIR Macro • • • • • • • • •

Specifying a Data Set Name to Read or Write a DSCB
Specifying the DSCB Location •••..•
Reading or Writing VTOC Index Records
Reading Map Records and VIERS •.•••••
Releasing Buffers and Buffer lists Obtained by CVAF

How to Use the CVAFSEQ Macro ••..•
Jnitiating Indexed Access CDSN Order)
Initiating Phy~i~al~S&quential Access

How to Use the CVAFDSM Macro
VTOC Serialization ••.•••.
Register Usage •••.•.••

VTOC Error Diagnosis and Recovery
Actions Taken When an Error Occurs
Recovering from System or User Errors
GTF Trace •.•••....•.••••

Listing a VTOC and VTOC !nd~x •.•••

Chapter 3. Executing Your Own Channel Programs (EXCP)
Executing Channel Programs in System and Problem Programs

System Use of EXCP ...•.• • • • •
Use of EXCP in Problem Programs
EXCP Operations in a V=R Address Space

EXCP Requirements .••.•
Channel Program .••••
Control Blocks ••••.•

Input/Output Block (lOB)
Event Control Block (ECB)
Data Control Block (DCB)
Data Extent Block (DEB)

Channel Program Execution •••••••••
Initiation of the Channel Program •••••••••••
Modification of a Channel Program during Execution
Completion of Execution •••••••••••••
Interruption Handling and Error Recovery Procedures

Appendages •...••.••••••••••••
Start-I/O (SIO) Appendage ••.•••••.•
Program-Controlled Interruption (PCI) Appendage
End-of-Extent (EOE) Appendaga •••••
Channel-End (CHE) Appendage •••.•
Abnormal-End (ABE) Appendage •.•••

Making Your Appendages Part of the System
The Authorized Appendage list (IEAAPPOO)

Channel Programming Notes .•..•••
Macro Specifications for Use with EXCP ••••

DCB--Define Data Control Block for EXCP
Foundation Block Parameters ••••••
EXCP Interface Parameters ••••..•••
Foundation Block Extension and Common Interface
Parameters •••...•••••••••••••••

Device-Dependent Parameters .•••••
DSORG Parameter of the DCBD Macro • • • •

OPEH--Initialize Data Control Block •.••••.
EXCP--Execute Channel Program • . • • • • • • • • •
ATlAS--Assigning an Alternate Track and Copying Data from
the Defective Track ••.••.••• • •••

Using ATLAS •••••••• • •••••
Operation of the ATLAS Program

EOV--End of Volume . . • •

xii MVS/370 System Programm;ng Library: Data Management

45
45
45
45
46
55
55
55
56
56
56
56
57
58
58
59
60
60
60
61
61
62
62
6::!
63
64
64
64
64
64
65
65

66
67
67
68
68
68
68
69
69
69
69
69
69
69
71
71
71
72
73
74
75
76
76
78
78
79
80
80
81
81

83
84
86
87
89

90
90.1

91
93

/".r~,

\,,~

o

(}I
CLOSE--Restore Data Control Block ••••••

Control Block Fields .•••••••
Input/Output Block Fields •••••
Event Control Block Fields ••••.
Data Extent Block Fields •• . ••.•••••.

Executing Fixed Channel Programs in Real storage (EXCPVR)
Building the List of Data Areas to be Fixed
Page Fix (PGFX) and Start-I/O (SIO) Appendage

Page-Fix List Processing •.••••••••.•••

Chapter 4. Using XDAP to Read and Write to Direct-Access
Devices ••••• • • • • • • • • •

Introduction ••.•.•••••.••
XDAP Requirements •••••••
Macro Specifications for Use with XDAP

DCB--Define Data Control Block
OPEN--Initialize Data Control Block
XDAP--Execute Direct-Access Program
EOV--End of Volume .••••••••••
CLOSE--Restore Data Control Block

Control Blocks Used with XDAP
Event Control Block •••••••••.
Input/Output Block •••••.•
Direct Access Channel Program ••••••••••

Conversion of Relative Track Address to Actual Track
Address .•.•••.•••.• .••.••.••

Conversion of Actual Track Address to Relative Track
Address • . • • . • • • • • • • • •

Obtaining Sector Number of a Block on a Device with the RPS
Feature ..•••••.

Chapter S. Password Protecting Your Data sets
Introduction •..•...•••••••

PASSWORD Data Set Characteristics •••.•
Creating Protected Data Sets .•.••

Tape Volumes Containing More Than One
Password-Protected Data Set ••.•

Protection Feature Operating Characteristics
Termination of Processing ••• "
Volume Switching •••.
Data Set Concatenation .•
SCRATCH and RENAME Functions
Counter Maintenance ..••..•••

Using the PROTECT Macro Instruction to Maintain the
PASSWORD Data Set •.••.••.•.••••••..•

PASSWORD Data Set Characteristics and Record Format When
You Use the PROTECT Macro Instruction ••.•.•••

Number of Records for Each Protected Data Set
Protection-Mode Indicator ..•. • ••••

PROTECT Macro Speci fi cat ion •.••
Return Codes from the PROTECT Macro

Chapter 6. Exit Routines •••••••••••• ••
DADSM Preprocessing and Postprocessing Exit Routines

The Exit Modules ••••.
The Exit Environment .•.•••••
When IGGPREOO Gets Control
Rejecting a DADSM Request
Passing a Model Format-l DSCB
When IGGPOSTO Gets Control
System Control Blocks
Registers at Entry to Exits
Registers at Return to DADS"

DCB Open Installation Exit
The Exi t Module ••••.
The Exit Environment ••.•.•••
Open Processing Before IFGOEXOB Gets Control
Open Processi,ng After IFGOEXOB Gets Control
Getting Control from Open
Data that Open Passes to the Exit
Defaulting Buffer Number for QSAM
Modifying the JFCB ••..
Requesting Partial Release
Updating tha Secondary Space Data

94
95
95
97
97
98
99
99

100

102
102
102
103
103
103
104
106
106
106
106
106
107

107

109

109

111
111
113
113

114
114
114
114

114.1
115
115

115

115
115
116
116
120

121
121
121
121
122
122
122
122
124
124
124
125
125
125
125
125
126
126
127
127
127
128

Contents xi i i

Registers at Entry to IFGOEXOB •••••
Registers at Return to Open •.•.••

Open/EOV Installatjon Exit for Format-l DSCB Not Found
Data Management Abend Installation Exit •
Open/EOV User Exit for Nonspecific Tape Mount Requests
Open/EOV User Exit for IBM-Standard labeled Tape Security
Verification .•..••••••

Chapte~ 7. System Hac~o Instructions ••••
Introduction .•••..•. . •••••
Mapping System Data Areas

IEFUCBOB--Mapping the UCB
IEFJFCBN--Mapping the JFCB ••••
CVT--Mapping the CVT ••••

Obtaining I/O Device Characteristics
DEVTYPE Macro Specification •••••
Device Characteristics Information ••••

Reading and Modifying a Job File Control Block
DEQ at Demount Facility for Tape Volumes •••••••
OPEN--Initialize Data Control Block for Processing the

J FCB .••.•.•..•••••.••.•••
RDJFCB--Read a Job File Control Block •••••

Ensuring Data Security by Validating the Data Extent Block
DEBCHK--Macro Specification••

-Purging and Restoring I/O Requests .•.••••••
PURGE--Halt or Finish I/O-Request Processing
Modifying the lOB Chajn
RESTORE--Reprocess I/O Requests

Performjng Track Calculations
TRKCAlC--Standard Form • • . • • .
Input Register Usage for All Forms of 'MF'
Output from TRKCAlC
TRKCAlC--list Form
TRKCAlC--Execute Form
TRKCAlC--DSECT Only
TRKCAlC Macro Examples

Allocating a Data Set
REAllOC--Execute Form
Return Codes from REAlLOC
REAllOC--DSECT Only
REAllOC--ljst Form

Chapter 8. Maintaining SYS1.IMAGELIB •••••
UCS Images in SYS1.IMAGElIB •••••••
Adding a UCS Image to the Image library •
Adding a UCS Image Name/Alias to a UCS Image Table

UCS Image Table Structure •.••••
Adding/Modifying a UCS Image Table Entry
Verifying the UCS Image•..

Examples of Adding to the UCS Image Table •
Example 1: Adding a New Band ID to the 4245 Image
Table (UCS5) ••.•••••••••.

Adding an FCB Image to the Image library
Retrieving an FCB Image from SYS1.IMAGElIB

Chapter 9. JES2 support for the IBM 1403, 3203 Model S, and
3211 printers •••••

UCS Aljas Names ••••
The 3211 Indexing Feature
IBM 3203 Model 5 Printer

Chapter 10. CATALOG, SCRATCH, and RENAME Dummy Modules

Chapte~ 11. specifying Buffe~ Numbers for DASD Data sets
Performance Considerations

Appendix A. VTOC Access Macros ••••• • • • •
CVAFDIR Macro ..•• • • •• .•••

Syntax ••.•.•• • • • • •• •.•.
ACCESS: Read or Write a DSCB or VIReS), or Release
Buffer lists ••••..••••••••••

DSN: Specify the Name of the DSCB ••••
BUFLIST: Specify One or More Buffer lists •
VERIFY: Verify that a DSCB is a Format-O DSCB

xiv MVS/370 System Programming library: Data Management

128
128
128
130
132

134

137
137
137
137
138
138
139
139
140
144
146

147
148
150
151
154
156
158
158
159
160
162
163
163
164
165
165
165
166
168
169
169

170
170
171
175
175
176
178

178.1

178.1
178.1
178.4

180
180
180
181

182

183
183

184
184
184

184
185
185
185

c

o

BRANCH: Specify the Entry to the Macro
DEBIUCB: Specify the VTOC to Be Accessed
IOAREA: Keep or Free the I/O Workarea
MF: Specify the Form of the Macro .••••
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
IXRCDS: Retain VIERS in Virtual Storage ••.••

CVAFDSM Macro •.•••••.••• • • • • •
Syntax •••••.••.•.•••••. ••••
ACCESS=MAPDATA: Request Information from the Index Space
·Maps ••.•..••••••.••••••••.••

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
MAP: Identify the Map to Be Accessed
EXTENTS: Identify Where Extents from the VPSM Are
Returned ••.•••.•••••••.••

DEBIUCB: Specify the VTOC to Be Accessed •
COUNT: Obtain a Count of Unallocated DSCBs or VIRs •
CTAREA: Supply a Field to Contain the Number of Format-O

DSCBs •.•.••.•••.•.•••
IOAREA: Keep or Free the I/O Work Area
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro

CVAFSEQ Macro ••••.••••••••.••••
Syntax ••••••••••.••••••••••
ACCESS: Specify Relationship between Supplied and

Returned DSN ••.•••.•.••••.
BUFLIST: Specify One or More Buffer Lists
DSN: Specify Access by DSN Order or by
Ph~sical-Sequential Order ..••.••.••••

UCBIDEB: Specify the VTOC to Be Accessed .•••
DSNONLY: Specify That Only the Data Set Name Be Read
ARG: Specify Where the Argument of the DSCB Is to Be

Returned .•••.•...•.••••
IOAREA: Keep or Free the I/O' Work Area
IXRCDS: Retain VIERs in Virtual Storage
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro

CVAFTST Macro •••• • • • • • • • •
Syntax .•••••.••..••••
UCB: Specify the VTOC to Be Tested

Appendix B. Examples of VTOC Access Macros ••••
Example 1: Using the CVAFDIR Macro with an Indexed or

Nonindexed VTOC •••.• • ••••••.
Example 2: Using the CVAFDIR Macro with an Indexed VTOC
Example 3: Using the CVAFSEQ Macro with an Indexed VTOC
Example 4: Using the CVAFSEQ Macro with a Nonindexed VTOC
Example 5: Using the CVAFTST and CVAFDSM Macros ••••

Appendix C. Return Codes from VTOC Access Macros
Return Codes from the CVAFDIR Macro
Return Codes from the CVAFDSM Macro
Return Codes from the CVAFSEQ Macro
Return Codes from the CVAFTST Macro

Appendix D. VTOC Error Message and Associated Codes
Error Message •••• • • • •

Explanation ••••
System Action ••..
Programmer Response •••••
Routing and Descriptor Codes

Codes Put in the CVSTAT Field

Appendix E. Example of an Open Exit Module
Processing in IFGOEXOB
Requesting Partial Release •
Updating the Secondary Space Data

Index

185
186
186
187
187
188
189
189

189
189
190

190
191
191

191
191
192
192
193
193

193
193

193
193
194

194
194
195
196
196
196
196
196

197

197
201
206
210
216

221
221
221
222
222

223
223
223
223
223
223
223

228
228
228
228

238

Contents xv

FIGURES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.

24.

25.
26.
27.
28.
29.
30.

31.
32.

33.

34.
35.
36.

37.

38.
39.
40.
41.
42.
43.
44.
45.
46.

The OS CVOL Volume Index Control Entry •••••
The OS CVOL Index Control Entry • • • • •
The OS CVOL Index Link and Index Pointer Entries
The OS CVOL Data Set Po inter Entry •..••••
The OS CVOL Volume Control Block Pointer Entry
The OS CVOL Volume Control Block •.••
The OS CVOL Pointer Entry •••••••••
The OS CVOL Generation Index Pointer Entry
The OS CVOL Alias Name ••.••••.••
Locating the Volume Table of Contents (VTOC)
Contents of VTOC-DSCBs Describing Data Sets
Relationship of a VTOC to Its Index ••••
Format of the VTOC Index Entry Record (VIER)
Structure of Linked VIERs ••••••
An Index Map ••..••••
The Format of a VTOC Map
Format of a Buffer List Header
Format of a Buffer List Entry
Format of the CVAF Parameter List ••••••••••
Entry Points, Returns, and Available Work Registers for

24
25
26
27
28
29
30
31
32
33
37
38
39
41
42
43
57
58
59

Appendages ••.•••••.•••••
Data Control Block Format for EXCP (After OPEN)
Input/Output Block Format • • • •
Event Control Block after Posting of Completion Code

73
82
96

(EXCP) ••••.•••••..••••••••••• 98
Event Control Block after Posting of Completion Code
(XDAP) .•••••••.••••••••
The XDAP Channel Programs • • • •
Parameter List for ADD Function ••••
Parameter List for REPLACE Function
Parameter List for DELETE Function
Parameter List for LIST Function •••••••••
Format of the DADSM Preprocessing and Postprocessing
Exit Parameter List •••...••••••••.•
Format of OPEN Exi t Parameter List­
Format of Parameter List for Nonspecific Tape Mount
User Exit .••••••••••••••••••
Format of Parameter List for IBM-Standard Labeled Tape
Security Verification User Exit •••.••
Output Obtained from Issuing DEVTYPE Macro . ,.
Sample Code Using RDJFCB Macro ••.•••
Macro Definition, JCL, and Utility Statements for
Adding PURGE Macro to the System Macro Library
Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to the System Macro Library
The PIRL and lOB Chain •••••••
Sample Code to Add a 1403 UCS Image to SYS1.IMAGELIB
Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB
Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB
UCS Image Table Entry Format
UCS5 Image Table Contents • • • • • • • • •
Sample of the Standard FCB Image STD1
Sample of the Standard FCB Image STD2
Sample Code to Assemble and Add an FCB Load Module
to SYS1.IMAGELIB ••.•••••••••••••

107
108
117
118
119
119

123
126

134

135
142
149

155

156
159
173
173
174
175
176

178.2
178.2

178.4

xvi MVS/370 System Programming Library: Data Management

o

o

o

o

o

CHAPTER I. USING CATALOG "ANAGE"ENT "ACRO INSTRUCTIONS

Using catalog management macro instructions, you can do the
following things:

• Retrieve information from an ICF catalog, a YSAM catalog, or
an OS CVOl

• Catalog non-YSAM data sets in an ICF catalog, a YSAM
catalog, or an OS CYOl

• Uncatalog non-YSAM data sets from an ICF catalog, a YSAM
catalog, or an OS CYOl

• Recatalog non-YSAM data sets in an ICF catalog, a YSAM
catalog, or an OS CYOl

• Read a block from an OS CVOl

• Build an index in an OS CVOl

• Build a generation index in an OS CVOl

• Delete an index from an OS CVOl

• Assign an alias to a high-level index in an OS CYOl

• Delete an index alias from an OS CVOl

• Connect two OS CVOls

• Disconnect two OS CVOls

Before using the information in this chapter, you should be
familiar with the following publications:

• OS/VS-DOS/VSE-VM/370 Assembler language contains information
you will need to code programs in the assembler language.

• Access Method Services Reference tells how to use programs
that offer some of the same services as OS CYOl manag~ment
macros plus additional services that the macros cannot
provide.

• JCl tells how to catalog and uncatalog non-VSAM data sets
using job control language statements.

• Catalog Users Guide tells how to use OS CVOls.

Specifications for coding the macro instructions are presented
with each function to be performed. Accompanying the
descriptions are coding examples and programming notes;
exception return codes follow the coding examples. In the
functional descriptions, offsets into data areas are numbered
from zero (the first byte is byte zero).

Chapter 1. Using Catalog Management Macro Instructions 1

CATALOG ORDER 'OF SEARCH

The order in whi ch catalogs are searched when an entry is to be itf~1
located is: \~U

1. If a specific catalog is specified in a macro, only that
catalog is searched. If the entry is not found, a "no entry
found" error is returned to the user.

2. Any user catalogCs) specified in the current job step with a
STEPCAT DD statement is searched. If more than one catalog
is specified for the job step, the catalogs are searched in
order of concatenation. If the entry is found, no other
catalog is searched.

3.

If a STEPCAT catalog is specified a~d the entry is not
found, the JOBCAT catalog is not searched. The catalog
search continues with step 3 below.

If no STEPCAT catalog is specified for the job step, and a
user catalog is specified for the current job with a JOBCAT
DO statement, the JOBCAT catalogCs) is searched. If more
than one catalog is specified for the job, the catalogs are
searched in order of concatenation. If the entry is found,
no other catalog is searched. Otherwise,

If the entry is identified with a qualified entryname and
its first qualifier is the same as:

• The name of a user catalog, or

• The alias of a user catalog, or

• The alias of an OS CVOL,

the user catalog or OS CVOL so identified is searched. If
the cmtry is found, no other catalog is searched. C_~~l
Otherwi se, ~_,

4. The master catalog is searched. If the entry is not found,
a "no entry found" error is returned to the user.

RETURN CODE CONSIDERATIONS

The interpretation of catalog management return codes depends on
whether the request is initiated using a CAMLST macro or a
catalog parameter list CCPl), and whether the request is
satisfied in an integrated catalog facility (ICF) catalog, a
VSAM catalog, or an OS CVOl.

If CAMlST is used and the request is satisfied in an OS CVOl,
register 15 contains the OS CVOl return code and registers O.and
1 may further describe the return code meaning. If CAMlST is
used and the request is satisfied in an ICF or a VSAM catalog,
register 15 contains the OS CVOl return code, register 0 the
VSAM return code, and register 1 is zero.

If a CPl is used and the request is satisfied in an OS CVOl,
register 15 contains the VSAM return code, register 0 is not
meaningful, and register 1 is nonzero. If a CPl is used and the
request is satisfied in an ICF or a VSAM catalog, register 15
contains the VSAM return code. The return code, reason code,
and module identification can also be found in the CPL. These
codes are explained in Message library: System Messages under
message IOC3009I.

Note that, regardless of which parameter list is used, if the
request is satisfied in an ICF or a VSAM catalog, register 1 is
zero, and if the request is satisfied in an OS CVOl, register 1
contains X'08' in the high-order byte and may contain return C
information in the low-order byte. . ~j

2 MVS/370 System Programming library: Data Management

RETRIEVING INFORMATION FROM A CATALOG

To read an entry from a catalog, use the lOCATE and CAMlST macro
instructions. You may specify the entry you want to read into
your work area by using either (1) the fully or partially
qualified name of a data set, or (2) the relative block address
(TTR) of the block within an OS CVOl containing the entry. If
you specify a fully qualified data set name, a list of volumes
on which the data set resides will be read into your work area.
This volume list always begins with a 2-byte entry that is the
number of volumes in the fist. If the data set resides on more
than 20 volumes and is cataloged in an OS CVOl, the address of a
volume control block will follow the volume list entries. (See
Figure 5 on page 28 for an explanation of the control block.)

Note: There is a restriction when CAMlST is used to locate a
data set that is over 20 volumes in length and on a VSAM
catalog. Only the information from the first 20 volumes is
returned.

If you specify a partially qualified data set name, the first
block in the OS CVOl pointed to by the lowest-level index
specified will be read into your work area. This is true if you
specify two or more ~udlifiers, or if yo~ ~peclfy ins
CVOl-RElEXP parameter in the CAMlST macro. Register 15 will
contain return code 12. If you specify a single qualifier and
do not include the CVOl-RElEXP parameter, the OS CVOl identifier
'SYSCTlG.Vyyyyyy' is read into your work area (the area
previously occupied by the data set name). You may then insert
'yyyyyy' as the CVOl-RElEXP parameter in the CAMlST and reissue
the lOCATE.

If you specify a relative block address (TTR), the block ~t that
relative address in the CVOl catalog will be read into your work
area.

You must add a step when specifying either an unqualified name
or the highest level of a partially qualified name to retrieve
information from an OS CVOl. You receive, instead, the volume
information for the OS CVOl that is found in the master catalog.
In addition, the single qualifier name that you specified is
replaced by the SYSCTlG.Vyyyyyy name. You may then use that
information to specify the OS CVOl volume serial number in
CAMLST so that the search starts in the OS CVOl and gives you
the information that you expected.

See Figure 1 on page 24 through Figure 8 on page 31 for
descriptions of the contents of volume control block and the
other catalog data areas.

RETRIEVING INFORMATION BY DATA SET NAME (LOCATE AND CAMLST NAMEl

When you specify a data set name, a volume list is built in your
work area. A volume list consists of an entry for each volume
on which part of the data set resides; it is preceded by a
2-byte field that contains a count of the number of volumes in
the list. The count field is followed by a variable number of
12-byte entries. Each 12-byte entry consists of a 4-byte device
code, a 6-byte volume serial number, and a 2-byte data set
sequence number. As many as 20 of these 12-byte entries can be
built in your work area. (Device codes are presented in the
UCBTYP data area description of Debugging Handbook.)

If the named data set is stored on only one volume, bytes 252
through 254 of your area may contain the relative track address
of the DSCB for that data set; otherwise, these bytes are zero.
Byte 255 contains zeros.

If the data set is cataloged in an OS CVOl and resides on more
than five volumes, the volume list in your work area is really a
volume control block (VCB) that has been read into your work
area. In a VCB, the count field contains the number of volume
entries in this VCB and any following VCBs. Thus a count of 41

Chapter 1. Using Catalog Management Macro Instructions 3

indicates two following VCBs with counts of 21 and one.
respectively. The relative track address (TTR) of the next VCB
is in bytes 252 through 254 of your work area. The last VCB for
a data set has binary zeros in bytes 252 through 254.

The macro format is:

[sl!mboIJ LOCATE listname-addrx
listname CAMLST NAME

,dsname-relexp
,[cyol-relexpl
,area-relexp

listname-addrx

NAME

points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

this operand must be coded as shown to retrieve information
from a catalog by name.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

cYol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the OS CVOl to which this catalog request
is directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on
page 2.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary.

Example: In the following example, the catalog entry containing
a list of the volumes on which data set A.B resides is read into
virtual storage.

INDAB
AB
lOCAREA

lOCATE INDAB

Check Return Codes

CAMlST
DC
DS
DS

NAME,AB"lOCAREA
CL44'A.B'
OD
265C

READ CATALOG ENTRY
FOR DATA SET A.B
INTO VIRTUAL STORAGE
AREA NAMED lOCAREA.
lOCAREA MAY ALSO
CONTAIN A 3-BYTE
TTR AND THE 6-BYTE
OS CVOL SERIAL NUMBER

The LOCATE macro instruction points to the CAMlST macro
instruction. NAME, the first operand of CAMlST, specifies that
the system is to search for a catatog entry using the name of a
data set. AB, the second operand, specifies the virtual storage
location of a 44-byte area into which you have placed the fully
qualified name of a data set. lOCAREA, the fourth operand, Ie' .-.~.!
specifies a 265-byte area you haye reserved in virtual storage. . ..

4 MVS/370 System Programming Library: Data Management

c::

c

After execution of these macro instructions, the 265-byte area
contains a volume list or a volume control block for the data
set A.B.

Control will be returned to your program at the next executable
instruction after the LOCATE macro instruction. If the block
has been successfullY read from the catalog, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes.

Code

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(1C)

32(20)

Meaning

Either the required catalog does not exist or it cannot
be opened or there is a closed chain of OS CVOL
pointers.

One of the following happened:

• The entry was not found. Regist~r 0 contains the
number of valid index levels if 1n an OS CVOL.
Register 0 contains the catalog return code if in
an ICF or a VSAM catalog.

• The user is not authorized to perform this
operation. Register 0 contains hexadecimal 38.

• A generation data group (GDG) alias was found.
Register 0 contains the number of valid index
levels. The alias name was replaced by the true
name.

One of the following happened:

• An index or generation data group' base entry was
found when the list of qualified names was
exhausted. Register 0 contains the number of valid
index levels. The work area contains the first
block of the specified index.

• An alias entry was found. lhe alias name was
replaced in the user parameter list by the true
name.

• An invalid low-level GDG name was found.

A data set exists at other than the lowest index level
specified. Register 0 contains the number of the index
level where the data set was encountered.

A syntax error exists in the name.

One of the following happened:

• Permanent I/O error occurred. Register 0 contains
the VSAM or ICF return code or 0 if in an OS CVOL.

• Nonzero ESTAE return code.

• Error in parameter list.

Relative track address supplied to LOCATE routine is
outside of the SYSCTLG data set extents.

Reserved.

Note: See Message Library: VS2 System Messages, Section
IDC3009I, for documentation of ICF catalog and VSAM catalog
return codes.

Chapter 1. Using Catalog Management Macro Instructions 5

RETRIEVING INFORMATION BY GENERATION DATA SET NAME (LOCATE AND CAMLST NAME)

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation
number of the data set. The value of a relative generation
number reflects the position of a data set in a generation data
group. The following values can be used:

• Zero--specifies the latest data set (highest generation
number) cataloged in a generation data group.

• Negative numbe~specifies a data set cataloged before the
latest data set.

• Positive number--specifies a data set not yet cataloged in
the generation data group.

When you use zero or a negative number as the relative
generation number, a volume list (or a volume control block) is
placed in your work area, and the relative generation number is
replaced by the absolute generation name.

When you use a positive number as the relative generation
number, an absolute generation name is created and replaces the
relative generation number. Zeros are read into the first 256
bytes of your work area, because there are no entries in the
catalog.

The format is:

[sllmbgll LOCATE list-addrx
listname CAMLST NAME

,dsname-relexp
, [cvol-relexpl
,area-relexp

list-addrx

NAME

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown in order to read a
block from the catalog by generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the
generation index and the relative generation number. The
area that contains these must be 44 bytes long. The name
may be defined by a C-type define constant (DC)
instruction.

cvol-r~
specifies the virtual storage location of the 6-byte volume
serial number of the OS CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or omi~ting this operand, see "Catalog Order of Search" on
page 2.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain a volume list that is built from the
catalog. If the data set resides on one volume, bytes 252
through 254 may contain the relative track address of the
DSCB. This address is relative to the beginning of the
volume.

6 MVS/370 System Programming Library: Data Management

r"'" ~

"".)1,1

()

o

c

c

Example: In the following example, the list of volumes that
contain generation data set A.PAY(-~) is read into virtual
storage.

INDGX
APAY
LOCAREA

LOCATE INDGX

Check Return Codes
CAMLST NAME,APAY"LOCAREA
DC CL44'A.PAY(-3)'
DS OD
DS 265C

READ CATALOG ENTRY
FOR DATA SET A.PAY(-3)
INTO YOUR STORAGE
AREA NAMED LOCAREA

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for a catalog entry by using
the name of a data set. APAY, the second operand, specifies the
virtual storage location of ~ 44-byte area into which you have
placed the name of the generation index and the relative
generation number of a data set in the generation data group.
LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved to receive the catalog information.

After execution of these macro instructions, the system will
have replaced the relative generation number that you specified
in your 44-byte area with the data set's absolute generation
name. Control will be returned to your program at the next
executable instruction after the LOCATE macro instruction. If
the entry has been located and read successfully, register 15
will contain zeros. Otherwise, register 15 will contain a
return code. For a description of the contents of the work area
or the meaning of the exception return codes, see "Retrieving
Information by Data Set Name (LOCATE and CAMLST NAME)" on page
3.

RETRIEVING INFOR"ATION BY ALIAS (LOCATE AND CA"LST NAMEl

For each of the preceding functions, you can specify an alias as
the name of a data set. Each function is performed exactly as
previously described, with one exception: The alias name
specified is replaced by the true name.

Note: Aliases are not allowed for generation data sets
cataloged in OS CVOLs.

The format is:

[s~mbot] LOCATE list-addrx
listname CA"LST NAME

~dsname-relexp
~[cvol-relexp]
~area-relexp

list-addrx

NA"E

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown to retrieve information
from a catalog.

Chapter 1. Using Catalog Management Macro Instructions 7

dsname-relexp
specifies the virtual storage location of a fully qualified 0
data set name, the first or only name of which is the ~
alias. The area that contains the name must be 44 bytes
long. The name may be defined by a C-type define constant
(DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the OS CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on
page 2.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain a volume list that is read from a
catalog. If the data set resides on one volume, bytes 252
through 254 may contain the relative track address of the
DSCB. This address is relative to the beginning of the
volume.

Example: In the following example, the catalog entry containing
a list of the volumes on which data set A.B.C resides is read
into virtual storage (data set A.B.C, however, is addressed by
an alias name, X.B.C).

INDAB
ABC
LOCAREA

LOCATE INDAB

Check Return Codes

CAMLST
DC
DS
DS

NAME,ABC"LOCAREA
CL44'X.B.C'
OD
265C

READ CATALOG ENTRY
FOR DATA SET X.B.C
INTO VIRTUAL STORAGE
AREA NAMED LOCAREA.

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for an entry using the name
of a data set. ABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of a data set (in this case, data set
A.B.C is addressed by its alias X.B.C). LOCAREA, the fourth
operand, specifies a 265-byte area you have reserved in virtual
storage.

For information on return codes and the contents of'your work
area after execution, see "Retrieving Information by Data Set
Name (LOCATE and CAMLST NAME)" on page 3.

READING A BLOCK BY RELATIVE BLOCK ADDRESS (LOCATE AND CAMLST BLOCK)

You can read any block in an OS CVOL by specifying, in the form
TTR, the identification of the block and its location relative
to the beginning of the catalog. TT is the number of tracks
from the beginning of the catalog; R is the record number of the
desired block on the track.

8 MVS/370 System Programming Library: Data Management

,I 0."

o

o

o

The format 1S:

[s~mboll LOCATE 11st-addrx
liltoamg CAHLST BLOCK

,ttr-relexp
,cvol-relexp
,~rea-relexp

llst-addrx

BLOCK

points to the parameter list (labeled llstname) set up by
the CAMLST macro instruction.

you must code this operand as shown.

ttr-relexp
specifies the virtual storage location of a 3-byte relative
block address (TTR). This address indicates the position
relative to the beginning of the catalog data set, of the
track containing the block (TT), and the block
identification (R) on that track.

cyol-relexp
specifies the virtual storage location of a 6-byte volume
serial number for the volume to be processed.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain the block that is read from the catalog,
and the last 6 bytes will contain the serial number of the
volume on which the block was found. If the data set
resides on one volume, bytes 252 through 254 will contain
the relative track address of the DSCB.

EXample: In the following example, the block at the location
indicated by TTR is read into virtual storage.

BLK

* * TTR

VOLSER
LOCAREA

LOCATE BLK

Check Return Codes

CAMLST BLOCK,TTR,VOLSER,LOCAREA

DC
DC
DC
DS
DS

H'5'
X'03'
C'llllll'
OD
265C

READ A BLOCK INTO
VIRTUAL STORAGE AREA
RELATIVE TRACK 5
BLOCK 3 ON TRACK
VOLUME SERIAL OF OS CVOL
NAMED LOCAREA
LOCAREA ALSO CONTAINS
6-BYTE SERIAL NO.

The LOCATE macro instruction points to the CAMLST macro
instruction. BLOCK, the first operand of CAMLST, specifies that
the system is to search the catalog for the block indicated by
TTR, the second operand. VOlSER, the third operand, specifies
the virtual storage location of a 6-byte volume serial number
for the volume to be processed. LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte block and the 6-byte serial number of the
volume on which the block was found (in bytes 259 through 264).

Chapter 1. Using Catalog Management Macro Instructions 9

Control will be returned to your program at the next executable
instruction following the LOCATE macro instruction. If the
index block at the address you specified has been successfully
located and read int~ your work area, register 15 will contain
zeros. Oth~rwise, r~gister 15 will contain one of the exception
return codes described under "Retrieving Information by Data Set
Name (LOCATE and CAMLST NAME)" on page 3.

BUILDING AND DELETING INDEXES

You handle OS CVOL indexes--build them, delete them, and so
forth--by using combinations of the INDEX and CAMLST macro
instructions.

BUILDING AN INDEX (INDEX AND CA"LST BLDX)

To build a new OS CVOL index structure and add it to the
catalog, you may create each level of the index separately.
(You can also create index levels while you are cataloging a
data set onto those index levels. To create each level of the
index, use the INDEX and CAMLST macro instructions.)

These two macro instructions can also be used to add index
levels to existing index structures.

The format is:

[~y.mboll INDEX list-addrx
listname CAHLST BLDX

,~_eleKe
[,cvol,:",relexe]

list-addrx

()

(,r)~
points to the parameter list (labeled listname) set up by ',~
the CAMLST macro instruction.

BLDX
this operand must be coded as shown.

namerelexe
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cvol-relexe
specifies the virtual storage location of a 6-byte volume
serial number of the OS CVOl to which this catalog request
is directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on
page 2.

Example: In the following example, index structure A.B.C is
built on the OS CVOL whose serial number is 000045.

Each INDEX macro instruction points to an associated CAMLST
macro instruction. BLDX, the first operand of CAMLST, specifies
that an index level be built. The second operand specifies the
virtual storage location of the area into which you have placed
the fully qualified name of an index level. The third operand
specifies the virtual storage location of the area into which
you have placed the 6-byte serial number of the volume on which
the index level is to be built.

10 MVS/370 System Programming Library: Data Management

o

c

INDEXA
INDEXB
INDEXC
VOLNUM
ALEVEL
BLEVEL
CLEVEL

INDEX INDEXA BUILD INDEX A

Check Retu~n Codes

INDEX INDEXB BUILD INDEX STRUCTURE
A.B

Check Retu~n Codes

INDEX INDEXC BUILD INDEX STRUCTURE
A.B.C

Check Retu~n Codes

CAMLST
CAMlST
CAMLST
DC
DC
DC
DC

BLDX,ALEVEL,VOLNUM
BLDX,BLEVEL,VOLNUM
BLDX,CLEVEL,VOLNUM
CL6'000045' VOLUME SERIAL NUMBER
CL2'A' INDEX STRUCTURE NAMES
CL4'A.B' FOLLOWED BY A BLANK
CL6'A.B.C' WHICH DELIMITS FIELDS

Control will be returne.d to your program at the next execut~ble
instruction following the INDEX macro instruction. If the index
has been built successfully, register 15 will contain zeros.
Otherwise, register 15 will contain one of the following
exception return codes:

Code

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(1C)

Meaning

The OS CVOL does not exist or cannot be opened.

One of the following happened:

• The existing catalog structure is inconsistent with
the operation requested. If the error was detected
while processing in an OS CVOL, register 0 has the
number of valid index levels and register 1 has the
return code that would have resulted if a LOCATE
macro had been issued on the same entry name. If
the error was detected during the master catalog
search process, register 0 contains the catalog
return code and register 1 contains zero.

• The user is not authorized to perform the
operation. Register 0 contains 56 (decimal);
register 1 contains O.

An attempt was made to build an index or generation
index that has an alias or has indexes or data sets
cataloged under it. The index is unchanged.

The qualified name specified when building an index or
generation index implies an index structure that does
not exist; the high-level index, specified when
connecting control volumes, does not exist.

Space is not available on the specified OS CVOL.

Not used with the INDEX macro instruction.

A permanent I/O error was found when processing the
catalog, or a nonzero return code from ESTAE was
encountered.

Chapter 1. Using Catalog Management Macro Instructio~s 11

BUILDING A GENERATION INDEX (INDEX AND CAMLST BLDG)

You build a generation index in an OS CVOl by using the INDEX 01
and CAMLST macro instructions. All higher levels of the index .. _
must exist. If the higher levels of the index are not in the
catalog, you must build them. How to build an index has been
explained previously.

The format is:

[s~mboll INDEX list-addrx
listname CAHLST BLDG

.namerelexp

.[cvol-relexp]
•• [DELETEl
• [EHPTY]
.number-absexe

list-addrx

BLDG

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown.

namerelexe
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the OS CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on
page 2.

DELETE

EMPTY

specifies that all data sets on direct access volumes that
are removed from a generation data group are to be deleted,
that is, the space allocated to the data set(s) is to be
made available for reallocation. A SCRATCH macro
instruction will be issued by the catalog management
routines to delete the data set, which will be deleted from
the volume if there are no conditions preventing deletion
(for example, expiration date not passed, password not
verified, volume not mounted, permanent I/O error
encountered while trying to delete the data set).

specifies that references to all data sets in a generation
data group cataloged in the generation index are to be
removed from the index when the number of entries specified
is exceeded.

number-absexp
specifies the number of data sets to be included in a
generation data group. This number must be specified, and
cannot exceed 255.

Example: In this example, generation index D is built on the OS
CVOl, serial number 000045. The ·higher-Ievel indexes A.B.C
already exist. When the number of generation data sets in the
generati~n index D exceeds four, the oldest data set is
uncataloged. When the DELETE operand has been specified and the 0
data set has been successfully uncataloged, the catalog .
management routines issue a SCRATCH macro (see "Chapter 2. JV
Managing the Volume Table of Contents (VTOC)" on page 33) to
delete the data set. If there are no conditions preventing the

12 MVS/370 System Programming library: Data Management

o

c

o

data set from being deleted (for example, the expiration date
was not passed, the password could not be verified, or a
permanent I/O error was encountered when trying to delete the
data set), the data set will be deleted.

INDEX GENINDX BUILD GENERATION INDEX

Check Return Codes

GENINDX
DLEVEL
VOLNUM

CAMLST
DC
DC

BLDG,DLEVEL,VOLNUM"DELETE,,4
CL8'A.B.C.D' ONE BLANK, DELIMITER
CL6'000045'

The INDEX macro instruction points to the CAMLST macro
instruction. BLDG, the first operand of CAMLST, specifies that
a generation index is to be built. DLEVEL, the second operand,
specifies the virtual storage location of an area into which you
have placed the fully qualified name of a generation index.
VOLNUM, the third operand, specifies the virtual storage
location of the area into which you have placed the 6-byte
serial number of the volume on which the generation index is to
be built. DELETE, the fifth operand, specifies that all data
sets dropped from the generation data group are to be deleted.
The final operand, 4, specifies the number of data sets that are
to be maintained in the generation data group. Control will be
returned to your program at the next executable instruction
following the INDEX macro instruction. If the generation index
was built successfully, register 15 contains zeros. Otherwise,
register 15 will contain one of the exception.return codes
described under "Building an Index (INDEX and CAMLST BLDX)" on
page 10.

DELETING AN INDEX (INDEX AND CAMLST DLTX)

You can delete any number of index levels from an existing OS
CVOL index structure. Each level of the index is deleted
separately. Generation indexes are also removed this way. (You
can also delete index levels automatically when you uncatalog a
data set.) You delete each level of the index by using the
INDEX and CAMLST macro instructions.

If an index level either has an alias, or has other index levels
or data sets cataloged under it, it cannot be deleted.

The format is:

t,s~mbolJ INDEX list-addrx
listname CAMLST DLTX

,namerelexp
[,cvol-relexp]

list-addrx

DLTX

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

Chapter 1. Using Catalog Management Macro Instructions 13

cvol-relexp
specifies the virtual storage location of a 6-byte volume (.Jr .. ~ ..
serial number of the OS CVOl to which this catalog request \1
;s directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on
page 2.

Example: In the following example, index level C is deleted from
index structure A.B.C.

* *
INDEX DELETE

Check Return Codes

DELETE INDEX lEVEL
C FROM INDEX STRUCTURE
A.B.C

DELETE
lEVElC

CAMlST
DC

DlTX,lEVElC
Cl6'A.B.C' ONE BLANK FOR

DELIMITER *

The INDEX macro instruction points to the CAMlST macro
instruction. DlTX, the first operand of CAMlST, specifies that
an index level be deleted. lEVElC, the second operand,
specifies the virtual storage location of the area into which
you have placed the fully qualified name of the index structure
whose lowest level is to be deleted. Control will be returned
to your program at the next executable instruction following the
INDEX macro instruction. If the index level(s) was successfully
deleted, register 15 contains zeros. Otherwise, register 15
contains one of the exception return codes described under
"Building an Index (INDEX and CAMlST BlDX)" on page 10.

ASSIGNING AN ALIAS FOR AN INDEX (INDEX AND CA"LST BLDA)

For OS CVOls you assign an alias to an index level by using the
INDEX and CAMlST macro instructions. An alias can be assigned
only to a high level index; for example, index A of index
structure A.B.C can have an alias, but index B cannot.
Assigning an alias to a high level index effectivelY provides
aliases for all data sets cataloged under that index. An alias
cannot be assigned to a generation index.

The format is:

[s~mboIJ INDEX list-addrx
listname CA"LST BLDA

,index namerelexp
,[cvol-relexp]
,alias namerelexp

list-addrx

BLDA

points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

this operand must be coded as shown.

index namerelexp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
~onstant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the OS CVOl catalog to which this catalog

14 MVS/370 System Programming library: Data Management

0"
, .'

o

o

o

request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

alias namerelexp
specifies the virtual storage location of the name that is
to be used as an alias for a high-level index. The area
that contains the name must be 8 bytes long. The name may
be defined by a C-type define constant (DC) instruction.

Example: In the following example, high-level index A is
assigned an alias of X.

INDEX ALIAS

Check Return Codes

BUILD AN ALIAS FOR
A HIGH LEVEL INDEX

ALIAS
DSNAME
DSALIAS

CAMLST
DC

BLDA,DSNAME"DSALIAS
CL8'A' MUST BE 8-BYTE FIELDS

DC CL8'X'

The INDEX macro instruction points to the CAMLST macro
instruction. BLDA, the first operand of CAMLST, specifies that
an alias be built. DSNAME, the second operand, specifies the
virtual storage location of an 8-byte area into which you have
placed the name of the high-level index to be assigned an alias.
DSALIAS, the fourth operand, specifies the virtual storage
location of an 8-byte area into which you have placed the alias
to be assigned.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the alias
has been successfully assigned, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exception return
codes described under "Building an Index (INDEX and CAMLST
BLDX)" on page 10.

DELETING AN ALIAS FOR AN INDEX (INDEX AND CA"LST DLTA)

For OS CVOLs you can delete an alias previously assigned to a
high-level index by using the INDEX and CAMLST macro
instructions.

The format is:

[s~mbol] INDEX list-addrx
ljstname CA"LST DLTA

,alias namerelexp
[,cvol-relexpl

list-addrx

DLTA

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown.

alias namerelexp ,
specifies the virtual storage location of the name that is
used as an alias for a high-level index. The area that
contains the name must be 8 bytes long. The name may be
defined by a C-type define constant (DC) instruction.

Chapter 1. Using Catalog Management Macro Instructions 15

cvol-relexp
specifies the virtual storage location of a 6-byte volume 0
serial number of the OS CVOL catalog to which this catalog. ,~ j
request is directed. For a discussion of the effect of -'
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

Example: In the following example, alias X, previously assigned
as an alias for index level A, is deleted.

DELALIAS
ALIAS

INDEX DELAlIAS

Check Return Codes

CAMLST
DC

DLTA,ALIAS
CL8'X'

DELETE AN ALIAS FOR
A HIGH LEVEL INDEX

MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro
instruction. DLTA, the first operand of CAMLST, specifies that
an alias be deleted. ALIAS, the second operand, specifies the
virtual storage location of the 8-byte area into which you have
placed the alias to be deleted.

CONNECTING AND DISCONNECTING OS CVOLS

You connect and disconnect OS CVOLs by using combinations of the
INDEX and CAMLST macro instructions.

CONNECTING as CVOLS (INDEX AND CAHLST LNKX)

You connect t~o OS CYOLs by using the INDEX and CAMLST macro
instructions.

You must supply the serial number of the volume to be connected
and the high-level index name that will be used to associate the
two volumes. If the index name is an alias of an OS CYOL
pointer entry in the master catalog, then the serial number of
the "from" volume may be omitted. Otherwise, you must supply
the serial numbers of both volumes and the name of a high-level
index associated with the volume to be connected.

The result of connecting OS CVOLs is that the volume serial
number of the OS CVOL connected and the name of a high-level
index are entered into the volume index of the volume to which
it was connected. This entry is called a control-volume
pointer.

The format is:

[s~mbol] INDEX list-addrx
listname CAHLST LNKX

,inclex namerelexp
,[cvol-relexp]
,new cvol-relexp

list-addrx
points to ~he parameter list (labeled listname> set up by
the CAMLST macro instruction.

LNKX
this operand must be coded as shown.

16 MVS/370 System Programming Library: Data Management

o

o

o

c

index namerelexp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
constant (DC) instruction.

cyol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the OS CVOl catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

new cvol-ralexp
specifies the virtual storage location of the 4-byte device
code and 6-byte volume serial number of the control volume
that is to be connected to an~ther OS CVOl.

Example: In the following example, the OS CVOl whose serial
number is 001555 is connected to the OS CVOl numbered 000155.
The name of the high-level index is HIGHINDX.

* * *
CONNECT

* INDXNAME
OlDCVOl
NEWCVOl

INDEX CONNECT CONNECT TWO OS CVOlS
WHOSE SERIAL NUMBERS ARE
000155 and 001555.
3330 DISK DEVICE CODE

Check Return Codes

CAMlST

DC
DC
DC
DC

lNKX,INDXNAME,OlDCVOL,NEWCVOl

Cl8'HIGHIHDX'
Cl6'OOOI55'
X'30C0200D'
Cl6'OOI555'

The INDEX macro instruction points to the CAMlST macro
instruction. lNKX, the first operand of CAMlST, specifies that
control volumes be connected. INDXNAME, the second operand,
specifies the virtual storage location of the 8-byte area into
which you have placed the name of the high-level index of the
volume to be connected. OlDCVOl, the third operand, specifies
the virtual storage location of a 6-byte area into which you
have placed the serial number of the volume to which you are
connecting.

NEWCVOl, the fourth operand, specifies the virtual storage
location of a 10-byte area into which you have placed the 4-byte
hexadecimal device code of the volume to be connected followed
by the 6-byte area to contain the volume serial number of the
volume to be connected.

Cont~ol will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the OS
CVOls have been successfully connected, register 15 will contain
zeros. Otherwise, register 15 will contain one of the exception
return codes described under "Building an Index (INDEX and
CAMlST BlDX)" on page 10.

DISCONNECTING as CVOlS (INDEX AND CAMlST DRPX)

You disconnect two OS CVOls by using the INDEX and CAMlST macro
instructions.

The result of disconnecting OS CVOls is that the OS CVOl pointer
is removed from the volume index of the volume from which you
are disconnecting.

Chapter 1. Using Catalog Management Macro Instructions 17

The format is:

[s~mboIJ INDEX list-addrx
listname CAHLST DRPX

.index namerelexp
[.cvol-relexp]

list-addrx

DRPX

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown •.

index namerelexp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
constant (DC) instructi~n.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the OS CVOl catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

Example: In the following example, the OS CVOl that contains the
high-level index HIGHINDX is disconnected from the OS CVOL
pointed to by the entry 'HIGHINDX' in the master catalog.

DISCNECT
INDXNAME

INDEX DISCNECT

Check Return Codes

CAMLST
DC

DRPX,INDXNAME
Cl8'HIGHINDX'

DISCONNECT TWO
OS CVOlS

MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro
instruction. DRPX, the first operand of CAMLST, specifies that
OS CVOls be disconnected. INDXNAME, the second operand,
specifies the virtual storage location of the 8-byte area into
which you have placed the name of the high-level index of the OS
CVOL to be disconnected.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the OS
CVOls were successfully disconnected, register 15 will contain
zeros. Otherwise, register 15 will contain one of the exception
return codes described under "Building an Index (INDEX and
CAMlST BlDX)" on page 10.

WORKING WITH NON-YSAH DATA SET CATALOG ENTRIES

You can catalog, uncatalog, and recatalog non-VSAM data sets in
OS CVOLs, ICF catalogs, and VSAM catalogs by using combinations
of the CATALOG and CAMlST macro instructions. CATALOG macro
instructions are used to point to CAMLST macro instructions;
CAMLST macro instructions are used to specify cataloging
options.

(~ , I

'.;~

To catalog non-VSAM data sets in ICF or VSAM catalogs, the 0",
search algorithm is the same as that given in the section "Order
of Catalog Selection for DEFINE" in the Access Method Services
Reference. To uncatalog or recatalog non-VSAM data sets in ICF

18 MVS/370 System Programming Library: Data Management

o

or VSAM catalogs, the search algorithm is the same as that given
in the section "Order of Catalog Search for DELETE" in Access
Method Services Reference.

CATALOGING A NON-YSAH DATA SET (CATALOG AND CAMLST CAT)

The format of the CATALOG and CAMlST macros is:

[s~mboll CATALOG list-addrx
listname CAMLST CAT[BXl

,name-relexp
,[cvol-relexpl
,vol list-relexp
[,DSCBTTR=dscb ttr-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

CATtBXl
this operand must be coded as shown. Either CAT or CATBX
may be coded; but, in either case, missing indexes within
an OS CVOl are always automatically created.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set. The name cannot exceed 44
characters. If the name is less than 44 characters, it
must be followed by at least one blank. The name may be
defined by a ~-type define constant CDC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the OS CVOl catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Building an Index
(INDEX and CAMlST BlDX)" on page 10.

vol l;st-relexp
specifies the virtual storage location of an area that
contains a volume list. The list must begin on a halfword
boundary and consist of an entry for each volume on which
the data set is stored. The first two bytes of the list
indicate the number of entries in the volume list; the
number cannot be zero. Each 12-byte volume list entry
consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The
sequence number is always zero for direct access volumes.
(Device codes are presented in Debugging Handbook.)

DSCBTTR=dscb ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the format-l data set
control block CDSCB) for a data set that resides on only
one volume. The address is relative to the beginning of
the volume.

programming Considerations for Multiple-step Jobs

When you are executing multiple-step jobs, it is preferable to
catalog or uncatalog data sets using JCl, instead of using
IEHPROGM or a user program. Since AlLOCATION/UHALLOCATION
monitors data sets during job execution, and it is not aware of
the functions performed by the user programs, conflicting
functions can be performed or GDG orientation can be lost.

UNAllOCATION recatalogs existing cataloged data sets at job
termination. This action -occurs because the data set is opened
sometime during the job and the DSCB TTR was not found in the
catalog entry. Therefore, if you are using the CAMlST macro to

Chapter 1. Using Catalog Management Macro Instructions 19

uncatalog and then catalog data sets with new volume
i nformati on, be sure to include the DSCB TTR. ~.

Example: In the following example, the non-VSAM data set named ;(~~
A.B.C is cataloged. The data set is stored on two volumes.

ADDABC
DSNAME
VOLUMES

CATALOG ADDABC

Check Return Codes

CATALOG DATA SET A.B.C.

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

CAT,DSNAME"VOLUMES
CL6'A.B.C' ONE BLANK FOR DELIMITER
H'2' DATA SET ON TWO VOLUMES
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000014' VOLUME SERIAL NUMBER
H'O' DATA SET SEQUENCE NUMBER
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000015' VOLUME SERIAL NUMBER
H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro
instruction. CAT, the first operand of CAMLST, specifies that a
data set is to be cataloged. DSNAME, the second operand,
specifies the virtual storage location of the area in which the
data set name A.B.C was placed. VOLUM~S, the fourth operand,
specifies the virtual storage location of the volume list that
was built.

Control will be returned at the instruction following the
CATALOG macro instruction. If A.B.C was successfully cataloged,
register 15 will contain zeros. Otherwise, register 15 will
contain one of the following return codes:

Code

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(IC)

Meaning

Either the required catalog does not exist, it is not
open, or the "do not allocate" bit is on.

One of the following happened:

• The existing catalog structure is inconsistent with
the operation requested. If the error was detected
while processing in an OS CVOL, register 0 has the
number of valid index levels and register 1 has the
return code that would have resulted if a LOCATE
macro had been issued for the same entry name. If
the error was detected in an ICF or a VSAM catalog,
register 0 contains the catalog return code and
register 1 contains zero.

• The user is not authorized to perform the
operation. Register 0 contains decimal 56 (X'36')
and register 1 contains zero.

Hot used with the CATALOG macro instruction.

The index structure necessary to catalog the data set
does not exist.

There is insufficient space on the catalog data set.

An attempt was made to catalog an improperly named
generation data set, or the generation index is full
and the named data set is older than any currently in
the index.

One of the following happened:

20 MVS/370 System Programming Library: Data Management

o

o

o

• A permanent I/O or unrecoverable error was
encountered.

• An error was found in a parameter list.

• An I/O error occurred in an OS CVOL.

• There was a nonzero return code from ESTAE.

UNCATALOGING A NON-VSAM DATA SET (CATALOG AND CAMLST UNCAT)

When the UNCAT or UCATDX operand of the CAMLST macro instruction
is used, a data set reference and unneeded indexes, with the
exception of the highest-level index, are removed.

The format of the CATALOG and CAMLST macros is:

[~~mbol] CATALOG list-addrx
li~tDami CAMLST UNCAT ~ UCATDX

,name-relexp
[,cvol-relexp]

list-addrx
points to the parameter list (labeled listname> set up by
the CAMLST macro instruction.

UNCAT 2£ UCATDX
this operand must be coded as shown. Either UNCAT or
UCATDX may be coded but in either case unneeded indexes,
with the exception of the highest-level index, are always
removed along with the data set reference •.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cYol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the OS CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

In the following example, the catalog entry for data set A.B.C
is removed from a catalog. In an OS CVOL, index B is removed
unless it contains references to other data sets. Index A
remains because it is the highest-level index.

REMOVE
DSHAHE

CATALOG REMOVE

Check Return Codes

CAMLST
DC

UNCAT,DSNAME
CL6'A.B.C'

REMOVE REFERENCES TO
DATA SET A.B.C FROM
CATALOG

ONE BLANK FOR DELIMITER

The CATALOG macro instruction points to the CAMLST macro
instruction. UNCAT, the first operand of CAMLST, specifies that
references to a data set be removed from the catalog. DSNAME,
the second operand, specifies the virtual storage location of an

Chapter 1. Using Catalog Management Macro Instructions 21

area into which you have placed the fully qualified name of the
data set whose references are to be removed.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If your data set has
been successfully uncataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described under "Cataloging a Hon-YSAM Data Set (CATALOG and
CAMlST CAT)" on page 19.

RECATALOGING A NON-YSAH DATA SET (CATALOG AND CAHLST RECAT)

You can recatalog a eataloged non-VSAM data set by using the
CATALOG and CAMLST macro instructions. Recataloging is usually
necessary if a data set is extended to a new volume.

As in the original cataloging procedure, you must build a
complete volume list in virtual storage. This volume list
consists of an entry for each volume on which the data set
resides. The first 2 bytes of the list indicate the number of
entries in the list; the number may not be zero. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The
sequence number is always zero for direct access volumes.
(Device codes are presented in Debugging Handbook.)

The format of the CATALOG and CAMLST macros is:

[sllmbolJ CATALOG list-addrx
listname CAHLST RECAT

,name-relexp
,[cvol-relexpJ
,vol list-relexp
[,DSCBTTR=dscb ttr-relexpJ

list-addrx

RECAT

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set. The name cannot exceed 44
characters. If the name is less then 44 characters, it
must be followed by at least one blank. The name may be
defined by a C-typedefine constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the OS CYOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" on page 2.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a half-word
boundary.

DSCBTTR=dscb ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the identifier (format-I)
DSCB for a data set tha~ resides on only one volume. The
address is relative to the beginning of the volume.

Example: In the following example, the two-volume data set named
A.B.C is recataloged to add a third volume. An entry is added
to the volume list, which previously contained only two entries.

22 MVS/370 System Programming Library: Data Management

o

o

o

o

* *

RECATLG
DSNAME
VOLUMES

CATALOG RECATLG RECATALOG DATA SET
A.B.C ADDING A NEW
VOLUME

Check Return Codes

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

RECAT,DSNAME"VOLUMES
CL6'A.B.C ' FOR DELIMITER ONE BLANK
H'3' THREE VOLUMES
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000014' VOLUME SERIAL NUMBER
H'O' SEQUENCE HUMBER
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000015' VOLUME SERIAL NUMBER
H'O' SEQUENCE NUMBER
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000016' VOLUME SERIAL NUMBER
H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro
instruction. RECAT, the first operand of CAMLST, specifies that
a data set be recataloged. DSNAME, the second operand,
specifies the virtual storage location of an area into which you
have placed the fully qualified name of the data set to be
recataloged. VOLUMES, the fourth operand, specifies the virtual
storage location of the volume list you have built.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If the data set has
been successfully recataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described under "Cataloging a Hon-VSAM Data Set (CATALOG and
CAMLST CAT)" on page 19.

Chapter 1. Using Catalog Management Macro Instructions 23

OS CVOL ENTRY FOR"ATS

Thi s secti on descri bes the format and contents of each of the !~I
entri es that may appear in the OS CVOl. \\J

OS CVOL VOLUME INDEX CONTROL ENTRY

Field 1 Field 2 Field 3

X'OOOOOOOOOOOOOOOl' TTR of last X'05'
Name block in Count

volume index

o 8 11 12

Field , Field 5 Field 6 Field 7 Field 8

TTR of X'OO' TTR of first X' 00· Unused
last block unused block bytes
in SYSCTlG in SYSCTlG
data set data set

12 15 16 19

< -----------------Total Length: 22 Bytes------------------>

Field 1:

Field 2:

Field 3:

Field ,:
Field 5:

Field 6:

Field 7:

Field 8:

Name (8 bytes)--contains only a hexadecimal 1 to ensure that this QrotiY
is the first entry in the first block of the index.

last-block address (3 bytesl-contains the relative track address (TTR)
of the last block in the volume index.

Halfword count (1 byte)-contains a hexadecimal 5 to indicate that 5
halfwords follow.

Catalog upper limit (3 bytes)--contains the relative track address (TTR)
of the last block in the catalog data set.

Zero field (1 byte)--contains binary zeros.

First-available-block address (3 bytes)--contains the relative track
address (TTR) of the unused block in the catalog that is closest to the
beginning of the catalog data set.

Zero field (1 byte)--contains binary zeros.

Unused (2 bytes)

Figure 1. The OS CVOl Volume Index Control Entry

24 MVS/370 System Programming library: Data Management

(-~ j

o

C

o

OS CYOL INDEX CONTROL ENTRY

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

X'OOOOOOOOOOOOOOOI' TTR of X'03' TTR of Alias Unused
Hame last Count first count bytes

block in block in
this this
index index

o 8 11 12 15 16

<-------------------------Total Length: 18 Bytes.----------------------------->

This index control entry is similar to a volume index control entry, but it only
contains information about the index, which it begins. It is 18 bytes long and
contains six fields.

Field 1:

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Hame (8 bytes)--contains only a hexadecimal 1 to ensure that this entry,
because it has the lowest binary name value, is the first entry in the
first block of the index.

Last block address (3 bytes)--contains the relative track address (TTR)
of the last block assigned to this index.

Halfword count (1 byte)--contains a hexadecimal 3 to indicate that 3
halfwords follow.

Index lower limit (3 bytes)--contains the relatlve track address (TTR) of
the block in which this entry appears.

Humber of aliases (1 byte)--contains the binary count of the number of
aliases assigned to the high-level index. If the index is not a
high-level index, this field is zero.

Unused (2 bytes)

Figure 2. The OS CVOL Index Control Entry

Chapter 1. Us\i ng Catalog Management Macro Instruct ions 25

as CYOL INDEX LINK ENTRY AND INDEX POINTER ENTRY

Index Link Entry

Field 1 Field 2 Field 3

X'FFFFFFFFFFFFFFFF' TTR of next block X'OO'
Hame in index (or zero Count

if no next block)

o 8 11

<-------------------------Total Length: 12 Bytes >

Index Pointer Entry

Field 1 Field 2 Field 3

Index name (padded to TTR of index X'OO'
right with blanks if Count
necessary)

11

<---------------------------Total Length: 12 Bytes--------------------------->

o 8

The index link and index pointer entries are similar. An index link entry is used
to chain several blocks of an index together, and an index pointer entry is used to
chain an index to the next lower-level index. An index link entry is always the
last entry in any index block. These blocks contain three fields and are 12 bytes
long.

Field 1:

Field 2:

Field 3:

Hame (8 bytes)--contains the name of the index to which this entry
points. If the entry is an index link entry, the name field contains
X'FF FF FF FF FF FF FF FF'.

Address (3 bytes)--contains either the relative block address (TTR) of
the first block of the next level index if it is an index pointer entry,
or the relative block address (TTR) of the next block of the same level
index if it is an index link entry.

Halfword count (1 byte)--contains 1 byte of binary zeros to indicate that
the entry ends here.

Figure 3. The OS CVOL Index Link and Index Pointer Entries

26 MVS/370 System Programming Library: Data Man~gement

o

o
OS CVOL DATA SET POINTER ENTRY

Field 1 Field 2 Field 3 Field 4

Lowest-level name of DSCB Count Volume
data set or complemented TTR or count
generation number zeros
(if part of GDG)

o 8 11 12 14

Field 5 Field 6 Field 7

Device Serial number Data set sequence
Code of volume on number (zero for

which data direct access)
set resides

14 18 24

I~ --------------------v----------------------~
Repeated for each volume

<----------/ /----------Total Length: 26 to 74 Bytes >

The data set pointer entry can appear in any index. It contains the simple name of
a data set and from one to five 12-byte fields, each of which identifies a volume on
which the named data set resides. If ~he data set resides on more than five
volumes, a volume control block pointer entry is substituted for the data set
pointer entry. A volume control block pointer entry points to a volume control
block or chain of volume control blocks that point to the volumes that contain the
data set.

The data set pointer entry varies in length. The length is determined by the
formula 14 + 12m, where m is the number of volumes containing the data set. The
variable m can be from one to five. The data set pointer entry can appear in any
indexJ and it contains seven fields.

Field 1:

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Field 7:

Name (8 bytes)--contains the simple name of the data set whose volumes
are identified in field S. If part of a GDG, these names have the format
GxxxxVOO, where xxxx is the complement of the GDG number.

DSCB TTR (3 bytes)--contains the track address (TTR) of the data set
control block if the data set resides on one volume. If the data set
resides on more than one volume, this field contains binary zeros.

Halfword count (1 byte)--contains the binary count of the number of
halfwords that follow. The number is found by the formula 6m + 1, where
m is the number of volumes on which the data set resides. The variable m
can be from one to five.

Volume count (2 bytes)--contains the binary count of the number of
volumes identified in field 5 of this entry.

Device code (4 bytes)--contains the device code of the device on which
the volume with the volume serial number in field 6 can be mounted.

Volume serial number (6 bytes)--contains the volume serial number of one
of the volumes of the data set.

Data set sequence number (2 bytes)--contains the sequence number of the
data set on a magnetic tape volume. It is zero for any other device
class.

4C:}1 Figure 4. The OS CVOL Data Set Pointer Entry

Chapter 1. Using Catalog Management Macro Instructions 27

OS CVOL VOLUME CONTROL BLOCK POINTER ENTRY

Field 1 Field 2 Field 3 Field ~

lowest level TTR of X'OI' X'OOOO'
of data set volume Count Dummy
name control data

block entry

o 8 11 12

<----------------------Total length: 14 Bytes----------------->

The volume control block pointer entry is used instead of a data set pointer entry
when the data set resides on more than five volumes. This entry points to a volume
control block, which, in turn, describes the data set. The entry is 14 bytes long.

Field 1:

Field 2:

Field 3:

Field ~:

Name (8 bytes)--contains the last name of the qualified name of the data
set identified by this entry.

Address (3 bytes)--contains the relative block address (TTR) of the
volume control block identifying the volumes containing the data set
named in field 1.

Halfword count (1 byte)--contains a hexadecimal 1 to indicate that 1
halfword follows.

Zero field (2 bytes)--contains hexadecimal zeros.

Figure 5. The OS CVOl Volume Control Block Pointer Entry

28 MVS/370 System Programming Library: Data Management

o

o

o

VOLUME CONTROL BLOCK

Field 1 Field 2 Field 3 Field 4

Count Device Serial Data set sequence
Code number number for the

of volume n volume described
in field 5. Zero
for direct access

o m m+4 m+10

I---------------------v------------------------~
Repeated once for each volume; maximum of 20

Field 5 Field 6 Field 7

Ten bytes TTR of next X'OO'
of zeros volume control

block, or zero
if none

242 252 255

<-----------------------Total length: 256 Bytes-------/ /---->

A volume control block contains the description of all the volumes of a data set
that resides on more than five volumes. If a data set resides on less than six
volumes, a volume control block is not built and the volumes are described in a data
set pointer entr.y. One volume control block can describe as many as 20 volumes.
Volume control blocks may be chained together to catalog a data set residing on more
than 20 volumes.

The volume control block is always 256 bytes long, regardless of the number of
volumes described.

Field 1:

Fields 2, 3, 4:

FieldS:

Field 6:

Field 7:

Volume count (2 bytes)--the first volume control block contains
the binary count of the total number of volumes on which the data
set resides. The value of this field is reduced by 20 for each
subsequent volume control block. If, for example, the data set
resides on 61 volumes, there will be four volume control blocks
for the data set. The volume count field of each will contain 61,
41, 21, or 1, respectively.

Volume identification (12 to 240 bytes)--contains from 1 to 20
entries, each of which identifies a voluma on which the data set
resides. Each entry contains a 4-byte device code, a 6-byte
volume serial number, and a 2-byte data set sequence number. The
data set sequence number is zero for data sets on direct access
volumes.

Zero field (10 bytes)--contains binary zeros.

Chain address (3 bytes)--contains the relative block address (TTR)
of the next volume control block, if additional blocks are needed
to describe the data set. If this is the last volume control
block for the data set, this field will be set to binary zer~s.

Zero field (1 byte)--contains binary zeros.

Figure 6. The OS CVOl Volume Control Block

Chapter 1. Using Catalog Management Macro Instructions 29

OS CVOL POINTER ENTRY

Field 1 Field 2 Field 3

Name of index on Dummy Pointer X'OS'
other OS CVOL field: zeros Count

o 8 11 12

Field 4 Field 5

Device code of
OS CVOL

Serial number of
OS CVOL

12 16

--------------------Total Length: 22 Bytes------------------

The as CVOL pointer entry is used to indicate that a particular index
resides on a volume other than the system residence
volume.
os CVOL pointer entries can exist only in the volume index.
They are 22 bytes long.

Field 1:

field 2:

Field 3:

Field 4:

Field 5:

Name (8 bytes)--contains a high-level index name
that appears in the volume index of the OS CVOL
identified in fields 4 and S.

Address (3 bytes)--contains zeros, because this entry
references no other entry in the
catalog.

Halfword count (1 byte)--contains the hexadecimal value S to
indicate that S halfwords
follow.

as CVOl device code (4 bytes)--contains the
device code of the specified control
volume.

os CVOL serial number (6 bytes)--contains the
volume serial number of the OS CVOl which has an
entry in its volume index of the same name as this entry.

Figure 7. The OS CVOL Pointer Entry

OS CVOL POINTER ENTRY (OLD)

Until Release 17 of OS MFT/MVT, the OS CVOl pointer entry was
the same as the present OS CVOL pointer, except that there was
no field 4 (device code); the OS CVOL pointer entry was 18 bytes
long. After Release 17, the OS CVOL pointer entry is 22 bytes
long. This is mentioned because some OS CVOLs may still contain
entries in the old format and the catalog management routines
may still check for them.

30 MVS/370 System Programming library: Data Management

o

o

c

o

as CVOL GENERATION INDEX POINTER ENTRY

Field 1 Field 2 Field 3 Field , Field 5 Field 6

Hame TTR Count Flags Maximum Current
Count Count

o 8 11 12 13 14

<--------------------------Total Length: 16 Bytes---------------------->

A generation index pointer entry is the entry that identifies a generation data
group (GDG). It represents the next to the lowest-level of a group of generation
data set names. It is created by using the BLDG macro.

Field 1:

Field 2:

Field 3:

Field ,:

Field 5:

Field 6:

Hame (8 bytes)--this name represents the GDG level that is next to the
lowest level of GDG data set names.

Address (3 bytes)--ccntains the relative track address (TTR) of the first
block of the level containing the lowest-level GDG names. These names
have the format GxxxxVOO, where xxx x is a complement of the GDG number.

Count (1 byte)--X'02' identifies this entry and indicates the number of
halfwords that follow this field.

Flags (1 byte)--indicates the options specified by the creator of the
GDG~

X'02'=DELETE option.

X'OI'=EMPTY option.

Maximum Count (1 byte)--a binary number that specifies the maximum number
of generations allowed in the generation index at one time.

Current Count (2 bytes)--the binary count of the number of generations
currently cataloged in the generation data group (GDG).

Figure 8. The OS CVOl Generation Index Pointer Entry

Chapter 1. Using Catalog Management Macro Instructions 31

OS CVOL ALIAS NAME

Field 1 Field 2 Field 3 Field It
X'04'

Alias Name TTR Count True Name
pointer

o 8 11 12

<---------------------Total Length: 20 Bytes.----------------->

An alias entry defines an alternative name for the high-level qualifier of a data
set name.

Field 1:

Field 2:

Field 3:

Field It:

Name (8 bytes)--contains the alias of the high-level index whose relative
track address is found at field 2.

Address (3 bytes)--contains the relative track address (TTR) of the first
block of the index named in field 4.

Count (1 byte)--identifies this entry and contains the binary count of
the number of halfwords that follow. The number is X'04'.

True name (8 bytes)-contains the name of the index whose alias appears
in field 1.

Figure 9. The OS CVOLAlias Name

32 MVS/370 System Programming Library: Data Management

C"\ .J

o

CHAPTER 2. MANAGING THE VOLUME TABLE OF CONTENTS (VTDe)

THE VTOe

The direct access device storage management (DADSM) routines
control allocation of space on direct access volumes through the
volume table of contents (VTOC) of that volume, and through the
VTOC index if one exists. This chapter gives an overview of the
VTOC and the VTOC index, and discusses how to use syste~ macros
to access the VTOC and VTOC index.

The VTOC is a data set on a direct access volume that describes
the contents of that volume. It resides in a single extent
(that is, it is a continuous data set), anywhere on the volume
after cylinder 0, track O. Its address is located in the
VOLVTOC field of the standard volume label (see Figure 10).

Standard Volume Label

l1(B)] VOLVTOC (10 bytes)
CCHHR of fIrst
record in VTOC

~,----------~--~~----~----~ /
~ / , /

~ / , / , / , /
~ /

\ /

Record
3

/

}

VTOC Data Set
(Can be located anywhere
on the volume after
cylinder 0, track 0.)

Figure 10. Locating the Volume Table of Contents (VTOC)

Chapter 2. Managing the Volume Table of Contents (VTOC) 33

The VTaC is composed of 140-byte data set control blocks (DSCBs)
that correspond either to a data set or VSAM data space 0
currently residing on the volume, or to contiguous, unassigned (,
tracks on the volume. DSCBs for data sets or data spaces
describe their characteristics and the characteristics of the
tracks on which they reside. DSCBs for contiguous, unassigned
tracks indicate their location.

DATA SET CONTROL BLOCK (nSCBl FOR HAT TYPES

For.at-O DSCB

The VTac has seven different kinds of DSCBs. This section lists
the different kinds of DSCBs, what they are used for, how many
exist on a volume, and how they are found.

The first record in every VTaC is the VTaC (format-4) DSCB that
describes (1) the device that the volume resides on, (2) the
attributes of the volume itself, and (3) the size and contents
of the VTaC data set itself.

The format-4 DSCB is followed by a free-space (format-S) DSCB,
which for a nonindexed VTaC lists the extents on the volume that
have not been allocated to a data set or VSAM data space. Each
format-S DSCB contains 26 extents. If there are more than 26
available extents on the volume, another format-S DSCB will be
built for every 26 extents. The format-S DSCBs are chained
using the last field of each format-S DSCB. An indexed VTaC
does not use format-S DSCBs for describing free space; however,
one empty format-S DSCB is provided to allow a basis for
converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTOe do not necessarily
occupy contiguous space, nor do they have any prescribed
sequence.

A data set or VSAM data space is defined by one or more DSCBs in
the VTaC of each volume on which it resides. The number of
DSCBs needed to define a data set or VSAM data space is
determined by (1) the organization of the data set (ISAM data
sets need a format-2 DSCB to describe the index) and (2) the
number of extents the data set or VSAM data space occupies (a
format-3 DSCB is needed to describe the 4th through the 16th
extents; additional format-3 DSCBs may be required to describe
the extents for a VSAM data set cataloged in an ICF catalog).
Figure lIon page 37 shows the general makeup of a VTaC and the
DSCBs needed to define two types of data sets (ISAM and
non-ISAM).

Data set A (in Figure 11 on page 37) is an ISAM data set; three
DSCBs, a format-I, format-2, and format-3, are required. Data
sets B, C, and D could be sequential, partitioned, or direct
data sets or VSAM data spaces. Data set B has more than three
extents and therefore requires both a format-l and a format-3
DSCB.

Data sets C and D have three or fewer extents and need only a
format-l DSCB. The format-6 DSCB, pointed to by the format-4
DSCB, is used to keep track of the extents allocated in order to
be shared by two or more data sets (split-cylinder data sets).
For example, if data sets C and D share an extent made up of one
or more cylinders, this extent would be described in the
format-6 DSCB. Hote that split-cylinder data sets cannot be
allocated, but existing split-cylinder data sets can still be
processed.

NAHE: Free VTaC Record

FUNCTION: The unused records in the VTaC, which contains 140
bytes of binary zeros. To delete a DSCB from the VTOC, a
format-O DSCB is written over it.

34 MVS/370 System Programming library: Data Management

o

o

Format-l DSCB

Format-2 DSCB

o
Format-3 DSCB

Format-4 DSCB

o

HOW MANY: One for every unused 140-byte record on the VTOC. The
DS4DSREC field of the format-4 DSCB is a count of the number of
format-O DSCBs on the VTOC. This field is not maintained for an
indexed VTOC.

HOW FOUND: Search on key equal to X'OO' (sometimes X'OOOOOOOO')
for a nonindexed VTOC; for an indexed VTOC, the VTOC map of
DSCBs is used to find a format-O DSCB.

NAME: Identifier

FUNCTION: Describes the first three extents of a data set or
VSAM data space.

HOW MANY: One for every data set or data space on the volume,
except the VTOC.

HOW FOUND: Search on key equal to the data set name. For an
indexed VTOC, a CCHHR pointer for each data set name is in the
VTOC index.

NAME: Index

FUNCTION: Describes the indexes of an ISAM data set.

HOW MANY: One for every ISAM data set (for a multivolume ISAM
data set, a format-2 DSCB exists only on the first volume).

HOW FOUND: Chained from a format-1 DSCB that represents the data
set.

NAME: Extension

FUNCTION: Describes the 4th through 16th extents of a data set
or VSAM data space. Data sets and VSAM data spaces are
restricted to 16 extents per volume. VSAM data sets cataloged
in an ICF catalog may be extended to a maximum of 123 extents,
in which case there may be up to ten format-3 DSCBs.

HOW MANY: One for each data set or VSAM data space on the volume
that has more than three extents. There may be up to ten for a
VSAM data set cataloged in an ICF catalog.

HOW FOUND: Chained from a format-2 or a format-1 DSCB that
represents the data set or VSAM data space. In the case of a
VSAM data set cataloged in an ICF catalog, the chain may be from
a preceding format-3 DSCB.

NAME: VTOC

FUNCTION: Describes the extent and contents of the VTOC and
provides volume and device characteristics. If the VTOC is
indexed, certain fields of this DSCB are not maintained by
DADSM. See "Structure of an Indexed VTOC."

HOW MANY: One on each volume.

HOW FOUND: VOLVTOC field of the standard volume label contains
its address. It is always the first record in the VTOC.

Chapter 2. Managing the Volume Table of Contents (VTOC) 35

Forlllat-S DSCB

Forlftat-6 DSCB

NAME: Free Space

FUNCTION: On a nonindexed VTOC, describes the space on a volume
that has not been allocated to a data set or to a VSAM data
space (available space). For an indexed VTOC, format-5 is zero,
and the volume pack space map describes the available space.

HOW MANY: One for every 26 non-contiguous extents of available
space on the volume for a nonindexed VTOC; for an indexed VTOC,
there is only one.

HOW FOUND: The first format-5 DSCB on the volume is always the
second DSCB of the VTOC. If there is more than one format-5
DSCB, it will be chained from the previous format-5 DSCB via the
DS5PTRDS field of each format-5 DSCB.

NAME: Shared Extent

FUNCTION: Describes the extents shared by two or more data sets
(split-cylinder extents).

HOW "ANY: One for every 26 split-cylinder extents on the VTOC.

HOW FOUND: The address of the first format-6 DSCB is contained
in the DS4F6PTR field of the format-4 DSCB. If there is more
than one format-6 DSCB on the volume, it will be chained from
the previous format-6 DSCB via the DS6PTRDS field of the
format-6 DSCB.

ALLOCATING AND RELEASING SPACE

THE VTOC INDEX

The DADSM allocate and extend routines assign tracks and
cylinders on direct access volumes for new data sets and VSAM
data spaces. The DADSM extend routine obtains additional space
for a data set or VSAM data space that has already exceeded its
original, primary allocation. The DADSM scratch and partial
release routines are used to release space that is no longer
needed on a direct access volume.

The DADSM routines allocate and release space by adding,
deleting, and modifying the DSCBs. When space is needed on a
volume, the allocate routines search the appropriate DSCBs for
enough contiguous, available tracks to satisfy the request. If
there are not enough contiguous tracks, the request is filled
using as many as five noncontiguous groups of free tracks. The
appropriate DSCBs are modified to reflect the assignment of the
tracl(s.

When space is released, the scratch routines free the DSCBs of
the deleted data set or data space. For a nonindexed VTOC, to
indicate that the tracks containing the affected data set or
data space can be reallocated, a free space (format-5) DSCB is
built, or modified if existent. For an indexed VTOC, the index
is updated ..

The VTOC index is a physical-sequential data set, residing on
the same volume as the VTOC. It contains an index of data set
names of Format~l DSCBs in the VTOe, as well as free space
information. The index is searched instead of the hardware keys.

The. VTOC index is opti onal. It can be bui 1 t over an exi sti ng 0
VTOC and inactivated so that the VTOC is processed without using
the index. . ~

36 MVS/370 System Programming Library: Data Management

0.'·'
,:1

o

Standard Volume Lahel

VToe Data Set

rmat-4 ()SCB

Description of
device, volume,
anli the VTOC'
extent

I l(B)
VOLVTOC
field

First f5 DSC'B

Description of
26 available

Description of
as many as 26
shared-cylinder
extents

Data Set A

Data Set D

DSCB for an ISAM data
set (Data Set A)

DSCB for a
non-ISAM data
set (Data Sets B, C, D)
or a VSAM data space

Data Set B

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-O DSCBs)

Figura 11. Contents of"VTOC--DSCBs Describing Data Sets

Each VTOC index is formatted by Device Support Facilities with
physical blocks 2048 bytes in length. These physical blocks are
the VTOC index records (VIRs), the basic structural units of the
index. The kind of information they contain depends on the part
of the index they belong to.

Chapter 2. Managing the Volume Table of Contents (VTOC) 37

Several different kinds of records, each built from one or more
VIRs, are in a VTOC index:

• The VTOC index entry record (VIER), which is used to access
format-l DSCBs and the format-4 DSCB

• The VTOC pack space map (VPSM), which shows what space has
been allocated on a disk pack

• The VTOC index map (VIXM), which shows which VIRs have been
allocated in the VTOC index

• The VTOC map of DSCBs (VMDS), which shows which DSCBs have
been allocated in the VTCC

AN EXAMPLE OF A VTOC AND ITS INDEX

A format-l DSCB in the VTOC contains the name and extent
information of the VTOC index. The name of the index must be
'SYSl.VTOCIX.xxxxxxxx', where 'xxxxxxxx' can be anything valid
in a data set name and is generally the serial number of the
volume containinq the VTOCand its index. The name must be
unique within the system to avoid EHQ contention. The
relationship of a VTOC to its index is shown in Figure 12. Each
of the components of the index is discussed separately in the
following sections.

VTOC VToe Index
~ >

Format-4 DSCB VIXM

Format-s DSCB VPSM

VMDS
Other DSCBs

VIER

VIER
Format-l DSCB for the VTOC
Index: SYS1.VTOCIX.nnn VIER

· Other DSCBs · ·
Figure 12. Relationship of a VTOC to Its Index

THE VTOC INDEX ENTRY RECORD (VIER)

VIERs have these characteristics:

• A VIER uses one VIR and contains variable-length index
entries. The number of VIERs in an index is variable,
depending on the number of data sets on the volume.

• VIERs in a VTOC index may be on one or many levels. All
index entries in a VIER are at the same index level. VIERs
have a hierarchic relationship. Index entries in
higher-level VIERs point to lower-level VIERs. Index
entries in level-one VIERs (those at the lowest level) point
to format-l DSCBs for data sets on the volume.

• A higher-level VIER is created when the fourth lower-level
VIER is created. When that new higher-level VIER is filled

38 MVS/370 System Programming Library: Data Management

o

o

with pointers to lower-level VIERs, a new VIER at the same
level is created. Again, when the fourth VIER at the same
level is created, a VIER at a still higher level is created,
adding another level to the index.

contents of VIER Fields

0(00)

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(IC)

32(20)

76(4C)

Each VIER contains a header and sections (see Figure 13). The
VIER header contains:

• A field identifying the VTOC index record as a VIER.

• The relative byte address (RBA) of the VIER.

• A pointer to a VIER at the same level (hence, a "horizontal"
pointer). The VIER pointed to contains index entries whose
keys are greater than any key in the pointing VIER.

• The level number (LVL) of this VIER.

• The number (SECHO) of sections (8 VIER contains eight
sections).

• The length (SECL) of the sections (each section is 246 bytes
in length).

• The offsets to the first-used and the last-used sections.

• The 44-byte high key of the VIER.

Each section contains:

• An offset to the last entry in the section (or zero if the
section is empty)

• Index entries

EBCDIC Characters "VIER"

RBA of This VIER

Horizontal Pointer

Old Horizontal Pointer

LVL FLGI Reserved

PTRL SECHO SECL

Offset to First-Used Section

Offse't to Last-Used Section

Highest Key in This VIER

Section 1

· · ·
Section 8

]

Index
Header

8 Sections
Containing
Index Entries

Figure 13. Format of the VTOC Index Entry Record (VIER)

Chapter 2. Managing the Volume Table of Contents (VTOC) 39

Format of a VTOC Index Entry

The format of an index entry is:

FLG KEYL

Name Offset

VXEFLG 00(00)
VXEKEYL 01(01)
VXEFC 02(02)
VXERPTR 03(03)
VXEKEY 07(07)

or
08(08)

Unused I
Bytes

1
1
1
4 or 5
1 to 44

Record Pointer

Description

Flag byte

Key

Length of the VXEKEY field
Unused
Record pointer
Name of a data set, if a
level-one VIER; if not, the
high key in the header of a
lower-level VIER

Each index entry contains:

• A flag byte.

• A keylength field (which contains a value of 1 to 44,
depending on the length of the data set name).

• A record pointer (VXERPTR) that is one of the following:

•

When a VIER Is Created

In level-one VIERs, the 5-byte CCHHR of the format-lor
format-4 DSCB that represents the data set whose name is
the key in the entry

In other VIERs, the 4-byte RBA of the lower-level VIER
whose high key is the key in the entry

A key which for level 1 VIERS is the data set name, and for
level 2 or higher VIERs is the high key of a lower-level
VIER. Trailing blanks are suppressed in the VTOC index
entry.

The first level-one VIER is created when the VTOC index is
created. Subsequent VIERs are created when a data set name is
to be added to the VTOC index but the VIER to which it should be
added is full. A new VIER is created in the following manner:

• A new VIER is allocated.

• Half of the sections from a full VIER (those containing the
highest keys) are moved into the new VIER, leaving each VIER
half empty.

• The new index entry is added to one of the two VIERs,
depending on its key.

A Tree of Linked VIERs

Figure 14 on page 41 shows how VIERS are related to each other.
Note that the VIERs (which are simplified here--only the high
key is shown in the header) form a ~ype of "tree structure."

How a Format-l DSCB Is Found

In the search for the format-l DSCB for a particular data set,
one path along the tree structure is followed.

As seen in Figure 13 on page 39, a field in the header of a VIER
contains the highest key of any index entry in that VIER.

40 MVS/370 System Programmi ng Library: Data Manage,ment

(1'· ·""1
'.JV

~I 0 ,

c

o

Beginning with this field in the first high-level VIER, the
following search logic is used: Is the key of the data set (the

Chapter 2. Managing the Volume Table of Contents (VTOC) 40.1

0·, ,; I __ II'

o

VIER

High Key M32107.LlB

Entries I~ B41103.TEST
M32107.LlB -

,

VIER VIER

~

B41103.TEST M32107.LlB

44X'04' - A11307.CLlST C0102.ASM

B0102.DATA
M32107.LlB -

Format-1 DSCBs
in the VTOC

Format-4 DSCB in the VTOC

VIER

~

44X'FF' Level·2
VIERs

r--- SYS1.MACLIB
44X'FF' ~

,

VIER VIER

~

SYS l.MAC LI B 44X'FF'
)

~ SYS1.VTOCIX.A
!'- - X.Y.Z.
~

44X'FF' ..:-

Level-1
VIERs

Dummy Last
Entry in
VTOC Index

Figura 14. structure of Linked VIERs

data set name) lower than or equal to the VIER's high key! If
neither, the test is again applied with the VIER having a
greater high key pointed to by the horizontal pointer. This
procedure continues until a VIER is found having a high key that
is greater than or equal to the key of the data set.
Comparisons are then made with the entries in the VIER's
sections. Eventually, an entry is found with a key greater than
or equal to the data set key. This entry points to a VIER at
the next-lower level.

The search proceeds to successively lower levels until an entry
in a level-two VIER is found whose key is greater than or equal
to the key of the data set. This entry points to a level-one
VIER that, in turn, contains an entry with a key that is equal
to the data set key and that points to the format-l DSCB for the
desired data set.

special Cases in the Search for a DseB

If there is only one level in the VTOC index, the entries in the
VIERs all point to format-l DSCBs, so only one level need be
searched.

If an update to the VTOC index requires a new VIER and the
update is interrupted (for example, because of an I/~ error or a
system failure), the entry in the level-n VIER may contain a key

Chapter 2 •• Managing the Volume Table of Contents (VTOC) 41

that is greater than the high key in the lower-level VIER
pointed to by that entry. In this case, two VIERs at level n-l
may have to be searched. This situation is corrected when DADSM O. ~
next processes the volume. .

THE VTOC PACK SPACE MAP (VPSM)

The VPSM accounts for space on a disk pack. It shows what space
on the volume has been a~located and what space remains free.

The map contains bit maps of the cylinders and tracks on the
volume. A value of one indicates that the cylinder or track has
been allocated; a value of zero, that it has not been allocated.
The bit representing a cylinder is set to zero if no tracks on
the cylinder have been allocated; it is set to one if any track
has been allocated. Tracks assigned as alternate tracks are
marked as allocated.

The VPSM replaces the chain of format-5 DSCBs, but one empty
format-5 DSCB is left in the VTOC to allow for conversion back
to a nonindexed VTOC, a process that requires reconstruction of
a format-5 DSCB chain.

The format of an index map (including the VPSM) is shown in
Figure 15.

00(00)

04(04)

08(08)

12(OC)

16(10)

20(14)

24(18)

28(IC)

32(20)

36(24)

40(28)

ID of This Map

RBA of This Map

Hori""zontal Pointer to Next VIR

Sequence Number o~ First Entry

VRFDA VRFO

FlGl I lUFl lUOF

Size of large Unit Map

SUFI I SUBIT SUOF

Size of Small Unit Map

Reserved I VIR

RBA of First High-level VIER

large Unit Map
(VTOC Pack Space Map Only)

Small Unit Map

VTOC Recording Facility Data
(VTOC Index Map Only)

Figure 15. An Index Map

THE VTOC INDEX MAP (VIXM)

The VIXM contains a bit map in which each bit represents one
VTOC index record (VIR). The status of the bit indicates
whether the VIR is allocated (1) or unallocated (0).

42 MVS/370 System Programming library: Data Management

o

o

o

An area of the VIXM is reserved for VTOC recording facility
(VRF) data. (This is the facility that allows detection of and
recovery from certain errors in an indexed VTOC.)

A field in the first VIXM record points to the first high-level
VIER. Another field in the first VIXM record (VIR in Figure 16)
contains the number of VTOe index records which contain all the
space maps.

THE VTOC "AP OF DSCBS (V"DS)

Name

VIMAP
VIMH
VIMID

VIMRBA
VIMHZPTR

VIMORG

VIMVRFDA

VIMVRFO

VIMFlGl
VIMVRFSW

VIMlUFl
VIMlUOF

VIMlUSZ
VIMSUFI
VIMSUBIT

VIMSUOF

VIMSUSZ

VIMVIR
VIMFHlV

VIMlUMAP

VIMSUMAP

VIMVRF

Offset

00(00)
00(00)
00(00)

04(04)
08(08)

12(OC)

16(10)

18(12)

20(14)

21(15)
22(16)

24(18)
28(1C)
29(1D)

30(1E)

32(20)
36(24)
39(27)
40(28)

44(2C)

mm

pp

The VMDS contains 8 bit map in which each bit represents one
DSCB in the VTOC. The status of the bit indicates whether the
DSCB is allocated (1) or unallocated (0).

Bytes

2048
44
4

4
4

4

2

2

1
1 •..
.xxx xxxx
1
2

4
1
1

2

4
3
1
4

kk

nn

qq

Description

VToe map
VTOC map header
Map ID in EBCDIC ('VPSM',
'VIXM', or 'VMDS')
RBA of this map
Horizontal RBA pointer to
next VIR of this map
Sequence number of the
first entry in the map
Offset to current VRF data
(if VIMVRFSW=1) or offset
where VRF data may ba
written (if VIMVRFSW=O),
(first VIXM only)
Offset to VRF area (first
VIXM VIR only)
Flag byte
VRF data exists if 1
Reserved
large unit flag byte
Offset into VIR of large
unit map (zero if none)
Size in bits of large unit map
Small unit flag byte
Number of small unit bits per
large unit (zero if none)
Offset into VIR of small unit
map
Size in bits of small unit map
Reserved
Number of map records (VIXM only)
RBA of first high-level VIER
(VIXM only)
large unit map (kk is VIMlUSZ/8,
rounded up)
Small unit map (mm is VIMSUOF, nn
is VIMSUSZ/8, rounded up)
VRF area (pp is VIMVRFO, qq is
remainder of first VIXM)

Figure 16. The Format of a VTOe Map

STRUCTURE OF AN INDEXED VTOC

An indexed VTOC is identical to a nonindexed VTOC, except that
for an indexed VTOC only a single format-5 DSCB exists and is
empty, and certain format-4 DSCB data (the number of format-O
DSCBs and the CCHHR of the highest format-l DSCB) is not
maintained by DADSM. The DOS bit (bit Oin field DS4VTOCI), set

Chapter 2. Managing the Volume Table of Contents (VTOC) 43

to one in the format-4 DSCB, indicates that these fields (as
well as the format-S DSCB) cannot be relied on. The index bit
(bit 7 in field DS4VTOCI) is set in the format-4 DSCB; it
indicates that a VTOC index exists.

SCRATCH/RENAME/ALLOCATE RESTRICTIONS

A VTOC index data set may not be scratched if the VTOC index is
active. Neither maya VTOC index data set be renamed if the
VTOC index is active, unless it is being renamed to another name
beginning with 'SYSl.VTOCIX.'. A data set may not be renamed to
a name beginning with 'SYSl.VTOCIX.' if there is already such a
data set on the volume. Only one data set whose name begins
with 'SYSl.VTOCIX.' may be allocated on a volume.

CREATING THE VTOC AND VTOC INDEX

To prepare a volume for use (to initialize it), the Device
Support Facilities utility is used. One of the things this
utility does is to build the VTOC. After initialization, this
VTOC will contain a format-4 DSCB and a format-S DSCB. For a
nonindexed VTOC, the format-S DSCB contains an extent entry for
all the free space on the volume; the initial number of extents
in the format-S DSCB is one or two, depending on where the VTOC
is located on the volume. If the VTOC is located somewhere
other than at the beginning or end of the volume, two extent
entries are needed to describe the free space that precedes and
follows it. For an indexed VTOC, the format-S DSCB contains a
zero.

A VTOC index can be created when a volume is initialized by
using the Device Support Facilities command INIT and specifying
the INDEX key word.

A nonindexed VTOC can be converted to an indexed VTOC by using
the command BUILDIX and specifying the IXVTOC keyword. The
reverse is also possible by using the BUILDIX command and
specifying the OSVTOC keyword.

For more detailed information, refer to Device Support
Facilities User's Guide and Reference.

PROTECTING A VTOC AND VTOe INDEX

RESOURCE ACCESS CONTROL FACILITY (RACFJ

You can protect the VTOC and VTOC index by using the Resource
Access Control Facility (RACF). This is done by defining the
volume serial entity under the RACF class DASDVOL. A user must
be authorized to the DASDVOL/volume serial entity at the
following levels:

• At the UPDATE level, to open the VTOC for output processing

• At the UPDATE level, to open for output processing any data
set whose name begins with 'SYSl.VTOCIX.'

• At the ALTER level, to allocate, rename, or scratch any data
set whose name begins with 'SYSl.VTOCIX.'

• At the ALTER level, to rename a data set to any name that
begins with 'SYSl.VTOCIX.'

Neither the VToe nor the VToe index is protected from being
opened for input processing by the DASDVOL/volume serial entity.

Note that neither the VTOC nor the VTOe index can be protected
through the RACF class DATASET.

44 MVS/370 System Programming Library: Data Management

o

o

o

c

o

AUTHORIZED PROGRA" FACILITY (APF) REQUIRE"ENTS

PASSWORD PROTECTION

A program must be authorized by the authorized program facility
(APF) to perform any of the following functions:

• Opening a VTOC for output processing

• Opening for output processing a data set whose name begins
with 'SYS1.VTOCIX.'

• Allocating, renaming, or scratching any data set whose name
begins with 'SYS1.VTOCIX.'

• Renaming a data set to any name that begins with
'SYS1.VTOCIX.'

The VTOC index data set may be password protected. The
protection is the same as for any password-protected data set.
Password checking is bypassed if the volume on which the VTOC
index resides is protected by RACF through the DASDVOL class.

COPY/RESTORE/INITIALIZE REQUIREMENTS

OPERATIONS ON VOLUMES CONTAINING AN UNINDEXED VTOC

• Restoring a Volume from a Dump Tape. There are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the
VTOC. If you do a restore and change the VTOC size without
changing the volume serial number, the volume must be varied
offline after it is restored. You should not do a restore
on a volume with an indexed VTOC.

• Copying a Volume. There are no operational requirements if
you change the volume serial number or do not modify the
VTOC of the receiving volume. If you do a copy and change

. the VTOC size without changing the volume serial number, the
volume must be varied offline after it is copied. You
should not do a copy from a volume with an indexed VTOC.

OPERATIONS ON VOLUMES CONTAINING AN INDEXED VTOC

You should use Device Support Facilities to convert a VTOC to a
nonindexed format to update the volume. If you do not, take
note of the following information:

• Initializing a Volume. If you do not change the volume
serial number, the volume should be varied offline before
starting the job.

• Restoring a Volume from a Dump Tape. There are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the VTOC
or VTOC index. If you do a restore and modify the VTOC or
VTOC index without changing the volume serial number, the
volume should be varied offline after it is restored.

•

•

Copying a Volume. There are no operational requirements if
you change the volume serial number of the receiving volume
or do a partial dump without modifying the VTOC or VTOC
index. If you modify the VTOC or VTOC index without
changing the volume serial number, the receiving volume
should be varied offline after it is copied.

Shared DASD Considerations. In shared DASD environments,
whenever the VTOC index is modified or relocated, or the
volume is changed from indexed VTOC to OS VTOC, or from OS

Chapter 2. Managing the Volume Table of Contents (VTOC) 45

VTOC to indexed VTOC, the device should be varied offline to
the sharing system or systems.

USING THE OBTAIN, SCRATCH, AND RENAME HACROS

This section tells how to use the OBTAIN, SCRATCH, and RENAME
macro instructions. These macros are most commonly used by the
operating system and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own
routines. The functions you can perform with these macros are:

• Reading a data set control block from the VTOC--OBTAIN

• Deleting a data set--SCRATCH

• Changing the name of a data set--RENAME

You can read a data set control block (DSCB) into virtual
storage by using the OBTAIN and CAMlST macro instructions.
There are two ways to specify the DSCB that you want to read: by
using the name of the data set associated with the DSCB, or by
using the absolute track address of the DSCB. You must provide
a 140-byte data area in v;rtual storage, into which the DSCB
will be read. When you spec;fy the name of the data set, an
identifier (format-lor format-4) DSCB is read into virtual
storage. To read a DSCB other than a format-lor a format-4
DSCB, you must specify an absolute track address (see "Example"
on page 48). (DSCB formats and field descriptions are contained
in Oebugging Handbook.)

You can delete a non-VSAM data set by using the SCRATCH and
CAMlST macro instructions. This causes the DSCBs for the data
set to be deleted.

You can change a data set name by using the RENAME and CAMlST
macro instructions. This causes the data set name in the
format-l DSCB for the data set to be replaced with the new name.

Accompanying the descriptions of the macro instructions are
coding examples, programming notes, and exception return code
descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot be
used with a SYSIN or SYSOUT data set.

READING A DSCB BY NAME (OBTAIN AND CAMLST SEARCH): If you
specify a data set name using OBTAIN and the CAMlST SEARCH
option, the 96-byte data portion of the identifier (format-I)
DSCB and the absolute track address of the DSCB are read into
virtual storage. The absolute track address is a 5-byte field
in the form CCHHR. The absolute track address field will
contain zeros for VSAM and VIO data sets.

The format is:

[s~mbol] OBTAIN listname-addrx
listname CAMLST SEARCH

,dsname-relexp
,vol-relexp
,wkarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

SEARCH
this operand must be coded as shown.

46 MVS/370 System Programming library: Data Management

o

o

o

o

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long.

Note: A DSNAME of 44 bytes of X'04' (X'040404 •.. 04') can
be used to read a format-4 DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work
area that you must define.

Example: In the following example, the identifier (format-1)
OSCB for data set A.B.C is read into virtual storage using the
SEARCH option. The serial number of the volume containing the
OSCB is 770655.

* *
OBTAIN DSCBABC READ DSCB FOR DATA

SET A.B.C INTO DATA
AREA NAMED WORKAREA

Check Return Codes

DSCBABC
OSABC
VOLNUM
WORKAREA

CAMLST
DC
DC
DS

SEARCH,DSABC,VOLNUM,WORKAREA
CL44'A.B.C' OATA SET NAME
CL6'770655' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

The OBTAIN macro instruction points to the CAMLST macro
instruction. SEARCH, the first operand of CAMLST, specifies
that a DSCB be read into virtual storage, using the data set
name you have supplied at the address indicated in the second
operand. DSABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of the data set whose format-1 DSCB is
to be read. VOLNUM, the third operand, specifies the virtual
storage location of a 6-byte ar"ea into which you have placed the
serial number of the volume containing the required OSCB.
WORKAREA, the fourth operand, specifies the virtual storage
location of a 140-byte work area into which the DSCB is to be
returned.

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into your work area, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes:

Code

4(04)

8(08)

12(OC)

16(10)

Meaning

The required volume was not mounted.

The format-1 DSCB was not found in the VTOC of the
specified volume.

A permanent I/O error was encountered, or an invalid
format-1 DSCB was found when processing the specified
volume, or an unexpected error return code was received
from CVAF (Common VTOC Access Facility).

Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes
of the work area contain the data portion of the identifier
(format-1 or format-4) DSCB; the next 5 bytes contain the

Chapter 2. Managing the Volume Table of Contents (VTOC) 47

absolute track address (CCHHR) of the OSCB. These 5 bytes will
contain zeros for VSAM or VIO data sets.

READING A DSCI IY ACTUAL DEVICE ADDRESS (OBTAIN AND CAMLST
SEEK): You can read any OSCB from a VTOC using OBTAIN and the
CAMLST SEEK option. You specify the SEEK option by coding SEEK
as the first operand of the CAMLST macro and by providing the
absolute device address of the DSCB you want to read, unless the
OSCB is for a VIO data set. Only the SEARCH option can be used
to read the OSCB of a VIO data set.

The format is:

[sllmbolJ OBTAIN listname-addrx
listname CAMLST SEEK

,cchhr-relexp
,vol-relexp
,wkarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEEK
this operand must be coded as shown.

cchhr-relexp
specifies the virtual storage location of the 5-byte
absolute device address (CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work
area that you must define.

Example: In the following example, the DSCB at actual-device
address X'OO 00 00 01 07' is returned in the virtual storage
location READAREA, using the SEEK option. The DSCB resides on
the volume with the volume serial number 108745.

OBTAIN ACTADDR READ DSCB FROM
LOCATION SHOWN IN CCHHR
INTO STORAGE AT LOCATION
NAMED READAREA

Check Return Codes

ACTADDR
CCHHR
VOLSER
READAREA

CAMLST
DC
DC
DS

SEEK,CCHHR,VOLSER,READAREA
XL5'0000000107' ABSOLUTE TRACK ADDRESS
CL6'108745' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

The OBTAIN macro points to the CAMLST macro. SEEK, the first
operand of CAMLST, specifies that a DSCB be read into virtual
storage. CCHHR, the second operand, specifies the storage
location that contains the 5-byte actual-device address of the
DSCB. VOLSER, the third operand, specifies the storage location
that contains the volume serial number of the volume on which
the DSCB resides. The fourth operand, READAREA, specifies the
storage location to which the 140-byte DSCB is to be returned.

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into your work area, register 15 will

48 MVS/370 System Programming Library: Data Management

()

o

o

C,' . J

o

contain zeros. Otherwise, register 15 will contain one of the
following return codes:

Code

4(04)

8(08)

12(OC)

16(10)

20(14)

Meaning

The required volume was not mounted.

The format-l DSCB was not found in the VTOC of the
specified volume.

A permanent I/O error was encountered or an unexpected
error return code was received from CVAF.

Invalid work area pointer.

The SEEK option was specified and the absolute track
address (CCHH) is not within the boundaries of the
VTOC.

DELETING A DATA SET (SCRATCH AND CAMLST SCRATCH): You delete a
non-VSAM data set by using the SCRATCH and CAMLST macro
instructions. This causes all data set control blocks (DSCBs)
for the data set to be deleted, and all space occupied by the
data set to be made available for reallocation. If you want to
scratch a data set being processed using virtual input/output
(VIO), the data set must have been allocated for use by your
job. Scratching VIO data sets not allocated to your job is not
allowed.

If the data set to be deleted is sharing one or more cylinders
with one or more data sets (a split-cylinder data set), the
space will not be made available for reallocation until all data
sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the
identifier (format-I) DSCB has not passed, unless you choose to
ignore the expiration date. You specify that the expiration
date is to be ignored by using the OVRD option in the CAMLST
macro instruction.

For information on RACF-defined data sets, see Resource Access
Control Facility (RACF): General Information Manual. You may
only scratch a RACF-defined data set (that is, the DSCB
indicates RACF-defined) if you have alter access authority to
either the data set/volume serial in the DATASET class, or to
the volume serial in the DASDVOl class (if the volume is
RACF-defined).

If a data set to be deleted is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. In addition, all other
required volumes must be serially mountable.

When deleting a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte scratch status code which should be
initialized to zero. Device codes are presented in Debugging
Handbook in the description of UCBTYP.

If the space to be deleted is a VSAM data space, you must use
the DELETE command provided by access method services. For
complete information about the DELETE command, see Access Method
Services Reference.

Volumes are processed in the order that they appear in the
volume list. The volume at the beginning of the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting a volume be mounted. (A
volume mount message will not be issued for a mass storage
system (MSS) virtual volume; however, a status code will be
returned to your program.) This is only done if register 0 has

Chapter 2. Managing the Volume Table of Contents (VTOC) 49

been loaded with the UCB associated with the device on which
unmounted volumes are to be mounted. (The device must be
allocated to your job.) If you do not load register 0 with a
UCB address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH
macro instruction is issued.

If the requested volume cannot be mounted, the operator issues a
reply indicating that the request cannot be fulfilled. A status
code is then set in the last byte of the volume pointer (the
second byte of the scratch. status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed.

The format is:

[symbol] SCRATCH listname-addrx
listname CAMLST SCRATCH

,dsname-relexp
"vol list-relexp
["OVRDl

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SCRATCH .
this operand must be coded as shown.

dsname-relexp
specifies the virtual st~rage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. the name must be defined by a C-type define
constant (DC) instruction.

vol list-relexp

OVRD

specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

when coded as shown, specifies that the expiration date in
the DSCB should be ignored.

Example: In the following example, data set A.B.C is deleted
from two volumes. The expiration date in the identifier
(format-I) DSCB is ignored.

* * *

DELABt
DSABC
VOL 1ST

SR 0,0
SCRATCH DELABC

SET REG 0 TO ZERO
DELETE DATA SET A.B.C
FROM TWO VOLUMES,
IGNORING EXPIRATION
DATE IN THE DSCB

Check Return Codes and SCRATCH Status Codes

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

SCRATCH,DSABC"VOLIST"OVRD
CL44'A.B.C' DATA SET NAME
H'2' NUMBER OF VOLUMES
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000017' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000018' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE

SO MVS/370 SY5tem Programming library: Data Management

o

IO!
\ ~~ ~ ~

o

c

o

The SCRATCH macro instruction points to the CAMlST macro
instruction. SCRATCH, the first operand of CAMlST, specifies
that a data set be deleted. DSABC, the second operand,
specifies the virtual storage location of a 44-byte area into

Chapter 2. Managing the Volume Table of Contents (VTOe) 50.1

C,;
"'J

o

which you have placed the fully qualified name of the data set
to be deleted. VOLIST, the fourth operand, specifies the
virtual storage location of the volume list you have built.
OVRD, the sixth operand, specifies that the expiration date in
the DSCB of the data set to be deleted be ignored.

When you attempt to delete a password-protected data set which
is not also RACF-protected, the operating system issues a
message (IEC301A) to ask the operator at the console or terminal
operator of a remote console to enter the password. The data
set will be scratched only if the password supplied is
associated with a WRITE protection mode indicator. The
protection mode indicator is described under "Chapter 5.
Password Protecting Your Data Sets" on page 113.

Control is returned to your program at the next executable
instruction following the SCRATCH macro instruction. If the
data set has been successfully deleted, register 15 will contain
zeros and the scratch status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes that follow. To determine
whether the data set has been successfully deleted from each
volume on which it resides, you must examine the scratch status
code, the last byte of each entry in the volume list.

Code

4(04)

8(08)

12(OC)

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set. The data set may be a VIO data set that was
not allocated during your job. (This return code is
accompanied by a scratch status code of 5 in each entry
of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The scratch status
code, the last byte of each volume list entry, will not
have been modified during scratch processing.

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte entry in the volume list indicates the following
conditions in binary codes:

Scratch
Status
Code

o

1

2

3

4

5

Meaning

All DSCBs for the data set have been deleted from the
VTOC on the volume pointed to.

The VTOC of this volume does not contain the format-1
DSCB for the data set to be deleted.

The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or an
attempt was made to scratch a VSAM data space or data
set cataloged in an ICF catalog.

The data set was not deleted from this volume because
either the OVRD option was not specified or the
retention cycle has not expired.

A permanent I/O error was encountered, or an invalid
format-1 DSCB was found when processing this volume,
or an unexpected error return code was received from
CVAF.

It could not be verified that this volume was mounted,
and no device was available on which this volume could
be mounted.

Chapter 2. Managing the Volume Table of Contents (VTOC) 51

Scratch
status
code

6

7

8

9

Meaning

The operator was unable to mount this volume. For
MSS, a volume mount failure occurred. For a
JES3-managed virtual volume, JES3 would not allow the
volume to be mounted.

The specified data set could not be scratched because
it was being used.

The DSCB indicates the data set is defined to RACF but
either the accessor is not authorized to the data set
or to the volume, or the data set is a VSAM data
space, or the data set is cataloged in an ICF catalog,
or the data set is not defined to RACF.

The data set is defined to RACF but its definition
could not be deleted by RACF.

RENAMING A DATA SET (RENAME AND CAMLST RENAME): You rename a
data set that is not cataloged in an ICF or VSAM catalog by
using the RENAME and CAMlST macro instructions. This causes the
data set name in all format-l DSCBs for the data set to be
replaced by the new name that you supply. (VIO data sets cannot
be renamed.>

If a data set to be renamed is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. In addition, all other
volumes of the data set must be serially mountable.

For information on RACF-defined data sets, see Resource Access
Control Facility (RACF): General Information Manual. Only an
accessor with alter access authority may rename a RACF-defined
data set.

When renaming a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte volume list entry consists of a 4-byte device code, a
6-byte volume serial number, and a 2-byte rename status code
which should be initialized to zero. Device codes are presented
in Debugging Handbook. Volumes are processed in the order in
which they appear in the volume list. The first volume on the
list is processed first. If a volume is not mounted, a message
is issued to the operator requesting that the volume be mounted.
(A volume mount message will not be issued for an MSS volume;
however, a status code will be returned to your program.) This
is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with
the address of the YCB associated with the device to be used.
(The device must be allocated to your job.> If you do not load
register 0 with a UCB address, its contents must be zero, and at
least one of the volumes in the volume list must be mounted
before the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, a
reply is issued that the request cannot be fulfilled. A status
code is then set in the last byte of the volume list entry (the
second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed or requested.

52 MVS/370 System Programming library: Data Management

c

o

The format is:

[s~mboll RENAME listname-addrx
listname CAMLST RENAME

,dsname-relexp
,new name-relexp
,vol list-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

RENAME
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name to be replaced. The area that contains the
name must be 44 bytes long. The name must be defined by a
C-type define constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified
data set name that is to be used as the new name. The area
that contains the name must be 44 bytes long. The name
must be defined by a C-type Define Constant (DC)
instruction.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

Example: In the following example, data set A.B.C is renamed
D.E.F. The data set resides on two volumes.

SR 0,0
RENAME DSABC

SET REG 0 TO ZERO
CHANGE DATA SET
NAME A.B.C TO D.E.F

Check Return Codes and RENAME status Cades

DSABC
OLDNAME
NEWNAME
VOLIST

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC
DC

RENAME,OLDNAME,NEWNAME,VOLIST
CL44'A.B.C' OLD DATA SET NAME
CL44'D.E.F' NEW DATA SET NAME
H'2' TWO VOLUMES
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000017' VOLUME SERIAL NO.
H'O' RENAME STATUS CODE
X'30C0200D' 3330 DISK DEVICE CODE
CL6'000018' VOLUME SERIAL NO.
H'O' RENAME STATUS CODE

The RENAME macro instruction points to the CAMLST macro
instruction. RENAME, the first operand of CAMLST, specifies
that a data set be renamed. OLDNAME, the second operand,
specifies the virtual storage location of a 44-byte area into
which you have placed the fully qualified name of the data set
to be renamed. NEWNAME, the third operand, specifies the
virtual storage location of a 44-byte area into which you have
placed the new name of the data set. VOLIST, the fourth
operand, specifies the virtual storage location of the volume
list you have built.

Chapter 2. Managing the Volume Table of Contents (VTOe) 53

Control is returned to your program at the next executable
instruction f,ollowing the RENAME macro instruction. If the data ~~
set has been successfully renamed, regi ster 15 wi 11 contai n I4..J!
zeros, and the rename status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes below. To determine' whether the
data set has been successfullY renamed on each volume on which
it resides, you must examine the rename status code, the last
byte of each entry in the volume list.

Code

4(04)

8(08)

12(OC)

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set to be renamed. The data set may be a VIO data
set, which can't be renamed. (This return code is
accompanied by a rename status code of 5 in each entry
of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The rename status
code, the last byte of each volume list entry, will not
have been modified during rename processing.

After the RENAME macro instruction is executed, the last byte of
each 12-byte entry in the volume list indicates one of the
following conditions in binary code:

Rename
status
Code

o

1

2

3

4

5

6

7

8

The format-l DSCB for the data set has been renamed in
the VTOC on the volume pointed to.

The VTOC of this volume does not contain the format-l
DSCB for the data set to be renamed.

The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or the
user tried to rename a VSAM data space or VSAM data
set cataloged in an ICF catalog.

A data set with the new name already exists on this
volume.

A permanent I/O error was encountered, or an invalid
format-l DSCB was found when trying to rename the data
set on this volume, or an unexpected error return code
was received from CVAF. '

It could not be verified that the volume was mounted,
and no device was available on which the volume could
be mounted. '

The operator was unable to mount this volume. For
MSS, a volume mount failure occurred. For a
JES3-managed virtual volume, JES3 would not allow the
volume to be mounted.

The specified data set could not be renamed on this
volume because it was being used.

The data set is defined to RACF but either the
accessor is not alter authorized to the data set or
the data set is defined to RACF on multiple volumes.

When you attempt to rename a password-protected data set, the
operatihg system issues a message (IEC301A) to ask the operator
or remote console operator to verify the password. The data set
will be renamed only if the password supplied is associated with

'54 MVS/370 System Programming library: Data Management

c

o

o

0 :1 ',,'

a WRITE protection mode indicator. The protection mode
indicator is described under "Chapter 5. Password Protecting
Your Data Sets" on page 111.

USING YTOC ACCESS nACROS

VTOC access macros enable you to:

• Determine whether a UCB points to an indexed VTOC (the
CVAFTST macro)

• Directly access DSCBs and VTOe index records (the CVAFDIR
macro)

• Read DSCBs in physical-sequential order, beginning with the
DSCB you specify (the CVAFSEQ macro)

• Read DSCBs in data-set-name order using the VTOC index (the
CVAFSEQ macro)

• Obtain free space information from each of the three index
maps (the CVAFDSM macro)

If your program is unauthorized, you must open the VTOC to
supply a DEB address, created by SAM or EXCP, to the CVAFDIR,
CVAFDSM, or CVAFSEQ macros; the status of the VTOC will then be
determined by CVAF and indicated in the CVPl by the CV1IVT bit.

In the sections that follow, VTOC access macros are described in
general terms. Their syntax is explained in "Appendix A. VTOC
Access Macros" on page 184.

OVERVIEW OF THE CVAFTST MACRO

The CVAFTST macro determines whether the system supports an
indexed VTOC, and, if it does, whether the VTOC on the unit
whose UCB is supplied is indexed or nonindexed.

You will get a return code of 12 if CVAFTST cannot determine
whether an indexed or nonindexed VTOC is on the unit's volume.
You should not receive a return code of 12 from CVAFTST if you
have opened a data set (including the VTOC) on the volume.

You need no authorization to issue the CVAFTST macro.

The syntax of CVAFTST is explained in "Appendix A. VTOC Access
Macros" on page 184. Return codes are explained in "Appendix C.
Return Codes from VTOC Access Macros" on page 221.

OVERVIEW OF THE CVAFDIR MACRO

For an indexed or nonindexed VTOC, the CVAFDIR macro may be used
to:

• Read or write a DSCB by specifying the name of the data set
it represents

• Read or write a DSCB by specifying its address

In addition, for an indexed VTOC, the macro may be used to:

• Read or write VTOC index records

• Read and retain in virtual storage the first high-level
VIER, and VIERs used during an index search.

•
•

Read and retain in virtual storage the space map VIRs

Free VIRs retained in virtual storage

Chapter 2. Managing the Volume Table of Contents (VTOC) 55

The syntax of CVAFDIR 15 explained in "Appendix A. VTOC Access
Macros" on page 184. A description of how to use it is under
"How to Use the CVAFDIR Macro" on page 59.

OVERVIEW OF THE CVAFSEQ MACRO

The CVAFSEQ macro may be used to:

• Read an indexed VTOC sequentially, in data-set-name (DSN)
order

• Read an indexed VTOC or a nonindexed VTOC in
physical-sequential order

A description of how to use it is under "How to Use the CVAFSEQ
Macro" on page 62.

The syntax of CVAFSEQ is explained in "Appendix A. VTOC Access
Macros" on page 184.

OVERVIEW OF THE CVAFDSH "ACRO

BUFFER LISTS

Buffer List Header

The CYAFDSM macro may be used for an indexed VTOC to:

• Obtain one or more extents that describe unallocated space
on the volume

• Obtain a count of free DSCBs on the VTOC

• Obtain a count of free VTOC index records in the VTOC index.

The syntax of CVAFDSM is explained in "Appendix A. VTOC Access
Macros" on page 184. A description of how to use it is under
"How to Use the CVAFDSM Macro" on page 63.

A buffer list consists of one or more chained control blocks,
each with a header and buffer list entries. The header
indicates whether the buffer list is for DSCBs or VTOC index
records. The entries point to and describe the buffers.

Buffer lists can be created in two ways:

• Directly, when you fill in the arguments and buffer
addresses of DSCBs or VIRs to be read or written

• Indirectly, when you code the IXRCDS=KEEP and/or MAPRCDS=YES
keywords

The header of the buffer list indicates whether the buffer list
describes buffers for DSCBs or VTOC index records. The DSCB bit
must be set to one and the VIR bit must be set to zero in order
for CVAF to process a request to read or write a DSCB. The
protect key and subpool fields in the buffer list header are
used by CVAF only if ACCESS=RlSE is coded.

The buffer list header contains a count of the number of entries
in the buffer list.

The forward chain address is used to chain buffer lists
together. DSCB buffer lists must not be chained to VIR buffer
lists and VIR buffer lists must not be chained to DSCB buffer
lists.

The format of the buffer list header is shown in Figure 17 on
page 57.

56 MVS/370 System Programming library: Data Management

()

o

C

Buffer List Entry

o

0··,":
, .,

Name Offset Bytes Description

BFLHDR 0(00) 8 Buffer list header
BFLHNOE 0(00) 1 Number of entries
BFLHFL 1(01) 1 Flag byte and key
BFLHKEY xxxx Protect key of buffer

list and buffers
BFLHVIR 1 ..• Buffer list entries

describe VIRs
BFLHDSCB .1 .. Buffer list entries

describe DSCBs
BFLHRSV6 .. x. Reserved
BFLHRSV7 ... x Reserved
BFLHRSV 2(02) 1 Reserved
BFLHSP 3(03) 1 Identifies the sub-

pool of buffer list
and buffers

BFLHFCHN 4(04) 4 Forward chain address
of next buffer list

Figure 17. Format of a Buffer list Header

A buffer list contains one or more entries. Each entry provides
the buffer address, the length of the DSCB or VIR, the argument,
and an indication whether the argument is an RBA, a TTR, or a
CCHHR.

The fields and bit uses are listed below.

• For a VIR buffer, the TTR and CCHHR bits must be 0 and the
RBA bit must be 1.

• For a DSCB buffer, the RBA bit must be 0, and only one of
the TTR or CCHHR bits may be set to 1.

• The BFlEAUPD bit is an output indicator from CVAF that the
BFLEARG field of a VIR buffer list was updated.

• The BFLEMOD bit indicates that a VIR buffer was modified and
must be written; if no BFlEMOD bits are on in any of the
entries for a CVAFDIR ACCESS=WRITE, all buffers are written.

• The BFLESKIP bit is used to cause an entry to be ignored.

• The BFLEIOER bit is an output indicator from CVAF to
indicate an I/O error occurred during reading or writing of
the DSCB or VIR.

• The BFLElTH field is the length of the buffer; for a DSCB
buffer, the length must be 96 or 140; for a VIR buffer, the
length must be the length of the buffer divided by 256.

• The BFlEARG field is the argument of the DSCB or VIR; the
three possible formats of the 5-byte field are:

CCHHR=5 byte CCHHR

TTR=OTTRO

RBA=One byte of 0 followed by a 4-byte RBA

The format of the buffer list entry is shown in Figure 18 on
page 58.

Chapter 2. Managing the Volume Table of Contents (VTOC) 57

Name Offset Bytes Description

BFLE 0(00) 12 Buffer list entry
BFLEFL 0(00) 1 Flag byte
BFLERBA 1 ••. Argument is RBA
BFLECHR .1 •. Argument is CCHHR
BFLETTR .. 1. Argument is TTR
BFLEAUPD .•• 1 CVAF updated argument

field
BFLEMOD 1 •.• Data in buffer has

been modified
BFLESKIP .1 •• Skip this entry
BFLEIOER .• 1. I/O error
BFLERSV7 ••• x Reserved
BFLERSV 1(01) 1 Reserved
BFLEL TH 2(02) 1 Length of VIR buffer

divided by 256 or
length of DSCB buffer

BFLEARG 3(03) 5 Argument of VIR
or DSCB

BFLEATTR 4(04) 3 TTR of DSCB
BFLEARBA 4(04) 4 RBA of VIR
BFLEBUF 8(08) 4 Buffer address

Figure 18. Format of a Buffer List Entry

THE CVAF PARAMETER LIST (CVPL)

IDENTIFYING THE VTOC

A CVPL is generated by using the CVAFDIR, CVAFDSM, or CVAFSEQ
macro with MF=L or MF=I specified or with MF not specified (MF=I
is the default).

The CVPL passes information to CVAF. CVAF, in turn, returns
information in the CVPL. The CVIIVT bit indicates whether an
indexed or nonindexed VTOC is being accessed. The CVSTAT field
contains feedback when an error occurs. The address of the map
records buffer list is returned in the CVMRCDS field. The
address of the VIER buffer list is returned in the CVIRCDS
field. The CVAF I/O area address is returned in the CVIOAR
field.

The CVPL generated by the MF=L or MF=I form of the CVAFDIR,
CVAFDSM, or CVAFSEQ macro may be used (through the MF=E keyword)
to execute a different macro from the one that generated the
CVPL.

The format of the CVPL is shown in Figure 19 on page 59.

The VTOC must be identified to CVAF by supplying either the
address of a UCB (with the UCB keyword) or the address of a DEB
opened to the VTCC (with the DEB keyword).

An unauthorized caller must supply the address of a SAM or EXCP
DEB open to the VTOC. The DEB can be obtained by opening a DCB
using the RDJFCB and OPEN TYPE=J macros. The DCBs DDNAME is
that of a DO statement allocated to the unit whose VTOC is to be
accessed. After issuing the RDJFCB macro, the JFCBDSNM field is
overlaid with the data set name of the format-4 DSCB: 44X'04'.
The DCB is opened for INPUT using OPEN TYPE=J. The DEB address
is in DCB field, DCBDEBA.The OPEN macro is described under
"OPEN--Initialize Data Control Block for Processing the JFCB" on
page 147 and the RDJFCB macro is described under "RDJFCB--Read a
Job File Control Block" on page 148.

58 MVS/370 System Programming Library: Data Management

10 I

o

Name

CVPL
CVLBL
CVLTH
CVFCTH
CVDIRD
CVDIWR
CVDIRLS
CVSEQGT
CVSEQGTE
CVDMMAP
CVSTAT
CVFL1
CV1IVT
CV1IOAR
CV1PGM
CV1MRCDS
CV1IRCDS
CV1MAPIX
CV1MAPVT
CV1MAPVL
CVFL2
CV2HIVIE
CV2VRF
CV2CHT
CV2RCVR
CV2SRCH
CV2DSNLY
CV2VER
CV2RSV7
CVRSVB
CVUCB
CVDSN
CVBUFL
CVIRCDS

CVMRCDS

CVIOAR
CVDEB
CYARG
CYSPACE

CVEXTS
CYBUFL2

CVVRFDA
CYCTAR

Offset

00(00)
04(04)
06(06)

07(07)
08(08)

09(09)

10(OA)
12(OC)
16(10)
20(14)
24(18)

28(1C)

32(20)
36(24)
40(28)
44(2C)

48(30)
52(34)

56(38)
60(3C)

Bytes

4
2
1

1
1
1 .•.
.1 ..
· .1.
• .• 1

1
1 .••
.1 ..
· .1.
· .. 1

2
4
4
It
4

It

4
It
4
4

4
It

4
4

1 ...
.1 ..
· .1.
• •. 1

1 •••
.1 ..
· .1.
· .• x

Description

EBCDIC "CVPL"
Length of parameter list
Function Byte
X'01'-CYAFDIR ACCESS=READ
X'02'-CYAFDIR ACCESS=WRITE
X'03'-CVAFDIR ACCESS=RLSE
X'04'-CVAFSEQ ACCESS=GT
X'05'-CVAFDIR ACCESS=GTEQ
X'OA'-CYAFDSM ACCESS=MAPDATA
Status Information
First Flag Byte
Indexed VTOC Accessed
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
Second Flag Byte
HIVIER=YES
VRF Information Exists
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
Reserved
Reserved
UCB address
Data set name address
Buffer list address
Index VIRs buffer list
address
Map VIRs buffer list
address
I/O area address
DEB address
Argument address
SPACE parameter list
address
Extent table address
New VRF VIXM buffer list
address
VRF data address
Count area address

Figure 19. Format of the CVAF Parameter List

If a CVAF macro call has specified IOAREA=KEEP, then a
subsequent CVAf call using a different CVPL may omit the UCB and
DEB keywords, and supply the IDAREA address from the other CYPL.
You can use the IOAREA keyword to do this.

The above does not apply to the CVAFTST macro. Only a UCB may
be supplied to identify the VTDC, and no authorization is
Tequired.

HON TO USE THE CYAFDIR MACRO

CVAFDIR may be used to read or write a DSCB. For indexed VTOCs,
CVAFDIR may be used to read or write VTOC index records.

Chapter 2. Managing the Volume Table of Contents (VTOC) 59

After a CVAFDIR call, the CVAF parameter list bit,CVIIVT, may
be tested to determine if the VTOC is irdexed or nonindexed.

specifying a Data set Name to Read or write a DSCB

To read or write a DSCB by specifying only a data set name,
ACCESS=READ or ACCESS=WRITE must be coded.

The address of the data set name is supplied in the DSN keyword;
the buffer list address is supplied in the BUFLIST keyword.

The buffer list must have at least one buffer list entry with
the skip bit off and a pointer to a 96- or 140-byte buffer.
Buffer lists may be chained together, but only the first
eligible entry will be used.

For an indexed VTOC, the index will be searched for the data set
name and, if it is found, the DSCB argument obtained will be put
in the buffer list entry and used to read or write the DSCB. If
the data set name is not found in the index, a key search of the
VTOe will be performed.

For a nonindexed VTOC, a channel program will be used to do a
key search of the VTOC to locate the data set name and read or
write the DSCBs. If the data set name is found, the DSCB
argument will be put in the buffer list entry.

The DSCB argument returned in the buffer list entry will be in
the format determined by the buffer list entry bits BFLECHR or
BFLETTR.

If the data set name is not found in the VTOC, register 15 will
contain a return code of 4 and CVSTAT will contain an error code
of 1.

Specifying the DSCB Location

To read or write a DSCB by specifying the DSCB's location,
either ACCESS=READ or ACCESS=WRITE must be coded. The DSN
keyword must be supplied but will not be used for a 140-byte
DSCB. A buffer list address must be supplied in the BUFLIST
keyword. The buffer list must have at least one buffer list
entry with the skip bit off and pointing to a 96- or 140-byte
buffer. Buffer lists may be chained together, but only the
first eligible entry will be used. This procedure is the same
for both indexed and nonindexed VTOCs.

If the buffer is for a 96-byte read or write, a channel program
will be used to verify that the key in the DSCB is the same as
the 44~byte dat~ set name p~ovided before reading or writing the
DSCB. If the buffer is for a 140-byte read or write, a channel
program will be used to read or write the DSCB at the location
provided in the buffer list entry. The data set name will not
be used, and the DSCB key will not be read.

If VERIFY=YES is coded and the write is for a 140-byte DSCB, the
channel program used for the write will verify that the DSCB is
a format-O DSCB prior to the write.

Reading or writing VTOC Index Records

VIRs may be read or written explicitly using the BUFLIST keyword
or may be read implicitly using the IXRCDS and MAPRCDS keywords.
A buffer list address may be supplied in the BUFLIST keyword to
read or write one or more VIRs. The buffer list header must
have the VIR bit set to one and the DSCB bit set to zero. Each

c'

entry in the buffer list (and subsequent buffer lists if more C,,\,,"I
than one is chained) is inspected. If the skip bit is set to
zero, the RBA bit is set to one (and the CCHHR and TTR bits are
set to zero), and the buffer address is nonzero, the entry will
be processed. The RBA in the argument field of the buffer list

60 MVS/370 System Programming library: Data Management

o

o

o

entry is used to read or write a VIR using the buffer address.
Read and write requests will be in the order of entries in the
buffer list(s).

For a write request, the modification bit in the buffer list
entries is inspected. If the bit is not set in any entry, all
are written. The modification bit is set to zero for entries
whose VIR is .written.

Map records and the first high-level VTOC index entry record may
be read by supplying the keywords MAPRCDS=YES and/or
IXRCDS=KEEP, and not supplying an address in the CVAF parameter
list CVMRCDS/CVIRCDS fields.

Reading Map Records and VIERS

To read and retain in virtual storage the VTOC index map records
and first high-level VIER, either ACCESS=READ or ACCESS=WRITE
must be coded. Neither the DSN field nor the BUFlIST field is
required.

MAPRCDS=YES must be coded to read and retain map records. The
CVAF parameter list field CVMRCDS must be zero. CVAF will
obtain a buffer list with the number of entries and buffers
required to read all the map VIRs. The buffer list address will
be put in the CVMRCDS field by CVAF.

IXRCDS=KEEP is coded in order to read and retain the first
high-level VIER and (if an index search is required) all VIERs
read. If the CVAF parameter list field CVIRCDS is zero, CVAF
will obtain a buffer list with entries and buffers and read the
first high-level VIER. The number of entries and number of
buffers are determined by CVAF. If CVIRCDS is not zero, only
VIERs required for an index search will be read.

The integrity of the maps and VIER read can only be ensured if
you are enqueued on the VTOC and, in the case of shared DASD,
reserved to the unit.

Map and VIER buffers obtained by CVAF, and retained, must be
released by a subsequent CVAF call.

Releasing Buffers and Buffer Lists Obtained by CVAF

There are three ways to release buffers and buffer lists
obtained by CVAF.

• Code MAPRCDS=NO or MAPRCDS=(NO,addr) for any specification
of ACCESS, to free the MAP records buffer list.

• Code IXRCDS=NOKEEP or IXRCDS=(HOKEEP,addr) for any
specification of ACCESS, to free the index records buffer
list.

• Code ACCESS=RlSE and supply a buffer list address through
the BUFLIST keyword for a subsequent CVAF call.

CVAF will free all eligible buffers, and buffer lists if they
become empty. Eligible buffers are those pointed to by buffer
list entries with the skip bit off. A buffer list will be freed
if no buffer list entry has the skip bit on. If buffer lists
are chained together, all buffer lists will be checked and freed
if appropriate.

You must ensure that you do not request CVAF to release the same
buffer list twice by supplying its address in more than one
place.

Chapter 2. Managing the Volume Table of Contents (VTOC) 61

HOW TO USE THE CVAFSEQ MACRO

Each CVAF call will return one of the following:

• One format-lor format-4 DSCB in indexed (data-set-name)
order

• One or more DSCBs in physical-sequential order (but only one
DSCB can be requested by an unauthorized caller)

• The next data set name in the index

The DSCBs are read into buffers supplied through the BUFLIST
keyword.

The argument of each DSCB read is also supplied in the buffer
list. DSCBs of 96 bytes must be requested in the buffer list
for indexed access; 140 bytes is required for
physical-sequential access.

If indexed order is chosen, the VTOC index is used to return
each format-1 or format-4 DSCB whose 'name is in the index. An
option (DSNOHlY=YFS) allows o"ly the data set nemes in thp. VTOC
index, and not the DSCBs, to be obtained. In this case, the
CCHHR of the DSCB is returned in the argument area supplied
through the ARG keyword. The DSN area supplied is updated at
each CVAFSEQ call to contain the data set name of each DSCB
read.

Initiatih9 Indexed Access (DSN Order)

To initiate indexed access (DSN order), either supply in the
area coded through the DSN keyword 44 bytes of bin~ry zeros (to
indicate the first data set name in the index) or supply the
dat~ set name you wish to serve as the starting pl~ce for the
index search.

The name returned in the DSN area will be the one equal to or
greater than the DSN supplied, depending on the specification of
the ACCESS keyword. The DSN field is updated by CVAF.

The ACCESS keyword determines whether the search is for a DSH
greater than or equal to that supplied.

If DSNONLY=NOis coded, the DSCB and argument are returned to
you using the buffer list provided through the BUFLIST keyword.
The first entry in the buffer list with a skip bit ~f zero and a
nonzero buffer address is used. The argument value is supplied
if either the TTR or CCHHR bit is set in the buffer list entry.
The default is CCHHR. The DSCB size in the buffer list entry
must be 96 bytes for indexed access.

If DSNONLY=YES is coded, the CCHHR argument is supplied in the
ARG area.

Note that the data set name of the format-4 DSCB is in the index
and that its name (44 bytes of X'04') may be returned to you.
The format-4 DSCB's name is likelY to be the first data set name
in the VTaC index.

Initiating Physical-Sequential Access

To initiate physical-sequential access, the DSN keyword must be
omitted or DSN=O must be coded. The argument field in the first
buffer list entry must be initialized to zero or to the argument
of the DSCB to begin the read. If the argument is zero, the
argument used will be the start of the VTOC.

The DSCB size must be set to 140 in buffer list entries.

62 MVS/370 System Programming Library: Data Management

o

o

o

o

c

o

The specification of ACCESS will determine whether the OSCB
who,e argument is supplied or the OSCB following it is to be
read.

For example, to read the first OSCB (the format-4 OSeB) in the
VTOC, the BFLEARG in the first buffer list entry may be set to
zero, and ACCESS=GTEQ coded in the CVAFSEQ macro. If ACCESS=GT
is subsequently coded, the second OSCB (the first format-5 OSCB)

. is read.

If you are authorized, as many OSCBs as there are entries in the
buffer list will be read with a single CVAF call. Only one DSCB
will be read if you aren't authorized.

Only one buffer list is used; a second buffer list chained to
the first will not be inspected. ·AII entries in the buffer list
will be used for authorized callers. The skip bit will not be
inspected. Each entry must have a buffer address, the length
field set to 140, and the TTR or CCHHR bit set (if neither bit
is set, the CCHHR bit will be set on). Only the first entry
will be used for unauthorized callers. The argument field of
each buffer list entry will be updated by CVAF with the argument
of the OSCB. The argument value is returned in either TTR or
CCHHR format, depending on whether the TTR or CCHHR bit is set
in the buffer list entry. The default is CCHHR.

Only the argument in the first entry is used to begin the
search. Arguments in subsequent entries are not inspected. If a
nonzero argument value is supplied in the first entry, there
must be a DSCB with that argument.

End-of-data is indicated with a return code of 4 in register 15
and CVSTAT set to X'20'. Each buffer list entry following the
last OSCB read has its argument field set to zero (this may be
the first entry if no OSCBs are read).

Note that all DSCBs, including format-O DSCBs, are read. You
cannot be certain that you have read all format-l through -6
DSCBs until the entire VTOC has been read. For a nonindexed
VTOC, the CCHHR of the last format-l OSCB is contained in the
format-4 DSCB field DS4HPCHR; format-2 through -6 DSCBs may
reside beyond that location. For an indexed VTOC, the VMDS
contains information about which DSCBs are format-O OSCBs.

HOW TO USE THE CVAFDSM MACRO

ACCESS=MAPDATA is used to obtain information contained in the
space maps.

To count the number of unallocated VIRs in the VTOC index space
map (VIXM), COUNT=YES and MAP=INDEX are coded. The number of
unallocated VIRs is returned in the 4-byte area supplied through
the CTAREA keyword.

To count the number of format-O DSCBs, COUNT=YES and MAP=VTOC
are coded. The number of format-O DSCBs in the VTOC map of
DSCBs VMOS is returned in the 4-byte area supplied through the
CTAREA keyword.

To obtain one or more free space extents from the VTOC pack
space map ·(VPSM), COUNT=NO and MAP=VOLUME are coded. The
extents are returned in the area supplied through the EXTENTS
keyword. Each extent is returned in a 5-byte XXYYZ format, the
same as for a format-5 OSCB extent, where XX is the relative
track address (RTA) of the first track of the extent, YY is the
number of whole cylinders in the extent, and Z is the number of
additional tracks in the extent. The RTA supplied to CVAF in
the first (or only) extent will serve as a starting place for
the VPSM search; the extent returned will be the next free
extent with a higher starting RTA than the one supplied.

Chapter 2. Managing the Volume Table of Contents (VTOC) 63

VTOC SERIALIZATION

REGISTER USAGE

If all the unallocated extents in the VPSM are supplied before
filling in all the extents supplied, the remaining extents are
set to zero. Regi ster 15 is set to 4 on return, wi th thl2 CVSTAT rC' '." .. D
field in the CVPL set to X'20' to indicate the end of data. ~,

It is your responsibility to serialize access to the VTOC and
the VTOC index when you use VTOC access macros. The EHQ or
RESERVE macro instruction with the SYSTEMS parameter is used for
this serialization. The qname (majo~ name) is SYSVTOC; the
rname (minor name) is the 6-byte volume serial number of the
volume. Only authorized programs may ENQ RESERVE using the
SYSVTOC qname.

The SYSVTOC qname does not serialize access to the format-l DSCB
for a data set. You must allocate the data set with disposition
OLD, MOD, or NEW (not SHR). This causes the proper ENQ, which
ensures no other job will update that data set's format-l DSCB.

Updates to the VTOC index performed without proper serialization
will compromise the integrity of the VTOC or VTOC index.

Register 1 is used to contain the address of the CVAF parameter
list (CVPL). Register 15 is used to contain the return code when
processing has completed for a function.

YTOC ERROR DIAGNOSIS AND RECOVERY

ACTIONS TAKEN WHEN AN ERROR OCCURS

These actions are taken if an error occurs:

• If an index structure error is detected, DADSM or CVAF will
cause the VTOC index to be disabled. The indexed VTOC bit
will be zeroed in the format-4 DSCB. A software error
record will be written to SYSl.LOGREC. A system dump is
taken. The VTOC will be converted to a nonindexed format at
the next DADSM allocate or extend call.

• If a program check, machine check, or other error occurs
while using a VTOC access macro, a SYSl.LOGREC message is
written and a system dump is taken.

• An error code is put in the CVSTAT field of the CVPL. The
values and explanations of these error codes are listed in
"Appendix D. VTOC Error Message and Associated Codes" on
page 223.

RECOVERING FROM SYSTEM OR USER ERRORS

Neither the VTOC nor the VTOC index need be recovered from a
user error caused by an unauthorized user, since an unauthorized
user cannot modify a VTOC.

A system error will affect a VTOC and VTOC index, probably by
interrupting DADSM while it is updating, thus leaving the VTOC
and/or the VTOC index in a partially updated state. Both the
VTOC and the VTOC index are designed to cause DADSM to recover
from such an interruption.

For a nonindexed VTOC (or a VTOC with an index that has been
di sabled), a subsequent call to DADSM ALLOCATE or EXTEND wi 11 ('~
cause VTOC convert routines to reestablish the free space ,
(format-5 DSCBs).

64 MVS/370 System Programming library: Data Management

o

c

o

GTF TRACE

For an indexed VTOC, a subsequent call to any DADSM function
will cause the recovery of the previous interrupt (either by
backing out or completing the interrupted function).

A trace facility exists to trace all CVAF calls for VTOC index
output I/O, all VTOC output I/O, and all VTOC index and space
map modifications. See C~mmon VTOC Access Facilitv Diagnosis
Reference for information on this facility.

LISTING A VTae AND VTaC INDEX

A VTOC and VTOC index can be listed using the IEHlIST utility
program. Dump, formatted, or abridged listings can be obtained
by using the lISTVTOC command of IEHlIST.

Chapter 2. Managing the Volume Table of Contents (VTOC) 65

CHAPTER 3. EXECUTING YOUR OWN CHANNEL PROGRAMS (EXCPJ

The execute-channel~progr~m (EXCP) macro instruction provides
you with complete control of the device characteristics and the
organizing of data. This chapter contains a general description
of the function and application of the EXCP macro instruction,
accompanied by descriptions of specific control blocks and macro
instructions used with EXCP. Factors that affect the operation
of EXCP, such as device variations and program modification, are
also discussed.

Before reading this chapter, you should be familiar with system
functions and with the structure of control blocks, as well as
with the operational characteristics of the I/O devices required
by your channel programs. Operational characteristics of
specific I/O devices are contained in IBM publications for each
device.

You also need to understand the information in these
publications:

• Data Management Services contains the standard procedures
for I/O processing under the operating system.

• OS/VS-DOS/VSE-VM/370 Assembler Language contains the
information necessary to code programs in the assembler
language.

• Data Management Macro Instructions describes the system
macro instructions that can be used in programs coded in the
assembler language.

• Debugging Handbook, Volumes 2 and 3, contains format and
field descriptions of the system control blocks referred to
in this chapter.

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the EXCP
processor. (I/O process is the name we will use for the EXCP
processor and the I/O supervisor. For our purposes, it's
unnecessary to understand how input/output processing is divided
between the two.) EXCP also provides the I/O supervisor with
control information regarding a channel program to be executed.
When an IBM access method is being used, an access method
routine is responsible for issuing EXCP. If you are not using
an IBM access method, you must issue EXCP in your program. (The
EXCP macro instruction cannot be used to process SYSIN or SYSOUT
data sets.)

You issue EXCP primarily for I/O programming situations to which
the standard access methods do not apply. If you are writing
your own access method, you must include EXCP for I/O
operations. EXCP must be used for processing nonstandard
labels, including reading and writing labels and positioning
magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of
channel command words) and several control blocks in your
program area. The I/O process then schedules I/O requests for
the device you have specified, executes the specified I/O
commands, handles I/O interruptions, directs error recovery
procedures, and posts the results of the I/O requests.

66 MVS/370 System Programming Library: Data Management

o

(<f~);,

\,\...;1

o

o

o

o

EXECUTING CHANNEL pROGRAMS IN SYSTEM AND PROBLEM PROGRAMS

SYSTEM USE OF EXCP

This section briefly explains the procedures performed by the
system and the programmer when EXCP is issued by the routines of
IBM access methods. The additional procedures that you must
perform when issuing EXCP yourself are then described by direct
comparison.

When using an IBM access method to perform I/O operations, the
programmer is relieved of coding channel programs and
constructing the control blocks necessary for the execution of
channel programs. To permit I/O operations to be handled by an
access method, the programmer need only issue the following
macro instructions:

• A DCB macro instruction, which produces a data control block
(DCB) ,for the data set to be retrieved or stored

• An OPEN macro instruction that initializes the data control
block and produces a data extent block (DEB) for the data
set

• A macro instruction (for example, GET or WRITE) that
requests I/O operations

Access method routines will then:

1. Create a channel program that contains channel commands for
the I/O operations on the appropriate device

2. Construct an input/output block (lOB) that contains
information about the channel program

3. Construct an event control block (ECB) that is later posted
with a completion code each time the channel program
terminates

4. Issue an EXCP macro instruction to pass the address of the
lOB to the routines that initiate and supervise the I/O
operations

The I/O process consists of:

5. Constructing a request queue element (RQE) for scheduling
the request

6. If the requestor is in a V=V address space, fixing the
buffers so that they cannot be paged out and translating the
requestor's virtual channel program into a real channel
program

7. Issuing a start I/O (SIO) instruction to cause the channel
to execute the real channel program

8. Processing I/O interruptions and scheduling error recovery
procedures when necessary

9. Posting a completion code in the event control block after
the channel program has been executed

Note: If the requestor is an authorized program in a V=R
address space, a real channel program is provided, so item 6 is
not performed.

The programmer is not concerned with these procedures and does
not know the status of I/O operations until they are completed.
Device-dependent operations are limited to those provided by the
macro instructions of the particular access method selected.

Chapter 3. Executing Your Own Channel Programs (EXCP) 67

USE OF EXCP IN PROBLEM PROGRAMS

To issue the EXCP macro instruction directly, you must follow
the procedures that the access methods would perform, as
summarized in items 1 through 40f the preceding discussion.
You must, in addition to constructing and opening the data
control block with the DCB and OPEN macro instructions,
construct a channel program, an input/output block, and an event
control block before you can issue EXCP. The I/O process
generally handles items 5 through 9.

After issuing EXCP, you should issue a WAIT macro instruction,
specifying the address of the event control block, to determine
whether the channel program has terminated. If volume switching
is necessary, you must issue an EOV macro instruction. When all
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

EXCP OPERATIONS IN A V=R ADDRESS SPACE

EXCP REQUIREMENTS

User-constructed channel programs for I/O operations of an
authorized program in a V=R address space are not translated.
Because the address space is V=R, any CCWs created by the user
have correct real data addresses. (Translation would only
re-create the user's channel program, so the CCWs are used
directly.)

Modification of an active channel program by data read in or by
processor instructions is legitimate in a V=R address space, but
not in a V=V address space.

0.·1'
-- "

This section describes the channel program that you must provide 0
in order to issue EXCP. The control blocks that you must ei ther (,." "
construct directly, or cause to be constructed by use of" macro
instructions, are also described.

CHANNEL PROGRAM

The channel program supplied by you and executed through EXCP is
composed of CCWs on doubleword boundaries. Each channel command
word specifies a commarid to be executed and, for commands
initiating data transfer, the area to or from which the data is
to be transferred.

Channel command word operation codes used with specific I/O
devices can be found in IBM publications for those devices. All
channel command word operation codes described in these
publications can be used. In addition, both data chaining and
command chaining may be used.

To specify either data chaining or command chaining, you must
set appropriate bits in the channel command word, and indicate
the type of chaining in the input/output block. Both data and
command chaining should not be specified in the same channel
command word; if they are, data chaining takes precedence.

EXCP does not support channel programs that modify themselves,
regardless of the method of modification: data chaining, command
chaining, or a program to do the modification. The intended
modification in virtual storage has no effect on the running
real-channel program (see "Modification of a Channel Program
during Execution" on page 71).

68 MVS/370 System Programming Library: Data Management

o

o

o

o

CONTROL BLOCKS

When using EXCP, you must be familiar with the function and
structure of the lOB, the ECB, the DCB, the DEB, and the IDAW.
lOB and ECB fields are illustrated under "Control Block Fields"
on page 95. DCB fields are illustrated under "Macro
Specifications for Use with EXCP" on page 80. The handling of
IDAWs is described under "SIO Appendage" on page 100. Brief
descriptions of these control blocks follow.

Input/Output Block (lOB)

The input/output block is used for communication between the
problem program and the system. It provides the addresses of
other control blocks, and maintains information about the
channel program, such as the type of chaining and the progress
of I/O operations. You must define the input/output block and
specify its address as the only parameter of the EXCP macro
instruction.

Event Control Block (ECBl

The event control block provides you with a completion code that
describes whether the channel program was completed with or
without error. A WAIT macro instruction, which can be used to
synchronize I/O operations with the problem program, must
identify the event control block. You must define the event
control block and specify its address in the input/output block.

Data Control Block (DCBl

The data control block provides the system with information
about the characteristics and processing requirements of a data
set to be read or written by the channel program. A data
control block must be produced by a DCB macro instruction that
includes parameters for EXCP. If appendages are not being used,
a short DCB is constructed. Such a DCB does not support reduced
error recovery. You specify the address of the data control
block in t.he input/output block.

Data Extent Block (DEB)

The data extent block contains one or more extent entries for
the associated data set, as well as other control iriformation.
An extent defines all or part of the physical boundaries on an
I/O device occupied by, or reserved for, a particular data set.
Each extent entry contains the address of a unit control block
(UCB), which provides information about the type and location of
an I/O device. More than one extent entry can contain the same
UCB address. For all I/O devices supported by the operating
system, the data extent block is produced during execution of
the OPEN macro instruction for the data control block. The
system places the address of the data extent block into the data
control block.

CHANNEL PROGRAM EXECUTION

This section explains how the system uses your channel program
and control blocks after you issue EXCP.

INITIATION OF THE CHANNEL PROGRAM

By issuing EXCP, you request the execution of the channel
program specified in the input/output block. The I/O process
validates the request by checking certain fields of the control
blocks associated with this request. If the I/O process detects
invalid information in a control block, it initiates abnormal
termination procedures.

Chapter 3. Executing Your Own Channel Programs (EXCP) 69

The EXCP processor gets:

• The address of the data control block from the input/output
block

• The address of the data extent block from the data control
block

• The address of the unit control block from the data extent
block

It places the lOB, TCB, DEB, and UCB addresses and other
information about the channel program into an area called a
request queue element (RQE). (Unless you are providing
appendage routines (described under "Appendages" on page 72) you
should not be concerned with the contents of RQEs.)

If you have provided a start I/O (510) appendage, the EXCP
processor now passes control to it. The return address from the
510 appendage determines whether the EXCP processor must:

• Execute the I/O operation normally, or

• Skip the I/O operation.

For a description of the 510 appendage and its linkage to the
EXCP processor, see "Appendages" on page 72.

If you are issuing EXCP from a V=V address space, the channel
program you construct contains virtual addresses. Because
channel subsystems cannot use virtual addresses, the EXCP
processor must:

• Translate your virtual channel program into ona that uses
only real addresses.

• Fix in real storage the pages used as I/O areas for tha data
transfer operations specified in your channal program.

The EXCP processor builds the translated (real) channel program
in a portion of real storage.

For direct access devices, specify the seek address in the
input/output block. The I/O supervisor constructs a command
chain to issue the seek, set file mask specified in the data
extent block, and pass control to your real channel program.

If your channel program begins with a locate-record command, the
I/O process builds a define-extent command and passes control to
your real channel program. (You cannot issue the initial seek,
set file mask, or define extent. The file mask is set to
prohibit seek-cylinder commands, or, if space is allocated by
tracks, seek-head commands. If the data set is open. for INPUT,
write commands are also prohibited.)

For a magnetic tape device, the I/O supervisor constructs a
command chain to set the mode specified in tha data extent block
and passes control to your real channel program. (You cannot
set the mode yourself.)

If the I/O device is other than a direct access device or a
magnetic tape device, the I/O supervisor then places the address
of the starting CCW of the channel program into the channel
address word (CAW) and issues a start I/O (510) instruction.

70 MVS/370 System Programming Library: Data Management

0

o

c

c

o

MODIFICATION OF A CHANNEL PROGRAM DURING EXECUTIuN

Any problem program that modifies an active channel program with
CPU instructions or with data read in by an I/O operation must
be run in a V=R address space. It cannot run in a V=V address
space because of the channel program translation performed by
the I/O supervisor. (In a V=V address space, an attempt to
modify an active channel program affects only the virtual image
of the channel program, not the real channel program being
executed by the channel subsystem.)

A program of this type can be changed to run in a V=V address
space by issuing another EXCP macro for the modified portion of
the channel program.

COMPLETION OF EXECUTION

The system considers the channel program completed when it
receives an indication of a channel-end condition in the channel
status word. Unless a channel-end or abnormal-end appendage
directs otherwise, the request queue element for the channel
program is made available, and a completion code is placed into
the event control block. The completion code indicates whether
errors are associated with channel end. If device end occurs
simultaneously with channel end, errors associated with device
end (that is, unit exception or unit check) are also accounted
for.

If device end occurs after channel end, and an error is
associated with device end, the completion code in the event
control block does not indicate the error. However, the status
of the unit and channel is saved by the I/O supervisor for the
device, and the UCB is marked as intercepted. The input/output
block for the next request directed to the I/O device is also
marked as intercepted. The error is assumed to be permanent,
and the completion code in the event control block for the
intercepted request indicates interception. The DCBIFlGS field
of the data control block is also flagged to indicate a
permanent error. Hote that if a write-tape-mark or
erase-long-gap CCW is the last or only CCW in your channel
program, the I/O process will not attempt recovery procedures
for device end errors. In these circumstances, command chaining
a HOP CCW to your write-tape-mark or erase-long-gap CCW ensures
initiation of device-end error recovery procedures.

To be prepared for device-end errors, you should be familiar
with device characteristics that can cause such errors. After
one of your channel programs has terminated, you should not
release buffer space until you have determined that your next
request for the device has not been intercepted. You may
reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/O interruption allows the processor to respond to signals
from an I/O device which indicate either termination of a phase
of I/O operations or external action on the device. A complete
explanation of I/O interruptions is contained in IBM System/370
~iples of Operation. For descriptions of interruption by
specific devices, refer to IBM pUblications for each device.

If error conditions are associated with an interruption, the I/O
supervisor schedules the appropriate device-dependent error
routine. The channel subsystem is then restarted with another
request that is not related to the channel program in error.
(The following paragraphs discuss "related" channel programs.)
If the error recovery procedures fail to correct the error, the
system places' ones in the first two bit positions of the
DCBIFlGS field of the data control block. You are informed of
the error by an error code in the event control block.

Chapter 3. Executing Your Own Channel Programs (EXCP) 71

APPENDAGES

If a channel program depends on the successful completion of a
previous channel program--as when one channel program retrieves
data to be used in building another--the previous channel
program is called a "related" request. Such a request must be
identified to the EXCP processor. To find out how, see
"Input/Output Block Fields" on page 95.

If a permanent error occurs in the channel program of a related
request, the EXCP processor removes the request queue elements
for all dependent channel programs from their queue and makes
them available.

The related request queue CRRQ) reflects the order in which
request queue elements are removed from their queue.

For all requests dependent on the channel program in error, the
system places completion codes into the event control blocks.
The DCBIFLGS field of the data control block is also flagged.
Any requests for a data control block with error flags are
posted complete without execution. To reissue requests
dependent on the channel program in error, you must reset the
first two bits of the DCBIFLGS field of the data control block
to zeros. You then reissue EXCP for each channel program
desired.

With the 3800, a cancel key or a system-restart-required paper
jam causes both a lost data indicator to be set in DCBIFLGS and
a lost page count and channel page identifier to be stored in
the UCB extension. (See Debugging Handbook and IBM 3800
Printing Subsystem Programmer's GUide.)

!4'~
\-lJ

An appendage is a programmer-written routine that provides
additional control over I/O operations. By using appendages,
you can exami ne the status of I/O operati ons and determi ne the /(-"'1
actions to be taken for various conditions. An appendage may V
receive control when one of the following occurs:

• EXCP SVC

• Program controlled interrupt

• End of extent

• Channel end

• Abnormal end

Appendages get control in supervisor state, receiving the
following pointers from the EXCP processor:

• Register 1: Points to the request queue element for the
channel program.

• Register 2: Points to the input/output block (lOB).

• Register 3: Points to the data extent block (DEB).

• Register 4: Points to the data control block (DCB).

• Register 6: Points to the seek address if control is given
to an end-of-extent appendage.

• Register 7: Points to the unit control block (UCB).

• Register 13: Points to a 16-word area you can use to save
input registers or data.

o
72 MVS/370 System Programming library: Data Management

('~'
./

Entry

• Register 14: Points to the lO~atiun ~n th2 EXCP processor to
which control is to be returned after execution of an
appendage. When returning control to the EXCP processor,
you may use displacements from the return address in
register 14. Allowable displacements are summarized in
Figure 20 and described later for each appendage.

• Register 15: Points to the entry point of the appendage.

The processing done by appendages is subject to these
requirements and restrictibns:

• Register 9, if used, must be set to binary zeros before
control is returned to the system. All other registers,
except those indicated in the descriptions of each
appendage, must be saved and restored if they are used.
Figure 20 summarizes register conventions.

• No SVC instructions or instructions that change the status
of the system (for example, WTO, LPSW, or any privileged
instructions> can be issued.

• Loops that test for the completion of I/O operations must
not be used.

• storage used by the I/O supervisor or EXCP processor must
not be altered.

The types of appendages are described in the following sections,
with explanations of when they are created, how they return
control to the system, and which registers they may use without
saving and restoring their contents.

Appendage Point Returns Available Work Registers 1

EOE Reg 15 Reg 14 + 0 Return
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again

SIO Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13
Reg 14 + 4 Skip

PCI Reg 15 Reg 14 + 0 Normal Reg. 10, 11, 12, and 13

CHE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, ~2, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

ABE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

1 Certain register conventions for passing parameters from appendages to the EXCP
processor must be followed. These conventions are described in the individual
appendage descriptions.

Figure 20. Entry Points, Returns, and Available Work Registers for Appendages

START-I/O (510) APPENDAGE

Unless an error recovery procedure is in control, the EXCP
processor passes control to the SIO appendage just before the
EXCP processor translates your channel program.

Chapter 3. Executing Your Own Channel Programs (EXCP) 73

Optional return vectors give the I/O requestor the following
choices:

Reg. 14 + 0
Normal return. Normal channel program translation and
initiation of I/O.

Reg. 14 + 4
Skip the I/O operation. The channel program is not posted
complete, but the request queue element is made available.
You may post the channel program as follows:

1. Save necessary registers.

2. Put the address of the post routine (found at eVTOPTOI
in the communications vector table) in register 15.

3. Place the ECB address from the lOB in register 11.

4. Set the completion code in register 10. These are the
four bytes of an ECB.

S. Go to the post routine pointed to by the eVT, using
BALR 14,15.

PROGRAM-CONTROLLED INTERRUPTION (PCIl APPENDAGE

This appendage is entered at least once if the channel finds one
or more PCI bits on in a channel program, and may be entered as
many times as the channel finds PCI bits on. Before the
appendage is entered, the contents of the channel status word
are placed in the "channel status word" field of the
input/output block.

A PCI appendage will be reentered if an error recovery procedure
is retrying a channel program in which a PCI bit is on. The lOB r(~
error flag is set when the error recovery procedure is in 1'''1''''''
control (IOBFLAG1 = X'20'). (For special PCI conditions
encountered with command retry, see "Channel Programming Hotes"
on pa ge 7,9.)

To post the channel program from a PCI appendage, the procedure
described for the start-I/O appendage is used if the step is
running ADDRSPC=VIRT or an authorized program is running V=R.
If the step is running ADDRSPC=REAL and an authorized program
issued the EXCP request, or SVC 114(EXCPVR) was issued, the PCI
appendage uses real storage addresses and the following
procedure is used to post the channel program from the PCI
appendage.

1. Put the completion code in register 10 and place X'80' in
the high-order byte to indicate the key is in register 0
(step S).

2. Put X'80' in the high-order byte of register 11 and the
address of the ECB in the low-order bytes.

3. Put X'80' in the high-order byte of register 12 and the
address of a DR 14 instruction in the low-order bytes. This
BR 14 must be in storage addressable from any address space
(for example, CVTBRET). Note that registers 9 and 14 only
are restored when you use this option.

4. Put the address of the ASCB in register 13.

The next two paragraphs describe how to obtain the ASCB
address and are followed by sample instructions to
illustrate the procedure.

Get the SRB address associated with the I/O operation from 0, .. \
the RQE field, RQESRB (the RQE address was in register 1
when the appendage was given control). Get the lOSS address

74 MVS/370 System Programming Library: Data Management

CA, 'I

o

o

from SRBPARM. From that 10S8, get ina ident~f~=~ field:
IOSASID. Multiply IOSASID by 4.

Get the pointer to the ASVT (address space vector table>
found at CVTASVT. The address of the ASCB can be found in
the ASVT, using the field ASVTENTY-4 indexed by the value
calculated in the above paragraph.

USING
l
USING
lH
USING
lH
SLA
L
USING
L
USING
L

Note:

RQE,1
Y,RQESRB
SRBSECT,Y
Y,SRBPARM ,
IOSB,Y
Y,IOSASID
Y,2
X,16
CYT,X
X,CYTASVT
ASVT,X
13,ASVTENTY-4CY)

X and Yare work registers.

5. Put the requestor's key in register O.

6. Put the address of the post routine (found at CVTOPTOI in
the communications vector table) in register 15.

7. Go to the post routine using BALR 14,15. Upon return, only
registers 9 and 14 are valid. For more information on the
POST routine, see System Programming library: Supervisor
Services and Macro Instructions.

This procedure can be used even if the PCI appendage uses
virtual storage addresses, but performance may be slightly
slower.

To return control to the EXCP processor for normal interruption
processing, use the return address in register 14.

END-OF-EXTENT (EOE) APPENDAGE

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits
indicated in the data extent block.

If you use the return address in register 14 to return control
to the system, the abnormal-end appendage is entered. An
end-of-extent error code (X'42') is placed in the "ECB code"
field of the input/output block for subsequent posting in the
ECB.

You may use the following optional return addresses:

• Contents of register 14 plus 4: The channel program is
posted complete; its request element is returned to the
available queue.

• Contents of register 14 plus 8: The request is tried again.

You may use registers 10 through 13 in an end-of-extent
appendage without saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs,
the EXCP processor updates the seek address to the next higher
cylinder or track address, and re-executes the request. If the
new seek address is within the data set's extent, the request is
executed; if the new seek address is not within the data set's
extent, the end-of-extent appendage is entered. If you wish to
try the request in the next extent, you must move the new seek
address to the location pointed to by register 6.

Chapter 3. Executing Your Own Channel Programs (EXCP) 75

1f a file protect is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a
permanent error, and the abnormal end appendage is entered. 0)

CHANNEL-END (CHEl APPENDAGE

This appendage is entered when a channel end (CHE), unit
exception (UEX) with or without channel end, or channel end with
wrong length record (WLR) ~ccurs without any other abnormal-end
conditions.

If you use the return address in register 14 to return control
to the EXCP processor, the channel program is posted complete,
and its request element is made available. In the case of unit
exception or wrong length record, the error recovery procedure
is performed before the channel program is posted complete, and
the IOBEX flag (X'04') in IOBFLAGl is set on. The CSW status
may be obtained from the IOBCSW field.

If the appendage takes care of the wrong length record and/or
unit exception, it may turn off the IOBEX (X'04') flag in
IOBFLAGl and return n~~~~11y. The ~Y9~t N~ll ~hcn ~9 p~st2d
complete (completion code X'7F' under normal conditions, taken
from the high-order byte of the IOBECBCC field). If the
appendage returns normally without resetting the IOBEX flag to
zero, the request will be routed to the associated device error
recovery procedure (ERP), and then the abnormal-end appendage
will be entered with the completion code in IOBECBCC set to
X'41' if the ERP could not correct the error. (See Step 1 of
"Abnormal-End (ABE) Appendage~")

You may use the following optional return addresses:

• Contents of register 14 plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-I/O appendage. This is
especially useful if you wish to post an ECB other than the
ECB in the input/output block.

• Contents of register 14 plus 8: The channel program is not
posted complete, and its request element is placed back on
the request queue so that the I/O operation can be retried.
For correct re-execution of the channel program, you must
reinitialize the lOBFLAG1, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the "Error Counts" field to
zero. As an added precaution, the IOBSENSO, IO~SENS1, and
IOBCSW fields should be cleared.

• Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine. For information on the
exit effector, refer to System Programming Library:
Supervisor.) -

You may use registers 10 through 13 in a channel-end appendage
without saving and restoring their contents.

ABNORMAL-END (ABEl APPENDAGE

This appendage may be entered on abnormal conditions, such as:
unit check, unit exception, wrong length indication, program
check, protection check, channel data check, channel control
check, interface control check, chaining check, out-of-extent
error, and intercept condition (that is, device end error). It

o

may also be entered when an EXCP is issued for a request queue C
element that has already been purged. _)

76 MVS/370 System Programming Library: Data Management

c

o

o

1. When this appendage is entered because of a unit exception
and/or wrong length record indication, IOBECBCC is set to
X'41'. For further information on these conditions, see
"Channel-End (CHE) Appendage" on page 16.

2. When the appendage is entered because of an out-of-extent
error, the IOBECBCC is set to X'42'.

3. When this appendage is entered with IOBECBCC set to X'4B',
it is because of:

a. The tape error recovery procedure (ERP) encountering an
unexpected load point, or

b. The tape error recovery procedure (ERP) finding zeros in
the command address field of the CSW.

4. When the appendage is first entered because of an intercept
condition, the IOBECBCC is set to X'7E'. If it is then
determined that the error condition is permanent, the
appendage will be entered a second time with the IOBECBCC
set to X'44'. The intercept condition signals that an error
was detected at device end after channel end on the previous
request.

5. When the appendage is entered because of an EXCP being
issued to an already purged request queue element, this
request will enter the abnormal end appendage with the
IOBECBCC set to X'48'. This applies only to related
requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it
may be because of a unit check, program check, protection
check, channel data check, channel control check, interface
control check, or chaining check. If the IOBECBCC is X'7F',
it is the first detection of an error in the associated
channel program. If the IOBEX flag (bit 5 of the IOBFLAG1)
is on, the IOBECBCC field will contain a 41, 42, 48, 4B, or
4F in hexadecimal, indicating a permanent I/O error.

To determine if an error is permanent, you should check the
IOBECBCC field of the lOB. To determine the type of error,
check the ehannel status word field and the sense infDrmation in
the lOB. However, when the IOBECBCC is X'42', X'48', or X'4F',
these fields are not applicable. For X'44', the CSW is
applicable, but the sense is valid only if the unit check bit is
set.

If you use the return address in register 14 to return control
to the system, the channel program is posted complete, and its
request element is made available. You may use the following
optional return addresses:

• Contents of register 14 plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-I/O appendage.

• Contents of register 14 plus 8: The channel program is not
posted complete, and its request element is placed back on
the request queue so that the request can be retried. For
correct reexecution of the channel program, you must
reinitialize the IOBFLAG1, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the IOBERRCT field to zero.
As an added precaution, the IOBSENSO, IOBSENS1, and IOBCSW
fields should be cleared.

• Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

Chapter 3. Executing Your Own Channel Programs (EXCP) 77

You may use registers 10 through 13 in an abnormal-end appendage
without saving and restoring their contents.

MAKING YOUR APPENDAGES PART OF THE SYSTEM

Before your appendages can be executed, they must become members
of either the SYS1.LPALIB or SYS1.SVCLIB data set. There are
two ways to put appendages into SYS1.LPALIB or SYS1.SVCLIB: ~hey
can be included at system generation using the DATASET macroc,
instruction (a full explanation appears in System Generation
Reference), or they can be link-edited into SYS1.LPALIB or
SYSl.SVCLIB after the system has been generated. Each appendage
must have an 8-character member name, the first six characters
being IGG019, the last two being anything in the range from WA
to Z9. Note, however, if your program runs in a V=R address
space and uses a PCI appendage~ the PCI appendage and any
appendage that the PCI appendage refers to must be placed in
either SYSl.SVCLIB or the fixed link pack area (LPA). For
information on providing a list of programs to be fixed in
storage, see System Programming Library: Initialization and
Tuning.

THE AUTHORIZED APPENDAGE'LIST (IEAAPPOO)

If an "unauthorized" program opens a DCB to be used with an EXCP
macro instruction, the names of any appendages associated with
the DCB must be listed in the IEAAPPOO member of SYSl.PARMLIB.
(An "unauthorized" program is one that runs in a protection key
greater than 7 and has not been marked as authorized by the
Authorized Program Facility.) ,

If your appendages were put in SYSl.LPALIB or SYS1.SVCLIB at
system generation, their names are automatically put in

o

IEAAPPOO. If your appendages were added to SYSl.LPALIB or ~
SYSl.SVCLIB after system generation, you can add IEAAPPOO to C~::)
SYSl.PARMLIB and put the names of the appendages in it in one '-'
job step with the IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that
will add IEAAPPOO to SYSl.PARMLIB and put the names of one EOE
appendage, two SIO appendages, two CHE appendages, and one ABE
appendage in IEAAPPOO:

//
//
//SYSPRINT
//SYSUT2
//SYSIN
./
EOEAPP WA,
SIOAPP Xl,X2,
CHEAPP Z3,Z4,
ABEAPP Z2
/*

JOB
EXEC
DD
DD
DD
ADD

PGM=IEBUPDTE
SYSOUT=A
DSN=SYSl.PARMLIB,DISP=OLD

* NAME=IEAAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The type of appendage is identified by six characters that
begin in columnl. EOEAPP identifies an EOE appendage,
SIOAPP an SIO appendage, CHEAPP a CHE appendage, and ABEAPP
an ABE appendage. (The PCI appendage identifier, PCIAPP, is
not shown, because the example adds no PCI appendage name to
IEAAPPOO.)

• Only the last two characters in an appendage's name are
specified, beginning in column 8.

• Each statement that identifies one or more appendage names
ends in a comma, except the last statement.

18 MVS/370 System Programming Library: Data Management

o

c

c

o

You can also usa IEBUPDTE to add appendage names later or delete
appendage names. Here is an example of JCl statements and
IEBUPDTE input that adds the names of a PCI and an ABE appendage
to the IEAAPPOO appendage list that was created in the preceding
example, and deletes the name of an SIO appendage from that
list:

II
II
IISYSPRIHT
IISYSUT2
IISYSIH
.1
PCIAPP Y1,
EOEAPP WA,
SIOAPP X1,X2,
CHEAPP Z3,Z4,
ABEAPP Z2,Z4
1*

JOB
EXEC
DD
DD
DD
REPl

PGM=IEBUPDTE
SYSOUT=A
DSH=SYS1.PARMlIB,DISP=OlD

* HAME=IEAPPOO,lIST=All

Hote the following about the IEBUPDTE input:

• The command to IEBUPDTE in this case is REPl (replace).

• All the appendage names that ar~ to remain in IEAAPPOO are
repeated. '

• IGG019Z4 is both a CHE and an ABE appendage.

CHANNEL PROGRAMMING NOTES

Command retry is a function of the channel supporting the 2305,
3330/3333, 3340/3344, 335~, 3375, and 3380 direct access
devices. When the channel subsystem receives a retry request,
it repeats the execution of the CCW requiring no additional
input/output interrupts. For example, a control unit may
initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program may
cause any of the following conditions to be detected by the
initiating program:

• Modifying CCWs: A CCW used in a channel program must not be
modified before the CCW operation has been successfully
completed. Without the command retry function, a command
was fetched only once from storage by a channel. Therefore,
a program could determine through condition codes or program
controlled interruptions (PCI) that a CCW had been fetched
and accepted 'by the channel. This permitted the CCW to be
modified before reexecution. With the command retry
function, this cannot be done, because the channel will
fetch the CCW from storage again on a command retry
sequence. In the case of data chaining, the channel will
retry commands starting with the first CCW in the data
chain.

• Program Controlled Interrupts: A CCW containing a PCI flag
may cause multiple program controlled interrupts to occur.
This happens if the PCI-flagged CCW was retried during a
command retry procedure, and a PCI could be generated each
time the CCW is reexecuted.

• Residual Count: If a channel program is prematurely
terminated during the retry of a command, the residual count
in the channel status word (CSW) will not necessarily
indicate how much storage was used. For example, if the
control unit detects a "wrong length record" error
condition, an erroneous residual count is stored in the CSW
until the command retry is successful. When the retry is
successful, the residual in the CSW reflects the correct
length of the data transfer.

Chapter 3. Executing Your Own Channel Programs (EXCP) 79

• Command Address: When data chaining with command retry, the
CSW may not indicate how many CCWs have been executed at the
time of a PCI~ For example:

CCWI Channel Program

1 Read, data chain
2 Read, data chain
3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the control unit signals
command retry on Read 13 and the CPU accepts the PCI after
the channel resets the command address to Read .1 because of
command retry. The CSW stored for the PCI will contain the
command address of Read 11, when actuallY the channel has
progressed to Read 13.

• Testing Buffer Contents on Data Read: Any program that tests
a buffer to determine when a CCW has been executed and
continues to execute based on this data may get incorrect
results if an error is detected and the CCW is retried.

MACRO SPECIFICATIONS FOR USE WITH EXCP

If you are using the EXCP macro instruction, you must also use
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instruction.
The parameters of these macro instructions and the EXCP macro
instructions are explained here. A diagram of the data control
block is included with the description of the DCB macro
instruction.

DCB--DEFINE DATA CONTROL BLOCK FOR EXCP

o

The EXCP form of the DCB macro instruct i on produces a data ,1--~
control block that can be used with the EXCP macro instruction. \,~
You must issue a DCB macro instruction for each data set to be
processed by your channel programs. Notation conventions and
format illustrations of the DCB macro instruction are given in
Data Management Macro Instructions. DCB parameters that apply
to EXCP may be divided into four categories, depending on the
following portions of the data control block that are generated
when they are specified:

• Foundation block. This portion is required and is always 12
bytes in length. You must specify two of the parameters in
this category.

• EXCP interface. This portion is optional. If you specify
any parameter in this category, 20 bytes are generated.

• Foundation block extension and common interface. This
portion is optional and is always 20 bytes in length If this
portion is generated, the device-dependent portion is also
generated.

• Device dependent. This portion is optional and is generated
only if the foundation block extension and common interface
portion is generated. Its size ranges from 4 to 20 bytes,
depending on specifications in the DEVD parameter. However,
if you do not specify the DEVD parameter (and the foundation
extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data
control block is opened and closed (such as writing file marks
for output data sets on direct access volumes) require
information from optional data control block fields. You should O~\
make sure that the data control block is large enough to provide _
all information necessary for the procedures you want the system
to handle.

80 MVS/370 System Programming library: Data Management

c

0:", ''',,'

Figure 21 on page 82 shows the reiative position uf each po~t~cn
of an opened data control block. The fields corresponding to
each parameter of the DCB macro instruction are also designated,
with the exception of DDNAME, which is not included in a data
control block that has been opened. The fields identified in
parentheses represent system information that is not associated
with parameters of the DCB macro instruction.

Sources of information for data control block fields other than
the DCB macro instruction are data definition (DD) statements,
data set labels, and data control block modification routines.
You may use any of these sources to specify DCB parameters.
However, if a particular portion of the data control block is
not generated by the DCB macro instruction, the system does not
accept information intended for that portion from any
alternative source.

You may provide symbolic names for the fields in one or more
EXCP DCBs by coding a DCBD macro to generate a dummy control
section (DSECT). To map the common interface, foundation block
extension, and foundation block, you code DSORG=XE. To map the'
foundation block and EXCP interface, you code DSORG=XA. You may
code DSORG=(XA,XE) to map both. For further information, see
Data Management Macro Instructions.

Foundation Block Parameters

DDHAME=symbol
The name of the data definition (DD) statement that
describes the data set to be processed. This parameter
must be given.

HACRF=(E)
The EXCP macro instruction is to be used in processing the
data set. This operand must be coded.

REPOS=tYIMl
Magnetic tape volumes: This parameter indicates to the
dynamic device reconfiguration (DDR) routine whether the
user is keeping an accurate block count. If the user is
keeping an accurate block count, the DDR routine can
attempt to swap the volume. (You must maintain the block
count in the DCBBLKCT field.)

Y--The user is keeping an accurate block count and the DDR
routine can attempt to swap the volume.

N--The block count is unreliable and the DDR routine cannot
and will not attempt to swap the volume.

If the operand is omitted, N is assumed.

EXCP Interface Parameters

EOEA=symbol
2-byte identification of an EOE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

PCIA=symbol
2-byte identification of a PCI appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

SIOA=svmbol
2-byte identification of a SIO appendage that you have
entered into SYS1.LPAlIB or SYS1.SVClIB.

CEHDA=symbol
2-byte identification of a CHE appendage that you have
entered into SYS1.LPAlIB or SYS1.SVCLIB.

Chapter 3. Executing Your Own Channel Programs (EXCP) 81

o
The device-dependent portion of the data control
block varies in length and format according to
specifications in the DSORG and DEVD parameters.
Illustrations of this portion for each device
type are included in the description of the DEVD
parameter.

20
BUFNO BUFCB

24 I BUFL DSORG

28
IOBAD

32 BFIEK,
BFALN EODAD

36
RECFM EXlST

40
(TIOT) MACRF

44
(IFlGS) (DEB Address)

48
(OFLGS) Reserved

52
OPTCD Reserved

56
Reserved

60
EOEA PCIA

64
SIOA CENDA

68
XENDA Reserved

_l
> or-

J
l

>

J
l

>

J
l

>

J

l
>

J

Device
Dependent

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

Figure 21. Data Control Block Format for EXCP (After OPEN)

Co

XENDA=symbol
2-byte identification of an ABE appendage that you have
entered into SYS1.lPAlIB or SYS1.SVClIB.

OPTCD=Z

(4--",

~,-,I

indicates that, for magnetic tape (input only), a reduced
error recovery procedure (5 reads only) will occ~r when a
data check is encountered. It should be specified only
when the tape is known to contain errors and the
application does not require that all records be processed.
Its proper use would include error frequency analysis in
the SYNAD routine. Specification of this parameter will
also cause generation of a foundation block extension.
This parameter is ignored unless it was selected at system C' ~i
generation.

82 MVS/370 System Programming library: Data Management

c

c

o

IMSK=~
Any specification indicates that the system will not use
IBM-supplied error routines.

Foundation Block Extension and Common Interface Parameters

EXLST=address
the address of an exit list that you have written for
exception conditions. The format of this exit list is
given in Data Management Services.

EODAD=address
the address of your end-of-data-set routine for input data
sets. If this routine is not available when it is
required, the task is abnormally terminated.

DSORG=tpSlpoIDAIIS]
the data set organization (one of the following codes).
Each code indicates that the format of the device-dependent
portion of the data control block is to be similar to that
generated for a particular access method:

Code

PS
PO
DA
IS

DCB Format for

QSAM or BSAM
BPAM
BDAM
QISAM or BISAM

For direct access devices, if you specify PS or PO, you
must maintain the following fields of the device-dependent
portion of the data control block so that the system can
write a file mark for output data sets:

• The track balance (DCBTRBAL) field, which contains a
2-byte binary number that indicates the remaining
number of bytes on the current track. This number can
be obtained from the system track algorithm routine.

• The full disk address (DCBFDAD) field, which indicates
the location of the current record. The address is in
the form MBBCCHHR.

These fields are written into the format-l DSCB and are
used by Open routines for staging MSS data sets. Staging
is done only up through the last cylinder specified by
these fields if the data set is reopened for OUTPUT, INOUT,
OUTIN, OUTIHX, or EXTEND.

If you specify PO for a direct access device, the DCBDIRCT
field will not be updated. Therefore, you should be
careful when using EXCP with the STOW macro.

IOBAD=address
the address of an input/output block (lOB). If a pointer
to the current lOB is not required, you may use this field
for any purpose.

The following parameters are not used by the EXCP routines.
They provide additional information that the system will store
for later use by access methods that read or update the data
set.

RECFM=code
• the record format of the data set. Record format codes are

given in Data Management Macro Instructions. When writing
a data set to be read later, RECFM, LRECL, and BLKSIZE
should be specified to identify the data set attributes.
LRECL and BLKSIZE can only be specified in a DD statement,
because these fields do not exist in a DCB used by EXCP.

Chapter 3. Executing Your Own Channel Programs (EXCP) 83

BFTEK=tSIE)
the buffer technique, either simple or exchange.

BFALN=tFID)
the word boundary alignment of each buffer, either fullword
or doubleword.

BUFL=length
the length in bytes of each buffer; the maximum length is
32,767.

BUFNO=number
the number of buffers assigned to the associated data set;
the maximum number is 255.

BUFCB=address
the address of a buffer pool control block, that is, the
8-byte field preceding the buffers in a buffer pool.

Device-Dependent Parameters

DEVD=code
the device on which the data set may reside. The codes are
listed in order of descending space requirements for the
data control block:

code

DA
TA
PT
PR
PC
RD

Device

Direct access
Magnetic tape
Paper tape
Printer
Card punch
Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not wish to select a specific device until job setup
time, you should specify the device type requiring the largest
area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion
of the data control block for each combination of device type
specified in the DEVD parameter and data set organization
specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by
the parameter name. For special services, you may have to
maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4 5
Reserved DCBFDAD

8

13
DCBDVTBL

16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

84 MVS/370 System Programming library: Data Management

o

o

o

c

C"~·\ ,I

0

For output data sets, the system uses the contents of the full
disk address CDCBFDAD) field plus one to write a file mark when
the data control block is closed, provided the track balance
(DCBTRBAL) field indicates that space is available. If DCBTRBAL
is less than 8, the file mark ;s written on the next sequential
track. You must maintain the contents of these two fields
yourself if the system is to write a file mark. OPEN will
initialize DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

16 18
DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

12
DCBBLKCT

~~BTRTCH I 17Reserved I 18 DeBDEN I 19Reserved

The system uses the contents of the block count (DCBBLKCT) field
to write the block count in trailer labels when the data control
block is closed or when the EOV macro instruction is issued.
You must maintain the contents of this field yourself if the
system is to have the correct block count. (Note: The I/O
supervisor increments this field by the contents of the IOBINCAM
field of the lOB at the completion of each I/O request.)

When using EXCP to process a tape data set open at a checkpoint,
you must be careful to maintain the correct count; otherwise,
the system may position the data set incorrectly when restart
occurs. If REPOS=Y, the count must be maintained by you for
repositioni.ng during dynamic device reconfiguration.

Device-dependent portion of data control block when DEVD=PT and
DSORG=PS:

16 18
DCBCODE Reserved

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

16 18
DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or
RD and DSORG=PS:

16 18
DCBMODE,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may
be specified only when the DEVD parameter is specified.

Chapter 3. Executing Your Own Channel Programs (EXCP) 85

KEYLEN=length
for direct access devices. the length in bytes of the key 0
of a physical record. with a maximum value of 255. When a : J

block is read or written. the number of bytes transmitted
is the key length plus the record length.

CODE=value
for paper tape. the code in which records are punched:

Value Code

I IBM BCD
F Friden
B Burroughs
C National Cash Register
A ASCII
T Teletype Ctrademark of Teletype Corporation)
N No conversion Cformat-F records only)

If this parameter is omitted. N is assumed.

DEN=value
for magnetic tape, the tape recording density in bits par
inch:

Value:
7-track tape device

1 556
2 800
3-
4-

l)ensity:
9~track tape device

800CNRZI)
1600(PE)
6250CGCR)

NRZI-Hon-return-to-zero change to ones recording
PE-phase encoded recording
GCR--group coded recording

If this parameter is omitted. the highest density available
on the device is assumed.

TRTCH=value
for 7-track magnetic tape. the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. Clf omitted. odd parity is

assumed.)
T BCDIC to EBCDIC translation is required.

MODE=value
for a card reader or punch. the mode of operation. Either
C Ccolumn binary mode) or E (EBCDIC code) may be specified.

STACK=value
for a card punch or card read~r. the stacker bin to receive
cards. either 1 or 2.

PRTSP=value
for a printer, the line spacing, either 0, 1, 2, or 3.

DSORG Parameter of the DeBD Macro

In addition to the operands described in Data Management Macro
Instructions for the DSORG parameter of the DCBD macro, you may
specify the following operands.

DSORG=

XA specifies a DCB with the EXCP interface section
Cincluding appendage names)

86 MVS/370 System Programming Library: Data Management

o

XE specifies a DCB with the foundation block extension

c

c

o
Chapter 3. Executing Your Own Channel Programs (EXCP) 86.1

c

c

c

o

OPEN--INITIALIZE DATA CONTROL BLOCK

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by your channel programs. (A dummy data set may not be opened
for EXCP.) Some of the procedures performed when OPEN is
executed are:

• Reading in the JFCB (job file control block), unless the
TYPE=J option of the macro instruction was coded

• Construction of the data extent block (DEB)

• Transfer of information from the JFCB and data set labels to
the DCB

• Verification or creation of standard labels

• Tape positioning

• Loading of your appendage routines

The parameters of the OPEN macro instruction are:

[symbol] OPEN (dcb address
,[(options)], •••)

dcb address--A-type address or (2-12)
the address of the data control block to be initialized.
(More than one data control block may be specified.)

option!
the intended method of I/O processing of the data set. You
may specify this parameter as either INPUT, RDBACK, OUTPUT,
or EXTEND. For magnetic tape, label processing for each of
these when OPEN is executed is as follows:

INPUT
RDBACK
OUTPUT
EXTEND

Header labels are verified.
Trailer labels are verified.
Header labels are created.
Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume
switching occurs. The operand values and meanings are as
follows:

REREAD Reposition the volume to process the data set
again.

LEAVE No additional positioning is performed at
end-of-volume processing.

DISP Specifies that a tape volume is to be disposed of
in the manner implied by the DD statement
associated with the data set. Direct access volume
positioning and disposition are not affected by
this parameter of the OPEN macro instruction.
There are several dispositions that can be
specified in the DISP parameter of the DD
statement:

DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG. Only
DISP=PASS has significance at the time an
end-of-volume condition is encountered. The
end-of-volume condition may result from the
issuance of an FEOV macro instruction or may be the
result of reaching the end of a volume.

Chapter 3. Executing Your Own Channel Programs (EXCP) 87

If DISP=PASS was coded in the DD statement, the
tape will be spaced forward to the logical end of
the data set on the current volume.

If a DISP option other than DISP=PASS is coded on
the DO statement, the action taken when an
end-of-volume condition occurs depends (1) on how
many tape units are allocated to the data set and
(2) on how many volumes are specified for the data
set in the DO statement. This is determined by the
UNIT= and VOl~ME= operands of the DO statement
associated with the data set. If the number of
volumes is greater than the number of units
allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or
equal to the number of units, the current volume is
merely rewound.

If you intend to process a multivolume direct data set, you must
cause open routines to build a data extent block for each volume
and issue mount messages for them. This can be done by reading
in the JFCB with a RDJFCB macro instruction and opening each
volume of the date ~~~. Tho f~llo~J~n~ cade il!~=~~~tcs ths
procedure:

88 MVS/370 System Programming library: Data Management

o

o

c'

o

o

* *

* * LOOP

* *

* * *

RDJFCB
SR

IC

LA

LA

DCBl
R3,R3

R3,JFCBNVOL

R4,DCBl

R5,1

EQU *

READS IN THE JFCB
CLEARS REG 3; IT WILL
HOLD COUNT OF VOLS TO
BE OPENED
PUTS I OF VOLS
IN REG 3
R4 POINTS TO DCB FOR
VOL TO BE OPENED
PUTS SEQUENCE I OF
FIRST VOL TO BE
OPENED IN REG 5

STH R5,JFCBVLSQ PUTS SEQ I OF VOL
TO BE OPENED WHERE
OPEN RTNS LOOK

OPEN ((R4),OUTPUT),TYPE=J OPENS ONE VOL
NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED

LA R4,DCB2-DCB1(R4) INCREMENT REG 4 TO
POINT TO THE DCB FOR
THE NEXT VOL TO BE
OPENED

LA R5,1(R5) INCREMENT TO SEQ I OF
NEXT VOL TO BE OPENED

BCT R3,LOOP LOOP UNTIL ALL VOLS
OPEN

.
JFCB DS CL176

JFCB+70
H

JFCB READ IN HERE
ORG

JFCBVLSQ DS

* ORG
JFCBNVOL DS

ORG

JFCB+117
FLI

SEQ I OF VOL TO BE
OPENED

I OF VOLS IN DATA SET

* MAPPING MACRO IEFJFCBN MAY ALSO BE USED
DCBl DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUT1,MACRF=(E),EXlST=EXITS,DSORG=PS
DCB5 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS * THIS PROCEDURE WORKS FOR 5 VOLS OR LESS; THE JFCB * EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
* BE READ IN
EXITS DS

* * *

DC
OF
X'87',AL3(JFCB) 87 IDENTIFIES THIS AS

THE EXIT LIST ENTRY
THAT SHOWS WHERE JFCB
WILL BE READ IN

Use of the RDJFCB macro instruction and the OPEN macro
instruction with the TYPE=J option is explained in detail under
"Reading and Modifying a Job File Control Block" on page 144.

EXCP--EXECUTE CHANNEL PROGRAM

The EXCP macro instruction requests the initiation of the I/O
operations of a channel program. You must issue EXCP whenever
you want to execute one of your channel programs. The format of
the EXCP macro instruction is:

I [sym~ol] I EXCP I i ob-address

iob-address--A-type address, (2-12), or (1)
the address of the input/output block of the channel
program to be executed.

Chapter 3. Executing Your Own Channel Programs (EXCP) 89

ATLAS--ASSIGNING AN ALTERNATE TRACK AND COPYING DATA FROM THE DEFECTIVE TRACK

A program that uses the EXCP macro instruction for input and
output and is APF authorized may use the ATLAS macro
instruction, during the ~xecuti0n of the program, to obtain an
alternate track and to copy a defective track onto the alternate
track. With the use of ATLAS, the program can recover from
permanent (hard) errors encountered in the execution of the
following types of I/O commands:

• Search ID.

• Write. (The error condition must be confirmed during the
execution of the channel program by a CCW that checks the
data written.)

• Read count. Errors in the CCHHR part of the count area can
be recovered from unless the re~ord is the home address or
record zero. Errors in the KDD part of the count area
cannot be recovered from unless the user has identified the
defective record.

Note: ATLAS may be used for all direct access devices with the
exception of MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must
show whether the data set is in the track overflow format. If
it is, recovery from errors in last records on tracks depends on
your identifying the track overflow record segments.

Recovery takes the form of obtaining a good alternate track and
copying the defective track onto the good alternate one. Unless
a reexecution of the channel program by ATLAS can correct the
defect, the user should examine, and if neces~ary replace,
defective records in a subsequent job if the data set is to be
processed again.

The format is:

[symbolJ ATLAS PARMADR=[address]
[,CHANPRG={R def.INR]J
[,CNTPTR=[fTF]J
[,WRITS=[YESINOJJ

PARMADR

o

Address of a parameter address list of the following
format:

Address of lOB for the channel program that
encountered the error

Address of count area field

90 "VS/370 System Programming library: Data Management

o

o

o

c

o

using ATLAS

o

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

address--A-type address, (2-12), or (1)

CHANPRG=CRINR]
specifies whether the channel program that encountered the
error can be executed again.

R Channel program may be executed again by ATLAS.
Before permitting reexecution of the channel program
by ATLAS, you must reset the error indications of the
previous execution fields in the DCBIFLGS. (See the
example of the use of ATLAS below.)

NR Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR

WRITS

specifies whether the count area field contains a full
count area (CCHHRKDD) or a partial count area (CCHH).

P Part of the count area (the CCHH address of the track
to be copied).

F Full count area (CCHHRKDD count of the record that was
found defective).

If this parameter is omitted, P is assumed.

track overflow segment identification.

If your data set is in the track overflow format, this
identification det~rmines recovery from errors in last
records on tracks.

YES If this is the last record on the track, it is a
segment other than the last of a track overflow
record.

NO If this is the last record on the track, it is the
last or only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot
be established whether a last record is a segment of an
overflow record.

If a channel program encounters a unit check condition (shown in
the CSW) in its execution, the EXCP Processor program will
place the sense bytes in the lOB. ATLAS can be used to recover
from sense conditions shown by the following bit settings:

Chapter 3. Executing Your Own Channel Programs (EXCP) 90.1

o

o

C~

o

IOBSENSO

IOBSENSI

IOBSENSI

X'08'

X'80'

X'02'

Data check

Permanent

Missing address marker (see the following
for combinations of this bit setting
which ATLAS cannot handle).

However, defects in the home address record or the record zero
rec~rd cannot be recovered from through the use of ATLAS. These
conditions are shown by:

IOBSENSI X'02' and IOBSENSO X'Ol'--home address defect.

IOBSENSI X'OA'--record zero defect, or, home address cannot
be located.

Also, before using ATLAS, you must reset error indications as
follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track
and will attempt to copy the defective track onto the good
track, including all error conditions in either key or data
areas. The error conditions may be rectified by reexecuting the
channel program or through the use of the IEHATLAS utility
program in a subsequent step.

Example: The following illustrates the use of the ATLAS macro
instruction.

EXCP MYIOB
WAIT ECB=MYECB
TM MYECB,X'7F' TEST FOR I/O ERROR
BO NEXT NO, SUCCESSFUL, GO

* ANOTHER ROUTINE
TM IOBCSW+3,X'02' UNIT CHECK
BZ OTHER NO, DO OTHER ERROR

* PROCESSING
TM IOBSENSO,X'08' DATA CHECK
B·NO OTHER NO, CAN'T HANDLE
TM IOBSENS1,X'80' PERMANENT
BNO OTHER NO, CAN'T HANDLE
NI DCBIFLGS,X'3F' RESET ERROR

INDICATORS
ATLAS PARMADR=THERE,CHANPRG=R

operation of the ATLAS Program

The ATLAS program CSVC 86):

• Establishes the availability and address of the next
alternate track from the format-4 DSCB of the VTOC.

• Brings all count fields from the defective track into
storage to establish the description of the track.

TO

• Initializes the alternate track. (Writes the home address
and record zero.)

• Brings the key and data areas of each record into storage,
one at a time, and combines them with their new count area
to write the complete record onto the alternate track.

• When the copying is finished, chains the alternate to the
defective track and updates the VTOC.

Chapter 3. Executing Your Own Channel Programs CEXCP) 91

Control is returned to your program at the next executable
instruction following the ATLAS macro instruction. The success
of the ATLAS macro instruction can be determined by examining
the contents of register 15, which will contain one of the
return codes described below. If register 15 contains decimal
0, 36, 40, or 44, the contents of register 0 may be significant.

Code

0(00)

4(04)

8(OS)

12(OC)

16(10)

20(14)

24(18)

2S(lC)

32(20)

36(24)

40(28)

44(2C)

Meaning

Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. The only error encountered was in the record
identified by the user's CCHHRKDD value.

If the channel program is reexecutable, it has been
successfully reexecuted.

This device type does not have alternate tracks that
can be assigned by programming.

All alternate tracks for the device have been assigned.

A request for storage (GETMAIN macro instruction) could
not be satisfied.

All attempts to initialize and transfer data to an
alternate track failed. The number of attempts made is
equal to lOX of the assigned alternates for the device.

The type of error shown by the sense byte cannot be
handled through the use of the ATLAS macro instruction.
The condition is other than a data check (in the count
or data areas) or a missing address marker.

The format-4 DSCB of the VTOC cannot be read; therefore
alternate track information is not available to ATLAS.

The record specified by the user was the format-4 DSCB
and it could not be read.

An error found in count area of last record on the
track cannot be handled because last-record-on-track
identification is not supplied.

An error was encountered when reading or writing the
home address record or record zero. No error recovery
has taken place. If register 0 contains
X'Ol 00 00 00', the defect is in record zero.

Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. However, the alternate track may have records
with defective key or data areas. Register 0
identifies the first three found defective as follows:

n R R R

n--The number of record numbers that follow (0, 1, 2,
or 3).

R--The hexadecimal number of the record found dafective
but copied anyway.

If the channel program is reexecutable, it has been
successfully reexecuted.

Errors encountered and no alternate track has been
assigned. The return parameter register (register 0)
will contain the R of a maximum of three error records.

92 MVS/370 System Programming Library: Data Management

o

o

o

o

o EOV--END OF VOLU"E

o

48(30)

52(34)

56(38)

60(3C)

64(40)

Error conditions that return this code are:

1. ATLAS received an error indication for a record
with a data length in the count field of zero.
Recovery was not possible because a distinction
cannot be made between an EOF record and an invalid
data length.

2. An error occurred while reading the count field of
a r~cord and the KDD (key length-data length) was
found to be defective.

3. More than three records on the specified track
contained errors in their count fields.

No errors found on the track, no alternate assigned.
ATLAS will not assign an alternate unless a track has
at least one defective record.

I/O error in reexecuting user's channel program. A
good alternate is chained to the defective track and
data has been transferred. The user's control blocks
will gi~Q indic~tivn vf the arror condition c~using
failure in reexecution of the channel program.

The DCB reflects a track overflow data set, but the UCB
device type shows that the device does not support
track overflow.

The CCHH of the user-specified count area is not within
the extents of the data set.

The device is an MSS virtual device, which is not
supported.

The EOY macro instruction identifies end-of-volume and
end-of-data-set conditions. For an end-of-volume condition, EOY
causes switching of volumes and verification or creation of
standard labels. For an end-of-data-set condition, EOV causes
your end-of-data set routine to be entered. Before processing
trailer labels on a tape input data set, you must decrement the
DCBBLKCT field. You issue EOV if switching of magnetic tape or
direct access volumes is necessary, or if secondary allocation
is to be performed for a direct access data set opened for
output.

For magnetic tape, you must issue EOV when either a tapemark is
read or a reflective spot is written over. In these cases, bit
settings in the 1-byte DCBOFLGS field of the data control block
determine the action to be taken when EOV is executed. Before
issuing EOV for magnetic tape, you must make sure that
appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6,
and 7 of DCBOFLGS are used only by the system; you are concerned
with bit positions 0, 1, 4, and 5. The use of these DCBOFLGS
bit positions is as follows:

Bit 0

Bit 1

set to 1 indicates that a write command was executed and
that a tapemark is to be written.

indicates that a backward read was the last I/O operation.

Chapter 3. Executing Your Own Channel Programs (EXCP) 9~

Bit 4

Bit 5

indicates that data sets of unlike attributes are to be
concatenated.

indicates that a tapemark has been read.

If bits 0 and 5 of DCBOFlGS are both off when EOV is executed,
the tape is spaced past a tapemark, and standard labels, if
present, are verified on both the old and ri~w volumes. The.
direction of spacing depends on bit 1. If bit 1 is off, the
tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on, but bit 5 is off, when EOV is executed, a
tapemark is written immediately following the last data record
of the data set. Standard labels, if specified, are created on
the old and the new volume.

After issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional
space was obtained on the same or a different volume. You do
this by examining the data extent block (DEB) and the unit
control block (UCB). If neither the address of the UCB, as
shown in the DEB, nor the volume serial number, as shown in the
UCB, have changed, additional space was obtained on the same
volume. Otherwise, space was obtained on a different volume.

The only parameter of the EOV macro instruction is:

I [symbol] I EOV I dcb address

dcb address--A-type address, (2-12), or (1)
the address of the data control block that is opened for
the data set. If this parameter is specified as (1),
register 1 must contain thi~ address.

Note: To learn how the system disposes of a tape volume when an
EOV macro is issued, see the description of the DISP parameter
under "OPEN--Initialize Data Control Block" on page 87.

CLOSE--RESTORE DATA CONTROL BLOCK

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data control blocks
that were used by your channel programs. Some of the procedures
performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block
fields when OPEN was executed

• Verification or creation of standard labels

• Volume disposition

• Release of programmer-written appendage routines

When CLOSE is issued fo·r data sets onmagneti c tape volumes,
labels are processed according to bit settings in the DCBOFlGS
field of the data control block. Before issuing CLOSE for
magnetic tape, you mu~t set the. appropriate bits in DCBOFLGS.
The DCBOFlGS bit positions that you are concerned with are
listed in the EOV macro instruction description.

For information about the forms of the CLOSE macro and their
parameters, refer to Data Management Macro Instructions.

94 MVS/370 System Programming library: Data Management

o

C": r

c

c

o

CONTROL BLOCK FIELDS

The fields of the input/output block, event control block, and
data extent block are illustrated and explained here; the data
control block fields are described with the parameters of the
DCB macro instruction under "EXCP Requirements" on page 68.

INPUT,OUTPUT BLOCK FIELDS

The input/output block (lOB) is not automatically constructed by
a macro instruction; it must be defined as a series of constants
and must be on a fullword boundary. For unit-record and tape
devices, the lOB is 32 bytes in length. For direct access,
teleprocessing, and graphic devices, 8 additional bytes must be
provided. You may want to use the system mapping macro IEZIOB,
which expands into a DSECT, to help in constructing an lOB.

In Figure 22 the diagonally-ruled areas indicate fields in which
you must specify information. The other fields are used by the
system and must be defined as all zeros. You may not place
information into these fields, but you may examine them.

IOBFLAGI (1 byte)
You must set bit positions 0, 1, and 6. One-bits in
positions 0 and 1 indicate data chaining and command
chaining, respectively. (If both data chaining and command
chaining are specified, the system does not use error
recovery routines except for the 2671, 1052, 2150, and the
direct access devices.) A one-bit in position 6 indicates
that the channel program i~ not a 'related' request; that
is, the channel program is not related to any other channel
program. If you intend to issue an EXCP macro with a BSAM,
QSAM, or BPAM, data control block, you may want to turn on
bit 7 to prevent access-method appendages from processing
the 1'0 request.

IOBFLAG2 (1 byte)
If you set bit 6 in the IOBFLAGI field to zero, then bits 2
and 3 in this field must be set to:

• 00, if any channel program or appendage associated with
a related request might modify this lOB or channel
program.

• 01, if the conditions requiring a 00 setting don't
apply, but the CHE or ABE appendage might retry this
channel program if it completes normally or 'with the
unit-exception or wrong~length-record bits on in the
CSW.

• 10 in all other cases.

The three combinations of bits 2 and 3 represent the three
kinds of related requests, known as type 1 (00), type 2
(01), and type 3 (10). The type you use determines how
much the EXCP Processor can overlap the processing of
related requests. Type 3 allows the greatest overlap,
normally making it possible to quickly reuse a device after
a channel-end interruption. (Related requests that were
executed on a pre-MVS system are executed as type-l
requests if not modified.)

10BSENSO and 10SSENSl (2 bytes)
are placed into the input/output block by the EXCP
Processor when a unit check occurs. On occasion, the
system is unable to obtain any sense bytes because of unit
checks when sense commands are issued'. In this case the
system simulates sense bytes by moving X'10FE' to IOBSENSO
and IOBSENSI.

IOBECBCC (1 byte)
the first byte of the completion code for the channel
program. The system places this code in the high-order

Chapter 3. Executing Your Own Channel Programs (EXCP) 95

O(O)~I I~I ////// IOBFlAGI /
////// /

4(4)
IOBECBCC

8(8)
IOBFlAG3

12(C)

16(10)
IOBSIOCC

20(14)
Reserved

24(18)
IOBRESTR

IOBFlAG2 IOBSEHSO IOBSEHSI

//////////////////////////////////////
/////////////// IOBECBPT /////////////
//////////////////////////////////////

IOBCSW

//////////////////////////////////////
/////////////// IOBSTART /////////////
//////////////////////////////////////

//////////////////////////////////////
/////////////// IOBDCBPT /////////////
//////////////////////////////////////

IOBRESTR+l

--

> All
Devices

28(IC) /////////////////////////
//////////// IOBIHCAM ////////// IOBERRCT
//////////////////////////////// '--

32(20) ////////// -,
/// IOBSEEK // > Direct Access, Teleprocessing, and
/ (first byte, M) -J Graphic Devices

33(21) ///////////////////////////////

l //////////////////////////////////////
//////////////////////////////////////
/// IOBSEEK //// >

/////////////////////// (second through eighth bytes, //// J
Direct
Access
Storage
Devices
(DASD) /////////////////////// BBCCHHR) ////

/// 39(27)

Figure 22. Input/Output Block Format

byte of the event control block when the channel program is
posted complete. The completion codes and their meanings
are listed under "Event Control Block Fields" on page 97.

IOBECBPT (3 bytes)
the address of the 4-byte event control block you have
provided.

IOBFlAG3 (1 byte)
is used only by the system.

IOBCSW (7 bytes)
the low-order seven bytes of the channel status word, which
are placed into this field each time a channel-end or PCI
interruption occurs.

o

O
~'"

(' '

IOBSIOCC (1 byte) C
in bits 0 and 1, the instruction-length code; in bits 2 and)
3, the start I/O (SIO) condition code for the instruction ,
the system issues to start the channel program; and in bits
4 through 7; the program mask.

96 MVS/370 System Programming library: Data Management

c

c

o

IOBSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

IOBDCBPT (3 bytes)
the address of the data control block of the data set to be
read or written by the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error
recovery procedures.

IOBRESTR+1 (3 bytes)
used by the system, if a related channel program is
permanently in error, to chain together lOBs that represent
dependent channel programs. To learn more about the
conditions under which the chain is built, refer to
"Interruption Handling and Error Recovery Procedures" on
page 71.

IOBIHCAM (2 bytes)
for magnetic tape, the amount by which the block count
(DCBBLKCT) field in the device-dependent portion of the
data control block is to be incremented. You may alter
these bytes at any time. For forward op~rations, these
bytes should contain a binary positive integer (usually
+1); for backward operations, they should contain a binary
negative integer. When these bytes are not used, all zeros
must be specified.

Reserved (2 bytes)
used only by the system.

IOBSEEK (first byte, M)
for direct access devices, the extent entry in the data
extent block that is associated with the channel program (0
indicates the first entry; 1 indicates the second, and so
forth). For teleprocessing and graphic devices, it
contains the UCB index.

IOBSEEK (last 7 bytes, BBCCHHR)
for direct access devices, the seek address for your
channel program.

EVENT CONTROL BLOCK FIELDS

You must define an event control block (ECB) as a 4-byte area on
a fullword boundary. When the channel program has been
completed, the input/output supervisor places a completion code
containing status information into the ECB (Figure 23 on page
98). Before examining this information, you must test for the
setting of the "complete bit." If the complete bit is not on,
and your problem program cannot perform other useful operations,
you should issue a WAIT macro instruction that specifies the
event control block. Under no circumstances should you
construct a program loop that tests for the complete bit.

DATA EXTENT BLOCK FIELDS

The data extent block (DEB) is constructed by the system when an
OPEN macro instruction is issued for the data control block.
You may not modify the fields of the DEB, but you may examine
them. The DEB format and field descriptions are contained in
Debugging Handbook.

Chapter 3. Executing Your Own Channel Programs (EXCP) 97

WAIT bit=O COMPLETE bit=1 Remainder of completion code

bit
o 1 2 31

Wait bit
A one-bit in this position indicates that the WAIT macro instruction has been
issued. but the channel program has not been completed.

Complete bit
A one-bit in this position indicates that the channel program has been
completed; if it has not been completed. a zero-bit is in this p~sition.

Completion code
This code. which includes the wait and complete bits, may be one of the
following 4-byte hexadecimal expressions:

Code Meaning

7FOOOOOO The channel program has terminated without error.

41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct access extent
address has been violated.

44000000 The channel program has been intercepted because of a permanent error
associated with a device end for the previous request. You may
reissue the EXCP macro instruction to restart the channel program.

48000000 The ~~quest queue element for a channel program has been made
available after it has been purged.

48000000 One of the following errors occurred during error recovery processing
for a tape device.

• The CSW command address in the lOB is zeros.

• An unexpected load point was encountered~

4FOOOOOO Error recovery routines have been entered because of direct access
error but are unable to read the home address or record O.

Figure 23. Event Control Block after Posting of Completion Code CEXCP)

EXECUTING FIXED CHANNEL PROGRAMS IN REAL STORAGE.(EXCPVR)

The EXCPVR macro instruction provides you with the same
functions as the EXCP macro instruction (that is, a
device-dependent means of performing input/output operations).
In addition, it allows your program to improve the efficiency of
the I/O operations in a paging environment by translating its
own virtual channel programs to real channel programs.
Authorized programs are allowed to execute in a V=V ~rea and
provide the EXCP processor with real channel programs. This
eliminates the translation of channel programs by the EXCP
processor. The program issuing the EXCPVR must remain in
authorized state until the completion of the channel programs.

Problem programs are authorized to use the EXCPVR macro
instruction under the authorized program facility (APF). A
description of how to authorize a program can be found in System
Programming Library: Supervisor Services and Macro Instructions.

98 MVS/370 System Programming Library: Data Management

o

o

o

o

[symbol] EXCPVR iob-address

iob-address--A-type address, (2-12), or (1)
the address of the input/output block of the channel
program to be executed.

To use EXCPVR, you must do all the things you would do to
execute an EXCP request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests
and provide a page-fix (PGFX) appendage 'by specifying
SIOA=symbol in the DCB.

2. Fix the data area that contains your channel program, the
data areas that are referred to by your channel program,
your PCI appendage (if your program can generate program
controlled interrupts), and any area referred to by your PCI
appendage. To cause EXCP to fix these data areas, you build
a list that contains the addresses of these virtual areas.
You should build the list in your PGFX appendage.

3. Determine whether the data areas in virtual storage
specified in the address fields of your CCWs cross page
boundaries. If they do, you must build an indirect data
address list (IDAL) and put the address of the IDAL in the
affected CCW.

4. Translate the addresses in your CCWs from virtual to real
addresses.

Items 3 and 4 must be done in your start-I/O (SID) appendage. A
description of the SID appendage is presented under "Appendages"
on page 72.

BUILDING THE LIST OF DATA AREAS TO BE FIXED

The EXCP processor expects programs using the EXCPVR macro
instruction to pass a list of data areas to be fixed. This list
is to be built in the PGFX appendage, as described below.

The data areas you must fix in real storage (if not already
fixed in real storage) are:

1. The channel program. If the channel program is already in a
fixed subpool, it does not have to be fixed.

2. The data areas from which your channel program will be
writing and to which your channel program will be reading.
If the data areas are already in a fixed subpool, they do
not have to be fixed.

3. The PCI appendage, if used, and any areas referred to in the
PCI appendage.

4. Any system or user control blocks (as well as, the DEB).

You need not fix areas that have already been fixed, such as the
modules that reside in the fixed link pack area (LPA).

PAGE FIX (PGFX) AND START-lID (SID) APPENDAGE

This appendage comprises two essentially independent appendages.
The complete appendage can be viewed as a reenterable subroutine
having two entry points, one for the 510 appendage and one for
the PGFX appendage.

The SID entry point is located at offset 0 in the subroutine;
any other location in the appendage may be branched to from this
entry point. The entry point of the PGFX appendage is at offset

Chapter 3. Executing Your Own Channel Programs (EXCP) 99

+4 in the SIO subroutine, which is set in register 15 as the
entry point of the PGFX appendage.

Page Fix (PGFX) Appendage: The purpose of this appendage is to
list all of the areas that must be fixed to prevent paging
exceptions during the execution of the current I/O request.
This appendage may be entered more than once. However, each
time it is entered, it must create the same list of areas to be
fixed. The appendage may .use the 16-word save area pointed to
by register 13. Registers 10, 11, and 13 may be used as work
registers.

Page-Fix List Processing

Each page-fix entry placed in the list by the appendage must
have the following doubleword format:

X'OO' Starting virtual X'OO' Ending virtual
address of area address of
to be fixed area to be fixed

~ 1

<--1 byte--> <----3 bytes----> <--1 byte--> <----3 bytes---->

On return from your PGFX appendage to the EXCP processor (via
the return address provided in register 14), register 10 must
point to the first page-~ix entry and register 11 must contain
the number of page-fix entries in the work area. The EXCP
processor then fixes the pages corresponding to the areas listed
by the PGFX appendage. The pages remain fixed until the
associated I/O request terminates.

o

If either the channel end appendage or the abnormal end (0.'
appendage returns via the return address in register 14 plus 8,
the PGFX appendage is not normally reentered. Instead, the SIO
appendage is entered, and the page-fix list built by the PGFX
appendage is still active. However, the PGFX appendage is
entered after either the channel end appendage or the abnormal
end appendage returns via the return address in register 14 plus
8 when a PURGE macro has been issued (for instance, when a
memory swap has occurred). In this case, when I/O is restored,
the PGFX appendage is entered.

Note: The page-fix list must be in page-fixed storage.

SIO APPENDAGE: If you are using EXCPVR to execute your channel
program, you must translate the virtual addresses in the
operands of your channel program to real addresses. This should
be done in your SIO appendage. If indirect data addressing is
required, the SIO appendage should also build the indirect data
address lists (IDALs) and turn on the IDA indicators in the
associated CCWs.

Translating Virtual Addresses and Building the IDAL: You must
convert the virtual addresses in the channel program to real
addresses. You must also check the areas whose addresses appear
in bits 8-31 of your CCWs to determine whether the data areas
cross 2K-byte boundaries. If they do, you must provide an entry
in the IDAL for each 2K-byte boundary crossed. The channel
subsystem uses the IDAL to identify the address at which it will
continue reading or writing when a 2K-byte boundary is crossed
during a read or write operation. The IDAL must contain real
addresses when it is processed by the channel.

101 MVS/370 System Programming Library: Data Management

o

c

o

o

CCW

o

Command
Code

7 8

Address of the
IDAL

31 32

~----------->

//////////
//////////

Byte
Count

39 40

IDAL

47 48

0
First Indirect Datu
Address Word

4
Second Indirect Data
Address Word

8
Subsequent Indirect
Data Address Word

Notes:

1.

2.

3.

You must put one entry in the IDAL for each 2K-byte page
boundary your data area crosses.

If the CCW has an IDAL address rather than a data address,
bit 37 must be set to signal this to the channel.

The maximum number of entries needed in the IDAL is
determined from the count in the CCW as follows:

Humber of IDAL entries=«CCW byte-count - 1)/2048) + 1.
(Round up division to next highest integer if remainder is
not zero.)

The number of IDAL entries required ultimately depends on the
number of 2K-byte boundaries crossed by the data. For example,
if your data is 800 bytes long and does not cross a 2K-byte page
boundary, no IDAL entries are required. If your data crosses a
4K-byte page boundary, then two IDAL entries are required. If
your data is 5000 bytes long, at least two IDAL entries are
required. If your data crosses two 4K-byte page boundaries,
four IDAL entries are required.

The first indirect address is the real address of the first byte
of the data area. The second and subsequent indirect addresses
are the real addresses of the second and subsequent 2K-byte
boundaries of the data area.

For example, if the data area real address is X'707FF' and the
byte count is X'1802', the IDAL would contain the following real
addresses (assuming the real addresses are contiguous, which may
not always be the case):

707FF
70800
71000

If the data area real address is X'707FF' and the byte count is
X'800', the IDAL would contain the following addresses:

707FF
70800

Chapter 3. Executing Your Own Channel Programs (EXCP) 101

CHAPTER 4. USING XDAP TO READ AND WRITE TO DIRECT-ACCESS DEVICES

INTRODUCTION

XDAP REQUIREMENTS

The execute direct access program (XDAP) macro instruction
provides you with a means of reading, verifying, or updating
blocks on direct access volumes without using an access method
and without writing your own channel program. This chapter
explains what the XDAP macro instruction does and how you can
use it. The control block generated when XDAP is issued and the
macro instructions used with XDAP are also discussed.

Since most of the specifications for XDAP are similar to those
for the execute channel program (EXCP) macro instruction, you
should be familiar with the "Executing Your Own Channel Programs
(EXCP)" chapter of this publication, as well as with the
information contained in Data Management Services which provides
how-to information for using the access method routines of the
system control program.

Execute direct access program (XDAP) is a macro instruction that
you may use to read, verify, or update a block on a direct
access volume. If you are not using the standard IBM data
access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or
updating the records of a data set. (XDAP cannot be used,
however, to read, verify, or update a SYSIN or SYSOUT data set.)

You cannot use XDAP to add blocks to a data set, but you can use
it to change the keys of existing blocks. Any block
configuration and any data set organization can be read or
updated.

Although the use of XDAP requires less storage than do the
standard access methods, it does not provide many of the control
program services that are included in the access methods. For
example, when XDAP is issued, the system does not block or
deblock records and does not verify block length.

To issue XDAP, you must provide the actual track address of the
track containing the block to be processed. You must also
provide either the block identification or the key of the block,
and specify which of these ;s to be used to locate the block.
If a block is located by identification, both the key and data
portions of the block may be read or updated. If a block is
located by key, only the data portion can be processQd.

For additional control over I/O operations, you may write
appendages, which must be entered into the LPA library.
Descriptions of these routines and their coding specifications
are included under "Executing Your Own Channel Programs (EXCP)."

When using the XDAP macro instruction, you must, somewhere in
your program, code a DCB macro instruction, which produces a
data control block (DCB) for the data set to be read or updated.
You must also code an OPEN macro instruction, which initializes
the data control block and produces a data extent block (DEB).
The OPEN macro instruction must be executed before any XDAP
macro instructions are executed.

102 MVS/370 System Programming Library: Data Management

r1)l
V

c

c

o

o

When the XDAP macro instruction is assembled, a control block
and executable code are generated. This control block may be
logically divided into three sections:

• An event control block (ECB), which is supplied with a
completion code each time the direct access channel program
is terminated.

• An input/output block (lOB), which contains information
about the direct access channel program.

• A direct access channel program, which consists of three or
four channel command words (CCWs). The type of channel
program generated depends on specifications in the
parameters of the XDAP macro instruction. When executed, it
locates a block by either its actual address or its key and
reads, updates, or verifies the block.

When the channel program has terminated, a completion code is
placed into the event control block. After issuing XDAP, you
should therefore issue a WAIT macro instruction, specifying the
address of the event control block, to regain control when the
direct access program has terminated. If volume switching is
necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

"ACRO SPECIFICATIONS FOR USE WITH XDAP

When you are using the XDAP macro instruction, you must also
code DCB, OPEN, CLOSE, WAIT, and, in some cases, the EOV macro
instructions. The parameters of the XDAP macro instruction are
listed and describ~d here. For the other required macro
instructions, special requirements or options are explained, but
you should refer to "Macro Specifications for Use with EXCP" on
page 80 for listings of their parameters.

DCB--DEFINE DATA CONTROL BLOCK

You must issue a DCB macro instruction for each data set to be
read, updated, or verified by the direct access channel program.
Refer to "DCB--Define Data Control Block for EXCP" on page 80 to
learn which macro instruction parameters to code.

OPEN--INITIALIZE DATA CONTROL BLOCK

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by the direct access program. Some of the procedures performed
when OPEN is executed are:

• Construction of data extent block (DEB).

• Transfer of information from DD statements and data set
labels to the data control block.

• Verification or creation of standard labels.

• Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the
addressees) of the data control block(s) to be initialized, and
the intended method of I/O processing of the data set. The
method of processing may be specified as INPUT, OUTPUT, EXTEND;
however, if nothing is specified, INPUT is assumed.

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 103

XDAP--EXECUTE DIRECT-ACCESS PROGRA"

The XDAP macro instruction produces the XDAP control block (that 0··
is, the ECB, lOB, and channel program) and executes the direct -
access channel program. The format of the XDAP macro
instruction is:

[sl!mboll XDAP ecb-svmbol
,~
,dcb-addr
.area-addr
,length-value
,[(ke~-addrlke~length-value)l
,blkref-addr
, [sector-addrl
[,f1F=[EILJl

ecb-s~mbol--symbol or (2-12)
the symbolic name to be assigned to the XDAP event control
block. Registers can be used only with MF=E.

t~pe--[RIIRKIWIIWKIVIIVK]
the type of I/O operation intended for the data set and the
method by which blocks of the data set are to be located.
One of the combinations shown must be coded in this field.

The codes and their meanings are:

R Read a block.

W Update a block.

V

I

Verify that the device is able to read the contents of
a block, but do not transfer data.

Locate a block by identification. (The key portion, if
present, and the data portion of the block are read,
updated, or verified.)

K Locate a block by key. (Only the data portiQn of the
block is read, updated, or verified.) If you code this
value, you must code the 'key-addr,keylength-value'
operands.

dcb-addr--A-type address or (2-12)
the address of the data control block for the data set. If
this data control block is also being used by a sequential
access method (BSAM, BPAM, QSAM), you must reassemble the
XDAP macro instruction. Otherwise, sequential access
method appendages will be called at the conclusion of the
XDAP channel program.

area-addr--A-type address or (2-12)
the address of an input or output area for a block of the
data set.

length-value--absexp or (2-12)
the number of bytes to be transferred to or from the input
or output area. If blocks are to be located by
identification and the data set contains keys, the value
must include the length of the key. The maximum number of
bytes transferred is 32,767.

key-addr--RX-type address or (2-12)
when blocks are to be located by key, the address of a
virtual storage field that contains the key of the block to
be read, updated, or verified.

ke~length-value--absexp or (2-12)
when blocks are to be located by key, the length of the
key. The maximum length is 255 bytes.

104 MVS/370 System Programming Library: Data Management

o

c

C\
"

1

o

blkref-addr--RX-type address or (2-12)
the address of a field in virtual storage containing the
actual track address of the track containing the block to
be. located. The actual address of a block is in the form
MBBCCHHR, where" indicates which extent entry in the data
extent block is associated with the direct access program;
BB is not used but must be zero; CC indicates the cylinder
address; HH indicates the actual track address; and R
indicates the block identification. R is not used when
blocks are to be located by key. (For more detailed
information, see "Conversion of Relative Track Address to
Actual Track Address" on page 107.)

sector-addr--RX-type address or (2-12)
the address of a I-byte field containing a sector value.
The sector-address parameter is used for rotational
position sensing (RPS) devices only. The parameter is
optional, but its use will improve channel performance.
When the parameter is coded, a set-sector CCW (using the
sector value indicated by the data address field) precedes
the search-ID-equal command in the channel program. The
sector-address parameter is ignored if the type parameter
is coded as RK, WK, or VK. If a sector address is
specified in the execute form of the macro, then a sector
address, not necessarily the sam~, must be specified in the
list form. The sector address in the executable form will
be used.

Note: No validity check is made on either the address or
the sector value when the XDAP macro is issued. However, a
unit check/command reject interruption will occur during
channel-program execution if the sector value is invalid
for the device or if the sector-addr operand is used when
accessing a device without RPS. (For more detailed
information, see "Obtaining Sector Number of a Block on a
Device with the RPS Feature" on page 109.)

you may use the L-form of the XDAP macro instruction for a
macro expansion consisting of only a parameter list, or the
E-form for a macro expansion consisting of only executable
instructions.

The first operand Cecb-symbol) is required and may be coded
as a symbol or supplied in registers 2 through 12. The
type, dcb-addr, area-addr, and length-value operands may be
supplied in either the L- or E-form. The blkref-addr
operand may be supplied in the E-form or moved into the
IOBSEEK field of the lOB by you. The sector-addr is
optional; it may be coded either in both the L- and E-form
or in neither.

The first two operands Cecb-symbol and type) are required
and must be coded as symbols. If you choose to code
length-value or keylength-value, they must be absolute
expressions. Other operands, if coded, must be A-type
addresses. (blkref-addr is ignored if coded.)

The dcb-addr, area-addr, blkref-addr, and sector-value operands
may be coded as RX-type addresses or supplied in registers 2
through 12. The .length-value and keylength-value operands can
be specified as absolute expressions or decimal integers or
SUpplied in registers 2 through 12.

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 105

EOV--END OF VOLUHE

The EOV macro instruction identifies end-of-volume and 0'"
end-of-data-set conditions. For an end-of-volume condition, EOV -'
causes switching of volumes and verification or creation of
standard labels. For an end-of-data-set condition, EOV causes
your end-of-data-set routine to be entered. When using XDAP,
you issue EOV if switching of direct access volumes is
necessary, or if secondary allocation is to be performed for a
direct access data set opened for output.

The only parameter of the EOV macro instruction is the address
of the data control block of the data set.

CLOSE--RESTORE DATA CONTROL BLOCK

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data sets that were
used by the direct access channel program. Some of the
procedures performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block
fields when OPEN was executed

• Verification or creation of standard labels

• Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at
least one data control block to be restored, and may specify
other options. See Data Management Macro Instructions to learn
what these options are and how they are specified.

CONTROL BLOCKS USED WITH XDAP

EVENT CONTROL BLOCK

INPUT/OUTPUT BLOCK

The three control blocks generated during execution of the XDAP
macro instruction are described here.

The event control block (ECB) begins on a fullword boundary and
occupies the first 4 bytes of the XDAP control block. Each time
the direct access channel program terminates, the I/O supervisor
places a completion code containing status information into the
event control block (Figure 24 on page 107). Before examining
this information, you must wait for the completion of the
channel program by issuing a WAIT macro instruction that
specifies the address of the event control block.

The input/output block (lOB) is 40 bytes in length and
immediately follows the event control block. "Control Block
Fields" on page 9S contains a diagram of the input/output block
(Figure 24 on page 107). You may want to examine the IOBSENSO,
IOBSENS1, and 10BCSW fields if the~CB is posted with X'41'.

106 MVS/370 System Programming library: Data Management

'0' f •
I'
\

o

o

o

bit
o

WAIT bit COMPLETE bit

1

Completion code

2 31

Wait bit
A one bit in this position indicates that the direct access channel program has
not been completed.

Complete bit
A one bit in this position indicates that the channel program has been
completed; if it has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the
following 4-byte hexadecimal expressions:

Code Meaning

7FOOOOOO Di rect access program ha::. t-=rmi nc:'d:.sd wi tho\Jt: &i'nii·.

41000000 Direct access program has terminated with permanent error.

42000000 Direct access program has terminated because a direct access extent
address has been violated.

4FOOOOOO Error recovery routines have been entered because of direct access
error but are u~able to road home address or record O.

Figure 24. Event Control Block after Posting of Completion Code (XDAP)

DIRECT ACCESS CHANNEL PROGRAM

The direct. access channel program is 24 bytes in length (except
when set sector is used for RPS devices) and immediately follows
the input/output block. Depending on the type of I/O operation
specified in the XDAP macro instruction, one of four channel
programs may be generated. The three channel command words for
each of the four possible channel programs are shown in
Figure 25 on page 108.

When a sector address is specified with an RI, VI, or WI
operation, the channel program is 32 bytes in length. Each of
these channel programs in Figure 25 would be, in th;s case,
preceded by a set sector command.

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL TRACK ADDRESS

To issue XDAP, you must provide the actual track address of the
track containing the block to be processed. If you know only
the relative track address, you can convert it to the actual
address by using a resident system routine. The entry point to
this conversion routine is labeled IECPCNVT. The address of the
entry point (CVTPCNVT) is in the communication vector table
(CVT). The address of the CVT is in location 16. (For the
displacements and descriptions of the CVT fields, see Debugging
Handbook.)

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 107

Type of I/O operation ccw command code

Read by identification 1 Search ID Equal
2 Transfer in Channel

Verify by identificationl 3 Read Key and Data

Read by key 1 Search Key Equal
2 Transfer in Channel

Verify by keyl 3 Read Data

Write by identification 1 Search ID Equal
2 Transfer in Channel
3 Write Key and Data

Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

1 For verifying operations, the third CCW is flagged to
suppress the transfer of information to virtual storage.

Figure 25. The XDAP Channel Programs

The conversion routine does all its work in general registers.
You must load registers 0, 1, 2, 14, and 15 with input to the
routine. Register usage is as follows:

Register Use

o

1

2

3-8

9-13

14

15

Must be loaded with a 4-byte value of the form TTRH,
where TT is the number of the track relative to the
beginning of the data set, R is the identification of
the block on that track, and H is the concatenation
number of a BPAM data set. (0 indicates the first
data set in the concatenation, an unconcatenated BPAM
data set, or a non-BPAM data set.)

Must be loaded with the address of the data extent
block (DEB) of the data set.

Must be loaded with the address of an 8-byte area that
is to receive the actual address of the block to be
processnd. The converted address is of the form
MBBCCHHR, where M indicates which extent entry in the
data extent block is associated with the direct access
program (0 indicates the first extent, 1 indicates the
second, and so forth); BB is two bytes of zeros; CC is
the cylinder address; HH is the actual track address;
and R is the block number.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address to which control is to
be returned after execution of the conversion routine.

Is used by the conversion routine as a base register
and must be loaded with the address at which tha
conversion routine is to receive control.

108 MVS/370 System Programming Library: Data Management

o

o

c

C'

o

When control is returned to your program, register 15 will
contain one of the following return codes:

code
0(00)

4(04)

Successful conversion.

The relative block address converts to an actual track
address outside the extents defined in the DEB.

CONVERSION OF ACTUAL TRACK ADDRESS TO RELATIVE TRACK ADDRESS

To get the relative track address when you know the actual track
address, you can use the conversion routine labeled IECPRlTV.
The address of the entry point (CVTPRlTV) is in the
communication vector table (CVT). The address of the CVT is in
location 16.

The conversion routine does all of its work in general
registers. You must load registers 1, 2, 14, and 15 with input
to the routine. Register usage is as follows:

Register

0

1

2

3-8

9-13

14

15

Use

Will be loaded with the resulting TTRO to be passed
back to the caller.

Must be loaded with the address of the data extent
block (DEB) of the data set.

Must be loade~ with the address of an 8-byte area
containing the actual address to be converted to a
TTR. The actual address is of the form MBBCCHHR.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address to which control is to
be returned after execution of the conversion routine.

Is used by the conversion routine as a base register
and must be loaded with the address at which the
conversion routine is to receive control.

OBTAINING SECTOR NUMBER OF A BLOCK ON A DEVICE WITH THE RPS FEATURE

To obtain the performance improvement given by rotational
position sensing, you should specify the sector-addr parameter
in the XDAP macro. For programs that can be used with both RPS
and non-RPS devices, the UCBRPS bit (bit 3 at an offset of 17
bytes into the UCB) should be tested to determine whether the
device has rotational position sensing. If the UCBRPS bit is
off, a channel program with a "set sector" command must not be
issued to the device.

The sector-addr parameter on the XDAP macro specifies the
address of a one-byte field in your region. You must store the
sector -number of the block to be located in this field. You can
obtain the sector number of the block by using a resident
conversion routine, IECOSCRI. The address of this routine is in
field CVTOSCRI of the CVT, and the address of the CVT is in
location 16. The routine should be invoked via a BAlR 14,15
instruction. If you are passing the track balance to the
routine, you invoke the routine using a BAl 14,8(15).

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 109

For RPS devices, the conversion routine does all its work in
general registers. You must load registers 0, 2, 14, and 15
with input to the routine. Register usage is as follows:

Register

o

1

2

Use

For fixed, standard blocks or fixed, unblocked
records not in a partitioned data set: Register 0
must be loaded with a 4-byte value in the form XXKR,
where XX is a 2-byte field containing the physical
block size, K is a I-byte field containing the key
length, and R is a I-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned off
(set to 0) to indicate fixed-length records.

Passing the track balance: Register 0 must be loaded
with the 4-byte value of the track balance of the
record preceding the required record.

For all other cases: Register 0 must be loaded with a
4-byte value in the form BBIR, where BB is the total
number of key and data bytes on the track up to, but
not including, the target record; I is a I-byte key
indicator (1 for keyed records, 0 for records without
keys); and R is a I-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned on
(set to 1) to indicate variable-length records.

Not used by the sector-convert routine.

Must be loaded with a 4-byte field in which the first
byte is the UCB device type code for the device
(obtainable from UCB+19), and the remaining three
bytes are the address of a I-byte area that is to
receive the sector value.

3-8,12,13 Not used.

9-11 Used by the convert routine and are not saved or
restored.

14 Must be loaded with the address to which control is
to be returned after execution of the sector
conversion routine.

15 Used by the conversion routine as a base register and
must be loaded with the address of the entry point to
the conversion routine.

110 MVS/370 System Programming Library: Data Management

o

o

o

c

o

o

CHAPTER S. PASSWORD PROTECTING YOUR DATA SETS

INTRODUCTION

OS/VS password protection does not apply t~VSAM data sets.
Information about VSAM data set protection is in VSAM Reference
and Access Method Services Reference. For information on RACF
and its relationship to password protection, refer to Resource
Access Control Facility (RACF): General Information Manual. To
use the data set protection feature of the operating system, you
must create and maintain a PASSWORD data set consisting of
records that associate the names of the protected data sets with
the password assigned to each data set. There are four ways to
maintain the PASSWORD data set:

• You can write your own routines.

• You can use the PROTECT macro instruction.

• You can use the utility control statements of the IEHPROGM
utility program.

• If you have TSO, you can use the TSO PROTECT command.

This chapter discusses only the first two of the four ways: It
provides technical detail about the PASSWORD data set that is
necessary for writing your own routines, and it describes how to
use the PROTECT macro instruction. (The last two of the four
ways are. discussed in other publications, as indicated in the
list of publications below.)

Before using the ,information in this chapter, you should be
familiar with ihformation in several related pUblications. The
following publications are recommended:

• Data Management Services contains a general description of
the data set protection feature.

• Message library: System Messages contains a description of
the operator messages and replies associated with the data
set protection feature.

• JCl contains a ~escription of the data definition (DO)
statement param~ter used to indicate that a data set is to
be password protected.

• DADSM and Common VTOC Access Facility tiiagnosis Guide and
DADSM Diagnosis Reference contain a description of the
PASSWORD data set record format.

• Utilities contains a description of how to maintain the
PASSWORD data set using the utility control statements of
the IEHPROGM utility program.

• TSO Command language Reference describes the use of the TSO
PROTECT command.

In addition to the usual label protection that prevents opening
of a data set without the correct data set name, the operating
system provides data set security options that prevent
unauthorized access to confidential data. Password protection
prevents access to data sets, until a correct password is
entered by the system operator, or, for TSO, by a remote
terminal operator.

Chapter 5. Password Protecting Your Qata Sets 111

The following are the types of access allowed to
password-protected data sets:

• PWREAD/PWWRITE--A password is required to read or write.

• PWREAD/NOWRITE--A password is required to read. Writing is
not allowed.

• HOPWREAD/PWWRITE--Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the
operating system, you place a sequential data set, named
PASSWORD, on the system residence volume. This data set must
contain at least one record for each data set placed under
protection. In turn, each record contains a data set name, a
password for that data set, a counter field, a protection mode
indicator, and a field for recording any information you desire
to log. On the system residence volume, these records are
formatted as a "key area" (data set name and password) and a·
"data area" (counter field, protection mode indicator, and
logging field). The data set is searched on the "key area."

Note: The area allocated to the data set should not have been
previously used for a PASSWORD data set as this may cause
unpredictable results when adding records to the data set.

You can write routines to create and maintain the PASSWORD data
set. If you use the PROTECT macro instruction to maintain the
PASSWORD data set, see "Using the PROTECT Macro Instruction to
Maintain the PASSWORD Data Set" on page 115. If you use the
IEHPROGM utility program to maintain the PASSWORD data set, see
Utilities. These routines may be placed in your own library or
the system's library (SYS1.LINKLIB). You may use a data
management access method or EXCP programming to read from and
write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a
protection indicator set in its label (format-l DSCB or header 1
tape label). This is done by the operating system when the data
set is created, by the IEHPROGM utility program, or, by the
PROTECT macro when creating or adding the control password. The
protection indicator is set in response to a value in the LABEL=
operand of the DD statement associated with the data set being
placed under protection. The publication JCL describes the
LABEL operand.

Note: Data sets on magnetic tape are protected only when
standard labels are used.

Password-protected data sets can only be accessed by programs
that can supply the correct password. When the operating system
receives a request to open a protected data set, it first checks
to see if the data set has alreadY been opened for this job
step. If so, only the access mode will be checked to determine
whether it is compatible with the protection mode under which it
was previously opened. If the data set has not been previously
opened by this job step, or if the access mode is not compatible
with the protection mode under which it was previously opened, a
message is issued that asks for the password; the message goes
to the operator console. If the program requesting that the data
set be opened is running under TSO in the foreground, the
message goes to the TSO terminal operator. If you want the
password supplied by another method in your installation, you
can modify the READPSWD source module or code a new routine to
replace READPSWD in SYS1.LPALIB.

112 MVS/370 System Programming Library: Data Management

o

o

o

c

c

o

PASSWORD DATA SET CHARACTERISTICS

The PASSWORD data set must reside on the same volume as your
operating system. The space you allocate to the PASSWORD data
set must be contiguous, that is, its DSCB must indicate only one
extent. The amount of space you allocate depends on the number
of data sets your installation wants to protect. Each entry in
the PASSWORD data set requires 132 bytes of space. The
organization of the PASSWORD data set is physical sequential,
the record format is unblocked, fixed-length records (RECFM=F).
Each record, which forms the data area, is 80 bytes long
(LRECL=80,BLKSIZE=80), and is preceded by a 52-byte key
(KEYLEN=52). The key area contains the fully qualified data set
name of up to 44 bytes and a password of one to eight bytes,
left justified with blanks added to fill the areas. The
password assigned may be from one to eight alphameric characters
in length. DADSM and Common VTOC Access Facility Diagnosis
Guide and DADSM Diagnosis Reference describe the PASSWORD data
set record format.

Note: For data sets on magnetic tape designed according to the
specifications of the International Organization for
Standardization (ISO) 1001-1979 or the equivalent American
National Standards Institute (ANSI) X3.27-1978, do not include
generation and version numbers as part of generation data set
names. The generation and version numbers are not included as
part of the names in the tape labels, and are ignored if
included in the PASSWORD data set.

You can protect the PASSWORD data ~et itself by creating a
password record for it when your program initially builds the
data set. Thereafter, the PASSWORD data set cannot be opened
(except by the operating system routines that scan the data set)
unless the operator enters the password.

Note: If a problem occurs on a password-protected system data
set, maintenance personnel must be provided with the password in
order to access the data set and resolve the problem.

CREATING PROTECTED DATA SETS

A data definition (DD) statement parameter (LABEl=) may be used
to indicate that a data set is to be password-protected. For
data sets on DASD, an alternative method is to use the PROTECT
macro instruction for a previously allocated data set. A data
set may be created and the protection indicator set in its label
without entering a password record for it in the PASSWORD data
set.

Operating procedures at your installation must ensure that
password records for all data sets currently password-protected
are entered in the PASSWORD data set. Installations where
independent computing systems share common DASD resources must
ensure that PASSWORD data sets on all systems contain the
appropriate password records for any protected data set on
shared DASD.

Under certain circumstances, the order in which data sets are
allocated and deallocated from multiple systems on shared DASD
may result in loss of password-protection. For example, if an
unprotected data set is allocated and opened by a user on System
A and then scratched by a different user on System B, the first
user is given a "window" to the unallocated (free) area. If any
data set, protected or unprotected, is allocated in that space
by a user on either system during the time the "window" is open,
the new data set has no protection from the user with the
"window."

While the allocation disposition is still NEW, a
password-protected data set can be used without supplying a
password. However, after the data set is deallocated, any
subsequent attempt to open will result in termination of the
program unless the password record is available and the correct

Chapter S. Password Protecting Your Data Sets 113

password is s~pplied. N~te that, if the protection mode is
NOPWREAD and the request is to open the data set for input or
read backward, no password will be required. ~

Tape Vo!ulftes Conta i tii ng "are Than One Passlrlord-Protected Data set

T~ password protect a data set on a tape volume containing other
data set~j you must ~assword protect all the data sets on the
volume. (Standard labels--SL, SUL, AL, or AUL--are required.
See Magnetic Tape Labels and File Structure for definitions of
these label types and the protection-mode indicators that can be
used.)

If you isstie an OPEN macro instr~ction to create a data set
f6110wing an existing, password-protected data set, the password
of the existing data set will be verified during open processing
for the new data set. The password supplied must be associated
with a PWWRITE protection-mode indieator.

PROTECTION FEATURE OPERATING CHARACTERISTICS

The topics that follow provide information concerning actions of
the protection feature in relation to termination of processing,
volume switching, data set concatenation, SCRATCH and RENAME
functions, and counter maintenance.

TerMination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the
protected data set being opened after two tries.

2. A password record does not exi st in the PASSWORD data set ((-~:
for the protected data set being opened. ~

Volume switching

3. The protection-mode indicator in the password record, and
the method of I/O processing specified in the Open routine
do not agree, for example, OUTPUT specified against a
read-only protection-mode indicator.

4. There is a mismatch in data set names for a data set
involved in a vol~me switching operation. This is discussed
in the next paragraph.

The system ensures a continuation of password protectiQn when
volumes of a multivolume data set are switched. It accepts a
newly-mounted tape volume, to be used for input, or a
newly-mounted direct access volume, regardless of its use, if
these conditions are met:

• The data set name in the password record for the data set is
the same as the data set name in the JFCB. (This ensures
that the problem program has not changed the data set name
in the JFCB since the data set was opened.)

• The protection-mode indicator in the password record is
compatible with the processing mode and a valid password has
been supplied.

The system accepts a newly-mounted tape volume to be used for
output under any of these conditions:

• The security indicator in the HDRI label indicates password
protection, the data set name in the password record is the
same as the data set name in the JFCB, and the
protection-mode indicator is compatible with the processing

114 MVS/370 System Pr'ogramming library: Data Man'agement

c

o

•

mode. (If the data set name in the JFCB has been changed, a
new password is requested from the operator.)

The security indicator in the HDR! label does not indicate
password protection. (A new label will be written with the
security indicator indicating password protection.)

• Only a volume label exists. (A HDR! label will be written
with the security indicator indicating password protection.)

Data set concatenation

A password is requested for every protected data set that is
involved in a concatenation of data sets, regardless of whether
the other data sets involved are protected or not.

Chapter 5. Password Protecting .Your Data Sets 114.1

o

o

o

o

o

o

SCRATCH and RENAME Functions

counter Maintenance

To delete or rename a protected data set, it is necessary that
the job step making the request be able to supply th~ password.
The system first checks to see if the job step is currently
authorized to write to the data set. If not, message IEC301A is
issued to request the password. The password provided must be
associated with a "WRITE" protection-mode indicator.

The operating system increments the counter in the password
record on each usage, but no overflow indication will be given
(overflow after 65,535 openings). You must provide a counter
maintenance routine to check and, if necessary, reset this
counter.

USING THE PROTECT MACRO INSTRUCTION TO "AINTAIN THE PASSWORD DATA SET

To use the PROTECT macro instruction, your PASSWORD data set
must be on the system residence volume. The PROTECT macro can
be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information about an entry in the PASSWORD
data set; this list will contain the security counter,
access type, and the 77 bytes of security information in the
"data area" of the entry.

In addition, the PROTECT macro updates the DSCB of a protected
direct access data set to reflect its protection status; this
feature eliminates the need for you to use job control language
whenever you protect a data set.

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE PROTECT "ACRO
INSTRUCTION

When you use the PROTECT macro, the record format and
characteristics of the PASSWORD data set are no different from
the record format and characteristics that apply when you use
your own routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must
contain at least one record for each protected data set. The
password (the last 8 bytes of the "key area") that you assign
when you protect the data set for the first time is called the
control password. In addition, you may create as many secondary
records for the same protected data set as you need. The
passwords assigned to these additional records are called
secondary passwords. This feature is helpful if you want
several users to have access to the same protected' data set, but
you also want to control the manner in which they can use it.
For example: One user could be assigned a password that allowed
the data set to be read and written, and another user could be
assigned a password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection-mode
indicator in the format-l DSCB in the protected data set only
when you issue it for adding, replacing, or deleting a control
password.

Chapter 5. Password Protecting Your Data Sets 115

protection-"ode Indicator

You can set the protection-mode indicator in the password record 0 .. ' to four different values:

• X'OO' to indicate that the password is a secondary password
and the protected data set is to be read only (PWREAD).

• X'BO' to indicate that the password is the control password
and the protected data set is to be read only (PWREAD).

• X'Ol' to indicate that the password is a secondary password
and the protected data set is to be read and written
(PWREAD/PWWRITE).

• X'Bl' to indicate that the password is the control password
and the protected data set is to be read and written
CPWREAD/PWWRITE).

Because of the sequence in which the protection status of a data
set is checked, the following defaults will occur:

If control password is:

1. PWREAD/PWWRITE or
PWREAD/NOWRITE

2. NOPWREAD/PWWRITE

Secondary password MUst be:

PWREAD/PWWRITE or
PWREAD/NOWRITE

NOPWREAD/PWWRITE

If the control password is set to either of the settings in item
1 above, the secondary password will be set to PWREAD/PWWRITE if
you try to set it to NOPWREAD/PWWRITE.

If the control password is changed from either of the settings
in item 1 to the setting in item 2 above, the secondary password
will be automatically reset to NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to ~
either of the settings in item 1 above, the secondary password
is set by the system to PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when
the control password is changed, you may request protection
attributes for secondary passwords that conflict with the
protection attributes of the control password.

PROTECT "ACRO SPECIFICATION

The format is:

[symbol] PROTECT parameter list address

parameter list address--A-type address, (2-12), or (1)
indicates the location of the parameter list. The
parameter list must be set up before the PROTECT macro is
issued. The address of the parameter list may be passed in
register 1, in any of the registers 2 through 12, or as an
A-type address. The first byte of the parameter list must
be used to identify the function (add, replace, delete, or
list) you want to perform. See Figure 26 on page 117
through Figure 29 on page 119 for the parameter lists and
codes used to identify the functions.

116 MVS/370 System Programming library: Data Management

o

c

o

o

0 X'OI' 1 00 00 00

~ Length of data set name S Pointer to data set name

a 00 9 00 00 00

12 00 13 Pointer to control password

16 Humber of volumes 17 Pointer to volume list

20 Protection code 21 Pointer to new password

2~ String length 2S Pointer to string

o X'OI'
Entry code indicating ADD function.

4 Length of data set name.

5 Pointer to data set name.

13 Pointer to control password.
The control password is the password assigned when the data set was placed
under protection for the first time. The pointer can be 3 bytes of binary
zeros if the new password is the control password.

16 Humber of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you have to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected,
you provide the address of a list of volume serial numbers in this field.
Zeros indicate that the catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default
protection (for the ADD function; the default protection is the type of
protection specified in the control password record of the data set); X'OI'
indicates that the data set is to be read and written; X'02' indicates that the
data set is to be read only; and X'03' indicates that the data set can be read
without a password, but a password is needed to write into it. The PROTECT
macro will use the protection code value, specified in the parameter list, to
set the protection-mode indicator in the password record.

21 Pointer to new password.
If the data set is being placed under protection for the first time, the new
password becomes the control password. If you are adding a secondary entry,
the new password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. If you don't want to
add information, set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field. If you don't want to add additional information, set this
field to zero.

Figure 26. Parameter List for ADD Function

Chapter 5. Password Protecting Your Data Sets 117

0 X'02' 1 00 00 00

4 Length of data set name 5 Pointer to data set name

8 00 9 Pointer to current password

12 00 13 Pointer t~ control password

16 Humber of volumes 17 Pointer to volume list

20 Protection code 21 Pointer to new password

24 String length 2S Pointer to string

o X'02'.
Entry code indicating REPLACE function.

4 Length of data set name.

5 Pointer to data set name.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Pointer to control password.
The address of the password assigned to the data set when it was first placed
under protection. The pointer can be set to 3 bytes of binary zeros if the
current password is the control password.

16 Humber of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you have to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected,
you have to provide the address of a list of volume serial numbers in this
field. If this field is zero, the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the
protection is d~fault protection (for the REPLACE function the default
protection is the protection specified in the current password record of the
data set); X'Ol' indicates that the data set is to be read and written; X'02'
indicates that the data set is to be read only; and X'03' indicates that the
data set can be read without a password, but a password is needed to write into
the data set.

21 Pointer to new password.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. Set this field to zero
if you don't want to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field of the password record. Set the address to zero if you don't
want to add additional information.

Figure 27. Parameter List for REPLACE Function

118 MVS/370 System Programming Library: Data Management

o

c

c

o

0 X'03' 1 00 00 00

~ Length of data set name 5 Pointer to data set name

8 00 9 Pointer to current password

12 00 13 Pointer to control password

16 Number of volumes 17 Pointer to volume list

o X'03'.
Entry code indicating DELETE function.

4 Length of data set name.

5 Pointer to data set name.

9 Pointer to current password.
The address of the password that yu~ ~aht to delete. yo~ can cieletu either e
control entry or a secondary entry.

13 Pointer to control password.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zeros if
the current password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as proteet~d,
you have ,to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected,
you have to provide the address of a list of volume serial numbers in this
field. If this field is zero, the catalog information will be used.

Figure 28. Parameter List for DELETE Function

0 X'04' 1 Pointer to 80-byte buffer

~ Length of data set name 5 Pointer to data set name

8 00 9 Pointer to current password

o X'04'.
Entry code indicating LIST function.

1 Address of 80-byte buffer.
The address of a buffer where the list of information can be returned to your
program by the macro instruction.

4 Length of data set name.

5 Pointer to data set name.

9 Pointer to current password.
The address of the password of the record that you want listed.

Figure 29. Parameter List for LIST Function

Chapter 5. Password Protecting Your Data Sets 119

RETURN CODES FROM THE PROTECT MACRO

When the PROTECT macro finishes processing, register 15 contains
one of the following return codes:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)1

28(IC)

32(20)2

36(24)2

40(28)2

44(2C)

48(30)2

52(32)2

Meaning

The updating of the PASSWORD data set was successfully
completed.

The PASSWORD of the data set name was already in the
password dat~ set.

The password of the data set name was not in the
PASSWORD data set.

A control password is required or the one supplied is
incorrect.

The supplied parameter list was incomplete or
incorrect.

There was an I/O error in the PASSWORD data set.

The PASSWORD data set was full.

The validity check of the buffer address failed.

The LOCATE macro failed. LOCATE's return code is in
register 1, and the number of indexes searched is in
register o.
The OBTAIN macro failed. OBTAIN's return code is in
register 1.

The DSCB could not be updated.

The PASSWORD data set does nO,t exist.

Tape data set cannot be protected.

Data set in use.

lFor this return code, a message is written to the console
indicating that the PASSWORD data set is full.

2For this return code, the PASSWORD data set has been updated,
but the DSCB has not been flagged to indicate the protected
st'atus of the data set.

120 MVS/370 System Programming Library: Data Management

, I C
~

\ ,J

o

c

o

o

CHAPTER 6. EXIT ROUTINES

This chapter discusses how installation-written modules can:

• Take control before and after direct access device storage
management (DADSM) processing

• Take control during Open for a DCB

• Determine whether a missing data set control block (such as
for a data set that has been moved to another volume) can be
restored to a volume

• Recover from errors that may occur during the opening,
closing, or handling of an end-of-volume condition for a
data set associated with the user's task

This chapter also describes how user programs can:

• Identify a specific tape volume to be requested in place of
a nonspecific (scratch) tape volume

• Verify that an IBM-standard labeled tape selected by open or
EOV should, in fact, be used, and whether certain security
checks may be bypassed (this exit is for authorized programs
only)

Note: For information on IBM-supplied exits for tapes with
International Organization for Standardization (ISO) or American
National Standard labels, refer to MVS/370: Magnetic Tape Labels
and File Structure.

DADS" PREPROCESSING AND POSTPROCESSING EXIT ROUTINES

THE EXIT "ODULES

THE EXIT ENVIRONMENT

There are exit routines to enable an installation-written module
to take control before and after DADSM processing. An exit
parameter list is used to communicate with DADSM. The format of
this parameter list is shown in Figure 30 on page 123.

All of the DADSM functions (allocate, extend, scratch, partial
release, and rename) have a common preprocessing exit routine
and a common postprocessing exit routine that the installation
exit routine can replace. These exit routines enable you to
gain control before and after DADSM processing. The
preprocessing exit routine module is IGGPREOOi the
postprocessing exit routine module is IGGPOSTO. Each is used by
all the DADSM functions listed above. The modules reside in"
SYS1.LPALIB. You can use System Modification Program (SMP) to
replace the IBM-supplied exit routine modules with an
installation exit routine you write.

The exit routines are given control in supervisor state and
protect key zero with no locks held. The exit routines must be
reentrant. System enqueues will have been issued either by
DASDM or by the programs that invoke DADSM, to serialize system
functions. These enqueues may prevent other system services
from being invoked. In particular, dynamic allocation, OPEN,
CLOSE, EOV, LOCATE, and other DADSM functions may not be issued
because of an enqueue on the SYSZTIOT resource. If the exit
routines require access to an installation data set, the control
blocks required to access that data set (DCB, DEB) should be
built during system initialization (IPL/NIP). RACF macros may
be invoked from the exit routines.

Chapter 6. Exit Routines 121

WHEN IGGPREOO GETS CONTROL

The preprocessing exit routine, IGGPREOO, is given control (~
before the first VTOC update and after initial validity : I
checking. Input to IGGPREOO is a parameter list, mapped by -
macro IECIEXPL, that contains addresses of input data and a
function code that identifies the DADSM function. IGGPREOO is
given control once for each volume in the volume list supplied
to scratch and rename. A field in the parameter list, IEXRSVWD,
may be used to pass data from the preprocessing exit routine to
the postprocessing exit routine.

A zero return code from IGGPREOO indicates the DADSM function
may proceed.

REJECTING A DADSH REQUEST

A preprocessing exit routine may reject a DADSM request, in
whichJcase an I/O error return code is generated for all
functions except allocate and extend. A return code of 4 or 8
from IGGPREOO to allocate will cause allocate to return X'B4' or
X'BO', respectively, to its caller in Register 15. Scheduler
allocation will treat a X'B4' as a conditional rejection of the
allocate request only for the volume being processed. If the
allocate request is not for a specific volume, another volume
may be chosen and the allocate function retried. Scheduler
allocation will treat a X'BO' return code from allocate as an
unconditional rejection of the allocate request. If the
allocate request is rejected, the preprocessing exit routine can
put a reason code in the parameter list field, IEXREASN, and the
code will be returned by allocate to its caller, together with
the X'BO' or X'B4' return code in Register 15. The reason code
will appear in the JCL error message, if the allocate request is
not retried. A nonzero return code from IGGPREOO to extend will 0-..
cause extend to return an error return code of X'FFFF FFEC' to
its caller. If the caller is End-of-Volume, an E37-0C abend
will be issued.

PASSING A HODEL FORHAT-l DSCB

The preprocessing exit for allocate and extend on a new volume
may return, in the parameter list field IEXFMT1, the address of
the data portion of a model format-1 DSCB, starting with field
DS1FMTID. The DSCB will be moved to the allocate or extend work
area before building the format-1 DSC~. The only fields that
may be nonzero in the area are the DSIREFD (the
data-last-referenced field) and fields currently unused. All
other fields will be initialized by allocate or extend. IEXFMT1
may not be supplied by IGGPREOO for a VIO allocate request
(indicated by flag, IEXVIO, set to one), or if a partial DSCB
instead of a JFCB has been supplied to allocate (indicated by
flag, IEXMF1, set to one). In the latter case, IEXFMTl is
passed to IGGPREOO initialized to the address of the DSIFMTID
field of the partial format-l DSCB (supplied to allocate by its
caller) in the allocate work area, and DSIREFD may be
initialized by IGGPREOO. If extend was successful, IEXFMTI is
zeroed out prior to taking the post-exit, IGGPOSTO.

WHEN IGGPOSTO GETS CONTROL

The postprocessing exit module, IGGPOSTO, is given control after
a DADSM function has been completed or attempted. IGGPOSTO is
given control if IGGPREOO was given control, whether the DADSM
function was successful or not. IGGPOSTO is not given control
if IGGPREOO was not given control, or if the DADSM function
terminated abnormally. IGGPREOO may establish a recovery
routine, if required, to clean up system resources. The DADSM
recovery routine does not give IGGPOSTO control.

122 MVS/370 System Programming Library: Data Management

c

c

c

o

Input to IGGPOSTO is the same parameter list passed to IGGPREOO.
No return codes from IGGPOSTO are defined.

Chapter 6. Exit Routines 122.1

o

()

c

o

IEXID
IEXLEHG
IEXFUHC
IEXALL
I EXEXT
IEXSCR
IEXPR
IEXREH
IEXEXTCD

IEXFLAG
IEXEHQ
IEXVIO
IEXMFI

M
IEXREASN
* IEXUCB
IEXPTRI

IEXPTR2

IEXDSH
IEXFMTI

IEXFMT2

IEXRSVOO
IEXEXTBL

IEXDCC

I EXRSVWD

Offset

00(00)
04(04)
05(05)

06(06)

07(07)

08(08)

12(OC)
16(10)

20(14)

24(18)
28(lC)

32(20)

36(24)
40(28)

44(2C)

48(30)

Bytes

4
1
1

1

1
1 .••
.1 ..
.. 1.

••• x xxxx
2
2
4
4

4
4

4

4
4

4

4'

Descrtptton

EBCDIC 'IEPL'
Length of parameter list
DADSM function code:
X'Ol'-Allocate
X'02'-Extend
X'03'-Scratch
X'04'-Partial Release
X'05'-Rename
Extend code
X'Ol' Extend data set on

current volume
X'02' Extend an OS ~atalog

on current volume
X'04' Extend data set on

new volume
X'81' Extend VSAM data space

on current volume
Flag byte
VTOC is enqueued upon entry
VIO data set
IEXFMTl points to DXIFMTID of a
partial format-l DSCB (partial
DSCB passed as input to Allocate,
and not JFCB is not available).
Reserved
Installation reject reason code
Reserved
Address of UCB
Address of the following:
- JFCB (Allocate, Extend, Partial Release)
- Scratch/Rename input parameter list

(in user storage)
Address of the following:
- DSAB list (ISAM Allocate)
- DEB (Extend on old volume)
- DCB (Partial Release)
- Current volume list entry

(Scratch/Rename)
Address of the, data set name
Address of the 96-
byte data portion of format-l
DSCB (pre- and post-exit for
partial release; post-exit for
scratch). May be supplied by
pre-exit of allocate, and extend
on new volume, to serve as a
model if IEXMFI and IEXVIO are
zero; postexit for allocate
Address of format-2 DSCB
(ISAM Allocate post exit)
Reserved
Address of extent table
(pre- and post-exit for scratch
and partial release; post-exit
for allocate and extend)
DADSM completion code
(post exit)
Reserved word for use by
installation exit

Figure 30. Format of the DADSM Preprocessing and Postprocessing Exit Parameter List

Chapter 6. Exit Routines 123

SYSTE" CONTROL BLOCKS

The DADSM i nstallati on exi t parameter 1 i st contai ns the address O~I
of system control blocks. The mapping macros of those control
blocks are listed below together with the hame of the system
library in which they reside. One of the macros, ICVARXNT, is
only supplied with the optional material.

IECSDSll
IEFUCBOB
IEFJFCBN
IHADSAB,
IEZDEB
IHADCB
IEFTIOTI
ICVARXNT
IECIEXPl

Control Block

DSCB
UCB
JFCB
DSAB
DEB
DCB
TIOT
Extent Table
DADSM installation
exit parameter list

Location

SYS1.AMODGEN
SYS1.AMODGEN
SYS1.AMODGEN
SYS1.MAClIB
SYS1.MAClIB
SYS1.MAClIB
SYS1.AMODGEN
Optional Material
SYS1.MAClIB

There is no mapping macro for the SCRATCH/RENAME parameter list
or the associated volume list.

For extend and'partial release, the address of the JFCB passed
to the user exit points to a copy of the real JFCB. Updating
the copied JFCB will not result in a corresponding change to the
real JFCB.

During EXTEND of aVSAM data set, the exit is passed the address
of a dummy DEB. This DES' dQc.!!:onot contain any EXTENT
information.

REGISTERS AT ENTRY TO EXITS

At entry to your exit routine, register contents are as.follows:

Register Contents

1

13

14

15

REGISTERS AT RETURN TO DADS"

Address of the exit parameter list

Address of an 18-word save area

Return address to DADSM

Address of your exit routine

When you return to DADSM, register contents must be as follows:

Register contents

0-14 Same as on entry to your exit routine'

15 A return code from IG·GPREOO

The return codes and thei r mean; ngs are as 'f.ollows:

Code Meaning

o Indicates that you want the DADSM request to be
processed

4 Indicates that no DADSM request for the current volume
is to be processed

8 . Indicates that you do not want the DADSM request to be
processed

124 MVS/370 System Programming library: Data Management

o

c

c

o

DCB OPEN INSTALLATION EXIT

THE EXIT "ODULE

THE EXIT ENVIRONMENT

There is en exit that enables an installation-written module to
taka control during Open for a DCB. An exit parameter list is
used by open processing to communicate with the exit module.
The format of the parameter list is shown in Figure 31 on page
126.

OPEH has an exit module that the installation can replace. This
module is IFGOEXOB, which resides in load module IGC0001I. The
load module resides in SYS1.lPAlIB. You can use System
Modification Program (SMP) to replace the IBM-supplied exit
module with an installation exit you write.

IFGOEXOB is given control in supervisor state and protect key
zero with no locks held. System enqueues will have been issued
to serialize system functions. These enqueues may prevent other
system services from being invoked. In particular, dynamic
allocation, OPEH, CLOSE, EOV, and DADSM functions should not be
invoked because of an enqueue on the SYSZTIOT resource. If the
exit requires access to an installation data set, the control
blocks required to access that data set (DCB, DEB) should be
built during system initialization (IPl/HIP). RACF macros may
be invoked from the exit.

OPEN PROCESSING BEFORE IFGOEXOB GETS CONTROL

The exit module, IFGOEXOB, is given control whenever OPEH
processes a DCB. The exit is taken after the following
functions have been performed for the DCB.

• DASD data sets

Volume mounted

Format-I, -2~ and -3 DSCBs read

Forward merge from format-l DSCB to JFCB

• Tape data sets

Volume mounted

Header labels verified

Forward merge from header labels to JFCB

• All data sets

Forward merge from JFCB to DCB

User DCB OPEH exit (if any) taken

RACF or password verification processing

OPEN PROCESSING AFTER IFGOEXOB GETS CONTROL

The following functions have not yet been performed at the time
the exit is given control for the DCB.

• R~verse merge from DCB to JFCB (not all fields are merged)

• Reverse merge from JFCB to format-l DSCB for DASD data sets
(not all fields are merged)

• Header labels written (for output tape data set)

Chapter 6. Exit Routines 125

•

•

Access-method-dependent process i ng (obta in buffers, getma,i n
and build lOBs ~nd DEB),

r
Write JFCB

• Write format-l DSCB

GETTING CONTROL FROM OPEN

The exit is given control for each DCB being opened, even when
two or more DCBs are being opened, in parallel, with one
invocation of OPEN.

The exit is given control from OPEN (SVC 19) and OPEN TYPE=J
(SVC 22). The exit is given control from end-of-volume (EOV;
SVC 55) and from force-end-of-volume (FEOV; SVC 31) when a
concatenation of two sequential data sets with unlike attributes
is being processed. In this case, EOV gives control to CLOSE,
whi ch gi ves control to OPEN. The exi t i s.not gi ven control
from EOV when a concatenation of two sequential data sets with
like attributes is being processed. In this case, EOV does not
give control to CLOSE and OPEN. A request by the user program
for concatenation with unlike attributes is shown in the DCB by
flag DCBOFPPC (bit 4; mask X'~8') in field DCBOFLGS being set to
one.

DATA THAT OPEN PASSES TO THE EXIT

Name

OIEXl

OIEXOOPT
OIEXRSVD
OIEXOOUT
OIEXOOIN
OIEXOUPD
OIEXOINO
OIEXORDB
OIEXOINP
OIEXUKEY
OIEXLTH
OIEXUDCB

OIEXPDCB

OIEXJFCB
OIEXDSCB

OIEXTIOT
OIEXUCB

Offset

00(00)

00(00)

01(01)
02(02)
04(04)

08(08)

12(OC)
16(10)

20(14)
24(18)

The parameter list mapped by macro IECOIEXl is supplied to the
installation exit. It contains data and the addresses of
control blocks that may be of interest to the exit.

The format of the parameter list is shown in Figure 31.

Bytes

0

1
1111

1111
.111
.1 •.
•• 11
•.. 1

1
2
4

4

4
4

4
4

Description

DCB Open installation exit
parameter list
Open option (last 4 bits).
X'FO' first 4 bits reserved.
15 'output

7 outin
4 update
3 inout
1 read backward
o input

User protect key. Key of user DCB.
Length of OIEXl
Address of user DCB

in user protect key (OIEXUKEY)
Address of protected
copy of DCB used by ,OPEN
Address of JFCB
Address of data portion of
format-1 DSCB
Address of TIOT entry
Address of UCB

Figure 31. Format of OPEN Exit Parameter List

Note that two DCB addresses are supplied. OPEN maintains a

o

protected copy of the user DCB. OPEN's copy of the DCB may be C
used to test DCB fields. If any mod~fication is made to the I. ~
DCB, both the user DCB and OPEN's protected copy must be J

updated. The protect key of the user DCB is supplied in the

126 MVS/370 System Programming library: Data Management

exit parameter list. This protect key must be used to either
fetch from or store into the user DCB.

Care should be taken to determine the type of DCB and device
passed to the exit before testing access-method or
device-dependent fields in the DCB. The sample exit shown in
Appendix E gives an example of isolating a QSAM DCB being opened
to a DASD or tape device.

The JFCB address supplied to the exit points to a copy of the
JFCB that is in OPEN's work area. There may be other JFCBs
associated with the OPEN, if ISAM or concatenated partitioned
data sets are being opened.

In the case of BDAM, ISAM, and concatenated partitioned data
sets, the UCB, whose address is supplied to the exit, may not be
the only UCB associated with the DCB being opened. The UCB
should not be modified.

The TIOT address supplied is of a TIOT entry (TIOENTRY label in
the IEFTIOTI macro). In the cases of ISAM and concatenated
partitioned data sets, other TIOT entries may be associated with
the DCB being opened. If concatenation of unlike attributes is
being processed, the TIOT entry may have a blank DDNAME field.

The format-l DSCB passed to the exit is in the OPEN work area.
The address i~ of the field, DSIFMTID. There may be format-2
and -3 DSCBs associated with the format-l DSCB. There may be
other format-l through -3 DSCBs associated with the DCB being
opened in the cases of ISAM, BDAM, and concatenated partitioned
data sets. If the OPEN is to the VTOC, a format-4 DSCB address
is passed to the exit; this can be determined by testing field
DSIFMTID for a value of X'F4', or the data set name in the
JFCBDSNM field of 44X'04'.

4l:) DEFAULTING BUFFER NUHIER FOR 'SA"

o

"ODIFYING THE ~FCI

If a value has not yet been supplied, the exit may be used to
supply an installation-determined value for DCBBUFNO (number of
buffers) for QSAM DCBs.

A sample exit program that does this is shown in Appendix E.

It may not be advisable to override a nonzero value of DCBBUFNO
without knowing what dependency the user program has on that
value. DCBBUFHO can not be overridden when a buffer pool control
block address exists in the DCB field, DCBBUFCA; this indicates
buffers have been acquired before OPEN. DCBBUFCA is set to one
(and not zero) if no buffer pool control block add~ess exists.

Whenever the JFCB is modified, code 4 should be returned to
OPEN. This will cause OPEN to rewrite the JFCB. The JFCB should
not be modified if the user program has set JFCNWRIT (bit 4) in
byte JFCBTSDM as it indicates the JFCB should not be written.

A sample exit program that modifies the JFCB is shown in
Appendix E.

REQUESTING PARTIAL RELEASE

An example of modifying the JFCB in OPEN's work area is used to
set the bits to 1 indicating partial release has been requested:
JFCRlSE (bits 0 and 1; mask X'CO') in byte JFCBINDI. This
should be done only for DASD physical sequential or partitioned
data sets opened for OUTPUT br OUT IN and processed by (1) EXCP
with a 5-word device-dependent section present in the DCB, (2)
BSAM, or (3) QSAM.

Chapter 6. Exit Routines 127

I

Care should be taken in modifying the JFCB release bits. For
example, a data set that is opened for output many times, C
writing varying amounts of data each time, may have to extend
after each OPEN, resulting in many small extents and, perhaps, . =~
reaching the 16-extent limit. This could result in a B37 abend.

Care should also be taken in setting the JFCBSPAC bits to define
the space quantity units when the partial release flag,
JFCBRLSE, is also set on. A cylinder allocated extent may be
released on a track boundary when JFCBSPAC does not indicate
cylinder units or average block length units with ROUND
specified. This will cause the cylinder boundary extent to
become a track boundary extent, thereby losing the performance
advantage of cylinder boundary extents. Zeroing the release
indicator and increasing secondary allocation quantity when, for
example, the data set has extended a large number of times, may
prevent such a B37 abend. Setting the release indicator could
result in more space being made available to other users sharing
the volume.

UPDATING THE SECONDARY SPACE DATA

The JFCB may also be modified by updating the secondary space
data. Byte JFCBCTRI contains the space request type coded in
the DD statement, or merged from the format-l DSCB. Field
JFCBSQTY contains the amount of secondary space (in either
tracks, cylinders, or average block units). Field JFCBPQTY
contains the amount of primary space (in either tracks,
cylinders, or average block units).

Setting the contiguous bit (JFCONTIG) to zero may prevent an
out-of-space ABEND where there is enough space, but not enough
contiguous space, to satisfy a request to extend the data set.

REGISTERS AT ENTRY TO IFGOEXOB

At entry to the exit, register contents are as follows:

Register Contents

1 Address of the DCB OPEN installation exit parameter
list

13 Address of an 18 word save area

14 Return address to OPEN

15 Address of the entry point to IFGOEXOB

REGISTERS AT RETURN TO OPEN

When you return to OPEN, register contents are as follows:

Register contents

0-14 Same as on entry to the exit

15 Set to 4 if the JFCB has been modified. Set to 0 if
the JFCB has not been modified

OPENI'EOY INSTALLATION EXIT FOR FORMAT-l DSCI NOT FOUND

The function of the Format-l DSCB-not-found installation exit in
OPEN and EOV is to determine if a missing DSCB (such as a data
set which has been migrated to another volume) can be restored C
to the volume. If your exit module restores the DSCB, it ~)
indicates this when it returns control to the control program. ,
The exit module, IFGOEXOA, is given control whenever OPEN or EOV
fails to find a format-l DSCB on a volume. There is an

128 MVS'370 System Programming library: Data Management

c

c

o

IBM-supplied exit module, IFGOEXOA, in SYS1.LPALIB. If you wish
to use your own exit module, you must replace IFGOEXOA. Your
exit module must have an entry point name of IFGOEXOA. If you
do not write your own exit module, processing continues normally
as the IBM-supplied exit returns a zero return code.

The exit is taken even under conditions where abnormal
termination ordinarily would not occur. Two examples of these
conditions follow:

1. When you have specified DISP=MOD and error recovery
processing is taking place because the last volume specified
in the JFCB does not contain the DSCB, but an earlier volume
does. For this case, if your return code from IFGOEXOA is
zero or if your return code is 4 and the DSCB has not been
restored, OPEN and EOV search the other volumes for the DSCB
after the exit is taken.

2. Another condition occurs during EOV output when space has
not yet been allocated on the new volume. Space is
allocated after the exit is taken if your return code from
IFGOEXOA is zero or if your return code is 4 and the DSCB
has not been restored.

When a DSCB is not found, IFGOEXOA is given control as follows:

• In system protect key 5 (data management key)

• In supervisor state

• The system resource represented by the SYSZTIOT major name
is enqueued for shared control (this ENQ prevents the exit
from invoking system functions such as SCRATCH, RENAME,
dynamic allocation, or LOCATE).

Standard register linkage conventions are used when IFGOEXOA is
given control as follows:

Register contents

o If 0, entry was from OPEN (single volume data set)

If C, entry was from OPEN (multivolume data set)

If F, entry was from EOV

1

2-12

13

14

15

Address of parameter list

Unpredictable

Address of 18-word save area

Return address

Address of entry point IFGOEXOA

The parameter list pointed to by register 1 consists of two
fullwords. The first fullword contains the address of the UCB
for the volume on which the DSCB was not found. The second
fullword contains the address of the 44-byte data set name, left
justified, and padded with blanks. Bit zero of the second
fullword is set to one, indicating the last word in the
parameter list. The data set name must not be modified by the
exit. The parameter list, save area, and data set name are in
protect key 5 virtual storage, which is not fetch protected.
IFGOEXOA must be reenterable. All work areas obtained through
GETMAIN must be released through FREEMAIN. The return from your
module, IFGOEXOA, to OPEN or EOV must be made as follows:

•
•

Using the return address passed to you in register 14

Registers 2-12 restored

• In protect key 5

Chapter 6. Exit Routines 129

• In supervisor state

• With a return code of 0, 4, or 8 in register 15

The return code you set in register 15 has the following
meanings:

Code

0(00)

4(04)

8(08)

Meaning

Processing continues normally. This return code is
given if the exit does not restore the DSCB. Zero is
the return code always given by the IBM-supplied exit
module.

The volume is searched one more time by OPEN or EOY
for the DSCB. This return code is given if IFGOEXOA
restores the DSCB to the volume. If the DSCB is again
not found, IFGOEXOA is not given control and
processing continues normally.

The task is abnormally terminated without attempting
to determine if DISP=MOD error recovery or allocation
on the new volume should occur. This return code is
given if IFGOEXOA encounters an error and you wish no
further processing to occur.

You should have IFGOEXOA establish its own error recovery
environment (such as through an ESTAE), intercept any
indeterminate errors, and return to the control program with
return code 8. Problem determination is the responsibility of
your exit module. A write-to-programmer (WTO with routing code
11) or a TPUT (if a TSO region) may be used to issue an
informative message.

During a parallel OPEN when two or more DCBs are being opened at

o

the same time, and two of the DCBs are openi ng the same data ;(~~
set, the DSCB may be missing. If IFGOEXOA is called for the \ .. ~ . .1
first of the two DCBs and restores the DSCB, the channel program ~,
attempting to read the DSCB for the second DCB may have been
executed before the restoration of the DSCB was complete.
IFGOEXOA is then called for the second DCB even though the DSCB
has already been restored. Return from IFGOEXOA with a return
code 4 is appropriate in this case.

IFGOEXOA is not given control when you are processing a YSAM
data set with an ACB; however, it is given control when you are
processing a VSAM data space with a DCB. IFGOEXOA is bypassed
if the format-4 DSCB is not found on a volume, even if the OPEN
is to the VTOC data set name (data set name of 44 bytes of
X'04').

DATA MANAGEMENT ABEND INSTALLATION EXIT

The abend installati~n exit provides the ability to recover from
abnormal conditions that may occur during the opening, closing,
or handling of an end-of-volume condition for a non-YSAM data
set associated with the user's task.

When an abnormal condition occurs, control passes to the DeB
abend user exit routine, if one is provided, and processing
continues as specified in the DCB abend user exit routine. (The
DCB abend user exit routine gives you some options regarding the
actions you want the system to take when a condition ari~es that
may result in abnormal termination of your task. For additional
information about the DCB abend user exit routine, see Data
Management Services.) However, if the DeB abend user exit
routine is not specified, or specifies to abnormally terminate
the task immediately, the system passes control to the abend
installation exit. If a DCB abend user exit routine is not C
provided, control immediately passes to the abend installation !.~
exit.

130 MVS,370 System Programming library: Data Management

o

C

0':·
"

IBM supplies an installation exit module, IFG01991 in
SYS1.lPAlIB, that handles abend situations caused by tape
positioning errors. IFG01991 allows you to retry tape
positioning when you receive a system completion code 613,
return code 08 or OC. To perform recovery actions for data
management sbend situations (other than those caused by tape
positioning errors), you can replace installation exit module
IFG01991 by modifying the source code supplied in SYS1.SAMPlIB.

IFG01991 receives control in protection key zero, supervisor
state. IFG01991 checks the system completion code and the
return code to determine whether the abend situation is the
result of a tape positioning error. If the system completion
code is other than 613 with return code 08 or OC, control
returns to the calling module with return code 0, indicating to
continue with the abend. Otherwise, IFG01991 checks the counter
in the 4-byte work area to determine if one attempt to
rep9sition the tape has been made. If no attempt to reposition
the tape has been made, IFG0199I issues a return code of 4,
indicating~~~ retry positioning. If one attempt to reposition
the tape ,has been made, IFG01991 issues message IEC613A to the
operator to determine whether to attempt repositioning. If the
operator specifies tnat tape positl0nlng 1s to be attempted
again, a return code of 4 is set, indicating that OPEN rewind
the tape and attempt positioning. If the operator specifies
that tape positioning is not to be reattempted, control is
returned to the calling module with a 0 return code.

When IFG01991 is given control, standard register linkage
conventions are used for registers 1, 13, 14, and 15. IFG0199E
passes an open sbend instal!atio~ Qxit list (OAIXl), in register
1, to the abend installation exit module.

The format of OAIXl f~llows:

Word Boundary

+0(00) User Prot Key I Option Flats I Reserved I Reserved

+4(04) Address of the protected copy of the DCB

+8(08) Address of the user's DCB Related to the abend

+12(OC) Address of the UCB Related to the abend

+16(10) Address of the JFCB Related to the abend

+20(14) Address of the TIOT Related to the abend

+24(18) Abend code - Example X'6130000C'

+28(IC) Installation work area (could be used as counter)

Chapter 6. Exit Routines 131

0(00) Protection key of the user's DCB

1(01) Option flags:

Bits

o OAIXEXIT; used to determine whether the DCB
abend user exit was taken

On exit was taken
Off exit was not taken

1 OAIXREW; used to determine whether to rewind the
tape volume

On rewind the tape volume
Off do not rewind the tape volume

8 Address of the user's DCB related to the abend
used to distinguish each unique exit parameter
list

28 4-byte work area used as a counter to determine
the number of times tape positioning has been
retried

The installation exit returns to IFG0199E one of the following
return codes:

Code

0(00)

4(04)

Meaning

Continue with the abend in process.

If the OAIXREW flag is set, indicating to rewind the
tape, rewind the tape volume; set the UCBFSCT and
UCBFSEQ fields in the UCB to zero; and retry the abend
in process.

If the OAIXREW flag is not set, indicating not to
rewind the tape, retry the abend in process.

For abend codes that the installation is allowed to retry, see
Data Management Services in the section that defines the abend
codes that the user abend exit may retry.

Modifying the IBM-Supplied Installation Exit Module: Because the
IBM-supplied installation exit module only handles a particular
abend situation, you may want to modify the source code of that
module to perform corrective actions for other abend situations.

You can obtain a copy of the source code from SYS1.SAMPlIB for
modification using the editing facility that is available to
you. After you have modified the source code, link-edit it into
SYS1.LPALIB. The source program is written in Assembler
language, and uses only macros in SYS1.MACLIB. If you replace
the supplied installation module, the exit module that you
supply must have the entry point name IFG01991 and it must be
reenterable.

OPEN/EOV US'ER EXIT FOR NONSPECIFIC TAPE MOUNT REQUESTS

This exit allows you to identify a specific tape volume to be
requested in place of a nonspecific (scratch) volume. Only
IBM-standard labeled tapes (SL) will be supported. The exit is
invoked when open or EOV is to issue a mount request for a tape
volume where no volume serial number has been specified, and
will get control before the mount message is issued.

132 MVS/370 System Programming Library: Data Management

(" ~"
J

((~\
1'",)1;1

c

c

c

o

The exit address must be in the DCB exit list. The exit list
entry code us~d to identify this exit in the DCB exit list is
X'17'. The exit is called in user key; the state will be the
same state as when the open or EOV was issued; no locks will be
held.

Chapter 6. Exit Routines ~32.1

o

o

0 J

o

At entry to your exit routine, register contents are as follows:

Register contents

o

1

2-13

14

15

Variable

Address of the exit parameter list (in key 5, nonfetch
protected storage)

Contents before the macro instructions that gave
Open/EOV control (OPEN, FEOV, EOV, PUT, and CHECK)

Return address (must not be altered by the exit
routine)

Address of exit routine entry point

The conventions for saving and restoring register contents are
as follows:

• The exit routine must preserve the contents of register 14.
It need not preserve the contents of other registers. The
operating system restores the contents of registers 2
through 13 before returning control to your program.

• The exit routine must not use the save area whose address is
in register 13, because this area is used by the operating
system. If the exit routine calls another routine or issues
supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

The exit parameter list contains the following:

• Flags indicating Sl tape, first entry to the exit, and
whether called from open or EOV

• The open option

• Addresses of the DCB, volume serial number, and JFCB

The high order bit of the last word in the list (the JFCB
address) will be set to one.

The format of the parameter list, which is mapped by macro
IECOENTE, is shown in Figure 32 on page 134.

The first time the exit is called (indicated by bit 7 of the
first byte of the parameter list), the volume serial number
field of the list contains a zero.

The following return codes (in register 15) are allowed:

Code

0(00)

4(04)

Meaning

Open/EOV will continue with the nonspecific mount
request.

Open/EOV will use the user-specified volume. Register 0
contains the address of a 6-byte volume serial number.
Open/EOV will request that the volume be mounted if the
volume is not in use by this job or another job.

If open or EOV finds the supplied volume serial number is in use
by this job or another job (that is, the volume is enqueued),
the exit is taken a subsequent time (indicated by bit 7 of the
first byte of the parameter list). The address of the supplied
volume serial number is passed in the parameter list to the
exit. The return codes will be the same as the first entry of
the exit. The exit will be entered repetitively until return
code 0 is passed back, or until return code 4 is passed back
together with a volume serial number that is not in use.

Chapter 6. Exit Routines 133

Na. Offset

OENTWRDI 00(00)

OENTFLG 00(00)
OENTOEOV
OENTOEOV

OENTNTRY
OENTNTRY
OENTOPTN 1 (01)

2 (02)
OENTDCBA 4 (04)
OENTVSRA 8 (08)

OENTJFCB 12 (DC)

Figure 32. Format of

Bytes Description

0 Nonspecific tape request user exit
parameter list

1 flags
o ••• called by open
1 •• , • called by EOV
• xxx xxx • reserved

••• 0 first entry to exit
.••• 1 subsequent entry to exit

1 open options
xxxx reserved

0000 INPUT
1111 OUTPUT
0011 INOUT
0111 OUTIN
0001 RDBACK

2 reserved
4 address of DCB
4 zero or address of volume

serial number
4 address of JFCB

Parameter List for Nonspecific Tape Mount User Exit

If the tape volume is not in use, the exit will not be taken
again even if some other reason (such as an I/O error, or
invalid expiration date) causes the tape to be "rejected.

OPEN/EOY USER EXIT FOR IBM-STANDARD LABELED TAPE SECURITY VERIFICATION

This exit allows authorized programs to verify that an
IBM-standard labeled tape selected by open or EOV should, in
fact, be used, and whether certain security checks may be
bypassed. The exit supports only IBM-standard labeled tape
(Sl), and is taken only for APF authorized programs for which
the program property "bypass password (and RACF) checking" is
active for (for information on program properties, see System
Programming library: Job Management).

The exit address must be in the DCB exit list. The exit list
entry code used to identify the exit is X'18'.

The exit is taken from open and EOV after volume verification
and posi.tioning, and before password ~nd/or expiration date
checking. The exit is called in user key; the state will be the
same state as when the open or EOV was issued; no locks will be
held.

At entry to your exit routine, register contents are as follows:

Register Contents

o Variable

1 Address of the exit parameter list (in key 5, non fetch
protected storage)

2-13 Contents before the macro instruction that gave
Open/EOV control (OPEN, FEOV, EOV, PUT, CHECK, and
GET)

14

15

Return address (must not be altered by the exit
routine)

Address of exit routine entry point

134 MVS/370 System Programming Librarv: Data Management

():

o

o

o

Name

OEVSWRDl

OEVSFlG
OEVSOEOV
OEVSOEOV

OEVSFIlE

OEVSFIlE

OEVSOPTN

OEVSDCBA
OEVSVSRA
OEVSHDRl

OEVSJFCB

Offset

00(00)

00(00)

01(01)

02(02)
04(04)
08(08)
12(OC)

16(10)

The conventions for saving and restoring register contents are
as follows:

• The exit routine must preserve the contents of register 14.
It need not preserve the contents of other registers. The
operating system restores the contents of registers 2
through 13 before returning control to your program.

• The exit routine must not use the save area whose address is
in register 13, because this area is used by the operating
system. If the exit routine calls another rcutine or issues
supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

The exit parameter list contains the following:

• Flags indicating whether the exit was called from open or
EOV, and whether the first data set on the volume is to be
written

• The open option

• Addresses of the DCB, volume serial number, tape label, and
JFCB

The tape label is either the HDRl label of a data set to be read
forward or overwritten, the EOFl label of a data set to be read
backward, or the EOFl label of a data set after which the new
data set is to written. The high order bit of the last word in
the parameter list (the JFCB address) is set to one.

The format of the parameter list, which is mapped by macro
IECOEVSE, is shown in Figure 33~

Bytes

o
1
o •••
1 .•.
.xxx xxx.

1
xxxx

2
4
4
4

••• 0

.•. 1

0000
1111
0011
0111
0001

Descr;pt;on

Sl tape security verification user
exit parameter list

flags
called by open
called by EOV
reserved
first data set to be written

on volume, or data set being read
second ~r subsequent data set

to be written on volume
open options
reserved
INPUT
OUTPUT
INOUT
OUT IN
RDBACK
reserved
address of DCB
address of volume serial number
address of tape label (HDRl or

EOF1)

address of JFCB

Figure 33. Format of Parameter list for IBM-Standard labeled Tape Security
Verification User Exit

Chapter 6. Exit Routines 13S

The following return codes (in register 15) are allowed:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

Heaning

Use the volume as if the exit was not entered.

Output processing: reject the volume and request that a
scratch tape be mounted (this will cause the open/EOV
user exit for nonspecific tape volume mount requests to
get control if that exit is defined). If the data set
sequence number to be written is not 1, treat as return
code 8.

Input processing: treat as return code 8.

Note: It is the user's responsibility to determine
whether a data set open for INOUT or OUTIN is being
processed for output or input at the time the exit is
given control from EOV. Bit DCBOFLWR in field DCBOFLGS
is set to 1 if the EOV is being processed for output.

Abnormally terminate the open or EOV, uSlng the
completion codes 913-34 for open and 937-29 for EOV.

Use the volume; the password or expiration date of the
tape label will not prevent the existing data set from
being overwritten.

Use the volume. The password, expiration date of the
tape label, or unlike data set names should not prevent
the first data set on a volume from being written;
however, in order to write other than the first data
set, the data set must have the same security
protection as the data set after which it will be
written.

136 MVS/370 System Programming Library: Data Management

c

o

0,',
,.I

C)

CHAPTER 7. SYSTE" "ACRO INSTRUCTIONS

INTRODUCTION

This chapter describes miscellaneous macro instructions that
allow you to:

• Modify control blocks

• Obtain information from control blocks and system tables

• Perform track capacity calculations

• Allocate a data set based on a partial DSCB

Before reading this chapter, you should be familiar with the
following pUblications:

• OS/VS-DOS/VSE-VM/370 Assembler Language contains the
information necessary to code programs in the assembler
language.

• Debugging Handbook contains format and field descriptions of
the data areas referred to in this chapter.

The system macro instructions are described in these functional
groupings:

•
•
•
•
•
•
•

Mapping (IEFUCBOB, IEFJFCBN, and CVT)

Obtaining device characteristics (DEVTYPE)

Manipulating the JFCB (RDJFCB)

Data security (DEBCHK)

Manipulating queues (PURGE and RESTORE)

Performing track capacity calculations (TRKCALC)

Allocating a data set based on a partial DSCB (REALLOC)

"APPING SYSTE" DATA AREAS

The IEFUCBOB, IEFJFCBH, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within
the unit control block (UCB), job file control block (JFCB), and
communication vector table (CVT), respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a
distribution library named SYS1.AMODGEH. Before you can issue
the macros, you must copy them from SYS1.AMODGEH into
SYS1.MACLIB (the IEBCOPY utility can be used to copy the
macros), or SYS1.AMODGEH may be concatenated to the macro
library before reference is made to SYS1.AMODGEN.

The fields in these blocks are shown and described in Debuagina
Handbook.

IEFUCBOB--HAPPING THE UCB

This macro instruction defines the symbolic names of the fields
in the unit control block (UCB). The macro does not include a
DSECT statement •. However, if you specify PREFIX=YES, the DSECT
statement is provided.

Chapter 7. System Macro Instructions 137

Tha format is:

[symbol] IEFUCBOB [LIST=[NOIYESl]
[,PREFIX=[NOIYESl]

LIST=[NOIYESl

NO

YES

specifies that only the UCB prolog is to be printed.

specifies that the UCB prolog and the rest of the UCB
are to be printed.

PREFIX=[NOIYESl

NO

YES

specifies that no prefix is to be printed.

specifies that the prefix and main body of the UCB ara
to be printed. A DSECT statement is included if you
specify PREFIX=YES.

IEF~FCBN--ftAPPING THE ~FCB

CVT--ftAPPING THE CVT

This macro instruction defines the symbolic names of the fields
in the job file control block (JFCB). The macro does not
include a DSECT statement. If you reqtiire one, code a DSECT
statement before the macro statement.

The format is:

I [symbol] I lEFJFCBNI [LIST=[NOIYESl]

LIST=[NOIYESl

NO

YES

specifies that only the JFCB prolog is to be printed.

specifies that the JFCB prolog and the rest of the
JFCB are to be printed.

This macro instruction defines the symbolic names of all fields
in the communication vector table (CYT).

The format is:

[symbol] CVT

DSECT=[NOIYESl

NO

[DSECT=[NOIYESl]
[,LIST=(NO YESl]

specifies that you do not want a DSECT.

YES
specifi~s that you want a DSECT.

138 "YS/370 System Programming library: Data Management

c

11-~

~,~;

o

o

o

o

LIST=[NOIYES)

NO

YES

specifies that only the CVT prolog is to be printed.

specifies that the CVT prolog and the rest of the CVT
are to be printed.

OBTAINING I/O DEVICE CHARACTERISTICS

Use the DEVTYPE macro instruction to request information
relating to the characteristics of an I/O device, and to cause
this information to be placed into a specified area. (The
results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a
checkpoint/restart occurs.) The IHADVA macro maps the data
returned by the DEVTYPE macro.

The topics that follow discuss the DEVTYPE macro, device
characteristics, and particular output for particular devices.

DEVTYPE "ACRO SPECIFICATION

The format is:

[s~mbol] DEVTYPE ddloc-addrx
,area-addrx
[,DEVTAB]
[,RPS]

ddloc~addrx
the name of an 8-byte field that contains the symbolic name
of the DD statement to which the device is assigned. The
name must be left justified in the 8-byte field, and must
be followed by blanks if the name is less than eight
characters. The doubleword need not be on a doubleword
boundary.

area-addrx
the name of an area into which the device information is to
be placed. The area can be two, five, or six fullwords,
depending on whether or not the DEVTAB and RPS operands are
specified. The area must be on a fullword boundary.

DEVTAB

RPS

This operand is only required for direct access devices.
If DEVTAB is specified, the following number of words of
information is placed in your area:

• For direct access devices: 5 words

• For nondirect access devices: 2 words

If you do not code DEVTAB, one word of information is
placed in your area if the reference is to a graphics or
teleprocessing device; for any other type of device, two
words of information are placed in your area.

If RPS is specified, DEVTAB must also be specified. The
RPS parameter causes one additional full word of RPS
information to be included with the DEVTAB information.

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeros to be placed in the
output area. Any reference to a SYSIH or SYSOUT data set causes
X'00000102' to be placed in word 0 and 32,760 (X'00007FF8') to
be placed in word 1 in the output area. Any reference to a file
allocated to a TSO terminal causes X'00000101' to be placed in

Chapter 7. System Macro Instructions 139

word 0 and 32,760 (X'00007FF8') to be placed in word 1 in the
output area.

DEVICE CHARACTERISTICS INFORMATION

The following information is placed into your area as a result
of issuing a DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the
UCB. For a complete description of this field, refer to
Debugging Handbook.

Word 1
Maximum block size. For direct access devices, this value
is the smaller of either the maximum size of an unkeyed
block or the maximum block size allowed by the operating
system; for magnetic or paper tape devices, this value is
the maximum block size allowed by the operating system.
For all other devices, this value is the maximum block size
accepted by the device.

If DEVTAB is specified, the next three fullwords contain the
followi ng i nform"ati on about di rect access devi ces:

Word 2

Bytes 0-1

Bytes 2-3

Word 3

Bytes 0-1

The number of physical cylinders on the device,
excluding alternates.

The number of tracks per cylinder.

Maximum track length. Hote that for the 2305,
3330/3333 Model 1 or 11, 3340/3344, 3350, 3375,
and 3380 direct access devices, this value is
not equal to the value in word 1 (maximum block
size) as it is for other IBM direct access
devices.

Note: Before using bytes 2 and 3, please read the description of
word 4.

Byte 2

Byte 3

Bytes 2-3

Word 4

Byte 0

Block overhead, keyed block--the number of
bytes required for gaps and check bits for each
keyed block other than the last block on a
track.

Block overhead--the number of bytes required
for gaps and check bits for a keyed block that
is the last block on a track.

Block overhead--the number of bytes required
for gaps and check bits for any keyed block on
a track including the last block. Use of this
form is indicated by a one in bit 4, byte 1 of
word 4.

Basic overhead--the number of bytes required
for the count field. Use of this form is
indicated by a one in bit 3, byte 1 of word 4.

Block overhead, block without key--the number
of bytes to be subtractQd'from word 3, bytes 2
or 3 or bytes 2 and 3, if a block is not keyed.

If bit 3, byte 1 of word 4 is 1, this byte 0.'\
contains the modulo factor for a modulo device.

140 MVS/370 System Programming library: Data Management

o

o

Byte 1

Bytes 2-3

Bit 0

Bits 1-2

Bit 3

Bit 4

Bits 5-6

Bit 7

If on, the number of cylinders, as
indicated in word 2, bytes 0-1 are
invalid. This bit will be on only
for 3340 devices.

Reserved.

If on, indicates a modulo device
(3375, 3380). To calculate the
number of data bytes required for a
data block for a modulo device, see
the device data in Data Management
Services.

If on, bytes 2 and 3 of word 3
contain a halfword glvlng the block
overhead for any block on a track,
including the last block.

Reserved.

If on, a tolerance factor must be
applied to all blocks except the
last block on the track.

Tolerance factor--this factor is used to
calculate the effective length of a block. The
calculation should be performed as follows:

Step 1

Step 2

Step 3

add the block's key length to the
block's data length.

test bit 7 of byte 1 of word 4. If
bit 7 is 0, perform step 3. If bit
7 is 1, multiply the sum computed
in step 1 by the tolerance factor.
Shift the result of the
multiplication nine bits to the
right.

add the appropriate block overhead
to the value obtained above.

If bit 3, byte 1 of word 4 is 1, bytes (2-3)
contain the overhead for the data or key field.

If DEVTAB and RPS are specified, the nextfullword contains
the following information:

Word.,2

Bytes 0-1

Byte 2

Byte 3

RO overhead for sector calculations

Humber of sectors for the device

Humber of data sectors for the device

Figure 34 on page 142 shows the output for each device type that
results from issuing the DEVTYPE macro.

Control is returned to your program at the next executable
instruction following the DEVTYPE macro instruction. If the
information concerning the ddname you specified has been
successfully moved to your work area, register 15 will contain
zeros. Otherwise, register 15 will contain X'04', indicating
that the ddname was not found.

Chapter 7. System Macro Instructions 141

Device!,! Maximum DEVTAB (Words 2, 3, and RPS (Word S,
Record Size ~, in Hexadecimal) in
(Word 1, in Hexadecimal)
Decimal)

2540 Reader 80 Hot Applicable Hot Applicable

2540 Reader w/CI 80 Hot Applicable Hot Applicable

2540 Punch 80 Hot Applicable Hot Applicable

2540 Punch w/CI ,180 Hot Applicable Hot Applicable

2501 Reader 80 Hot Applicable Hot Applicable

2501 Reader w/CI 80 Hot Applicable Not Applicable

2520 Reader-Punch 80 Hot Applicable Hot Applicable

2520 Reader-Punch 80 Not Applicable Not Applicable
w/CI

1287 Optical Reader 80 Hot Applicable Hot Applicable

1288 Optical Reader 80 Hot Applicable Hot Applicable

3886 Optical Reader 80 Hot Applicable Hot Applicable

3890 Document 80 Hot Applicable Hot Applicable
Processor

1419/1275 80 Hot Applicable Hot Applicable
Reader/Sorter

3505 Reader 80 Hot Applicable Hot Applicable

3505 Reader w/CI 80 Hot Applicable Hot Applicable

3525 Punch 80 Hot Applicable Hot Applicable

3525 Punch w/CI 80 Not Applicable Hot Applicable

1403 Printer 120 3 Hot Applicable Hot Applicable

1403 w/UCS 120 3 Hot Applicable Hot Applicable

1443 Printer 120 2 Hot Applicable Hot Applicable

3203 Model 5 Printer 132 Hot Applicable Hot Applicable

3211 Printer 132 3 Hot Applicable Hot Applicable

3800 Printing 136 4 Hot Applicable Hot Applicable
Subsystem

4245 Printer 132 Hot Applicable Hot Applicable

2671 Paper Tape 32760 Hot Applicable Hot Applicable
Reader

1052 130 Hot Applicable Hot Applicable
Printer-Keyboard

1053 Printer Not Applicable Hot Applicable

3210 130 Hot Applicable Hot Applicable
Printer-Keyboard

Figure 34 (Part 1 of 2). Output Obtained from Issuing DEVTYPE Macro ()

142 MVS/370 System Programming library: Data Management

Devicel~Z Maximum DEYTAB (Words 2~ 3~ and RPS (Word S~

o Record Size ~~ in Hexadecimal) in
(Word l~ in Hexadecimal)
Decimal)

3215 130 Not Applicable Not Applicable
Printer-Keyboard

3895 Reader 74 Not Applicable Not Applicable
Inscriber

2400 (9-track) 32760 Not Applicable Not Applicable

2400 (9-track, p. e.) 32760 Not Applicable Not Applicable

2400 (9-track, d.d.) 32760 Not Applicable Not Applicable

2400 (7-track) 32760 Not Applicable Not Applicable

2400 (7-track, d. c.) 32760 Not Applicable Not Applicable

2495 Tape Cartridge 0 Not Applicable Not Applicable
Reader

3400 (9-track, p. e.) 32760 Not Applicable Not Applicable

3400 (9-track, d. d.) 32760 Not Applicable Not Applicable

3400 (7-track) 32760 Not Applicable Not Applicable

2314/2319 DAS 7294 00CBOO141C7E922D2D010216 Not Applicablii=
Facility

2305 Model 1 14136 0030000838E8027ACA080200 02985A57
Fixed-Head storage

2305 Model 2 14660 006000083AOA01215B080200 0140B4B1
Fixed-Head storage

3330/3333 Dci sk 13030 019BOO13336DBFBF3800.200 00ED807C
Storage

3330V MSS Virtual 13030 019BOO13336DBFBF38000200 00ED807C
Volume

3330 Model 11 (or 13030 032FOO13336DBFBF38000200 00ED807C
3333 Model 11) Disk
Storage

3340 Disk Storage 8368 015DOOOC2157F2F24BOO0200 0125403D
(35 megabytes)

3340/3344 Disk 8368 0230001E4B36010B52080200 0125403D
Storage (70
megabytes)

3350 Disk Storage 19069 0230001E4B36010B52080200 0185807B

3375 Disk Storage 32760 03BFOOOC8CAOOOE0201000BF 0340C4BB

3380 Disk Storage 32760 0376000FBB6001002010010B 04EODED6

2250 Model 1 Display Not Applicable Not Applicable
Unit

2250 Model 3 Display Not Applicable Not Applicable
Unit

o Figure 34 (Part 2 of 2). Output Obtained from Issuing DEVTYPE Macro

Notes to Figure 3~:

Chapter 7. System Macro Instructions 143

1 CI-card image feature; d.c'.-data conversion; d.d.-dual
density; p.e.-phase encoding; UCS-universal character set;
w/-with.

Device codes are presented in System Programming Library:
Debugging Handbook.

3 Although certain models can have a larger line size, the
minimum line size is assumed.

4 The IBM 3800 Printing Subsystem can print 136 characters per
line at 10-pitch, 163 characters per line at 12-pitch, and
204 characters per line at 15-pitch. The machine ~efault is
136 characters per line at 10-pitch.

communication Equipment Record Size

1030,1050,83B3, Hot Applicable
TWX,2250,S360

1060,115A,1130 Hot Applicable

2780 Hot Applicable

2740 Hot Applicable

READING AND MODIFYING A JOB FILE CONTROL BLOCK

To accomplish the functions that are performed as a result of an
OPEN macro instruction, the open routine requires access to
information that you have supplied in a data definition (DO)
statement. This information is stored by the system in a job
file control block (JFCB).

In certain applications, yo~ may find it necessary to modify the
contents of a JFCB before issuing an OPEH macro instruction.
For example, suppose you are adding records to the end of a
sequenttal data set. You might want to add a secondary
allocation quantity to allow the existing data set to be
extended when the space currently allocated is exhausted. To
assist you, the system provides the RDJFCB macro instruction.
This macro instruction causes a specified JFCB to be moved from
the SWA (scheduler" work area), where it is stored, to an area
specified in an exit list. (The use of the RDJFCB macro
instruction with an exit list is shown under "RDJFCB-Read a Job
File Control Block" on page 148. The symbolic names and field
descriptions of the JFCB are contained in Debugging Handbook.)
When you subsequently issue the OPEN macro instruction, you must
indicate, by specifying the TYPE=J operand, that you want to
open the data set using the JFCB in the area you specified.

At the conclusion of open processing, the JFCB is moved back to
the SWA, unless you set the bit JFCHWRIT in the field JFCBTSDM
to one before you issue the OPEN macro instruction.

caution: If the JFCB, which the system used to open the data
set, is not available in SWA during EOV or CLOSE processing,
errors may occur.

144 MVS/37~ System Programming library: Data Management

C·~
"

o

o

Some of the modifications that are commonly made to the JFCB
include:

• Moving the creation and expiration date fields of the DSCB
into the JFCB (see "Using RDJFCB for MSS Virtual Volumes"
below).

• Moving the secondary allocation quantity from the DSCB into
the JFCB (see "Using RDJFCB for MSS Virtual Volumes" below).

• Moving the DCB fields from the DSCB into the JFCB.

• Adding volume serial numbers to the JFCB (see "Using RDJFCB
for MSS Virtual Volumes" and "RDJFCB Security" below).

Volume serial numbers in excess of five are written to the
JFCBX (extension) located in the SWA. The JFCBX cannot be
modified by user programs.

• Modifying the data set sequence number field in the JFCB.

• Modifying the number-of-volumes field in the JFCB (see
"Using RDJFCB for MSS Virtual Volumes" below).

• Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape
volume DEQ at demount facility (see "DEQ at Demount Facility
for Tape Volumes," below).

USING RDJFCB FOR "55 VIRTUAL VDLUMES: Care must be taken in
using RDJFCB if the data set resides on MSS virtual volumes such
that:

• The expiration date added does not conflict with other
volumes within the specified MSVGP.

• The secondary allocation quantity should be in cylinder
increments and be a multiple or sub-multiple of the primary
allocation quantity to avoid fragmentation.

• The number of volumes must not exceed the number available
in the specified MSVGP.

• Any volume serial numbers added to the JFCB should exist in
the MSVGP.

RDJFCB SECURITY: The volume serial numbers specified in the
user-supplied JFCB will be compared with the volume serial
numbers in the system JFCB located in the SWA. Each different
volume serial number will be enqueued exclusively. The volumes
will stay enqueued until the job step terminates since the close
routines will not dequeue the volumes. If the job step already
has the volume open, OPEN TVPE=J will continue. If the volume
is enqueued by another job step, a 413 abend will occur with a
return code of 04.

Some JFCB modifications can compromise the security of existing
password-protected data sets. The following modifications are
specifically not- allowed, unless the program making the
modifications is authorized or can supply the password:

• Changing the disposition of a password-protected data set
from OLD or MOD to HEW.

• Changing the data set name of one or more of the volume
serial numbers when the disposition is NEW.

• Changing the label processing specifications to bypass labal
processing.

Note: An authorized program is one that is either in supervisor
state, executing in one of the system protection keys (keys 0
through 7), or authorized under the Authorized Program Facility.

Chapter 7. System Macro Instructions 145

RDdFCI USE IY AUTHORIZED PROGRAMS: If you change the data set
nama in the JFCB, you should do a system enqueue on the major
name of "SYSDSH" for the substituted data set name. To use the C
correct interface with other system functions (for example, ~ I

partial release), the EHQUEUE macro should include the TCB of -;..#
the initiator and the length of the data set name (with no
trailing blanks). When you complete processing of the data set,
you should use the DEQ macro to release the resources.

If you rewrite the JFCB, you must set bit zero at JFCBMASK + 4
to one.

DE' AT DEMOUNT FACILITY FOR TAPE VOLUMES

This facility is intended to be USQd by long-running programs
which create an indefinitely long-running tape data set (such as
a lo~ tape). Use of this facility by such a program permits the
processed volumes to be allocated to another job for processing
(such as data reduction). This processirig is otherwise
prohibited unless the indefinitely long data set is closed and
dynamically unallocated.

You may invoke this facility only through the RDJFCB/OPEH TYPE=J
interface by setting bit JFCDQDSP (bit 0) in field JFCBFlG3
(offset 163 or X'A3') to 1. The volume serial of the tape is
dequeued when the volume is demounted by OPEN or EOV with
message IEC502E when all of the following conditions are
present:

• The tape volume is verified for use by OPEN or EOV.

• JFCDQDSP is set tol.

• The program is APF authorized (protect key and
supervisor/problem state are not relevant).

• The tape volume is to be immediately processed for output.
That is, either OPEN verifies the volume and the OPEN option
is OUTPUT, OUTIN, or OUTINX; or EOV verifies the volume and
the DCB is opened for OUTPUT, OUTIN, INOUT, or EXTEND, and
the last ope~ation against the data set was an output
operation (DCBOFlWR is set to 1).

Note that in order for EOV to find JFCDQDSP set to 1, the
program must not inhibit the rewrite of the JFCB by setting bit
4 of JFCBTSDM to 1.

The tape volume is considered verified after file protect, label
type, and density conflicts have been resolved. The volume is
dequeued when demounted after this verification, even if further
in OPEN or EOV processing the volume is rejected because of
expiration date, security protection, checkpoint data set
protection, or an I/O error.

When the volume serial is dequeued, the volume becomes available
for allocation to another job. However, because the volume DEQ
is performed without unallocating the volume, care must be
exercised both by the authorized program and the installation to
prevent misuse of the DEQ at demount facility. A discussion of
~uch misuse follows.

1. The authorized program must not close and reopen the data
set using the tape volume DEQ at demount facility. If it
does, one of the following can occur:

a. The dequeued volume may be mounted and in use by another
job. When the volume is requested for mounting, for the
authorized program, the operator is unable to satisfy
the mount. Therefore, the operator must either cancel
the requesting job, cancel the job using the volume, c·.\
wait for the requesting job to time out, or wait for the
job using the volume to terminate.

146 MVS/370 System Programming library: Data Management

c

c

b. The de queued volume may be allocated to another job but
not yet in use. The operator mounts the volume to
satisfy the mount request of the authorized job. When
the volume is requested for mounting by the other job,
the operator is unable to satisfy the mount request, and
is faced with the same choices as in a, above.

c. The dequeued volume may not yet be allocated to another
job and the volume is mounted to satisfy the mount
request of the authorized job. Another job may allocate
the volume and when the volume is requested for
mounting, the situation is the same as in b, above.

It is the responsibility of the installation that permits a
program to run with APF authorization to ensure that it does
not close and reopen a data set using the DEQ at demount
facility.

•
2. Care should be exercised when an authorized program uses the

DEQ at demount facility (data set 1) but processes another
tape data set (data set 2). Assume the same volume serial
numbers have been coded in the DD statements for data set 1
and data set 2. As the volumes of data set 1 are demounted,
they are dequeued even though those volumes may yet be
requested for data set 2. All of the problems explained in
a, b, and c in 1 above, may occur as data set 2 and another
job contend for a dequeued volume.

This problem should not occur, given the intended use of the
DEQ at demount facility. That is, a long-running
application creating an indefinitely long tape data set.
This type of application is not normally invoked through
batch execution with user-written DD statements.

3. Once a volume has been demounted and dequeued because of the
DEQ at demount facility, the volume is not automatically
rejected by the control program when mounted in response to
a specific or nonspecific mount request. Without the use of
the facility, the control program can recognize (by the ENQ)
that the volume is in use, and reject the volume.
Therefore, operations procedures, in effect to prevent
incorrect volumes from being mounted, should be reviewed in
the light of reduced control program protection from such
errors when the DEQ at demount facility is used.
Specifically, if a volume is remounted for an authorized
program and the volume had been used previously by that
authorized program, duplicate volume serial numbers will
exist in the JFCB and the control program will be unable to
release the volume during EOV processing.

4. Checkpoint/restart considerations are discussed in
Checkpoint/Restart.

OPEN--INITIALIZE DATA CONTROL BLOCK FOR PROCESSING THE JFCB

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro
instruction, except for the TYPE=J option, is contained in Data
Management Macro Instructions. The. TVPE=J option, because it is
used in conjunction with modifying a JFCB, should be used only
by the system programmer or only under the system programmer's
supervision.

Chapter 7. System Macro Instructions 147

[symbol] (dcb-addr,[(options)], •••)
[,TYPE=Jl

TYPE=J
specifies that for each data control block referred to, you
have supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal
representation of infprmation in a DD statement.

During initialization of a data control block, its
associated JFCB may be modified with information from the
data control block or an existing data set label or with
system control information.

The system always creates a job file control block for each
DD control statement. The job file control block is placed
in the SWA (scheduler work area). Its position, in
relation to other JFCBs created for the same job step, is
noted in a table in virtual storage.

When this operand is specified, you must also supply a DD
statement. However, the amount of information given in the
DD statement is at your discretion because you can modify
many fields of the system-created job file control block.
If you specify DUMMY on your DD statement, the open routine
will ignore the JFCB DSNAME and open the data set as dummy.
(See the examples of the RDJFCB macro instruction for a
coding example that modifies a system-created JFCB.)

Note: The DD statement must specify at least:

• Device allocation (refer to JCL for methods of preventing
share status)

• A ddname corresponding to the associated data control block
DCBDDNAM field

RDJFCB--READ A JOB FILE CONTROL BLOCK

The RDJFCB macro instruction causes a job file control block
(JFCB) to be moved from the SWA (scheduler work area) into an
area of your choice as identified via the EXLST parameter of
RDJFCB for each data control block specified.

[symbol] RDJFCB

deb-address, (options)

(deb-address
,[(options)], •••)

(same as the dcbaddress, optionl, and option2 operands of
the OPEN macro instruction, as shown in Data Management
Macro Instructions).

Although the option operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands
can appear in the list form of either the RDJFCB or OPEN
macro instruction to generate identical parameter lists,
which can be referred to with the execute form of either
macro instruction.

148 MVS/370 System Programming Library: Data Management

o

O··~
. .

c

o

Examples: In Figure 35 on page 149, the macro instruction at EXi
creates a parameter list for two data control blocks: IHVEH and
MASTER. In creating the list, both data control blocks are
assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 reads the
system-created JFCBs for IHVEH and MASTER from the SWA into the
area you specified, thus making the JFCBs available to your
problem program for modification. The macro instruction at EX3
modifies the parameter list entry for the data control block
named IHVEH and indicates, through the TYPE=J operand, that the
problem program is supplying the JFCBs for system use.

Chapter 7. System Macro Instructions 148.1

iAf(-~

~''"'''~

('-~i ,;

0 'I

o

EX1 RDJFCB (INVEN"MASTER),MF=l

.
EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (,(RDBACK,lEAVE»,TYPE=J,MF=(E,EX1)

IHVEH DCB EXlST=lSTA, •••
MASTER DCB EXlST=lSTB, •••
lSTA DS OF

DC X'07'
DC Al3(JFCBAREA)

JFCBAREA DS OF,176C

lSTB DS OF

Figure 35. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may
be specified in the RDJFCB macro instruction. This facility
makes it possible to read several job file control blocks in
parallel.

An exit list address must be pr~vided in each data control block
specified by an RDJFCB macro instruction. Each exit list must
contain an active entry that specifies the virtual storage
address of the area into which a JFCB is to be placed. A full
discussion"of the exit list and its use is contained in Data
Management Services. The format of the job file control block
exit list entry is as follows:

Types of Hexadecimal contents of Exit List Entry
Exit List Code (Low-Order Bytes)
Entry (High-Order

Byte)

Job file 07 Address of a 176~byte area to
control be provided if the RDJFCB or
block OPEH (TYPE=J) macro

instruction is used. This
area must, begin on a fullword
boundary and must be located
within the user's region.

The virtual storage area into which the JFCB is read must be at
least 176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter
list, a return code of zero is placed in register 15. If the
JFCB is not read for any of the DCBs because the DDHAME is

Chapter 7. System Macro Instructions 149

blank, or a DD statement is not provided, a return code of 4 is
placed in register 15.

Warning: The following errors cause the results indicated:

Error Result

A DD statement has not been A return code of 4 is
provided. placed in register 15.

DDNAME field in DCB is A write-to-programmer is
blank. issued, the request for

this DCB is ignored, and a
return code of 4 is placed
in register 15.

A virtual storage address Abnormal termination of
has not been provided. task.

Note that if you want to open a VTOC data set to change its
contents (that is, open it for OUTPOr, OUil~, ~~OUI, U'OAT,
OUTIMX~ or EXTEND), your program must be authorized under the
Authorized Program Facility (APF). APF provides security and
integrity for" your data sets and programs. Details on how you
authorize your program are provided in System Programming
Library: Supervisor Services and Macro Instructions. -

If the RDJFCB routine fails while processing a DCB associated
with your RDJFCB request, ycur tpsk is abnormally terminated.
Hone of the options available through the DCB ABEND exit, ~s
described in Data Management Services, is available when a
RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine will
modify only the first JFCB.

ENSURING DATA SECURITY BY VALIDATING THE DATA EXTENT BLOCK

Protecting one user's data from inadvertent or malicious access
by an unauthorized user depends on protection of the data extent
block (DEB). The DEB is a critical control block because it
contains information about the device a data set is mounted on,
and describes the location of data sets on direct access device
storage volumes. The DEB also contains the address ~f the
appendage vector table (AVT). Using the AVT, an unauthorized
user can modify the AVT to give control to a routine in
supervisor state to read from and write to data sets to which
access would otherwise be denied.

To guarantee protection of the DEB, the DEBCHK macro instruction
is provided. The DEBCHK macro instruction can be found in
SYSl.MACLIB. The DEBCHK macro is issued by several components
of the system control program. For example:

• The open access method executors issue the macro to add the
address of a DEB they have built to a list of valid
addresses called the DE! table. The DEB validity checking
routine builds and maintains a DEB table for each job step.

• The EXCP Processor uses the macro to verify that the DEB
passed with each EXCP request is in the DEB table.

• The close component issues the macro to remove a DEB from
the DEB table.

I' O·
\ ---" ..

If you code a routine that builds a DEB, you must add the
address of the DEB you bu i 1 t to the DEB table. If you code a C"","\:
routine that depends on the validity of a DEB that is passed to
your routine, you should verify that the DEB passed to your
routine has a valid entry in the DEB table and points to your

150 MVS/370 System Programming Library: Data Management

c'

o

o

DCB or access method control block (ACB). Use the TVPE=ADD and
the TVPE=VERIFV operands of the macro, respectively.

To prevent an asynchronous routine from changing or deleting, or
assigning a new DEB to a DCB, you must hold the local lock. In
this case, you must use the branch entry to the DEBCHK verify
routine.

Additional details about the functions provided by the DEB
validity checking routine and about the contents of the DEB
table are available in Oeen/Close/EOV L~gic.

The DEBCHK macro instruction provides four functions:

• Adds the address of a DEB to the DEB table, which is located
in protected storage. The DEB table contains the address of
every user DEB associated with a given job step. Every
system control program component that builds a user DEB must
add the address of that DEB to a DEB table.

• Verifies that the DEB table associated with a given job step
contains the address of a valid DEB and that the DEB points
to the DCB (or ACB). Any system control program component
or problem program can use this function to verify that a
DEB is valid.

• Deletes the address of a DEB from the DEB table. Any
program that deletes a user DEB must, before it deletes the
DEB, issue a DEBCHK macro with a TVPE=DELETE operand to
delete the address of the DEB from the DEB table. If the
DEB validity checking routine encounters an error while
deleting the address from the DEB table,'the job step is
abnormally terminated.

• Deletes the address of a DEB from the DEB table in the same
way as the preceding function, except that, instead of
terminating the job step, this function merely returns an
error code in register 15. This function is provided to
prevent recurring abnormal termination. The format of the
DEBCHK and a description of the operands follow:

DEBCHK--MACRO SPECIFICATION

[symbol] DEBCHK cbaddr
[,TVPE=(VERIFVI:ADDIDELETElpURGEJ]
[,AM=Camt~l(amaddr)I((amreg))J]
[,BRANCH={NOIVESll
t,TCBADDR=address]
[,KEVADDR=addressl
[,SAVREG=reg]
[,KF=Ll

cbaddr

for BRANCH=NO
RX-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This
operand is ignored if MF=L is coded. For verify, add, and
delete requests, cbaddr is the address of a DCB or ACB that
points to the DEB whose address is either verified to be in
the DEB table, added to the DEB table, or deleted from the
DEB table. For the purge function, cbaddr is the address
of the DEB whose pointer is to be purged from the table: no
reference is made to the DCB or ACB.

Chapter 7. System Macro Instructions 151

Note: A spooled DCB's DEB does not point back to the DCB.
but to the spooled ACB; in this case, the DEBCHK should be C
issued agai nst the ACB. \);

for BRANCH=VES
The A-type address of a 4-byte fjeld, or a register
(1) or (3-12), that points to the DCB or ACB
containing the DEB to be verified.

TVPE=CVERIFVIADDIDELETEIPURGEJ
indicates the function to be performed. If MF=L is coded,
TYPE is ignored. The functions are:

VERIFY

ADD

This function is assumed if the TVPE operand is not
coded. The control program checks the DEB table to
determine whether the DEB pointer is in the table at
the location indicated by the DEBTBLOF field of the
DEB. The DEB is also checked to verify that DEBDCBAD
points to the DCB (or ACB) passed to DEBCHK. The
DEBAMTYP field in the DEB is compared to the AM
operand value, if given. The two must be equal.
TVPE=VERIFY can be issued in either supervisor or
problem state.

The DEB and the DCB (or ACB) must point to each other
before the DEB address can be added to the DEB table.
Before the DEB pointer can be added to the table, the
DEB itself must be queued on the current TeB DEB chain
(the TCBDEB field contains the address of the first
DEB in the chain). The DEB address is added to the
DEB table at some offset into the table. That offset
value is placed in the DEBTBLOF field of the DEB, and
the access method type is inserted into the DEBAMTYP
fi eld of the DEB. A zero is placed in the DEBAMTYP tf--~
field if the AM operand is not coded. TVPE=ADD can be ~~
issued only in supervisor state. ~

DELETE

PURGE

The DEB and the DCB (or ACB) must point to each other
before the DEB address can be deleted from the DEB
table. TYPE=DELETE can be issued only in supervisor
state.

The DEB pointer is removed from the DEB table without
checking the DCB (or ACB). TVPE=PURGE can be issued
only in supervisor state.

specifies an access method value. Each value corresponds
to a particular access method type (note that BPAM and SAM
have the same values):

Type Value

TCAMAP X'84'
SUBSYS X'Sl'
ISAM X'80'
BOAM X'40'
SAM X'20'
BPAM X'20'
TAM X'10'
GAM X'08'
TCAM X'04'
EXCP X'02'
VSAM X'Ol'
NONE X'OO'

The operand can be coded in one of tha following three
ways, only the first of which is valid for the list form
(HF=L) of the instruction.

152 MVS/370 System Programming Library: Data Management

c

C
I~

-

o

amtvpa
refers to the access method: ISA", BDA", SA", BPA",
TA" (which refers to BTAM only), GA", TCAH, EXCP, or
VSA". TCAHAP identifies a TCAM application-program
DEB. SUISYS identifies a subsystem of the operating
system, such as a job entry subsystem. NONE indieates
that no access method or subsystem is specified.

(amaddr)
is the RS-type address of the access method value.
This format may not be coded when HF=L is used.

((amreg))
is one of the general registers 1 through 14 that
contains the access method value in its low-order byte
(bit positions 24 through 31). The high-order bytes
are not inspected. This form may not be used when
MF=L is coded.

The use of amaddr and amreg should be restricted to those
cases where the access method value has been generated
previously by the MF=L form of DEBCHK. If MF=L is not
coded, the significance of the AM operand depends upon the
TYPE.

If TYPE is ADD and AM is specified, the access method value
is inserted in the DEBAMTYP field of the DEB, and all
subsequent DEBCHK macros referring to this DEB must either
specify the same AM or omit the operand. When the AM
operand is omitted for TYPE=ADD, a null value (0) is placed
in the DEB and all subsequent DEBCHK macros must omit the
AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or
VERIFY, the access method value is compared to the value in
the DEBAMTYP field of the DEB. If AM is omitted, no
comparison is made.

BRANCH=(NOIYES)
specifies whether you want to use the branch entry to the
DEBCHK verify routines.

NO

YES

specifies branch entry is not to be used. The
operands SAYREG, TCBADDR, and KEYADDR are ignored.

specifies the branch entry is to be used. TYPE=YERIFY
must be implicitly or explicitly specified. The
operands TCBADDR and KEYADDR are required. AM and MF
are ignored. Hotes for BRAHCH=YES:

• Registers 1, 2, 10, 11, 14, and 15 must not be
used for SAVREG=.

• Registers 1, 2, 10, 11, 14, 15, and the register
specified for SAYREG= must not be used for cbaddr,
TCBADDR=, or KEYADDR=.

• The contents of registers 10, 11, and 14 are
unpredictable on completion. Also, if you do not
specify SAVREG=, the contents of register 2 are
unpredictable.

• At completion time, register 1 contains the
address of the DEB, and register 15 contains
either 0, 4, or 16 (see below for codes and their
meanings).

TCBADDR=address--A-type address or (3-12)
specifies the location or register containing the address
of the TCB to be used by the DEBCHK verify routine. Use
this operand only when BRAHCH=YES.

Chapter 7. System Macro Instructions 153

KEYADDR=address-A-type address or (3-12)
. specifies the location, or a register pointing to the

location of a field containing the key to be used when
accessing the DCB (or ACB). Use this operand only when
BRANCH=YES.

SAVREG=reg
specifies the register in which register 2 is to be saved.
Use this operand only when BRANCH=YES.

indicates the list form of the DEBCHK macro instruction.
When MF=L is coded, a parameter list is built consisting of
the access method value that corresponds to the AM keyword.
This value may be referenced by name in another DEBCHK
macro by coding AM=Camaddr), or it may be inserted into the
low-order byte of a register before issuing another DEBCHK
macro by coding AM=CCamreg)).

If the DEBCHK routine completes successfully, register 15 will
be set to 0 and register 1 will contain the address of the DEB
when control is returned to your program. Otherwise, register
15 will contain one of the following decimal codes:

Code

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(IC)

32(20)

Meaning

Either (a) the DEB table associated with the job step
does not exist; or (b) the DEBTBLOF field of the DEB
was set to zero or a negative number, or was larger
than the DEB table; or (c) register 1 did not contain
the same address as the DEB table entry.

An invalid TYPE was specified. (The DEBCHK routine was
entered by a branch, not by the macro.)

Your program was not authorized and TYPE was not
VERIFY.

DEBDCBAD did not contain the address of the DCB (~r
ACB) that was passed to the DEBCHK routine.

The AM value does not equal the value in the DEBAMTYP
field.

The DEB is not on the DEB chain and TYPE=ADD was
specified.

TYPE=ADD was specified for a DEB that was already
entered in the DEB table.

The DEB table exceeded the maximum size (32,760 bytes)
and TYPE=ADD.

PURGING AND RESTORING I/O REQUESTS

The system's purge routines, guided by a parameter list you pass
them, perform either a halt or a quiesce operation. In a halt
operation, the purge routines stop the processing of specified
I/O requests that were initiated with an EXCP macro instruction.
In a quiesce operation, the purge routines:

• Allow the completion of I/O requests that were initiated
with an

•
passed to the I/O supervisor for execution

stop the processing of those requests that have not as yet
been passed to the I/O supervisor, but save the lOBs of the
requests so that they can be reprocessed (restored) later.

154 MVS/370 System Programming Library: Data Management

c

o

c

The system's restore routines make it possible to reprocess I/O
requests that are quiesced. (Note: Not covered here is the
purge and restore processing that takes in I/O requests not
initiated by an EXCP macro instruction. If you want to know the
full scope of purge and restore processing, see I/O Supervisor
Logic.) .

You can give control to the purge and restore routines in two
ways: (1) by loading register 1 with the address of the
parameter list and issuing'specific SVC instructions or (2) by
issuing the PURGE and RESTORE macro instructions. If your
installation requires the use of macro instructions, you must
add the macro definitions to the macro library (SYSl.MACLIB) or
place them in a partitioned data set and concatenate this data
set to the macro library. The macro definitions, JCL, and
utility statements needed to add the macros to your macro
library are presented in Figure 36 , and Figure 37 on page IS6.
Whether you issue the macro instructions or. the SVC
instructions, you must first build a parameter list. The SVC
instructions are SVC 16 for PURGE and SVC 17 for RESTORE.

PURGE Macro Definition

MACRO
&NAME PURGE &LIST

AIF ('&LIST' EQ ").El
&NAME IHBINNRA &LIST LOAD REG 1

SVC 16
MEXIT

.El IHBERMAC 01,147 LIST ADDR MISSING
MEND

Control statements Required

JOB {parameter} //jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN

EXEC PGM=IEBUPDTE,PARM=NEW

./ ADD

./ ENDUP
/*

DD SYSQUT=A
DD DSNAME=SYSl.MAClIB,DISP=OLD
DD *
NAME=PURGE,lIST=All

.
PURGE macro definition

Figure 36. Macro Definition, JCL, and Utility Statements for
Adding PURGE Macro to the System Macro Library

Chapter 7. System Macro Instructions ISS

RESTORE "aero Definition

MACRO
INAME RESTORE ILIST

AIF ('&LIST' EQ ").El
&NAME IHBINNRA &LIST LOAD REG 1

SVC 17 ISSUE SVC FOR RESTORE
MEXIT

• El IHBERMAC 01,150 LIST ADDR MISSING
MEND

Control Statements Required

//jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN
./ ADD

./ ENDUP
/*

JOB {parameters}
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.MACLIB,DISP=OLD
DD DATA
NAME=RESTORE,LIST=ALL

.
RESTORE macro definition

Figure 37. Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to the System Macro Library

PURGE--HALT OR FINISH I/O-REQUEST PROCESSING

The macro instruction used to call the purge routines is coded
as follows:

I [symbol] I PURGE parameter-list address

parameter list address--RX-type address, (2-12) or (1)
address of a parameter list, 12 or 16 bytes long, that you
have built on a fullword boundary in your storage. The
parameter list address can be specified as an RX-tvpe
constant or in registers 2 through 12 or 1.

The format and contents of th~ parameter list are as follows:

Byte Contents

o A byte in which you specify what the purge routines
will do. These are the bit settings and their
meanings:

1 ..•

O •••

.1 ..

.. 1.

•.• 1

Purge I/O requests to a single data set.

Either purge I/O requests associated with
a TCB or address space, or purge I/O
requests to more than one data set.

Post ECBs associated with purged I/O
requests.

Halt I/O-request processing. (Quiesce
I/O-request processing, if 0.)

Purge related requests only. (Valid only
if a data-set purge is requested.>

156 MVS/370 System Programming Library: Data Management

o

Byte

C,,'I,I
'I

5,6,7

8

c 9,10,11

12

contents

O •••

.1 ..

Reserved--must be zero.

Do not purge the TCB's request-block chain
of asynchronously scheduled processing .

•. 1. Purge I/O requests associated with a TCB .

••• 1 This is a 16-byte parameter list.
Additional purge options are specified in
bytes 12 to 15. (If this bit is off, the
list is 12 bytes long, and the purge
routines do not put a return code in byte
4 of this list or in register 15.)

The address of a DEB if you're purging I/O requests to
a single data set. The address of the first DEB in a
chain of DEBs if you're purging I/O requests to more
than one data set. (The next-to-the-last word of each
DEB must point to the next DEB in the chain; the
second word of the last DEB must contain zeros.)

A byte of ~~r~~. (If bit 7 ~f hyt~ 0 ~5 ~n; ~hQ purgp.
routines will put a code in this byte: X'7F' if the
purge operation is successful; X'40' if it is not
successful.)

The address of the TCB associated with the I/O
requests you want purged (but only if you turned on
bit 6 of byte 0). May be zeros if the TCB is the one
you're running under.

A byte of zeros.

The address of a word in your storage or the address
of the DEBUSPRG field (which is X'll' bytes more than
the DEB address in this parameter list). At whichever
address you specify, the purge routines store a
pointer to the purged I/O restore list, PIRL. In the
PIRL is a pointer to the first lOB in the chain of
lOBs. The location of the pointer and format of the
chain are shown in Figure 38 on page 159 •

A byte in which you can specify additional purge
options. These are the bit settings and their
meanings:

Note: The following applies only if bit 7 of byte 0
is set to one.

· ~ 1.

• •• 1 .••.

· • •• 1 ••.

• • •• .0 ••

Purge I/O requests associated with an
address space. (You must be in supervisor
state.)

Check the validity of all the DEBs
associated with the purge operation if
this is a data-set purge. Validate this
parameter list, whatever the type of purge
operation, by ensuring that there are no
inconsistencies in the selection of purge
options. (If the caller is in problem
state, these actions are taken regardless
of the bit setting.)

Ensure that I/O requests will be
reprocessed (restored) under their
original TCB. (If zero and this byte is
meaningful (bit 7 of byte 0 is on), the
I/O requests will be reprocessed under the
TCB of the program making the restore
request.)

Must be zero.

Chapter 7. System Macro Instructions 157

Byte

13

14,15

contents

A byte of zeros.

The two-byte ID of the address space associated with
the I/O requests you want purged. (Only meaningful if
bit 2 of byte 12 is on.)

Control will be returned to your program at the instruction
following the PURGE macro instruction. If the purge operation
was successful, register 15 will contain zeros. Otherwise,
register 15 will contain one of the following return codes:

Code

4(04)

8(08)

20(14)

"eaning
Your request to purge I/O requests associated with a
given TCB was not honored because that TCB did not
point to the job step TCB, as it must when the
requestor is in problem state.

Either you requested an address-space purge operation
but were not in supervisor state, or you requested a
data-set purge operation but supplied no data-area
address in bytes 1, 2, and 3 of the purge parameter
list.

Another purge request has preempted your request. You
may want to reissue your purge request in a
time-controlled loop.

Note: Register 15 will contain zeros, regardless of the outcome
of the purge operation, if you set bit 7 in byte 0 of the
parameter list to zero.

"ODIFYING THE lOB CHAIN

Note, it is not a recommended procedure but, if you want to
change the order in which purged I/O requests will be restored
or prevent a purged request from being restored, you may change
the sequence of lOBs in the lOB chain or remove an lOB from the
chain. The address of the lOB chain can be obtained from the
PIRL (see Figure 38 on page 159. (The address of the PIRL will
be at the location pointed to by bytes 9 through 11 of the purge
parameter list.)

RESTORE--REPROCESS I/O REQUESTS

The RESTORE macro is coded as follows:

I [symbol] I RESTORE I restore address

restore address--RX-tvpe address, (2-12) or (1)
address you specified at byte 9 of the purge parameter
list.

158 MVS/370 System Programming Library: Data Management

(. """\

J

C~
I'

o

PIRL

PIRRSTR 20(14)

" Pointer to the first lOB. If l's, I
no I/O request was quiesced.

~>IOB(l) (where 1 is first lOB in chain)

I

IOBRESTR 25(19)

t
l Pointer to the next lOB in

chain.
the I

~>IOB(n) (where n ;s last lOB ;n cha;nl

IOBRESTR 25(19)

Contains binary l's.

Figure 38. The PIRL and lOB Chain

PERFORMING TRACK CALCULATIONS

The TRKCALC macro performs track capacity calculations. The
standard, list, execute, and DSECT form of the macro are
described. Examples of the TRKCALC macro follow the macro
descriptions. Using TRKCALC you may do the following:

• Perform track capacity calculations

• Determine the number of -records of a given size which can be
written on a fulltrack or the remainder of a track

• Perform track balance calculations as follows:

Determine if a given record size can be written in the
space remaining on the track and return the new track
balance.

Determine the maximum size record which can be written
on the track if the given record does not fit.

Determine the track balance if the last physical record
is removed from the track.

Chapter 7. System Macro Instructions 159

TRKCALC--STANDARD FORM

The format of the TRKCALC macro is:

[symbol] TRKCALC FUNCTN=(TRKBALITRKCAP)
(,DEVTAB=addrl,UCB=addrl,TVPE=addr)
[,BALANCE=addr]
[,REHOVE=(YESINO)]
[,MAXSIZE=(YESTHO)]
(,RKDD=addrl,R=addr,K=addr,DD=addr)
[,REGSAVE=-CVESINO)l
[,MF=Il

FUNCTN=(TRKBALITRKCAP)
specifies the function to be performed.

Note: You must specify one of the three keywords, DEYTAB,
UCB, or TYPE, to provide the macro a source for
information.

TRKBAL
if REMOYE=NO is specified, TRKBAL calculates whether
an additional record fits on the track, and what new
track balance would be if the record were added. If
REMOVE=YES is specified, TRKBAL calculates what the
track balance would be if a record were removed from
the track. The record to be added or removed from the
track is defined by the RKDD parameter, or by the R,
K, and DD parameters.

If R=1 (or the R value in the RKDD parameter is 1) and
REMOYE=NO is specified, record 1 is added to an empty
track; if R=1 and REMOVE=YES is specified, record 1 is
deleted from the track, leaving an empty track.

If R~I, the specified record is added to or removed
from the track. The input track balance may be
supplied through the BALANCE parameter; if it is not
supplied, it is assumed that the track contains equal
sized records as specified in the RKDD parameter (or
R, K, and DD parameters).

When REMOVE=NO is specified, one of the following
occurs:

• If the record fits on the track, register 0
contains the new track balance.

• If the record does not fit on the track and
MAXSIZE=NO is specified, a "record does not fit"
return code is given in register 15.

• If the record does not fit and MAXSIZE=YES is
specified, one of the following happens:

The data length of the largest record that
fits in the remaining space is returned in
register O.

A code is returned that indicates no record
fits in the remaining space.

When REMOVE=YES is specified, one of the following
occurs:

• If R=I, register 0 contains the track capacity.

• If R~I, registers 0 contains the input track
balance (supplied through the BALANCE parameter)
incremented by the track balance used by the input
record. If the input balance is not supplied,

160 MVS/370 System Programming Library: Data Management

C' ~,\
\ ~)

c

c

o

register 0 contains the track capacity left after
R-l records are written on the track.

TRKCAP
calculates, and returns in register 0, the number of
fixed length records that may be written on a whole
track (R=I) or on a partially filled track (R~I). The
records are defined by the K and DO values of the RKDD
parameter, or by the K and DD parameters.

One of the following occurs:

• If R=I, the BALANCE parameter is ignored and the
calculation is made on an empty track.

• If R~1 and the BALANCE parameter is omitted, the
calculation is made for a track that already
contains R-l records of the length defined by the
K and DD values.

• If R~1 and the BALANCE parameter is supplied, the
calculation is made for a tra~k whose remaining
track balance is the value of the BALANCE
parameter.

DEVTAB=addr--RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the
Device Characteristics Table Entry (DCTE). If you specify
a register, it contains the address of the DCTE, not the
address of a word containing the address of the DCTE. The
address of the DCTE can be found in the DCBDVTBA field of
an opened DCB.

UCB=addr--RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the UCB.
If you specify a register, it contains the address of the
UCB, not the address of a word containing the address of
the UCB.

TVPE=addr--RX-type address, (2-12), (0), (14)
you may specify the address of the UCB device type
(UCBTBYT4), or you may specify the one-byte UCB device type
in the low-order byte of a register.

BALANCE=addr--RX-type address, (2-12), (0), (14)
you may specify either the address of a halfword containing
the current track balance, or you may specify the balance
in the low-order two bytes of a register. The value
supplied may be the value returned when you last issued
TRKCALC. If R=I, the balance is reset to track capacity by
TRKCALC and your supplied value is ignored. This is an
input value and is not modified by the TRKCALC macro. The
resulting track balance is returned in register 0 and in
the TRKCALC parameter list field STARBAL.

REMOVE=tYESIHDl
indicates if a record is to be deleted from the track.

YES

NO

specifies the record number (specified in the R
keyword) is being removed from the track. The track
balance is incremented instead of decremented.

Note: YES is valid only on a FUNCTN=TRKBAL call.

specifies a record is not to be deleted from the
track. NO is the default.

Chapter 7. System Macro Instructions 161

MAXSIZE=CYESINO]

YES

NO

If the specified record does not fit, the largest
length of a record with the specified key length that
fits is returned (register 0).

Note: YES is valid only on a FUNCTN=TRKBAl call.

Maximum size is not returned. NO is the default.

RKDD=addr--RX-type address, (2-12), (0), (14)
addr specifies a word containing a record number (1 byte),
keylength (1 byte), and data length (2 bytes) (bytes 0, 1,
and 2 and 3, respectively) or a register containing the
record number, key length, and data length. R, K, and DD
may be specified by this keyword, or you may use the
following three keywords instead.

R=addr--RX-type address, (2-12), (0), (14), or n
you may specify either the address of the record number, or
you may specify the record number using the low-order byte
of a register or immediate data (n). Specify a decimal
digit for n (immediate data).

K=addr--RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing
the hex value of the record's key length, or you may
specify the record's key length using the low-order byte of
a register or :mmediate data (n). Specify a decimal digit
for n (immediate data).

DD=addr--RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing
the hex value of the record's data length, or you may
specify the record's data length using the low-order two
bytes of a register or immediate data (n). Specify a
decimal digit for n (immediate data).

REGSAVE=CYESINO]

YES

NO

specifies registers 1 through 14 are saved and
restored in the caller-provided save area (pointed to
by register 13) across the TRKCAlC call. Otherwise,
registers 1, 9, 10, 11, and 14 are modified.
Registers 0 and 15 are always modified by a TRKCAlC
call.

specifies registers are not saved across a TRKCAlC
call. NO is the default.

specifies to define the storage for the TRKCAlC parameter
list and initialize the parameter list using the given
keywords and call the TRKCAlC function. MF=I is ~he
default.

INPUT REGISTER USAGE FOR ALL FORMS OF 'MF'

Registers 0, 2-12, and 14 are available to provide input for
keywords.

Register 1 is used only to provide the address of the parameter
list for an MF=E call.

Register 13 may be used as input for keywords, if REGSAVE=YES is
not specified.

162 MVS/370 System Programming library: Data Management

/,O'/f"-.~\

I

"'J

c

0 .. 1
1,,1

OUTPUT FROM TRKCALC

0 1
~

TRKCALC--LIST FOR"

o

Register 15 is used as a work register to build the TRKCAlC
parameter list for the MF=E call; it is not available as an
input register.

FUNCTN=TRKBAL

Register 15=0
The record fits on the track. Register 0 and STARBAl
contain the new track balance.

Register 15=4
Record does not fit on the track. If MAXSIZE=YES is
specified, a partial record does not fit either.
Register 0 and STARBAl are set to zero.

Register 15=8
Record does not fit on the track. MAXSIZE=YES is
specified and a partial record does fit. Register 0
and STARBAl are set to the maximum number of data
bytes that fit on the remainder of the track with the
specified keylength.

Note: The keylength is excluded from the count of
maximum data bytes.

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is first set to the track
capacity if R=I, or to the supplied BALANCE value if
R~I, or to the calculated balance if R~1 and BALANCE
is omitted. STARBAL is updated to the new track
balance if the record fits; otherwise, STARBAL is left
with the input track balance value.

FUNCTN=TRKCAP

Register 15=0
Register 0 contains the number of records that fit on
the track if R = 1, or the number of records that fit
on the remainder of the track if R ~ 1.

Register 15=4
No records of the length specified fit on a full track
(R = 1) or a partial track (R ~ 1). Register 0 is set
to zero.

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is first set to the track
capacity if R=I, or to the supplied BALANCE value if
R~I, or to the calculated balance if R~1 and BALANCE
is omitted.

The list form of the TRKCAlC macro is used to construct an
empty, in-line parameter list. By coding only MF=L you
construct a parameter list and the actual values can be supplied
by the execute form of the TRKCALC macro. Any parameters other
than MF=L are ignored.

[symbol] TRKCALC

Chapter 7. System Macro Instructions 163

TRKCALC--EXECUTE FOR"

A remote parameter list is refe ... red to and can be modi fi ad by (~ ..
the execute form of the TRKCALC mac ... o. The TRKCALC routine is~)
called. The description of the standard form of the macro
p ... ovides the explanation of the function of each ope ... and.

[symbolJ TRKCALC [FUNCTN=CTRKBALITRKCAPJJ
[[,DEVTAB=[add ... I-JI

,UCB=[add ... TilT,TYPE=Caddrl-J]J
[,BALANCE=Cadd ... I-Jl
[,REMOVE=CYESINOJl
[,HAXSIZE=[YESmOJl
[C,RKDD=add ... I,R=add ... ,K=add ... ,DD=add ... JJ
[,REGSAVE=[YESINO)l -- --
,HF=(E,add ... J

FUNCTN=CTRKBALITRKCAPJ
it is coded as shown in the standa ... d fo ... m. If this keyword
is omitted, any specification of REMOVE, MAXSIZE, LAST, and
the RX form of BALANCE, is ignored. In addition, DEVTAB is
assumed, if UC! is codod and a failurp- occurs, if TYPE is
specified. When you use FUNCTN, one of the keywords
(DEVTAB, UCB, or TYPE) must be specified to provide an
information source.

DEVTAB=addrl---RX-type address, (2-12), (0), (14)
it is coded as shown in the standa ... d form except for the *
subparameter. Specify an * when you have inserted the
address of the Devi~e Characteristics Table Entry (DCTE) in
the parameter list.

UCB=addrl_--RX-type address, (2-12), (0), (14)
it is coded as shown in the standa ... d form except fo ... the * ~,~~,\.,
subparamete.... Specify an * when you have inse ... ted the ~
add ... ess of tho UCB in the parameter list. ,."";

TYPE=add ... I---RX-type address, (2-12), (0), (14)
it is coded as shown in the standard form except for the *
subpa ... amete.... Specify an * when you have inse ... ted the
add ... ess of the UCB type (UCBTYP) in the paramete ... list.

BALANCE=add ... I_--RX-type add ... ess, (2-12), (0), (14)
it is coded as shown in the standa ... d fo ... m except for the *
subpa ... amete.... Specify an * when you have inse ... ted the
balance in the paramete ... list.

REHOVE=CYESINO)
it is coded as shown in the standa ... d fo ... m.

HAXSIZE=CYESINOJ
it is coded as shown in the standard fo ... m.

RKDD=add ... --RX-type address, (2-12), (0), (14)
it is coded as shown in the standa ... d fo ... m.

R=add ... --RX-type address, (2-12), (0), (14) 0 ... n
it is coded as shown in the standard fo ... m.

K=addr--RX-type address, (2-12), (0), (14), or n
it is coded as shown in the standa ... d fo ... m.

DD=addr--RX-type address, (2-12), (0), (14), or n
it is coded as shown in the standa ... d fo ... m.

REGSAVE=CYESINO]
it is coded as shown in the standa ... d fo ... m.

164 MVS/370 System P ... ogramming Lib ... a ... y: Data Management

o

o

c

o

TRKCALC--DSECT ONLY

MF=(E,addr)
this operand specifies that the execute form of the TRKCALC
macro instruction is used, and an existing data management
parameter list is used.

E
Coded as shown

addr--RX-type address, (0), (1), (2-12), or (14)
specifies an in-storage address of the parameter list.

This call gives a symbolic expansion of the parameter list for
the TRKCALC macro. No DSECT statement is generated. If a name
is specified on the macro call, it applies to the beginning of
the list, after any necessary boundary alignment. The macro
generated symbols all begin with "STAR".

[symbol] TRKCALC

TRKCALC MACRO EXAMPLES

In this example, TRKCALC is coded to determine how many records
of a given size with 10-byte keys fit on a 3330 track. After
issuing the macro~ the number of records is saved in NUMREC:

TRKCALC FUNCTN=TRKCAP,TYPE=UTYPE,R=1,K=10,DD=DL,MF=(E(1»

DL
UTYPE
NUMREC

ST

.
DC
DC
DS

O,NUMREC

H'xxxx'
X'09'
F

SAVE NUMBER OF RECORDS

DATA LENGTH

MAX I OF RECORDS

In this example, TRKCALC is coded to determine if another record
can fit on a track of a 3350, given a track balance.

TRKCALC FUNCTN=TRKBAL,TYPE=UTYPE,R=REC,K=KL,DD=DD,BALANCE=BAL,
MAXSIZE=YES,MF=(E(l»

UTYPE
REC
KL
DD
BAL

.
DC
DC
DC
DC
DC

X'OB'
X'xx'
X'xx'
H'xxxx'
H'xxxx'

After issuing the macro, you would receive either:

Register 15=0. Register 0 contains the new balance.

Register 15=4. Register 0=0 (record did not fit).

Register 15=8. Register 0 contains the maximum data length that
does fit (record did not fit).

ALLOCATING A DATA SET

The REAlLOC macro builds a parameter list and issues SVC 32 to
allocate a new data set based on a partial DSCB that describes
the attributes of that data set. You can use the OBTAIN macro
to get the format-l DSCB of the other data set and use it as a
model for the new data set's DSCB which REALLOC will construct
and write in the VTOC.

Chapter 7. System Macro Instructions 1~5

The maximum number of extents that may be allocated are
determined by the type of data set requested as defi ned by the .,(., ~,I
data set organization (DSIDSORG) bytes and the data set .
indicator (DSIDSIND) byte in the partial DSCB. If the DSIDSORG ~,
indicates a VSAM data set organization and DSIDSIND indicates
the data set is cataloged in an integrated catalog facility
(ICF) catalog, the maximum number of extents will be 123.
Otherwise, the maximum number of extents will be 16.

Note: User label data sets, ISAM data sets, and absolute track
allocated data sets are not supported by the REAllOC macro. If
a VSAM data set or data space is requested, REAllOC does not
interface with VSAM or ICF catalog management.

The DS1SCAlO field of the partial format-l DSCB has a high order
flag byte that describes the type of request and a 3-byte field
containing the secondary allocation quantity. The following
describes the flag byte:

contents Meaning

X'CO' Cylinder request

X'CS' Cylinder with CONTIG request

X'SO' Track request

X'SS' Track with CONTIG request

X'40' Average block length request

X'41' Average block length with ROUND request

X'4S' Average block, length with CONTIG request

X'49' Average block length with CONTIG and ROUND request

Any settings other than the above will be ignored.

The REAllOC macro may be coded in the execute, dsect, and list
forms, but not the standard form. The calling program may be in
supervisor or problem program state, and may be running in any
key. The calling program must be APF authorized.

REALLOC--EXECUTE FORM

The format of the REAllOC macro in execute form is:

[symbol REALLOC MF=(Elladdr)
,DSSIZE=addrl(reg)
,PDSCB=addr
,UCB=addr
[,I1INAU=add.r:l(reg)
[,PDSDIR=addrl(reg)

MF=(E,addr)
specifies that the execute form of the macro and an
existing REAllOC parameter list will be used.

addr--RX-type address, (0-12)

E

specifies an in-storage address of the REAllOC
parameter list ..

Code as shown.

166 MVS/370 System Programming library: Data Management

('-"\

~',J

o

DSSIZE=addrl(reg)
specifies the size of the data set to be allocated in
tracks. If a cylinder request (X'CO' in the flag byte of
DS1SCAlO) or average block with round request (X'41') is
made, the number of tracks specified will be rounded up to
the next full cylinder, if necessary.

You may not specify the DSSIZE in terms of average block
size, even though the original data set may have been
allocated with the number of average blocks (X'40').

addr--RX-type address

(reg)

specifies an in-storage address of a full word
containing the data set size.

specifies a register containing the size of the data
set. Valid registers are 0 and 2-12.

PDSCB=addr--RX-type address, (0), (2-12)
specifies the address of the partial DSCB. The partial
DSCB is comprised of the first 98 bytes of a format-1 DSCB.
The first 44 bytes contains the data set name to be
allocated. The contents of the partial DSCB will be used,
unchanged, in constructing the format-1 DSCB. Only the
field DS1NOEPV (number of extents on the volume) of the
partial format-1 DSCB will be modified by allocation to
reflect the actual number of extents all~cated.

UCB=addr--RX-type address, (0), (2-12)
-specifies the address of the UCB of the volume where the

data set is to be allocated. The volume must be mounted
and the caller is responsible for ensuring that the volume
remains mounted on the unit.

HINAU=addrl(reg)
specifies the size of the minimum allocation unit in
tracks. All primary extents for this data set will be in
multiples of this minimum allocation unit. This value will
not apply to subsequent ~xtensions of the data set. If the
partial DSCB indicates the data set is to be allocated in
cylinders (X'CO' or average block with round request
(X'41'), this parameter will be ignored.

addr--RX-type address

(reg)

specifies an in-storage address of a full word
containing the minimum allocation unit.

specifies a register containing the minimum allocation
unit. Valid registers are 0 and 2-12.

PDSDIR=addrl(reg)
specifies the number of 256 byte directory blocks for a
partitioned data set (PDS). This is a required keyword if
the DS1DSORG indicates a partitioned data set. Otherwise,
it is ignored.

addr--RX-type address

(reg)

specifies an in-storage address of a full word
containin~ the number of 256 byte PDS di~ectory
blocks.

specifies a register containing the number of 256 byte
PDS directory blocks. Valid registers are 0 and 2-12.

Chapter 7. System Macro Instructions 167

RETURN CODES FRO" REALLOC

Control will be returned at the instruction following the SVC 32
generated by the REALLOC macro. If the data set was successfully
allocated, register 15 will contain zeros. Otherwise, register
15 will contain one of the following return codes:

code

004(04)

008(08)

012(OC)

020(14)

. 028(1C)

Code

048(30)

052(34)

056(38)

072(48)

116(74)

120(78)

124(7C)

128(80)

148(94)

152(98)

156(9C)

164(A4)

168(A8)

172(AC)

176(80)

180(84)

Data set name of request already exists on this
volume. Initial allocation not possibla under the
name given.

No room available in the VTOC or VTOC index.

One of the following errors was encountered:

• Permanent I/O error

• Error returned by CVAF

Requested quantity not available.

ISAM DSORG is not supported •

Meaning

Invalid REALLOC parameter list.

Invalid partial DSCB pointer.

Not enough space on volume for directory.

DOS VTOC cannot be converted to an OS VTOC.

User labels not supported.

DSSIZE=O and MINAU is greater than O.

DSSIZE is not a multiple of MINAU.

Directory space requested is larger than primary
space.

Overlapping extents in the VTOC.

Overlapping DOS split cylinder extents in the VTOC.

DADSM allocation terminated due to possible VTOC
errors.

Allocation terminated due to DOS stacked pack format.

RACF DEFINE failed, data set already defined.

User not authorized to RACF define data sat.

Installation exit rejected this request with a return
coda of 8.

Installation exit rejected this request with a return
code of 4.

168 MVS/370 System Programming Library: Data Management

tl · Jt,\

,~/

REALLOC--DSECT ONLY

0': The dsect form of REALLOC is specified as follows:

REALLOC--LIST FOR"

o

Ilsvmbol I REALLOC I "F=D

An example of the dsect form expansion

REALPL REALLOC MF=D
REALPL DSECT
RALPLID DS
RALNGTH DS
RAERRCDE DS
M
RALRSVD DS
RALDSSZ DS
RALMAu DS
RALPDSCB DS
RALUCB DS
RALDQTY DS
RALEND EQU
RALENGTH EQU

CL4
AL2
H

F
F
F
A
A
F
M
RALEND-REALPL

DSECT FOR PARAMETER LIST
EBCDIC 'REAL' FOR REALLOC
LENGTH OF PARAMETER LIST
ERROR CODE RETURNED FROM
ALLOCATE (SVC 32)
RESERVED
DATA SET SIZE
MINIMUM ALLOCATION UNIT
PARTIAL DSCB POINTER
UCB POINTER
PDS DIRECTORY QUANTITY
END OF PARAMETER LIST
LENGTH OF PARAMETER LIST

The list form of the REALLOC macro is specified as follows:

lsvmbol REALLOC "F=L
,DSSIZE=addrl(~)
"PDSCB=addr
,UCB=addr
[,"INAU=~I(~)
l,PDSDIR=~I(~)

Refer to the execute form for an explanation of the parameters.

An example of the list form expansion is:

REALPL REALLOC MF=L
CNOP 0,4

REALPL EQU M
DC CL4'REAL' EBCDIC 'REAL' FOR REALLOC

LENGTH OF PARAMETER LIST
ERROR CODE RETURNED FROM
ALLOCATE (SVC 32)
RESERVED

DC AL2(32)
DC H'O'

DC F'O'
DC F'O'
DC F'O'
DC A(O)
DC ACO)
DC F'O'

RALOIE EQU M

DATA SET SIZE
MINIMUM ALLOCATION UNIT
PARTIAL DSCB POINTER
UCB POINTER
PDS DIRECTORY QUANTITY
END OF PARAMETER LIST

Chapter 7. System Macro Instructions 169

CHAPTER 8. "AINTAINING SYS1.I"AGELIB

This chapter describes how to maintain the system image library
(SYSl.IMAGElIB) UCS and FCB images for the 1403, 3203, and 3211
printers. It also describes how to maintain FCB images for the
4245 printer, the UCS image table in SYS1.IMAGElIB for the 4245,
and how to retrieve an FCB image from SYSl.IMAGElIB in order to
modify it.

The IEBIMAGE utility program is used to create and maintain
control modules for the 3800 printing subsystem: character
arrangement table modules, graphic character modification
modules, copy modification modules, library character set
modules, and FCB modules. For further information on IEBIMAGE,
see Utilities.

To use the information presented in this chapter, you should be
familiar with the subjects of the following publications:

• Data Management Macro Instructions describes the SETPRT
macro, which can specify the UCS and/or FCB images to be
used.

• JCl describes the UCB and FCB parameters of the DD
statement, which are processed at OPEN time.

• IBM 2821 Control Unit Component Description contains
information on creating a user-designed chain/train for the
1403 printer.

• IBM 3203 Printer Component Description and Operator's Guide
contains information on creating a user-designed train for
the 3203 printer.

• IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and
3811 Printer Control Unit Component Description and
Operator's Guide contains information on creating a
user-designed train for the 3211 printer.

• System Programming library: JES2 or System Programming
Library: Network Job Entry Facility for JES2 contains
reference information for JES2.

• System Programming library: JES3 contains reference
information for JES3.

The 4245 printer has no UCS images supplied in SYS1.IMAGElIB.
To determine which UCS images are available, see:

• IBM 4245 Printer Modell Component Description and
Operator's Guide contains information on band IDs for the
4245 printer.

The SPZAP service aid can be used to display and modify an
existing member of SYS1.IMAGELIB. Use of SPZAP on load modules
is described in System Programming library: Service Aids.

Most IBM standard character set images are included in
SYS1.IMAGELIB at system generation time, through the DATAMGT
macro and an IODEVICE macro for the specified printer. (See
System Generation Reference for details on the DATAMGT and
IODEVICE macros.) The standard character set images for the
1403, 3203, and 3211 printers are shown in the table below.

170 MVS/370 System Programming library: Data Management

C'I') '..J"

C
~

" , ~

o

o

o

pr;nter Images

1403 or 3203 AH, HH, PCAH, PCHH, PH, QHC, QH, RH, SH,
TN, XH, YH

3211 All, Gil, Hll, Pll, Til

For the 4245, no UCS images are supplied in SYS1.IMAGELIB at
system generation. Instead, a new ilCS image is loaded into the
buffer at power-on time or whenever the operator mounts a new
band. See "Adding a UCS Image Hame/Alias to a UCS Image Table"
on page 175 for information on how to access UCS images that are
not supplied in SYS1.IMAGELIB.

The 4245 printers also load a default FCB image at power-on
time. For the 4245, the default FeB is an II-inch form with 6
LPI and a Channell on the first print line.

The alias names are defined for most installation-standard print
chains/trains/bands installable on a given printer. Alias names
are included in SY~!.!~AGEL!B {i~ thn ~cs ;re~~c ~~~lo) ~t sy~t~~
generation time, with the real name of each image.

Some print chains/trains/bands, such as SH and Gil, do not have
alias names because there is no equivalent chain/train/band on
other printers. You can assign an alias for these
chains/trains/bands with the ALIAS statement of the linkage
editor. (See Linkage Editor and Loader for more information on
the ALIAS statement.) For the 4245 printer, you can also add an
alias name by modifying an entry in the UCS image table. See
"Adding a UCS Image Name/Alias to a UCS Image Table" on page
175.

If an alias name is supplied, it is used to schedule a printer
for SYSOUT data sets. If no alias is supplied, an
installation-defined SYSOUT class or a printer routing code
(specified with the DEST parameter of JCL) should be used to
assign the data set to the correct printer.

ADDING A UCS IMAGE TO THE IMAGE LIBRARY

Using the assembler and linkage editor, you may add a UCS image
to those that reside in SYS1.IMAGELIB. Ho executable code is
generated; the assembler prepares DCs and the linkage editor
puts them into SYS1.IMAGELIB. The new UCS image must be
structured according to the following rules:

1. The member name must be 5 to 8 characters long; the first 4
characters must be the appropriate UCS prefix, as shown
below.

UCSI - 1403 printer

UCS2 - 3211 printer

UCS3 - 3203 printer

These first 4 characters must be followed by a character set
code, 1 to 4 characters long. Any valid combination of
letters and numbers under assembler language rules is
acceptable. However, the single letters U or C must not be
used, becau5e they are symbols for special conditions
recognized by the system. The assigned character set code
must be specified on the DD statement or SETPRT macro to
load the image into the UCS buffer.

You can supply an alias name for a new image with the ALIAS
statement of the linkage editor. (See Linkage Editor and
Loader for more information on the ALIAS statement.)

Chapter 8. Maintaining SYS1.IMAGELIB 171

2. The first byte of the character set image load module
specifies whether the image is a default. (Default images c,c'·,c"o', ",'
may be used by the system for jobs that do not request a ~\
specific image.) Specify the following in the first byte:

For JES2:

X'80' indicates a default image

X'40' indicates that the output 15 to be folded

X'CO' indicates default image and folding

X'OO' indicates that the image is not to be used as a
default

For non-JES2:

X'80' indicates a default image

X'OO' indicates that the image i !I not to be used as a
default

3. The second byte of the load module indicates the number of
lines (n) to be printed for image verification. See
"Verifying the UCS Image" on page 178 for more information
on image verification.

4. Each byte of the next n bytes indicates the number of
characters to be printed on each verification line. For the
3211 printer, the maximum number of characters printed per
line is 48; the bytes of associative bits (see note 5) are
not printed during verification.

5. The UCS image itself must follow the previously described
fields. The image must fill the number of bytes required by
the printer; see the table below for image lengths. Note
that, because of assembler language syntax, two apostrophes
or two ampersands must be coded to represent a single
apostrophe or a single ampersand, respectively, within a
character set image.

Printer Image Length

1403 240 bytes

3203 304 bytes (240 characters followed by 64
bytes of associative bits)

3211 512 bytes (432 characters followed by 15
bytes of X'OO', 64 bytes of associative
bits, and one reserved byte of X'OO')

Associative bits must be coded to prevent data checks when
adding a UCS image to SYSl.IMAGElIB. See the appropriate
printer manual for more information on coding associative
bi ts.

Figure 39 on page 173 contains an example of adding a 1403 UCS
image, YN, to SYS1.IMAGElIB. Notes follow Figure 41 on page
174.

172 MVS/370 System Programming library: Data Management

tf°_"Jt.,

\"~)

o

o

//ADDYN
//STEP
//
//ASM.SYSIN
UCS1YN

THE

/*

JOB MSGLEVEL=1
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD *
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LIftES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ* •. I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
END

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1YN),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 39. Sample Code to Add a 1403 UCS Image to SYS1.IMAGELIB

//ADYN3203
//STEP
//
//ASM.SYSIN
UCS3YN

Figura 40 shows the coda used to add a 3203 UCS image. YN, to
the image library.

JOB MSGLEVEL=1
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD'.

PARM.LKED='LIST.OL,REFR,RENT,XREF'
DD *
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON

'DC AL1(39) (39 CHARACTERS TO BE PRINTED ON

LINE 1)
LINE 2)
LINE 3)
LINE 4)
LINE 5)
LINE 6)

THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE

/*

DC C'1234567890STABCDEFGHIJKLMHOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMHOPQRSTUVWXYZ*,.I-$'
DC C'1234567890STABCDEFGHIJKlMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMHOPQRSTUVWXYZ*,.I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

JHE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 241-304

DC X'C01010101010101010100040000000000010'
DC X'101010101010101000404000000040001010'
DC X'1010101010100040000000001UIOIOI01010'
DC X'10101010004000000000'
END

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS3YN),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figura 40. Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB

Chapter 8. Maintaining SYS1.IMAGELIB 173

//ADDAII
//STEP
//
//ASM.SYSIN
UCS2Ali

Figure 41 shows the code used to add a 3211 UCS image~ All~ to
SYSl.IMAGELIB.

JOB MSGLEVEL=1 ,
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREf'
DD * •
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC ALl(9) (NUMBER OF LINES TO BE PRINTED)
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE ~RINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON
DC ALl(48) (48 CHARACTERS TO BE PRINTED ON

LINE 1)
LINE 2)
LINE 3)
LINE 4)
LINE 5)
LINE 6)
LINE 7)
LINE 8)
LINE 9)

THE FOLLOWING NINE LINES REPRESENT THE TRAIN IMAGE

/*

NOTE 2 AMPERSANDS MUST BE CODED TO GET 1 IN ASSEMBLER SYNTAX
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJX,&&ZYXWVUTs/a.098765432'
DC 15X'OO' (RESERVED FIELD, BYTES 433-447)

THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 448-511

DC X'COIOI0I0I010I0I0I0I00040404240004010'
DC X'101010101010101000404041000040401010'
DC X'101010101010004040000000101010101010'
DC X'10101010004040444800'
DC X'OO' (RESERVED FIELD, BYTE 512)
END

//LKED.SYSLMOD DD
//

DSNAME=SYSl.IMAGELIB(UCS2Al1),DISP=OLD,
SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 41. Sample Code to Add a 3211 UCS Image to SYSl.IMAGELIB

Notes to Figure 39 on page 173, Figure 40 on page 173, and
Figure 41:

1. The RENT and REFR linkage editor attributes are used for
performance considerations in a paging environment. They
may be omitted.

2. For the 3203 and 3211 printers, the 64 bytes of associative
bits must be coded to avoid data checks. To determine how
to code these bits for a particular image, see IBM 3203
Printer Component Description and Operator's Guide or IBM
3211 Printer, 3216 Interchangeable Train Cartridge, and 3811
Printer Control Unit Component Description and Operator's
Guide.

3. Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used to
place the UCS image into SYSl.IMAGELIB.

4. The SPACE parameter is overridden here because the ASMFCL
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used.

174 MVS/370 System Programming Libraryl Data Management

o

/(~"'\

i\,<~'

o

C.';
,,'

o

ADDING A UCS IMAGE NAME/ALIAS TO A UCS IMAGE TABLE

For the 4245 printer, no UCS images are stored in SYS1.IMAGElIB.
Instead, the image for each band is stored in the printer, and
automatically loaded into the UCS buffer at power-on tima or
when a new band is installed. Information about these images is
recorded in the IBM-supplied UCS image table, which resides in
SYS1.IMAGElIB.

UCS Image Table Structure

SYS1.IMAGElIB contains ona UCS image tabla for each type of
printer that supports image tables. For the 4245, the tabla is
called UCS5. The image table contains an entry for most
installation-standard IBM-supplied bands. A typical UCS image
table entry takes the form shown in Figure 42.

Byte O~I i ---,.5----r-r-j Tor-r-['j -----"'j--r---('f :: I I ::=j

l1i~ 0-;,,;0" .",' W Length of description data 1

Lengths of verification lines2

(V LENGTH); one byte per line

'-------~ Number of verification linel2

L--________ + Reserved (set to zero)

'------------~ Description offset (set to zero if omitted)

'------------~ Verification offset (set to zero if omitted)

'-------------~ Flag Byte: X'OO' = Non-default image
X'SO' .. Default image

'---------------~ UCS Image Name

'--------------------+ UCS Image Name or Alias (1-4 character
name, left-justified and padded to a
4~haracter length with blanks, if necassery)

L--___________________ --+ Length of this entry

Figure 42. UCS Image Table Entry Format

Notes to Figure~2:

1~ This field is optional.

2. This field is optional for the 4245 printer.

The contents of the UCSimage table UCS5 (IGGUCS5 macro), for
the 4245 printer, are shown in Figure 43.

Chapter 8. Maintaining SYS1.IMAGElIB 175

Name Alias Default Description

AN21 AN21 YES Default UCS image

AN21 AN NO 1403/3203 AN image

AN21 All NO 3211 All image

AN21 40E1 NO 4248 40E1 image

HN21 HN21 NO Nondefault UCS image

HN21 HN NO 1403/3203 HN image

HN21 H11 NO 3211 Hl1 image

HN21 4101 NO 4248 4101 image

Pl21 Pl21 NO Nondefault UCS image

Pl21 PN NO 1403/3203 PN image

Pl21 Pl1 NO 3211 Pll image

Pl21 4121 NO 4248 4121 image

SN21 SN21 NO Nondefault UCS image

SN21 4201 NO 4248 4201 image

TN21 TN21 NO Nondefault UCS image

TN21 TN NO 1403/3203 TN image

TN21 TIl NO 3211 TIl image

TN21 4181 NO 4248 4181 image

GN21 GN21 NO Nondefault UCS image

GN21 GIl NO 3211 GIl image

GN21 41Cl NO 4248 4fCl image

RN21 RN21 NO Nondefault UCS image

RN21 RN NO 1403/3203 RN image

KA21 KA21 NO Nondefault UCS image

KA21 4041 NO 4248 4041 image

KA22 KA22 NO Nonc:lefault UCS image

FC21 FC21 NO Nondefault UCS image

FC21 4161 NO 4248 4161 image

Figure 43. UCS5 Image Table Contents

Note: The image table for the 4245 printer includes USA and
Canada band IDs only. To support other national band IDs, you
will have to modify the UCS image table. See "Adding/Modifying
a UCS Image Table Entry."

Adding/"odifying a UCS Image Table Entry

If you plan to use a new UCS image name/alias with the 4245
printer, you must add an entry for that image name/alias to the
appropriate UCS image table. Similarly, if you want to select a

176 MVS/370 System Programming library: Data Management

o

(1"'1\

~~,,;

c

o

new default image or change the description on an old image, you
must make the change in the image table.

To build new UCS table entries, or to change the format of old
entries, use the following procedure:

1. Issue the IGGUCSIT macro, as described below, to build a new
UCS image table entry. A new entry is built even if it is
intended to replace an existing entry supplied by IBM.
Because the new entry is found first, the previous entry is
never found and thus is effectively replaced.

2. Include the UCS image table, source using the macro IGGUCS5,
which is found in SYS1.MACLIB.

3. Reassemble the image table module (UCS5).

4. Link-edit the reassembled module into SYS1.IMAGELIB.

The IGGUCSIT macro instruction has the following format:

IGGUCSIT ttF=CLISTIDSECT]

,NAttE=image name

[,ALIAS=image alias]

[,DEFAULT=CYESINO]]

[,DESCR=description]

[,VLENGTH=(nl,n2, ••• n)]

ttF=CYnIDSECTl
specifies the form of the macro instruction.

DSECT

produces a UCS image table entry based on the
information supplied in other IGGUCSIT parameters. If
LIST is selected or allowed to default, the NAME
parameter must also be coded.

produces a DSECT for a single UCS image table entry,
similar to the sample entry shown in Figure 42 on page
175. If DSECT is coded, all other parameters of
IGGUCSIT are ignored.

LIST is the default.

NAttE=image name
specifies the 1- to 4-character UCS image name.

ALIAS=image alias
specifies a 1- to 4-character alias name for the UCS image.
If ALIAS is not specified, the image name coded in the NAME
parameter will be entered in the UCS image table.

DEFAULT=CYESINO)
indicates whether the new UCS image is to be used as a
default value.

YES
indicates that this UCS image is a default. Default
images are used by the system for jobs that do not
request a specific image.

indicates that this UCS image should not be used as a
default.

If the DEFAULT parameter is not specified, the new UCS
image is not used as a default.

Chapter 8. Maintaining SYS1.IMAGELIB 177

DESCR=description
specifies descriptive information about the new UCS image. 0
description can be up to 32 EBCDIC or hexadecimal .
characters in length, although EBCDIC and hexadecimal ~.
characters cannot be used in combination.

The descriptive information is placed in the header line of
the verification display, following the real UCS image
name. If the OESeR parameter is omitted, no description
will appear in the display. For more information on the
verification display, see "Verifying the UCS Image."

If VLENGTH is not specified for the 4245 printer, theDESCR
parameter is ignored.

VLENGTH=(nl,n2, ••• 0)

verifying the UCS Image

specifies the length(s) of each line in the UCS
verification display. The length of each line must be
specified separately, even if all lines are the same
length.

nl is the length of print line 1; n2 is the length of print
line 2; n is the length of the last print line. The sum of
the verilicat~on l~ne langths should b~ aqual to 350 in
order to display the complete image.

See "Verifying the UCS Image" for details on the
verification report.

For the 1403 (with the UCS feature), 3203, 3211, 3262, and 4245
printers, the UCS image can be displayed on the printer for
visual verification using either of the following parameters:

• In JCL: UCS=(character set code"VERIFY)

• In the SETPRT macro: UCS=(character set code"V)

The verification display header appears in the format shown
below.

UCS IMAGE VERIFICATION image id [,FOLD] [description]

jmage id
The 1- to 4-character name of the UCS image.

description
The descriptive information supplied for this UCS image in
the UCS image table.

The 4245 also, optionally, prints the image.

See JCL and Data Management Macro Instructions for more
information on the UCS VERIFY parameters.

178 MVS/370 System Programming Library: Data Management

!~"~I

\'"~

()

o

o

o

EXAMPLES OF ADDING TO THE UCS IMAGE TABLE

Example 1: Adding a New Band ID to the ~2~S Image Table (UCSS)

In this example, the band name RPQl with description "RPQ BAND"
is added to UCS5. In the UCS verification display, 7 lines of
50 characters each are printed. Macro IGGUCS5 causes the UCS
image table source (as distributed by IBM) to be included.

72
//UCS5 JOB
// EXEC ASMFCl,
// PARM.ASM='NODECK,lOAD',
// PARM.lKED='Ol,RENT,REUS'
//SYSPRINT DD SYSOUT=A
//ASM.SYSIN DD *

TITLE 'UPDATED UCS5 IMAGE TABLE'
UCS5 CSECT

/*

IGGUCSIT HAME=RPQl,
VlENGTH=(50,50,50,50,50,50,50),
DESCR='RPQ BAND'

IGGUCS5
END

//lKED.SYSlMOD DD DSH=SYS1.IMAGElIB(UCS5),DISP=OlD,
// SPACE= (OVERRIDE SECONDARY AllOCATION)

Notes to Example 1:

1. The RENT and REUS linkage editor attributes are used for
performance considerations in a paging environment. They
may be omitted.

2. Executing the ASMFCl procedure does not actually generate
executable code. The assembler/linkage editor is used to
place the UCS image table entry into SYSl.IMAGElIB.

3. The SPACE parameter is overridden here because the ASMFCl
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used.

ADDING AN FCB IMAGE TO THE IMAGE LIBRARY

Two standard FCB images, STD! and STD2, are included in
SYSl.IMAGElIB during system generation for the following
printers:

3203

3211

4245

x
X

STDI sets line spacing at 6 lines per inch for an 8-1/2 inch
form; STD2 is a default FCB image that sets line spacing at 6
lines per inch for an II-inch form. Channels for both images
are evenly spaced, with Channell on the fourth line and Channel
9 on the last line. See Figure 44 and Figure 45 on page 178.2
for sample STDI and STD2 images.

The 4245 printer loads a default FCB image into the buffer at
power-on time. The 4245 default FCB image is an II-inch form
with 6 lines per inch and a Channell on the first print line.

Chapter 8. Maintaining SYSl.IMAGElIB 178.1

FCB2STDl CSECT
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

The IEBIMAGE utility should be used to create and modify FCB
modules for the 3800 printing subsystem.

X'80' DEFAULT
ALI(51) FCB IMAGE LENGTH = 51
X'OOOOOO' . LINE 1, 2, 3
X'Ol' LINE 4, CHANNEL 1
X'OOOOOO' LINE 5, 6, 7
X'02' LINE 8, CHANNEL 2
X'OOOOOO' LINE 9, 10, 11
X'03' LINE 12, CHANNEL 3
X'OOOOOO' LINE 13, 14, 15
X'04' LINE 16, CHANNEL 4
X'OOOOOO' LINE 17, 18, 19
X'05' LINE 20, CHANNEL 5
X'OOOOOO' LINE 21, 22, 23
X'06' LINE 24, CHANNEL 6
X'OOOOOO' LINE 25, 26, 27
X'07' LINE 28, CHANNEL 7
X'OOOOOO' LINE 29, 30, 31
X' 08' LINE 32, CHANNEL 8
X'OOOOOO' LINE 33, 34, 35
X'OA' LINE 36, CHANNEL 10
X'OOOOOO' LINE 37, 38, 39
X'OB' LINE 40, CHANNEL 11
X'OOOOOOOOOOOOOOOO' LINE 41, 42, 43, 44, 45, 46, 47, 48
X'OC' LINE 49, CHANNEL 12
X'OO' LINE 50
X'19' LINE 51, CHANNEL 9-END OF FCB IMAGE

Figure 44. Sample of the Standard FCB Image STDI

FCB2STD2 CSECT
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

X'80'
ALI(66)
X'OOOOOO'
X'Ol'
X'OOOOOOOOOO'
X'02'
X'OOOOOOOOOO'
X'03'
X'OOOOOOOOOO'
X'04'
X'OOOOOOOOOO'
X'05'
X'OOOOOOOOOO'
X'06'
X'OOOOOOOOOO'
X'07'
X'OOOOOOOOOO'
X'08'
X'OOOOOOOOOO'
X'OA'
X'OOOOOOOOOO'
X'OB'
X'OOOOOOOOOO'
X'OC'
X'OO'
X'19'

DEFAULT
FCB IMAGE LENGTH = 66
LINE 1, 2, 3
LINE 4, CHANNEL 1
LINE 5, 6, 7, 8, 9
LINE 10, CHANNEL 2
LINE 11, 12, 13, 14, 15
LINE 16, CHANNEL 3
LINE 17, 18, 19, 20, 21
LINE 22, CHANNEL 4
LINE 23, 24, 25, 26, 27
LINE 28, CHANNEL 5
LINE 29, 30, 31, 32, 33
LINE 34, CHANNEL 6
LINE 35, 36, 37, 38, 39
LINE 40, CHANNEL 7
LINE 41, 42, 43, 44, 45
LINE 46, CHANNEL 8
LINE 47, 48, 49, 50, 51
LINE 52, CHANNEL 1~
LINE 53, 54, 55, 56, 57
LINE 58, CHANNEL 11
LINE 59, 60, 61, 62, 63
LINE 64, CHANNEL 12
LINE 65
LINE 66, CHANNEL 9-END OF FCB IMAGE

Figure 45. Sample of the Standard FCB Image STD2

178.2 MVS/370 System Programming Library: Data Management

c

C.""·"'\ i

You may add a 3211 format FCB image to those that reside in
SYSI.IMAGElIB, using the assembler and linkage editor. No
executable code is generated; the assembler prepares DCs, and
the linkage editor puts them into SYSI.IMAGElIB. The new FCB
image must be structured according to the following rules:

I. The member name cannot exceed 8 bytes. The first 4
characters of the name must be FCB2. The characters that
follow identify the FCB image and are referred to as the
"image identifier" (ID). Any combination of valid assembler
language characters can be used, with the exception of a
single "C" or "un, because these are used by the system to
recognize special conditions. The image identifier must be
specified in the FCB keyword of a DD statement or in the
SETPRT macro to load the image into the FCB buffer.

2. The first byte of the FCB load module specifies whether the
image is a default. (Default images may be used by the
system for jobs that do not request a specific image.)
Specify the following in the first byte:

X'80' indicates a default image
X'OO' indicates a nondefault image

3. The second byte of the load module indicates the number of
bytes to be transferred to the control unit to load the FCB
image. This count includes the byte, if used, for the print
position indexing feature.

4. The third byte of the load module (the first byte of the FCB
image) is either the print position indexing byte, or the
lines-per-inch byte. The print position indexing byte is
optional and, when used, precedes the lines-per-inch byte.
The 4245 printer accepts and discards the index byte if it
is present, because the printer does not support the
indexing feature. A description of the print position
indexing feature an~ its use will be found in IBM 3211
Printer, 3216 Interchangeable Train Cartridge, and 3811
Printer Control Unit Component Description and Operator's
Guide.

The special index flag in the third byte contains X'80' plus
a binary index value, from 1 to 32 (the default is I). This
index value sets the left margin: I indicates flush-left;
any other value indicates a line indented that many spaces.

The form image begins with the lines-per-inch (lPI) byte.
The lPI byte defines the number of line~ per inch (6 or 8)
and also represents the first line of tne page. It mayor
may not also contain a channel identifier.

Typically, the length of an FCB image is consistent with the
length of the form it represents. For example, an 8-1/2
inch form to be printed at 6 lPI has an FCB image that is 51
bytes long (8-1/2 inches times 6 lPI).

The lPI byte appears as follows:

X'ln' sets 8 lPI

X'On' sets 6 lPI

5. All remaining bytes (lines) must contain X'On', except the
last byte, which must be X'in'. The letter n can be a
hexadecimal value from 1 to C, representing a channel (one
to 12), or it can be 0, which means no channel is indicated.

In Figure 46 on page 178.4. an FeB load module is assembled and
added to SYSI.IMAGElIB. The image defines a print density of 8
lines per inch on an II-inch form, with a right shift of 15 line
character positions (1-1/2 inches).

Chapter 8. Maintaining SYS1.IMAGElIB 178.3

I'I'ADDFCB
I'I'STEP
1'1'
I'I'ASM.SYSIN
FCB2IDI
*THIS EXAMPLE

1'*

JOB MSGLEVEL=1
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD *
CSECT

IS FOR
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

A FORM LENGTH OF 11 INCHES WITH 8 LPI (88 LINES)
X'80' THIS IS A DEFAULT IMAGE
ALl(89) LENGTH OF FCB IMAGE AND INDEXING BYTE
X'8F' OFFSET 15 CHARACTERS TO THE RIGHT
X'10' 8 LINES PER INCH-NO CHANNEL FOR LINE 1
XL4'O' 4 LINES NO CHANNEL
X'OI' CHANNEL 1 IN LINE 6
XL6'0' 6 LINES NO CHANNEL
X'02' CHANNEL 2 IN LINE 13
XL6'0' 6 LINES NO CHANNEL
X'03' CHANNEL 3 IN LINE 20
XL6'O' 6 LINES NO CHANNEL
X'04' CHANNEL 4 IN LINE 27
XL6'0' 6 LINES NO CHANNEL
X'05' CHANNEL 5 IN LINE 34
XL6'0' 6 LINES NO CHANNEL
X'06' CHANNEL 6 IN LINE 41
XL6'O' 6 LINES NO CHANNEL
X'07' CHANNEL 7 IN LINE 48
XL6'0' 6 LINES NO CHANNEL
X'08' CHANNEL 8 IN LINE S5
XL6'0' 6 LINES NO CHANNEL
X'09' CHANNEL 9 Itt LINE 62
XL6'0' 6 LINES NO CHANNEL
X'OA' CHANNEL 10 IN LINE 69
XL6'0' 6 LINES NO·CHANNEL
X'OB' CHANNEL 11 IN LINE 76
XL6'0' 6 LINES NO CHANNEL
X'OC' CHANNEL 12 IN LINE 83
XL4'0' 4 LINES NO CHANNEL
X'10' POSITION 88 LAST LINE IN IMAGE

I'I'LKED.SYSLMOD DD
1'1'

DSNAME=SYSl.IMAGELIBCFCB2IDl),DISP=OLD,
SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 46. Sample Code to Assemble and Add an FCB Load Module to SYSl.IMAGELIB

Notes to Figure 46:

1. The RENT and REFR linkage editor attributes are used for
performance considerations in a paging environment. They
may be omitted.

2. Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used to
place the FCB image into SYSl.IMAGELIB.

3. The SPACE parameter is overridden here because the ASMFCL
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used.

RETRIEVING AN FeB I"AGE FRO" SYSl.I"AGELIB

If you want to modify an FCB image in virtual storage before
loading it into a forms control buffer, you can use this
sequence of macro instructions to read the FCB image into
virtual storage.

178.4 MVSI'370 System Programming Library: Data Management

(("00. ____ \

\,.\.,,,,,!

c

C~i:
j'

o

o

1. An IMGLIB macro instruction, with the OPEN parameter

2. A BLDL macro instruction, to determine whether the FCB image
you want is in the image library

3. A LOAD macro instruction, to load the image into virtual
storage

After the image has been read in, you should issue the IMGLIB
macro instruction with the CLOSE parameter and the address of
the DCB that was built by the first IMGLIB macro. A SETPRT
macro instruction can be used to load the forms control buffer
with the modified image. Printers other than the 3800 will
require the use of an FCB entry in an exit list, as described in
Data Management Services.

The format of the BLDL and SETPRT macros is given in Data
Management Macro Instructions; the format of the LOAD macro is
given in Supervisor Services and Macro Instructions.

The format of the IMGLIB macro is shown below:

I [symboll I IHGLIBI (OPENICLOSE~addrJ

OPEN
specifies that a DCB is to be built for SYSl.IMAGELIB and
that SYSl.IMAGELIB is to be opened. The address of the DCB
is returned in register 1.

CLOSE
specifies that SYS1.IMAGElIB is to be closed.

specifies the RX-type address of the word which points to
the DCB. If coded in the form (reg), then the register in
parentheses contains the address of the DCB, not the
address of the fullword.

Return codes from the IMGLIB OPEN macro are shown below:

Return Code Meaning

0 (00) Operation successful.

4 (04) Either the volume containing
SYSl.IMAGELIB is not mounted or a
required catalog volume is not mounted.

8 (08) Either SYSl.IMAGELIB does not exist on
the volume to which the catalog points,
or SYS1.IMAGELIB is not cataloged.

12 (OC) An error occurred in reading the catalog
or VTOC.

BLDL and LOAD are the only macros that may refer to the DCB
built by the IMGLIB macro.

Chapter 8. Maintaining SYS1.IMAGELIB 179

CHAPTER 9. JES2 SUPPORT FOR THE IBM 1,03, 3203 MODELS, AND 3211 PRINTERS

UCS ALIAS NAMES

The system assigns an alias for each installation-standard print
chain not actually defined on a given printer. This provides
JES2 with flexibility in scheduling printers for SYSOUT data
sets. For example, a request for the 1403 TN train would be
assigned the Til train, if the data set were printed on a 3211.
The assigned alias names, which follow the naming conventions
cur~ently used in SYSl.IMAGELIB, are:

IMAGE

UCSIAN
UCSIHN
UCSIPN
UCSITN
UCS2Ali
UCS2Hll
UCS2Pll
UCS2Tll

ALIAS

UCSIAII
UCSIHII
UCSIPll
UCSITll
UCS2AN
UCS2HN
UCS2PN,UCS2RN,UCS2QN
UCS2TN

The image and alias names are included in SYS1.IMAGELIB at
,,-sy.stem generati on.

Some trains, such as SN and Gil, do not have aliases because
neither has an equivalent train on the other printer. An
installation can assign an alias, if it so chooses. (See
Linkage Editor and Loader for details about ~he ALIAS
statement.) If an alias is supplied, JES2 will use it. If an
alias is not supplied, an installation-defined SYSOUT class or a
printer routing code (specified via the DEST parameter) should
be used to assign the data set to the correct printer. If a
SYSOUT class or a printer routing code is not used, and JES2 is
directed to print a data set on a printer for which the proper
image is not supplied, JES2 notifies the operator. The operator
can then print the data set with a valid train or redirect the
data set to the proper printer via the '$E' command.

If an installation defines a new train, it can supply an alias
name for that train, via the linkage editor ALIAS statement,
when including the image in SYS1.IMAGELIB.

THE 3211 INDEXING FEATURE

JES2 soppo~ts the 3211 Indexing Feature in two ways:

1. Specification of the INDEX parameter on the /*OUTPUT card.

2. The extended.FCB i~age:

JES2 supplies two special FCBs: FCB26 for 6 lines per inch
and FCB28 for 8 lines per inch (specified as FCB=6 and
FCB=8, respectively). These FCBs contain a channell
indication in position 1, a special index flag in the third
byte, and the number of lines per inch in the fourth byte of
the image.

The special index flag in the third byte of FCB26 and FCB28
contains X'80' plus a binary index value, in the range 1 to
32 (default=l). The index value sets the left margin (1

o

i ndi cates flush-left posi ti on; other values cause C~ '
indentation of the print line by N-l positions). _

180 MVS/370 System Programming Library: Data Management

11M 3203 MODEL 5 PRINTER

If any other FCB images are to be used by JES2, they must
specify channell in position 1; otherwise JES2 incorrectly
positions the forms in the printer. (STDI and STD2 do not
specify channell in position 1 and therefore must not be
specified, unless altered, for JES2.)

If the third byte of 'any other FCB image contains a data
character (specifying the number of lines per inch) other
than X'8~', JES2 uses that specification and supplies an
index value of 1.

The IBM 3203 Model 5 Printer is treated the same as a 3211
printer by JES2, except that the 3203 Model 5 does not support
the 3211 indexing feature, and any indexing commands from JES2
are ignored by the 3203 Model 5. The 3203 Model 5 uses 3211 FCB
images and its own unique UCS images. UCS images are listed in
System Generation Reference.

Chapter 9. JES2 Support for the IBM 1403, 3203 Model 5, and 3211 Printers 181

CHAPTER 10. CATALOG, SCRATCH, AND RENAME DUMMY MODULES

The load modules for CATALOG CSVC 26), SCRATCH CSVC 29), and
RENAME (SVC 30) contain as their entry points the dummy modules
IGG026DU, IGG029DU, and IGG030DU, respectively. These dummy
modules immediately pass control to the first processing module
for their respective SVCs without performing any processing
themselves. The CATALOG dummy module IGG026DU receives control
from SVC 26 and immediately passes control to modu1e IGC0002F.
The SCRATCH dummy module IGG029DU receives control from SVC 29
and immediately passes control to module IGC0002I. The RENAME
dummy module, IGG030DU, receives control from SVC 30 and
immediately passes control to IGCO~030.

The load module for SCRATCH(SVC29) also contains the dummy
module IGG029DM. The SCRATCH dummy module IGG029DM receives
control from IGG0290D when an error return code of 4 or 8 is
indicated, and immediately passes control to the location
pointed to by register 14.

If you require special processing either before or after SVC 26,
29, or 30, you replace the appropriate dummy moduleCs) with your
own moduleCs). Your replacement modules must follow all the
characteristics and pr~gramming conventions for SVC routines.
For information on writing SVC routines, characteristics of SVC
routines, programming conventions for SVC routines, and
inserting SVC routines, see System Programming Library:
Supervisor Services and Macro Instructions. Your modules may
replace IGG026DU, IGG029DU, IGG029DM, and IGG030DU in SYS1.AOSDO
prior to system generation, or you may replace the dummy modules
in SYSl.LPALIB after system generation. Information on how to
replace the dummy modules with your modules can be obtained from
the appropriate link-edit step of the STAGE I system generation
output. You may also obtain link-edit information from the
STAGE I system generation macro SGIEC4DM in SYS1.AGENLIB. You
may apply PTFs to CATALOG, SCRATCH, or RENAME with SMP without
modifying your own versions of IGG026DU, IGG029DU, IGG029DM,and
IGG030DU.

The prolog of each of the dummy modules contains register
conventions and other information about these modules.

182 MVS/370 System Programming Library: Data Management

c

f('-~

:'LPi

I ' C'''\

c

c

0·, .,

CHAPTER 11. SPECIFYING BUFFER NUMBERS FOR DASD DATA SETS

The BUFNO keyword in the DCB macro and the BUFNO subparameter of
the DCB keyword in the DD statement determine how many buffers
are allocated when accessing a partitioned or sequential data
set using QSAM. The NCP keyword in the DCB macro determines how
many un-CHECKed READ or WR~TE macro instructions are allowed
when accessing a sequential or partitioned data set using BSAM;
one buffer is used for each READ or WRITE macro instruction.

The sequential access method can construct a channel program to
transfer up to 30 buffers or 240,000 bytes of data, whichever is
less. If BUFNO or NCP is less than 30, no more than that number
of buffers can be transferred with a single channel program.

BUFNO is defaulted in OPEN to 5 if it is not specified for a
QSAM DCB; NCP is defaulted to 1 in OPEN if it is not specified.
The QSAM access method manages buffers. The user program must
manage buffers when it uses BSAM.

PERFORMANCE CONSIDERATIONS

Buffer number and block size influence the rate with which data
can be transferred and the operating system overhead per block.
The use of more buffers reduces (per block transferred) the EXCP
and IDS overhead and the time waiting for the DASD device to
seek to the requested cYlinder and rotate to the requested
record (device latency time). However, if more buffers are
allocated than a program can effectively process, the virtual
pages containing those buffers will be paged out, effectively
adding to the system overhead for the job. A large number of
buffers also cause a large amount of real storage to be
allocated to the job while the data is being transferred.

A job in a low-performance group may get swapped out more
frequently than a higher priority job. The number of buffers
allocated for the job contributes to the number of pages which
have to be swapped out.

Programs that access data sets with small block size (for
example, 80) can easily make effective use of 30 buffers which
fit in, at most, two 4096-byte pages. The advantage of 30
buffers over the default of five buffers is great: one channel
program versus six channel programs to transfer 30 blocks.

At the other end of the spectrum, usage of data sets with large
blocking factors such as full-track blocking on 3350 or
half-track blocking on 3380 can still be effective when only 3
or 4 buffers, rather than 5 or more, are specified. The
slightly lower DASD performance and small increase in EXCP and
lOS instruction costs should be more than offset by a reduction
in paging or swapping in a constrained environment.

It can be seen that proper selection of buffer number can have a
positive effect on the elapsed time of a job and the system
overhead associated with the job. The DCB OPEN installation
exit can use installation criteria for a default buffer number
for QSAM DCBs (see "DCB Open Installation Exit" on page 125 for
a description of the open installation exit). The NCP field of
the DCB must be set by the program for BSAM DeBs.

Chapter 11. Specifying Buffer Numbers for DASD Data Sets 183

APPENDIX A. VTOC ACCESS "ACROS

CVAFDIR MACRO

SYNTAX

[label] CVAFDIR ACCESS=READIWRITEIRLSE
[,DSN=addr]
[,BUFLIST=addr]
E,VERIFY=VESINOJI.
[,DEB=addrIUCB=addr]
[, IOAREA=KEEP I (KEEP, addr JNOKEEP I

(NOKEEP,addrl]
[,"APRCDS=VESI(VES,addrJINOI

(NO,addrl]
[, IXRCDS=KEEP I (KEEp,addrl INOKEEPI

(NOKEEP,addrl]
[,BRANCH=VESIINOI(YES,SUP)I(YES,PGMJ]
[,HF=!ILI(E,addrJ]

1 The default is SUP if YES is coded.

ACCESS: READ OR WRITE A DSCB OR VIRtS), OR RELEASE BUFFER LISTS

When ACCESS is READ or WRITE, a single DSCB is accessed for an
indexed or nonindexed VTOC, or one or more VIRs are accessed for
an indexed VTOC.

ACCESS=READ
Specifies that a single DSCB or one or more VIRCs) are to
be read into a buffer whose address is in a buffer list.

If the buffer list if for a DSCB, only one entry is used in
the buffer list. The first entry with the skip bit set to
zero and with a nonzero buffer address is used.

All VIRCs) whose buffer list entry has the skip bit off
will be read into a buffer.

DSN and BUFlIST are required if ACCESS=READ for a DSCB
buffer list.

ACCESS=WRITE
Specifies that a single DSCB or one or more VIRs are to be
written from bufferCs) whose address is in a buffer list.

WRITE is permitted with BRANCH=NO only if the caller is
authorized by APF.

DSN and BUFlIST are required if ACCESS=WRITE for a DSCB
buffer list.

If any buffer list entry has its modified bit set, only
those entries with the modified bit set will be written. If
no modify bits are on, all VIRs will be written.

ACCESS=RLSE
Applies only to VIR buffer lists. It requests the release
of one or more buffers in the VIR buffer list chain
identified in the BUFlIST keyword, and the release of each
buffer list for which all buffers are released.

DSN and BUFlIST are not required if ACCESS=RlSE.

184 MVS/370 System Programming library: Data Management

c

o

o

Only buffers in the buffer list with the skip bit set to
zero and with a nonzero buffer address are released. The
buffer list is not released if any entry has the skip bit
set to one.

For an indexed VTOC, if ACCESS=RLSE is coded, buffer lists
and buffers pointed to by the BUFLIST keyword will be
released, as well as buffer lists supplied in the CVAF
parameter list CVMRCDS and CVIRCDS fields. If the CVMRCDS
or the CVIRCDS buffers are supplied in the BUFLIST field,
either directly or indirectly through chaining, the keyword
MAPRCDS=YES, IXRCDS=KEEP, or MAPRCDS=(NO,O),
IXRCDS=(HOKEEP,O) must be coded to prevent CVAF from
freeing the buffers more than once. If buffers are
released, the CVAF parameter list field pointing to the
buffer list will be updated.

DSN: SPECIFY THE NAME OF THE,DSCB

DSN=addr
DSN specifies the address of a 44-byte data set name of the
DSCB to be accessed.

DSN is required if ACCESS=REAO or WRITE and the request is
to read or write a DSCB. If a 140-byte OSCB is specified,
the validity of the storage location is checked but its
contents are ignored.

BUFLIST: SPECIFY ONE OR MORE BUFFER LISTS

BUFLIST=addr
The BUFLIST keyword contains the address of a buffer list
used to read or write a DSCB or VIRs.

VERIFY: VERIFY THAT A DSCB IS A FORMAT-O DSCB

VERIFY=YES
CVAF will verify that the OSCB is a format-O OSCB before
writing the DSCB. The first four bytes of the key will b~
compared with binary zeros. If the key does not start with
four bytes of zeros, the OSCB will not be written and an
error code will be returned.

YERIFY=NO
CVAF will not test the key of the OSCB.

Note: VERIFY applies only when writing a 140-byte OSCB. VERIFY
is ignored when a VIR is written.

BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUPJ
Requests that the branch entry to CVAFDIR be ~sed. You
must be in supervisor state. Protect key checking is
bypassed.

An IS-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to CVAF. SRB mode is
not allowed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the defa~lt
when YES is coded. Protect key checking is bypassed.

BRANCH=(YES,PGMl
Requests the branch entry. You must be authorized by APF
and be in problem state. Protect key checking is bypassed.

Appendix A. VTaC Access Macros 185

BRANCH=NO
Requests the SVC entry. You must be authorized by APF if -
any output operations are requested. Protect key checking (..... ~
is performed.r

DEBIUCB: SPECIFY THE VTOC TO BE ACCESSED

DEB=addr
Supplies the address of a DEB opened to the VTOC to be
accessed. CVAF will not allow output requests to the VTOC
or VTOC index if DEB is supplied. No asynchronous requests
may be performed by an unauthorized caller against the DEB
(such as EXCP, CLOSE, EOV), because CVAF will remove the
DEB from the DEB table for the duration of the CVAF call.
An unauthorized caller (neither APF authorized nor in a
system key) must supply a DEB and not a UCB to CVAF. The
unauthorized caller's DEB must have been created under the
current task by either SAM or EXCP.

UCB=addr
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller must not use this
parameter.

If the address of a previously obtained I/O area is supplied
through the IOAREA keyword, neither UCB nor DEB need be
supplied. Otherwise, either a UCB or DEB must be supplied. If
a UCB address is supplied, it will be overlaid in the CVPL by
the UCB address present in the I/O area.

If DEB and UCB are supplied in the CVPL, the DEB address will be
used and the UCB address will be overlaid in the CVPL by the UCB
address in the DEB.

IOAREA: KEEP OR FREE THE I/O WORKAREA

IOAREA=KEEP
Specifies the CVAF I/O area associated with the CVAF
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF, or system key).

If IOAREA=KEEP is coded, the caller must issue CVAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding 10AREA=KEEP allows subsequent CVAF requests to,be
more efficient, as certain initialization functions can be
bypassed. Neither DEB nor UCB need be specified when a
previously obtained CVAF I/O area is supplied; neither can
they be changed.

When 10AREA=KEEP is first issued, CVAF returns the CVAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls
of CVAF may use that same parameter list, and CVAF will
obtain its I/O area from the CVIO~R.

When processing on the current volume is finished, release
all areas that were kept.

IOAREA=(KEEP.addr) .
Provides the address of a previously obtained I/O area.
a different CVAF parameter list is used, the previously
obtained I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

186 MVS/370 SYstem Programming Library: Data Management

If

(,""""',
I' ,

,=,'

(
'--\"

I)

c

o

o

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon
completion of the eVAF request.

Appendix A. VTOe Access Macros 186.1

o

rf~\
\~/

c

o

SPECIFY THE FORM OF THE MACRO

This keyword specifies whether the list, execute, or normal form
of the macro is requested.

If I is coded, or neither L nor E is coded, the CVAF
parameter list is generated and CVAF is called. This is
the normal form of the macro.

L indicates the list form of the macro. A parameter list
is generated, but CVAF is not called.

HF=(E,addr)
E indicates the execute form of the macro. The CVAF
parameter list whose address is in 'addr' can be modified
by this form of the macro.

MAPRCDS: KEEP OR FREE MAPRCDS BUFFER LIST AND BUFFERS

This keyword applies to an indexed VTOC only and specifies the
disposition of the MAPRCDS buffer list and buffers.

MAPRCDS=YES
Specifies that the buffer list and buffers are to be
retained at the end of processing.

If no buffer list address is in the CVAF paramQter list,
CVAF will read the MAP VIRs into buffers it obtains. The
buffer list that contains the address and RBAs of the VIRs
can be accessed after processing from the CVAF parameter
list field, CVMRCDS. The buffer list and VIR buffers are
in your protect key: subpool 0 if you are not authorized;
229 if you are.

When processing on the current volume is finished, release
all areas that were kept.

MAPRCDS,= (YES, addr)
If YES is coded and the buffer list address (CVMRCDS in
CVAF parameter list) is supplied, VIRs are not read.

The CVMRCDS buffer list used in CVAFDIR macro can be passed
to another CVAF macro call through the MAPRCDS keyword.

If MAPRCDS=YES is coded for an unindexed VTOC, the function
is performed, but an error code will be returned.

MAPRCDS=NO
If MAPRCDS=HO is coded, all the buffers without the skip
bit on in the buffer list whose address is in the CVMRCDS
field of the CVPL will be freed. If all the buffers are
freed, the buffer list will also be freed.

MAPRCDS=(NO,addr)
Causes buffe~ lists and buffers previously obtained by CVAF
to be freed.

You must free buffer lists and buffers obtained by CVAF. This
can be done in three ways:

• By coding MAPRCDS=HO on the CVAFDIR macro that obtained the
buffers

• By coding MAPRCDS=HO on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RLSE and providing the address of
the buffer list in the BUFLIST keyword

Note: To maintain the integrity of MAP records read, you must
enqueue the VTOC and 'reserve the unit.

Appendix A. VTOC Access Macros 187

-I

IXRCDS: RETAIN VIERS IN VIRTUAL STORAGE

This keyword applies to indexed VTOCs only.

IXRCDS=KEEP
Specifies that VIERs read into storage are to be kept in
virtual storage. The VIERs are retained even if processing
cannot complete successfully. The CVAF parameter list in
field CVIRCDS will have the address of a buffer list
containing the VIR buffer addresses and RBAs of the VIERs
read.

Index search function will dynamically update the buffer
list and, when necessary, obtain additional buffer lists
and chain them together.

If KEEP is specified and no buffer list is supplied to CVAF
in the CVPL, CVAF will ~btain-a buffer list and buffers and
read the first high-level VIER. The address of the buffer
list is placed in the CVMICDS field of the CVPL. The first
high-level VIER will be checked for ~he VXFHLV bit and to
see if the VXVISE bit is off.

The buffer list and VIR buffers are in your protect key.
The subpool is 0 if you are not authorized; subpool 229 if
you are.

If IXRCDS=KEEP is coded for an nonindexed VTOC, a request
to read or write a DSCB will be performed, but an error
code will be returned.

When processing on the current volume is finished, release
all areas that were kept.

IXRCDS=(KEEP,addr)

c

The index records buffer list address from one CVAF request
is being passed to this CVAF parameter list by specifying (1'--'1,\
its address as the second parameter in the IXRCDS keyword. \t,;:-')/'

IXRCDS=NOKEEP
If NOKEEP is coded, the VIERs that are accessed (if any)
are not retained. Furthermore, the buffer list supplied in
the CVIRCDS field in the CVAF parameter list is released,
as are all buffers found in the buffer list. If the skip
bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP,addr)
Specifies that previously accessed VIERs are not to be
retained.

You must free buffer lists and buffers obtained by CVAF. This
can be done in three ways:

• By coding IXRCDS=HOKEEP on the CVAFDIR macro that obtained
the buffers

• By coding IXRCDS=HOKEEP on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RLSE and providing the address of
the buffer list in the BUFLIST keyword

Note: To maintain the integrity of the VIERs read, you must
enqueue the VTOC and reserve the unit.

188 MVS/370 System Programming Library: Data Management

o

o

CYAFDSM MACRO

SYNTAX

[labell CVAFDSM ACCESS=HAPDATA
,HAP=INDEXIVOLUHEIVTOC
[,EXTENTS=addrl
[,HAPRCDS=VES11(YES,addrlIN021

(NO,addrl]
[,UCB=addrIDEB=addrl
[,COUNT=VESINO]
[,CTAREA=addrl
[,IOAREA=KEEPI(KEEP,addrlINOKEEPI

(NOKEEP,addr)]
[,BRANCH=NOIYESll(VES,SUPJI(YES,PGHJ]
[,MF=IILI(E,addr)]

IDefault if MF=I.

2Default if MF=l or MF=(E,addr).

lDefault is SUP if YES is coded.

ACCESS=MAPDATA: REQUEST INFORMATION FROM THE INDEX SPACE MAPS

ACCESS=MAPDATA
Obtains data from the index space maps. Three kinds of
data are available:

•

•

The number of format-O DSCBs (the data is obtained from
the VTOC map of DSCBs)

The number of unallocated VIRs in the index (the data
is obtained from the VTDC index map)

• The number (and location) of extents of unallocated
pack space (the data is obtained from the VTDC pack
space map)

MAPRCDS: KEEP OR FREE MAPRCDS BUFFER LIST AND BUFFERS

MAPRCDS=YES
Specifies that the buffer list and buffers are to be
retained at the end of the function.

If YES is specified and no buffer list is supplied through
the CVAF parameter list, CVAF will read the MAP VIRs into
buffers obtained by CVAF. The buffer list that contains
the address and RBAs of the VIRs can be accessed after the
CVAF call from the CVAF parameter list field, CVMRCDS. The
buffer list and VIR buffers are in the caller's protect
key: subpool 0 if the caller is not authorized; subpool
229, if the caller is authorized.

YES is the default if MF=I is specified or defaulted.

When processing on the current volume is finished, release
all areas that were kept.

MAPRCDS=(YES,addr)
If YES is coded but the buffer list address (CVMRCDS in
CVAF parameter list) is supplied, the VIRs are not read.

The CVMRCDS buffer list from one CVAF call can be passed to
another CVAF macro call through the MAPRCDS keyword.

Appendix A. VTOC Access Macros 189

MAPRCDS=NO
If MAPRCDS=NO is coded, the MAP records buffers and buffer
list will be freed upon completion of the CVAFDSM function.

NO is the default if MF=l is specified.

MAPRCDS=(NO,addr)
Causes buffer lists and buffers previously obtained by CVAF
to be freed.

Buffer lists and buffers obtained by CVAF must be freed by the
caller. This can be done'in three ways:

• By coding MAPRCDS=HO on the call that obtained the buffers

• By coding MAPRCDS=HO on a subsequent CVAF call

• By calling CVAFDIR ACCESS=RlSE and providing the buffer list
in the BUFLIST keyword

If MF=CE,addr) is coded and MAPRCDS is not coded, the
parameter list value of MAPRCDS is not changed.

Note: To maintain the integrity of the MAP records read, you
must enqueue the VTOC and reserve the unit.

MAP: IDENTIFY THE "AP TO BE ACCESSED

MAP=INDEX
Specifies the VTOC index map (VIXM) is to be accessed and a
count of unallocated VIRs returned. COUNT=YES must also be
coded.

MAP=VOLUttE
Specifies the VTOC pack space map (VPSM) is to be accessed
and information on unallocated extents of pack space
returned. EXTENTS=addr and COUHT=NO must also be coded.

MAP=VTOC
Specifies the VTOC map of DSCBs (VMDS) is to ·be accessed
and a count of format-O DSCBs returned. COUNT=YES must
also be coded.

EXTENTS: IDENTIFY WHERE EXTENTS FROM THE VPSH ARE RETURNED

EXTENTS=addr
If one-or more extents from the VPSM are requested, EXTENTS
is the address of a 1-byte count field containing the
number of 5-byte extents that follow. In the first two
bytes of the first 5-byte extent, you must supply the
relative track address (RTA) at which CVAF should start the
VPSM search. The first extent area is updated with
information on the next free extent found that has a higher
starting RTA than that supplied. Each subsequent extent
area is filled in with information on free space extents
(in ascending track address order).

Information on free extents has the format, XXYYZ, where:

• XX is the relative track address of the first track of
the extent.

• YY is the number of whole cylinders in the extent.

• Z is the number of additional tracks in the extent.

(~.
')

", .. ,"".
\ I ,."

Only XX is supplied by the caller in the first extent area.
CVAF will start searching the VPSM at relative track
address XX. C

190 MVS/370 System Programming library: Data Management

c

c

c

If all the unallocated extents in the VPSM are provided
before filling in all the supplied extent areas, the
remaining extent areas are set to zero. Register 15 is set
to 4 on return, with the CVSTAT field in the CVPL set to
X'20' to indicate end of data.

Appendix A. VTOC Access Macros 190.1

c

o

o

o

DEBIUCB:

COUNT:

CTAREA=

SPECIFY THE VTOC TO BE ACCESSED

UCB=addr
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller may not supply a
UCB to CYAF.

DEB=addr
Supplies the address of a DEB opened to the YTOC to be
accessed. CYAF will not allow output requests to the VTOC
or YTaC index if DEB is supplied. No asynchronous requests
may be performed by an unauthorized caller against the DEB
(such as EXCP, CLOSE, EOV), because CVAF will remove the
DEB from the DEB table for the duration of the CVAF call.
An unauthorized caller (ne:ther APF authorized nor in a
system key) must supply a DEB and not a UCB to CVAF. The
unauthorized caller's DEB must have been created under the
current task by either SAM or EXCP.

If a previously obtained CVAF 1/0 area is supplied through the
IOAREA keyword, neither UCB nor DEB need be supplied.
Otherwise, either a UCB or DEB must be supplied. If a UCB
address is supplied, it will be overlaid in the CVPL with the
UCB address in the 1/0 area.

If DEB and UCB are supplied in the CVPL, the DEB will be used,
and the UCB address supplied will be overlaid in the CVPL with
the UCB address obtained from the DEB.

OBTAIN A COUNT OF UNALLOCATED DSCSS OR VIRS

COUNT=YES
Indicates a count of unallocated DSCBs or VIRs in the
designated space map is requested. MAP=VTOC or MAP=INDEX
must be specified if COUNT=YES is coded.

COUNT=NO
Indicates a count of unallocated DSCBs or YIRs is not
desired but, rather, information on free space on the pack
is desired. MAP=YOLUME must be coded if COUNT=NO is coded
or defaulted.

SUPPLY A FIELD TO CONTAIN THE NUMBER OF FORMAT-O DSCSS

CTAREA=addr
Gives the address of a 4-byte field to contain the number
of format-O DSCBs when COUNT=YES, MAP=YTOC is specified; or
the number of unallocated YIRs in the YTOC index when
COUNT=YES, MAP=INDEX is specified.

IOAREA: KEEP OR FREE THE I/O WORK AREA

IOAREA=KEEP
Specifies the CYAF 1/0 area associated with the CVAF
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF, or system key).

If IOAREA=KEEP is coded, the caller must issue CYAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CYAF requests to be
more efficient, as certain initialization functions can be
bypassed. Neither DEB nor UCB need be specified when a
previously obtained CVAF I/O area is supplied; neither can
they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CYAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls

Appendix A. VTOC Access Macros 191

of CVAF may use that same parameter list, and CVAF will
obtain its I/O area from the CVIOAR.

When processing on the current volume is finished, release
all areas that were kept.

IOAREA=(KEEP,addr)
Provides the address of a previously obtained I/O a~ea. If
a different CVAF parameter list is used, the previously
obtained CVAF I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon
completion of the CVAF request.

BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUP)
Requests that the branch entry to CVAFDIR be used. The
caller must be in supervisor state. Protect key checking
is bypassed.

An 18-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to CVAF. SRB mode is
not allowed.

BRANCH=YES
Equivalent to BRANCH=CYES,SUP), because SUP is the default
when YES is coded. Protect key checking is bypassed.

c

BRANCH=(YES,PGM) ~-~
Requests the branch entry. The caller must be APF "'\.yi
authorized and in problem state. Protect key checking is
bypassed.

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized
if any output operations are requested. Protect key
checking is performed.

"F: SPECIFY THE FORM OF THE MACRO

This key·word specifies whether the list, execute, or normal form
of the macro is requested.

If I is coded, or neither L nor E is coded, the CVAF
parameter list is generated as is code to call CVAF. This
is the normal form of the macro.

L indicates the list form of the macro. A parameter list
is generated, but code to call CVAF is not generated.

MF=(E,addr)
E indicates the execute form of the macro. The remote CVAF
parameter list supplied as 'addr' is used in, and can be
modified by, the execute form of the macro.

192 MVS/370 System Programming Library: Data Management

()

o

0 ·1
I .. ,J,I

CVAFSEQ MACRO

SYNTAX

[label] CVAFSEQ ACCESS=GTIGTEQ
E,BUFLIST=addr]
[,DSN=addrl
[,UCB=addrIDEB=addr]
[,DSNONLY=NOIYE~
E,ARG=addrl
E,IOAREA=KEEPI(KEEP,addrJINOKEEPI

(NOKEEP,addrJl
E,IXRCDS=KEEPI (KEEPaddrJ INOKEEPI

(NOKEEP,addrJl
[,BRANCH=NOIYES11(YES,SUP11(YES,PGMJ]
[,MF=IILI(E,addrJ]

1If YES, default is SUP.

ACCESS: SPECIFY RELATIONSHIP BETWEEN SUPPLIED AND RETURNED DSN

BUFLIST:

ACCESS=GT
Specifies that the DSH or argument value is to be used to
return a DSCB whose DSH or argument is greater than that
supplied.

ACCESS=GTEQ
Specifies that the DSH or argument value is to be used to
return a DSCB whose DSH or argument is greater than or
equal to that supplied.

Note: A CVAF call specifying ACCESS=GTEQ should be
followed by an ACCESS=GT request, or the same DSCB or name
will be returned.

SPECIFY ONE OR MORE BUFFER LISTS

BUFLIST=addr'
The BUFLIST keyword supplies the address of a buffer list
used to read or write DSCBs and VIRs.

DSN: SPECIFY ACCESS BY DSN ORDER OR BY PHYSICAL-SEQUENTIAL ORDER

DSN=addr
Specifies that access of an indexed VTOC is by DSH order.
BUFLIST is required if DSNONLY=NO is coded or defaulted.

DSN omitted
If you omit the DSN keyword, access of an indexed or
nonindexed VTOC is by physical-sequential order. BUFLIST
is required.

UCBIDEB: SPECIFY THE VTOC TO BE ACCESSED

UCB=addr
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller may not supply a
UCB to CVAF.

DEB=addr
Supplies the address of a DEB opened to the VTOC to be
accessed. CVAF will not allow output requests to the VTOC
or VTOC index if DEB is supplied. No asynchronous requests
may be performed by an unauthorized caller against the DEB
(such as EXCP, CLOSE, EOV) because CVAF will remove the DEB
from the DEB table for the duration of the CVAF call. An

Appendix A. VTOC Access Macros 193

unauthorized caller (neither APF authorized nor in a system
key) must supply a DEB and not aUCB to CVAF. The C
unauthori zed caller's DEB must have been created under the "
current task by ei ther SAM or EXCP • I

If a previously obtained CVAF I/O area is supplied through the
IOAREA keyword, neither UCB nor DEB need be supplied.

Otherwise, either a UCB or DEB must be supplied. If a UCB
address is supplied, it will be overlaid in the CVPl with the
UCB address in the I/O area.

If DEB and UCB are supplied in the CVPl, the DEB will be used,
and the UCB address supplied will be overlaid in the CVPl with
the UCB address obtained from the DEB.

DSNONLY: SPECIFY THAT ONLY THE DATA SET NAME BE READ

This keyword is applicable only to accessing an indexed VTOe in
DSN order.

DSNONLY=NO
Requests that the data set name be obtained from the VToe
index and the DSCB be read into a buffer supplied through
the BUFLIST keyword. BUFLIST is required.

DSNONLY=YES
Requests that only the data set name be obtained from the
VToe index. If the ARG keyword is coded, the argument of
the DSCB is returned.

ARG: SPECIFY WHERE THE ARGUHENT OF THE DSCB IS TO BE RETURNED

This keyword is applicable only to accessing an indexed VTOe in
DSN order with DSHONLY=YES coded.

ARG=addr
Provides the address of the S-byte area at which the CeHHR
of each data set name in the VTOC index is returned when
DSHONLY=YES is coded.

IOAREA: KEEP OR FREE THE I/O WORK AREA

IOAREA=KEEP
Specifies the CVAF I/O area associated with the CVAF
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF, or system key).

If IOAREA=KEEP is coded, the caller must issue eVAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be
more efficient, as certain initialization functions can be
bypassed. Neither DEB nor UCB need be specified when a
previously obtained eVAF I/O area is supplied; neither can
they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls
of CVAF may use that same parameter list, and CVAF will
obtain its I/O area from the eVIOAR.

When processing on the current volume is finished, release
all areas that were kept.

194 MVS/370 System Programming Library: Data Management

o

c

o

o

IOAREA=(KEEP,~)
Provides the address of a previously obtained I/O area. If
a different CVAF parameter list is used, the previously
obtained CVAF I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyword.

Appendix A. VTOC Access Macros 194.1

c

c

o

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work eree to be freed upon
completion of the CVAF request.

IXRCDS: RETAIN VIERS IN VIRTUAL STORAGE

This keyword applies to an indexed VTOC only.

IXRCDS=KEEP
Specifies that the VIERs read into storage during the CVAF
function are to be kept in virtual storage. The VIERs are
retained even if the index function is unsuccessful. The
VIERs are accessed from the CVAF parameter list (CVIRCDS).
CVIRCDS is the address of a buffer list containing the VIR
buffer addresses and RBAs of the VIERs read.

Index search function will dynamically update the buffer
list a~d, when necessary, obtain additional buffer lists
and chain them iugether.

If KEEP is specified and no buffer list is supplied to CVAF
in the CVPL, CVAF will obtain a buffer list and buffers and
read the first high-level VIER. The address of the buffer
list is placed in the CVIRCDS field of the CVPL. The first
high-level VIER will be checked for the VXFHLV bit and to
see if the VXVISE bit is off.

The buffer list and VIR buffers are in the caller's pr~toct
key. The subpool is 0 if the caller is not authorized;
subpool 229, if the caller is authorized.

If IXRCDS=KEEP for an nonindexed VTOC, a request to read a
DSCB may be performed, but an error code will be returned.

When processing on the current volume is finished, release
all areas that were kept.

IXRCDS=(KEEP,addr)
The CVIRCDS from one CVAF call can be passed to another
CVAF parameter list by specifying the address as the second
parameter in the IXRCDS keyword.

IXRCDS=NOKEEP
If HOKEEP is coded, the VIERs which are accessed (if any)
are not retained. Furthermore, the buffer list supplied in
the CVIRCDS field in the CVAF parameter list is released,
as are all buffers found in the buffer list. If the skip
bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP,addr)
Specifies that previously accessed VIERs are not to be
retained.

You must free buffer lists and buffers obtained by CVAF. This
can be done in three ways:

• By coding IXRCDS=NOKEEP on the CVAFSEQ macro that obtained
the buffers

• By coding IXRCDS=NOKEEP on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RLSE and providing the address of
the buffer list in the BUFLIST keyword

Note: To maintain the integrity of the VIERs read, you must
enqueue the VTOC and reserve the unit.

Appendix A. VTOC Access Macros 195

BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUP)
Requests that the branch entry to CVAFDIR be used. The
caller must be in supervisor state. Protect key checking
is bypassed.

An IS-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to CVAF. SRB mode is
not allowed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default
when YES is coded. Protect key checking is bypassed.

BRANCH=(YES,PGf1)
Requests the branch entry. The caller must be APF
authorized and in problem state. Protect key checking is
bypassed.

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized
if any output operations are requested. Protect key
checking is performed.

MF: SPECIFY THE FORM OF THE MACRO

CVAFTST MACRO

SYNTAX

This keyword specifies whether the list or execute or normal
form of the macro is requested.

If I is coded, or neither L nor E is coded, the CVAF
parameter list is generated as is code to call CVAF. This
is the normal form of the macro.

L indicates the list form of the macro. A parameter list
is generated, but code to call CVAF is not generated.

f1F=(E,addr)
E indicates the execute form of the macro. The remote CVAF
parameter list supplied as 'addr' is used in and can be
modified by the execute form of the macro.

CVAFTST UCB=addr

UCB: SPECIFY THE VTOC TO BE TESTED

UCB=addr
Supplies the address of the UCB for the volume whose VTOC
is to be tested.

196 MVS/370 System Programming Library: Data Management

c

" I C"·\

D

o

o

APPENDIX B. EXAMPLES OF VTOC ACCESS MACROS

The examples that follow are partial assembly listings which
include expansions of each VTOe access macro. The expansions
are provided to show how the VTOe macros can be substituted for
existing procedures.

EXAMPLE 1: USING THE CVAFDIR MACRO WITH AN INDEXED OR NONINDEXED VIOC

This example uses the CVAFDIR-macro to read a DSCB of a given
data set name and determin~s whether the DSeB is for a
partitioned data set.· The address of the 44-byte data sat name
is supplied to the program-ln register 5 (labelad RDSN in the
example). The address of a DEB open to the VTOC 15 supplied to
the program in register 4 (labeled RDEB in the example).

The buffer list is in the program and is generated by the
IeVAFBFL macro. The DSCB buffer 15 in the program and is
generated by the IECSDSLI macro.

EXAMPLEI CSECT
STM 14,12,12(RSAVE)
BALR 12,0
USING *,12
ST RSAVE,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,RSAVE)
LR RSAVE,RWORK

**
* * REGISTERS
* **
REGI EQU 1 REGISTER 1
RWORK EQU 3 WORK-REGISTER
RDEB EQU 4 DEB ADDRESS
RDSN EQU 5 ADDRESS OF DATA SET NAME
RSAVE EQU 13 SAVE AREA ADDRESS
REGIS EQU 15 RETURN CODE REGISTER 15
**
* * RETURN CODES
* **
PDSRTN EQU 0 DATA SET A PDS RETURN CODE
NOTFND EQU 4 DATA SET NOT FOUND RETURN CODE
NOTPDS EQU 8 DATA SET NOT A PDS RETURN CODE
UNEXPECD EQU 12 UNEXPECTED ERROR RETURN CODE
**
* * * * * *

READ DSCB INTO DSIFMTID.
DATASET NAME ADDRESS SUPPLIED IN RDSN.
ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.
DETERMINE IF DATA SET IS A PARTITIONED DATA SET.
THIS PROGRAM IS NEITHER REENTRANT NOR REUSABLE.

* **
XC BUFLISTCBFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,DSIFMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFfR LIST
01 BFLEFL,BFLECHR CCHHR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN

SUPPLIED IN CVPL
MVC DSIDSNAM,OCRDSN) MOVE IN DATA SET NAME TO WORKAREA
CVAFDIR ACCESS=READ,DSN=DSIDSNAM,BUFLIST=BUFLIST,DEB=(RDEB)

Appendix B. Examples of VTOC Access Macros 197

+ CNOP 0,4
+ BAL I,ICVIE LOAD CVPL LIST ADDRESS
+ICVIS EQU * START OF CVPL
+ DC CL4'CVPL' EBCDIC 'CVPL'
+ DC AL2CICVIE-ICVIS) LENGTH OF CVPL
+ DC XLl'OI' FUNCTION CODE
+ DC XLl'OO' STATUS INFORMATION
+ DC B'OOOOOOOO' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE
+ DC H'O' RESERVED
+ DC ACO) UCB ADDRESS
+ DC ACDSIDSNAM) DATA SET NAME ADDRESS
+ DC ACBUFLIST) BUFFER LIST ADDRESS
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS
+ DC ACO) MAP VIR'S BUFFER LIST ADDRESS
+ DC ACO) I/O AREA ADDRESS
+ DC ACO) DEB ADDRESS
+ DC ACO) ARGUMENT ADDRESS
+ DC ACO) SPACE PARAMETER lIST ADDRESS
+ DC ACO) EXTENT TABLE ADDRESS
+ DC ACO) NEW VRF VIXM BUFFER lIST ADDR
+ DC ACO) VRF DATA ADDRESS
+ DC ACO) COUNT AREA ADDRESS
+ICVIE EQU * END OF CVPL
+ ST RDEB,36C,I) STORE DEB PTR IN PARM lIST
+ SVC 139

USING CVPL,REGI ADDRESSABIlITY TO CVPl
lTR REGI5,REGI5 ANY ERROR
BZ NO ERROR BRANCH IF NOT

**
* * DETERMINE WHAT ERROR IS
* ** C REGI5,ERROR4 IS RETURN CODE 4

BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STATOOI IS IT DATA SET NAME NOT FOUND?
BNE OTHERERR BRANCH IF NOT
DROP REGI 'ADDRESSABIlITY TO CVPl NOT NEEDED

**
* * DATA SET NAME NOT FOUND
* ** L RSAVE,4C,RSAVE)

RETURN (14,12),RC=NOTFND SET UP DATA SET NOT FOUND ERROR
+ lM 14,12,12CI3) RESTORE THE REGISTERS
+ lA 15,NOTFNDCO,O) lOAD RETURN CODE
+ BR 14 RETURN

NOERROR EQU * DSCB READ
MVC FICCHHR,BFlECHR MOVE CCHHR OF FORMAT 1/4 DSCB TO *

WORKAREA
ClI DSIFMTID,C'4' IS DSCB A FORMAT 4 DSCB
BE NOTFI BRANCH IF YES. NOT A FORMAT 1
TM DSIDSORG,DSIDSGPO IS FORMAT 1 DSCB FOR PARTITIONED

DATA SET
BO PDS BRANCH IF PDS

NOTFI EQU * DSCB IS NOT A PDS
l RSAVE,4C,RSAVE)
RETURN (14,12),RC=NOTPDS SET UP NOT PDS RETURN CODE

+ LM 14,12,12(13) RESTORE THE REGISTERS
+ LA 15,NOTPDSCO,O) LOAD RETURN CODE
+ BR 14 RETURN

PDS EQU * DATA SET IS ,PARTITIONED
l RSAVE,4(,RSAVE)
RETURN (14,12),RC=PDSRTN SET UP PDS RETURN CODE

+ lM 14,12,12(13) RESTORE THE REGISTERS
+ LA 15,PDSRTNCO,0) LOAD RETURN CODE
+ BR 14 RETURN

OTHERERR EQU * UNEXPECTED ERROR
l RSAVE,4(,RSAVE)

198 MVS/370 System Programming library: Data Management

"f-'~\
I i

'\=1'

o

o

+
+
+

ERROR4
BUFLIST

RETURN (14,12),RC=UNEXPECD
LM 14,12,12(13)
LA 15,UNEXPECDCO,O)
BR 14
DC F'4'
ICVAFBFL DSECT=NO

RESTORE THE REGISTERS
LOAD RETURN CODE
RETURN

ERROR RETURN CODE 4
BUFFER LIST

Appendix B. Examples of VTOC Access Macros 198.1

C"'!'!·" I 'I

J

c

D

o

o

+***~~**~ftft*******~~~~**
+* BUFFER LIST HEADER
+***
+BUFLIST DS
+BFLHNOE DS
+BFLHFL DS
+ ORG
+BFLHKEY DS
+BFLHVIR EQU
+BFLHDSCB EQU
+ DS
+BFLHSP DS
+BFLHFCHN DS
+*
+BFLHLN EQU

OF
XLI
XLI
BFLHFL
XLI
X'08'
X'04'
XLI
XLI
A

*-BUFLIST

BUFFER LIST HEADER
NUMBER OF ENTRIES
KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

+BFLE DS OF BUFFER LIST ENTRY
+BFLEFL DS XLI BUFFER LIST ENTRY FLAG
+BFLERBA EQU X'80' ARGUMENT IS RBA
+BFLECHR EQU X'40' ARGUMENT IS CCHHR
+BFLETTR EQU X'20' ARGUMENT IS TTR
+BFLEAUPD EQU X'10' CVAF UPDATED ARGUMENT FIELD
+BFLEMOD EQU X'08' DATA IN BUF. HAS BEEN MODIFIED
+BFLESKIP EQU X'04' SKIP THIS ENTRY
+BFLEIOER EQU X'02' I/O ERROR
+ DS XLI RESERVED
+BFLELTH DS XLI LENGTH OF DSCB BUFFER OR
+* LENGTH OF VIR DIVIDED BY 256
+BFLEARG DS XL5 ARGUMENT OF VIR OR DSCB (CCHHR)
+ ORG BFLEARG+l
+BFLEATTR DS XL3 'TTR' OF ARGUMENT
+ ORG BFLEARG+l
+BFLEARBA DS XL4 'RBA' OF ARGUMENT
+BFLEBUF DS A BUFFER ADDRESS
+BFLELN EQU *-BFLE LENGTH OF A BUFFER LIST ENTRY

IECSDSLI (1) FORMAT 1 DSCB DATASET NAME AND *
BUFFER

+IECSDSLI EQU * FORMAT 1 DSCB
+IECSDSFl EQU IECSDSLI
+DS1DSNAM DS CL44 DATA SET NAME
+DS1FMTID DS CLI FORMAT IDENTIFIER
+DSIDSSN DS CL6 DATA SET SERIAL NUMBER
+DSIVOLSQ DS XL2 VOLUME SEQUENCE NUMBER
+DSICREDT DS Xl3 CREATION DATE
+DSIEXPDT DS XL3 EXPIRATION DATE
+DSINOEPV DS XLI NUMBER OF EXTENTS ON VOLUME
+DSINOBDB DS XLI NUMBER OF BYTES USED IN LAST
+* DIRECTORY BLOCK
+ DS XLI RESERVED
+DSISYSCD DS CL13 SYSTEM CODE
+ DS XL7 RESERVED
+DSIDSORG DS XL2 DATA SET ORGANIZATION
+* FIRST BYTE OF DSIDSORG
+DS1DSGIS EQU X'80' IS - INDEXED SEQUENTIAL aOIA
+* ORGANIZATION
+DS1DSGPS EQU X'40' PS - PHYSICAL SEQUENTIAL a01A
+* ORGANIZATION
+DS1DSGDA EQU X'20' DA - DIRECT ORGANIZATION aOIA
+DS1DSGCX EQU X'10.' CX - BTAM OR QTAM LINE GROUP aOIA
+* EQU X'08' RESERVED a01A
+* EQU X'04' RESERVED a01A
+DSIDSGPO EQU X'02' PO - PARTITIONED ORGANIZATION a01A
+DSIDSGU EQU X'OI' U - UNMOVABLE, THE DATA aOlA
+* CONTAINS LOCATION DEPENDENT
+* INFORMATION
+*

Appendix B. Examples of VTOe Access Macros 199

HE
+DSIDSGGS
+DSIDSGTX
+DSIDSGTQ
+*
+DSIACBM
+DSIDSGTR
+*
+*
+DSIRECFM
+DSIOPTCD
+DSIBLKL
+DSILRECL
+DSIKEYL
+DSIRKP
+DSIDSIND
+DSISCALO
+DSILSTAR
+DSITRBAL
+
+DSIEXTI
+*
+*
+*
+*
+DSIEXT2
+DSIEXT3
+DSIPTRDS
+DSIEND

DSCBLTH
FICCHHR
SAVEAREA
CVPL

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'IO'
EQU X'08'
EQU X'04'
EQU X'02'
EQU X'OI'
DS XLI
DS XLI
DS XL2
DS XL2
DS XLI
DS XL2
DS XLI
DS XL4
DS XL3
DS XL2
DS XL2
DS XLIO
FIRST BYTE
SECOND BYTE

SECOND BYTE

THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES
DS XLIO
DS XLIO
DS XL5
EQU *

OF DSIDSORG
GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 3705
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

aOlA
aOIA
aOlA
aOIA
aOIA
aOIA
aOlA
aOIA

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EX1E~i SEQUfNt~ HUMgER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

EQU *-IECSDSLI-L'DSIDSNAM LENGTH OF DATA PORTION OF DSCB
DS XLS CCHHR OF DSCB
DS 18F SAVE AREA
ICVAFPL , CVPL MAPPING MACRO

+***
+* CVAF PARAMETER LIST
+***
+CVPL
+
+CVLBL
+CVLTH
+CVFCTN
+CVDIRD
+CVDIWR
+CVDIRLS
+CVSEQGT
+CVSEQGTE
+CVDMIXA
+CVDMIXD
+CVDMALC
+CVDMRLS
+CVDMMAP
+CVVOL
+CVVRFRD
+CVVRFWR
+CVSTAT
+
+CVFLI
+CVIIVT
+CVIIOAR
+CVIPGM
+CVIMRCDS
+CVIIRCDS
+CVIMAPIX
+CVIMAPVT
+CVIMAPVL
+CVFL2
+CV2HIVIE
+CV2VRF
+CV2CNT
+CV2RCVR

DSECT
DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS

DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
EQU
EQU
EQU
EQU

OF
CL4
H
XLI
X'OI'
X'02'
X'03'
X'04'
X'OS'
X'06'
X'07'
X'08'
X' 09'
X'OA'
X'OB'
X'OC'
X'OD'
XLI

XLI
X'80'
X'40'
X'20'
X'IO'
X' 08'
X'04'
X'02'
X'OI'
XLI
X'80'
X'40'
X'20'
X'IO'

CVAF PARAMETER LIST

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS=READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFDSM ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA
CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
STATUS INFORMATION (SEE
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTe
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES

200 MVS/370 System Programming Library: Data Management

LIST

c

C:

o

+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNLY EQU X'04' DSNONLY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NLEVL EQU X'01' OUTPUT-NEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS
+CVBUFL DS A BUFFER LIST ADDRESS
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS
+CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS
+CVEXTS DS A EXTENT TABLE ADDRESS
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR
+CVVRFDA DS A VRF DATA ADDRESS
+CVCTAR DS A COUNT AREA ADDRESS
+CVPLNGTH EQU *-CVPL

+* VALUES OF CVSTAT
+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

EXA"PLE 2: USING THE CVAFDIR "AeRO WITH AN INDEXED VTOC

This example uses the CVAFDIR macro to read one or more DSCBs on
a VTOC. The UCB is supplied to the program in register 4
(labeled RUCB). The TTR of each DSCB read is to be returned to
the caller. This program must be APF authorized.

The address of a parameter list is supplied to the program in
register 5 (labeled RLIST). The parameter list contains one or
more 3-word entries. The format of each 3-word entry is mapped
by the LISTMAP DSECT. The first word contains the address of
the data set name of the DSCB to be read. The second word
contains the address of the 96-byte buffer into which the DSCB
is to be read. The third word contains the address of the
3-byte TTR of the DSCB read.

The CVPL is generated by a list form of the CVAFDIR macro at
label CVPL. The BUFLIST, IXRCDS, IOAREA, and BRANCH keywords
are coded on the list form of the macro. IXRCDS=KEEP and
IOAREA=KEEP are coded to avoid overhead if two or more DSCBs are
to be read. BRANCH=(YES,PGM) is coded in the list form of the
CVAFDIR macro to cause the CVPL to have the CV1PGM bit set to
one; this will indicate to CVAF that the caller is authorized by
APF and not in supervisor state. The execute forms of the
CVAFDIR macro then specify BRANCH=YES, and not BRANCH=(YES,PGM),
because the CV1PGM bit is set in the list form of the macro.

The CVAFDIR macro with ACCESS=RLSE is coded before the program
exits in order to release the CVAF I/O area and the index
records buffer list. BUFLIST=O is coded because no
user-supplied buffer list is to be released; BUFLIST was coded
on the list form of the CVAFDIR macro and, therefore, is in the
CVBUFL field of the CVPL. This field must be set to zero for
the release.

Appendix B. Examples of VTOC Access Macros 201

EXAMPLE2 CSECT
STM 14,12,12CI3)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8C,13)
LR 13,RWORK

**
* * REGISTERS
* **
RWORK EQU 3 WORK REGISTER
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER
RLIST EQU 5 ADDRESS OF PARAMETER LIST
RDSN EQU 6 ADDRESS OF DATA SET NAME
RTTR EQU 7 ADDRESS OF TTR
REGIS EQU 15 RETURN CODE REGISTER 15
**
* * READ DSCB OF DATA SET NAME SUPPLIED. RETURN TTR OF DSCB. * UCB ADDRESS SUPPLIED IN RUCB.
* ADDRESS OF PARAMETER LIST IN RLIST. * WORD 1 OF PARAMETER LIST = ADDRESS OF DATA SET NAME * WORD 2 OF PARAMETER LIST = ADDRESS OF DSCB TO BE RETURNED
* WORD 3 OF PARAMETER LIST = ADDRESS OF TTR TO BE RETURNED
* WORDS 1-3 DUPLICATED WITH THE HIGH ORDER BIT OF
* WORD 3 SET TO ONE FOR LAST ENTRY.
* ** USING LISTMAP,RLIST ADDRESSABILITY TO PARMLIST
TOPLOOP EQU * LOOP FOR EACH DSCB

XC BUFLISTCBFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,LISTDSCB ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
01 BFLEFL,BFLETTR TTR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
L RDSN,LISTDSN ADDRESS OF DATA SET NAME
CVAFDIR DSN=CRDSN),UCB=(RUCB),MF=(E,CVPL),BRANCH=YES

+ LA I,CVPL LOAD PARAMETER REG 1
+ ST RUCB,12(,I) STORE UCB PTR IN PARM LIST
+ ST RDSN,16(,I) STORE DSN PTR IN PARM LIST
+ L 15,16 LOAD THE CVT
+ L 15,328{,15) LOAD YSl/VS2 COMMON EXTENSION2
+ L 15,12(,15) LOAD THE CVT CVAF TABLE
+ L 15,0(,15) LOAD THE CVAF ADDRESS
+ BALR 14,15 BRANCH AND LINK TO CVAF

L RTTR,LISTTTR ADDRESS OF TTR TO BE RETURNED
USING TTRMAP,RTTR MAP OF TTR
LTR REGI5,REGI5 ANY ERROR
BZ NOERROR BRANCH IF NOT
XC TTR,TTR ZERO TTR INDICATING NO DSCB
B RElOOP GET NEXT ENTRY

NO ERROR EQU * DSCB READ
MVC TTR,BFLEATTR RETURN TTR OF DSCB

RELOOP EQU * GET NEXT ENTRY
TM LASTLIST,LASTBIT IS IT LAST ENTRY IN LIST?
LA RLIST,NEXTLIST GET NEXT ENTRY
BZ TOP LOOP PROCESS NEXT LIST
CVAFDIR ACCESS=RLSE, RELEASE CVAF OBTAINED AREAS *

IOAREA=NOKEEP, RELEASE IOAREA *
IXRCDS=NOKEEP, RELEASE VIER BUFFER LIST *
BUFLIST=O, NO USER BUFFER LIST SUPPLIED TO RLSE*
BRANCH=YES, BRANCH ENTER CYAF *
MF=(E,CVPL)

+ LA I,CVPL LOAD PARAMETER REG 1
+ MYI 6(1),X'03' SET FUNCTION CODE
+ NI 8(1),B'10110111' RESET CVAF FLAGS OFF
+ LA 15,0 GET BUFLIST ADDRESS AND

202 MVS/370 System Programming Library: Data Management

C~I
Ii

,I"'
i
~.

o

o

+
+
+
+
+
+

+
+

ST 15,20(,1)
L 15,16
L 15,328(,15)
L 15,12(,15)
L 15,0(,15)
BALR 14,15
L 13,SAVEAREA+4
RETURN (14,12)
LM 14,12,12(13)
BR 14

BUFLIST ICVAFBFL DSECT=NO

STORE BUFLIST PTR IN PARM LIST
LOAD THE CVT
LOAD VS1/VS2 COMMON EXTENSION2
LOAD THE CVT CVAF TABLE
LOAD THE CVAF ADDRESS
BRANCH AND LINK TO CVAF

BUFFER LIST

RESTORE THE REGISTERS
RETURN

+***
+* BUFFER LIST HEADER
+***

+BUFLIST DS
+BFLHNOE DS
+BFLHFL DS
+ ORG
+BFLHKEY DS
+BFLHVIR EQU
+BFLHDSCB EQU
+ OS
+BFLHSP OS
+BFLHFCHN OS
+*
+BFLHLN EQU

OF
XL1
XL1
BFLHFL
XL1
X'08'
X'04'
XL1
XL1
A

*-BUFLIST

BUFFER LIST HEADER
NUMBER OF ENTRIES
KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+BFLEBUF
+BFLELN

SAVEAREA
LISTMAP
LISTOSN
LISTDSCB

LISTTTR

LASTLIST
LASTBIT

NEXTLIST
DSCB

+IECSDSL1
+IECSDSF1
+DS1DSNAM
+DS1FMTID
+DS1DSSN

DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS

DS
ORG
DS
ORG
DS
DS
EQU
DS
DSECT
DS
DS

DS

OF
XL1
X'80'
X'40'
X'20'
X'10'
X'08'
X'04'
X'02'
XL1
XL1

XL5
BFLEARG+1
XL3
BFLEARG+1
XL4
A
*-BFLE
18F

F
F

OF

DS X
EQU X'80'
DS XL3
EQU *
DSECT
IECSDSL1 (1)
EQU *
EQU IECSDSL1
DS CL44
DS CL1
DS CL6

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

REGISTER SAVE AREA

ADDRESS OF DATA SET NAME
ADDRESS OF BUFFER FOR DSCB TO BE
RETURNED
ADDRESS OF TTR OF DSCB TO BE
RETURNED
FIRST BYTE
LAST ENTRY IN LIST
REMAINDER OF TTR ADDRESS
NEXT LIST

FORMAT 1 DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER

Appendix B. Examples of VTOC Access Macros 203

+DSIVOLSQ DS
+DSICREDT DS
+DSIEXPDT DS
+DSINOEPV DS
+DSINOBDB DS
+*

XL2
Xl3
XL3
XLI
XLI

+ DS
+DSISYSCD DS
+ DS
+DSIDSORG DS
+*

XLI
CL13
XL7
XL2

+DSIDSGIS
+*
+DSIDSGPS
+*
+DSIDSGDA
+DSIDSGCX
+*
+*
+DSIDSGPO
+DSIDSGU
+*
+*
+*
+*
+DSIDSGGS
+DSIDSGTX
+DSIDSGTQ
+*
+DSIACBM
+DSIDSGTR
+*
+*
+DSIRECFM
+DSIOPTCD
+DSIBLKL
+DSILRECL
+DSIKEYL
+DSIRKP
+DSIDSIND
+DSISCALO
+DSILSTAR
+DSITRBAL
+
+DSIEXTI
+*
+*

EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

X'SO'

X'40'

X'20'
X'IO'
X' OS'
X'04'
X'02'
X'OI'

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'OS'
EQU X'04'
EQU X'02'
EQU X'Ol'
DS XLI
DS XLI
DS XL2
DS XL2
DS XLI
DS XL2
DS XLI
DS XL4
DS XL3
DS XL2
DS XL2
DS XLIO
FIRST BYTE
SECOND BYTE

FIRST BYTE OF

SECOND BYTE

+*
+*
+DSIEXT2
+DSIEXT3
+DSIPTRDS
+DSIEND

THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES
DS' XLIO
DS XLIO
DS XLS
EQU *

VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION
DSIDSORG
IS - INDEXED SEQUENTIAL
ORGANIZATION
PS - PHYSICAL SEQUENTIAL
ORGANIZATION
DA - DIRECT ORGANIZATION
CX - BTAM OR QTAM LINE GROUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION
U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

OF DSIDSORG
GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 370S
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

aOlA

aOlA

aOlA
aOlA
aOlA
aOIA
aOlA
aOlA

a~lA
aOlA
aOlA
aOlA
aOlA
aOlA
aOlA
aOlA

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

DSCBLTH
TTRMAP
TTR
EXAMPLE2
CVPL

EQU *-DSCB-L'DSIDSNAM LENGTH OF DATA PORTION OF DSCB

+
+CVPL
+
+
+
+
+
+

DSEeT
DS
CSECT

XL3 TTR TO BE RETURNED

CVAFDIR ACCESS=READ,BUFLIST=BUFLIST,MF=L, *

CNOP
EQU
DC
DC
DC
DC
DC
DC

IOAREA=KEEP, KEEP IOAREA TO AVOID OVERHEAD *
IXRCDS=KEEP KEEP VIERS FOR 2ND AND SUBSEQUENT CALLS*

0,4
* CL4'CVPL'
AL2(ICVSE-CVPL)
XLl'OI'
XLl'OO'
B'OlOOlOOO'
B'OOOOOOOO'

CALLED IN PROGRAM STATE BUT APF *
AUTHORIZED SO UCB IS SUPPLIED

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION
FIRST FLAG BYTE
SECOND FLAG BYTE

204 MVS/310 System Programming Library: Data Management

0 ·:\
"'I

I<-~.

\" ... ,,/

o

o

o

o

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ICV8E

CVPLMAP

DC H'O'
DC ACO)
DC ACO)
DC ACBUFLIST)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
DC ACO)
EQU *
ORG CVPL
ICVAFPL DSECT=NO

RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
1/0 AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETfR LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
END OF CVPL

OVERLAY CVPL WITH EXPANSION OF MAP

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP DS
+CVLBL DS
+CVLTH DS
+CVFCTN DS
+CVDIRD EQU
+CVDIWR EQU
+CVDIRLS EQU
+CVSEQGT EQU
+CVSEQGTE EQU
+CVDMIXA EQU
+CVDMIXD EQU
+CVDMALC EQU
+CVDMRLS EQU
+CVDMMAP EQU
+CVVOL EQU
+CVVRFRD EQU
+CVVRFWR EQU
+CVSTAT DS
+
+CVFLI DS
+CVIIVT EQU
+CVIIOAR EQU
+CVIPGM EQU
+CVIMRCDS EQU
+CVIIRCDS EQU
+CVIMAPIX EQU
+CVIMAPVT EQU
+CVIMAPVL EQU
,+CVFL2 DS
+CV2HIVIE EQU
+CV2VRF EQU
+CV2CHT EQU
+CV2RCVR EQU
+CV2SRCH EQU
+CV.2DSNL Y EQU
+CV2VER EQU
+CV2NLEVL EQU
+*
+ DS
+CVUCB DS
+CVDSN DS
+CVBUFL DS
+CVIRCDS DS
+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS

OF
CL4
H
XLI
X'Ol'
X'02'
X'03'
X'04'
X'05'
X'06'
X' 07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
XLI

XLI
X'80'
X'40'
X'20'
X'IO'
X'08'
X'04'
X'02'
X'OI'
XLI
X'80'
X'40'
X'20'
X'IO'
X'08'
X'04'
X'02'
X'OI'

H
A
A
A
A
A
A
A
A
A

CVAF PARAMETER LIST
EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS=READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFDSM ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA
CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
STATUS INFORMATION CSEE LIST *
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
1/0 AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS

Appendix B. Examples of VTOC Access Macros 205

A EXTENT TABLE ADDRESS +CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU

A
A

NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS

A
*-CVPLMAP

COUNT AREA ADDRESS

+* VALUES OF CVSTAT
+*CTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

EXAMPLE 3: USING THE CVAFSEQ MACRO WITH AN INDEXED VTDC

This example uses the CVAFSEQ to count the number of ISAM data
sets whose data set names are within the range defined by two
supplied data set names. The addresses of the two data set
names are supplied to the program in registers 6 and 7, labeled
RDSN1 and RDSN2, respectively. The address of a DEB open to the
VTOC is supplied in register 4, labeled RDEB.

The CVAF parameter list is expanded by a list form of the
CVAFSEQ macro. ACCESS=GTEQ is specified on the list form of the
macro and is, therefore, not coded in the first execution of the
CVPL. Subsequent executions of the CVPL Cat label RELOOP)
specify ACCESS=GT.

End of data is tested by comparing the CVSTAT field to the value
STAT032, which is an equate in the ICVAFPL mapping macro.

The count of ISAM DSCBs matching the data set name criterion is
returned in register 15 unless an error is encountered, in which
case a negative one is returned in register 15.

EXAMPLE3 CSECT
STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
* * REGISTERS
* **
REG1 EQU 1 REGISTER 1
RWORK EQU 3 WORK REGISTER
RDEB EQU 4 DEB ADDRESS
RDSNI EQU 6 ADDRESS OF DATA SET NAME 1
RDSN2 EQU 7 ADDRESS OF DATA SET NAME 2
REGIS EQU 15 RETURN CODE REGISTER 15
**
* * *

COUNT THE NUMBER OF ISAM DATA SETS WHOSE DATA SET NAMES ARE
BETWEEN DSN1 AND DSN2 INCLUSIVELY.

* RDSN1 CONTAINS ADDRESS OF DSN1.

* RDSN2 CONTAINS ADDRESS OF DSN2.
* ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.
* **

XC BUFLISTCBFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER
MVI BFLHNOE,l ONE BUFFER LIST ENTRY
LA RWORK,DS1FMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST

LIST

MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN
SUPPLIED IN CVPL

206 MVS/370 System Programming Library: Data Management

o

c

c

o

o

MVC DSIDSNAM,OCRDSN1) MOVE IN STARTING DATA SET NAME TO *
WORKAREA

XR RWORK,RWORK ZERO COUNT
CVAFSEQ DEB=CRDEB), FIND FIRST DATA SET WHOSE DATA SET *

BUFLIST=BUFLIST, NAME IS GREATER THAN OR EQUAL TO *
MF=CE,CVPL) THAT OF DSN1

+ lA 1,CVPl lOAD PARAMETER REG 1
+ ST RDEB,36(,I) STORE DEB PTR IN PARM lIST
+ SVC 139

LOOP EQU * lOOP UNTIL END OF DATA OR DATA SET *
NAME GREATER THAN DSN2

USING CVPl,REGI ADDRESSABIlITY TO CVPl
LTR REGI5,REGI5 ANY ERROR
BZ TESTDSN BRANCH IF NOT-CHECK DSN lIMIT

**
* * DETERMINE WHAT ERROR IS
* ** C REGI5,ERROR4 IS RETURN CODE 4

BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT032 IS IT END OF DATA?
BNE OTHERERR BkA~CH IF HOl
DROP REGl ADDRESSABILITY TO CVPl NOT NEEDED

**
* * END OF DATA
* ** B RELEASE RELEASE CVAF RESOURCES AND RETURN
TESTDSN EQU * IS DATA SET NAME GREATER THAN DSN2

ClI DSIFMTID,C'I' IS THIS A FORMAT 1 DSCB?
BHE CKLAST BRANCH IF NO. CAN NOT BE ISAM.
CLC DSIDSNAM,OCRDSN2) HAS lIMIT BEEN REACHED?
BNH TESTIS BRANCH IF NO-TEST FOR ISAM
B RELEASE RELEASE CVAF RESOURCES AND RETURN

TESTIS EQU * ONLY COUNT ISAM
TM DS1DSORG,DSIDSGIS IS DATA SET ISAM
BZ CKlAST BRANCH IF NO-DO NOT COUNT IT
LA RWORK,I(,RWORK) INCREMENT COUNT BY ONE

CKlAST EQU * CHECK IF lAST DATA SET NAME (DSN2)
CLC DS1DSNAM,O(RDSN2) HAS LIMIT BEEN REACHED?
BNH RElOOP BRANCH IF NO-READ NEXT ONE
B RELEASE RELEASE CVAF RESOURCES AND RETURN

RElOOP EQU * READ NEXT DSCB
CVAFSEQ ACCESS=GT,MF=(E,CVPL) GET DSCB WITH DATA SET NAME *

GREATER THAN THE ONE lAST READ
+ lA I,CVPl lOAD PARAMETER REG 1
+ MVI 6(1),X'04' SET FUNCTION CODE
+ SVC 139

B LOOP CHECK RESULTS OF CVAFSEQ
OTHERERR EQU * UNEXPECTED ERROR
**
* * UNEXPECTED ERROR PROCESSING
* ** LA RWORK,1(O,O) ONE IN RWORK

lNR RWORK,RWORK SET NEGATIVE COUNT INDICATING ERROR
RELEASE CVAFDIR ACCESS=RlSE, RELEASE CVAF BUFFERS/IOAREA *

BUFLIST=O, DO NOT RELEASE USER BUFFER LIST *
IXRCDS=NOKEEP, RELEASE CVAF VIER BUFFERS *
MF=CE,CVPl) RELEASE CYAF I/O AR~

+RELEASE EQU *
+ LA I,CYPL LOAD PARAMETER REG 1
+ MYI 6(1),X'03' SET FUNCTION CODE
+ NI 8(1),B'11110111' RESET CVAF FLAGS OFF
+ LA 15,0 GET BUFLIST ADDRESS AND
+ ST 15,20(,1) STORE BUFLIST PTR IN PARM LIST
+ SVC 139

LR REGI5,RWORK CURRENT COUNT IS RETURN CODE
L 13,SAYEAREA+4

Appendix B. Examples of VTOC Access Macros 207

+
+
+

ERROR4
BUFLIST

RETURN (14,12),RC=(15)
L 14,12(13,0)
LM 0,12,20(13)
BR 14
DC F'4'
ICVAFBFL DSECT=NO

RETURN CURRENT COUNT
RESTORE REGISTER 14
RESTORE THE REGISTERS
RETURN

ERROR RETURN CODE 4
BUFFER LIST

+**
+* BUFFER LIST HEADER
+**
+BUFLIST DS OF BUFFER LIST HEADER
+BFLHNOE DS XLI NUMBER OF ENTRIES
+BFLHFL DS XLI KEY AND FLAG BYTE
+ ORG BFLHFL
+BFLHKEY DS XLI PROTECT KEY (FIRST 4 BITS)
+BFLHVIR EQU X' 08' BUF. LIST ENTRIES DESCRIBE VIRS
+BFLHDSCB EQU X'04' BUF. LIST ENTRIES DESCRIBE DSCBS
+ DS XLI RESERVED
+BFLHSP DS XLI SUBPOOL OF BUF. LIST/BUFFERS
+BFLHFCHN DS A FORWARD CHAIN PTR TO NEXT BUF.
+* LIST
+BFLHLN EQU *-BUFLIST LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

DS OF
DS XLI
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'10'
EQU X'08'
EQU X'04'
EQU X'02'
DS XLI
DS XLI

DS XL5

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+BFLEBUF
+BFLELN

ORG BFLEARG+l
DS XL3
ORG BFLEARG+I
DS XL4
DS A
EQU *-BFLE
IECSDSLI (1)

+IECSDSLI EQU
+IECSDSFI EQU
+DSIDSNAM DS
+DSIFMTID DS
+DSIDSSN DS
+DSIVOLSQ DS
+DSICREDT DS
+DSIEXPDT DS
+DSINOEPV DS
+DSINOBDB DS
+*

* IECSDSLI

+ DS
+DSISYSCD DS
+ DS
+DSIDSORG DS
+*
+DSIDSGIS EQU
+*
+DSIDSGPS EQU
+*
+DSIDSGDA EQU

CL44
CLI
CL6
XL2
XL3
XL3
XLI
XLI

XLI
CL13
XL7
XL2

X'80'

X'40'

X'20'

FIRST BYTE

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

FORMAT 1 DSCB DATASET NAME AND
BUFFER
FORMAT 1 DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION

OF DSIDSORG
IS - INDEXED SEQUENTIAL aOlA
ORGANIZATION
PS - PHYSICAL SEQUENTIAL aOlA
ORGANIZATION
DA - DIRECT ORGANIZATION aOlA

208 MVS/370 System Programming Library: Data Management

o

c

c

o

+DSIDSGCX EQU
+M EQU
+M EQU
+DSIDSGPO EQU

X'10'
X'08'
X'04'
X'02'

CX - BTAM OR QTAM LINE GRoUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION

_u1,\
aOlA
aOlA
aOlA

Appendix B. Examples of VTOe Access Macros 208.1

(J

o

o

+DSIDSGU
HE
+*
+*
+*
+DSIDSGGS
+DSIDSGTX
+DSIDSGTQ
+*
+DSIACBM
+DSIDSGTR
+*
+*
+DSIRECFM
+DSIOPTCD
+DSIBLKL
+DSILRECL
+DSIKEYL
+DSIRKP
+DSIDSIND
+DSISCALO
+DSILSTAR
+DSITRBAL
+
+DSIEXTI
+*
+*
+*
+*
+DSIEXT2
+DSIEXT3
+DSIPTRDS
+DSIEND

+

DSCBLTH
SAVEAREA
CVPL

+CVPL
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ICVIOE

CVPLMAP

EQU X'Ol' U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

aOIA

SECOND BYTE OF DSIDSORG
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'08'
EQU X'04'
EQU X'02'
EQU X'OI'
DS XLI
DS XLI
DS XL2
DS XL2
DS XLI
DS XL2
DS XLI
DS XL4
DS XL3
DS XL2
DS XL2
DS XLIO
FIRST BYTE
SECOND BYTE
THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES
DS XLIO
DS XLIO
DS XL5
EQU *

GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 3705
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

aOIA
a01A
a01A
aOIA
aOIA
aOIA
aOIA
aOIA

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

EQU *-IECSDSLI-l'DSIDSNAM LENGTH OF DATA PORTION OF DSCB
DS 18F SAVE AREA
CVAFSEQ ACCESS=GTEQ, READ DSCB WITH DSN >= SUPPLIED DSH *

IXRCDS=KEEP, KEEP VIERS IN STORAGE DURING CALLS *
DSN=DSIDSNAM, SUPPLIED DATA SET NAME *
BUFLIST=BUFLIST,
MF=L

CNOP 0,4
EQU *
DC CL4'CVPL'
DC AL2(ICVIOE-CVPL)
DC XLI'05'
DC XL1'00'
DC B'OOOOlOOO'
DC B'OOOOOOOO'
DC H'O'
DC A(O)
DC A(DSIDSNAM)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
DC A(O)
EQU *
ORG CVPL
ICVAFPL DSECT=NO

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION
FIRST FLAG BYTE
SECOND FLAG BYTE
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
END OF CVPL

EXPAND MAP OVER LIST
CVPL MAP

+***
+* CVAF PARAMETER LIST
+***

Append;x B. Examples of VTOC Access Macros 209

+CVPLMAP DS
+CVLBL DS
+CVLTH DS
+CVFCTN DS
+CVDIRD EQU
+CVDIWR EQU
+CVDIRLS EQU
+CVSEQGT EQU
+CVSEQGTE EQU
+CVDMIXA EQU
+CVDMIXD EQU
+CVDMALC EQU
+CVDMRLS EQU
+CVDMMAP EQU
+CVVOL EQU
+CVVRFRD EQU
+CVVRFWR EQU
+CVSTAT DS
+
+CVFLl DS
+CVIIVT EQU
+CVIIOAR EQU
+CVIPGM EQU
+CVIMRCDS EQU
+CVIIRCDS EQU
+CVIMAPIX EQU
+CVIMAPVT EQU
+CVIMAPVL EQU
+CVFL2 DS
+CV2HIVIE EQU
+CV2VRF EQU
+CV2CNT EQU
+CV2RCVR EQU
+CV2SRCH EQU
+CV2DSNLY EQU
+CV2VER EQU
+CV2NLEVL EQU
HE
+ DS
+CVUCB DS
+CVDSN DS
+CVBUFL DS
+CVIRCDS DS
+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS
+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU

OF
CL4
H
XLl
X'Ol'
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X'OS'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
XLl

XLl
X'SO'
X'40'
X'20'
X'lO'
X' 08'
X'04'
X'02'
X'OI'
XLl
X'SO'
X'40'
X'20'
X'lO'
X'OS'
X'04'
X' 02'
X'Ol'

H
A
A
A
A
A
A
A
A
A
A
A
A
A
*-CVPLMAP

CVAF PARAMETER LIST
EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS:READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFD~M ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA
CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
STATUS INFORMATION (SEE LIST *
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

+* VALUES OF CVSTAT
+*(THIS PART OF THE ICVAFPL MACRO EXAPNSION IS NOT SHOWN)

END

EXAMPLE 4: USING THE CVAFSEQ MACRO WITH A NONINDEXED VTOC

This example reads up to five DSCBs in physical-sequential
order. The address of the UCB is supplied to the program in
register 5 (labeled RUCB). The address of a parameter list is
supplied in register 4 (labeled RLIST). The first word of the
parameter list contains the address of a S-byte field. On

o

i1f~,
I

''-..,

entry, this field is set to zero if no previous DSCBs have been C
read; otherwise, the field is set to the CCHHR of the last DSCB ~)
read. This S-byte field is supplied by the caller of this '
program and is not modified by this program.

210 MVS/370 System Programming Library: Data Management

n
V'

o

o

The remainder of the parameter list consists of one or mora
2-word entries, up to a maximum of five 2-word entries. The
first word of each entry contains the address of a 140-byta DSCB
buffer. The second word contains the address of a 5-byte field
that is to contain the CCHHR of the DSCB.

A buffer list with five buffer list entries is contained in the
program. The ICVAFBFl macro generates the buffer list header and
one buffer list entry. The remaining buffer list entries are
generated following the ICVAFBFl macro.

The CYAFSEQ macro is used once in the program to read as many
DSCBs as there are 2-word entries in the parameter list. The
buffer list header field BFlHNOE is initialized with the number
of buffer list entries that CVAFSEQ is to process. The number
matches the number of 2-word entries in the parameter list
supplied to this progr~m.

After the CVAFSEQ call, the CCHHR for each DSCB read is moved
from the buffer list entry field BFlEARG to the field whose
address is supplied by the caller of the program. If the
BFlEARG field is zero, the previous DSCB read was the last in
the VTOC.

The BFlEARG in the first buffer list entry is initialized with
the CCHHR supplied by the caller: its address is the third word
in the parameter list. This CCHHR serves as the starting place
for the CVAFSEQ call. DSCBs with a CCHHR greater than the
supplied CCHHR are read.

This program must be APF authorized.

EXAMPlE4 CSECT
STM 14,12,12(13)
BAlR 12,0
USING *,12
ST 13,SAVEAREA+4
lA RWORK,SAVEAREA
ST RWORK,8(,13)
lR 13,RWORK

**
* * REGISTERS

* **
REGI EQU 1 REGISTER 1
RWORK EQU 3 WORK REGISTER
RlIST EQU 4 ADDRESS OF PARM lIST
RUCB EQU 5 UCB ADDRESS
RCURRENT EQU 6 CURRENT ENTRY IN PARM lIST
RBlE EQU 7 CURRENT BUFFER lIST ENTRY
RCOUNT EQU 8 COUNT OF ENTRIES IN BUFFER
REG15 EQU 15 RETURN CODE REGISTER 15
**
* * READ UP TO 5 DSCBS.

* RUCB CONTAINS ADDRESS OF UCB.
* RlIST CONTAINS ADDRESS OF PARAMETER lIST.

lIST

* *
WORD 0 = ADDRESS OF CCHHR OF lAST DSCB READ. THIS DSCB IS

NOT TO BE READ

* WORD 1 = ADDRESS OF DSCB BUFFER.
* WORD 2 = ADDRESS OF CCHHR OF DSCB READ.
* WORDI AND WORD2 REPEATED UP TO 4 TIMES.
* HIGH ORDER BIT OF WORD 2 SET TO ONE FOR LAST ENTRY.

* **
USING lIST,RlIST ADDRESSABIlITY TO PARM lIST
XC BFlHDRCBFlHlN+5*BFlElN),BFlHDR ZERO BUFFER lIST ~ITH

5 BUFFER lIST ENTRIES

Appendix B. Examples of VTOC Access Macros 211

BUFLOOP

01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
FIRST DOUBLEWORD ENTRY IN PARM LIST
USING ON DOUBLEWORDS

LA RCURRENT,LISTPRMS
USING LISTPRMS,RCURRENT
LA RBLE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE,RBlE
L RWORK,LISTSTRT ADDRESS OF STARTING CCHHR
MVC BFLEARG,OCRWORK) MOVE STARTING CCHHR INTO FIRST

BUFFER LIST ENTRY
XR
EQU

LA
L
ST
MVI­
TM
LA
LA
BZ
Sl'C

RCOUNT,RCOUNT
*

ZERO COUNT
PUT BUFFER ADDRESSES IN BUFFER LIST *
ENTRIES

RCOUNT,1C,RCOUNT) INCREMENT COUNT
RWORK,LISTBUF ADDRESS OF DSCB BUFFER
RWORK,BFLEBUF-BFLEC,RBLE) PLACE IN BUFFER LIST
BFLELTH-BFLECRBLE),DSCBLTH FULL DSCB READ
LISTLAST,lASTBIT IS IT LAST ENTRY IN LIST
RCURRENT,LISTNEXT INCREMENT TO NEXT ENTRY IN LIST
RBLE,BFlELNC,RBLE) INCREMENT TO NEXT BUFFER LIST ENTRY
BUFLOOP LOOP TO PUT NEXT BUFFER IN BFlE
RCOUNT,BFlHNOE SET NUMBER OF ENTRIES IN BUFFER

LIST HEADER
DROP RCURRENT,RBLE

**
* * READ UP TO 5 DSCBS WHOSE CCHHR IS GREATER THAN THE CCHHR IN * THE FIRST BUFFER LIST ENTRY
* ** CVAFSEQ UCB=CRUCB), CALL CVAF

BRANCH=YES, BRANCH ENTER
MF=CE,CVPL)

+ LA I,CVPL LOAD PARAMETER REG 1

+ ST RUCB,12C,1) STORE UCB PTR IN PARM lIST
+ L 15,16 LOAD THE CVT
+ L 15,328C,15) LOAD VSl/VS2 COMMON EXTENSION2
+ L 15,12C,15) LOAD THE CVAF TABLE ADDRESS
+ l 15,0(,15) LOAD THE CVAF ADDRESS
+ BAlR 14,15 BRANCH AND LINK TO CVAF

USING CVPL,REGI ADDRESSABIlITY TO CVPL
LTR REG15,REG15 ANY ERROR
BZ MOVECHR BRANCH IF MOVE IN CCHHRS

**
* * DETERMINE WHAT ERROR IS
* ** C REGI5,ERROR4 IS RETURN CODE 4

BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT032 IS IT END OF DATA?
BNE OTHERERR BRANCH IF NOT
DROP REGI ADDRESSABILITY TO CVPL NOT NEEDED

**
* * DETERMINE IF ANY DSCBS HAVE BEEN READ. BFlEARG IS NON-ZERO * IN EACH BUFFER LIST ENTRY FOR WHICH A DSCB HAS BEEN READ
* ** MOVECHR EQU * IS DATA SET NAME GREATER THAN DSN2

LA RCURRENT,LISTPRMS FIRST ENTRY IN PARM LIST
USING LISTPRMS,RCURRENT
LA RBlE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE,RBLE

CHRLOOP EQU * MOVE CCHHR ARGUMENT TO CALLER AREA
L RWORK,LISTCHR ADDRESS OF CCHHR OF CALLER
XC OCl'BFLSARG,RWORK),OCRWORK) ZERO CALLER CCHHR AREA
NC BFlEARG,BFLEARG IS CCHHR ZERO
BZ EXIT BRANCH IF YES-NO MORE DSCBS
MVC OCL'BFlEARG,RWORK),BFLEARG MOVE CCHHR TO CALLER AREA
TM lISTlAST,lASTBIT LAST ENTRY IN PARM LIST?
BO EXIT BRANCH IF YES

-212 MVS/370. System Programming Library: Data Management

c

o

c

o

o

+
+

EXIT

LA RCURRENT,LISTNEXT
LA RBLE,BFLELN(,RBLE)
B CHRLOOP
EQU *
L 13,SAVEAREA+4
RETURN (14,12)
LM 14,12,12(13)
BR 14

NEXT ENTRY IN LIST
NEXT BUFFER LIST ENTRY
TEST NEXT BFLE
RETURN TO CALLER

RESTORE THE REGISTERS
RETURN

Appendix B.Examples of VTOC Access Macros 212.1

o

0,,,,,-
"

o

OTHERERR EQU *
* * *
ERROR4

B EXIT
DC F'4'
ICVAFBFL DSECT=NO

ERROR PROCESSING

RETURN
RETURN CODE 4
BUFFER LIST WITH ONE BUFFER LIST
ENTRY

+***
+* BUFFER LIST HEADER
+***

+BFLHDR DS
+BFLHNOE DS
+BFLHFL DS
+ ORG
+BFLHKEY DS
+BFLHVIR EQU
+BFLHDSCB EQU
+ DS
+BFLHSP DS
+BFLHFCHN DS
+*
+BFLHLN EQU

OF
XLl
XLl
BFLHFL
XLl
X'08'
X'04'
XLl
XLl
A

*-BFLHDR

BUFFER LIST HEADER
NUMBER OF ENTRIES
KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+BFLEBUF
+BFLELN

SAVEAREA
DSCB

DS OF
DS XLl
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'08'
EQU X'04'
EQU X'02'
DS XLl
DS XLl

DS XL5
ORG BFLEARG+l
DS XL3
ORG BFLEARG+l
DS XL4
DS A
EQU *-BFLE
DS CL(4*BFLELN)
DS 18F
DSECT
IECSDSLl (1)

+IECSDSLl EQU
+IECSDSFl EQU
+DSIDSNAM DS
+DSlFMTID DS
+DSIDSSN DS
+DSlVOLSQ DS
+DSICREDT DS
+DSIEXPDT DS
+DSINOEPV DS
+DSINOBDB DS
+*

* IECSDSLl
CL44
CLl
CL6
XL2
XL3
XL3·
XLI
XLl

+ DS
+DSISYSCD DS
+ DS
+DSIDSORG DS

XLI
CL13
XL7
XL2

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

FOUR BUFFER LIST ENTRIES
SAVE AREA

FORMAT 1 DSCB DATASET NAME AND
DATA
FORMAT 1 DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION

Appendix B. Examples of VTOC Access Macros 213

+* FIRST BYTE OF DSIDSORG
+DSIDSGIS EQU X'80' IS - INDEXED SEQUENTIAL aOIA
+~ ORGANIZATION
+DSIDSGPS EQU X'40' PS - PHYSICAL SEQUENTIAL aOIA
+* ORGANIZATION
+DSIDSGDA EQU X'20' DA - DIRECT ORGANIZATION aOIA
+DSIDSGCX EQU X'IO' ex - BTAM OR QTAM LINE GROUP ~OIA
+* EQU X'08' RESERVED aOIA
+* EQU X'04' RESERVED ~OIA
+DSIDSGPO EQU X'02' PO - PARTITIONED ORGANIZATION aOIA
+DSIDSGU EQU X'OI' U - UNMOVABLE, THE DATA ~OIA
+* CONTAINS LOCATION DEPENDENT
+* INFORMATION
+*
+* SECOND BYTE OF DSIDSORG
+DSIDSGGS EQU X'80' GS - GRAPHICS ORGANIZATION aOIA
+DSIDSGTX EQU X'40' TX - TCAM LINE GROUP ~OIA
+DSIDSGTQ EQU X'20' TQ - TCAM MESSAGE QUEUE ~OIA
+* EQU X'IO' RESERVED aOIA
+DSIACBM EQU X'08' ACCESS METHOD CONTROL BLOCK aOIA
+DSIDSGTR EQU X'04' TR - TCAM 3705 aOIA
+* EQU X'02' RESERVED aOIA
+* EQU X'OI' RESERVED aOIA
+DSIRECFM OS XLI RECORD FORMAT
+DSIOPTCD OS XLI OPTION CODE
+DSIBLKL DS XL2 BLOCK LENGTH
+DSILRECL DS XL2 RECORD LENGTH
+DSIKEYL DS XLI KEY LENGTH
+DSIRKP DS XL2 RELATIVE KEY POSITION
+DSIDSIND DS XLI DATA SET INDICATORS
+DSISCALO DS XL4 SECONDARY ALLOCATION
+DSILSTAR DS XL3 LAST USED TRACK AND BLDCK ON TRACK
+DSITRBAL DS XL2 BYTES REMAINING ON LAST TRACK USED
+ DS XL2 RESERVED
+DSIEXTI DS XLIO FIRST EXTENT DESCRIPTION
+* FIRST BYTE EXTENT TYPE INDICATOR
+* SECOND BYTE EXTENT SEQUENCE NUMBER
+* THIRD - SIXTH BYTES LOWER LIMIT
+* SEVENTH - TENTH BYTES UPPER LIMIT
+DSIEXT2 OS X110 SECOND EXTENT DESCRIPTION
+DSIEXT3 DS XLIO THIRD EXTENT DESCRIPTION
+DSIPTRDS DS XL5 POSSIBLE PTR TO A FORMAT 2 OR 3 DseB
+DSIEND EQU *

DSCBLTH EQU *-IECSDSll lENGTH OF DSCB
LIST DSECT PARAMETER LIST
LISTSTRT DS F ADDRESS OF CCHHR TO START SEARCH
LISTPRMS EQU *
lISTBUF OS F BUFFER ADDRESS
LISTCHR OS OF ADDRESS OF CCHHR FIELD
lISTLAST DS X BYTE
LASTSIT EQU X'80' LAST DOUBLE WORD

OS Al3 3 BYTE ADDRESS OF CCHHR
LISTNEXT EQU * NEXT DOUBLEWORD
EXAMPLE4 CSECT
**
* * READ DSCBS WITH CCHHR GREATER THAN THE CCHHR IN THE FIRST
* BUFFER lI~T ENTRY.
* **
CVPl CVAFSEQ ACCESS=GT, *

BUFLIST=BFlHDR, ADDRESS OF BUFFER lIST *
MF=l

+ CNOP 0,4
+CVPl EQU *
+ DC Cl4'CVPl' EBCDIC 'CVPl'
+ DC AL2(ICV6E-CVPL) LENGTH OF CVPL
+ DC Xll'04' FUNCTION CODE
+ DC XLl'OO' STATUS INFORMATION
+ DC B'O~lOOOOO' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE

214 MVS/370 System Programming Library: Data Management

c

o

+ DC H'O' RESERVED

0 1 + DC A(O) UCB ADDRESS
' ,,"" + DC A(O) DATA SET NAME ADDRESS

+ DC A(BFlHDR) BUFFER lIST ADDRESS
+ DC A(O) INDEX VIR'S BUFFER lIST ADDRESS
+ DC A(O) MAP VIR'S BUFFER lIST ADDRESS
+ DC A(O) I/O AREA ADDRESS
+ DC A(O) DEB ADDRESS
+ DC A(O) ARGUMENT ADDRESS
+ DC A(O) SPACE PARAMETER lIST ADDRESS
+ DC A(O) EXTENT TABLE ADDRESS
+ DC A(O) NEW VRF VIXM BUFFER lIST ADDR
+ DC A(O) VRF DATA ADDRESS
+ DC A(O) COUNT AREA ADDRESS
+ICV6E EQU * END OF CVPl

ORG CVPl EXPAND MAP OVER lIST
CVPlMAP ICVAFPl DSECT=NO CVPl MAP

+***
+* CVAF PARAMETER lIST
+***

+CVPLMAP DS OF CVAF PARAMETER LIST
+CVlBl DS Cl4 EBCDIC 'CVPl'
+CVlTH DS H lENGTH OF CVPl
+CVFCTN DS XLI FUNCTION BYTE
+CVDIRD EQU X'OI' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRlS EQU X'03' CVAFDIR ACCESS=RlSE
+CVSEQGT EQU X'Oct' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'OS' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'07' CVAFDSM ACCESS=IXDlT
+CVDMAlC EQU X'08' CVAFDSM ACCESS=AllOC

CJ +CVDMRlS EQU X'09' CVAFDSM ACCESS=RlSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOl EQU X'OB' CVAFVOl ACCESS=VIBBlD
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XLI STATUS INFORMATION (SEE lIST *
+ BELOW)
+CVFll DS XLI FIRST FLAG BYTE
+CVIIVT EQU X'80' INDEXED VTOC ACCESSED
+CVIIOAR EQU X'ctO' IOAREA=KEEP
+CVIPGM EQU X'20' BRANCH=(YES,PGM)
+CVIMRCDS EQU X'IO' MAPRCDS=YES
+CVIIRCDS EQU X' 08' IXRCDS=KEEP
+CV1MAPIX EQU X'oct' MAP=IHDEX
+CV1MAPVT EQU X'02' MAP=VTOC
+CV1MAPVl EQU X'Ol' MAP=VOLUME
+CVFl2 DS Xl1 SECOND FLAG BYTE
+CV2HIVIE EQU X'80' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'10' RECOVER=YES
+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNlY EQU X'Oct' DSNONlY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NlEVl EQU X'Ol' OUTPUT-NEW HIGHEST lEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS
+CVBUFl DS A BUFFER lIST ADDRESS
+CVIRCDS DS A INDEX VIR'S BUFFER lIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER lIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS

C\ +CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER lIST ADDRESS

Appendix B. Examples of VTOC Access Macros 215

+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU

A
A
A
A
*-CVPLMAP

EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

+* VALUES OF CVSTAT
+*CTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

EXAMPLE 5: USING THE CYAFTST AND CYAFDSM MACROS

This example returns a format-5 DSCB to the caller. The
format-5 DSCB is constructed by this program if the volume
contains an indexed VTOC. The format-5 DSCB is read by another
program, F5RTN (not described in the example), if the volume
contains a nonindexed VTOC.

The CVAFTST macro is used to determine if a nonindexed VTOC is
on the volume.

If the CVAFTST return code is neither 0 nor 4 (a nonindexed VTOC
is on the volume), the CVAFDSM macro is issued to obtain up to
27 extents from the VPSM in the VTOC index. The program does
not determine whether the CVAFTST return code is 8 (volume
contains indexed VTOC) or 12 (it cannot be determined what type
of VTOC is on the volume). In either case, the CVAFDSM macro is
issued. If the CVAFTST return code is 12, the CVAFDSM macro
call will cause CVAF to determine whether an indexed or a
nonindexed VTOC is on the volume, and the CVIIVT bit will be set
to one or zero, accordingly.

The extent table Cat label EXTABL) is initialized to request 27
extents from the CVAFDSM macro, which is one more than the
number of extents that fit in a format-5 DSCB. The format-5
DSCB is constructed from the first 26 extents returned from the
CVAFDSM call.

The first extent in the extent table is initialized from the
last extent in the format-5 DSCB area supplied by the caller of
the program. If this is the first call, the program assumes
that the format-5 area is initialized to zero. Thus, the first
extent in the extent table has a value of zero to serve as the
starting place for the extent search. If this is the second or
subsequent call, the last extent in the format-5 area would be
the last extent obtained from the previous CVAFDSM call.

The format-5 chain pointer field CDS5PTRDS) is set to a nonzero
value if CVAFDSM returned a 27th extent. In this case, the
program will be called again to obtain another format-5 DSCB.

The program's return code is 0 if no errors were encountered and
4 if an error was encountered.

This program must be APF authorized.

216 MVS/370 System Programming Library: Data Management

c

c

+
+
+
+
+
+
+
+

EXAMPLE5 CSECT
STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
* * REGISTERS
* ** RDEB EQU 3 DEB ADDRESS SUPPLIED BY CALLER
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER
RF5 EQU 5 ADDRESS OF FORMAT 5 BUFFER SUPPLIED *

BY CALLER
RWORK EQU 6 WORK REGISTER
REG15 EQU 15 RETURN CODE REGISTER 15
* KF5 EQU 26 NUMBER OF FORMAT 5 EXTENTS
**
* * READ FORMAT 5 DSCB OR BUILD A ~URMAT 5 DSCB IF * AN INDEXED VTOC * UCB ADDRESS SUPPLIED IN RUCB.
* RF5 CONTAINS THE ADDRESS OF THE FORMAT 5 DSCB BUFFER. IT * CONTAINS THE LAST FORMAT 5 DSCB READ OR BUILT. THE FORMAT 5 * BUFFER IS ZERO IF THIS IS THE FIRST CALL * IF THE FORMAT 5 DSCB BUFFER RETURNED TO THE CALLER HAS A * NONZERO VALUE IN DS5PTRDS, THIS ROUTINE WILL BE CALLED * AGAIN TO OBTAIN THE NEXl FORHAT 5 CSC!.
* ** USING IECSDSF5,RF5 ADDRESSABILITY TO FORMAT 5 BUFFER

CVAFTST UCB=(RUCB) TEST VTOC
CNOP 0,4 START OF CVAFTST MACRO
LR I,RUCB LOAD PARAMETER REG 1
L 15,16 LOAD THE CVT
L 15,328(,15) LOAD VSI/VS2 COMMON EXTENSION2
L 15,12(,15) LOAD THE CVAF TABLE ADDRESS
LTR 15,15 TEST FOR ZERO VALUE
BZ ICVIE CVAF IS NOT ON THE SYSTEM
L 15,4(,15) LOAD POINTER TO CVAF TEST E.P.

+
+ICVIE

BALR 14,15 BRANCH AND LINK TO CVAF TEST
EQU * END OF CVAFTST

+
+
+
+
+
+

LTR REGI5,REGI5
BZ UNINDXD READ NEXT FORMAT 5
C REGI5,NOTIXRC UNINDEXED VTOC?
BE UNINDXD READ NEXT FORMAT 5

**
* * ASSUME INDEXED VTOC UNLESS CVAFDSM CALL INDICATES UNINDEXED
* **

MVC EXTS(L'DS5AVEXT),DS5MAVET+L'DS5MAVET-L'DS5AVEXT MOVE THE *

CVAFDSM MF=(E,CVPL),
UCB=(RUCB),
DEB=(RDEB),

LA
L
L
L
L
BALR
TM
BZ
LTR
BZ
C

BRANCH=YES
I,CVPL
15,16
15,328(,15)
15,12(,15)
15,0(,15)
14,15

CVFL1,CVIIVT
UNINDXD
REG15,REG15
NO ERROR
REG15,RC04

LAST EXTENT FROM FORMAT 5 TO FIRST *
ENTRY IN THE EXTENT TABLE
GET 27 EXTENTS FROM CVPL
RUCB ADDRESS REQUIRED * * * RDEB ADDRESS REQUIRED BY

UNAUTHORIZED PROGRAMS CALLING
BRANCH ENTRY CALL

CVAF *
LOAD PARAMETER REG 1

LOAD THE CVT
LOAD VS1/VS2 COMMON EXTENSION2
LOAD THE CVAF TABLE ADDRESS
LOAD THE CVAF ADDRESS
BRANCH AND LINK TO CVAF

IS THIS INDEXED VTOC
READ FORMAT 5 IF NOT
ANY ERROR

*

Append;x B. Examples of VTOC Access Macros 217

BNE OTHERERR
CLI CVSTAT~STAT032
BNE OTHERERR

NO ERROR EQU *

UNEXPECTED ERROR
END OF DATA
UNEXPECTED ERROR
BUILD FORMAT 5

MVC DSSKEYID~FSID

MVC DSSAVEXT(L'DS5AVEXT+L'DSSEXTAV)~EXTS MOVE IN EXTENTS *
TO DSSFMTID

MVI DSSFMTID~C'S'
MVC DSSMAVET~EXTS+L'DSSAVEXT+L'DSSEXTAV MOVE REMAINING *

EXTENTS
XR REG1S~REG1S RETURN CODE ZERO
XC DSSPTRDS~DSSPTRDS ZERO CHAIN POINTER
NC EXTS+L'EXTS-L'DS5AVEXTCL'DSSAVEXT)~EXTS+L'EXTS-L'DSSAVEXT*

IS LASTC27TH) EXTENT FROM CVAF *
ZERO?

BZ RETURN BRANCH IF YES-LEAVE DS5PTRDS ZERO
MVI DSSPTRDS+L~DSSPTRDS-1~1 SET DSSPTRDS NONZERO TO SIMULATE *

THERE BEING ANOTHER FORMAT 5
B RETURN

UNINDXD EQU * CALL ROUTINE TO READ NEXT FORMAT S
LINK TO FORMAT 5 ROUTINE. RETURN *
CODE PASSED BACK IN REGIS

+
+
+
+
+
+

+
+
+

RETURN

OTHER ERR

DSCB

+IECSDSLS
+IECSDSFS
+DSSKEYID
+DSSAVEXT
+*
+*
+*
+*
+DSSEXTAV
+DSSFMTID
+DSSMAVET
+DSSPTRDS
+DSSEND

+

EXAMPLES
NOTIXRC
RC04
FSID
SAVEAREA
EXTABL
EXTNO
EXTS
CVPL

LINK EP=FSRTN

CNOP 0,4
BAL lS,*+20 LOAD SUP.PARAMLIST ADR
DC AC*+8) ADDR OF EP PARAMETER
DC ACO) DCB ADDRESS PARAMETER LCOA
DC CL8'FSRTN' EP PARAMETER
SVC 6 ISSUE LINK SVC
EQU * RETURN TO CALLER
L 13,SAVEAREA+4
RETURN (14,12)~RC=(15)
L 14~12(13~0) RESTORE REGISTER 14
LM 0~12~20(13) RESTORE THE REGISTERS
BR 14 RETURN
EQU * ERROR
L REG1S~RC04 ERROR RETURN CODE
B RETURN
DSECT
IECSDSL1 CS)
EQU * FORMAT 5 DSCB
EQU IECSDSLS
DS XL4 KEY IDENTIFIER
DS XLS AVAILABLE EXTENT
BYTES 1 - 2 RELATIVE TRACK ADDRESS OF THE FIRST TRACK

IN THE EXTEtn
BYTES 3 - 4 NUMBER OF UNUSED CYLINDERS IN THE EXTENT
BYTE S NUMBER OF ADDITIONAL UNUSED TRACKS
DS XL3S SEVEN AVAILABLE EXTENTS
DS CL1 FORMAT IDENTIFIER
DS XL90 EIGHTEEN AVAILABLE EXTENTS
DS XL5 POINTER TO NEXT FORMAT S DSCB
EQU *
CSECT
DC F'4' CVAFTST RETURN CODE-UNINDEXED
DC F'4' RETURN CODE 4
DC XL4'OSOSOSOSOS' FORMAT S FIELD, DSSKEYID
DS 18F REGISTER SAVE AREA
DS OCLC1+CKFS+1)*L'DSSAVEXT) EXTENT TABLE
DC ALl(KFS+l) NUMBER OF EXTENTS IN TABLE
DS CLCCKFS+1)*L'DSSAVEXT) EXTENTS
CVAFDSM ACCESS=MAPDATA~ *

COUNT=NO~ DO NOT COUNT EXTENTS *
,MAP=VOLUME~ ACCESS VOLUME SPACE MAP *
EXTENTS=EXTABL~ EXTENT TABLE ADDRESS *
MF=L LIST FORM OF MACRO

CNOP 0,4

218 MVS/370 System Programming Library: Data Management

c

o

+CVPL EQU *

D
+ DC CL4'CVPL' EBCDIC 'CVPL'
+ DC AL2CICV9E-CVPL) LENGTH OF CVPL
+ DC XL1'OA' FUNCTION CODE
+ DC XL1'00' STATUS INFORMATION
+ DC B'OOlOOOOl' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE
+ DC H'O' RESERVED
+ DC ACO) UCB ADDRESS
+ DC ACO) DATA SET NAME ADDRESS
+ DC ACO) BUFFER LIST ADDRESS
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS
+ DC ACO) MAP VIR'S BUFFER LIST ADDRESS
+ DC A(O) I/O AREA ADDRESS
+ DC A(O) DEB ADDRESS
+ DC ACO) ARGUMENT ADDRESS
+ DC A(O) SPACE PARAMETER LIST ADDRESS
+ DC A(EXTABL) EXTENTS TABLE ADDRESS
+ DC A(O) NEW VRF VIXM BUFFER LIST ADDR
+ DC A(O) VRF DATA ADDRESS
+ DC A(O) COUNT AREA ADDRESS
+ICV9E EQU * END OF CVPL

ORG CVPL OVERLAY CVPL WITH EXPANSION OF MAP
CVPLMAP ICVAFPL DSECT=NO

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP DS OF CVAF PARAMETER LIST
+CVLBL DS CL4 EBCDIC 'CVPL'
+CVLTH DS H LENGTH OF CVPL
+CVFCTN DS XLI FUNCTION BYTE
+CVDIRD EQU X'Ol' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT

C
+CVSEQGTE EQU X'05' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'07' CVAFDSM ACCESS=IXDLT
+CVDMALC EQU X'08' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X' OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XLI STATUS INFORMATION (SEE LIST X
+ BELOW)
+CVFLI DS XLI FIRST FLAG BYTE
+CV1IVT EQU X'80' INDEXED VTOC ACCESSED
+CV1IOAR EQU X'40' IOAREA=KEEP
+CV1PGM EQU X'20' BRAHCH=(YES,PGM)
+CV1MRCDS EQU X'lO' MAPRCDS=YES
+CV1IRCDS EQU X'08' IXRCDS=KEEP
+CV1MAPIX EQU X'04' MAP=INDEX
+CV1MAPVT EQU X'02' MAP=VTOC
+CV1MAPVL EQU X'Ol' MAP=VOLUME
+CVFL2 DS XLI SECOND FLAG BYTE
+CV2HIVIE EQU X'80' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'lO' RECOVER=YES
+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNLY EQU X'04' DSHOHLY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NLEVL EQU X' 01' OUTPUT-HEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN OS A DATA SET NAME ADDRESS
+CVBUFL DS A BUFFER LIST ADDRESS

O~
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS

Appendix Be Examples of VTOe Access Macros 219

+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS
+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU
HE
+~E(THIS PART OF

END

A
A
A
A
A
A
A
A
A .
*-CVPLMAP
VALUES OF CVSTAT
THE ICVAFPL MACRO

MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

EXPANSION IS NOT SHOWN)

220 MVS/370 System Programming Library: Data Management

c

o

OJ

n

c

o

APPENDIX C. RETURN CODES FROM VTOC ACCESS MACROS

RETURN CODES FROM THE CVAFDIR MACRO

On return from CVAF, register 1 contains the address of the CVAF
parameter list (CVPl), and register 15 contains one of the
following return codes:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

Meaning

The request was successful. However, if the CVAFDIR
request is to read or write a DSCB and a VTOC index
structure error is encountered, the CVSTAT field
indicates the structure error encountered. (CVSTAT
code descriptions are in Appendix B.)

An error occurred. The CVSTAT field in the CVPl
contains an indication of the cause of the error.
(CVSTAT code descriptions are in Appendix B.)

Invalid VTOC index structure while processing a request
to read or write a VTOC index record. The CVSTAT field
in the CVPl contains an indication of the cause of the
error. (CVSTAT code descriptions are in Appendix B.)

The CVAF parameter list is not in your protect key, or
is invalid (the ID ;s invalid, or the length field is
incorrect, or the CVFCTH field is invalid). The CVPl
has not been modified.

An I/O error was encountered.

RETURN CODES FROM THE CVAFDSM MACRO

On return from CVAF, register 1 contains the address of the CVAF
parameter list (CVPl), and register 15 contains one of the
following return codes:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

Meaning

The request was successful.

End of data (CVSTAT is set to decimal 32), or an error
was encountered. The CVSTAT field in the CVPl contains
an indication of the cause of the error. (CVSTAT code
descriptions are in Appendix B.)

Invalid VTOC index structure. CVSTAT contains an
indication of the cause of the error. (CVSTAT code
descriptions are in Appendix B.)

The CVAF parameter list is not in your protect key, or
is invalid (the ID is invalid, or the length field is
incorrect, or the CVFCTH field is invalid). The CVPl
has not been modified.

An I/O error was encountered.

Appendix C. Return Codes from VTOC Access Macfos 221

RETURN CODES FRO" THE CVAFSEQ "ACRO

On return from CVAF, register 1 contains the address of the CVAF
parameter list (CVPL), and register 15 contains one of the
following return codes:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

Meaning

The request was successful.

End of data (CVSTAT is set to decimal 32), or an error
was encountered. The CVSTAT field in the CVPL contains
an indication of the cause of the error. Error
descriptions are in Appendix D.

Invalid VTOC index structure. CVSTAT contains an
indication of the cause of the error. Error
descriptions are in Appendix D.

The CVAF parameter list is not in your protect key, or
is invalid (the ID is invalid, or the length field is
incorrect, or the CVFCTH field is invalid). The CVPL
has not been modified.

An I/O error was encountered.

RETURN CODES FRO" THE CVAFTST MACRO

On return from CVAF, register 15 contains one of the following
return codes:

Code

0(00)

4(04)

8(08)

12(OC)

16(10)

Meaning

The system does not support an indexed VTOC. The
volume should be considered to have an nonindexed VTOC.
The UCB was not inspected to determine its validity or
status.

The system supports an indexed VTOC, but the volume has
an nonindexed VTOC.

The system supports an indexed VTOC and the volume has
an indexed VTOC.

The system supports an indexed VTOC, but the volume is
not mounted or the VIB is not initialized for it, so
the status (indexed or nonindexed) of the VTOC can not
be determined.

The system supports an indexed VTOC, but the unit is
not a DASD or has a VIO UCB, or the UCB address is
invalid.

222 MVS/370 System Programming Library: Data Management

c.",·\ " !

c

c
APPENDIX D., VIOC ERROR nESSAGE AND ASSOCIATED CODES

ERROR HESSAGE

EXPLANATION

SVSTEH ACTION

PROGRAHHER RESPONSE

When CVAF finds an error in a VTOC index, it issues this
message:

IEC606I VTOC INDEX DISABLED ON dev,volser,
code,[rba[,secno,offsetll

In addition, CVAF puts a return code in the CVSTAT field of the
CVPL.

The Common VTOC Access Facility (CVAF) detected a VTOC index
~rror on the device 'deY' with volume serial number 'yolser'.
'code' is a number that represents the kind of VTOC index error
encountered. These codes and their meanings are in Appendix C.
'rba' is the RBA of the VIR in the VTOC index that contains a
structure error indicated by 'code'. If the VIR is a VIER, the
section number in the VIER containing the VTOC index entry is
supplied in 'secno', and the offset into the section of that
VTOC index entry is supplied in 'offset'.

The VTOC index is disabled by zeroing the index bit in the
format-4 DSCB and setting the bit in the first high-IeYel VIER
which indicates invalid VTOC index structure. TheVTOC will be
converted to nonindexed format when DADSM next allocates space
on the yolume. A system dump is written to the SYS1.DUMP data
set, and an entry is made in the SYS1.LOGREC data set. The
message IEC604I (which indicates that the VTOC convert routines
have been used) will be issued later.

Examine the system dump and a print of the VTOC index, and use
the information in messageIEC606I to determine the cause of the
VTOC index structure error.

ROUTING AND DESCRIPTOR CODES

The routing codes are 4 (direct access pool) and 10
(system/error maintenance), and the descriptor code is 4 (system
status) .

CODES PUT IN THE CVSTAT FIELD

Code

0(00)

1(01)

2(02)

4(04)

5(05)

Heaning

No error.

Data set name not found.

Argument is outside VTOC extents or RBA range of VTOC
index.

Invalid parameter supplied (wrong key).

DSN keyword omitted.

Appendix rr. VTOC Error Message and Associated Codes 223

Code "eantng
6(06)

7(07)

8(08)

9(09)

10COA)

llCOB)

12COC)

13(OD)

14(OE)

15COF)

17(11)

19(13)

22(16)

23(17)

24(18)

25(19)

27(lB)

28CIC)

29CI0)

30CIE)

31(lF)

32(20)

33(21)

Not authorized to perform this function.

Buffer list omitted.

DEB invalid or omitted or not open to VTOC.

IOAREA=KEEP and user not authorized, or I/O area
supplied and user not authorized

Function not supported on indexed VTOC.

DSCB is not format-O DSCB and VERIFY=YES.

MAPRCDS=YES and/or IXRCDS=KEEP but VTOC is nonindexed.

IXRCDS=KEEP not specified for CVAFDSM ACCESS=IXADD or
IXDLT.

CTAREA keyword omitted.

UCB invalid, volume not mounted; VIO unit. not DASD.

DSCB length invalid for the function requested: 96
bytes for CVAFDIR ACCESS=WRITE,VERIFY=YES; 96 bytes for
CVAFSEQ reading in data-set-name sequence; 140 bytes
for CVAFSEQ reading in physical sequence.

UCB ~mitted and CVAF I/O area not supplied.

Data set name alrQadv supplied.

Invalid DSN supplied (44X'FF' is a reserved data set
name) •

ARG keyword not supplied.

Conflicting or incomplete information specified in the
space table for a CVAFDSM ACCESS=ALLOC, MAP=VOLUME
request.

VTOC index full. No free VIRs available and a VIER
split is required.

Space keyword omitted (CVSPACE field zero in eVPL).

CVAFDSM ACCESS=ALLOC: No format 0 DSCB available
(MAP=VTOC), or VTOC index full CMAP=INDEX), or volume
space not available CMAP=VOLUME).

CVAFDSM ACCESS=ALLOC: CCHHR (MAP=VTOC) or RBA
MAP=INDEX or volume space extent (MAP=VOLUME) already
allocated.

CVAFDSM ACCESS=ALLOe: CCHHR supplied outside VTOC
extents CMAP=VTOC), or RBA outside VTOe index extents
(MAP=INDEX), or volume space extent invalid or outside
volume (MAP=VOLUME).

End of data. CVAFDSM ACeESS=MAPDATA: no more free
extents in VPSM. eVAFSEQ: no more names in index or
DSCBs in VTOC. For indexed access, no DSN in VTOC index
with higher or higher-or-equal key than that supplied.
For physical-sequential access, no DSCB in the VTOC has
a higher argument than that supplied. For a multiple
DSCB request, the last DSCB in the VTOe was read and
more DSCBs were requested.

EXTENTS keyword omitted, or supplied number of extents
is zero.

224 MVS/370 System Programming Library: Data Management

,('-~''',

\\,~)

C','
~ ,

0"

o

Code Meaning

34(22)

42(2A)

43(2B)

44(2C)

45(2D)

46(2E)

47(2F)

48(30)

49(31)

50(32)

52(34)

53(35)

54(36)

CVAFDSM ACCESS=RlSEl format 0 DSCB already free
(MAP=VTOC), or VIER already unallocated (MAP=INDEX) or
volume space extent already unallocated (MAP=VOlUME).

VRF data supplied for write too long.

Buffer list is for VIRs, but a DSCB buffer list is
required.

No buffer list entry found.

Invalid DSCB buffer length (neither 96 nor 140) in
buffer list entry, or VIR buffer length not equal to
VIB VIR size.

Neither TTR nor CCHHR bits set in buffer list entry to
be used in writing a 140-byte DSCB.

More than one of the TTR, CCHHR, and RBA bits set in
the buffer list entry.

Both the DSCB and VIR bits set in the buffer list
header.

RBA bit set in a buffer list entry for a DSCB buffer
list.

TTR or CCHHR bit set in buffer list entry but buffer
list header indicates buffer list is for a VIR.

Combination of MAP and COUNT not supported.

MAP omitted.

Buffer list for a VIR chained to or from a buffer list
for a DSCB.

55(37) Unauthorized caller and VIB not initialized.

56(38) MAPRCDS=YES not specified but required.

57(39) Buffer list for a DSCB supplied but buffer list for a
VIR required (in MAPRCDS or IXRCDS buffer list address
in CVAF parameter list).

58(3A) Neither the VIR nor DSCB bit set in a buffer list
header.

60(3C) Invalid or conflicting setting of allocate option byte
in space parameter

127(7F) I/O error occurred.

128(80) Reserved.

129(81) The first high-level VIER as indicated in the VIXM does
not have the flag bit set indicating it is the first
high-level VIER.

130(82) A horizontal or vertical VIER pointer is outside the
RBA range of the VTOC index.

131(83) A vertical VIER pointer points to a VIR which is not a
VIER (invalid ID in header>.

132(84) A level n vertical index entry pointer points to a VIER
which is not at level n-l.

Appendix D. VTOC Error Message and Associated Codes 225

Code "eantng

133(85) level n horizontal index entry pointer points to VIER 0
which is not at level n. · ... 1·

134(86) Horizontal VIER/map pointer points to a VIR which is
not a VIER/map (invalid ID in header).

135(87) Horizontal map pointer points to VIR which is not one
of the first n VTOC index records (n is recorded in
VIXM field VIMRCDS), or the first record in the VTOC
index is not a VIXM.

136(88) A level-l index entry contains a CCHHR pointer which is
outside the VTOe extent.

137(89) The first high-level VIER, as indicated in the VIB,
does not have the flag bit set indicating it is the
first high-level VIER. (This error is either recovered
from by updating-the VIB from the VIXM, or the error is
changed to 129.)

138(8A) The RBA of the VTOC index VIR does not match the RBA
recorded in the header of the record.

139(8B) The first record of a map (VIXM, VPSM, or VMDS) is not
one of the first n VTOC index records (n is recorded in
the VIXM field, VIMRCDS).

140(8C) The data set name in a level n+l VIER entry is lower
than the high key of the level n VIER that the level
n+l VIER entry points to.

141(8D) First high-level VIER structure error bit is on.

142(8E) I/O error indicating the VTOC index is not formatted
correctly.

143(8F) Either the index bit is zero or the DOS bit is zero in
the format-4 DSCB of a VTOC previously found to be an
indexed VTOC.

144(90) No SYS1.VTOCIX.nnn data set name in a VTOC whose
format-4 DSCB has the index bit on, indicating the VTOC
has an index.

145(91) The data set name in a level n+l VIER entry is higher
than the high key of the level n VIER that the level
n+l VIER entry points to

146(92) Four or more high-level VIERs were encountered.

147(93) Too many levels in the VTOC index. The length of the
search list was exceeded.

148(94) VIER invalid, because offset to last section is
invalid.

149(95) VIER invalid, because offset to last entry in a section
is i nval i d.

150(96) Media Manager initialization failed.

151(97) level-2 or higher VIER contains fewer than two entries.

152(98) RECOVER=YES specified but the static text module
(ICVIXSTO) indicates recovery is not permitted.

226 MVS/370 System Programming library: Data Management

c

o

o

o

Code

153(99) The format-4 DSCB on an indexed VTOC is written with
either the index- or DOS-bit zeroed on an indexed VTOC.

154(9A) A space map extends over more than 10 VTOC index
records.

155(9B) Data set name not found in section with key greater
than or equal to the name being searched for. The VIER
section containing the name is invalid.

156(9C) Invalid VIER horizontal pointer. Horizontal pointer of
VIERI points to VIER2 whose high key is lower than or
equal to the high key of VIERI.

157(9D) Could not find entry in level-2 or higher VIER that
matches the high key of the VIER.

158(9E) Invalid section length or invalid number of sections in
a VIER header.

159(9F) The first high-level VIER pointed to by the VIB has an
invalid ID in the header.

Appendix D. VTOC Error Message and Associated Codes 227

APPENDIX E. EXAMPLE OF AN OPEN EXIT MODULE

PROCESSING IN IFGOEXOB

The following program listing is a sample of IFGOEXOB. The four
subroutines (BUFNO, SCREEN, RlSE, and SQTY) show examples of the
kind of processing that can be done in your installation's
version of IFGOEXOB.

The BUFNO subroutine defaults the number of buffers for QSAM
DCBs (DCBBUFNO) if the value is zero when the exit is given
control. The block size in the DC~ (DCBBlKSI) is used, together
with a fixed amount of storage (64K bytes in the example) to
determine a buffer number. A buffer number is limited to a
fixed value (32 in the example). Storage quantity and maximum
buffer number are contained in two tables, DAMAX and TPMAX,
which ara used for DASD devices and tape devices, respectively.
Storage quantity is expressed in units of 1024 (lK) bytes. The
values in the DAMAX and TPMAX tables can be altered by your
installation.

The SCREEN subroutine determines those cases in which the
succeeding subroutines, RlSE and SQTY, should be executed. DASD
sequential and partitioned data sets being proce~sed by BSAM or
QSAM and opened for OUTP,UT or OUTIN are selected." The VTOC data
set and data sets starti';ng with 'SYS1.' (system datas..ets) are
excluded. An installation may want to make further selection
tests.

REqUESTING PARTIAL RELEASE

The RlSE subroutine sets on the partial release indicators in
the JFCB if the number of extents in the data set is less than a
fixed value (8 in the example). It sets off the partial release
indicators in the JFCB if the number of extents in the data set
is equal" or greater than a fixed value (8 in the example).
Partitioned data sets are not processed, because they may be
opened many times to write one new member for each OPEN/CLOSE.

UPDATING THE SECONDARY SPACE DATA

The SQTY subroutine provides a default secondary space quantity
if none is specified. The default is one half of the primary
space quantity if it is greater than one. If the primary
quantity is zero, secondary is set to a fixed default number of
tracks (5 in the example). If the primary quantity is one,
secondary is set to the same fixed default (5); note that, in
this case, the secondary quantity is in units of tracks,
cylinders, or average blocks, depending on the unit of the
primary quantity.

If the secondary space quantity is not zero, the SQTY subroutine
tests the number of extents in the data set. If the number of
extents is equal to or greater than a fixed value (10 in the
example), then the secondary quantity is increased by 50~ if it
is greater than 1. "It is set to a default quantity (5 in the
example) if the secondary quantity is one; note that, in this
case, the secondary quantity is in units of tracks, cylinders,
or average blocks, depending on that of the primary quantity.

228 MVS/370 System Programming Library: Data Management

c

c

Ci

("~I
./

IFGOEXOB CSECT

* * * FUNCTION = * * FOUR SAMPLE ROUTINES ARE SUPPLIED. *
* * * BUFNO - DEFAULT DCBBUFNO * * DCBBUFNO (NUMBER OF BUFFERS) IS DEFAULTED FOR *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

OPENS TO PHYSICAL SEQUENTIAL AND PARTITIONED DATA SETS *
ON DASD AND TAPE USING QSAM, FOR WHICH DCBBUFNO IS ZERO. *
DCBBUFNO FOR SYSIN, SYSOUT, TERMINAL, AND DUMMY DATA SETS *
IS SET TO THE EQUATE, INOUTBNO, OR THE VALUE IN THE *
FULLWORD, INOUTBN. *
DCBBUFNO IS SET TO THE NUMBER OF DCBBLKSZ BUFFERS WHICH
FIT IN A GIVEN AMOUNT OF STORAGE. THE AMOUNT OF STORAGE IS
DEFINED BY THE EQUATES, DAMXK AND TPMXK (OR THE FULLWORDS
AT LABELS, DAMAXK AND TPMAXK), FOR DASD AND
TAPE, RESPECTIVELY. THE EQUATES DEFINE THE AMOUNT OF
STORAGE FOR BUFFERS IN UNITS OF 1024 (IF DAMXK IS 32, THEN
THE AMOUNT OF STORAGE IS 32K, OR 32768).
DAMXK OR TPMXK TIMES 1024 IS DIVIDED BY DCBBLKSI TO
DETERMINE THE NUMBER OF BUFFERS TO DEFAULT.

THE EQUATES, DAMXBNO AND TPMXBHO, OR THE FULLWORDS
AT LABELS, DAMAXBNO AND TPMAXBNO,
DEFINE THE MAXIMUM NUMBER OF BUFFERS TO BE
DEFAULTED FOR DASD AND TAPE IF THE CALCULATION, ABOVE,
RESULTS IN A LARGER NUMBER.

SCREEN - SCREEN OUT CASES FOR RLSE, SQTY

RLSE - SET OR ZERO PARTIAL RELEASE
THIS ROUTINE SETS PARTIAL RELEASE FOR DASD PS (NOT PO) DATA
SETS BEING OPENED FOR OUTPUT OR OUTIN.

PARTIAL RELEASE IS SET ON IF THE NUMBER OF EXTENTS IS LESS
THAN A QUANTITY DEFINED BY THE EQUATE, RLSE1, OR THE BYTE,
EXTRLSEI.

* PARTIAL RELEASE IS SET OFF IF THE NUMBER OF EXTENTS IS NOT *
LESS THAN A QUANTITY DEFINED BY THE EQUATE, RLSEO, OR THE *
BYTE, EXTRLSEO. *

* SQTY - SET OR UPDATE SECONDARY SPACE QUANTITY *
THIS ROUTINE UPDATES THE SECONDARY SPACE *
QUANTITY FOR DASD PS OR PO DATA SETS BEING *
OPENED FOR OUTPUT OR OUTIN. *

* IF THE SECONDARY QUANTITY IS NOT ZERO, *
AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS *
AT LEAST EQUAL TO THE QUANTITY IN THE EQUATE, EXTSQT (OR *
THE BYTE AT LABEL, EXTSQTY), THEN: *
1. IF THE SECONDARY QUANTITY IS GREATER THAN ONE, *
SECONDARY QUANTITY IS INCREASED BY ONE HALF *
(50~). *
2. IF THE SECONDARY QUANTITY IS ONE, *
SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD *
AT LABEL, SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). *

* IF THE SECONDARY QUANTITY IS NOT ZERO, *
AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS *
LESS THAN THE QUANTITY IN THE EQUATE, EXTSQT (OR *
THE BYTE AT LABEL, EXTSQTY), SECONDARY QUANTITY *
IS LEFT UNCHANGED. *

Appendix E. Example of an Open Exit Module 229

* * * * * * * * * *

* IF SECONDARY QUANTITY IS ZERO, IT IS SET TO ONE HALF *
OF PRIMARY QUANTITY IF PRIMARY IS NOT ZERO OR ONE. *
IF PRIMARY QUANTITY IS ZERO, THE SPACE TYPE IS SET TO TRACKS,*
AND SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD *
AT LABEL SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). *
IF PRIMARY QUANTITY IS ONE, SECONDARY QUANTITY IS SET TO *
VALUE IN THE FULLWORD AT LABEL SQTYDFLT (EQUAL TO THE *
EQUATE, SQTYDFL). *

* HOTES = SEE BELOW * * * * * * * * * * * * * * * * * * * if

*

DEPENDENCIES =
CLASS ONE CHARACTER CODE. THE EBCDIC CHARACTER CODE
WAS USED FOR ASSEMBLY. THE MODULE MUST BE REASSEMBLED
IF A DIFFERENT CHARACTER SET IS USED FOR EXECUTION.

RESTRICTIONS = NONE

REGISTER CONVENTIONS =
Rl OIEXL ADDRESS
R2 DCB ADDRESS
R3 UCB ADDRESS
R4 DCB BLOCK SIZE
R5 ADDRESS OF TPMAX OR DAMAX TABLES
R6 EVEN REGISTER OF EVEN/ODD PAIR
R7 ODD REGISTER OF EVEN/ODD PAIR
R8 TIOT ENTRY ADDRESS
R8 JFCB ADDRESS
RIO FORMAT 1 DSCB ADDRESS
Rll SAVE RETURN CODE
Rl3 SAVE AREA ADDRESS
R14 RETURN ADDRESS
R15 BASE REGISTER

PATCH LABEL = PATCH

* MODULE TYPE = CONTROL (OPEN, CLOSE, EOV DATA~MAHAGEMENT)
*

PROCESSOR = ASSEMBLER XF

MODULE SIZE = SEE EXTERNAL SYMBOL DICTIONARY

ATTRIBUTES = REENTRANT, REFRESHABLE,READ-ONLY, ENABLED,
PRIVILEGED, SUPERVISOR STATE, KEY ZERO,
LINK PACK AREA RESIDENT/PAGEABLE

ENTRY POINT = IFGOEXOB

PURPOSE = SEE FUNCTION

LINKAGE =
FROM IFGOI96L:

BALR 14,15

INPUT = STANDARD LINKAGE CONVENTIONS

OUTPUT = DCBBUFNO DEFAULTED
PARTIAL RELEASE SET OR RESET
CONTIGUOUS FLAG SET TO ZERO
SECONDARY SPACE REQUEST MODIFIED

RETURN CODE IN REGISTER 15
o IF JFCB NOT MODIFIED
4 IF JFCB MODIFIED

230 MVS/370 System Programming Library: Data Management

*

O··~ "

c

Oil
L·',I

* * * EXIT-NORMAL = *
* BR 14 *
* * * EXIT-ERROR = *
* NONE *
* * * EXTERNAL REFERENCES = SEE BELOW *
* * * ROUTINES = NONE *
* * * DATA AREAS = NONE *
* * * CONTROL BLOCK = NONE *
* * * TABLES = NONE *
* * * MACROS = MODESET, IECOIEXL, IHADCB, IEFUCBOB, IEFTIOT1, IEFJFCBN, *
* IECSDSL1 *
* * ***

* * REGISTER EQUATES
* ***
R1 EQU 1 OIEXL PARAMETER LIST ADDRESS
RDCB EQU 2 DCB ADDRESS
RUCB EQU 3 UCB ADDRESS
RBKSIZ EQU 4 DCB BLOCK SIZE
RMAX EQU 5 ADDRESS OF TPMAX OR DAMAX
REVEN EQU 6 EVEN ~EGI5TER cr EVEN/ODD PAIR
RODD EQU 7 OnD REGISTER OF EVEN/ODD PAIR. HAS *

DCBBUFNO DEFAULT
RTIOT EQU 8 TIOT ENTRY ADDRESS
RJFCB EQU 9 JFCB ADDRESS
RDSCB EQU 10 FORMAT 1 DSCB ADDRESS
RINCODE EQU 11 INTERNAL RETURN CODE
R12 EQU 12
RSAVE EQU 13 SAVE AREA ADDRESS
RET EQU 14 RETURN ADDRESS
RCODE EQU 15 BASE REGISTER/RETURN CODE ON EXIT

* RETURN CODE
* ***
MODJFCB EQU 4 RETURN CODE IF JFCB MODIFIED

USING IFGOEXOB,RCODE

* * START OF SAMPLE PROGRAM
* *** B AFTRID1

DC C'IFGOEXOB JDM1137 &SYSDATE'
+ DC C'IFGOEXOB JDM1137 05/01/81'

AFTRID1 SAVE (14,12) SAVE REGISTERS
+AFTRID1 DS OH
+ STM 14,12,12(13)

EXIT

XR RINCODE,RINCODE
USING OIEXL,R1
BAL RET,BUFNO
BAL RET,SCREEN

BAL
BAL
EQU

RET,RLSE
RET,SQTY
*

SAVE REGISTERS
ZERO RETURN CODE
PARAMETER LIST
DEFAULT BUFNO
SCREEN OUT CASES WHERE RLSE, *
AND SQTY SHOULD NOT BE CALLED
SET PARTIAL RELEASE
SET SECONDARY QUANTITY
RETURN TO CALLER

Appendix E. Example of an Open Exit Module 231

*** * RETURN TO CALLER
*** LR RCODE,RINCODE

RETURN CI4,12),RC=CI5) RESTORE REGISTER
+ L 14,12CI3,0) RESTORE REGISTER 14
+ LM 0,12,20CI3) RESTORE THE REGISTERS
+ BR 14 RETURN

BUFNO EQU * DEFAULT DCB BUFNO

* * * * * * * *

DEFINE DEFAULT VALUES
DAMXK = NUMBER OF K CI024) OF BUFFERS FOR DASD
TPMXK = NUMBER OF K CI024) OF BUFFERS FOR TAPE
DAMXBNO = MAXIMUM NUMBER OF BUFFERS FOR DASD
TPMXBNO = MAXIMUM NUMBER OF BUFFERS FOR TAPE

NOTE THAT DAMXBNO AND TPMXBNO MUST NOT BE GREATER THAN 255

*** DAMXK EQU 64 64K BUFFERS FOR DASD
TPMXK EQU 64 64K BUFFERS FOR TAPE
DAMXBNO EQU 32 32 BUFFERS MAXIMUM FOR DASD
TPMXBNO EQU 32 32 BUFFERS MAXIMUM FOR TAPE
INOUTBNO EQU 1 DCBBUFNO DEFAULT FOR SYSIN, SYSOUT,

AND DD DUMMY
ONEK EQU 10 SHIFT ARGUMENT TO MULTIPLY BY 1024

B AFTRID2
DC CL8'BUFNO'

AFTRID2 BCR O,RET
BUFNO ROUTINE ID
NOP RETURN

L RDCB,OIEXPDCB PROTECTED COpy OF DCB
USING IHADCB,RDCB

*** * DO NOT PROCESS EXCP, BSAM, DSORG NOT PS OR PO, * DCBBUFNO SPECIFIED
*** TM DCBMACF1,DCBMRECP EXCP DCB?

BO RETBUFNO RETURN IF EXCP
TM DCBMACF1,DCBMRRD READ MACRO
BO RETBUFNO RETURN IF READ-NOT QSAM
TM DCBMACF2,DCBMRWRT WRITE MACRO
BO RETBUFNO RETURN IF WRITE-NOT QSAM
TM DCBDSRG1,DCBDSGPS+DCBDSGPO PS OR PO
BZ RETBUFNO EXIT IF NOT PS OR PO
CLI DCBBUFNO,O IS DCBBUFNO SPECIFIED
BNE RETBUFNO RETURN IF DCBBUFNO SPECIFIED

~********************** * DEFAULT DCBBUFNO TO 1 FOR SYSIN, SYSOUT, TERMINAL, DUMMY
*** L RTIOT,OIEXTIOT TIOT ENTRY ADDRESS

USING TIOENTRY,RTIOT
L RODD,INOUTBN BUFNO DEFAULT FOR SYSIN/SYSOUT/

DO DUMMY
TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL
BNZ STORE BRANCH IF SYSIN OR SYSOUT OR TERMINAL
L RJFCB,OIEXJFCB JFCB ADDRESS
USING INFMJFCB,RJFCB
CLC JFCBDSNMCl'NULLFILE),NULLFILE DUMMY DATA SET
BE STORE BRANCH IF DUMMY

***/ * EXIT IF NO UCB ADDRESS OR BLOCK SIZE NOT POSITIVE
*** L RUCB,OIEXUCB UCB ADDRESS

LTR RUCB,RUCB ANY UCB?
BZ RETBUFNO EXIT IF NO UCB
LH RBKSIZ,DCBBLKSI DCB BLOCK SIZE
LTR RBKSIZ,RBKSIZ ANY BLOCK SIZE?
BNP RETBUFNO RETURN IF NO BLOCK SIZE

232 MVS/370 System Programming Library: Data Management

o

D

o

o

~**~~** * GET TAPE OR DASD MAX TABLE
*** USING UCBOB,RUCB

TM UCBTBYT3,UCB3DACC DASD UCB!
LA RMAX,DAMAX MAX TABLE FOR DASD
BO CALC BRANCH IF DASD
TM UCBTBYT3,UCB3TAPE TAPE UCB!
LA RMAX,TPMAX MAX TABLE FOR TAPE
BZ RETBUFNO RETURN IF NOT DASD OR TAPE

CALC EQU * DEFAULT DCBBUFNO
*** * CALCULATE DEFAULT BUFFER NUMBER
*** USING MAX,RMAX

XR REVEN,REVEN ZERO EVEN REG
L RODD,MAXBUF MAXIMUM STORAGE FOR BUFFERS
SLL RODD,OHEK SHIFT TO MULTIPLY BY 1024
DR REVEH,RBKSIZ DIVIDE MAS BUFFER SPACE BY BKSI
C RODD,MAXBHO ARE THERE TOO MANY BUFFERS!
BNH STORE USE CALCULATION IF NOT TOO LARGE
L RODD,MAXBNO USE MAXIMUM HUMBER OF BUFFERS

STORE EQU * DEFAULT DCBBUFNO FOR USER/COPY DCB
STC RODD,DCBBUFNO PUT IN PROTECTED COpy OF DCB
L RDCB,OIEXUDCB USER DCB
XR REVEN,REVEN MODESET USES REG 6 = REVEN
MODESET KEYADDR=OIEXUKEY,WORKREG=6 GET IN USER KEY

+* /* MACDATE Y-3 77277 aZA26071*/
+* /*
+ IC 6,OIEXUKEY GET KEY FROM SAVE LOCATION

SET PSW KEY + SPKA 0(6)
STC RODD,DCBBUFNO
MODESET EXTKEY=ZERO

PUT IN USER DCB
BACK TO KEY ZERO

+* /* MACDATE Y-3 77277
+* /*
+ SPKA 0(0) SET PSW KEY

RETBUFNO EQU * RETURN FROM BUFNO
BR RET RETURN

INOUTBN DC A(INOUTBNO) SYSIH/SYSOUT/DUMMY BUFNO DEFAULT

* * MAX TABLE FOR TAPE
* *** DS OF

DC CLS'TPMAX' TPMAX ID
TPMAX DS OF
TPMAXK DC ACTPMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS *

OF 1024
TPMAXBNO DC ACTPMXBNO) MAXIMUM NUMBER OF BUFFERS

* * MAX TABLE FOR DASD
* *** DS OF

DC Cl8'DAMAX' DAMAX ID
DAMAX DS OF
DAMAXK DC ACDAMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS *

OF 1024
DAMAXBNO DC A(DAMXBNO) MAXIMUM NUMBER OF BUFFERS

Appendix E. Example of an Open Exit Module 233

SCREEN EQU * SCREEN OUT CASES WHERE RlSE, *
AND SQTY SHOULD NOT EXECUTE

*** * DO NOT PROCESS IF c;
* SYSIN/SYSOUT/TERMINAl * DD DUMMY * USER ASKS JFCB NOT BE RE-WRITTEN * SYSTEM DATA SET ('SYSl.XXX') * NON-DASD UCB * NOT A FORMAT 1 DSCB * EXCP DCB * DSORG IN DCB IS NEITHER PS NOR PO * DSORG IN DSCB IS NEITHER PS NOR PO * NEITHER PUT NOR WRITE MACRO CODED IN DCB * OPEN FOR OTHER THAN OUTPUT OR OUTIN
*** B AFTRID3

DC Cl8'SCREEN' SCREEN ROUTINE ID
AFTRID3 l RTIOT,OIEXTIOT TIOT ENTRY ADDRESS

TM TIOElINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL
8NZ EXIT EXIT IF SYSIN OR SYSOUT OR TERMINAL
l RJFCB,OIEXJFCB JFCB ADDRESS
ClC JFCBDSNMCL'NUllFIlE),NUllFIlE DUMMY DATA SET
BE EXIT EXIT IF DUMMY
ClC SYSl,JFCBDSNM SYSl.XXX DATA SET
BE EXIT EXIT IF SYSTEM DATA SET
TM JFCBTSDM,JFCNWRIT DON'T MODIFY JFCB
BO EXIT EXIT IF YES
l RUCB,OIEXUCB UCB ADDRESS
lTR RUCB,RUCB ANY UCB?
BZ EXIT EXIT IF NO UCB
TM UCBTBYT3,UCB3DACC DASD UCB?
BNO EXIT EXIT IF NOT DASD
l RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS
USING DSIFMTID,RDSCB
CLI DSIFMTID,C'l' IS THIS A FORMAT 1 DSCB
BNE EXIT EXIT IF NOT
l RDCB,OIEXPDCB PROTECTED DCB ADDRESS
TM DCBMACFl,DCBMRECP EXCP DCB?
BO EXIT EXIT IF EXCP
TM DCBDSRGl,DCBDSGPS+DCBDSGPO PS OR PO DCB
BZ EXIT EXIT IF NOT PS OR PO
NC DSIDSORG,DSIDSORG IS DSORG SPECIFIED
BZ TSTMACRF TRUST DCB IF NOT SPECIFIED
TM DSIDSORG,DSIDSGPS+DSIDSGPO IS DATA SET PS OR PO
BZ EXIT EXIT IF NOT PS OR PO

TSTMACRF EQU * TESt MACRF IN DCB
TM DCBMACF2,DCBMRPUT PUT MACRO
BO TSTOOPT TEST OPEN OPTION
TM DCBMACF2,DCBMRWRT WRITE MACRO
BZ EXIT EXIT IF NOT WRITE

TSTOOPT EQU * TEST OPEN OPTION
TM OIEXOOPT,OIEXOOUT OPEN FOR OUTPUT
BO SCREENOK BRANCH IF YES
TM OIEXOOPT,OIEXOOIN OPEN FOR OUTIN
BNO EXIT EXIT IF NO

SCREENOK EQU *
BR RET RETURN TO CAll RlSE, SQTY

o
234 MVS/370 System Programming library: Data Management

o

C)

o

RLSE EQU * SET PARTIAL RELEASE

* * * * * * * * * * * * * * * *

DEFINE DEFAULT VALUES
RLSEO = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS

NUMBER OF EXTENTS OR MORE, THEN PARTIAL RELEASE

RLSEI
WILL NOT BE ALLOWED. = NUMBER OF EXTENTS. IF THE DATA SET HAS LESS THAN
THIS NUMBER OF EXTENTS, PARTIAL RELEASE IS
REQUIRED.

NOTE THAT RLSEO MUST NOT BE GREATER THAN RLSEI

SETTING RLSEO TO 17 OR GREATER WILL CAUSE THIS ROUTINE TO
NEVER PREVENT A REQUEST FOR PARTIAL RELEASE

SETTING RLSEI TO 0 WILL CAUSE THIS ROUTINE TO
NEVER FORCE A REQUEST FOR PARTIAL RELEASE

* ***
RLSEO EQU 8 SET RELEASE BIT TO ZERO IF NUMBER OF *

RLSEI EQU

B
DC

AFTRID4 BCR
L
TM
BO
CLC
BNL
L
01
LA
B

TSTRLSE CLC
BL
NI
LA

RETRLSE EQU
BR
DC
DS

EXTRLSEI DC

EXTRLSEO DC

8

AFTRID4
CL8'RLSE'
O,RET
RDSCB,OIEXDSCB
DSIDSORG,DSIDSGPO
TSTRLSE
DSINOEPV,EXTRLSEI
TSTRLSE
RJFCB,OIEXJFCB
JFCBIND1,JFCRLSE
RINCODE,MODJFCB
RETRLSE
DSINOEPV,EXTRLSEO
RETRLSE

EXTENTS EQUAL OR GREATER THAN THIS
SET RELEASE BIT TO ONE IF NUMBER OF *
EXTENTS LESS THAN THIS

RLSE ROUTINE ID
NOP RETURN
FORMAT 1 DSCB ADDRESS
IS DATA SET PARTITIONED
DO NOT SET RELEASE FOR PARTITIONED
FEW ENOUGH TO SET RELEASE
BRANCH IF NOT

SET RELEASE
JFCB MODIFIED
RETURN
ENOUGH TO ZERO RELEASE
BRANCH IF NO

JFCBIHD1,255-JFCRLSE ZERO RELEASE
RINCODE,MODJFCB JFCB MODIFIED
* RETURN FROM RLSE
RET RETURN
CL8'RLSECONS' RLSE CONSTANTS ID
OH
AL1(RLSE1) IF FEWER THAN THIS NUMBER OF EXTENTS,*

PARTIAL RELEASE WILL BE SET
AL1(RLSEO) IF THIS NUMBER OR MORE EXTENTS, *

PARTIAL RELEASE WILL BE ZEROED

Appendix E. Example of an Open Exit Module 235

SQTY EQU * SET SECONDARY QUANTITY
*** £"',
*
* DEFINE DEFAULT VALUES '"-.1
* SQTYDFL = DEFAULT SECONDARY QUANTITY. THIS QUANTITY IS
* SET IF THE SECONDARY QUANTITY IS ZERO AND THE
* PRIMARY QUANTITY IS ZERO OR ONE. IT IS USED
* IF SECONDARY QUANTITY IS ONE, AND THE NUMBER OF
* EXTENTS IS EQUAL OR GREATER TO EXTSQT.
* EXTSQT = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS MANY
* EXTENTS OR MORE, THEN INCREASE SECONDARY QUANTITY.
*
******************************~** SQTYDFL EQU 5 DEFAULT SECONDARY QUANTITY
EXTSQT EQU 10 IF DATA SET HAS THIS MANY EXTENTS, * THEN INCREASE SECONDARY QUANTITY

B AFTRID6
DC CL8'SQTY' SQTY ROUTINE ID

AFTRID6 BCR O,RET NOP RETURN
L RJFCB,OIEXJFCB JFCB ADDRESS
NC JFCBSQTY,JFCBSQTY ANY SECONDARY QUANTITY
BZ TSTPRIM TEST PRIMARY IF NOT
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS
CLC DSINOEPV,EXTSQTY ENOUGH TO ADD TO SECONDARY QTY
BL RETSQTY BRANCH IF NOT
XR RODD,RODD
ICM RODD,7,JFCBSQTY GET SECONDARY QUANTITY
LR REVEN,RODD SAVE IN REVEN
SRL REVEN,l HALVE SECONDARY QUANTITY
LTR REVEN,REVEN IS SECONDARY ONE
BZ SETDFLT DEFAULT SECONDARY IF ONE
AR RODD,REVEN 150X OF SECONDARY
B STSQTY

TSTPRIM EQU * SECONDARY QUANTITY IS ZERO
NC JFCBPQTY,JFCBPQTY IS PRIMARY QUANTITY ZERO
BZ DFLTSQTY DEFAULT SECONDARY ~ ""
XR RODD,RODD (\,

ICM RODD,7,JFCBPQTY \~ .. ,;J
SRL RODD,} HALVE PRIMARY
LTR RODD,RODD IS PRIMARY ONE
BNZ STSQTY BRANCH IF NOT

SETDFLT EQU * USE QUANTITY IN SQTYDFLT
L RODD,SQTYDFLT DEFAULT SECONDARY
B STSQTY STORE SECONDARY

DFLTSQTY EQU * PRIMARY AND SECONDARY ZERO
L RODD,SQTYDFLT GET DEFAULT SECONDARY
TM JFCBCTRI,JFCBSPAC
BNZ STSQTY
CLI DSIEXT1,X'Ol' TRACK EXTENT
BE DFLTTRK YES -- SET TRACKS
CLI DSIEXT1,X'81' CYL EXTENT
BNE RETSQTY NO -- RETURN
01 JFCBCT~I;tJFCBCYL SET CYLINDER UNITS
B STSQTY

DFLTTRK EQU * SET TRACK UNITS.
01 JFCBCTRI,JFCBTRK MAKE TRACK REQUEST

STSQTY EQU * STORE SECONDARY QTY
STCM RODD,7,JFCBSQTY
LA RINCODE,MODJFCB JFCB MODIFIED

RETSQTY EQU * RETURN FROM SQTY
BR RET RETURN
DS OF
DC CL8'SQTYCONS' SQTY ROUTINE CONSTANTS ID

SQTYDFLT DC ACSQTYDFL) DEFAULT SECONDARY QUANTITY
DC ALl(O) NOTE ONE BYTE OF ZERO BEFORE EXTSQTY

EXTSQTY DC ALICEXTSQT) IF DATA SET HAS THIS MANY EXTENTS, * THEN ADD TO SECONDARY QUANTITY

C

236 MVS/370 System Programming Library: Data Management

c

c

c

* * CONSTANTS / PATCH AREA
* *** NULLFILE DC C'NULLFILE' DD DUMMY DATA SET NAME
SYSl DC C'SYS1.' START OF SYSTEM DATA SET NAMES

DS OF
PATCH DC C'IFGOEXOB PATCH AREA'

DC XL50'OO'

* * MAX TABLE MAPPING DSECT (MAPS TPMAX OR DAMAX)
* ***
MAX DSECT
MAXBUF DS A MAXIMUM SIZE FOR BUFFERS
MAXBNO DS A MAXIMUM NUMBER OF BUFFERS

* * DCB OPEN INSTALLATION EXIT PARAMETER LIST * - THE IECOIEXL MACRO IS IN SYS1.MACLIB
* *** IECOIEXL
******** THE MACRO EXPANSION IS NOT SHOWN

* * DCB - THE IHADCB MACRO IS IN SYS1.MACLIB
* *** IHADCB DSORG=PS,DEVD=DA
******** THE MACRO EXPANSION IS NOT SHOWN

* * UCB - THE IEFUCBOB MACRO IS IN SYS1.AMODGEN
* *** UCB DSECT

IEFUCBOB LIST=YES
******** THE MACRO EXPANSION IS NOT SHOWN

* * TIOT - THE IEFTIOTl MACRO IS IN SYS1.AMODGEN
* *** TIOT DSECT

IEFTIOTl
******** THE MAC~O EXPANSION IS NOT SHOWN

* * JFCB - THE IEFJFCBN MACRO IS IN SYS1.AMODGEN
* *** JFCB DSECT

IEFJFCBN LIST=YES
******** THE MACRO EXPANSION IS NOT SHOWN

* * FORMAT 1 DSCB - THE IECSDSLl MACRO IS IN SYS1.AMODGEN
* *** F1DSCB DSECT

IECSDSLl (1)
******** THE MACRO EXPANSION IS NOT SHOWN

END

Appendix E. Example of an Open Exit Module 237

ABE appendage 76-78
abnormal-end appendage 76-78
access method routines, functions

performed in I/O operations 66
accessing VTOCs and VTOC indexes 55-64
affecting DADSM processing 121-124
alias name

entry 32
of UCS images for JES2 180
use in retrieving catalog

information 7-8
allocate routine 36
alternate track

assigning 90, 90.1
AM operand

in DEBCHK macro 152
APF (authorized program facility) 45
appendages

abnormal-end (ABE) 76-78
channel-end (CHE) 76
end-of-e~tent CEOE) 75
entry points 73
listing in SYSl.PARMLIB 78
naming convention 78
page fix 99
PCI 74
programming restrictions 73
register usage 73
returns 73
start-I/O (SIO) 73

assigning alternate tracks 90-90.1
associated programs

DADSM 121
IEHLIST 65

ATLAS macro
coding example 91
how to use 90.1
operations performed 91
return codes 92
specification 90-90.1
with track overflow option 90

authorized appendage list 78-79

BALANCE operand (TRKCALC macro) 161,
164, 165

BFALN operand (DCB macro) 84
BFTEK operand (DCB macro) 84
bit maps

of allocated cylinders and tracks 42
of allocated DSCBs 42
of allocated VIRs 42

block multiplexor programming notes 80
BUFCB operand (DCB macro) 84
buffer

releasing 61
buffer lists

format
of entries 56-58
of header 56

function 56
how created 56
releasing 61

BUFL operand (DCB macro) 84
BUFNO operand (DCB macro) 84

CAMLST macro
with BLDA operand 14
with BLDG operand 12
with BLDX operand 10
with BLOCK operand 8
with CATCBX) operand 19
with DLTA operand 15
with DLTX operand 13
with DRPX operand 17
with LNKX operand 16
with RECAT operand 22
with UNCAT operand 21

CATALOG macro
with CATCBX) operand 19
with RECAT opgr:.nd 22
with UNCAT operand 21

catalog maintenance
using CATALOG macro 19-23
using LOCATE macro 3-10

cataloging non-VSAM data sets
coding example 20
macro specifications 19
return codes 20

catalogs
dummy module 182
entry format 3
maintaining

using CATALOG macro 19-23
using LOCATE macro 4-10

master 1
order of search 2
private 2
user 1

CCW (channel command word) 70, 100, 101
See also channel program
See also channel programs
translation, virtual addresses to
real addresses 70, 100-101

CENDA operand CDCB macro) 81
channel programs

appendages used with 72
execution 69-70
initiation 69-70
related 72
restrictions or modification 71
translation 100-101

channel-end appendage 76
CHE appendage 76
checking the DEB 151-154
checkpoint data set

processed with EXCP macro 85
CLOSE macro

used with EXCP macro 94
used with XDAP macro 106

CODE operand (DCB macro) 86
codes

returned from CVAF macros 221-222

238 MVS/370 System Programming Library: Data Management

;(.~

"

~"'

()

o

returned with error message 223-227
routing and descriptor 223

command retry 79
communication vector table (CVT) mapping

macro 138
completion code5 98, 107

See also return code5
following use of EXCP macro 98
following use of XDAP macro 107

control blocks
DCB 69, 80
DEB 69
ECB 69, 97
FCB 170
general description 69
lOB 69, 95-97
PlRL 71, 157·

control password 111, 115
conversion

actual track address to relative
track address 109

of sector value for RPS device5 109
relative track address to actual
track address 107

copy operation
requirements 45

creating protected data sets 113
CVAF parameter list

format 59
function 58-59
when created 58

CVAF processing, of GTF trace 65
CVAF, VTOC identification to 58
CVAFDIR macro

examples 197-206
how to use 59
return codes 221
syntax 184
uses 55-56

CVAFDSM macro
example 216-220
how to use 63
return codes 221
syntax 189
uses 56

CVAFSEQ macro
examples 206-216
return codes 222
syntax 193
uses 56

CVAFTST macro
example 216-220
return codes 222
syntax 196
uses 55

CVOL
See also OS CVOL
pointer entry 30

CVPL
See CVAF parameter list

CVSTAT codes 223
CVT (communication vector table) mapping

macro 138

DADSM
routines 33
user postprocessing 121-124
user preprocessing 121-124

DASD (direct access storage devices)
XDAP macro 102

data extent block (DEB)
use with EXCP macro 69
validating 150-154

data !let
pointer entry 27

dataset control block (DSCB)
See DSCB

data !let security
See password protection

DCB fields used with EXCP macro 80-87
DCBDIRCT field of DCB 83
DCBFDAD field, maintaining 83
DCBIFLGS field of DCB, permanent I/O
error indicators 71

DCBOFLGS field of DCB, meanings of bit
settings 94

DCBTRBAL field, maintaining 85
DD operand (TRKCALC macro) 162, 164,

165
DDNAME operand (DCB macro) 81
DDR (dynamic device reconfiguration),
repositioning tape data sets 81

DEB (data extent block)
fields 97
obtaining 58
use with EXCP macro 69
validating 150-154

DEBCHK macro
functions of 151-154
specification 151-154

defaulting buffer number, for QSAM 127
defective track

See assigning alternate tr~ck
define extent command 70
deleting a data set

coding example 50
macro instructions for 49
when volume not mounted 49

DEN operand (DCB macro) 86
DEQ macro

at demount facility 146
DEVD operand (DCB macro) 84-85
device characteristics 139-144
device-dependent parameters in

DCB 84-86
DEVTAB operand (TRKCAlC macro) 161, 164
DEVTYPE macro

for RPS devices 139
output from 139-144
specification 139-140

direct access storage devices (DASD)
XDAP macro 105

DSCB (data set control block)
general information 33
missing format-1 128
reading from VTOC by actual device
address

coding example 48
macro specifications 48
return codes 49

reading from VTOC by data set name
coding example 47
macro specifications 46
return codes 47

Index 239

DSECT expansions
See CVT, IEFJFCBN, IEFUCBOB, TRKCALC

DSN order, initiating 62
DSORG operand (DCB macro) 83, 84-85

ECB fields
with EXCP macro 97
with XDAP macro 106

end-of-extent appendage 75
end-of-volume

macro 94, 106
EODAD operand (DCB macro) 83
EOE appendage 75
EOEA operand CDCB macro) 81
EOV macro

and missing DSCB 128
with EXCP macro 94
with XDAP macro 106

error handling 64
error messages

See messages, error
error recovery

from system or user errors 64
procedures 71

event control block (ECB) fields
with EXCP macro 97
with XDAP macro 106

examples
of CVAFDIR macro 197-206
of CVAFSEQ macro 206-216
of CVAFTST and CVAFDSM

macros 216-220
of OPEN exit module 228

EXCP macro
control blocks used with

DCB 80-87
DEB 97
ECB 97
lOB 95-97

in problem programs 68
in real storage 98
in system control programs 67
in V=R address space 68
macro specification 89
macros used with

ATLAS 90
CLOSE 94
EOV 94
OPEN 87-89

multivolume data set requirement 89
EXCPVR macro 98-99
executing ~hannel programs

in problem programs 68
in real storage 98
in system control programs 67

exit parameter list
format 123
function 121

exit routine
allowed processing 121
associated parameter list

for exit 123
for OPEN exit 126

contents of registers 124
environment 121, 125
list entry for RDJFCB 144
module names 121
return codes 124
system control blocks 124

used for missing DSCB 129
when executed 121

EXLST operand (DCB macro) 83
expiration date

overriding 50
EXTEND operand (OPEN macro) 36, 87, 146

FCB (forms control buffer) image
adding image to SYS1.IMAGELIB 170
adding to SYS1.IMAGELIB 178.1
JES2 Support 180
retrieving from SYS1.IMAGELIB 178.4
rules 170

fixing data areas with EXCPVR 99
format

of buffer list entry
of buffer list header
of CVAF parameter list
of exit parameter list
of OPEN exit parameter
of VIER index entries
of VIERs 39
of VTOC maps 43

format 0-6 DSCB 33
format-l DSCB

missing 129

57-58
56

59
123

list
40

reading from VTOC 46
forms control buffer (FCB)

See FCB image
foundation block of DCB 81

126

FUNCTN operand (TRKCALC macro) 160-165

generation data set
name

use in retrieving catalog
information 6

generation index
pointer entry 31

GTF trace of CVAF processing
See CVAF parameter list

I/O appendages
See appendages

I/O devices
characteristics 139

ICF catalog
master 2
order of search 2
user 2

IDAL (indirect address list) 101
IDAl <indirect data address list) 100
IEAAPPOO, authorized appendage list 78
IEBUPDTE program

SYS1.PARMLIB 78-79
use in listing appendages in 78

IECPCNVT <relative track address to
actual track address conversion
routine) 107

240 MVS/370 System Programming Library: Data Management

c

o

IECPRLTV (actual track address to
relative track address conversion
routine) 109

IECOSCRI (sector conversion
routine) 109

IEFJFCBN macro 138
IEFUCBOB macro 137
IEHATLAS program 91
IFGOEXOB program

processing 228
requesting partial release 228
updating secondary space data 228

IGGPOSTO program
associated parameter list 123
contents of registers 122
when executed 122

IGGPREOO program
allowed processing 122-124
associated parameter list 123
contents of registers 122
return codes 122
when executed 122

IGGUCSIT macro 177
IMSK operand (DCB macro) 83
index

control entry 25
link entry 26
pointer entry 26

INDEX and CAMLST macros
with BLDG operand 12-13
with BLDX operand 10-12
with DLTX operand 13-14

INDEX macro
with BlDA operand 14-15
with DLTA operand 15-16
with DRPX operand 17-18
with LHKX operand 16-17

indexed access, initiating 62
indexed VTOCs, compared to nonindexed

VTOCs 43
indexing feature for 3211 180
indirect address list (IDAL) 101
indirect data address list (IDAL) 100
initializing DASD volumes 33
interruption handling procedures 71
lOB chain modification 158
lOB fields

with EXCP macro 95-97
with XDAP macro 106

IOBAD operand (DCB macro) 83
IOBSENS fields with ATLAS macro 91

JES2
printer support 180, 181

JFCB (job file control block) 138, 144,
147, 148, 150

See also RDJFCB macro
macros used ~ith

OPEN 147
RDJFCB 148-150

mapping macro 138
modifyi~g 127, 145-147
processlng 144-147

job file control block (JFCB)
See JFCB

K operand (TRKCALC macro) 162, 164, 165
KEYLEN operand (DCB macro) 86

LABEL operand (DD statement)
password protected data set 112, 113

library character set modules 170
LIST operand

CVT macro 138
IEFJFCBN macro 138
IEFUCBOB macro 137

LOCATE macro
retrieving catalog information

by alias name 7-8
by data set name 3-5
by generation name 6-7
by relative block address 8-10

locate record command 70

MACRFE=(E) operand (DCB macro) 81
macros, data management

ATLAS 90
CATALOG 19-23
CLOSE

used with EXCP macro 94
used with XDAP macro 106

CVAF (VTOC access)
syntax 184-196
uses 55-56

CVAFDIR
See CVAFDIR macro

CVAFDSM
See CVAFDSM macro

CVAFSEQ
See CVAFSEQ macro

CVAFTST
See CVAFTST Macro

CVPL
See CVPL macro

CVT 138
DCB 80, 87
DEBCHK 151-154
DEVTYPE 139-144
EOV

and missing DSCB 129
used with EXCP macro 94
used with XDAP macro 106

EXCP 89
EXCPVR 98-99
IEFJFCBN 138
IEFUCBOB 137
LOCATE 3-5
OBTAIN 46-49
OPEN

and missing DSCB 129
for JFCB 147-150
used with EXCP macro 87-89

PROTECT 115-120
PURGE 154-158
RDJFCB 144-150
REALLOC 165-169

Index 241

RENAME 52-55
RESTORE 154-155. 158
SCRATCH 49
TRKCAlC 159-165
used with XDAP macro 102
XDAP 102-105

maintaining 115. 120
See also PROTECT macro
PASSWORD data set 115-120
volume table of contents

(VTOC) 46-55
mapping macros

CVT 138
IEFJFCBN 138
IEFUCBOB 137
TRKCAlC 165

maps of allocated space
for cylinders and t~acks 42
for DSCBs 43
for VIRs 42

master catalog 2
order of search 3

MAXSIZE operand (TRKCAlC macro) 162.
164

messages
associated codes

descriptor codes 223
return codes 223-227
routing codes 223

text and explanation 223
MF operand

DEBCHK macro 154
TRKCAlC macro 162-165

MODE operand CDCB macro) 86
modifying

channel program during execution 71
lOB chain 158
JFt!) 145-147

modifying the JFCB 127
multivolume data set

processing with EXCP macro 88

names
VTOC index 38

nonindexed VTOCs. compared to
indexed 43

nonpageable address space. V=V 70
NOPWREAD protection-mode indicator 116
NOWRITE protection-mode indicator 116

OBTAIN macro 46-47
obtaining a sector number (RPS
devices) 109

OPEN exit module 125
OPEN exit parameter list 126
OPEN macro

and DEQ at demount facility 146
and missing DSCB 129
getting control from 126
TYPE=J

example 88
invoking 146
specification 148

used with EXCP macro

dummy data set restriction 87
label processing 87
procedures performed 87
volume disposition 87

used with XDAP macro 103
open processing 125

after IFGOEXOB gets control 125
before IFGOEXOB getting control

from 125
opening a VTOC. restriction on changing
contents 149

OPENJ (OPEN. TYPE=J) 147
operational requirements 45
OPTCD=Z operand CDCB macro) 82
OS CVOl

pointer entry 30
OUTINX operand (OPEN macro) 83
OUTINX operandCOPEN macro) 146
output data set

maintaining DCBBlKCT field 81

page boundary 100
page fix

appendage 99
list 100

pageable address space, V=R 68
parameter list

See CVAF parameter list
partial releases requesting 127
password

control 115
parameter list

add a record 120
delete a record 119
list a record 119
replace a record 118

protection mode indicator 116
record 113
secondary 115
standard label restriction 111

PASSWORD data set
characteristics 113
creating 113

password protecting data sets 111-120
password protection

counter maintenance 115
data set concatenation 114.1
for VTOC indexes 45
term·i nati on 114
volume switching 114

PCI (program controlled interruption)
appendage 74

PCI operand CDCB macro) 81
PCIA operand (DCB macro) 81
PGFX appendage 100
physical sequential access.
initiating 62

PIRl (purged I/O restore list)
use in restoring I/O requests 71.

157, 158
posting completion code in ECB

following use of EXCP macro 97
following use of XDAP macro 106

postprocessing
See DADSM

PREFIX operand CIEFUCBOB macro) 137
preprocessing

See DADSM
printer image

242 MVS/370 System Programming Library: Data Management

1""'""\
\\...J

c

o

universal character set (UCS) 170
private catalog 2
program controlled interruption (PCI)

appendage 74
programming notes 79
programs associated with DFDS

DADSM 121
PROTECT macro

parameter list 120
return codes 120
specification 116

protecting a VTOC index
with passwords 44
with RACF 44

protection mode indicator 116
PRTSP operand (DCB macro) 86
PURGE macro

adding to macro library 155
definition 154
parameter list 156, 158
return codes 158
specification 156

purged I/O restore list 71, 156, 158
PWREAD protection-mode indicator 116
PWWRITE protection-mode indicator 116

QSAM (queued sequential access method)
defaulting buffer number 127

R operand (TRKCAlC macro) 162, 164, 165
RACF

renaming a data set 52
scratching a data set 49
use with VTOCs and VTOC indexes 44

RDJFCB macro
coding example 148.1
exit list entry for 149
invoking DEQ at demount 146
return codes 150
specification 148

reading
data from index maps 61
DSCBs 60', 62
VIRs 60-61

reading and modifying a JFCB 145-150
reading catalog information

using a data set name 4-5
using a generation name 6-7
using an alias name 7-8

READPSWD module 112
REALLOC macro 165
recataloging a data set

coding example 22
macro specification 22
return codes 20

RECFM operand CDCB macro) 83
recovering from errors 64
recovering from permanent I/O error

See ATLAS macro
register

conventions for appendages 72
usage by conversion routines 108,

109
usage by I/O supervisor 72

REGSAVE operand (TRKCAiC macroi 162,
164

related channel programs 72
related requests 72
relative generation number 6
REMOVE operand (TRKCALC macro) 161, 164
RENAME macro

dummy module 182
specification 52

renaming a data set
coding example 53
macro specification 52
with password protection 55

REPOS operand (DCB macro) 81
requesting partial release 127
requirements

for APF 45
for copy, restore, operations 45

Resource Access Control Facility
See RACF

restore chain modification 158
RESTORE macro

adding to macro library 155
definition 154
specification 158

restore operations, requirements 45
restoring lOBs 158
restrictions

when scratching, renaming,
allocating 44

retrieving catalog information
See reading catalog information

return codes
ATLAS macro 92
CATALOG macro 20
considerations 2
from CVAF macros 221-222
IECPCNVT 109
LOCATE macro 5-6
OBTAIN macro 47
RDJFCB macro 150
to OPEN 128
TRKCALC macro 162
with error message 223-227

RKDD operand CTRKCALC macro) 162, 164
routine

See exit routine
RPS (rotational position sensing)

devices
used with XDAP macro 109

SCRATCH macro
coding example 50
general description 49

scratching a data set
when volume not mounted 49

secondary passwords 115
secondary space data, updating of 128
sector, address in XDAP macro 105, 109
securing VTOC indexes

with passwords 44
with RACF 44

seek 70
serialization, VTOC 64
SIO appendage

description 73
for EXCPVR 99

SIOA operand (DCB macro) 81
space maps

Index 243

of allocated cylinders and tracks 42
of allocated DSCBs 42
of allocated VIRs 42

SSCH (start subchannel) instruction
STACK operand (DCB macro) 86
stand-alone seek 70
standard label restriction, password
data sets 111

start subchannel (SSCH) instruction
start-I/O appendage

description 73
for EXCPVR 99

system control blocks 124
mapping macros for CVT

IEFJFCBN 138
IEFUCBOB 137

system macro instructions 137
SYSl.IMAGELIB data set

adding a UCS image to 171
maintaining 170
UCS images in 170

tape volumes
DEQ at demount facility

testing for a VTOC index 55
trace of CVAF processing 65
track

assigning alternate 90
calculating capacity 159-165

translation of channel programs
by I/O supervisor

in V=R address space 100
in V=V address space 70
in your own program 100

TRKBAL operand (TRKCALC macro) 160,
163, 164

TRKCALC macro 159-165
TRKCAP operand (TRKCALC macro) 160,

163, 165
TRTCH operand (DCB macro) 86
TYPE operand

DEBCHK macro 152
TRKCALC macro 161, 164, 165

UCB (unit control block)
getting information from

See DEVTYPE macro
mapping macro 140

UCB operand
TRKCALC macro 161, 164

UCS (universal character set) image
adding to SYSl.IMAGELIB 171
adding to the UCS image table 175
for JES2 180
verifying 178

UCS image table
adding aliases 175
adding image names 175
contents 175
entry format 175
modifying entries 176
structure 175

uncataloging a non-VSAM data set
coding example 21

macro specification 21
return codes 21

unit check with ATLAS macro 91
unit control block (UCB)

getting information from
See DEVTYPE macro

mapping macro 140
universal character set (UCS)

See UCS image
updating secondary space data in

IFGOEXOB 128
user catalog 2
user exit routine

See exit routine

V=R address space, EXCP operations
in 68

V=V address space 70
validating the DEB 150-154
VCB (volume control block)

format of 29
use of 4

VIER (VTOC index entry record)
characteristics 38
contents 39
format 39
function 38
how chained together 41
when created 40

VIRs
kinds 38
length 38

VIXM (VTOC index map)
format 43
function 42

VMDS (VTOC map of DSCBs)
format 43
function 43

volume control block pointer entry 28
volume index control entry 24
volume label 34
volume list

definition 3
use in catalog maintenance 3

volume switching 88
volume table of contents (VTOC)

maintaining
index 46, 49
using OBTAIN macro 46-49
using RENAME macro 52-55
using SCRATCH macro 49

VPSM (VTOC pack space map)
format 43
function 42

VSAM catalog
master 2
order of search 2
user 2

VTOC
See volume table of contents

VTOC (volume table of contents)
See also volume table of contents
identification to CVAF 58
maintaining

description 33
VTOC access macros

CVAFDIR
example 197-206
return codes 221

244 MVS/370 System Programming Library: Data Management

c

c

0 '·':· .}

syntax 184
uses 55-56

CVAFDSM
example 216-220
return codes 221
syntax 189
uses 56

CVAFSEQ
example 206-216
return codes 222
syntax 193
uses 56

CVAFTST
example 216-220
return codes 222
syntax 196
uses 55

VTOC index
contents 38
how to list 65
how to protect 45
name 38
relationship to VTOC 38
serialization 64
structure 38
testing for 55

VTOC index entry record (VIER)
See VIERs

VTOC index map (VIXM)
See VIXM

VTOC index ~ecord (VIR)
See VIRs

VTOC map of DSCBs (VMDS)
See VMDS

VTOC maps, format 43
VTOC pack space map (VPSM)

See VPSM

WAIT macro
used with EXCP macro 68

WRITE protection mode indicator 55
writing DSCBs 60
writing VIRs 60-61

XDAP channel program 107
XDAP macro

control blocks used with 102, 106
macros required with

CLOSE 106
EOV 106
OPEN 102-103

specification 104-105
XENDA operand (DCB ~acro) 82

1403 printer
JES2 Support 180

3203 printer
JES2 181
output from DEVTYPE 142

3211 printer
ind&Aing featura 180
JES2 Support 180

3800 printer
output from DEVTYPE macro 142

3895 reader inscriber
output from DEVTYPE macro 142

4245 printer
default FCB image 171
output from DEVTYPE macro 142
UCS image table 175

Index 245

I~''r\

"-.;

246 MVS/370 System Programming Library: Data Management

D

o

o

GC26-4056-1

--------- -------- - ---- -- -'-",. -------_.-
®

o

s:
< en
W
-...J o
en
-<
~
(1)

3
""0
'"" o

ec
'""
Q)

3
3
3'
ec
,-
0:
'""
Q)

-<
o
III
ro+

lC"Q) \, ~ J

cg
3
(1)

:J
ro+

C) ,

D" 1/

~ E c: ...
Q) 0
E
Q.CIt .; :c
0"'"

~"i c: CIt
-;; 0
o Q)
CltQ.
:: (II
(II'"

E-c
iE
tV E
E ::l om
... Ii;

a·~
~ 0
CIt Q)

E .~
Q) .­_ CIt
.0 c: e i
Q.Q)
Q) ...
CIt ::l
::l CIt

~ ~

$
o
Z

o

Q.

MVS/370 System Programming Library:
Data Management
GC26-4056-1

Reader's
Comment
r" ____ _

rorm

This manual is part of a library that serves as a reference source for systems analystst programmerst and operators of
IBM systems. You may use this form to communicate your comments about this publicationt its organizationt or
subject mattert with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and actiont if anYt are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

list TNLs here:

If you have applied any technical newsletters (TNLs) to this bookt please list them here:

ustTNL __________________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewheret an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4056-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

.. :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIIIII NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

.. : .
Fold and tape Please do not staple Fold and tape

--------- - ---- ---- - ---- - - ----------_.-
®

c
Q)

iC
Q)

CQ
(l)

3
(l)

:::J

o

