Program Product

GC26-4056-1
File No. S370-30

MVS/370
System Programming Library:
Data Management

Data Facility Product 5665-295
Release 1.1

second Edition (October 1983) N
This is a major revision of, and makes obsolete, GC26-4056-0. K(J/

This edition, applies to Release 1.1 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent replication of the page
affected. Editorial changes that have no technical significance
are not noted. .

Changes are periodically made to the information herein; before
‘'using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors.
Biblioqraphy, 6C20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requaests for IBM publications should be made to your IBM
;epresintative or to the IBM branch office serving vour
ocality.

publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.5.A. 95150. 1IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

A form for readers' comments is provided at the back of this } q:ja
ﬂ{

© Copyright International Business Machines Corporation 1983

»

PREFACE

ORGANIZATION

This publication provides information for system programmers
about MVS/370 Data Facility Product, and how to modify and
extend the data management capabilities of the operating system.

This publication contains 11 chapters and 5 appendixes:

"Chapter 1. Using Catalog Management Macro Instructions,"
contains information on the macro instructions used for
retrieving catalog information from 0S CVOLs, and for
3dging.tde1eting. and updating catalog entries for non-VSAM
ata sets.

"Chapter 2. Maintaining the Volume Table of Contents

(VTOC),"™ describes the structure of the VIOC and VT0C index,

and discusses how to use system macros to read a data set

ggnt;oécblock, rename a data set, or delete a data set from
e VTOC.

"Chapter 3. Executing Your Own Channel Programs (EXCP},"™
describes how to use the EXCP macro to control device
characteristics and data organization with your own channel
programs.

"Chapter 4. Using XDAP to Read and UWrite to Direct Access
Devices,"™ describes how to use the XDAP macro to read,
verify, and update blocks without using an access method.

"Chapter 5. Password Protecting Your Data Sets," contains
information on system password protection and how to create
and maintain the PASSWORD data set.

"Chapter 6. Exit Routines," describes some of the
IBM-supplied exits for installation-written routines and
authorized user programs.

"Chapter 7. System Macro Instructions," contains the system
macros used to refer to, validate, and modify system data
areas.

"Chapter 8. Maintaining SYS1.IMAGELIB," describes how to add
a UCS or FCB image to the system image library, and how to
maintain the UCS image tables.

"Chapter 9. JES2 Support for the IBM 1403, 3203 Model 5, and
3211 Printers,™ describes the JES52 support for UCS alias
names and the 3211 indexing feature.

"Chapter 10. CATALOG, SCRATCH, and RENAME Dummy Modules,"™
contains a description of the dummy modules for CATALOG,
SCRATCH, and RENAME, and how to replace them.

"Chapter 11. Specifying Buffer Numbers for DASD Data Sets,™
contains performance considerations for using the BUFNO
kevword of the DCB macro to allocate BSAM buffers.

"Appendix A. VTOC Access Macros,™ contains the format and
description of the four VYT0C access macros: CVAFDIR,
CVAFDSM, CVAFSEQ, and CVAFTST.

"Appendix B. Examples of VIOC Access Macros,"™ contains
examples of how to use the VTOC access macros in your
programs.

"Appendix C. Return Codes from VTOC Access Macros,™ contains
the return codes generated by the four VYT0C access macros.

Preface iii

. "Appendix D. VTOC Error Messages and Associated Codes,"
contains the error messages and field codes issued by the
Common VTOC Access Facility (CVAF).

A
L W
. "Appendix E. Example of an Open Exit Module,™ contains a

program listing for IFGOEXOB, an installation-written exit

routine that takes control during OPEN for a DCB.
The operating system provides simpler ways (for example, access
method services, job control language, utility programs, access
method routines) to perform most of the tasks discussed in this
book. The information presented here is intended to provide
greater flexibility in using the data management capabilities.
PREREQUISITE KNOWLEDGE

In order to use this bobk efficientlﬁ. you should be familiar
with the following topics:

. Assembler language

° Standard program linkage conventions

. Catalog management for 0S CVOLs

. The utility programs IEHLIST, IEHMOVE, and IEHPROGM

. Data management access methods and macro instructions

REQUIRED PUBLICATIONS

You should be familiar with the lnformatton presented in the
following publications:

. /YS—DOS/VSE—-VM/370 Assembler lLanguage contains more {/A\
information on coding in assembler language. S,

° 057YS2 Supervisor Services and Macro Instructions contains a
description of standard linkage conventions.

. MVS/370 Access Method Services Reference

Catalog Facility or MVS/370 Access Method §erv1ces Referencg
for VSAM Catalogs describes how to maintain catalogs.

. MVS/370 Utilities describes how to use IEHLIST to maintain
the VTOC, IEHMOVE to maintain 0S CVOLs, and IEHPROGM to
protect data sets.

. MVS/370 Data Management Services and MVS/370 Data Managemen
Macro Instructions contain information on using access
methods and macro instructions to do input and output.

More specific prerequisite reading is listed at the beginning of
some chapters, as it relates to the particular topic.

RELATED PUBLICATIONS

Within the text, references are made to the publications listed
in the table belouw.

short Title Publication Title order Number
Access Method MVS/370 Access Method 6C26-4051
Services Reference Services Reference for

the Integrated Catalog

Facility q[:x

iv MVS/370 System Programming Library: Data Management

short Title

Publication Title

order Number

Access Method MVS/370 Access Method GC26-4059
Services Reference Services Reference for
‘ VSAM Catalogs
Catalog Users Guide MVS/370 Catalog Users GC26-4053
Guide
Checkpoint/Restart MVS/370 GC26-4054
Checkpoint/Restar
CVAF Diagnosis MVS/370 Common VTOC SY26-3933
Reference Access Facility
Diagnosis Reference
DADSM and CVAF MVS/370 DADSM and Common SY26-3918
Diagnosis Guide VI0C Access Facilit
Diagnosis Guide
DADSM Diagnosis MVS/370 DADSM Diagnosis SY26-3919
Reference Reference
Data Facility MVYS/370 Data Facility 6GC26-4050
Product: General Product: Genera
Information Information
Data Management MVS/370 Data Management GC26-4057
Macro Instructions Macro Instructions
Data Management MVYS/370 Data Management GC26-4058
Services Services
Debugging Handbook 0S/VS2 _MVS System GC28-1047
Programming Library: GC28-1048
Debugging Handbook, GC28-10649
Volumes 1-3
Device Support Device Support GC35-0033
Facilities User's Facilities User's Guide
Guide and Reference and Reference
IBM System/370 IBM Svystem/370 GA22-7000
Principles of Princi of Operati
Operation
IBM 2821 Control BM 2821 C Uni GA26-3312
Unit Component Component Description
Description
IBM 3203 Printer IBM 3203 Printer GA33-1515

Component
Daescription and
Operator's Guide

Componen escription
nd Operator's Guide

Preface v

vi

‘ short Title

Publication Title

order Number

C

IBM 3211 Printer, IBM 3211 Printer, 3216 GA24-3543
3216 Interchangeable Interchangeable Train
Train Cartridge, and Cartridge, and 3811
3811 Printer Control Printer Control Unit
Unit Component Component Description
Description and and Operator's Guide
Operator's Guide
IBM 3800 Printing IBM 3800 Printing GC26-3846
Subsystem Subsystem Programmer's
Programmer's Guide Guide
IBM 4245 Printer IBM 4245 Printer Model 1 GA33-1541
Model 1 Component Component Description
Description and and Operator's Guide
Operator's Guide
JCL OS)VSZ MVS JCL GC28-0692
Linkage Editor and MVS/370 Linkage Editor GC26-4061
Loader and Loader
Magnatic Tape Labels MVS/370 Magnetic Tape GC26-4064%
and File Structure Labels and File
Structure
Message Library: 0S/VS_ Message Library: GC28-1002
System Messages V52 Svstem Messages
Network Job Entry 5/VS2 MVS System 5C23-0003
Facility for JES2 Programming Library:
Network Job Entry
Facility for JES2
05/7V¥5-D0S/VSE-VM/370 05/VS-DOS/VSE-YM/370 GC33-4010
Assembler Language Assembler Language
0S5/7vVs2 1/0 0S/V¥S2 I/0 Supervisor 5Y26-3823
Supervisor lLogic Logic
Open/Close/EOV Logic MVYS/370 Open/Close/EQV LY26-3924
Logqic
RACF General Resource Access Control GC28-0722
Information Manual Facility (RACF): Genera
Information Manual
Supervisor Services 0S/v¥S2 MVS Supervisor GC28-0683
and Macro ervices and Macro
Instructions Instructions
System Generation MVS/370 Svstem GC26-4063

Reference

Generation Reference

MVS/370 System Programming Library:

Data Management

O

Short Title

Publication Title

order Number

System Programming 0S/7V52 MVYS System GC28-0681
Library: Programming Library:
Initialization and Initialization and
Tuning Guide Tuning Guide
System Programming 05/7VS2 MVS System GC23-0002
Library: JES2 Programming Library:
JES2
System Programming 0S5/7YS2 MVS Svystem GC28-0608
Library: JES3 Programming Library: 1
JES3
System Programming DS/VYS2 MVS System GC28-0674
Library: Service Programming Library:?
Aids Service Aids
System Programming 0S/7VS2 MVS System GC28-0628
Library: Supervisor Programming Library:
Supervisor
TS0 Command Language 057V52 TS0 Command GC28-0646
Reference Language Reference
Utilities MVS/370 Utilities GC26-4065
VSAM Reference MVS/370 VSAM Reference GC26-4074

OTATIONA

ONVENTIONS

A uniform system of notation describes the format of data

management macro instructions.
language;

structure of the commands.

This notation is not part of the
it simply provides a basis for describing the

The command format illustrations in this book use the following
conventions:

Brackets [] indicate an optional parameter.

Braces { } indicate a choice of entry; unless a default is

indicated, you must choose one of the entries.

Items separated by a vertical bar (l) represent alternative

items.

No more than one of these items may be selected.

An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

Other punctuation (parentheses, commas,
be entered as shoun.

spaces, etc.) must

A space is indicated by a blank.

BOLDFACE type indicates the exact characters to be entered,

except as described in the bulleted notes above.

must be entered exactly as illustrated.

Such items

Lowercase_underscored type specifies fields to be supplied

by the user.

BOLDFACE UNDERSCORED type indicates a default option. If

the parameter is omitted,

the underscored value is assumed.

Preface vii

. Parentheses () must enclose subfields if more than one is
specified. If only one subfield is specified, you may omit b
the parentheses. ‘{TV\

ADDRESS AND REGISTER CONVENTIONS

The following describes the meaning of each notation used to
show how an operand can be coded:

symbol) : -
When this notation is shown, the operand can be any valid
assembler-language symbol.

(o)
When this notation is shown, general register § can be used
as an operand. When used as an operand in a macro
instruction, the register must be specified as the decimal
digit 0 enclosed in parentheses as shown above.

(1)

When this notation is shown, general register 1 can be used
as an operand. MWhen used as an operand in a macro
instruction, the register must be specified as the decimal
digit 1 enclosed in parentheses as shown above. HWhen
register 1 is used, the instruction loaded into the
register is not included in the macro expansion.

(2-12)
When this notation is shown, the operand specified can be
any of the general registers 2 through 12. All registers
as operands must be coded in parentheses; for example, if
register 3 is coded, it is coded as (3). When one of the
registers 2 through 12 is used, it can be coded as a
decimal digit, symbol (equated to a decimal digit), or an

expression that results in a value of 2 through 12. 7N
RX-Type Address R

When this notation is shown, the operand can be specified
as any valid assembler-language RX-type address. The
following shows examples of each valid RX-type address:

Name Operation Operand

ALPHAL L 1,39(4,10)
ALPHA2 L REG1,39(4,TEN)
BETAl L 2,2ETA(%)

BETA2 L REG2,ZETA(REGS)
GAMMA1L L 2,ZETA

GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'1000°"
LAMBDAL L 3,20¢,5)

Both ALPHA instructions specify explicit addresses; REGI
and TEN have been defined as absolute symbols. Both BETA
instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA
instructions. GAMMAl and GAMMA2 specify implied addressaes.
The second operand of GAMMA3 is a literal. LAMBDAlL
specifies an explicit address with no indexing.

A-Type Address)
When this notation is shown, the operand can be specified
as any address that can be written as a valid
assembler-language A-type address constant. An A-type
address constant can be written as an absolute value, a
relocatable symbol, or a relocatable expression. 0Operands
that require an A-type address are inserted into an A-type
address constant during the macro expansion process. For

more details about A-type address constants, refer to
05/VS—D0S/ —VM/370 sembler uage. M::D

viii MVS/370 System Programming Library: Data Management

C

When this notation is shoun, the operand can be an absolute
value or expression. An absolute expression can be an
absolute term or an arithmetic combination of absolute
terms. An absolute term can be a nonrelocatable symbol, a
self-defining term, or the length attribute reference. For
more details about absolute expressions, refer to
0S/V5—-D0OS/VSE-VM/370 Assembler lLangu .

relexp
When this notation is shoun, the operand can be a
relocatable symbol or expression. A relocatable symbol or
expression is one whose value changes by n if the program
in which it appears is relocated n bytes away from its
originally assigned area of storage. For more details
about relocatable symbols and expressions, refer to
0S/VS—DOS/VSE-VM/370 Assembler Language.

Preface ix

UMMARY OF AMENDMENTS

RELEASE 1.1, OCTOBER 1983

NEWR DEVICE SUPPORT

SERVICE CHANGES

Information to support the following new device has been added
to Figure 34 on page 142:

. 4245 Printer

The chapter, "Maintaining SYS1.IMAGELIB,"™ has been added. This
chapter replaces the section formerly titled, "Adding a UCS
Image or FCB Image to the System Image Library." The new
chapter contains the information previously found in the old
chapter, plus a description of the UCS image table, and
procedures for updating the image table for the %4245 printer.

Chapter 2, formerly titled "Controlling Space on DASD Volumes,"
?$$02§92 renamed, "Managing the Volume Table of Contents

Minor service changes have also been made throughout the manual.

x MVS/370 System Programming Library: Data Management

Chapter 1. Using Cataleg Management Macro Instructions .
Catalog Order of Search e e e e e e s e e e e e e e e
Return Code Considerations . e e e e e e e e s e .
Retrieving Information from a Catalo

Retrieving Information.by Data Set Name (LOCATE and CAMLST

NAME)

Retrieving In%ormatlon by Generatlon Data Set Name (LOCATE

and CAMLST NAME) .
Retrieving Information by Allas (LOCATE and CAMLST NAME)
Reading a Block by Relative Block Address (LOCATE and

CAMLST BLOCK) e e e e e e e e e e e e e e e e e e

Building and Deleting Indexes e e e e o o
Building an Index (INDEX and CAMLST BLDX) .
Building a Generation Index (INDEX and CAMLST BLDG)
Deleting an Index (INDEX and CAMLST DLTX) .
Assigning an Alias for an Index (INDEX and CAMLST BLDA)
Deleting an Alias for an Index (INDEX and CAMLST DLTA)

Connecting and Disconnecting 05 CVOLs e e e e e s
Connecting 0S CVOLs (INDEX and CAMLST LNKX) e e s e e
Disconnecting 05 CVOLs (INDEX and CAMLST DRPX) e e e

Working with Non-VSAM Data Set Catalog Entries .
Cataloging a Non-VYSAM Data Set (CATALOG and CAMLST CAT)

Programming Considerations for Multiple-Step Jobs .
Uaﬁg§$%oging a Non-VSAM Data Set (CATALOG and CAMLST
ngax?ioglng a Non VSAM Data Set (CATALOG and CAMLST
C e e e e e e e e e e e e s
05 CVOL Entry Formats Te e e e e e .
0S5 CVOL VYolume Index Control Entry . .
05 CVOL Index Control Entry e e e e e e
0S CVOL Index Link Entry and Index Pointer Entry
0S CVOL Data Set Pointer Entry . . .
0S CVOL Volume Control Block Pointer

e o & o 0

.
.

. .

Volume Control Block e e e .
0S CVOL Pointer Entry .
0S CVYOL Pointer Entry (OLD) ..

0S CVOL Generation Index Pointer Entr
0S5 CVOL Alias Name e e e e e e e e e e s

Chapter 2. Managing the volume Table of Contents
The VTOC . . e e . ’
Data Set Control Block (DSCB) Format Types

Format-0 DSCB e e e
Format-1 DSCB
Format-2 DSCB
Format-3 DSCB
Format-4 DSCB
Format-5 DSCB . .
Format-6 DSCB . .
Allocating and Releasnng Space
The VTOC Index .
An Example of a VTOC and Its Index
The VT0C Index Entry Record (VIER)
Contents of VIER Fields . e .
Format of a VTOC Index Entry .
When a VIER Is Created e e e .
A Tree of Linked VIERSs . e e s
How a Format-1 DSCB Is Found .
Special Cases in the Search for a D
The VT0C Pack Space Map (VPSM)
The VT0OC Index Map (VIXM) . .
The VTOC Map of DSCBs (VMDS) .
Structure of an Indexed VTOC .
Scratch/Rename/Allocate Restricti
Creating the VT0C and VTO0C Index
Protecting a VT0C and ¥T0C Index
Resource Access Control Facility (RACF)
Authorized Program Facility (APF) Requirement

I A)
« ¢ e e e e o 4 o & o o
¢ ¢ o e ¢ o 2 e o 0 e 0
« 6 e ¢ ¢ e e ¢ o o .

L T I

”~~
<
-f
L

.

LI) - .

¢« ¢ ¢ o o
o o e
* o e o
¢ s e e 0
.
« o o o o o
¢« ¢ 4 o s =
¢ s e ¢ & o o 0
s o e o o o s o o
€ 2 & & & 0 & ® ® s 0 0 0 0 o

e s & e o

c

e o ¢ & & 0 o e e 4 ¢ & e 4 6 0 0 0 e

P T 7; TR T T T T S S

ns

L R I e e T R R e e N N I L «]

¢ ¢ 2 & 3 ¢ o [IFe ¢ &t o s ¢ s & & & ¢ s ¢ 0 o

« & ¢ o o+ o o
.

oooooao
¢ 0 & & 6 4 0 & 0 s &+ 0 ¢ & ¢ 2 & s " ¢ o s 2 ¢ & s

¢ 4 & & e o 4 6 & & ¢ ¢ . 0 6+ 2 e & s & s ¢ s v e ¢
¢ 8 8 & e e & e & & s e &t e s e ¢ e 8 e & e e & ¢ & o @«
¢ e ¥ e e e s 4 & € o 4 ¢ e & ¢ & 06 4 ¢ 6 & & ¢ 0 e o

.
-
.
-
-
.
.
-
.
.
-
.
.
.
-
-
.
-
.
-
.
-
.
.
-
.
.

o o o o ¢ o o o o

e ¢ s & 0 e ¢ o ¢ o o &

¢ ¢ 6 & & ¢ 6 6 & o s et s s ¢ 2 & 4 e ¢ ¢ s & ¢ s s s 0»

Contents

00 NN W UHNN=

xii

Password Protection . e e
Copy/Restore/Initialize Requtrements .

Operations on Volumes Containing an Unlndexed VTOC
Operations on Volumes Containing an Indexed VTOC

Using the OBTAIN, SCRATCH, and RENAME Macro
Using VTOC Access Macros . e e .
Overview of the CVAFTST Macro
Overview of the CVAFDIR Macro
Overview of the CVAFSEQ Macro
Overview of the CVAFDSM Macro

Buffer Lists . e e e e e
Buffer List Header e e e .
Buffer List Entry . .

The CVAF Parameter L|5t (CVPL)

Identifying the VTOC e e e e .

Hou to Use the CVAFDIR Macro . .
Specifying a Data Set Name to Read or W
Specifying the DSCB Location . .
Reading or Writing VT0C Index Records
Reading Map Records and VIERS .

.
¢ ¢ ¢ ¢ ¢ o s e 0

e o ¢ & o ¢ ¢ o ¢ o s
e« ¢ ¢ ¢ ¢ ¢ o ¢ o .

¢ e o o &+ ¢ o o e 0

Releasing Buffers and Buffer Lists Obtaln

How to Use the CVAFSEQ Macro .
Initiating Indexed Access (DSN Order)
Initiating Physical-Sequential Access

How to Use the CVAFDSM Macro “ v e .

VT0C Serialization e e e e e e e e s

Register Usage o o e e o . e e .

VTO0C Error Diagnosis and Recovery . .

Actions Taken When an Error Occurs .

Recovering from System or User Errors

GTF Trace . e e e s e

Listing a V70C and VTOC Yndex v e e e .

e o o o o

-]

-

¢ " e s e 2 o s ¢ s s .

.

¢« o ¢ ¢ ¢ o ¢ &

¢ & o o s 0 s & o o o D ¢ o e o s e s s e 0 s e

Chapter 3. Executing Your Oun Channel Programs
Executing Channel Programs in System and Problem

System Use of EXCP . . . e e e e e e
Use of EXCP in Problem Programs . e e
EXCP Operations in a V=R Address Space
EXCP Requirements e e e e e e
Channel Program e v e s e
Control Blocks . . .« .
Input/0Qutput Block (IOB) .
Event Control Block (ECB)
Data Control Block (DCB) .
Data Extent Block (DEB) .
Channel Program Execution
Initiation of the Channel Program .
Modification of a Channel Program during
Completion of Execution . . .
Interruption Handltng and Error Recovery
Appendages . e e e ee e s
Start-1/0 (SIO) Appendage
Program-Controlled Interruptton (PCI) App
End-of-Extent (EOE) Appendage . e e .
Channel-End (CHE) Appendage e e e e
Abnormal-End (ABE) Appendage . .
Making Your Appendages Part of the System
The Authorized Appendage List (IEAAPPCO)
Channel Programming Notes . . .
Macro Specifications for Use wtth EXCP .
DCB—Define Data Control Block for EXCP
Foundation Block Parameters e e e .
EXCP Interface Parameters . .

« ¢ o o o ¢ o
¢ & o o o o & o
e« e ¢ ¢ ¢ s ¢ o

e o & ¢ o o o
¢« e o o ¢ ¢ ¢ o o

Foundation Block Extension and Common Int

Parameters . . . e e e e e e
Device-Dependent Parameters . .
DSORG Parameter of the DCBD Macro .

OPEN—Initialize Data Control Block .
EXCP—Execute Channel Program . .
ATLAS—Assigning an Alternate Track and Cop
the Defective Track e e e e e
Using ATLAS .
Operation of the ATLAS Program
EOV—End of Volume e e e e e e .

.
.
.
.

-
.
.

MVS/370 System Programming Library: Data Management

.

fTle ¢ o ¢ ¢ & o ¢ ¢ o o

X

'00t<tcvcomoooa..aoo-g.ncOcmootocccoato

000000'00

.

.

....o...

-

¢ o &« & o s ¢ ¢ o s 0

a

.

d'b

« ¢ e ¢ o &

.

.

(EXCP) .

cu

ced

.

-

-

.
.
.
-
.
.
.
-
.
.
-
.
-
.
(3
-
-
-

o+

..:.-locoou-oao-

gD

.

€ 0 ¢ ¢ ¢ € ¢ & ¢ 0 0 0 ¢ s 0 0

e o e & o o & & o s 0

[~
O

0 e o o o s o o ¢ o €Y s 0 s ¢ & ¢ 4 ¢ s s 0 v s e
o TJe ¢ o o 4 o ¢ & ¢ 6 s ¢ 0

o e
¢ & ¢ ¢ 4 ¢ & 6 ¢ ¢ o & & ¢ o ¢ ¢ o o o

<

e ¢ s ¢ & 0 o & ¢ & & I>o o

-

e o ¢ & 2 & ¢ o o o o

¢ 4 e o ¢ o 4 ¢ o ¢ o
¢ 6 o @ & e & s e e e & 0 0 & 6 & ¢ ¢ ¢ & 9 & 6 o ¢ 9 0 & ¢ ¢ o

e e e s e e s s e s e e e

L]
o
o~

Programs 67

. ° e -

T e e o e ¢ o o

e & o * ¢ o o ¢ ¢ o o

e o o o o

35 O
¢« o M Jeooo e v e 40 0 e e
w

6 6 8 6 6 ¢ 0 6 o & & € 2 ¢ & & & & o ¢ 4 4 0 0 ¢ s o 0
¢ o e 6 6 6 ¢ & e & & ¢ 6 0 s & ¢ 6 & 0 s e s 0 e 0 e .
[

¢ o o ¢ o ¢ ¢ ¢ o @ o & 0
e o ¢ 3 6 8 & & 6 s o & o

.0‘00000000'0000
¢ 6 o o ¢ e o o s 2

e o e ¢ o
[+
(-]

t

¢ o ¢ o Qe ¢ o o o

¢ o o o Do o o o o

e e s e e o e e e
9

e o o ¢ Qe ¢ ¢ ¢ s

¢ ¢ o 0

AT

N

CLOSE—Restore Data Control Block
Control Block Fields . . . e
Input/0Output Block Flelds . .
Event Control Block Fields .«
Data Extent Block Fields . .
Executing Fixed Channel Programs tn Real Stor
Building the List of Data Areas to be Fixed
Page Fix (PGFX) and Start-1/0 (SI0) Appendage
Page-Fix List Processing e e e e e e e s

.

¢« o o
e e e o o

.

¢

m

o o o e o 2 o e
O

« s e W e e s e
<

¢ ¢ o Xe o e o

.

Chapter %. Using XDAP to Read and Write to Direct-Access

Devices e s o ® s s+ a9 e & o s o e s @
Introduction e v e e v e e e e e e e
XDAP Requirements . . .
Macro Specifications for Use wlth XDAP

DCB—Define Data Control Block . e
OPEN—Initialize Data Control Block
XDAP—Execute Direct-Access Program
EOV—End of Volume . . .
CLOSE—Restore Data COntrol Block
Control Blocks Used with XDAP . .
Event Control Block e e e e e e
Input/Output Block
Direct Access Channel Program

e o o & & 4 @ ¢ 0 & o &

¢ e o ¢ o ¢ & 4 & o ¢ ¢ 0

s efre o 2 0
o
>
1]
(2 d

Conversion of Relative Track Address a
Address . .

Conversion of Actual Track Address to Relattve
Address « . .

Obtaining Sector Number of a Block on a Devxce
Feature e v e e e e e e e e s e e e e e e

Chapter 5. Password Protecting Your Data Sets

Introduction . e e e e e s
PASSWORD Data Set Characterrsttcs « e e
Creating Protected Data Sets e . . .- .

Tape Volumes Containing More Than One
Password-Protected Data Set .« .
Protection Feature Operating Characterlstlcs
Termination of Processing . e v e e .
Volume Switching e e e e e e e
Data Set Concatenation v e e
SCRATCH and RENAME Functions .
Counter Maintenance .

.

. .
- .
. .

¢ s
¢« o 0

.
.
.
-

afe wmfoe o o o 0 ¢ 2 0 & o 0
3 3
Qe We o o o 6 0 o 0 0 ¢ 0 o &

e £

¢ ¢ o o o

-t

o o

AR ¢ o o ¢ ¢ 2 8 0 e 0
¢« ¢ o & & 0 0 s & ¢
¢ ¢ o e o 2 4 e e e o s 0

d‘
2]
nr‘
el
T
0
W
V-
w»

e e o 0
s e o @
e o+ o 9
¢ s ¢ @

« o o & o

¢ o ¢ o s o
L R S A)
¢ o o o o o o

Using the PROTECT Macro Instructxon to Ma|ntaln the

PASSWORD Data Set . .

ot

¢ o 2 & o

¢ ¢ o o o ¢ ¢ o s o o

.

¢« ¢ o o

PASSWORD Data Set Character1stlcs and Record Format When

You Use the PROTECT Macro Instruction

Number of Records for Each Protected Data Set

Protection-Mode Indicator e e e e e e .
PROTECT Macro Specification . e e e
Return Codes from the PROTECT Macro .« e .

Chapter 6. Exit Routines “ oo . o

DADSM Preprocessing and Postprocess1ng
The Exit Modules e e e e v e e e
The Exit Environment . ..
When IGGPREOO Gets COntrol .
Rejecting a DADSM Request
Passing a Model Format-1 DSOB
When IGGPOSTO Gets Control .
Svystem Control Blocks . .
Registers at Entry to Exrts
Registers at Return to DADSM

DCB Open Installation Exit . .
The Exit Module e e e e v e
The Exit Environment .
Open Processing Before IFGOEXOB Gets COnt
Open Processing After IFGOEXOB Gets Contr
Getting Control from Open . . . e
Data that Open Passes to the Ex:t .
Defaulting Buffer Number for QSAM .
Modifying the JFCB e e e e e e e e

x:t.R;u

o o .
e ¢ e s o e o 0 o o o [T]e

e & o & ¢ & ¢ o ¢ o

1
.
.
.
.
.
.
.
.
.
.
.
.

o e o & o e s 0 s e 0

¢ o o & o o o

.
.
.
.
.
.
.
.
.
.
.
.
1

o
1

.

Requesting Partial Release . R
Updating the Secondary Space Data

¢ ¢ 6 s o e B s 0 s 0 4 0 5 0 0 e

¢ ¢ ¢ o o

¢ ¢ ¢ o o

¢ 0 o ¢ & o 0 s e o s e

¢ ¢ e & o o

¢ s 6 8 6 0 6 e o o s e ¢ o 0 v & e ¢ TJoe

. .

.

. .

o o o o o
¢ ¢ e o

LY

.

S ¢ s 8+ e s 4 e e s e s s s 0 e 0 e e
¢ 0 6 0 s+ 6 ¢ e 3 & s s e 4 ¢ 4 ¢ 4 s 0 e 0

e & o 6 o o 4 & & e e e 4 &t & ¢ @ ¢ & ¢

¢« & o o

e ¢ o o & & *t & o ¢ & @ ¢ s 4 ¢ ¢ s ¢ s ¢ &

Contents

e o 0 e .
-4
v

113

114
114
114
114

114.1

115
115

115

115
115
116
116
120

121
121
121
121
122
122
122
122
124
124
124
125
125
125
125
125
126
126
127
127
127
128

xiv

Registers at Entry to IFGOEX0B e e e e e e e e e e

Registers at Return to Open « e s e e e e e s
Open/EOV Installation Exit for Format 1 DSCB Not Found .
Data Management Abend Installation Exit . .- .
Open/EOV User Exit for Nonspecific Tape Mount Requests .
Open/EQOV User Exit for IBM-Standard Labeled Tape Security

Verification e e e et e e e e e e e e e e e e e e e e
Chapter 7. system Macro Instructions

Introduction . e e e e e
Mapping System Data Areas . .

IEFUCBOB—Mapping the UCB .« .
IEFJFCBN—Mapping the JFCB . .
CVT—NMapping the CVT e e e .

Obtaining 170 Device Character15t1cs
DEVTYPE Macro Specification « .
Device Characteristics Information

Reading and Modifying a Job File Control

¢ o ¢ e o
« ¢ ¢ 0 0
s e o & o o o @

DEQ at Demount Facility for Tape Volumes
OPEN—Initialize Data Control Block for Processi

JFCB . .
RDJFCB——Read a Job Flle Control Block

e ¢ ¢ ¢ o ¢ ¢ o @

P

Q¢ ¢ ¢ ¢ o o s o @

1]

Re ¢ o ¢ ¢ ¢ o o @

.

e & ¢ ¢ o ¢ ¢ s o s @

n

.

Purging and Restoring 1I/0 Requests . . .

Ensuring Data Security by Validating the Data Ext
DEBCHK—Macro Specification e e e e e e e

PURGE—Halt or Finish I/0-Request Processtng
Modifying the IOB Chain . . e e v v e s
RESTORE—Reprocess I1/0 Requests . e e e
Performing Track Calculations
TRKCALC—Standard Form . .
Input Register Usage for All
OQutput from TRKCALC . .
TRKCALC—List Form . .
TRKCALC—Execute Form
TRKCALC—DSECT Only .
TRKCALC Macro Examples
Allocating a Data Set .
REALLOC—Execute Form
Return Codes from REALLOC
REALLOC—DSECT Only . . .
REALLOC—List Form e e o e

Chapter 8. Mamtalmng S§YS1.IMAGELIB » ¢ o
UCS Images in SYS1.IMAGELIB .- . e e e e e e s
Adding a UCS Image to the Image lerary . e e e e
Adding a UCS Image Name/Alias to a UCS Image Table
UCS Image Table Structure . « e e
Adding/Modifying a UCS Image Table Entry e e .
Verifying the UCS Image e e e
Examples of Adding to the UCS Image Table .
Example 1: Adding a New Band ID to the 4245 Imag

c.-comoo-l-aatocccocc

.
.
.

.
-
-

o
-+
m

¢« e o 0 o 4 e
s ¢ & & s e 6 2 s e e o
¢ e o s e 0 e 4 e o e .

¢ e v e e e
voouoccoﬁo.oooccatﬂ'couoooccoovco.

@ ¢ e o o o 4 ¢ ¢ & o & o+ o ¢ 0 o ¢ e ¢ pfre o e s s s s ¢ 2 0"
—
e ¢ & & & 0 o o o o & 0 o 0 s ¢ o ¢ Do e M e e o o 0 s s s o0

e ¢ o 8 s 0 e e e T

e o o o 4 s e ¢ o s O

e o o & o ¢ 0 & o o

L I I TR A e £

¢ ¢ o & o 0 e o o o

e ¢ ¢ 4 ¢ s e s e @

¢ ¢ ¢ & e ¢ o s 0 s 0 s ¢ ¢ o
e ¢ o o 4 ¢ e o e & o o .

¢ ¢ ¢ o & ¢ s @

¢« ¢ o ¢ o o .

Table (UCS5) . . e e e e e
Adding an FCB Image to the Image lerary .« e e e
Retrieving an FCB Image from SYS1.IMAGELIB .« .

Chapter 9. JES2 Support for the IBM 1403, 3203 Model
3211 printers c s s o e e e
UCS Alias Names . . .
The 3211 Indexing Feature .
IBM 3203 Model 5 Printer . .

Chapter 10. CATALOG, SCRATCH, and RENAME Dummy Modules

chapter 11. Specifying Buffer Numbers for DASD Data Sets
Performance Considerations e e s e e e e e e e e e

.
.

. . o * ® o o

e e o o NN
-

o o o @
« ¢ o @
¢« ¢ o o
« o o o

. . e « s+ e e .
. . . . o . . .
. . - . . > . -

Appendix A. VTOC Access Macros e o o s e 8 s v e e v e
CVAFDIR Macro s e e e e e e s e e s e e e e e e e e
Syntax e e e s 4 e e e e e e e e e e e e e e e e
ACCES5: Read or Hrite a DSCB or VIR(S), or Release

Buffer Lists . e e v e e e e
DSN: Specify the Name of the DSCB e e e e e e .
BUFLIST: Specify One or More Buffer Lists . e e
VERIFY: Verify that a DSCB is a Format-0 DSCB .

« ¢ ¢ o

¢« o o s

MVS/370 System Programming Library: Data Management

€ 0 0 0 & 0 2 4 & o 0 ¢ 4 0 e 0 0 2 X e

and

o e« ¢ 0

128
128
128
130
132

134

137
137
137
137
138
138
139
139
140
144
146

147
148
150
151
154
156
158
158
159
160
162
163
163
164
165
165
165
166
168
169
169

170
170
171
175
175
176
178
178.1

178.1
178.1
178.4

180
180
180
181

182

183
183

184
184
184

184
185
185
185

O

®

BRANCH: Specify the Entry to the Macro
DEBJUCB: Specify the VIOC to Be Accessed
JI0OAREA: Keep or Free the I/0 Workarea .
MF: Specify the Form of the Macro .
MAPRCDS: Keep or Free MAPRCDS Buffer Llst an
IXRCDS: Retain VIERS in Virtual Storage .

CVAFDSM Macro e s e e e e
Syntax .

ACCESS-MAPDATA' Request Informatlon from the Index Space

Maps

¢ .

o ¢ o Qe o o ¢
o o OFe s s o

. - . - . -

uf

fer

ocuoooo

MAPRCDS Keep or Free MAPRCDS Buffer List and Buffers
MAP: Identify the Map to Be Accessed

EXTENTS: Identify Where Extents from the VPSM Are

Returned

. e o .

DEB|UCB: Speclfy the VTOC to Be Accessed .
COUNT: Obtain a Count of Unallocated DSCBs or VIRs

CTAREA: Supply a Field to Contain the Number of

DSCBs “ e e e

IOAREA: Keep or #ree’tﬁe'I}O.Ncrﬁ Area.
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro . .

CVAFSEQ Macro e e e e e
Syntax .

ACCESS: Specify éeiaiién;h%p'bét&eén'sﬁppl

Returned DSN . .

BUFLIST: Specify One or More Buffer Ltsts

« & »

Format-0
ied and

DSN: Specify Access by DSN Order or by

Physical-Sequential Order

- . . .

UCB|DEB: Specify the VTOC to Be Accessed

DSNONLY: Specify That Only the Data Set Name Be Read
ARG: Specify Where the Argument of the DSCB

Returned

IOAREA: Keep or Free the I/0' Work Area
IXRCDS: Retain VIERs in Virtual Storage
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro .

CVAFTST Macro e e e e e
Syntax .

UCB: Speci%y.ﬁﬂe.ViOé %o.Be ie;ted.

Appendix B. Examples of VTOC
Example 1: Using the CVAFDIR
Nonindexed VTOC « e e e .
Example 2: Using the CVAFDIR
Example 3: Using the CVAFSEQ
Example 4: Using the CVAFSEQ
Example 5: Using the CVAFTST

Appendix C. Return Codes from VTOC Access Macros
Return Codes from the CVAFDIR Macro
Return Codes from the CVAFDSM Macro
Return Codes from the CVAFSEQ Macro
Return Codes from the CVAFTST Macro

Appendix D. VTOC Error Messag

Error Message e e e e e e
Explanation e e e e e
System Action e e e e e

Programmer Response
Routing and Descriptor COde
Codes Put in the CVSTAT Field

Appendix E. Example of an Ope
Processing in IFGOEXO0B . .
Requesting Partial Release
Updating the Secondary Space

Index e ® o ® e ° ° ° o @

. - -

e & o o o ¢ o
e o & o ¢« o ¢ o
¢« e o o o ¢ ¢ 0
e o ¢ o ¢ o o

-
e e e o
.
.

¢ o o o

Access Macros « o o @
with an Indexed or

Macro
Macro
Macro
Macro

-

Is to

-

¢ o o & o o o

.

e o e o ¢ o o o

ﬁiéh aﬁ inéeie& Grbc'

with an Indexed VTOC
with a Nonindexed

and CVAFDSM Macros .

e and

.

« o o o

¢« o o o o o

n

Data’

* ® e

Exit Module

. - - -

-
-

e & o s @

. -

- . *« e

.

. ° . . . -
&

Associated Codes

e o o o o 0
e ¢ o & o
¢« ¢ ¢ o
« o ¢ o o
o o o o 0
e ¢ o e o .
¢ o o o o
e o & s o o

.
.
.
.
.

. *« o e .

¢ s e 8
¢ o e @
e o ¢ 0
« s o 0

*® ©® » @ @ ® e ° o

vVTO0C

.

¢ o o o o o e ¢ o o @

LI I

¢« o o & ¢ o9 ¢ ¢ o o @

¢ o o @

¢« e o o

.

.

o o & o o s s 0

-

e o ¢ o o o @ e o o o &

¢ o o @

185
186
186
187
137
188
189
189

189
189
1%0

190
191
191

191
191
192
192
193
193

193
193

193
193
194

194
196
195
196
196
196
196
196

197

197
201
206
210
216

221
221
221
222
222

223
223
223
223
223
223
223

228
228
228
228

238

Contents xv

FIGURES

UNHOOVRNOUNDUWN =
® 0 & 4 0 e e o s s s s 0

=t b et

b ookt ol ot ek o
(V.- R ENE- J§]
¢ o o o o .

20.

21.
22.
23.

26.

25.
26.
27.
28.
29.
30.

31.
32.

33.

36.
35.
36.

37.

38.
39.
40.
41.
42.
43.
44 .
45.
46.

The 0S CVOL Volume Index Control Entry e s e o o« « 28
The 0S CVOL Index Control Entry . e« « « 25
The 0S CVOL Index Link and Index Pornter Entrles .« 26
The 0S5 CVOL Data Set Pointer Entry e e . . 27
The 0S CVOL Volume Control Block POInter Entry .« . 28
The 0S CVOL Volume Control Block e e e e e e e e . 29
The 0S CVOL Pointer Entry . e o o o« « o« 30
The 0S5 CVOL Generation Index Povnter Entry e e« « o 31
The 0S CVOL Alias Name e+ e+« . 32
Locating the Volume Table of Contents (VTOC) « e e« 33
Contents of VT0C—DSCBs Describing Data Sets . ¥ |
Relationship of a VIOC to Its Index c e e e e« « « 38
Format of the VT0C Index Entry Record (VIER) e e e . 39
Structure of Linked VIERSs e e e e e e e e e s e e e . 6]
An Index Map . ¥4
The Format of a VTOC Map e e 4 s e e e e s e e a2 s « 63
Format of a Buffer List Header e e s e e s e e e o« « 57
Format of a Buffer List Entry e v e s+ +« s s s+ s s« « . 58
Format of the CVAF Parameter List . “ e . e« v o 59
Entry Points, Returns, and Available Nork Reglstars for
Appendages . v e e . 13
Data Control Block Format for EXCP (After OPEN) . . . 82
Input/Output Block Format . v e e . 96
Event Control Block after Postlng of COmpletlon Code

(EXCP) . e+ « o 98
Event Control Block after Postlng of COmpletvon Code

(XDAP)Y . . e e e e e e e e e e e e e 107
The XDAP Channel Programs e e s e e e e e e e e e e 108
Parameter List for ADD Function e e s e e e e e e 117
Parameter List for REPLACE Function e e e s e e e 118
Parameter List for DELETE Function e e e e e e e 119
Parameter List for LIST Function e e e e e e e e e 119
Format of the DADSM Preprocessing and Postprocessing

Exit Parameter List . c e e e v e b e 123
Format of OPEN Exit Parameter Ltst . e o o s 126
Format of Parameter List for Nonspeclflc Tape Mount

User Exit . . . 134
Format of Parameter Lrst for IBM-Standard Labeled Tape
Security Verification User Exit . e v e e e 135
Output Obtained from Issuing DEVTYPE Macro « e e 142
Sample Code Using RDJFCB Macro .« . 149

Macro Definition, JCL, and Utllttv Statements for

Adding PURGE Macro to the System Macro Library . . 155
Macro Definition, JCL, and Utility Statements for

Adding RESTORE Macro to the System Macro Library . 156
The PIRL and I0OB Chain . 159
Sample Code to Add a 1403 UCS Image to SYSI IMAGELIB 173
Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB 173
Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB 174
UCS Image Table Entry Format « e e e e e e e e e 175

UCS5 Image Table Contents . e v e e e e e e 176
Sample of the Standard FCB Image STDI e e e e e e 178.2
Sample of the Standard FCB Image STD2 . . 178.2

Sample Code to Assemble and Add an FCB Load Module _
to SYS1.IMAGELIB e e e e e e e e e e e e e e e 178.4

xvi MVS/370 System Programming Library: Data Management

L] MENT RO_INSTRUCTIONS

Using catalog management macro instructions, you can do the
following things:

Retrieve information from an ICF catalog, a VS5AM catalog, or
an 0S CvVOL

Catalog non-VSAM data sets in an ICF catalog, a VSAM
catalog, or an 0S CVYOL

Uncatalog non-VS5AM data sets from an ICF catalog, a VSAM
catalog, or an 0S CVOL

Recatalog non-VSAM data sets in an ICF catalog, a VSAM
catalog, or an 0S5 CVOL

Read a block from an 0S CVOL

Build an index in an 0S5 CVOL

Build a generation index in an 0S CVOL

Delete an index from an 05 CVOL

Assign an alias to a high-level index in an 0S CVOL
Delete an index alias from an 0S CVOL

Connect two 0S5 CVOLs

Disconnect two 0S5 CVOLs

Before using the information in this chapter, you should be
familiar with the following publications:

05/VS—DOS/VSE—VM/370 Assembler lLanguage contains information

you will need to code programs in the assembler language.

Access Method Services Reference tells how to use programs

that offer some of the same services as 05 CVOL management
macrgg plus additional services that the macros cannot
provide.

JCL tells how to catalog and uncatalog non-VSAM data sets
using job control language statements.

Catalog Users Guide tells how to use 0S5 CVOLs.

Specifications for coding the macro instructions are presented
with each function to be performed. Accompanying the
descriptions are coding examples and programming notes;
exception return codes follow the coding examples. In the
functional descriptions, offsets into data areas are numbered
from zero (the first byte is byte zero).

Chapter 1. Using Catalog Management Macro Instructions 1

CATALOG ORDER OF SEARCH

The order in which catalogs are searched when an entry is to be ,WmW)
located is: {

1. If a specific catalog is specified in a macro, only that
catalog is searched. If the entry is not found, a "no entry
found™ error is returned to the user.

2. Any user catalog(s) specified in the current job step with a
STEPCAT DD statement is searched. If more than one catalog
is specified for the job step, the catalogs are searched in
order of concatenation. If the entry is found, no other
catalog is searched.

If a STEPCAT catalog is specified and the entry is not
found, the JOBCAT catalog is not searched. The catalog
search continues with step 3 below.

If no STEPCAT catalog is specified for the job step, and a
user catalog is specified for the current job with a JOBCAT
DD statement, the JOBCAT catalog(s) is searched. If more
than one catalog is specified for the job, the catalogs are
searched in order of concatenation. If the entry is found,
no other catalog is searched. Otheruwise,

3. If the entry is identified with a qualified entryname and
its first qualifier is the same as:

. The name of a user catalog, or
. The alias of a user catalog, or
. The alias of an 0S CVOL,

the user catalog or 0S CVOL so identified is searched. If .
the entry is found, no other catalog is searched. N
Otheruise, ijd

4. The master catalog is searched. If the entry is not found,
a "no entry found" error is returned to the user.

RETURN_CODE CONSIDERATIONS

The interpretation of catalog management return codes depends on
whether the request is initiated using a CAMLST macro or a
catalog parameter list (CPL), and whether the request is
satisfied in an integrated catalog facility (ICF) catalog, a
VSAM catalog, or an 0S5 CVOL.

If CAMLST is used and the request is satisfied in an 0S CVOL,
register 15 contains the 0S5 CVOL return code and registers 0 and
.1 may further describe the return code meaning. If CAMLST is
used and the request is satisfied in an ICF or a VS5AM catalog,
register 15 contains the 05 CVOL return code, register 0 the
VSAM return code, and register 1 is zero.

If a CPL is used and the request is satisfied in an 05 CVOL,
register 15 contains the VSAM return code, register 0 is not
meaningful, and register 1 is nonzero. If a CPL is used and the
request is satisfied in an ICF or a VSAM catalog, register 15
contains the VSAM return code. The return code, reason code,
and module identification can also be found in the CPL. These
codes are explained in Message Library: Svystem Messages under
message IDC3009I.

Note that, regardless of which parameter list is used, if the
request is satisfied in an ICF or a VSAM catalog, register 1 is
zero, and if the request is satisfied in an 05 CVOL, register 1
contains X'08' in the high-order byte and may contain return
information in the low-order byte.

2 MVS5/370 System Programming Library: Data Management

C

RETRIEVING INFORMATION FROM A CATALOG

To read an entry from a catalog, use the LOCATE and CAMLST macro
instructions. You may specify the entry you want to read into
your work area by using either (1) the fully or partially
qualified name of a data set, or (2) the relative block address
(TTR) of the block within an 05 CVOL containing the entry. If
you specify a fully qualified data set name, a list of volumes
on which the data set resides will be read into your work area.
This volume list always begins with a 2-byte entry that is the
number of volumes in the list. If the data set resides on more
than 20 volumes and is cataloged in an 0S5 CVOL, the address of a
volume control block will follow the volume list entries. (See
Figure 5 on page 28 for an explanation of the control block.)

Note: There is a restriction when CAMLST is used to locate a
data set that is over 20 volumes in length and on a VSAM
¢:r=t:alogéi Only the information from the first 20 volumes is
returned.

If you specify a partially qualified data set name, the first
block in the 05 CVOL pointed to by the lowest-level index
specified will be read into your work area. This is true if you
specify two or more ualifiers, or if you specity tne
CVOL-RELEXP parameter in the CAMLST macro. Register 15 will
contain return code 12. If you specify a single qualifier and
do not include the CVOL-RELEXP parameter, the 05 CVOL identifier
YSYSCTLG.Vyyyyyy' is read into your work area (the area
previously occupied by the data set name). You may then insert
;xyy{gngzs the CVOL-RELEXP parameter in the CAMLST and reissue
e .

If you specify a relative block address (TTR), the block at +h=t
relative address in the CVY0OL catalog will be read into your work
area. -

You must add a step when specifying either an unqualified name
or the highest level of a partially qualified name to retrieve
information from an 05 CVOL. You receive, instead, the volume
information for the 0S5 CVOL that is found in the master catalog.
In addition, the single qualifier name that vou specified is
replaced by the SYSCTLG.Vyyyyyy name. You may then use that
information to specify the 0S5 CVOL volume serial number in
CAMLST so that the search starts in the 05 CVOL and gives you
the information that you expected.

See Figure 1 on page 24 through Figure 8 on page 31 for
descriptions of the contents of volume control block and the
other catalog data areas.

RETRIEVING INFORMATION BY DATA SET NAME (LOCATE AND CAMLST NAME)

When you specify a data set name, a volume list is bhuilt in your
work area. A volume list consists of an entry for each volume
on which part of the data set resides; it is preceded by a
2-byte field that contains a count of the number of volumes in
the list. The count field is followed by a variable number of
12-byte entries. Each 12-byte entry consists of a 4-byte device
code, a 6-byte volume serial number, and a 2-byte data set
sequence number. As many as 20 of these 12-byte entries can be
built in vour work area. (Device codes are presented in the
UCBTYP data area description of Debugging Handbook.)

If the named data set is stored on only one volume, bytes 252
through 254 of vour area may contain the relative track address
of the DSCB for that data set; otherwise, these bytes are zero.
Byte 255 contains zeros.

If the data set is cataloged in an 0S5 CVOL and resides on more
than five volumes, the volume list in your work area is really a
volume control block (VCB)} that has been read into your work
area. In a VCB, the count field contains the number of volume
entries in this VCB and any following VCBs. Thus a count of 41

Chapter 1. Using Catalog Management Macro Instructions 3

indicates two following VCBs with counts of 21 and one,

respectively. The relative track address (TTR) of the next VCB

is in bytes 252 through 254 of your work area. The last VCB for (f“m
a data set has binary zeros in bytes 252 through 254. "

The macro format is:

[symboll LOCATE listname-addrx
listname CAMLST NAME
sdsname-relexp
slcvol-relexpl
sarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

NAME
this operand must be coded as shown to retrieve information
from a catalog by name.

dsname-relexp

specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 05 CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or omitting this operand, see "Catalog Order of Search" on

page 2.

area-relexp TN
speci fies the virtual storage location of your 265-byte Kk,ﬁ
work area, which you must define. The work area must begin -

on a doubleword boundary.

Example: In the following example, the catalog entry containing
a list of the volumes on which data set A.B resides is read into
virtual storage.

LOCATE INDAB READ CATALOG ENTRY
* FOR DATA SET A.B
* INTO VIRTUAL STORAGE
% AREA NAMED LOCAREA.
¥ LOCAREA MAY ALSO
* CONTAIN A 3-BYTE
% TTR AND THE 6-BYTE
* 0S5 CVOL SERIAL NUMBER
Check Return Codes
INDAB CAMLST NAME, AB, , LOCAREA
AB DC CL4G"A.B"
LOCAREA DS 0D

DS 265C

The LOCATE macro instruction points to the CAMLST macro
instruction.. NAME, the first operand of CAMLST, specifies that
the system is to search for a catalog entry using the name of a
data set. AB, the second operand, specifies the virtual storage
location of a 44-byte area into which yvou have placed the fully
qualified name of a data set. LOCAREA, the fourth operand, N"“\
specifies a 265-byte area you have reserved in virtual storage. |

4 MVS/7370 System Programming Library: Data Management

m\

After execution of these macro instructions, the 265-byte area
cozt:igs a volume list or a volume control block for the data
se .B.

Control will be returned to your program at the next executable
instruction after the LOCATE macro instruction. If the block
has been successfully read from the catalog, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes.

Ccode Meaning

$(04) Either the required catalog does not exist or it cannot
be opened or there is a closed chain of 05 CVOL
pointers.

8(08) One of the following happened:

. The entry was not found. Register 0 contains the
number of valid index levels if in an 0S5 CVOL.
Register 0 contains the catalog return code if in
an ICF or a VS5AM catalog.

. The user is not authorized to perform this
operation. Register 0 contains hexadecimal 38.

) A generation data group (GDG) alias was found.
Register 0 contains the number of valid index
levels. The alias name was replaced by the true
name.

12¢0C) One of the following happened:

. An index or generation data group base entry was
found when the list of qualified names was
exhausted. Register 0 contains the number of valid
index levels. The work area contains the first
block of the specified index.

. An alias entry was found. The alias name was
replaced in the user parameter list by the true
name.

. An invalid low-level GDG name was found.

16(10) A data set exists at other than the lowest index level
specified. Register 0 contains the number of the index
level where the data set was encountered.

20(14) A syntax error exists in the name.

24(18) One of the following happened:

. Permanent 170 error occurred. Register 0 contains
the VSAM or ICF return code or 0 if in an 0S CVOL.

. Nonzero ESTAE return code.
. Error in parameter list.

28(1C) Relative track address supplied to LOCATE routine is
outside of the SYSCTLG data set extents.

32(20) Reserved.

Note: Sce Message Library: ¥52 System Messages, Section
IDC3009I, for documentation of ICF catalog and VSAM catalog

return codes.

Chapter 1. Using Catalog Management Macro Instructions 5

RETRIEVING INFORMATION BY GENERATION DATA SET NAME (LOCATE AND CAMLST NAME)

You specify the name of a generation data set by using the fully WW“W
qualified generation index name and the relative generation %MW
number of the data set. The value of a relative generation
number reflects the position of a data set in a generation data
group. The following values can be used:
. Zero—specifies the latest data set (highest generation
number) cataloged in a generation data group.
. Negative number—specifies a data set cataloged before the
latest data set.
. Positive number—specifies a data set not yet cataloged in
the generation data group.
When you use zero or a negative number as the relative
generation number, a volume list (or a volume control block) is
placed in vour work area, and the relative generation number is
replaced by the absolute generation name.
When you use a positive number as the relative generation
number, an absolute generation name is created and replaces the
relative generation number. Zeros are read into the first 256
bvtes of your work area, because there are no entries in the
catalog.
The format is:
[symboll LOCATE list-addrx
listname CAMLST NAME
sdsname-relexp
sflcvol-relexpl
rarea-relexp PAIRN
"

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

NAME
this operand must be coded as shown in order to read a
block from the catalog by generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the
generation index and the relative generation number. The
area that contains these must be 44 bytes long. The name
may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 05 CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or om;tting this operand, see "Catalog Order of Search” on
page 2.

area-relexp
specifies the virtual storage location of vour 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain a volume list that is built from the
catalog. If the data set resides on one volume, bytes 252
through 254 may contain the relative track address of the
DS?B. This address is relative to the beginning of the
volume.

6 MVS/370 System Programming Library: Data Management

Example: In the following example, the list of volumes that
contain generation data set A.PAY(-3) is read into virtual

storage.
LOCATE INDGX READ CATALOG ENTRY
* FOR DATA SET A.PAY(-3)
* INTO YOUR STORAGE
»* AREA NAMED LOCAREA
Check Return Codes
INDGX CAMLST NAME, APAY, ,LOCAREA
APAY DC CL4G A . PAY(-3)"
LOCAREA DS oD
DS 265C

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for a catalog entry by using
the name of a data set. APAY, the second operand, specifies the
virtual storage location of a 44-byte area into which you have
placed the name of the generation index and the relative
generation number of a data set in the generation data group.
LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved to receive the catalog information.

After execution of these macro instructions, the system will
have replaced the relative generation number that you specified
in your 44-byte area with the data set's absolute generation
name. Control will be returned to your program at the next
executable instruction after the LOCATE macro instruction. If
the entry has been located and read successfully, register 15
will contain zeros. Otherwise, register 15 will contain a
return code. For a description of the contents of the work area
or the meaning of the exception return codes, see "Retrieving
Information by Data Set Name (LOCATE and CAMLST NAME)" on page

RETRIEVING INFORMATION BY ALIAS (LOCATE AND CAMLST NAME)
For each of the preceding functions, you can specify an alias as
the name of a data set. Each function is performed exactly as
previously described, with one exception: The alias name
specified is replaced by the true name.

Note: Aliases are not allowed for generation data sets
cataloged in 0S5 CVOLs.

The format is:

[symboll LOCATE list-addrx
listname | CAMLST NAME

sdsname-relex
»[cvol-relexpl

sarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

NAME

this operand must be coded as shown to retrieve information
from a catalog.

Chapter 1. Using Catalog Management Macro Instructions 7

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name, the first or only name of which is the @:WM
alias. The area that contains the name must be 44 bytes uv
long. The name may be defined by a C-type define constant
(DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 05 CVOL to which this catalog request
is directed. For a discussion of the effect of specifying
or om;tting this operand, see "Catalog Order of Search™ on
page 2.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which vou must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain a volume list that is read from a
catalog. If the data set resides on one volume, bytes 252
through 254 may contain the relative track address of the
DSgB. This address is relative to the beginning of the
volume.

Example: In the following example, the catalog entry containing
a list of the volumes on which data set A.B.C resides is read
into virtual storage (data set A.B.C, however, is addressed by
an alias name, X.B.C).

LOCATE INDAB READ CATALOG ENTRY
* FOR DATA SET X.B.C
* INTO VIRTUAL STORAGE
* AREA NAMED LOCAREA.

Check Return Codes ’f\;b

INDAB CAMLST NAME, ABC, , LOCAREA L -
ABC DC CL44°'X.B.C'
LOCAREA DS 0D

DS 265C

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for an entry using the name
of a data set. ABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of a data set (in this case, data set
A.B.C is addressed by its alias X.B.C). LOCAREA, the fourth
o:erand, specifies a 265-byte area you have reserved in virtual
storage.

For information on return codes and the contents of your work
area after execution, see "Retrieving Information by Data Set
Name (LOCATE and CAMLST NAME)" on page 3.

READING A BLOCK BY RELATIVE BLOCK ADDRESS (LOCATE AND CAMLST BLOCK)

You can read any block in an 0S CVOL by specifying, in the form
TTR, the identification of the block and its location relative
to the beginning of the catalog. TT is the number of tracks
from the beginning of the catalog; R is the record number of the
desired block on the track.

8 MVS/370 System Programming Library: Data Management

The format is:

{symboll LOCATE list-addrx
listname CAMLST BLOCK
sitr-relexp
scvol-relexp
sarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

BLOCK
you must code this operand as shoun.

ttr-relexp
specifies the virtual storage location of a 3-byte relative
block address (TTR). This address indicates the position
relative to the beginning of the catalog data set, of the
track containing the block (TT), and the block
identification (R) on that track.

gvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number for the volume to be processed.

area-relexp
specifies the virtual storage location of your 265-byte
work area, which you must define. The work area must begin
on a doubleword boundary. The first 256 bytes of the work
area will contain the block that is read from the catalog,
and the last 6 bytes will contain the serial number of the
volume on which the block was found. If the data set
resides on one volume, bytes 252 through 254 will contain
the relative track address of the DSCB.

Example: In the following example, the block at the location
indicated by TTR is read into virtual storage.

LOCATE BLK

Check Return Codes
BLK CAMLST BLOCK, TTR,VOLSER, LOCAREA
* READ A BLOCK INTO
* VIRTUAL STORAGE AREA
TTR DC H'S5?Y RELATIVE TRACK 5

DC X'03° BLOCK 3 ON TRACK
VOLSER DC cr'i11111" VOLUME SERIAL OF 0S CVOL
LOCAREA DS oD NAMED LOCAREA

DS 265C LOCAREA ALSO CONTAINS
* 6-BYTE SERIAL NO.

The LOCATE macro instruction points to the CAMLST macro
instruction. BLOCK, the first operand of CAMLST, specifies that
the system is to search the catalog for the block indicated by
TTR, the second operand. VOLSER, the third operand, specifies
the virtual storage location of a 6-byte volume serial number
for the volume to be processed. LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area

contains: the 256-byte block and the 6-byte serial number of the
volume on which the block was found (in bytes 259 through 264).

Chapter 1. Using Catalog Management Macro Instructions 9

Control will be returned to your program at the next executable
instruction following the LOCATE macro instruction. If the

index block at the address you specified has been successfully Nrwh
located and read into your work area, register 15 will contain WMJW
zeros. Otheruwise, register 15 will contain one of the exception

return codes described under "Retrieving Information by Data Set

Name (LOCATE and CAMLST NAME)"™ on page 3.

BUILDING AND DELETING INDEXES

You handle 05 CVOL indexes—build them, delete them, and so
forth—by using combinations of the INDEX and CAMLST macro
instructions.

BUILDING AN INDEX (INDEX AND CAMLST BLDX)

To build a new 05 CVOL index structure and add it to the
catalog, you may create each level of the index separately.
(You can also create index levels while you are cataloging a
data set onto those index levels. To create each level of the
index, use the INDEX and CAMLST macro instructions.)

These two macro instructions can also be used to add index
levels to existing index structures.

The format is:

[symboll INDEX list—-addrx
listname CAMLST BLDX
snamerelexp
[,cvol-relexpl

1ist-addrx A
points to the parameter list (labeled listname) set up by LW 4
the CAMLST macro instruction.

BLDX '

this operand must be coded as shouwn.

namerelexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
speci fies the virtual storage location of a 6-byte volume
serial number of the 05 CYOL to which this catalog request
is directed. For a discussion of the effect of specifying
or om;tting this operand, see "Catalog Order of Search™ on
page 2.

Example: In the following example, index structure A.B.C is
built on the 05 CVOL whose serial number is 000045.

Each INDEX macro instruction points to an associated CAMLST
macro instruction. BLDX, the first operand of CAMLST, specifies
that an index level be built. The second operand specifies the
virtual storage location of the area into which you have placed
the fully qualified name of an index level. The third operand
specifies the virtual storage location of the area into which
you have placed the 6-byte serial number of the volume on which
the index level is to be built.

10 MVS/370 System Programming Library: Data Management

INDEXA
INDEXB
INDEXC
VOLNUM
ALEVEL
BLEVEL
CLEVEL

INDEX INDEXA BUILD INDEX A
Check Return Codes
INDEX INDEXB BUILD INDEX STRUCTURE

Check Return Codes

INDEX INDEXC RU%LE INDEX STRUCTURE

Check Return Codes
CAMLST BLDX, ALEVEL , VOLNUM

CAMLST BLDX,BLEVEL,VOLNUM
CAMLST BLDX,CLEVEL , VOLNUM

DC CL6'000045" YOLUME SERIAL NUMBER
DC CL2'A" INDEX STRUCTURE NAMES
DC CL4YA.B? FOLLOWED BY A BLANK

DC CL6'A.B.C' WHICH DELIMITS FIELDS

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the index
has been built successfully, register 15 will contain zeros.
Otherwise, register 15 will contain one of the following
exception return codes:

Code
4(06)
8(08)

12(0C)

16¢10)

20(14)
24(18)
28(1C)

Meaning
The 0S5 CVOL does not exist or cannot be opened.
One of the following happened:

. The existing catalog structure is inconsistent with
the operation requested. If the error was detected
while processing in an 05 CVOL, register 0 has the
number of valid index levels and register 1 has the
return code that would have resulted if a LOCATE
macro had been issued on the same entry name. If
the error was detected during the master catalog
search process, register 0 contains the catalog
return code and register 1 contains zero.

. The user is not authorized to perform the
operation. Register 0 contains 56 (decimal);
register 1 contains 0.

An attempt was made to build an index or generation
index that has an alias or has indexes or data sets
cataloged under it. The index is unchanged.

The qualified name specified when building an index or
generation index implies an index structure that does
not exist; the high-level index, specified when
connecting control volumes, does not exist.

Space is not évailable on the specified 0S5 CVOL.
Not used with the INDEX macro instruction.
A permanent I/0 error was found when processing the

catalog, or a nonzero return code from ESTAE was
encountered.

Chapter 1. Using Catalog Management Macro Instructions 11

BUILDING A GENERATION INDEX (INDEX AND CAMLST BLDG)

You build a generation index in an 0S CVOL by using the INDEX @rjw
and CAMLST macro instructions. All higher levels of the index -
must exist. If the higher levels of the index are not in the

catalog, you must build them. How to build an index has been

explained previously.

The format is:

[symboll | INDEX list-addrx
listname | CAMLST BLDG
. shamerelexp

slcvol-relexpl
»» [DELETE]
» [EMPTY]

snumber-absexp

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

BLDG
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than %4
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp P
specifies the virtual storage location of a 6-byte volume { n
serial number of the 05 CVOL to which this catalog request LW 4

is directed. For a discussion of the effect of specifying
or om;tting this operand, see "Catalog Order of Search" on
page 2.

DELETE
speci fies that all data sets on direct access volumes that
are removed from a generation data group are to be deleted,
that is, the space allocated to the data set(s) is to be
made available for reallocation. A SCRATCH macro
instruction will be issued by the catalog management
routines to delete the data set, which will be deleted from
the volume if there are no conditions preventing deletion
(for example, expiration date not passed, password not
verified, volume not mounted, permanent 1I/0 error
encountered while trying to delete the data set).

EMPTY
specifies that references to all data sets in a generation
data group cataloged in the generation index are to be
removed from the index when the number of entries specified
is exceeded.

number-absexp
specifies the number of data sets to be included in a
generation data group. This number must be specified, and
cannot exceed 255.

Example: In this example, generation index D is built on the 0S5

CVOL, serial number 000045. The higher-level indexes A.B.C

already exist. MWhen the number of generation data sets in the
generation index D exceeds four, the oldest data set is

uncataloged. When the DELETE operand has been specified and the

data set has been successfully uncataloged, the catalog m::p
management routines issue a SCRATCH macro (see "Chapter 2.

Managing the Volume Table of Contents (VTOC)"™ on page 33) to

delete the data set. If there are no conditions preventing the

12 MVS/370 System Programming Library: Data Management

data set from being deleted (for example, the expiration date
was not passed, the password could not be verified, or a
permanent I/0 error was encountered when trying to delete the
data set), the data set will be deleted.

INDEX GENINDX BUILD GENERATION INDEX
Check Return Codes
GENINDX CAMLST BLDG,DLEVEL, VOLNUM, ,DELETE, , 4%

DLEVEL DC CL8'A.B.C.D ' ONE BLANK, DELIMITER
VOLNUM DC CL6'000045"

The INDEX macro instruction points to the CAMLST macro
instruction. BLDG, the first operand of CAMLST, specifies that
a generation index is to be built. DLEVEL, the second operand,
specifies the virtual storage location of an area into which you
have placed the fully qualified name of a generation index.
VOLNUM, the third operand, specifies the virtual storage
location of the area into which you have placed the 6-byte
serial number of the volume on which the generation index is to
be built. DELETE, the fifth operand, specifies that all data
sets dropped from the generation data group are to be deleted.
The final operand, 4, specifies the number of data sets that are
to be maintained in the generation data group. Control will be
returned to your program at the next executable instruction
following the INDEX macro instruction. If the generation index
was built successfully, register 15 contains zeros. Otheruise,
register 15 will contain one of the exception.return codes
descriged under "Building an Index (INDEX and CAMLST BLDX)™ on
page .

DELETING AN INDEX (INDEX AND CAMLST DLTX)

You can delete any number of index levels from an existing 0S
CVOL index structure. Each level of the index is deleted
separately. Generation indexes are also removed this way. (You
can also delete index levels automatically when you uncatalog a
data set.) You delete each level of the index by using the
INDEX and CAMLST macro instructions.

If an index level either has an alias, or has other index levels
or data sets cataloged under it, it cannot be deleted.

The format is:

[,symboll| INDEX list-addrx
listname CAMLST DLTX
spamerel exp
[,cvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

DLTX
this operand must be coded as shoun.

namerelexp
specifies the virtual storage location of the fully

qualified name of a data set or index level. The name
cannot exceed %% characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

Chapter 1. Using Catalog Management Macro Instructions 13

cvol-relexp
specifies the virtual storage location of a 6-byte volume -
serial number of the 0S5 CVOL to which this catalog request @;;D
is directed. For a discussion of the effect of specifving
or om;tting this operand, see "Catalog Order of Search™ on
page 2.

Example: In the following example, index level C is deleted from
index structure A.B.C.

INDEX DELETE DELETE INDEX LEVEL
* 2 gRgM INDEX STRUCTURE
%* «D.

Check Return Codes

DELETE CAMLST DLTX,LEVELC
LEVELC DC CL6"A.B.C’ ONE BLANK FOR
* DELIMITER

The INDEX macro instruction points to the CAMLST macro
instruction. DLTX, the first operand of CAMLST, specifies that
an index level be deleted. LEVELC, the second operand,
specifies the virtual storage location of the area into which
you have placed the fully qualified name of the index structure
whose lowest level is to be deleted. Control will be returned
to your program at the next executable instruction following the
INDEX macro instruction. If the index level(s) was successfully
deleted, register 15 contains zeros. Otherwise, register 15
contains one of the exception return codes described under
"Building an Index (INDEX and CAMLST BLDX)™ on page 10.

£
“ -

ASSIGNING AN ALIAS FOR AN INDEX (INDEX AND CAMLST BLDA)

For 0S CVOLs you assign an alias to an index level by using the
INDEX and CAMLST macro instructions. An alias can be assigned
only to a high level index; for example, index A of index
structure A.B.C can have an alias, but index B cannot. .
Assigning an alias to a high level index effectively provides
aliases for all data sets cataloged under that index. An alias
cannot be assigned to a generation index.

The format is:

[symboll INDEX list-addrx
listname CAMLST BLDA

»index namerelexp
s[cvol-relexpl
salias namerelexp

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

BLDA \
this operand must be coded as shown.

index namerelexp
specifies the virtual storage location of the name of a

high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
constant (DC) instruction. @

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the 0S5 CVOL catalog to which this catalog

14 MVS/370 System Programming Library: Data Management

O

request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ on page 2.

alias namerelexp
specifies the virtual storage location of the name that is

to be used as an alias for a high-level index. The area
that contains the name must be 8 bytes long. The name may
be defined by a C-type define constant (DC) instruction.

Example: In the following example, high-level index A is
assigned an alias of X.

INDEX ALIAS BUILD AN ALIAS FOR
* A HIGH LEVEL INDEX

Check Return Codes

ALIAS CAMLST BLDA,DSNAME, ,DSALIAS
DSNAME DC CL8'A" MUST BE 8-BYTE FIELDS
DSALIAS DC CcL8'X"

The INDEX macro instruction points to the CAMLST macro
instruction. BLDA, the first operand of CAMLST, specifies that
an alias be built. DSNAME, the second operand, specifies the
virtual storage location of an 8-byte area into which you have
placed the name of the high-level index to be assigned an alias.
DSALIAS, the fourth operand, specifies the virtual storage
location of an 8-byte area into which you have placed the alias
to be assigned.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the alias
has been successfully assigned, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exception return
codes described under "Building an Index (INDEX and CAMLST
BLDX)™ on page 10.

DELETING AN ALIAS FOR AN INDEX (INDEX AND CAMLST DLTA)

For 0S5 CVOLs you can delete an alias previously assigned to a
high-level index by using the INDEX and CAMLST macro
instiructions.

The format is:

[symboll INDEX list-addrx
listname CAMLST DLTA

salias namerelexp
[ycvol-relexpl

list-addrx :
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

DLTA
this operand must be coded as shoun.

alias namerelexp .
specifies the virtual storage location of the name that is
used as an alias for a high—-level index. The area that
contains the name must be 8 bvtes long. The name may be
defined by a C-type define constant (DC) instruction.

Chapter 1. Using Catalog Management Macro Instructions 15

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the 05 CVOL catalog to which this catalog @[ﬂm
request is directed. For a discussion of the effect of 4
specifying or omitting this operand, see "Catalog Order of
Search"™ on page 2.

Example: In the following example, alias X, previously assigned
as an alias for index level A, is deleted.

INDEX DELALIAS DELETE AN ALIAS FOR
* A HIGH LEVEL INDEX

Check Return Codes

DELALIAS CAMLST DLTA,ALIAS
CL8'X*

ALIAS DC MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro
instruction. DLTA, the first operand of CAMLST, specifies that
an alias be deleted. ALIAS, the second operand, specifies the
virtual storage location of the 8-byte area into which you have
placed the alias to be deleted.

CONNECTING AND DISCONNECTING 0S CVOLS

CONNECTING 0S CVOLS

You connect and disconnect 0S5 CVOLs by using combinations of the
INDEX and CAMLST macro instructions.

(INDEX AND CAMLST LNKX) - QJD
You connect two 0S5 CVOLs by using the INDEX and CAMLST macro -
instructions.
You must supply the serial number of the volume to be connected
and the high-level index name that will be used to associate the
two volumes. If the index name is an alias of an 0S5 CVOL
pointer entry in the master catalog, then the serial number of
the "from™ volume may be omitted. Otherwise, you must supply
the serial numbers of both volumes and the name of a high-level
index associated with the volume to be connected.
The Eesult of connecting 0S5 CVOLs is that the volume serial
number of the 0S CVOL connected and the name of a high-level
index are entered into the volume index of the volume to which
it was connected. This entry is called a control-volume
pointer.
The format is:
Isymboll INDEX ist-addrx
listname CAMLST LNKX
» index namere%egg
s[cvol-relexp ’
snew _cvol-relexp
list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.
LNKX
this operand must be coded as shoun. GC:D

16 MVS/7370 System Programming Library: Data Management

C

index namerelexp

specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the 05 CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ on page 2.

e vol-rel
specifiaes the virtual storage location of the 4-byte device
code and 6-byte volume serial number of the control volume
that is to be connected to another 0S CVOL.

Example: In the following example, the 05 CVOL whose serial
number is 001555 is connected to the 0S CVOL numbered 000155.
The name of the high-level index is HIGHINDX.

INDEX CONNECT CONNECT TWO 0S CVOLS
WHOSE SERIAL NUMBERS ARE
000155 and 001555,
3330 DISK DEVICE CODE

X XK X

Check Return Codes
CONNECT CAMLST LNKX, INDXNAME, OLDCVOL , NEWCVOL
¥

INDXNAME DC CLBYHIGHINDX'

OLDCVOL DC CL6%000155"

NEWCVOL DC X'30C€0200D"
DC CL6'001555"

The INDEX macro instruction points to the CAMLST macro
instruction. LNKX, the first operand of CAMLST, specifies that
control volumes be connected. INDXNAME, the second operand,
specifies the virtual storage location of the 8-byte area into
which you have placed the name of the high-level index of the
volume to be connected. OLDCVYVOL, the third operand, specifies
the virtual storage location of a 6-byte area into which you
have placed the serial number of the volume to which you are
connecting.

NEWCVOL, the fourth operand, specifies the virtual storage
location of a 10-byte area into which you have placed the 4-byte
hexadecimal device code of the volume to be connected followed
by the 6-byte area to contain the volume serial numbher of the
volume to be connected.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the 0S
CVOLs have been successfully connected, register 15 will contain
zeros. Otherwise, register 15 will contain one of the exception
return codes described under "Building an Index (INDEX and
CAMLST BLDX)>"™ on page 10.

DISCONNECTING 0S CVOLS (INDEX AND CAMLST DRPX)

You disconnect two 0S CVOLs by using the INDEX and CAMLST macro
instructions.

The result of disconnecting 05 CVOLs is that the 05 CVOL pointer
is removed from the volume index of the volume from which vou
are disconnecting.

Chapter 1. Using Catalog Management Macro Instructions 17

The format is:

=Y
3)

[symboll | INDEX list-addrx @Zﬂw

listname CAMLST DRPX

sindex namerelexp

[ycvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

DRPX
this operand must be coded as shown..

index namerelexp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be
8 bytes long. The name may be defined by a C-type define
constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the 05 CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ on page 2.
Example: In the following example, the 0S5 CVOL that contains the
high-level index HIGHINDX is disconnected from the 05 CVOL
pointed to by the entry "HIGHINDX' in the master catalog.

INDEX DISCNECT DISCONNECT TWO .
x 05 CVOLS N

Check Return Codes

DISCNECT CAMLST DRPX, INDXNAME
INDXNAME DC CL8"HIGHINDX' MUST BE 8-BYTE FIELD

q

The INDEX macro instruction points to the CAMLST macro
instruction. DRPX, the first operand of CAMLST, specifies that
0S5 CVOLs be disconnected. INDXNAME, the second operand,
specifies the virtual storage location of the 8-byte area into
which vou have placed the name of the high-level index of the 0S
CVOL to be disconnected.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the 0S
CVOLs were successfully disconnected, register 15 will contain
zeros. Otherwise, register 15 will contain one of the exception
return codes described under "Building an Index (INDEX and
CAMLST BLDX)™ on page 10.

HORKING WITH NON-VSAM DATA SET CATALOG ENTRIES

You can catalog, uncatalog, and recatalog non-VSAM data sets in
0S5 CVOLs, ICF catalogs, and VSAM catalogs by using combinations
of the CATALOG and CAMLST macro instructions. CATALOG macro
instructions are used to point to CAMLST macro instructions;
CAMLST macro instructions are used to specify cataloging

options.
To catalog non-VSAM data sets in ICF or VSAM catalogs, the R
search algorithm is the same as that given in the section "Order

of Catalog Selection for DEFINE"™ in the Access Method Services
Reference. To uncatalog or recatalog non-VYSAM data sets in ICF

18 MVS/370 System Programming Library: Data Management

O

"
¥

or YSAM catalogs, the search algorithm is the same as that given
in the section "Order of Catalog Search for DELETE™ in Access

Method Services Reference.

CATALOGING A NON-VSAM DATA SET (CATALOG AND CAMLST CAT)

The format of the CATALOG and CAMLST macros is:

[symboll CATALOG list-addrx

listname CAMLST CATIBX]

rname-relexp
slcvol-relexpl

rvol list-relexp
[,DSCBTTR=dsch ttr-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

CATIBX]
this operand must be coded as shown. Either CAT or CATBX
may be coded; but, in either case, missing indexes within
an 0S5 CVOL are always automatically created.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set. The name cannot exceed 44%
characters. If the name is less than 44 characters, it
must be followed by at least one blank. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 0S5 CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Building an Index
(INDEX and CAMLST BLDX)™ on page 10.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The list must begin on a halfword
boundary and consist of an entry for each volume on which
the data set is stored. The first two bytes of the list
indicate the number of entries in the volume list; the
number cannot be zero. Each 12-byte volume list entry
consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The
sequence number is always zero for direct access volumes.
(Device codes are presented in Debugqing Handbook.)

DSCBTTR=dscb_ ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the format-1 data set
control block (DSCB) for a data set that resides on only
one volume. The address is relative to the beginning of
the volume.

Programming Considerations for Multiple-Step Jobs

When you are executing multiple-step jobs, it is preferable to
catalog or uncatalog data sets using JCL, instead of using
IEHPROGM or a user program. Since ALLOCATION/UNALLOCATION
monitors data sets during job execution, and it is not aware of
the functions performed by the user programs, conflicting
functions can be performed or GDG orientation can be lost.

UNALLOCATION recatalogs existing cataloged data sets at job
termination. This action occurs because the data set is opened
sometime during the job and the DSCB TTR was not found in the
catalog entry. Therefore, if vou are using the CAMLST macro to

Chapter 1. Using Catalog Management Macro Instructions 19

uncatalog and then catalog data sets with new volume
information, be sure to include the DSCB TTR. Av

Example: In the following example, the non-YS5AM data set named \%JW
A.B.C is cataloged. The data set is stored on two volumes.

CATALOG ADDABC CATALOG DATA SET A.B.C.
Check Return Codes
ADDABC CAMLST CAT,DSNAME, , VOLUMES
DSNAME DC CL6'A.B.C’ ONE BLANK FOR DELIMITER
VOLUMES DC H'2" DATA SET ON TWO VOLUMES
DC X*30C0200D" 3330 DISK DEVICE CODE
DC CL6'000016" VOLUME SERIAL NUMBER
DC H'O' DATA SET SEQUENCE NUMBER
pC X*30C0200D" 3330 DISK DEVICE CODE
DC CL6'000015" VOLUME SERIAL NUMBER
DC H'O0" SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro
instruction. CAT, the first operand of CAMLST, specifies that a
data set is to be cataloged. DSNAME, the second operand,
specifies the virtual storage location of the area in which the
data set name A.B.C was placed. VOLUMES, the fourth operand,
specifie: the virtual storage location of the volume list that
was built.

Control will be returned at the instruction following the
CATALOG macro instruction. If A.B.C was successfully cataloged,

register 15 will contain zeros. Otherwise, register 15 will N
contain one of the following return codes: WKJV
Ccode Meaning

4(04) Either the required catalog does not exist, it is not

open, or the "do not allocate™ bit is on.
8(08) One of the following happened:

. The existing catalog structure is inconsistent with
the operation requested. If the error was detected
while processing in an 05 CVOL, register 0 has the
number of valid index levels and register 1 has the
return code that would have resulted if a LOCATE
macro had been issued for the same entry name. If
the error was detected in an ICF or a VSAM catalog,
register 0 contains the catalog return code and
register 1 contains zero.

. The user is not authorized to perform the
operation. Register 0 contains decimal 56 (X'36')
and register 1 contains zero.

12(00C) Not used with the CATALOG macro instruction.

16C10) The index structure necessary to catalog the data set
does not exist.

20(14) There is insufficient space on the catalog data set.
24(18) An attempt was made to catalog an improperly named

generation data set, or the generation index is full
and the named data set is older than any currently in

the index. O
28(1C) One of the following happened: "y

20 MVS/370 System Programming Library: Data Management

0\

. A permanent I/0 or unrecoverable error was
encountered.

L An error was found in a parameter list.
L An I70 error occurred in an 0S5 CVOL.

. There was a nonzero return code from ESTAE.

UNCATALOGING A NON-VSAM DATA SET (CATALOG AND CAMLST UNCAT)

When the UNCAT or UCATDX operand of the CAMLST macro instruction
is used, a data set reference and unneeded indexes, with the
exception of the highest-level index, are removed.

The format of the CATALOG and CAMLST macros is:

[symboll CATALOG list-addrx
listpame CAMLST UNCAT or UCATDX
»name-relexp
[ycvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

UNCAT or UCATDX
this operand must be coded as shown. Either UNCAT or
UCATDX may be coded but in either case unneeded indexes,
with the exception of the highest-level index, are always
removed along with the data set reference. .

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name
cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. The
name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 05 CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ on page 2.

In the following example, the catalog entry for data set A.B.C
is removed from a catalog. In an 05 CVOL, index B is removed
unless it contains references to other data sets: Index A
remains because it is the highest-level index.

CATALOG REMOVE REMOVE REFERENCES TO
* DATA SET A.B.C FROM
* CATALOG
Check Return Codes
REMOVE CAMLST UNCAT , DSNAME
DSNAME DC CL6'A.B.C' ONE BLANK FOR DELIMITER

The CATALOG macro instruction points to the CAMLST macro
instruction. UNCAT, the first operand of CAMLST, specifies that
references to a data set be removed from the catalog. DSNAME,
the second operand, specifies the virtual storage location of an

Chapter 1. Using Catalog Management Macro Instructions 21

area into which vou have placed the fully qualified name of the
data set whose references are to be removed.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If vour data set has
been successfully uncataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described under "Cataloging a Non-VSAM Data Set (CATALOG and
CAMLST CAT)™ on page 19.

RECATALOGING A NON-VSAM DATA SET (CATALOG AND CAMLST RECAT)

You can recatalog a cataloged non-VSAM data set by using the
CATALOG and CAMLST macro instructions. Recataloging is usually
necessary if a data set is extended to a new volume.

As in the original cataloging procedure, you must build a
complete volume list in virtual storage. This volume list
consists of an entry for each volume on which the data set
resides. The first 2 bytes of the list indicate the number of
entries in the list; the number may not be zero. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The
saquence number is always zero for direct access volumes.
(Device codes are presented in Debugging Handbook.)

The format of the CATALOG and CAMLST macros is:

[symboll CATALOG list-addrx

listname CAMLST RECAT

sname-relex

slecvol-relexpl

svol list-relexp
[,DSCBTTR=dscb_ttr-relexpl

list-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

RECAT
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set. The name cannot exceed %%
characters. If the name is less then 44 characters, it
must be followed by at least one blank. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the 05 CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ on page 2.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a half-word
boundary.

DSCBTTR=dscb ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the identifier (format-1l)
DSCB for a data set that resides on only one volume. The
address is relative to the beginning of the volume.

Example: In the following example, the two-volume data set named @:;D

A.B.C is recataloged to add a third volume. An entry is added
to the volume list, which previously contained only two entries.

22 MVS/370 System Programming Library: Data Management

CATALOG RECATLG RECATALOG DATA SET
* A.B.C ADDING A NEW
* VOLUME

Check Return Codes
RECATLG CAMLST RECAT,DSNAME, , VOLUMES

DSNAME DC CL6'A.B.C ' FOR DELIMITER ONE BLANK
VOLUMES DC H'3?Y THREE VOLUMES
DC X*'30C0200D' 3330 DISK DEVICE CODE
DC CL6'000014" VOLUME SERIAL NUMBER
DC H'O" SEQUENCE NUMBER
DC X*30C0200D" 3330 DISK DEVICE CODE
DC CL6'000015" VOLUME SERIAL NUMBER
DC H'O" SEQUENCE NUMBER
DC X'30C0200D" 3330 DISK DEVICE CODE
DC CL6'000016" VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro
instruction. RECAT, the first operand of CAMLST, specifies that
a data set be recataloged. DSNAME, the second operand,
specifies the virtual storage location of an area into which you
have placed the fully qualified name of the data set to be
recataloged. VOLUMES, the fourth operand, specifies the virtual
storage location of the volume list you have built.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If the data set has
been successfully recataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described under "Cataloging a Non-VSAM Data Set (CATALOG and
CAMLST CAT)™ on page 19.

Chapter 1. Using Catalog Management Macro Instructions 23

0S_CVOL ENTRY FORMATS

This section describes the format and contents of each of the
entries that may appear in the 0S CVOL.

0S CVOL VOLUME INDEX CONTROL ENTRY

Field 1 Field 2 Field 3
X'0000000000000001" TTIR of last X'05"
Name block in Count
volume index

0 8 11 12
Field § Field 5§ Field 6 Field 7 Field 8
TTR of X'00" TTR of first X'00* Unused
last block unused block bytes
in SYSCTLG in SYSCTLG
data set data set

12 15 16 19

< Total Length: 22 Bytes >

Field 1: Name (8 bytes)—contains only a hexadecimal 1 to ensure that this entry
is the first entry in the first block of the index.

Field 2: Last—block address (3 bytes)—contains the relative track address (TTR)
of the last block in the volume index.

Field 3: Halfword count (1 byte)—contains a hexadecimal 5 to indicate that 5
halfwords follow.

Field 4§: Catalog upper limit (3 bytes)—contains the relative track address (TTR)
of the last block in the catalog data set.

Field 5: Zero field (1 byte)—contains binary zeros.

Field 6: First—available—block address (3 bytes)—contains the relative track
address (TTR) of the unused block in the catalog that is closest to the
beginning of the catalog data set.

Field 7: Zero field (1 byte)—contains binary zeros.

Field 8: Unused (2 bytes)

Figure 1. The 0S CVOL VYolume Index Control Entry

~ 7

26 MVYS/370 System Programming Library: Data Management

C

0S CVOL INDEX CONTROL ENTRY

Field 1 Field 2 | Field 3 | Field 4§ Field 5 | Field 6
X'0000000000000001" TTR of X'03" TTR of Alias Unused
Name last Count first count bytes
block in block in
this this
index index
0 8 11 12 15 16
< Total Length: 18 Bytes >

This index control entry is similar to a volume index control entry, but it only

contains information about the index, which it begins.

contains six fields.

Field 1:

Field 2:

Field 3:

Field §:

Field 5:

Field 6:

It is 18 bytes long and

Name (8 bytes)—contains only a hexadecimal 1 to ensure that this entry,
because it has the lowest binary name value, is the first entry in the
first block of the index.

Last block address (3 bytes)—contains the relative track address (TTR)
of the last block assigned to this index.

Halfword count (1 byte)—contains a hexadecimal 3 to indicate that 3
hal fwords follow.

Index lower limit (3 bytes)—contains the relative track address (TTR) of
the block in which this entry appears.

Number of aliases (1 byte)—contains the binary count of the number of
aliases assigned to the high—level index. If the index is not a
high—level index, this field is zero.

Unused (2 bytes)

Figure 2. The 0S5 CVOL Index Control Entry

Chapter 1. Using Catalog Management Macro Instructions 25

0S CVOL INDEX LINK ENTRY AND INDEX POINTER ENTRY

%_,;y
Index Link Entry
Field 1 Field 2 Field 3
X'FFFFFFFFFFFFFFFF" TTR of next block X'00"
Name in index (or zero Count
if no next block)
] ' 8 11
< Total Length: 12 Bytes >
Index Pointer Entry
Field 1 Field 2 Field 3
Index name (padded to TTR of index X'00"
right with blanks if . Count
necessary)
0 8 11
< Total Length: 12 Bytes >
The index link and index pointer entries are similar. An index link entry is used
to chain several blocks of an index together, and an index pointer entry is used to
chain an index to the next lower—level index. An index link entry is always the
last entry in any index block. These blocks contain three fields and are 12 bytes
long.
Field 1: Name (8 bytes)—contains the name of the index to which this entry A
points. If the entry is an index link entry, the name field contains e o)
X'FF FF FF FF FF FF FF FF'. b

Field 2: Address (3 bytes)—contains either the relative block address (TTR) of
the first block of the next level index if it is an index pointer entry,
or the relative block address (TTR) of the next block of the same level
index if it is an index link entry.

Field 3: Halfword count (1 byte)—contains 1 byte of binary zeros to indicate that
the entry ends here. :

Figure 3. The 0S5 CVOL Index Link and Index Pointer Entries

26 MVS/370 System Programming Library: Data Management

C

)

0S CVOL DATA SET POINTER ENTRY

Field 1 Field 2 Field 3 Field 4
Lowest—level name of DSCB Count Volume
data set or complemented| TTR or count
generation number zeros
(if part of GDG)
0 8 11 12 14
Field 5 Field 6 Field 7
Device Serial number Data set sequence
Code of volume on number (zero for
which data direct access)
set resides
14 18 24

Repeated for each volume

< /7 Total Length: 26 to 74 Bytes >

The data set pointer entry can appear in any index. It contains the simple name of

a data set and from one to five 12-byte fields, each of which identifies a volume on

which the named data set resides. If the data set resides on more than five

volumes, a volume control block pointer entry is substituted for the data set

pointer entry. A volume control block pointer entry points to a volume control

3lgck o; chain of volume control blocks that point to the volumes that contain the
ata set.

The data set pointer entry varies in length. The length is determined by the
formula 14 + 12m, where m is the number of volumes containing the data set. The
variable m can be from one to five. The data set pointer entry can appear in any
index, and it contains seven fields.

Field 1: Name (8 bytes)—contains the simple name of the data set whose volumes
are identified in field 5. If part of a GDG, these names have the format
GxxxxV00, where xxxx is the complement of the GDG number.

Field 2: DSCB TTR (3 bytes)—contains the track address (TTR) of the data set
control block if the data set resides on one volume. If the data set
resides on more than one volume, this field contains binary zeros.

Field 3: Halfword count (1 byte)—contains the binary count of the number of
halfwords that follow. The number is found by the formula é6m + 1, where
m is the number of volumes on which the data set resides. The variable m
can be from one to five.

Field 4: Volume count (2 bytes)—contains the binary count of the number of
volumes identified in field 5 of this entry.

Field 5: Device code (4 bytes)—contains the device code of the device on which
the volume with the volume serial number in field 6 can be mounted.

Field 6: Volume serial number (6 bytes)—contains the volume serial number of one
of the volumes of the data set.

Field 7: Data set sequence number (2 bytes)—contains the sequence number of the
data set on a magnetic tape volume. It is zero for any other device
class.

Figure ¢. The 05 CVOL Data Set Pointer Entry

Chapter 1. Using Catalog Management Macro Instructions 27

0S CVOL VOLUME CONTROL BLOCK POINTER ENTRY

Field 1 Field 2 Field 3 Field 4§
Lowest level TTR of X'o1r X'0000°"
of data set volume Count Dummy
name control data
block entry
0 11
< Total Length: 14 Bytes

The volume control block pointer entry is used instead of a data set pointer entry
when the data set resides on more than five volumes.
control block, which,

Field 1: Name (8 bytes)—contains the last name of the qualified name of the data
set identified by this entry.

Field 2: Address (3 bytes)-—contains the relative block address (TTR) of the
volume control block identifying the volumes containing the data set

in turn,

named in field 1.

Field 3: Halfword count (1 byte)—contains a hexadecimal 1 to indicate that 1

halfword follows.

describes the data set.

This entry points to a volume
The entry is 14 bytes long.

Field 4: Zero field (2 bytes)—contains hexadecimal zeros.

Figure 5. The 0S5 CVOL Volume Control Block Pointer Entry

28 MVS/370 System Programming Library:

Data Management

A
L

C

C

O

VOLUME CONTROL BLOCK

Field 1 Field 2 Field 3 Field &
Count Device Serial Data set sequence
Code number number for the
of volume n volume described
in field 5. Zero
for direct access

0 T mt4 m+10]
Repeated once for eac; volume; maximum of 20
Field 5 Field 6 Field 7
Ten bytes TTR of next X'00"
of zeros volume control
block, or zero
if none
2642 252 255
< Total Length: 256 Bytes 7 7/ >

A volume control block contains the description of all the volumes of a data set
that resides on more than five volumes. If a data set resides on less than six
volumes, a volume control block is not built and the volumes are destribed in a data
set pointer entry. One volume control block can describe as many as 20 volumes.
Volume control blocks may be chained together to catalog a data set residing on more
than 20 volumes.

The volume control block is always 256 bytes long, regardless of the number of
volumes described.

Field 1: Volume count (2 bytes)—the first volume control block contains
the binary count of the total number of volumes on which the data
set resides. The value of this field is reduced by 20 for each
subsequent volume control block. If, for example, the data set
resides on 61 volumes, there will be four volume control blocks
for the data set. The volume count field of each will contain 61,
41, 21, or 1, respectively.

Fields 2, 3, %: Volume identification (12 to 240 bytes)—contains from 1 to 20
entries, each of which identifies a volume on which the data set
resides. Each entry contains a 4—byte device code, a 6-byte
volume serial number, and a 2—-byte data set sequence number. The
data set sequence number is zero for data sets on direct access

volumes.
Field 5: Zero field (10 bytes)—contains binary zeros.
Field 6: Chain address (3 bytes)—contains the relative block address (TTR)

of the next volume control block, if additional blocks are needed

to describe the data set. If this is the last volume control

block for the data set, this field will be set to binary zeros.
Field 7: Zero field (1 byte)—contains binary zeros.

Figure 6. The 0S CVOL Volume Control Block

Chapter 1. Using Catalog Management Macro Instructions 29

0S CVOL POINTER ENTRY

Field 1 Field 2 Field 3
Name of index on Dummy Pointer X'o05"
other 0S5 CVOL field: zeros Count
0 8 11 12
Field 4 Field 5
Device code of Serial number of
0S CVOL 0S CvVOL
12 16

Total Length: 22 Bytes

The 05 CVOL pointer entry is used to indicate that a particular index
resides on a volume other than the system residence

volume.

0S CVOL pointer entries can exist only in the volume index.

They are 22 bytes long.

Field 1: Name (8 bytes)—contains a high—level index name
that appears in the volume index of the 05 CVOL
identified in fields ¢ and 5.

Field 2: Address (3 bytes)—contains zeros, because this entry
references no other entry in the
catalog.

Field 3: Halfuword count (1 byte)—contains the hexadecimal value 5 to
indicate that 5 halfwords ‘
follow.

Field §: 05 CVOL device code (4 bytes)—contains the
de:ice code of the specified control
volume.

Field 5: 0S CVYOL serial number (6 bytes)—contains the
volume serial number of the 0S5 CVOL which has an
entry in its volume index of the same name as this entry.

Figure 7. The 0S CVOL Pointer Entry

0S CVOL POINTER ENTRY (OLD)

Until Release 17 of 0S MFT/MVT, the 0S CVOL pointer entry uwas
the same as the present 05 CYOL pointer, except that there was
no field & (device code); the 0S5 CVOL pointer entry was 18 bytes
long. After Release 17, the 05 CVOL pointer entry is 22 bytes
long. This is mentioned because some 05 CVOlLs may still contain
entries in the old format and the catalog management routines

may still check for them.

30 MVYS/370 System Programming Library: Data Management

A

.

0S CVOL GENERATION INDEX POINTER ENTRY

Field 1 Field 2 Field 3 | Field 4 | Field 5 | Field 6
Name TTR Count Flags giﬁiﬁum ggczgnt
0 8 11 12 13 14
< Total Length: 16 Bytes >

A generation index pointer entry is the entry that identifies a generation data
group (GDG). It represents the next to the lowest-level of a group of generation

data set
Field 1:

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

names. It is created by using the BLDG macro.

Name (8 bytes)—this name represents the GDG level that is next to the
lowest level of GDG data set names.

Address (3 bytes)—contains the relative track address (TTR) of the first
block of the level containing the lowest—level GDG names. These names
have the format GxxxxV00, where xxxx is a complement of the GDG number.

Count (1 byte)—X'02' jdentifies this entry and indicates the number of
halfwords that follow this field.

Flags (1 byte)—indicates the options specified by the creator of the
GDG.

X'02'=DELETE option.
X'01'=EMPTY option.

Maximum Count (1 byte)—a binary number that specifies the maximum number
of generations allowed in the generation index at one time.

Current Count (2 bytes)—the binary count of the number of generations
currently cataloged in the generation data group (GDG).

Figure 8. The 0S5 CVOL Generation Index Pointer Entry

Chapter 1. Using Catalog Management Macro Instructions 31

0S CVOL ALIAS NAME

Field 1 Field 2 ;ESé? 3 | Field ¢
Alias Name ;I§nter Count True Name
0 8 11 12
< Total Length: 20 Bytes >

Antalias entry defines an alternative name for the high—level qualifier of a data
set name.

Field 1: Name (8 bytes)—contains the alias of the high—level index whose relative
track address is found at field 2.

Field 2: Address (3 bytes)—contains the relative track address (TTR) of the first
block of the index named in field 4.

Field 3: Count (1 byte)—identifies this entry and contains the binary count of
the number of halfwords that follow. The number is X'04'.

Field 4§: Tru$.ni3e1(8 bytes)—contains the name of the index whose alias appears
in fie .

Figure 9. The 0S CVOL Alias Name

32 MVS/370 System Programming Library: Data Management

PY

THE vyoc

AGING THE VOLUME TABLE OF CONTENTS (V7OC)

The direct access device storage management (DADSM) routines
control allocation of space on direct access volumes through the
volume table of contents (VTOC) of that volume, and through the
VTO0C index if one exists. This chapter gives an overview of the
VT0C and the VT0C index, and discusses how to use syster macros
to access the VT0C and VTOC index.

The VT0OC is a data set on a direct access volume that describes
the contents of that volume. It resides in a single extent
(that is, it is a continuous data set), anywhere on the volume
after cylinder 0, track 0. 1Its address is located in the
VOLVTOC field of the standard volume label (see Figure 10).

Standard Volume Label

s

11(B)

VOLVTOC (10 bytes)

CCHHR of first

record in VTOC

N 2
AN //’
A\ /
/
/
/
-/
/
Cylinder 0 \ /
Track 0 /
AN \
\ /
/
\
Reiord Record | Record
2 3
VTOC Data Set
(Can be located anywhere
Record on the volume after
R«
e;ord Re;ord cylinder 0, track 0.)

N~

Figure 10. Locating the Volume Table of Contents (VT0C)

Chapter 2. Managing the Volume Table of Contents (VT0C) 33

The VTOC is composed of 140-byte data set control blocks (DSCBs)

that correspond either to a data set or VSAM data space

currently residing on the volume, or to contiguous, unassigned @[:D
tracks on the volume. DSCBs for data sets or data spaces

describe their characteristics and the characteristics of the

tracks on which they reside. DSCBs for contiguous, unassigned

tracks indicate their location.

DATA SET CONTROL BLOCK (DSCB) FORMAT TYPES

Format-0 DSCB

The VTOC has seven different kinds of DSCBs. This section lists
the different kinds of DSCBs, what they are used for, how many
exist on a volume, and how they are found.

The first record in every VT0C is the VTOC (format-4) DSCB that
describes (1) the device that the volume resides on, (2) the
attributes of the volume itself, and (3) the size and contents
of the VTOC data set itself.

The format-4¢ DSCB is followed by a free-space (format-5) DSCB,
which for a nonindexed VTOC lists the extents on the volume that
have not been allocated to a data set or VSAM data space. Each
format-5 DSCB contains 26 extents. If there are more than 26
available extents on the volume, another format-5 DSCB will be
built for every 26 extents. The format-5 DSCBs are chained
using the last field of each format-5 DSCB. An indexed VTOC
does not use format-5 DSCBs for describing free space; however,
one empty format-5 DSCB is provided to allow a basis for
converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTOC do not necessarily
occupy contiguous space, nor do they have any prescribed
sequence.

A data set or VSAM data space is defined by one or more DSCBs in AN
the VTOC of each volume on which it resides. The number of L
DSCBs needed to define a data set or VSAM data space is 4
determined by (1) the organization of the data set (ISAM data

sets need a format-2 DSCB to describe the index) and (2) the

number of extents the data set or VSAM data space occupies (a

format-3 DSCB is needed to describe the 4th through the 16th

extents; additional format-3 DSCBs may be required to describe

the extents for a VYSAM data set cataloged in an ICF catalog).

Figure 11 on page 37 shows the general makeup of a VTOC and the
DSCB?SR§§ded to define two types of data sets (ISAM and

non- .

Data set A (in Figure 11 on page 37) is an ISAM data set; three
DSCBs, a format-1, format-2, and format-3, are required. Data
sets B, C, and D could be sequential, partitioned, or direct
data sets or VSAM data spaces. Data set B has more than three
Sgé:nts and therefore requires both a format-1 and a format-3

Data sets C and D have three or fewer extents and need only a
format-1 DSCB. The format-6 DSCB, pointed to by the format-4
DSCB, is used to keep track of the extents allocated in order to
be shared by two or more data sets (split-cylinder data sets).
For example, if data sets C and D share an extent made up of one
or more cylinders, this extent would be described in the
format-6 DSCB. Note that split-cylinder data sets cannot be
allocated, but existing split-cylinder data sets can still be
processed.

NAME: Free VTOC Record

FUNCTION: The unused records in the VT0C, which contains 140 @i:b
bytes of binary zeros. To delete a DSCB from the VTOC, a
format-0 DSCB is written over it.

34 MVS/370 System Programming Library: Data Management

O

C

Format-1 DSCB

Format-2 DSCB

Format-3 DSCB

Format-4 DSCB

HOW MANY: One for every unused 140-byte record on the VTIOC. The
DS4DSREC field of the format-4 DSCB is a count of the number of
format-0 DSCBs on the VIOC. This field is not maintained for an
indexed VTOC.

HOW FOUND: Search on key equal to X'00' (sometimes X'00000000")
for a nonindexed VT0C; for an indexed VTOC, the VTOC map of
DSCBs is used to find a format-0 DSCB.

NAME: Identifier

FUNCTION: Describes the first three extents of a data set or
VSAM data space.

HOW MANY: One for every data set or data space on the volume,
except the VTOC.

HOW FOUND: Search on key equal to the data set name. For an
znggxeddVTOC. a CCHHR pointer for each data set name is in the
T index.

NAME: Index
FUNCTION: Describes the indexes of an ISAM data set.

HOW MANY: One for every ISAM data set (for a multivolume ISAM
data set, a format-2 DSCB exists only on the first volume).

Hog FOUND: Chained from a format-1 DSCB that represents the data
set.

NAME: Extension

FUNCTION: Describes the ¢th through 16th extents of a data set
or VSAM data space. Data sets and VSAM data spaces are
restricted to 16 extents per volume. VSAM data sets cataloged
in an ICF catalog may be extended to a maximum of 123 extents,
in which case there may be up to ten format-3 DSCBs.

HOW MANY: One for each data set or VSAM data space on the volume
that has more than three extents. There may be up to ten for a
VSAM data set cataloged in an ICF catalog.

HOW FOUND: Chained from a format-2 or a format-1 DSCB that
represents the data set or VS5AM data space. In the case of a
VSAM data set cataloged in an ICF catalog, the chain may be from
a preceding format-3 DSCB.

NAME: VTOC

FUNCTION: Describes the extent and contents of the VTIOC and
provides volume and device characteristics. If the VTO0OC is
indexed, certain fields of this DSCB are not maintained by
DADSM. See "Structure of an Indexed VTOC."

HOW MANY: One on each volume.

HOW FOUND: VOLVTOC field of the standard volume label contains
its address. It is always the first record in the VTOC.

Chapter 2. Managing the Volume Table of Contents (VT0C) 35

Format-5 DSCB

Format-6 DSCB

ALLOCATING AND RELEASING SPACE o

THE _VTOC INDEX

NAME: Free Space Af‘h
LW

FUNCTION: On a nonindexed VTOC, describes the space on a volume
that has not been allocated to a data set or to a VSAM data
space (available space). For an indexed VYTOC, format-5 is zero,
and the volume pack space map describes the available space.

HOW MANY: One for every 26 non-contiguous extents of available
space on the volume for a nonindexed VTO0C; for an indexed VTOC,
there is only one.

HOW FOUND: The first format-5 DSCB on the volume is always the
second DSCB of the VTOC. If there is more than one format-5
DSCB, it will be chained from the previous format-5 DSCB via the
DSSPTRDS field of each format-5 DSCB.

NAME: Shared Extent

FUNCTION: Describes the extents shared by two or more data sets
(split-cylinder extents).

HOH MANY: One for every 26 split-cylinder extents on the VTOC.

HOHW FOUND: The address of the first format-6 DSCB is contained
in the DS4F6PTR field of the format-4 DSCB. If there is more
than one format-6 DSCB on the volume, it will be chained from
the previous format-6 DSCB via the DS6PTRDS field of the
format-6 DSCB.

The DADSM allocate and extend routines assign tracks and NV
cylinders on direct access volumes for new data sets and VSAM

data spaces. The DADSM extend routine obtains additional space

for a data set or VSAM data space that has already exceeded its
original, primary allocation. The DADSM scratch and partial

release routines are used to release space that is no longer

needed on a direct access volume.

The DADSM routines allocate and release space by adding,
deleting, and modifying the DSCBs. When space is needed on a
volume, the allocate routines search the appropriate DSCBs for
enough contiguous, available tracks to satisfy the request. If
there are not enough contiguous tracks, the request is filled
using as many as five noncontiguous groups of free tracks. The
:ppropriate DSCBs are modified to reflect the assignment of the
racks.

When space is released, the scratch routines free the DSCBs of
the deleted data set or data space. For a nonindexed VTOC, to
indicate that the tracks containing the affected data set or
data space can be reallocated, a free space (format-5) DSCB is
built, or modified if existent. For an indexed VTOC, the index
is updated.

The VTOC index is a physical-sequential data set, residing on
the same volume as the VT0C. It contains an index of data set
names of Format—-1 DSCBs in the VT0C, as well as free space
information. The index is searched instead of the hardware keys.

The V¥T0OC index is optional. It can be built over an existing
VIOC and inactivated so that the VTOC is processed without using @
e 1nhnaex. ‘ .

36 MVS/370 System Programming Library: Data Management

Standard Volume Label

)

{4

3

1 1(B)
VOLVTOC
field

{4

VTOC Data Set

Data Set A Data Set B

Description of

and the VTOC

Format-4 DSCB First 5 DSCB

device, volume, 26 available

extents
extent I

Format-1 DSCB 3 — Format-1 DSCB]
Description of o Description of]
the data set and - the data set and

its first 3 extents# wst 3 extents]

Description of

Data Set C
Format-6 DSCB | Next Fonmat5 DSCB F” Format-3 DSCB | Format-1 DSCB 1

—_— e e b — — e — ————

Description of - | Descriptionof [~ Description of :?Description of

as many as 26 as many as 26 L~ the 4th - 16th - data set C and its}
shared-cylinder available extents ﬁ extents of /; first 3 extents A
extents - data set B A

Data Set D

ogat-}_i')'s fgr_nixt-'l_[;SC’._B L
escription of Description of 1
the 4th-16th the data set and 4
xtents of its first 3 extents-|
).
L1¢

DSCB for an ISAM data
set (Data Set A)

Q

7=z

N

DSCB for a

non-ISAM data

set (Data Sets B, C, D)
or a VSAM data space

Figure 1l1. Contents

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-0 DSCBs)

of 'VTOC—DSCBs Describing Data Sets

Each VTOC index is formatted by Device Support Facilities with
physical blocks 2048 bytes in length. These physical blocks are
the VT0C index records (VIRs), the basic structural units of the
index. The kind of information they contain depends on the part
of the index they belong to.

Chapter 2. Managing the Voluma Table of Contents (VTQC) 37

Several different kinds of records, each built from one or more

VIRs, are in a VTI0OC index: ﬁiﬁh

{ i

. The VTOC index entry record (VIER), which is used to access ¥ 4
format-1 DSCBs and the format-4 DSCB

. The VT0C pack space map (VPSM), which shows what space has
been allocated on a disk pack

. The VT0C index map (VIXM), which shows which VIRs have been
allocated in the VT0OC index

. The VT0C map of DSCBs (VMDS), which shows which DSCBs have
been allocated in the VTOC

AN EXAMPLE OF A VTOC AND ITS INDEX

A format-1 DSCB in the VTOC contains the name and extent
information of the VIOC index. The name of the index must be
'SYS1.VTOCIX . xxxxxxxx"', where "xxxxxxxx' can be anything valid
in a data set name and is generally the serial number of the
volume contairing the VT0C and its index. The name must be
unique within the system to avoid ENQ contention. The
relationship of a VIOC to its index is shown in Figure 12. Each
of the components of the index is discussed separately in the
following sections.

VT10C ¥YTOC Index
>
Format—4¢ DSCB VIXM
Format—5 DSCB VPSM A N
VMDS LW
Other DSCBs
VIER
VIER
Format—1 DSCB for the VTOC
Index: SYSl.VTOCIX,nnn ~ VIER

Other DSCBs ‘ .

Figure 12. Relationship of a VTIOC to Its Index

THE VTOC INDEX ENTRY RECORD (VIER)
VIERs have these éharacteri5t€c5=

L] A VIER uses one VIR and contains variable-length index
entries. The number of VIERs in an index is variable,
depending on the number of data sets on the volume.

. VIERs in a VTOC index may be on one or many levels. All
index entries in a VIER are at the same index level. VIERs
have a hierarchic relationship. Index entries in
higher-level VIERs point to lower-level VIERs. Index
entries in level-one VIERs (those at the lowest level) point
to format-1 DSCBs for data sets on the volume.)

. A higher-level VIER is created when the fourth louwer-level
VIER is created. When that new higher-level VIER is filled

38 MVS/370 System Programming Library: Data Management

contents of VIER Fields

with pointers to lower-level VIERs, a new VIER at the same
level is created. Again, when the fourth VIER at the same
level is created, a VIER at a still higher level is created,
adding another level to the index.

Each VIER contains a header and sections (see Figure 13). The
VIER header contains:

A field identifying the VIOC index record as a VIER.

The relative byte address (RBA) of the VIER.

A pointer to a VIER at the same level (hence, a "horizontal"™
pointer). The VIER pointed to contains index entries whose
keys are greater than any key in the pointing VIER.

The level number (LVL) of this VIER.

The number (SECN0O) of sections (a VIER contains eight
sections).

The length (SECL) of the sections (each section is 246 bytes
in length).

The offsets to the first-used and the last-used sections.

The 44-byte high key of the VIER.

Each section contains:

An offset to the last entry in the section (or zero if the
section is empty)

Index entries

0¢(00) EBCDIC Characters "VIER™ —_—
4(04) RBA of This VIER
8(08) Horizontal Pointer
12(0C) 0ld Horizontal Pointer
16(10) LVL FLG1 Reserved Index
Header
20(14) PTRL SECNO SECL)
24(18) 0ffset to First—-Used Section
28(1C) O0ffset to Last—Used Section
32(20) Highest Key in This VIER e
76(4C) Section 1 —
. 8 Sections
. : Containing
. : Index Entries
Section 8 —
0 Figure 13. Format of the VIOC Index Entry Record (VIER)

Chapter 2. Managing the Volume Table of Contents (VT0C) 39

Format of a VTOC Index Entry

The format of an index entry is: ﬁljp
FLG KEYL Unused Record Pointer Key
Name offset Bytes Description
VXEFLG 00(00) 1 Flag byte
VXEKEYL 01¢(01) 1 Length of the VXEKEY field
VXEFC 02(02) 1 Unused
VXERPTR 03(03) 4 or 5 Record pointer
VXEKEY 07¢(07) 1 to 44 Name of a data set, if a
or level—one VIER; if not, the
08(08) high key in the header of a

lower—level VIER

Each index entry contains:
. A flag byte.

. A keylength field (which contains a value of 1 to 44,
depending on the length of the data set name)d.

. A record pointer (VXERPTR) that is one of the following:

- In level-one VIERs, the 5-byte CCHHR of the format-1 or
format-4 DSCB that represents the data set whose name is
the key in the entry

- In other VIERs, the 4-byte RBA of the lower-level VIER
whose high key is the key in the entry
AN
. A key which for level 1 VIERS is the data set name, and for ngﬁ
level 2 or higher VIERs is the high key of a louwer-level =
VIER. Trailing blanks are suppressed in the VT0C index
entry.

Nhen a VIER Is Created

The first level-one VIER is created when the VTOC index is
created. Subsequent VIERs are created when a data set name is
to be added to the VT0C index but the VIER to which it should be
added is full. A new VIER is created in the following manner:

. A new VIER is allocated.

. Half of the sections from a full VIER (those containing the
highest keys) are moved into the new VIER, leaving each VIER
half empty. :

. The new index entry is added to one of the two VIERs,
depending on its key.

A Tree of Linked VIERSs

Figure 14 on page 41 shows how VIERS are related to each other.
Note that the VIERs (which are simplified here—only the high
key is shown in the header) form a type of "tree structure."

How & Format-1 DSCB Is Found

In the search for the format-1 DSCB for a particular data set,
one path along the tree structure is folloued. ﬁ(:x

”

As seen in Figure 13 on page 39, a field in the header of a VIER
contains the highest key of any index entry in that VIER.

40 MVS/370 System Programming Library: Data Management

C

™,

Beginning with this field in the first high-level VIER, the
following search logic is used: Is the key of the data set (the

Chapter 2. Managing the Volume Table of Contents (VTOC) 40.1

VIER VIER
High Key =———{ M32107.LIB 44X°FF’ Level-2
VIERs
. —4 B41103.TEST SYS1.MACLIB
Entries M32107.LIB [44X'FF
)
Y Y \
VIER VIER VIER | vier
B41103.TEST M32107.L18 SYS1.MACLIB A4XFF’ Level-1
? VIERs
44x°04' SYS1.VTOCIX.A
A11307.CLIST &%‘;ﬁ;‘i’:ﬂs X.Y.Z. Dummy Last
B0102.DATA : 44X°FF" « Entry in
- VTOC Index

Format-1 DSCBs
in the VTOC -

breeeseeeee. FOrmat-4 DSCB in the VTOC

Figure 16. Structure of Linked VIERs

data set name) lower than or equal to the VIER's high key? 1If
neither, the test is again applied with the VIER having a
greater high key pointed to by the horizontal pointer. This
procedure continues until a VIER is found having a high key that
is greater than or equal to the key of the data set.

Comparisons are then made with the entries in the VIER's
sections. Eventually, an entry is found with a key greater than
or equal to the data set key. This entry points to a VIER at
the next-lower level.

The search proceeds to successively lower levels until an entry
in a level-two VIER is found whose key is greater than or equal
to the key of the data set. This entry points to a level-one
VIER that, in turn, contains an entry with a key that is equal
to the data set key and that points to the format-1 DSCB for the
desired data set.

SPEC‘iBI cases in the Search for a DSCB
If there is only one level in the VTOC index, the entries in the
VIERs all point to format-1 DSCBs, so only one level need be
searched.
If an update to the VTOC index requires a new VIER and the

update is interrupted (for example, because of an I/0 error or a
system failure), the entry in the level-n VIER may contain a key

Chapter 2. Managing the Volume Table of Contents (VTOC) 41

that is greater than the high key in the lower-level VIER
pointed to by that entry. In this case, two VIERs at level n-1
may have to be searched. This situation is corrected when DADSM
next processes the volume.

THE VTOC PACK SPACE MAP (VPSM)

The VPSM accounts for space on a disk pack. It shows what space
on the volume has been allocated and what space remains free.

The map contains bit maps of the cylinders and tracks on the
volume. A value of one indicates that the cylinder or track has
been allocated; a value of zero, that it has not been allocated.
The bit representing a cylinder is set to zero if no tracks on
the cylinder have been allocated; it is set to one if any track
has been allocated. Tracks assigned as alternate tracks are
marked as allocated.

The VPSM replaces the chain of format-5 DSCBs, but one empty
format-5 DSCB is left in the VTOC to allow for conversion back
to a nonindexed VTOC, a process that requires reconstruction of
a format-5 DSCB chain.

The format of an index map (including the VPSM) is shown in

Figure 15.
00C¢00> ID of This Map
04(04) RBA of This Map

03(08) Horivzontal Pointer to Next VIR

12(0C) Sequence Number o! First Entry

16(10) VRFDA VRFO
20(14) FLG1 LUF1 LUOF
264(18) Size of Large Unit Map
28(1C) SUF1 SUBIT SUOF
32(20) Size of Small Unit Map
36(24) Reserved VIR
40(28) RBA of First High—Level VIER

Large Unit Map
(VTOC Pack Space Map Only)

Small Unit Map

VT0C Recording Facility Data
(VTOC Index Map Only)

Figure 15. An Index Map

THE VTOC INDEX MAP (VIXM)
The VIXM contains a bit map in which each bit represents one

VT0C index record (VIR). The status of the bit indicates
whether the VIR is allocated (1) or unallocated (0).

42 MVS/370 System Programming Library: Data Management

An area of the VIXM is reserved for VT0OC recording facility
(VRF) data. (This is the facility that allows detection of and
recovery from certain errors in an indexed VT0C.)

A field in the first VIXM record points to the first high-level
VIER. Another field in the first VIXM record (VIR in Figure 16)
contains the number of VTOC index records which contain all the
space maps.

THE VTOC MAP OF DSCBS (VMDS)

The YVMDS contains a bit map in which each bit represents one
DSCB in the VTOC. The status of the bit indicates whether the
DSCB is allocated (1) or unallocated (0).

Name
VIMAP
VIMH
VIMID

VIMRBA
VIMHZPTR

VIMORG
VIMYRFDA

VIMVRFO
VIMFLG1

VIMVRFSW -

VIMLUF1
VIMLUOF

VIMLUSZ
VIMSUF1
VIMSUBIT
VIMSUOF
VIMSUSZ

VIMVIR
VIMFHLV

VIMLUMAP
VIMSUMAP
VIMVRF

Offset
00¢00)
00C(00)
00¢00)

04(04)
08(03)

12(0C)
16(10)

18(12)
20(14)
21(15)
22(16)
24(18)
28(1C)
29(1D)
30(1E)
32(20)
36(24%)
39(27)
40(28)
46(2C)

mm

PP

Bytes Description

2048 VTO0C map
44 VT0C map header
4 Map ID in EBCDIC ('VPSM',
TVIXM', or 'VYMDS')
RBA of this map)
Horizontal RBA pointer to
next VIR of this map
Sequence number of the
first entry in the map
O0ffset to current VRF data
(if VIMVRFSW=1) or offset
where VRF data may be
written (if VIMVRFSW=0),
(first VIXM only)
Offset to VRF area (first
VIXM VIR only)
Flag byte
cee sewe VRF data exists if 1
o XXX XAXX Reserved
Large unit flag byte
O0ffset into VIR of large
unit map (zero if none)
Size in bits of large unit map
Small unit flag byte
Number of small unit bits per
large unit (zero if none)
O0ffset into VIR of small unit
map
Size in bits of small unit map
Reserved
Number of map records (VIXM only)
RBA of first high-level VIER
(VIXM only)
Large unit map (kk is VIMLUSZ/8,
rounded up)
nn Small unit map (mm is VIMSUOF, nn
is VIMSUSZ/8, rounded up)
qq VRF area (pp is VIMVRFO, aq is
remainder of first VIXM)

- N N & &h

DEUD N S N

x
=

Figura 16. The Format of a VTOC Map

STRUCTURE OF AN INDEXED VTOC

An indexed VTOC is identical to a nonindexed VT0OC, except that
for an indexed VTOC only a single format-5 DSCB exists and is
empty, and certain format-4 DSCB data (the number of format-0
DSCBs and the CCHHR of the highest format-1 DSCB) is not
maintained by DADSM. The DO0S bit (bit 0 in field DS4VT0CI), set

Chapter 2. Managing the Volume Table of Contents (VTOC) 43

to one in the format-4 DSCB, indicates that these fields (as
well as the format-5 DSCB) cannot be relied on. The index bit
(bit 7 in field DS4VTOCI) is set in the format-4 DSCB; it
indicates that a VTI0C index exists.

SCRATCH/RENAME/ALLOCATE RESTRIOTiONS

A VTOC index data set may not be scratched if the VT0C index is
active. Neither may a VI0OC index data set be renamed if the
VTOC index is active, unless it is being renamed to another name
beginning with 'SYS1.VTOCIX.'. A data set may not be renamed to
a name beginning with 'SYS1.VTOCIX.' if there is already such a
data set on the volume. Only one data set whose name begins
with "SYS1.VTOCIX.' may be allocated on a volume.

CREATING THE VTOC AND VTOC INDEX

To prepare a volume for use (to initialize it), the Device
Support Facilities utility is used. One of the things this
utility does is to build the VTI0C. After initialization, this
VTO0C will contain a format-4 DSCB and a format-5 DSCB. For a
nonindexed VTOC, the format-5 DSCB contains an extent entry for
all the free space on the volume; the initial number of extents
in the format-5 DSCB is one or two, depending on where the VTOC
is located on the volume. If the VIOC is located somewhere
other than at the beginning or end of the volume, two extent
entries are needed to describe the free space that precedes and
follows it. For an indexed VT0C, the format-5 DSCB contains a
zero.

A VTI0C index can be created when a volume is initialized by
using the Device Support Facilities command INIT and specifying
the INDEX key word.

A nonindaexed VTOC can be converted to an indexed VYOC by using
the command BUILDIX and specifying the IXVT0C keyword. The
reverse is also possible by using the BUILDIX command and
specifying the 0SVT0C keyword.

For more detailed information, refer to Device Support
Facilities User's Guide and Reference.

TECTING A VTOC AND VTOC INDE

RESOURCE ACCESS CONTROL FACILITY (RACF)

You can protect the VTOC and VTOC index by using the Resource
Access Control Facility (RACF). This is done by defining the
volume serial entity under the RACF class DASDVOL. A user must
be authorized to the DASDVOL/volume serial entity at the
following levels:

. At the UPDATE level, to open the VTOC for output processing

. At the UPDATE level, to open for output processing any data
set whose name begins with "SYS1.VTOCIX."*

. At the ALTER level, to allocate, rename, or scratch any data
set whose name begins with '"SYS1.VTOCIX."'

. At the ALTER level, to rename a data set to any name that
begins with 'SYS1.VTOCIX.®

Neither the VTOC nor the VTOC index is protected from being
openad for input processing by the DASDVOL/volume serial entity.

Note that neither the VT0C nor the VTOC index can be protected
through the RACF class DATASET.

44 MVS/370 System Programming Library: Data Management

AUTHORIZED PROGRAM FACILITY (APF] REQUIREMENTS

» A program must be adthorized by the authorized program facility
' (APF) to perform any of the following functions:

PASSWORD PROTECTION

Opening a VTOC for output processing

Opening for output processing a data set whose name begins
with 'SYS1.VTOCIX."

Allocating, renaming, or scratching any data set whose name
begins with 'SYS1.VTOCIX.'

Renaming a data set to any name that begins with
SYS1.VTOCIX.

The VT0OC index data set may be password protected. The

protection is the same as for any password-protected data set.
Password checking is bypassed if the volume on which the VTOC
index resides is protected by RACF through the DASDVOL class.

COPY/RESTORE/INITIALIZE REQUIREMENTS

OPERATIONS ON VOLUMES CONTAINING AN UNINDEXED VTOC

Restoring a Volume from a Dump Tape. There are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the
VTOC. If you do a restore and change the VT0C size without
changing the volume serial number, the volume must be varied
offline after it is restored. You should not do a restore
on a volume with an indexed VTOC.

Copving a Volume. There are no operational requirements if
vou change the volume serial number or do not modify the

~VTOC of the receiving volume. If you do a copy and change

the VT0C size without changing the volume serial number, the
volume must be varied offline after it is copied. You
should not do a copy from a volume with an indexed VTOC.

OPERATIONS ON VOLUMES CONTAINING AN INDEXED VTOC

You should use Device Support Facilities to convert a VIOC to a
nonindexed format to update the volume. If you do not, take
note of the following information:

Initializing a8 Volume. If you do not change the volume
serial number, the volume should be varied offline before
starting the job.

Restoring a Volume from a Dump Tape. There are no
operational requirements 1f you change the volume serial
number or do a partial restore that does not modify the VTOC
or VIOC index. If you do a restore and modify the VI0C or
VTOC index without changing the volume serial number, the
volume should be varied offline after it is restored.

Copving a Volume. There are no operational requirements if
you change the volume serial number of the receiving volume
or do a partial dump without modifying the VI0C or VTOC
index. If vou modify the VIOC or VIOC index without
changing the volume serial number, the receiving volume
should be varied offline after it is copied.

Shared DASD Considerations. In shared DASD environments,

whenever the VIOC index is modified or relocated, or the
volume is changed from indexed VTOC to 0S5 VTOC, or from 0S

Chapter 2. Managing the Volume Table of Contents (VTOC) 45

VTOC to indexed VTOC, the device should be varied offline to
~the sharing system or systems.

USING THE OBTAIN, SCRATCH, AND RENAME MACROS

This section tells how to use the OBTAIN, SCRATCH, and RENAME
macro instructions. These macros are most commonly used by the
operating system and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own
routines. The functions you can perform with these macros are:

° Reading a data set control block from the VTOC—OBTAIN
. Deleting a data set—SCRATCH
L Changing the name of a data set—RENAME

You can read a data set control block (DSCB) into virtual
storage by using the OBTAIN and CAMLST macro instructions.

There are two ways to specify the DSCB that you want to read: by
using the name of the data set associated with the DSCB, or by
using the absolute track address of the DSCB. You must provide
a 140-byte data area in virtual storage, into which the DSCB
will be read. When you specify the name of the data set, an
identifier (format-1 or format-4) DSCB is read into virtual
storage. To read a DSCB other than a format-l or a format-¢
DSCB, you must specify an absolute track address (see "Example™
on page 48). (DSCB formats and field descriptions are contained
in Debugging Handbook.)

You can delete a non-VSAM data set by using the SCRATCH and
CAMLST macro instructions. This causes the DSCBs for the data
set to be deleted.

You can change a data set name by using the RENAME and CAMLST
macro instructions. This causes the data set name in the
format-1 DSCB for the data set to be replaced with the new name.

Accompanying the descriptions of the macro instructions are
coding examples, programming notes, and exception return code
descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot be
used with a SYSIN or SYSOUT data set.

READING A DSCB BY NAME (OBTAIN AND CAMLST SEARCH): If you
specify a data set name using OBTAIN and the CAMLST SEARCH
option, the 96-byte data portion of the identifier (format-1)
DSCB and the absolute track address of the DSCB are read into
virtual storage. The absolute track address is a 5-byte field
in the form CCHHR. The absolute track address field will
contain zeros for VSAM and VIO data sets.

The format is:

[symboll OBTAIN listname-addrx
listname CAMLST SEARCH
sdsname-relexp
svol-relexp
suwkarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEARCH
this operand must be coded as shoun.

46 MVS/370 System Programming Library: Data Management

/3
\

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long.

Note: A DSNAME of 44 bytes of X'06' (X'040404...064') can
be used to read a format-%¢ DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work
area that you must define.

Example: In the following example, the identifier (format-1)
DSCB for data set A.B.C is read into virtual storage using the
SEARCH option. The serial number of the volume containing the
DSCB is 770655.

OBTAIN DSCBABC READ DSCB FOR DATA
* SET A.B.C INTO DATA
¥* AREA NAMED WORKAREA

Check Return Codes
DSCBABC CAMLST SEARCH,DSABC, VOLNUM, WORKAREA

DSABC DC CL4G'A.B.C' DATA SET NAME
VOLNUM DC CL6'770655" VOLUME SERIAL NUMBER
WORKAREA DS 140C 140-BYTE WORK AREA

The OBTAIN macro instruction points to the CAMLST macro
instruction. SEARCH, the first operand of CAMLST, specifies
that a DSCB be read into virtual storage, using the data set
name vou have supplied at the address indicated in the second
operand. DSABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of the data set whose format-1 DSCB is
to be read. VOLNUM, the third operand, specifies the virtual
storage location of a 6-byte area into which you have placed the
serial number of the volume containing the required DSCB.
WORKAREA, the fourth operand; specifies the virtual storage
location of a 140-byte work area into which the DSCB is to be
returned.

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into vour work area, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes:

Code Meaning
4(04) The required volume was not mounted.

8(08) The format-1 DSCB was not found in the VTOC of the
specified volume.

12(0C) A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing the specified
volume, or an unexpected error return code was received
from CVAF (Common VTOC Access Facility).

16C(10) Invalid work area pointer.
After execution of these macro instructions, the first 96 bytes

of the work area contain the data portion of the identifier
(format-1 or format-4) DSCB; the next 5 bytes contain the

Chapter 2. Managing the Volume Table of Contents (VT0C) 47

absolute track address (CCHHR) of the DSCB. These 5 bytes will
contain zeros for VSAM or VIO data sets.

READING A DSCB BY ACTUAL DEVICE ADDRESS (OBTAIN AND CAMLST @i}p
SEEK): You can read any DSCB from a VTOC using OBTAIN and the '
CAMLST SEEK option. You specify the SEEK option by coding SEEK

as the first operand of the CAMLST macro and by providing the

absolute device address of the DSCB you want to read, unless the

DSCB is for a VIO data set. Only the SEARCH option can be used

to read the DSCB of a VIO data set.

The format is:

[symboll OBTAIN listname-addrx
listname CAMLST SEEK
srcchhr-relexp
svol-relexp
swkarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEEK
this operand must be coded as shown.

cchhr-relexp
specifies the virtual storage location of the 5-byte

absolute device address (CCHHR) of a DSCB.
vol-relexp

specifies the virtual storage location of the é6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp AN
specifies the virtual storage location of a 140-byte work w%JV

area that you must define.

Example: In the following example, the DSCB at actual~device
address X'00 00 00 01 07' is returned in the virtual storage
location READAREA, using the SEEK option. The DSCB resides on
the volume with the volume serial number 108745.

OBTAIN ACTADDR READ DSCB FROM
LOCATION SHOWN IN CCHHR
INTO STORAGE AT LOCATION
NAMED READAREA

X X X

Check Return Codes
ACTADDR CAMLST SEEK, CCHHR,VOLSER,READAREA

CCHHR DC XL5'0000000107' ABSOLUTE TRACK ADDRESS
VOLSER DC CL6'108745" VOLUME SERIAL NUMBER
READAREA DS 140C 1460-BYTE WORK AREA

The OBTAIN macro points to the CAMLST macro. SEEK, the first
operand of CAMLST, specifies that a DSCB be read into virtual
storage. CCHHR, the second operand, specifies the storage
location that contains the 5-byte actual-device address of the
DSCB. VOLSER, the third operand, specifies the storage location
that contains the volume serial number of the volume on which
the DSCB resides. The fourth operand, READAREA, specifies the
storage location to which the 140-byte DSCB is to be returned.

Control will be returned to your program at the next executable Q;;D

instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into your work area, register 15 will

48 MVS5/370 System Programming Library: Data Management

contain zeros. Otheruwise, register 15 will contain one of the
following return codes:

Code Meaning
4(04) The required volume was not mounted.

8(08) The format-1 DSCB was not found in the VTOC of the
specified volume.

12¢(0C) A permanent I/0 error mas encountered or an unexpected
error return code was received from CVAF.

16(10) Invalid work area pointer.

20(14) The SEEK option was specified and the absolute track
eggress (CCHH) is not within the boundaries of the
C.

DELETING A DATA SET (SCRATCH AND CAMLST SCRATCH): You delete a
non-VSAM data set by using the SCRATCH and CAMLST macro
instructions. This causes all data set control blocks (DSCBs)
for the data set to be deleted, and all space occupied by the
data set to be made available for reallocation. If you want to
scratch a data set being processed using virtual input/output
(VIO0), the data set must have been allocated for use by your
jg?. gcratching VI0 data sets not allocated to your job is not
allowed.

If the data set to be deleted is sharing one or more cylinders
with one or more data sets (a split-cylinder data set), the
space Will not be made available for reallocation until all data
sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the
identifier (format-1) DSCB has not passed, unless you choose to
ignore the expiration date. You specify that the expiration
date is to be ignored by using the OVRD option in the CAMLST
macro instruction.

For information on RACF-defined data sets, see Resource Access
Control Facility (RACF): General Information Manual. You may
only scratch a RACF-defined data set (that is, the DSCB
indicates RACF-defined) if you have alter access authority to
either the data set/volume serial in the DATASET class, or to
the volume serial in the DASDVOL class (if the volume is
RACF-defined).

If a data set to be deleted is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. In addition, all other
required volumes must be serially mountable.

When deleting a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte scratch status code which should be
initialized to zero. Device codes are presented in Debugging
Handbook in the description of UCBTYP.

If the space to be deleted is a V5AM data space, you must use
the DELETE command provided by access method services. For
complete information about the DELETE command, see Access Method

Services Reference.

Volumes are processed in the order that they appear in the
volume list. The volume at the beginning of the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting a volume be mounted. (A
volume mount message will not be issued for a mass storage
system (MSS) virtual volume; however, a status code will be
returned to your program.) This is only done if register 0 has

Chapter 2. Managing the Volume Table of Contents (VTOC) 49

been loaded with the UCB associated with the device on which

unmounted volumes are to be mounted. (The device must be

allocated to your job.) If you do not load register 0 with a a’
UCB address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH

macro instruction is issued.

If the requested volume cannot be mounted, the operator issues a
reply indicating that the request cannot be fulfilled. A status
code is then set in the last byte of the volume pointer (the
second byte of the scratch. status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed.

The format is:

[symboll SCRATCH | listname-addrx
listname CAMLST SCRATCH
sdsname-relexp

ssvol list-relexp
[,,0VRD]

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SCRATCH
this operand must be coded as shoun.

dsname-relexp
specifies the virtual storage location of a fully qualitied
data set name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type define
constant (DC) instruction. -

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary. : '

OVRD .
when coded as shown, specifies that the expiration date in
the DSCB should be ignored.

Example: In the following example, data set A.B.C is deleted
from two volumes. The expiration date in the identifier
(format-1) DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO

SCRATCH DELABC DELETE DATA SET A.B.C
FROM TWO VOLUMES,
IGNORING EXPIRATION
DATE IN THE DSCB

Check Return Codes and SCRATCH Status Codes
DELABC CAMLST SCRATCH, DSABC,.VOLIST,,OVRD

X X X

DSABC DC CLGGTA. DATA SET NAME

VOLIST DC H'2" NUMBER OF VOLUMES
DC X'30C0200D" 3330 DISK DEVICE CODE
DC CL6'000017" VOLUME SERIAL NO.
DC H'O? SCRATCH STATUS CODE
DC X'30C0200D" 3330 DISK DEVICE CODE
DC - CL6'000018" VOLUME SERIAL NO.
DC H'O' SCRATCH STATUS CODE

50 MVS/370 System Programming Library: Data Management

The SCRATCH macro instruction points to the CAMLST macro
instruction. SCRATCH, the first operand of CAMLST, specifies
that a data set be deleted. DSABC, the second operand,
specifies the virtual storage location of a 44-byte area into

Chapter 2. Managing the VYolume Table of Contents (VTOC) 50.1

W

which you have placed the fully qualified name of the data set
to be deleted. VOLIST, the fourth operand, specifies the
virtual storage location of the volume list you have built.
OVRD, the sixth operand, specifies that the expiration date in
the DSCB of the data set to be deleted be ignored.

When you attempt to delete a password-protected data set which
is not also RACF-protected, the operating system issues a
message (IEC301A) to ask the operator at the console or terminal
operator of a remote console to enter the password. The data ‘
set will be scratched only if the password supplied is
associated with a WRITE protection mode indicator. The
protection mode indicator is described under "Chapter 5.
Passuword Protecting Your Data Sets™ on page 113.

Control is returned to your program at the next executable
instruction following the SCRATCH macro instruction. If the
data set has been successfully deleted, register 15 will contain
zeros and the scratch status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes that follow. To determine
whether the data set has been successfully deleted from each
volume on which it resides, you must examine the scratch status
code, the last byte of each entry in the volume list.

Code Meaning

4(04) No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set. The data set may be a VIO data set that was
not allocated during your job. (This return code is
accompanied by a scratch status code of 5 in each entry
of the volume list.)

8(08) An unusual condition was encountered on one or more
volumes.

12¢0C) The volume list passed was invalid. The scratch status
code, the last byte of each volume list entry, will not
have been modified during scratch processing.

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte entry in the volume list indicates the following
conditions in binary codes:

scratch

Status

Code Meaning

0 All DSCBs for the data set have been deleted from the
VT0C on the volume pointed to.

1 The VT0C of this volume does not contain the format-1
DSCB for the data set to be deleted.

2 The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or an
attempt was made to scratch a VSAM data space or data
set cataloged in an ICF catalog.

3 The data set was not deleted from this volume because
either the OVRD option was not specified or the
retention cycle has not expired.

4 A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing this volume,
gsAgn unexpected error return code was received from

5 It could not be verified that this volume was mounted,

and no device was available on which this volume could
be mounted.

Chapter 2. Managing the Volume Table of Contents (VTOC) 51

Scratch

Status
code Meaning _ ™
6 The operator was unable to mount this volume. For WMJV
MSS, a volume mount failure occurred. For a
JES3-managed virtual volume, JES3 would not allow the
volume to be mounted.
7 The specified data set could not be scratched because
it was being used.
8 The DSCB indicates the data set is defined to RACF but

either the accessor is not authorized to the data set
or to the volume, or the data set is a VS5AM data
space, or the data set is cataloged in an ICF catalog,
or the data set is not defined to RACF.

9 The data set is defined to RACF but its definition
could not be deleted by RACF.

RENAMING A DATA SET (RENAME AND CAMLST RENAME): You rename a
data set that is not cataloged in an ICF or VSAM catalog by
using the RENAME and CAMLST macro instructions. This causes the
data set name in all format-1 DSCBs for the data set to be
replaced by the new name that yvou supply. (VIO data sets cannot
be renamed.)

If a data set to be renamed is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. 1In addition, all other
volumes of the data set must be serially mountable.

For information on RACF-defined data sets, see Resource Access

Control Facility (RACF): General Information Manual. Only an

accessor with alter access authority may rename a RACF-defined _
data set. (m”w

When renaming a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte volume list entry consists of a ¢-byte device code, a
6-byte volume serial number, and a 2-bvte rename status code
which should be initialized to zero. Device codes are presented
in Debugging Handbook. Volumes are processed in the order in
which they appear in the volume list. The first volume on the
list is processed first. If a volume is not mounted, a message
is issued to the operator requesting that the volume be mounted.
(A volume mount message will not be issued for an MS5S volume;
‘however, a status code will be returned to your program.) This
is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with
the address of the UCB associated with the device to be used.
(The device must be allocated to your job.) If you do not load
register 0 with a UCB address, its contents must be zero, and at
least one of the volumes in the volume list must be mounted
before the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, a
reply is issued that the request cannot be fulfilled. A status
code is then set in the last byte of the volume list entry (the
second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed or requested.

52' MVS/370 System Programming Library: Data Management

e

The format is:

[symboll RENAME listname-addrx
listname CAMLST RENANME
sdsname-relexp
snew name-relexp
svol list-relexp

listname-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

RENAME
this operand must be coded as shoun.

dsname-relexp
specifies the virtual storage location of a fully qualified

data set name to be replaced. The area that contains the
name must be 44 bytes long. The name must be defined by a
C-type define constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified

data set name that is to be used as the new name. The area
that contains the name must be 44 bytes long. The name
must be defined by a C-type Define Constant (DC)
instruction.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

Example: In the following example, data set A.B.C is renamed
D.E.F. The data set resides on two volumes.

SR 0,0 SET REG 0 TO ZERO
RENAME DSABC CHANGE DATA SET
NAME A.B.C 70 D.E.F
Check Return Codes and RENAME Status Codes

DSABC CAMLST RENAME,OLDNAME, NEWNAME, VOLIST

OLDNAME DC CL44'A.B.C' OLD DATA SET NAME
NEWNAME DC CL44'D.E.F" NEW DATA SET NAME
VOLIST DC H'2"' TWO VOLUMES

DC Xr3o0co0200D" 3330 DISK DEVICE CODE

DC CL6'000017" VOLUME SERIAL NO.

DC H'O! RENAME STATUS CODE

DC X*30C0200D" 3330 DISK DEVICE CODE

DC CL6'000018" VOLUME SERIAL NO.

DC HYO" RENAME STATUS CODE

The RENAME macro instruction points to the CAMLST macro
instruction. RENAME, the first operand of CAMLST, specifies
that a data set be renamed. OLDNAME, the second operand,
specifies the virtual storage location of a 44-byte area into
which you have placed the fully qualified name of the data set
to be renamed. NEWNAME, the third operand, specifies the
virtual storage location of a 44-byte area into which you have
placed the new name of the data set. VOLIST, the fourth
operand, specifies the virtual storage location of the volume
list you have built.

Chapter 2. Managing the Volume Table of Contents (VTOC) 53

Control is returned to your program at the next executable ‘
instruction following the RENAME macro instruction. If the data dpﬁ\
set has been successfully renamed, register 15 will contain YV
zeros, and the rename status code in the volume list entry for)
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes below. To determine whether thae
data set has been successfully renamed on each volume on which
it resides, you must examine the rename status code, the last
byte of each entry in the volume list.

Code Heaning

" 6(04) - No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set to be renamed. The data set may be a VI0 data
set, which can't be renamed. (This return code is
accompanied by a rename status code of 5 in each entry
of the volume list.) :

8(08) An unusual condition was encountered on one or more
volumes.

12¢0C) The volume list passed was invalid. The rename status
code, the last byte of each volume list entry, will not
have been modified during rename processing.

After the RENAME macro. instruction is executed, the last byte of
each 12-byte entry in the volume list 1ndlcates one of the
folloulng condltlons in binary code:

Rename

status

Code Meaning

Y v The format—-1 DSCB for the data set has been renamed in ((N%

‘ the VT0C on the volume pointed to. W

1 The VT0C of this volume does not contain the format-1
DSCB for the data set to be renamed.

2 ~ The macro instruction failed when the correct password

: was not supplied in the two attempts allowed, or the
user tried to rename a VSAM data space or VSAM data
set cataloged in an ICF catalog.

‘3 A data set with the new name already exists on this
‘ volume.’

% . A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when trying to rename the data
set on this volume, or an unexpected error return code
was received from CVAF.

'5 It could not be verified that the volume was mounted,
and no device was available on which the volume could
‘be mounted.

6 The operator was unable to mount this volume. For
MSS, a volume mount failure occurred. For a
JES3I-managed virtual volume, JES3 would not allow the
volume to be mounted.

7 The specified data set could not be renamed on this
volume because it was being used.

8 - The data set is defined to RACF but either the
Cow accessor is not alter authorized to the data set or
the data set is defined to RACF on multiple volumes.

o
When you attempt to rename a password-protected data set, the 4;)%
operating system issues a message (IEC301A) to ask the operator
or remote console operator to verify the password. The data set
Wwill be renamed only if the password supplied is associated with

‘54 MVS/370 System Programming Library: Data Management

a WRITE protection moda indicator. Thae protection mode
indicator is described under "Chapter 5. Password Protecting
0) Your Data Sets™ on page 111.

USING VTOC ACCESS MACROS
VT0C access macros enable you to:

L Determinae whether a UCB points to an indexed VTOC (the
CVAFTST macro)

. Directly access DSCBs and VT0C index records (tha CVAFDIR
macro)

° Read DSCBs in physical-sequential order, beginning with the
DSCB you specify (the CVAFSEQ macro)

. Read DSCBs in data-set-name order using the VIOC index (the
CVAFSEQ macro)

o Obtain free spaca information from each of the three index
maps (the CVAFDSM macro)

If your program is unauthorized, you must open the VTOC to
supply a DEB address, created by SAM or EXCP, to the CVAFDIR,
CVAFDSM, or CVAFSEQ macros; the status of the VTOC will then be
determined by CVAF and indicated in the CVPL by the CV1IVT bit.
In the sections that follow, VI0C access macros are described in
general terms. Their syntax is explained in "Appendix A. VT0C
Access Macros™ on page 184.

OVERVIEN OF THE CVAFTST MACRO

‘:jb The CVAFTST macro determines whether the system supports an

indexed VTOC, and, if it does, whether the VIOC on the unit
whose UCB is supplied is indexed or nonindexed.
You will get a return code of 12 if CVAFTST cannot determine
whether an indexed or nonindexed VT0C is on the unit's volume.
You should not receive a return code of 12 from CVAFTST if you
have opened a data set (including the VT0C) on the volume.
You need no authorization to issue the CVAFTST macro.
The syntax of CVAFTST is explained in "Appendix A. VTOC Access
Macros™ on page 184. Return codes are explained in "Appendix C.
Return Codes from VIOC Access Macros" on page 221.

OVERVIEW OF THE CVAFDIR MACRO

:or an indexed or nonindexed VTOC, thé CVAFDIR macro may be used
[\

. Read or write a DSCB by specifying the name of the data set
it represents

. Read or uwrite a DSCB by specifying its address
In addition, for an indexed VI0C, the macro may be used to:
. Read or write VIOC index records

. Read and retain in virtual storage the first high-level
VIER, and VIERs used during an index search.

0 L Read and retain in virtual storage the space map VIRs

L Free VIRs retained in virtual storage

Chaptér 2. Managing the Volume Table of Contents (VTOC) 55

The syntax of CVAFDIR is explained in "Appendix A. VTOC Access
Macros™ on page 184. A description of how to use it is under N
"How to Use the CVAFDIR Macro™ on page 59. C(ﬂﬁ

OVERVIEW OF THE CVAFSEQ MACRO

The CVAFSEQ macro may be used to:

. Regd an indexed VTOC sequentially, in data-set-name (DSN)
order

. Read an indexed VT0C or a nonindexed VTOC in
physical-sequential order

A description of how to use it is under "How to Use the CVAFSEQ
Macro™ on page 62.

The syntax of CVAFSEQ is explained in "Appendix A. VTOC Access
Macros™ on page 184%.

OVERVIEW OF THE CVAFDSM MACRO

BUFFER LISTS

Buffer List Header

The CVAFDSM macro may be used for an indexed VTOC to:

. Obtain one or more extents that describe unallocated space
on the volume

. Obtain a count of free DSCBs on the VTOC
. Obtain a count of free VTOC index records in the VTOC index.

The syntax of CVAFDSM is explained in "Appendix A. VT0C Access
Macros™ on page 184. A description of how to use it is under
"How to Use the CVAFDSM Macro"™ on page 63. 7,

A buffer list consists of one or more chained control blocks,
each with a header and buffer list entries. The header
indicates whether the buffer list is for DSCBs or VTOC index
records. The entries point to and describe the buffers.

Buffer lists can be created in two ways:

. Directly, when vou fill in the arguments and buffer
addresses of DSCBs or VIRs to be read or written

. Indirectly, when you code the IXRCDS=KEEP andZor MAPRCDS=YES
keywords

The header of the buffer list indicates whether the buffer list
describes buffers for DSCBs or VT0C index records. The DSCB bit
must be set to one and the VIR bit must be set to zero in order
for CVAF to process a request to read or write a DSCB. The
protect key and subpool fields in the buffer list header are
used by CVAF only if ACCESS=RLSE is coded.

The buffer list header contains a count of the number of entries
in the buffer list.

The forward chain address is used to chain buffer lists
together. DSCB buffer lists must not be chained to VIR buffer
lists and VIR buffer lists must not be chained to DSCB buffer

lists. O
The format of the buffer list header is shown in Figure 17 on
page 57.

56 MVS/370 System Programming Library: Data Management

Buffer List Entry

Name Offsat Bytes bDescription

BFLHDR 0¢00) 8 Buffer list header

BFLHNOE 0¢00) 1 Number of entries

BFLHFL 1(01) 1 Flag byte and key

BFLHKEY XXX oo Protect key of buffer

. list and buffers

BFLHVIR ceee Yoo Buffer list entries
. describe VIRs

BFLHDSCB ceee 1. Buffer list entries

describe DSCBs

BFLHRSV6 I Reserved

BFLHRSV? ceee seeX Reserved

BFLHRSV 2(02) 1 Reserved

BFLHSP 3(03) 1 Identifies the sub-

pool of buffer list
and buffers

BFLHFCHN 4(04) 4 Forward chain address
of next buffer list

Figure 17. Format of a Buffer List Header

A buffer list contains one or more entries. Each entry provides
the buffer address, the length of the DSCB or VIR, the argument,

gndHan indication whether the argument is an RBA, a TTR, or a
CHHR.

The fields and bit uses are listed below.

. For a VIR buffer, the TTR and CCHHR bits must be 0 and the
RBA bit must be 1.

U For a DSCB buffer, the RBA bit must be 0, and only one of
the TTR or CCHHR bits may be set to 1.

. The BFLEAUPD bit is an output indicator from CVAF that the
BFLEARG field of a VIR buffer list was updated.

L The BFLEMOD bit indicates that a VIR buffer was modified and
must be written; if no BFLEMOD bits are on in any of the
entries for a CVAFDIR ACCESS=WRITE, all buffers are uritten.

. The BFLESKIP bit is used to cause an entry to be ignored.

. The BFLEIOER bit is an output indicator from CVAF to
indicate an 170 error occurred during reading or writing of
the DSCB or VIR.

. The BFLELTH field is the length of the buffer; for a DSCB
buffer, the length must be 96 or 140; for a VIR buffer, the
length must be the length of the buffer divided by 256.

. The BFLEARG field is the argument of the DSCB or VIR; the
three possible formats of the 5-byte field are:

- CCHHR=5 byte CCHHR
- TTR=0TTRO
- RBA=0One byte of 0 followed by a G-byte RBA

The format of the buffer list entry is shown in Figure 18 on
page 58.

Chapter 2. Managing the Volume Table of Contents (VT0OC) 57

Name offset Bytes Dascription \@

BFLE 0¢00) 12 Buffer list entry

BFLEFL 0C¢00) 1 Flag byte

BFLERBA 1., ... Argument is RBA

BFLECHR I Argument is CCHHR

BFLETTR R Argument is TTR

BFLEAUPD el ... CVAF updated argument
field

BFLEMOD eeee oo Data in buffer has
been modified

BFLESKIP P Skip this entry

BFLEIOER cees oal. I1/0 error

BFLERSV7Y saee seaX Reserved

BFLERSV 1¢(01) 1 Reserved

BFLELTH 2(02) 1 Length of VIR buffer

divided by 256 or
length of DSCB buffer

BFLEARG 3(03) 5 Argument of VIR
. or DSCB
BFLEATTR 4(06) 3 TTR of DSCB
BFLEARBA 4(04) % RBA of VIR
BFLEBUF 8(08) 4 Buffer address

Figure 18. Format of a Buffer List Entry

THE CVAF PARAMETER LIST (CVPL)

A CVPL is generated by using the CVAFDIR, CVAFDSM, or CVAFSEQ .
macro with MF=L or MF=I specified or with MF not specified (MF=I M’W\
is the default). W

The CVPL passes information to CVAF. CVAF, in turn, returns
information in the CVPL. The CV1IVT bit indicates whether an
indexed or nonindexed VTOC is being accessed. The CVSTAT field
contains feedback when an error occurs. The address of the map
records buffer list is returned in the CVYMRCDS field. The
address of the VIER buffer list is returned in the CVIRCDS
field. The CVAF I/0 area address is returned in the CVIOAR
field.

The CVPL generated by the MF=L or MF=I form of the CVAFDIR,
CVAFDSM, or CVAFSEQ macro may be used (through the MF=E keyword)
to execute a different macro from the one that generated the
CVPL.

The format of the CVPL is shown in Figure 19 on page 59.

IDENTIFYING THE VTOC

The VTOC must be identified to CVAF by supplying either the
address of a UCB (with the UCB keyword) or the address of a DEB
opened to the VTOC (with the DEB keyword).

An unauthorized caller must supply the address of a SAM or EXCP
DEB open to the VTOC. The DEB can be obtained by opening a DCB
using the RDJFCB and OPEN TYPE=J macros. The DCBs DDNAME is
that of a DD statement allocated to the unit whose VTOC is to be
accessed. After issuing the RDJFCB macro, the JFCBDSNM field is
overlaid with the data set name of the format—-4¢ DSCB: 44X'04"'.
The DCB is opened for INPUT using OPEN TYPE=J. The DEB address
is in DCB field, DCBDEBA. The OPEN macro is described under
"OPEN—Initialize Data Control Block for Processing the JFCB"™ on N
page 147 and the RDJFCB macro is described under "RDJFCB—Read a

Job File Control Block™ on page 148.

58 MVS/370 System Programming Library: Data Management

Name

CVPL
CVLBL
CVLTH
CVFCTN
CVDIRD
CVDIWR
CVDIRLS
CVSEQGT
CVSEQGTE
CVDMMAP
CVSTAT 0
CVFL1 0
CVI1IVT
CV1IOAR
CV1PGM
CVIMRCDS
CV1IRCDS
CVIMAPIX
CVIMAPVT
CVIMAPVL
CVFL2 09¢09)
CV2HIVIE 1...
CV2VRF 1.,
CV2CNT .1,
CV2RCVR o1
" CV2SRCH cenn
CV2DSNLY cenn
CV2VER ceee
CV2RSV7
CVRSVB 10(¢0A)
CVUCB 12(0C)
CVDSN 16(10)
CVBUFL 20(14)
CVIRCDS 24(18)
28(1C)

CVMRCDS
32(20)

CVIOAR

CVDEB 36(24)

CVARG 40(28)

CVSPACE 44(2C)
48(30)

CVEXTS
CVBUFL2 52(34)
56(38)

CVVRFDA
CVCTAR 60(3C)

Bytes

<

&
~a
o000
- X]
~ s o
NS

s e e

¢ o it

N
1..
Jd. ...
eesl oo
e
ceen o
ceen .

.

LRI Y

EoF TN P R P P R R R o ak o X

Description

EBCDIC "“CvVPL"™

Length of parameter list
Function Byte

X'01'-CVAFDIR ACCESS=READ
X'02'-CVAFDIR ACCESS=WRITE
X'03'"-CVAFDIR ACCESS=RLSE
X'04"-CVAFSEQ ACCESS=GT
X'05'-CVAFDIR ACCESS=GTEQ
X'0A'"-CVAFDSM ACCESS=MAPDATA
Status Information

First Flag Byte

Indexed VTOC Accessed
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IRCDS=KEEP

MAP=INDEX

MAP=VTOC

MAP=VOLUME

Second Flag Byte
HIVIER=YES

VRF Information Exists
COUNT=YES

RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES

Reserved

Reserved

UCB address

Data set name address
Buffer list address
Index VIRs buffer list
address

Map VIRs buffer list
address

I/0 area address

DEB address

Argument address
SPACE parameter list
address

Extent table address
New VRF VIXM buffer list
address

VRF data address
Count area address

Figure 19. Format of the CVAF Parameter List

If a CVAF macro call has specified I0OAREA=KEEP, then a
subsequent CVAF call using a different CVPL may omit the UCB and
DEB keywords, and supply the IOAREA address from the other CVPL.
You can use the I0OAREA keyword to do this.

The above does
be supplied to
Tequired.

HOH TO USE THE CVAFDIR MACRO

CVAFDIR may be
CVAFDIR may be

(3)

Chapter 2.

not apply to the CVAFTST macro. Only a UCB may
identify the VT0C, and no authorization is

used to read or write a DSCB. For indexed VT0Cs,
used tovread or write VIOC index records.

Managing the Volume Table of Contents (VT0C) 59

After a CYAFDIR call, the CVAF parameter list bit, CV1IIVT, may
be tested to determine if the VIOC is irdexed or nonindexed. @fﬁh
vy

specifying a Data set Name to Read or Hrite a DSCB

specifying the DSCB

To read or write a DSCB by specifying only a data set name,
ACCESS=READ or ACCESS=WRITE must be coded.

The address of the data set name is supplied in the DSN keyword;
the buffer list address is supplied in the BUFLIST kevword.

The buffer list must have at least one buffer list entry with
the skip bit off and a pointer to a 96- or 140-byte buffer.
Buffer lists may be chained together, but only the first
eligible entry will be used.

For an indexed VTOC, the index will be searched for the data set
name and, if it is found, the DSCB argument obtained will be put
in the buffer list entry and used to read or write the DSCB. If
the data set name is not found in the index, a key search of the
VT0C will be performed.

For a nonindexed VT0C, a channel program will be used to do a
key search of the VTIOC to locate the data set name and read or
write the DSCBs. If the data set name is found, the DSCB
argument will be put in the buffer list entry.

The DSCB argument returned in the buffer list entry will be in
§thf0rmat determined by the buffer list entry bits BFLECHR or
FLETTR.

If the data set name is not found in the VTO0C, register 15 will
contain a return code of % and CVSTAT will contain an error code
of 1.

9
Location A

To read or write a DSCB by specifying the DS5CB's location,
either ACCESS=READ or ACCESS=WRITE must be coded. The DSN
keyword must be supplied but will not be used for a 140-byte
DSCB. A buffer list address must be supplied in the BUFLIST
keyword. The buffer list must have at least one buffer list
entry with the skip bit off and pointing to a 96— or 140-byte
buffer. Buffer lists may be chained together, but only the
first eligible entry will be used. This procedure is the same
for both indexed and nonindexed VT0Cs.

If the buffer is for a 96-byte read or write, a channel program
will be used to verify that the key in the DSCB is the same as
the 44-byte data set name provided before reading or writing the
DSCB. If the buffer is for a 140-byte read or write, a channel
program will be used to read or write the DSCB at the location
provided in the buffer list entry. The data set name will not
be used, and the DSCB key will not be read.

If VERIFY=YES is coded and the write is for a 140-byte DSCB, the
channel program used for the write will verify that the DSCB is
a format-0 DSCB prior to the write.

Reading or Hriting VTOC Index Records

VIRs may be read or written explicitly using the BUFLIST keyword

or may be read implicitly using the IXRCDS and MAPRCDS kevuwords.

A buffer list address may be supplied in the BUFLIST keyword to

read or write one or more VIRs. The buffer list header must

have the VIR bit set to one and the DSCB bit set to zero. Each

entry in the buffer list (and subsequent buffer lists if more

than one is chained) is inspected. If the skip bit is set to Q]
zero, the RBA bit is set to one (and the CCHHR and TTR bits are

set to zero), and the buffer address is nonzero, the entry will

be processed. The RBA in the argument field of the buffer list

60 MVS/7370 System Programming Library: Data Management

O

Reading Map Records

entry is used to read or write a VIR using the buffer address.
Read and write requests will be in the order of entries in the
buffer list(s).

For a write request, the modification bit in the buffer list
entries is inspected. If the bit is not set in any entry, all
are written. The modification bit is set to zero for entries
whose VIR is written.

Map records and the first high-level VT0C index entry record may
be read by supplying the keywords MAPRCDS=YES and/or
IXRCDS=KEEP, and not supplying an address in the CVAF parameter
list CYMRCDS/CVIRCDS fields.

and VIERS

To read and retain in virtual storage the VTOC index map records
and first high-level VIER, either ACCESS=READ or ACCESS=WRITE
must'bedcoded. Neither the DSN field nor the BUFLIST field is
required.

MAPRCDS=YES must be coded to read and retain map records. The
CVAF parameter list field CVMRCDS must be zero. CVAF will
obtain a buffer list with the number of entries and buffers
required to read all the map VIRs. The buffer list address will
be put in the CVMRCDS field by CVAF.

IXRCDS=KEEP is coded in order to read and retain the first
high-level VIER and (if an index search is required) all VIERs
read. If the CVAF parameter list field CVIRCDS is zero, CVAF
will obtain a buffer list with entries and buffers and read the
first high-level VIER. The number of entries and number of
buffers are determined by CVAF. If CVIRCDS is not zero, only
VIERs required for an index search will be read.

The integrity of the maps and VIER read can only be ensured if
you are enqueued on the VTOC and, in the case of shared DASD,
reserved to the unit.

Map and VIER buffers obtained by CVAF, and retained, must be
released by a subsequent CVAF call.

Releasing Buffers and Buffer Lists Obtained by CVAF

There are three ways to release buffers and buffer lists
obtained by CVAF.

. Code MAPRCDS=NOC or MAPRCDS5=(NO,addr) for any specification
of ACCESS, to free the MAP records buffer list.

[Code IXRCDS=NOKEEP or IXRCDS=(NOKEEP,addr) for any
fpe:ification of ACCESS, to free the index records buffer
ist.

L Code ACCESS=RLSE and supply a buffer list address through
the BUFLIST keyword for a subsequent CVAF call.

CVAF uwill free all eligible buffers, and buffer lists if they
become empty. Eligible buffers are those pointed to by buffer
list entries with the skip bit off. A buffer list will be freed
if no buffer list entry has the skip bit on. If buffer lists
are chained together, all buffer lists will be checked and freed
if appropriate.

You must ensure that you do not requaest CVAF to release the same

befer list twice by supplying its address in more than one
place.

Chapter 2. Managing the Volume Table of Contents (VT0OC) 61

HON TO USE THE CVAFSEQ MACRO
Each CVAF call will‘return one of the following: @E:b

o One format-1 or format-4 DSCB in indexed (data-set-name)
order

. One or more DSCBs in physical-sequential order (but only one
DSCB can be requested by an unauthorized caller)

. The next data set name in the index

The DSCBs are read into buffers supplied through the BUFLIST
keyword.

The argument of each DSCB read is also supplied in the buffer
list. DSCBs of 96 bytes must be requested in the buffer list
for indexed access; 140 bytes is required for
physical-sequential access.

If indexed order is chosen, the VIOC index is used to return
each format-1 or format-4 DSCB whose name is in the index. An
option (DSNOGHLY=YFS) allows only the data set names in the VTO0C
index, and not the DSCBs, to be obtained. In this case, the
CCHHR of the DSCB is returned in the argument area supplied
through the ARG keyword. The DSN area supplied is updated at
eacz CVAFSEQ call to contain the data set name of each DSCB
read.

Initiating Indexed Access (DSN Order)

To initiate indexed access (DSN order), either supply in the
area coded through the DSN keyword 44 bytes of binary zeros (to
indicate the first data set name in the index) or supply the
data set name you wish to serve as the starting place for the

index search. @

The name returned in the DSN area will be the one equal to or
greater than the DSN supplied, depending on the specification of
the ACCESS keyword. The DSN field is updated by CVAF.

The ACCESS keyword determines whether the search is for a DSN
greater than or equal to that supplied.

If DSNONLY=NO is coded, the DSCB and argument are returned to
you using the buffer list provided through the BUFLIST keyword.
The first entry in the buffer list with a skip bit of zero and a
nonzero buffer address is used. The argument value is supplied
if either the TTR or CCHHR bit is set in the buffer list entry.
The default is CCHHR. The DSCB size in the buffer list entry
must be 96 bytes for indexed access.

If DSNONLY=YES is coded, the CCHHR argument is supplied in the
ARG area.

Note that the data set name of the format-4 DSCB is in the index
and that its name (44 bytes of X'04') may be returned to you.
The format-4 DSCB's name is likely to be the first data set name
in the V¥T0C index.

Initiating Physical-Sequential Access
To initiate physical-sequential access, the DSN keyuword must be
omitted or DSN=0 must be coded. The argument field in the first
buffer list entry must be initialized to zero or to the argument
of the DSCB to begin the read. If the argument is zero, the
argument used will be the start of the VTOC.

The DSCB size must be set to 140 in buffer list entries. 4:75
¥ 4

62 MVS/370 System Programming Library: Data Management

The specification of ACCESS will determine whether the DSCB
Nhoge argument is supplied or the DSCB following it is to be
read.

For example, to read the first DSCB (the format-4 DSCB) in the
VTO0C, the BFLEARG in the first buffer list entry may be set to
zero, and ACCESS=GTEQ coded in the CVAFSEQ macro. If ACCESS=GT
is subsequently coded, the second DSCB (the first format-5 DSCB)

"is read.

If you are authorized, as many DSCBs as there are entries in the
buffer list will be read with a single CVAF call. Only one DSCB
will be read if you aren't authorized.

Only one buffer list is used; a second buffer list chained to
the first will not be inspected. 'All entries in the buffer list
will be used for authorized callers. The skip bit will not be
inspected. Each entry must have a buffer address, the length
field set to 140, and the TTR or CCHHR bit set (if neither bit
is set, the CCHHR bit will be set on). Only the first entry
will be used for unauthorized callers. The argument field of
each buffer list entry will be updated by CVAF with the argument
of the DSCB. The argument value is returned in either TTR or
CCHHR format, depending on whether the TTR or CCHHR bit is set
in the buffer list entry. The default is CCHHR.

Only the argument in the first entry is used to begin the
search. Arguments in subsequent entries are not inspected. If a
nonzero argument value is supplied in the first entry, there
must be a DSCB with that argument.

End-of-data is indicated with a return code of 4 in register 15
and CVSTAT set to X'20'. Each buffer list entry following the
last DSCB read has its argument field set to zero (this may be
the first entry if no DSCBs are read).

Note that all DSCBs, including format-0 DSCBs, are read. You
cannot be certain that you have read all format-1 through -6
DSCBs until the entire VIOC has been read. For a nonindexed
VT0C, the CCHHR of the last format-1 DSCB is contained in the
format-4 DSCB field DS4HPCHR; format-2 through -6 DSCBs may
reside beyond that location. For an indexed VT0C, the VMDS

" contains information about which DSCBs are format-0 DSCBs.

HOW TO USE THE CVAFDSM MACRO

ACCESS=MAPDATA is used to obtain information contained in the
space maps.

To count the number of unallocated VIRs in the VTOC index space
map (VIXM), COUNT=YES and MAP=INDEX are coded. The number of
unallocated VIRs is returned in the 4-byte area supplied through
the CTAREA keyword.

To count the number of format-0 DSCBs, COUNT=YES and MAP=VTOC
are coded. The number of format-0 DSCBs in the VIOC map of
DSCBs VMDS is returned in the 4-byte area supplied through the
CTAREA keyword.

To obtain one or more free space extents from the VT0C pack
space map (VPSM), COUNT=NO and MAP=VOLUME are coded. The
extents are returned in the area supplied through the EXTENTS
keyword. Each extent is returned in a 5-byte XXYYZ format, the
same as for a format-5 DSCB extent, where XX is the relative
track address (RTA) of the first track of the extent, YY is the
number of whole cylinders in the extent, and Z is the number of
additional tracks in the extent. The RTA supplied to CVAF in
the first (or only) extent will serve as a starting place for
the VPSM search; the extent returned will be the next free
extent with a higher starting RTA than the one supplied.

Chapter 2. Managing the Volume Table of Contents (VTOC) 63

VTOC SERIALIZATION

REGISTER USAGE

If all the unallocated extents in the VPSM are supplied before
filling in all the extents supplied, the remaining extents are
set to zero. Register 15 is set to % on return, with tha CVSTAT - 4:““
field in the CVPL set to X'20'" to indicate the end of data. MW

It is vour responsibility to serialize access to the VTI0C and
the V¥TOC index when you use VT0C access macros. The ENQ or
RESERVE macro instruction with the SYSTEMS parameter is used for
this serialization. The gname (major name) is SYSVTOC; the
rname (minor name) is the 6-byte volume serial number of the
volume. Only authorized programs may ENQ RESERVE using the
SYSVTOC qname.

The SYSVTOC gname does not serialize access to the format-1 DSCB
for a data set. You must allocate the data set with disposition
OLD, MOD, or NEW (not SHR). This causes the proper ENQ, which
ensures no other job will update that data set's format-1 DSCB.

Updates to the VTOC index performed without proper serialization
will compromise the integrity of the VT0OC or VTOC index.

Register 1 is used to contain the address of the CVAF parameter
list (CYPL). Register 15 is used to contain the return code when
processing has completed for a function.

YT70C ERROR DIAGNOSIS AND RECOVERY

ACTIONS TAKEN WHEN AN ERROR OCCURS M

These actions are taken if an error occurs:

. If an index structure error is detected, DADSM or CVAF will
cause the VTO0C index to be disabled. The indexed VTOC bit
will be zeroed in the format-4¢ DSCB. A software error
record will be written to SYS1.LOGREC. A system dump is
taken. The VTOC will be converted to a nonindexed format at
the next DADSM allocate or extend call.

. If a program check, machine check, or other error occurs
while using a VTO0C access macro, a SYS1.LOGREC message is
written and a system dump is taken.

. An error code is put in the CVYSTAT field of the CVPL. The
values and explanations of these error codes are listed in
“Appeng;x D. VT0C Error Message and Associated Codes™ on
page 223.

RECOVERING FROM SYSTEM OR USER ERRORS

Neither the VTOC nor the VIOC index need be recovered from a
user error caused by an unauthorized user, since an unauthorized
user cannot modify a VTOC.

A system error will affect a VTOC and VT0C index, probably by
interrupting DADSM while it is updating, thus leaving the VTOC
and/or the VTUC index in a partially updated state. Both the
VT0C and the VT0C index are designed to cause DADSM to recover
from such an interruption.

For a nonindexed VTOC (or a VTOC with an index that has been
disabled), a subsequent call to DADSM ALLOCATE or EXTEND will WN
cause VTOC convert routines to reestablish the free space 4

(format-5 DSCBs).

64 MVS/7370 System Programming Library: Data Management

For an indexed VT0C, a subsequent call to any DADSM function
will cause the recovery of the previous interrupt (either by
0 backing out or completing the interrupted function).

GTF TRACE

A trace facility exists to trace all CVAF calls for VTOC index
output I/0, all VTOC output 170, and all VTOC index and space

map modifications. See Common VIOC Access Facility Diagnosis

Reference for information on this facility.

LISTING A VTYOC AND_VTOC INDEX

A VT0C and VTOC index can be listed using the IEHLIST utility
program. Dump, formatted, or abridged listings can be obtained
by using the LISTVTOC command of IEHLIST.

Chapter 2. Managing the Volume Table of Contents (VTOC) 65

CHAPTER 3. EXECUTING YOUR OWN CHANNEL PROGRAMS (EXCP)

The execute-channel-program (EXCP) macro instruction provides
you with complete control of the device characteristics and the
organizing of data. This chapter contains a general description
of the function and application of the EXCP macro instruction,
accompanied by descriptions of specific control blocks and macro
instructions used with EXCP. Factors that affect the operation
of EXCP, such as device variations and program modification, are
also discussed.

Before reading this chapter, you should be familiar with system
functions and with the structure of control blocks, as uwell as

with the operational characteristics of the I/0 devices required
by vour channel programs. Operational characteristics of
Zpegific I/0 devices are contained in IBM publications for each
evice.

You also need to understand the information in these
publications:

. Data Management Services contains the standard procedures
fqr I1/0 processing under the operating system.

. 05/VS—DOS/VYSE-VM/ 370 Assembler Language contains the
information necessary to code programs in the assembler
language.

. Data Management Macro Instructions describes the system
macro instructions that can be used in programs coded in the
assembler language.

° Debugging Handbook, Volumes 2 and 3, contains format and M
field descriptions of the system control blocks referred to LW 4

in this chapter.

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the EXCP
processor. (I/0 process is the name we will use for the EXCP
processor and the I/0 supervisor. For our purposes, it's
unnecessary to understand how input/output processing is divided
between the two.) EXCP also provides the I/0 supervisor with
control information regarding a channel program to be executed.
When an IBM access method is being used, an access method
routine is responsible for issuing EXCP. If you are not using
an IBM access method, you must issue EXCP in your program. (The
EX%P ma:ro)instruction cannot be used to process SYSIN or SYSOUT
data sets.

You issue EXCP primarily for I/0 programming situations to which
the standard access methods do not apply. If you are writing
your own access method, you must include EXCP for I/0
operations. EXCP must be used for processing nonstandard
labels, including reading and writing labels and positioning
magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of
channel command words) and several control blocks in your
program area. The I/0 process then schedules 170 requests for
the device you have specified, executes the specified I/70
commands, handles I/0 interruptions, directs error recovery
procedures, and posts the results of the I/0 requests.

O

66 MVS/7370 System Programming Library: Data Management

N OGRAMS -] AND PROBLEM PROGRAM

This section briefly explains the procedures performed by the
system and the programmer when EXCP is issued by the. routines of

IBM

access methods. The additional procedures that you must

perform when issuing EXCP yourself are then described by direct
comparison.

SYSTEM USE OF EXCP

When using an IBM access method to perform 1/0 operations, the
programmer is relieved of coding channel programs and
constructing the control blocks necessary for the execution of
channel programs. To permit 170 operations to be handled by an
access method, the programmer need only issue the following
macro instructions:

A DCB macro instruction, which produces a data control block
(DCB) for the data set to be retrieved or stored

An OPEN macro instruction that initializes the data control
block and produces a data extent block (DEB) for the data
sat .

A macro instruction (for example, GET or WRITE) that
requests I/0 operations

Access method routines will then:

1.

2.

Create a channel program that contains channel commands for
the 170 operations on the appropriate device

Construct an input/output block (IOB) that contains
information about the channel program

Construct an event control block (ECB) that is later posted
with a completion code each time the channel program
terminates

Issue an EXCP macro instruction to pass the address of the
I0OB to the routines that initiate and supervise the I/0
operations

I/0 process consists of:

Constructing a request queue element (RQE) for scheduling
the request

" If the requestor is in a V=V address space, fixing the

buffers so that they cannot be paged out and translating the
requestor's virtual channel program into a real channel
program

Issuing a start I/0 (SI0) instruction to cause the channel
to execute the real channel program

Processing 170 interruptions and scheduling error recovery
procedures when necessary

Posting a completion code in the event control block after
the channel program has been executed

Note: If the requestor is an authorized program in a V=R
address space, a real ch;nnel program is provided, so item 6 is

not

The
not

performed.

programmer is not concerned with these procedures and does
know the status of I/0 operations until they are completed.

Device-dependent operations are limited to those provided by the
macro instructions of the particular access method selected.

Chapter 3. Executing Your Own Channel Programs (EXCP) 67

USE OF EXCP IN PROBLEM PROGRAMS

To issue the EXCP macro instruction directly, you must follow
the procedures that the access methods would perform, as
summarized in items 1 through 4 of the preceding discussion.

You must, in addition to constructing and opening the data
control block with the DCB and OPEN macro instructions,
construct a channel program, an input/output block, and an event
control block before you can issue EXCP. The I/0 process
generally handles items 5 through 9.

After issuing EXCP, vou should issue a WAIT macro instruction,
specifying the address of the event control block, to determine
whether the channel program has terminated. If volume switching
is necessary, you must issue an EOV macro instruction. When all
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

EXCP OPERATIONS IN A V=R ADDRESS SPACE

EXCP REQUIREMENTS

CHANNEL PROGRAM

User-constructed channel programs for 170 operations of an
authorized program in a V=R address space are not translated.
Because the address space is V=R, any CCWs created by the user
have correct real data addresses. (Translation would only
re-create the user's channel program, so the CCWs are used
directly.)

Modification of an active channel program by data read in or by
processor instructions is legitimate in a V=R address space, but
not in a V=V address space.

This section describes the channel program that you must provide
in order to issue EXCP. The control blocks that you must either
construct directly, or cause to be constructed by use of macro
instructions, are also described.

The channel program supplied by vou and executed through EXCP is
composed of CCWs on doubleword boundaries. Each channel command
word specifies a command to be executed and, for commands
initiating data transfer, the area to or from which the data is
to be transferred.

Channel command word operation codes used with specific 170
devices can be found in IBM publications for those devices. All
channel command word operation codes described in these
publications can be used. In addition, both data chaining and
command chaining may be used.

To specify either data chaining or command chaining, you must
set appropriate bits in the channel command word, and indicate
the type of chaining in the input/output block. Both data and
command chaining should not be specified in the same channel
command word; if they are, data chaining takes precedence.

EXCP does not support channel programs that modify themselves,
regardless of the method of modification: data chaining, command
chaining, or a program to do the modification. The intended
modification in virtual storage has no effect on the running
real-channel program (see "Modification of a Channel Program
during Execution™ on page 71).

68 MVS/370 System Programming Library: Data Management

C

e

m

CONTROL BLOCKS

When using EXCP, you must be familiar with the function and
structure of the 1I0B, the ECB, the DCB, the DEB, and the IDAW.
I0OB and ECB fields are illustrated under "Control Block Fields™
on page 95. DCB fields are illustrated under "Macro
Specifications for Use with EXCP"™ on page 80. The handling of
IDAWs is described under "SI0 Appendage™ on page 100. Brief
descriptions of these control blocks follow.

Input/Output Block (IOB)

The input/output block is used for communication between the
problem program and the system. It provides the addresses of
other control blocks, and maintains information about the
channel program, such as the type of chaining and the progress
of I/0 operations. You must define the input/output block and
specify its address as the only parameter of the EXCP macro
instruction.

Event Control Block (ECB)

The event control block provides you Wwith a completion code that
describes whether the channel program was completed with or
without error. A WAIT macro instruction;, which can be used to
synchronize I/0 operations with the problem program, must
identify the event control block. You must define the event
control block and specify its address in the input/output block.

Data Control Block (DCB)

The data control block provides the system with information
about the characteristics and processing requirements of a data
set to be read or written by the channel program. A data
control block must be produced by a DCB macro instruction that
includes parameters for EXCP. If appendages are not being used,
a short DCB is constructed. Such a DCB does not support reduced
error recovery. You specify the address of the data control
block in the input/output block.

Data Extent Block (DEB)

The data extent block contains one or more extent entries for
the associated data set, as well as other control information.
An extent defines all or part of the physical boundaries on an
I1/0 device occupied by, or reserved for, a particular data set.
Each extent entry contains the address of a unit control block
(UCB), which provides information about the type and location of
an I/0 device. More than one extent entry can contain the same
UCB address. For all 170 devices supported by the ovperating
system, the data extent block is produced during execution of
the OPEN macro instruction for the data control block. The
system places the address of the data extent block into the data
control block.

CHANNEL PROGRAM EXECUTION

This section explains how the system uses your channel program
and control blocks after you issue EXCP.

INITIATION OF THE CHANNEL PROGRAM

By issuing EXCP, you request the execution of the channel
program specified in the input/Zoutput block. The 1I/0 process
validates the request by checking certain fields of the control
blocks associated with this request. If the 1/0 process detects
invalid information in a control block, it initiates abnormal
termination procedures.

Chapter 3. Executing Your Own Channel Programs (EXCP) 69

The EXCP processor gets:

. g?e address of the data control block from the input/output QZ:@
oc .
L ;?e address of the data extent block from the data control
oc

. l?e address of the unit control block from the data extent
oc :

It places the I0B, TCB, DEB, and UCB addresses and other
information about the channel program into an area called a
request queue element (RQE). (Unless you are providing
appendage routines (described under "Appendages™ on page 72) you
should not be concerned with the contents of RQEs.)

If you have provided a start 1/0 (SI0) appendage, the EXCP
processor now passes control to it. The return address from the
SI0 appendage determines whether the EXCP processor must:

L Execute the I/0 operation normally, or
¢ Skip the 1I/0 operation.

‘For a description of the SI0 appendage and its linkage to the
EXCP processor, see "Appendages"™ on page 72.

If you are issuing EXCP from a V=V address space, the channel
program you construct contains virtual addresses. Because
channel subsystems cannot use virtual addresses, the EXCP
processor must:

. Translate your virtual channel program into one that uses
only real addresses.

. Fix in real storage the pages used as I/0 areas for the data ﬂ’mm
transfer operations specified in your channel program. WMJV

The EXCP processor builds the translated (real) channel program
in a portion of real storage.

For direct access devices, specify the seek address in the

input/output block. The I/0 supervisor constructs a command
chain to issue the seek, set file mask specified in the data
extent block, and pass control to your real channel program.

If your channel program begins with a locate-record command, the
I/0 process builds a define-extent command and passes control to
vour real channel program. (You cannot issue the initial seek,
set file mask, or define extent. The file mask is set to
prohibit seek-cylinder commands, or, if space is allocated by
tracks, seek-head commands. If the data set is open for INPUT,
write commands are also prohibited.)

For a magnetic tape device, the I/0 supervisor constructs a
command chain to set the mode specified in the data extent block
and passes control to your real channel program. (You cannot
set the mode yourself.)

If the I/0 device is other than a direct access device or a
magnetic tape device, the I/0 supervisor then places the address
of the starting CCW of the channel program into the channel
address word (CAW) and issues a start I/0 (SI0) instruction.

700 MVS/370 System Programming Library: Data Management

MODIFICATION OF A CHANNEL PROGRAM DURING EXECUTION

Any problem program that modifies an active channel program with
CPU instructions or with data read in by an 1/0 operation must
be run in a V=R address space. It cannot run in a V=V address
space because of the channel program translation performed by
the 170 supervisor. (In a V=V address space, an attempt to
modify an active channel program affects only the virtual image
of the channel program, not the real channel program being
executed by the channel subsystem.)

A program of this type can be changed to run in a V=V address
space by issuing another EXCP macro for the modified portion of
the channel program.

COMPLETION OF EXECUTION

The system considers the channel program completed when it
receives an indication of a channel-end condition in the channel
status word. Unless a channel-end or abnormal-end appendage
directs otherwise, the request queue element for the channel
program is made available, and a completion code is placed into
the event control block. The completion code indicates whether
errors are associated with channel end. If device end occurs
simultaneously with channel end, errors associated with device
:nd (that is, unit exception or unit check) are also accounted
or.

If device end occurs after channel end, and an error is
associated with device end, the completion code in the event
control block does not indicate the error. Houwever, the status
of the unit and channel is saved by the 170 supervisor for the
device, and the UCB is marked as intercepted. The input/output
block for the next request directed to the I/0 device is also
marked as intercepted. The error is assumed to be permanent,
and the completion code in the event control block for the
intercepted request indicates interception. The DCBIFLGS field
of the data control block is also flagged to indicate a
permanent error. Note that if a write-tape-mark or
erase-long-gap CCW is the last or only CCW in your channel
program, the I/0 process will not attempt recovery procedures
for device end errors. In these circumstances, command chaining
a NOP CCW to your write-tape-mark or erase-long-gap CCW ensures
initiation of device-end error recovery procedures.

To be prepared for device-end errors, you should be familiar
with device characteristics that can cause such errors. After
one of your channel programs has terminated, you should not
release buffer space until you have determined that your next
request for the device has not been intercepted. You may
reissue an intercepted request.

INTERRUPTION HANDLING AND. ERROR RECOVERY PROCEDURES

An I/0 interruption allouws the processor to respond to signals
from an 170 device which indicate either termination of a phase
of I/0 operations or external action on the device. A complete
explanation of I/0 interruptions is contained in IBM Svstem/370
Principles of Operation. For descriptions of interruption by
specific devices, refer to IBM publications for each device.

If error conditions are associated with an interruption, the 1/0
supervisor schedules the appropriate device-dependent error
routine. The channel subsystem is then restarted with another
request that is not related to the channel program in error.
(The following paragraphs discuss "related"™ channel programs.)
If the error recovery procedures fail to correct the error, the
system places ones in the first two bit positions of the
DCBIFLGS field of the data control block. You are informed of
the error by an error code in the event control block.

Chapter 3. Executing Your Qwn Channel Programs (EXCP) 71

APPENDAGES

If a channel program depends on the successful completion of a

previous channel program—as when one channel program retrieves

data to be used in building another—the previous channel /me
program is called a "related" request. Such a request must be W&ﬁw
identified to the EXCP processor. To find out how, sece

"Input/Output Block Fields™ on page 95.

If a permanent error occurs in the channel program of a related
request, the EXCP processor removes the request queue elements
for all dependent channel programs from their queue and makes
them available.

The related request queue (RRQ) reflects the order in which
request queue elements are removed from their queue.

For all requests dependent on the channel program in error, the
system places completion codes into the event control blocks.
The DCBIFLGS field of the data control block is also flagged.
Any requests for a data control block with error flags are
posted complete without execution. To reissue requests
dependent on the channel program in error, you must reset the
first two bits of the DCBIFLGS field of the data control block
50 gergs. You then reissue EXCP for each channel program
esired. »

With the 3800, a cancel key or a system-restart-required paper

jam causes both a lost data indicator to be set in DCBIFLGS and
a lost page count and channel page identifier to be stored in

the UCB extension. (See Debugging Handbook and IBM 3800
Printing Subsystem Programmer's Guide.)

An appendage is a programmer-written routine that provides

additional control over I/70 operations. By using appendages, "
vou can examine the status of I/0 operations and determine the A W\
actions to be taken for various conditions. An appendage may y/
receive control when one of the following occurs:

. EXCP SVC

L Program controlled interrupt

. End of extent

L Channel end

. Abnormal end

Appendages get control in supervisor state, receiving the
following pointers from the EXCP processor:

. Register 1: Points to the request queue element for the
channel program.

. Register 2: Points to the inputs/output block (IOB).
. Register 3: Points to the data extent block (DEB).
. Register 4: Points to the data control block (DCB).

L Register 6: Points to the seek address if control is given
to an end-of-extent appendage.

. Register 7: Points to the unit control block (UCB).

U Register 13: Points to a l6-word area you can use to save
input registers or data.

72 MVS/370 System Programming Library: Data Management

. Register 14: Points to the location in the EXCP processor
which control is to be returned after execution of an
appendage. When returning control to the EXCP processor,
you may use displacements from the return address in
register 14. Allowable displacements are summarized in
Figure 20 and described later for each appendage.

. Register 15: Points to the entry point of the appendage.

The processing done by appendages is subject to these
requirements and restrictions:

. Register 9, if used, must be set to binary zeros before
control is returned to the system. All other registers,
except those indicated in the descriptions of each
appendage, must be saved and restored if they are used.
Figure 20 summarizes register conventions.

to

. No SVC instructions or instructions that change the status

of the system (for example, WT0, LPSW, or any privileged
instructions) can be issued.

. Loops that test for the completion of I/0 operations must
not be used.

. Storage used by the I/0 supervisor or EXCP processor must
not be altered.

The types of appendages are described in the following sections,

with explanations of when they are created, how they return

control to the system, and which registers they may use without

saving and restoring their contents.

Appendage
EOE

SI0

PCI
CHE

ABE

1

Entry
Point

Reg 15

Reg 15

Reg 15
Reg 15

Reg 15

Returns Available Hork Registers!?
Reg 14 + 0 Return

Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again ,

Reg 14 + 0 Normal Reg. 10, 11, and 13

Reg 14 + 4§ Skip

Reg 146 + 0 Normal Reg. 10, 11, 12, and 13
Reg 14 + 0 Normal

Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP

Reg 14 + 12 By-Pass

Reg 14 + O Normal

Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 164 + 8 Re-EXCP v

Reg 14 + 12 By-Pass

processor must be followed. These conventions are described in the individual
appendage descriptions.

Figure 20.

Entry Points, Returns, and Available Work Registers for Appendages

Certain register conventions for passing parameters from appendages to the EXCP

START-1/0 (SI0) APPENDAGE

Unless an error recovery procedure is in control, the EXCP
processor passes control to the SI0 appendage just before the

EXCP processor translates your channel program.

Chapter 3. Executing Your Qun Channel Programs (EXCP)

73

Optional return vectors give the I/0 requestor the following
choices: ' ‘
4“)
Reg. 14 + 0 L
Normal return. Normal channel program translation and
initiation of I/0.

Reg. 14 + 6
Skip the 1/0 operation. The channel program is not posted
complete, but the request queue element is made available.
You may post the channel program as follows:

1. Save necessary registers.

2. Put the address of the post routine (found at CVTOPTO1
in the communications vector table) in register 15.

3. Place the ECB address from the IOB in register 11.

4. Set the completion code in register 10. These are the
four bytes of an ECB.

5. Go to the post routine pointed to by the CVT, using
BALR 164,15.

PROGRAM-CONTROLLED INTERRUPTION (PCI) APPENDAGE

This appendage is entered at least once if the channel finds one
or more PCI bits on in a channel program, and may be entered as
many times as the channel finds PCI bits on. Before the
appendage is entered, the contents of the channel status word
are placed in the "channel status word™ field of the
input/output block. ’

A PCI appendage will be reentered if an error recovery procedure .
is retrying a channel program in which a PCI bit is on. The I0B (f
error flag is set when the error recovery procedure is in W,
control (IOBFLAGL = X'20'). (For special PCI conditions

encountered with command retry, see "Channel Programming Notes"

on page 79.)

To post the channel program from a PCI appendage, the procedure
described for the start-1/0 appendage is used if the step is
running ADDRSPC=VIRT or an authorized program is running V=R.
If the step is running ADDRSPC=REAL and an authorized program
issued the EXCP request, or SVC 114(EXCPVR) was issued, the PCI
appendage uses real storage addresses and the following
procedure is used to post the channel program from the PCI
appendage.

1. Put the completion code in register 10 and place X'80' i
%hs hig?-order byte to indicate the key is in register 0
step .

n

2. Put X'80° in the high-order byte of register 11 and the
address of the ECB in the low-order bytes.

3. Put X'80' in the high-order byte of register 12 and the
address of a BR 14 instruction in the low-order bytes. This
BR 14 must be in storage addressable from any address space
(for example, CVTBRET). Note that registers 9 and 14 only
are restored when you use this option.

4. Put the address of the ASCB in register 13.

The next two paragraphs describe how to obtain the ASCB
address and are followed by sample instructions to
illustrate the procedure.

Get the SRB address associated with the 1/0 operation from Mizp

the RQE field, RQESRB (the RQE address was in register 1
when the appendage was given control). Get the I0SB address

74 HVS/370 System Programming Library: Data Management

END-OF-EXTENT (ECE)

from SRBPARM.
TIOSASID.

From that I05B, get the identif field,

Multiply IOSASID by 4.

Get the pointer to the ASVT (address space vector table)
found at CVTASVT. The address of the ASCB can be found in
the ASVT, using the field ASVTENTY-4 indexed by the value
calculated in the above paragraph.

USING RQE, 1

L Y,RQESRB

USING SRBSECT,Y

LH Y,SRBPARM |,

USING 10SB,Y

LH Y,I0SASID

SLA Y,2

L X,16

USING CVT,X
X,CVTASVT

USING ASVT, X
13,ASVTENTY-4(Y)

Note:

X and Y are work registers.
5. Put the requestor's key in register 0.

6. Put the address of the post routine (found at CVTOPTOl in
the communications vector table) in register 15.

7. Go to the post routine using BALR 14,15.
registers 9 and 14 are valid. For more information on the

POST routine, see System Programming lLibrary: Supervisor
Services and Macro Instructions.

Upon return, only

This procedure can be used even if the PCI appendage uses
v;rtual storage addresses, but performance may be slightly
slouwer.

To return control to the EXCP processor for normal interruption
processing, use the return address in register 14.

APPENDAGE

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits
indicated in the data extent block.

If you use the return address in register 14 to return control
to the system, the abnormal-end appendage is entered. An
end-of-extent error code (X'42') is placed in the "ECB code™
Eégld of the input/output block for subsequent posting in the

You may use the following optional return addresses:

. Contents of register 14 plus %: The channel program is
posted complete; its request element is returned to the
available queue.

. Contents of register 1% plus 8: The request is tried again.

You may use registers 10 through 13 in an end-of-extent
appendage without saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs,
the EXCP processor updates the seek address to the next higher
cylinder or track address, and re-executes the request. If the
new seek address is within the data set's extent, the request is
executed; if the new seek address is not within the data set's
extent, the end-of-extent appendage is entered. If you uwish to
try the request in the next extent, you must move the new seek
address to the location pointed to by register 6.

Chapter 3. Executing Your Own Channel Programs (EXCP) 75

If a file protect is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a
permanent error, and the abnormal end appendage is entered. @:}

CHANNEL~END (CHE) APPENDAGE

This appendage is entered when a channel end (CHE), unit
exception (UEX) with or without channel end, or channel end with
wroggt}ength record (WLR) occurs without any other abnormal-end
conditions.

If you use the return address in register 14 to return control
to the EXCP processor, the channel program is posted complete,
and its request element is made available. In the case of unit
exception or wrong length record, the error recovery procedure
is performed before the channel program is posted complete, and
the IOBEX flag (X'04') in IOBFLAGL is set on. The CSW status
may be obtained from the I0OBCSW field.

If the appendage takes care of the wrong length record and/or
unit exception, it may turn off the IOBEX (X'04') flag in
IOBFLAGLl and return normally. The event nill thon bha posted
complete (completion code X'7F' under normal conditions, taken
from the high-order byte of the IOBECBCC field). If the
appendage returns normally without resetting the IOBEX flag to
zero, the request will be routed to the associated device error
recovery procedure (ERP), and then the abnormal-end appendage
Wwill be entered with the completion code in IOBECBCC set to
X'41' if the ERP could not correct the error. (See Step 1 of
"Abnormal-End (ABE) Appendage.")

You may use the following optional return addresses:

L Contents of register 14 plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling @i;E
sequence described under the start-I/0 appendage. This is
especially useful if vou wish to post an ECB other than the
ECB in the input/output block.

. Contents. of register 14 plus 8: The channel program is not
posted complaete, and its request element is placed back on
the request queue so that the I/0 operation can be retried.
For correct re-execution of the channel program, you must
reinitialize the I0BFLAGl, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the "Error Counts™ field to
zero. As an added precaution, the IOBSENSO, IOBSENS1, and
I0OBCSW fields should be cleared.

. Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine. For information on the
exit effectgr, refer to System Programming Library:
Supervisor.)

You may use registers 10 through 13 in a channel-end appendage
without saving and restoring their contents.

ABNORMAL-END (ABE) APPENDAGE

This appendage may be entered on abnormal conditions, such as:

unit check, unit exception, wrong length indication, program

check, protection check, channel data check, channel control

check, interface control check, chaining check, out-of-extent

error, and intercept condition (that is, device end error). It

may also be entered when an EXCP is issued for a request queue

element that has already been purged. qx:D

76 MVS7370 System Programming Library: Data Management

1. When this appendage is entered because of a unit exception
and/or wrong length record indication, IOBECBCC is set to
X'4¢1', For further information on these conditions, see
"Channel-End (CHE) Appendage™ on page 76.

2. When the appendage is entered because of an out-of-extent
error, the I0OBECBCC is set to X'42'.

3. When this appendage is entered with IOBECBCC set to X'QB')
it is because of:

a. The tape error recovery procedure (ERP) encountering an
unexpected load point, or

b. The tape error recovery procedure (ERP) finding zeros in
the command address field of the CSW.

4. When the appendage is first entered because of an intercept
condition, the IOBECBCC is set to X'7E'. . If it is then
determined that the error condition is permanent, the
appendage wWill be entered a second time with the I0BECBCC
set to X'44', The intercept condition signals that an error
was detected at device end after channel end on the previous
request.

5. When the appendage is entered because of an EXCP being
issued to an already purged request queue element, this
request will enter the abnormal end appendage with the
IOBECBCC set to X'48'. This applies only to related
requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it
may be because of a unit check, program check, protection
check, channel data check, channel control check, interface
control check, or chaining check. If the IOBECBCC is X'7F"',
it is the first detection of an error in the associated
channel program. If the IOBEX flag (bit 5 of the IOBFLAGL)
is on, the I0BECBCC field will contain a 41, 42, 48, 4B, or
4F in hexadecimal, indicating a permanent I/0 error.

To determine if an error is permanent, you should check the
JOBECBCC field of the IOB. To determine the type of error,
check the channel status word field and the sense information in
the I0B. However, when the IOBECBCC is X'42', X'48', or X'4F"',
these fields are not applicable. For X'644', the CSHW is
ap:licable, but the sense is valid only if the unit check bit is
set.

If you use the return address in register 14 to return control
to the system, the channel program is posted complete, and its
request element is made available. You may use the following

optional return addresses:

. Contents of register 1% plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-1/0 appendage.

[Contents of register 14 plus 8: The channel program is not
posted complete, and its request element is placed back on
the request queue so that the request can be retried. For
correct reexecution of the channel program, you must
reinitialize the IOBFLAGLl, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the IOBERRCT field to zero.
As an added precaution, the IOBSENSO, IOBSENS1, and IOBCSW
fields should be cleared.

. Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

Chapter 3. Executing Your Own Channel Programs (EXCP) 77

You may use registers 10 through 13 in an abnormal-end appendage
without saving and restoring their contents. QZ:D

MAKING YOUR APPENDAGES PART OF'THE SYSTEM

Before your appendages can be executed, they must become members
of either the SYS1.LPALIB or SYS1.SVCLIB data set. There are
two ways to put appendages into SYS1.LPALIB or SYS1.SVCLIB: they
can be included at system generation using the DATASET macrol
instruction (a full explanation appears in System Generation
Reference), or they can be link-edited into SYS1.LPALIB or
SYS1.SVCLIB after the system has been generated. Each appendage
must have an 8-character member name, the first six characters
being IGG019, the last two being anything in the range from WA
to 29. Note, however, if your program runs in a V=R address
space and uses a PCI appendage, the PCI appendage and any
appendage that the PCI appendage refers to must be placed in

. either SYS1.SVCLIB or the fixed link pack area (LPA). For
information on providing a list of programs to be fixed in
storage, see System Programming Library: Initialization and
Tuning.

THE AUTHORIZED APPENDAGE LIST (IEAAPPOO)

If an "unauthorized™ program opens a DCB to be used with an EXCP
macro instruction, the names of any appendages associated with
the DCB must be listed in the IEAAPP00 member of SYS1.PARMLIB.
(An "unauthorized” program is one that runs in a protection key
greater than 7 and has not been marked as authorized by the
Authorized Program Facility.)

If vour appendages were put in SYS1.LPALIB or SYS1.SVCLIB at

system generation, their names are automatically put in

JEAAPPOO0. If your appendages were added to SYS1.LPALIB or 4/1\
S$YS1.SVCLIB after system generation, you can add IEAAPPOO to V!
SYS1.PARMLIB and put the names of the appendages in it in one Wu)
job step with the IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that
will add IEAAPPOO0 to SYS1.PARMLIB and put the names of one EOE
appendage, two SI0 appendages, two CHE appendages, and one ABE
appendage in IEAAPPO0GO:

77 JOB oo

/7 ' EXEC PGM=IEBUPDTE

/7SYSPRINT DD SYSOUT=A

/7/75YSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
/775YSIN DD *

N4 ADD NAME=IEAAPPOO,LIST=ALL
EOEAPP WA, ‘

SI0APP X1,X2,
CHEAPP 23,24,
ABEAPP Z2

/¥

Note the following about the IEBUPDTE inputt

. The type of appendage is identified by six characters that
begin in column 1. EOEAPP identifies an EOE appendage,
SIOAPP an SI0 appendage, CHEAPP a CHE appendage, and ABEAPP
an ABE appendage. (The PCI appendage identifier, PCIAPP, is
?ngspggns because the example adds no PCI appendage name to

. Only the last two characters in an appendage's name are
specified, beginning in column 8.

o Each statement that identifies one or more appendage names -
ends in a comma, except the last statement. @Z:D

78 MVS/370 System Programming Library: Data Management

You can also use IEBUPDTE to add appendage names later or delete
appendage names. Here is an example of JCL statements and
IEBUPDTE input that adds the names of a PCI and an ABE appendage
to the IEAAPPO0 appendage list that was created in the preceding
ggagple, and deletes the name of an SI0 appendage from that

ist:

77/ JOB

7/ EXEC PGM=1EBUPDTE

//7SYSPRINT DD SYSOUT=A

/7/735YSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
//SYSIN DD %

4 REPL NAME=IEAPPOO,LIST=ALL
PCIAPP Y1,

EOEAPP WA,

SIOAPP X1,X2,
CHEAPP 23,24,
ABEAPP 22,24
/%

Note the following about the IEBUPDTE input:
L The command to IEBUPDTE in this case is REPL (replace).

. All the appendage names that are to remain in IEAAPPOO are
repeated.

. IGG019Z24 is both a CHE and an ABE appendage.

OTES

Command retry is a function of the channel supporting the 2305,
333073333, 3340/3344, 3350, 3375, and 3380 direct access
devices. When the channel subsystem receives a retry request,
it repeats the execution of the CCH requiring no additional
input/output interrupts. For example, a control unit may
initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program may
cause any of the following conditions to be detected by the
initiating program:

. Modifying CCWs: A CCW used in a channel program must not be
modi fied before the CCW operation has been successfully
completed. Without the command retry function, a command
was fetched only once from storage by a channel. Therefore,
a program could determine through condition codes or program
controlled interruptions (PCI) that a CCW had been fetched
and accepted by the channel. This permitted the CCW to be
modi fied before reexecution. With the command retry
function, this cannot be done, because the channel will
fetch the CCW from storage again on a command retry
sequence. In the case of data chaining, the channel will
rﬁt(y commands starting with the first CCW in the data
chain.

. Program Controlled Interrupts: A CCW containing a PCI flag
may cause multiple program controlled interrupts to occur.
This happens if the PCl-flagged CCW was retried during a
command retry procedure, and a PCI could be generated each
time the CCW is reexecuted.

. Residual Count: If a channel program is prematurely

terminated during the retry of a command, the residual count
in the channel status word (CSW) will not necessarily
indicate how much storage was used. For example, if the
control unit detects a "wrong length record” error
condition, an erroneous residual count is stored in the CSW
until the command retry is successful. When the retry is
successful, the residual in the CSW reflects the correct
length of the data transfer.

Chapter 3. Executing Your Own Channel Programs (EXCP) 79

. Command Address: When data chaining with command retry, the
CSW may not indicate how many CCWs have been executed at the
time of a PCI. For example:

CCUf® cChannel Program

1 Read, data chain

2 Read, data chain

3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the control unit signals
command retry on Read #3 and the CPU accepts the PCI after
the channel resets the command address to Read #1 because of
command retry. The CSW stored for the PCI will contain the
command address of Read #1, when actually the channel has
progressed to Read #3.

. Testing Buffer Contents on Data Read: Any program that tests
a buffer to determine when a CCW has been executed and
continues to execute based on this data may get incorrect
results if an error is detected and the CCW is retried.

MACRO SPECIFICATIONS FOR USE WITH EXCP

If you are using the EXCP macro instruction, you must also use
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instruction.
The parameters of these macro instructions and the EXCP macro
instructions are explained here. A diagram of the data control
block is included with the description of the DCB macro
instruction.

DCB—DEFINE DATA CONTROL BLOCK FOR EXCP

The EXCP form of the DCB macro instruction produces a data
control block that can be used with the EXCP macro instruction.
You must issue a DCB macro instruction for each data set to be
processed by your channel programs. Notation conventions and
format illustrations of the DCB macro instruction are given in
Data Management Macro Instructions. DCB parameters that apply
to EXCP may be divided into four categories, depending on the
following portions of the data control block that are generated
when they are specified:

. Foundation block. This portion is required and is always 12
bytes in length. You must specify two of the parameters in
this category.)

. EXCP interface. This portion is optional. If you specify
any parameter in this category, 20 bytes are generated.

. Foundation block extension and common interface. This
portion is optional and is always 20 bytes in length If this
portion is generated, the device-dependent portion is also
generated.

. Device dependent. This portion is optional and is generated
only if the foundation block extension and common interface
portion is generated. Its size ranges from ¢ to 20 bytes,
depending on specifications in the DEVD parameter. However,
if you do not specify the DEVD parameter (and the foundation
extension and common interface portion is generated), the
maximum 20 bytes for this portion are gencecrated.

Some of the procedures performed by the system when the data

control block is opened and closed (such as writing file marks

for output data sets on direct access volumes) require
information from optional data control block fields. You should

make sure that the data control block is large enough to provide

:llhin:grmation necessary for the procedures you want the system
o handle.

80 MVS/370 System Programming Library: Data Management

jx

C

~n
e

Figure 21 on page 82 shows the reiative position of sach port
of an opened data control block. The fields corresponding to
each parameter of the DCB macro instruction are also designated,
with the exception of DDNAME, which is not included in a data
control block that has been opened. The fields identified in
parentheses represent system information that is not associated
with parameters of the DCB macro instruction.

Sources of information for data control block fields other than
the DCB macro instruction are data definition (DD) statements,
data set labels, and data control block modification routines.
You may use any of these sources to specify DCB parameters.
However, if a particular portion of the data control block is
not generated by the DCB macro instruction, the system does not
accept information intended for that portion from any
alternative source.

You may provide symbolic names for the fields in one or more
EXCP DCBs by coding a DCBD macro to generate a dummy control
section (DSECT). To map the common interface, foundation block
extension, and foundation block, you code DSORG=XE. To map the
foundation block and EXCP interface, you code DSORG=XA. You may
code DSORG=(XA,XE) to map both. For further information, see

Data Management Macro Instructions.

Foundation Block Parameters

DDNAME=symbol
The name of the data definition (DD) statement that
describes the data set to be processed. This parameter
must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the
data set. This operand must be coded.

REPOS={Y|N}
Magnetic tape volumes: This parameter indicates to the
dynamic device reconfiguration (DDR) routine whether the
user is keeping an accurate block count. If the user is
keeping an accurate block count, the DDR routine can
attempt to swap the volume. (You must maintain the block
count in the DCBBLKCT field.)

Y—The user is keeping an accurate block count and the DDR
routine can attempt to swap the volume.

N—The block count is unreliable and the DDR routine cannot
and will not attempt to swap the volume.

If the operand is omitted, N is assumed.

EXCP Interface Parameters

ECEA=symbol
2-byte identification of an EOE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

PCIASsymbol
2-byte identification of a PCI appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

SIOA=symbol
2-byte identification of a SI0 appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

CENDA=symbol

2-byte identification of a CHE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

Chapter 3. Executing Your Own Channel Programs (EXCP) 81

0 — '

The device—dependent portion of the data control

_ block varies in length and format according to _

. specifications in the DSORG and DEVD parameters. _ > Device
Illustrations of this portion for each device Dependent
tvpe are included in the description of the DEVD
parameter. -

20 ' —
- BUFNO BUFCB
26 > Common
BUFL DSORG Interface
28
I0BAD -
32 BFTEK,
BFALN EODAD _] Foundation
> Block
Extension
36
RECFM EXLST —
40 —
(TIOT) MACRF
44 ; > Foundation
(IFLGS) (DEB Address) Block
48
(OFLGS) Reserved -
52 - AN
OPTCD Reserved SV
56
Reserved
60 > EXCP
EOEA PCIA Interface
6% ‘
SIOA CENDA
68
XENDA Reserved -

Figure 21. Data Control Block Format for EXCP (After OPEN)

&

XENDA=symbol
2-byte identification of an ABE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

OPTCD=2
indicates that, for magnetic tape (input only), a reduced
error recovery procedure (5 reads only) will occur when a
data check is encountered. It should be specified only
when the tape is known to contain errors and the
application does not require that all records be processed.
Its proper use would include error frequency analysis in
the SYNAD routine. Specification of this parameter will
also cause generation of a foundation block extension. ~
This parameter is ignored unless it was selected at system N
generation.

82 MVS/370 System Programming Library: Data Management

IMSK=yalug
Any specification indicates that the system will not use
O, IBM-supplied error routines.

Foundation Block Extension and Common Interface Parameters

EXLST=address
the address of an exit list that you have written for
exception conditions. The format of this exit list is
given in Data Management Services.

EODAD=address ,
the address of your end-of-data-set routine for input data
sets. If this routine is not available when it is
required, the task is abnormally terminated.

DSORG={PS|POIDA|IS}
the data set organization (one of the following codes).
Each code indicates that the format of the device-dependent
portion of the data control block is to be similar to that
generated for a particular access method:

Code DCB Format for

P$S QS5AM or BSAM
PO BPAM

DA BDAM

IS QISAM or BISAM

For direct access devices, if you specify PS or PO, you
must maintain the following fields of the device-dependent
portion of the data control block so that the system can
write a file mark for output data sets:

. The track balance (DCBTRBAL) field, which contains a
2-byte binary number that indicates the remaining
Y number of bytes on the current track. This number can
be obtained from the system track algorithm routine.

. The full disk address (DCBFDAD) field, which indicates
the location of the current record. The address is in
the form MBBCCHHR.

These fields are written into the format-1 DSCB and are
used by Open routines for staging MSS data sets. Staging
is done only up through the last cylinder specified by
these fields if the data set is reopened for OUTPUT, INOUT,
OUTIN, OUTINX, or EXTEND.

If you specify PO for a direct access device, the DCBDIRCT
field will not be updated. Therefore, yvou should be
careful when using EXCP with the STOW macro.

IOBAD=address
the address of an input/output block (IOB). If a pointer
to the current I0OB is not required, you may use this field
for any purpose.

The following parameters are not used by the EXCP routines.
They provide additional information that the system will store
fo; later use by access methods that read or update the data
set.

RECFM=code '
. the record format of the data set. Record format codes are
given in Data Management Macro Instructions. When writing
a data set to be read later, RECFM, LRECL, and BLKSIZE
should be specified to identify the data set attributes.
LRECL and BLKSIZE can only be specified in a DD statement,
because these fields do not exist in a DCB used by EXCP.

O

Chapter 3. Executing Your Own Channel Programs (EXCP) 83

BFTEK={S |E}
- the buffer technique, either simple or exchange.

BFALN={F|D}
the word boundary alignment of each buffer, either fullword
or doubleword.

BUFL=length
the length in bytes of each buffer; the maximum length is

32,767.

BUFNO=nhumber
the number of buffers assigned to the associated data set;
the maximum number is 255.

BUFCB=address
the address of a buffer pool control block, that is, the
8-byte field preceding the buffers in a buffer pool.

Device~Dependent Parameters

DEVD=code
the daevice on which the data set may reside. The codes are
listed in order of descending space requirements for the
data control block:

Code Device

DA Direct access
TA Magnetic tape
PT Paper tape

PR Printer

PC Card punch

RD Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not wish to select a specific device until job setup
time, you should specify the device type requiring the largest
area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion
of the data control block for each combination of device type
specified in the DEVD parameter and data set organization
specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by
the parameter name. For special services, you may have to
maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4 5
Resaerved DCBFDAD

- DCBDVTBL

17 18
DCBKEYLE DCBDEVT DCBTRBAL

84 MVS/370 System Programming Library: Data Management

For output data sets, the system uses the contents of the full
disk address (DCBFDAD) field plus one to write a file mark when
the data control block is closed, provided the track balance
(DCBTRBAL) field indicates that space is available. If DCBTRBAL
is less than 8, the file mark is written on the next sequential
track. You must maintain the contents of these two fields
yourself if the system is to write a file mark. OPEN will
initialize DCBDVTBL and DCBDEVT.

Deviée-dependent portion of data control block when DEVD=DA and
DSORG=DA:

18
DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

2
DCBBLKCT

16 17 18 19
DCBTRTCH Reserved DCBDEN Reserved

The system uses the contents of the block count (DCBBLKCT) field
to write the block count in trailer labels when the data control
block is closed or when the EOV macro instruction is issued.

You must maintain the contents of this field yourself if the
system is to have the correct block count. (Note: The I/0
supervisor increments this field by the contents of the IOBINCAM
field of the I0OB at the completion of each I/0 request.)

When using EXCP to process a tape data set open at a checkpoint,
you must be careful to maintain the correct count; otheruise,
the system may position the data set incorrectly when restart
occurs. If REP0S=Y, the count must be maintained by vou for
repositioning during dynamic device reconfiguration.

Device-dependent portion of data control block when DEVD=PT and
DSORG=PS:

18
DCBCODE Reserved

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

18
DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=FC or
‘RD and DSORG=PS:

] 18
DCBMODE,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may
be specified only when the DEVD parameter is specified.

Chapter 3. Executing Your Own Channel Programs (EXCP) 85

KEYLEN=length
for direct access devices, the length in bytes of the key
of a physical record, with a maximum value of 255. When a @z:m
block is read or written, the number of bytes transmitted
is the key length plus the record length.

CODE=value
for paper tape, the code in which records are punched:

vValue Code

\ I IBM BCD

Friden

Burroughs

National Cash Register

ASCII

Teletype (trademark of Teletype Corporation)
No conversion (format-F records only)

Z~P»>OE™M

If this parameter is omitted, N is assumed.

DEN=value
forhmagnetic tape, the tape recording density in bits per
inch:
Value: . Density: .
7-track tape device 9-track tape device
1 556 —
2 800 800(NRZI)
3 — 1600CPE)
¢ — 6250(GCR)

NRZI—Non-return-to-zero change to ones recording
PE—phase encoded recording
GCR—group coded recording

L
If this parameter is omitted, the highest density available ﬂ[:m
on the device is assumed.

TRTCH=value
for 7-track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is
assumed.)
T BCDIC to EBCDIC translation is required.
MODE=value

for a card reader or punch, the mode of operation. Either
C (column binary mode) or E (EBCDIC code) may be specifiead.

STACK=value

for a card punch or card reader, the stacker bin to receive
cards, either 1 or 2.

PRTSP=value
for a printer, the line spacing, either 0, 1, 2, or 3.

DSORG Parameter of the DCBD Macro

In addition to the operands described in Data Management Macro
Instructions for the DSORG parameter of the DCBD macro, you may
specify the following operands.

DSORG=
, ﬂ Q
XA specifies a DCB with the EXCP interface section
(including appendage names)

86 MVS/370 System Programming Library: Data Management

0,

XE specifies a DCB with the foundation block extension

Chapter 3. Executing Your Own Channel Programs (EXCP)

86.1

A
(m\ J

C

OPEN—INITIALIZE DATA CONTROL BLOCK

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by your channel programs. (A dummy data set may not be opened
for EXCP.) Some of the procedures performed when OPEN is
executed are:

. Reading in the JFCB (job file control block), unless the
TYPE=J option of the macro instruction was coded

[Construction of the data extent block (DEB)

. Transfer of information from the JFCB and data set labels to
the DCB

. Verification or creation of standard labels
o Tape positioning
. Loading of your appendage routines

The parameters of the OPEN macro instruction are:

[symbol]l OPEN (dcbh _address
,[(OEtionsllp-..]

dcb _address—A-type address or (2-12)
the address of the data control block to be initialized.
(More than one data control block may be specified.)

option}
the intended method of I/0 processing of the data set. You
may specify this parameter as either INPUT, RDBACK, OQUTPUT,
or EXTEND. For magnetic tape, label processing for each of
these when OPEN is executed is as follows:

INPUT Header labels are verified.
RDBACK Trailer labels are verified.
OUTPUT Header labels are created.
EXTEND Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume
swi§ching occurs. The operand values and meanings are as
follous:?

REREAD Repgsition the volume to process the data set
again.

LEAVE No additional positioning is performed at
end-of-volume processing.

DISP Specifies that a tape volume is to be disposed of
in the manner implied by the DD statement
associated with the data set. Direct access volume
positioning and disposition are not affected by
this parameter of the OPEN macro instruction.

There are several dispositions that can be
specified in the DISP parameter of the DD
statement:

DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG. Only
DISP=PASS has significance at the time an
end-of-volume condition is encountered. The
end-of-volume condition may result from the
issuance of an FEOV macro instruction or may be the
result of reaching the end of a volume.

Chapter 3. Executing Your Own Channel Programs (EXCP) 87

If DISP=PASS was coded in the DD statement, the
tape will be spaced forward to the logical end of
the data set on the current volume.

If a DISP option other than DISP=PASS is coded on
the DD statement, the action taken when an
end-of-volume condition occurs depends (1) on how
many tape units are allocated to the data set and
(2) on how many volumes are specified for the data
set in the DD statement. This is determined by the
UNIT= and VOLUME= operands of the DD statement
associated with the data set. If the number of
volumes is greater than the number of units
allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or
equal to the number of units, the current volume is
merely rewound.

If you intend to process a multivolume direct data set, you must
cause open routines to build a data extent block for each volume
and issue mount messages for them. This can be done by reading
in the JFCB with a RDJFCB macro instruction and opening each
volume of the datc =2%t. Tha follouing cede illuzirztes the
procedure:

88 MVS/370 System Programming Library: Data Management

£
\..-

@

RDJFCB DCB1 READS IN THE JFCB

SR R3,R3 CLEARS REG 3; IT WILL
* HOLD COUNT OF VOLS 7O
* BE OPENED

IC R3, JFCBNVOL PUTS & OF VOLS
* IN REG 3

LA R4,DCB1 R4 POINTS TO DCB FOR
% VOL TO BE OPENED

LA R5,1 PUTS SEQUENCE # OF
* FIRST VOL TO BE
* OPENED IN REG 5
LOOP EQU *

STH R5,JFCBVLSQ PUTS SEQ # OF VOL
* TO BE OPENED WHERE
* OPEN RTNS LOOK

OPEN ((R4),0UTPUT),TYPE=J OPENS ONE VOL

* NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED
LA R4,DCB2-DCB1(R4) INCREMENT REG & TO

* POINT TO THE DCB FOR
* THE NEXT VOL TO BE
* OPENED
LA R5,1(R5) INCREMENT TO SEQ & OF
* NEXT VOL TO BE OPENED
BCT R3,L00P LOOP UNTIL ALL VOLS
* OPEN
JFCB DS CL176 JFCB READ IN HERE
ORG JFCB+70
JFCBVLSQ DS H SEQ # OF VOL TO BE
* OPENED
ORG JFCB+117
JFCBNVOL ga FL1 # OF VOLS IN DATA SET
G

¥ MAPPING MACRO IEFJFCBN MAY ALSO BE USED

DCB1 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS,DSORG=PS
DCB5 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
¥ THIS PROCEDURE KWORKS FOR 5 VOLS OR LESS; THE JFCB

¥ EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
¥ BE READ IN

EXITS DS OF

DC X'87',AL3(JFCB) 87 IDENTIFIES THIS AS
* THE EXIT LIST ENTRY
* THAT SHOWS WHERE JFCB
* WILL BE READ IN

Use of the RDJFCB macro instruction and the OPEN macro
instruction with the TYPE=J option is explained in detail under
"Reading and Modifying a Job File Control Block™ on page 144.

EXCP—EXECUTE CHANNEL PROGRAM

The EXCP macro instruction requests the initiation of the 1I/0
operations of a channel program. You must issue EXCP whenever
you want to execute one of your channel programs. The format of
the EXCP macro instruction is:

[symboll EXCP iob-address

iob-address—A-tvype address, (2-12), or (1)
the address of the input/output block of the channel
program to be executed.

Chapter 3. Executing Your Own Channel Programs (EXCP) 89

ATLAS—ASSIGNING AN ALTERNATE TRACK AND COPYING DATA FROM THE DEFECTIVE TRACK

A program that uses the EXCP macro instruction for input and
output and is APF authorized may use the ATLAS macro
instruction, during the execution of the program, to obtain an
alternate track and to cepy a defective track onto the alternate
track. MWith the use of ATLAS, the program can recover from
permanent (hard) errors encountered in the execution of the
following types of I/0 commands:

e Search ID.

. Write. (The error condition must be confirmed during the
execution of the channel program by a CCH that checks the
data written.)

. Read count. Errors in the CCHHR part of the count area can
be recovered from unless the record is the home address or
record zero. Errors in the KDD part of the count area
cannot be recovered from unless the user has identified the
defective record.

Note: ATLAS may be used for all direct access devices with the
exception of MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must
show whether the data set is in the track overflow format. If
it is, recovery from errors in last records on tracks depends on
your identifying the track overflow record segments.

Recovery takes the form of obtaining a good alternate track and
copying the defective track onto the good alternate one. Unless
a reexecution of the channel program by ATLAS can correct the
defect, the user should examine, and if necessary replace,
defective records in a subsequent job if the data set is to be
processed again.

The format is:

[symboll ATLAS PARMADR={address}
[,CHANPRG={R def. INR}]
[,CNTPTR={P[F)]
[L,URITS={YES |NO3]
PARMADR
Address of a parameter address list of the following
format:

Address of IOB for the channel program that
encountered the error

Address of count area field

90 MVS/7370 System Programming Library: Data Management

@::D

O

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

address—A-type address, (2-12), or (1)
CHANPRG={R [NR}

specifies whether the channel program that encountered the
error can be executed again.

R Channel program may be executed again by ATLAS.
Before permitting reexecution of the channel program
by ATLAS, you must reset the error indications of the
previous execution fields in the DCBIFLGS. (See the
example of the use of ATLAS below.)

NR Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR
specifies whether the count area field contains a full
count area (CCHHRKDD) or a partial count area (CCHH).

P Part of the count area (the CCHH address of the track
to be copied).

F Full count area (CCHHRKDD count of the record that was
found defective).

If this parameter is omitted, P is assumed.

HRITS
track overflow segment identification.

If your data set is in the track overflow format, this
identification determines recovery from errors in last
records on tracks.

YES If this is the last record on the track, it is a
segmegt other than the last of a track overflow
record.

NO If this is the last record on the track, it is the
last or only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot
be established whether a last record is a segment of an
overflow record.

Using ATLAS

If a channel program encounters a unit check condition (shouwn in
the CSW) in its execution, the EXCP Processor program will
place the sense bytes in the I0OB. ATLAS can be used to recover
from sense conditions shown by the following bit settings:

Chapter 3. Executing Your Own Channel Programs (EXCP) 90.1

IOBSENSO X'08" Data check
IOBSENS1 X'80" Permanent

JOBSENS1 Xro2°" Missing address marker (see the following
for combinations of this bit setting
which ATLAS cannot handle).

Houwever, defects in the home address record or the record zero
record cannot be recovered from through the use of ATLAS. These
conditions are shown by:

IOBSENS1 X'02' and IOBSENSO X'01'—home address defect.

IOBSENS1 X'0A'—record zero defect, or, home address cannot
be located.

Also, before using ATLAS, you must reset error indications as
follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track
and will attempt to copy the defective track onto the good
track, including all error conditions in either key or data
areas. The error conditions may be rectified by reexecuting the
channel program or through the use of the IEHATLAS utility
program in a subsequent step.

Example: The following illustrates the use of the ATLAS macro
instruction.

EXCP MYIOB

WAIT ECB=MYECB

™ MYECB,X'7F' TEST FOR I/0 ERROR

BO NEXT NO, SUCCESSFUL, GO TO
* ANOTHER ROUTINE

™ IOBCSW+3,X'02" UNIT CHECK

BZ OTHER NO, DO OTHER ERROR
* PROCESSING

™ IOBSENSO0,X"08" DATA CHECK

BNO OTHER NO, CAN'T HANDLE

™ IOBSENS1,X'80" PERMANENT

BNO OTHER NO, CAN'T HANDLE

NI DCBIFLGS,X'3F' RESET ERROR
* INDICATORS

ATLAS PARMADR=THERE, CHANPRG=R

Operation of the ATLAS Program
The ATLAS program (SVC 86):

Establishes the availability and address of the next
alternate track from the format-4¢ DSCB of the VTOC.

Brings all count fields from the defective track into
stoyage to establish the description of the track.

Initializes the alternate track.

and record zero.)

(Writes the home address

. Brings the key and data areas of each record into storage,
one at a time, and combines them with their new count area
to write the complete record onto the alternate track.

* When the copying is finished, chains the alternate to the
defective track and updates the VTOC.

Chapter 3. Executing Your Own Channel Programs (EXCP) 91

Control is returned to your program at the next executable
instruction following the ATLAS macro instruction. The success
of the ATLAS macro instruction can be determined by examining
the contents of register 15, which will contain one of the
return codes described below. If register 15 contains decimal
0, 36, 40, or 44, the contents of register 0 may be significant.

Code Meaning

0(00) Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. The only error encountered was in the record
identified by the user's CCHHRKDD value.

If the channel program is reexecutable, it has been
successfully reexecuted.

4(04) This device type does not have alternate tracks that
can be assigned by programming.

8(08) All alternate tracks for the device have been assigned.

12(0C) A request for storage (GETMAIN macro ihstruction) could
not be satisfied.

16C10) All attempts to initialize and transfer data to an
alternate track failed. The number of attempts made is
equal to 10% of the assigned alternates for the device.

20(14) The type of error shown by the sense byte cannot be
handled through the use of the ATLAS macro instruction.
The condition is other than a data check (in the count
or data areas) or a missing address marker.

24(18) The format-% DSCB of the VTOC cannot be read; therefore
alternate track information is not available to ATLAS.

28(1C) The record specified by the user was the format-4 DSCB
and it could not be read.

32(20) An error found in count area of last record on the
track cannot be handled because last-record-on-track
identification is not supplied.

36(24) An error was encountered when reading or writing the
home address record or record zero. No error recovery
has taken place. If register 0 contains
X'01 00 00 00', the defect is in record =zero.

40(28) Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. However, the alternate track may have records
with defective key or data areas. Register 0
identifies the first three found defective as follows:

n RRR

n——;?e number of record numbers that follow (0, 1, 2,
or .

R—The hexadecimal number of the record found defective
but copied anvway.

If the channel program is reexecutable, it has been
successfully reexecuted.

44(2C) Errors encountered and no alternate track has been
assigned. The return parameter register (register 0)
will contain the R of a maximum of three error records.

92 MVS/370 System Programming Library: Data Management

0 EOV—END OF VOLUME

Error conditions that return this code are:

1. ATLAS received an error indication for a record
with a data length in the count field of zero.
Recovery was not possible because a distinction
cannot be made between an EOF record and an invalid
data length.

2. An error occurred while reading the count field of
a record and the KDD {key length-data length) uas
found to be defective.

3. More than three records on the specified track
contained errors in their count fields.

48(30) No errors found on the track, no alternate assigned.
ATLAS will not assign an alternate unless a track has
at least one defective record.

52(34) I/0 error in reexecuting user's channel program. A
good alternate is chained to the defective track and
data has been transferred. The user's control blocks
will give indicaticn of tha error condition causing
failure in reexecution of the channel program.

56(38) The DCB reflects a track overflow data set, but the UCB
device type shows that the device does not support
track overflou.

60(3C) The CCHH of the user-specified count area is not within
the extents of the data set.

64(40) The device is an ﬁSS virtual device, which is not
supported.

The EOV macro instruction identifies end-of-volume and
end-of-data-set conditions. For an end-of-volume condition, EOV
causes switching of volumes and verification or creation of
standard labels. For an end-of-data-set condition, EOV causes
your end-of-data set routine to be entered. Before processing
trailer labels on a tape input data set, you must decrement the
DCBBLKCT field. You issue EOV if switching of magnetic tape or
direct access volumes is necessary, or if secondary allocation
is{totbe performed for a direct access data set opened for
output.

For magnetic tape, you must issue EOV when either a tapemark is
read or a reflective spot is written over. In these cases, bit
settings in the l1-byte DCBOFLGS field of the data control block
determine the action to be taken when EOV is executed. Before
issuing EOV for magnetic tape, you must make sure that
appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6,
and 7 of DCBOFLGS are used only by the system; you are concerned
with bit positions 0, 1, 4, and 5. The use of these DCBOFLGS
bit positions is as follows:

Bit 0
set to 1 indicates that a write command was executed and
that a tapemark is to be uwritten.

Bit 1
indicates that a backward read was the last I/0 operation.

Chapter 3. Executing Your Owun Channel Programs (EXCP) 93

Bit ¢4 : v) :
indicates that data sets of unlike attributes are to be
concatenated.

Bit 5
indicates that a tapemark has been read.

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed,
the tape is spaced past a tapemark, and standard labels, if
present, are verified on both the old and new volumes. The.
direction of spacing depends on bit 1. If bit 1l is off, the
tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on, but bit 5 is off, when EOV. is executed, a
tapemark is written immediately following the last data record
of the data set. Standard labels, if specified, are created on
the old and the new volume. :

After issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional
space was obtained on the same or a different volume. You do
this by examining the data extent block (DEB) and the unit
control block (UCB). If neither the address of the UCB, as
shown in the DEB, nor the volume serial number, as shown in the
UCB, have changed, additional space was obtained on the same
volume. Otherwise, space was obtained on a different volume.

The only parameter of the EOV macro instruction is:

{symboll EOV deb address

dcb address—A-type address, (2-12), or (1)
the address of the data control block that is opened for
the data set. If this parameter is specified as (1),
register 1 must contain this address.

Note: To learn how the system disposes of a tape volume when an
EOV macro is issued, see the description of the DISP parameter
under "OPEN—Initialize Data Control Block"™ on. page 87.

CLOSE—RESTORE DATA CONTROL BLOCK

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data control blocks
that were used by your channel programs. Some of the procedures
performed when CLOSE is executed are:

° Release of data extent block (DEB)

. Removal of information transferred to data control block
fields when OPEN was executed

L Verification or creation of standard labels

. Volume disposition

. Release of programmer-uwritten appendage routines

When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the DCBOFLGS
field of the data control block. Before issuing CLOSE for
magnetic tape, you must set the appropriate bits in DCBOFLGS.
The DCBOFLGS bit positions that you are concerned with are
listed in the EOV macro instruction description.

For information about the forms of the CLOSE macro and their
parameters, refer to Data Management Macro Instructions.

94 MVS/370 System Programming Library: Data ManégemeﬁtA

C

CONTROL BLOCK FIELDS

INPUT/0UTPUT BLOCK F

The fields of the input/output block, event control block, and
data extent block are illustrated and explained here; the data
control block fields are described with the parameters of the
DCB macro instruction under "EXCP Requirements™ on page 68.

IELDS

The input/output block (IOB) is not automatically constructed by
a macro instruction; it must be defined as a series of constants
and must be on a fullword boundary. For unit-record and tape
devices, the IOB is 32 bytes in length. For direct access,
teleprocessing, and graphic devices, 8 additional bytes must be
provided. You may want to use the system mapping macro IEZIOB,
which expands into a DSECT, to help in constructing an IOB.

In Figure 22 the diagonally-ruled areas indicate fields in which
you must specify information. The other fields are used by the
system and must be defined as all zeros. You may not place
information into these fields, but you may examine them.

IOBFLAG1 (1 byte) ;
You must set bit positions 0, 1, and 6. One-bits in
positions 0 and 1 indicate data chaining and command
chaining, respectively. (If both data chaining and command
chaining are specified, the system does not use error
recovery routines except for the 2671, 1052, 2150, and the
direct access devices.) A one-bit in position 6 indicates
that the channel program is not a "related' request; that
is, the channel program is not related to any other channel
program. If you intend to issue an EXCP macro with a BSAM,
QSAM, or BPAM_data control block, you may want to turn on
bit 7 to prevent access-method appendages from processing
the I/0 request.

IOBFLAG2 (1 byte) »
If you set bit 6 in the IOBFLAGl field to zero, then bits 2
and 3 in this field must be set to:

. 00, if any channel program or appendage associated with
a related request might modify this I0OB or channel
program.

. 01, if the conditions requiring a 00 setting don't
apply, but the CHE or ABE appendage might retry this
channel program if it completes normally or with the
gg&t—exception or wrong-length-record bits on in the

L 10 in all other cases.

The three combinations of bits 2 and 3 represent the three
kinds of related requests, known as type 1 (00), type 2
(01), and tvpe 3 (10). The type you use determines how
much the EXCP Processor can overlap the processing of
related requests. Type 3 allows the greatest overlap,
normally making it possible to quickly reuse a device after
a channel-end interruption. (Related requests that were
executed on a pre-MVS system are executed as type-1
requests if not modified.)

JOBSENSO and IOBSENS1 (2 bytes)
are placed into the input/output block by the EXCP
Processor when a unit check occurs. On occasion, the
system is unable to obtain any sense bytes because of unit
checks when sense commands are issued. In this case the
system simulates sense bytes by moving X'10FE' to IOBSENSO
and IOBSENS1.

IOBECBCC (1 byte)

the first byte of the completion code for the channel
program. The system places this code in the high-order

Chapter 3. Executing Your Own Channel Programs (EXCP) 95

0¢0)/ /
/7777771 10BFLAGL1}/ IOBFLAG2 IOBSENSO IOBSENS1
777777 /
227177777777 772777777277727777272727277772777
JOBECBCC 11777727777 777777 10BECBPT 7777777777777
. 2777777277777 7777277777777/777777277/777777
8(8) ’
IOBFLAG3
JOBCSW
12(C)
16(10) 2177777777777 77777777772/777277727/77777777
IOBSIOCC 1/777772777¢27777 10BSTART 2777777727277/
L1707 77 7777777777777/ 772/7777727777/777777
20(14) 2077772777777 72777772777777772772772/77/772727277
Reserved 77777722777277777 YI0BDCBPTY 7777777727777
L1710 7277 7777777777777/ 77772777/777/7777727/7
24(18)
IOBRESTR JOBRESTR+1
28(1C) V222702222082 22220220202274
/7777727777777 10BINCAM 7777777777 IOBERRCT
V7177777777727 7/772777777727/7772777/7
32020) 7777777777 -
77/ IOBSEEK /7 > Direct Access, Teleprocessing, and
/ (first byte, M) |- Graphic Devices

33C21) /7777777777777 770772777727277727777
II1717777 0777777777777/ 777272777777777727/7
P11 177707077777777277770277727277277077272777
777 IOBSEEK 7777

117777772 7772777777777777 (second through eighth bytes, 777/
L7772/ 777777727772/777277777
2107777727777 777772777727777777277277277772777727727272727277277 39(27)

BBCCHHR) 777/

Figure 22.

Input/0Output Block Format

> All
Devices

-] Direct
Access
> Storage

Devices

(DASD)

96 MVS/370 System Programming Library:

byte of the event control block when the channel program is

posted complete.

The completion codes and their meanings

are listed under "Event Control Block Fields™ on page 97.

IOBECBPT (3 bytes)

the address of the 4-byte event control block you have

provided.

IOBFLAG3 (1 byte)

is used only by the system.

IOBCSW (7 bytes)

the low-order seven bytes of the channel status word, which
are placed into this field each time a channel-end or PCI

interruption occurs.

IOBSIOCC (1 byte)

in bits 0 and 1,

the instruction-length code;
3, the start I/0 (SI0) condition code for the instruction

in bits 2 and

0

the system issues to start the channel program; and in bits

¢ through 7, the program mask.

Data Management

IOBSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

IOBDCBPT (3 bytes)
the address of the data control block of the data set to be
read or written by the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error
recovery procedures.

IOBRESTR+1 (3 bytes)
used by the system, if a related channel program is
permanently in error, to chain together I0Bs that represent
dependent channel programs. To learn more about the
conditions under which the chain is built, refer to
"Inte;;uption Handling and Error Recovery Procedures™ on
page .

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count
(DCBBLKCT) field in the device-dependent portion of the
data control block is to be incremented. You may alter
these bytes at any time. For forward operations, these
bytes should contain a binary positive integer (usually
+1); for backward operations, they should contain a binary
negative integer. MWhen these bytes are not used, all zeros
must be specified.

Reserved (2 bytes)
used only by the system.

IOBSEEK (first byte, M)
for direct access devices, the extent entry in the data
extent block that is associated with the channel program (0
indicates the first entry; 1 indicates the second, and so
forth). For teleprocessing and graphic devices, it
contains the UCB index.

- IOBSEEK (last 7 bytes, BBCCHHR)

EVENT CONTROL BLOCK

for direct access devices, the seek address for your
channel program.

FIELDS

You must define an event control block (ECB) as a 4-byte area on
a fullword boundary. WKhen the channel program has been
completed, the input/output supervisor places a completion code
containing status information into the ECB (Figure 23 on page
98). Before examining this information, you must test for the
setting of the "complete bit.™ If the complete bit is not on,
and your problem program cannot perform other useful operations,
you should issue a WAIT macro instruction that specifies the
event control block. Under no circumstances should you
construct a program loop that tests for the complete bit.

DATA EXTENT BLOCK FIELDS

The data extent block (DEB) is constructed by the system when an
OPEN macro instruction is issued for the data control block.

You may not modify the fields of the DEB, but you may examine
them. The DEB format and field descriptions are contained in

Debugging Handbook.

Chapter 3. Executing Your Own Channel Programs (EXCP) 97

WAIT bit=0 COMPLETE bit=1 Remainder of completibn code

bit
0 . 1 2 31

Wait bit
A one—-bit in this position indicates that the WAIT macro instruction has been
issued, but the channel program has not been completed.

Complete bit
A one—bit in this position indicates that the channel program has been
completed; if it has not been completed, a zero—bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the
following 4—byte hexadecimal expressions:
Code Meaning
7F000000 The channel program has terminated without error.
41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct access extent
address has been violated.

44000000 The channel program has been intercepted because of a permanent error
associated with a device end for the previous request. You may
reissue the EXCP macro instruction to restart the channel program.

48000000 The neguest queue element for a channel progfam has been made @”%
available after it has been purged. { "

4B000000 One of the following errors occurred durlng error recovery processing
for a tape device.

e The CSW command address in the I0OB is zeros.
. An unexpected load point was encountered.

4F000000 Error recovery routines have been entered because of direct access
error but are unable to read the home address or record 0.

Figure 23. Event Control Block aftef Posting of Completion Code (EXCP)

EXECUTING FIXED CHANNEL PROGRAMS IN REAL _STORAGE (EXCPVR)

The EXCPVR macro instruction provides vou with the same
functions as the EXCP macro instruction (that is, a
device-dependent means of performing input/output operations).
In addition, it allows your program to improve the efficiency of
the 170 operations in a paging environment by translating its
own virtual channel programs to real channel programs.
Authorized programs are allowed to execute in a V=V area and
provide the EXCP processor with real channel programs. This
eliminates the translation of channel programs by the EXCP
processor. . The program issuing the EXCPVR must remain in
authorized state until the completion of the channel programs.

Problem programs are authorized to use the EXCPVR macro ‘
instruction under the authorized program facility (APF). A MEJD
description of how to authorize a program can be found in System
Programming Library: Supervisor Services nstruc ns.

98 MVS/370 System Programming Library: Data Management

C

[symboll EXCPVR iob-address

iob-address—A-tvpe address, (2-12), or (1)

the address of the input/output block of the channel
program to be executed.

To use EXCPVR, you must do all the things vou would do to
execute an EXCP request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests
and provide a page-fix (PGFX) appendage by specifying
SI0A=symbol in the DCB.

2. Fix the data area that contains your channel program, the
data areas that are referred to by vour channel program,
your PCI appendage (if your program can generate program
controlled interrupts), and any area referred to by your PCI
appendage. To cause EXCP to fix these data areas, you build
a list that contains the addresses of these virtual areas.
You should build the list in vour PGFX appendage.

3. Determine whether the data areas in virtual storage
specified in the address fields of vour CCWs cross page
boundaries. If they do, you must build an indirect data
address list (IDAL) and put the address of the IDAL in the
affected CCW.

%. Translate the addresses in your CCWs from virtual to real
addresses.

Items 3 and ¢ must be done in your start-I/70 (SI0) appendage. A
descriptign of the S10 appendage is presented under "Appendages™
on page 72.

BUILDING THE LIST OF DATA AREAS TO BE FIXED

PAGE FIX (PGFX) AND

The EXCP processor expects programs using the EXCPVR macro
instruction to pass a list of data areas to be fixed. This list
is to be built in the PGFX appendage, as described below.

The data areas you must fix in real storage (if not already
fixed in real storage) are:

1. The channel program. If the channel program is already in a
fixed subpool, it does not have to be fixed.

2. The data areas from which your channel program will be
writing and to which your channel program will be reading.
If the data areas are already in a fixed subpool, they do
not have to be fixed. '

3. The PCI appendage, if used, and any areas referred to in the
PCI appendage.

4. Any system or user control blocks (as well as, the DEB).

You need not fix areas that have already been fixed, such as the
modules that reside in the fixed link pack area (LPA).

START-I/0 (SIO) APPENDAGE

This appendage comprises two essentially independent appendages.
The complete appendage can be viewed as a reenterable subroutine
having two entry points, one for the SI0 appendage and one for
the PGFX appendage.

The SI0 entry point is located at offset 0 in the subroutine;

any other location in the appendage may be branched to from this
entry point. The entry point of the PGFX appendage is at offset

Chapter 3. Executing Your Owun Channel Programs (EXCP) 99

+4 in the SI0 subroutine, which is set in register 15 as the
entry point of the PGFX appendage. @:jb

Page Fix (PGFX) Appendage: The purpose of this appendage is to
list all of the areas that must be fixed to prevent paging
exceptions during the execution of the current I/0 request.
This appendage may be entered more than once. However, each
time it is entered, it must create the same list of areas to be
fixed. The appendage may use the 16-word save area pointed to
by register 13. Registers 10, 11, and 13 may be used as work
registers.

Page-Fix List Processing

Each page-fix entry placed in the list by the appendage must
have the following doubleword format:

X'00" Starting virtual X'00" Ending virtual
address of area address of
to be fixed arga to be fixed
¥

<~—1 byte—>]< 3 bytes >]1<—1 byte—>|< 3 bytes >

On return from yvour PGFX appendage to the EXCP processor (via
the return address provided in register 14), register 10 must
point to the first page-fix entry and register 11 must contain
the number of page-fix entries in the work area. The EXCP
processor then fixes the pages corresponding to the areas listed
by the PGFX appendage. The pages remain fixed until the
associated I/0 request terminates.

If either the channel end appendage or the abnormal end QEZD
appendage returns via the return address in register 14 plus 8, ‘
the PGFX appendage is not normally reentered. Instead, the SIO
appendage is entered, and the page-fix list built by the PGFX

appendage is still active. However, the PGFX appendage is

entered after either the channel end appendage or the abnormal

end appendage returns via the return address in register 1% plus

8 when a PURGE macro has been issued (for instance, when a

memory swap has occurred). In this case, when I/0 is restored,

the PGFX appendage is entered.

Note: The page-fix list must be in page~fixed storage.

SIO APPENDAGE: If you are using EXCPVR to execute your channel
program, you must translate the virtual addresses in the
operands of your channel program to real addresses. This should
be done in your SI0O appendage. If indirect data addressing is
required, the SI0 appendage should also build the indirect data
address lists (IDALs) and turn on the IDA indicators in the
associated CCUs.

Translating virtual Addresses and Building the IDAL: You must
convert the virtual addresses in the channel program to real
addresses. You must also check the areas whose addresses appear
in bits 8-31 of vour CCWs to determine whether the data areas
cross 2K-byte boundaries. If they do, you must provide an entry
in the IDAL for each 2K-byte boundary crossed. The channel
subsystem uses the IDAL to identify the address at which it will
continue reading or writing when a 2K-byte boundary is crossed
during a read or write operation. The IDAL must contain real
addresses when it is processed by the channel.

100 MVS/370 System Programming Library: Data Management

CCW

Command Address of the 04 177727222777 Byte
Code IDAL 17777777777 Count
0 78 31 32 39 40 47 48
IDAL
>
0

First Indirect Data
Address Word

Second Indirect Data
Address Word

Subsequent Indirect
Data Address Word

Notes:

1. You must put one entry in the IDAL for each 2K-byte page
boundary your data area crosses.

2. If the CCW has an IDAL address rather than a data address,
bit 37 must be set to signal this to the channel.

3. The maximum number of entries needed in the IDAL is
determined from the count in the CCW as follows:

Number of IDAL entries=((CCW byte-count — 1)/72048) + 1.
(Rgund up)division to next highest integer if remainder is
not zero.

The number of IDAL entries required ultimately depends on the
number of 2K-byte boundaries crossed by the data. For exanmple,
if your data is 800 bytes long and does not cross a 2K-byte page
boundary, no IDAL entries are required. If your data crosses a
4K-byte page boundary, then two IDAL entries are required. If
your data is 5000 bytes long, at least two IDAL entries are
required. If your data crosses two 4K-byte page boundaries,
four IDAL entries are required.

The first indirect address is the real address of the first byte
of the data area. The second and subsequent indirect addresses
are the real addresses of the second and subsequent 2K-byte
boundaries of the data area.

For example, if the data area real address is X'707FF' and the
byte count is X'1802', the IDAL would contain the following real
addresses (assuming the real addresses are contiguous, which may
not always be the case):

707FF

70800
71000

If the data area real address is X'707FF' and the byte count is
X*800', the IDAL would contain the following addresses:

707FF
70800

Chapter 3. Executing Your Own Channel Programs (EXCP) 101

CHAPTER 4§. USING XDAP TO READ AND WRITE YO DIRECT-ACCESS DEVICES

INTRODUCTION

XDAP REQUIREMENTS

The execute direct access program (XDAP) macro instruction
provides you with a means of reading, verifying, or updating
blocks on direct access volumes without using an access method
and without writing your own channel program. This chapter
explains what the XDAP macro instruction does and how you can
use it. The control block generated when XDAP is issued and the
macro instructions used with XDAP are also discussed.

Since most of the specifications for XDAP are similar to those
for the execute channel program (EXCP) macro instruction, you
should be familiar with the "Executing Your Oun Channel Programs
(EXCP)"™ chapter of this publication, as well as with the
information contained in Data Management Services which provides
how-to information for using the access method routines of the
system control program.

Execute direct access program (XDAP) is a macro instruction that
you may use to read, verify, or update a block on a direct
access volume. If you are not using the standard IBM data
access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or
updating the records of a data set. (XDAP cannot be used,
however, to read, verify, or update a SYSIN or SYSOUT data set.)

You cannot use XDAP to add blocks to a data set, but you can use
it to change the keys of existing blocks. Any block
configuration and any data set organization can be read or

updated. WMJW

Although the use of XDAP requires less storage than do the
standard access methods, it does not provide many of the control
program services that are included in the access methods. For
example, when XDAP is issued, the system does not block or
deblock records and does not verify block length.

2

To issue XDAP, vou must provide the actual track address of the
track containing the block to be processed. You must also
provide either the block identification or the key of the block,
and specify which of these is to be used to locate the block.

If a block is located by identification, both the key and data
portions of the block may be read or updated. If a block is
located by key, only the data portion can be processed.

For additional control over I/0 operations, vou may urite
appendages, which must be entered into the LPA library.
Descriptions of these routines and their coding specifications
are included under "Executing Your Own Channel Programs (EXCP)."

When using the XDAP macro instruction, you must, somewhere in
your program, code a DCB macro instruction, which produces a
data control block (DCB) for the data set to be read or updated.
You must also code an OPEN macro instruction, which initializes
the data control block and produces a data extent block (DEB).

The OPEN macro instruction must be executed before any XDAP

macro instructions are executed.

102 MVYS/370 System Programming Library: Data Management

C

When the XDAP macro instruction is assembled, a control block
and executable code are generated. This control block may be
logically divided into three sections:

. An event control block (ECB), uwhich is supplied with a
completion code each time the direct access channel program
is terminated.

. An input/output block (IOB), which contains information
about the direct access channel program.

. A direct access channel program, which consists of three or
four channel command words (CCWs). The tvpe of channel
program generated depends on specifications in the
parameters of the XDAP macro instruction. When executed, it
locataes a block by either its actual address or its key and
reads, updates, or verifies the block.

When the channel program has terminated, a completion code is
placed into the event control block. After issuing XDAP, you
should therefore issue a WAIT macro instruction, specifying the
address of the event contrel block, to regain control when the
direct access program has terminated. If volume switching is
necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

MACRO SPECIFICATIONS FOR USE WITH XDAP

When you are using the XDAP macro instruction, you must also
code DCB, OPEN, CLOSE, WAIT, and, in some cases, the EOV macro
instructions. The parameters of the XDAP macro instruction are
listed and described here. For the other required macro
instructions, special requirements or options are explained, but
vou should refer to "Macro Specifications for Use with EXCPY on
page 80 for listings of their parameters.

DCB—DEFINE DATA CONTROL BLOCK

You must issue a DCB macro instruction for each data set to be
read, updated, or verified by the direct access channel program.

. Refer to "DCB—Define Data Control Block for EXCP"™ on page 80 to

learn which macro instruction parameters to code.

OPEN—INITIALIZE DATA CONTROL BLOCK

The OPEN macro instruction initializes one or more data control

blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used

by the direct access program. Some of the procedures performed

when OPEN is executed are:

. Construction of data extent block (DEB).

. Transfer of information from DD statements and data set
labels to the data control block.

. Verification or creation of standard labels.
L Loading of programmer-uritten appendage routines.

The two parameters of the OPEN macro instruction are the
address(es) of the data control block(s) to be initialized, and
the intended method of I/0 processing of the data set. The
method of processing may be specified as INPUT, OUTPUT, EXTEND;
houwever, if nothing is specified, INPUT is assumed.

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 103

XDAP—EXECUTE DIRECT-ACCESS PROGRAM

The XDAP macro instruction produces the XDAP control block (that @::@
is, the ECB, IOB, and channel program) and executes the direct

access channel program. The format of the XDAP macro

instruction is:

[symboll XDAP ecb-symbol
,tyge
sdcb-addr

sarea-addr

slength-value

» [{key-addr,keylength—-value)ll
sblkref-addr
s [sector-addrl

[LMF=TEILYT

ecb-symbol—symbol or (2-12)
the symbolic name to be assigned to the XDAP event control
block. Registers can be used only with MF=E.

tvpe—{RI |RK|UI [NK|VI|VK}
the type of 170 operation intended for the data set and the
method by which blocks of the data set are to be located.
One of the combinations shown must be coded in this field.
The codes and their meanings are:
R Read a block.
W Update a block.

v Verify that the device is able to read the contents of
a block, but do not transfer data.

I Locate a block by identification. (The key portion, if
present, and the data portion of the block are read,
updated, or verified.)

K Locate a block by key. (Only the data portion of the
block is read, updated, or verified.) If vou code this
value, you must code the 'key—-addr,keylength-value'
operands.

dcb-addr—A-type address or (2-12)
the address of the data control block for the data set. If
this data control block is also being used by a sequential
access method (BSAM, BPAM, QSAM), you must reassemble the
XDAP macro instruction. Otherwise, sequential access
method appendages will be called at the conclusion of the
XDAP channel program.

area—-addr—A-type address or (2-12)
the address of an input or output area for a block of the
data set.

length-value—absexp or (2-12)
the number of bytes to be transferred to or from the input
or output area. If blocks are to be located by
identification and the data set contains keys, the value
must include the length of the key. The maximum number of
bytes transferred is 32,767.

key-addr—RX-type address or (2-12)
when blocks are to be located by key, the address of a
virtual storage field that contains the key of the block to
be read, updated, or verified.

™
kevlength-value—absexp or (2-12) (/
when blocks are to be located by key, the length of the
key. The maximum length is 255 bytes.

106 MVS/370 System Programming Library: Data Management

f-addr—RX- addre r =12

the address of a field in virtual storage containing the
actual track address of the track containing the block to
be located. The actual address of a block is in the form
MBBCCHHR, where M indicates which extent entry in the data
extent block is associated with the direct access program;
BB is not used but must be zero; CC indicates the cylinder
address; HH indicates the actual track address; and R
indicates the block identification. R is not used when
blocks are to be located by key. (For more detailed
information, seae "Conversion of Relative Track Address to
Actual Track Address™ on page 107.)

sector-addr—RX-tvpe address or (2-
the address of a l-byte field containing a sector value.
The sector-address parameter is used for rotational
position sensing (RPS) devices only. The parameter is
optional, but its use will improve channel performance.
When the parameter is coded, a set-sector CCW (using the
sector value indicated by the data address field) precedeas
the search-ID-equal command in the channel program. The
sector-address parameter is ignored if the type parameter
is coded as RK, WK, or VK. If a sector address is
spacified in the execute form of the macro, then a sector
address, not necessarily the same, must be specified in the
éist fgrm. The sector address in the executable form will
e used.

Note: No validity check is made on either the address or
the sector value when the XDAP macro is issued. However, a
unit check/command reject interruption will occur during
channel-program execution if the sector value is invalid
for the device or if the sector-addr operand is used when
accessing a device wWithout RPS. (For more detailed
information, see "Obtaining Sector Number of a Block on a
Device with the RPS Feature™ on page 109.)

MF=
you may use the L-form of the XDAP macro instruction for a
macro expansion consisting of only a parameter list, or the
E-form for a macro expansion consisting of only executable
instructions.

MF=E
The first operand (ecbh-symbol) is required and may be coded
as a symbol or supplied in registers 2 through 12. The
type, dcbh-addr, area-addr, and length-value operands may be
supplied in either the L- or E-form. The blkref-addr
operand may be supplied in the E-form or moved into the
IOBSEEK field of the I0B by you. The sector-addr is
optional; it may be coded either in both the L- and E~-form
or in neither.

MF=L

The first two operands (ecb-symbol and type) are required
and must be coded as symbols. If you choose to code
length-value or keylength-value, they must be absolute
expressions. Other operands, if coded, must be A-type
addresses. (blkref-addr is ignored if coded.)

The dcb-addr, area-addr, blkref-addr, and sector-value operands
may be coded as RX-type addresses or supplied in registers 2
through 12. The length-value and keylength-value operands can
be specified as absolute expressions or decimal integers or
supplied in registers 2 through 12.

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 105

EOV—END OF VOLUME

CLOSE—RESTORE DATA

The EOV macro instruction identifies end-of-volume and ‘«i:p
end-of-data-set conditions. For an end-of-volume condition, EOV

causes switching of volumes and verification or creation of

standard labels. For an end-of-data-set condition, EOV causes

yvour end-of-data-set routine to be entered. When using XDAP,

you issue EOV if switching of direct access volumes is

necessary, or if secondary allocation is to be performed for a

direct access data set opened for output.

The only parameter of the EOV macro lnstructlon is the address
of the data control block of the data set.

CONTROL BLOCK

The CLOSE macro instruction restores one cr more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data sets that were
used by the direct access channel program. Some of the
procedures performed when CLOSE is executed are:

. Release of data extent block (DEB)

. Removal of information transferred to data control block
fields when OPEN was executed

. Verification or creation of standard labels
. Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at
least one data control block to be restored, and may specify

other options. See Data Management Macro Instructions to learn
what these options are and how they are specified. /I;ﬁ
kk‘

CONTROL BLOCKS USED WITH XDAP

EVENT CONTROL BLOCK

INPUT/0UTPUT BLOCK

106 MVS/370 System

The three control blocks generated during execution of the XDAP
macro instruction are described here.

The event control block (ECB) begins on a fullword boundary and
occupies the first 4 bytes of the XDAP control block. Each time
the direct access channel program terminates, the I/0 supervisor
places a completion code containing status information into the
event control block (Figure 24 on page 107). Before examining
this information, you must wait for the completion of the
channel program by issuing a WAIT macro instruction that

.specifies the address of the event control block.

The input/output block (IOB) is 40 bytes in length and
immediately follows the event control block. "Control Block
Fields™ on page 95 contains a diagram of the input/output block
(Figure 24 on page 107). You may want to examine the IOBSENSO,
IOBSENS1, and IOBCSW fields if the -ECB is posted with X'41"'.

Programming Library: Data Management

C

WAIT bit COMPLETE bit Completion code

bit
0 1 2 3
Wait bit
A one bit in this position indicates that the direct access channel program has
not been completed.

Complete bit
A one bit in this position indicates that the channel program has been
completed; if it has not been completed, a zero bit is in this position.
Completion code
This code, which includes the wait and complete bits, may be one of the
following 4—byte hexadecimal expressions:
Code Meaning
7F000000 Direct access program has terminateaed witnoul eirror.
41000000 Direct access program has terminated with permanent error.

42000000 Direct access program has terminated because a direct access extent
address has been violated.

4F000000 Error recovery routines have been entered because of direct access
error but are unable ts read home address or record 0.

Figure 24. Event Control Block after Posting of Completion Code (XDAP)

DIRECT ACCESS CHANNEL PROGRAM

The direct access channel program is 24 bytes in length (except
when set sector is used for RPS devices) and immediately follows
the input/output block. Depending on the type of 1I/0 operation
specified in the XDAP macro instruction, one of four channel
programs may be generated. The three channel command words for
each of the four possible channel programs are shown in

Figure 25 on page 108.

When a sector address is specified with an RI, VI, or WI
operation, the channel program is 32 bytes in length. Each of
these channel programs in Figure 25 would be, in this case,
preceded by a set sector command.

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL TRACK ADDRESS

To issue XDAP, you must provide the actual track address of the
track containing the block to be processed. If you know only
the relative track address, you can convert it to the actual
address by using a resident system routine. The entry point to
this conversion routine is labeled IECPCNVT. The address of the
entry point (CVTPCNVT) is in the communication vector table
(CVT). The address of the CVT is in location 16. (For the
giszéac§m?nts and descriptions of the CVT fields, see Debugging
andbook.

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 107

Type of I/0 Operation CCH
Read by identification
Verify by identification!
Read by key

Verify by key!

Write by identification

Write by key

1

command Code

Search ID Equal
Transfer in Channel
Read Key and Data

Search Key Equal
Transfer in Channel
Read Data

Search ID Equal
Transfer in Channel
Write Key and Data

Search Key Equal
Transfer in Channel
Write Data

W= W= W= W=

For verifying operations, the third CCWl is flagged to

suppress the transfer of information to virtual storage.

Figure 25. The XDAP Channel Programs

The conversion routine does all its work in general registers.
You must load registers 0, 1, 2, 14, and 15 with input to the

routine.

Register

0

3-8
9-13

14

15

Register usage is as follows:
Use

Must be loaded with a 46-byte value of the form TTRN,
where TT is the number of the track relative to the
beginning of the data set, R is the identification of
the block on that track, and N is the concatenation
number of a BPAM data set. (0 indicates the first
data set in the concatenation, an unconcatenated BPAM
data set, or a non-BPAM data set.) ’

Must be loaded with the address of the data extent
block (DEB) of the data set.

Must be loaded with the address of an 8-byte area that
is to receive the actual address of the block to be
processed. The converted address is of the form
MBBCCHHR, where M indicates which extent entry in the
data extent block is associated with the direct access
program (0 indicates the first extent, 1 indicates the
second, and so forth); BB is two bytes of zeros; CC is
the cylinder address; HH is the actual track address;
and R is the block number.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address to which control is to
be returned after execution of the conversion routina.

Is used by the conversion routine as a base register
and must be loaded with the address at which the
conversion routine is to receive control.

108 MVS/370 System Programming Library: Data Management

@

®

When control is returned to your program, register 15 will
contain one of the following return codes:

Code Meaning
0¢00) Successful conversion.
4(04) The relative block address converts to an actual track

address outside the extents defined in the DEB.

CONVERSION OF ACTUAL TRACK ADDRESS TO RELATIVE TRACK ADDRESS

To get the relative track address when you know the actual track
address, you can use the conversion routine labeled IECPRLTV.
The address of the entry point (CVTPRLTV) is in the
communication vector table (CVT). The address of the CVT is in
location 16.

The conversion routine does all of its work in general
registers. You must load registers 1, 2, 14, and 15 with input
to the routine. Register usage is as follows:

Register Use

0 Will be loaded with the resulting TTR0 to be passed
back to the caller.

1 Must be loaded with the address of the data extent
block (DEB) of the data set.

2 Must be loaded with the address of an 8-byte area

containing the actual address to be converted to a
TTR. The actual address is of the form MBBCCHHR.

3-8 Are not uged by the conversion routine.

9-13 Are used by the conversion routine and are not
restored.

14 Must be loaded with the address to which control is to

be returned after execution of the conversion routine.

15 Is used by the conversion routine as a base register
and must be loaded with the address at which the
conversion routine is to receive control.

OBTAINING SECTOR _NUMBER OF A BLOCK ON A DEVICE WITH THE RPS FEATURE

To obtain the performance improvement given by rotational
position sensing, you should specify the sector-addr parameter
in the XDAP macro. For programs that can he used with both RPS
and non-RPS devices, the UCBRPS bit (bit 3 at an offset of 17
bytes into the UCB) should be tested to determine whether the
device has rotational position sensing. If the UCBRPS bit is
off, a channel program with a "set sector" command must not be
issued to the device.

The sector-addr parameter on the XDAP macro specifies the
address of a one-byte field in vour region. You must store the
sactor number of the block to be located in this field. You can
obtain the sector number of the block by using a resident
conversion routine, IECO0SCR1. The address of this routine is in
field CVTOSCR1 of the CVT, and the address of the CVT is in
location 16. The routine should be invoked via a BALR 14,15
instruction. If you are passing the track balance to the
routine, you invoke the routine using a BAL 14,8(15).

Chapter 4. Using XDAP to Read and Write to Direct-Access Devices 109

For RPS devices, the conversion routine does all its work in
general registers. You must load registers 0, 2, 14, and 15 ()
with input to the routine. Register usage is as follows: |

Register Use

0 For fixed, standard blocks or fixed, unblocked
records not in a partitioned data set: Register 0
must be loaded with a 4-byte value in the form XXKR,
where XX is a 2-byte field containing the physical
block size, K is a l-byte field containing the key
length, and R is a l-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned off
(set to 0) to indicate fixed-length records.

Passing the track balance: Register 0 must be loaded
with the 4-byte value of the track balance of the
record preceding the required record.

For all other cases: Register 0 must be loaded with a
4-byte value in the form BBIR, where BB is the total
number of key and data bytes on the track up to, but
not including, the target record; I is a 1-byte key
indicator (1 for keyed records, 0 for records without
keys); and R is a 1l-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned on
(set to 1) to indicate variable-length records.

Not used by the sector-convert routine.

2 Must be loaded with a 4-byte field in which the first
byte is the UCB device type code for the device
(obtainable from UCB+19), and the remaining three
bytes are the address of a 1-byte area that is to '
receive the sector value.) |

3-8,12,13 Not used.

9-11 Used by the convert routine and are not saved or
restored.
14 Must be loaded with the address to which control is

to be returned after execution of the sector
conversion routine.

15 Used by the conversion routine as a base register and
must be loaded with the address of the entry point to
the conversion routine.

110 MVS/370 System Programming Library: Data Management

C

INTRODUCTION

CHAPTER 5. PASSWORD PROTECTING YOUR DATA SETS

05/VS password protection does not apply to VSAM data sets.
Information about VSAM data set protection is in YSAM Reference
and Access Method Services Reference. For information on RACF
and its relationship to password protection, refer to Resource
Access Control Facility (RACF): General Information Manual. To
use the data set protection feature of the operating system, you
must create and maintain a PASSWORD data set consisting of
records that associate the names of the protected data sets with
the password assigned to each data set. There are four ways to
maintain the PASSWORD data set:

. You can write your own routines.
. You can use the PROTECT macro instruction.

. You can use the utlllty control statements of the IEHPROGM
utility program.

. If you have TS0, you can use the TS0 PROTECT command.

This chapter discusses only the first two of the four ways: It
provides technical detail about the PASSWORD data set that is
necessary . for writing your own routines, and it describes how to
use the PROTECT macro instruction. (The last two of the four
ways are.discussed. in other publications, as indicated in the
list of publications below.)

Before using the Information in this chapter, you should be
familiar with information in several related publications. The
following publlcatIOns are recommended:

. Data Management Servvces contalns a general description of
the data set protection feature. N

. Message Library: Svystem Messages contains a description of
the operator messages and replies associated with the data
set protection feature.

. ‘JCL contains afdésdription of the data definition (DD)
statement parameter used to indicate that a data set is to
be password protected.

° DADSM_and_Common VTOC Access Facility Diagnosis Guide and
DADSM Diagnosis Reference contain a description of the
PASSWORD data set record format.

. Utilities contains a description of how to maintain the
PASSWORD data set using the utility control statements of
the IEHPROGM utility program.

o 150 Command Lanquage Reference describes the use of the TS0
PROTECT command.

In addition to the usual label protection that prevents opening
of a data set without the correct data set name, the operating
system provides data set security options that prevent
unauthorized access to confidential data. Password protection
prevents access to data sets, until a correct password is
entered by the system operator, or, for 750, by a remote
terminal operator.

Chapter 5. Passuword Protecting Your Data Sets 111

The following are the types of access allowed to
password-protected data sets: @

. PWREAD/PWWRITE—A password is required to read or write.

o PWREAD/NOWRITE—A password is required to read. Writing is
not allowed.

. NOPWREAD/PUWRITE—Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the
operating system, you place a sequential data set, named
PASSWORD, on the system residence volume. This data set must
contain at least one record for each data set placed under
protection. 1In turn, each record contains a data set name, a
passuword for that data set, a counter field, a protection mode
indicator, and a field for recording any information vou desire
to log. On the system residence volume, these records are
formatted as a "key area"™ (data set name and password) and a
"data area™ (counter field, protection mode indicator, and
logaing field). The data set is searched on the "key area."

Note: The area allocated to the data set should not have beaen
previously used for a PASSWORD data set as this may cause
unpredictable results when adding records to the data set.

You can write routines to create and maintain the PASSWORD data

set. If you use the PROTECT macro instruction to maintain the

PASSWORD data set, see "Using the PROTECT Macro Instruction to

Maintain the PASSWORD Data Set™ on page 115. If you use the

IEHPROGM utility program to maintain the PASSWORD data set, see

Utilities. These routines may be placed in your ouwn library or

the system's library (SYS1.LINKLIB). You may use a data

management access method or EXCP programming to read from and

write to the PASSWORD data set. @
{

If a data set is to be placed under protection, it must have a
protection indicator set in its label (format-1 DSCB or header 1
tape label). This is done by the operating system when the data
set is created, by the IEHPROGM utility program, or, by the
PROTECT macro when creating or adding the control password. The
protection indicator is set in response to a value in the LABEL=
oparand of the DD statement associated with the data set being
placed under protection. The publication JCL describes the
LABEL operand.

Note: Data sets on magnetic tape are protected only when
standard labels are used.

Password-protected data sets can only be accessed by programs
that can supply the correct password. When the operating system
receives a request to open a protected data set, it first checks
to see if the data set has already been opened for this job
step. If so, only the access mode will be checked to determine
whether it is compatible with the protection mode under which it
was previously opened. If the data set has not been previously
opened by this job step, or if the access mode is not compatible
with the protection mode under which it was previously opened, a
massage is issued that asks for the passuword; the message goes
to the operator console. If the program requesting that the data
set be opened is running under TS0 in the foreground, the
message goes to the TS0 terminal operator. If you want the
passuord supplied by another method in vour installation, you
can modify the READPSWD source module or code a new routine to
replace READPSWD in SYS1.LPALIB.

C

112 MVS/370 System Programming Library: Data Management

C

PASSHORD DATA SET CHARACTERISTICS

The PASSWORD data set must reside on the same volume as your
operating system. The space you allocate to the PASSWORD data
set must be contiguous, that is, its DSCB must indicate only one
extent. The amount of space you allocate depends on the number
of data sets your installation wants to protect. Each entry in
the PASSWORD data set requires 132 bytes of space. The
organization of the PASSWORD data set is physical sequential,
the record format is unblocked, fixed-length records (RECFM=F).
Each record, which forms the data area, is 80 bytes long
(LRECL=80,BLKSIZE=80), and is preceded by a 52-byte key
(KEYLEN=52). The key area contains the fully qualified data set
name of up to 44 bytes and a password of one to eight bytes,
left justified with blanks added to fill the areas. The
password assigned may be from one to eight alphameric characters
in length. DADSM and Common VTIOC Access Facility Diagnosis
Guide and DADSM Diagnosi eference describe the PASSWORD data
set record format.

Note: For data sets on magnetic tape designed according to the
specifications of the International Organization for
Standardization (IS0) 1001-1979 or the equivalent American
National Standards Institute (ANSI) X3.27-1978, do not include
generation and version numbers as part of generation data set
names. The generation and version numbers are not included as
part of the names in the tape labels, and are ignored if
included in the PASSWORD data set.

You can protect the PASSWORD data set itself by creating a
password record for it when your program initially builds the
data set. Thereafter, the PASSWORD data set cannot be opened
(except by the operating system routines that scan the data set)
unless the operator enters the password.

Note: 1If a problem occurs on a password-protected system data
sat, maintenance personnel must be provided with the password in
order to access the data set and resolve the problem.

CREATING PROTECTED DATA SETS

A data definition (DD) statement parameter (LABEL=) may be used
to indicate that a data set is to be password-protected. For
data sets on DASD, an alternative method is to use the PROTECT
macro instruction for a previously allocated data set. A data
set may be created and the protection indicator set in its label
Nithout entering a password record for it in the PASSWORD data
set.

Operating procedures at your installation must ensure that
password records for all data sets currently password-protected
are entered in the PASSWORD data set. Installations where
independent computing systems share common DASD resources must
ensure that PASSWORD data sets on all systems contain the
appropriate password records for any protected data set on
shared DASD.

Under certain circumstances, the order in which data sets are
allocated and deallocated from multiple systems on shared DASD
may result in loss of password-protection. For example, if an
unprotected data set is allocated and opened by a user on System
A and then scratched by a different user on System B, the first
user is given a "window" to the unallocated (free) area. If any
data set, protected or unprotected, is allocated in that space
by a user on either system during the time the "window™ is open,
xhg gew gata set has no protection from the user with the
window.

While the allocaticn dispesition is still NEW, a
password-protected data set can be used without supplying a
password. However, after the data set is deallocated, any
subsequent attempt to open will result in termination of the
program unless the password record is available and the correct

Chapter 5. Password Protecting Your Data Sets 113

_password is supplied. Note that, if the protection mode is
NOPWREAD and the request is to open the data set for input or
read backward, no passuword will be required. @Z:ﬁ

Tape Volumes Containing More Than One Passuord-Protected Data Set

“ To péstord protect a data set on a tape volume containing other

data sets; you must password protect all the data sets on the
volume. (Standard labels—SL, SUL, AL, or AUL—are required.
See Maagnetic Tape Labels and File Structure for definitions of .
thege)label types and the protection-mode indicators that can be
used.

If you issue an OPEN macro instruction to create a data set
following an existing, password-protected data set, the password
of the existing data set will be verified during open processing
for the new data set. The password supplied must be associated
with a PWWRITE protection-mode indicator.

PROTECTION FEATURE OPERATING CHARACTERISTICS

The topics that follow provide information concerning actions of
the protection feature in relation to termination of processing,
volume suwitching, data set concatenation, SCRATCH and RENAME
functions, and counter maintenance.

Termination of Processing

volume Suitching

Processing is terminated when:

1.

2.

The operator cannot supply the correct password for the
protected data set being opened after two tries.

A password record does not exist in the PASSWORD data set ﬂ[;p
for the protected data set being opened.

The protection-mode indicator in the password record, and
the method of I/0 processing specified in the Open routine
do not agree, for example, OUTPUT specified against a
read-only protection-mode indicator.

There is a mismatch in data set names for a data set
involved in a volume switching operation. This is discussed
in the next paragraph.

The system ensures a continuation of password protection when
volumes of a multivolume data set are switched. It accepts a
newly-mounted tape volume, to be used for input, or a
newly-mounted direct access volume, regardless of its use, if
these conditions are met:

The data set name in the password record for the data set is
the same as the data set name in the JFCB. (This ensures
that the problem program has not changed the data set name
in the JFCB since the data set was opened.)

The protection—mode indicator in the password record is
compatible with the processing mode and a valid password has
been supplied.

The system accepts a newly-mounted tape volume to be used for
output under any of these conditions:

The security indicator in the HDR1 label indicates password
protection, the data set name in the password record is the MZ:D
same as the data set name in the JFCB, and the ;
protection—-mode indicator is compatible with the processing

116 MVS/370 System Programming Library: Data Management

mode. (If the data set name in the JFCB has been changed, a
new password is requested from the operator.)

. The security indicator in the HDR1l label does not indicate
password protection. (A new label will be written with the
security indicator indicating password protection.)

L Only a volume label exists. (A HDR1 label will be written
with the security indicator indicating password protection.)

Data Set Concatenation

A password is requesfed for every protected data set that is
involved in a concatenation of data sets, regardless of whether
the other data sets involved are protected or not.

Chapter 5. Password Protecting Your Data Sets 114.1

O

SCRATCH and RENAME Functions

Counter Maintenance

To delete or rename a protected data set, it is necessary that
the job step making the request be able to supply the password.
The system first checks to see if the job step is currently
authorized to write to the data set. If not, message IEC301A is
issued to request the password. The password provided must be
associated with a "WRITE"™ protection—-mode indicator.

The operating system increments the counter in the password
record on each usage, but no overflow indication will be given
(overflow after 65,535 openings). You must provide a counter
main:enance routine to check and, if necessary, reset this
counter.

USING THE PROTECT MACRO INSTRUCTION TO MAINTAIN THE PASSWORD DATA SET

To use the PROTECT macro instruction, your PASSWORD data set
gust bg :n the system residence volume. The PROTECT macro can
e use o

. Add an entry to the PASSWORD data set.
o Replace an entry in the PASSWORD data set.
. Delete an entry from the PASSWORD data set.

. Provide a list of information about an entry in the PASSWORD
data set; this list will contain the security counter,
access type, and the 77 bytes of security information in the
"data area"™ of the entry.

In addition, the PROTECT macro updates the DSCB of a protected
direct access data set to reflect its protection status; this
feature eliminates the need for you to use job control language
whenever you protect a data set.

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE PROTECT MACRO

INSTRUCTION

When you use the PROTECT macro, the record format and
characteristics of the PASSWORD data set are no different from
the record format and characteristics that apply when you use
your own routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must
contain at least one record for each protected data set. The
password (the last 8 bytes of the "key area™) that you assign
when vou protect the data set for the first time is called the
control password. In addition, vou may create as many secondary
records for the same protected data set as you need. The
passwords assigned to these additional records are called
secondary passwords. This feature is helpful if you want
several users to have access to the same protected data set, but
you also want to control the manner in which they can use it.
For example: One user could be assigned a password that allowed
the data set to be read and written, and another user could be
assigned a password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection-mode
indicator in the format-1 DSCB in the protected data set only
when yog issue it for adding, replacing, or deleting a control
password. ‘

Chapter 5. Password Protecting Your Data Sets 115

Protection-Mode Indicator

You can set the protection-mode indicator in the password record
to four different values: i/
L X'00' to indicate that the pastord is a secondary password

and the protected data set is to be read only (PWREAD).

L X'80' to indicate that the password is the control password
and the protected data set is to be read only (PWREAD).

U X'01' to indicate that the password is a secondary password
and the protected data set is to be read and written
(PWREAD/PWWRITE).

° X'81' to indicate that the password is the control password
and the protected data set is to be read and written
(PWREAD/PWWRITE).

Because of the sequence in which the protection status of a data
set is checked, the following defaults will occur:

If control passuord is: secondary password must be:

1. PWREAD/PWWRITE or PWREAD/PWNWRITE or
PWREAD/NOWRITE PWREAD/NOWRITE

2. NOPWREAD/PWWRITE NOPWREAD/PWWRITE

If the control password is set to either of the settings in item
1 above, the secondary password will be set to PWREAD/PWWRITE if
you try to set it to NOPWREAD/PWWRITE.

If the control password is changed from either of the settings
in item 1 to the setting in item 2 above, the secondary password
will be automatically reset to NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to <(:m
either of the settings in item 1 above, the secondary password
is set by the system to PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when
the control password is changed, you may request protection
attributes for secondary passwords that conflict with the
protection attributes of the control password.

PROTECT MACRO SPECIFICATION

The format is:

[symboll PROTECT parameter list address

parameter list address—A-type address, (2-12), or (1)
indicates the location of the parameter list. The
parameter list must be set up before the PROTECT macro is
issued. The address of the parameter list may be passed in
register 1, in any of the registers 2 through 12, or as an
A-type address. The first byte of the parameter list must
be used to identify the function (add, replace, delete, or
list) you want to perform. See Figure 26 on page 117
through Figure 29 on page 119 for the parameter lists and
codes used to identify the functions.

116 MVS/370 System Programming Library: Data Management

O

X'o1" 1 00 00 00
Length of data set name 5 Pointer to data set name
00 9 00 00 00
12 o0 13 Pointer to control password
16 Number of volumes 17 Pointer to volume list
20 Protection code 2l Pointer to new password
2% String length 25 Pointer to string
g X'01°"

Entry code indicating ADD function.

4 Length of data set name.

5 Pointer to data set name.

13 Pointer to control password.
The control password is the password assigned when the data set was placed
under protection for the first time. The pointer can be 3 bytes of binary
zeros if the new password is the control passuword.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
vou have to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected,
you provide the address of a list of volume serial numbers in this field.
Zeros indicate that the catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'00' indicates default
protection (for the ADD function; the default protection is the type of
protection specified in the control password record of the data set); X'01"
indicates that the data set is to be read and written; X'02' indicates that the
data set is to be read only; and X'03' indicates that the data set can be read
without a password, but a password is needed to write into it. The PROTECT
macro wWill use the protection code value, specified in the parameter list, to
set the protection-mode indicator in the password record.

21 Pointer to new password.
If the data set is being placed under protection for the first time, the neu
passuword becomes the control password. If you are adding a secondary entry,
the new password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. If you don't want to
add information, set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the optional
}nformation field. If vou don't want to add additional information, set this
ield to zero.

Figure 26. Parameter List for ADD Function

Chapter 5. Password Protecting Your Data Sets 117

X'02° | 1 00 00 00 | ((:X”;
Length of data set name 5 Pointer to data set name '
00 9 Pointer to current password

12 00 ’ 13 Pointer to control password

16 Number of volumes 17 Pointer to volume list

20 Protection code 21 Pointer to new password

24 Stringylength - 25 Pointer to string

0 X'02°'.

Entry code indicating REPLACE function.

4 Length of data set name.
5 Pointer to data set name.
9 Pointer to current password.

The address of the password that is going to be replaced.

13 Pointer to control passuword.

The address of the password assigned to the data set when it was first placed
under protection. The pointer can be set to 3 bytes of binary zeros if the
current passuord is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you have to specify the number of volumes in this field. A zero indicates that n
the catalog information should be used. /

17 Pointer to volume list. i
If the data set is not cataloged and you want to have it flagged as protected,
you have to provide the address of a list of volume serial numbers in this
field. If this field is zero, the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'00' indicates that the
protection 15 default protection (for the REPLACE function the default
protection is the protection specified in the current password record of the
data set); X'01' indicates that the data set is to be read and written; X'02°'
indicates that the data set is to be read only; and X'03' indicates that the
gatads:t cag be read without a password, but a password is needed to write into

e data set.

21 Pointer to new password.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that vou want to place in
the optional information field of the password record. Set this field to zero
if you don't want to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the optional
‘information field of the password record. Set the address to zero if you don't
want to add additional information.

Figure 27. Parameter List for REPLACE Function

118 MVS/370 System Programming Library: Data Management

X'03" 1 00 o0 0O
Length of data set name 5 Pointer to data set name
00 9 Pointer to current password
12 00 13 Pointer to control password
16 Number of volumes 17 Pointer to volume list
6 X'03°".

Entry code indicating DELETE function.

4 Length of data set name.
5 Pointer to data set name.
9 Pointer to current password.

The address of the password that yovu want to delete. You can deiete either a
control entry or a secondary entry.

13 Pointer to control password.
The address of the passuword assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zeros if
the current password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you have to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected,
vyou have to provide the address of a list of volume serial numbers in this
field. If this field is zero, the catalog information will be used.

Figure 28. Parameter List for DELETE Function

0 X'04" 1 Pointer to 80-byte buffer

G Length of data set name 5 Pointer to data set name

8 00 9 Pointer to current password
0 X'04".

Entry code indicating LIST function.

1 Address of 80-byte buffer.
The address of a buffer where the list of information can be returned to your
program by the macro instruction.

4 Length of data set name.

5 Pointer to data set name.

9 Pointer to current password.
The address of the password of the record that you want listed.

Figure 29. Parameter List for LIST Function

Chapter 5. Password Protecting Your Data Sets 119

RETURN CODES FROM THE PROTECT MACRO

When the PROTECT macro finishes processing, register 15 contains ™,
one of the following return codes: i MW

Code Meaning

0¢00) The updating of the PASSWORD data set was successfully
completed.

4(04) The PASSWORD of the data set name was already in the

password data set.

8(08) The password of the data set name was not in the
PASSWORD data set.

12¢(0C) A control password is required or the one supplied is
. incorrect.

16(10) The supplied parameter list was incomplete or
incorrect.

20(14) There was an I/0 error in the PASSWORD data set.

26(18)? The PASSWORD data set was full.

28(1C) The validity check of the buffer address failed.

32(20)2 The LOCATE macro failed. LOCATE's return code is in
register 1, and the number of indexes searched is in

register 0.

36(24)2 The OBTAIN macro failed. OBTAIN's return code is in
register 1.

40(28)2 The DSCB could not be updated.
44(2C) The PASSWORD data set does not exist.

48(30)2 Tape data set cannot be protected.
52(32)2 Data set in use.

lFor this return code, a message is written to the console
indicating that the PASSWORD data set is full.

2For this return code, the PASSWORD data set has been updated,

but the DSCB has not been flagged to indicate the protected
status of the data set.

120 MVS/370 System Programming Library: Data Management

0;

C

CHAPTER 6. EXIT ROUTINES

This chapter discusses how installation-written modules can:

. Take control before and after direct access device storage
management (DADSM) processing

) Take control during Open for a DCB

[Determine whether a missing data set control block (such as
for a data set that has been moved to another volume) can be
restored to a volume

. Recover from errors that may occur during the opening,
closing, or handling of an end-of-volume condition for a
data set associated with the user's task

This chapter also describes how user programs can:

. Identify a specific tape volume to be requested in place of
a nonspecific (scratch) tape volume

. Verify that an IBM-standard labeled tape selected by open or
EOV should, in fact, be used, and whether certain security
checks may be bypassed (this exit is for authorized programs
only)

Note: For information on IBM-supplied exits for tapes with
International Organization for Standardization (IS0) or American
National Standard labels, refer to MVS/370: Magneti ape labels
and File Structure.

DAD EPROCESSING AND POSTPROCESSING EXIT ROUTINES

THE EXIT MODULES

THE EXIT ENVIRONMENT

There are exit routines to enable an installation-written module
to take control before and after DADSM processing. An exit
parameter list is used to communicate with DADSM. The format of
this parameter list is shown in Figure 30 on page 123.

All of the DADSM functions (allocate, extend, scratch, partial
release, and rename) have a common preprocessing exit routine
and a common postprocessing exit routine that the installation
exit routine can replace. These exit routines enable you to
gain control before and after DADSM processing. The
preprocessing exit routine module is IGGPREOO; the
postprocessing exit routine module is IGGPOSTO0. Each is used by
all the DADSM functions listed above. The modules reside in-
SYS1.LPALIB. You can use System Modification Program (SMP) to
replace the IBM-supplied exit routine modules with an
installation exit routine you write.

The exit routines are given control in supervisor state and
protect key zero with no locks held. The exit routines must be
reentrant. System enqueues will have been issued either by
DASDM or by the programs that invoke DADSM, to serialize system
functions. These enqueues may prevent other system services
from being invoked. In particular, dynamic allocation, OPEN,
CLOSE, EOV, LOCATE, and other DADSM functions may not be issued
because of an enqueue on the SYSZTIOT resource. If the exit
routines require access to an installation data set, the control
blocks required to access that data set (DCB, DEB) should be
built during system initialization (IPL/NIP). RACF macros may
be invoked from the exit routines.

Chapter 6. Exit Routines 121

WHEN IGGPREOO GETS CONTROL

The preprocessing exit routine, IGGPREOO, is given control
before the first VT0C update and after initial validity ‘ y
checking. Input to IGGPRECO is a parameter list, mapped by

macro IECIEXPL, that contains addresses of input data and a

function code that identifies the DADSM function. IGGPREOO is

given control once for each volume in the volume list supplied

to scratch and rename. A field in the parameter list, IEXRSVWD,

may be used to pass data from the preprocessing exit routine to

the postprocessing exit routine.

A zero return code from IGGPREOO indicates the DADSM function
may proceed.

REJVECTING A DADSM REQUEST

A preprocessing exit routine may reject a DADSM request, in

which case an 170 error return code is generated for all

functions except allocate and extend. A return code of & or 8

from IGGPREOO to allocate will cause allocate to return X'B4' or
X'BO0', respectively, to its caller in Register 15. Scheduler
allocation will treat a X'B4' as a conditional rejection of the
allocate request only for the volume being processed. If the
allocate request is not for a specific volume, another volume

may be chosen and the allocate function retried. Scheduler
allocation will treat a X'B0' return code from allocate as an
unconditional rejection of the allocate request. If the

allocate request is rejected,; the preprocessing exit routine can
put a reason code in the parameter list field, IEXREASN, and the
code will be returned by allocate to its caller, together with

the X'B0' or X'B4' return code in Register 15. The reason code
will appear in the JCL error message, if the allocate request is N
not retried. A nonzero return code from IGGPREOO to extend will /
cause extend to return an error return code of X'FFFF FFEC' to

its caller. If the caller is End-of-Volume, an E37-0C abend

will be issued.

PASSING A MODEL FORMAT-1 DSCB

The preprocessing exit for allocate and extend on a new volume
may return, in the parameter list field IEXFMT1l, the address of
the data portion of a model format-1 DSCB, starting with field
DS1FMTID. The DSCB will be moved to the allocate or extend work
area before building the format-1 DSCB. The only fields that
may be nonzero in the area are the DSI1REFD (the
data-last-referenced field) and fields currently unused. All
other fields will be initialized by allocate or extend. IEXFMT1
may not be supplied by IGGPREOO for a VIO allocate request
(indicated by flag, IEXVIO, set to one), or if a partial DSCB
instead of a JFCB has been supplied to allocate (indicated by
flag, IEXMFl, set to one). 1In the latter case, IEXFMT1 is
passed to IGGPREOO initialized to the address of the DS1FMTID
field of the partial format-1 DSCB (supplied to allocate by its
caller) in the allocate work area, and DS1REFD may be
initialized by IGGPREOO. If extend was successful, IEXFMT1 is
zeroed out prior to taking the post-exit, IGGPOSTO.

WHEN IGGPOSTO GETS CONTROL

The postprocessing exit module, IGGPOSTO, is given control after

a DADSM function has been completed or attempted. IGGPOSTO is

given control if IGGPREOO was given control, whether the DADSM

function was successful or not. IGGPOSTO0 is not given control

if IGGPREOO was not given control, or if the DADSM function

terminated abnormally. IGGPREOO may establish a recovery ™
routine, if required, to clean up system resources. The DADSM \
recovery routine does not give IGGPOSTO0 control.

122 MVS/370 System Programming Library: Data Management

O

Input to IGGPOSTO is the same parameter list passed to IGGPREOO.

No return codes from IGGPOSTO0 are defined.

Chapter 6. Exit Routines

122.1

o

O

C

IEXID
IEXLENG
IEXFUNC
TEXALL
IEXEXT
IEXSCR
IEXPR
IEXREN
IEXEXTCD

IEXFLAG
IEXENQ
IEXVIO
IEXMF1

¥*
IEXREASN
X

IEXUCB
IEXPTRL

IEXPTR2

IEXDSN
IEXFMT1

IEXFMT2

IEXRSV00
IEXEXTBL

IEXDCC
TEXRSVMWD

Offset
00€00)

064(04)
05(05)

06(06)

07¢07)

08(08)

12¢0C)
16(10)

20014)

24(18)
28(1C)

32(20)

36(26)
40(28)

44(2C)
48(30)

Bytes

Hp

pescription

EBCDIC "IEPL'
Length of parameter list
DADSM function code:
X'01'-Allocate
X'02'-Extend
X'03'-Scratch
X'04'-Partial Release
X'05"-Rename
Extend code
X'01' Extend data set on
current volume
X'02' Extend an 0S catalog
on current volume
X*'04' Extend data set on
new volume
X'81' Extend VSAM data space
on current volume
Flag byte
VT0C is enqueued upon entry
VIO data set
IEXFMT1 points to DX1FMTID of a
partial format-1 DSCB (partial
DSCB passed as input to Allocate,
and not JFCB is not available).
Reserved
Installation reject reason code
Reserved
Address of UCB
Address of the following:
- JFCB (Allocate, Extend, Partial Release)
- Scratch/Rename input parameter list
(in user storage)
Address of the following:
- DSAB list (ISAM Allocate)
- DEB (Extend on old volume)
- DCB (Partial Release)
= Current volume list entry
(Scratch/Rename)
Address of the data set name
Address of the 96-
byte data portion of format-1
DSCB (pre- and post-exit for
partial release; post-exit for
scratch). May be supplied by
pre-exit of allocate, and extend
on new volume, to serve as a
model if IEXMF1l and IEXVIO are
zero; postexit for allocate
Address of format-2 DSCB
(ISAM Allocate post exit)
Reserved
Address of extent table
(pre- and post-exit for scratch
and partial release; post-exit
for allocate and extend)
DADSM completion code
(post exit)
Reserved word for use by
installation exit

Figure 30. Format of the DADSM Preprocessing ‘and Postprocessing Exit Parameter List

Chapter 6. Exit Routines 123

SYSTEM CONTROL BLOCKS
The DADSM installation exit parameter list contains the address Y
of system control blocks. The mapping macros of those control
blocks are listed below together with the name of the system
library in which they reside. One of the macros, ICVARXNT, is
only supplied with the optional material.

Macro control Block Location

IECSDSL1 DSCB " SYS1.AMODGEN
IEFUCBOB UCB SYS1.AMODGEN
IEFJFCBN JFCB _ SYS1.AMODGEN
IHADSAB . DSAB - 5YS51.MACLIB
I1EZDEB DEB : SYS1.MACLIB
IHADCB DCB SYS1.MACLIB
IEFTIOT] TIOT - $YS1.AMODGEN
ICVARXNT Extent Table Optional Material

IECIEXPL DADSM installation SYS1.MACLIB
exit parameter list

There is no mapping macro for the SCRATCH/RENAME parameter list
or the associated voiume iist.

For extend and'partial'release, the address of the JFCB passed
to the user exit points to a copy of the real JFCB. Updating
the copied JFCB Nlll not result in a corresponding change to the
real JFCB. .
During EXTEND of a_VSAM data set, the exit is passed the address
of a dummy DEB. This DEBR does not contain any EXTENT
information. :
REGISTERS AT ENTRY TO EXITS
At entry to your exit routine, register contents are as follows: /{;E
Register contents

1 " Address of the exit parameter list

13 Address of an 18-word save area
14 Return address to DADSM

15 Address of your exit routine

REGISTERS AT RETURN TO DADSM
When you returnkto DADSM, fegister contents must be as follows:

Register Contents

0-1¢4 Same as on entry to vour exit‘routine'

15 A return code from IGGPREOO

The return codes and their meanings are as followus:

Code Meaning _ , ‘

0 Indicates that you want the DADSM requast to be
processed .

% | Indicates ‘that no DADSM request for the current volume

is to be processed:

8 . Indicates that you do not want the DADSM request to be

processed ’ ‘M:;)

126 MVS/7370 System Programming Library: Data Management

C

C

DCB OPEN JNSTALLATION EXIT

THE EXIT MODULE '

THE EXIT ENVIRONMENT

There is an exit that enables an installation-uritten module to
take control during Open for a DCB. An exit parameter list is
used by open processing to communicate with the exit module.
Ig: format of the parameter list is shown in Figure 31 on page

OPEN has an exit module that the installation can replace. This
module is IFGOEXOB, which resides in load module IGCO0001lI. The
load module resides in SYS1.LPALIB. You can use System
Modification Program (SMP) to replace the IBM-supplied exit
module with an installation exit you write.

IFGOEXOB is given control in supervisor state and protect key
zero with no locks held. System enqueues will have been issued
to serialize system functions. These enqueues may prevent other
system services from being invoked. In particular, dynamic
allocation, OPEN, CLOSE, EOV, and DADSM functions should not be
invoked because of an enqueue on the SYSZTIOT resource. If the
exit requires access to an installation data set, the control
blocks required to access that data set (DCB, DEB) should be
built during system initialization (IPL/NIP). RACF macros may
be invoked from the exit.

OPEN PROCESSING BEFORE IFGOEXOB GETS CONTROL

The exit module, IFGOEXO0B, is given control whenever OPEN
processes a DCB. The exit is taken after the following
functions have been performed for the DCB.

"o DASD data sets

= Volume mounted

- Format-1, -2, and -3.05035 read‘

- Fofward merge from format-1 DSCB to JFCB
¢ Tape data sets

= Volume mounted

= Header labels verified

- Forward merge from header labels to JFCB
e All data sets

= Forward merge from JFCB to DCB

- User DCB OPENAexit (if any) taken

- RACF or password verification processing

OPEN PROCESSING AFTER IFGOEXOB GETS CONTROL

The following functions have not vet been performed at the time
the exit 15 given control for the DCB. .

. Reverse merge from DCB to JFCB (not all fields are merged)

. Reverse merge from JFCB to format-1 DSCB for DASD data sets
. (not all fields are merged)

. Header labels written (for output tape data set)

Chapter 6. Exit Routines 125

. Access—-method-dependent processung (obtain buffers, getmain
and build I0Bs and DEB) .

. Write JFCB
L Write format—-1 DSCB

GETTING CONTROL FROM OPEN

The exit is given control for each DCB being opened, even when
two or more DCBs are being opened, in parallel, with one
invocation of OPEN. ‘ .

The exit is given control from OPEN (SVYC 19) and OPEN TYPE=J
(SVC 22). The exit is given control from end-of-volume (EOV;
SVC 55) and from force-end-of-volume (FEQOV; SVC 31) when a
concatenation of two sequential data sets with unlike attributes
is being processed. In this case, EOV gives control to CLOSE,
which gives control to OPEN. " The exit is not given control
from EOV when a concatenation of two sequential data sets with
like attributes is being processed. In this case, EOV does not
give control to CLOSE and OPEN. A request by the user program
for concatenation with unlike attributes is shown in the DCB by
flag DCBOFPPC (bit %; mask X'08') in field DCBOFLGS being set to
one. ~ e

DATA THAT OPEN PASSES TO THE EXIT

The parameter list mapped by macro IECOIEXL is supplied to the
installation exit. It contains data and the addresses of
control blocks that may be of interest to the exit.

The format of the parameter list is shown in Figure 31.

Name
OIEXL

OIEXOOPT

OIEXRSVD
OIEXOOUT
OIEXOCIN
OIEXOUPD
OIEXOINO
OIEXORDB
OIEXOCINP
OIEXUKEY
OIEXLTH

OIEXUDCB

OIEXPDCB

OIEXJFCB

OIEXDSCB

0IEXTIOT
OIEXUCB

Figure 31.

offset
00¢00)
00(¢00)

[—X-X-4
[~ X-X-J

1
2
6

~ N~

1
2
%

-t

08(038)

12¢0C)
16(10)

20(14)
24(18)

Bytes k E Descripii on

0 DCB Open installation exit
parameter list
1 Open option (last & brts).
.o X'F0' first 4 bits reserved.
11 15 output -
11 7 outin
.e - % update
11 3 inout
R | 1 read backward
v eeee 0 input
User protect key. Key of user DCB.
Length of OIEXL
Address of user DCB
in user protect key (OIEXUKEY)
Address of protected’
copy of DCB used by OPEN
Address of JFCB ‘
Address of data portion of
format-1 DSCB
Address of TIOT entry
Address of UCB

e o o o

- F T P R AR o A 2 o R B]

Format of OPEN Exit Parameter List

Note that two DCB addresses are supplied. OPEN maintains a

protected copy of the user DCB. OPEN's copy of the DCB may be

used to test DCB fields. If any modification is made to the
DCB, both the user DCB and OPEN's protected copy must be
updated. The protect key of the user DCB is supplied in the

126 MVS/370 System Programming Library: Data Management

exit parameter list. This protect key must be used to either
fatch from or store into the user DCB.

Care should be taken to determine the type of DCB and device
passed to the exit before testing access-method or
devica-dependent fields in the DCB. The sample exit shown in
Appendix E gives an example of isolating a QSAM DCB being opened
to a DASD or tape device.

The JFCB address supplied to the exit points to a copy of the
JFCB that is in OPEN's work area. There may be other JFCBs
associated with the OPEN, if ISAM or concatenated partitioned
data sets are being opened.

In the casa of BDAM, ISAM, and concatenated partitioned data
sets, the UCB, whose address is supplied to the exit, may not be
the only UCB associated with the DCB being opened. The UCB
should not be modified.

The TIOT address supplied is of a TIOT entry (TIOENTRY label in
the IEFTIOT1 macro). In the cases of ISAM and concatenated
partitioned data sets, other TIOT entries may be associated with
the DCB being opened. If concatenation of unlike attributes is
being processed, the TIOT entry may have a blank DDNAME field.

The format-1 DSCB passed to the exit is in the OPEN work area.
The address is of the field, DSIFMTID. There may be format-2
and -3 DSCBs associated with the format-1 DSCB. There may be
other format-1 through -3 DSCBs associated with the DCB being
opened in the cases of ISAM, BDAM, and concatenated partitioned
data sets. If the OPEN is to the VTOC, a format-4 DSCB address
is passed to the exit; this can be determined by testing field
DS1FMTID for a value of X'F4', or the data set name in the
JFCBDSNM field of 44X'04".

Q DEFAULTING BUFFER NUMBER FOR QSAM

MODIFYING THE JFCB

If a value has not yet been supplied, the exit may be used to
supply an installation-determined value for DCBBUFNO (number of
buffers) for QSAM DCBs.

A sample exit program that does this is shown in Appendix E.

It may not be advisable to override a nonzero value of DCBBUFNO
without knowing what dependency the user program has on that
value. DCBBUFNO can not be overridden when a buffer pool control
block address exists in the DCB field, DCBBUFCA; this indicates
buffers have been acquired before OPEN. DCBBUFCA is set to one
(and not zero) if no buffer pool control block address exists.

Whenaever the JFCB is modified, code & should be returned to
OPEN. This will causae OPEN to rewrite the JFCB. The JFCB should
not be modified if the user program has set JFCNWRIT (bit %) in
byte JFCBTSDM as it indicates the JFCB should not be written.

A sample exit program that modifies the JFCB is shown in
Appendix E.

REQUESTING PARTIAL RELEASE

An example of modifying the JFCB in OPEN's work area is used to
set the bits to 1 indicating partial release has been requested:
JFCRLSE (bits 0 and 1; mask X'C0') in byte JFCBIND1. This
should be done only for DASD physical sequential or partitioned
data sets opened for OUTPUT or OUTIN and processed by (1) EXCP
with a 5-word device-dependent section present in the DCB, (2)
BSAM, or (3) QSAM.

Chapter 6. Exit Routines 127

Care should be taken in modifying the JFCB release bits. For

example, a data set that is opened for output many times,

writing varying amounts of data each time, may have to extend %:w
after each OPEN, resulting in many small extents and, perhaps, i
reaching the l6-extent limit. This could result in a B37 abend.

Care should also be taken in setting the JFCBSPAC bits to define
the space quantity units when the partial release flag,
JFCBRLSE, is also set on. A cylinder allocated extent may be
released on a track boundary when JFCBSPAC does not indicate
cylinder units or average block length units with ROUND
specified. This will cause the cvlinder boundary extent to
become a track boundary extent, thereby losing the performance
advantage of cylinder boundary extents. Zeroing the release
indicator and increasing secondary allocation quantity when, for
example, the data set has extended a large number of times, may
prevent such a B37 abend. Setting the release indicator could
;§5“1t1i“ more space being made available to other users sharing
e volume.

UPDATING THE SECONDARY SPACE bATA

The JFCB may also be modified by updating the secondary space
data. Byte JFCBCTRI contains the space request type coded in
the DD statement, or merged from the format-1 DSCB. Field
JFCBSQTY contains the amount of secondary space (in either
tracks, cylinders, or average block units). Field JFCBPQTY
contains the amount of primary space (in either tracks,
cylinders, or average block units).

Setting the contiguous bit (JFCONTIG) to zero may prevent an
out-of-space ABEND where there is enough space, but not enough
contiguous space, to satisfy a request to extend the data set.

REGISTERS AT ENTRY TO IFGOEXOB ‘ N

At entry to the exit, register contents are as follows:

Ragister Contents

1 igd:ess of the DCB OPEN installation exit parameter
is

13 Address of an 18 word save area

14 ' Return address to OPEN

15 Address of the entry point to IFGOEXOB

REGISTERS AT RETURN TO OPEN
When you return to OPEN, register contents are as follous:
Register Contents
0-14 Same as on entry to the exit

15 Set to ¢ if the JFCB has been modified. Set to 0 if
: the JFCB has not been modified

OPEN/EOV. INSTALLATION EXIT FOR FORMAT-1 DSCB NOT FOUND |

The function of the Format-1 DSCB-not-found installation exit in
OPEN and EQOV is to determine if a missing DSCB (such as a data
sat which has been migrated to another volume) can be restored

to the volume. If your exit module restores the DSCB, it ﬂ;ﬁ
indicates this when it returns control to the control program.

The exit module, IFGOEX0A, is given control whenever OPEN or EOV

fails to find a format-1 DSCB on a volume. There is an

128 MVS/370 System Programming Library: Data Management

IBM-supplied exit module, IFGOEXO0A, in SYS1.LPALIB. If you wish
to use your own exit module, you must replace IFGOEX0A. Your
exit module must have an entry point name of IFGOEXOA. If you
do not write your own exit module, processing continues normally
as the IBM-supplied exit returns a zero return code.

The exit is taken even under conditions where abnormal
termination ordinarily would not occur. Two examples of these
conditions follow:

1. When you have specified DISP=MOD and error recovery
processing is taking place because the last volume specified
in the JFCB does not contain the DSCB, but an earlier volume
doas. For this case, if your return code from IFGOEXOA is
zero or if your return code is 4 and the DSCB has not been
restored, OPEN and EOV search the other volumes for the DSCB
after the exit is taken.

2. Another condition occurs during EOV output when space has
not yet been allocated on the new volume. Space is
allocated after the exit is taken if your return code from
IFGOEXOA is zero or if your return code is & and the DSCB
has not been restored.

When a DSCB is not found, IFGOEXO0A is given control as follows:

. In system protect key 5 (data management key)

. In supervisor state

L The system resource represented by the SYSZTIOT major name
is enqueued for shared control (this ENQ prevents the exit
from invoking system functions such as SCRATCH, RENAME,
dynamic allocation, or LOCATE).

Standard register linkage conventions are used when IFGOEX0A is
given control as follows: ~

Register Contents

0 If 0, entry was from OPEN (single volume data set)
If C, entry was from OPEN (multivolume data set)
If F, entry was from EOV

1 Address of parameter list

2-12 Unpredictable

13 Address of 18-word save area

14 Return address

15 Address of entry point IFGOEXO0A

The parameter list pointed to by register 1 consists of two
fullwords. The first fullword contains the address of the UCB
for the volume on which the DSCB was not found. The second
fullword contains the address of the 44-byte data set name, left
justified, and padded with blanks. Bit zero of the second
fullword is set to one, indicating the last word in the
parameter list. The data set name must not be modified by the
exit. The parameter list, save area, and data set name are in
protect key 5 virtual storage, which is not fetch protected.
IFGOEXOA must be reenterable. All work areas obtained through
GETMAIN must be released through FREEMAIN. The return from your
module, IFGOEXO0A, to OPEN or EOV must be made as follows:

J Using the return address passed to you in register 14
. Registers 2-12 restored

. In protect key 5

Chapter 6. Exit Routines 129

. In supervisor state

. With a return code of 0, 4, or 8 in register 15 @
The return code you set in register 15 has the following
meanings:

Code Meaning

0¢00) Processing continues normally. This return code is
given if the exit does not restore the DSCB. Zero is
the return code always given by the IBM-supplied exit
module.

4(04%) The volume is searched one more time by OPEN or EOV
for the DSCB. This return code is given if IFGOEX0A
restores the DSCB to the volume. If the DSCB is again
not found, IFGOEX0A is not given control and
processing continues normally.

8(08) The task is abnormally terminated without attempting

to determine if DISP=MOD error recovery or allocation
on the new volume should occur. This return code is
given it IFGOEXOA encounters an error and you wish no
further processing to occur.

You should have IFGOEX0OA establish its own error recovery
environment (such as through an ESTAE), intercept any
indeterminate errors, and return to the control program with
return code 8. Problem determination is the responsibility of
your exit module. A write-to-programmer (WTO with routing code
11> or a TPUT (if a TSO region) may be used to issue an
informative message.

During a parallel OPEN when two or more DCBs are being opened at

the same time, and two of the DCBs are opening the same data A
set, the DSCB may be missing. If IFGOEXOA is called for the wh)v
first of the two DCBs and restores the DSCB, the channel program

attempting to read the DSCB for the second DCB may have been
executed before the restoration of the DSCB was complete.
IFGOEXOA is then called for the second DCB even though the DSCB
has already been restored. Return from IFGOEXOA with a return
code & is appropriate in this case.

IFGOEXOA is not given control when you are processing a VSAM
data set with an ACB; however, it is given control when you are
processing a VSAM data space with a DCB. IFGOEX0A is bypassed
if the format-4 DSCB is not found on a volume, even if the OPEN
;§oze)the VT0C data set name (data set name of 44 bytes of

DATA_ MANAGEMENT ABEND INSTALLATION EXIT

The abend installation exit provides the ability to recover from
abnormal conditions that may occur during the opening, closing,
or handling of an end-of-volume condition for a non-VSAM data
set associated with the user's task.

When an abnormal condition occurs, control passes to the DCB
abend user exit routine, if one is provided, and processing
continues as specified in the DCB abend user exit routine. (The
DCB abend user exit routine gives you some options regarding the
actions you want the system to take when a condition arises that
may result in abnormal termination of your task. For additional
information about the DCB abend user exit routine, see Data
Management Services.) However, if the DCB abend user exit
routine is not specified, or specifies to abnormally terminate
the task immediately, the system passes control to the abend

installation exit. If a DCB abend user exit routine is not
prq;ided, control immediately passes to the abend installation /
exit.

130 MVS/370 System Programming Library: Data Management

IBM supplies an installation exit module, IFG01991 in
SYS1.LPALIB, that handles abend situations caused by tape
positioning errors. IFG0199I allows you to retry tape
positioning when vou receive a system completion code 613,
return code 08 or 0C. To perform recovery actions for data
management abend situations (other than those caused by tape
positioning errors), you can replace installation exit module
IFG0199I by modifying the source code supplied in SYS1.SAMPLIB.

IFG01991 receives control in protection key zero, supervisor
state. IFG01991 checks the system completion code and the
return code to determine whether the abend situation is the
raesult of a tape positioning error. If the system completion
code is other than 613 with return code 08 or 0C, control
returns to the calling module with return code 0, indicating to
continue with the abend. Otherwise, IFG0199I checks the counter
in the 4-byte work area to determine if one attempt to
reposition the tape has been made. If no attempt to reposition
the tape has been made, IFG01991 issues a return code of 4%,
indicating to retry positioning. If one attempt to reposition
the tape has been made, IFG0199I issues message IEC613A to the
operator to determine whether to attempt repositioning. If the
operator specifies that tave positioning 1s to be attempted
again, a return code of 4 is set, indicating that OPEN rewind
the tape and attempt positioning. If the operator specifies
that tape positioning is not to be reattempted, control is
returned to the calling module with a 0 return code.

When IFG0199I is given control, standard register linkage
conventions are used for registers 1, 13, 14, and 15. IFGO0199E
passes an open abend installation exit list (0AIXL), in register
1, to the abend installation exit module.

The format of OAIXL follows:

Word Boundary

+0(00) User Prot Key Option Flats Reserved Reserved
+4(06) Address of the protected copy of the DCB

+8(08) Address of the user's DCB Related to the abend
+12(0C) Address of the UCB Related to the abend

+16(10) Address of the JFCB Related to the abend

+20(14) Address of the TIOT Related to the abend

+264(18) Abend code — Example X'6130000C"'

+28(1C) Installation work area (could be used as counter)

Chapter 6. Exit Routines 131

0(00) Protection key of the user's DCB
1€01) Option flags: ‘ @
Bits

0 OAIXEXIT; used to determine whether the DCB
abend user exit was taken

On exit was taken
O0ff exit was not taken

1 OAIXREW; used to determine whether to rewind the
tape volume

On rewind the tape volume
O0ff do not rewind the tape volume

8 Address of the user's DCB related to the abend
¥§eg to distinguish each unique exit parameter
is

28 ¢4-byte work area used as a counter to determine
th: pugber of times tape positioning has been
retrie

The installation exit returns to IFGO0199E one of the following
return codes:

code Meaning

0¢00) Continue with the abend in process.

4(04) If the OAIXREW flag is set, indicating to rewind the
tape, rewind the tape volume; set the UCBFSCT and a7
UCBFSEQ fields in the UCB to zero; and retry the abend N
in process. LW

If the OAIXREW flag is not set, indicating not to
rewind the tape, retry the abend in process.

For abend codes that {he installation is allowed to retry, see
Data Management Services in the section that defines the abend
codes that the user abend exit may retry.

Modifying the IBM-Supplied Installation Exit Module: Because the
IBM-supplied installation exit module only handles a particular
abend situation, you may want to modify the source code of that
module to perform corrective actions for other abend situations.

You can obtain a copy of the source code from SYS1.SAMPLIB for
modification using the editing facility that is available to
you. After vou have modified the source code, link-edit it into
SYS1.LPALIB. The source program is written in Assembler
language, and uses only macros in SYS1.MACLIB. If vou replace
the supplied installation module, the exit module that you
supply must have the entry point name IFG0199I and it must be
reenterable.

OPEN/EOV USER _EXIT FOR NONSPECIFIC TAPE MOUN EQUESTS

This exit allows you to identify a specific tape volume to be
requested in place of a nonspecific (scratch) volume. Only
IBM-standard labeled tapes (SL) will be supported. The exit is
invoked when open or EOV is to issue a mount request for a tape
volume where no volume serial number has been specified, and
will get control before the mount message is issued.

132 MVS/7370 System Programming Library: Data Management

The exit address must be in the DCB exit list. The exit list
entry code used to identify this exit in the DCB exit list is

X'17'. The exit is called in user key; the state will be the

ﬁaTg state as when the open or EOV was issued; no locks will be
eld.

Chapter 6. Exit Routines 132.1

@

At entry to your exit routine, register contents are as follows:

Register Contents

0 Variable

1 Address of the exit parameter list (in key 5, nonfetch
protected storage)

2-13 Contents before the macro instructions that gave
Open/EOV control (OPEN, FEOV, EOV, PUT, and CHECK)

14 Return address (must not be altered by the exit
routine)

15 Address of exit routine entry point

The conventions for saving and restoring register contents are
as followus:

[The exit routine must preserve the contents of register l4.
It need not preserve the contents of other registers. The
operating system restores the contents of registers 2
through 13 before returning control to your program.

. The exit routine must not use the save area whose address is
in register 13, because this area is used by the operating
system. If the exit routine calls another routine or issues
supervisor or data management macro instructions, it must
provide the address of a new save area in raegister 13.

The exit parameter list contains the following:

. Flags indicating SL tape, first entry to the exit, and
whether called from open or EOV

L The open option
L Addresses of the DCB, volume serial number, and JFCB

The high order bit of the last word in the list (the JFCB
address) will be set to one.

The format of the parameter list, which is mapped by macro
JECOENTE, is shown in Figure 32 on page 134.

The first time the exit is called (indicated by bit 7 of the
first byte of the parameter list), the volume serial number
field of the list contains a zero.

The following return codes (in register 15) are alloued:
Code Meaning

0¢00) Open/EOQV will continue with the nonspecific mount
request.

4(04) Open/EQV will use the user-specified volume. Register 0
contains the address of a 6-byte volume serial number.
Open/EQV will request that the volume be mounted if the
volume is not in use by this job or another job.

If open or EOV finds the supplied volume serial number is in use
by this job or another job (that is, the volume is enqueued),
the exit is taken a subsequent time (indicated by bit 7 of the
first byte of the parameter list). The address of the supplied
volume serial number is passed in the parameter list to the
exit. The return codes will be the same as the first entry of
the exit. The exit will be entered repetitively until return
code 0 is passed back, or until return code 4 is passed back
together with a volume serial number that is not in use.

Chapter 6. Exit Routines 133

Name gffset Bytes Description ~ @:jb

OENTWRD1 00¢00) 0 Nonspecific tape request user exit
) parameter list
OENTFLG 00(¢00) 1 flags
OENTOEOV : 0. v called by open:
OENTOEOV 1... ... called by EOV
o« XXX XXX, reserved
" OENTNTRY ceee aesl first entry to exit
OENTNTRY veve eeel subsequent entry to exit
OENTOPTN 1 (01) 1 open options
XXXX oo reserved
.... 0000 INPUT
wees 1111 OUTPUT
«e.e 0011 INOUT
vee. 0111 OUTIN
.... 0001 RDBACK
2 (02) 2 reserved
OENTDCBA 4 (04) % address of DCB
OENTVSRA 8 (08) 4 zero or address of volume
serial number
OENTJFCB 12 (0C) 4 address of JFCB

Figure 32. Format of Parameter List for Nonspecific Tape Mount User Exit

If the tape volume is not in use, the exit will not be taken
again even if some other reason (such as an I/0 error, or
invalid expiration date) causes the tape to be rejected.

OPEN/EOV_USER EXIT FOR YBM-STANDARD LABELED TAPE SECURITY VERIFICATION A

This exit allows authorized programs to verify that an
IBM-standard labeled tape selected by open or EQOV should, in
fact, be used, and whether certain security checks may be
bypassed. The exit supports only IBM-standard labeled tape
(SL), and is taken only for APF authorized programs for which
the program property "bypass password (and RACF) checking” is
active for (for information on program properties, see System
Programmin ibrary: Jo anagement).

The exit address must be in the DCB exit list. The exit list
entry code used to identify the exit is X'18"'.

The exit is taken from open and EOV after volume verification
and positioning, and before password and/or expiration date
checking. The exit is called in user key; the state will be the

aaTg state as when the open or EOV was issued; no locks will be
eld.

At entry to your exit routine, register contents are as follows:
Register Contents
0 Variable

1 Address of the exit parameter list (in key 5, nonfetch
protected storage)

2-13 Contents before the macro instruction that gave
gg$?/EOV control (OPEN, FEOV, EOV, PUT, CHECK, and

14 Return address (must not be altered by the exit m::;
routine) B

15 Address of exit routine entry point

136 MVS/370 System Programming Library: Data Management

@)

The conventions for saving and restoring register contents are
as follows:

L The exit routine must preserve the contents of register 14.
It need not preserve the contents of other registers. The
operating system restores the contents of registers 2
through 13 before returning control to your program.

. The exit routine must not use the save areca whose address is
in register 13, because this area is used by the operating
system. If the exit routine calls another rcutine or issues
supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

The exit parameter list contains the following:

. Flags indicating whether the exit was called from open or
Eoyétand whether the first data set on the volume is to be
written

. The open option

. ﬁdggesses of the DCB, volume serial number, tape label, and
F

The tape label is either the HDR1 label of a data set to be read
forward or overwritten, the EQOFl label of a data set to be read
backward, or the EOFl label of a data set after which the new
data set is to written. The high order bit of the last word in
the parameter list (the JFCB address) is set to one.

The format of the parameter list, which is mapped by macro
IECOEVSE, is shown in Figure 33.

Name offset Bytes Description
OEVSWRD1 060C¢00) 0 SL tape security verification user
exit parameter list
OEVSFLG 00C¢00) 1 flags
OEVSOEOV 0... ... called by open
OEVSOEOQOV 1... ..., called by EOV
o XXX XXX . reserved
OEVSFILE eeee o040 first data set to be written
on volume, or data set being read
OEVSFILE R | second or subsequent data set
to be written on volume
OEVSOPTN 01¢(01)> 1 open options
KXXX oo reserved
.+.. 0000 INPUT
vees 1111 QUTPUT
.e.. 0011 INOUT
.e.. 0111 OUTIN
.e.. 0001 RDBACK
02¢02) 2 reserved
OEVSDCBA 06(064) % address of DCB
OEVSVSRA 08(038) 4 address of volume serial number
OEVSHDR1 12¢0C) % adérgsi of tape label (HDR1l or
OF1

CEVSJFCB 16(10)

+»H

address of JFCB

Figure 33. Format of Parameter List for IBM-Standard Labeled Tape Security
Verification User Exit

Chapter 6. Exit Routines 135

The following return codes (in register 15) are allowed:

Code
0¢00)
4(04)

8(08)

12¢00)

16(10)

Meaning
Use the volume as if the exit was not entered.

Qutput processing: reject the volume and request that a
scratch tape be mounted (this will cause the open/EQV
user exit for nonspecific tape volume mount requests to
get control if that exit is defined). If the data set
seguegce number to be written is not 1, treat as return
code 8.

Input processing: treat as return code 8.

Note: It is the user's responsibility to determine
whether a data set open for INOUT or OUTIN is being
processed for output or input at the time the exit is
given control from EOV. Bit DCBOFLWR in field DCBOFLGS
is set to 1 if the EQOV is being processed for output.

Abnormally terminate the open or EUOV, using the
completion codes 913-34 for open and 937-29 for EOV.

Use the volume; the password or expiration date of the
tape label will not prevent the existing data set from
being overwritten.

Use the volume. The password, expiration date of the
tape label, or unlike data set names should not prevent
the first data set on a volume from being written;
however, in order to write other than the first data
set, the data set must have the same security
prgt:ction as the data set after which it will be
written.

136 MVS/370 System Programming Library: Data Management

4

=
A3

C

CHAPTER 7. SYSTEM MACRO INSTRUCTIONS

INTRODUCTION

This chapter describes miscellaneous macro instructions that
allow you to=’ '

¢ Modify control blocks

. Obtain information from control blocks and system tables
. Perform track capacity calculations

. Allocate a data set based on a partial DSCB

Before reading this chapter, you should be familiar with the
following publications=

. 05/VS—DOS/VSE-VM/370 Assembler Language contains the
information necessary to code programs in the assembler
language.

. Debuagging Handbook contains format and field descriptions of
the data areas referred to in this chapter.

The system macro instructions are described in these functional
groupings: ’

* Mapping (IEFUCBOB, IEFJFCBN, and CVT)

. Obtaining device characteristics (DEVTYPE)

. Manipulating the JFCB (RDJFCB)

. Data security (DEBCHK)

* Manipulating queues (PURGE and RESTORE)

. Performing track capacity calculations (TRKCALC)

. Allocating a data set based on a partial DSCB (REALLOC)

.MAPPING SYSTEM DATA AREAS

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within
the unit control block (UCB), job file control block (JFCB), and
communication vector table (CVT), respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a
distribution library named SYS1.AMODGEN. Before you can issue
the macros, you must copy them from SYS1.AMODGEN into
SYS1.MACLIB (the IEBCOPY utility can be used to copy the
macros), or SYS1.AMODGEN may be concatenated to the macro
library before reference is made to SYS1.AMODGEN.

The fields in these blocks are shown and described in Debugging
Handbook.

IEFUCBOB—MAPPING THE UCB

This macro instruction defines the symbolic names of the fields
in the unit control block (UCB). The macro does not include a

DSECT statement. However, if you specify PREFIX=YES, the DSECT
statement is provided.

. Chapter 7. System Macro Instructions 137

Tha format is:

— C
S} . 4

[symboll IEFUCBOB| [LIST={NO IY
' [,PREFIX= H_|
LIST={NO|YES}
NO
specifies that only the UCB prolog is to be printed.
YES .
specifies that the UCB prolog and the rest of the UCB
are to be printed.
PREFIX={NO|YES}
NO
specifies that no prefix is to be printed.
YES

specifies that the prefix and main body of thé UCB are
to be printed. A DSECT statement is included if you
specify PREFIX=YES.

IEFJFCEN—MAPPING THE JFCB
This macro instruction defines the symbolic names of the fields
in the job file control block (JFCB). The macro does not
include a DSECT statement. If you require one, code a DSECT
statement before the macro statement.

The format is:

R
[symboll | IEFJFCBN| [LIST={NO]YES}] LW
LIST={NO|YES}
NO

specifies that only the JFCB prolog is to be printed.
YES ~
specifies that the JFCB prolog and the rest of the
JFCB are to be printed.

CVT—MAPPING THE CVT

This macro instruction defines the symbolic names of all fields
in the communication vector table (CVT).

The format is:

[symboll cvTY [DSECT={NO|YES}]
[,LIST={NO|YES}]
DSECT={NO|YES}
NO

specifies that you do not want a DSECT.

YES
specifies that vou want a DSECT.

138 MVS/370 System Programming Library: Data Management

LIST={NO|YES)

NO
specifies that only the CVT prolog is to be printed.
YES
specifies that the CVT prolog and the rest of the CVT
arae to be printed.
V4 E ARACTERISTIC

Use the DEVTYPE macro instruction to request information
relating to the characteristics of an I/0 device, and to cause
this information to be placed into a specified area. (The
results of a DEVIYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a
checkpoint/restart occurs.) The IHADVA macro maps the data
returned by the DEVTYPE macro.

The topics that follow discuss the DEVTYPE macro, device
characteristics, and particular output for particular devices.

DEVTYPE MACRO SPECIFICATION

The format is:

[symbol]l DEVTYPE ddloc-addrx
sarea-addrx

[,DEVTAB]
[,RPS]

ddloc-addrx
the name of an 8-byte field that contains the symbolic name
of the DD statement to which the device is assigned. The
name must be left justified in the 8-byte field, and must
be followed by blanks if the name is less than eight
characters. The doubleword need not be on a doubleword
boundary.

area-addrx
the name of an area into which the device information is to
be placed. The area can be two, five, or six fullwords,
depending on whether or not the DEVTAB and RPS operands are
specified. The area must be on a fullword boundary.

DEVTAB
This operand is only required for direct access devices.
If DEVTAB is specified, the following number of words of
information is placed in vour area:

. For direct access devices: 5 words
. For nondirect access devices: 2 words

If you do not code DEVTAB, one word of information is
placed in your area if the reference is to a graphics or
teleprocessing device; for any other type of device, two
words of information are placed in your area.

RPS v
If RPS is specified, DEVTAB must also be specified. The
RPS parameter causes one additional full word of RPS
information to be included with the DEVTAB information.

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeros to be placed in the
output area. Any reference to a SYSIN or SYSOUT data set causes
X'00000102' to be placed in word 0 and 32,760 (X'00007FF8') to
be placed in word 1 in the output area. Any reference to a file
allocated to a TSO terminal causes X'00000101' to be placed in

Chapter 7. System Macro Instructions 139

word 0 and 32,760 (X'00007FF8') to be placed in word 1 in the
output area.

DEVICE CHARACTERISTICS INFORMATION

140 MVS/370- System

The folloﬁing information is placed into your area as a result
of issuing a DEVTYPE macro:

Word 0 :
Describes the device as defined in the UCBTYP field of the
UCB. For a complete description of this field, refer to
Debugging Handbook.

ord
Maximum block size. For direct access devices, this value
is the smaller of either the maximum size of an unkeyed
block or the maximum block size allowed by the operating
system; for magnetic or paper tape devices, this value is
the maximum block size allowed by the operating system.
For all other devices, this value is the maximum block size
accepted by the device.

If DEVTAB is specified, the next three fullwords contain the
following information about direct access devices:

Word 2

Bytes 0-1 The nhmber of physical cylinders on the device,
, excluding alternates.

Bytes 2-3 The number of tracks per cylinder.
Word 3

Bytes 0-1 Maximum track length. Note that for the 2305,

, 333073333 Model 1 or 11, 3340/3344, 3350, 3375,
and 3380 direct access devices, this value is
not equal to the value in word 1 (maximum block
size) as it is for other IBM direct access
devices.

Notgthefore using bytes 2 and 3, please read the description of
wor .

Byte 2 Block overhead, keyed block—the numbef of
bytes required for gaps and check bits for each
zeyeg block other than the last block on a
rack.

Byte 3 Block overhead—the number of bytes required
for gaps and check bits for a keved block that
is the last block on a track.

Bytes 2-3 Block overhead—the number of bytes required
‘ for gaps and check bits for any keyed block on
a track including the last block. Use of this
forg ls,indicated by a one in bit 4, byte 1 of
wor .

Basic ovefhead——thé number of bytes required
for the count field. Use of this form is
indicatedfby a one in bit 3, byte 1 of word 4.

Word 6
Byte 0 ' Block;bverheéd. block without key—the number

. of bytes to be subtracted from word 3, bytes 2
or 3 or bytes 2 and 3, if a block is not keyed.

If bit 3, byte 1 of word 4@ is 1, this byte
contains the modulo factor for a modulo device.

Programming Library: Data Management

>

Byte 1

Bit 0 If on, the number of cylinders, as
indicated in word 2, bytes 0-1 are
invalid. This bit will be on only
for 3340 devices.

Bits 1-2 Reserved.

Bit 3 If on, indicates a modulo device
(3375, 3380). To calculate the
number of data bytes required for a
data block for a modulo device, see
the device data in Data Management
Services.

Bit & If on, bytes 2 and 3 of word 3
contain a halfword giving the block
overhead for any block on a track,
including the last block.

Bits 5-6 Reserved.

Bit 7 If on, a tolerance factor must be
applied to all blocks except the
last block on the track.

Bytes 2-3 Tolerance factor—this factor is used to
calculate the effective length of a block. The
calculation should be performed as follows:

Step 1 add the block's key length to the
block's data length.
Step 2 test bit 7 of byte 1 of word 4. If

bit 7 is 0, perform step 3. If bit
7 is 1, multiply the sum computed
in step 1 by the tolerance factor.
Shift the result of the
multiplication nine bits to the
right.

Step 3 add the appropriate block overhead
to the value obtained above.

If bit 3, byte 1 of word & is 1, bytes (2-3)
contain the overhead for the data or key field.

If DEVTAB and RPS are sbecified. the next fullword contains
the following information:

Word 5
Bytes 0-1 RO overhead for sector calculations
Byte 2 Number of sectors for the device
Byte 3 Number of data sectors for the device

Figure 34 on page 142 shows the output for each device type that
results from issuing the DEVTYPE macro.

Control is returned to your program at the next executable
instruction following the DEVTYPE macro instruction. If the
information concerning the ddname you specified has been
successfully moved to your work area, register 15 will contain
- zeros. Otherwise, register 15 will contain X'04', indicating
that the ddname was not found.

Chapter 7. System Macro Instructions 141

Printer-Keyboard

Devicel,2 Maximum DEVTAB (Words 2, 3, and RPS (Mord 5,

Record Size %, in Hexadecimal) mn

(Word 1, in Hexadecimal)

Decimal)
2540 Reader 30 Not Applicable Not Applicable
2540 Reader w/CI 80 Not Applicable Not Applicable
2540 Punch 80 Not Applicable Not Applicable
2540 Punch w/CI ‘80 Not Applicable Not Applicable
2501 Reader 80 Not Applicable Not Applicable
2501 Reader w/CI 80 Not Applicable Not Applicable
2520 Reader-Punch 30 Not Applicable Not Applicable
ﬁ;%g Reader-Punch 30 Not Applicable Not Applicable
1287 Optical Reader 80 Not Applicable Not Applicable
1288 Optical Reader 80 Not Applicable Not Applicable
3886 Optical Reader 80 Not Applicable Not Applicable
gﬁzgegggﬂment 30 Not Applicable Not Applicable
é223213§2rter 80 Not Applicable Not Applicable
3505 Reader 80 Not Applicable Not Applicable
3505 Reader w/CI 80 Not Applicable Not Applicable
3525 Punch 80 Not Applicable Not Applicable
3525 Punch w/Cl 80 Not Applicable Not Applicable
1403 Printer 1203 Not Applicable Not Applicable
1403 w/UCS 1203 Not Applicable Not Applicable
1443 Printer 1202 Not Applicable Not Applicable
3203 Model 5 Printer 132 Not Applicable\ Not Applicable
3211 Printer 1323 Not Applicable th Applicable
ggggyzzlgting 1364 Not Applicable Not Applicable
%4245 Printer 132 Not Applicable Not Applicable
%g;éeiaper Tape 32760 Not’Applicable Not Applicable
1052 ' ‘ 130 Not Applicable Not Applicable
Printer—-Keyboard
1053 Printer Not Applicable Not Applicable
3210 130 Not Applicable Not Applicable

Figure 34 (Part 1 of 2). Output Obtained from Issuing DEVIYPE Macro

142 MVS/370 System Programming Library: Data Management

C

Unit

Devicel,2 Maximum DEYTAB (Words 2, 3, and RPS (Word 5,
Record Size &, in Hexadecimal) in .
{(Hord 1, in Hexadecimal)
Decimal)
3215 130 Not Applicable Not Applicable
Printer-Kevboard
3895 Reader 76 Not Applicable Not Applicable
Inscriber
2400 (9-track) 327690 Not Applicable Not Applicable
2400 (9-track, p.e.) 32760 Not Applicable Not Applicable
2400 (9-track, d.d.) 32760 Not Applicable Not Applicable
2600 (7-track) 32760 Not Applicable Not Applicable
2600 (7-track, d.c.) 32760 Not Applicable Not Applicable
2495 Tape Cartridge 0 Not Applicable Not Applicable
Reader
3400 (9-track, p.e.) 32760 Not Applicable Not Applicable
3600 (9-track, d.d.) 32760 Not Applicable Not Applicable
3600 (7-track) 32760 Not Applicable Not Applicable
231472319 DAS 7294 00CB00141C7E922D2D010216 Not Applicable
Facility '
2305 Model 1 14136 0030000838E8027ACA080200 | 02985A57
Fixed-Head Storage :
2305 Model 2 14660 006000083AOA012158080200 0140B4B1
Fixed-Head Storage _
333073333 Disk 13030 019B0013336DBFBF38000200 00ED807C
Storage
3330V MSS Virtual 13030 019B0013336DBFBF38000200 00ED807C
Volume
3330 Model 11 (or 13030 032F0013336DBFBF38000200 00ED807C
3333 Model 11) Disk
Storage
3340 Disk Storage 8368 015D000C2157F2F24B000200 0125403D
(35 megabytes)
334073344 Disk 8368 0230001E4B36010B52080200 0125403D
Storage (70 !
megabytes)
3350 Disk Storage 19069 0230001E4B36010B52080200 01858078
3375 Disk Storage 32760 03BFOOOCBCAOOOEO201000BF 0340C4BB
3380 Disk Storage 32760 0376000FBB6001002010010B 04EODED6
5250 Model 1 Display‘ Not Applicable Not Applicable
nit
2250 Model 3 Display Not Applicable Not Applicable

Figure 34 (Part 2 of 2).

Notes to Figure 34:

Output Obtained from Issuing DEVTYPE Macro

Chapter 7. System Macro Instructions

143

1 CI—card image feature; d.c.—data conversion; d.d.—dual
density; p.e.—phase encoding; UCS—universal character set;

w/—uith. , [O
2 Device codes are presented in System Programming Library: <
Debugqging Handbook.

3 Although certain models can have a larger line size, the
minimum line size is assumed.

4 The IBM 3800 Printing Subsystem can print 136 characters per
line at 10-pitch, 163 characters per line at 12-pitch, and
204 characters per line at 15-pitch. The machine default is
136 characters per line at 10-pitch.

Communication Equipment Record Size
1030,1050,83B3, Not Applicable
TWX,2250,5360

1060,115A,1130 Not Applicable
2780 Not Applicable
27640 Not Applicable

READING_AND MODIFYING A JOB FILE CONTROL BLOCK

To accomplish the functions that are performed as a result of an
OPEN macro instruction, the open routine requires access to
information that vou have supplied in a data definition (DD) o
statement. This information is stored by the system in a job ™
file control block (JFCB).

In certain applications, vou may find it necessary to modify the
contents of a JFCB before issuing an OPEN macro instruction.

For example, suppose you are adding records to the end of a
sequential data set. You might want to add a secondary
allocation quantity to allow the existing data set to be
extended when the space currently allocated is exhausted. To
assist you, the system provides the RDJFCB macro instruction.
This macro instruction causes a specified JFCB to be moved from
the SWA (scheduler work area), where it is stored, to an area
specified in an exit list. (The use of the RDJFCB macro
instruction with an exit list is shown under "RDJFCB—Read a Job
File Control Block™ on page 148. The symbolic names and field
descriptions of the JFCB are contained in Debugging Handbook.)
When you subsequently issue the OPEN macro instruction, you must
indicate, by specifying the TYPE=J operand, that you want to
open the data set using the JFCB in the area you specified.

At the conclusion of open processing, the JFCB is moved back to
the SWA, unless you set the bit JFCNWRIT in the field JFCBTSDM
to one before vou issue the OPEN macro instruction.

caution: If the JFCB, which the system used to open the data

set, is not available in SWA during EOV or CLOSE processing,
errors may occur.

144 MVS/370 System Programming Library: Data Management

Some of the modifications that are commonly made to the JFCB
include:

. Moving the creation and expiration date fields of the DSCB
gn§o §he JFCB (sae "Using RDJFCB for MSS Virtual Volumaes™
elow).

. Moving the secondary allocation quantity from thae DSCB into
the JFCB (see "Using RDJFCB for MSS Virtual Volumes™ below).

. Moving the DCB fields from the DSCB into the JFCB.

. Adding volume serial numbers to the JFCB (see "Using RDJFCB
for MSS Virtual Volumes™ and "RDJFCB Security™ balow).

Volume serial numbers in excess of five are written to the
JFCBX (extension) located in the SWA. The JFCBX cannot be
modified by user programs.

. Modifying the data set sequence number field in the JFCB.

. Modifying the number-of-volumes field in the JFCB (see
"Using RDJFCB for MSS Virtual Volumes™ below).

. Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape
volume DEQ at demount facility (see "DEQ at Demount Facility
for Tape Volumes,™ below).

USING RDJFCB FOR MSS VIRTUAL VOLUMES: Care must be taken in
:ai:g RDJFCB if the data set resides on MSS virtual volumes such
at:?

. The expiration date added does not conflict with other
volumes within the specified MSVGP.

. The secondary allocation quantity should be in cylinder
increments and be a multiple or sub-multiple of the primary
allocation quantity to avoid fragmentation.

L] The number of volumes must not exceed the number availabla
in the specified MSVGP.

. Any volume serial numbers added to the JFCB should exist in
the MSVGP.

RDJFCB SECURITY: The volume serial numbers specified in the
user-supplied JFCB will be compared uwith the volume. serial
numbers in the system JFCB located in the SWA. Each different
volume serial number will be enqueued exclusively. The volumes
will stay enqueued until the job step terminates since the close
routines will not dequeue the volumes. If the job step already
has the volume open, OPEN TYPE=J will continue. If the volume
is enqueued by another job step, a 413 abend will occur with a
return code of 064. :

Some JFCB modifications can compromise the security of existing
password-protected data sets. The following modifications are
specifically not allowed, unless the program making the
modifications is authorized or can supply the password:

. Changing the disposition of a password-protected data set
from OLD or MOD to NEW.

. Changing the data set name of one or more of the volume
serial numbers when the disposition is NEW.

. Changing the label processing specifications to bypass label
processing.

Note: An authorized program is one that is either in supervisor

state, executing in one of the system protection keys (keys 0
through 7), or authorized under the Authorized Program Facility.

Chapter 7. System Macro Instructions 145

RDJFCB USE BY AUTHORIZED PROGRAMS: If you change the data set

name in the JFCB, you should do a system enqueue on the major

name of "SYSDSN" for the substituted data set name. To use the ,
correct interface with other system functions (for example, ' @::m
partial release), the ENQUEUE macro should include the TCB of =
the initiator and the length of the data set name (with no

trailing blanks). MWhen yvou complete processing of the data set,

you should use the DEQ macro to release the resources.

{f you rewrite the JFCB, you must set bit zero at JFCBMASK + 4§
o one.

DEQ AT DEMOUNT FACILITY FOR TAPE VOLUMES

This facility is intended to be used by long-running programs
which create an indefinitely long-running tape data set (such as
a log tape). Use of this facility by such a program permits the
processed volumes to be allocated to another job for processing
(such as data reduction). This processing is otherwise
prohibited unless the indefinitely long data set is closed and
dynamically unallocated.

You may invoke this facility only through the RDJFCB/OPEN TYPE=J
interface by setting bit JFCDQDSP (bit 0) in field JFCBFLG3
(offset 163 or X'A3') to 1. The volume serial of the tape is
dequeued when the volume is demounted by OPEN or EOV with
messag: IEC502E when all of the following conditions are
present:

. The tape volume is verified for use by OPEN or EOV.
L JFCDQDSP is set to 1.

. The program is APF authorized (protect key and
supervisor/problem state are not relevant).

. The tape volume is to be immediately processed for output. ﬂ;
That is, either OPEN verifies the volume and the OPEN option
is OUTPUT, OUTIN, or OUTINX; or EOV verifies the volume and
the DCB is opened for OUTPUT, OUTIN, INOUT, or EXTEND, and
the last operation against the data set was an output
operation (DCBOFLWR is set to 1).

Note that in order for EOV to find JFCDQDSP set to 1, the
program must not inhibit the rewrite of the JFCB by setting bit
4 of JFCBTSDM to 1.

The tape volume is considered verified after file protect, label
type, and density conflicts have been resolved. The volume is
dequeued when demounted after this verification, even if further
in OPEN or EOV processing the volume is rejected because of
expiration date, security protection, checkpoint data set
protection, or an I/0 error.

When the volume serial is dequeued, the volume becomes available
for allocation to another job. However, because the volume DEQ
is performed without unallocating the volume, care must be
exercised both by the authorized program and the installation to
prevent misuse of the DEQ at demount facility. A discussion of
such misuse follows.

‘1. The authorized program must not close and reopen the data
set using the tape volume DEQ at demount facility. If it
does, one of the following can occur:

a. The dequeued volume may be mounted and in use by another
job. When the volume is requested for mounting, for the
authorized program, the operator is unable to satisfy
the mount. Therefore, the operator must either cancel
the requesting job, cancel the job using the volume, .
wait for the requesting job to time out, or wait for the ‘
job using the volume to terminate.

146 MVS/370 System Programming Library: Data Management

b. The dequeued volume may be allocated to another job but
‘ not yet in use. The operator mounts the volume to
» satisfy the mount request of the authorized job. When
the volume is requested for mounting by the other job,
the operator is unable to satisfy the mount request, and
is faced with the same choices as in a, above.

¢. The dequeued volume may not yet be allocated to another
job and the volume is mounted to satisfy the mount
request of the authorized job. Another job may allocate
the volume and when the volume is requested for
mounting, the situation is the same as in b, above.

It is the responsibility of the installation that permits a
program to run with APF authorization to ensure that it does
not close and reopen a data set using the DEQ at demount
facility.

L}

2. Care should be exercised when an authorized program uses the
DEQ at demount facility (data set 1) but processes another
tape data set (data set 2). Assume the same volume serial
numbers have been coded in the DD statements for data set 1
and data set 2. As the volumes of data set 1 are demounted,
they are dequeued even though those volumes may yet be
requested for data set 2. All of the problems explained in
a, b, and ¢ in 1 above, may occur as data set 2 and another
job contend for a dequeued volume.

This problem should not occur, given the intended use of the
DEQ at demount facility. That is, a long~running
application creating an indefinitely long tape data set.
This type of application is not normally invoked through
batch execution with user-wuritten DD statements.

3. Once a volume has been demounted and dequeued because of the
DEQ at demount facility, the volume is not automatically
N rejected by the control program when mounted in response to
(IZ a specific or nonspecific mount request. Without the use of
the facility, the control program can recognize (by the ENQ)
that the volume is in use, and reject the volume.
Therefore, operations procedures, in effect to prevent
incorrect volumes from being mounted, should be reviewed in
the light of reduced control program protection from such
errors when the DEQ at demount facility is used.
Specifically, if a volume is remounted for an authorized
program and the volume had been used previously by that
authorized program, duplicate volume serial numbers will
exist in the JFCB and the control program will be unable to
release the volume during EOV processing.

4, Checkpoint/restart considerations are discussed in

Checkpoint/Restart.

OPEN—INITIALIZE DATA CONTROL BLOCK FOR PROCESSING THE JFCB

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro
instruction, except for the TYPE=J option, is contained in Data
Management Macro Instructions. The TYPE=J option, because it is
used in conjunction with modifying a JFCB, should be used only
by the system programmer or only under the system programmer's
supervision.

Chapter 7. System Macro Instructions 147

[,TYPE=J]

[symboll | OPEN | (dcb-addr,[(options)l,...) ij

TYPE=J ,
specifies that for each data control block referred to, you
have supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal
representation of infprmation in a DD statement.

During initialization of a data control block, its
associated JFCB may be modified with information from the
data control block or an existing data set label or with
system control information.

The system always creates a job file control block for each
DD control statement. The job file control block is placed
in the SWA (scheduler work area). Its position, in
relation to other JFCBs created for the same job step, is
noted in a table in virtual storage.

When this operand is specified, you must also supply a DD
statement. However, the amount of information given .in the
DD statement is at vour discretion because you can modify
many fields of the system-created job file control block.
If you specify DUMMY on your DD statement, the open routine
will ignore the JFCB DSNAME and open the data set as dummy.
(See the examples of the RDJFCB macro instruction for a
coding example that modifies a system-created JFCB.)

Note: The DD statement must specify at least:

. Device allocation (refer to JCL for methods of preventing
share status)

° A ddname corresponding to the associated data control block / \;
DCBDDNAM field s/

RDJFCB—READ A JOB FILE CONTROL BLOCK

The RDJFCB macro instruction causes a job file control block
(JFCB) to be moved from the SWA (scheduler work area) into an
area of vour choice as identified via the EXLST parameter of
RDJFCB for each data control block specified.

[symboll RDJFCB (dcb-address
s[(optionsil,y...)

dcb-address, (options)
(same as the dcbaddress, optionl, and option2 operands of
the OPEN macro instruction, as shown in Data Management
Macro_Instructions).

Although the option operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands
can appear in the list form of either the RDJFCB or OPEN
macro instruction to generate identical parameter lists,
which can be referred to with the execute form of either
macro instruction.

148 MVS/370 System Programming Library: Data Management

Examples: In Figure 35 on page 149, the macro instruction at EXi
creates a parameter list for two data control blocks: INVEN and
MASTER. In creating the list, both data control blocks are
assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 reads the
system-created JFCBs for INVEN and MASTER from the SWA into the
area you specified, thus making the JFCBs available to your
problem program for modification. The macro instruction at EX3
modi fies the parameter list entry for the data control block
named INVEN and indicates, through the TYPE=J operand, that the
problem program is supplying the JFCBs for system use.

Chapter 7. System Macro Instructions 148.1

3

4

EX1 RDJFCB C(INVEN, ,MASTER),MF=L
EX2 RDJFCB MF=(E,EX1)
EX3 OPEN (, (RDBACK,LEAVE)), TYPE=J,MF=(E, EX1)
INVEN DCB EXLST=LSTA,...
MASTER DCB EXLST=LSTB,. ..
LSTA DS OF
DC X'07"
DC AL3CJFCBAREA)
JFCBAREA DS 0F,176C
LSTB DS OF

Figure 35. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may
be specified in the RDJFCB macro instruction. This facility
makeflif possible to read several job file control blocks in
parallel.

An exit list address must be provided in each data control block
specified by an RDJFCB macro instruction. Each exit list must
contain an active entry that specifies the virtual storage
address of the area into which a JFCB is to be placed. A full
discussion of the exit list and its use is contained in Data
anagemen ervices. The format of the job file control block
exit list entry is as follous:

Types of Hexadecimal Contents of Exit List Entry

Exit List | Code (Low-Order Bytes)

Entry (High-Order

Byte)

Job file 07 Address of a 176-byte area to

control be provided if the RDJFCB or

block OPEN (TYPE=J) macro
instruction is used. This
area must begin on a fullword
boundary and must be located
within the user's region.

The virtual storage area into which the JFCB is read must be at
least 176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter

list, a return code of zero is placed in register 15. If the
JFCB is not read for any of the DCBs because the DDNAME is

Chapter 7. System Macro Instructions 149

blank, or a DD statement is not
placed in register 15.

Harning: The following errors ca

provtded, a return code of

use the results indicated:

Error

Result

A DD statement has not been
provided.

A return code of % is
placed in register 15.

DDNAME field in DCB is

A write-to-programmer is

blank. issued, the request for
this DCB is ignored, and a
return code of ¢ is placed
in register 15.

A virtual storage address Abnormal termination of
has not been provided. task.

Note that if you want to open a VIOC data set to change its

contents (that is, open it for OUTPUT, UOUTIN, INUUI, UPDAT,

OUTINX, or EXTEND), your program must be authorized under the

Authorized Program Facility (APF). APF provides security and

integrity for your data sets and programs. Details on how you

authorlze your program are provided in Svystem Programming
Librar Supervis Services and Macro Instructions.

If the RDJFCB routine fails while processing a DCB associated
with your RDJFCB request, yocur task is abnormally terminated.
None of the options available through the DCB ABEND exit, as
described in Data Management Services, is available when a

RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine will AN
modify only the first JFCB. '

NSURING DATA SECUR BY VALIDATING THE DATA EXTENT BLOCK

Protecting one user's data from inadvertent or malicious access
by an unauthorized user depends on protection of the data extent
block (DEB). The DEB is a critical control block because it
cohtains information about the device a data set is mounted on,
and describes the location of data sets on direct access device
storage volumes. The DEB also contains the address of the
appendage vector table (AVT). Using the AVYT, an unauthorized
user can modify the AVT to give control to a routine in
supervisor state to read from and write to data sets to which
access would otherwise be denied.

To guarantee protection of the DEB, the DEBCHK macro instruction
is provided. The DEBCHK macro instruction can be found in
SYS1.MACLIB. The DEBCHK macro is issued by several components
of the system control program. For example:®

L The open access method executors issue the macro to add the
address of a DEB they have built to a list of valid
addresses called the DEB table. The DEB validity checking
routine builds and maintains a DEB table for each job step.

. The EXCP Processor uses the macro to verify that the DEB
passed with each EXCP request is in the DEB table.

. The close component issues the macro to remove a DEB from
the DEB table.

If vou code a routine that builds a DEB, you must add the

address of the DEB you built to the DEB table. If you code a B
routine that depends on the validity of a DEB that is passed to ‘
your routine, you should verlfy that the DEB passed to your

routine has a valid entry in the DEB table and points to vour

150 MVS/370 System Programming Library: Data Management

DCB or access method control block (ACB). Use the TYPE=ADD and
the TYPE=VERIFY operands of the macro, respectively.

To prevent an asynchronous routine from changing or deleting, or
assigning a new DEB to a DCB, you must hold the local lock. In
thi:.case, you must use the branch entry to the DEBCHK verify
routine.

Additional details about the functions provided by the DEB
validity checking routine and about the contents of the DEB
table are available in Open/Close/EQV Lcugic.

The DEBCHK macro instruction provides four functions:

. Adds the address of a DEB to the DEB table, which is located
in protected storage. The DEB table contains the address of
every user DEB associated with a given job step. Every
system control program component that builds a user DEB must
add the address of that DEB to a DEB table.

L Verifies that the DEB table associated with a given job step
contains the address of a valid DEB and that the DEB points
to the DCB (or ACB). Any system control program component
or problem program can use this function to verify that a
DEB is valid.

L Deletes the address of a DEB from the DEB table. Any
program that deletes a user DEB must, before it deletes the
DEB, issue a DEBCHK macro with a TYPE=DELETE operand to
delete the address of the DEB from the DEB table. If the
DEB validity checking routine encounters an error while
deleting the address from the DEB table, the job step is
abnormally terminated.

. Deletes the address of a DEB from the DEB table in the same
way as the preceding function, except that, instead of
terminating the job step, this function merely returns an
error code in register 15. This function is provided to
prevent recurring abnormal termination. The format of the
DEBCHK and a description of the operands follow:

DEBCHK—MACRO SPECIFICATION

{symboll DEBCHK cbaddr
T,TYPE={VERIFY|:ADD|DELETE [PURGE}]
[,AM={amtype l(amaddclll(amregl)}]
[, BRANCH={NO| YES)]

[, TCBADDR=address]l
[,KEYADDR-acdressl

[:SAVREG-reg]

[,MF=L]

cbaddr

for BRANCH=NO
RX~-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This
operand is ignored if MF-L is coded. For verify, add, and
delete requests, cbaddr is the address of a DCB or ACB that
points to the DEB whose address is either verified to be in
the DEB table, added to the DEB table, or deleted from the
DEB table. For the purge function, cbaddr is the address
of the DEB whose pointer is to be purged from the table: no
reference is made to the DCB or ACB.

Chapter 7. System Macro Instructions 151

Nota: A spooled DCB's DEB does not point back to the DCB,
but to the spooled ACB; in this case, the DEBCHK should be
issued against the ACB.

for BRANCH=YES
The A-type address of a 4-byte field, or a register
(1) or (3-12), that points to tha DCB or ACB
containing the DEB to be verified.

TYPE={VERIFY|ADD |DELETE | PURGE)}
indicates the function to be performed. If MF=L is coded,
TYPE is ignored. The functions are:

VERIFY
This function is assumed if the TYPE operand is not
coded. The control program checks the DEB table to
determine whether the DEB pointer is in the table at
the location indicated by the DEBTBLOF field of the
DEB. The DEB is also checked to verify that DEBDCBAD
points to the DCB (or ACB) passed to DEBCHK. The
DEBAMTYP field in the DEB is compared to the AM
operand value, if given. The two must be equal.
TYPE=VERIFY can be issued in either supervisor or
problem state.

ADD
The DEB and the DCB (or ACB) must point to each other
before the DEB address can be added to the DEB table.
Before the DEB pointer can be added to the table, the
DEB itself must be queued on the current TCB DEB chain
(the TCBDEB field contains the address of the first
DEB in the chain). The DEB address is added to the
DEB table at some offset into the table. That offset
value is placed in the DEBTBLOF field of the DEB, and
the access method type is inserted into the DEBAMTYP
field of the DEB. A zero is placed in the DEBAMTYP
field if the AM operand is not coded. TYPE=ADD can be
issued only in supervisor state.

DELETE
The DEB and the DCB (or ACB) must point to each other
before the DEB address can be deleted from the DEB
t:bie. TYPE=DELETE can be issued only in supervisor
state.

PURGE
‘The DEB pointer is removed from the DEB table without
checking the DCB (or ACB). TYPE=PURGE can be issued
only in supervisor state.

AM :
specifies an access method value. Each value corresponds
to a particular access method type (note that BPAM and SAM
have the same values): ’

Type value
TCAMAP X'84"
SUBSYS X'81°"
ISAM X*80°"
BDAM X'40"
SAM Xr20"
BPAM Xr20'
TAM X'10"
GAM X'08"
TCAM X'04"
EXCP Xr02"
VSAM X'o1’
NONE X*'00°

The operand can be coded in one of the following three
ways, only the first of which is valid for the list form
(HF=L) of the instruction.

152 MVS5/370 System Programming Library: Data Management

amtype
raefers to the access method: ISAM, BDAM, SAM, BPAM,

TAM (which refers to BTAM only), GAM, TCAM, EXCP, or
VSAM. TCAMAP identifies a TCAM application-program
DEB. SUBSYS identifies a subsystem of the operating
system, such as a job entry subsystem. NONE indicates
that no access method or subsystem is specified.

(amaddr)
is the RS-type address of the access maethod