

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

MVS/370
Loader Logic

Data Facility Product 5665-295
Release 1.1

LY26-3922-1

© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Second Edition (December 1985)
This is a major revision of, and makes obsolete, LY26-3922-0.

This edition applies to Release 1.1 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affectgd. Edatorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of 1

systems, consult the latest I%M&&MM&&:&
Biblioqraphy, GC20-0001, for the editions that are applicable

and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
ieprf§:ntative or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This document contains restricted materials of International
Business Machines Corporation. ® Copyright International
Busines: Machines Corporation 1972, 1983, 1985. All rights
reserved.

Contains Restricted Materials of IBM
Licensed Materials -— Property of IBM

PREFACE

This publication describes the internal organization and logic
of the loader.

| ORGANIZATION

UISI OWLEDG

This publication contains the following:

"Introduction” describes the loader as a whole, including
its relationship to the operating system. This section also
describes the major divisions of the program and how they
work together.

"Method of Operation™ provides an overview of, and an
introduction to, the logic of the loader. This section also
contains detailed descriptions of specific operations.

"0rganization of the Loader™ describes the organization of
the loader and the control flow within it.

"Microfiche Directory" directs the reader to named areas of
codg in the program listing which is contained on microfiche
cards.

"Data Areas™ illustrates the layout of tables and control
blocks used by the loader. These layouts may not be
essential for an understanding of the program's logic, but
they are essential for analysis of storage dumps.

"Diagnostic Aids™ includes the general register contents at
entry points to program components, definitions of the
internal error codes, and a list of service aids available
with the loader.

"Appendix. Error Messages, Etc.” contains a list of error
messages and the routines and CSECTs they originate in.
This section also contains a list of loader input
conventions and restrictions, and detailed descriptions of
input record formats.

"l ist of Terms and Abbreviations™ lists the terms and
abbreviations used in this book, and what they mean.

An index is also included.

To use this book effectively, you should be familiar with the
following topics:

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Preface

Assembler language functions and specifications under 0S/VS
How to analyze a main storage dump from MVS/370

General concepts of the linkage editor and loader

[
e
e

RELATED PUBLICATIONS

/ :

for a description o

0S/ - 0
a description of assembler language functions

/VS —

Contains Restricted Materials of IBM
Licensed Materials — Property -of IBM

d User's i
he linkage editor an

ditor

3 bler

» GC26-4061,
oader

e, GC33-4010, for

Q§£!§Z_§x§1em_Engs:ammin9_Lihcgzxﬁ_ﬂsgfssinsﬁﬂangbggko
GC28-1047 through GC28-1049, for details on how to analyze a

main storage dump

Within the text, references are made to the publications listed

in the table below.

' order
sShort Title Publication Title Numnbenr
Assembler 0S/¥YS_— DOS/VSE — V 0 GC33-4010
Language se e e
Debugging 0S/\VS2 Syste 0 GC28-1047
Handbook Library: Debuqging GC28-1048

gandbook, Volumes 1 through GC28~-1049
JCL GC28-1300
Linkage Editor GC26-4061
and Loader
Supervisor 0S/VS2 Supervisor Servic GC28-1114
Services and and Macros
Macros

iv MVS/370 Loader Logic

LY26-3922-1 © Copyright IBM Corp.

1972,

1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SUMMARY OF AMENDMENTS

| SERVICE CHANGES

All MVS/370 titles referred to in this publication have been
changed to their corresponding MVS/XA titles. Order numbers of
the MVS/370 books remain the same.

Information has been added to reflect technical service changes.

LY26-3922-1 @& Copyright IBM Corp. 1972, 1985 Summary of Amendments v

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CONTENTS

Introduction 1
Purpose 1
Functions 1
Virtual Storage Requirements 2
Environment
Physical Characteristics 3
Operational Considerations 3
Input Module Structure 4
External Symbol Dictionary (ESD) 6
Relocation Dictionary (RLD) 6
Interrelationship of Control Dictionaries 6
Loader Options
General Theory of Operation 8

Method of Operation 9
Steps of the loader Operation 9
Initialization
Input Control and Buffer Allocation 10
Primary Input Processing
External Symbol Dictionary Processing 10
Text Record Processing
Relocation Dictionary Processing 10
Address Constant Relocation Processing 11
Secondary Input Processing 11
Final Processing
Identifying Loaded Program 11
End of Loading 11
Initialization (HEWLIOCA) 11
Analyzing Control Information 12
Initializing Virtual Storage 12
Readying Data Sets 13
Input Control and Buffer Allocation 13
Buffer Management (HEWBUFFR) 14
Buffer Deallocation 14
Buffer Allocation 15
Reading Object Module Input from an External Device 16
Reading Internal Object Module Input 17
Reading Load Module Input
Primary Input Processing 138
External Symbol Dictionary (ESD) Processing (HEWLESD) 20
Preliminary ESD Processing
CESD Searching 23
No-Match Processing 24
Match Processing 29
Text Record Processing 32
Processing Object Module Text (HEWLTXT) 33
Processing Preloaded Text (HEWLMOD) 33
Processing Load Module Text (LMTXT) 34
Relocation Dictionary (RLD) Processing (HEWLRLD) 36
Relocating Address Constants (HEWLERTN) 37
End Processing 39
END Card Processing 39
End-of-Module Processing 39
Secondary Input Processing (HEWACALL) 40
Resolving ERs from the Link Pack Area 40
Resolving ERs from the SYSLIB Data Set 40
Final Processing for the Loaded Program 41
Assigning Addresses for Common Areas (COMMON) 42
Assigning Addresses for External DSECT Displacements
(PSEUDOR) 42
Issuing Unresolved ER Messages 43
Checking the Loaded Program's Entry Point 63
Identifying the Loaded Program
End of Loading 44
Loader Processing Termination 464
Loader Control Termination 45
Operation Diagrams 46

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Contents

vii

viii

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Diagram Al. Overall Loader Operation 47

Diagram A2. Loader Invocation 68

Diagram Bl. Loader/Scheduler Interface and Initialization 49
Diagram Cl. Primary Input Control and Buffer Allocation 50

Diagram Dl1. Object Module Processing 51

Diagram D2. Load Module Processing 52

Diagram D3. ESD Record Processing (Generalized) 53

Diagram D4. Example of Input ESD Processing of SD-Section
Definition (HEWLESD) 54

Diagram D5. Example of Input ESD of ER-External Reference
Processing (HEWLESD) 55

Diagram D6. Example of ESD ID Translation 56

Diagram D7. Object Module Text Processing 57

Diagram D8. Load Module Text Processing 58

Diagram D9. RLD Record Processing 59

Diagram El. Secondary Input Processing 60

organization of the Loader 61
Routine Control-Level Tables 62

Microfiche Directory 70

Data Areas 73
HEWLDDEF 83

Diagnostic Aids 88
Error Code Definitions 90
Serviceability Aids 91

Appendix. Error Messages, Etc. 92

Input Conventions 93

Input Record Formats 94

Compiler/Loader Interface for Passed Data Sets 105
Identify Macro Instruction—Identifying Loaded Program 109

List of Terms and Abbreviations 111
Index 112

MVS/370 Loader Logic - LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

EIGURES

Loader Storage Layout 2

Loader Control Logic Flow 4

Object Module and Load Module Structure 5

Example of an Input Module 7

Loader Options

Load Module Storage Allocation for Buffer and DECBs 15
Freed Areas from Buffer-DECB Allocation
?torigelgllocation of Buffers and DECBs for Object Module
npu

Object and Load Module Processing Differences 18

ESD Entry Tvpes and Functions

Tables Used in the CESD Search 23

No-Match Processing Required for Input Entry Types 24
Storage Allocation

14. Translation Control Table and Translation Table 28
15. Overall Relationship of Tables 29

16. Symbol Resolution

17. Loading the Text from a Load Module Record 35

18. Relocation of Address Constants

19. BLDL List and Address List 62

20. Loader Organization 61

21. HEWLOADR—Level 1 62

22. HEWLOADR—Level 2 62

23. HEWLOADR—Level 3 64

2. HEWLOADR—Level & 67

25. Data Area Construction and Usage 73

26. Address List 74

27. BLDL List 74

28. CESD Control Table (CMTYPCHN) 75

29. CESD Entry

30. Condensed Symbol Table Entry

31. Data Event Control Block (DECB) 78

32. Extent Chain Entry 79

33. IDENTIFY Parameter List &0

36. HEWLDCOM DSECT - Communication Area 81

35. HEWLDDEF CSECT 84

36. INITMAIN DSECT Definition 85

37. RLD Table Entry 86

38. Translation Control Table 86

39. Translation Table 87

40. Register Contents at Entry to Routines 88

6l. Internal Error Code Definitions

42. Module Map Format Example 91

G3. Error Message/lIssuer Cross-Reference Table 92

G6. SYM Input Record (Card Image)—Ignored by the Loader 94
45. ESD Input Record (Card Image)

46. Text Input Record (Card Image) 96

7. RLD Input Record (Card Image) 97

48. END Input Record—Type 1 (Card Image) 98

49. END Input Record—Type 2 (Card Image) 98

50. SYM Record (Load Module)—Ignored by the Loader 99
51. CESD Record (Load Module) 100

52. Scatter/Translation Record—Ignored by the Loader 101
53. Control Record (Load Module) 102

54. Relocation Dictionary Record (Load Module) 103

55. Control and Relocation Dictionary Record (Load Module) 104
56. Record Format of IDRs (Load Module)—Ignored by the

Loader 105

57. DCB List 106

58. Internal Data Area in Fixed-Length Record Format 107
59. 1Internal Data Area in Variable-Length Record Format 108

60. MOD Record (Card Image) 108

WN=HOW OONOUBDUWNE

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Figures ix

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

INTRODUCTION

This section provides a general description of the loader.

Included are the purpose and functions of the program, its

physical and environmental characteristics, and operational

considerations necessary for its use. Also discussed in this
section is the generalized theory of loading.
PURPOSE

The purpose of the loader is to combine input object and load

modules into an executable program in virtual storage. In this

regard, the loader performs the basic functions of the linkage
editor and program fetch to obtain high-performance loading.

(The loader can be used only when special linkage editor

processing, such as overlaying modules, is not required.)

Use of the loader can provide advantages of increased system

throughput and conservation of auxiliary storage space. System

throughput can be increased through:

. Elimination of scheduler overhead, since loading and
execution occur in a single job step

. Elimination of linkage editor I/0 for intermediate and final
output

. Elimination of certain linkage editor functions such as
control statement processing and overlay structuring

° Reduction of time required to read input through improved
buffering techniques

o Reduction of time required for library search through use of
link pack resident modules

) Elimination of time required to read input from an external
device through use of an internal input data area prepared
by a compiler

Auxiliary storage space is conserved through:

° Deferring inclusion of processor library routines until load
time, thus reducing space required for the program. (This
applies to a production environment in which jobs are
selected from a job library.)

U Eliminating space needed for the linkage editor intermediate
and output data sets.

EUNCTIONS

The loader performs the basic logical functions of the linkage
editor and of program fetch. Like the linkage editor, the
loader combines and links the input modules. 1In addition, the
loader assigns actual machine addresses to the resulting program
and then passes control directly to the program for execution.
In this regard, the loader functions as program fetch does.

As part of the link-loading procedure, the loader also

automatically deletes duplicate copies of a module, and can
include modules from a system library.

LY26-3922~1 & Copyright IBM Corp. 1972, 1985 Introduction 1

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

VIRTUAL STORAGE REQUIREMENTS

Loader operation requires about 21K bytes of virtual storage.?
(This amount does not include the storage for the loaded program
and the condensed symbol table.) The storage for loader
operation includes that for loader code (about 14K bytes), for
the data management access methods (about 6K bytes), and for
loader buffers and tables (about 3K bytes). If the access
methods are resident, and if the loader code is resident in the
link pack area, part of the loader storage may be allocated from
system storage.

Figure 1 shows an example of loader structure in virtual

storage.
High
: Address
toader Con- .
trol GETMAIN Register save area for LOAD of Loader (72 bytes) } ;r::‘daﬂz 5::
LOADER (Processing)
> Freed before pro-
gram execution
~
TABLES (Dynamic) J
e] 3
Loader
Procestor < Loaded Program
GETMAIN
L Freed after pro~
T gram execution
Descriptive information about loaded program
. o

LOADER (CONTROL)

OPERATING SYSTEM

CONTROL PROGRAM

Low
Address

Figure 1. Loader Storage Layout

1 The actual amount required depends on the type of input (for
example, input produced by the PL/I compiler requires a
minimum of 10K bytes for loader tables).

2 MVS/370 Loader Logic LY26~-3922-1 & Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials -— Property of IBM

ENVIRONMENT

The loader can be used in batch mode, or it can also be invoked
under the time sharing option (TS0).

It can be used in one of three ways:

1. As a job step, when the loader is specified on an EXEC job
control statement in the input stream;

2. As a subprogram, via the execution of a LOAD macro
instruction, a LINK macro instruction, or an XCTL macro
instruction;

3. As a subtask, in multitasking systems, via execution of an
ATTACH macro instruction.

Loader operation requires access to a primary input source, the
SYSLIB data set. Input may be from a card reader, magnetic
tape, or a direct access device, or it may be a concatenation of
data sets from different types of devices. Input may also be an
internal input data area prepared by a compiler.

An automatic search of a system library can occur to complete
the input. This requires use of the SYSLIB data set. It is
defined only as a partitioned data set. SYSLIB may also be
concatenated; however, SYSLIB input consists of object modules
only, or load modules only.

When the link pack area is available, the loader can include in
the loaded program resident modules listed in the contents
directory entry queue.

The loader uses the SYSLOUT data set for both diagnostic
messages and module maps, and the S for
diagnostic messages only. These data sets may be used in
conjunction with each other or separately.

PHYSICAL CHARACTERISTICS

The loader consists of a control portion and a processing
portion. The control portion handles linkages to and from the
processing portion, which performs the actual program loading,
and to and from the loaded program for its execution. The
relationship between the portions of the loader is illustrated
in Figure 2 on page 4.

The loader consists of two loads: the first is module HEWLCTRL,
the control portion; and the other comprises control sections
HEWLDDEF, HEWLIOCA, HEWLRELO, HEWLIDEN, and HEWLLIBR, which
together perform program loading. Because of the
interrelationships among module functions, the loader is not a
candidate for overlay structuring.

JION

Loader operation depends on the type of input received and on
user options that may be specified.

The input to the loader may be load modules produced by the
linkage editor, and/or object modules produced by the following
language processors: ALGOL, COBOL, FORTRAN, PL/I, RPG, and
Assembler.2 Input may be from an external device, or it may be
one or more internal object modules; that is, a data area that
resides in virtual storage and consists of contiguous object

module records. If input is an internal data area, the object

module records containing the instructions and data of the

2 If the input consists only of load modules, the user must
specify the loaded program's entry point.

LY26-3922~1 ® Copyright IBM Corp. 1972, 1985 Introduction 3

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

HEWLOADR

HEWLDRGO (ALIAS LOADER} Processing Portion
\ of Loader
Control Portion of Loader é
(Performs program loading)
LOAD EP = HEWLOAD
/
CALL HEWLOAD

RETURN

4

R1 - program nome
DELETE EP = HEWLOAD

LOADED PROGRAM

ATTACH —p-

WAIT
DETACH

RETURN To Coller

RETURN

Figure 2. Loader Control Logic Flow

program (text) can be omitted from the data area itself and
replaced by passing a pointer to the text. The loader then
performs its usual functions of relocation and linkage on the
text without having to read or move it.

If the loader is processing an internal data area, input from an
external device cannot be concatenated to it.

INPUT MODULE STRUCTURE

Object modules and load modules have basically the same logical
structure (see Figure 3 on page 5). Each consists of:

. Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules.

L Text, containing the instructions and data of the program.
If an internal object module is being processed, text
prepared by a compiler may be omitted and replaced by a
pointer to its location.

o End-of-module indication (END statement in object modules:;
EOM indicator in load modules).

4 WMVS/370 Loader Logic LY26-3922-1 & Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Linkage Editor. input Linkage Editor Output
Object Module Load Module
ESD CESD
XT Control
RLD T
END EOM/RLD

Figure 3. Object Module and Load Module Structure

The instructions and data of any module may contain symbolic
references to specific areas of code. The symbols may be
defined and referred to in the same module, or may be defined in
one module and referred to in another. Thus, symbolic
references are either internal or external with respect to the
module in which they occur. A symbol that refers to external
code is called an external reference (ER). External and
internal references are made through address constants.

The loader performs its function of changing all address
constants to actual machine addresses by manipulating the input
modules' control dictionaries.

Object modules usually contain two control dictionaries: an
external symbol dictionary (ESD) and a relocation dictionary
(RLD). If the module contains no relocatable address constants,
an RLD is not present.

Load modules are a composite of object modules, and, therefore,
contain a composite ESD (CESD). Load modules contain RLDs also,
unless there are no relocatable address constants. General
descriptions of the control dictionaries follow. For detailed
descriptions, see the Appendix.

LY26-3922-1 & Copyright IBM Corp. 1972, 1985 Introduction 5

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

External Symbol Dictionary (ESD)

The external symbol dictionary contains entries for all external
symbols defined or referred to within a module. Each entry
indicates the symbol and its type and gives its position, if
any, within the module. For example, there is an ESD entry for
each control section, entry point, common area, and external
dummy section. (An external dummy section defines a
displacement within an area, obtained during execution of the
input program via a GETMAIN macro instruction. External DSECTs
are also referred to as pseudo registers.)

Relocation Dictionary (RLD)

The relocation dictionary (RLD) contains at least one entry for
every relocatable address constant (thus, for every external and
internal reference) in a module. An RLD entry identifies an
address constant by indicating both its location within a
control section, and the external symbol (in the ESD) whose
value determines the value of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and asisociated text are related through
a system of numbers known as ESD identifiers (ESD IDs). An ESD
ID is assigned to each external symbol according to its
sequential appearance in an object module. The external symbol
dictionary entries, as created by a compiler or an assembler,
have the same sequential order, so the ESD ID gives the
dictionary entry number of an external symbol.® (The linkage
editor renumbers the ESD IDs to maintain the ordered
relationship when combining modules into a load module.)

Although the ESD IDs do not appear in the ESD entries, they are
used in label definitions, text items, and RLD entries to refer
to the symbols in the ESD.

In the RLD entries, the ESD IDs are used to show two
relationships between the RLD and ESD entries, as follows:

[The RLD relocation pointer (R pointer) gives the ESD ID for
the symbol referred to by the address constant.

U The RLD position pointer (P pointer) gives the ESD ID for
the CSECT in which the address constant occurs.

Figure 6 on page 7 illustrates the two cases of RLD pointers.
The text of CSECT A contains two address constants, X and Y. X
refers to a symbol within CSECTY A. Therefore, both pointers of
its associated RLD entry give the ESD ID of CSECT A. The value
field of Y, however, refers to a symbol in a different control
section, CSECT C. Thus, the R pointer of the entry for Y gives
the ESD ID for CSECT C, the external reference; the P pointer
gives the ESD ID for CSECT A.

3 In an object module, an ESD item with type=LD can not have
associated text or dependent address constants (see TESD
Processing™), and so is excluded from the numbering system.

6 MVS/370 Loader Logic LY26-3922-1 & Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IEM
Licensed Materials — Property of IBM

ESD

Symbol Type Origin Length
CSECT A sD 000 500 ﬁ
(—p CSECTC ER 000 0
re CSECT B sD 500 1000
|
| 000 I
I A
__ y
l X A (A)
l 300
I Y A (C)
I TEXT ITEM OF CSECT A
400
l
| 500 3
[}
S _/'
TEXT ITEM OF CSECT B
RLD
R P flag Address
1 1 F 300
L 2 1 F 400
> 1

LLL /

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary.
The entry in the ESD for CSECT C results from the reference to CSECT C in the text of CSECT A.
This reference is at location 400, (CSECT B has no relocatable address constants.)

Figure 4. Example of an Input Module

LOADER OPTIONS

User options may be specified by parameters listed on the EXEC
job control statement4, or may be passed internally by a program
requesting the loader via LINK, LOAD, ATTACH, or XCTL macro
instruction. If the options are not user specified, the
defaults provided by the loader are used.

If the options are passed internally, the user can also provide
alternatives for the standard ddnames and for the standard
SYSLIN and SYSLIB DCBs.

4 See JCL manual.
5 See Supervisor Services and Macros.

LY26-3922~-1 @®& Copyright IBM Corp. 1972, 1985 Introduction 7

Contains Restricted Materials of IBM
Licensed Materials —— Property of IBM

Figure 5 describes the loader options. The parameters used are
listed with the associated options. For some options, there are
different parameters to specify either the choice or the refusal
of the option. For example, NOCALL signifies that the library

call option (CALL) is not to be used. (In this case, the third
possible parameter has been retained for compatibility with the

linkage editor option NCAL.)
default options.

Figure 5 also indicates the

Parameters | Options Defaults

RES | NORES The loader searches the link pack area queue for RES
resident modules after primary input is complete,
but before the SYSLIB data set is opened.

MAP | NOMAP The loader produces a list of external names and NOMAP
their actual storage addresses.

CALL| The loader performs an automatic search of the CALL

2gg€LLI SYSLIB data set for unresolved external names.

LET{NOLET The loader passes control to the loaded program NOLET
despite the occurrence of a severity 2 error
condition during loading.

SIZE= Specifies the maximum amount of dynamic storage to SIZE=300K
be obtained for loader processing.

EP= Specifies an external name to be used as the entry No
point of the loaded program. : default?

PRINT] The loader attempts to open the SYSLOUT data set PRINT

NOPRINT for diagnostic output.

TERM| Error messages are directed to the SYSTERM data NOTERM

NOTERM set as well as the SYSLOUT data set.

NAME= Specifies the name to be used as the name of the Go?
loaded program.

Figure 5. Loader Options

Note to Figure 5:

1 The loader assigns an entry point to the loaded program if
no name was specified.

GENERAL ORY O PE 0
In processing the input modules, the loader assigns
virtual-storage addresses to the control sections to be included

in the loaded program, and resolves external references in the
CSECTs.

Because each input module has an origin that was assigned
independently by a language translator, the order of the
addresses in the input is unpredictable. (Two input modules,
for example, may have the same origin.) The loader assigns an
address to the first control section and then assigns storage
addresses, relative to this origin, to all other CSECTs.

Because cross-references between CSECTs in different modules are
symbolic, they are resolved (translated into machine addresses)
relative to the virtual-storage addresses assigned to the loaded
program.

8 MVS/370 Loader Logic LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

METHOD OF OPERATION

This section describes the logic of the loader. It contains an
introduction that emphasizes the flow of primary data and
control information through tables and buffers. This section
also contains detailed functional descriptions of the loader.

The logic introduction refers to the operation diagrams
associated with a particular function. The detailed functional
descriptions refer, through lettered references, for example,
(A), to a portion of a diagram, to the corresponding steps of a
function as shown in the operation diagrams. (The diagrams
follow the text of this section.)

At the end of this section are illustrations of the internal
loader tables at strategic points in processing (Figure 13 on
page 25). These illustrations stress the changes to data; the
diagrams stress movement of data. Used together, the two sets
of figures offer quick recall.
STEPS OF E_LOADER OPERATIO
The loader control portion, which acts as an interface with the
supervisor, loads the processing portion of the loader and
passes to it the parameter list received. The system interface
is shown in "Diagram Al. Overall Loader Operation™ on page 47
and "Diagram A2. Loader Invocation™ on page 48. The loader then
performs loading through the following basic functions:
0 Initialization
. Input control and buffer allocation
U Primary input processing
) Secondary input processing
J Final processing
. End of loading
After the processing portion has completed these functions, the
loader control portion passes control to the loaded program for
execution.
The overall flow of data and control during loading is shown in
"Diagram Al. Overall Loader Operation™ on page 47.
Initialization
When the loader begins processing, it performs initialization in
preparation for all subsequent processing. The operations
included in initial processing are:
. Analyzing control information
° Initializing virtual storage
° Initializing DBCBs and opening data sets

"Diagram Bl. Loader/Scheduler Interface and Initialization™ on
page 49 shows initialization processing.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 9

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Input Control and Buffer Alleocation

The loader reads input and allocates buffers as required for the
current input module. Object modules from SYSLIN (primary input
data set) and from SYSLIB (secondary input data set) are read
into the object module buffers. (However, if input is an
internal data area, buffers are not allocated and the data area
itself is considered one buffer.) Control information from load
modules (including ESD and RLD records) is read into the RLD
buffer. Text from load modules is read directly into the loaded
program's storage area. "Diagram Cl. Primary Input Control and
Bg{fertgllocation" on page 50 shows input control and buffer
allocation.

Primary Input Processing

The loader performs the following processing for all SYSLIN
modules. (All overlay and scatter control statements from load
modules and SYM records are ignored.) "Diagram Dl1. Object
Module Processing™ on page 51 and "Diagram D2. Load Module
Processing™ on page 52 show primary input processing.

External Symbol Dictionary Processing

The ESD records from object modules and CESD records from load
modules describe symbols that have been defined for external
use. The loader makes entries for the symbols in the CESD, and
also makes entries in the translation table to allow the
translation of the input ESD IDs to CESD addresses. The loader
calculates storage addresses and stores them in the CESD
entries. "Diagram D3. ESD Record Processing (Generalized)™ on
page 53 through "Diagram D6. Example of ESD ID Translation™ on
page 56 show external symbol dictionary processing.

Text Record Processing

For obiect modules, the loader translates the ID of a text
record to the proper CESD entry address. The CESD entry
contains the storage address assigned to the CSECT. MWhen the
loader finds the address for the text, it moves the text from
the object module's buffer to the loaded program's storage. For
load modules, the loader translates the IDs of all CSECTs in a
text record and thus finds their assigned virtual-storage
addresses. The loader reads the record directly into the loaded
program's storage area; CSECTs at the end of the record that are
to be deleted are not read; CSECTs within the record that are to
be deleted are overlaid when the CSECTs that are to be kept are
compressed. "Diagram D7. Object Module Text Processing”™ on

page 57 and "Diagram D8. Load Module Text Processing™ on page 58
show text record processing.

Reloccation Dictionary Processing

The loader builds its RLD table from information contained in
the RLD records. It processes the RLD records of object modules
from the object module buffer, and those of load modules from
the RLD buffer. The loader uses the relocation and position (R
and P) pointers to determine the addresses of the address
constants (adcons), and uses the flag field to determine the
method of address constant relocation required. "Diagram D9.
RLD Record Processing™ on page 59 shows relocation dictionary
processing.

10° MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Address Constant Relocation Processing

When external references in the CESD are resolved, the loader
uses the RLD table entries chained to the CESD entry to relocate
the related address constants in the loaded text.

Secondary Input Processing

Final Processing

If there are unresolved external references after all SYSLIN
input has been processed, the loader tries to resolve them from
system library routines. If RES is specified, the loader first
tries to resolve the references from link pack area routines.
When this is possible, the loader uses the addresses of the
referenced routines in the link pack area to resolve the adcons
used to symbolically refer to them. Finally, the loader opens
the SYSLIB data set, if necessary. The loader then loads any
library modules that can be used to resolve ERs in the loaded
program. The modules are located via the BLDL and FIND macro
instructions. The loader processes the modules, depending on
whether they are object or load modules, in the same manner as
it processes primary input. "Diagram El. Secondary Input
Processing" on page 60 shows secondary input processing.

After processing all the input for the loaded program, the
loader performs the following: Assigns addresses for the common
areas and for displacements in the external dummy section,
issues messages for unresolved ERs, and determines the address
of the loaded program's entry point.

Identifying Loaded Program

End of Loading

If program loading is successful, the loader issues an IDENTIFY
macro instruction to pass the name of the program to be executed
to the control program.® At this time, a condensed symbol table
may also be constructed for use during the program's execution
by the test facilities available under the Time Sharing Option.

Before ending loader processing, the loader performs the
following: writes out the diagnostic message dictionary and any
remaining diagnostic messages, closes data set DCBs, sets up
return information, and frees storage not required for the
loaded progranm.

INITIALIZATION (HEWLIOCA)

When the loader begins processing, it analyzes control
information, performs initialization of main storage and of data
sets, and allocates initial buffers for the data sets. See
"Diagzgm Bl. Loader/Scheduler Interface and Initialization®™ on
page .

6 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Method of Operation 11

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ANALYZING CONTROL INFORMATION

Loader operation depends on the control information, consisting
of the options, ddnames of the data sets, and the data control
block addresses, to be included in loader processing. The
loader uses the information passed by the user or the defaults.
(The defaults are contained in the control section HEWLDDEF.)

(A) To analyze the control information, the loader obtains a
temporary work area, INITMAIN. (See "Data Areas™ on page 73 for
the contents of INITMAIN.) The loader saves, in the temporary
work area, the default ddnames and option indicators. An
EXTRACT macro instruction is then issued to determine whether
the loader is currently operating under the Time Sharing Option,
and an indicator is set in INITMAIN. If the processing portion
of the loader was invoked through the entry point HEWLOAD,
another indicator is set to show that identification of the
loaded program is desired. The loader then scans the user's
options and resets the default indicators in INITMAIN, when
necessary.

If the SIZE option is specified, the associated user's value
replaces the default value. However, if the option is
incorrectly specified, the default value is used.

If the EP option is specified, the associated entry point name
is saved in INITMAIN.

If the NAME option is specified, the associated program name is
saved in INITMAIN. Otherwise, the default name %*¥G0 is used.

The loader then checks for user-specified ddnames to be used in
specifying data sets. If present, these ddnames also replace
the default names. :

Finally, a check is made for the addresses of alternates for the
data control blocks. Both addresses, if specified, must be
24-bit-only addresses; otherwise, they are ignored. A SYSLIN
control block is accepted if it describes an internal data area.
The address of this control block is saved, and an indicator for
an internal SYSLIN data area is set in INITMAIN. (The SYSLIN
control block, which is not a data control block, is described
in "Internal SYSLIN Control Block®™ under "Compiler/Loader
Interface for Passed Data Sets™ in the Appendix.) An alternate
SYSLIB DCB is accepted if it describes a data set that has been
opened. The address of this DCB is also saved and an indicator
for an open library data set is set in INITMAIN.

INITIALIZING VIRTUAL STORAGE

(B) Using the GETMAIN macro instruction, the loader obtains the
required storage from the supervisor. The request is
conditional and variable. The maximum amount requested is that
specified by the SIZE option; the minimum is 2K bytes. If the
supervisor does not return storage, the loader then issues an
unconditional GETMAIN request for the minimum. If 2K bytes of
storage is still unavailable, an 804 or 80A system abend occurs.

If the supervisor returns virtual storage space, the loader
establishes its permanent communication area. ' (The
communication area is described in "Data Areas™ on page 73.)
The loader then moves the information stored in INITMAIN to the
communication area.

Save areas for use during loading are allocated and chained
backward and forward. Finally, the INITMAIN area is returned to
the system via a FREEMAIN macro instruction. The area is then
available for data management functions required for loading.

12 MVS/370 Loader Logic LY26-3922~-1 @& Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

READYING DATA SETS

(C) The loader performs initialization requisite to use of its
data sets. If the TERM option has been specified, space is
reserved for a SYSTERM DCB, two DECBs, and two buffers. Unless
an internal SYSLIN data set has been passed to the loader, a
SYSLIN DCB must be prepared and opened. Similarly, unless the
NOPRINT option has been specified, a SYSLOUT DCB must be
prepared and opened.

DCBs for the data sets are constructed using a model DCB
contained in the loader. The ddnames and basic attributes are
placeg into the constructed DCBs before the data sets are
opened.

During opening, other data set attributes are checked. These
include record format, record and block sizes, and the number of
buffers to be allocated for the data set. If record and block
sizes are not defined, the loader uses the following defaults:

. For SYSLIN, both values are set to 80.

. For SYSLOUT, both values are normally set to 121. However,
if the loader is operating in time-sharing mode, the record
length of the SYSLOUT data set is set to 81 so output can be
easily directed to a terminal.

Because the loader allocates buffers for its data sets, it does
not require the buffer allocation supplied by the Open routine.
The loader indicates this by setting the DCBBUFNO field in the
DCB to zero. The value that was found in the DCBBUFNO field is
stored in DCBNCP.

The loader determines whether the data sets opened successfully.
If SYSLOUT is open, the loader allocates the number of buffers
and DECBs specified in the DCBHCP field in the DCB, and sets a
flag indicating that the SYSLOUT data set is usable. The
diagnostic output page heading is set up and printed. The
loader then constructs, in the SYSLOUT buffer, a list of the
options used, the amount of virtual storage received for loader
processing, and the entry point and program names, if specified.
After printing this list, the loader prints out any invalid
options received and any errors encountered during the open
procedure. Finally, if the MAP option was chosen, the MAP
heading is constructed and printed.

If the opening of SYSLOUT was not successful, the MAP option
indicator is set off and the storage allocated for the data
set's DCB is released.

Next, the loader determines whether the SYSLIN data set opened
successfully. If an error occurred during opening of SYSLIN,
loading is terminated. If SYSLIN opened properly, the loader
sets the "unlike attributes™ indicator in the DCB to signify
that SYSLIN may be a concatenation of data sets with unlike
record formats. The buffers for the first input module are then
allocated as described under "Buffer Allocation™ on page 15.

INPUT CONTROL AND BUFFER ALLOCATION

To read input, the loader determines whether the current input
consists of object or load modules, and whether it resides on an
external device or in virtual storage. This is indicated by
indicators (CMFLAG3) in the communication area as well as the
record format of the DCB. (The format is undefined (U) for load
modules, fixed (F) for either object modules on an external
device or internal object modules, and variable (V) for internal
object modules.) If the input data set resides on an external
device, buffers are allocated and primed. If the input data set
is an internal data area consisting of internal object modules,
no allocation or priming of buffers occurs and the data area
itself is considered one buffer. In any case, the records are
read and processed until the end of the current data set is

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Method of Operation 13

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

recognized, either through the end-of-concatenation or
end-of-file condition for a data set residing on an external
device, or through the end-of-buffer condition for an internal
data area.?” (No check for the END card or EOM indication is
made during the reading procedure; the end condition is only
recognized when the record is processed.) When the end of the
current input is reached, the loader checks for additional
SYSLIN input.8

Another data set in SYSLIN is indicated unless both the
end-of-file and end-of-concatenation switches are on. MWhen the
loader opens a new data set in SYSLIN input, the loader
determines the new attributes. This is accomplished by the same
zr:cedu;es used during loader initialization for the first input
ata set.

BUFFER MANAGEMENT (HEWBUFFR)

Buffer Deallocation

In general, the loader allocates storage individually for DECBs
and buffers. Thus, for a single data set, buffer allocation
actually consists of several separate allocations. These
allocations are made from contiguous storage whenever feasible.
All allocations are made from the highest available address in
loader processing storage. HWhen no longer needed, allocated
space is made available for subsequent modules.

If both the current input and the previous input consist of load
modules, the loader uses the same buffer and DECBs. This is
possible because the buffer-DECB requirement for load modules is
constant. Figure 6 on page 15 illustrates the buffer and DECBs
required for reading load modules. If either the current or the
previous data set consists of object modules, the loader frees
(ffallggates) the storage used for the previous buffer-DECB
allocation.

A pointer to the first freed area is maintained at CMFRECOR.
(See Figure 7 on page 16.) The first 4 bytes of each freed area
are used to store a pointer to the next freed area in the chain.
The second 4 bytes give the size of the current area. (The size
is always rounded to doubleword value.) See Figure 7 for an
illustration of freed area chaining.

Before chaining an area deallocated from a DECB or a buffer, the
loader checks the area's location against the pointers of the
other areas in the chain for contiguity. Contiguous freed areas
are combined under a single pointer. For example, in Figure 7,
Freed Area 1 could consist of areas from three separate
deallocations: One of each DECB and one for the buffer.

7 End-of-buffer signifies both end-of-file and
end-of-concatenation for an internal data area.

8 The end-of-concatenation switch is set during the data set
opening if another data set is concatenated to the current
one. If there is no other SYSLIN input, the
end-of-concatenation and end-of-file switches are both set
on. They are tested at the end of each module.

14 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CMRDCBPT

CMRDECPT CMGETREC
lﬁmml and RLD record DECB
256 "
L _DECDCBAD Lot
DECAREA @ ¢ o (° Control and RLD | 256
record buffer bytes
DECDECPT\

Text record DECB

- — —- DECDCBAD

[——— DECDECPT

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
pointers in the communications area (HEWLDCOM,),

Figure 6. Load Module Storage Allocation for Buffer and DECBs

Buffer Allocation

After freeing any previously used buffers, the loader allocates
DECBs and buffers for the current input module. For object
module input, a DECB is allocated and cleared, and the address
of the DCB is stored in it; then, the related buffer is
allocated and its address stored in the DECB. (The size of the
buffer is obtained from DECBBLKSI; the number, from DCBNCP, -
where the value from DCBBUFNO was stored.) The allocation
procedure is repeated until the specified number of buffers has
been allocated. However, after the first time, each DECB is
chained to the one before. The last DECB is chained to the
first. (See Figure 8 on page 17 for an illustration of an
allocation for object module input.) The loader also sets a
pointer to the DECB chain in the communication area at CMRDECPT,
sets the I/0 flags to indicate object module input, and saves
the buffer size in the communication area for later
deallocation.

For load module input, the loader allocates the required two
DECBs, clears them, chains them together, and stores the address
of the DCB in them. The required buffer, called the RLD buffer,
is then allocated and its address stored in the first DECB. The
loader stores a pointer to this buffer in the communication area
at CMGETREC, and a pointer to the first DECB in CMRDECPT. (No
buffer is allocated for load module text). The loader reads
load module text directly into the loaded program's storage
area. The RLD buffer size is stored in the DECB, and finally
the 170 flags are set to indicate load module input.

In allocating buffers and DECBs for load or object module input,
the loader attempts to reuse any storage freed from previous
allocations. The loader examines each entry in the freed area

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 15

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

High Address
Communications Area (HEWLDCOM)
CMFRECOR
L
/
s
2304
Freed Area 1
Note:
304 304 is the size of
2 o Area 1.
240 is the size of
Area 2,
1240
Freed Area 2
240
1000
J il
Low Address

Loader Processing Storage
Figure 7. Freed Areas from Buffer-DECB Allocation

chain to determine whether the related storage is sufficient for
the current DECB or buffer.

If the area is too small, the next entry is tested. If the size
of an area equals the required size (rounded to doubleword
value), the loader unchains the area and constructs the buffer
or the DECB. If the size of the freed area is greater than that
of the required area, the chain pointer for that area is updated
to show the size and location of the remainder.

If no area in the chain is adequate for the current buffer or
DECB, the loader makes the allocation from its processing
storage not previously allocated (prime storage). If this
allocation requires an area so large that it would exhaust the
table and buffer area, the loading process is terminated, with a
message printed to indicate that available storage was exceeded.

READING OBJECT MODULE INPUT FROM AN EXTERNAL DEViCE

Because of the fixed format of object module records, the loader
can initiate the reading of physical sequential blocks before
they are actually needed for processing. To accomplish this,
the loader primes the buffers after allocating them for object
modules. Priming consists of initiating READ macro instructions
for all buffers except one. When the loader requires the first
record for processing, a READ macro instruction is issued for
the unfilled buffer, and a CHECK macro instruction is issued for
the first buffer primed.

16 WMVS/370 Loader Logic LY26-3922~1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CMRDCBPT. CMRDECPT CMGETREC
| | /
\ DECB 1 Buffer 1
o Record 1
| 320 7
- — - 4
,,—"‘"_— TR — =< — DECDCBAD s Record 2
- N DECAREA----1"
// \\ Record 3
/ \\\ Record 4
i\ DECDECPT 4
| \
l \ DECB 2 Buffer 2
\
[Record 1
\ > ecor
Input DCB I N | 320 -
: ~-F=pecpceap ; etc.
’
| DECAREA ==nn- -
|
\ DECDECPT
\
\ DECB 3 Buffer 3
\\ T
"
\. ’a
.~ 320 p
~-{——DECDCBAD S 320
DECAREA-===1-7 bytes
—DECDECPT l
~¢— 80 bytes—y»-
Note: CMRDCBPT, CMRDECPT, and CMGETREC are ye

located in HEWLDCOM . CMRDECPT points to
the DECB/buffer being processed. CMGETREC
points to the logical record being processed.

Figure 8. Storage Allocation of Buffers and DECBs for Object Module Input

At the beginning of processing for a module, the DECB pointer
(CMRDECPT) specifies the DECB associated with the first primed
buffer (see Figure 8.) The pointer to the current logical
record also specifies the beginning of that buffer. As each
record is processed, the loader updates the logical record
pointer to the next record. When all records in the buffer have
been processed, the loader updates the DECB pointer to the one
for the next filled buffer, and issues a READ macro instruction

for the completed buffer. The procedure is repeated until the
end of the module is recognized.

READING INTERNAL OBJECT MODULE INPUT

For internal object modules prepared by a compiler, record
format may be fixed or variable. After initialization of the
data area containing the internal object module records, the
pointer to the current logical record points to the beginning of
the data area. As each new logical record is requested, the
loader updates the pointer to the next record in the data area,
using the DCBRECFM field in the SYSLIN control block to
determine whether fixed- or variable-length records are being
processed. The end of the module is recognized when the length
of the processed records equals the length specified in the

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 17

READING LOAD MODULE

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DCBBLKSI field. At this time, the end-of-file and
end-of~concatenation switches are set on.

INPUT

For load modules, the record format is undefined, but the order

in which record types may be processed is limited. For example,

control records are required before the related text record can

be read. All nontext records of load modules are read into the

same buffer. This buffer, the RLD buffer, has the same length

?gszhg zaxgmum length of nontext records processed by the loader
vtes).

The loader allocates a DECB for reading load module text, but no
buffer, because the text is read directly into the loaded
program's assigned area. The loader determines the address to
receive the text during module processing. At the time a text
record is read, the following record is also read, because that
record is always nontext.

PRIMARY_INPUT PROCESSING

After determining the current record type, the loader performs
one of the following types of processing for the primary input
(object and/or load modules from the SYSLIN data set):

] External symbol dictionary (ESD) processing

o Text record processing

. Relocation dictionary (RLD) processing

. Address constant relocation processing

U End processing (including end of module and END card)

. MOD record processing

If an invalid record type is encountered, a diagnostic message
is issued. In addition, if an internal input data area is being
processed, the end—-of-concatenation and end-of-file switches are
set on so that no further input will be processed.

Figure 9 shows the differences in processing for object and load
modules. Input module processing for object and load modules is

shown in "Diagram Dl. Object Module Processing™ on page 51 and
"Diagram D2. Load Module Processing™ on page 52 respectively.

Type of

Processing | Object Module : Load Module .

ESD 1. Input is an ESD record. 1. Input is a CESD record.

2. The loader performs preliminary 2. The loader performs
processing for NULL, PC, and LD preliminary processing for
entries. SD, LR, PC, and NULL

entries.

Text The loader processes text from the After processing the entire
object module buffer one ID at a ID/length list, the loader reads
time. load module text directly into

the loaded program's storage
area.

RLD No difference. No difference.

Figure 9 (Part 1 of 2). Object and Load Module Processing Differences

18 MVS/370 Loader Logic LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

contains Restricted Matehials of IBM
Licensed Materials — Property of IBM

Type of

Processing | Object Module Load Module

Relocation No difference. No difference.

End The loader processes the END state- The loader performs
ment for each CSECT, and performs end-of-module processing.
end-of-module processing.

MOD The loader determines the origin of Not processed.

(internal the compiler—-loaded text for the

object module and equates this address

modules with what would normally be the

only) loader-assigned address.

Figure 9 (Part 2 of 2).

Object and Load Module Processing Differences

Load module record types include composite ESD, control, RLD,
control/RLD, text, SYM, IDR and scatter/translation. When the
loader recognizes a SYM, IDR, or scatter/translation record, it
simply ignores that record and requests another control record.
Descriptions of those load module records processed by the
loader follow. (For detailed descriptions, see the record
formats given in the Appendix.)

° CESD: Each of these records contains no more than 15 ESD
entries.? The first 8 bytes give the following control
information for the entries in that record: (1) the ESD ID
of the first entry, (2) the number of bytes occupied by the
entries, and (3) an indication of whether the CESD entries
contain overlay segment numbers, or AMODE and RMODE data.

. Control: These records give control information about the
module text on the following text record. Included are the
related ESD IDs and the lengths of each control section in
the following text record, and an indication of EOM, when
pertinent. The control records also contain a channel
command word (CCW) with the linkage editor-assigned relative
address and total length of the text record. The loader
uses this information to read the text.

. Text: These records contain the control sections with the
instructions and data of the module. A text record can
contain a maximum of 60 control sections.

U RLD: These records contain the RLD entries used to relocate
address constants in the preceding text. When the text
contains a large number of relocatable symbols, the related
RLD entries may require several records.

. Control/RLD: These records combine a control and an RLD
record into one physical block. They contain RLD entries
related to a previous text record, and the control
information for the following text record.

The object module records, ESD, RLD, TXT, and END, contain
information similar to that described previously. In addition,
an internal object module can contain the MOD record. This
record contains control information about the text of the
module, which has already been loaded by a compiler or other
text-generating processor. This information includes the
virtual storage address of the text, the address of the byte
following the estimated or actual end of the text, and optional
extent information. If a MOD record appears as the first record
of an internal object module, all following text records are
ignored until an END statement has been processed.

9 The loader can accept a maximum of 1024 ESD entries per
input module.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 19

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

EXTERNAL SYMBOL DICTIONARY (ESD) PROCESSING (HEWLESD)

The loader processes the input modules' external symbol
dictionary (ESD) records to resolve the symbols used in internal
and external addressing. Resolution ensures that each named
locgtio?oin the text for the loaded program has a unique

symbol.

To resolve symbols, the loader builds its composite ESD (CESD)
from individual ESDs and CESDs in the input. The loader's CESD
entries are created as required during processing of the input
entries. See "Data Areas™ on page 73 for a detailed description
of CESD entries.

Because of ESD processing, the loader's CESD contains only one
entry for each uniquely named text location, regardless of the
number of input ESD entries containing the symbol for that
location.! For a single module, the loader records multiple
ESD entries for a symbol in the translation table.!2 Each entry
in the translation table corresponds to one input ESD entry for
a szm?ol, and contains a pointer to the CESD entry for the
symbol.

A translation table entry has the same position in the table as
the identifying number (ESD ID) of the associated ESD entry.
For example, if an input ESD entry has an ESD ID of three, its
corresponding entry is the third one in the translation table.
Using this relationship, the loader converts input ESD IDs via
the translation table into the appropriate CESD address.

The loader's ESD processing depends on the function of each
input entry. The function of an entry is identified by the type
indication in the entry. Figure 10 gives the function specified
by each type indication. The table also indicates whether a
particular type can occur in object and/or load module external
symbol dictionaries.

When the loader creates a CESD entry, it chains it to others
with the same type indication. Then, in processing each new
input entry, the loader determines, by searching the chains,
whether a CESD entry with the associated symbol already exists.
(The loader only searches those chains for types that could be
related to the current input entry's type.) 1In certain cases,
special preliminary processing is performed to delay or to
bypass the CESD search.

CESD processing is shown in "Diagram D3. ESD Record Processing
(Generalized)™ on page 53 through "Diagram D6. Example of ESD ID
Translation®™ on page 56

10 Names for areas of private code or for external dummy
section displacements need not be unique, because they are
treated in a special way. These are defined by PC and PR
entries, respectively.

11 The only exception involves control sections with identical
names. In this case, two entries, one of which is flagged
"delete, " are kept in the CESD.

12 The loader clears the translation table after processing
each module.

20 MVS/370 Loader Logic LY26-3922-1 & Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

marked "delete™

beginning of an
unnamed CSECT not to
be included in the
loaded program. For
example, a SEGTAB
created by the
linkage editor.

Type Function’ Occurrence Comments
SD (section Defines the Object & load _—
definition) beginning of a named
CSECT.
PC (private code) Defines the Object & load _—
beginning of an
unnamed CSECT.
PC (private code) Defines the Load only The delete

indication means
that the associated
text and RLDs are to
be deleted.

LD (label
definition)

Defines a label by
giving its location
relative to the
beginning of the
CSECT containing the
label.

Object only

The defined label
cannot be referenced
directly because the
LD entry has no ESD
ID. The loader
changes the type to
LR in the CESD
entry.

LR (label
reference)

Defines a label by
giving its location
relative to the
beginning of the
CSECT containing the
label.

Load only

An LR entry contains
an ESD ID and can,
therefore, be
referenced by an RLD
entry.

ER (external
reference)

Refers to a symbol
not defined in the
same module
containing the
reference.

Object & load

CM (common)

Defines a common
area whose virtual
storage address is
assigned during

Object & load

The area may be
named or unnamed. An
unnamed area is
called "blank

entry is to be

‘ignored.

loading. common.®
PR (pseudo Defines a Object & load The external DSECT
register) displacement within defines the area
an external dummy obtained by the
section. loaded program via a
GETMAIN macro
instruction.
NULL Indicates that the Object & load Only one entry for

NULL is made in the
loader's CESD.

WX (weak external
reference)

Defines an external
reference that is
not to be resolved
by automatic library
call.

Object & load

The loader processes
a WX entry as an ER
entry with a "weak
call™ flag.

Figure 10.

LY26-3922-1 ® Copyright IBM Corp. 1972,

ESD Entry Types and Functions

1985

Method of Operation 21

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Preliminary ESD Processing

When the loader processes load modules, it does not necessarily
receive CESD entries in the same order as the linkage editor
assigned the relative addresses. Therefore, no entries for
symbols that define module text locations are processed until
all entries for the module have been received.

The loader delays the processing by placing, on a temporary
chain, the CESD entries it constructs for the SD, LR, and PC
(not marked "delete™) entries. Before chaining an entry, the
loader places the ID and the segment number in the CESD entry.
The entries are chained in the order of their linkage
editor-assigned addresses.

Besides the preliminary processing for load module location
definitions, the loader also determines whether an input entry
type is NULL, PC, LD, LR, or WX. These entries, in both object
and load modules, are handled as follows:

NULL
The loader does not perform a CESD search for NULL entries,
because these entries have no effect on ESD resolution.
When the first NULL entry for a module is recognized, a
CESD entry is created. This CESD entry is cleared and
marked "delete.” (See the CESD entry description in "Data
Areas™ on page 73.) The loader places a pointer to the
entry in the communication area (CMNULCHN) and makes a
translation table entry. (See "Making a Translation Table
Entry™ on page 27.) For all following NULL entries,
processing consists only of making a translation table
entry that refers to the CESD entry pointed to by CMNULCHN.

PC
The loader does not perform a CESD search for PC entries,
because it treats them as unique. For each PC entry, the
loader creates a CESD entry. Processing continues as
described under "No-Match Processing™ for SD entries.

PC "delete"
ﬁsflloader treats PC entries that are marked "delete™ as
s.

LD and LR
LD and LR entries depend on their related section
definitions (SDs). Therefore, before performing the CESD
search, the loader inserts the CESD entry address for the
SD in the LD or LR entry. The address is obtained by
translating the SD ID contained in the LD or LR.

If an object module is the input, it is possible (through
physical rearrangement of an object deck) to receive an LD
before the related SD. The SD's CESD entry address cannot
be placed in the LD until the SD's entry is created.
Whenever this occurs, the LD is placed on a temporary LD
chain. At the end of each input ESD record, the temporary
LD chain is processed to determine whether a required SD
has been received. When the SD associated with an LD has
been received, its CESD entry address is placed into the
LD.b Ihe loader then searches the CESD for a matching
symbol.

The loader treats WX entries as ER entries that are marked
weak call.” The ™weak-call" flag, like the "never-call™
flag, specifies those external references that are not to
be resolved by automatic library call. However, the
following difference arises in match processing: If a WX
entry matches an ER entry in the CESD, the "weak-call®™ flag
is set off. If an ER entry with a "never-call®™ flag
matches an ER entry in the CESD, the flag is left on.

22 WMVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CESD Searching

In general, an input ESD entry requires resolution processing.
The loader does this by searching the CESD for a matching
?Kmbol. To direct the search, the loader uses two tables.

ese are:

o HIERTBLE, which specifies which CESD chains are to be
searched for a particular entry type, and the order in which
the chains are to be searched

° CMTYPCHN, which contains the address of the first entry in
each CESD chain

Figure 11 shows the relationship between the two tables.

The loader determines the type of an input ESD entry and begins
to search the first chain specified by HIERTBLE. (If the type
is LD, the loader performs the search as if it were an LR.) The
symbol from the input entry is compared to the symbol in each
chained entry. If no matching symbol is found and end of chain
is recognized, the next chain specified by HIERTBLE is
searched.3 If no matching symbol is found in any of the
appropriate chains, a CESD entry for the symbol is created and
chained. A translation table entry is also made, if
appropriate. (See "No-Match Processing™ on page 24.) a
matching symbol is found, symbol resolution occurs. (See "Match
Processing™ on page 29.)

HIERTBLE CMTYPCHN
rso 21 ol 5| 3 sD LD ER LR PC ™ PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain
Address | Address | Address | Address | Address | Address | Address | Address
o - N 0 1 2 3 4 5 6 7
ER 0 2 3 5
Notes:
woreso) 2% ° The HIERTBLE entries identify by number the CMTYPCHN entries.
E,::y Type <) For example, zero (0) in the HIERTBLE refers to the SD chain address in CMTYPCHN.
PC - -l -] -
When more than one type chain can be searched for a symbol,
the order is specified by HIERTBLE. For example, if an input
CM 5 2 |10 3 ESD entry is an SD, the HIERTBLE entry specifies that the ER, SD, CM,
and LR chains are to be searched in that order.
PR 6 - - -
Nuee | - - | - -
Order of Type Chain >
Search

Figure 11. Tables Used in the CESD Search

13 HWhenever a new entry on a chain is examined, a pointer to
that entry is stored in the communication area (CMPREVPT).
Should the next entry on the chain be a match, the pointer
at CMPREVPT is used to update the chain.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 23

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

No-Match Prqcessing

When a symbol is received for the first time, the loader
performs processing that depends on the type of the input entry
for the symbol. This always includes the construction of the
CESD entry, which differs by entry type. Except for LD entries,
no-match processing also includes construction of a translation
table entry.

If the user specified the MAP option, the loader formats a map
entry for each symbol (except ERs). See Figure %96 on page 96
for an example of map output. The loader prints the map entries
on the SYSLOUT data set.

Figure 12 summarizes the processing performed for each input

entry type.
Translation

et ey | g, | fms |,
SD X X X

LD X X

LR X X X

ER X X

cml X X

PR1 X X X

Figure 12. No-Match Processing Required for Input Entry Types

Note to Figure 12:

1 Because CM and PR entries are assigned addresses during
final processing, they are also mapped at that time.

MAKING A CESD ENTRY: For each input entry type, the loader
makes a CESD entry. A WX entry type is treated as an ER input
entry type with a "weak-call™ flag. The loader first obtains
the storage required for the entry (22 bytes). Whenever
possible, the loader uses storage previously allocated for CESD
entries that were later freed. (A CESD entry can be freed as a
result of preliminary ESD or of resolution processing.) The
loader chains freed entries together. A pointer to the chain
resides in the communication area at CMESDCHN; the pointer is
updated as the freed entries are used.

If there are no freed CESD entries, the loader allocates storage
for the entry from the highest available processing storage.
(See Figure 13 on page 25.) If the space required for the entry
would exceed available storage, the loading process is
terminated with an error message. The loader makes this
determination by comparing the pointer for the beginning of the
loader's tables (CMLOWTBL) to the overflow pointer that is the
highest address used for the loaded program's text (CMLSTTXT).

24 MVS/370 Loader Logic LY26-3922-1 @)Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CMLOWTBL —>

CMNXTTXT —p

CMHITBL

rd

Communications area

(HEWLDCOM)

High Address

N

Save areas

Input DCB

Output DCB

DECBs and buffers for output

Initial DECBs and buffers for input

Additional buffers and DECBs for input

|

Direction of table and buffer allocations

_‘/"—\
S~ T

Direction of program growth

i

Text already loaded for the current module
CMMODLNG (5 no-length” CSECTS) <

Text already in storage for the program being loaded

CMLSTTXT
/

CMBEGADR

Low Address

CMMAINPT

Notes: CMBEGADR
CMHITBL
CMLOWTBL
CMLSTTXT
CMMODLNG
CMNXTTXT
CMMAINPT

Return parameter list area

= Beginning address of loaded program

= End address of Loader processing storage below the line

= Lowest address allocated for buffers and tables

= Highest address already used for the loaded program's text

= Length of text already loaded for the current module. not including ““no-length” CSECTs
= Lowest address used for the current module

= Beginning address of loaded program space

Figure 13. Storage Allocation

LY26-3922-1 @ Copyright IBM Corp. 1972, 1985

Method of Operation 25

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

After obtaining storage for the CESD entry, the loader stores
descriptive information in the entry. The information stored
depends on the input entry type. Handling of the various entry
types is described below:

sD

The loader moves the symbol from the input entry to the
CESD entry.

The loader then assigns an address to the defined CSECT by
adding the length of all previously defined CSECTs for this
module to the loader-assigned address of the first CSECT in
the module. (In the communication area, the length of all
previously defined CSECTs is found at location CMMODLNG;
the loader-assigned address of the first CSECT, if the
CSECTs are being passed through text records, is found at
CMNXTTXT; and the loader—-assigned address of the first
CSECT, if the CSECTs are being pointed to by MOD records,
is found at location CMCOREl.) For CSECTs pointed to by
MOD records, the resulting address is stored in the CESD
entry for the SD as the loader-assigned address of the
CSECT. For CSECTs passed through text records, however,
the resulting address is compared to the overflow
pointer—the beginning address of the loader tables
(CMLOWTBL). If there is no more unused storage, the
loading process is terminated with an error message.
Otherwise, the resulting address is stored in the CESD
gg§E¥ for the SD as the loader-assigned address of the

Next, the loader clears the CESD flag field, except for the
entry's type indication, and computes the relocation
constant. The relocation constant is computed by
subtracting the input address (specified by the input SD
entry) from the loader-assigned address. The loader stores
the relocation constant in the CESD entry.

If the option to specify the entry point name for the
loaded program was used, the loader determines whether the
SD with that name has already been received. If not, the
loader compares that name to the symbol for the currently
defined CSECT (the symbol in the CESD entry). If the names
are the same, the loader-assigned address is stored as the
entry point address in CMEPALDR.

For an SD entry, the loader determines whether the CSECT
length specified in the input entry equals 0. If so, the
loader sets the "no length"™ indicators in the communication
area and in the CESD entry itself. If the length is
positive, it is added to CMMODLNG to calculate the next
CSECT address. If the MAP indicator is on, the MAP entry
is made for the SD.

Finally, the loader puts the CESD entry on the SD chain
pointed to in the CMTYPCHN table. Chaining consists of
storing the pointer to the last SD entry (found in
CMTYPCHN) in the current CESD entry's chain pointer. Then
the address of this entry becomes the current pointer in
CMTYPCHN. After chaining the entry, a translation table
entry is made.

LD or LR

The loader processes input LD entries in the same manner as
input LR entries. The name from the input entry is moved

" to the CESD entry. Then the loader-assigned address for

26 MVS/370 Loader Logic

the defined label is determined by adding the relocation
constant (found in the CESD entry for the related SD) to
the input address of the LD or LR entry. If the
instructions and data for the module have been passed
through text records, and if the loader-assigned address
exceeds available storage, the loading process is
terminated with an error message. Otherwise, the address
is stored in the CESD entry.

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The loader sets the type indication in the CESD entry to
LR. Finally, the relocation constant is computed. This
value equals the loader-assigned address minus the input
relative address. The relocation constant also is stored
in the CESD. If the related SD entry was marked "delete,®
the loader makes an ER entry instead of an LR, and sets the
fdelink® flag in the entry to signify that all adcons
referring to it should be adjusted.

CcM
To make a CM entry, the loader uses two separately obtained
20-byte areas. The first area obtained is used as an
extension to the CM entry. In this portion, the loader
stores the length and the address assigned to the common
area in the input. Then the loader obtains the second
20-byte area and stores in it the name for the common area
and the entry's type indication. (This area is the one
pointed to by the translation table and the CM chain.) The
loader clears 3 bytes in the entry to be used as a pointer
to related ERs, and sets a pointer in it to the extended
portion of the CM entry. Finally, a translation table
entry is made.

PR
For a PR entry, the loader moves the information describing
the external DSECT from the input entry to the CESD entry.
The 3-byte field to be used as a pointer to the related
RLDs is cleared, and the entry is chained to the other PR
entries. (PRs are chained according to their order in the
input.) For a DSECT displacement definition, a translation
table entry is also required.

ER .
. For an ER entry, the loader moves the name and type from
the input entry to the CESD entry. If the input ER entry
is marked "never call,"™ the loader sets the "never-call®
indication in the CESD entry. If the input ER entry is
marked "™weak call,® the loader similarly sets the
Myeak-call” indication. The loader then chains the ER
entry to the other ERs and makes a translation table entry.

MAKING A TRANSLATION TABLE ENTRY: The loader uses the
translation control table to direct building of the translation
table.% The translation control table consists of 32 fullword
entries beginning at location CMTRCTRL in the communication
area. Each entry is a pointer to a possible 32-entry extent to
be allocated for the translation table. The loader allocates
th: extents as required, depending on the number of incoming ESD
entries.

The entries of one extent correspond to consecutive ESD IDs in a
single module. For example, the entries of the first extent
correspond to ESD IDs from 1 to 31; those of the second extent
correspond to IDs 32 to 63; and so forth. (Because the initial
G bytes are used for indexing purposes, the first extent
contains only 31 translation table entries.) Thus, the position
designated for creation of a particular translation table entry
depends on the ESD ID of the associated input entry.

Figure 14 shows an illustration of the translation control table
and the translation table.

To make a translation table entry, the loader first determines
whether the input ID is valid. ("Diagram D6. Example of ESD ID
Translation™ on page 56, reference (A).) If an ID is not valid,
an error message is printed and loading continues with the next
input ESD entry. An ID is not valid if it is less than 1 or
greater than 1023.

14 For each input module, the loader reinitializes the
translation table.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 27

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CMTRCTRL

0

)
£C
1)

¢
)]

Extent # 1

£
T

Y

TRANSLATION CONTROL TABLE

Figure 14.

32

33

34

{ ¢
1)

gt

LR)

Extent ¥ 2

TRANSLATION
TABLE EXTENTS

Translation Control Table and Translation Table

28 MVS/370 Loader Logic

If an ID is valid, the loader then determines, by examining the
translation control table, whether the extent for this ID has
been allocated. If not, the loader allocates an area for
thirty-two G-byte entries, and stores the beginning address of
the area in the translation control table entry for this extent.
The area is allocated from the highest available storage in the
loader's table and buffer space. If not enough loader ,
processing storage remains to make the allocation, loading is
terminated with an error message.

After the extent allocation has occurred, the loader clears the
extent. The loader then calculates the entry address in the
extent for this ID. The address of the CESD entry related to
the input entry ID is stored in the translation table entry.

If the CESD entry is an ER, the loader sets the high-order bit
of the first byte of the translation table entry to 1. (This
indicates absolute relocation.)

Figure 15 on page 29 shows the overall relationship of tables
used in ESD processing.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Translation Control Table
(CMTRCTRL)

CESD Control Table

/

(CMTYPCHN)
sD LD ER LR PC CM PR NULL
chain | chain=0 cham chain =0 | chain =0 | chain=0 | chain | chain=0
= 1
0 0
1 64 CESD entry for last CESD entry for last
2 — =~ SD received unresolved ER received
E \
. | {so] | [er | | CESD entry for last
32 PR received
o] e ,]
SD CESD enh‘y ER CESD entry \
31 . 0| [sp] [o] [er|
Extent | ~<| /' RLD ent
. ~ - -~
. 95 ~Ne~——— T
63 Extent 3
Extent 2 RLD entry RLD entry
Three Extents of the CESD entry for first
Translation Table PR received
[T In =]
RLD entry
RLD entry
Figure 15. Overall Relationship of Tables

Match Processing

If the loader finds a match for an input symbol during the CESD

search, the loader performs symbol resolution.
the loader ensures that each named location within
the text of the loaded program has a unique symbol.25

resolution,

Through
Also, all

references to a named location are set to the correct
loader-assigned virtual storage address.

If two named locations have the same symbol, only one of them

can be retained for the loaded program.

which is retained on
rules used in symbol

If the entry already

SD, it
LR, it
cM, it
ER, it

always
always

is
is
is
is

15 This does
unique.
LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

the basis of ESD entry type.
resolution follow.

in the CESD has type:

retained.
retained.
retained, except when the input type is SD.
always changed to the input type.

The loader determines
The general

not refer to PC AND PR names, which need not be

Method of Operation 29

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

If two entries have matching symbols and have types that
indicate they should be retained, the loader retains the first
entry received.

Figure 16 gives a summary of symbol resolution.

Input Type CESD Type Result
SD ER SD
SD SD
CM SD
LR LR
CM CM CM
ER CM
SD SD
LR LR?
LD/LR ER LR
LR LR
SD sD2
CM CM2
ER SD SD
ER ER
LR LR
CcM CM

Figure 16. Symbol Resolution

Notes to Figure 16:

1

2

Match results in an error.

Match results in an error if the SD for the LD/LR is not
marked "delete.®

INPUT ENTRY TYPE IS SD:

CESD

CESD

30 MVS/370 Loader Logic

type is ER

The loader changes the ER entry in the CESD to an SD entry.
The entry is made as described under "No-Match Processing™
for an SD entry. This includes: chaining the entry to
other SDs, updating the cumulative length of the loaded
program, determining whether this is the loaded program's
entry point name, mapping the entry, and making a
translation table entry. If RLDs were chained to the ER
entry, they are relocated as described under "Relocation
Processing." Also, the loader takes the entry off the ER
chain, using the pointer to the previous entry on the chain
(CMPREVPT). If there are no previous entries, the loader
sets the ER entry in the type chain table (CMTYPCHN) to 0.

type is SD :

If the original SD is not flagged Mdelete,® the loader
obtains space for another CESD entry and moves the name and
loader-assigned address of the original entry into the new
one. The relocation constant is then computed by
subtracting the input address from the loader-assigned
address. A "delete™ indicator is set to show that text and
RLDs related to the current input SD should be deleted. If
the text for the CSECT has been pointed to by a MOD record
rather than having been passed through text records, the
text cannot be deleted and, thus, the cumulative module
length (CMMODLNG) is updated to include this CSECT.
Finally, the entry is chained to existing SD entries and a
translation table entry is made. If the original SD is
flagged "delete,™ the original entry is used.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CESD

CESD

type is CM

The loader changes the existing CM entry to an SD. Because
the extended portion of the CM entry is no longer needed,
the loader chains it to the freed CESD entries (pointed to
by CMESDCHN). First, however, the loader obtains the
length of the common area from the extended portion. For
the SD entry, the loader retains the greater between this
length and the one specified in the input SD. To change
the CM entry to an SD, the loader performs the same
processing described above for the SD-ER match.

type is LR

The loader sets the "delete™ indicator in the CESD entry so
the text associated with the input SD will not be loaded.
The relocation constant is updated to reflect the
difference between the relative address in the input entry
and the loader-assigned address in the CESD entry. The
loader makes a translation table entry referring to the
existing LR entry in the CESD.

INPUT ENTRY TYPE IS CM:

CESD

CESD

CESD

CESD

type is CM

The loader determines the greater of the length in the
extended portion of the CESD entry and the length specified
in the input CM. This greater length is retained in the
CESD entry. The loader stores the new input address in the
extended portion of the CM entry. A translation table
entry is also made.

type is ER

To change an ER entry to a CM, the loader obtains a 22-byte
area for the extended portion and chains it to the existing
entry. The loader stores the type, address, and length
from the input entry in the extended portion of the CESD
entry. The CM type indication is set, and the entry is
unchained from the ERs. The loader chains the entry to the
other CMs and makes a translation table entry.

type is SD

The relocation factor in the CESD entry is updated to
reflect the CM relative address, and a translation table
entry is made.

type is LR

The loader issues an error message for matching symbols
with conflicting types. Nevertheless, the relocation
constant is updated and a translation table entry is made.

INPUT ENTRY TYPE IS LD OR LR: With one exception, LD and LR
entries are processed in the same way. The difference is that,
because an LD entry has no ESD ID, the loader does not make a
translation table entry for an LD.

CESD

type is ER

The loader changes the ER entry to an LR. The loader
assigns a virtual storage address for the symbol by adding
the relocation constant from the related SD entry to the
relative address in the input LR. Next, the loader
calculates the relocation constant by subtracting the input
address from the loader-assigned address. Both the
relocation constant and the loader-assigned address are
stored in the LR entry in the CESD. Any RLDs that were
chained to the ER entry are relocated. The loader checks
the LR name for the user-specified entry point and makes a
MAP entry if mapping is required. Then, the loader takes
the CESD entry off the ER chain and chains it to the LR
chain. If the input entry was an LD, no translation table
entry is made. Otherwise, the loader makes a translation
table entry.

CESD type is LR

LY26-3922-1 ® Copyright

If the SD entry pointed to by the LR is not marked
"delete," the loader issues an error message for matching

IBM Corp. 1972, 1985 Method of Operation 31

Contains Restricted Matebials of IBM
Licensed Materials — Property of IBM

symbols with conflicting types. In any case, the loader
updates the relocation constant in the existing CESD entry.
The loader makes a translation table entry referring to the
LR in the CESD if the input entry was an LR from a load
module. If not, a translation table entry is required.

CESD type is SD
Processing is the same as that described above for an
LD/LR-LR match.

CESD type is CM
The loader saves the input address in the extended portion
of the CM entry. The loader makes a translation table
entry only if the input entry was an LR from a load module.
If the SD pointed to by the LR entry is not marked
"delete,™ the loader issues an error message for matching
symbols with conflicting types.

INPUT ENTRY TYPE IS ER: Whenever the loader makes a translation
table entry for an input ER, it sets an indicator for later use.
(The indicator signifies during RLD processing that the
loader-assigned address is to be used for relocation of any RLDs
with this ID.)

CESD type is SD
The loader makes a translation table entry referring to the
SD entry.

CESD type is ER
If the input ER is marked "never call," the loader also
sets the "never-call™ indicator in the CESD entry. If the
Mdelink®™ indicator is on, the loader sets the indicator
off. In any case, a translation table entry is made
referring to the ER entry in the CESD. If either ER is
marked "weak call," the "weak-call" flag is set off. If
both ERs are marked "weak call,™ the flag is left on.

CESD type is LR
The loader makes a translation table entry referring to the
LR entry.

CESD type is CM
The loader sets the input address in the extended portion
of the CM entry to zero, and makes a translation table
entry referring to the CM entry.

INPUT ENTRY TYPE IS PR: A PR entry can only be matched to

" another PR entry. HWhen two of these definitions of external
DSECT displacements have matching symbols, the loader sets the
existing CESD entry to specify the greater of the two given
displacement lengths. The loader also determines the most
restrictive boundary alignment specified in the two PR entries.
(For example, doubleword alignment is more restrictive than
fullword.) The PR entry in the CESD is changed, if necessary,
to specify this alignment.

TEXT RECORD PROCESSING

Text record processing consists of loading those CSECTs required
for the loaded program into their assigned locations. The
loader determines whether a CSECT is to be retained or deleted
by examining the CESD entry for that CSECT's ID. The
translation table is used to obtain the CESD entry.

The way the loader processes text records depends on whether the
current input is an object or a load module. If the input is an
object module, the loader reads all the records for the module,
including text, into virtual-storage buffer areas and then
processes each record in turn. For load modules, the loader
uses the information in the text control records to process the
text before reading it into its assigned storage.

32 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Ccontains Restricted Materials of IBM
Licensed Materials - Property of IBM

Processing Object Module Text (HEWLTXT)

When a text record is recognized during processing of an object
module, the ID contained in the record is translated into a CESD
entry address. The loader translates the ID by first ensuring
that the ID is valid, and then using the translation control
table to obtain the corresponding translation table entry.

The translation procedure is the same as used prior to
allocating a translation table extent. (See "Making a
Translation Table Entry.")

In processing text, the loader considers an ID invalid if no
translation table entry exists for it. Thus, an ID between the
allowable limits of 1 and 1023 is invalid if it was not received
during ESD processing. For any invalid ID, the loader issues an
error message and then tries to process the next record.

(Object module text processing is shown in "Diagram D7. Object
Module Text Processing™ on page 57.)

(A) If a translation table entry does exist for an ID, the
entry contains the address of the CESD entry for the related
text. The loader determines whether the CESD entry is marked
fdelete.™ If it is, the loader skips the text record and tries
to process the next record.

(B) If the CESD entry is not marked "delete," the loader sets
an indicator to show that some text has been received for this
module. If the "no length® indicator in the CESD entry has been
set on, an indicator is set in the communication area to show
that text has been received for a "no length™ CSECT. The loader
then calculates the address for this text in the loaded
program's virtual-storage area. The address equals the
displacement of the text from the beginning of the input, added
to the relocation constant contained in the CESD entry.

(C) Next, the loader checks whether the text would exceed
available storage by adding the length of the text to the
assigned virtual-storage address. The resulting end address for
the text is compared to the overflow pointer—the beginning
address of the loader tables (CMLOWTBL). If the text would
overlap, loading is abnormally terminated.

If there is sufficient unused storage for the text, the loader
moves the text from the buffer area to the assigned address in
the loaded program's area. Finally, the loader updates the
pointer to the highest address used for the loaded program's
text (CMLSTTXT).

Processing Preloaded Text (HEWLMOD)

If a SYSLIN data area consisting of internal object modules is
passed to the loader, one MOD record may be substituted for all
text records within a module. Upon encountering a MOD record,
the loader checks that an internal object module is being
processed, that no ESD records have been received for the
module, and that some control information is contained in the
MOD record. If any of these conditions is not met, the record
is ignored. Otherwise, indicators are set to show that a MOD
record and text have been received for the module. If the
origin of the first CSECT is specified, it is saved in the
communication area at location CMCOREl. Similarly, the address
of the byte following the estimated or actual end of the text is
saved at location CMCOREZ2.

Extent information, used by the identification routine
(HEWLIDEN), is saved in chained entries pointed to by location
CMXLCHN in the communication area. These entries contain the
address and length of the extent, and a pointer to the next
entry in the chain. The number of extents is saved at location
CMNUMXS in the communication area. Later, the identification
routine uses these entries to build a parameter list for the
IDENTIFY macro instruction.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 33

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Finally, the address of the first extent is saved as the default
entry point of the program if the entry point has not previously
been defined.

Processing Load Module Text (LMTXT)

The loader uses the text control (or control/RLD) record to
process load module text. The control record contains an
ID/length list with an entry for each CSECT in the following
text record. By processing the IDs consecutively, the loader
determines which CSECTs from the record are to be retained as
part of the loaded program.

Load module text processing is shown in ™Diagram D8. Load Module
Text Processing™ on page 58.

PROCESSING THE ID/LENGTH LIST: The loader obtains each ID in
turn from the list and attempts to translate each one, via the
translation control and translation tables, to a CESD entry
address. If the loader determines during translation that an ID
is invalid, the loader skips over the record. If there are more
rego;ds in the module, the loader continues processing the
module.

If the translation of the ID is successful, the loader checks
for the "delete™ flag in the CESD entry (obtained by the
translation). If the entry is marked "delete,"™ the loader adds
the length from the ID/length list entry to the sum of the
lengths of any immediately preceding CSECTs to be deleted.

The accumulated sum is used to truncate the text record when
CSECTs at the end of the record are to be deleted. Therefore,
only the sum of those consecutive CSECTs to be deleted at the
end of the record is used. To accomplish this, the loader
reinitializes the sum of these lengths to zero whenever a
following CSECT is to be retained. (CSECTs to be deleted can be
scattered throughout a text record.)

If the CESD entry for a text ID is not marked "delete,® the
loader determines whether the current CSECT is the first one to
be retained from the text record. If it is, the loader saves
the relative relocation constant from the related CESD entry.
(After completely processing the ID/length list, the loader uses
this relocation constant to calculate the proper main storage
address for reading the text record.) After saving the
relocation constant, the loader sets an indicator to show that
at least one CSECT from this record is to be retained, and that
its relocation constant has been saved. (Only one relocation
constant per control record is used, because the text record is
read in as a whole.)

Each time the loader recognizes a CSECT to be retained, it
updates the pointer to the last address used for text (CMLSTTXT)
3§L§$$§?9 the length of the CSECT to the previous value of

READING THE TEXT: After processing all IDs in the ID/length
list, the loader prepares to read the text into

Ttozage——directly into the load program's storage area. The
oader:

J Adds the relocation constant and beginning delete length to
the CCH address from the text control record to obtain the
loadegga?signed address of the text. (See Figure 17 on
page .

JJ Subtracts the sum of the lengths of consecutive deleted

CSECTs at the end of the text record from the text length in
the control record to obtain the actual read count.

36 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

High Address
CSECT | CSECT CSECT
A B c .
>~ | N
T T Input Text Record
CSECT C
CSECT '
loader - Assigned CSECT A
Address of —p-|
CSECTC CSECT B
CSECT A
Low Address
Loaded Program Text Storage
Note:

CSECT A* and CSECT B' are to be deleted.

The text read address is, therefore, the Loader-assigned address of CSECT C.
During later text processing, the Loader moves CSECT C to its proper location
over CSECT A* and CSECT B'.

Figure 17.

Loading the Text from a Load Module Record

. Adds the read count to the loader-assigned address to
determine whether sufficient unused storage remains for the
text. If not, an error message is issued and loading is
terminated.

U Determines whether the text record is the last record in the
module by examining the control record's type.

If the record is not the last, the loader determines whether any
CSECTs from the record are to be deleted. If not, the text
record and the following control record are read. (The control
record is read into the RLD buffer.)

If the text record is the last in the module, or if any CSECTs
from the record are to be deleted, the loader reads in only the
text record. If an end-of-file occurs, the loader terminates
module-text processing and issues an error message; then the
loader goes to end-of-module processing.

CHECKING CSECT STORAGE ADDRESSES: If CSECTs to be deleted were
scattered among the CSECTs to be retained, the loader deletes
tgese scattered CSECTs after the text has been read into
siorage.

The loader ensures that each CSECT is in the location determined
during ESD processing. To do this, the loader again translates
each ID in the ID/length list to obtain the related CESD entry.

If a CESD entry for an ID is marked "delete,” the loader
continues translating successive IDs until one is not marked
"delete.” The loader determines whether the related CSECT is in
the correct place by comparing its current address to the
loader-assigned address found in the CESD entry. If the text is
correctly placed, the loader continues to translate IDs.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 35

Contains Restricted Materiéls of IBM
Licensed Materials — Property of IBM

If a CSECT is in the wrong place, the CSECT is moved to the
loader-assigned address. Before checking the next ID in the
ID/length list, the address of the current CSECT is updated by
the length of the current CSECT to get the current address of
the next CSECT. MWhen all CSECTs are in the correct location,
the loader continues processing the module with the next record.

Next, the loader determines whether a control record was read at
the same time as the text record. If so, the loader continues
processing the module with that control record. Otherwise, the
end of the module has been reached, and the loader goes to
end-of-module processing.

RELOCATION DICTIONARY (RLD) PROCESSING (HEWLRLD)

Processing of relocation dictionary records consists of building
the loader's RLD table from information in the input RLD
records. RLD record processing is the same for object and load
module input. (Relocation of adcons is performed as the RLD is
e:counte;ed, unless the referenced CSECT is not in virtual
storage.

RLD record processing is shown in "Diagram D9. RLD Record
Processing™ on page 59

To build the RLD table, the loader tests the R and P pointers of
the entries in an RLD record for validity.l® These pointers
consist of ESD IDs describing an address constant. The P
pointer gives the ESD ID of the control section containing the
address constant; the R pointer gives the ESD ID of the symbol
referred to by the address constant.

Because the pointers are IDs, they are valid if translation

vields the address for the ID to a CESD entry. If an invalid ID

is received, the loader issues an error message and continues

gLD yegord processing with the next entry having different R and
pointers.

The loader first translates the P pointer. If the CESD entry
for that ID is marked "delete,"™ the loader skips all RLD entries

with the same R and P pointers. If the CESD entry is not marked
"delete.” the loader checks the validity of the R pointer,
:nleﬁs the RLD entry is for a cumulative pseudo register (CXD
ype).

(A) After ensuring that the RLD pointers are valid, the loader
makes an RLD table entry for the input entry. (The loader uses
the storage from a freed RLD entry, if possible. Otherwise,
siorage ;or the entry is obtained from the highest available
storage.

The loader stores, in the RLD table entry, the loader—assigned
address of the address constant. The address is obtained by
adding the relocation constant from the CESD entry identified by
the P pointer to the value found in the address field of the
input RLD entry. (If the RLD is for a cumulative external DSECT
displacement, it is chained from location CMCXDPT in the loader
communication area; the next RLD entry is then processed.) The
loader moves the flag field from the input entry to the RLD
table. If the translation table entry indicates that an ER
entry is referred to by the R pointer, the loader sets an
indicator in the RLD table for absolute relocation.

16 RLD entries for adcons referring to a cumulative pseudo
register are only tested for a valid P pointer, because the
R pointer is always zero (CXD-type RLD).

36 MVS/370 Loader Logic LY26~3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

After completing the RLD table entry, the loader determines
whether relocation is possible by determining the type of the
CESD entry. Processing for the CESD entry types is as follows:

SD, PC, LR
” "The loader clears the chain field of the RLD table entry
and relocates the address constant. (See "Relocating
Address Constants.")

CM, ER created from LR
The loader delinks the RLD entry. That is, it subtracts
the input address of the CM or ER from the value in the
address constant. The RLD entry is then chained to the CM
or ER entry for later relocation after the loader-assigned
address is defined.

PR, ER
' The RLD table entry is chained to the related CESD entry
when the address for the CESD symbol is assigned. (See
"Match Processing.™)

(B) After processing an RLD entry, the loader continues
processing the entries in the RLD record until the end of the
record is reached. If the R and P pointers for the next entry
are the same as for the current entry, the loader does not
recheck them for validity. Instead, the RLD table entry is made
directly. If the pointers for the next entry are different, the
loader performs the validity check.

RELOCATING ADDRESS CONSTANTS (HEWLERTN)

Address constant relocation is the replacement of an address
constant in the text of the loaded program with the actual
virtual-storage address. MWhenever possible, the loader
relocates adcons as it encounters their RLD entries.

The loader processes three types of relocatable address
constants:

. A-type constants, used to reference a location in the same
CSECT as the constant

. V-type constants, used to reference a location in a
different CSECT

. Q-type constants, used to reference a displacement in an
external dummy section

In general, the virtual storage address equivalent of an address
constant is calculated by combining either the relative or the
absolute relocation constant with the input value of the address
constant.!? The relative relocation constant is the difference
between the loader-assigned address and the input address of the
referenced location. The absolute relocation constant is simply
the loader-assigned virtual-storage address of the referenced
location. Figure 18 on page 38 relates the types of relocation
constants, and of address constants, to the types of relocation.

17 The loader does not compute the absolute addresses for PRs
or CMs until all the text has been loaded.

LY26-3922~1 @ Copyright IBM Corp. 1972, 1985 Method of Operation 37

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Type of
Rglocation

Relocation Constant
Usage

Type of Address
Caonstant

Comments

Absolute
Relocation

Absolute relocation
constant replaces
adcon value

V(symbol) where
symbol is not a
PR in CESD

Displacements are not valid
in V-type address constants.

Relative
Relocation

Relative relocation
constant is added
to or subtracted
from adcon value

A(symbol) where
symbol is not an
ER or PR in CESD

Addition or subtraction is
specified by indicators in
RLD flag field. Also see
comment below for Delinking.

Relative
Relocation

Absolute relocation
constant is added
to or subtracted
from adcon value

A(symbol) where
symbol is ER in
CESD

Addition or subtraction is
specified by indicators in
RLD flag field.

Pseudo
Register
Relocation

Pseudo register
displacement
constant is moved
in

Q(symbol) where
symbol is PR in
CESD

Delinking

Input address of CM
or LR/LD CESD entry
is subtracted from
value

A(symbol) where
symbol is CM or
ER created from
LR/LD

The relocation of address
constants pointing to CM
CESD entries is a
combination of (1) delinking
and subsequent (2) relative
relocation with the absolute
relocation constant.

Figure 18.

38 MVS/370 Loader Logic

Relocation of Address Constants

Note to Figure 18:

Absolute relocation constant = loader-assigned address
Relative relocation constant = loader-assigned address minus the
input address

When the loader resolves a CESD entry (for example, a CESD ER
matched with an SD), it relocates all address constants
referring to the name. These are pointed to by RLD table
entries chained from the CESD entry. The loader processes each
RLD entry in the following way.

First, the loader ensures that the address constant is not an
invalid 2-byte adcon. (Two-byte adcons can only be used to
define external DSECT displacements.) If the adcon is invalid,
the loader issues an error message and continues loading the
program. Otherwise, the loader moves the adcon from the text to
a work 3rea, where it determines the type of relocation
required.

If the RLD entry indicates absolute relocation, the loader
places the absolute relocation constant at the text address.
The RLD entry is placed on the chain of freed RLD table entries
(CMRLDCHN), and the next entry on the chain is processed. When
the end of the RLD chain has been reached, the loader continues
its processing.

If the RLD entry indicates relative relocation, the loader also
determines the type of relocation constant required. If the
location referenced by the adcon is an external reference, the
loader uses the absolute relocation constant. Otherwise, the
loader uses the relative relocation constant. The loader tests
the RLD entry to determine whether the relocation constant
should be added to or subtracted from the input value of the
address constant. After calculating the adcon value, the loader
moves it back to the text. Finally, the loader frees the RLD
entry and continues resolution.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted

Materials of IBM

Licensed Materials — Property of IBM

END PROCESSING

END Card Processing

If the RLD entry indicates delinking for a CM entry or for an LR
entry converted to an ER, the loader subtracts the input address
of common or of the LR from the value of the adcon. The result
is a reference to a displacement in the common area or input
module. When these entries are resolved (that is, CM address
assigned or ER matched), absolute or relative relocation occurs.

If the RLD entry indicates a PR reference, the loader performs
absolute relocation as described above.

End processing includes END card processing for object module
CSSCIS, and end-of-module processing for object and load
modules.

The loader processes object module END cards for the length of
the CSECT and for loaded program entry point definition. (Also,
when an END card is recognized, the loader issues messages for
any remaining LD entries for which no SD entry has been
received.) In setting the length of the current CSECT, the
loader determines whether the CSECT is a "no-length™ CSECT. 1If
it is, the loader uses the larger of the END card length and the
length specified by the CESD SD entry as the CSECT length.1® If
the END card of a "no-length™ CSECT does not specify a length,
and text has been received for the CSECT, the loader issues an
error message. (In this case, the length of the text is used.)

The loader determines whether the loaded program's entry point
name or address has already been received. If it has, the
loader does not process the END card for entry point. If not,
the loader examines the END card for an ID to be used for the
entry point. If an ID is present, the loader sets the entry
point address to the address specified by the END card, or to 0
if the END card specifies no address. The loader translates the
ID to a CESD entry address and saves the CESD address in
location CMEPCESD. (If there is no CESD entry for the ID, an
invalid-ID message is issued.) The loader creates an RLD entry
for the entry point (at CMEPNAME). This entry is not treated as
a regular RLD.

If the END card does not specify an ID but does give a symbolic
name to be used as the entry point, the loader saves the name at
location CMEPNAME. If there is an SD or LR entry with that name
in the CESD, the loader uses the address specified as the
program entry point address.

End-of-Module Processing .

At end of module for a load or object module, the loader
initializes the next input module for processing. If text has
been passed through text records, the loader updates the text
pointers, CMLSTTXT and CMNXTTXT, by the module length or, if no
length was given, to the address of the last text received
(rounded to doubleword value). Then, the loader determines
whether the available storage has been exceeded. If so, an
error message is issued, and loading is terminated. Otherwise,
the loader clears the translation table and the module length
counter (CMMODLNG). All flags except the END and LIB flags are
set off. The loader either begins processing another module
from SYSLIN or, if end of file on SYSLIN is recognized, goes to
process any secondary input.

18 A "no-length®™ CSECT's SD can be matched by a CM entry, which
defines an area larger than the CSECT.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 39

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

COND.) OCESSING (HEWAC

After the loader has processed all primary input, it attempts to

resolve remaining ERs in the CESD if CALL was specified. If

there are no remaining ERs, the loader performs final processing

;or the %gaded program. (See "Final Processing for the Loaded
rogram.

The loader can resolve ERs from the link pack area and/or the
SYSLIB data set. If the link pack area is available for
resolution, and the RES option is specified, the loader searches
the contents directory entry queue for the ERs before attempting
to resolve them from SYSLIB.

Secondary input processing is shown in "Diagram El. Secondary
Input Processing™ on page 60.

RESOLVING ERS FROM THE LINK PACK AREA

The loader obtains the address of the link pack area directory
search routine from the communication vector table (CVT). It
then searches the ER chain for an ER that is not marked "™never
call®™ or "weak call.™ (A) When one is found, the name in the ER
is passed to the LPA directory search routine. If the directory
search routine does not find a match for the name, the loader
searches for the next ER that is not marked "never call® or
"weak call.”

If the directory search routine finds a match for the name, the
loader puts the entry point in the CESD entry and changes the
entry's type to SD. The loader then takes the entry off the ER
chain, puts it on the SD chain, and makes a map entry for the SD
if MAP is specified. Finally, the loader relocates all RLD
table entries that are chained to the CESD entry.

The loader then searches for the next ER that is not marked
"never call" or "weak call.™

This search is repeated until the entire ER chain has been
processed.

If there are still unresolved ERs after resolution from the link
pack area, the loader performs library call processing.
Otherwise, the loader performs final processing for the loaded
program. (See "Final Processing for the Loaded Program."Y)

RESOLVING ERS FROM THE SYSLIB DATA SET

Before resolving ERs from the SYSLIB data set, the loader checks
whether an open SYSLIB data set has been passed. (The fourth
entry in the DCB list, which is passed to the loader as
parameter, can point to an open SYSLIB DCB.) If an open SYSLIB
DCB has been passed to the loader, the exit addresses in the
passed SYSLIB DCB are saved in the communication area and
replaced by the loader's own exit routine addresses. If a
SYSLIg ?EB has not been passed, a SYSLIB DCB is initialized and
opened.

(B) Otherwise, the loader constructs two lists used for BLDL
information in the available storage. The available storage is
defined by CMLOWTBL (the lowest address used by the loader
tables and buffers) and CMLSTTXT (the highest address used by
the loaded program's text). The two lists are the BLDL list and
an address list. The loader uses the address list to store
pointers to the ER entries in the CESD for which it constructs
BLDL entries. The entries in the two lists have a one-to-one

19 If the loader has opened a SYSLIN data set, the loader
g#gf§§ it before opening SYSLIB and reuses the DCB for

40 MVS/370 Loader Llogic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

correspondence relative to the ER entries. Figure 19 on page 42
shows this relationship.

Before constructing the lists, the loader determines the maximum
number of entries possible by dividing the amount of available
storage by the number of bytes required for an entry in the two
lists (BLDL list entry size=16, address list entry size=4).
Then, for each ER that is not marked "never call™ or "weak
call,” the loader makes an entry in the BLDL list, including the
name specified by the ER and the address of the ER.

After building the BLDL list, ‘the loader constructs the address
list by moving the pointers to the ERs from the BLDL list. This
preserves the pointers, which are overlaid in the BLDL list
during BLDL operation.

Finally, the loader issues the BLDL macro instruction. If an
I/0 error occurs during execution of the BLDL, the loader logs
the error and performs final processing for the loaded program.

(C) Otherwise, the loader moves the relative track addresses
(TTRs) returned in the BLDL list to the associated CESD entries.
Each CESD entry for which a TTR was returned is marked to
indicate that it contains an auxiliary storage address.

The loader issues a FIND macro instruction for each ER entry
marked "TTR received.” The loader processes each module located
in the same way as it processes primary input modules.

Because SYSLIB contains only load modules or only object
modules, processing for each module located is the same. If
SYSLIB contains object modules, the loader first primes the
buffers and then performs object module processing. If SYSLIB
contains load modules, the loader performs load module
processing. See "Primary Input Processing.?

The loader resolves as many ERs from SYSLIB as possible. It
then performs final processing for the loaded program. (If
during processing of one or these modules a program size error
occurs, the loading procedure is terminated with an error
message.)

INA OCESSING FOR OAD 06!

After all possible ERs have been resolved, the loader performs
the following for the loaded program:

. Assigns addresses for common areas

° Assigns addresses for displacement in the external DSECT
(pseudo registers)

. Issues messages for all unresolved ERs
L Finds the address of the program's entry point

. Builds a condensed symbol table if the loader is operating
in time-sharing mode

. Identifies the loaded program to the system, unless the
processing portion of the loader was directly invoked by the
name HEWLOADR

. Writes out the diagnostic message dictionary

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Method of Operation 41

ASSIGNING ADDRESSES

ASSIGNING ADDRESSES

Contains Restricted Materials of IBM
Licensed Materials — Prcperty of IBM

FOR COMMON AREAS (COMMON)

The loader assigns addresses for the loaded program's common
areas by processing entries on the CESD CM chain.

For each CM entry, the loader assigns the next available storage
address above the text of the loaded program. (The highest text
address before the allocation of a common area is saved in the
communication area at CMTOPCOD. This allows the loader to
continue using work space that may be overlapped with common
areas. The address contained in CMNXTTXT rounded to doubleword
value is the address used. The loader ensures that there is
enough available storage for the common area, and then updates
the pointer to available storage by adding the length from the
current common entry to the CMNXTTXT value. (If there is not
enough storage, an error message is issued and loading is
terminated.) Next, if the MAP option was chosen, the common
area is mapped. Finally, the loader relocates the address
constants referring to the current "common™ definition. (The
adcons are relocated through processing the RLDs chained from
the current CESD CM entry.)

After all the CM entries in the CESD have been processed, the
loader assigns addresses for external DSECT displacements.

FOR EXTERNAL DSECT DISPLACEMENTS (PSEUDOR)

The loader assigns contiguous storage for displacements in the

loaded program's external DSECT by processing the CESD PR chain.

(The storage for all DSECTs is obtained via one GETMAIN macro

iastructign, and the individual DSECTs are displacements within
e area.

For each entry on the chain, the loader subtracts the alignment
factor from hexadecimal "FFFF". The loader adds the difference
to the location counter for the PRs to obtain the assigned
address of the current external DSECT. (The location counter is
0 at the beginning of PR processing.) After calculating the

ERNAMEI g

I ERNAME2 {

0 ERNAME3 e.

CESD entry
ERNAME1 T
for ERNAME1 CESD entry
for ERNAME1
CESD entry CESD entr
ERNAME2 T for ERNAME2 d e ERNAME?
* CESD entry
for ERNAME3
ERNAME3 T gsgnf,'m&
Address List

BLDL List

o BLDL List and Address List before BLDL
macro instruction is issued.

o After execution of the BLDL, the BLDL List
contains TTRs for library-resolved ERs.

Figure 19. BLDL List and Address List

42 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted

Materials of IBM

Licensed Materials — Property of IBM

current address, the loader updates the location counter by
adding the length of the displacement specified in the CESD PR.
Then the loader maps the DSECT displacement and relocates all
address constants referring to it. These are indicated by RLD
table entries chained to the PR entry.

After processing all the PR entries, the loader stores the value
contained in the location counter (the cumulative length of all
DSECTs) in all locations in the loaded program requesting it.
These locations are chained from CMCXDPT in the communication
gregﬁz;DP%I§ NCAL was specified, there is no CXD chain pointer
in .

ISSUING UNRESOLVED ER MESSAGES

CHECKING THE LOADED

For all ERs remaining in the CESD that are not marked "weak
call," the loader issues either error or warning messages. If
NCAL is specified, or if an ER is marked "never call,® the
loader issues a warning message. Otherwise, an error message is
issued. An error message is also issued if no text was loaded
for the progran.

PROGRAM'S ENTRY POINT

After the loaded program has been processed, the loader checks

to determine whether the entry point name and address have been
received. This is determined by testing the program flag field

#C?:RMFLG). Processing for the possible conditions is as
ollows: .

J Entry point name and address both received. No further
entry point processing is required. ’

o Only entry point name received. If the entry point name was
specified by the EP= parameter but no address for the name
was received, the loader issues an error message. Then, if
text for the SYSLIN data set was pointed to by MOD records
instead of being passed through text records, the address of
the first byte of the first extent described on a MOD record
is assigned as the entry point. Otherwise, the loader
assigns the address of the first byte of loader-constructed
text (found in CMBEGADR) as the entry point.

. Only entry point address received. If the entry point
address was received (CMEPADDR), the loader determines
whether the referenced symbol is an ER. If so, the loader
assigns the first byte of text as the entry point.

. Neither entry point nor address received. The loader issues
an error message and uses the first byte of text as the
entry point.

After determining the entry point for the loaded program, the
loader calculates the program's total length. The length equals
the difference between the address of the next available storage
(CMNXTTXT) and the address of the first byte of text (CMBEGADR)
added to the lengths of any extents that may be passed through
MOD records. The loader then prints out the entry point address
and the total length of the loaded program.

20 e for the use of external DSECTs and

See bler
the CXD statement.

LY26-3922-1 ®& Copyright IBM Corp. 1972, 1985 Method of Operation 63

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

If program loading is successful, the loader prepares to .
identify the program to the control system.2! A parameter list
is constructed to pass the program name, addressing mode, entry
point address, and extent list information to the IDENTIFY macro
instruction. (The extent list defines the storage that the
loaded program occupies.) If storage is not available for this
parameter list, an error message is issued and loader processing
is terminated.

The loader initializes the parameter list with the program name,
addressing mode, entry point address, and length and address of
the loader—-constructed program (as the first extent). This
information is found in the communication area. If the loader
is operating in time-sharing mode, it attempts to build a
condensed symbol table for use during the program's execution.
An entry is made in the table for each control section and
common area in the program. This table becomes the second
extent of the program, and its address and length are placed in
the extent list. If there is not enough storage for the entire
table, it is not built, and the second extent of the program is
assigned a length of zero. The extent list is then completed
with the extent information that was passed on MOD records and
saved in the communication area.

Finally, the .IDENTIFY macro instruction is issued. If
identification processing is not successful, an error message is
issued and loader processing is terminated. Otherwise, a flag
indicating that the program has been identified is set in the
communication area.

D OAD

After all processing for the loaded program is complete, the
loader processing portion performs termination processing and
then passes control to the loader control portion. The control
portion then attempts to execute the loaded program.

LOADER PROCESSING TERMINATION

If the SYSLOUT and/or SYSTERM data set was opened, the loader
prints a diagnostic dictionary describing the errors encountered
during loading. (As errors occur, the loader sets a flag
indicating the type of error in the bit map field (CMBITMAP) in
the communication area.) The loader determines the highest
error severity indicated and returns it to the caller at
termination.

Next the loader ensures that all Jiagnostic data has been
written to SYSLOUT, and then closes both the output and the
current input data sets.22

The loader then sets up the return parameter list. If the
processing portion of the loader was invoked through the entry
point HEWLOAD, the name of the identified program is placed in
this parameter list. Otherwise, the list contains the virtual
storage address and size of the loaded program.

21 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

22 The current input data set is SYSLIB unless no library
searching was done. The loader closes SYSLIN when it opens
SYSLIB. However, if a SYSLIB DCB marked open was passed to
the loader, SYSLIB is not closed.

44 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Finally, the loader issues a FREEMAIN macro instruction for all
its processing storage not assigned to the loaded program or to
the condensed symbol table. (If the completion code for loading
is greater than 4, the storage occupied by the loaded program is
also released, including preloaded text passed through MOD
records. If the loaded program was identified, the storage it
occupied is released through the execution of the LOAD and
DELETE macro instructions.) The loader then returns control to
the control portion.

LOADER CONTROL TERMINATION

Before attempting to execute the loaded program, the loader
control portion issues a DELETE macro instruction for the
processing portion. Then, if the condition code for loading is
not greater than 6, the loader control portion, through the
execution of an ATTACH macro instruction, passes the user's
parameter list to the loaded program for its execution.

After the program's execution, the loader control portion issues

a DELETE macro instruction for the loaded program, frees its
processing storage, and returns to the scheduler.

LY26~3922-1 ®© Copyright IBM Corp. 1972, 1985 Method of Operation 45

OPERATION DIAGRAMS

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The following diagrams show the flow of data through the loader,
and are used with the descriptions given previously in this
section to give an integrated picture of the loader logic. Each
diagram has an alphameric identification (for example, Al).
Within each diagram, specific points of reference have
alphabetic labels. When the description at the beginning of this
section discusses a function, it refers to the operation diagram
as a whole, and to the specific labeled references where
appropriate. For example, the description of initialization
refers to Diagram Bl. Within the discussion, reference (B)
refers to point (B) in Diagram Bl.

Tge :ymbols used in the diagrams are shown in the following
chart.

LEGEND FOR DIAGRAMS

Primary flow Secondary Flow

—» Dato Movement — -— — — — — — P Data Reference
Created in This Previously Existing or
Operation or Routine Defined in Program

46 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

1-226£-92A1

*d40) WEI IYBTJ4AdO) ©

‘2L61

5861

uorjedadg J0 poyyey

LY

INITMAIN

LOADER PROCESSING STORAGE

HEWLDCOM
Communication Area

Dota Control Blocks

PARAMETER

LIsT
NOTE3

.1 DDNAMES

OPTIONS LIST b

Control Information
and Work Area for

Initialization

USER DCBs >

) 4

Initial Input Buffers

Additional Buffers
and loader Tables

Loaded Program

NOI.LWEdd 83(1\101-‘11\183/\0
HWEI 30 A3Juadoud — SIETIJB3IEW PasuadT’]

signifies that it is the last field in the parameter list.

At
9 F 3
£ 3
o ¥ N e R] _NOTE?2)
vy ﬂk e TT_———_—_-—--n—nn--n--————n—— - - = -
3 LOADER RA1 HEWLOADR, HEWLOAD
o
S ~—
CSECT HEWLIOCA
uﬁ LOAD/CALL
8 CSECT SIS @ [T T T T T T T T
o HEWLCTRL CSECT HEWLRELO
= ATTACH NOTE 1
o
<
S
—t]
CSECT HEWLLIBR
CSECT HEWLIDEN -—J
CSECT HEWLDDEF
w
o N N
g HEwLOADR Notes: SYSLN
9 1. Module HEWLOADR is deleted after its execution
wn v and before the loaded program is given control. _,/
% HEWLDRGO A 4 4
< 2. Load module text is read directly into the loaded SysLI8
i program area. u
2 _,/ 3. A hex ‘80" in the high-order byte of a fullword

*TV WYYo9vIa

WEI 40 STETJa3}eW Pa3ITJU3ISaY SUTEIUOD

DIAGRAM A2. LOADER INVOCATION

(_sysIN DD

(sYsLis DD

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SYSLOUT DD
SYSLIN DD

LDGO EXEC
PGM=LOADER
PARM="MAPLET/X,Y"

or

through issuing a LOAD,
XCTL, LINK, or ATTACH
macro instruction referring
to HEWLDRGO (program
name) or to LOADER (alias).
Parameters are passed via
list addressed by Reg *

Scheduler

!

~ -

N \H EWLDRGO _1

\HEWLoiQS,

Length of
Options
+ DDnames
options for
Loader and
loaded program
A ocss

Parameter list

CSECT HEWLCTRL

Entry point HEWLDRGO

N~

»

SYS 1. LINKLIB

The user may invoke the Loader to load a program

but not pass control to it.

In this case, the user

issues a LOAD and a CALL macro instruction
referring to HEWLOADR (for loading without)
identification) or to HEWLOAD (for loading with

identification).

68 MVS/370 Loader Logic

LY26-3922-1

VIRTUAL STORAGE

© Copyright IBM Corp.

1972,

to

Diagram B1

1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM Bl.

from scheduler

LOADER

CSECT
HEWLCTRL

“EWI.OAdn

SYSI.LINKLIR

HEWLCTRL change* the lengtl
of the option list received from
the scheduler to the length of

the Loader options only.

Notes

1.

LY26-3922-1 & Copyright IBM Corp. 1972,

LOADER/SCHEDULER INTERFACE AND INITIALIZATION

LOADCALL

HEWLIOCA issues o GETMAIN for the size range
specified by the SIZE poramater (stored in INITRMAX)
end the volue specified by the INITRMIN field,

The size ond address of the Looder processing crec
ore inserted by the GETMAIN SVC handler.

A DCB is constructed for the output data set if

the PRINT option was chosen. A DCB is also cons-
tructed for the input date set if a SYSLIN control
block, which describes o intema! data area,was
not passed. A DCB, two DECBs, end two buffers are
provided for the terminal data set if the TERM

option was chosen.

length USER OPTIONS N
of options
I USER DDNAMES -~
PARAMETER
Lst
—‘/| 00 I
pr—
pum—
——
USER DCBs -
Builds INITMAIN from
control information anolyzed
-
) ¥
Save area See Mote 2
A . Entry point nome
HEWLOADR, entry point- cemain o " | DCB oddresses
HEWLIOCA, alias-HEWLOAD e e T
KEwLDoEF Minimum storoge | Masimum storage
i s — — —] request size request size
HEWLIOCA
CSECT GETMAIN lisr Conversion orea
HEWLIOCA N
— — - — — Option translation |Rejected options
CSECT table buffer
HEWLPELO
——C';?CY_ - =7 i Looder Processing Storage
HEWLLIBR 1. Estcblishes
- —— —— = HEWLOCOM
CSECT
HEWLIDEN D 2. Allocotes and -r Looder Communicotion Area |€—
chains sove
GETMAIN oreas
{Note 1) 3. bswes o
FREEMAIN for R*H A Save Areo |
the INITMAIN — Save Area 2
orea - Save Area 3
= =
Constructs OC8s lor data h b
sets (Note 3) and allocales oulput bulters g # 13 — Sove Area 8
C Save Areo 9
: ERM E
OPEN for OPENLIST il and :S?,’,,D Chs
SYSLIN DCB
SYSLOUT DC8
SYSLOUT Buffers
Diagram C1 ~ Prime Storage =
Low MdnuT T
-Disgram €1
1985 Method of Operation 49

HEWBUFFR
Buffer alloca-
indicate unlike | tion routine
attributes in

input DCB

from initiali-
zation or
primary input
processing

R*¥10

Block size

Record format

Number of buffers

DCB flags

50 MVS/370 Loader Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM Cl. PRIMARY INPUT CONTROL AND BUFFER ALLOCATION

OBJECT
MODULE

HEWLDCOM
allocate buffers]
and DECBs ~ ~
as indicated DECB |

Yes by DCB
BUFFER 1
See Figure 9 DECB 2
No for object
module BUFFER 2 L]
allocation A L
T T
N
B DECB
// BUFFER N (not primed)
Ve ~ A
s T oy
_ e Loader Processing Storage

highest available
storage \

allocate 2 DEC8s and
1 256-byte buffer

\ HEWLDCOM

e -~

b ~4
DECB 1 Diagram D2
DECB 2

[}
RLD buffer (256jbytes)

Loader Processing Storage

Diagram D1

HEWPRIME
Prime buffers

Input Data Set

HEWLIOCA

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D1.

Input may
either be from
an external
device

or Input Data Set

from an internal SYSLIN
data area whose control
block is passed to the
Loader in the DCB list.

SYSLIN control block

pE—

CMGETREC \

HEWLREAD
reads input

LY26-3922-1

HEWLRELO

OBJECT MODULE PROCESSING

RECORD'1

RECORD 2

RECORD 3

RECORD 4

record
being
processed \

END OF
MODULE

OBJECT
CARD

M |

RETURN

© Copyright IBM Corp.

H

Object module
Buffers or Internal

\\ SYSLIN data area
N

1972,

determines record type

EWERROE]—»RETURN
HEWLEND P RETURN

1985

ESD

ESD processing ;
HEWLESD

TXT processing ;
HEWLTXT

MOD processing;
HEWLMOD

RLD processing ;
HEWLRLD

END processing;
HEWLEND

Method of Operation

51

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D2. LOAD MODULE PROCESSING

CMGETREC
1D |
| Input record
I (not text)
|
Input Data Set |\ RLD Buffer
~— If first

time, set "CESD

Diagram D1 received" flag

Preliminary ESD
processing
HEWLESD

MODULE RECORD

"CESD
RECEIVED"
FLAG ON HEWLESD

Yes set flag off

HEWLREAD
reads input Finish
proces-
sing
module
or return
to caller

HEWLEND Return
to caller ext Processing;
LMTXT

52 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D3. ESD RECORD PROCESSING (GENERALIZED)

7 1st 1D
RT6 in data
Object Module Buffer or RLD Buffer
ESD/CESD dota 15| length
v ° RE7 of data
R78
: |
NAME |3 | ADDR ADDR
€

Input

Information moved
depends on entry type

A

CMTYPCHN

5 .

ro

Do any preliminary @
processing needed. Non-resolution.
Search CESD. (D Make CESD entry .

HEWLESD

CESD ENTRY
NEEDED

o
4
;

~o <

[z
e

from HEWLODE
or HEWLRELO

HEWLERTN
Process RLD
chain

make translation

table entry 4 CESD entry |-—ESDID

Translation Table extent

Note: ESDp ing differs ding to entry type
and whether resolution is possible. For detailed information,
refer to "External Symbol Dictionary P ing". The followi

- . 4
diog give some ples of pr ing for diff. conditions,

LY26-3922-1 ©& Copyright IBM Corp. 1972, 1985

MAP ENTRY
NEEDED

Module Map

SYSLOUT data set

chain entry

After processing all input
entries in data, return

Method of Operation

53

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D%. EXAMPLE OF INPUT ESD PROCESSING OF SD-SECTION DEFINITION (HEWLESD)

0 0
Input ESD entry; ESD ID =3 ! -
Input The input address is 2
CSECTASD | "P2! | |Length | ced 1o calcolate the CMTYPCHN .5

Loader-assigned address
‘ and the relative relocation.

Translation Table Extent

vy
[

L

NOMATCH —
Mckes a CESD entry,
chains it and makes

Uses entry's
type and name to

relative

CESDSRCH search type chains ¢ | Loader- l
. a rrcnslovfon table 0 !CSECTA!SD|assigned [1819°97 Return
entry for it. oddress |"O" to caller

Diagram C1 constant
Diagram D2 CESD entry

0 0

1

2

SD 3

MATCHED Translation Table Extent
Changes the existing
ER to SD, rechains

relative Go to

the en'lry 'ond m;:lkes TSD ‘ Lo?der- reloca- process

a translation table hai CSECTA |SD|assigned |y;0n next ESD
entry for the input ¢ qm] address |constant
entry referring to the

existing entry

entry

Existing CESD entry

A . . no match exists in the CESD (nonresolurion processing)
This example shows processing for an input SD entry when . .
: 72" a match exists (resolution processing)

This example returns to the caller i

54 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D5. EXAMPLE OF INPUT ESD OF ER-EXTERNAL REFERENCE

PROCESSING (HEWLESD)

Input ESD entry ESD ID = 2 CMTYPCHN 0 0
NAME | ER 0 0 . \ 1
s LD ER 2] Note 1. The high bit of
the first byte is
= o set on to show
CESD i
Translation for ERenvry "
Table Extent ’
U try' N
o @ | NomaTCH]
ype and name ke CESD
CESDSRCH to search type chains mof ; chain
. entry, ! Go to process
A entry, and 0 | NAME [ER| © ol bl
Diagram C1 make transla- entry
Diagram D2 tion table CESD entry for ER
entry
CMTYPCHN — —
N / MATCHED —
SD LD ER LR/CM make translation Go to process

0

NAME | CM 2

U

table entry to
existing CESD
entry

next ESD entry

This example shows processing for an input ER entry when @ no match in the CESD exists (nonresolution processing)

LY26-3922-1

© Copyright IBM Corp. 1972, 1985

@ a match exists (resolution processing)

Method of Operation

55

Contains Restricted Materials of IEBHM
Licensed Materials — Prcperty of IBM

DIAGRAM D6. EXAMPLE OF ESD ID TRANSLATION

CMTYPCHN

ER LR

“Input CESD entry
TS0 10 TRANSLAT TRANSID) Roturn
NAME | LR a3 translates 1D ‘ entry to calter
Diagram C1 via tables for SD|
Alt Note | Diagram D2 i CESD Entry for LR
~\
| / CMTYPCHN
I // .
I / LR
| CMTRCTRL /
l_ _____ e | o | e ! / / ESD Return
1 / D to caller
/ CESD Entry for LR (temporary)
Notes: ’ /
1. laput LR entry contains /
the ESD ID for CSECT /
containing NAME, ? /
2. Only for object module 2
input, the input LD is
placed on temporary 3 A CESD entry - J
chain,

T T

Translation Table Extent

. This example shows preliminary processing of an input LR. Translation ensures
the input ID is valid and obtains the CESD address of the related SD.

56 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D7. OBJECT MODULE TEXT PROCESSING

Object Module Buffer
o ESD IDof text |R#5

Text Record Displacement i#i

i input .
" in inpu N
Length of R#7 %— ———————— P Address
text record
|
— R78 |
Input L |
|
| CMLOWTBL
| Table area
CESD entry |
| i l
flag Constont " |
. |
\ I
\ |

HEWLTXT CESD
ENTRY

"DELETE"

from HEWLRELO

HEWERROR

LY26-3922-1 Copyright IBM Corp.

Calculate the main
storage address
for the text

No

record

1972, 1985

Return, to
read the next

TEXT
OVERLAP
TABLES

Table and Buffer Area

for text

Text already loaded

Loaded Program's Storage Area

Move text to assigned
address; Update storage
pointer if needed

HEWERROR
to end loading

Method of Operation

Return

57

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D8. LOAD MODULE TEXT PROCESSING

RLD Buffer
Length of
7 ID??ength list
CMGETREC
10/ length list | Control record Text record
Text control or control/RLD record Read Address
Input Data Set
Input CMLOWTBL T
TEnd of loaded
program space
Process entire \\
1D/ length Loaded Program's Storage Area

If required,
move CSECTs to
No correct addresses

list to determine
which CSECTs are
for loaded program

Calculate

END OF
MODULE

Return

from

HEWLODE
HEWLREAD
Note 1
HEWERROR HEWLEND
Text record to to end loading
be skipped
Notes:

1. Read text record, unless the record is
to be skipped; read the following control
record also, unless the text record is the
last or CSECTs are to be deleted.

2 See Figure 19,

58 MVS/370 Loader Logic LY26-3922-1 & Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM D9. RLD RECORD PROCESSING

Reg 7 Reg 8

Length of RLDs)

~¢— One entry —

relocation
R |P | flog TAdcon R [P | flog l NAME | SD o rtant
RLD data in input buffer CESD entry 1
Note 1
\ Note 3
ote
-
; RLD
P-pointer |25 3T NAME 2| TYPE chaln
ESD ID 4
CESD entry 2
R-pointe
E;pDoulrc; r ' CESD ontry 2 (for address constant) .
L 1 Chain RLD
- T 7 entry to
- . CESD entry
EWLRLD builds
TRANSID - Yes M for adcon
HEWLRLD Translate an RLD entry RLD
R pointer and chain
Diagram C1 P pointer to i
Diagram D2 CESD addresses

Check R # 7 for
remaining entries.
Process all RLD data.

Return to
HEWLODE or
HEWLRELO

HEWLERTN-
Relocates address 0
constant

Note 1: The input buffer is the RLD buffer (load module) or an object module buffer.

Note 2: The Loader calculates the adcon address using the P-pointer CESD entry's relocation constant and the | Adcon and flags from the
input RLD entry. The flags are inserted in the new RLD entry unless the input RLD is for o CXD PR.

Note 3: If the type in the CESD entry for the address constant is PC, SD, or LR relocation is performed. If the type is CM, PR, or ER, the
RLD entry is chained to the CESD entry. -

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Method of Operation 59

1 Jopeoq 0/S/SAW 09

9160

*d10) WEI IYBTJAIO) ® T[-2265-92A1

‘2L61

G861

]
|

L
! B
xt Entry Move entry point address if nomes match
cot | 1~é‘os NAME Point ~
A
= N—_—_———— L-—-———-(Compcnmn)————-———\
Contents Directory Entry Queve

Try to find current

Yes ER nome in o COE Try to resolve Yes
USE LINK typo| pame [sp | Address each R from the ®
PACK AREA chain field Link Pock Area
from HEWLIOCA CESD
Diagram 81 entry No
Return
to caller

Final Processing

Module Map

NAME4

sl
Address Lin{ 12138 —<Move cach SYSLOUT data set ; ;
M [A 2[4 k] I TTR d indicate TIR ’Commua processing
Builds BLDL and NAMES 1o the proper received rom &ter
Address Lists (Note 1) NAMES £SO entry X Processmodule; eoch library module
C type . Address HEWLRELO or Return
NAME4 TIR rol NAME4 | ER | T HEWLODE 10 caller
NAMEJ 1R
CESD enir; ¢
NAMEZ | TIR ey T FIND
NAME] TR Je | J
BLOL List
;e_ﬁk
Librory Doto Set] Member

Library Data Sev DCB

T3 WVNOVIG

ONISS300Ud INANI AUVANOO3S

HEI 30 A3Jododd — STETJd3RW POSU3ITT
WNEI JO SIETJdd1el POIOTJISAY Sureluod

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

0 ON OF THE LOADER
Figure 20 shows the organization of the loader. The flow of_
control through the first four levels of the processing portion
of the loader (module HEWLOADR) is listed in the control lavel
tables below.
Locd Module
Load Module
HEWLDRGO (Aliss LOADER) HEWLOADR (Alias HEWLOAD)
HEWLIOCA HEWLIDEN
HEWLIOCA HEWLIDEN
| Initiolization, »| Identification
{ Input Control, of Loaded
?llocc!iion program
Looded rocessing
Program
§ HEWLLIBR
(Built by
HEWLOADR) HEWACALL
Secondary
Input and Final
Processing
¥ wEwLLiBR T ¥ HEWLRELO
HEWLODE HEWLRELO
Load Module | Object Module
Processing Processing
HEWLIOCA
HEWLREAD

w !npu' Reading e

r HEWLLIBR HEWLRELO HEWLRELO ‘1 HEWLRELO ' HEWLRELO

LMTXT HEWLRLD HEWLESD HEWLTXT HEWLMOD
Load Module RLD Record | —mp-! ESD Record Obiject Module MOD Record

Text N .
Processing Processing Processing Text Proeeuingl Processing

Note: The CSECT containing the code of a function is noted outside
the functional block.

Figure 20. Loader Organization

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Organization of the Loader 61

ROUTINE CONTROL-LEVEL TABLES

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The routine descriptions within a level are listed
alphabetically in Figure 21 through Figure 24.

Called
Routine Purpose Routines Calling Conditions
HEWLIOCA Initialization, primary HEWLPRNT Called if SYSLOUT data set is
input control, and open
allocation processing
HEWBUFFR If more data exists on SYSLIN
HEWPRIME If SYSLIN input is an object
module
HEWLRELO If SYSLIN input is an object
module
HEWLODE If SYSLIN input is a load module
HEWACALL Hhen all SYSLIN input is
processed, unless SYSLIN did not
open
HEWLIDEN If the loaded program is to be
identified to the control program
HEWBTMAP Input processing completed
Figure 21. HEWLOADR—Level 1
. Called
Routine Purpose Routines Calling Conditions
HEWACALL Secondary input and HEWOPNLB If ERs cannot be resolved from
final processing primary input or the LPA
COMMON Always
HEWLMAP If an ER is resolved
HEWLERTN If an ER is resolved
HEWERRGOR If an error occurs
HEWPRIME If SYSLIB input is object modules
HEWLRELO If SYSLIB input is object modules
HEWLODE If SYSLIB input is load modules
HEWBTMAP Processing of error-bit HEWLPRNT If SYSLOUT is open and messages
map and printing of are required
diagnostic dictionary
HEWTERM If the TERM option is specified

Figure 22 (Part 1 of 2).

62 MVS/370 Loader Logic

HEWLOADR—Level 2

and messages are required

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Called
Routine Purpose Routines Calling Conditions
HEWBUFFR Buffer Management FREECORE If previous or current (not the
first) allocation is for object
module
GETCORE If no previously allocated area
is large enough for current
request
HEWLIDEN Identification of the IDENTER Always, unless extents will
loaded program to the overlap loader work space
control program
IDMINI Always, unless extents will

overlap loader work space

HEWERROR If an error occurs

HEWLODE Process a load module HEWLREAD Always
HEWLEND If end-of-module is indicated
HEWLESD If CESD record is received
HEWLRLD If RLD record is received
LMTXT If TXT record is read in
HEWLPRNT Print output to SYSLOUT RDCHECK If DECB was previously written
data set
WTHWRITE Always
WTCHECK Always
HEWLRELO Process an object module HEWLREAD Always
HEWLEND If END card received
HEWLESD If ESD card received
HEWLRLD If RLD card received
HEWLTXT If TXT card received
HEWLMOD If MOD card received
HEWPRIME Read records into all RDREAD Always

but one buffer before
HEWLRELO receives
control

Figure 22 (Part 2 of 2). HEWLOADR—Level 2

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Organization of the Loader 63

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Routine
COMMON

FREECORE

GETCORE

IDENTER

IDMINI

HEWERROR

HEWLCNVT

HEWLEND

HEWLERTN

HEWLESD

HEWLMAP

Figure 23 (Part 1 of 3).

Purpose

Assign addresses to
common areas

Chain deallocated area
to free list

Allocated storage for
allocation request

Create entry in extent
list

Create a condensed
symbol table

Handle error messages,
severity code 4 errors

Convert binary quantity
to hexadecimal

Process END card,
reinitialize for next
module

Relocate all adcons
indicated by RLD chain

Create CESD from input
ESD/CESD :

Create map entry for
referenced location in
loaded program

66 MVS/370 Loader Logic

Called
Routines

PSEUDOR
HEWLMAP

HEWLERTN

none

HEWERROR

none

none

HEWLPRNT

HEWTERM

none

TRANSID

HEWERROR

HEWERROR

LOADPROC

CESDSRCH
TRANSLAT
CESDENT
ENTER
CKECKEP
MATERSD2
TRANSID

HEWLPRNT
IEWLCNVT

HEWLOADR—Level 3

Calling Conditions
Always

Always, unless no CM entries were
received

Always, unless no CM entries were
received

If table overflow occurs

If SYSLOUT data set is open

If the TERM option is specified

If END card specifies entry point
address

If error occurs in end card
processing

Invalid 2-byte adcon
If input is a load module

Input entry is not NULL or PC
If NULL entry is made

If PC or LR entry is required
If PC entry is required

If PC entry is required

If PC entry is required

If LD/LR is received

Always
Always

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM

Licensed Materials — Property of IBM

Routine
HEWLMOD

HEWLODE

HEWLPRNT

HEWLREAD

HEWLRELO

HEWLRLD

HEWLTXT

HEWOPNLD

HEWPRIME

HEWTERM

Figure 23 (Part 2 of 3).

Purpose

Process MOD card, store
text origin, length, and
extent information

Process a load module

Print output to SYSLOUT
data set

Handle request for data

Process an object module

Relocate adcons
indicated by RLD entries
received, or chain RLDs
off CESD entry for R
pointer

Move object module text
to correct space

Open SYSLIB; close
SYSLIN

Read records into all
but one buffer before
HEWLRELO receives
control

Print output to SYSTERM
data set

Called
Routines

ALLOCATE

HEWLREAD
HEWLEND
HEWLESD
HEWLRLD
LMTXT
RDCHECK

WTHRITE
WTCHECK
RDREAD
RDCHECK
HEWLREAD
HEWLEND
HEWLESD
HEWLRLD
HEWLTXT
TRANSID

ALLOCATE

HEWLERTN

TRANSID

RELOREAD
HEWERROR
HEWBUFFR

RDREAD

WTWRITE

HTCHECK

HEWLOADR—Level 3

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

Ccalling Conditions

If extent information is passed

on MOD

Always

If end-of-module

card

If ESD record is read in

If RLD record is read in

If TXT record is read in

If DECB was previously written

Always
Always
Always
Always
Always
If END
IF ESD
If RLD
If TXT

card is
card is
card is

card is

received
received
received

received

is indicated

Always

If no free RLD entry is available

If relocation is possible, or if
delinking required

Always
Always
If invalid ID received

Unless SYSLIB was not opened

Always

Always

Always

Organization of the Loader

65

Routine Purpose

LMTXT Read load module text
into main storage

RDCHECK Check DECB

RDREAD Read input using DECB
information

WTCHECK Check DECB

WTWRITE Write output using DECB
information

contains Restricted nateriais of IBM
Licensed Materials — Property of IBM

Called
Routines Calling Conditions

TRANSID Always

HEWLREAD Unless record is to be skipped
HEWERROR If text record not received
PROCEOM Always

none

none

Figure 23 (Part 3 of 3). HEWLOADR—Level 3

66 MVS/370 Loader Logic

LY26-3922-1 & Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materia1§ - Property of IBM

Routine
ALLOCATE
CESDENT

CESDSRCH

CHECKEP
ENTER

HEWBUFFR

HEWERROR

HEWLCNVT

HEWLEND

HEWLERTN

HEWLESD

Figure 24 (Part 1 of 3).

Purpose
Allocate table extent

Get CESD entry form free

entry list or, call
ALLOCATE to obtain an
entry

Search CESD for input
name

Check CESD entry for
specified entry point

Enter information in
CESD entry for PC or SD

Buffer management

Handles error messages,
severity code 4 errors

Convert binary quantity
to hexadecimal

Process END card,
reinitialize for next
module

Relocate all adcons
indicated by RLD chain

Create CESD from input
ESD/CESD

Called
Routines

HEWERROR
ALLOCATE

MATCHED

NOMATCH

none

HEWERROR

FREECORE

GETCORE

HEWLPRNT

HEWTERM

none

TRANSID

HEWERROR

HEWERROR

LOADPROC

CESDSRCH
TRANSLAT
CESDENT
ENTER
CHECKEP
MATERSD2
TRANSID

HEWLOADR—Level 4

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Calling Conditions

Table overflow

No free entries on list

If name is found

If name is not found

If program is too large

If previous or current (not the
first) allocation request is for
object module

If no previously allocated area
is large enough for current
request

If SYSLOUT data set is open

If the TERM option is specified

If END card specifies entry point
address

If error occurs in END card
processing

Invalid 2-byte adcon; invalid
3-byte adcon

If input is a load module

Input entry is not NULL or PC
If NULL entry is made

If PC or LR entry is required
If PC entry is required

If PC entry is required

If PC entry is required

If LD/LR is received

Organization of the Loader 67

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Called
Routine Purpose Routines Calling Conditions
HEWLMAP Create map entry for HEWLPRNT Always

referenced location in
loaded program

HEWLCVNT Always

HEWLPRNT Zgigtsg:tput to SYSLOUT RDCHECK If DECB was previously written
WRWRITE Always
WTCHECK Always

HEWLREAD Handle request for data RDREAD Always
RDCHECK Always

HEWLRLD Relocate adcons TRANSID Always

indicated by RLD entries
received, or chain RLDs
off CESD entry for R
pointer

ALLOCATE If no free RLD entry is available

HEWLERTN If relocation is possible, or if
delinking is required

HEWLTXT Move object module text TRANSID Always
to correct spaces
RELOREAD Always

HEWERROR If invalid ID is received

HEWTERM Print output to SYSTERM WTWRITE Always
data set

WTCHECK Always

LMTXT Read load module text TRANSID Always

into virtual
HEWLREAD Unless record is to be skipped

HEWERROR If text record not received
PROCEOM Always

LOADPROC Preliminary processing CESDENT If entry type is PC,SD,LR
for load module CESD

MATERSD2 Test length and request CHAINING Always
map entry

PROCEOM Go to process HEWLEND Always
end-of-module

PSEUDOR Assign displacements to HEWLPRNT If displacement is assigned
pseudo registers

FINISHUP Always
HEWLMAP If displacement is assigned
HEWLERTN If displacement is assigned

Figure 24 (Part 2 of 3). HEWLOADR—Level 4%

68 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Routine Purpose

RDCHECK Check DECB

RDREAD Read input using DECB
information

RELOREAD Go to HEWLREAD for more
input

TRANSID Translate input ESD ID
to CESD address

TRANSLAT Make a translation table

: entry

WTCHECK Check DECB

WTWRITE Write output using DECB
information

Called
Routines

none

none

HEWLREAD

ALLOCATE

HEWERROR

TRANSID

none

Figure 24 (Part 3 of 3). HEWLOADR—Level 4§

calling Conditions

Always
If new extent is required
If table overflow or invalid ID

occurs

Unless LD entry

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Organization of the Loader 69

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

MICROFICHE DIRECTORY

The microfiche directory is designed to help you find named
areas of code in the program listing, which is contained on

microfiche cards at your installation.
filed in alphameric order by object module name.
locate a control section, entry point,

Microfiche cards are

microfiche, find the name in the first column and note the

associated object module name.

You can then find the item on

microfiche.
Name Description Object Module | CSECT Synopsis
ALLOCATE Allocation HEWLDREL HEWLRELO Allocates storage for
Routine table entries
CMTRCTRL Table HEWLDREL HEWLRELO Pointers to
translation table
extents
CMTYPCHN Table HEWLDREL HEWLRELO Pointers to CESD type
chains
COMMON Label HEWLDLIB HEWLLIBR Assigns addresses to
common
DECB DSECT HEWLDIOC HEWLIOCA Model DECB
ERCODES DSECT HEWLDIOC HEWLIOCA Error code definitions
HEWL DREL HEWLRELO
HEWLDLIB HEWLLIBR
FINISHUP Label HEWLDLIB HEWLLIBR Prints finishing
messages
HEWACALL Entry point HEWLDLIB HEWLLIBR Automatic library call
proqessing
HEWBTMAP Entry point HEWLDLIB HEWLLIBR Diagnostic dictionary
processing
HEWBUFFR Buffer allocation HEWLDIOC HEWLIOCA Buffer and DECB
routine allocation routine
HEWERROR Entry Point HEWLDLIB HEWLLIBR Error log routine
HEWLCNVT Entry Point HEWLDREL HEWLRELO Binary-Hex conversion
routine
HEWLCTRL ESEE¥ Point and HEWLDCTR HEWLCTRL Loader control module
HEWLDCOM DSECT HEWLDIOC HEWLIOCA Communication area
HEWLDLIB HEWLLIBR
HEWLDREL HEWLRELO
HEWLDDEF CSECT HEWLDDEF HEWLDDEF SYSGEN option defaults
HEWLEND Entry Point HEWLDREL HEWLRELO End processing
HEWLERTN Entry Point HEWLDREL HEWLRELO RLD relocation routine
HEWLESD Entry Point HEWLDREL HEWLRELO ESD record processing

70 MVS/370 Loader

Logic

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

If you wish to
table, or routine on

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Name Description Object Module | CSECT sSynopsis

HEWLIDEN Entry Point HEWLDIDY HEWLIDEN Builds extent list for
IDENTIFY and issues
IDENTIFY

HEWLIDEN Egég¥ Point and HEWLDIDY HEWLIDEN Identification routine

HEWLIOCA Entry Point and HEWLDIOC HEWLIOCA Initialization, I1/0,

CSECT control, and

allocation processing

HEWLLIBR CSECT HEWLDLIB HEWLLIBR Automatic library call
and load module
processing

HEWLMAP Entry Point HEWLDREL HEWLRELO Creates map printout

HEWLMOD Entry Point HEWLDREL HEWLRELO MOD record processing

HEWLOAD Entry Point HEWLDIOC HEWLIOCA Entry point for
loading with
identification

HEWLODE Entry Point HEWLDLIB HEWLLIBR Load module processing

HEWLPRNT Entry Point HEWLDIOC HEWLIOCA Print routine

HEWLREAD Entry Point HEWLDIOC HEWLIOCA Read routine

HEWLRELO Entry Point HEWLDREL HEWLRELO Object module
processor

HEWLRELO CSECT HEWLDREL HEWLRELO Object module, ESD,
RLD, and map
processing

HEWLRLD Entry Point HEWLDREL HEWLRELO RLD record processing

HEWLTXT Label HEWLDREL HEWLRELO Object module text
processing

HEWOPNLB Entry Point HEWLDIOC HEWLIOCA Opens SYSLIB data set

HEWPRIME Entry Point HEWLDIOC HEWLIOCA Object module buffer
prime routine

HEWTERM Entry Point HEWLDIOC HEWLIOCA SYSTERM routine

IDMINI Label HEWLDIDY HEWLIDEN Constructs MINI-CESD
for test package if
TS0 is operating

INITMAIN DSECT HEWLDIOC HEWLIOCA Initial work area

LMTXT Label HEWLDLIB HEWLLIBR Load module text
processing

MODELDCB Label HEWLDIOC HEWLIOCA Model DCB for SYSLIN,
SYSLIB

OPENEXIT Entry Point HEWLDIOC HEWLIOCA DCB exit routine

PSEUDOR Label HEWLDLIB HEWLLIBR Processes pseudo
registers

SYNAD Entry Point HEWLDIOC HEWLIOCA SYNAD routine

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Microfiche Directory 71

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Description

Ohject Module

CSECT

sSynopsis

TRANSID

Entry Point

HEWLDREL

HEWLRELO

Translates ESD ID to
CESD address

72 MVS/370 Loader Logic

LY26-3922-1 ® Copyright IBM Corp. 1972,

1985

Contains Restricted Materials of IBM

Licensed Materials — Property of IEM

The data areas are

DATA AREAS
This section provides a detailed description of internal data
areas used during loader processing.
described in alphabetic order.
Also included in this section is a summary of data area use and
construction (Figure 25).
Data Area Built By | Used andsor Modified By
Address list HEWACALL 1
BLDL list HEWACALL 1
CESD control table HEWLESD HEWACALL, HEWLESD
(CMTYPCHN)
CESD table HEWLESD HEWACALL, HEWLERTN, HEWLESD,
HEWLRLD, HEWLTXT, LMTXT
Condensed symbol table HEWLIDEN TS0 test facilities
Extent chain HEWLMOD HEWLIDEN
IDENTIFY parameter list HEWL IDEN IDENTIFY macro instruction
HEWLDCOM HEWLIOCA 2
INITMAIN HEWLIOCA 1
RLD tablel HEWLRLD HEWACALL, HEWLERTN, HEWLRLD
Translation table HEWLESD HEWACALL, HEWLESD, HEWLRLD,

HEWLTXT, LMTXT, TRANSID

Figure 25.

Notes to Figure 25:

Data Area Construction and Usage

1 Built and processed entirely within one routine.

2 Major communication area throughout loader processing.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Data Areas 73

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Address List

Built by the Secondary Input Processor

A

Ao

A3

—— CESD entry address (4 bytes each entry)

The entries in this list are in one-to-one
correspondence with the BLDL list entries.
The Loader stores the address from the BLDL
enfry in the address list before issuing the
BLDL macro instruction

Figurae 26. Address List

BLDL Ligt
Built by Secondary Input Processor

0-1 2-3 4-1 12-15

=T

— Name field (8 bytes)

Leng'h (2 bytes)
LL - length of each entry in the BLDL
list (16 bytes in the Loader)

——— Number (2 bytes)
FF - totel number of entries in the BLDL list

Figure 27. BLDL List

(entry FF)

- each entry
16 bytes

Not used by the Loader

\—— CESD address/ TTR

Originally contains the CESD address
of an ER. (4 bytes) If the name was
found in the SYSLIB directory, BLDL
replaces the CESD address with TTR.
(bytes 12-14)

TT - relative track number

R - block number on the track

v

74 MVS/370 Loader Logic

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CESD Control Table (CMTYPCHN)
Built by the ESD Processor

P P, P, Py P, P P P

CESD type chain pointer (4 bytes each entry)
The pointers, PO-P7, are listed in the

following order by type : SD,
LD, ER, LR, PC, CM, PR,
NULL

Note : The CESD control table is defined in the communications
area (HEWLDCOM),

Figure 28. CESD Control Table (CMTYPCHN)

LY26~-3922-1 ®© Copyright IBM Corp. 1972, 1985 Data Areas 75

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CESD Tgble Ent
Built by the ESD processor
0-3 41 12 13-15 16-19

L— Use depends on entry type

Type LD - ESD ID for SD; preliminary use only (bytes 18-19)

Type PR = boundary alignment {byte 16) and length (bytes 18-19)
Alignments
7 - doubleword
3 - fullword
1 = halfword
0 - byte

Types SD, PC, LR, CM - relative relocation constant

Type ER = 0; if ER was created from an LR - input address
Type CM - address of extended portion of entry

Address/displ field (3 bytes)
Types SD, PC, LR, CM - Loader - assigned address
Types CM, PR, ER - address of RLD entry chain (0, if no RLDs)
Type PR - displacement within DSECT
Type LD - input address (preliminary use only)

.

L Flags/type field (I byte) FFEFF TIT; Fy_g are flags, T3 indicate type

Section definition (SD) ~ XOX00 000 Fp-"delete", F3-“no length”

Label definition (LD} - 0X000 001 F2-'"LD processed"'

External reference (ER) = XXXXX 010 Fi~"delete," Fo~"weak call,” F3-"BLDL tried,"
Fg=""TTR found, "' F5~""never call”

Lobel reference (LR} = X0000 011 Fy=‘'delete"

Private code (PC) -~ 00000 100

Common (CM) - 00000 101

Pseudo register (PR) - 00000 110

—— Namefield (8 bytes)
8 character symbolic name or blanks for blank common
and private cade (unused for extended portion of CM entry)

" Chain address (4 bytes)
Pointer fo next entry on CESD type chain; if end of chain, 0.
{unused for extended portion of CM entry)

Figure 29. CESD Entry

76 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Condensed Symbol Table Entry

Built by the Identification Processor

0-7 8 ?-11

Address - Assigned address of this

symbol (3 bytes).

Type - (1 byte)
Section definition (SD) xxxxx 000
Common (CM) wox 101

Symbol - The 8-character extemal name (8 bytes).

Figure 30. Condensed Symbol Table Entry

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Data Areas 77

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Data_Event Control Block
Built by I/O, Control, and Allocation Processor

| Added by the
< Standard DECB > Loader
0-3 4-5 6-7 8-11 12-15 16-19 20~23

L DECDECPT (4 bytes)
address of next DECB (4 bytes)

L DECIOBPT (4 bytes)
address of the VO block

L DECAREA (4 bytes)
address of the read/write
orea for the data

L DECDCBAD (4 bytes)
address of the DCB for the read/write data set

DECLNGTH (2 bytes)
length of the data to read/write

————DECTYPE (2 bytes)
type of the /O macro instruction and options

L DECSDECB (4 bytes)
event control block

Figure 31. Data Event Control Block (DECB)

78 MVS/370 Loader Logic LY26-3922-1 @& Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Extent Chain Entry

Built by the MOD Processor

0-3 4-7 8-11

Length - Length of the extent (4 bytes).

Address - Address of the extent derived from
the MOD record (4 bytes).

Chain Address - Address of the next entry on the extent
chain; if end of chain, zero (4 bytes).

Figura 32. Extent Chain Entry

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Data Areas 79

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

IDENTIFY Parameter List

Built by the Identification Processor

Address of entry point of program to be identified

Progrom name - the 8-character symbolic name

Length, in bytes, of extent list

Number of extents described in this list

Length of extent 1 (Loader-constructed program)

Length of extent 2 (Condensed symbol table)

b Y
<
.
b o
&

. L Extent
Y v (List

Length of extent n*

Address of extent 1 (Loader-constructed program)

Address of extent 2 (Condensed symbol table)

Address of extent n

II: 4 bytes -

A hex '80 in the high-order byte signifies the last length,
Figure 33. IDENTIFY Parameter List

80 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

177

178

Figure 34 (Part 1 of 3).

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

offset
Decimal Hex

0

Bl

B2

Length Symbol

HOADRNOVRROLDD[INNNNNADLDDDRARDNDDDDARDDDDDDIDLDDDDL

CMXDBLWD
(CMADCON)
CMFSTSAV
CMBEGADR
CMRDCBPT
CMWDCBPT
CMTDCBPT
CMRDECPT
CMWDECPT
CMGETREC
CMPUTREC
CMTRMREC
CMNXTTXT
CMLSTTXT
CMLOWTBL
CMHITBL
CMIOLST1
CMIOLST2
CMIOLST3
CMCORE1
CMCORE2
CMTOPCOD
CMLIBEOD
CMLIBSYN
CMLIBEXL
CMBLKSIZ
CMMAXLNE
CMMAPLIN
CMWLRECL
CMMAXLST
CMMAINPT
CMMAINSZ
CMPRNTDD
CMLINDD
CMLIBDD
CMTERMDD
CMEPNAME
CMPGMNM
CMLINDCB
CMLIBDCB
CMPRMFLG
CQRES
CQMAP
CQPRINT
CQLET
CQCALL
CQEPNAME
CQEPADDR
CQTERM
CMIOFLGS
CQEOQCB
CQEOFB
CQEOFSB
CQRECFM
(CQUNDEF)
CQFIXED
CQIGNCR
CQIOERR
CMFLAG3
CQTs
CQPGMNM
CQPASLIN

Pescription

Temporary doubleword

Relocation alignment area

Pointer to first save area

Default entry point to module

Input DCB pointer

Output DCB pointer

System DCB pointer

Input DECB pointer

Output DECB pointer

Input logical record pointer

Output logical record pointer

System buffer pointer

Next address to be assigned to a CSECT
Highest text address assigned to current CSECT
Lowest address assigned for loader tables
Highest storage address available to loader
Open list, DCB pointer #1

Open list, DCB pointer #2

Open list, DCB pointer #3

Corresponds to CMNXTTXT for pre-loaded text
Corresponds to CMLSTTXT for pre-loaded text
Highest text address before common allocated
EODAD error routine pointer for passed SYSLIB
SYNAD error routine pointer for passed SYSLIB
Exit list pointer for passed SYSLIB

Block size of current input object module
Maximum line count (SYSPRINT)

Length of map line

SYSPRINT record size

Maximum length of invalid options list
Variable conditional GETMAIN address
Variable conditional GETMAIN size

Print ddname

Primary input ddname

Library ddname

SYSTERM ddname

Entry point name

Program name

Passed SYSLIN control block pointer

Passed SYSLIB DCB pointer

Parameter flags:

X*01' RES/NORES

X*02%" MAP/NOMAP

X'04' PRINT/NOPRINT

X*'08*' LET/NOLET

X*'10' CALL/NOCALL

X'20' Entry point name defined

X'40' Entry point address defined

X*80* TERM/NOTERM

I/0 flags:

X*01' End of concatenation

X'02' End of file

X'04' End of file significance

X'08' Input record format (0 is Fixed)
Separate name in allocation for undefined
X'10* Fixed record format

X'20* Ignore control record on load module
X'40' An I/0 error has occurred

Assorted flags:

X'02' Time-sharing environment

X'04' Program name passed

X*'08' SYSLIN DCB passed

HEWLDCOM DSECT -~ Communication Area

Data Areas

81

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Offset
Decimal Hex Length Symbol Description

CQPASLIB 'X'10' SYSLIB DCB passed
CQINCORE X'20' Processing incore SYSLIN
CQIDEN X'40' Entered at IEWLOAD. Identification wanted

179 B3 1 CMFLAG4 Assorted flags:
CQESDS X'0l' ESDs have been encountered
CQMOD X'02* MOD card has been encountered
CQNOEX X'04' Execution not scheduled
CQMINI X'08' Mini-CESD built
COMVT X'10* MVS operating
CQCOMMON X'20* Common received
CQTRMOPN X'G0' SYSTERM open
CQIDONE X'80' Identification accomplished
180 B4 4 CMSYSTYP System type saved by HEWLDLIB
184 B8 36 CMRSAVE Register save area used by HEWLDLIB
224 EO G CMXLCHN Pointer to chain of extents
228 E4 4 CMBITMAP Error bit map
232 E8 4 CMERLIST Pointer to errors encountered during open
236 EC 4 CMRLDCHN Free RLD entry chain (8 bytes/entry)
2640 FO G CMESDCHN Free CESD entry chain (22 bytes/entry)
244 FG G CMEPADDR Entry point address to loaded program
2438 F8 128 CMTRCTRL Translate control table
376 178 4 CMBLDLPT BLDL pointer
380 17C 4 CMCXDPT Pointer to CXD addresses
384 180 4 CMFRECOR Free storage chain
388 186 4 CMMODLNG Length of module currently being processed
392 188 4 ‘CMOBJST Starting point for object module
396 18C 4 CMTEMPCH Pointer to load chain entry to be freed
400 190 4 CMEPCESD CESD line address of the entry point name
604 196 4 CMPREVPT Previous element in a chain for insert-delete
408 198 4 CMLOADCH Temporary chain for ESDs in a load module
612 19C 4 CMESDSAV CESD register save area for HEWLDREL
416 1A0 4 CMSDCHN Type 0 - Section definition - chain pointer
(CMTYPCHN) Index po:nt for the vector table
420 1AG¢ § CMLDCHN Type 1 Label definition - chain pointer
G246 1A8 4 CMERCHN Type 2 - External reference - chain pointer
428 1AC 4 CMLRCHN Type 3 - Label reference - chain pointer
632 1B0 4 CMPCCHN Type 6 - Private code - chain pointer
436 - 1B4 4 CMCMCHN Type 5 - Common - chain pointer
4460 1B8 4 CMPRCHN Type 6 - Pseudo register - chain pointer
G446 1BC 4 CMNULCHN Type 7 Null entry - chain pointer
648 1C0 2 CMCURRID ESDID counter
450 1C2 2 CMLNECNT Current line count for SYSPRINT
452 1C4¢ 2 CMBLDLNO Number of BLDL entries
454 1C6 2 CMWTBFCT Horizontal byte count in print record
656 1C8 2 CMNUMXS Number of extents
459 1CA 1 CMLIBFLG Autocall and load module processor flags:
CQKEEPS X'01l' Keep some text from this record
CQDELETE X'02*' Delete some text from this record
CQAUTOC X'04' Autocall is in process
CQCESDR X'08" CESD has been received for load module
CQNOTXT X'10*' Text has been received
CQLPASRH X'20*' LPA resolution possible
CQFIRST X*'40' First record from load module was CESD
459 1CB 1 CMRELFLG Relocation and object module processor flags:
CQESD X'01' ESD routine is caller to ID translate rtn
CQNOLNG é;gg; Length not vet received from current
CQDELINK X*'04® Delinking if required for common
CQLIB X*'08' Resolution from SYSLIB in process
CQNOEND X*'10' End card has been received
CQINPUT X'20* Input has been received
CQENTRY X'40*' RLD is for entry point
CQNOLNTX X'80' Text received for no-length CSECT
460 1CC 1 CMSTATUS Loader status flag:
CQPRTOPN X'01' Print DCB allocated for

Figure 34 (Part 2 of 3).

82 MVS/370 Loader Logic

HEWLDCOM DSECT - Communication Area

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

offset
Pecimal Hex Length Symbol

CQLIBOPN
CQABORT
CQREJOPT
CQOPNERR
CQRETURN
CQMSGSAV
CQPRTDBCB
461 icb 1 CMPRTCTL
462 1CE 1 CMOPTECT

Description

X*'02' Library DCB open

X'04' Abort loading

X*08' Invalid options are to be printed

X*10*' Errors were encountered during open
X*'20' Caller to error rtn must regain control
X'640' Request open exit to save error messages
X*'80' Print DCB is open

Index
Count

for printer carriage control
of invalid options to be printed

Figure 34 (Part 3 of 3). HEWLDCOM DSECT - Communication Area

Notes to Figure 34:

1. Symbols in parentheses are equated to preceding symbol.

2. Locations CMMAINPT through CMFLAGG are initialized from
locations INITMADR through INFLAGS4 in INITMAIN (Figure 36 on
page 85) by HEWLDIOC.

3. Locations CMBITMAP through CMOPTECT are initialized to zero
by HEWLDIOC.

HEWLDDEF

HEWLDDEF is a static CSECT that defines default options and
ddnames to be used by the loader.

During loader execution, the default values are moved to dynamic
storage (INITMAIN), where they are modified by the parameter
list values passed internally. The HEWLDDEF CSECT is described
in Figure 35 on page 84.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Data Areas 83

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Dec Hex
0 0
alternate DDNAME for
SYSLOUT
8 8
alternate DDNAME for
SYSLIN
16 10
alternate DDNAME for
SYSLIB
24 18
default SIZE value
28 1C
*
flags
32 20

‘Correspond to CMPRMFLG flags. See Figure 34
Figure 35. HEWLDDEF CSECT

84 MVS/370 Loader Logic LY26-3922-1 ©® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBNM
Licensed Materials — Property of IBM

0ffset .
Decimal Hex Length Symbol Description
0 0 72 INITSAVE 1Initial save area
72 48 4 INITMADR Variable conditional GETMAIN storage address
76 4C 4 INITMSIZ Variable conditional GETMAIN storage size
80 50 8 INITPRNT ddname for diagnostic message data set
88 58 8 INITLIN ddname for primary input data set
96 60 8 INITLIB ddname for autocall library data set
106 68 8 INITTERM ddname for SYSTERM data set
112 70 8 INITNAME Parameter list entry point name
120 78 8 INITPGMN Program name
128 80 G INLINDCB Address of passed SYSLIN DCB
132 84 4 INLIBDCB Address of passed SYSLIB DCB
136 88 2 INITPARM Parameter flags and error flags
138 8A 1 INFLAG3 Assorted flags
139 8B 1 INFLAGY Assorted flags
140 8C 4 INITSPIE Pointer to previous SPIE for 'SIZE=' SCAN
164 90 1 INITSCAN Scan pointer save area for 'SIZE=' SPIE
148 94 % INITDUM Save word for register during size processing
152 98 4 INITREJL End of rejected options list
156 9C 4 INITRMIN gé?ﬁgga size request for variable conditional
160 AO 4% INITRMAX gg¥ﬁggn size request for variable conditional
164 A4 12 INITGTML Ez¥az§ﬁer list area for variable conditional
176 BO 12 INITEXTR Parameter list area for Extract
188 BC 4 INITEXAD Address of TCB TSO field from Extract
192 (of1] 8 INITDBLW Doubleword for parm 'SIZE' conversion
200 C8 256 INITRTAB Translate and test table for option scan
456 1C8 VL INITREJP Rejected options buffer

Figure 36. INITMAIN DSECT Definition

Note to Figure 36:
Locations CMMAINPT through CMFLAG4 in HEWLDCOM (the

communication area Figure 36 on page 8l) are initialized from
locations INITMADR through INFLAG4G in INITMAIN.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985 Data Areas 85

Contains Restricted Materials of IBM
Licensed Materials - Property of IBM

RLD Table Entry

0-3 4

Address of next entry on this RLD chain.
0 if end of chain. (4 bytes)

Figure 37. RLD Table Entry

Note:

Flagfield - FXXXLLST (1 byte)

FXXX = type of adcon

x000 - A-type adcon
x001 - V-type adcon
0010 - displacement pseudo register
0011 - accumulative pseudo register

F=1 - use absolute relocation constant for relocation
LL - length of adcon

01 - two bytes
10 - three bytes
11 - four bytes

S - direction of relocation

0 - add the relocation constant

1 - subtract the relocation constant

T - not used by the Loader; input value is retained

Loader - assigned address of address constant in text (3 bytes) -

Translation Control Table

0-3 4-7

2{ 123-127

Address of extent allocated for the translation

toble. Each entry is initialized to zero (4 bytes)

Note: This table is defined in the communications area (HEWLDCOM)
at location CMTRCTRL.

Figure 38. Translation Control Table

86 MVS/370 Loader Logic

LY26-3922-1 ® Copyright IBM Corp. 1972,

1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Translation Table Entry
Built by the ESD Processor

]

1-31

Note: A translation table extent contains

———— Address of CESD entry (31 bits)

Flag (1 bit) for CESD entry for ER
0 = normal (relative) relocation required
1 = special (absolute) relocation required

32 of these entries. The Loader can allocate
a maximum of 32 extents. When allocated,

an extent is initialized to zero.

Figure 39. Translation Table

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Data Areas 87

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

This section contains information that is useful in diagnosing
difficulties with the loader program. Included are: register
contents at entry to routines (Figure 40), error code
definitions (Figure 41 on page 90), an example of a module map
(Figure 642 on page 91), and a list of serviceability aids
available with the loader. To use this section, refer to

Figure 20 on page 61 through Figure 24 on page 67 which show the
logic flow, and Figure 25 on page 73 which shows data area

Note: At the entry point to each module, register 13 contains the save area address
and register 14 contains the return addrgss.

Module Entry Point
HEWLCTRL 1
HEWRELO HEWLRELO 11
HEWLESD 5
3
11
HEWLTXT 2
3
11
HEWLMOD 7
i
HEWLRLD 7
i
HEWLEND "5
s
11
TRANSID 5
11
HEWLERTN 1
h
HEWLMAP 9
11
HEWLCNVT 1
11

Figure 40 (Part 1 of 2).

88 MVS/370 Loader Logic

Register Contents

address of parameter list
address of communication area

ID of first ESD item other than LD
length of ESD information

address of ESD information
address of communication area

Text ID

displacement address of text

length of text

address of text in object module buffer
address of communication area

length of MOD information
address of MOD information
address of communication area

length of RLD information
address of RLD information
address of communication area

ID of entry point (if present)

address of entry point (if present)
address of symbolic entry point name (if
present)

address of communication area

ESD ID to be translated
address of communication area

starting address of RLD chain
CESD entry address to be used for relocation
address of communication area

address of CESD entry to be mapped
address of communication area

binary quantity to be converted
address of communication area

Register Contents at Entry to Routines

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Module Entry Point Register Contents
HEWLLIBR HEWLODE 11 - address of communication area
15 - entry point address
HEWERROR 0 - error message code
1 - pointer to qualifying information (if it
exists)
11 - address of communication area
15 - entry point address
HEWACALL 11 - address of communication area
15 - entry point address
HEWBTMAP 11 - address of communication area
15 - entry point address
HEWLIOCA HEWLIOCA 1 - address of parameter list
15 - entry point address
HEWLOAD 1 - address of parameter list
15 - entry point address
OPENEXIT 1 - address of DCB
11 - address of communication area
12 - base address of HEWLIOCA
HEWBUFFR 10 - address of DCB
11 - address of communication area
15 - entry point address
HEWLREAD For Object and Load Modules
11 - address of communication area
15 - entry point address
For lLoad Modules
a. read control/RLD record
0 - zero
b. read text records
0 - length of text record
1 - address of text
c. read text and control/RLD
0 - complement of length of text
1 - address of text
HEWOPNLB 11 - address of communication area
15 - entry point address
HEWLPRNT 11 - address of communication area
15 - entry point address
HEWTERM 11 - address of communication area
15 - entry point address
HEWPRIME 11 - address of communication area
15 - entry point address
HEWLIDEN HEWLIDEN 11 - address of communication area
IDMINI 5 - starting address for mini-CESD
10 - upper limit of storage available

Figure 40 (Part 2 of 2).

Register Cont

ents at Entry to Routines

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985 Diagnostic Aids

89

ERROR CODE DEFINITJONS

Contains Restricted Materials of IBM
Licensed Materials — Property of 1IBM

Figure 61 contains the loader error codes listed in the order of
their bit positions in the error-bit map. (The codes are also
listed in DSECT ERCODES in CSECTs HEWLIOCA, HEWLRELO, HEWLLIBR,

and HEWLIDEN.)

Error

Cade Definition Sev Message
ERRELO1 Unresolved external reference (NOCALL specified) 1 TEW1001
ERENTR1 No entry point received 1 TEW1161
ERINPTS Card received not an object record 1 IEW1141
ERINPT10 No END card received 2 IEW1182
ERINPT2 Invalid length specified 2 TEW1082
ERREL 02 Unresolved external reference 2 TEW1012
ERINPTG Doubly defined ESD 2 IEW1102
ERINPTS Invalid 2-byte adcon 2 IEW1112
ERINPT? Invalid ID received 2 TEW1132
ERINPTY Invalid record from object module 2 IENW1152
ERINPT1 Block size is invalid 2 TEW1072
ERINPT11l Common exceeds size of CSECT with same name 2 IEW1232
ERINPT1I2 1Invalid 3-byte adcon 2 IEW1262
ERINPT3 No text received 3 IEW1093
ERENTR2 Entry point received but not matched 3 IEW1173
ERIOUTS 170 error while searching library directory 3 IEW1053
ERINPTé Invalid record from load module 3 IEW1123
ERIOQUT3 Unacceptable record format (variable on input) 4% IEW1044
ERIOUT1 ddname cannot be opened 4% IEW1024
ERIOUT2 ddname had synchronous error 4 IEW1034
ERSIZE2 Available storage exceeded 4 IEW1194
ERSIZE3 Too many external names in input module 4 IEW1204
ERIDEN1 Identification failed; duplicate program name 4 JEW1214
ERIDENZ2 Identification failed 4 IEW1224

Figure 41. Internal Error Code Definitions

90 MVS/370 Loader Logic

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Module Map Format

Map heading

CSECTs, entry points

Common entry

Pseudo Register
information

Length of loaded
program

Entry of loeded
program

Notas:

Nome Type Addr
Main SO 9000
sus2* SO A100
$ BLANKCOM CM

IHEQINV PR 00
IHEQSLA PR 14

TOTAL LENGTH 2000

ENTRY ADDRESS 9050

Name Type Addr
ENTRY LR 9050
A200
IHEQERR PR 04

Name

ENTRY2 R

IHEQTIC PR 08

Type Addr

9100

Nome Type Addr

susi* SD AQ00

IHEQLWF PR 0C [HEQWWO PR 10

o Name * denotes a module included from the SYSLIB data set.

e Name ** denotes a module included from the link pack area.

o Name *** denotes a module pointed to by a MOD record.

o The map entrics are made as addresses are assigned, so the
map reflects the order of ESD entries in the CESD.

Module Map Format Example

Figure 62.

SERVIC

LY26-3922-1 @ Copyright IBM Corp. 1972,

Following are serviceability aids provided in the loader:

The control section, HEWLDDEF, contains the loader option

default values.

It is resident in load module HEWLOADR.

A storage dump will typically produce information on the
nature of the error.
HEWLDCOM, and register 12 will contain the base register
associated with the CSECT in control.

Register 11 will contain a pointer to

All nine save areas are forward and backward chained.

Lower-level save areas will be printed.

A hexadecimal "FF®

in word 6 of the save area indicates that the routine
represented by the save area has returned control.

Input/output control information is contained in the loader

communication area.

This information consists of the DECB

address, the buffer locations, the block size, the logical

record length,
left in the buffer,
the associated switches.

layout of HEWLDCOM.

Appropriate diagnostic messages are produced when an error

has been detected.
where appropriate,

the blocking factor,
the address of the current record,

the number of recordsd
an
See Figure 37 on page 86 for the

The message has a specific number and,
lists the data in error.

The message

number and text are listed by HEWLLIBR at the end of

loading.

messages.)

(Figure 47 on page 97 is a list of these

A module map (MAP) is provided to furnish information
concerning the structure and contents of the program.
Figure 66 on page 96 is an example of a map listing.

The loader uses the SYNADAF to obtain information regarding
permanent I/0 errors, and lists the information on the
SYSLOUT data set.

1985

Diagnostic Aids 91

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

APPENDIX. ERROR MESSAGES, ETC.

This appendix contains a list of error messages and the routines
and CSECTs in which they originate, a list of loader input
conventions and restrictions, and detailed descriptions of input
record formats. (The input record formats are the same as for

the Linkage Editor Programs.)

interface is described for the processing of the data sets

passed to the loader.

Figure 43 lists the loader diagnostic messages.

In addition, the compiler/loader

Each message

contains a severity code in the final position of the message
number. These severity codes are defined as follows:

0 indicates a condition that will not cause an error during
execution of the loaded program.

1 indicates a condition that may cause an error during
execution of the loaded program.

2 indicates an error that can make execution of the loaded

program impossible.

3 indicates an error that will make execution of the loaded

program impossible.

4 indicates an unrecoverable error.

termination of loading.

Such an error causes

Message Message Issuer
Numbep Text Routine Issuer CSECT
IEW1001 Warning - Unresolved external reference HEWACALL HEWLLIBR
(NOCALL specified)
IEW1012 Error - Unresolved external reference HEWACALL HEWLLIBR
IEW1024 Error - Ddname cannot be opened HEWLIOCA HEWLIOCA
IEW1034 Error - Ddname had synchronous error SYNAD HEWLIOCA
IEW1044 Error - Unacceptable record format OPENEXIT HEWLIOCA
(variable on input)
IEW1053 Error - I/0 error while searching HEWACALL HEWLLIBR
library directory
IEW1072 Error - BLKSIZE is invalid OPENEXIT HEWLIOCA
IEW1082 Error - Invalid length specified HEWLEND HEWLRELO
IEW1093 Error - No text received HEWACALL HEWLLIBR
IEW1102 Error - Doubly defined ESD HEWLESD HEWLRELO
IEW1112 Error - Invalid 2-byte adcon HEWLRLD HEWLRELO
IEW1123 Error - Invalid record from load module HEWLODE HEWLLIBR
IEW1132 Error - Invalid ID received HEWLRLD HEWLRELO
HEWLTXT HEWLRELO
HEWLEND HEWLRELO
TRANSID HEWLRELO

Figure 43 (Part 1

92 MVS/370 Loader Logic

of 2).

Error Message/Issuer Cross-Reference Table

LY26-3922-1 © Copyright IBM Corp. 1972,

1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Message Message Issuer
Numbenr Text Routine Issuer CSECT
IEK1141 Warning - Card received not an object HEWLRELO HEWLRELO
record
IEW1152 Error - Invalid record from object HEWLRELO HEWLRELO
module
IEW1161 Warning - No entry point received HEWACALL HEWLLIBR
IEW1173 Error - Entry point received but not HEWACALL HEWLLIBR
matched
TEW1182 Error - No END card received HEWLRELO HEWLRELO
IEW1194 Error - Available storage exceeded HEWBUFFR HEWLIOCA
HEWLESD HEWLRELO
HEWLEND HEWLRELO
HREWLTXT HEWLRELO
HEWACALL HEWLLIBR
HEWLODE HEWLLIBR
HEWLIDEN HEWLIDEN
IEW1204 Error - Too many external names in input TRANSID HEWLRELO
' module
IEW1214 Error - Identification failed - HEWLIDEN HEWLIDEN
duplicate program name found
IEW1224 Error - Identification failed HEWLIDEN HEWLIDEN
IEW1232 Error - Common exceeds size of CSECT MATCHCM HEWLRELOQ
with same name
IEW1262 Error - Invalid 3-byte adcon HEWLERTN HEWLRELO
IEW1991 Error - User program has abnormally HEWLCTRL HEWLCTRL
terminated

Figure 43 (Part 2 of 2).

INPUT CONVE

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

ONS

Input modules (object or load) to be processed by the loader

Error Message/Issuer Cross-Reference Table

must conform with a number of input conventions:

. All text records of a control section must follow the ESD
record containing the SD or PC entry that describes the
control section.

o The end of every input module must be marked by an end
indication (END record in an object module, EOM flag in a
load module.)

e Any RLD item must be read after the ESD items to which it
refers and after the TXT item in which it is positioned.

. (Applicable only to FORTRAN IV language processing.)

Once a

BLOCK DATA subprogram has been received, any following named

common referencing it must not specify a longer length.

. Because each control section is assigned an address as it is

encountered in the input stream, any control section
appearing between the ESD for a "no-length' CSECT and the

END card for that "no-length' CSECT will have an erroneous
(A "no-length?' CSECT is a control section

address assigned.
whose length is defined on the END card.)

Appendix. Error Messages, Etc.

93

INPUT RECORD FORMATS

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Each record of text and each LD or LR type ESD racord must
refer to an SD or PC entry in the ESD.

The position pointers of every RLD record must point to an
SD or PC entry in the ESD.

No LD or LR may have the same name as an SD or CM.

The loader accepts TXT records that are out of order within
a control section. TXT records are accepted even though
they may overurite previous text in the same control
section. The loader does not eliminate any RLD records that
correspond to overuritten text.

During a single execution of the loader, if two or more
control sections having the same name are read in, the first
control section is accepted; the subsequent control sections
are deleted.

The loader interprets common (CM) ESD items (blank or with
the same name) as references to a single control section
whose length is the maximum length specified in the CM items
of that name (or blank). No text may be contained in a
common control section.

(Applicable only .to Assembler language programming.) When
control sections that were or are part of a separately
assembled module are to be replaced, A-type address
constants that refer to a deleted symbol will be incorrectly
resolved unless the entry name is in the same position
relative to the origin of the replaced control section. If
all control sections of a separately assembled module are
replaced, no restrictions apply.

The MOD record must physically precede all ESD records for
an internal object module and logically replace all text
records. If a MOD record appears as the first record of an
internal object module, all succeeding text records are
ignored until an END statement has been processed. A MOD
record is ignored if it appears outside an internal object
module, if it appears after other records have been
encountered for a module, or if its byte count is zero.

Figure 4% through Figure 56 on page 105 show input record
formats.

SYM Input Record (Card Image) - Ignored by the Loader

1 2-4 5-10 11,12 13-72 73-80
Not used
- TESTRAN data
Number of bytes of TESTRAN data
Blank
L svm
12-9-2 (0000 0010)

Figure 44. SYM Input Record (Card Image)—Ignored by the Loader

94 MVS/370 Loader Logic

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ESD Input Record (Card Image)

1

2-4

5-10

1,12

13,14

15,16

17-72

73-80

—— ESD

ESD Data ltem

8lank

—— 12-9-2 (0000 0010)

L—— ESD Data -~ see below

Blank if all ESD items are LD

8lank

Number of bytes of ESD data

10-12 |13

14-16

Zero - if length is on END cord.
Len_gthof control section (if type is: SD, PC, CM)
Identifier of SD entry for LD or LR
Blank if type is ER, WX, or 06 for 'never-call' from PL/I compiler

Length of pseudo-register (PR)

| ESD IDENTIFIER of first ESD item (other than LD)

—— Alignment Factor (PR)| 07 - doubleword alignment

03 — word alignment
01 - haifword alignment

00 - byte alignment

AMODE/RMODE/RSECT data (SD, PC)

XXXX. ... notused
. R . . . RSECTinformation (ignored)

~R.. RMODE

data

0=24
1=ANY

...... A A AMODE
00,

Blank (CD, ER, CM, NULL, WX)

24-bit address (SO, PC, LD}

Ngme -- when type is : SD, LD, LR, ER, CM, PR, WX

b Blank -~ when type is : PC or blank CM.

Figure 45. ESD Input Record (Card Image)

data
01=24
10=31
11=ANY

L Type - Hex (00 SD, O1: LD, 02 ER, 04 PC, 05: CM, 06 - PR, 07 = NULL, 0A = WX)

——— Not used

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Appendix.

Error Messages,

Etc.

95

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Text Input Record (Card Image)

1 2-4 5 6-8 9-10 11,12 13,14 | 15,16 17-72 73-80
L———Not used
Text data (machine-language code)

L ESD Identifier of SD for control section of this text

Blank

Number of bytes of text data

Blank

—— 24-bit gddrass of first byte of text data

—— Blank
—
12-9-2 (0000 0010)

Figure 46. Text Input Record (Card Image)

96 MVS/370 Loader Logic LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

RLD Input Record (Card Image)

— 12-9-2 (0000 0010)

RLD Data ltem

1,213,415 16,7,8

l— Assigned cddress of address constant

TTTT = type

Flag field -- (TTTTLLSTn)

0000 = non-branch

0001 = branch

0010 = pseudo register displacement value

0011 = pseudo register cumulative length
LL = length of address constant

01 = 2 bytes
10 = 3 bytes
11 = 4 bytes

1 2-4 5-10 11-12 13-16 17-72 73-80
I—— Not used
—— RLD data - see below
Blank
——— Number of bytes of RLD data
Blank
—— RLD

S = Direction of relocation
0 = positive (+)
1 = negative (-)
Tn = type of next RLD item .-
0 = next RLD item has a different R or P
pointer ; they are present in the next item.
1 = next RLD item has the same R and P pointers,
hence they are omitted

Position pointer (P) - ESDID of SD for control section that contains the address constant

L Relocation pointer (R) - ESDID of CESD entry for the symbol being referred to. Zero (00) if type = PR cumulative length

Figure 47. RLD Input Record (Card Image)

LY26-3922-1 ® Copyright IBM Corp. 1972, 1935 Appendix. Error Messages, Etc.

97

Contains Restricted Materials of IBNM
Licensed Materials — Property of IBM

END Input Record - Type 1 (Card Image)

1 2-4 5 68 9-14 15,16 17-28 29-32 33-80

—— DR data, ignored by the Loader

L—— Control section length for control section whose length
was not specified in SD ESD item. Byte 29 is binary
zero rather than a blank if length is present.

‘ Blank

ESDID of SD item for this contro! section that contains the entry point address specified in bytes 6 ~ 8.

Blank

———— 24-bit address of entry point (optional)

L—— END

—— 12-9-2 (0000 0010)

Figure 48. END Input Record—Type 1 (Card Image)

END Input Record - Type 2 {Card Image)
1 2-4 5-16 17-24 25-28 29-32 33-80

L IDR data, ignored by the Loader

Control section length for control section whose length
was not specified in SD ESD item. Byte 29 is binary
zero rather than a blank if tength is present.

Blank

~———— Symbolic entry point name (optional)

—— END

——— 12-9-2 (0000 0010)

Figure 49. END Input Record—Type 2 (Card Image)

98 MVS/370 Loader Logic LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBNM
Licensed Materials — Property of IBM

OEI =

L—— SYM data and ESD data (ESD type SD, CM and PC items) - (maximum of 240 bytes)

t—— Count - in bytes, of SYM and ESD data (2 bytes)

Subtype - specifies information for TESTRAN - (1 byte)
1000 0000 - this SYM record contains ESD items (SD, PC or CM) from
a load module that was not “under test". The test
option was not specified when it was link edited.
0000 0000 - this SYM record is not the acbove type.

—— Identification - specifies this is a SYM record == 0100 0000 (1 byte)

Figura 50. SYM Record (Load Module)—Ignored by the Loader

LY26-3922-1 & Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 99

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CESD Record - (Locd Module)

1

23

4,5 6,7

up to 240 bytes of ESD data

=)

Flag (1 byte)
0XXX XXXX — byte 12 of CESD data items contains

b Spare - 2 bytes of binary zeros

nt numbers

—— ESD data - for detailed information see below.
b—— Count - in bytes, of ESD data (2 bytes)

——— ESDID of first ESD item (2 bytes)

sagme! .
XXX XXXX — byte 12 of CESO data items contains

AMODE/RMODE cata

e |dentification == 0010 0000 -- (1 byte)

CESD Dota (Load Module)

9| 10-12

14-16

10/ length - length (3 bytes), when type is: SD, PC, CM or PR
ID (2 bytes), when type is LR
Zero (3 bytes), when type is ER, WX, or Null

——— Alignment factor (PR) { 07 — doubleword

03 - fullword
01 - halfword
00 - byte

Zero (ER, WX, Null)
If tlag byte (byte 1) indicates CESD data items contain
segment numbers - segment number (SD, PC, CM, LR)
if flag byte (byte 1) indicates CESD data items contain AMODE/RMODE data —
XXXX notused
. R . . . RSECT information (ignored)
. R . . RMODE data
0=24
1=ANY
. . A A AMODE data
00,01=24
10=31
11 = ANY

(SD, PC)

L——— Address - linkage editor-assigned address of this symbol. Zero when type is ER, WX, or Null (3 bytes)

L Type - (1 byte) Section definition (SD) XXXXX000
Lobel reference (LR) XXXXX011
Private code (PC) XXXXX100

Private code marked delete
(ENTAB ond SEGTAB control sections}) XXX1X100

Common (CMm) XXXXX101
Null XXXXX111
External reference (ER) XXXXX010
Weak external reference (WX) XXXX1010
Pseudo register (PR) XXXXX110 X's may be 1 or 0

= Symbol - The 8-character external namé — Zero when type is Null.

Blanks if blank common or PCs other than SEGTABs and ENTABs

Figure 51. CESD Record (Load Module)

100 MVS/370 Loader Logic

LY26-3922~1 © Copyright IBM Corp. 1972,

1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Scatter - Translation Record

011 2-3 4-1023 ?2 Up to and including 1020 bytes

l— Dota - may contain translation table, translation toble and scatter table, or scatter table only

‘—— Count - in bytes, of data field

——— Zero - one byte of binary zeros

Identification - identifies this as a scatter-translation record - bit configuration is: 0001 0000

N

‘— Padding (2 bytes) = if necessary, to force fullword boundary alignment of scatter table.

Translation Table

Pointer (2 bytes) ~ to the scatter table entry that contains the address of the control section
containing this CESD entry,
Number of translation table entries = number of CESD entries +1.,
Pointer will be zero if its corresponding CESD entry is not SD, PC, CM, or LR,

Zero - 2 bytes of binary zeros

Scatter Table

(L

Assigned address (3 bytes) - of a control section (SD. PC or CM)

- Flags (1 byte) .

XXXX. . X . notused

.. . .R . . . RSECTinformation
0 = not read-only
1=read-only

. R . . RMODEdata
0=24
1=ANY
. H Hierarchy (OSIMVT)

0 = processor storage
1=2361 storage

—— Zero - 4 bytes of binary zeros

Translation Table and Scatter Table

NEAEA R g Tl e s s, 55 s 21 s,
Scatter data
— Padding (2 bytes) if y to align scatter table to a fullword boundary.
= Translation data
Figure 52. Scatter/Translation Record—Ignored by thae Loader
LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 101

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Control Record - {Load Module)

0 |1-2 3

4-5

67

8-15

e(kecotd Length 20 to 256 bytes

Count - contains 2 bytes of binary zeros.
Count - in bytes, of the control information (CESD ID, length of

b Length of text record and/or length of control section - specifies the length of
the control section {in bytes) to which the text in the following
record belongs, or the number of bytes of a control section i
in the following text record (2 bytes)
ternal symbol dictionary entry that

b CESD entry number - specifies the composite Y

contains the control section name of the control section of which this text is a
part (2 bytes)

\——— Channel Commeand Word (CCW) - that could be used to read the text record that follows. The data address field
contains the linkage editor assigned address of the first byte of text in the text record that follows. The

count field contains the length of the succeeding text record.

trol section) following the CCW field.

Count — (1 byte) of RLD and/or CTL/RLD records following next text record.

Spare — contains 2 bytes of binary zeros.

———— Identification ~ specifies that this is:

¢ A control record - 0000 0001

o The

rd that preced

® The

d that p o

the last text record of this overlay segment - 0000 0101 (EOS)
the last text record of the module - 0000 1101 (EOM)

(1 byte)

Figure 53. Control Record (Load Module)

102 MVS/370 Loader Logic

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Relocation Dictionary Record - (Load Module)

01113 |45] 6,7 815 16-255 2; Record length can be between 24 and 256

—— RLD data -~ see below

— Spare - contains 8 bytes of binary zeros

Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

Count - contains two bytes of binary zeros

—— Spore - contains three bytes of binary zeros

Identification - specifies that this is: (I byte)
® A relocation dictionary record - G000 0010
o The last record of this segment - 0000 0110
o The last record of the module - 0000 1110

RLD Data

R P F A F A i (F A R P F A R P | F A
l—Addrcss- linkage editor

assigned address of
the cddress constant
(3 bytes)

t——— Flag - (1 byte) When byte format is xxLLST,

specifies miscellaneous information as follows:

xxxx specifies the type of this RLD item (address constant),

0000 -- non-branch type in assembler language, DC A (name)

0001 - branch type in bler language, DC V (name)

0010 -~ pseudo register displacement value

0011 -- pseudo register cumulative displacement value

1000 and 1001 -- this address constant is not to be relocated because it refers to an unresolved symbol .

LL specifies the length of the address constant,

01 -~ two bytes

10 -~ three bytes

11 == four bytes

S specifies the direction of relocation.

0 -~ positive

1 -- negative

T specifies the type of the next following RLD item.

0 -- the following RLD item has a different relocation and/or position pointer.

1 == the following RLD item has the same relocation and position pointers as this and therefore contains
only the flag and address fields.

——— Position pointer - contains the entry number of the CESD entry that indicates
which control section holds the address constant (2 bytes).

ion pointer - contains the entry number of the CESD entry that indicates which symbol valve
is to be used in the computation of the address constant's value (2 bytes).
0if PR cumulative length or if ENTAB CSECT.

Figure 54. Relocation Dictionary Record (Load Module)

LY26-3922-1 ®& Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 103

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

_Cﬂmol and Relocation Dictionary Record - (Lood Module)

o2 3| 4567 8-15 2?

|—'leng'h of

<Control
section or
text record
(2 bytes)

L_*CESD antry number
P17 R

— Address

— Fleg

L Address (3 bytes)

L— Flag (1 byte)

L— Position pointer (2 bytes)

— Relocation pointer (2 bytes)

L— Channel Command Word (8 bytes)

~— Count, in bytes, of RLD information (2 bytes)

L-Coum, in bytes, of comrol information following the last RLD address field,

*« The control ins the D and length of control sections in the
following fext record (2 bytes).
Count (1 byte) of RLD and/or CTL/RLD records following next text record.

—— Spare (2 bytes)

L— Identification (1 byte) - specifies that this record is:

- o A control and RLD record - 00000011 - (it is followed by a text record)

o A control end RLD record that is followed by the last text record of a segment - 0000 0111 (EOS)
o A control and RLD record that is followed by the last text record of @ module - 0000 1111 (EOM)

Note: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record.
The record length varies from 20 to 256 bytes.

Figure 55. Control and Relocation Dictionary Record (Load Module)

104 MVS/370 Loader Logic LY2(--3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CSECT Identification Record - (Locd Module)

0 1 2 3-255 // record length 7 to 256 bytes

e |DR dota -~ (maximum of 253 bytes)

L—p» Sub-Type Indicator - (1 byte) - specified type of
DR data contained on this record (bits 1-3 reserved)

Data supplied by IMASPZAP XXXX0001
Linkage Editer data XXXX0010
Translator-supplied data XXXX0100
User (System)-supplied data
(from IDENTIFY function) XXXX1000
Indicates the last IDR of this load module IXXXXXXX ~ X'smay be 10or 0

L————— Count, in bytes, of IDR data in this record , including this field (value range 6 to 255).

— |dentification - indicates that this is a CSECT Identification record == 1000 0000.

Figure 56. Record Format of IDRs (Load Module)—Ignored by the Loadar

OMPILER/LOADE ERFACE FQ SSED SETS

If the loader is to process an internal SYSLIN data area (that
is, a data area residing in virtual storage and consisting of
contiguous object module records prepared by a compiler) and/or
an open SYSLIB data sat, the compiler/loader interface described
here is used. The description includes the format of the DCB
list, the control block or DCB parameters that must be specified
for the data area or data set, the format of an internal data
area consisting of either fixed- or variable-length records, and
the format of the MOD record.

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 105

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DCB List

Pointed to by the fourth entry in the parameter list passed to the Loader

0-1 2-3 4-7

8-11 12-15 16-19

-

Figure 57. DCB List

__ SYSLIB DCB - may
contain the address
of an open SYSLIB DCB

(4 bytes).
L Zero - 4 bytes of binary zeros.

— Zero - 4 bytes of binary zeros.

— SYSLIN control block - may contain the address of a
SYSLIN control block which describes an internal
data area prepared by a compiler (4 bytes).

[Zero - 2 bytes of binary zeros.
Number of entries following (2 bytes).

Internal SYSLIN Control Block

The SYSLIN control block?® used to describe an internal input
data area should have the follouwing fields initialized:

DCBDEVT

DCBRELAD

DCBBLKSI
DCBRECFM

DCBLRECL

0, to describe an internal data area and to indicate
that an internal SYSLIN control block was passed.

starting address of the internal object module
records.

length of the entire internal data area.

FB, if the internal object module records are in
fixed-length format.

VB, if the internal object module records are in
variable-length format.

length of a logical record if the data set records
are in fixed-length format.

23 The control block has the format and content of & SYSLIN
data control block, but is not to be considered a data
control block because there is no data management activity
in connection with this control block.

106 MVS/370 Loader Logic

LY26-3922~1 ®© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Open SYSLIB DCB

The open SYSLIB DCB passed to the loader should have the
following DCB fields initialized:

DCBDSORG = PO

U, if the SYSLIB data set contains load modules.

F or FB, if the SYSLIB data set contains object
modules. (In this case, values for the fields

DCBLRECL and DCBBLKSI should also be specified.)

DCBMACRF = R
DCBNCP = 2
DCBRECFM =

DCBBUFNO = 0

Exit routine addresses may be specified.
the loader overlays these addresses with the addresses of its
own routines. The loader also restores these addresses before
returning to the caller.

If an open SYSLIB DCB is passed to the loader, SYSLIB is not

closed by the loader.

Before reading SYSLIB,

(Logical record length = 72)

1-72 73-144

Second record
of data area

First record

of data area

(This record

should begin

on a fullword
boundary. lts address
should appear

in the passed

SYSLIN control block
field DCBRELAD.,)

Figure 58. Internal Data Area in Fixed-Length Record Format

n-n+71

L Nth record

of data area

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Appendix. Error Messages, Etc.

107

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

No, of
bytes

Figure 59.

Internal Data Area in Variable-Length Record Format

Block
Descriptor Descriptor Descriptor Descripfor
Word Word Word Word
T —— —— —_———
4 2 2 u 2 2 L2 2 2 ln
L First record L Second record L nth record
of data area of data area of data area
Binary zeros Binary zeros Binary zeros
Length (L1) of first Length (L2) of second Length (Ln) of nth record
record of data area record of data area of data area plus
plus deseriptor plus descriptor descriptor word (This
word (This field word (This field field must fall on the
must fall on a must fall on the fullword boundary
fullword boundery.) fullword boundary following the end of
following the end the previous record.)
of the previous
record.)

2-4

5-10 11-12 13-16

17-20 21-24

25-28 29-32 33-80

LM_OD

i

—Blank (6 bytes).
(3 bytes).

L-12-9-2 (0000 0010) (1 byte).

I

LNot used.

*Number of bytes of text
(optional) (4 bytes),

*Address of text extent (optional)

@hytes).

— Address of byte following the estimated
or actual end of text for the last
control section in the module (4 bytes),

| Main storage address of the first byte of text

for the first control section in the module.

This address should be on a doubleword boundary.
(The Loader assumes that each succeeding control
section within the module begins on the next
available doubleword boundary.) (4 bytes)

L_Blank (4 bytes).

Number of bytes of data to be processed in columns 17-32
(number =8 or 16) (2 bytes),

*Note: These two fields define storage that is to be identified as part of the loaded program. They
are optional, but must occur on at least one of the MOD records in the internal data area if the
Loader is invoked via the entry points LOADER, HEWLDRGO, or HEWLOAD, Each occurrence of
these two fields defines a new extent of the program. The values must conform to the rules for
FREEMAIN parameters, that is, the address must begin on a doubleword boundary and the length
must be a multiple of 8.

Figure 60.

MOD Record (Card Image)

108 MVS/370 Loader Logic

LY26-3922-1 Copyright IBM Corp. 1972,

1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

IDENTIFY MACRO INSTRUCTIO IDENTIFYING LOADED PROGRA

The
perm
0 so
inst
inst
exte

IDENTIFY macro instruction, when invoked as described below,

its the loader to describe a program constructed in subpool
that the program may later be invoked by a macro

ruction such as LINK, XCTL, or ATTACH. The IDENTIFY macro
ruction creates a contents directory entry (CDE) and an

nt list for the program constructed. These system control

blocks allow the supervisor to identify the program.

The addresses and lengths of the program's extents, the entry

poin
IDEN
pass
in F
the

invo
inst
abse
are

plac
also
it,

When
is s

t address, and the program name must be passed to the

TIFY macro instruction. (The format of the parameter list
ed by the loader to the IDENTIFY macro instruction is shown

igure 33 on page 80.) The IDENTIFY macro instruction flags

CDE that it creates to indicate that the program can be

ked by other macro instructions as well as by the LOAD macro
ruction. Residence of the program in subpool 0 and the

nce of the program as a load module on an external device

also indicated in the CDE. The IDENTIFY macro instruction
es the CDE on the user's job pack area control queue; it
derives the extent list from the parameter list passed to

and stores the extent list within the system queue area.

the form of the IDENTIFY macro instruction described below
pecified, all other operands are ignored. The format is:

Operation operand

[sym

boll IDENTIFY MF=(E,address of parameter list|(1))

wher
MF=

Prog
requ
the
1.
2.

3.

Hhen
cont

indicates the execute form of the macro instruction using a
remote parameter list. (The format of the parameter list
passed by the loader is shown in Figure 33 on page 80.)
The address of the parameter list can be loaded into
register 1, in which case MF=(E, (1)) should be coded. If
the address is not loaded into register 1, it can be coded
as an address that is valid in an RX-type instruction, or
as one of the registers 2 through 12 that were previously
loaded with the address. A register can be designated
symbolically or with an absolute expression, and is always
coded within parentheses.

ramming Notes: Failure to meet any of the following
irements will cause an exit with a return code to indicate
reason for unsuccessful completion. The requirements are:
The extent list size must be a positive multiple of 8.

The addresses in the parameter list must be in subpool 0.
The program name should not duplicate a name already on the
link pack area control queue or the user's job pack area
control queue.

The entry point must be within ona2 of the extents.

The caller must be a nonsupervisory routine.

The extents must be in the user's region in subpool 0, and
they must begin on doubleword boundaries.

the IDENTIFY macro instruction returns control, register 15
ains one of the following hexadecimal codes:

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Appendix. Error Messages, Etc. 109

Code
00
04
08

ocC

14

18

1C

20

110 MVS/370 Loader Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Meaning
Successful completion.
Program name and address already exist.

Program name duplicates the name of a load module
currently in virtual storage; CDE was not created.

Entry point address is not within an eligible program;
CDE was not created.

An IDENTIFY macro instruction was previously issued
using the same program name, but a different address;
this request was ignored.

Parameter list address is not on a doubleword
boundary, or the program name specified is already on
the link pack area control queue or the user's job
pack area control queue; CDE was not created.

Extent list length is negative, not a multiple of 8,
or the extent addresses are not on doubleword
boundaries; CDE was not created.

Extents are not in subpool 0; CDE was not created.

LY26-3922-1 © Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

LIST O

ERMS AND

BREVIATIONS

adcon
CESD
CSECT
DECB
DSECT
EOM

ESD ID

K

LD

LR

P pointer
PC

PR

R pointer
RLD

SD

TTR

WX

address constant

composite external symbol dictionary

control section

data event control block

dummy section

end of module

external symbol dictionary identification

1024

label definition

label reference

position pointer

private code

pseudo register

relocation pointer

relocation dictionary

section definition

relative track and record address on a
direct-access device

weak external reference

LY26-3922-1 © Copyright IBM Corp. 1972, 1935

List of Terms and Abbreviations 111

INDEX

A

A-type address constant, purpose of 36
abgreviations and acronyms, dictionary
o

' address assignment

for common areas 42
for external DSECTs 642
in nonresolution 24-27
in resolution 28-31
address constants, relocation of
description of 37
introduction to 5
address list for BLDL information
purpose of 40-42
routine that builds the lists 73
allocation
of buffers and DECBs 14-16
of save areas 12
of table entries 24
automatic
deletion (for CESD type SD) 30-31
, library calls 40

BLDL list
format of 73
purpose of 640-42
BLDL macro instruction, issuance of 40
boundary alignment (for PR entries)
description of 43
introduction to 32
buffer, allocation of 14-16

c

CALLINOCALLINCAL option 8
CESD entry 24, 27
See also composite external symbol
dictionary entry
common (CM) area
address assignment of 42
definition of 21
processing a CM entry 27
common reference 20
communication area (HEWLDCOM)
format of
initialization of 12
composite external symbol dictionary
entry
definition of 19
internal format 77
making an entry 24
processing of 22-32
record format of 100
cggcatenated data sets (on SYSLIN) 3,

condensed symbol table
creation of 464

112 MVS/370 Loader Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

format of 77
purpose of 11

control
and relocation dictionary record
format 104

dictionaries 5 i
information processing 12

record
description 19
format 102

processing 34
ggntrol level tables (routines) 62-66

See common reference
CSECT Identification Record

record format 105

treatment of 21

data area layouts
address list for BLDL information 73
communication area (HEWLDCOM) 81
default and ddname CSECT
(HEWLDDEF) 84
INITMAIN work area 85
data control block (DCB) for SYSLIN,
SYSTERM, and SYSLOUT data sets,
construction of 13
data control block (DCB), alternate for
SYSLIB 12, 107
da¥a ggent control block (DECB), format
o
DCB list, format of 106
default and ddname CSECT (HEWLDDEF) 84
deleting CSECTs
in ESD processing 30-34
in load module input 34, 35
delinking 38-39
diagnostic
aids 88
register contents at entry to
routines 88
dictionary print routine (HEWBTMAP)
messages 92-93
diagrams, operation 67-60
directory, microfiche 70-72
dummy DSECT, external
See external dummy section

END
processing 39
record formats 97

entry point determination
checking of 44
default for preloaded text 34
in ESD processing

EOM
See END

EP=(keyword) 8

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ER
See external reference
error
diagnostic dictionary processing
routine (HEWBTMAP)
messages 92-93
internal code definitions 90
message-issuer cross reference
ESD table 92-93

See external symbol dictionary
ESD ID
definition of 6
in END processing 39
in ESD processing 27-28
in RLD processing 36-37
in text processing 32-34
extent
chain entry format 79
processing
external dummy section (pseudo register)
address assignment
definition of 6
entry processing
displacement and boundary
alignment
PR entry 27
symbol resolution in 32
function of
external reference (ER)
definition of 21
entry processing
match processing 30, 31
no-match processing 27
function of 21
unresolved ER messages 43
unresolved ER processing 460
external symbol dictionary (ESD)
definition of
entry types 22
identifier
See ESD ID
processing
description of 19-32
introduction to 10
operation diagrams for
record format 94
EX¥RACT macro instruction, issuance
o

53-55

F

final processing
description of 41
overview 11

functions of the loader 1

general register contents 88-89

LY26-3922-1 ® Copyright IBM Corp. 1972,

1985

HEWLDCOM (communication area)
format of 81-84
initialization of 12

HEWLDDEF
data area layout 84
definition 3, 12

HEWLLIBR 3, 61

HEWLOAD, entry point for loading with

identification

1/2 cggtrol-allocation. description
o
ID-length list 34
identification of loaded program
See also program name
processing 43
purpose of 11
saving extent information for 33
IDENTIFY macro instruction
issuance of 11, 44
parameter list
creation of 44
format of 80
record format 105
treatment of
initialization processing
description of
operation diagram of 49
INITMAIN work area, format of 85
input
conventions 93
entry types 24
description of 19
introduction to 13
primary data set 3
record formats 96-105
secondary data set 3
secondary input processing
description of 41
internal input data area
See also passed data sets
concatenation restriction 4
definition of 3
format
fixed-length records 107
variable-length records 108
processing 10, 12
reading of 17
SYSLIN control block for 12, 106
internal object module
See internal input data area

L
label
definition (LD) or reference (LR) 21
LD and LR processing
description of 26
introduction to 23
reference
when CESD type is CM 31-32
when CESD type is SD 30
Index 113

tgnguage translators 3

See label definition
LETINOLET option
library calls 40, 41
See also automatic library call
processor and secondary input
processin
load module
processing
description of (see also reading
load module text) 20
operation diagram of 58
RLD buffer, use of 18
load module processing
description of 17
See also reading load module text
Loader
data sets 3
options 7
organization 61
structure

M

MAP option, processing of 24
MAP | NOMAP option
map, module, format example of 91
match processing 29-32
microfiche directory 70-72
MOD record
contents of 19
input convention 94
processing 33-34
record format 108

NAME=(keyword)
See program name

no~-match processing
description of 26-33
tabulation of 24

null type of ESD entry 21

object and load module processing,
differences 18
object module
allocation for 17
control dictionaries in 5
operation diagrams 67-60
options 7

114 MVS/370 Loader Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

P

passed data sets, compiler/loader
Pénterface 105-108

See private code
pointers, RLD (relocation dictionary
Erocessing), use of 36-37

See pseudo register
preloaded text
See MOD record
PRINT|INOPRINT option 8
private code (PC) 21
processing control module
See initialization, I/0, control and
allocation processor
program name
passing to control program 12
specifying
pseudo register (PR)
address assignment 62
definition of 6
entry processing
displacement and boundary
alignment 32
symbol resolution in 32
function of

Q

Q-type address constant
purpose of
use of in pseudo register
relocation

R

reading
load module text 34
module input 16-17
readying data sets 13
register contents at entry to
routines 88-89
aids
register contents at entry to
routines 89
relative relocation constant
definition of
use of 38
relocating address constants 38
relocation constant, computing 27
relocation dictionary (RLD)
entries, use of 19
introduction to 6
processing
details of 36-37
introduction to 10
operation diagram 59
processor (HEWLRLD)
for load module 103, 104
input record 97
table entry format 86
RESINORES option 8
Efgolution, symbol 29-32

LY26-3922-1 ®© Copyright IBM Corp. 1972, 1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

See relocation dictionary SYSLOUT data set

RLD pointers, meaning of 6 initialization of 13
purpose of

SYSTERM data set
initialization of 13

S purpose of 3
scatter/translation record, format
of 101 T
SD :
See section definition
secondary input processing tables .
description of 41 construction and usage 73
section definition (SD) used in the CESD search 2
introduction to 21 TERMINOTERM option
processing an SD entry 26 text
symbol resolution for SD entry 30 input record format 96
serviceability aids 91 loading 33-34
SIZE=(keyword) 8 processing 18
storage allocation record processing 33-34
for buffers and DECBs 14-16 text processing (operation diagram)
for CESD entries 24 translation
for save areas used during of IDs in ID/length list 34
loading 12 translation control table, format of 86
SYM record translation table
format of input record 94 format of 86
format of record in load module 99 making an entry in 27-28
treatment of 19 relation to translation control
symbol resolution 29-32 : table

SYSLIB data set
alternate DCB for 12, 107
characteristics of 3
opening 40 \'4
passing an open data set 12, 40 .
resolving ERs from

SYSLIN control block - V-type address constant, purpose of 37

See also passed data sets virtual storage allocation
format 106

processing 12

use in reading internal input 17
SYSLIN data set W

See also internal input data area and

passed data sets

definition of 3 weak external reference (WX)
initialization and input control definition of 21
of 12-13 processing 24

LY26-3922-1 ® Copyright IBM Corp. 1972, 1985 Index 115

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

8000800000000 000000000000scctonsosssoratossessosiosssstenaas

800 000000000000 0000000000000000000000000000Nesssnisessosestsscscsstacsosoccns

00000 00000000000 0000000eerItstnsetecsnsostosscssstosstonisonsosesnncacs

Contains Restricted Materials of IBM

. Reader’s
Licensed Materials—Property of IBM
(Except for Customer-Originated Materials) Comment
© Copyright IBM Corp. 1972, 1983 Form
LY26-3922-1
MVS/XA Loader Logic

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:
Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

LY26-3922-1

Reader’s Comment Form

Fold and

0000 aE000 0000000000000 00000E000000080000000E0000 000600000000 00stetssotsosnccssoansssssocssanse tetesestcavacsenanne

tape

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I1BM Corporation

P.0. Box 50020
Programming Publishing
San Jose, California 95150

@0 000000 eIt e e eeaNtae 00000000000 elEeat0a000000000000000000000R000t0enanss0E

Fold and

tape

Please do not staple

Fold and tape

essceesscocsna tesesssvenane

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

P 0000000000 rterteacneeseertitrtersersessesisorsstssssccsonncscscsccnns

sescsscscncsesne secesscsane

Fold and tape

R N I N N I Iy R

eessesesseesreversscceresrarncer

essescesectessessosene

eeessesesssceseassnssesessesssesssacce

L-CCBE9TAT "V'S'N Ui paruld (LE-OLES "ON 3lid) 21607 Japeo OLE/SAN

MVS/370
Loader Logic

Printed in U.S.A.

Contains Restricted Materialg of IBM

Licensed Materials—Property of IBM
Copyright IBM Corp. 197R. 1985

Order No. LY26-3922-1

File No. S370-31

LY26-3922-01

T

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	replyA
	replyB
	xBack

