
.

Program
Prod t

--------- -------- ---- -- -------------

Contains Restricted Materials of IBM
Licensed Materials - Property of IBM

MVS/370
Loader Logic

Data Facility Product 5665-295
Release 1.1

L Y26-3922-1

~ Copyright IBM Corp. 1972, 1985

Second Edition (December 1985)

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This is a major revision of, and makes obsolete, LY26-3922-0.

This edition applies to Release 1.1 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under ·Summary of
Amendments· following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this pUblication; before using
this publication in connection with the operation of IBM
systems, consult the latest I§M System/370 and 4300 Prpcessors
Bibliograp~, GC20-0001, for the editions that are applicable
and curren •

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given belowJ
requests for IBM pUblications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to ~ou.

This document contains restricted materials of International
Business Machines Corporation. © Copyright International
Business Machines Corporation 1972, 1983, 1985. All rights
reserved.

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

PREFACE

I ORGANIZATION

This publication desc~ibes the inte~nal o~ganization and logic
of the loade~.

This pUblication contains the following:

• "Int~oduction" desc~ibes the loade~ as a whole, including
its ~elationship to the ope~ating system. This section also
desc~ibes the majo~ divisions of the p~og~am and how they
wo~k togethe~.

• "Method of Ope~ation" p~ovides an ove~view of, and an
int~oduction to, the logic of the loade~. This section also
contains detailed desc~iptions of specific ope~ations.

• "O~ganization of the Loade~" desc~ibes the o~ganization of
the loade~ and the cont~ol flow within it.

• "Mic~ofiche Di~ecto~y" di~ects the ~eade~ to named a~eas of
code in the p~og~am listing which is contained on mic~ofiche
ca~ds.

• "Data A~eas" illust~ates the layout of tables and cont~ol
blocks used by the loade~. These layouts may not be
essential fo~ an unde~standing of the p~og~am's logic, but
they a~e essential fo~ analysis of sto~age dumps.

• "Diagnostic Aids" includes the gene~al registe~ contents at
entry points to p~ogram components, definitions of th~
inte~nal e~~o~ codes, and a list of se~vice aids available
with the loade~.

• "Appendix. E~ror Messages, Etc." contains a list of e~~or
messages and the ~outines and CSECTs they originate in.
This section also contains a list of loader input
conventions and ~estrictions, and detailed desc~iptions of
input reco~d formats.

• "List of Terms and Abbreviations" lists the terms and
abbreviations used in this book, and what they mean.

An index is also included.

PREREQUISITE KNOWLEDGE

To use this book effectively, you should be familia~ with the
following topics:

• Assemble~ language functions and specifications unde~ OS/VS

• How to analyze a main storage dump f~om MVS/370

• General concepts of the linkage editor and loade~

LY26-3922-l © Copy~ight IBM Co~P. 1972, 1985 P~eface iii

Contains Restricted Materials of IBM
Licensed Materials -- property-of IBM

REQUIRED PUBLICATIONS

BELATED PUBLICATIONS

•

•

•

MVS/3Z0 Linkage EdiJor and Loader User's G9ire~ GC26-406l~
for a description 0 the linkage editor an oader

OS/VS - DOS/VSE - VM/3Z0 AS$@mbler Language, GC33-40l0, for
a description of assembler language functions

OS/YS2 Svstem Programming Library. De~u9gins Han~book,
GC28-1047 through GC28-1049, for deta11s on how 0 analyze a
main storage dump

Within the text, references are made to the publications listed
in the table below.

Order
Short Title publication Title Number

Assembler O~/ys - DOS/VS~ - VM/~Zg GC33-4010
Language a§semgl~[biDgYise

Debugging g~/y~~ S~s~~m e[ogtammiDS GC28-l047
Handbook Librar~s Debuggiog GC28-1048

~aDdbgols.~ Volumes 1 through GC28-1049

JCL t1y~ J{;;b GC28-1300

Linkage Editor t1Y~/~Zg biokase Edite[BOg GC26-4061
and Loader Loader Use['s Gyid~

Supervisor OS/VS~ Suee~isgr Servicy GC28-1l14
Services and aod Macros
Macros

iv MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM
SUMMARY OF AMENDMENTS

I RELEASE 1.1 LIBRARY UPDATE, DECEMBER 1985

I SERVICE CHANGES

All MVS/370 titles referred to in this publication have been
changed to their corresponding MVS/XA titles. Order numbers of
the MVS/370 books remain the same.

Information has been added to reflect technical service changes.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Summary of Amendments v

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

CONTENTS

Introduction 1
Purpose 1
Functions 1
Virtual Storage Requirements 2
Environment 3
Physical Characteristics 3
Operational Considerations 3

Input Module Structure 4
External Symbol Dictionary (ESD) 6
Relocation Dictionary (RLD) 6

Interrelationship of Control Dictionaries 6
Loader Options 7

General Theory of Operation 8

Method o~ Operation 9
Steps of the loader Operation 9

Initialization 9
Input Control and Buffer Allocation 10
Primary Input Processing 10
External Symbol Dictionary Processing 10
Text Record Processing 10
Relocation Dictionary Processing 10
Address Constant Relocation Processing 11
Secondary Input Processing 11
Final Processing 11
Identifying Loaded Program 11
End of Loading 11

Initialization (HEWLIOCA) 11
Analyzing Control Information 12
Initializing Virtual Storage 12
Readying Data Sets 13

Input Control and Buffer Allocation 13
Buffer Management (HEWBUFFR) 14

Buffer Deallocation 14
Buffer Allocation 15

Reading Object Module Input from an External Device 16
Reading Internal Object Module Input 17
Reading Load Module Input 18

Primary Input Processing 18
External Symbol Dictionary (ESD) Processing (HEHLESD) 20

Preliminary ESD Processing 22
CESD Searching 23
No-Match Processing 24
Match Processing 29

Text Record Processing 32
Processing Object Module Text (HEWLTXT) 33
Processing Preloaded Text (HEHLMOD) 33
Processing Load Module Text (LMTXT) 34

Relocation Dictionary (RLD) Processing (HEHLRLD) 36
Relocating Address Constants (HEHLERTN) 37
End' Processing 39

END Card Processing 39
End-of-Module Processing 39

Secondary Input Processing (HEWACALL) 40
Resolving ERs from the Link Pack Area 40
Resolving ERs from the SYSLIB Data Set 40

Final Processing for the Loaded Program 41
Assigning Addresses for Common Areas (COMMON) 42
Assigning Addresses for External DSECT Displacements

(PSEUDOR) 42
Issuing Unresolved ER Messages 43
Checking the Loaded Program's Entry Point 43

Identifying the Loaded Program 44
End of Loading 44

Loader Processing Termination 44
Loader Control Termination 45

Operation Diagrams 46

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Contents vii

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Diagram AI. Overall Loader Operation 47
Diagram A2. Loader Invocation 48
Diagram Bl. Loader/Scheduler Interface and Initialization 49
Diagram Cl. Primary Input Control and Buffer Allocation 50
Diagram Dl. Object Module Processing 51
Diagram D2. Load Module Processing 52
Diagram D3. ESD Record Processing (Generalized) 53
Diagram D4. Example of Input ESD Processing of SD-Section
Definition (HEHLESD) 54

Diagram D5. Example of Input ESD of ER-External Reference
Processing (HEHLESD) 55

Diagram D6. Example of ESD ID Translation 56
Diagram D7. Object Module Text Processing 57
Diagram D8. Load Module Text Processing 58
Diagram D9. RLD Record Processing 59
Diagram El. Secondary Input Processing 60

Organization of the Loader 61
Routine Control-Level Tables 62

Microfiche Directory 70

Data Areas 73
HEWLDDEF 83

Diagnostic Aids 88
Error Code Definitions 90
Serviceability Aids 91

Appendix. Error Messages, Etc. 92
Input Conventions 93
Input Record Formats 94
Compiler/Loader Interface for Passed Data Sets 105
Identify Macro Instruction---Identifying Loaded Program 109

List of Terms and Abbreviations III

Index 112

viii MVS/370 Loader Logic- LY26-3922-l © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

FIGURES

1. Loader Storage Layout 2
2. Loader Control Logic Flow 4
3. Object Module and Load Module Structure 5
4. Example of an Input Module 7
5. Loader Options 8
6. Load Module Storage Allocation for Buffer and DECDs 15
7. Freed Areas from Buffer-DECD Allocation 16
8. Storage Allocation of Buffers and DECBs for Object Module

Input 17
9. Object and Load Module Processing Differences 18

10. ESD Entry Types and Functions 20
11. Tables Used in the CESD Search 23
12. No-Match Processing Required for Input Entry Types 24
13. Storage Allocation 25
14. Translation Control Table and Translation Table 28
IS. Overall Relationship of Tables 29
16. Symbol Resolution 30
17. Loading the Text from a Load Module Record 35
18. Relocation of Address Constants 38
19. DLDL List and Address Lis+. 42
20. Loader Organization 61
21. HEWLOADR---Level 1 62
22. HEWLOADR---Level 2 62
23. HEWLOADR---Level 3 64
24. HEWLOADR---Level 4 67
25. Data Area Construction and Usage 73
26. Address List 74
27. DLDL List 74
28. CESD Control Table (CMTYPCHN) 75
29. CESD Entry 76
30. Condensed Symbol Table Entry 77
31. Data Event Control Block (DECD) 78
32. Extent Chain Entry 79
33. IDENTIFY Parameter List 80
34. HEWLDCOM DSECT - Communication Area 81
35. HEWLDDEF CSECT 84
36. INITMAIN DSECT Definition 85
37. RLD Table Entry 86
38. Translation Control Table 86
39. Translation Table 87
40. Register Contents at Entry to Routines 88
41. Internal Error Code Definitions 90
42. Module Map Format Example 91
43. Error Message/Issuer Cross-Reference Table 92
44. SYM Input Record (Card Image)---Ignored by the Loader 94
45. ESD Input Record (Card Image) 95
46. Text Input Record (Card Image) 96
47. RLD Input Record (Card Image) 97
48. END Input Record--Type 1 (Card Image) 98
49. END Input Record--Type 2 (Card Image) 98
50. SYM Record (Load Module)---Ignored by the Loader 99
51. CESD Record (Load Module) 100
52. Scatter/Translation Record--Ignored by the Loader 101
53. Control Record (Load Module) 102
54. Relocation Dictionary Record (Load Module) 103
55. Control and Relocation Dictionary Record (Load Module) 104
56. Record Format of IDRs (Load Module)---Ignored by the

Loader 105
57. DCB List 106
58. Internal Data Area in Fixed-Length Record Format 107
59. Internal Data Area in Variable-Length Record Format 108
60. MOD Record (Card Image) 108

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Figures ix

Contains Restricted Materials af IBM
Licensed Materials -- property of IBM

INTRODUCTION

PURPOSE

FUNCTIONS

This section provides a general description of the loader.
Included are the purpose and functions of the program, its
physical and environmental characteristics, and operational
considerations necessary for its use. Also discussed in this
section is the generalized theory of loading.

The purpose of the loader is to combine input object and load
modules into an executable program in virtual storage. In this
regard, the loader performs the basic functions of the linkage
editor and program fetch to obtain high-performance loading.
(The loader can be used only when special linkage editor
processing, such as overlaying modules, is not required.)

Use of the loader can provide advantages of increased system
throughput and conservation of auxiliary storage space. System
throughput can be increased through:

• Elimination of scheduler overhead, since loading and
execution occur in a single job step

• Elimination of linkage editor I/O for intermediate and final
output

• Elimination of certain linkage editor functions such as
control statement processing and overlay structuring

• Reduction of time required to read input through improved
buffering techniques

• Reduction of time required for library search through use of
link pack resident modules

• Elimination of time required to read input from. an external
device through use of an internal input data area prepared
by a compiler

Auxiliary storage space is conserved through;

• Deferring inclusion of processor library routines until load
time, thus reducing space required for the program. (This
applies to a production environment in which jobs are
selected from a job library.)

• Eliminating space needed for the linkage editor intermediate
and output data sets.

The loader performs the basic logical functions of the linkage
editor and of program fetch. Like the linkage editor, the
loader combines and links the input modules. In addition, the
loader assigns actual machine addresses to the resulting program
and then passes control directly to the program for execution.
In this regard, the loader functions as program fetch does.

As part of the link-loading procedure, the loader also
automaticallY deletes duplicate copies of a module, and can
include modules from a system library.

LY26-3922-1 ~ Copyright IBM Corp. 1972, 1985 Introduction 1

contains Restricted Materials of IBM
Licensed Materials -- propertv of IBM

VIRTUAL STORAGE REQUIREMENTS

.c loader C0n
trol GETMAIN

Loader
Praceuar
GETMAIN

..

~

...

Loader operation requires about 2lK bytes of virtual storage. l
(This amount does not include the storage for the loaded program
and the condensed symbol table.) The storage for loader
operation includes that for loader code (about 14K bytes), for
the data management access methods (about 6K bytes), and for
loader buffers and tables (about 3K bytes). If the access
methods are resident, and if the loader code is resident in the
link pack area, part of the loader storage may be allocated from
system storage.

Figure 1 shows an example of loader structure in virtual
storage.

Resister SClye for LOjl.D of Looder (72 bytes)

LOADER (Processing)

High
Add,...

}
...

Freed after pro
pam execution

Freed bef preI

sram execution

! r-__________!...A8LE!..!.DynamicL __________ :

Low
Add,...

Looded Program

t
Descriptiye information about loaded program

LOADER (CONTROl)

OPERATING SYSTEM

CONTROL PROGRAM

~

1-'

Freed after pro
gmm execution

Figure 1. Loader Storage Layout

I The actual amount required depends on the type of input (for
example, input produced by the PL/I compiler requires.a
minimum of 10K bytes for loader tables).

2 MVS/370 Loader Logic LY26-3922-l @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

ENVIRONMENT

The loader can be used in batch mode, or it can also be invoked
under the time sharing option (TSO).

It can be used in one of three waysa

1. As a job step, when the loader is specified on an EXEC job
control statement in the input stream;

2. As a subprogram, via the execution of a LOAD macro
instruction, a LINK macro instruction, or an XCTL macro
instruction;

3. As a subtask, in multitasking systems, via execution of an
ATTACH macro instruction.

Loader operation requires access to a primary input source, the
SYSlIB data set. Input may be from a card reader, magnetic
tape, or a direct access device, or it may be a concatenation of
data sets from different types of devices. Input may also be an
internal input data area prepared by a compiler.

An automatic search of a system library can occur to complete
the input. This requires use of the SYSlIB data set. It is
defined only as a partitioned data set. SYSLIB may also be
concatenated; however, SYSLIB input consists of object modules
only, or load modules only.

When the link pack area is available, the loader can include in
the loaded program resident modules listed in the contents
directory entry queue.

The loader uses the SYSlOUT data set for both diagnostic
messages and module maps, and the SlSTERM data set for
diagnostic messages only. These da a sets may be used in
conjunction with each other or separately.

PHYSICAL CHARACTERISTICS

The loader consists of a control portion and a processing
portion. The control portion handles linkages to and from the
processing portion, which performs the actual program loading,
and to and from the loaded program for its execution. The
relationship between the portions of the loader is illustrated
in Figure 2 on page 4.

The loader consists of two loadsa the first is module HEWLCTRL,
the control portion; and the other comprises control sections
HEWlDDEF, HEWlIOCA, HEWLRELO, HEWLIDEN, and HEWLLIBR, which
together perform program loading. Because of the
interrelationships among module functions, the loader is not a
candidate for overlay structuring.

OPERATIONAL CONSIDERATIONS

Loader operation depends on the type of input received and on
user options that may be specified.

The input to the loader may be load modules produced by the
linkage editor, and/or object modules produced by the following
language processors: ALGOL, COBOL, FORTRAN, PL/I, RPG, and
Assembler. 2 Input may be from an external device, or it may be
one or more internal object modules; that is, a data area that
resides in virtual storage and consists of contiguous object
module records. If input is an internal data area, the object
module records containing the instructions and data of the

2 If the input consists only of load modules, the user must
specify the loaded program's entry point.

LY26-3922-l @ Copyright IBM Corp. 1972, 1985 Introduction 3

HEWLDRGO (ALIAS LOADER)

Conlrol Portion of loader

LOAD EP = HEWLOAD

CALL HEWLOAD

DelETE EP ~ HEWLOAD

Cantains Restricted Materials af IBM
Licensed Materials -- Praperty af IBM

RII - program name

HEWLOADR

Processi ng Portion
of loader

~
(Performs program loading)

~
RETURN

LOADED PROGRAM
ATTACH----------+---------------------------.r------~--------_,

WAIT
DETACH

RETURN To Coller

RETURN

Figure 2. Loader Control Logic Flow

program (text) can be omitted from the data area itself and
replaced by passing a pointer to the text. The loader then
performs its usual functions of relocation and linkage on the
text without having to read or move it.

If the loader is processing an internal data area, input from an
external device cannot be concatenated to it.

INPUT MODULE STRUCTURE

Object modules and load modules have basically the same logical
structure (see Figure 3 on page 5). Each consists ofl

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules.

• Text, containing the instructions and data of the program.
If an internal object module is being processed, text
prepared by a compiler may be omitted and replaced by a
pointer to its location.

• End-of-module indication (END statement in object modulesl
EOM indicator in load modules).

4 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

L1nlcage Edit« Input

Obiect Modu Ie

ESD

TXT

RLD

END

Linkage Editor Output

Load Modu Ie

CESD

Control

TXT

EOM/RLD

Figure 3. Object Module and Load Module Structure

The instructions and data of any module may contain symbolic
references to specific areas of code. The symbols may be
defined and referred to in the same module, or may be defined in
one module and referred to in another. Thus, symbolic
references are either internal or external with respect to the
module in which they occur. A symbol that refers to external
code is called an external reference (ER). External and
internal references are made through address constants.

The loader performs its function of changing all address
constants to actual machine addresses by manipulating the input
modules' control dictionaries.

Object modules usually contain two control dictionaries I an
external symbol dictionary (ESD) and a relocation dictionary
(RLD). If the module contains no relocatable address constants,
an RLD is not present.

Load modules are a composite of object modules, and, therefore,
contain a composite ESD (CESD). Load modules contain RLDs also,
unless there are no relocatable address constants. General
descriptions of the control dictionaries follow. For detailed
descriptions, see the Appendix.

LY26-3922-1 ~ Copyright IBM Corp. 1972, 1985 Introduction 5

External Symbol Dictionary (ESD)

contains Restricted Materials of IBM
Licensed Haterials·-- property of IBM

The external symbol dictionary contains entries for all external
symbols defined or referred to within a module. Each entry
indicates the symbol and its type and gives its position, if
any, within the module. For example, there is an ESD entry for
each control section, entry point, common area, and external
dummy section. (An external dummy section defines a
displacement within an area, obtained during execution of the
input program via a GETMAIN macro instruction. External DSECTs
are also referred to as pseudo registers.)

Relocation Dictionary (RLDJ

The relocation dictionary (RLD) contains at least one entry for
every relocatable address constant (thus, for every external and
internal reference) in a module. An RLD entry identifies an
address constant by indicating both its location within a
control section, and the external symbol (in the ESD) whose
value determines the value of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and a~sociated text are related through
a system of numbers known as ESD identifiers (ESD IDs). An ESD
10 is assigned to each external symbol according to its
sequential appearance in an object module. The external symbol
dictionary entries, as created by a compiler or an assembler,
have the same sequential order, so the ESD 10 gives the
dictionary entry number of an external symbol.. (The linkage
editor renumbers the ESD IDs to maintain the ordered
relationship when combining modules into a load module.)

Although the ESD IDs do not appear in the ESD entries, they are
used in label definitions, text items, and RLD entries to refer
to the symbols in the ESD.

In the RLD entries, the ESD IDs are used to show two
relationships between the RLD and ESD entries, as foilowsl

• The RLD relocation pointer (R pointer) gives the ESD ID for
the symbol referred to by the address constant.

• The RLD position pointer (P pointer) gives the ESD ID for
the CSECT in which the add,"ess constant occurs.

Figure 4 on page 7 illustrates the two cases of RLD pointers.
The text of CSECT A contains two address constants, X and Y. X
refers to a symbol within CSECT A. Therefore, both pointers of
its associated RLD entry give the ESD ID of CSECT A. The value
field of Y, however, refers to a symbol in a different control
section, CSECT C. Thus, the R pointer of the entrY for Y gives
the ESD ID for CSECT C, the external reference; the P pointer
gives the ESD ID for CSECT A.

\

• In an object module, an ESD item with type=LD can not have
associated text or dependent address constants (see nESD
Processing"), and so is excluded from the numbering system.

6 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials - PrDPerty of IBM

LOADER OPTIONS

ESO

Symbol Type Origin Length

CSECT A SO 000 SOO ~

CSECT C ER 000 0

--+ CSECT B SO 500 1000
(

1
000 1 ,I
xG

~

300 vB TEXT ITEM OF CSECT A
400

I 500 I, 3 J
I --1------.../

TEXT ITEM OF CSECT B

RLO

R P Flag Address

1 1 F 300

2 1 F 400
!

.l

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary.
-- The entry in the ESD for CSECT C results from the reference to CSECT C in the teICt of CSECT A.

This reference is at location 400. ICSECT B has no relocatable address constants.)

Figure 4. Example of an Input Module

User options may be specified by parameters listed on the EXEC
job control statement4 , or may be passed internally by a program
requesting the loader via LINK, LOAD, ATTACH, or XCTL macro
instruction. s If the options are not user specified, the
defaults provided by the loader are used.

If the options are passed internally, the user can also provide
alternatives for the standard ddnames and for the standard
SYSLIN and SYSLIB DCBs.

4 See JCL manual.

S See Supervisor Services and Macros.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Introduction 7

Parameters

RESINORES

MAP I NOMAP

CALLI
NOCALLI
NCAL

LETINOLET

SIZE=

EP=

PRINTI
NOPRINT

TERMI
NOTERM

NAME=

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Figure S describes the loader options. The parameters used are
listed with the associated options. For some options. ' there are
different parameters to specify either the choice or the refusal
of the option. For example. NOCALL signifies that the library
call option (CALL) is not to be used. (In this case. the third
possible parameter has been retained for compatibility with tha
linkage editor option NCAL.) Figure S also indicates the
default options.

Options Defaults

The loader searches the link pack area queue for RES
resident modules after primary input is complete.
but before the SYSLIB data set is opened.

The loader produces a list of external names and NOMAP
their actual storage addresses.

The loader performs an automatic search of the CALL
SYSLIB data set for unresolved external names.

The loader passes control to the loaded program NOLET
despite the occurrence of a severity 2 error
condition during loading,

Specifies the maximum amount of dynamic storage to SIZE=300K
be obtained for loader processing.

Specifies an external name to be used as the entry No
point of the loaded program. ' default 1

The loader attempts to open the SYSLOUT data set PRINT
for diagnostic output.

Error messages are directed to the SYSTERM data NOTERM
set as well as the SYSLOUT data set.

Specifies the name to be used as the name of the GOI
loaded program.

Figure 5. Loader Options

Nate to Figure 5:

1 The loader assigns an entry point to the loaded program if
no name was specified.

GENERAL THEORY OF OPERATION

In processing the input modules. the loader assigns
virtual-storage addresses to the control sections to be included
in the loaded program. and resolves external references in the
CSECTs.

Because each input module has an origin that was assigned
independently by a language translator, the order of the
addresses in the input is unpredictable. (Two input modules.
for example. may have the same origin.) The loader assigns an
address to the first control section and then assigns storage
addresses. relative to this origin. to all other CSECTs.

Because cross-references between CSECTs in different modules are
symbolic. they are resolved (translated into machine addresses)
relative to the virtual-storage addresses assigned to the loaded
program.

8 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

METH~D OF OPERATION

This section describes the logic of the loader. It contains an
introduction that emphasizes the flow of primary data and
control information through tables and buffers. This section
also contains detailed functional descriptions of the loader.

The logic introduction refers to the operation diagrams
associated with a particular function. The detailed functional
descriptions refer. through lettered references. for example,
CAl, to a portion of a diagram, to the corresponding steps of a
function as shown in the operation diagrams. CThe diagrams
follow the text of this section.)

At the end of this section are illustrations of the internal
loader tables at strategic points in processing (Figure 13 on
page 25). These illustrations stress the changes to data; the
diagrams stress movement of data. Used together, the two sets
of figures offer quick recall.

STEPS OF THE LOADER OPERATION

Initialization

The loader control portion, which acts as an interface with the
supervisor. loads the processing portion of the loader and
passes to it the parameter list received. The system interface
is shown in "Diagram AI. Overall Loader Operation" on page 47
and "Diagram A2. Loader Invocation" on page 48. The loader then
performs loading through the following basic functions I

• Initialization

• Input control and buffer allocation

• Primary input processing

• Secondary input processing

• Final processing

• End of loading

After the processing portion has completed these functions, the
loader control portion passes control to the loaded program for
execution.

The overall flow of data and control during loading is shown in
"Diagram AI. Overall Loader Operation" on page 47.

When the loader begins processing, it performs initialization in
preparation for all subsequent processing. The operations
included in initial processing aree

• Analyzing control information

• Initializing virtual storage

• Initializing DCBs and opening data sets

"Diagram Bl. Loader/Scheduler Interface and Initialization" on
page 49 shows initialization processing.

LY26-3922-1 @ COPYright IBM Corp. 1972, 1985 Method of Operation 9

Input Control and Bu~~er Allocation

contains Restricted Materials o~ IBM
Licensed Materials -- Property of IBM

The loader reads input and allocates buffers as required for the
current input module. Object modules from SYSLIN (primary input
data set) and from SYSLIB (secondary input data set) are read
into the object module buffers. (However, if input is an
internal data area, buffers are not allocated and the data area
itself is considered one buffer.) Control information from load
modules (including ESD and RLD records) is read into the RLD
buffer. Text from load modules is read directly into the loaded
program's storage area. nDiagram Cl. Primary Input Control and
Buffer Allocationn on page 50 shows input control and buffer
allocation.

Primary Input Processing

The loader performs the following processing for all SYSLIN
modules. (All overlay and scatter control statements from load
modules and SYM records are ignored.) nDiagram Dl. Object
Module Processingn on page 51 and nDiagram D2. Load Module
Processingn on page 52 show primary input processing.

External Symbol Dictionary Processing

The ESD records from object modules and CESD records from load
modules describe symbols that have been defined for external
use. The loader makes entries for the symbols in the CESD, and
also makes entries in the translation table to allow the
translation of the input ESD IDs to CESD addresses. The loader
calculates storage addresses and stores them in the CESD
entries. nDiagram D3. ESD Record Processing (Generalized)n on
page 53 through nDiagram D6. Example of ESD ID Translationn on
page 56 show external symbol dictionary processing.

Text Record Processing

For object modules, the loader translates the ID of a text
record to the proper CESD entry address. The CESD entry
contains the storage address assigned to the CSECT. When the
loader finds the address for the text, it moves the text from
the object module's buffer to the loaded program's storage. For
load modules, the loader translates the IDs of all CSECTs in a
text record and thus finds their assigned virtual-storage
addresses. The loader reads the record directly into the loaded
program's storage area; CSECTs at the end of the record that are
to be deleted are not read; CSECTs within the record that are to
be deleted are overlaid when the CSECTs that are to be kept are
compressed. nDiagram D7. Object Module Text Processingn on
page 57 and nDiagram D8. Load Module Text Processingn on page 58
show text record processing.

Relocation Dictionary Processing

The loader builds its RLD table from information contained in
the RLD records. It processes the RLD records of object modules
from the object module buffer, and those of load modules from
the RLD buffer. The loader uses the relocation and position (R
and P) pointers to determine the addresses of the address
constants (adcons), and uses the flag field to determine the
method of address constant relocation required. nDiagram D9.
RLD Record Processingn on page 59 shows relocation dictionary
processing.

10- MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Address Constant Relocation Processing

When external references in the CESD are resolved, the loader
uses the RLD table entries chained to the CESD entry to relocate
the related address constants in the loaded text.

Secondary Input Processing

Final Processing

If there are unresolved external references after all SYSLIN
input has been processed, the loader tries to resolve them from
system library routines. If RES is specified, the loader first
tries to resolve the references from link pack area routines.
When this is possible, the loader uses the addresses of the
referenced routines in the link pack area to resolve the adcons
used to symbolically refer to them. Finally, the loader opens
the SYSLIB data set, if necessary. The loader then loads any
library modules that can be used to resolveERs in the loaded
program. The modules are located via the BLDL and FIND macro
instructions. The loader processes the modules, depending on
whether they are object or load modules, in the same manner as
it processes primary input. nDiagram EI. Secondary Input
Processing" on page 60 shows secondary input processing.

After processing all the input for the loaded program, the
loader performs the following: Assigns addresses for the common
areas and for displacements in the external dummy section,
issues messages for unresolved ERs, and determines the address
of the loaded program's entry point.

Identifying Loaded program

End of Loading

If program loading is successful, the loader issues an IDENTIFY
macro instruction to pass the name of the program to be executed
to the control program. 6 At this time, a condensed symbol table
may also be constructed for use during the program's execution
by the test facilities available under the Time Sharing Option.

Before ending loader processing, the loader performs the
following: writes out the diagnostic message dictionary and any
remaining diagnostic messages, closes data set DCBs, sets up
return information, and frees storage not required for the
loaded program.

INITIALIZATION lHEWLIOCAJ

When the loader begins processing, it analyzes control
information, performs initialization of main storage and of data
sets, and allocates initial buffers for the data sets. See
nDiagram Bl. Loader/Scheduler Interface and Initializationn on
page 49.

6 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 11

ANALYZING CONTROL INFORMATION

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Loader operation depends on the control information~ consisting
of the options. ddnames of the data sets. and the data control
blQck addresses. to be included in loader processing. The
loader uses the information passed by the user or the defaults.
(The defaults are contained in the control section HEWLDDEF.)

(A) To analyze the control information. the loader obtains a
temporary work area. INITMAIN. (See nData Areasn on page 73 for
the contents of INITMAIN.) The loader saves. in the temporary
work area. the default ddnames and option indicators. An
EXTRACT macro instruction is then issued to determine whether
the loader is currently operating under the Time Sharing Option.
and an indicator is set in INITMAIN. If the processing portion
of the loader was invoked through the entry point HEWLOAD.
another indicator is set to show that identification of the
loaded program is desired. The loader then scans the user's
options and resets the default indicators in INITMAIN, when
necessary.

If the SIZE option is specified. the associated user's value
replaces the default value. However. if the option is
incorrectly specified. the default value is used.

If the EP option is specified, the associated entry point name
is saved in INITMAIN.

If the NAME option is specified. the associated program name is
saved in INITMAIN. Otherwise. the default name •• GO is used.

The loader then checks for user-specified ddnames to be used in
specifying data sets. If present, these ddnames also replace
the default names.

Finally, a check is made for the addresses of alternates for the
data control blocks. Both addresses, if specified. must be
24-bit-only addressesJ otherwise, they are ignored. A SYSLIN
control block is accepted if it describes an internal data area.
The address of this control block is saved. and an indicator for
an internal SYSLIN data area is set in INITMAIN. (The SYSLIN
control block. which is not a data control block, is described
in nInternal SYSLIN Control Blockn under nCompiler/Loader
Interface for Passed Data Setsn in the Appendix.) An alternate
SYSLIB DCB is accepted if it describes a data set that has been
opened. The address of this DCB is also saved and an indicator
for an open library data set is set in INITMAIN.

INITIALIZING VIRTUAL STORAGE

(B) Using the GETMAIN macro instruction, the loader obtains the
required storage from the supervisor. The request is
conditional and variable. The maximum amount requested is that
specified by the SIZE optionJ the minimum is 2K bytes. If the
supervisor does not return storage, the loader then issues an
unconditional GETMAIN request for the minimum. If 2K bytes of
storage is still unavailable, an 804 or 80A system abend occurs.

If the supervisor- returns virtual storage space. the loader
establishes its permanent communication area. - (The
communication area is described in nData Areasn on page 73.)
The loader then moves the information stored in INITMAIN to the
communication area.

Save areas for use during loading are allocated and chained
backward and forward. Finally. the INITMAIN area is returned to
the system via a FREEMAIN macro instruction. The area is then
available for data management functions required for loading.

12 MVS/370 Loader Logic LY26-3922-l ~ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

READYING DATA SETS

(C) The loader performs initialization requisite to use of its
data sets. If the TERM option has been specified, space is
reserved for a SYSTERM DCB, two DECBs, and two buffers. Unless
an internal SYSLIN data set has been passed to the loader, a
SYSLIN DCB must be prepared and opened. Similarly, unless the
NOPRINT option has been specified, a SYSLOUT DCB must be
prepared and opened.

DCBs for the data sets are constructed using a model DCB
contained in the loader. The ddnames and basic attributes are
placed into the constructed DCBs before the data sets are
opened.

During opening, other data set attributes are checked. These
include record format, record and block sizes, and the number of
buffers to be allocated for the data set. If record and block
sizes are not defined, the loader uses the following defaults.

• For SYSLIN, both values are set to 80.

• For SYSLOUT, both values are normally set to 121. However,
if the loader is operating in time-sharing mode, the record
length of the SYSLOUT data set is set to 81 so output can be
easily directed to a terminal.

Because the loader allocates buffers for its data sets, it does
not require the buffer allocation supplied-by the Open routine.
The loader indicates this by setting the DCBBUFNO field in the
DCB to zero. The value that was found in the DCBBUFNO field is
stored in DCBNCP.

The loader determines whether the data sets opened successfully.
If SYSLOUT is open, the loader allocates the number of buffers
and DECBs specified in the DCBNCP field in the DCB, and sets a
flag indicating that the SYSLOUT data set is usable. The
diagnostic output page heading is set UP and printed. The
loader then constructs, in the SYSLOUT buffer, a list of the
options used, the amount of vir-tual storage received for loader
processing, and the entry point and program names, if specified.
After printing this list, the loader prints out any invalid
options received and any errors encountered during the open
procedure. Finally, if the MAP option was chosen, the MAP
heading is constructed and printed.

If the opening of SYSLOUT was not successful, the MAP option
indicator is set off and the storage allocated for the data
set's DCB is released.

Next, the loader determines whether the SYSLIN data set opened
successfully. If an error occurred during opening of SYSLIN,
loading is terminated. If SYSLIN opened properly, the loader
sets the "unlike attributes" indicator in the DCB to signify
that SYSLIN may be a concatenation of data sets with unlike
record formats. The buffers for the first input module are then
allocated as described under "Buffer Allocation" on page 15.

INPUT CONTROL AND BUFFER ALLOCATION

To read input, the loader determines whether the current input
consists of object or load modules, and whether it resides on an
external device or in virtual storage. This is indicated by
indicators (CMFLAG3) in the communication area as well as the
record format of the DCB. (The format is undefined (U) for load
modules, fixed (F) for either object modules on an external
device or internal object modules, and variable (V) for internal
object modules.) If the input data set resides on an external
device, buffers are allocated and primed. If the input data set
is an internal data area consisting of internal object modules,
no allocation or priming of buffers occurs and the data area
itself is considered one buffer. In any case, the records are
read and processed until the end of the current data set is

LY26-3922-1 @ COPYright IBM Corp. 1972, 1985 Method of Operation 13

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

recognized~ either through the end-of-concatenation or
end-of-file condition for a data set residing on an external
device~ or through the end-of-buffer condition for an internal
data area. 7 (No check for the END card or EOM indication is
made during the reading procedure; the end condition is only
recognized when the record is processed.) When the end of the
current input is reached, the loader checks for additional
SYSLIN input.-

Another data set in SYSLIN is indicated unless both the
end-of-file and end-of-concatenation switches are on. When the
loader opens a new data set in SYSLIN input, the loader
determines the new attributes. This is accomplished by the same
procedures used during loader initialization for the first input
data set.

BUFFER MANAGEMENT (HEWBUFFRI

Buffer Deallocation

In general~ the loader allocates storage individually for DEeBs
and buffers. Thus, for a single data set, buffer allocation
actually consists of several separate allocations. These
allocations are made from contiguous storage whenever feasible.
All allocations are made from the highest available address in
loader processing storage. When no longer needed~ allocated
space is made available for subsequent modules.

If both the current input and the previous input consist of load
modules, the loader uses the same buffer and DECBs. This is
possible because the buffer-DECD requirement for load modules is
constant. Figure 6 on page 15 illustrates the buffer and DECDs
required for reading load modules. If either the current or the
previous data set consists of object modules, the loader frees
(deallocates) the storage used for the previous buffer-DECB
allocation.

A pointer to the first freed area is maintained at CMFRECOR.
(See Figure 7 on page 16.) The first 4 bytes of each freed area
are used to store a pointer to the next freed area in the chain.
The second 4 bytes give the size of the current area. (The size
is always rounded to doubleword value.) See Figure 7 for an
illustration of freed area chaining.

Before chaining an area deallocated from a DECB or a buffer~ the
loader checks the area's location against the pointers of the
other areas in the chain for contiguity. Contiguous freed areas
are combined under a single pointer. For example~ in Figure 7~
Freed Area 1 could consist of areas from three separate
deallocationsl One of each DECB and one for the buffer.

7 End-of-buffer signifies both end-of-file and
end-of-concatenation for an internal data area.

_ The end-of-concatenation switch is set during the data set
opening if another data set is concatenated to the current
one. If there is no other SYSLIN input, the
end-of-concatenation and end-of-file switches are both set
on. They are tested at the end of each module.

14 MVS/370 Loader Logic LY26-3922-l © Copyright IBM Corp. 1972, 1985

Cantains Restricted Materials af IBM
Licensed Materials -- praperty af IBM

CMRDECPT CMGETREC

.. ----,,-,----
~, "

Control and RlD record DECB

1
r

~; ,',
,~ ,',

\ --
\
\
\
\
\

256

DECAREA •••
• • Control and RlD

record buffer

Input DCB \
\ ,

\
\ ,

"- _-

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
painters in the communications area (HEWlDCOM,.

Figure 6. Load Module Storage Allocation for Buffer and DECBs

Buffer Allacatian

After freeing any previously used buffers. the loader allocates
DECBs and buffers for the current input module. For object
module input. a DECB is allocated and cleared, and the address
of the DCB is stored in it; then, the related buffer is
allocated and its address stored in the DECB. (The size of the
buffer is obtained from DECBBLKSI; the number. from DCBNCP, .
where the value from DCBBUFNO was stored.) The allocation
procedure is repeated until the specified number of buffers has
been allocated. However, after the first time, each DECB is
chained to the one before. The last DECB is chained to the
first. (See Figure 8 on page 17 for an illustration of an
allocation for object module input.) The loader also sets a
pointer to the DECB chain in the communication area at CMRDECPT,
sets tha I/O flags to indicate object module input, and saves
the buffer size in the communication area for later
deallocation.

For load module input, the loader allocates the required two
DECBs, clears them, chains them together. and stores the address
of the DCB in them. The required buffer. called the RLD buffer,
is then allocated and its address stored in the first DECB. The
loader stores a pointer to this buffer in the communication area
at CMGETREC, and a pointer to the first DECB in CMRDECPT. (No
buffer is allocated for load module text). The loader reads
load module text directly into the loaded program's storage
area. The RLD buffer size is stored in the DECB, and finally
the I/O flags are set to indicate load module input.

In allocating buffers and DECBs for load or object module input,
the loader attempts to reuse any storage freed from previous
allocations. The loader examines each entry in the freed area

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 15

contains Restricted Materials of JBM
Licensed Materials -- property of JBM

Communieations Area (HEWLDCOM)
CMFRECOR

Freed Area 1

Freed Area 2

low Address TL-________________ T
Loader Proeessing Storage

Figure 7. Freed Areas from Buffer-DECB Allocation

High Address

Note:
304 is the size of
Area 1.
240 is the size of
Area 2.

chain to determine whether the related storage is sufficient for
the current DECD or buffer.

If the area is too small, the next entry is tested. If the size
of an area equals the required size (rounded to doubleword
value), the loader unchains the area and constructs the buffer
or the DECB. If the size of the freed area is greater than that
of the required area, the chain pointer for that area is updated
to show the size and location of the remainder.

If no area in the chain is adequate for the current buffer or
DECB, the loader makes the allocation from its processing
storage not previously allocated (prime storage). If this
allocation requires an area so large that it would exhaust the
table and buffer area, the loading process is terminated, with a
message printed to indicate that available storage was exceeded.

READING OBJECT MODULE INPUT FROM AN EXTERNAL DEVICE

Because of the fixed format of object module records, the loader
can initiate the reading of physical sequential blocks before
they are actually needed for processing. To accomplish this,
the loader primes the buffers after allocating them for object
modules. Priming consists of initiating READ macro instructions
for all buffers except one. When the loader requires the first
record for processing, a READ macro instruction is issued for
the unfilled buffer, and a CHECK macro instruction is issued for
the first buffer primed.

16 MVS/370 Loader Logic LY26-3922-l © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

CMRDCBPT CMRDECPT

l I

~
------........ ----,-

,," " --?
/" ,

/ \.
I \, ,

\ , \
I
I
I

\

Input DCB I
I
I
I
I
\
\
\
\

\
\

\ ,

,
"- --

.... _-

DECBl

I 320
-DECDCBAD

DECAREA----

DECDECPT \
./ r DECB2

I 320
--DECDCBAD

DECAREA-----

DECDECPT,

.£ DECB 3

I 320

--DECDCBAD

DECAREA----

~DECDECPT

,.'

.. '

CMGETREC

,,' ,

"

, , , , , ,

Record 4

Buffer 2

_ Record 1
~""'?'t--------1

etc.

Buffer 3

, .. • t
320
bytes

~
Note: CMRDCBPT, CMRDECPT, and CMGETREC are

located in HEWLDCOM. CMRDECPT points to
the DEC~buffer being processed. CMGETREC
points to the logical record being processed.

-+--80 bytes~

Figure 8. Storage Allocation of Buffers and DECBs for Object Module Input

At the beginning of processing for a module, the DECB pointer
(CMRDECPT> specifies the DECB associated with the first primed
buffer (see Figure 8.> The pointer to the current logical
record also specifies the beginning of that buffer. As each
record is processed, the loader updates the logical record
pointer to the next record. When all records in the buffer have
been processed, the loader updates the DECB pointer to the one
for the next filled buffer, and issues a READ macro instruction
for the completed buffer. The procedure is repeated until the
end of the module is recognized.

READING INTERNAL OBJECT MODULE INPUT

For internal object modules prepared by a compiler, record
format may be fixed or variable. After initialization of the
data area containing the internal object module records, the
pointer to the current logical record points to the beginning of
the data area. As each new logical record is requested, the
loader updates the pointer to the next record in the data area,
using the DCBRECFM field in the SYSLIN control block to
determine whether fixed- or variable-length records are being
processed. The end of the module is recognized when the length
of the processed records equals the length specified in the

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 17

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

DCBBLKSI field. At this time, the end-of-file and
end-of-concatenation switches are set on.

READING LOAD MODULE INPUT

For load modules, the record format is undefined, but the order
in which record types may be processed is limited. For example,
control records are required before the related text record can
be read. All nontext records of load modules are read into the
same buffer. This buffer, the RLD buffer, has the same length
as the maximum length of nontext records processed by the loader
(256 bytes).

The loader allocates a DECD for reading load module text, but no
buffer, because the text is read directly into the loaded
program's assigned area. The loader determines the address to
receive the text during module processing. At the time a text
record is read, the following record is also read, because that
record is always nontext.

PRIMARY INPUT PROCESSING

Type of
processing

ESD

Text

RLD

After determining the current record type, the loader performs
one of the following types of processing for the primary input
(object and/or load modules from the SYSLIN data set)1

• External symbol dictionary (ESD) processing

• Text record processing

• Relocation dictionary (RLD) processing

• Address constant relocation processing

• End processing (including end of module and END card)

• MOD record processing

If an invalid record type is encountered, a diagnostic message
is issued. In addition, if an internal input data area is being
processed, the end-of-concatenation and end-of-file switches are
set on so that no further input will be processed.

Figure 9
modules.
shown in
nDiagram

shows the differences in processing for object and load
Input module processing for object and load modules is

nDiagram Dl. Object Module Processingn on page 51 and
D2. Load Module Processingn on page 52 respectively.

Object Module Load Module

1. Input is an ESD record. 1. Input is a CESD record.

2. The loader performs preliminary 2. The loader performs
processing for NULL, PC, and LD preliminary processing for
entries. SD, lR, PC, and NULL

entries.

The loader processes text from the After processing the entire
object module buffer one ID at a ID/length list, the loader reads
time. load module text directly into

the loaded program's storage
area.

No difference. No difference.

Figure 9 (Part 1 of 2). Object and load Module Processing Differences

18 MVS/370 loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Type of
Processing Object Module Load Module

Relocation No difference. No difference.

End The loader processes the END state- The loader performs
ment for each CSECT, and performs end-of-module processing.
end-of-module processing.

MOD The loader determines the origin of Not processed.
(internal the compiler-loaded text for the
object module and equates this address
modules with what would normally be the
only) loader-assigned address.

Figure 9 (Part 2 of 2). Object and Load Module Processing Differences

Load module record types include composite ESD, control, RLD,
control/RLD, text, SVM, IDR and scatter/translation. When the
loader recognizes a SVM, IDR, or scatter/translation record, it
simply ignores that record and requests another control record.
Descriptions of those load module records processed by the
loader follow. (For detailed descriptions, see the record
formats given in the Appendix.)

• CESD. Each of these records contains no more than IS ESD
entries. 9 The first 8 bytes give the following control
information for the entries in that record. (1) the ESD ID
of the first entry, (2) the number of bytes occupied by the
entries, and (3) an indication of whether the CESD entries
contain overlay segment numbers, or AMODE and RNODE data.

• Control. These records give control information about the
module text on the following text record. Included ara the
related ESD IDs and the lengths of each control section in
the following text record, and an indication of EOM, when
pertinent. The control records also contain a channel
command word (CCW) with the linkage editor-assigned relative
address and total length of the text record. The loader
uses this information to read the text.

• Text. These records contain the control sections with the
instructions and data of the module. A text record can
contain a maximum of 60 control sections.

• RLD. These records contain the RLD entries used to relocate
address constants in the preceding text. When the text
contains a large number of relocatable symbols, the related
RLD entries may require several records.

• Control/RLD. These records combine a control and an RLD
record into one physical block. They contain RLD entries
related to a previous text record,' and the control
information for the following text record.

The object module records, ESD, RLD, TXT, and END, contain
information similar to that described previously. In addition,
an internal object module can contain the MOD record. This
record contains control information about the text of the
module, which has already been loaded by a compiler or other
text-generating processor. This information includes the
virtual storaga address of the text, the address of the byte
following the estimated or actual end of the text, and optional
extent information. If a MOD record appears as the first record
of an internal object module, all following text records are
ignored until an END statement has been processed.

9 The loader can accept a maximum of 1024 ESD entries per
input module.

LY26-3922-1 @'Copyright IBM Corp. 1972, 1985 Method of Operation 19

Cantains Restricted Materials of IBM
Licensed Materials -- Prapertyof IBM

EXTERNAL SYMBOL DICTIONARY (ESDl PROCESSING (HEWLESDl

The loader processes the
dictionary (ESD) records
and external addressing.
location in the text for
symbol. 10

input modules' external symbol
to resolve the symbols used in internal

Resolution ensures that each named
the loaded program has a unique

To resolve symbols, the loader builds its composite ESD (CESD)
from individual ESDs and CESDs in the input. The loader's CESD
entries are created as required during processing of the input
entries. See "Data Areas" on page 73 for a detailed description
of CESD entries.

Because of ESD processing, the loader's CESD contains only one
entry for each uniquelY named text location, regardless of the
number of input ESD entries containing the symbol for that
location. 11 For a single module, the loader records multiple
ESD entries for a symbol in the translation table. 12 Each entry
in the translation table corresponds to one input ESD entry for
a symbol, and contains a pointer to the CESD entry for the
symbol.

A translation table entry has the same position in the table as
the identifying number (ESD ID) of the associated ESD entry.
For example, if an input ESD entry has an ESD ID of three, its
corresponding entry is the third one in the translation table.
Using this relationship, the loader converts input ESD IDs via
the translation table into the appropriate CESD address.

The loader's ESD processing depends on the function of each
input entry. The function of an entry is identified by the type
indication in the entry. Figure 10 gives the function specified
by each type indication. The table also indicates whether a
particular type can occur in object and/or load module external
symbol dictionaries.

When the loader creates a CESD entry, it chains it to others
with the same type indication. Then, in processing each new
input entry, the loader determines, by searching the chains,
whether a CESD entry with the associated symbol already exists.
(The loader only searches those chains for types that could be
related to the current input entry's type.) In certain cases,
special preliminary processing is performed to delay or to
bypass the CESD search.

CESD processing is shown in "Diagram D3. ESD Record Processing
(Generalized)" on page 53 through "Diagram D6. Example of ESD ID
Translation" on page 56.

10 Names for areas of private
section displacements need
treated in a special way.
entries, respectively.

code or for external dummy
not be unique, because they are
These are defined by PC and PR

11 The only exception involves control sections with identical
names. In this case, two entries, one of which is flagged
"delete," are kept in the CESD.

12 The loader clears the translation table after processing
each module.

20 MVS/370 Loader Logic LY26-3922-l ~ Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

Type Function"

SD (section Defines the
definition) beginning of a named

CSECT.

PC (private code) Defines the
beginning of an
unnamed CSECT.

PC (private code) Defines the
marked "delete" beginning of an

unnamed CSECT not to
be included in the
loaded program. For
example, a SEGTAB
created by the
linkage editor.

LD Clabel Defines a label by
definition) giving its location

relative to the
beginning of the
CSECT containing the
label.

LR Clabel Defines a label by
reference) giving its location

relative to the
beginning of the
CSECT containing the
label.

ER (external Refers to a symbol
reference) not defined in the

same module
containing the
reference.

CM (common) Defines a common
area whose virtual
storage address is
assigned during
loading.

PR (pseudo Defines a
register) displacement within

an external dummy
section.

NULL Indicates that the
entry is to be
ignored.

WX (weak external Defines an external
reference) reference that is

not to be resolved
by automatic library
call.

Figure 10. ESD Entry Types and Functions

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Occurrence comments

Object & load --

Object & load --

Load only The delete
indication means
that the associated
text and RLDs are to
be deleted.

Object only The defined label
cannot be referenced
directly because the
LD entry has no ESD
ID. The loader
changes the type to
LR in the CESD
entry.

Load only An LR entry contains
an ESD ID and can,
therefore, be
referenced by an RLD
entry.

Object & load --

Object & load The area may be
named or unnamed. An
unnamed area is
called "blank
common."

Object & load The external DSECT
defines the area
obtained by the
loaded program via a
GETMAIN macro
instruction.

Object & load Only one entry for
NULL is made in the
loader's CESD.

Object & load The loader processes
a WX entry as an ER
entry with a "weak
call" flag.

Method of Operation 21

Contains Restricted Materials of IBM
Licensed Materials -- property o~ IBM

preliminary ESD Processing

When the loader processes load modules, it does not necessarily
receive CESD entries in the same order as the linkage editor
assigned the relative addresses. Therefore, no entries for
symbols that define module text locations are processed until
all entries for the module have been received.

The loader delays the processing by placing, on a temporary
chain, the CESD entries it constructs for the SD, LR, and PC
(not marked "delete") entries. Before chaining an entry, the
loader places the ID and the segment number in the CESD entry.
The entries are chained in the order of their linkage
editor-assigned addresses.

Besides the preliminary processing for load module location
definitions, the loader also determines whether an input entry
type is NULL, PC, LD, LR, or WX. These entries, in both object
and load modules, are handled as foilowsl

NULL

PC

The loader does not perform a CESD search for NULL entries,
because these entries have no effect on ESD resolution.
When the first NULL entry for a module is recognized, a
CESD entry is created. This CESD entry is cleared and
marked ndelete." (See the CESD entry description in nData
Areas" on page 73.) The loader places a pointer to the
entry in the communication area (CMNULCHN) and makes a
translation table entry. (See "Making a Translation Table
Entryn on page 27.> For all following NULL entries,
processing consists only of making a translation table
entry that refers to the CESD entry pointed to by CMNULCHN.

The loader does not perform a CESD search for PC entries,
because it treats them as unique. For each PC entry, the
loader creates a CESD entry. Processing continues as
described under "No-Match Processing" for SD entries.

PC "deleten
The loader treats PC entries that are marked "delete" as
NULLs.

LD and LR

wx

22 MVS/370 Loader Logic

LD and LR entries depend on their related section
definitions (SDs). Therefore, before performing the CESD
search, the loader inserts the CESD entry address for the
SD in the LD or LR entry. The address is obtained by
translating the SD ID contained in the LD or LR.

If an 'object module is the input, it is possible (through
physical rearrangement of an object deck) to receive an LD
before the related SD. The SD's CESD entry address cannot
be placed in the lD until the SD's entry is created.
Whenever this occurs, the LD is placed on a temporary LD
chain. At the end of each input ESD record, the temporary
LD chain is processed to determine whether a required SD
has been received. When the SD associated with an LD has
been received, its CESD entry address is placed into the
LD. The loader then searches the CESD for a matching
symbol.

The loader treats WX entries as ER entries that are marked
"weak call." The "weak-call" flag, like the nnever-call"
flag, specifies those external references that are not to
be resolved by automatic library call. However, the
following difference arises in match processing I If a WX
entry matches an ER entry in the CESD, the "weak-call n flag
is set off. If an ER entry with a "never-call n flag
matches an ER entry in the CESD, the flag is left on.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CESD searching

SO 2

LO -

ER 0

LR 2
Input ESO
Entry Type

PC -

CM 5

PR 6

NULL -

In general, an input ESD entry requires resolution processing.
The loader does this by searching the CESD for a matching
symbol. To direct the search, the loader uses two tables.
These are:

• HIERTBlE, which specifies which CESD chains are to be
searched for a particular entry type, and the order in which
the chains are to be searched

• CMTYPCHN, which contains the address of the first entry in
each CESD chain

Figure 11 shows the relationship between the two tables.

The loader determines the type of an input ESD entry and begins
to search the first chain specified by HIERTBlE. (If the type
is lD, the loader performs the search as if it were an lR.) The
symbol from the input entry is compared to the symbol in each
chained entry. If no matching symbol is found and end of chain
is recognized, the next chain specified by HIERTBlE is
searched. 13 If no matching symbol is found in any of the
appropriate chains, a CESD entry for the symbol is created and
chained. A translation table entry is also made, if
appropriate. (See "No-Match Processing" on page 24.) If a
matching symbol is found, symbol resolution occurs. (See "Match
Processing" on page 29.)

HIERTBLE CMTVPCHN

0 5 3

- - -
2 3 5

3 0 5

- - -

2 0 3

- - -

- - -

SO LO ER LR PC CM PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain
Address Address Address Address Address Address Address Address

o 2 3 4 5 6 7

Notes:

The HIERTBLE entries Identify by number the CMTYPCHN entries.
For example, zero (0) in the HIERTBLE refers to the SO chain address In CMTYPCHN.

When more than one type chain can be searched for a symbol,
the order is specified by HIERTBLE. For example, if an input
ESO entry is an SO, the HIERTBLE entry specifies that the ER, SO, CM,
and LR chains are to be searched In that order.

Order of Type Chain ~
Search

Figure 11. Tables Used in the CESD Search

13 Whenever a new entry on a chain is examined, a pointer to
that entry is stored in the communication area (CMPREVPT).
Should the next entry on the chain be a match, the pointer
at CMPREVPT is used to update the chain.

lY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 23

No-Match processing

contains Restricted Materials of IBH
Licensed Materials -- property of IBM

When a symbol is received for the first time, the loader
performs processing that depends on the type of the input entry
for the symbol. This always includes the construction of the
CESD entry, which differs by entry type. Except for LD entries,
no-match processing also includes construction of a translation
table entry.

If the user specified the MAP
entry for each symbol (except
for an example of map output.
on the SYSLOUT data set.

option, the loader formats a map
ERs). See Figure 46 on page 96
The loader prints the map entries

Figure 12 summarizes the processing performed for each input
entry type.

Translation
Input Entry CESD Table Map
Type Entry Entry Entry

SD X X X

LD X X

LR X X X

ER X X

CMl X X X

PRI X X X

Figure 12. No-Match Processing Required for Input Entry Types

Nate to Figure 12:

1 Because CM and PR entries are assigned addresses during
final processing, they are also mapped at that time.

MAKING A CESD ENTRY, For each input entry type, the loader
makes a CESD entry. A WX entry type is treated as an ER input
entry type with a "weak-calln flag. The loader first obtains
the storage required for the entry (22 bytes). Whenever
possible, the loader uses storage previously allocated for CESD
entries that were later freed. (A CESD entry can be freed as a
result of preliminary ESD or of resolution processing.) The
loader chains freed entries together. A pointer to the chain
resides in the communication area at CMESDCHN; the pointer is
updated as the freed entries are used.

If there are no freed CESD entries, the loader allocates storage
for the entry from the highest available processing storage.
(See Figure 13 on page 25.) If the space required for the entry
would exceed available storage, the loading process is
terminated with an error message. The loader makes this
determination by comparing the pointer for the beginning of the
loader's tables (CMlOWTBL) to the overflow pointer that is the
highest address used for the loaded program's text CCMlSTTXT).

24 MVS/370 Loader Logic lY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

/CMHITBL

~I---------------------'I High Address
Communications area

(HEWLDCOM)

-.... Save areas :::

Input DCB

Output DCB

DECBs and buffers for output

Initial DECBs ond buffers for input

Additional buffers and DECBs for input

CMLO~BL ~L---__________________________ ~ __________________________ --;

CMNXTTXT ----..

Direction of table and buffer allocations

Direction of program growth

CMMODLNG Text already loaded for the current module
(no "no-length" CSECTs)

--~-----------
Text already in storage far the program being loaded

CMBEGADR--~~------------------------~--------------------------------;
Retu rn parame ter Ii st area Low Address ,L ______________ ...:... _________________ --'

CMMAINPT/

Notes: CMBEGADR = Beginning address of loaded program
-- CMHITBL = End address of Loader processing storage below Ihe line

CMLOWTBL = Lowest address allocated for buffers and tables
CMLSnXT = Highest address already used for the loaded program's text
CMMODLNG = Length of text already loaded for the current module, not including "no-length" CSECTs
CMNXnXT = Lowest address used for the current module
CMMAINPT = Beginning address of loaded program space

Figure 13. Storage Allocation

CMLSTTXT

LY26-3922-l © Copyright IBM Corp. 1972, 1985 Method of Operation 2S

Contains Restricted Materials o~ IBM
Licensed Materials -- property D~ IBM

After obtaining storage for the CESD entry, the loader stores
descriptive information in the entry. The information stored
depends on the input entry type. Handling of the various entry
types is described below:

SD
The loader moves the symbol from the input entry to the
CESD entry.

The loader then assigns an address to the defined CSECT by
adding the length of all previously defined CSECTs for this
module to the loader-assigned address of the first CSECT in
the module. (In the communication area, the length of all
previously defined CSECTs is found at location CMMODLNG;
the loader-assigned address of the first CSECT, if the
CSECTs are being passed through text records, is found at
CMNXTTXT; and the loader-assigned address of the first
CSECT, if the CSECTs are being pointed to by MOD records,
is found at location CMCOREl.) For CSECTs pointed to by
MOD records, the resulting address is stored in the CESD
entry for the SD as the loader-assigned address of the
CSECT. For CSECTs passed through text records, however,
the resulting address is compared to the overflow
pointer--the beginning address of the loader tables
(CMLOWTBL). If there is no more unused storage, the
loading process is terminated with an error message.
Otherwise, the resulting address is stored in the CESD
entry for the SD as the loader-assigned address of the
CSECT.

Next, the loader clears the CESD flag field, except for the
entry's type indication, and computes the relocation
constant. The relocation constant is computed by
subtracting the input address (specified by the input SD
entry) from the loader-assigned address. The loader stores
the relocation constant in the CESD entry.

If the option to specify the entry point name for the
loaded program was used, the loader determines whether the
SD with that name has already been received. If not, the
loader compares that name to the symbol for the currently
defined CSECT (the symbol in the CESD entry). If the names
are the same, the loader-assigned address is stored as the
entry point address in CMEPADDR.

For an SD entry, the loader determines whether the CSECT
length specified in the input entry equals o. If so, the
loader sets the "no length" indicators in the communication
area and in the CESD entry itself. If the length is
positive, it is added to CMMODLNG to calculate the next
CSECT address. If the MAP indicator is on, the MAP entry
is made for the SD.

Finally, the loader puts the CESD entry on the SD chain
pointed to in the CMTYPCHN table. Chaining consists of
storing the pointer to the last SD entry (found in
CMTYPCHN) in the current CESD entry's chain pointer. Then
the address of this entry becomes the current pointer in
CMTYPCHN. After chaining the entry, a translation table
entry is made.

LD or LR

26 MVS/370 Loader Logic

The loader processes input LD entries in the same manner as
input LR entries. The name from the input entry is moved
to the CESD entry. Then the loader-assigned address for
the defined label is determined by adding the relocation
constant (found in the CESD entry for the related SD) to
the input address of the LD or LR entry. If the
instructions arid data for the module have been passed
through text records, and if the loader-assigned address
exceeds available st~rage, the loading process is
terminated with an error message. Otherwise, the address
is stored in the CESD entry.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

CDntains Restricted Materials of IBM
Licensed Materials -- prDperty of IBM

CM

PR

ER

The loader sets the type indication in the CESD entry to
LR. Finally, the relocation constant is computed. This
value equals the loader-assigned address minus the input
relative address. The relocation constant also is stored
in the CESD. If the related SD entry was marked ndelete,n
the loader makes an ER entry instead of an LR, and sets the
ndelinkn flag in the entry to signify that all adcons
referring to it should be adjusted.

To make a CM entry, the loader uses two separately obtained
20-byte areas. The first area obtained is used as an
extension to the CM entry. In this portion, the loader
stores the length and the address assigned to the common
area in the input. Then the loader obtains the second
20-byte area and stores in it the name for the common area
and the entry's type indication. (This area is the one
pointed to by the translation table and the CM chain.) The
loader clears 3 bytes in the entry to be used as a pointer
to related ERs, and sets a pointer in it to the extended
portion of the CM entry. Finally, a translation table
entry is made.

For a PR entry, the loader moves the information describing
the external DSECT from the input entry to the CESD entry.
The 3-byte field to be used as a pointer to the related
RLDs is cleared, and the entry is chained to the other PR
entries. (PRs are chained according to their order in the
input.) For a DSECT displacement definition, a translation
table entry is also required.

For an ER entry, the loader moves the name and type from
the input entry to the CESD entry. If the input ER entry
is marked nnever call,n the loader sets the "never-calln
indication in the CESD entry. If the input ER entry is
marked nweak call,n the loader similarly sets the
nweak-call" indication. The loader then chains the ER
entry to the other ERs and makes a translation table entry.

MAKING A TRANSLATION TABLE ENTRY I The loader uses the
translation control table to direct building of the translation
table. 14 The translation control table consists of 32 fullword
entries beginning at location CMTRCTRL in the communication
area. Each entry is a pointer to a possible 32-entry extent to
be allocated for the translation table. The loader allocates
the extents as required, depending on the number of incoming ESD
entries.

The entries of one extent correspond to consecutive ESD IDs in a
single module. For example, the entries of the first extent
correspond to ESD IDs from 1 to 31; those of the second extent
correspond to IDs 32 to 63; and so forth. (Because the initial
4 bytes are used for indexing purposes, the first extent
contains only 31 translation table entries.) Thus, the position
designated for creation of a particular translation table entry
depends on the ESD ID of the associated input entry.

Figure 14 shows an illustration of the translation control table
and the translation table.

To make a translation table entry, the loader first determines
whether the input ID is valid. (nDiagram D6. Example of ESD ID
Translationn on page 56, reference (A).) If an ID is not valid,
an error message is printed and loading continues with the next
input ESD entry. An ID is not valid if it is less than I or
greater than 1023.

14 For each input module, the loader reinitializes the
translation table.

LY26-3922-l @ Copyright IBM Corp. 1972, 1985 Method of Operation 27

CMTRCTRL

.........

0

0

0

0

~I-. r 1 0

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

0

1

2

3

~-

] 311
Extent II 1

32

TRAN SLATION CONTROL TABLE
33

34

35

~-

Figure 14. Translation Control Table and Translation Table

Extent N 2

TRANSLATION
TABLE EXTENTS

If an ID is valid, the loader then determines, by examining the
translation control table, whether the extent for this ID has
been allocated. If not, the loader allocates an area for
thirty-two 4-byte entries, and stores the beginning address of
the area in the translation control table entry for this extent.
The area is allocated from the highest available storage in the
loader's table and buffer space. If not enough loader
processing storage remains to make the allocation, loading is
terminated with an error message.

After the extent allocation has occurred, the loader clears the
extent. The loader then calculates the entry address in the
extent for this ID. The address of the CESD entry related to
the input entry ID is stored in the translation table entry.

If the CESD entry is an ER, the loader sets the high-order bit
of the first byte of the translation table entry to 1. (This
indicates absolute relocation.>

Figure 15 on page 29 shows the overall relationship of tables
used in ESD processing.

.....

28 MVS/370 loader logic lY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Translation Control Table
(CMTRCTRL)

2~_--i

31
L...-_~

Extent'

32
~---I

63
L...-_---'

Extent 2

Three Extents of the
Translation Table

CESD Control Table
(CMTVPCHN)

t--------r -"'" _- ~

~ ------'
Extent 3

Figure 15. Overall Relationship of Tables

Match Processing

If the loader finds a match for an input symbol during the CESD
search, the loader performs sYmbol resolution. Through
resolution, the loader ensures that each named location within
the text of the loaded program has a unique symbol. 11 Also, all
references to a named location are set to the correct
loader-assigned virtual storage address.

If two named locations have the same symbol, only one of them
can be retained for the loaded program. The loader determines
which is retained on the basis of ESD entry type. The general
rules used in symbol resolution follow.

If the entry already in the CESD has type I

SD, it is always retained.
LR, it is always retained.
CM, it is retained, except when the input type is 'SD.
ER, it is always changed to the input type.

15 This does not refer to PC AND PR names, which need not be
unique.

LY26-3922-l @ Copyright IBM Corp. 1972, 1985 Method of Operation 29

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If two entries have matching symbols and have types that
indicate they should be retained, the loader retains the first
entry received.

Figure 16 gives a summary of symbol resolution.

Input Type CESO Type Result

SO ER SO
SO SO
CM SO
LR LR

CM CM CM
ER CM
SO SO
LR LRI

LO/LR ER LR
LR LR
SO S02
CM CM2

ER SD SO
ER ER
LR LR
CM CM

Figure 16. Symbol Resolution

Notes to Figure 16:

1 Match results in an error.

2 Match results in an error if the SO for the LO/LR is not
marked ndelete. n

INPUT ENTRY TYPE IS SD:

CESD type is ER
The loader changes the ER entry in the CESO to an SO entry.
The entry is made as described under nNo-Match Processingn
for an SO entry. This includesz chaining the entry to
other SDs, updating the cumulative length of the loaded
program, determining whether this is the loaded program's
entry point name, mapping the entry, and making a
translation table entry. If RLDs were chained to the ER
entry, they are relocated as described under nRelocation
Processing. n Also, the loader takes the entry off the ER
chain, using the pointer to the previous entry on the chain
(CMPREVPT). If there are no previous entries, the loader
sets the ER entry in the type chain table (CMTYPCHN) to O.

CESO type is SO

30 MVS/370 Loader Logic

If the original SO is not flagged ndelete,n the loader
obtains space for another CESD entry and moves the name and
loader-assigned address of the original entry into the new
one. The relocation constant is then computed by
subtracting the input address from the loader-assigned
address. A ndeleten indicator is set to show that text and
RLDs related to the current input SO should be deleted. If
the text for the CSECT has been pointed to by a MOO record
rather than having been passed through text records, the
text cannot be deleted and, thus, the cumulative module
length (CMMODLNG) is updated to include this CSECT.
Finally, the entry is chained to existing SO entries and a
translation table entry is made. If the original SO is
flagged ndelete,n the original entry is used.

lY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CESD type is CM
The loader changes the existing CM entry to an SD. Because
the extended portion of the CM entry is no longer needed,
the loader chains it to the freed CESD entries (pointed to
by CMESDCHN). First, however, the loader obtains the
length of the common area from the extended portion. For
the SD entry, the loader retains the greater between this
length and the one specified in the input SD. To change
the CM entry to an SD, the loader performs the same
processing described above for the SD-ER match.

CESD type is LR
The loader sets the ndeleten indicator in the CESD entry so
the text associated with the input SD will not be loaded.
The relocation constant is updated to reflect the
difference between the relative address in the input entry
and the loader-assigned address in the CESD entry. The
loader makes a translation table entry referring to the
existing LR entry in the CESD.

INPUT ENTRY TYPE IS CM:

CESD type is CM
The loader determines the greater of the length in the
extended portion of the CESD entry and ~he length specified
in the input CM. This greater length is retained in the
CESD entry. The loader stores the new input address in the
extended portion of the CM entry. A translation table
entry is also made.

CESD type is ER
To change an ER entry to a CM, the loader obtains a 22-byte
area for the extended portion and chains it to the existing
entry. The loader stores the type, address, and length
from the input entry in the extended portion of the CESD
entry. The CM type indication is set, and the entry is
unchained from the ERs. The loader chains the entry to the
other CMs and makes a translation table entry.

CESD type is SD
The relocation factor in the CESD entry is updated to
reflect the CM relative address, and a translation table
entry is made.

CESD type is LR
The loader issues an error message for matching symbols
with conflicting types. Nevertheless, the relocation
constant is updated and a translation table entry is made.

INPUT ENTRY TYPE IS LD OR LRa With one exception, LD and LR
entries are processed in the same way. The difference is that,
because an LD entry has no ESD ID, the loader does not make a
translation table entry for an LD.

CESD type is ER
The loader changes the ER entry to an LR. The loader
assigns a virtual storage address for the symbol by adding
the relocation constant from the related SD entry to the
relative address in the input LR. Next, the loader
calculates the relocation constant by subtracting the input
address from the loader-assigned address. Both the
relocation constant and the loader-assigned address are
stored in the LR entry in the CESD. Any RLDs that were
chained to the ER entry are relocated. The loader checks
the LR name for the user-specified entry point and makes a
MAP entry if mapping is required. Then, the loader takes
the CESD entry off the ER chain and chains it to the LR
chain. If the input entry was an LD, no translation table
entry is made. Otherwise, the loader makes a translation
table entry.

CESD type is LR
If the SD entrY pointed to by the LR is not marked
ndelete,n the loader issues an error message for matching

LY26-3922-l @ Copyright IBM Corp. 1972, 1985 Method of Operation 31

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

symbols with conflicting types. In any case, the loader
updates the relocation constant in the existing CESD entry.
The loader makes a translation table entry referring to the
LR in the CESD if the input entry was an LR from a load
module. If not, a translation table entry is required.

CESD type is SD
Processing is the same as that described above for an
LD/LR-LR match.

CESD type is CM
The loader saves the input address in the extended portion
of the CM entry. The loader makes a translation table
entry only if the input entry was an LR from a load module.
If the SD pointed to by the LR entry is not marked
"delete," the loader issues an error message for matching
sYmbols with conflicting types.

INPUT ENTRY TYPE IS ERa Whenever the loader makes a translation
table entry for an input ER, it sets an indicator for later use.
(The indicator signifies during RLD processing that the
loader-assigned address is to be used for relocation of any RLDs
with this ID.)

CESD type is SD
The loader makes a translation table entry referring to the
SD entry.

CESD type is ER
If the input ER is marked "never call," the loader also
sets the "never-call" indicator in the CESD entry. If the
"delink" indicator is on, the loader sets the indicator
off. In any case, a translation table entry is made
referring to the ER entry in the CESD. If either ER is
marked "weak call," the "weak-callo flag is set off. If
both ERs are marked "weak call," the flag is left on.

CESD type is LR
The loader makes a translation table entry referring to the
LR entry.

CESD type is CM
The loader sets the input address in the extended portion
of the CM entry to zero, and makes a translation table
entry referring to the CM entry.

INPUT ENTRY TYPE IS PRa A PR entry can only be matched to
. another PR entry. When two of these definitions of external

DSECT displacements have matching symbols, the loader sets the
existing CESD entry to specify the greater of the two given
displacement lengths. The loader also determines the most
restrictive boundary alignment specified in the two PR entries.
(For example, doubleword alignment is more restrictive than
fullword.) The PR entry in tho CESD is changed, if necessary,
to specify this alignment.

TEXT RECORD PROCESSING

Text record processing consists of loading those CSECTs required
for the loaded program into their assigned locations. The
loader determines whether a CSECT is to be retained or deleted
by examining the CESD entry for that CSECT's ID. The
translation table is used to obtain the CESD entry.

The way the loader processes text records depends on whether the
current input is an object or a load module. If the input is an
object module, the loader reads all the records for the module,
including text, into virtual-storage buffer areas and then
processes each record in turn. For load modules, the loader
uses the information in the text control records to process the
text before reading it into its assigned storage.

32 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

Processing Object Module Text lHEWLTXT)

When a text record is recognized during processing of an object
module, the ID contained in the record is translated into a CESD
entry address. The loader translates the ID by first ensuring
that the ID is valid, and then using the translation control
table to obtain the corresponding translation table entry.

The translation procedure is the same as used prior to
allocating a translation table extent. (See ftMaking a
Translation Table Entry.ft)

In processing text, the loader considers an ID invalid if no
translation table entry exists for it. Thus, an ID between the
allowable limits of 1 and 1023 is invalid if it was not received
during ESD processing. For any invalid ID, the loader issues an
error message and then tries to process the next record.
(Object module text processing is shown in ftDiagram D7. Object
Module Text Processingft on page 57.)

(A) If a translation table entry does exist for an ID, the
entry contains the address of the CESD entry for the related
text. The loader determines whether the CESD entry is marked
ftdelete. ft If it is, the loader skips the text record and tries
to process the next record.

(B) If the CESD entry is not marked ftdelete,ft the loader sets
an indicator to show that some text has been received for this
module. If the ftno lengthft indicator in the CESD entry has been
set on, an indicator is set in the communication area to show
that text has been received for a ftno lengthft CSECT. The loader
then calculates the address for this text in the loaded
program's virtual-storage area. The address equals the
displacement of the text from the beginning of the input, added
to the relocation constant contained in the CESD entry.

(C) Next, the loader checks whether the text would exceed
available storage by adding the length of the text to the
assigned virtual-storage address. The resulting end address for
the text is compared to the overflow pointer---the beginning
address of the loader tables (CMLOWTBL). If the text would
overlap, loading is abnormallY terminated.

If there is sufficient unused stor'age for the text, the loader
moves the text from the buffer area to the assigned address in
the loaded program's area. Finally, the loader updates the
pointer to the highest address used for the loaded program's
text (CMLSTTXT). .

Processing Pre loaded Text (HEWLMODJ

If a SYSLIN data area consisting of internal object modules is
passed to the loader, one MOD record may be substituted for all
text records within a module. Upon encountering a MOD record,
the loader checks that an internal object module is being
processed, that no ESD records have been received for the
module, and that some control information is contained in the
MOD record. If any of these conditions is not met, the record
is ignored. Otherwise, indicators are set to show that a MOD
record and text have been received for the module. If the
origin of the first CSECT is specified, it is saved in the
communication area at location CMCOREI. Similarly, the address
of the byte following the estimated or actual end of the text is
saved at location CMCORE2.

Extent information, used by the identification routine
(HEWLIDEN), is saved in chained entries pointed to by location
CMXLCHN in the communication area. These entries contain the
address and length of the extent, and a pointer to the next
entry in the chain. The number of extents is saved at location
CMNUMXS in the communication area. Later, the identification
routine uses these entries to build a parameter list for the
IDENTIFY macro instruction.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 33

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Finally, the address of the first extent is saved as the default
entry point of the program if the entry point has not previously
been defined.

Processing Load Module Text (LMTXT)

The loader uses the text control (or control/RLD> record to
process load module text. The control record contains an
ID/length list with an entry for each CSECT in the following
text record. By processing the IDs consecutively, the loader
determines which CSECTs from the record are to be retained as
part of the loaded program.

Load module text processing is shown in nDiagram D8. Load ~odule
Text Processingn on page 58.

PROCESSING THE ID/LENGTH LISTI The loader obtains each ID in
turn from the list and attempts to translate each one, via the
translation control and translation tables, to a CESD entry
address. If the loader determines during translation that an ID
is invalid, the loader skips over the record. If there are more
records in the module, the loader continues processing the
module.

If the translation of the ID is successful, the loader checks
for the ndeleten flag in the CESD entry (obtained by the
translation>. If the entry is marked "delete," the loader adds
the length from the ID/length list entry to the sum of the
lengths of any immediately preceding CSECTs to be deleted.

The accumulated sum is used to truncate the text record when
CSECTs at the end of the record are to be deleted. Therefore,
only the sum of those consecutive CSECTs to be deleted at the
end of the record is used. To accomplish this, the loader
reinitializes the sum of these lengths to zero whenever a
following CSECT is to be retained. (CSECTs to be deleted can be
scattered throughout a text record.>

If the CESD entry for a text ID is not marked "delete," the
loader determines whether the current CSECT is the first one to
be retained from the text record. If it is, the loader saves
the relative relocation constant from the related CESD entry.
(After completely processing the ID/length list, the loader uses
this relocation constant to calculate the proper main storage
address for reading the text record.) After saving the
relocation constant, the loader sets an indicator to show that
at least one CSECT from this record is to be retained, and that
its relocation constant has been saved. (Only one relocation
constant per control record is used, because the text record is
read in as. a whole.)

Each time the loader recognizes a CSECT to be retained, it
updates the pointer to the last address used for text (CMLSTTXT>
by adding the length of the CSECT to the previous value of
CMLSTTXT.

READING THE TEXTI After processing all IDs in the ID/length
list, the loader prepares to read the text into
storage--directly into the load program's storage area. The
loader:

• Adds the relocation constant and beginning delete length to
the CCH address from the text control record to obtain the
loader-assigned address of the text. (See Figure 17 on
page 35.>

• Subtracts the sum of the lengths of consecutive deleted
CSECTs at the end of the text record from the text length in
the control record to obtain the actual read count.

34 MVS/370 Loader Logic LY26-3922-l © Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

1
·r

Loader- Assigned
Address of ~
CSECT C

Low Address

High Address

1
~

CSECT C

CSECT 8'

CSECT A'

CSECT 8

CSECT A

Loaded Program Text Starage

CSECT CSECT CSECT (
A' 8' C

\

Input Text Record

CSECT A' and CSECT 8' are to be deleted.
The text read address is, therefore, the Loader·assigned address of CSECT C.
During later text processing, the Loader moves CSECT C to its proper location
over CSECT A' and CSECT 8' •

Figure 17. Loading the Text from a Load Module Record

• Adds the read count to the loader-assigned address to
determine whether sufficient unused storage remains for the
text. If not, an error message is issued and loading is
terminated.

• Determines whether the text record is the last record in the
module by examining the control record's type.

If the record is not the last, the loader determines whether any
CSECTs from the record are to be deleted. If not, the text
record and the following control record are read. (The control
record is read into the RLD buffer.>

If the text record is the last in the module, or if any CSECTs
from the record are to be deleted, the loader reads in only the
text record. If an end-of-file occurs, the loader terminates
module-text processing and issues an error message; then the
loader goes to end-ot-module processing.

CHECKING CSECT STORAGE ADDRESSESz IfCSECTs to be deleted were
scattered among the CSECTs to be retained, the loader deletes
these scattered CSECTs atter the text has been read into
storage.

The loader ensures that each CSECT is in the location determined
during ESD processing. To do this, the loader again translates
each ID in the ID/length list to obtain the related CESD entry.

If a CESD entry for an ID is marked "delete," the loader
continues translating successive IDs until one is not marked
"delete." The loader determines whether the related CSECT is in
the correct place by comparing its current address to the
loader-assigned address found in the CESD entry. If the text is
correctly placed, the loader continues to translate IDs.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 35

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If a CSECT is in the wrong place. the CSECT is moved to the
loader-assigned address. Before checking the next ID in the
ID/length list. the address of the current CSECT is updated by
the length of the current CSECT to get the current address of
the next CSECT. When all CSECTs are in the correct location.
the loader continues processing the module with the next record.

Next. the loader determines whether a control record was read at
the same time as the text record. If so, the loader continues
processing the module with that control record. Otherwise. the
end of the module has been reached. and the loader goes to
end-of-module processing.

RELOCATION DICTIONARY (RLDl PROCESSING (HEWLRLDl

Processing of relocation dictionary records consists of building
the loader's RLD table from information in the input RLD
records. RLD record processing is the same for object and load
module input. (Relocation of adcons is performed as the RLD is
encountered, unless the referenced CSECT is not in virtual
storage.)

RLD record processing is shown in "Diagram D9. RLD Record
Processing" on page 59.

To build the RLD table, the loader tests the Rand P pointers of
the entries in an RLD record for validity. 16 These pointers
consist of ESD IDs describing an address constant. The P
pointer gives the ESD ID of the control section containing the
address constant; the R pointer gives the ESD ID of the symbol
referred to by the address constant.

Because the pointers are IDs. they are valid if translation
yields the address for the ID to a CESD entry. If an invalid ID
is received. the loader issues an error message and continues
RLD record processing with the next entry having different Rand
P pointers.

The loader first translates the P pointer. If the CESD entry
for that ID is marked "delete." the loader skips all RLD entries
with the same Rand P pointers. If the CESD entry is not marked
"delete." the loader checks the validity of the R pointer,
unless the RLD entrY is for a cumulative pseudo register (CXD
type).

(Al After ensuring that the RLD pointers are valid. the loader
makes an RLD table entry for the input entry. (The loader uses
the storage from a freed RLD entry, if possible. Otherwise.
storage for the entry is obtained from the highest available
storage.)

The loader stores. in the RLD table entry, the loader-assigned
address of the address constant. The address is obtained by
adding the relocation constant from the CESD entrY identified by
the P pointer to the value found in the address field of the
input RLD entry. (If the RLD is for a cumulative external DSECT
displacement. it is chained from location CMCXDPT in the loader
communication area; the next RLD entry is then processed.) The
loader moves the flag field from the input entry to the RLD
table. If the translation table entry indicates that an ER
entry is referred to by the R pointer, the loader sets an
indicator in the RLD table for absolute relocation.

16 RLD entries for adcons referring to a cumulative pseudo
register are only tested for a valid P pointer, because the
R pointer is always zero (CXD-type RLD).

36 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972. 1985

Cantains Restricted Materials a~ IBM
Licensed Materials -- Praperty a~ IBM

After completing the RLD table entry, the loader determines
whether relocation is possible by determining the type of the
CESD entry. Processing for the CESD entry types is as foilowsl

SD. PC. LR
The loader clears the chain field of
and relocates the address constant.
Address Constants. n)

the RLD table entry
(See nRelocating

CM, ER created fram LR
The loader delinks the RLD entry. That is, it subtracts
the input address of the CM or ER from the value in the
address constant. The RLD entry is then chained to the CM
or ER entry for later relocation after the loader-assigned
address is defined.

PR, ER
The RLD table entry is chained to the related CESD entry
when the address for the CESD symbol is assigned. (See
nMatch Processing. n)

<B) After processing an RLD entry, the loader continues
processing the entries in the RLD record until the end of the
record is reached. If the Rand P pointers for the next entry
are the same as for the current entry, the loader does not
recheck them for validity. Instead, the RLD table entry is made
directly. If the pointers for the next entry are different, the
loader performs the validity check.

RELOCATING ADDRESS CONSTANTS (HEWLERTN)

Address constant relocation is the replacement of an address
constant in the text of the loaded program with the actual
virtual-storage address. Whenever possible, the loader
relocates adcons as it encounters their RLD entries.

The loader processes three types of relocatable address
constants:

• A-type constants, used to reference a location in the
CSECT as the constant

• v-type constants, used to reference a location in a
different CSECT

• Q-type constants, used to reference a displacement in
external dummy section

same

an

In general, the virtual storage address equivalent of an address
constant is calculated by combining either the relative or the
absolute relocation constant with the input value of the address
constant. 17 The relative relocation constant is the difference
between the loader-assigned address and the input address of the
referenced location. The absolute relocation constant is simply
the loader-assigned virtual-storage address of the referenced
location. Figure 18 on page 38 relates the types of relocation
constants, and of address constants, to the types of relocation.

17 The loader does not compute the absolute addresses for PRs
or CMs until all the text has been loaded.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 37

Type of Relocation Constant
Relocation Usage

Absolute Absolute relocation
Relocation constant replaces

adcon value

Relative Relative relocation
Relocation constant is added

to or subtracted
from adcon value

Relative Absolute relocation
Relocation constant is added

to or subtracted
from adcon value

Pseudo Pseudo register
Register displacement
Relocation constant is moved

in

Delinking Input address of CM
or LR/LD CESD entry
is subtracted from
value

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Type of Address
Constant

Comments

VCsymbol) where Displacements are not valid
symbol is not a in V-type address constants.
PR in CESD

ACsymbol) where Addition or subtraction is
symbol is not an specified by indicators in
ER or PR in CESD RLD flag field. Also see

comment below for Delinking.

ACsymbol) where Addition or subtraction is
symbol is ER in specified by indicators in
CESD RLD flag field.

QCsymbol) where -
symbol is PR in
CESD

-
ACsymbol) where The relocation of address
symbol is CM or constants pointing to CM
ER created from CESD entries is a
LR/LD combination of Cl) delinking

and subsequent (2) relative
relocation with the absolute
relocation constant.

Figure 18. Relocation of Address Constants

Note to Figure 18:

Absolute relocation constant = loader-assigned address
Relative relocation constant = loader-assigned address minus the
input address

When the loader resolves a CESD entry Cfor example, a CESD ER
matched with an SD), it r·elocates all address constants
referring to the name. These are pointed to by RLD table
entries chained from the CESD entry. The loader processes each
RLD entry in the following way.

First,· the loader ensures that the address constant is not an
invalid 2-byte adcon. CTwo-byte adcons can only be used to
define external DSECT displacements.) If the adcon is invalid,
the loade~ issues an error message and continues loading the
program. Otherwise, the loader moves the adcon from the text to
a work area, where it determines the type of relocation
required.

If the RLD entry indicates absolute relocation, the loader
places the absolute relocation constant at the text address.
The RLD entry is placed on the chain of freed RLD table entries
CCMRLDCHN), and the next entry on the chain is processed. When
the end of the RLD chain has been reached, the loader continues
its processing.

If the RLD entry indicates relative relocation, the loader also
determines the type of relocation constant required. If the
location referenced by the adcon is an external reference, the
loader uses the absolute relocation constant. Otherwise, the
loader uses the relative relocation constant. The loader tests
the RLD entry to determine whether the relocation constant
should be added to or subtracted from the input value of the
address constant. After calculating the adcon value, the loader
moves it back to the text. Finally, the loader frees the RLD
entry and continues resolution.

38 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Cantains Restricted Materials af IBM
Licensed Materials -- Property af IBM

END PROCESSING

END Card processing

If the RLD entry indicates delinking for a CM entry or for an LR
entry converted to an ER, the loader subtracts the input address
of common or of the LR from the value of the adcon. The result
is a reference to a displacement in the common area or input
module. When these entries are resolved (that is, CM address
assigned or ER matched), absolute or relative relocation occurs.

If the RLD entry indicates a PR reference, the loader performs
absolute relocation as described above.

End processing includes END card processing for object module
CSECTs, and end-of-module processing for object and load
modules.

The loader processes object module END cards for the length of
the CSECT and for loaded program entry point definition. (Also,
when an END card is recognized, the loader issues messages for
any remaining LD entries for which no SD entry has been
received.) In setting the length of the current CSECT, the
loader determines whether the CSECT is a "no-length" CSECT. If
it is, the loader uses the larger of the END card length and the
length specified by the CESD SD entry as the CSECT length. 18 If
the END card of a "no-length" CSECT does not specify a length,
and text has been received for the CSECT, the loader issues an
error message. (In this case, the length of the text is used.)

The loader determines whether the loaded program's entry point
name or address has already been received. If it has, the
loader does not process the END card for entry point. If not,
the loader examines the END card for an ID to be used for the
entry point. If an ID is present, the loader sets the entry
point address to the address specified by the END card, or to 0
if the END card specifies nO'llddress. The loader translates the
ID to a CESD entry address and saves the CESD address in
location CMEPCESD. (If there is no CESD entry for the ID, an
invalid-ID message is issued.) The loader creates an RLD entry
for the entry point (at CMEPNAME). This entry is not treated as
a regular RLD.

If the END card does not specify an ID but does give a symbolic
name to be used as the entry point, the loader saves the name at
location CMEPNAME. If there is an SD or LR entry with that name
in the CESD, the loader uses the address specified as the
program entry point address.

End-of-Madule pracessing

At end of module for a load or object module, the loader
initializes the next input module for processing. If text has
been passed through text records, the loader updates the text
pointers, CMLSTTXT and CMNXTTXT, by the module length or, if no
length was given, to the address of the last text received
(rounded to doubleword value). Then, the loader determines
whether the available storage has been exceeded. If so, an
error message is issued, and loading is terminated. Otherwise,
the loader clears the translation table and the module length
counter (CMMODLNG). All flags except the END and LIB flags are
set off. The loader either begins processing another module
from SYSLIN or, if end of file on SYSLIN is recognized, goes to
process any secondary input~

18 A "no-length" CSECT's SD can be matched by a CM entry, which
defines an area larger than the CSECT.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 39

SECONDARY INPUT PROCESSING (HEWACALLl

contains Restricted Mater1als of IBM
Licensed Materials -- property of IBM

After the loader has processed all primary input, it attempts to
resolve remaining ERs in the CESD if CALL was specified. If
there are no remaining ERs, the loader performs final processing
for the loaded program. (See nFinal Processing for the Loaded
Program.")

The loader can resolve ERs from the link pack area and/or the
SYSLIB data set. If the link pack area is available for
resolution, and the RES option is specified, the loader searches
the contents directory entry queue for the ERs before attempting
to resolve them from SYSLIB.

Secondary input processing is shown in nDiagram El. Secondary
Input Processing" on page 60.

RESOLVING ERS FROM THE LINK PACK AREA

The loader obtains the address of the link pack area directory
search routine from the communication vector table (CVT). It
then searches the ER chain for an ER that is not marked nnever
call" or nweak call. n (A) When one is found, the name in the ER
is passed to the LPA directory search routine. If the directory
search routine does not find a match for the name, the loader
searches for the next ER that is not marked nnever call" or
"weak call."

If the directory search routine finds a match for the name, the
loader puts the entry point in the CESD entry and changes the
entry's type to SD. The loader then takes the entry off the ER
chain, puts it on the SD chain, and makes a map entry for the SD
if MAP is specified. Finally, the loader relocates all RLD
table entries that are chained to the CESD entry.

The loader then searches for the next ER that is not marked
nnever call" or nweak call. n

This search is repeated until the entire ER chain has been
processed.

If there are still unresolved ERs after resolution from the link
pack area, the loader performs library call processing.
Otherwise, the loader performs final processing for the loaded
program. (See nFinal Processing for the Loaded Program. n)

RESOLVING ERS FROM THE SYSLIB DATA SET

Before resolving ERs from the SYSLIB data set, the loader checks
whether an open SYSLIB data set has been passed. (The fourth
entry in the DCB list, which is passed to the loader as a
parameter, can point to an open SYSLIB DCB.) If an open SYSLIB
DCB has been passed to the loader, the exit addresses in the
passed SYSLIB DCB are saved in the communication area and
replaced by the loader's own exit routine addresses. If a
SYSLIB DCB has not been passed, a SYSLIB DCB is initialized and
opened. 19

(B) Otherwise, the loader constructs two lists used for BLDL
information in the available storage. The available storage is
defined by CMLOWTBL (the lowest address used by the loader
tables and buffers) and CMLSTTXT (the highest address used by
the loaded program's text). The two lists are the BLDL list and
an address list. The loader uses the address list to store
pointers to the ER entries in the CESD for which it constructs
BlDL entries. The entries in the two lists have a one-to-one

19 If the loader has opened a SYSLIN data set, the loader
closes it before opening SYSLIB and reuses the DCB for
SYSLIB.

40 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

correspondence relative to the ER entries. Figure 19 on page 42
shows this relationship.

Before constructing the lists, the loader determines the maximum
number of entries possible by dividing the amount of available
storage by the number of bytes required for an entry in the two
lists (BLDL list entry size=16, address list entry size=4).
Then, for each ER that is not marked "never call" or "weak
call," the loader makes an entry in the BLDL list, including the
name specified by the ER and the address of the ER.

After building the BLDL list, ·the loader constructs the address
list by moving the pointers to the ERs from the BLDL list. This
preserves the pointers, which are overlaid in the BLDL list
during BLDL operation.

Finally, the loader issues the BLDL macro instruction. If an
I/O error occurs during execution of the BLDL, the loader logs
the error and performs final processing for the loaded program.

(C) Otherwise, the loader moves the relative track addresses
(TTRs) returned in the BLDL list to the associated CESD entries.
Each CESD entry for which a TTR was returned is marked to
indicate that it contains an auxiliary storage address.

The loader issues a FIND macro instruction for each ER entry
marked "TTR received." The loader processes each module located
in the same way as it processes primary input modules.

Because SYSLIB contains only load modules or only object
modules, processing for each module located is the same. If
SYSLIB contains object modules, the loader first primes the
buffers and then performs object module processing. If SYSLIB
contains load modules, the loader performs load module
processing. See "Primary Input Processing."

The loader resolves as many ERs from SYSLIB as possible. It
then performs final processing for the loaded program. (If
during processing of one or these modules a program size error
occurs, the loading procedure is terminated with an error
message.)

FINAL PROCESSING FOR THE LOADED PROGRAM

After all possible ERs have been resolved, the loader performs
the following for the loaded program'

• Assigns addresses for common areas

• Assigns addresses for displacement in the external DSECT
(pseudo registers)

• Issues messages for all unresolved ERs

• Finds the address of the program's entry point

• Builds a condensed symbol table if the loader is operating
in time-sharing mode

• Identifies the loaded program to the system, unless the
processing portion of the loader was directly invoked by the
name HEWLOADR

• Writes out the diagnostic message dictionary

LY26-3922-1 © Copyright IBM Corp. 19"12, 1985 Method of Operation 41

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

ASSIGNING ADDRESSES FOR COMMON AREAS (COMMON)

The loader assigns addresses for the loaded program's common
areas by processing entries on the CESD CM chain.

For each CM entry, the loader assigns the next available storage
address above the text of the loaded program. (The highest text
address before the allocation of a common area is saved in the
communication area at CMTOPCOD. This allows the loader to
continue using work space that may be overlapped with common
areas. The address contained in CMNXTTXT rounded to doubleword
value is the address used. The loader ensures that there is
enough available storage for the common area, and then updates
the pointer to available storage by adding the length from the
current common entry to the CMNXTTXT value. (If there is not
enough storage, an error message is issued and loading is
terminated.) Next, if the MAP option was chosen, the common
area is mapped. Finally, the loader relocates the address
constants referring to the current "common" definition. (The
adcons are relocated through processing the RLDs chained from
the current CESD CM entry.)

After all the CM entries in the CESD have been processed, the
loader assigns addresses for external DSECT displacements.

ASSIGNING ADDRESSES FOR EXTERNAL DSECT DISPLACEMENTS (PSEUDOR)

ERNAME2

ERNAME3

The loader assigns contiguous storage for displacements in the
loaded program's external DSECT by processing the CESD PR chain.
(The storage for all DSECTs is obtained via one GETMAIN macro
instruction, and the individual DSECTs are displacements within
the area.)

For each entry on the chain, the loader subtracts the alignment
factor from hexadecimal "FFFF". The loader adds the difference
to the location counter for the PRs to obtain the assigned
address of the current external DSECT. (The location counter is
o at the beginning of PR processing.) After calculating the

ERNAMEl

ERNAMEl t CESD entry
for ERNAMEl

ERNAME2 t CESD entry
for ERNAME2

ERNAME3 t CESD entry
for ERNAME3

BlDl List

• BlDl List ond Address List before BlDl
macro instruction is issued •

• After execution of the BlDl, the BLDl list
contains TTRs for library-resolved ERs_

+ CESD entry
for ERNAMEl

+ CESD entry
for ERNAME2

+ CESD entry
for ERNAME3

Address Li 5t

Figure 19. BLDL List and Address list

42 MVS/370 Loader Logic LY26-3922-l © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

current address, the loader updates the location counter by
adding the length of the displacement specified in the CESD PRo
Then the loader maps the DSECT displacement and relocates all
address constants referring to it. These are indicated by RLD
table entries chained to the PR entry.

After processing all the PR entries, the loader stores the value
contained in the location counter (the cumulative length of all
DSECTs) in all locations in the loaded program requesting it.
These locations are chained from CMCXDPT in the communication·
area. 20 (If NCAL was specified, there is no CXD chain pointer
in CMCXDPT.)

ISSUING UNRESOLVED ER MESSAGES

For all ERs remaining in the CESD that are not marked nweak
call,n the loader issues either error or warning messages. If
NCAL is specified, or if an ER is marked nnever call,n the
loader issues a warning message. Otherwise, an error message is
issued. An error message is also issued if no text was loaded
for the program.

CHECKING THE LOADED PROGRAM'S ENTRY POINT

After the loaded program has been processed, the loader checks
to determine whether the entry point name and address have been
received. This is determined by testing the program flag field
(CMPRMFLG). Processing for the possible conditions is as
follows:

• Entry point name and address both received. No further
entry point processing is required.

• Only entry point name received. If the entry point name was
specified by the EP= parameter but no address for the name
was received, the loader issues an error message. Then, if
text for the SYSLIN data set was pointed to by MOD records
instead of being passed through text records, the address of
the first byte of the first extent described on a MOD record
is assigned as the entry point. Otherwise, the loader
assigns the address of the first byte of loader-constructed
text (found in CMBEGADR) as the entry point.

• Only entry point address received. If the entry point
address was received (CMEPADDR), the loader determines
whether the referenced symbol is an ER. If so, the loader
assigns the first byte of text as the entry point.

• Neither entry point· nor address received. The loader issues
an error message and uses the first byte of text as the
entry point.

After determining the entry point for the loaded program, the
loader calculates the program's total length. The length equals
the difference between the address of the next available storage
(CMNXTTXT) and the address of the first byte of text (CMBEGADR)
added to the lengths of any extents that may be passed through
MOD records. The loader then prints ou.t the entry point address
and the total length of the loaded program.

20 See Assembler Language for the use of external DSECTs and
the CXD statement.

LY26-3922-1 @ COPYright IBM Corp. 1972, 1985 Method of Operation 43

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

IDENTIFYING THE LOADED pROGRAM

END OF LOADING

If program loading is successful, the loader prepares to
identify the program to the control system. 21 A parameter list
is constructed to pass the program name, addressing mode, entry
point address, and extent list information to the IDENTIFY macro
instruction. (The extent list defines the storage that the
loaded program occupies.) If storage is not available for this
parameter list, an error message is issued and loader processing
is terminated.

The loader initializes the parameter list with the program name,
addressing mode, entry point address, and length and address of
the loader-constructed program (as the first extent). This
information is found in the communication area. If the loader
is operating in time-sharing mode, it attempts to build a
condensed symbol table for use during the program's execution.
An entry is made in the table for each control section and
common area in the program. This table becomes the second
extent of the program, and its address and length are placed in
the extent list. If there is not enough storage for the entire
table, it is not built, and the second extent of the program is
assigned a length of zero. The extent list is then completed
with the extent information that was passed on MOD records and
saved in the communication area.

Finally, the.IDENTIFY macro instruction is issued. If
identification processing is not successful, an error message is
issued and loader processing is terminated. Otherwise, a flag
indicating that the program has been identified is set in the
communication area.

After all processing for the loaded program is complete, the
loader processing portion performs termination processing and
then passes control to the loader control portion. The control
portion then attempts to execute the loaded program.

LOADER PROCESSING TERMINATION

If the SYSLOUT and/or SYSTERM data set was opened, the loader
prints a diagnostic dictionary describing the errors encountered
during loading. (As errors occur, the loader sets a flag
indicating the type of error in the bit map field (CMBITMAP) in
the communication area.) The loader determines the highest
error severity indicated and returns it to the caller at
termination.

Next the loader ensures that all diagnostic data has been
written to SYSlOUT, and then closes both the output and the
current input data sets. 22

The loader then sets up the return parameter list. If the
processing portion of the loader was invoked through the entry
point HEWLOAD, the name of the identified program is placed in
this parameter list. Otherwise, the list contains the virtual
storage address and size of the loaded program.

21 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

22 The current input data set is SYSLIB unless no library
searching was done. The loader closes SYSLIN when it opens
SYSLIB. However, if a SYSLIB DCB marked open was passed to
the loader, SYSLIB is not closed.

44 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Finally, the loader issues a FREEMAIN macro instruction for all
its processing storage not assigned to the loaded program or to
the condensed symbol table. Clf the completion code for loading
is greater than 4, the storage occupied by the loaded program is
also released, including preloaded text passed through MOD
records. If the loaded program was identified, the storage it
occupied is released through the execution of the LOAD and
DELETE macro instructions.) The loader then returns control to
the control portion.

LOADER CONTROL TERMINATION

Before attempting to execute the loaded program, the loader
control portion issues a DELETE macro instruction for the
processing portion. Then, if the condition code for loading is
not greater than 4, the loader control portion, through the
execution of an ATTACH macro instruction, passes the user's
parameter list to the loaded program for its execution.

After the program's execution, the loader control portion issues
a DELETE macro instruction for the loaded program, frees its
processing storage, and returns to the scheduler.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 45

OPERATION DIAGRAMS

LEGEND FOR DIAGRAMS

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The following diagrams show the flow of data through the loader,
and are used with the descriptions given previously in this
section to give an integrated picture of the loader logic. Each
diagram has an alphameric identification (for example, AI).
Within each diagram, specific points of reference have
alphabetic labels. When the description at the beginning of this
section discusses a function, it refers to the operation diagram
as a whole. and to the specific labeled references where
appropriate. For example, the description of initialization
refers to Diagram Bl. Within the discussion, reference CB)
refers to point (B) in Diagram Bl.

The symbols used in the diagrams are shown in the following
chart.

~ Main Processing;
~ Primary flow

---------I.~SUbsidiary Processing;
Secondary Flow

--------.. Data Movement

46 MVS/370 Loader Logic

Created in This
Operation or Routine

- - - - - - - .Oata Reference

Previously Existing or
Defined in Program

LY26-3922-1 © Copyright IBM Corp. 1972. 1985

r
-<
N
0\
I

VI
\0
N
N
I

1-4
tJ:j

3:

n
o ,
'C

.....
\0
-..,j

N ..
.....
\0
00
UI

3:
ID
rio
:r
0
Q.

0
-t.

0
'C
ID ,
III
rio
0
:::J

~
-..,j

.>

.....
(!)
<{

'" 0
I-

'" >-
"" <{

:J
X
=>
<{

Notes:

INlTMAIN

Control Information
and Work Area for
Initialization

HfWLOADR, HEWLOAD

CSECT HEWLIOCA

CSECT HEWLRELO

CSECT HEWLLl8R

CSECT HEWLI DEN

CSECT HEWLDDEF

1. Module HEWLOAOR is deleted after its execution
and before ihe loaded program is given control.

2. load module text is read directly into the loaded
program area.

3. A hex '80' in the high·order byte of a fullword
signifies that it is the last field in the parameter list.

LOADER PROCESSING STORAGE

HEWLDCOM

o
<
fT'I
;Q
l>
I""
I""

, I""
o
l>
t:I
fT'I
;Q

'0
'U
fT'I
.~
-I ...
o z

1""0
... ·0
O::J
IDrt
::JIIJ
CIl ... •
ID::J
Q.CIl

3:;Q
IIJID
rtCll
IDrt ..,..,
IIJO
.... rt
CIlID

Q.

13:
IIJ

'Urt
..,10
0.., " IDIIJ
..,
rtCll
'< o 0'" ~
~3:
3:

DIAGRAM A2. LOADER INVOCATION

SYSIN DD

SYSLIB DD

SYSLOUT DD

SYSLIN DD

or
through issuing a LOAD,
XCTl, LI NK, or ATTACH
macro imtruction referring

to HEWLDRGO (program
name) or to LOADER (alias).
Parameters are passed via
I ist addressed by Reg N 1

I NOTE 11

I NOTE 11

~EWLDRG~./

HEWlOADR ./
-- - - --

svS 1. LlNKLlB

The user may invoke the Loader to load a program
but not pass control to it. In this case, the user
issues a LOAD and a CALL macro instruction
referring to HEWLOADR (for loading without
identification) or to HEWLOAD (for loading with
identification).

48 MVS/370 loader logic

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

-
Length of

t
Options

DDnames
options for
Loader and
loaded program

t DCBs

to
Diagram 81

Parameter list

CSECT HEWLCTRL

Entry point HEWLDRGO

VIRTUAL STORAGE

lY26-3922-1 © Copyright IBM Corp. 1972. 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

DIAGRAM 81. LOADER/SCHEDULER INTERFACE AND INITIALIZATION

from .chedule,

NOles

SYSI.LlNKLIB

HEWLCTRL ehe"'9" ,ho, 1'·>g,I.
of lho option list recei~d from
t~ scheduler to Ih~ length of
,he Loade, option Iy.

CSECT
HEWLDDEF

CSECT
HEWLlOC4

CSECT
HEWLOELO

cseCT
HEWLLlBP

CSECT
HEWLlDE'"

I. HEWLIOCA ,nulls a GETMAIN for the ,ize tOngl
speclfl.d by ,he SIZE po""".'o, (.tored in tNITitMAX)
and ,he ... Iue "",cified by rho INITRMIN fi.ld.

2. The .b. and oddreu of ,he l.oocIor _ ... i"9 oreo
... i_rted by rho GETMAIN SVC '-dl.r.

3 . A DCB i .. ~"1Nc1ed lor the output clata "" II

Build. INITMAIN ,_
control information cnolyzed

50. No'o 2 .tl' •••• ~ Odnomes

GnMAIN
(4K by''''

Pammeter flog,

M;nimum ttof"oge Muaimum sioras.
request size 'CKfUlII's, siu

GETMAIN liSt Convmion area

Option tronslatiOt'l Reiecled options
lable bull ..

I, htablis.hes
HEWLDCOM

11i~ ••••• :1. 4Uo<ole. and
chains seve
creas GETMAIN

(Nolel) • Issues CI

FREEMAIN for
'ho INITMAIN
.. ea

ConSI'uCIS DCBs 10' dala
selS INoie 3t and allocales OulPUI bulle.s

OPEN f ... OPENLIST

Diqram C1

Loodor Communicotion Area

tho PRINT oplion was chosen. A DCS i. aIIOCDn.
trucled for the inpul cia ... lilt if a SYSLIN aontrol
block, whidl deKrib .. ~ internal c:bto orea,.wm.
nol _d. A DCB, _ DECS •• and _ buff." or.
"",_Idod lor the ,orminal d.", .. , if ,h. TERM
option _ chosen.

or Prime St"",;. : low Add 1"' ________ --'1

___ ··Dlagram e1

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 49

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM Cl. PRIMARY INPUT CONTROL AND BUFFER ALLOCATION

zation or
primary input
processing

Block size

Record format

Number of buffers

DeB flags

SO MVS/370 Loader Logic

I HEWLDCOM 1
allocate buffers 1:1---------11
and DEeBs

Diagram 01

Prime buffers

allocation
"",

~ DEeB N
/'

,,/
,,/ BUFFER N (not primed)

/, .. L.. .. L..

,/ -r -r
Input Data Set

/' loader Processing Storage

Diagram 02

loader Processing Starage

LY26-3922-1 @ COPYright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM Dl. OBJECT MODULE PROCESSING

Input may
either be from
on extemal
device

or Input Dota Set

from an interno I SYS LI N
data area whose control
block is possed to the
I..ocrder in the DeB list.

I SYSLI N control block I

CMGETREC

HEWLREAD
reads input

RECORD'1
RECORD 2

RECORD 3
RECORD 4

" Object module
" Buffers or Internal

" SYSLIN data area

RETURN

" " " "

HEWLEND ~ RETURN

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

ESD processing;
HEWLESD

TXT processing;
HEWLTXT

END processing;
HEWLEND

Method of Operation 51

DIAGRAM D2. LOAD MODULE PROCESSING

CMGETREC

Input Data Set

HEW
reads input

Input record
(not text)

l RLD Buffer ---- If first

HEWLEN~ Return
~ to caller

52 MVS/370 loader logic

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Prelimi~ary ESD~
processIng
HEWLESD

SDprocessin~
HEWLESD ~

Finish
proces
sing
module
or return
to caller

lY26-3922-1 ~ Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

DIAGRAM D3. ESD RECORD PROCESSING (GENERALIZED)

Object Module Buffer or RLD Buffer

ESD/CESD data

NAME

Input

Do any preliminary
processing needed.
Search CESD.

Information moved

SYSLOUT data set

HEWLESD

~~~Y~:JiiI~. HEWLMAP make map 
entry 

from HEWLODE 
or HEWLRELO 

No 

T 
Translation Table e~tent 

Note: eSD processing differs according ta entry type 
and whether resolutian is possible. For detailed information, 
refer to ·E~ternal Symbol Dictionary Processing". The following 
diesram. give """0 e~amplO$ of processing for different conditions. 

LY26-3922-1 © Copyright IBM Corp. 1972~ 1985 

After processing all input 
entries in dota, return 

Method of Operation 53 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM D4. EXAMPLE OF INPUT ESD PROCESSING OF SD-SECTION DEFINITION (HEWLESD) 

54 

The input address is 
used to calculate the 
Loader-assigned address 
and the relative relocation. 

NOMATCH -
Makes a CE SD en try, 
chains if and makes 
a translation table 

entry for j t. 

MATCHED 
Changes the existing 

ER to SD, rechains 
the entry and mak es 
a translation toble 

entTy for the input 
entry referring to the 
existing entry 

o 1-----------1 

:r 

CE SD entry 

o I----__ -'-O __ ---t 

2 
1-----------1 

3 

Translation Table Extent 

Loader

assigned 
address 

(J)no motch exists in the GESD (nonrc:solulion proces~ing) 
This example shows processing for on input SD entry when >:.< 
This example returns to the calier 

'\~ a match exists (rejolution processing) 

Return 

to caller 

Go to 
process 
next ESD 
entry 

MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials Property of IBM 

DIAGRAM D5. EXAMPLE OF INPUT ESD OF ER-EXTERNAL REFERENCE PROCESSING (HEWLESDJ 

CMTYPCHN o 

2 

o 

Translation 
Table Extent 

Nate I . The high bi t of 
the first byte is 
set on to show 
CE5D entry is 
for ER. 

Diagram D2 

NOtMTCH 
make CE5D 
entry, chain 
entry, and 
make transla
tion table 
entry 

CE5D entry for ER 

Go to process 
next E5D 
entry 

CMTYPCHN 

o 
,--"--....-__ -,_-,-_1------1 

o 

MATCHED - )-+ 
moke tronslotion G 

o to process 
table entry to t E 5D t 
existing CE5D nex en ry 
entry 

This example shows processing for on input ER entry when CD no match in the CE5D exish (non resolution processing) 

(2) a match exists (resolution processing) 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 55 



DIAGRA" D6. EXAHPLE OF ESD tD TRANSLATION 

. Input CESD entry 

I-H\~ 
I Note 1 

I 
I 
I 
I L ____ _ 

TRANSID 

I 
I 
I 
I 
I 
/ 
I 
I 

!':!2!!!: 
1. Input LR entry contains 

the ESD 10 for CSECT 
containing NAME. 

2. Only for object module 
input, the input LO is 
placed an ta...-ary 
chain. 

o 

I 
I 
I 
I 
I 

1 I 
2 
31----.------1' 

T T 
Tnmslatian Table Extant 

• This elt8mple shows preliminary proceSSing 01 an input LR. Translation ensures 
the Input 10 is yalid and obtains the CESO address of the related SO. 

Contains Restri~ted Materials of IIH 
Licensed Materials -- Property of 11M 

CMTVPCHN 

Return 
to callor 

ESO .a... Roturn 

10 """" to caller 
CESO Entry for LR (temporary) 

" MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM D7. OBJECT MODULE TEXT PROCESSING 

Object Module Buffer 

• I ESD ID of text I R # 5 
• 

Text Record I Displacement R # 6 
in input - c---~ 

• 

Table and Buffer Area 

(---------. 
I l Length of IR#7 Address 

text record for text I r-+ 
I 
I 

Input 

I R # 8 

\ 
\ 

I 
I 
I 
I 
I 

CMlOWTBL 

Calculate the main 
storage address 

No for the text 

Return, to 
read the next 
record 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 

Text already loaded 

La oded Pr og ram's St ra e Area o g 

Move text to assigned 
address; Update storage 

No pointer if needed 

~.:s) •••••••• Return 

HEWERROR 
to end loading 

Method of Operation 57 



contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

DIAGRAM DI. LOAD MODULE TEXT PROCESSING 

CMGETREC 

RLO Buffer 

Le'l9th of 
IO/length list 

IO/length list 

Text control or controVRLO record 

Input 

~: 

1. Read text record, unless the record is 
to be skipped; read the following contra I 
record also, unless the text record is the 
last or CSECTs are to be deleted. 

2. See Figure 19. 

58 MVS/370 Loader logic 

Control record 

Input Data Set 

Loaded Program's Storage Area 

Return 

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRA" D9. RLD RECORD PROCESSING 

Reg 7 

Length of·RLDs I 

RLD data in input buffer 
Note 1 

CESD entry 1 

P-pointer t CESD entry I 
ESD ID 

R-pointer I-r-----I 
ESD ID ,.. 

CESD entry 2 
(for address constant) 

Chain RLD 

Note 1 : 

Note 2: 

The input buffer is the RLD buffer (load module) or an object module buffer. t 
The Loader calculates the adcon address using the P-pointer CESD entry's relocation constant and the Adcon and flogs from the 
input RLD entry. The flogs are inserted in the new RLD entry unless the input RLD is for a CXD PRo 

Note 3: If the type in the CESD entry for the address constant is PC, SD, or LR relocation is perfonned. If the type Is CM, PR, or ER, the 
RLD entry is chai~CICI to the CESD entry. . 

lY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 59 



:3 
< -en , 
~ ..... 
o 
r
o 
Gl 
0-
CD ., 
,.. 
o 
IQ ... 
n 

r
oo( 
N 
0\ 
I 
~ 
\0 
N 
N 
I .... 

@ 

n 
o 
~ ., ... 
IG 
':S' 
t+ 
1-1 
til 
:3 

n 
o ., 
'V 

.... 
\0 ..... 
N .. 

CDE 

r-~------l 

I I 

Conteftts Directory Entry a.eve 

Final Processing 

oddren if nome, match 

- - - - -(Compa ........ )--- - - - - ----

Build. BlDl .. d 
Addrou lish (No •• 1 , 

) 
I 
I 
I 

BlDL list 

library 0...0 H' 

move 

Member 
NAME4 

library Do'o Se. DC B 

, •••••• R.lurn 
• 10 caller 

«n 
lit 
() 
a 
z c 
> 
;Q 
-< 
lot 
Z 
'U 
C 
-t 

'U 
:a 
a 
() 
lit «n 
«n 
lot 
z 
Q 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

ORGANIZATION OF THE LOADER 

Figure 20 shows the organization of the loader. The flow of 
control through the first four levels of the processing portion 
of the loader (module HEWlOADR) is listed in the control laval 
tables below. 

load Maclule 
HEWLDRGO (Alias LOADER) load Module 

HEWLOADR I Alias HEWLOADI 

HEWLCTRL) HEWLIOCA 

HEWLIOCA 
Inltlollzotlon, 

f Input Control, 
Allocation 

loaded 
Processing 

Program 
I 

... HEWLLlBR. 
(Built by HEWACALL 
HEWLOADRI 

Secondory 
Input and Finol 
Processing 
'--

HEWLLlBR 
HEWLODE 

Load Module 
Processing 

HEWLIOCA 

HEWLREAD 

Input Reading 

HEWLLlBR HEWLRELO 

LMTXT HEWLRLD 

lood MocIu Ie RLD Record 
Text 
Processing 

Processing 

.l:::!!!!!..; The CSECT conto Inlng the code of 0 Function is noted outside 
the functional block. 

Figure 20. Loader Organization 

HEWLIDEN 

HEWLIDEN 

Identification 
of Loaded 

pnlSr<IIII 

HEWLRELO 

HEWLRELO 

Object Module 
Proceulng 

HEWLRELO 

HEWLESD 

eSD Keeanl 
Processing 

lY26-3922-1 @ Copyright IBM Corp. 1972. 1985 

HEWLRELO HE WlRELO 

HEWLTXT HEWLMOD 

ObJect Modu Ie MODReoonl 
T.xt Procollina ~ng 

Organization of the Loader 61 



ROUTINE CONTROL-LEVEL TABLES 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

The routine descriptions within a level are listed 
alphabetically in Figure 21 through Figure 24. 

Routine 

HEWLIOCA 

Purpose 

Initialization, primary 
input control, and 
allocation processing 

Figure 21. HEWLOADR--Level 1 

Routine 

HEWACALL 

HEWBTMAP 

Purpose 

Secondary input and 
final processing 

Processing of error-bit 
map and printing of 
diagnostic dictionary 

Called 
Routines 

HEWLPRNT 

HEWBUFFR 

HEWPRIME 

HEWLRELO 

HEWLODE 

HEWACALL 

HEWLIDEN 

HEWBTMAP 

Called 
Routines 

HEWOPNLB 

COMMON 

HEWLMAP 

HEWLERTN 

HEWERROR 

HEWPRIME 

HEWLRELO 

HEWLODE 

HEWLPRNT 

HEWTERM 

Figure 22 (Part 1 of 2). HEWLOADR--Level 2 

Calling Conditions 

Called if SYSLOUT data set is 
open 

If more data exists on SYSLIN 

If SYSLIN input is an object 
module 

If SYSLIN input is an object 
module 

If SYSLIN input is a load module 

~hen all SYSLIN input is 
processed, unless SYSLIN did not 
open 

If the loaded program is to be 
identified to the control program 

Input processing completed 

Calling Conditions 

If ERs cannot be resolved from 
primary input or the LPA 

Always 

If an ER is resolved 

If an ER is resolved 

If an error occurs 

If SYSLIB input is object modules 

If SYSLIB input is object modules 

If SYSLIB input is load modules 

If SYSLOUT is open and messages 
are required 

If the TERM option is specified 
and messages are required 

62 MVS/370 Loader Logic LY2b-3922-1 @ Copyright IBM Corp. 1972, 1985 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

Routine 

HEWBUFFR 

HEWLIDEN 

HEWLODE 

HEWLPRNT 

Purpose 

Buffer Management 

Identification of the 
loaded program to the 
control program 

Process a load module 

Print output to SYSLOUT 
data set 

Called 
Routines 

FREECORE 

GETCORE 

IDENTER 

IDMINI 

HEWERROR 

HEWLREAD 

HEWlEND 

HEWlESD 

HEWLRLD 

LMTXT 

RDCHECK 

WTWRITE 

WTCHECK 

HEWLRELO Process an object module HEWLREAD 

HEWPRIME Read records into all 
but one buffer before 
HEWLRELO receives 
control 

HEWLEND 

HEWlESD 

HEWLRlD 

HEWLTXT 

HEWLMOD 

RDREAD 

Figure 22 (Part 2 of 2). HEWLOADR--level 2 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 

Calling Conditions 

If previous or current (not the 
first) allocation is for object 
module 

If no previously allocated area 
is large enough for current 
request 

Always, unless extents will 
overlap loader work space 

Always, unless extents will 
overlap loader work space 

If an error occurs 

Always 

If end-of-module is indicated 

If CESD record is received 

If RlD record is received 

If TXT record is read in 

If DECB was previously written 

Always 

Always 

Always 

If END card received 

If ESD card received 

If RlD card received 

If TXT card received 

If MOD card received 

Always 

Organization of the loader 63 



Routine 

COMMON 

FREECORE 

GETCORE 

I DENTER 

IDMINI 

HEWERROR 

HEWLCNVT 

HEWLEND 

HEHLERTN 

HEWLESD 

HEWLMAP 

Purpose 

Assign addresses to 
common areas 

Chain deallocated area 
to ~ree list 

Allocated storage for 
allocation request 

Create entry in extent 
list 

Create a condensed 
symbol table 

Handle error messages, 
severity code 4 errors 

Called 
Routines 

PSEUDOR 

HEHLMAP 

HEWLERTN 

none 

HEHERROR 

none 

none 

HEHLPRNT 

HEHTERM 

Convert binary quantity none 
to hexadecimal 

Process END card, 
reinitialize for next 
module 

Relocate all adcons 
indicated by RLD chain 

Create CESD from input 
ESD.lCESD 

Create map entry for 
referenced location in 
loaded program 

TRANSID 

HEWERROR 

HEWERROR 

LOADPROC 

CESDSRCH 

TRANSLAT 

CESDENT 

ENTER 

CKECKEP 

MATERSD2 

TRANSID 

HEWLPRNT 
IEWLCNVT 

Figure 23 (Part 1 of 3). HEWLOADR--Level 3 

Contains Restricted Materials o~ IBH 
Licensed Materials -- Property o~ IBM 

calling Conditions 

Always 

Always, unless no CM entries were 
received 

Always, unless no CM entries were 
received 

If table overflow occurs 

If SYSLOUT data set is open 

If the TERM option is specified 

If END card specifies entry point 
address 

If error occurs in end card 
processing 

Invalid 2-byte adcon 

If input is a load module 

Input entry is not NULL or 

If NULL entry is made 

PC 

If PC or LR entry is required 

If PC entry is required 

If PC entry is required 

If PC entry is required 

If LD.lLR is received 

Always 
Always 

64 MVS.l370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

Routine 

HEWLMOD 

HEWLODE 

HEWLPRNT 

HEWLREAD 

HEWLRELO 

HEWLRLD 

HEWLTXT 

HEWOPNLD 

HEWPRIME 

HEWTERM 

Called 
Purpose Routines 

Process MOD card, store ALLOCATE 
text origin, length, and 
extent information 

Process a load module HEWLREAD 

Print output to SYSLOUT 
data set 

Handle request for data 

HEWLEND 

HEWLESD 

HEWLRLD 

LMTXT 

RDCHECK 

WTWRITE 

WTCHECK 

RDREAD 

RDCHECK 

Process an object module HEWLREAD 

HEWLEND 

HEWLESD 

HEWLRLD 

HEWLTXT 

Relocate adcons TRANSID 
indicated by RLD entries ALLOCATE 
received, or chain RLDs 
off CESD entry for R 
pointer 

HEWLERTN 

Move object module text TRANSID 
to correct space 

RELOREAD 

HEW ERROR 

Open SYSLIB; close HEWBUFFR 
SYSLIN 

Read records into all RDREAD 
but one buffer before 
HEWLRELO receives 
control 

Print output to SYSTERM WTWRITE 
data set 

WTCHECK 

Figure 23 (Part 2 of 3). HEWLOADR--Level 3 

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 

Calling Conditions 

If extent information is passed 
on MOD card 

Always 

If end-of-module is indicated 

If ESD record is read in 

If RLD record is read in 

If TXT record is read in 

If DECB was previously written 

Always 

Always 

Always 

Always 

Always 

If END card is received 

IF ESD card is received 

If RLD card is received 

If TXT card is received 

Always 
If no free RLD entry is available 

If relocation is possible, or if 
delinking required 

Always 

Always 

If invalid ID received 

Unless SYSLIB was not opened 

Always 

Always 

Always 

Organization of the Loader 65 



Routine 

LMTXT 

RDCHECK 

RDREAD 

WTCHECK 

WTWRITE 

Purpose 

Read load module text 
into main storage 

Called 
Routines 

TRANSID 

HEWLREAD 

HEWERRDR 

PRDCEDM 

Check DECB none 

Read input using DECB none 
information 

Check DECB none 

Write output using DECB none 
information 

Figure 23 (Part 3 of 3). HEWLOADR--Level 3 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Calling Conditions 

Always 

Unless record is to be skipped 

If text record not received 

Always 

66 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



Contains Restricted Materials of IBM 
Licensed Material, -- Property of IBM 

Routine 

ALLOCATE 

CESDENT 

CESDSRCH 

CHECKEP 

ENTER 

HEWBUFFR 

HEWERROR 

HEWLCNVT 

HEWLEND 

HEWLERTN 

HEWLESD 

Called 
Purpose Routines 

Allocate table extent HEWERROR 

Get CESD entry form free ALLOCATE 
entry list or, call 
ALLOCATE to obtain an 
entry 

Search CESD for input MATCHED 
name 

Check CESD entry for 
specified entry point 

NOMATCH 

none 

Enter information in HEWERROR 
CESD entry for PC or SD 

Buffer management FREECORE 

Handles error messages, 
severity code 4 errors 

GETCORE 

HEWLPRNT 

HEWTERM 

Convert binary quantity none 
to hexadecimal 

Process END card, 
reinitialize for next 
module 

Relocate 'all adcons 
indicated by RLD chain 

Create CESD from input 
ESD/CESD 

TRANSID 

HEW ERROR 

HEWERROR 

LOADPROC 

CESDSRCH 

TRANSLAT 

CESDENT 

ENTER 

CHECKEP 

MATERSD2 

TRANSID 

Figure 24 (Part 1 of 3). HEWLOADR--Level 4 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 

Calling Conditions 

·Table overflow 

No free entries on list 

If name is found 

If name is not found 

If program is too large 

If previous or current (not the 
first) allocation request is for 
object module 

If no previously allocated area 
is large enough for current 
request 

If SYSLOUT data set is open 

If the TERM option is specified 

If END card specifies entry point 
address 

If error occurs in END card 
processing 

Invalid 2-byte adcon; invalid 
3-byte adcon 

If input is a load module 

Input entry is not NULL or PC 

If NULL entry is made 

If PC or LR entry is required 

If PC entry is required 

If PC entry is required 

If PC entry is required 

If LD/LR is received 

Organization of the Loader 67 



Routine 

HEWLMAP 

HEWLPRNT 

HEWLREAD 

HEWLRLD 

HEWLTXT 

HEWTERM 

lMTXT 

lOADPROC 

MATERSD2 

PROCEOM 

PSEUDOR 

Purpose 

Create map entry for 
referenced location in 
loaded program 

Print output to SYSlOUT 
data set 

Handle request for data 

Called 
Routines 

HEWlPRNT 

HEWlCVNT 

RDCHECK 

WRWRITE 

WTCHECK 

RDREAD 

RDCHECK 

Relocate adcons TRANSID 
indicated by RlD entries 
received, or chain RlDs 
off CESD entry for R 
pointer 

Move object module text 
to correct spaces 

Print output to SYSTERM 
data set 

Read load module text 
into virtual 

Preliminary processing 
for load module CESD 

Test length and request 
map entry 

Go to process 
end-of-module 

Assign displacements to 
pseudo registers 

ALLOCATE 

HEWlERTN 

TRANSID 

RElOREAD 

HEW ERROR 

WTWRITE 

WTCHECK 

TRANSID 

HEWLREAD 

HEW ERROR 

PROCEOM 

CESDENT 

CHAINING 

HEWlEND 

HEWLPRNT 

FINISHUP 

HEWlMAP 

HEWlERTN 

Figure 24 (Part 2 of 3). HEWlOADR--level 4 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

calling Conditions 

Always 

Always 

If DECB was previously written 

Always 

Always 

Always 

Always 

Always 

If no free RlD entrY is available 

If relocation is possible, or if 
delinking is required 

Always 

Always 

If invalid ID is received 

Always 

Always 

Abr~ys 

Unless record is to be skipped 

If text record not received 

Always 

If entry type is PC,SD,lR 

Always 

Always 

If displacement is assigned 

Always 

If displacement is assigned 

If displacement is assigned 

68 MVS/370 loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Routine 

RDCHECK 

RDREAD 

RELOREAD 

TRANS!D 

TRANSlAT 

WTCHECK 

WTWRITE 

Purpose 

Check DECB 

Read input using DECB 
information 

Called 
Routines 

none 

none 

Go to HEWLREAD for more HEWLREAD 
input 

Translate input ESD ID ALLOCATE 
to CESD address 

HEWERROR 

Make a translation table TRANSID 
entry 

Check DECB none 

Write output using DECB none 
information 

Figure 24 (Part 3 of 3). HEWLOADR--Level 4 

lY26-3922-l @ Copyright IBM Corp. 1972, 1985 

Calling Conditions 

Always 

If new extent is required 

If table overflow or invalid ID 
occurs 

Unless LD entry 

Organization of the Loader 69 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

MICROFICHE DIRECTORY 

Name 

ALLOCATE 

CMTRCTRl 

CMTYPCHN 

COMMON 

DECD 

ERCODES 

FINISHUP 

HEWACALL 

HEWBTMAP 

HEWBUFFR 

HEWERROR 

HEWLCNVT 

HEWLCTRL 

HEWLDCOM 

HEWLDDEF 

HEWlEND 

HEWLERTN 

HEWLESD 

The microfiche directory is designed to help you find named 
areas of code in the program listing. which is contained on 
microfiche cards at your installation. Microfiche cards are 
filed in alphameric order by object module name. If you wish to 
locate a control section. entry point. table. or routine on 
microfiche. find the name in the first column and note the 
associated object module name. You can then find the item on 
microfiche. 

Description Object Module CSECT Synopsis 

Allocation HEWlDREl HEWLRELO Allocates storage for 
Routine table entries 

Table HEWLDREl HEWLRELO Pointers to 
translation table 
extents 

Table HEWLDREL HEWLRELO Pointers to CESD type 
chains 

label HEWlDLIB HEWLLIBR Assigns addresses to 
common 

DSECT HEWlDIOC HEWlIOCA Model DECD 

DSECT HEloJlDIOC HEWlIOCA Error code definitions 
HEWLDREl HEWLRElO 
HEWLDLID HEWLLIBR 

Label HEWlDLIB HEWLLIBR Prints finishing 
messages 

Entry point HEWLDLIB HEWLLIBR Automatic library call 
processing 

Entry point HEWLDLIB HEWLLIBR Diagnostic dictionary 
processing 

Buffer allocation HEWlDIOC HEWLIOCA Buffer and DECD 
routine allocation routine 

Entry Point HEWLDLIB HEWLLIBR Error log routine 

Entry Point HEWLDREl HEWlRELO Binary-Hex conversion 
routine 

Entry Point and HEWLDCTR HEWLCTRl Loader control module 
CSECT 

OSECT HEWLDIOC HEWLIOCA Communication area 
HEWLDLID HEWLLIBR 
HEWLDREL HEWLRElO 

CSECT HEWLDDEF HEWLDDEF SYSGEN option defaults 

Entry Point HEWLDREL HEWLRELO End processing 

Entry Point HEWLDREl HEWLRElO RLD relocation routine 

Entry Point HEWLDREL HEWLRELO ESD record processing 

70 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Name Description Object Module 

HEWLIDEN Entry Point HEWLDIDY 

HEWLIDEN Entry Point and HEWLDIDY 
CSECT 

HEWLIOCA Entry Point and HEWLDIOC 
CSECT 

HEWLLIBR CSECT HEWLDLIB 

HEWLMAP Entry Point HEWLDREL 

HEWLMOD Entry Point HEWLDREL 

HEWLOAD Entry Point HEWLDIOC 

HEWlODE Entry Point HEWLDLIB 

HEWlPRNT Entry Point HEWLDIOC 

HEWLREAD Entry Point HEWlDIOC 

HEWlRELO Entry Point HEWLDREL 

HEWlRElO CSECT HEWlDREl 

HEWlRlD Entry Point HEWlDREl 

HEWlTXT Label HEWlDREl 

HEWOPNlB Entry Point HEWLDIOC 

H EiolPRI ME Entry Point HEWLDIOC 

HEWTERM Entry Point HEWlDIOC 

IDMINI label HEWLDIDY 

INITMAIN DSECT HEWlDIOC 

LMTXT label HEWlDLlB 

MODElDCB label HEWlDIOC 

OPEN EXIT Entry Point HEWLDIOC 

PSEUDOR label HEWLDLIB 

SYNAD Entry Point HEI~LDIOC 

lY26-3922-1 © Copyright IBM Corp. 1972, 1985 

CSECT Synopsis 

HEWLIDEN Builds extent list for 
IDENTIFY and issues 
IDENTIFY 

HEWLIDEN Identification routine 

HEWLIOCA Initialization, I/O, 
control, and 
allocation processing 

HEWLLIBR Automatic library call 
and load module 
processing 

HEWLRELO Creates map printout 

HEWLRELO MOD record processing 

HEWLIOCA Entry point for 
loading with 
identification 

HEJ~LLIBR Load module processing 

HEWlIOCA Print routine 

HEWlIOCA Read routine 

HEWlRELO Object module 
processor 

HEWlRElO Object module, ESD, 
RlD, and map 
processing 

HEWLRELO RlD record processing 

HEWlRElO Object module text 
processing 

HEWlIOCA Opens SYSlIB data set 

HEWlIOCA Object module buffer 
prime routine 

HEWLIOCA SYSTERM routi ne 

HEWlIDEN Constructs MINI-CESD 
for test package if 
TSO is operating 

HEWlIOCA Initial work area 

HEWlLlBR load module text 
processing 

HEWLIOCA Model DCB for SYSlIN, 
SYSLIB 

HEWLIOCA DCB exit routine 

HEWlLIBR Processes pseudo 
registers 

HEWLIOCA SYNAD routine 

Microfiche Directory 71 



Name Description 

TRANSID Entry Point 

72 MVS/370 Loader Logic 

Object Module 

HEWLDREL 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

CSECT synopsis 

HEWLRELO Translates ESD ID to 
CESD address 

LY26-3922-l @ Copyright IBM Corp. 1972, 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DATA AREAS 

Data Area 

Address list 

BlDl list 

CESD control table 
(CMTYPCHN) 

CESD table 

This section provides a detailed description of internal data 
areas used during loader processing. The data areas are 
described in alphabetic order. 

Also included in this section is a summary of data area use and 
construction (Figure 25). 

Built By Used and/or Modified By 

HEWACALL 1 

HEWACAlL 1 

HEWlESD HEWACALl, HEWlESD 

HEWLESD HEWACALl, HEWLERTN, HEWLESD, 
HEWLRLD, HEWLTXT, LMTXT 

Condensed symbol table HEWlIDEN TSO test facilities 

Extent chain HEWlMOD HEWLIDEN 

IDENTIFY parameter list HEWLIDEN IDENTIFY macro instruction 

HEl-tlDCOM HEWlIOCA 2 

INITMAIN HEWLIOCA 1 

RlD table 1 HEWLRLD HEWACALl, HEWLERTN, HEWLRLD 

Translation table HEWLESD HEWACALL, HEWLESD, HEWLRLD, 
HEWLTXT, LMTXT, TRANSID 

Figure 25. Data Area Construction and Usage 

Notes to Figure 25: 

1 Built and processed entirely within one routine. 

2 Major communication area throughout loader processing. 

LY26-3922-l © Copyright IBM Corp. 1972, 1985 Data Areas 73 



Address list 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Bui It by the Secondory Input Processor 

Al A2 

~ 

A3 ! 
CESD entry address (4 bytes each entry) 

The entries in this list are in one-to-one 
correspondence with the BLDL list entries. 
The Loader stores the address from the BLDL 
entry in the address list before issuing the 
BLDL m(Jcro instruction 

Figure 26. Address List 

IJ.Q.I,..YJt 

Built by Secondary Input Proceuar 

4-11 

Namefic ld (8 bytes) 

Length (2 bytes) 

LL - length of each en'ry in 'he BLDL 
lis' (16 bytes in 'he Loader) 

~ (2 bytes) 

FF - total number of entries in the BLDL list 

Figure 27. BLDL List 

74 MVs/370 Loader Logic 

(en'ry FF) .. 
Nat u sed by the Loader 

CESD addressiTIR 
Originally contains the CESD address 
of an ER. (4 bytes) If the name _s 
found in the SYSLI B directory. BLDL 
replaces the CESD address with HR. 
(bytes 12-14) 
H - relative track number 
R - block number on the track 

each entry ---------',.~ 
16 bytes 

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



contains Restricted Materials o~ IBM 
Licensed Materials -- property o~ IBM 

CESO Control Table (CMTYPCHN) 
Built by the ESO Processor 

CESD type chain pointer (4 bytes each entry) 
The pointers, PO-P7, are listed in the 

following order by type: SO, 
LD, ER, LR, PC, CM, PR, 
NULL 

Note: The CESO control table is defined in the communications 
area (HEWLDCOM). 

Figura 28. CESD Control Tabla (CMTYPCHN) 

LY26-3922-1 @ Copyright IBM Corp. 1972~ 1985 Data Areas 75 



C ESO Table Entry 
Built bY the ESO processor 

Chain address (4 bytes) 

Narnef;eld (8 bytes) 

Contains Restricted Materials o~ XBM 
Licensed Materials -- Property o~ IBM 

Use depends on entry type 

Type LO - ESO 10 for SO; preliminClry use only (bytes 18-19) 

Type PR - boundary alignment (byte 16) and length (bytes 18-19) 
Alignments 

7 - doublewotd 
3 - fullword 
I - hal fword 
0- byte 

Types SO, PC, LR, CM - relative relocation constant 

Type ER - 0; if ER was created from an LR - input address 

Type CM - address of extended portion of entry 

Address/displacement field (3 bytesl 
Types SO, PC, lR, CM - loader- assigned address 
Types CM, PR, ER - address of RLO entry chain (0, if no RLDs) 

Type PR - displacement within OSECT 

Type LO - input address (preliminary use only) 

Flags/type field (I byte) FFFFF 

Section definition (SO) - XOXOO 
label definition (LO) - OXOOO 
Externol reference (ER) - XXXXX 

Lobel reference (LR) 
Private code (PC) 
Common (CM) 
Pseudo register {PRJ 

- XOOOO 
- 00000 
- 00000 
- 00000 

TTT; 

000 
001 
010 

011 
'00 
101 
110 

FI_S are flogs, T'-3 indicate type 

FI-"delete", F3-"no length" 
F2-"LO processed" 
FI-"delete," Fr"wecrk coli," F3-"BLOL tried," 
F4-"TTR found," Fs-"never call" 
F,-"delete" 

8 character symbolic name or blanks for blank common 
and private code (unused for extended portion of CM entry) 

Pointer to next entry an CESO type chain; if end of chain, O. 
(unused for extended portion of CM entry) 

F;gura 29. CESD Entry 

76 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985 



Contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

Condensed Symbol Table Entry 

Built by the Identification Processor 

0-7 8 9-11 

!lE! -
Se 

Address - Assigned address of this 
symbol (3 bytes). 

(1 byte) 
ction definition (SO) xxxxx 000 
mmon (CM) xxxxx 101 Co 

S ym bol - The 8-character exte mal name (8 bytes). 

Figure 30. Condensed Symbol Table Entry 

LY26-3922-1 @ Copyright IBM Corp, 1972~ 1985 Data Areas 77 



Data Event Control Block 
Built by I/O, Control, and Allocation Processor 

Standard DE C B 

0-3 8-11 12-15 

DECDCBAD (4 bytes) 

Contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

~I 
16-19 

Added by the 
Loader 

DECDECPT (4 bytes) 
oddress of next DECB (4 bytes) 

DECIOBPT (4 bytes) 
address of the V 0 block 

DECAREA (4 bytes) 
oddress of the read/write 
area for the do to 

address of the DCB for the read/write data set 

DECLNGTH (2 bytes) 
length of the data to read/write 

DECTYPE (2 bytes) 
type of the VO macro instruction and aptians 

DECSDECB (4 bytes) 
event control black 

Figure 31. Data Event Control Block (DEeB> 

78 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

Extent Chain Entry 

Built by the MOD Processor 

~---l.en9th - Length of the extent (4 bytes). 

'----- Address - Address of the extent derived from 
ilii'mD record (4 bytes). 

'----- Choin Address - Address of the next entry on the extent 
chain; iF end of chain t zero (4 bytes) • 

F;gura 32. Extent Chain Entry 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Data Areas 79 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

IDENTIFY Parameter Ust 

Built by the Identification Processor 

Address of entry point of program to be identified 

Program name - the 8-character symbolic name 

I .. 

Length, in bytes, of extent list 

Number of extents described in this list 

Len9th of extent 1 (Loader-constructed program) 

Length of extent 2 (Condensed symbol table) 

,I. · I. 
'fl · .. ) 

· 

Length of extent n * 

Address of extent 1 (Loader-constructed program) 

Address of extent 2 (Condensed symbol table) 

.10 · .1. 
'fI · ... 

· 
Address of extent n 

.. 
~1·~------------------------------4bytes------------------------------~·~1 

*A hex 'SO' in the hlgh-order byte signifies the last length. 

Figure 33. IDENTIFY Parameter List 

Extent 
Ltst 

80 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset 
Decimal Hex 

o 0 

8 8 
12 C 
16 10 
20 14 
24 18 
28 lC 
32 20 
36 24 
40 28 
44 2C 
48 30 
52 34 
56 38 
60 3C 
64 40 
68 44 
72 48 
76 4C 
80 50 
84 54 
88 58 
92 5C 
96 60 
100 64 
102 66 
104 68 
106 6A 
108 6C 
112 70 
116 74 
120 78 
128 80 
"136 88 
144 90 
152 98 
160 AO 
168 A8 
172 AC 
176 BO 

177 Bl 

178 B2 

Length 

8 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
4 
4 
8 
8 
8 
8 
8 
8 
4 
4 
1 

1 

1 

Symbol 

CMXDBLWD 
(CMADCON) 
CMFSTSAV 
CMBEGADR 
CMRDCBPT 
CMWDCBPT 
CMTDCBPT 
CMRDECPT 
CMWDECPT 
CMGETREC 
CMPUTREC 
CMTRMREC 
CMNXTTXT 
CMLSTTXT 
CMLOWTBL 
CMHITBL 
CMIOLSTl 
CMIOLST2 
CMIOLST3 
CMCOREI 
CMCORE2 
CMTOPCOD 
CMLIBEOD 
CMLIBSYN 
CMLIBEXL 
CMBLKSIZ 
CMMAXLNE 
CMMAPLIN 
CMWLRECL 
CMMAXLST 
CMMAINPT 
CMMAINSZ 
CMPRNTDD 
CMLINDD 
CMLIBDD 
CMTERMDD 
CMEPNAME 
CMPGMNM 
CMLINDCB 
CMLIBDCB 
CMPRMFLG 
CQRES 
CQMAP 
CQPRINT 
CQLET 
CQCALL 
CQEPNAME 
CQEPADDR 
CQTERM 
CMIOFLGS 
CQEOCB 
CQEOFB 
CQEOFSB 
CQRECFM 
(CQUNDEF) 
CQFIXED 
CQIGNCR 
CQIOERR 
CMFLAG3 
CQTS 
CQPGMNM 
CQPASLIN 

Description 

Temporary doubleword 
Relocation alignment area 
Pointer to first save area 
Default entry point to module 
Input DCB pointer 
Output DCB pointer 
System DCB pointer 
Input DECB pointer 
Output DECB pointer 
Input logical record pointer 
Output logical record pointer 
System buffer pointer 
Next address to be assigned to a CSECT 
Highest text address assigned to current CSECT 
Lowest address assigned for loader tables 
Highest storage address available to loader 
Open list, DCB pointer 11 
Open list, DCB pointer 12 
Open list, DCB pointer 13 
Corresponds to CMNXTTXT for pre-loaded text 
Corresponds to CMLSTTXT for pre-loaded text 
Highest text address before common allocated 
EODAD error routine pointer for passed SYSLIB 
SYNAD error routine pointer for passed SYSLIB 
Exit list pointer for passed SYSLIB 
Block size of current input object module 
Maximum line count (SYSPRINT) 
Length of map line 
SYSPRINT record size 
Maximum length of invalid options list 
Variable conditional GETMAIN address 
Variable conditional GETMAIN size 
Print ddname 
Primary input ddname 
Library ddname 
SYSTERM ddname 
Entry point name 
Program name 
Passed SYSLIN control block pointer 
Passed SYSlIB DCB pointer 
Parameter flags 1 

X'Ol' RES/NORES 
X'02' MAP/NOMAP 
X'04' PRINT/NOPRINT 
X'08' LET/NOLET 
X'IO' CALL/NOCALL 
X'20' Entry point name defined 
X'40' Entry point address defined 
X'80' TERM/NOTERM 
I/O flags 1 

X'OI' End of concatenation 
X'02' End of file 
X'04' End of file significance 
X'08' Input record fo'rmat (0 is Fixed) 
Separate name in allocation for undefined 
X'10' Fixed record format 
X'20' Ignore control record on load module 
X'40' An I/O error has occurred 
Assorted flags 1 

X'02' Time-sharing environment 
X'04' Program name passed 
X'08' SYSLIN DCB passed 

Figure 34 (Part 1 of 3). HEWLDCOM DSECT - Communication Area 

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Data Areas 81 



Offset 
Decimal Hex 

179 B3 

180 B4 
184 B8 
224 EO 
228 E4 
232 E8 
236 EC 
240 FO 
244 F4 
248 F8 
376 178 
380 l7C 
384 180 
388 184 
392 188 
396 l8C 
400 190 
404 194 
408 198 
412 19C 
416 lAO 

420 1A4 
424 1A8 
428 lAC 
432 lBO 
436 . lB4 
440 1B8 
444 1BC 
448 lCO 
450 lC2 
452 1C4 
454 1C6 
456 IC8 
459 lCA 

459 lCB 

460 ICC 

Length 

1 

4 
36 
4 
4 
4 
4 
4 
4 
128 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
1 

1 

1 

Symbol 

CQPASLIB 
CQINCORE 
CQIDEN 
CMFLAG4 
CQESDS 
CQMOD 
CQNOEX 
CQMINI 
COMVT 
CQCOMMON 
CQTRMOPN 
CQIDONE 
CMSYSTYP 
CMRSAVE 
CMXlCHN 
CMBITMAP 
CMERLIST 
CMRlDCHN 
CMESDCHN 
CMEPADDR 
CMTRCTRl 
CMBlDlPT 
CMCXDPT 
CMFRECOR 
CMMODlNG 
CMOBJST 
CMTEMPCH 
CMEPCESD 
CMPREVPT 
CMlOADCH 
CMESDSAV 
CMSDCHN 
(CMTYPCHN) 
CMlDCHN 
CMERCHN 
CMlRCHN 
CMPCCHN 
CMCMCHN 
CMPRCHN 
CMNUlCHN 
CMCURRID 
CMlNECNT 
CMBlDlNO 
CMtHBFCT 
CMNUMXS 
CMlIBFLG 
CQKEEPS 
CQDElETE 
CQAUTOC 
CQCESDR 
CQNOTXT 
CQlPASRH 
CQFIRST 
CMRElFLG 
CQESD 
CQNOlNG 

CQDElINK 
CQLIB 
CQNOEND 
CQINPUT 
CQENTRY 
CQNOlNTX 
CMSTATUS 
CQPRTOPN 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Description 

X'lO' SYSlIB DCB 
X'20' Processing 
X'40' Entered at 
Assorted flags: 

passed 
incore SYSLIN 
IEWLOAD. Identification wanted 

X'Ol' ESDs have been encountered 
X'02' MOD card has been encountered 
X'04' Execution not scheduled 
X'08' Mini-CESD built 
X'IO' MVS operating 
X'20' Common received 
X'40' SYSTERM open 
X'80' Identification accomplished 
System type saved by HEWLDLIB 
Register save area used by HEWLDlIB 
Pointer to chain of extents 
Error bit map 
Pointer to errors encountered during open 
Free RlD entry chain (8 bytes/entry) 
Free CESD entry chain (22 bytes/entry) 
Entry point address to loaded program 
Translate control table 
BLDL pointer 
Pointer to CXD addresses 
Free storage chain 
length of module currently being processed 
Starting point for object module 
Pointer to load chain entry to be freed 
CESD line address of the entry point name 
Previous element in a chain for insert-delete 
Temporary chain for ESDs in a load module 
CESD register save area for HEWLDREL 
Type 0 - Section definition - chain pointer 
Index point for the vector table 
Type 1 - Label definition - chain pointer 
Type 2 - External reference - chain pointer 
Type 3 - label reference - chain pointer 
Type 4 - Private code - chain pointer 
Type 5 - Common - chain pointer 
Type 6 - Pseudo register - chain pointer 
Type 7 - Null entry - chain pointer 
ESDID counter 
Current line count for SYSPRINT 
Number of BLDL entries 
Horizontal byte count in print record 
Number of extents 
Autocall and load module processor flagsl 
X'Ol' Keep some text from this record 
X'02' Delete some text from this record 
X'04' Autocall is in process 
X'08' CESD has been received for load module 
X'lO' Text has been received 
X'20' LPA resolution possible 
X'40' First record from load module was CESD 
Relocation and object module processor fiagsl 
X'Ol' ESD routine is caller to ID translate rtn 
X'02' Length not yet received from current 
CSECT 
X'04' 
X'08' 
X'lO' 
X'20' 
X'40' 
X'80' 
Loader 
X'Ol' 

Delinking if required for common 
Resolution from SYSLIB in process 
End card has been received 
Input has been received 
RlD is for entry point . 
Text received for no-length CSECT 
status flag: . 
Print DCB allocated for 

Figure 34 (Part 2 of 3). HEWlDCOM DSECT - Communication Area 

82 MVS/370 Loader logic LY26-3922-1 @ Copyright IBM Corp. 1972~ 1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset 
Decimal Hex 

461 lCD 
462 ICE 

Length Symbol 

CQLIBOPN 
CQABORT 
CQREJOPT 
CQOPNERR 
CQRETURN 
CQMSGSAV 
CQPRTDCB 

1 CMPRTCTL 
1 CMOPTECT 

Description 

X'02' 
X'04' 
X'OS' 
X'lO' 
X'20' 
X'40' 
X'SO' 
Index 
Count 

Library DCB open 
Abort loading 
Invalid options are to be printed 
Errors were encountered dUring open 
Caller to error rtn must regain control 
Request open exit to save error messages 
Print DCB is open 

for printer carriage control 
of invalid options to be printed 

Figure 34 (Part 3 of 3). HEWLDCOM DSECT - Communication Area 

HE\.,LDDEF 

Notes to Figure 34: 

1. Symbols in parentheses are equated to preceding symbol. 

2. Locations CMMAINPT through CMFLAG4 are initialized from 
locations INITMADR through INFLAG4 in INITMAIN (Figure 36 on 
page SS) by HEWLDIOC. 

3. Locations CMBITMAP through CMOPTECT are initialized to zero 
by HEWLDIOC. 

HEWLDDEF is a static CSECT that defines default options and 
ddnames to be used by the loader. 

During loader execution, the default values are moved to dynamic 
storage (INITMAIN), where they are modified by the parameter 
list values passed internally. The HEWLDDEF CSECT is described 
in Figure 3S on page S4. 

LY26-3922-l © Copyright IBM Corp. 1972, 1~aS Data Areas 83 



Contains Restricted Materials 
Licensed Materials -- Property 

Dec Hex 
0 0 

alternate DDNAME for 
SYSLOUT 

8 8 

alternate DDNAME for 
SYSLIN 

16 10 

alternate DDNAME for 
SYSLIB 

24 18 

default SIZE value 

28 1C~ __________ _ 

• flags 

32 20~ __________ _ 

'Correspond to CMPRMFLG flags. See Figure 34 

Figure 35. HEWlDDEF CSECT 

of IBM 
of IBM 

84 MVS/370 loader logic lY26-3922-1 © Copyright IBM Corp. 1972. 1985 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

Of~set 
Decimal Hex 

o 0 
72 48 
76 4C 
80 50 
88 58 
96 60 
104 68 
112 70 
120 78 
128 80 
132 84 
136 88 
138 8A 
139 8B 
140 8C 
144 90 
148 94 
152 98 
156 9C 

160 AO 

164 A4 

176 BO 
188 BC 
192 CO 
200 C8 
456 lC8 

Length 

72 
4 
4 
8 
8 
8 
8 
8 
8 
4 
4 
2 
1 
1 
4 
4 
4 
4 
4 

4 

12 

12 
4 
8 
256 
VL 

Symbol 

INITSAVE 
INITMADR 
INITMSIZ 
INITPRNT 
INITLIN 
INITLIB 
INITTERM 
INITNAME 
INITPGMN 
INlINDCB 
INlIBDCB 
INITPARM 
INFlAG3 
INFlAG4 
INITSPIE 
INITSCAN 
INITDUM 
INITREJl 
INITRMIN 

INITRMAX 

INITGTMl 

INITEXTR 
INITEXAD 
INITDBlW 
INITRTAB 
INITREJP 

Description 

Initial save area 
Variable conditional GETMAIN storage address 
Variable conditional GETMAIN storage size 
ddname for diagnostic message data set 
ddname for primary input data set 
ddname for autocall library data set 
ddname for SYSTERM data set 
Parameter list entry point name 
Program name 
Address of passed SYSlIN DCB 
Address of passed SYSlIB DCB 
Parameter flags and error flags 
Assorted flags 
Assorted flags 
Pointer to previous SPIE for 'SIZE=' SCAN 
Scan pointer save area for 'SIZE=' SPIE 
Save word for register during size processing 
End of rejected options list 
Minimum size request for variable conditional 
GETMAIN 
Maximum size request for variable conditional 
GETMAIN 
Parameter list area for variable conditional 
GETMAIN 
Parameter list area for Extract 
Address of TCB TSO field from Extract 
Doubleword for parm 'SIZE' conversion 
Translate and test table for option scan 
Rejected options buffer 

Figure 36. INITMAIN DSECT Definition 

Note to Figure 36: 

Locations CMMAINPT through CMFLAG4 in HEWlDCOM (the 
communication area Figure 34 on page 81) are initialized from 
locations INITMADR through INFlAG4 in INITMAIN. 

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Data Areas 85 



RlD Table Entry 

0-3 5-7 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Loader - assigned address of address constant in text (3 bytes) . 

Flagfield - FXXXllST (I byte) 

FXXX - type of adcon 

xOOO - A-type adcon 
xOOl - V-type adcon 
0010 - displacement pseudo register 
0011 - accumulative pseudo register 

Note: F = 1 - use absolute relocation constant for relocation 

II - length of adcon 

01 - two bytes 
1 0 - three bytes 
11 - four bytes 

S - direction of relocation 

o - add the relocation constant 
1 - subtract the relocation constant 

T - nat used by the loader; input value is retained 

'----Address of next entry on this RlD chain. 
o if end of chain. (4 bytes) 

Figure 37. RLD Table Entry 

Translation Control Table 

~~~ __ ~ ______ ~ ______ ~ __ -J{~~1 ______ ~_1_2_~_1_27~ 

Address of extent allocated for the translatian
table. Each entry is initialized to zero (4 bytes)

Note: This table is defined in the communications area (HEWLDCOM)
-- at location CMTRCTRL. .

Figure 38. Translation Control Table

86 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

Translation Table Entry

Bui It by the ESD Processor

1 -31

Address of CESD entry (31 bits)

Flag (1 bit) for CESD entry for ER
0= normal (relative) relocation required
1 = special (absolute) relocation required

Note: A translation table extent contains
32 of these entries. The Loader can allocate
a maximum of 32 extents. When allocated,
an extent is initialized to zera.

Figura 39. Translation Tabla

LY26-3922-1 ~ Copyright ,IBM Corp. 1972, 1985 Data Areas 87

DIAGNOSTIC AIDS

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This section contains information that is useful in diagnosing
difficulties with the loader program. Included arel register
contents at entry to routines (Figure 40), error code
definitions (Figure 41 on page 90), an example of a module map
(Figure 42 on page 91), and a list of serviceability aids
available with the loader. To use this section, refer to
Figure 20 on page 61 through Figure 24 on page 67 which show the
logic flow, and Figure 25 on page 73 which shows data area
usage.

Note: At the entry point to each module, register 13 contains the save area address
and register 14 contains the return address.

Module

HEWLCTRL

HEWRElO

Entry Point

HEWlRELO

HEWlESD

HEWlTXT

HEWLMOD

HEWLRLD

HEWLEND

TRANSID

HEWLERTN

HEWLMAP

HEWLCNVT

Register contents

1 - address of parameter list

11 - address of communication area

5 - ID of first ESD item other than lD
7 - length of ESD information
8 - address of ESD information
11 - address of communication area

5 - Text ID
6 - displacement address of text
7 - length of text
8 - address of text in object module buffer
11 - address of communication area

7 - length of MOD information
8 - address of MOD information
11 - address of communication area

7 - length of RLD information
8 - address of RLD information
11 - address of communication area

'5 - ID of entry point (if present)
6 - address of entry point (if present)
8 - address of symbolic entry point name (if

present)
11 - address of communication area

5 - ESD ID to be translated
11 - address of communication area

1 - starting address of RLD chain
9 - CESD entry address to be used for relocation
11 - address of communication area

9 - address of CESD entry to be mapped
11 - address of communication area

1 - binary quantity to be converted
11 - address of communication area

Figure 40 (Part 1 of 2). Register Contents at Entry to Routines

88 MVS/370 Loader logic' LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Module

HEWLLIBR

HEWLIOCA

HEWLIDEN

Figure 40 (Part

Entry Point

HEWLODE

HEWERROR

HEWACALL

HEWBTMAP

HEWLIOCA

HEWLOAD

OPEN EXIT

HEWBUFFR

HEWLREAD

HEWOPNLB

HEWLPRNT

HEWTERM

HEWPRIME

HEWLIDEN

IDMINI

Register contents

11 - address of communication area
15 - entry point address

o - error message code
1 - pointer to qualifying information (if it

exists)
11 - address of communication area
15 - entry point address

11 - address of communication area
IS - entry point address

11 - address of communication area
15 - entry point address

1 - address of parameter list
IS - entry point address

1 - address of parameter list
15 - entry point address

1 - address of DCB
11 - address of communication area
12 - base address of HEWLIOCA

10 - address of DCB
11 - address of communication area
15 - entry point address

For Object and Load Modules

11 - address of communication area
IS - entry point address

For load Modules

a. read control/RLD record
o - zero

b. read text records
o - length af text record
1 - address of text

c. read text and control/RLD
o - complement of length of
1 - address of text

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area
IS - entry point address

11 - address of communication area

5 - starting address for mini-CESD

text

10 - upper limit of storage available

2 of 2L Register Contents at Entry to Routines

LY26-3922-l © Copyright IBM Corp. 1972, 1985 Diagnostic Aids 89

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

ERROR CODE DEFINITIONS

Error
Code

ERRELOI
ERENTRI
ERINPT8
ERINPTlO
ERINPT2
ERREL02
ERINPT4
ERINPT5
ERINPT7
ERINPT9
ERINPTl
ERINPTll
ERINPTl2
ERINPT3
ERENTR2
ERIOUT4
ERINPT6
ERIOUT3
ERIOUTl
ERIOUT2
ERSIZE2
ERSIZE3
ERIDENI
ERIDEN2

Figure 41 contains the loader error codes listed in the order of
their bit positions in the error-bit map. (The codes are also
listed in DSECT ERCODES in CSECTs HEWLIOCA, HEWLRELO, HEWLLIBR,
and HEWLIDEN.)

Definition

Unresolved external reference (NOCALL specified)
No entry paint received
Card received nat an object record
No END card received
Invalid length specified
Unresolved external reference
Doubly defined ESD
Invalid 2-byte adcon
Invalid ID received
Invalid record from abject module
Block size is invalid
Common exceeds size of CSECT with same name
Invalid 3-byte adcon
No text received
Entry paint received but not matched
I/O error while searching library directory
Invalid record from load module
Unacceptable record format (variable on input)
ddname cannot be opened
ddname had synchronous error
Available storage exceeded
Too many external names in input module
Identification failed; duplicate program name
Identification failed

Sev Message

1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
4
4
4
4
4
4
4

IEWIOOI
IEWU61
IEW1l41
IEW1l82
IEWI082
IEWI012
IEWl102
IEWl1l2
IEW1l32
IEW1l52
IEWI072
IEW1232
IEW1262
IEWI093
IEW1l73
IEWI053
IEW1l23
IEWI044
IEWI024
IEWI034
IEW1l94
IEW1204
IEW1214
IEW1224

Figure 41. Internal Error Code Definitions

90 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

Module Map Fe."al

Map hoading Name Type Add. Name T)'pe Add. Name T)'pe Add. Name T)'pO Add.

CSECT ••• nlry pelnl. Main SO 9000 ENTRY LR 9050 ENTRY2 LR 9100 SUBI' SO Aooo

Cammon onlry

PIoudo Regi.I ••
informo.ion

SUB2' SO Al 00

$ BlANKCOM CM A200

IHEQINV PR 00 IHEQERR PR 04 IHEQTIC PR 08 IHEQLWF PR OC IHEQLWO PR 10

IHEQSLA PR 14

Lenglh or loaded TOTAL LENGTH 2000
program

mIry or loaded
prOS'CII1I

ENTRY ADDRESS 9OSO

Noles:
-. Name· denotes a madule 1 .. luded r the SYSLIB data sel.

• Name" denole. a module Included r lhe link pack area.
• Name"· denale. a module palnled 10 by a MOD .ecord.
• The map enl.le. ant modo as add.e ant Igned. 10 lhe

mop •• n lhe ardor or ESD enlrl .. In lhe CESD.

Figure 42. Module Map Format Example

SERVICEABILITY AIDS

Following are serviceability aids provided in the loader a

• The control section, HEWLDDEF, contains the loader option
default values. It is resident in load module HEWLOADR.

• A storage dump will typically produce information on the
nature of the error. Register 11 will contain a pointer to
HEWLDCOM, and register 12 will contain the base register
associated with the CSECT in control.

• All nine save areas are forward and backward chained.
lower-level save areas will be printed. A hexadecimal "FF"
in word 4 of the save area indicates that the routine
represented by the save area has returned control.

• Input/output control information is contained in the loader
communication area. This information consists of the DECB
address, the buffer locations, the block size, the logical
record length, the blocking factor, the number of records
left in the buffer, the address of the current record, and
the associated switches. See Figure 37 on page 86 for the
layout of HEWlDCOM.

• Appropriate diagnostic messages are produced when an error
has been detected. The message has a specific number and,
where appropriate, lists the data in error. The message
number and text are listed by HEWLLIBR at the end of
loading. (Figure 47 on page 97 is a list of these
messages.)

• A module map (MAP) is provided to furnish information
concerning the structure and contents of the program.
Figure 46 on page 96 is an example of a map listing.

• The loader uses the SYNADAF to obtain information regarding
permanent I/O errors, and lists the information on the
SYSLOUT data set.

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Diagnostic Aids 91

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

APPENDIX. ERROR MESSAGES, ETC.

Message
Number

IEWIDDI

IEWIDl2

IEWID24

IEWlD34

IEWlD44

IEWlD53

IEWID72

IEWID82

IEWlO93

IEWllD2

IEWl1l2

IEW1l23

IEW1l32

Message
Text

Warning
(NOCALL

Error -

Error -

Error -

This appendix contains a list of error messages and the routines
and CSECTs in which they originate# a list of loader input
conventions and restrictions# and detailed descriptions of input
record formats. (The input record formats are the same as for
the Linkage Editor Programs.) In addition, the compiler/loader
interface is described for the processing of the data sets
passed to the loader.

Figure 43 lists the loader diagnostic messages. Each message
contains a severity code in the final position of the message
number. These severity codes are defined as foilowsl

o indicates a condition that will not cause an error during
execution of the loaded program.

I indicates a condition that may cause an error during
execution of the loaded program.

2 indicates an error that can make execution of the loaded
program impossible.

3 indicates an error that will make execution of the loaded
program impossible.

4 indicates an unrecoverable error. Such an error causes
termination of loading.

Issuer
Routine Issuer CSECT

- Unresolved external reference HEWACALL HEWLLIBR
specified)

Unresolved external reference HEWACALL HEWLLIBR

Ddname cannot be opened HEWLIOCA HEWLIOCA

Ddname had sYnchronous error SYNAD HEWLIOCA

Error - Unacceptable record format OPENEXIT HEWLIOCA
(variable on input)

Error - I/O error while searching HEWACALL HEWLLIBR
library directory

Error - BLKSIZE is invalid OPENEXIT HEWLIOCA

Error - Invalid length specified HEWLEND HEWLRELO

Error - No text received HEWACALL HEWLLIBR

Error - Doubly defined ESD HEWLESD HEWLRELO

Error - Invalid 2-byte adcon HEWLRLD HEWlRElO

Error - Invalid record from load module HEWLODE HEWLLIBR

Error - Invalid ID received HEWLRLD HEWlRElO
HEWLTXT HEWLRELO
HEWLEND HEWLRELO
TRANSID HEWLRELO

Figure 43 (Part 1 of 2). Error Message/Issuer Cross-Reference Table

92 MVS/37D Loader Logic LY26-3922-l @ Copyright IBM Corp. 1972# 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

Message Message Issuer
Number Text Routine Issuer CSECT

IEW1l41 Warning - Card received not an object HEWLRELO HEWLRELO
record

IEW1l52 Error - Invalid record from object HEWLRELO HEWLRELO.
module

IEW1l61 Warning - No entry point received HEWACALL HEWLLIBR

IEW1l73 Error - Entry point received but not HEWACALL HEWLLIBR
matched

IEW1l82 Error - No END card received HEWLRELO HEWLRELO

IEW1l94 Error - Available storage exceeded HEWBUFFR HEWLIOCA
HEWLESD HEWLRELO
HEWLEND HEWLRELO
HEWLTXT HEWLRELO
HEWACALL HEWLLIBR
HEWLODE HEWLLIBR
HEWLIDEN HEWLIDEN

IEWl204 Error - Too many external names in input TRANSID HEWLRELO
module

IEWl214 Error - Identification failed - HEWLIDEN HEWLIDEN
duplicate program name found

IEWl224 Error - Identification failed HEWLIDEN HEWLIDEN

IEWl232 Error - Common exceeds size of CSECT MATCHCM HEWLRELO .
with same name

IEWl262 Error - Invalid 3-byte adcon HEWLERTN HEWLRELO

IEWl991 Error - User program has abnormally HEWLCTRL HEWLCTRL
terminated

Figure 43 (Part 2 of 2). Error Message/Issuer Cross-Reference Table

INPUT CONVENTIONS

Input modules (ob;ect or load) to be processed by the loader
must conform with a number of input conventions I

• All text records of a control section must ~ollow the ESD
record containing the SD or PC entry that describes the
control section.

• The end of every input module must be marked by an end
indication (END record in an object module. EOM flag in a
load module.)

• Any RLD item must be read after the ESD items to which it
refers and after the TXT item in which it is positioned.

• (Applicable only to FORTRAN IV language processing.) Once a
BLOCK DATA subprogram has been received. any following named
common referencing it must not specify a longer length.

• Because each control section is assigned an address as it is
encountered in the input stream. any control sectiDn
appearing between the ESD for a 'no-length' CSECT and the
END card for that 'no-length' CSECT will have an erroneous
address assigned. (A 'no-length' CSECT is a control section
whose length is defined on t~e END card.)

LY26-3922-1 @ Copyright IBM Corp. 1972. 1985 Appendix. Error Messages. Etc. 93

INPUT RECORD FORMATS

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

• Each record of text and each lD or lR type ESD record must
refer to an SO or PC entry in the ESD.

• The position pointers of every RLD record must point to an
SO or PC entry in the ESD.

• No LD or LR may have the same name as an SO or CM.

• The loader accepts TXT records that are out of order within
a control section. TXT records are accepted even though
they may overwrite previous text in the same control
section. The loader does not eliminate any RLD records that
correspond to overwritten text.

• During a single execution of the loader, if two or more
control sections having the same name are read in, the first
control section is accepted; the subsequent control sections
are deleted.

• The loader interprets common (CM) ESD items (blank or with
the same name) as references to a single control section
whose length is the maximum length specified in the eM items
of that name (or blank). No text may be contained in a
common control section.

• (Applicable only ~o Assembler language programming.) When
control sections that were or are part of a separately
assembled module are to be replaced, A-type address
constants that refer to a deleted symbol will be incorrectly
resolved unless the entry name is in the same position
relative to the origin of the replaced control section. If
all control sections of a separately assembled module are
replaced, no restrictions apply.

• The MOD record must physically precede all ESD records for
an internal object module and logically replace all text
records. If a MOD record appears as the first record of an
internal object module, all succeeding text records are
ignored until an END statement has been processed. A MOD
record is ignored if it appears outside an internal object
module, if it appears after other records have been
encountered for a module, or if its byte count is zero.

Figure 44 through Figure 56 on page 105 show input record
formats.

SYM Input Re~ord (Card Image) - Ignored by the Looder

5-10 13-72 73-80

Not used

TESTRAN data

Number of bytes of TESTRAN data

12-9-2 (00000010)

Figure 44. SYM Input Record (Card Image)--Ignored by the loader

94 MVS/370 loader logic lY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

12-9-2 (0000 0010)

ESO Data Item

1-8

17-72

ESO Doto -- $ee below

Blank if all ESO items are lO

ESO IDENTIFIER of first ESO item (other than lO)

Blank

~ of bytes of ESO data

~ - if length is on END card.

Length of control section (if type is: SO, PC, CM)

~ of SO entry for LO or LR

Blank if type is ER, WX, or 06 for 'never-call' from Pl/I compiler

length of pseudo-register (PR)

Alignment Factor (PR) I 07 - doubleword alignment
03 - word alignment
01 - hallword alignment
00 - byte alignment

AMOOE/RMOOEIRSECT data (SO. Pet

XXXX ..
R.

..... R

not used
R5ECT Information (ignored)
RMOOEdata

0=24
1=ANY

. A A AMOOE data

00,01 =24
10=31
11=ANY

Blank (CD. ER. CM, NULL, WXI

24·bit a~~~ (SO, PC, LOI

Type - Hex (00 SO, 01 ' lO, 02 ER, 04' PC, 05, CM, 06 PR, 07 ~ NULL, OA ~ WX)

Name-- when type is: SO, lO, LR, ER, CM, PR, WX

Blank -- when type is: PC or blank CM.

Figure 45. ESD Input Record (Card Image)

73-80

Not used

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 95

Blank

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

17-72 73-80

Not used

Text data (machine-language cadel

ESO Identifier of SO for control section of this text

~ of bytes of text dato

24-blt adclress of first byte of text dota

12-9-2 (0000 0010)

Figure 46. Text Input Record (Card Image)

96 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972~ 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

17-72

~-seebelow

Num ber of bytes of RlO data

RLD

12-9-2 {OOOO 0010}

Assigned address of addreso constant

~ field -- (TTTTLLSTn)
TTTT = type
0000 = non-branch
0001 = branch
0010 = pseudo register displacement value
0011 = pseudo register cumulative length

lL = lenath of address constant
01 = 2 bytes
10 = 3 bytes
11 = 4 bytes

S = Direction of relocation
o = positi ve (+)
1 = negative (-)

Tn = type of next RLD item . .
o = next RLD item has a different R or P

pointer; they are present in the next item.
= next RLD Item has the same Rand P pointers,

hence they are ami tied

Position pointer {P} - ESDID of SO for control section that contains the address constant

Relocation pointer (R) - ESDID of CESD entry for the symbol being referred to. Zero (OO) if type = PR cumulative length

Figure 47. RlD Input Record (Card Image)

73-80

Not used

LY26-3922-1 @ Copyright IBM Corp. 1972, 1~3S Appendix. Error Messages, Etc. 97

END Input Record - Type 1 (Cord Image)

9-14 17-28

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

33-80

lOR data, Ignored by the Loader

Control section length for control section whose length
was not specified in SO ESD item. Byte 29 is binary
zero rather than a blank if length is present.

§Q!Q of §Q..!!!!m for this control section that contains the entry point address specified in bytes 6 - 8,

24-bit ~of entry point (optional)

12-9-2 (0000 0010)

Figura 48. END Input Racord--Typa 1 (Card Image)

12-9-2 (0000 0010)

33-80

lOR data, Ignored by the Loader

Control section length for control section whose length
was not specified In SO ESD item. Byte 29 Is binary
zero rather than a blank if length is present.

Symbolic entry point name (optionalj

Figura 49. END Input Record--Typa 2 (Card Image)

98 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SYM Record- (Load Maclule)

4-243 r
SYM data and ESD data (ESO typo SO, eM and PC items) - 6naxlmum of 240 bytes)

f2!m! - in bytes, of SYM and ESO data (2 bytes)

~ - specifies Information far TESTRAN - (1 byte)
1000 0000 - this SYM record contains ESD items (SO, PC or CM) from

a load madu Ie that was nat "under test". The test
aptian was nat specified when it was link edited.

0000 0000 - this SYM record is nat tho above type.

ldentlflcotian - specifies this is a SYM record -- 0100 0000 (1 byte)

F;gure 50. SYM Record (load Module)----Ignored by the Loader

LY26-3922-1 @ Copyright IBM Corp. 1972~ 1985 Appendix. Error Messages~ Etc. 99

CESD Record - (load Motille)

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

I) up 10 240 bytes of ESD data

~~--~--~~----------------~(-------------------
8-247

ESD data - for deloiled information see below.

Count - in bytes, of ESD data (2 bytes)

ESDID of first ESD item (2 bytes)

Spare - 2 bytas of binary zeras

Flag (1 byte)
OXXX XXXX - byte 12 01 CESD data lIems contains

segment numbers
1XXX XXXX - by10 1201 CESO data items contains

AMOOEIRMODE data

Identiflcotion -- 0010 0000 -- (l byte)

CESD Dato (load Module)

1-8

ID/length - length (3 bytes), when type is: SO, PC, CM or PR
--- 10 (2 bytes), when type i, lR

Zero (3 bytes), when type i, ER, WX, or Null

Alignment lactor (PR) 107 - doubleword
03-fullword
01-halfword
00- byte

Zero (ER, WX, Null)
If flag byte (byte 11 indicates CESO data items contain

segment numbers - segment number (SO. PC, CM. LR)
If flag byte (byte t) indicates CESD data items contain AMODE/RMODE data -

X X X X . . not used
R . RSECT information (ignored)

. R .. RMODE data
0=24
1 =ANY

. A A AMODE data
00,01 =24

10=31
II=ANY

(SO,PC)

Address - linkoge editor-assigned address 01 this symbol. Zoro when type is ER, WX, or Null (3 bytes) •

Type - (\ byte) Section definition (SO)
Lobe I reference (LR)
Private code (PC)
Private code marked de lete
(ENTAB and 5EGTAB control sections)
Common (CM)
Null
External reference (ER)
Weak external reference (WX)
Pseudo register (PR)

XXXXXOOO
XXXXXOll
XXXXX100

XXX1XlOO
XXXXX101
XXXXX111
XXXXX010
XXXXIOIO
XXXXX110 X', may be 1 or 0

Symbol - The SoCharacter external name - Zero when type is Null.
--- Blanks if blank common or PCs other than SEGTABs and ENTABs

Figure 51. CESD Record (load Module)

100 MVS/370 loader logic lY26-3922-1 © Copyright IBM Corp. 1972, 1985

Cantains Restricted Materials a~ IBM
Licensed Materials -- Praperty a~ IBM

) Up 10 and Including 1020 brtes
~~--~----------------~~[--------------------~

4-1023

~ - may conlain translation lable, translation lob Ie and scatter table, or _tter table enly

Count - in bytes, of data "eld

Zero - one byte of binary zeros

ldentlflcotion - Identifies this as a scatter-translation record - bit configurotian is: 0001 0000

T !anslatlon Table

Padding (2 bytes) - If necessary, ta farce fullword boundary alignment of scatter table.

~ (2 bytes) - to the scotter table entry that contains the address of the contralsoctlon
containing this CESO entry.
Number of translation tcble entries = number of CESO entries +1.
Pointer will be zero If ils corresponding CESO entry Is nat SO, PC, CM, or LR.

Zero - 2 bytes of bincry zeros

Scatter Table

Assigned address (3 bytes) - of a control section (SO. PC or CM)

Flags (1 byte)
XXXX .. X

R.

.R

_ H

Zero - 4 bytes of binar)' zeros

Translation data

nol used
RSECT inlormation

0= not read-only
1 = read-only

RMODEdata
0=24
1=ANY

Hierarchy (OSlMVn
0= processor storage
1 = 2361 storage

1 I

Padding (2 bytes) if neccsscry 10 align scatter table 10 a fullword boundery.

Figure 52. Scatter/Translation Record--Ignored by the Loadar

LY26-3922-1 @ Copyright IBM Corp. 1972~ 1985 Appendix. Error Messages. Etc. 101

Control Record - (Lood Module)

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

....,rl-y....L-r-...... L....-,--...... r---'-T""" ___ ~_1_5 ___LT""".....,r-'-----------_..a l Record Length 20 to 256 bytes

CESO entry number - specifies the composite external symbol dictionary entry thot
contains lI1e control section nome of the control section of which this text is 0

pori (2 bytes)

Channel Command Word (CCW) - that could be used to reod the text record thot Follows. The dato address FIeld
contains the linkage odltor assignod oddress of the first byte of text in tho text record that follows. The
count Field cantoins thO length of the succeeding text record.

Count - contains 2 bytes of binary zeros.

~ - in byles, of the control inFormation (C£SO 10, length of control section) following the CCW fiold.

Count - (1 bytel of RLO andlor CTL/RLO records following noxt toX! recon:l.

Spare - contains 2 bvtos of blnarv zarol.

Identiflcotion - specifies that this Is:

• A conlrol record - 0000 0001

• The control record thot precedes the lost text record of this overlay segment- 00000101 (EOS)

• The control record thot precedes the lost lext record of the module - 0000 1101 (EOM)
(I byte)

Figure 53. Control Record (Load Module)

102 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Relocation Dictionary Record - (LaacI t.1ocIule)

....... -.L..,.._---.L..,..._'-r-____ ~_15 _____ .&_,_-------1-6--255----~~ Recarcl length can be between 24 and 256

~ - contoins 8 bytes of binary zeros

~ - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

Count - contains two bytes of binary zeros

Spare - contoins three bytes of binary zeros

Identification - specifies that this is: (I byte)
• A relocation dictionary record - 0000 0010
• The last record of this segment - 0000 0\ 10
• The last record of the modu Ie - 0000 1110

Address - linkage editor
assigned address of
the address constant
(3 bytes)

(I byte) When byte fOJ1ll(lt is xxxxLLST,
specifies miscellaneous infonnation as follows:
xxxx specifies the type of this RLD item (oddress constant).
0000 -- non-branch type in assembler language, DC A (name)
0001 - branch type in assembler language, DC V (name)
0010-- pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this oddress constant is not to be relocated because it refers to an unresolved symbol.
LL specifies the length of the address constant.
0\ -- two bytes
I 0 -- three bytes
II -- four bytes
S specifies the direction of relocation.
o -- positive
1 -- negative
T specifies the type of the next following RLD item.
0-- the following RLD item has a different relocation ancVor position pointer.
I -- the following RLD item has the same relocation and position pointers as this and therefore contains

only the flag and address fields.

Position pointer - contains the entry number of the CESD entry that indicates
which control section holds the address constant (2 bytes).

Relocation pointer - contains the entry mber of the CESD entry that indicates which symbol value
is to be used in the computation of the address constant's value (2 bytes).
o if PR cumulative length or if ENTAil CSecT •

Figure 54. Relocation Dictionary Record (Load Module)

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 103

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Control and Relocation Dictionary Record - (load Module)

-.Address

-Flag

-~(3bytes)

L.- Flag.(1 byte)

- Position pointer (2 bytes)

- Relocation pointer (2 bytes)

~ Channel Command Word (8 bytes)

'-~, in bytes, of RLD information (2 bytes)

'--.9:!!!!!!. in bytes, of control Information following ,he last RLD address field •
• The control informotion contains the 10 and length of control sections In the

fallowing text record (2 bytes).

L.-~ 11 bvtel of R LD and/or CTL/RLD records following next text record.

'-- Spare 12 bytes)

- Identification (I byte) - specifies tho, 'his record is:
• A control and RLD record - 00000011 - (it is followed by a text record)
• A control and RLD record that is followed by 'he lost text record of a segment - 0000 0111 (EOS)
• A control and RLD record that is followed by the lost text record of a module - 0000 1111 (EOM)

Nate: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record.

The record length varies from 20 to 256 byte •.

Figure 55. Control and Relocation Dictionary Record (load Module)

section or
text record
(2 bytes)

* CESD entry number
(2 bytes)

104 MVS/370 loader logic LY2G··3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBN

CSECT Identification Record - (load Module)

1L-0r-L-I~L-I __ r2 __ ~I ______________ ~~~ __ S __________ --J,~ ________________ r_eca __ ~ __ 1~ __ th __ 7_~_~ ___ b_y~ ________________ ~

~--. lOR da~ - (maximum of ~3 b~)

--. Sub-Type Indicalar - (I byte) - specified typo of
lOR data contained on this record (bits 1-3 reserved)

Data supplied by lMASPZAP
Linkage Editqr data
Translator-supplied data
User (System)-supplied data

(from IDENTIFY function)

XXXXOOOI
XXXXOOIO
XXXXOIOO

XXXXlOOO
Indicates the last lOR of this load module IXXXXXXX X's may be lor 0

....... ----I~ ~, in bytes, of lOR data in this record, including this fiold (value range 6 to 255) •

....... ----------.. Identification - indicates that this is a CSECT IdentifiCCltian record -- 1000 0000.

Figure 56. Record Format of IDRs (Load Module)--Ignored by the Loader

CO"PILER/LOADER INTERFACE FOR PASSED DATA SETS

If the loader is to process an internal SYSLIN data area (that
is, a data area residing in virtual storage and consisting of
contiguous object module records prepared by a compiler) and/or
an open SYSLIB data set, the compiler/loader interface described
here is used. The description includes the format of the DCB
list. the control block or DCB parameters that must be specified
for the data area or data set, the format of an internal data
area consisting of either fixed- or variable-length records, and
the format of the MOD record.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 105

DeB List

Contains Restricted Materials of IBM
Lice.,sed Materials - property of IBM

Pointed to by the fourth entry in the parameter I ist passed to the Loader

0-1 2-3 4-7 8-11 12-15 16-19

L SYSLIB DeB - may
contain the address
of an open SYS LIB DeB
(4 bytes).

'- Zero - 4 bytes of binary zeros.

I-Zero - 4 bytes of binary zeros.

-- SYSLIN control block - may contain the address of a
SYSLIN control block which describes an internal
data area prepared by a compiler (4 bytes).

-Zero - 2 bytes of binary zeros.

-- Number of entries following (2 bytes).

Figura 57. DCB List

Internal SVSLIN control Black

The SYSLIN control block 23 used to describe an internal input
data area should have the following fields initialized:

DCBDEVT = 0, to describe an internal data area and to indicate
that an internal SYSLIH control block was passed.

DCBRElAD = starting address of the internal object module
records.

DCBBLKSI = length of the entire internal data area.

DCBRECFM = FB, if the internal object module records are in
fixed-length format.

VB, if the internal object module records are in
variable-length format.

DCBLRECL = length of a logical record if the data set records
are jn fixed-length format.

23 The control block has the format and content of a SYSLIN
data control block. but is not to be considered a data
control block because there is no data management activity
in connection with this control block.

106 MVS/370 loader logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property of IBM

open SVSLlB DCB

The open SYSLIB DCB passed to the loader should have the
following DCB fields initialized:

DCBDSORG = PO

DCBMACRF = R

DCBHCP = 2

DCBRECFM = U, if the SYSLIB data set contains load modules.

F or FB, if the SYSLIB data set contains object
modules. (In this case, values for the fields
DCBLRECL and DCBBLKSI should also be specified.)

DCBBUFHO = 0

Exit routine addresses may be specified. Before reading SYSLIB,
the loader overlays these addresses with the addresses of its
own routines. The loader also restores these addresses before
returning to the caller.

If an open SYSLIB DCB is passed to the loader, SYSLIB is not
closed by the loader.

(Logical record length = n)

~

1-n

. re rd First co
of data area
(This record
shoul"d begin
on a fullword
boundary. Its address
should appear
in the passed
SYSLIN control block
field DCBRELAD.)

73-144

10..... Second record
of data area

· · · · · · · ,------------,
n-n+71 '-...... --------_

.......- Nth record
of data area

Figure 58. Internal Data Area in Fixed-Length Record Format

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 107

No. of
bytes

Block
DeJCriptor
Word

Descriptor
Word

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

Descriptor
Word

~
r-------~--~----,_------------_r----~--~------------_, r_--_r----~------------~

L 1 L2 Ln

~------~~~~--~,------------L-r--L-Y-~~----------~ ~r-~-r--~~----------~
First record
of data areo

Binary zeros

Length (L 1) of first
reoord of dota oreo
plus descriptor
word (This field
must foil on a
fullword boundary.)

Seoond record
of dota oroo

Binory zeros

Length (L2) of second
reoord of data orea
plus descriptor
word (This field
must Fall on the
Fullword boundary
Following the end
of the previous
reoord.)

nth reoord
of doto oreo

Binary zeros

Length (Ln) of nth record
of dota area plus
descriptor word (This
field mustfall on the
Fullword boundary
following the end of
the previous record.)

Figure 59. Internal Data Area in Variable-Length Record Format

5-10 33-80

Not used.

*Number of bytes of text
(optional) (4 bytes).

*Address of text extent (optional)

Blank (6 bytes).
MOD (3 bytes).

12-9-2 (0000 0010) (1 byte).

(4 bytes).

Address of byte following the estimated
iirCiCiUal end of text for the last
control section in the module (4 bytes).

Main storage address of the first byte of text
for tile first control section in the module.
This address should be on a cIoubleword boundary.
(The Loader assumes that each succeeding control
section within the module begins on the" next
available doubleword boundary.) (4 bytes)

Blank (4 bytes),

Number of bytes of data to be processed in columns 17-32
(number = 8 or 16) (2 bytes),

*Note: These two fields define storage thot is to be identified as part of the loaded program. They
are optional, but must occur on at least one of the MOD records in the internal data area if the
Loader is invoked via the entry points LOADER, HEWLDRGO, or HEWLOAD. Each occurrence of
these two fields defines a new extent of the program. The values must conform to the rules for
FREEMAIN parameters, that is, the address must begin on a doubleword boundary and the length
must be a multiple of 8.

Figure 60. MOD Record (Card Image)

108 MVS/370 Loader Logic LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

IDENTIFY MACRO INSTRUCTI0N-=IDENTIFYING LOADED PROGRAM

The IDENTIFY macro instruction, when invoked as described below,
permits the loader to describe a program constructed in subpool
o so that the program may later be invoked by a macro
instruction such as LINK, XCTL, or ATTACH. The IDENTIFY macro
instruction creates a contents directory entry (CDE) and an
extent list for the program constructed. These system control
blocks allow the supervisor to identify the program.

The addresses and lengths of the program's extents, the entry
point address, and the program name must be passed to the
IDENTIFY macro instruction. (The format of the parameter list
passed by the loader to the IDENTIFY macro instruction is shown
in Figure 33 on page 80.) The IDENTIFY macro instruction flags
the CDE that it creates to indicate that the program can be
invoked by other macro instructions as well as by the LOAD macro
instruction. Residence of the program in subpool 0 and the
absence of the program as a load module on an external device
are also indicated in the CDE. The IDENTIFY macro instruction
places the CDE an the user's job pack area control queue; it
also derives the extent list from the parameter list passed to
it, and stores the extent list within the system queue area.

When the form of the IDENTIFY macro instruction described below
is specified, all other operands are ignored. The format iSI

Name Operation operand

[symbol] IDENTIFY MF=(E,address of parameter listl(l»

where I

MF=
indicates the execute form of the macro instruction using a
remote parameter list. (The format of the parameter list
passed by the loader is shown in Figure 33 on page 80.)
The address of the parameter list can be loaded into
register 1, in which case MF=(E,(I» should be coded. If
the address is not loaded into register 1, it can be coded
as an address that is valid in an RX-type instruction, or
as one of the registers 2 through 12 that were previously
loaded with the address. A register can be designated
sYmbolically or with an absolute expression, and is always
coded within parentheses.

Programming Notesl Failure to meet any of the following
requirements will cause an exit with a return code to indicate
the reason for unsuccessful completion. The requirements arel

1. The extent list size must be a positive multiple of 8.

2. The addresses in the parameter list must be in subpool O.

3. The program name should not duplicate a name already on the
link pack area control queue or the user's job pack area
control queue.

4. The entry point must be within ona of the extents.

5. The caller must be a nonsupervisory routine.

6. The extents must be in the user's region in subpool 0, and
they must begin on doubleword boundaries.

When the IDENTIFY macro instruction returns control, register 15
contains one of the following hexadecimal codes I

LY26-3922-1 @ CoPYright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 109

Code

00

04

08

DC

14

18

Ie

20

110 MVS/370 Loader Logic

Meaning

Contains Restricted Materials c~ IBM
Licensed Materials -- property o~ IBM

Successful completion.

Program name and address already exist.

Program name duplicates the name of a load module
currently in virtual storage; CDE was not created.

Entry point address is not within an eligible program;
eDE was not created.

An IDENTIFY macro instruction was previously issued
using the same program name~ but a different address;
this request was ignored.

Parameter list address is not on a doubleword
boundary, or the program name specified is already on
the link pack area control queue or the user's job
pack area control queue; eDE was not created.

Extent list length is negative, not a multiple of 8~
or the extent addresses are not on doubleword
boundaries; eDE was not created.

Extents are not in subpool 0; eDE was not created.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials o'f IBM
Licensed Materials -- Property o'f IBM

LIST OF TERMS AND ABBREVIATIONS

adcon

CESD

CSECT

DECB

DSECT

EOM

ESD ID

K

LD

LR

P pointer
pc

PR

R pointer

RLD

SD

TTR

wx

address constant

composite external symbol dictionary

control section

data event control block

dummy section

end of module

external symbol dictionary identification

1024

label definition

label reference

position pointer

private code

pseudo register

relocation pointer

relocation dictionary

section definition

relative track arid record address on a
direct-access device

weak external reference

lY26-3922-l @ Copyright IBM Corp. 1972, 1935 list of Terms and Abbreviations 111

A-type address constant, purpose of 36
abbreviations and acronyms, dictionary

of III
address assignment

for common areas 42
for external DSECTs 42
in nonresolution 24-27
in resolution 28-31

address constants, relocation of
description of 37
introduction to 5

address list for BLDL information
purpose of 40-42
routine that builds the lists 73

allocation
of buffers and DECBs 14-16
of save areas 12
of table entries 24

automatic
deletion (for CESD type SD) 30-31

, library calls 40

BLDL list
format of 73
purpose of 40-42

BLDL macro instruction, issuance of 40
boundary alignment (for PR entries)

description of 43
introduction to 32

buffer, allocation of 14-16

CALLINOCALLINCAL option 8
CESD entry 24, 27

See also composite external symbol
dictionary entry

common (CM) area
address assignment of 42
definition of 21
processing a CM entry 27

common reference 20
communication area (HEWLDCOM)

format of 81
initialization of 12

composite external symbol dictionary
entry

definition of 19
internal format 77
making an entry 24
processing of 22-32
record format of 100

concatenated data sets (on SYSLIN) 3,
13

condensed symbol table
creation of 44

112 MVS/370 Loader Logic

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

format of 77
purpose of 11

control
and relocation dictionary record

format 104
dictionaries 5
information processing 12
record

description 19
format 102
processing 34

control level tables (routines) 62-66
CR

See common reference
CSECT Identification Record

record format 105
treatment of 21

data area layouts
address list for BLDL information 73
communication area (HEWLDCOM) 81
default and ddname CSECT

(HEWLDDEF) 84
INITMAIN work area 85

data control block (DCB) for SYSLtN,
SYSTERM, and SYSLOUT data sets,
construction of 13 .

data control block (DCB), alternate for
SYSLIB 12, 107

data event control block (DECB), format
of 78

DCB list, format of 106
default and ddname CSECT (HEWLDDEF) 84
deleting CSECTs

in ESD processing 30-34
in load module input 34, 35

delinking 38-39
diagnostic

aids 88
register contents at entry to
routines 88

dictionary print routine (HEWBTMAP)
messages 92-93

diagra~s, operation 47-60
directory, microfiche 70-72
dummy DSECT, external

See external dummy section

END
processing 39
record formats 97

entry point determination
checking of 44

EOM

default for preloaded text 34
in ESD processing 26

See END
EP=(keyword) 8

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

ER
See external reference

error

ESD

diagnostic dictionary processing
routine (HEWBTMAP)

messages 92-93
internal code definitions 90
message-issuer cross reference
table 92-93

See external symbol dictionary
ESD ID

definition of 6
in END processing
in ESD processing
in RLD processing
in text processing

extent

39
27-28
36-37

32-34

chain entry format 79
processing 33

external dummy section (pseudo register)
address assignment 42
definition of 6
entry processing

displacement and boundary
alignment 32

PR entry 27
symbol resolution in 32

function of 21
external reference (ER)

definition of 21
entry processing

match processing 30. 31
no-match processing 27

function of 21
unresolved ER messages 43
unresolved ER processing 40

external symbol dictionary (ESD)
definition of 6
entry types 22
identifier

See ESD ID
processing

description of 19-32
introduction to 10
operation diagrams for 53-55

record format 94
EXTRACT macro instruction, issuance
of 12

final processing
description of 41
overview 11

functions of the loader 1

general register contents 88-89

HEWLDCOM (communication area)
format of 81-84
initialization of 12

HEWLDDEF
data area layout 84
definition 3, 12

HEWLLIBR 3, 61
HEWLOAD, entry point for loading with
identification 44

I/O control-allocation, description
of 13

ID-length list 34
identification of loaded program

See also program name
processing 43
purpose of 11
saving extent information for 33

IDENTIFY macro instruction
issuance of 11, 44
parameter list

creation of 44
format 0'1' 80

record format 105
treatment of 33

initialization processing
description of 11
operation diagram of 49

INITMAIN work area, format of 85
input

conventions 93
entry types 24

description of 19
introduction to 13

primary data set 3
record formats 94-105
secondary data set 3
secondary input processing

description of 41
internal input data area

See also passed data sets
concatenation restriction 4
defini tion of 3
format

fixed-length records 107
variable-length records 108

processing 10. 12
reading of 17
SYSLIN control block for 12. 106

internal object module
See internal input data area

label
definition (LD) or reference (LR) 21
LD and LR processing

description of 26
introduction to 23
reference 21
when CESD type is CM 31-32
when CESD type is SO 30

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Index 113

language translators 3
lD

See label definition
lETINOlET option 8
library calls 40, 41

See also automatic library call
processor and secondary input
processin

load module
processing

description of (see also reading
load module text) 20

operation diagram of 58
RlD buffer, use of 18

load module processing
description of 17

See also reading load module text
loader

data sets 3
options 7
organization 61
structure 3

MAP option, processing of 24
MAPINOMAP option 8
map, module, format example of 91
match processing 29-32
microfiche directory 70-72
MOD record

contents of 19
input convention 94
processing 33-34
record format 108

NAME=(keyword)
See program name

no-match processing
description of 24-33
tabulation of 24

null type of ESD entry 21

object and load module processing,
differences 18

object module
allocation for 17
control dictionaries in 5

operation diagrams 47-60
options 7

114 MVS/370 loader logic

Cantains Restricted Materials af rBM
Licensed Materials -- Property af rBM

passed data sets, compiler/loader
interface 105-108

PC
See private code

pointers, RlD (relocation dictionary
processing), use of 36-37

PR
See pseudo register

preloaded text
See MOD record

PRINTINOPRINT option 8
private code (PC) 21
processing control module

See initialization, I/O, control and
allocation processor

program name
passing to control program 12
specifying 8

pseudo register (PR)
address assignment 42
definition of 6
entry processing

displacement and boundary
alignment 32

symbol resolution in 32
function of 21

Q-type address constant
purpose of 37
use of in pseudo register
relocation 42

reading
load module text 34
module input 16-17

readying data sets 13
register contents at entry to
routines 88-89

aids
register contents at entry to
routines 89

relative relocation constant
definition of 37
use of 38

relocating address constants 38
relocation constant, computing 27
relocation dictionary (RLD)

entries, use of 19
introduction to 6
processing

details of 36-37
introduction to 10
operation diagram 59

processor (HEWLRLD)
for load module 103, 104
input record 97

table entry format 86
RESINORES option 8
resolution, symbol 29-32
RLD

lY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

See relocation dictionary
RLO pointers, meaning of 6

scatter/translation record, format
of 101

SO
See section definition

secondary input processing
description of 41

section definition (SO)
introduction to 21
processing an SO entry 26
symbol resolution for SO entry 30

serviceability aids 91
SIZE=(keyword) 8
storage allocation

for buffers and DECBs 14-16
for CESD entries 24
for save areas used during

loading 12
SYM record

format of input record 94
format of record in load module 99
treatment of 19

symbol resolution 29-32
SYSLIB data set

alternate DCB for 12, 107
characteristics of 3
opening 40
passing an open data set 12, 40
resolving ERs from 40

SYSLIN control block
See also passed data sets
format 106
processing 12
use in reading internal input 17

SYSLIN data set
See also internal input data area and

passed data sets
definition of 3
initialization and input control
of 12-13

SYSLOUT data set
initialization of 13
purpose of 3

SYSTERM data set
initialization of 13
purpose of 3

tables
construction and usage 73
used in the CESO search 23

TERMINOTERM option 8
text

input record format 96
loading 33-34
processing 18
record processing 33-34

text processing (operation diagram)
translation

of lOs in ID/length list 34
translation control table, format of 86
translation table

format of 86
making an entry in 27-28
relation to translation control
table 27

V-type address constant, purpose of 37
virtual storage allocation 24

weak external reference (WX)
definition of 21
processing 24

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Index 115

;,;
15 z

Contains Restricted Materials of IBM
Licensed Materials-Property of IBM
(Except for Customer-Originated Materials)
© Copyright IBM Corp. 1972, 1983
LY26·3922·1

MVS/XA Loader Logic

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization. or
subject matter, with the understanding that IBM may use or distribute whatever informatiOrl you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, ifany. are deemed
appropriate.
Note: Copies Of IBM publiclltions lire not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications. or for aSlistance in using your IBM system. to your IBM representative or to
the IBM branch office serlling your locality.

Ust TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

LsstTNL ________________ _

Previous TNL _______ _

Previous TNL _______ _

Fold on two lines, tape, and maD. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail direcdy to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

L Y26-3922-1

Reader's Comment Form

Fold and tape

Fold and tape

--..------- --------~---- -- ---------~-.-CD

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.V.

POSTAGE WILL BE PAID BV ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not stapla

IIIIII
Fold and tape

NO POSTAGE
NECESSARV
IF MAILED

IN THE
UNITED STATES

Fold and tape

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	replyA
	replyB
	xBack

