Interactive SC34-4254-0

System Productivity Facility/
Program Development Facility (ISPF/PDF)

ISPF/PDF Software Configuration and
Library Manager (SCLM) Guide and Reference

Version 3 Release 2 for MVS

Interactive SC34-4254-0

System Productivity Facility/
Program Development Facility (ISPF/PDF)

ISPF/PDF Software Configuration and
Library Manager (SCLM) Guide and Reference

Version 3 Release 2 for MVS

First Edition (March 1990)

This publication applies to Version 3 Release 2 of the licensed program Interactive System Productivity
Facility/Program Development Facility (ISPF/PDF or PDF) for MVS (5665-402) and to all subsequent
releases and modifications until otherwise indicated in new editions of this publication or Technical
Newsletters. It is for use with the Interactive System Productivity Facility (ISPF) for MVS (5685-054),
Version 3 Release 2, MVS Version 2 Release 2 or later, and TSO/E Version 2 Release 1.

This edition applies to subsequent releases and modifications of this program until otherwise indicated.
The licensed programs and related licensed material described herein are provided by IBM under the
Agreement for IBM Licensed Programs.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. This
disclaimer does not apply in the United Kingdom or elsewhere if inconsistent with local law.

This publication may include inaccuracies or errors. IBM may change this publication and/or the product
described herein. Textual changes are indicated by a vertical line to the left of the change.

This book contains technical information that is not supported by IBM, such as examples of code,
programs, and samples. Information herein serves as technical reference and guidance only.

IBM may have patents or pending patent applications covering subject matter described herein. This
document neither grants nor implies any license or immunity under any IBM or third-party patents, patents
applications, trademarks, copyrights, or other similar rights, or any right to refer to IBM in any marketing
activities. Other than responsibilities assumed via the Agreement for Purchase of IBM Machines and the
Agreement for IBM Licensed Programs, IBM assumes no responsibility for any infringement of third-party
rights that may result from use of the subject matter disclosed in this document or from the manufacture,
use, lease, or sale of machines or programs described herein.

Licenses under IBM’s utility patents are available on reasonable and nondiscriminatory terms. IBM does
not grant licenses under its appearance design patents. Direct licensing inquiries in writing to the IBM
Director of Commercial Relations, International Business Machines Corporation, Armonk, New York, 10504.

References in this publications to IBM products or services do not imply that they will be available
everywhere IBM operates, nor that only IBM’s products or services may be used.

Publications are not stocked at the address below. Request IBM publications from your IBM representative
or branch office.

A form for comments is provided at the back of this publication. Or you may address comments to: IBM
Corporation, Department T45, P.O. Box 60000, Cary, North Carolina 27511. IBM may use and distribute

information you supply without obligation to you.

Note to U.S. Government users — Documentation is related to restricted rights; use, duplication, or
disclosure is subject to restrictions set forth in the GSA ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 1983, 1990. All rights reserved.

Special Notices

Before using this publication in connection with the operation of IBM systems,
consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibliography,
GC20-0001, IBM System/370 and 4300 Processors Bibliography of Industry Systems
and Application Programs, GC20-0370, for the editions that are applicable and
current.

The following names, used in this publication, are trademarks or registered
trademarks of International Business Machines Corporation in the United States
and/or other countries:

IBM

MVS

MVS/DFP
Operating System/2
0S/2

Personal System/2
PS/2.

An asterisk (*) is used to identify the first time a trademarked name is used in the
text.

This publication contains sample programs. Permission is hereby granted for you
to copy and store the sample programs into a single data processing machine and
for you to use the stored copies for internal study and instruction only. No
permission is granted to use the sample programs for any other purpose.

© Copyright IBM Corp. 1989, 1990 Special Notices il

iv ISPF/PDF Software Configuration and Library Manager

Preface

This book provides reference and usage information, along with conceptual and
functional descriptions of the Software Configuration and Library Manager (SCLM).

About This Book

This book is divided into three parts:

¢ “Programming Reference” contains information on all product functions for
programmers, as well as an explanation of the architecture definition functions.

e “Library Administration” contains administrative and diagnostic information for
project administrators. It defines the SCLM database, tells how to establish
and monitor such a database, and explains the library functions.

* “Messages and Codes” contains a complete listing and description of
messages and return codes issued by the SCLM functions.

— General-Use Programming Interfaces

Unless specifically stated otherwise, the information in this manual must not be
used for programming purposes. However, general-use programming
interfaces are provided to allow the customer to write programs that use the
services of ISPF/PDF. These interfaces are discussed in the following sections:

e Chapter 3, “SCLM Variables,” describes the SCLM system variables.
¢ Chapter 5, “SCLM Services,” describes the SCLM services.

¢ Chapter 8, “SCLM Macros,” describes the SCLM macros.

¢ Chapter 9, “Advanced Topics,” covers the following:

— “Dynamic Include Tracking” describes how SCLM tracks dynamic
includes.

— “Change Code Verification Routines” describes how to code a change
code verification routine.

— “Build and Promote User Exit Routines” describes how to create a
build and promote user exit routine.

* Chapter 12, “Messages and Codes” describes FLMCMD and Translator
return codes.

Who Should Use This Book

This book is for:
¢ Programmers whose projects are controlled by SCLM

* Project administrators who use SCLM to manage the software development
process.

© Copyright IBM Corp. 1989, 1990 Preface V

The ISPF and ISPF/PDF Library for MVS

General

Evaluation and Planning

Installation and Migration

Customization

Vi ISPF/PDF Software Configuration and Library Manager

ISPF and ISPF/PDF
Version 3 Release 2

Master Index

SC34-4278

ISPF and ISPF/PDF
Version 3 Release 2

General Information

GC34-4250

ISPF
Version 3 Release 2

Program Directory

SC34-4090

ISPF and ISPF/PDF
Version 3 Release 2

Planning
and Customizing

SC34-4257

ISPF/PDF
Version 3 Release 2

Program Directory

SC34-4202

ISPF and ISPF/PDF
Version 3 Release 2

Planning
and Customizing

SC34-4257

Programming

End Use

ISPF
Version 3 Release 2

Dialog Management
Guide and Reference|

SC34-4266

ISPF/PDF
Version 3 Release 2

ISPF/PDF Guide

SC34-4258

ISPF
Version 3 Release 2

Dialog Management
Examples

SC34-4265

ISPF/PDF
Version 3 Release 2

ISPF/PDF Services

SC34-425¢9

ISPF
Version 3 Release 2

Diaiog Tag Language
Guide and Reference

8C34-4267

ISPF/PDF
Version 3 Release 2

ISPF/PDF Edit
and Edit Macros

SC34-4253

ISPF and ISPF/PDF
Version 3 Release 2

Primer

SC34-4256

ISPF/PDF
Version 3 Release 2

Guide and Reference;
for the Workstation
Platform for OS/2

SC34-4255

ISPF and ISPF/PDF
Version 3 Release 2

Reference Summary

SC34-4252

ISPF/PDF
Version 3 Release 2

ISPF/PDF
Library
Management
Facility

SC34-4260

Preface

\'J

Related Publications

¢ 0OS/VS2 MVS JCL, GC28-0692

MVS Resource Access Control Facility (RACF) Command Language Reference,
SC28-0733

0S/VS2 MVS Utilities, GC26-3902

TSO Extensions Version 2 Command Language Reference, SC28-1881

MVS/XA Supervisor Services and Macro Instructions, GC28-1154

OS Assembler H Language, GC26-3771.

TSO Extensions Version 2 CLISTs, SC28-1876

® o o o o

viil ISPF/PDF Software Configuration and Library Manager

Contents

Part 1. Programming Reference 1
Chapter 1. SCLM Concepts and Terminology 5
How to Use This Manual 5
Library Structures and Naming Conventions 6
SCLM Data Set Naming Conventions 9
SCLM Functions 10
Chapter 2. Architecture Definition 21
Architecture Members 21
Defining Compiler Processed Components 22
Defining Link Edit Processed Components 23
Defining Application and Subapplication Components 25
Defining Specially Processed Components 25
Architecture Statements 27
Sample Application Using Architecture Definitions 31
Ensuring Synchronization with Architecture Definitions 34
Chapter 3. SCLM Variables 37
Chapter 4. SCLM Dialog Interface 43
SCLM Primary Option Menu 43
Browse (Option 1) 45
Edit (Option 2) e 46
Utilities (Option 3) e 52
Build (Option4) 91
Promote (Option 5) 94
Batch Processing 100
Output Disposition 101
Chapter 5. SCLM Services 103
Invoking the SCLM Services o 103
SCLM Service Descriptions 116
BUILD—Build a Member 117
DBACCT—Retrieve Accounting Records for a Member 122
DBUTIL—Generate a Tailored Data Setand Report 124
DELETE—Delete Database Components 129
END—End an SCLM Services Session, 132
FREE—Free an SCLM ID from its Association with a Database 134
INIT—Generate an SCLM ID for a Database 136
LOCK—Lock a Member or Assign an AccessKey 138
PARSE—Parse a Member for Statistical and Dependency Information 142
PROMOTE—Promote a Member from One Library to Another 145
RPTARCH—Generate an SCLM Architecture Report 149
SAVE—Lock, Parse, and Storea Membero oo 152
START—Generate an Application ID for a Services Session 157
STORE—Store Member Information in an Accounting Record 158
UNLOCK—Unlock a Member in a Private Library 162
Chapter 6. A Sample Program Using SCLM Services 165

© Copyright IBM Corp. 1989, 1990 Contents IX

Pascal Example 165

Part 2. Project Administration 185
Chapter 7. Definingthe Project 189
Step 1: Determine Database Structure L. 189
Step 2: Identify Supported Typesof Data 191
Step 3: Establish Authorization Codes 191
Step 4: Create PROJDEFS DataSet 192
Step 5: Allocate Project DataSets 193
Step 6: Protect ProjectDataSets 197
Step 7: Specify the Project Definition 197
Step 8: Modify Language Definitions 198
Step 9: Modify Control Options 202
Step 10: Assemble and Link Project Definition 206
Step 11: Build INFO Member 207
Chapter 8. SCLM Macros 209
Introduction to SCLM Macro Instructions 209
FLMABEG Macro e 210
FLMAEND Macro 211
FLMAGRP Macro 212
FLMALLOC Macro 213
FLMCMPLB Macro e 217
FLMCNTRL Macro 218
FLMCPYLB Macro 222
FLMGROUP Macro e 223
FLMLANGL Macro 224
FLMSYSLB Macro 227
FLMTRNSL Macro e 228
FLMTYPE Macro 231
Chapter 9. Advanced Topics 233
Impact Assessment Techniques 233
New Language Definitions 234
Authorization Code Usage 252
Concurrent Development and Maintenance 255
Dynamic Include Tracking 256
Alternate Project Definitions 257
Primary Non-Key Group Testing Techniques 258
Change Code Verification Routines 261
Build and Promote User Exit Routines 263
Project Conversionto SCLM 268
Security . . 271
Backup and Recovery of Project Database 271
Dependency Processing Implementation 272
Development and Performance 274
Workstation Platform for OS/2 277
The SSI Field in Load Module Directories 278
Chapter 10. Language Restrictions 279
SCLM Parser Restrictions 279
Ada Language Restrictions 280
Ada Sublibrary Restrictions 282
Multiple SINC Statements 283

X ISPF/PDF Software Configuration and Library Manager

Chapter11. IBM AdaSetup 285

Part 3. Messages and Codes

Figures

Language Definitions 285
Ada Sublibrary Setup 286
IBM Ada Compiler Restrictions 286
Debugger 287
Multipie Load Module Support 287
Optimizer Support 289
... 291

Chapter 12. MessagesandCodes 293
Messages 295
FLMCMD Return Codes 328
SCLM Translator ReturnCodes 328
Glossary of SCLM Terms 331
Index 335
1. Typical Project Database Organization 7
2. Two Hierarchical Views of the Same Database Organization 8
3. Application APPL1 31
4. Architecture Members For Application Sample 32
5. Example of Synchronization 34
6. SCLM Primary OptionMenu 43
7. SCLMBrowse-EntryPanel 45
8. SCLMEdit-Entry Panel 47
9. SCLMEdit Profile 50
10. SCLM Utilities e 52
11. - SCLM Library Utility 53
12. Member SelectionList 54
13. AccountingRecord 55
14. Accounting Record Statistics 57
15. Change Code List 59
16. Include List 60
17. Compool List 61
18. Compilation Units 62
19. Cross-Reference Record 63
20. UserDataEntries 64
21. BuildMapRecord 65
22. BuildMapContents 67
23. Authorization Code Update, 68
24. Sublibrary Management Utility 69
25. Member Selection List 70
26. Intermediate Records 71
27. SCLM Migration Utility 72
28. SCLM Database Contents Utility 74
29. SCLM Database Contents - Additional Selection Criteria 76
30. Database Contents Utility Report 78

Contents Xi

31.
32,
33.
34.
35.

36.
37.
38.
30.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.

59.
60.

Tables

Xii

N oA~

SCLM Database Contents - Customization Parameters
Database Contents Tailored Data Set, Page1
Database Contents Utility Tailored Report
Change Code Report, Page 2
Accounting Statistics Report, Page2
Source Listing Report, Page2
Cleanup Report, Page2
SCLM Architecture Report
Architecture Report, Part | — Architecture Information
Architecture Report, Part Il — Cross-Reference Information
Architecture Report, LEC Report Cutoft
SCLM Build
Build Report
SCLM Promote
Promote Report
Verify Batch Job Information
Output Disposition
$msg_array Contents
$list_infoContents
Example of Other Common SCLM Database Structures
SKELS Parser Definition
Parser for ISPF Skeletons o
LISTINFO Module
STATINFO Module
DATRC Module
Sample Hierarchy with Authorization Codes
Default (primary) Project Database Structure
Alternate Project Database Structure with Primary Non-key Integration
Group
Workstation Platform for OS/2 System Overview
Example of a Disallowed Recursive Generic/Inline Dependency

ISPF and ISPF/PDF Library forMVS

Uses of Architecture Members
Valid Keywords for Architecture Member Statements
SCLM Field Name Variables and their SCLM Functions
SCLM Variables and their SCLM Functions
Pattern Examples
Message Variables

ISPF/PDF Software Configuration and Library Manager

Summary of Changes

This Summary of Changes lists the major changes and enhancements for ISPF and
ISPF/PDF Version 3 Release 2 (Version 3.2) for MVS'.

Functional Changes for ISPF Version 3 Release 2 for MVS

The following functional changes have been made for ISPF Version 3.2.

Improvements to Dialog Tag Language and Conversion Utility
Extensions to the Dialog Tag Language (DTL) have been made to support
additional tags and tag attributes. The extensions inciude support for the following:

L]

Defining horizontal layout of panel elements as provided by the DIR=HORIZ
attribute of the REGION tag. This enhancement allows multiple fields on the
same line and the ability to define interactive fields on one side of the panel

and an explanatory information area on the other side of the panel and other
combinations of panel layout.

Using the HELP = help-panei-name attribute on ABC and PDC tags. This
provides field-level help capability for action bar and pull-down choices.

Specifying cursor position on the PANEL tag. The developer can position the
cursor at panel development time instead of using the cursor parameters of the
DISPLAY and TBDISPL service.

Specifying group headings for columns of ISPF table data. The new LSTGRP
tag defines headings (in addition to the individual list column headings) for a
single column or multiple columns.

Using the HELP = help-panel-name attribute for LSTCOL tag. This provides
field-level help for columns of ISPF table data.

Using XLATL FORMAT =UPPER to allow translations of user input to
uppercase prior to validation check.

Specifying AUTOTAB attribute for data fields and list columns.
Imbedding tag files into the DTL source through ENTITY definitions.

Concatenating multiple DTL source files for a single execution of the
conversion utility.

Enhanced DTL Compatibility with OS/2 Version 1.2 Dialog Manager
Changes have been made to DTL and the conversion utility to provide a greater
level of compatibility with the DTL supported by the Dialog Manager component of
Operating System/2" (0S/2) Version 1 Release 2. All DTL supported by the 0S/2
Dialog Manager is checked for syntax, and a warning message is issued for all DTL
that is not supported by ISPF. While changes have been made to the syntax of
some tags supported by ISPF, the conversion utility continues to support the syntax
documented for the prior release and issues a warning message advising that the
DTL source file be updated to the new syntax level (especially if the DTL source
will be ported to OS/2 for use with the OS/2 Dialog Manager).

" See “Special Notices” on page iii for a complete list of the trademarks used in this book.

© Copyright 1BM Corp. 1989, 1990

Summary of Changes Xlii

The ISPF Version 3.2 DTL conversion utility formats SBCS and DBCS panel text
according to a more precise set of Asian formatting rules.

Significant improvements have been made to the ISPF Dialog Tag Language Guide
and Reference. These improvements include the addition of a guide to using DTL
and additional wording for many tags that better defines the formatting that occurs.

Adjustments have been made to ISPF run-time support for the ISPF Version 3.2 DTL
enhancements.

Starting the DTL compiler has been simplified with the addition of an invocation
panel that contains the input fields required by the DTL compiler.

Additional Help Support

Dialog Test Facility

ISPF Help support has been expanded to include the following:

e Support for field-level (contextual) help on action bar choices, puli-down
choices, and list columns.

¢ Support for extended help after field-level help and message help.

¢ Support for keys help. The application developer can define a help panel that
can provide the application user with a brief description of each key defined for
a panel.

In addition, the handling of the display of help panels has been improved to ensure
that the full help panel is displayed. Help panels always appear in a pop-up
window if they are defined using DTL or if you specify the WINDOW keyword on the
)BODY statement of the ISPF panel language.

The width and depth values specified on the HELP tag or on the WINDOW keyword
must be valid for the device on which these help panels are displayed. As these
values were not always referenced in ISPF Version 3.1, you may need to update
existing ISPF Version 3.1 help panels with valid depth and width values before
displaying them under ISPF Version 3.2.

The Dialog Test facility is now included in ISPF. Previously this was part of
ISPF/PDF.

Message Text Definitions Increased

The long message text field of ISPF message definitions can now be up to 512
characters. This allows developers to define clearer, more descriptive messages.

You should update existing dialogs in which the system variable ZERRLM is
defined to 78 characters. Using VDEFINE, set this variable to 512 characters.

Miscellaneous Enhancements

Xiv

Three new system variables {ZCURFLD, ZCURPOS, and ZCURINX) provide the
dialog application with information on the position of the cursor when the user
submits a panel.

ISPF/PDF Software Configuration and Library Manager

Functional Changes for ISPF/PDF Version 3 Release 2 for MVS

The following functionai changes have been made to ISPF/PDF Version 3.2.

Partitioned Data Set Extended (PDSE)
ISPF/PDF Version 3.2 offers support for the partitioned data set extended (PDSE), a
new data set type introduced in Data Facility Product (MVS.DFP’) Version 3.2.
ISPF/PDF can ailocate a PDSE through the ISPF/PDF data set utility option (Option
3.2). Unlike a partitioned data set (PDS), a PDSE automatically reuses space
created when members are updated. PDSEs can use all current ISPF/PDF
functions, such as Edit and Browse.

C/370 Language Support
ISPF/PDF Version 3.2 offers support for the C/370 language, including C/370
language models. These models help you define dialog elements while you are
editing C/370 language files. In addition, ISPF/PDF Version 3.2 provides an
interface into the foreground and batch compile dialogs supplied with the C/370
compiler.

Workstation Platform for 0OS/2
ISPF/PDF Version 3.2 provides a Workstation Platform for 0S/2, a Personai
System/2" (PS/2°) interface into SCLM. By using the Workstation Platform for OS/2
you can obtain a list of SCLM-controlled projects, check out members from these
projects, perform work against the members, and check them back in.

e The Library List is an application that serves as a programmable workstation
(PWS) front end to a development system using SCLM. It allows
SCLM-controlled members to be downloaded to the PWS by using member
lists of SCLM-controlied libraries.

¢ The Library List allows you to install PWS tools to manipulate SCLM-controlied
library members. It also allows you to organize tools under generic “verbs”
(called actions) which are sensitive to the type of the members selected.

¢ The Library List allows you to keep multiple member lists open at the same
time. The information displayed in the member list can be customized by each
user, and all information in the member list is saved across invocations.

¢ The Workstation Platform for OS/2 provides an Application Programming
Interface (API) to a subset of the host SCLM functions.

¢ The Workstation Log serves as a central {ocation for recording significant
events (such as the invocation of a command or an error condition
encountered during the processing of a command) that occur during
application processing. An API to the log is provided to allow tools to add
entries into the log along with an end-user interface to allow review of some or
all entries in the log.

* See “Special Notices” on page iii for a complete list of the trademarks used in this book.

Summary of Changes XV

Additional Enhancements

The browse interface service (BRIF) provides support for temporary end-of-file
and dialog-specific primary commands.

The Library Member List service (LMMLIST) now allows a dialog to specify that
the entire list of members generated by the LMMLIST service is to be written to
either the ISPF List data set or a sequential data set.

The Data List Services (LMDINIT, LMDFREE, and LMDLIST) allow your dialog
to manipulate data sets in a manner similar to ISPF/PDF Option 3.4. The
services are processed similarly to the LMINIT, LMMLIST, and LMFREE
services, creating an internal list of data sets and passing one data set name
back on each LMDLIST request.

The deletion of migrated data sets from the Data Set List utility (Option 3.4) no
longer causes a recall of the data set. The installation can specify the volume
name for the migrated data sets and a command (such as HDELETE) to be run
against those data sets.

There is now one more “Additional Input Library” field on each of the
Foreground and Batch compiler interface panels.

A new type of line number has been added to the Edit COPY command. This
allows the end user to determine whether COPY should be sensitive to
ISPF/PDF statistics mode and use the proper portion of the line number.

The LMF problem resulting when a needed part is locked and the owner is out
sick, on vacation, or away from the office has been corrected. Any authorized
project administrator can now promote or free the locked part on behalf of the
user.

ISPF/PDF Version 3.2 supports more edit models for SCLM project definition
macros and for architecture definitions.

The ISPF/PDF Logo panel now includes copyright information.

ISPF and ISPF/PDF Version 3 Release 2 for MVS Library

xvi

Two new books have been added:

— ISPF and ISPF/PDF Master Index
— ISPFIPDF User’s Guide and Reference for the Workstation Platform for
0S/2. '

Titles of three previous books have been changed and some restructuring done
to each:

~ ISPF Dialog Management Services and Examples has been renamed to
ISPF Dialog Management Examples.

This restructured manual contains only ISPF examples. ISPF services are
now in ISPF Dialog Management Guide and Reference.

— ISPF Dialog Management Guide has been renamed to /ISPF Dialog
Management Guide and Reference.

This manual contains the information from ISPF Dialog Management
Guide, as well as information about the ISPF services.

— ISPF Conversion Utility User’s Guide and Reference has been renamed to
ISPF Dialog Tag Language Guide and Reference.

ISPF/PDF Software Configuration and Library Manager

This manual has been expanded for Version 3.2 to include additional
information on using the Dialog Tag Language (DTL).

See Table 1 for a comparison of the complete Version 2.3, Version 3, and Version

3.2 libraries.

Table 1 (Page 1 of 2). ISPF and ISPF/PDF Library for MVS

ISPF and ISPF/PDF Version 2
Release 3

ISPF and ISPF/PDF Version 3

ISPF and ISPF/PDF Version 3
Release 2

ISPF and ISPF/PDF
General Information
GC34-4116

ISPF and ISPF/PDF
General Information
GC34-4133

ISPF and ISPF/PDF
General Information
GC34-4250

ISPF and ISPF/PDF installation
and Customization

ISPF and ISPF/PDF Planning
and Customizing

ISPF and ISPF/PDF Planning
and Customizing

SC34-4117 SC34-4134 SC34-4257

ISPF and ISPF/PDF Primer ISPF and ISPF/PDF Primer ISPF and ISPF/PDF Primer
SC34-4122 SC34-4139 SC34-4256

What's New in ISPF and ISPF/PDF What’s New. in ISPF and ISPF/PDF Not available for Version 3.2 LN

GC34-2172-3

GC34-2172-4

library. See “Summary of \{* 3
Changes” in this book. f’)' !

ISPF and ISPF/PDF Directory of
Programming Interfaces for
Customers

GC34-4128

Not available for Version 3.2
library. Information
integrated in Version 3.2
library.

ISPF Licensed Program
Specifications
GC34-4114

ISPF Licensed Program
Specifications
GC34-4212

ISPF Licensed Program
Specifications
GC34-4262

ISPF Dialog Management Guide
SC34-4112

ISPF Dialog Management Guide
SC34-4213

ISPF Dialog Management Guide
and Reference
SC34-4266

ISPF Dialog Management Services
and Examples
SC34-4113

ISPF Dialog Management Services
and Examples
SC34-4215

ISPF Dialog Management Example
SC34-4265 :

ISPF Conversion Utility
User’s Guide and Reference
SC34-4216

ISPF Dialog Tag Language
Guide and Reference
SC34-4267

ISPF/PDF Licensed Program
Specifications

ISPF/PDF Licensed Program
Specifications

ISPF/PDF Licensed Program
Specifications

GC34-4115 GC34-4185 GC34-4251
ISPF/PDF Guide ISPF/PDF Guide ISPF/PDF Guide
SC34-4118 SC34-4135 SC34-4258
ISPF/PDF Services ISPF/PDF Services ISPF/PDF Services
SC34-4119 SC34-4136 SC34-4259
ISPF/PDF Library Management ISPF/PDF Library Management ISPF/PDF Library Management
SC34-4120 Facility Facility
SC34-4137 SC34-4260

ISPF/PDF Edit and Edit Macros
SC34-4121

ISPF/PDF Edit and Edit Macros
SC34-4138

ISPF/PDF Edit and Edit Macros
SC34-4253

ISPF/PDF User’s Guide and
Reference for the Workstation
Platform for OS/2

SC34-4255

Summary of Changes XVii

Table 1 (Page 2 of 2). ISPF and ISPF/PDF Library for MVS

ISPF and ISPF/PDF Version 2
Release 3

ISPF and ISPF/PDF Version 3

ISPF and ISPF/PDF Version 3
Release 2

ISPF and ISPF/PDF Master Index
SC34-4278

ISPF/PDF Software Configuration
and Library Manager (SCLM)
Guide and Reference

ISPF/PDF Software Configuration
and Library Manager (SCLM)
Guide and Reference

SC34-4235 SC34-4254
ISPF Summary Card, SC34-4124 ISPF and ISPF/PDF Reference ISPF and ISPF/PDF Reference
ISPF/PDF Summary Card, Summary Summary
SC34-4125 SC34-4214 SC34-4252

ISPF/PDF Edit and Edit Macros
Summary, SC34-4126

Bill of Forms Number SBOF-0420
includes:
ISPF Dialog Management Guide
SC34-4112
ISPF Dialog Management
Services and Examples
SC34-4113
ISPF Summary Card, SC34-4124
ISPF Binder, SX66-0209
ISPF Cover Inserts, SX66-0210

Bill of Forms Number SBOF-0419
includes:
ISPF/PDF Guide, SC34-4118
ISPF/PDF Services, SC34-4119
ISPF/PDF Summary Card,
SC34-4125
ISPF/PDF Binder, SX66-0209
ISPF/PDF Cover Inserts,
SX66-0211

Bill of Forms Number SBOF-0361
includes:
ISPF/PDF Edit and Edit Macros,
SC34-4121
ISPF/PDF Edit and Edit Macros
Command Summary Card,
SC34-4126
ISPF/PDF Edit Macros Binder,
$X66-0213
ISPF/PDF Edit Macros
Cover Inserts,
S$X66-0212

Bill of Forms Number
SBOF-1032-0 orders all

of the ISPF and ISPF/PDF for
MVS library books.

No new binders or cover inserts
are available.

Bill of Forms Number
SBOF-1196-0 orders all

of the ISPF and ISPF/PDF for
MVS library books.

No new binders or cover inserts
are available.

Ordering Information
You can order the ISPF and ISPF/PDF Version 3.2 for MVS books separately or use
Bill of Forms number SBOF-1196-0 to order the complete set.

The ISPF and ISPF/PDF Version 3.2 library will be available when the Version 3.2
products are generally available.

xviii ISPF/PDF Software Configuration and Library Manager

Part 1. Programming Reference

Chapter 1. SCLM Concepts and Terminology 5
How to Use This Manual 5
Library Structures and Naming Conventions 6
SCLM Data Set Naming Conventions 9
SCLM Functions 10
Browse Function 10
Edit Function 10
Utilities Function 13
Build Function 14
Promote Function 17
Chapter 2. Architecture Definition, 21
Architecture Members 21
Kinds of Architecture Members L. 21
Defining Compiler Processed Components 22
Compilation Control Architecture Members 22
Specifying Source Members L 23
Defining Link Edit Processed Components 23
Defining Application and Subapplication Components 25
Defining Specially Processed Components 25
Generic Architecture Members 26
Specifying Source Members 26
Architecture Statements 27
Statement Format 27
StatementUses 27
Sample Application Using Architecture Definitions 31
Ensuring Synchronization with Architecture Definitions 34
Chapter 3. SCLM Variables 37
Chapter 4. SCLM Dialoginterface 43
SCLM Primary Option Menu 43
Browse (Option 1) 45
Edit (Option 2) e 46
SAVE . . e 48
SCREATE 49
SMOVE . 49
SPROF . . e 50
SREPLACE 51
Utilities (Option 3) 52
Library Utility 52
Ada Sublibrary Management Utility, 68
Migration Utility 72
Database Contents Utility 74
Architecture Report 83
Architecture Report Example 85
Build (OPtion 4)« . 91
Build Report Example 93
Promote (Option 5) 94
Promote Report 96
Processing Errors 99
Batch Processing 100

© Copyright 1BM Corp. 1989, 1990 Part 1. Programming Reference 1

2

Output Disposition 101

Chapter 5. SCLM Services 103
invoking the SCLM Services 103
Notation Conventions Used in this Chapter 103
Command Invocation of the SCLM Services 104
The FLMCMD Interface 104
The FLMLNK Subroutine Interface 107
SCLM Service Return Codes 115
SCLM Service Descriptions 116
BUILD—Build a Member 17
Command Invocation Format 117
Call Invocation Format 118
Parameters 118
Return Codes 120
Examples e 120
DBACCT—Retrieve Accounting Records fora Member 122
Command Invocation Format 122
Call Invocation Format 122
Parameters 122
Return Codes 123
Example 123
DBUTiIL—Generate a Tailored Data Setand Report 124
Command Invocation Format 124
Call Invocation Format 125
Parameters 125
Return Codes 127
Example e 128
DELETE—Delete Database Components 129
Command Invocation Format 129
Call Invocation Format 129
Parameters 129
Return Codes 130
Examples . . . 131
END—ENd an SCLM Services Session 132
Command Invocation Format 132
Call Invocation Format 132
Parameters 132
Return Codes 132
Example 133
FREE—Free an SCLM ID from its Association with a Database 134
Command Invocation Format 134
Call Invocation Format 134
Parameters 134
Return Codes 134
Example e 135
INIT—Generate an SCLM ID for a Database 136
Command Invocation Format 136
Call Invocation Format 136
Parameters 136
Return Codes 136
Example 137
LOCK—Lock a Member or Assign an Access Key 138
Command Invocation Format 138
Call Invocation Format 139
Parameters 139

ISPF/PDF Software Configuration and Library Manager

Return Codes 140

Examples . . . e 141
PARSE—Parse a Member for Statistical and Dependency Information 142
Command Invocation Format 142
Call Invocation Format 142
Parameters 142
Return Codes 144
Example 144
PROMOTE—Promote a Member from One Library to Another 145
Command Invocation Format 145
Call Invocation Format 145
Parameters 146
ReturnCodes 147
Examples 147
RPTARCH—Generate an SCLM Architecture Report 149
Command Invocation Format 149
Call Invocation Format 149
Parameters 149
Return Codes 150
Example . .. 151
SAVE—Lock, Parse, and Storea Member, .. 152
Command Invocation Format 152
Call Invocation Format 153
Parameters 153
Return Codes 155
Examples 156
START—Generate an Application ID for a Services Session 157
Command Invocation Format 157
Call Invocation Format 157
Parameters 157
Return Codes 157
Example 157
STORE—Store Member Information in an Accounting Record 158
Command Invocation Format 158
Call Invocation Format 158
Parameters 159
Return Codes 160
Example . .. 161
UNLOCK—Unlock a Member in a Private Library 162
Command Invocation Format 162
Call Invocation Format 162
Parameters 162
Return Codes 163
Examples 163
Chapter 6. A Sample Program Using SCLM Services 165
Pascal Example 165
Main Program SERV1 165
Included Member SERVID 173
Included Member SERVIS 176

Part 1. Programming Reference 3

4 ISPF/PDF Software Configuration and Library Manager

How to Use This Manual

Chapter 1. SCLM Concepts and Terminology

The Software Configuration and Library Manager (SCLM) allows you to define a
project database. It has functions for building, manipulating, and tracking data
stored in the database.

How to Use This Manual

This manual is part of the ISPF/PDF library and assumes that you are familiar with
the operation of ISPF/PDF in the MVS environment.

Chapter 1, “SCLM Concepts and Terminology” provides an overview of SCLM. All
SCLM users should read this chapter first. The rest of the chapters in the manual
assume that you have read and understood Chapter 1. The first part of the chapter
describes the library structure and gives you an overview of the SCLM functions.
In particular, one section explains the SCLM database structure. The rest of the
chapter describes basic SCLM functions and discusses the capabilities and uses of
each function. After reading Chapter 1, project administrators can go directly to
Chapter 7, “Defining the Project.” Developers and project managers should
continue with Chapter 2.

-—-Chapter 2, “Architecture Definition,” describes how to use architecture members

(individual software component definitions). It provides examples of each kind of
architecture member and describes the special command statements that the
architecture members require. It also provides an example of the format of each
statement and lists any restrictions.

- Chapter 3, “SCLM Variables,” lists the SCLM variables by field name and

identifies each function you can use them with.

Chapter 4, “SCLM Dialog Interface,” describes how to use the ISPF dialog
interface, select SCLM functions to retrieve or process certain information, and
generate reports on the information stored in project databases. It also describes
information stored in accounting, cross-reference, and intermediate records for
members in the project databases.

Chapter 5, “SCLM Services,” introduces and describes the services that you use
to retrieve and process certain information that you store in the project databases.
It lists the general categories of SCLLM service return codes and provides
command and call invocation formats, return codes, and parameters for each
service. It also explains the notation conventions used to document the services.

Chapter 6, “A Sample Program Using SCLM Services,” provides a sample
program in Pascal that allows you to invoke SCLM services.

Chapter 7, “Defining the Project,” describes how to generate a project definition
by discussing the steps you use to customize the database for a specific project. It
explains the steps that enable you to create the database that best meets the
needs of your project.

~-Chapter 8, “SCLM Macros,” introduces and describes the macros that you use to

create project definitions in SCLM. It also explains the notation conventions used
to document the macros.

© Copyright IBM Corp. 1989, 1990 Chapter 1. SCLM Concepts and Terminology 5

Library Structures and Naming Conventions

—""Chapter 9, “Advanced Topics,” describes advanced topics that aid you in

managing complex configurations.

—"Chapter 10, “Language Restrictions,” describes restrictions that apply to the

support SCLM provides for languages.

—-Chapter 11, “IBM Ada Setup,” describes the language definitions that you must

use and the setup operations you must perform to use the IBM Ada compiler.

-——-Chapter 12, “Messages and Codes,” explains the messages that you receive using

SCLM. The chapter shows programmer responses, project administrator
responses, and an explanation for each code. It also lists the FLMCMD command
processor and SCLM translator return codes.

Library Structures and Naming Conventions

A project database in SCLM is a set of logically ordered MVS partitioned data sets
(known as libraries) under a single high-level qualifier. Database organization is
flexible enough to accommodate both small and large projects. Data can reside in
a single data set or can be distributed among a series of data sets. SCLM does not
control or limit the number of data sets you can maintain. Your ability to access
data anywhere in the database eliminates the need for duplicating data.

SCLM tracks all updates to the database, thus allowing you to concentrate on
developing programs rather than on locating data in data sets.

Projects, Groups, and Types

6

Data set names in SCLM must follow a standard naming convention consisting of
three levels of qualification, for example, PROJECT1.USER1.SOURCE. You can allocate
data set names using any attribute as long as the data sets are partitioned data
sets. All data sets belonging to a specific project have the same high-level
qualifier, known as the project identifier.

Related project data sets must be organized with a common middle-level qualifier
to form groups. Each group consists of a set of data sets that contain the different
kinds of data maintained.

Groups can contain a variety of project data. The low-level qualifier of the
SCLM-controlled data sets, such as SOURCE, OBJECT, and LOAD, identifies the
kinds of data maintained in a specific group (source code, object code, load
modules that can be processed), which are known as types.

A group is made up of a set of types. You can store source code for programs in
one type and object code in another type. However, you do not have to limit
similar kinds of data to one type. In a project you can have source code distributed
among multiple types or all source code residing in one type. You must declare
the same types for all the groups in a project. For example, if the development
group has SOURCE, OBJECT, LOAD, and LISTING types, all the other groups in the
project must have those same types.

ISPF/PDF Software Configuration and Library Manager

Library Structures and Naming Conventions

Members
Each component in a partitioned data set controlled by SCLM is a member.

Libraries are composed of a series of members representing different units of data.
A member can contain any kind of data. For example, a load module or an included
unit for a program can be a member. SCLM stores units of data in the database as
members of partitioned data sets. Therefore, members are the discrete elements

of an SCLM database.

Figure 1 depicts a typical database organization. In the sample project there are
nine different groups — the release group, the test group, the integration group,
three staging groups, and three development groups. Groups USER1, USER2, and
USERS3 are the development layer, while STAGE1, STAGE2, and STAGES3 are the
staging layer. Similarly, groups INT, TEST, and RELEASE are called the
integration, test, and release layers, respectively.

Note: Libraries that make up a development group are called private libraries. A
private library is a partitioned data set (PDS) or partitioned data set
extended (PDSE) belonging to a group in the development layer of the
hierarchy. A development layer contains groups that do not allow other
groups to promote into them.

RELEASE
LAVER RELEASE
TEST
LAYER TEST
INTEGRATION INT
LAYER
STAGING LAYER STAGE1 STAGE2 STAGE3
DEVELOPMENT USER1 USER2 USER3
LAYER

Figure 1. Typical Project Database Organization

Chapter 1. SCLM Concepts and Terminology 7

Library Structures and Naming Conventions

Hierarchies

The project database illustrated above is organized into groups, each group being
subordinate to the one above it. This form of database organization is known as a
hierarchy. The concept of a multiple group hierarchy allows you to concatenate
groups to form a complete project. A concatenation of groups is called a
hierarchical view.

Hierarchies are always allocated from bottom to top. Thus, when you reference
data, the members at lower positions in the hierarchy take precedence over
members at higher positions.

Hierarchies allocated from different layers can represent different versions of the
project. See Figure 2 for an illustration of two hierarchical views.

RELEASE RELEASE
TEST TEST
INT INT

STAGE1

USERf1

Figure 2. Two Hierarchical Views of the Same Database Organization

Key/Non-Key Groups

8

You can further distinguish groups in the project database as key groups and
non-key groups. A maximum of 16 groups in any hierarchy must contain ail the
software components of the application under development. These 16 groups are
key because of this special significance. A project can have as many key groups
as you want as long as any hierarchical view has no more than 16.

ISPF/PDF Software Configuration and Library Manager

SCLM Data Set Naming Conventions

SCLM allows a project to specify up to 16 transition groups between key groups.
These groups are known as non-key groups. When you move data up in a
hierarchy, SCLM does not purge data from a key group until it reaches the next key
group. Therefore, in a project with non-key groups, SCLM temporarily duplicates
data in the non-key groups and the next lower key group.

Moving Data Through the Hierarchy
When you move data from group to group, the following rules apply.

e Copy units from key groups to non-key groups
¢ Move units from non-key groups to non-key groups
* Move units from key groups to key groups

* Move units from non-key groups to key groups and purge from the previous
key group.

In this manner, the combination of all key groups represents all the software
components of the project.

In general, when SCLM accesses a hierarchy from a particular group, it allocates
only the necessary groups. If the lowest level in the hierarchy to be accessed is
non-key, SCLM allocates it, and all the non-key groups above it, up to the next key
group. From there, SCLM allocates only the key groups. If the starting group in
the hierarchy to be accessed is key, then SCLM allocates only it and the key
groups above it. The number of allocated groups cannot exceed 16.

The one exception to this allocation involves non-key groups that have more than
one group promoting into them. Non-key groups of this kind are as significant as
key groups, and SCLM must also allocate them in a hierarchy. Groups that must
be allocated when a hierarchy is to be accessed are known as primary groups.
Thus, all key groups and all non-key groups with more than one group promoting
into them are primary groups. Any hierarchy can have a combined maximum of 16
primary groups.

Guidelines for Defining Groups
Select key groups and non-key groups with the following set of guidelines:
* The lowest (development) groups must be key.

¢ Any group with more than one lower group promoting into it should be key.
For exceptions, see “Primary Non-Key Group Testing Techniques” on
page 258.

SCLM Data Set Naming Conventions

SCLM limits data set names to three levels of qualification. See “Projects, Groups,
and Types” on page 6 for a more detailed description of the qualifiers.

The first level of qualification corresponds to the project name. All data sets
controlled by SCLM for a specific project must have the same high-level qualifier.
The middle-level and low-level qualifiers correspond to the group and type,
respectively. Therefore, form partitioned data set names in the following manner:

project_name.group_name.type_name

Chapter 1. SCLM Concepts and Terminology 9

SCLM Functions

SCLM Functions

Browse Function

Edit Function

SCLM functions allow you to browse, create, update, delete, compile, link, promote
up the hierarchy, and report on data stored in a project’s database. You can
generate reports with the build, promote, and utilities functions.

You can call SCLM functions in a variety of environments. In addition to the SCLM
dialog interface, you can call SCLM functions independently with a command line
processor or a program service interface except for the browse, edit, SCLM library
utility, and migration utility functions. See Chapter 5, “SCLM Services,” for more
information.

This part of the chapter describes the basic SCLM functions and discusses the
capabilities and uses of each. The five basic functions are:

Browse
Edit
Utilities
Build
Promote.

® o o o o

Chapter 4, “SCLM Dialog Interface,” describes how to call these functions.

The browse function uses ISPF/PDF Browse to allow you to display data in a
project database. For more information on browse, see “Browse (Option 1)” on
page 45.

The edit function is an interface to the ISPF/PDF editor. The SCLM editor ensures
that editing occurs only in private libraries. It automatically locks the member
when you begin the edit session. When you end an edit session, it parses and
stores edited members and their accounting information.

The editor uses the LOCK, PARSE, and STORE services to identify and control
members. This process verifies user authorization and prohibits simultaneous
updates of members. The following pages describe these services.

LOCK: The LOCK service ensures that even though two versions of the same
member may exist concurrently in parallel private libraries, only one copy can be
promoted to a higher group in the hierarchy.

In most cases, LOCK allows one member to be modified by only one user at a time
(see Note). When you edit a member in one private library, LOCK prohibits others
from editing the same member in their private libraries. Another user cannot edit

the member until you delete the member and its accounting information from your
group or you promote the member to a common group.

Note: Depending upon the software configuration management plan for a project,
a temporary copy of a member may exist in two private libraries at the
same time. See “Defining Authorization Codes for a Group” on page 192
for more information, or see the project administrator for the project.

10 ISPF/PDF Software Configuration and Library Manager

SCLM Functions

The LOCK service provides the following capabilities:

Verifying a group

SCLM locks members only when you copy them into a private library. SCLM
copies a member to your private library when you edit the member. Group
verification allows SCLM to control all source modifications to the higher levels
of the hierarchy through the promote function.

Verifying an authorization code

The project administrator defines a list of authorization codes to each group in
the project’s database. An authorization code is an identifier that SCLM uses
to control authority to update and promote members within a hierarchy.

The LOCK service can only lock those members in the group that are assigned
one of the authorization codes defined to the group. See “Defining
Authorization Codes for a Group” on page 192 for more information.

Verifying predecessors

The LOCK service guarantees that the member to be locked in the private
library is the most current version of the member within the hierarchical view.
Predecessors of the member are previous versions of a member existing
within the same hierarchical view.

The LOCK service ensures that the member to be locked does not overlay
changes to a predecessor. LOCK does this by verifying that the predecessor of
each version of the member within the hierarchical view has not been
modified.

Verifying build output

You cannot lock members that are outputs of a build. This verification prevents
accidental modification of a build output member, such as object files. (These
members are referred to as “non-editable” elsewhere in this book.)

Verifying access keys

The LOCK service also prevents you from accidentally modifying or deleting a
member you do not control. The access key that you store with the accounting
information for a member provides this verification. Locking a member with an
access key allows you to prevent others from accidentally modifying or
promoting the member if they make changes while working outside of SCLM.

Use the access key as a signal to other developers, not as a security measure.
For example, you can use the access key to indicate the location of the
member or the reason it was locked.

PARSE: SCLM gathers statistical and dependency information by parsing each
member it controls according to the syntax rules of the language of the member.
Parsers supplied with SCLM gather the following statistical information for each
member:

Number of comment statements

Number of non-comment statements

Total number of statements

Number of comment lines

Number of non-comment lines

Number of blank lines

Total number of source lines

Names of members referenced by an include construct
Names of JOVIAL compools referenced

Chapter 1. SCLM Concepts and Terminology 11

SCLM Functions

e Names of compilation units and their dependencies (Ada-type language only).
A compilation unit is the smallest Ada language unit that compiles separately.

SCLM provides parsers for a variety of languages. But you can define
project-specific parsers to use instead. See “Invoking User-Defined Parsers” on
page 239 for more information. If you define a project-specific parser, you can
gather the following additional statistical information:

* Prolog lines
e Control statements
¢ Assignment statements.
See “Statistics” on page 57 for a description of each of these fields.

SCLM supplies parsers for the following languages:

¢ Ada ¢ FORTRAN
e Assembler e JOVIAL

¢ BookMaster * Pascal

e CLIST e PL/I

¢ COBOL e SCRIPT/VS.
¢ EDL

Note: A packed member will not parse correctly if you use an SCLM-supplied
parser. Before you promote the member, make sure the profile for the
member you are editing has the ISPF/PDF pack mode off. See “Edit (Option
2)” on page 46 for more information.

STORE: For every member it processes, SCLM stores statistical, dependency, and *
historical information in the project’s database. SCLM gathers this information
from a variety of sources: dependency and statistical information from the PARSE
service, historical information from partitioned data set (PDS) or partitioned data
set extended (PDSE) directory information and user input, and change code
information from user input to the STORE service.

The STORE service removes duplicate dependency information for each member.
For example, if a member is referenced as an include ten times, the STORE
service records the reference only once in the accounting information.

Change code information relates problem report (PR) and change request (CR)
numbers to individual source members. The STORE service can validate change
codes you input to the STORE service before it enters them into the accounting
records and saves the member. See “Change Code Verification Routines” on
page 261 for more information.

Use the STORE service to enter data in the accounting information for a member.
To add user data to the accounting information, you must design a software
configuration management system, taking advantage of the SCLM services, or
design a user-defined parser. But you cannot add user data through the ISPF/PDF
dialog directly.

Because SCLM treats each compilation unit as an independent entity, many of the
rules defined for members apply to compilation units as well. For example, you
lock compilation units the way you lock members. However, compilation units are
not locked until SCLM stores the member containing the compilation unit.

12 ISPF/PDF Software Configuration and Library Manager

Utilities Function

Library Utility

SCLM Functions

The STORE service verifies that any compilation units to be stored with the
member are not present outside the hierarchy. The STORE service also verifies
that the compilation unit does not reside in a different member within the
hierarchy. It uses the authorization code of the member for the compilation unit
verification.

You can retrieve accounting information using the database contents and the
library utilities or the SCLM services.

The SCLM utilities function allows you to browse accounting information,
members, or build maps for a project. The utilities also allow you to extract
accounting information for a project for purposes of reporting, generating
command data sets, or creating input for other tools.

The SCLM utilities consist of the library, Ada sublibrary management, migration,
database contents, and architecture report utilities.

The library utility allows you to browse accounting records, members, and build
map records. In addition, you can use this utility to delete members and their
accounting records and to update authorization codes.

Ada Sublibrary Management Utility

Migration Utility

The Ada sublibrary management utility allows you to browse or delete
intermediate records and forms for compilation units.

The migration utility allows you to verify authorization codes, to prohibit
simultaneous updates of members, and to collect statistical, dependency, and
historical information for each member processed without using the SCLM edit
function. SCLM collects dependency information, which identifies software
components that need another software component to complete successfully.

Use this utility when you have a large number of members that have not been
entered in your project database, such as members that you did not create with the
edit function.

Database Contents Utility

The database contents utility allows you to create an input stream containing
variables associated with SCLM accounting data. This accounting data can then be
extracted for members in the database that meet selection criteria you specify.

You also control the order and format of the data extracted. The utility generates a
report that lists the members that match your selection criteria.

Unlike other SCLM functions, the database contents utility does not verify the
group, type, or member parameters you specify. This feature allows you to report
on accounting information that is no longer defined in the project definition. For
example, if the project administrator removes a development group from the
hierarchy, the utility can still retrieve accounting information for that group.

Chapter 1. SCLM Concepts and Terminology 13

SCLM Functions

Architecture Report

Build Function

Build Input

This report examines the requested architecture and all of its references, and then
constructs a report of the architecture. In this book, architecture refers simply to
the organization of software components to form integrated applications.

The architecture report is divided into three parts: header, architecture information
and cross-reference information. The architecture report header lists the
accounting and architecture selection criteria plus the customization parameters
you specify. The architecture information lists all of the software components, by
type, in a given application. This part of the report can help you eliminate
unnecessary code. The cross-reference information indicates where a given
software component is imbedded in the architecture of the application.

Examples of the architecture report appear in Figure 39 on page 85, Figure 40 on
page 87, and Figure 41 on page 89.

The build function does the following:

* Ensures total project integrity by verifying that all components defined to the
architecture being built are present and complete

* Performs necessary (or requested) compiles and links

¢ Conditionally saves compiler and linkage editor output in the database.

Build compiles, links, and integrates software components according to the
architecture. For any group in the database, the build function uses the software
components within the hierarchy of that group to update the out-of-date members.
Use build to compile and link individual components as well as to integrate the
smaller components into larger components.

Build uses internal data, such as accounting records and build maps, to determine
when components have changed. With this information, the build function
selectively builds components in the database to conserve machine resources. At
the completion of the build, SCLM produces a report identifying which components
were built and which components were out of date.

Input to the build can be either a source member or an architecture member. An
architecture member defines an individual software component, which may be a
collection of other architecture members, by specifying its relationship to other
software components of an application.

For a complex application, you can use architecture members to specify how the
individual components of an application relate and how they are processed. You
can create architecture members and treat them as source, but you must register
them with SCLM (using the SCLM editor or migration utility) before the build.
Chapter 2, “Architecture Definition,” discusses the contents and uses of
architecture members in greater detail.

14 ISPF/PDF Software Configuration and Library Manager

Build Maps

Build Processing

SCLM Functions

SCLM creates build maps to identify how the build changed the database. Build
maps contain a complete analysis of the database at the time of the build; that is,
they include the names of all referenced members and the last change date and
version number of each member. Additionally, build maps list those source
members in the build that are include structures of other members in the build.

An include structure is a generic term for code that you insert when the source
member is compiling. The syntax of an include statement in a program is
language-dependent and is defined by language syntax rules.

SCLM stores the buitd maps with the accounting records. Once generated, the
build maps are used by subsequent builds to determine whether changes have
occurred since the last build.

The promote function also uses build maps to determine which members can be
promoted.

Build processing consists of verification and dependency processing.

Verification

First, SCLM determines which architecture and source members will take part
in the build. Then it verifies that all necessary architecture and source
members have correct accounting information. SCLM also verifies that the
build scope you specify is consistent with, and not less than, the scope defined
in the language definition. If SCLM detects an error during this scope
verification, it does not call the next phase, regardless of the build mode. See
“Build (Option 4)” on page 91 for more information.

Dependency processing

Dependency processing consists of generating a build map, calling appropriate
translators, and generating a report.

— Generating a build map

This task creates a build map for each software component taking part in
the build. SCLM uses the build map to determine whether the transiators
are to be called. If an error occurs while generating a build map,
processing for this component ends. However, SCLM can continue
processing the remaining unbuilt members depending on the build mode
you specitfy.

— Calling translators

Build calls appropriate translators if the build maps created contain
out-of-date components.

SCLM compares return codes from the translators to the return codes
defined in the language definition to determine whether the translation was
successful.

Chapter 1. SCLM Concepts and Terminology 15

SCLM Functions

Build Scopes

Build Modes

Build Report

Build Messages

— Generating a report

The final step in dependency processing is generating a report. The build
report lists the results of the build.

SCLM provides four scopes of build processing to accommodate the special
processing required for compilation unit dependencies (Ada-type languages).
Build scopes include the following: limited, normal, subunit, and extended.

Build processes two types of compilation unit dependencies: upward dependency
and downward dependency.

* An upward dependency member is processed before a given member.
* A downward dependency member is processed after a given member.

For more information, see “Build (Option 4)” on page 91.

SCLM provides four modes of build processing: conditional, unconditional, forced,
and report only.
You can use the modes to do the following:

* Check for unacceptable compile or link return codes (conditional)

¢ Generate translator listings for all components processed (conditional)

* Process software components despite translator errors (unconditional)

* Force build to compile and link all requested components again regardless of
the previous status of the modules (forced)

* Generate a complete build report without performing the actual build (report
only).

For more information, see “Build (Option 4)” on page 91.

The build report provides a synopsis of the build. It includes:

¢ The date and time of the build

* The scope and the mode used

* The name of the component that was requested to be built
* The component’s last change date and time

¢ The project definition used.

The build report also lists the software components that were rebuilt and saved in
the database, that is, those components that passed the compilation or linkage edit
phase. The report also shows the build maps that required regeneration, along
with a list of out-of-date software components that caused the regeneration.

Figure 43 on page 93 shows an example of a build report.

The build function issues processing messages to allow you to monitor the build
progress during the verification and the dependency processing.

16 ISPF/PDF Software Configuration and Library Manager

Build Listings

Automatic Ordering

SCLM Functions

During verification, the error messages identify only those components that do not
have correct accounting information or that do not exist. During dependency
processing, the messages identify those components being compiled and linked.

Build also issues return codes from all translators called. If any errors occur
during processing, it generates appropriate informational messages.

The build function generates compiler and linkage editor listings in a listings data
set. You can specify in the project definition, individual architecture members, or
both, to have your listings saved in the database.

You can choose to receive all compiler and linkage editor listings or only error
listings in the listings data set. If you request error listings, build only produces the
listings that resulted from compiles or links with unacceptable return codes.

The build function orders compiles and links to provide complete application
integrity. Build compiles programs in the correct sequence to ensure that all
dependencies are resolved. SCLM provides link ordering when load modules
include other load modules and processes all load modules in the correct order.

Promote Function

The promote function does the following:
¢ Determines which components are eligible for promation
¢ Verifies that the database is complete and current
¢ Promotes the components that are at the current group and scope
¢ Potentially purges the components from the current group (and possibly lower
key groups)

¢ Generates a promote report.

Promote gives you an easy and efficient method to move data through a database.
As you build software components, they become eligible for promotion to the next
group in the hierarchy. Promote is based on architecture or source members; thus
you must build software components successfully before you can promote them to
the next group. Using architecture members, you can promote individual software
components or sets of software components during one promote. SCLM processes
all data types associated with a component as a unit.

At the completion of the promote, the promote function generates a report
identifying the components promoted.

Promote Processing

Promote processing consists of verification, copy, purge, and report generation.

Processing occurs sequentially. Depending on the promote mode you select, one
or more of these phases may not occur. The following paragraphs discuss each
phase.

¢ Verification

This phase ensures that all software components to be promoted are available,
have correct accounting information, and are current. To be current, the
application to be promoted must not have been modified since its software

Chapter 1. SCLM Concepts and Terminology 17

SCLM Functions

components were successfully built into an application. Promote compares
each software component to be promoted to the database to verify that it has
not been modified. A verification error results when SCLM finds an out-of-date
software component. Verification always occurs.

Copy

This phase copies members to a group in the next layer of the hierarchy. The
promote occurs alphabetically by type, one type at a time. Promote performs

enqueuing during promotion to ensure that the database is secure. Therefore,
multiple promotions may occur concurrently with no loss of database integrity.
Verification always occurs.

Copy errors occur when the target group does not have enough space or
directory blocks. If a copy error occurs, promote again after you correct the
problem. The second promote does not repeat work completed during the first
promote.

Purge

This phase deletes members from the current and possibly the lower groups
after they are successfully copied to the next higher group.

Depending upon the classification of the “from” group and the target group,
SCLM may or may not purge members from the lower group after promotion.
SCLM may not delete a member to ensure that its most recent version is in a
key group (even though it may also be in a non-key group). For more
information, see “Key/Non-Key Groups” on page 8.

The purge process uses the foliowing strategy for groups that promote from:

— Key group to key group: SCLM deletes members of the “from” group after
a successful copy.

— Key group to non-key group: SCLM does not delete members of the “from”
group after the copy.

— Non-key group to non-key group: SCLM deletes members of the “from”
group after a successful copy.

~ Non-key group to key group: SCLM compares copied members to the
corresponding members at the next lower key group.

— |If you can edit the copied member and it exactly matches the lower key
group, SCLM deletes the member from both groups.

— If the member is an output of the build and exactly matches or is a
more recent version of the member at the lower key group, SCLM
deletes the member from both groups.

Report Generation

SCLM generates a report no matter what the results were from the previous
phases. If verification fails, the report reflects which software components are
eligible for promotion. Otherwise, the report indicates the results of the
promote.

18 ISPF/PDF Software Configuration and Library Manager

Promote Scopes

Promote Modes

Promote Report

Promote Messages

SCLM Functions

The promote function provides three processing scopes. They are normal, subunit,
and extended. SCLM provides the subunit and extended scopes for promoting
members with compilation units.

Promote processes components and members the same way build processes
these scopes. See “Promote (Option 5)” on page 94 for more information.

Promote has three processing modes: conditional, unconditional, and report only.
Each mode is available to all SCLM users.

You can use the modes to do the following:

* Bypass the copy and purge phases if promote discovers a verification error
(conditional)

¢ Perform copy and purge processing despite verification errors, but promote
only those members with correct accounting information (unconditional)

¢ Promote software components for incomplete or partial applications
(unconditional)

¢ Perform verification and report generation processing (report only).
For more information, see “Promote (Option 5)” on page 94.
The promote report provides an accurate account of the promote. It lists all
members promoted to the next group and ail members purged from lower groups.
In report-only mode, the report displays a list of members eligible for promotion.
Figure 45 on page 97 shows an example of a promote report.
The promote function issues processing messages to allow you to monitor the
promote progress during verification, copy, and purge processing. If any errors

occur during processing, promote generates appropriate informational messages.

During verification, the error messages identify only those components that do not
have correct accounting information or that do not exist.

Chapter 1. SCLM Concepts and Terminology 19

20 ISPF/PDF Software Configuration and Library Manager

Architecture Members

Chapter 2. Architecture Definition

If you are responsible for a given software component, you must define how SCLM
should process that component. SCLM allows you to define the architecture for an
application that determines how individua! software components are to be tracked
and maintained.

To define the architecture, you need to describe all subcomponents that make up
the component, all data types of the component, and any special options for the
component. You also need to select where all data types of a component will
reside. You can provide this information in one architecture member for each
software component.

This chapter discusses the methods you can use to define the architecture,
provides several different examples of architecture members, and explains the use
of architecture member statements.

Architecture Members

Architecture members define the application at a high level by referencing lower
level architecture members. You can generate them top down or bottom up, using
an iterative approach. Create architecture members by using the edit function.

The capability to define an architecture allows you to control and track any discrete
division of an application from the most encompassing definition down to the
individual component. You can maintain the architecture members in a separate
type in the project database. Use the architecture members to describe the
different versions or variations of a project or application.

Kinds of Architecture Members
SCLM provides four kinds of architecture members that you can use to generate an
architecture definition for an application. They are compilation control (CC),
linkedit control (LEC), high-level (HL), and generic.

Each kind of architecture member controls a different kind of component that SCLM
processes. Table 2 categorizes the use of each kind of architecture member.

Table 2. Uses of Architecture Members

Architecture Member Use

Compilation Control (CC) | Define compiler processed components.

Linkedit Control (LEC) Define link edit processed components.

High-Level (HL) Define application and subapplication
components.

Generic Define specially processed components.

Each of these uses is described in the following pages. See “Sample Application
Using Architecture Definitions” on page 31 for an example of an application
consisting of architecture members.

© Copyright IBM Corp. 1989, 1990 Chapter 2. Architecture Definition 21

Defining Compiler Processed Components

Defining Compiler Processed Components

Standard compilers produce object modules as output. SCLM creates object
modules if you specify either a compilable source member or a compilation control
architecture member as input to the build function. The foliowing discusses both
methods for producing object modules; however, specifying source members
simplifies the architecture definition.

Compilation Control Architecture Members

22

One method of creating object moduies is through an architectUre definition with
Compilation Control (CC) architecture members.

CC architecture members contain all the information necessary to produce and
track software components with object moduie output. Use CC architecture
members to provide the following:

* The source member or members to be compiled

¢ Information concerning the target type names for the compiler outputs, such as
object, listings, and compools

¢ Compiler options.

CC architecture members must have at least one SINC statement. See
“Architecture Statements” on page 27 for more information. CC architecture
members cannot reference other types of architecture members; therefore, you
can only reference source to be compiled in the CC architecture member.

Because SCLM tracks included members, you only need to reference main source
members. SCLM extracts the name of the compiler to be called from the language
assigned to the referenced source member. If more than one source member is
referenced, SCLM uses the language of the first referenced member. SCLM
passes source members to the compiler in the order of reference; thus SCLM
supports manual ordering of compiler input. One CC architecture member
generates one call to a compiler regardiess of the number of source members
referenced.

You can override default compiler options by using the PARM statement. Use the
statement as many times as necessary to specify all options you want. For source
members being processed directly, you can only pass the default parameters
defined in the language definition for the processor.

You can pass parameters directly to the translator by using the PARMx statement.

You can pass compile directives directly to the compiler using the CMD statement.
You can insert the statements along with the source by careful positioning in the
CC architecture member. In this manner, you can control compiler processing
without modifying the source member. Use this feature to force titles on listings or
to control compiler listing flow.

SCLM provides special statements for creating CC architecture members for
JOVIAL programs. Use the COMP statement to identify database targets for
generated JOVIAL compools. Use the statement the same way as the OBJ and
LIST statements.

ISPF/PDF Software Configuration and Library Manager

Defining Link Edit Processed Components

A compool reference is a reference to a JOVIAL data mapping structure that SCLM
must compile before it can compile the current member. Compool references are
specific to the JOVIAL languages. (JOVIAL programs that reference compools
must use the CREF statement to indicate which type SCLM is to extract the
referenced compools from.) If SCLM finds more than one CREF statement in a CC
architecture member, it only uses information from the last one. For JOVIAL
programs with no compool references, SCLM ignores the information.

Note: You must order compiles for JOVIAL programs with compool references.
SCLM compiles the programs in the correct sequence to ensure that all
dependencies are resolved if you create architecture members that
reference all dependencies.

You must also order compiles for programs that have upward and
downward dependencies, such as Ada. SCLM processes an Ada program
after processing the upward dependencies, but before processing the
downward dependencies. Thus SCLLM compiles Ada programs in the
correct sequence if the architecture member references all dependencies.

SCLM allows you to track and maintain all forms of generated data. Often, due to
space limitations, you do not want to save it all. SCLM gives you the option of
saving listings in the database or discarding them. Therefore, the architecture
member statement LIST is optional. Nonetheless, SCLM generates listings to
temporary listing data sets for your viewing during the build.

Specifying Source Members
The alternate method of creating object modules is to specify a source member to
the build function. The source member's language definition in the project
definition identifies which translators SCLM calls and where it saves output in the
database. The language definition also specifies which compiler SCLM will call.

SCLM does not require that you use architecture members. You only need to
reference the compilable source member because SCLM automatically tracks
included members. See “Defining a Software Component using the FLMALLOC
Macro” on page 216 for implementation details. This technique only works for
source members.

Defining Link Edit Processed Components

Standard linkage editors produce load modules as output. To define software
components with load module outputs from standard linkage editors, use Linkedit
Control (LEC) architecture members. LEC architecture members contain all the
information necessary to produce a complete load module. Use the LEC
architecture member to identify the following:

¢ The load module name and the type you want it saved in
¢ The linkage editor listing name and the type you want it saved in
¢ All object and other load modules the load module is to contain.

You can also specify linkedit control statements and linkage editor options. LEC
architecture members must have at least one INCL or INCLD statement.

Construct a load module architecture member by creating an LEC architecture
member that references source members, CC architecture members, LEC
architecture members, or a combination. If the LEC architecture member
references a CC architecture member or a source member, SCLLM includes the

Chapter 2. Architecture Definition 23

Defining Link Edit Processed Components

24

object module that results from a build of the member. If the LEC architecture
member references another LEC architecture member, SCLM includes the load
module produced during a build.

An LEC architecture member can have any number of CC and LEC architecture
member references. However, LEC architecture members cannot reference
high-level or generic architecture members. During processing, SCLM passes
object and load modules to the linkage editor in the order of reference. Thus if
linkage editor dependencies exist, carefully organize the CC and LEC architecture
member references to resolve any problems.

You can use two methods to include other load modules in the load module to be
generated. As previously discussed, a reference to the LEC that generated the
other load module automatically includes it in the load module being generated.
Alternately, you can link other load modules into the load module being generated
by using the LINK statement. Although each method produces the same results,
each aliows you a different amount of control.

If you reference the LEC that generated the other load module, SCLM verifies that
the other load module is also up-to-date. If you link the other load module, SCLM
bypasses verification and includes the other load module even if it is not current.

Note: SCLM provides link ordering when load modules include other load
modules. In other words, SCLM processes all load modules in the correct
order.

Because the load module referenced by the LINK statement is not part of
the build, the architecture member must reference this LEC to allow link
ordering. SCLM does not order linked load modules unless specifically part
of the build.

You can override default linkage editor options by using the PARM statement. Use
the statement as many times as necessary to specify all options you want. SCLM
uses the standard IBM S/370 linkage editor for all linkedits. To override the default
linkage editor, use the LKED statement. You must define other linkage editors to
be invoked in the project definition for the project. See “Step 5: Allocate Project
Data Sets” on page 193 for more information.

You can specify that SCLM pass linkage edit control statements directly to the
standard S/370 linkage editor in the LEC by using the CMD statement. Insert the
control statements along with the object and load modules by careful positioning in
the LEC architecture member.

Due to space limitations, you may not want online linkage editor listings. SCLM
allows you to save listings in the database or discard them. Therefore, the
architecture member statement LMAP is optional. Nonetheless, SCLM generates
listings to temporary listing data sets for your viewing during the build.

You can use SCLM variables in LEC architecture members by using PARM and
PARMXx statements. SCLM substitutes the variables with the appropriate values
before calling translators.

You cannot use the SETSSI linkage editor command in an LEC architecture
member. If SCLM finds a CMD SETSSI statement in an LEC architecture member
during a build, the build function overrides the statement with its own SETSSI
command.

ISPF/PDF Software Configuration and Library Manager

Defining Specially Processed Components

Defining Application and Subapplication Components

You can define applications and subapplications by using High-Level (HL)
architecture members. HL architecture members allow you to categorize groups of
related oad modules, object modules, and other software.

You can maintain one HL architecture member to define an entire application for a
project. This HL architecture member references other architecture members
which eventually reference every component in the application. It can also
reference the source directly, with the language of the source defining the outputs
to be produced. A reference to this HL architecture member results in a reference
to every software component in the application. Therefore, you can control the
entire application through one HL architecture member. In this way, you can
guarantee the integrity of an entire application.

You can also use an HL architecture member to define subapplication software
components. Subapplications can be a combination of load modules or merely a
list of internal data items to be controlled. Subapplications can, in turn, reference
other subapplications to any depth. Conscientious use of HL architecture members
contributes to application modularity.

SCLM can control and track ISPF/PDF panels, skeletons, and messages that are
not processed by a compiler or linkage editor or used to invoke processors.
Because these unique forms of software are not processed by compilers, linkage
editors, or other processors, they are considered data dependencies and,
therefore, you can control them by using the PROM statement.

In most cases, you do not want panel, skeleton, and message dependencies in
LEC, CC, and generic architecture members. Use HL architecture members to
control all dialog software. For example, you can use one HL architecture member
for panels, one for skeletons, one for messages, and one for the entire dialog that
references the three previous HL architecture members.

If you want dialog-specific implied dependencies, you can reference the software
components in other architecture members. As with other members referenced by
the PROM statement, the date_check parameter allows SCLM to ignore implied
dependencies. Otherwise, if you change the member, SCLM recompiles, relinks,
or reprocesses the other software components referenced by the architecture
member.

Careful use of the PROM statement in this manner can eliminate unnecessary
SCLM processing and improve processing efficiency.

Defining Specially Processed Components

Generic outputs are produced by processors other than standard compilers and
linkage editors. The SCRIPT/VS processor is an example of a nonstandard
processor. You can create generic outputs by specifying the generic architecture
member or source member as input to the build function. The following sections
discuss both methods. However, keep in mind that referencing source members
simplifies the architecture definition.

Chapter 2. Architecture Definition 25

Defining Specially Processed Components

Generic Architecture Members

One method to create generic outputs is through a definition using generic
architecture members. You can reference generic architecture members with HL
architecture members.

Generic architecture members identify the source member or groups of source
members to be processed by a processor other than a standard compiler or
linkage editor. You should save information concerning the target types for the
processor outputs in the generic architecture member. Generic architecture
members must have at least one SINC statement.

Generic architecture members are equivalent to CC architecture members and,
therefore, cannot reference other architecture members. Use them to invoke
processors that do not produce standard object or load modules.

Generic architecture members allow you to use nonstandard processors. SCLM
extracts the identification of the processors to be invoked from the language
assigned to the source member last referenced. You must provide the definition of
processor invocations in the project definition. See Chapter 7, “Defining the
Project,” for more information. You can insert processor directives along with the
processor inputs by conscientious positioning of the CMD statements between
processor input references.

You can specify parameters for the processor in the generic architecture member
by using the PARMx and PARM statements. SCLM concatenates parameters to the
default parameters defined for the processor in the language definition and passes
them as specified to the processor.. See Chapter 7, “Defining the Project.” SCLM
separates concatenated parameters by a comma and removes extraneous blanks.
For a source member being processed directly, SCLM only passes the default
parameters defined for the processor in the language definition.

Often, due to space limitations, you do not want to save all forms of data. SCLM
gives you the option of saving listings in the database or discarding them.
Therefore, the architecture member statement LIST is optional. Nonetheless,
SCLM generates listings to temporary listing data sets for your viewing during the
build.

Specifying Source Members

26

The alternate method of creating generic output is to specify a source member as
input to the build function, or reference it with an HL architecture member. The
source member’s language definition in the project definition identifies where the
compiler outputs are to be saved in the database.

You only need to reference main source members due to SCLM’s automatic
include tracking capability. Processors can generate up to 10 outputs to be saved
in the database. You must identify each output to be saved by using a different
OUTx statement. Indicate the processor to be invoked with the language identifier
of the referenced member. See the DFLTTYP parameter description in
“FLMALLOC Macro” on page 213.

ISPF/PDF Software Configuration and Library Manager

Architecture Statements

Architecture Statements

You must use a special SCLM architecture language when you create architecture
members. This language consists of statements that identify necessary
information. The following paragraphs discuss the statements and their formats.

Statement Format

Statement Uses

You must use a specific format for architecture statements. Architecture
statements must be fixed block (FB) with a length of 80 bytes or characters. Only
one statement can appear in each 80-byte record. A record ranges from columns 1
through 72 and the records cannot be continued. SCLM ignores information that
appears after column 72.

Write the statements in either upper or lower case. You can write all statements,
except for CMD, in a free format as long as the items within the statements are in
the correct order. The number of blank spaces between each item is not
significant.

Member and type names must follow MVS naming conventions. SCLM does not
check parameters and control statements for validity. They may continue through
column 72.

SCLM distinguishes architecture members from one another by their contents. For
example, it assumes that members containing compilation information are CC
architecture members and members containing linkedit information are LEC
architecture members.

You use architecture statements to provide information about the design of
applications in the project database.

Table 3 shows valid statements for each type of member.

Table 3. Valid Keywords for Architecture Member Statements
HL LEC cC Generic
COPY ALIAS CMD CMD
INCL CMD COMP COMP
INCLD COPY COoPY COPY
PROM INCL CREF CREF
INCLD LIST LIST
LINK oBJ OUTx
LKED OUTx PARM
LMAP PARM PARMx
LOAD PARMx PROM
OUTx PROM SINC
PARM SINC SREF
PARMXx SREF
PROM
SREF

Chapter 2. Architecture Definition

27

Architecture Statements

28

Each architecture statement is comprised of a keyword followed by one or more
operands. The foliowing list shows the valid statements, their usage, and their

format:

*

ALIAS

CcMD

COMP

COPY

CREF

INCL

INCLD

ldentifies an architecture comment statement.
* <comment>

ldentifies load module aliases to be generated. Use it only in LEC
architecture members.

ALIAS <member_name> <type_name> <optional_comment>

ldentifies command statements to be included with inputs to the
compiler, linkage editor, or other processors. The statement is
positional; therefore, all blanks following this statement starting after the
first blank are significant. Do not use the optional_comment with the
CMD statement because it can cause unpredictable results. The CMD
statement is not valid in HL architecture members.

CMD <control_statements>

Identifies the name of the compool to be created (for JOVIAL programs
only) and the type in which it is to reside. Use it only in CC and generic
architecture members.

COMP <member_name> <type_name> <optional_comment>

Identifies another architecture member to be inserted into this
architecture member.

The COPY statement of the architecture language provides you with the
ability to simplify related, complex architecture members. To simplify
architecture members with similar contents, isolate identical statements
into a separate member and reference the member using the COPY
statement. Referenced members must follow all formatting rules for
architecture members.

The COPY directive results in a direct insert of the contents of the
specified member into the respective architecture members. Therefore,
using a copy architecture member is an efficient way to group sets of
commonly used architecture statements into a single area. Additions to
and deletions from the common architecture member affect all the
architecture members referencing the member.

COPY <member_name> <type_name> <optional_comment>

ldentifies the type from which JOVIAL compools are to be resolved. This
statement allows you to specify from which type SCLM accesses all
referenced JOVIAL compools. Use it only in CC and generic architecture
members.

CREF <type_name> <optional_comment>

ldentifies another architecture member that this architecture member
references. It is not valid in generic or CC architecture members. You
cannot use INCL {o reference source members.

INCL <member_name> <type name> <optional_comment>

Identifies a source member that this architecture member references. It
is not valid in generic or CC architecture members.

INCLD <member_name> <type name> <optional_comment>

ISPF/PDF Software Configuration and Library Manager

LINK

LIST

LKED

LMAP

LOAD

oBJ

OUTx

PARM

Architecture Statements

ldentifies a load module to be linked into the load module being created.
The referenced load module must be the product of another LEC. The
build function does not verify the contents of a load module referenced
by LINK. You can substitute the INCL statement to perform this
verification. Use the LINK statement only in LEC architecture members.

LINK <member_name> <type name> <optional_comment>

Identifies the member and type in which the compiler listing is to reside.
Use it only in CC and generic architecture members.

LIST <member_name> <type name> <optional_comment>

ldentifies the linkage editor to be invoked. Use it only in LEC
architecture members.

Language_id is an eight-character language identifier for a translator.
The language ID specified must correspond to a valid language identifier
defined in the project definition. See Chapter 7, “Defining the Project,”
for more information.

LKED <language_id> <optional_comment>

Identifies the member and type in which the linkage editor listing (load
map) is to reside. Use it only in LEC architecture members.

LMAP <member_name> <type_name> <optional_comment>

Identifies the name of the load module to be created and the type in
which it is to reside. Use it only in LEC architecture members.

LOAD <member_name> <type name> <optional_comment>

Identifies the name of the object module to be created and the type in
which it is to reside. Use it only in CC architecture members.

0BJ <member_name> <type_name> <optional_comment>

ldentifies the name of the output member to be created and the type in
which it is to reside. Replace the x with an integer to identify the specific
statement. Valid integer replacements are 0 through 9. You can use
these statements to track additional outputs other than the standard
outputs described by the statements OBJ, COMP, LIST, LOAD, and
LMAP. Use the OUTx statement in an LEC, CC, or generic architecture
member.

OUTx <member_name> <type_name> <optional_comment>

Identifies parameters (options) to be passed to all translators of a
compiler, linkage editor, or other processor. Use it in generic, CC, or
LEC architecture members.

SCLM offers a set of variables that you can use to dynamically provide
information to compilers, linkage editors, and other processors. Use
these variables with the PARM statement. See Chapter 3, “SCLM
Variables,” for more information.

Do not use the optional_comment with the PARM statement because it
can cause unpredictable results.

PARM <parameters>

Chapter 2. Architecture Definition 29

Architecture Statements

30

PARMXx

PROM

SINC

SREF

Identifies parameters (options) to be passed to specific translators of an
SCLM language. Replace the x with an integer to identify the specific
statement. Valid integer replacements are 0 through 9. You can use the
SCLM variables, mentioned previously, with the PARMx statement. You
can use the PARMx statement in generic, CC, and LEC architecture
members.

Do not use the optional_comment with the PARMx statement because it
can cause unpredictable results.

If the PARMx keyword used in the architecture member is not specified
in one of the FLMTRNSL macros (using the PARMKWD parameter),
SCLM ignores the PARMx statement.

PARMx <parameters>

ldentifies a text member, such as design, data, or test plans, to be
promoted along with the modules processed in this architecture
member. The member specified is not processed (for example,
compiled or linked) but is tracked during promotions. You can specify an
additional parameter to indicate whether date checking is to be
performed for the member.

Date_check is a special optional parameter for the PROM statement to
bypass date checking for noncompilable/nonlinkable members. A
nonblank, such as N, as a third parameter on the PROM statement
indicates to the build and promote functions to bypass date checking for
that member (thereby eliminating the need to build before promoting)
when you modify the member.

The date_check parameter for the PROM statement can alleviate implied
dependencies. Specify with the date_check parameter that SCLM should
disregard the last change date on the module. Thus SCLM ignores all
implied dependencies. SCLM tracks members with the architecture
member, but does not check them to verify that they are up-to-date.

Do not use the optional_comment with the PROM statement because it
can cause unpredictable results.

PROM <member_name> <type name> <date_check>

Identifies the source member or group of source members to be
processed. Use it only in generic and CC architecture members.

SINC <member_name> <type_name> <optional_comment>

Identifies the type to be referenced during processing. Use it in generic,
CC, and LEC architecture members.

SREF <type_name> <optional_comment>

ISPF/PDF Software Configuration and Library Manager

Sample Application Using Architecture Definitions

Sample Application Using Architecture Definitions

The following application is composed of two subapplications. Each subapplication
consists of two load modules, which are composed of a series of object modules.
Load module LMOD1 and LMOD2 contain one object module each, while LMOD3
and LMOD4 contain multiple object modules. Figure 3 shows a diagram of the
design of this application.

LEC Architecture CC Architecture Source

Members Member Modules
Subapplications LMOD1 CMOD1 MODULE1
SUBAPPL1
LMOD2 MODULE?2
Application
APPL1
LMOD3 MODULE3
-
Copy
Architecture
SUBAPPL2 Member MODULES
1 ARCHCOPY
MODULE®
ImMOD4
MODULE4

Figure 3. Application APPL1

Figure 4 on page 32 shows the architecture members for the APPL1 application.

Chapter 2. Architecture Definition 31

Sample Application Using Architecture Definitions

High—Level Architecture Members

*
*
*

Application APPL1

INCL SUBAPPL1 ARCHDEF
INCL SUBAPPL2 ARCHDEF

SUBAPPL1

*

* Subapplication 1

*

INCL LMOD1 ARCHDEF
INCL LMOD2 ARCHDEF

SUBAPPL2

*

* Subapplication 2

*

INCL LMOD3 ARCHDEF
INCL LMOD4 ARCHDEF

Linkedit Control Architecture Members

LMOD1

* Load Module LMOD1
*

LOAD LMOD1 LOAD
LMAP LMOD1 LMAP
INCL CMOD1 ARCHDEF
PARM MAP,NCAL

PARM LET

CMD ALIAS MAIN1

LMOD2

LMOD3

* Load Module LMOD2
*

LOAD LMOD2 LOAD
LMAP LMOD2 LMAP
INCLD MODULE2 SOURCE
PARM MAP,NCAL,LET

CMD ALIAS MAIN2

* Load Module LMOD3
*

LOAD LMOD3 LOAD
LMAP LMOD3 LMAP
COPY ARCHCOPY ARCHDEF
INCLD MODULE3 SOURCE

LMOD4

ISPF/PDF Software Configuration and Library Manager

* Load Module LMOD4
*

LOAD LMOD4 LOAD
LMAP LMOD4 LMAP
COPY ARCHCOPY ARCHDEF
INCLD MODULE4 SOURCE

Figure 4 (Part 1 of 2). Architecture Members For Application Sample

Sample Application Using Architecture Definitions

Compilation Control Architecture Members

CMOD1

* Object Module 1

0BJ MODULE1 0BJ
LIST MODULETL LIST
CMD %CHECK ON

SINC MODULE1 SOURCE
CMD %CHECK OFF

PARM NOXREF,LC(75)

Copy Architecture Members

ARCHCOPY

*

* COPY ARCHITECTURE

*

INCLD MODULE5 SOURCE
INCLD MODULE6 SOURCE
PARM MAP

Figure 4 (Part 2 of 2). Architecture Members For Application Sample

The HL architecture member in Figure 4 on page 32 inciudes references to two
subapplications (SUBAPPL1 and SUBAPPL2). The subapplication HL architecture
members reference the LEC architecture members that define the load modules
they contain. Note that the referenced LEC architecture members have the same
names as the load modules they produce.

The LEC architecture members contain all the information necessary to produce
the load modules in the application. CMD statements in LMOD1 and LMOD2 pass
linkedit control statements to the linkage editor. Leading blanks are significant on
CMD statements. (Note that inserting an extra biank before the statement satisfies
linkage editor requirements for control statements.) Two PARM statements
override the default linkage editor options.

Load modules LMOD3 and LMOD4 contain COPY statements. These statements
identify the LEC architecture member ARCHCOPY, which references two source
modules for SCLM to insert into the LMOD3 and LMOD4 load modules.

Thus, copy architecture members are an efficient technique for grouping commonly
used architecture statements into a single member. Additions to and deletions
from ARCHCOPY affect LMOD3 and LMOD4 and all the other architecture members
that might reference ARCHCOPY.

Because the CC architecture member is one of the lowest levels of architecture

members, it references the actual source to be compiled or processed rather than
other architecture members; that is, it only references main source members.

Chapter 2. Architecture Definition 33

Ensuring Synchronization with Architecture Definitions

The control statements, designated by the CMD statement in the CC architecture
member CMOD1, cause special compiler processing for the program. In addition,
CMOD1 specifies compiler options with the PARM statement to override the default
compiler options. The SINC statement references a source member rather than
another architecture member.

See Figure 39 on page 85 for an architecture report of the APPL1 application.

Ensuring Synchronization with Architecture Definitions

34

SCLM ensures that all modules within the scope of a build are synchronized. If you
build a source module, SCLM sychronizes the resulting object and listing with the
source. If you build an architecture definition, SCLM sychronizes all members
used as input to the builds and all members output from the builds. However, if
there are object or load modules outside the scope of a particular build that are
dependent on source modules within the scope of that build, then those source,
object, and load modules may no longer be synchronized.

In the example below, object modules OBJ1, OBJ2 and OBJ3 are produced by
compiling source modules SOURCE1, SOURCE2 and SOURCES, respectively.
SOURCE2 might be the source module for an I/0O routine used by many
applications. Load module LOAD1 is the result of linking OBJ1 and OBJ2, while
LOAD?2 results from the link edit of OBJ2 and OBJ3. LOAD1 and LOAD2 might be
two separate programs that run against the same kind of data and would therefore
need to have a common I/O routine (SOURCE2). APPL1 and APPL2 are LEC
architecture definitions that describe how to link edit LOAD1 and LOAD2,
respectively. Finally, TOPARCH is a high-level architecture definition that includes
APPL1 and APPL2.

— 0BJ1 SOURCE1
APPL1 LOAD1

TOPARCH : 0BJ2 SOURCE2
APPLZ LOAD2

-~ 0BJ3 SOURCE3

Figure 5. Example of Synchronization

In this example, all of the modules shown in the diagram exist only in the
production level of your SCLM-controlled hierarchy and all source, object and load
modules are synchronized. For each load module, the hierarchy contains the exact
version of the object modules that were used to link edit that load module. For
each object module, the hierarchy contains the exact version of the source that
was compiled to create that object module. You can always recreate exactly
(except for timestamps) the object and foad modules for the applications.

ISPF/PDF Software Configuration and Library Manager

Ensuring Synchronization with Architecture Definitions

With this structure, you must pay ciose attention to which architecture definitions
you use to build and promote development changes. The scenario below
describes the INCORRECT use of architecture definitions, which leads to a loss of
synchronization between source and load.

A user puts in a request for a change to LOAD1 and you decide that the way to
implement that change is to modify SOURCE2. Because you are making a change
to LOAD1, you also decide (in error as it will turn out) to use APPL1 to drive your
builds and promotes. When your changes are made and you are ready to build,
you cause SCLM to rebuild OBJ2 (because SOURCE2 changed) and LOAD1
(because OBJ2 changed), by specifying APPL1 on the BUILD panel. LOAD2 wiil not
be rebuilt, even though OBJ2 changed, because LOAD? is outside of the scope of
architecture definition APPL1. Herein lies the problem. When you promoie APPL1,
SCLM checks that everything that needs to be rebuilt (within the scope of APPL1)
has been rebuilt. Unfortunately, modules outside the scope of APPL1 should be
rebuilt as well.

When complete, all modules within the scope of APPL1 are synchronized and
recreatable. However, LOAD2 was outside the scope of the architecture definition
you used and is not recreatable. Therefore LOAD2 is not synchronized with its
source.

To avoid this problem, you must analyze the architecture of the applications in your
SCLM-controlled project and choose an architecture definition with a scope that
contains all modules that need to be rebuilt. The correct architecture definition
would have been TOPARCH in the example because only TOPARCH has both
LOAD1 and LOAD2 within its scope. These modules have to be relinked because
of a change to SOURCE2.

It is strongly suggested that you have one high-level architecture definition with a
scope that includes every module controlled by an SCLM project. You can use
architecture definitions with much smaller scopes in your day to day development
work. However, if you do that, you should also check the synchronization of all
modules in the project by performing a build on the top high-level architecture
definition (in REPORT mode) as part of your testing. The build in REPORT mode
indicates any out-of-sync modules by listing those modules that need to be rebuiit.

Chapter 2. Architecture Definition 35

36 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Chapter 3. SCLM Variables

—— General-Use Programming Interface

The SCLM variables are general-use programming interfaces, which you may
use for programming purposes.

SCLM variables are character strings that SCLM replaces with a value. SCLM
replaces these variables with eight-character values except for the following:

* @@FLM$XN variable has a value with a maximum length of 110.
* @@FLMS$UD variable has a value with a maximum length of 128.
* @@FLMSLIS variable contains an address in decimal character format.
* @@FLM$STP variable contains an address in decimal character format.

Many of the variables can be used for certain SCLM functions only. Table 4 lists
the SCLM variables in alphabetical order by field name and indicates which SCLLM
functions they can be used for. Table 5 on page 40 lists the SCLM variables in
alphabetic order.

Table 4 (Page 1 of 3). SCLM Field Name Variables and their SCLM Functions
SCLM Field Name Variable Parse | Build | Promote | Utilities
Access Key @@FLMACK

Accounting Group @@FLMGRP X X
Accounting Member @@FLMMBR X X
Accounting Record @@FLMATP X
Type

Accounting Status @@FLMSTA X X

Accounting Type @@FLMTYP X X

Alternate Project @@FLMALT X

Definition

Assignment @@FLMASG X
Statements

Authorization Code @@FLMACD

Authorization Code @@FLMACC

Change

Blank Lines @@FLMBLL X
Buffer Size in Bytes | @@FLMSIZ X

Build Map Date @@FLMMDT X
Build Map Name @@FLMMNM X
Build Map Time @@FLMMTM X
Build Map Type @@FLMMSC X
Change Code @@FLMS$CC X

© Copyright iIBM Corp. 1989, 1990

Chapter 3. SCLM Variables 37

SCLM Variables

Table 4 (Page 2 of 3). SCLM Field Name Variables and their SCLM Functions

SCLM Field Name Variable Parse | Build | Promote | Utilities
Change Code Date @@FLMS$CD X
Change Code Time @@FLMSCT X
Change Date @@FLMCDT X
Change Group @@FLMCLV X
Change Time @@FLMCTM X
Change User ID @@FLMCUS X
Comment Lines @@FLMCML X
Comment @@FLMCMS X
Statements

Compilation Unit @@FLM$XN X
Name

Compilation Unit @@FLMS$XT X
Type

Compool @@FLM$CM X
Control Statements @@FLMCNS X
Creation Date @@FLMIDT X
Creation Time @@FLMITM X
Database Qualifier @@FLMDBQ X X
ddname Substitution | @@FLMDDN X X X
List

Default Type @@FLMSRF X

Dependencies @@FLMLIS X

Pointer

Dynamic Includes @@FLMINC X

Pointer

Include @@FLMSIN X
Language @@FLMLAN X
Language Version @@FLMLVS X
Member Version @@FLMMVR X
Next Group @@FLMTOG X

Number of Change @@FLMNCC X
Codes

Number of @@FLMNCU X X
Compiiation Units

Number of @@FLMNCM X
Compools

Number of Includes @@FLMNIN X

38 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Table 4 (Page 3 of 3). SCLM Field Name Variables and their SCLM Functions

SCLM Field Name Variable Parse | Build | Promote | Utilities

Number of @@FLMNCL X

Noncomment Lines

Number of @@FLMNCS X

Noncomment

Statements

Number of User @@FLMNUE X

Entries

Predecessor Date @@FLMBDT X

Predecessor Time @@FLMBTM X

Project @@FLMPRJ X X X X |

Prolog Lines @@FLMPRL X

Promote Date @@FLMPDT X

Promote Time @@FLMPTM X

Promote User ID @@FLMPUS X

SCLM Internal Data @@FLMINF X

Pointer

SCLM Version @@FLMVER X

Static Pointer @@FLMSTP X

System User ID @@FLMUID

Top CU Name @@FLMCUN

Total Lines @@FLMTLL X

Total Statements @@FLMTLS X

Translator Version @@FLMTVS X

User Data Entry @@FLM$UD X

Note: The build function does not support the use of SCLM variables on the
FLMCPYLB macro.

Chapter 3. SCLM Variables 39

SCLM Variables

Table 5 lists the SCLM variables in alphabetic order.

Table 5 (Page 1 of 3). SCLM Variables and their SCLM Functions

Variable SCLM Field Name Parse | Build | Promote | Ulilities
@@FLMACC | Authorization Code X
Change
@@FLMACD | Authorization Code X
@@FLMACK | Access Key
@@FLMALT Alternate Project X
Definition
@@FLMASG Assignment X
Statements
@@FLMATP Accounting Record X
Type
@@FLMBDT Predecessor Date X
@@FLMBLL | Blank Lines X
@@FLMBTM | Predecessor Time X
@@FLMCDT Change Date X
@@FLMCLYV Change Group X
@@FLMCML | Comment Lines X
@@FLMCMS | Comment X
Statements
@@FLMCNS Control Statements X
@@FLMCTM | Change Time
@@FLMCUN | Top CU Name X
@@FLMCUS Change User ID
@@FLMDBQ | Database Qualifier X
@@FLMDDN | ddname Substitution X X
List
@@FLMGRP | Accounting Group X X X
@@FLMIDT Creation Date
@@FLMINC Dynamic Includes X
Pointer
@@FLMINF SCLM Internal Data X
Pointer
@@FLMITM Creation Time
@@FLMLAN Language
@@FLMLIS Dependencies X
Pointer
@@FLLMLVS Language Version X

40 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Table 5 (Page 2 of 3). SCLM Variables and their SCLM Functions

Variabte SCLM Field Name Parse | Build | Promote | Utilities

@@FLMMBR | Accounting Member X X X X

@@FLMMDT | Build Map Date X

@@FLMMNM | Build Map Name X

@@FLMMSC | Build Map Type X

@@FLMMTM | Build Map Time X

@@FLMMVR | Member Version X

@@FLMNCC | Number of Change X
Codes

@@FLMNGCL Number of X
Noncomment Lines

@@FLMNCM | Number of X
Compools

@@FLMNGCS Number of X
Noncomment
Statements

@@FLMNCU Number of X X
Compilation Units

@@FLMNIN Number of Includes X

@@FLMNUE Number of User X
Entries

@@FLMPDT | Promote Date X

@@FLMPRJ | Project X X X X

@@FLMPRL Prolog Lines X

@@FLMPTM Promote Time X

@@FLMPUS Promote User ID X

@@FLMSIZ Buffer Size in Bytes X

@@FLMSRF Default Type

@@FLMSTA Accounting Status X

@@FLMSTP Static Pointer

@@FLMTLL Total Lines

@@FLMTLS Total Statements

@@FLMTOG Next Group X

@@FLMTVS Translator Version

@@FLMTYP Accounting Type X X X

@@FLMUID System User ID X

@@FLMVER SCLM Version

@@FLMS$CC Change Code

Chapter 3. SCLM Variables

41

SCLM Variables

Table 5 (Page 3 of 3). SCLM Variables and their SCLM Functions

Variable SCLM Field Name Parse | Build | Promote | Utilities

@@FLMS$CD Change Code Date

@@FLM$CM | Compool X

@@FLMS$CT Change Code Time X

@@FLMSIN Include X

@@FLM$UD User Data Entry X

@@FLM$XN Compilation Unit X
Name

@@FLM$XT | Compilation Unit X
Type

Note: The build function does not support the use of SCLM variables on the
FLMCPYLB macro.

Chapter 4, “SCLM Dialog Interface,” defines and lists the SCLM fields (as they are
displayed in the dialog) for each record that is stored in the project database.

You can use the variables with the following:

The FLMTRNSL OPTIONS parameter

The PARM and PARMXx architecture member keywords
The COPYLIB parameter

The line format parameter of the database contents utility
Build and promote user exits.

e ®© o o o

42 iSPF/PDF Software Configuration and Library Manager

SCLM Primary Option Menu

Chapter 4. SCLM Dialog Interface

This chapter describes the panels you use to access the SCLM functions and the
various options you can select from each panel. It aiso describes the panels that
allow you to generate reports and provides several examples of the reports.

This chapter also compares SCLM to ISPF/PDF and notes the differences in the edit
commands and the similarities of the utilities.

You can access all SCLM functions interactively through a set of panels under
ISPF/PDF dialog management by selecting Option 10 from the ISPF/PDF Primary
Option Menu.

Note: A virtual region size of 4096K is recommended when you use the SCLM
dialog. Increase the virtual region size if you encounter GETMAIN
problems.

SCLM Primary Option Menu

Select the six SCLM primary functions from the SCLM Primary Option Menu shown
in Figure 6.

~ OPTION -

1
4

Figure 6. SCLM Primary Option Menu

© Copyright 1BM Corp. 1989, 1990 Chapter 4. SCLM Dialog interface 43

SCLM Primary Option Menu

44

When you select one of these options and press the Enter key, SCLM displays
another panel that is determined by the option you selected. Figure 6 on page 43
shows the options that this chapter describes. You can use the options to:

Option
1
Browse

Edit

3
Utilities

Build

5
Promote

Description

Display data without changing it and see large data sets, such as
compiler listings. You can scroll browse displays up, down, left, or
right. Browse commands, entered on the COMMAND line, allow you
to do tasks like finding a character string. See “Browse (Option 1)”
on page 45 for more information.

Create or change source data, such as program code and
documentation. SCLM uses the ISPF/PDF editor, which is a
full-screen editor. Unlike Browse, Edit allows you to type over the
data displayed on your screen. You can scroll the data up, down, left,
or right. You can change the data by using the edit /ine commands,
which are entered directly on the line number of the line or lines to be
affected, and by using primary commands, which are entered on the
COMMAND line. See “Edit (Option 2)” on page 46 for more
information.

Carry out library and data set maintenance tasks, such as browsing or
deleting members, accounting records, build maps, and intermediate
records and forms; updating member authorization codes; migrating
project databases to SCLM; and creating database contents and
architecture reports. See “Utilities (Option 3)” on page 52 for more
information.

Build data set members or components of an application,
automatically compiling and linking modules that require processing.
See “Build (Option 4)” on page 91 for more information.

Promote data set members or components of an application. See
“Promote (Option 5)” on page 94 for more information.

The fields on the SCLM Primary Option Menu are:

PROJECT

The common identifier for all ISPF libraries belonging to the same
programming project. This field is required to access any SCLM function.

ALTERNATE

You can enter an alternate project definition. Leaving this field blank results in
the project definition being the same as the project high level qualifier. For
more information, see “Primary Non-Key Group Testing Techniques” on

page 258 for alternate project definition.

DEV GROUP

A group at the bottom of the SCLM hierarchy. Your private library is in this
group. This field defauits to your TSO PREFIX or to your user ID if no TSO
PREFIX has been created.

ISPF/PDF Software Configuration and Library Manager

Browse (Option 1)

Browse (Option 1)

The Browse option allows you to display data in a project database. The SCLM
browse interface analyzes the database structure for the project you specify and
automatically provides the appropriate concatenation sequence for the groups. It
presents the four lowest key groups identified in the project definition, starting from
the DEV GROUP specified on the Primary Option Menu.

SCLM browse is functionally equivalent to ISPF/PDF browse. (Refer to ISPF/PDF
Guide for more information.) For example, you can specify a member name unless
you want to see a member selection list. Additionally, you can modify the
displayed library (or “group”) concatenation sequence. You can also browse a
non-SCLM data set, a partitioned data set (PDS), or a partitioned data set extended
(PDSE). Figure 7 shows the panel SCLM displays when you select Option 1
BROWSE from the SCLM Primary Option Menu.

COMMAND ===>

ISP LIBRARY:

Figure 7. SCLM Browse - Entry Panel

The fields on the SCLM Browse - Entry panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu. The default is your user ID. This group is
followed by the next key group in the hierarchy for up to four groups.

TYPE
The identifier for the type of information in the ISPF library, such as PL/I,
SCRIPT, and PANELS.

MEMBER
The name of an ISPF/PDF library or other partitioned data set member.
Leaving this field blank or typing a character string foliowed by an asterisk
causes SCLM to display a member list.

Chapter 4. SCLM Dialog Interface 45

Edit (Option 2)

DATA SET NAME
Any fully-qualified data set name, such as 'USERID.SYS1.MACLIB'. If you
include your TSO user prefix (defaults to user ID), you must enclose the data
set name in single quotes. However, if you omit the TSO user prefix and single
quotes, your TSO user prefix is automatically added to the beginning of the
data set name.

VOLUME SERIAL
A real DASD volume or a virtual volume residing on an IBM 3850 Mass Storage
System. To access 3850 virtual volumes, you must also have MOUNT
authority, which is acquired through the TSO ACCOUNT command. ISPF/PDF
does not allow the use of data sets that contain more than one volume. SCLM
does not use the system catalog when you specify a volume serial.

DATA SET PASSWORD
The password for OS password-protected data sets. This is not your TSO user
ID password.

MIXED MODE
You can browse unformatted mixed data that contains both EBCDIC (one-byte)
characters and Double Byte Character Set (DBCS or two-byte) characters. To
do this, you must specify mixed mode. Valid values for this field are:

YES Indicates mixed data
NO Indicates no mixed data.
If your terminal does not support DBCS, ISPF/PDF ignores the operation mode.

FORMAT NAME
The name of a format definition or blank if no format is to be used. A format
definition can include EBCDIC fields, DBCS fields, and a mixed field. If the
specified format includes a mixed field definition, and you specify NO in the
MIXED MODE field, ISPF/PDF ignores the operation mode.

Edit (Option 2)

The Edit option of SCLM is provided by the ISPF/PDF editor. Within SCLM, the
editor automatically locks the member when you begin the edit session and parses
and stores edited members and their accounting records when you end the edit
session.

When you select the Edit option, the SCLM editor analyzes the database structure
for the specified project and displays the concatenation sequence of the groups in
your library concatenation. It presents the four lowest key groups for the project
previously specified in the project definition. This preprocessing, coupled with the
ISPF/PDF “drawdown” feature, ensures that the member you want to modify is the
most current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your private librawy
in the development group from its first appearance in a higher key or primary
group in the library concaténation. he member or compilation unit remains
locked until you delete it or promote it §o a higher group.
Figure 8 on page 47 shows the panel SCLM displays when you select Option 2
EDIT from the SCLM Primary Option Menu.

N

46 ISPF/PDF Sofiware Configuration and Library Manager

Edit (Option 2)

COMMAND ===>

ISPF LIBRARY:
PROJECT
GROUP
TYPE
MEMBER

> PROJ1

> USER1 ===> [NT ===> TEST ===> RELEASE

> SOURCE

> MODULES (Blank or pattern for member selection 1ist)

nonouon
nonouon

PROFILE NAME ===> (If blank, defaults to data set type)

INITIAL MACRO =

MIXED MODE ==> NO (YES or NO)

CHANGE CODE ===> 2

AUTHORIZATION CODE ===> (If blank, default auth code used)
PARSER VOLUME s==> (If blank, default volume used)

Figure 8. SCLM Edit - Entry Panel

The fields on the SCLM Edit - Entry panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu. The default is your user ID. This group is
followed by the next key group in the hierarchy up to four groups.

The SCLM editor ensures that editing occurs only in private libraries by not
allowing you to modify this field. SCLM guarantees that the group is a valid
private library by verifying it against the specified project definition. (All other
displayed groups are in unprotected fields and you can alter them.)

Also, if you specify an incorrect order for the drawdown of a given member
(that is, the concatenation sequence of groups does not match the order of the
key groups in the library concatenation), SCLM does not allow the edit session.
SCLM then displays a panel indicating all groups that comprise the complete
hierarchy.

TYPE
The identifier for the type of information in the ISPF library, such as PL/I,
SCRIPT, and PANELS.

MEMBER
The name of an ISPF library or other partitioned data set member. Leaving
this field blank or typing a pattern as a member name causes SCLM to display
a member list.

PROFILE NAME
The name of an edit profile, which you can use to override the default edit
profile. Refer to ISPF/PDF Edit and Edit Macros for more information.

INITIAL MACRO
An edit macro to be processed before you begin editing. This initial macro
overrides any IMACRO value in your profile.

Chapter 4. SCLM Dialog Interface 47

Edit (Option 2)

SAVE

If you leave the INITIAL MACRO field blank and your edit profile includes an
IMACRO specification, the initial macro from your edit profile is processed.

If you want to suppress the processing of an initial macro in your edit profile,
enter NONE in the INITIAL MACRO field. Refer to ISPF/PDF Edit and Edit Macros
for more information.

MIXED MODE
You can edit unformatted mixed data that contains both EBCDIC (one-byte)
characters and Double Byte Character Set (DBCS or two-byte) characters. To
do this, you must specify mixed mode. Valid values for this field are:

YES Specifies that the editor is to look for shift-out and shift-in delimiters
surrounding DBCS data.

NO No mixed data.

If your terminal does not support DBCS, SCLM ignores the operation mode.

CHANGE CODE
Specify a change code to indicate why you updated the member.

AUTHORIZATION CODE
Specify the current authorization code for the member.

PARSER VOLUME
The specific volume ID in which SCLM stores output from the SCLM parser.
This field is not required.

The SCLM editor provides all of the functions of the ISPF/PDF editor. For example,
you can specify a profile name and an initial macro before editing a member.
Enhancements now allow you to lock a member; to parse, create, or update an
accounting record; and to specify change codes.

The parser supplied with SCLM does not recognize ISPF/PDF packed data. If the
ISPF/PDF pack mode is on, the parser supplied with SCLM returns statistical
values reflecting packed data. You must unpack the data before it is parsed by
SCLM to obtain correct statistical values.

The following paragraphs describe how additional features of the SCLM editor
differ from the ISPF/PDF editor.

The SCLM SAVE command is similar to the ISPF/PDF SAVE command except that
the member is automatically parsed and the member’s accounting record is
created or updated.

The first time you save a member, SCLM displays the SCLM Edit Profile panel (see
Figure 9 on page 50) for you to specify a change code and the member’s
language.

The SCLM editor supports two modes of operation, UPARSE and USUBDD, that
allow you to force save an Ada language member. Each of these modes allows an
Ada language member to be parsed or drawn down, or both, even when it contains
a compilation unit that already exists in another member at a higher group in the
hierarchy.

48 ISPF/PDF Software Configuration and Library Manager

Command Format

SCREATE

Command Format

SMOVE

Edit (Option 2)

If you specify the UPARSE mode, SCLM parses the member and stores the
accounting information for that member.

If you specify the USUBDD mode, SCLM allows the compilation unit to be drawn
down to your group. You can specify either one or both modes.

Note: Be careful when you use these options to save an Ada member because
doing so can cause SCLM to track a compilation unit defined in two different
members. A forced save for a non-Ada language member has the same
effect as a save.

SAVE [UPARSE] [USuBDD]

The SCLM SCREATE command is similar to the ISPF/PDF CREATE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the created member.:

If you do not enter a change code on the SCLM Edit - Entry panel (and it is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 9 on
page 50. Also, if the language of the member you want to create differs from the
language of the member you are editing, enter the SPROF command. SCLM
displays the SCLM Edit Profile panel so you can specify another language.
Otherwise, the newly-created member has the same member attributes as the
current member.

Note: If the member to be created already exists in your library, SCLM
automatically defaults to the SREPLACE command.

The SCLM SCREATE command does not offer an extended panel for creating a
member outside the hierarchy.

SCREATE member-name [line-range]

SCRE

The SCLM SMOVE command is similar to the ISPF/PDF MOVE command except
that the SCLM editor deletes the accounting information of the member being
moved if the member is moved from a development library.

The SCLM SMOVE command does not offer an extended panel for moving a
member from outside the hierarchy.

Chapter 4. SCLM Dialog Interface 49

Edit (Option 2)

Command Format

SPROF

SMOVE member-name [AFTER label]
[BEFORE Tabel]

The SPROF command allows you to specify parameters that SCLM requires to
track a member through the hierarchy. SCLM displays the SCLM Edit Profile
panel, shown in Figure 9, when you end the edit session (if you did not enter a
change code on the SCLM Edit - Entry panel and it is required) or whenever you
enter the SPROF command. SCLM also displays the SCLLM Edit Profile panel to
specify a language for a new member.

Figure 9. SCLM Edit Profile

The fields on the SCLM Edit Profile panel are:

LANGUAGE

The language definition name to be used to process the member. This field is
required.

CHANGE CODE
Specify a change code to indicate why you updated the member. This field is
required if your project has a change code verification routine. See “Change
Code Verification Routines” on page 261 for more details.

You can change the information on this panel at any time during the edit session.
If you alter the LANGUAGE field or modify the member, or both, SCLLM parses and
creates or updates the member’s accounting record while saving the member.

SCLM processes the member and saves it in your private library if you alter the
language or change code and if the member does not exist in your private library.
If you alter the change code but do not modify the member and it exists in the
private library, SCLM regenerates only the accounting information.

50 ISPF/PDF Software Configuration and Library Manager

SREPLACE

Command Format

Edit (Option 2)

When you enter SCLM edit profile information, SCLM maintains it across SCLM
edit sessions. Enter END from the SCLM Edit Profile panel to end SCLM edit
profile specifications and return to the SCLM edit session. Enter CANCEL to cancel
any changes you have made on the panel, end SCLM edit profile specifications,
and return to the SCLM edit session.

The SCLM SREPLACE command is similar to the ISPF/PDF REPLLACE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the replaced member. Use this command, not SCREATE,
when the member exists in the library.

If you do not enter a change code on the SCLM Edit - Entry panel (and it is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 9 on

page 50. Also, the replaced member will have the same member attributes as the
current member.

The SCLM SREPLACE command does not offer an extended panel for replacing a
member outside the hierarchy.

SREPLACE member-name [1ine-range]

SREPL

Because the SCLM editor uses ISPF/PDF edit macros to perform its functions, do
not override SCLM command macro definitions, especially the END, SAVE,
CANCEL, and RETURN macros. If you need a user-defined end macro, define an
alternate command name such as QUIT. At the end of this alternate end macro,
you must enter the END, RETURN, SAVE, or CANCEL command to start the SCLM
end routines.

If you override an SCLM macro by using the DEFINE command, the macro is not
redefined until you begin a new edit session.

You can also override SCLM edit macros by entering the ISPF/PDF BUILTIN
command (for example, BUILTIN SAVE).

Note: Be careful if you override SCLM command macros. If you call SCREATE or
SREPLACE as BUILTIN, for instance, SCLM does not automatically parse,
lock, and update accounting records for the created member.

Chapter 4. SCLM Dialog Interface 51

Utilities (Option 3)

Utilities (Option 3)

Figure 10 shows the panel SCLM displays when you select Option 3 UTILITIES
from the SCLM Primary Option Menu.

Figure 10. SCLM Utilities

When you select one of these options and press the Enter key, SCLM displays
another panel that is determined by the option you selected. Figure 10 shows the
following options that you can use to:

Option Description

1

Library Utility

52

Browse or delete source members and their accounting records and build
maps. You can also update authorization codes and browse statistical
information, such as the number of change codes, includes, compools,
compilation units, and user entries for an accounting record.

Browse or delete intermediate records or forms for Ada members.
Migrate a large number of members into a project database.

Create reports and tailored data sets on the contents of a project
hierarchy.

Create reports that show the architecture of an application or a
subapplication.

The library utility is completely interactive and parallels the ISPF/PDF library

utility.

Figure 11 on page 53 shows the panel SCLM displays when you select Option 1
LIBRARY from the SCLM Utilities panel.

ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Browse accounting record

Browse member

Delete member, accounting record, build map, and cross reference records
Browse build map

- Update accounting record authorization code

lank - Display member list

A
B
D
M
u
b

SCLM LIBRARY:
PROJECT
GROUP
TYPE
MEMBER

Figure 11. SCLM Library Utility

The fields on the SCLM Library Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu.

TYPE
The identifier for the type of information in the ISPF/PDF library. If you specify
an invalid SCLM type, enter the HELP command (the default is PF1) to display
all valid types for the current project definition.

MEMBER
The name of an ISPF/PDF library or other partitioned data set member.
Leaving this field and the COMMAND field blank causes SCLM to display a
member list.

Library Utility Commands
Enter your selection in the COMMAND field.

¢ If you enter A, B, or M, SCLM displays the specified member or record if it is
present.

¢ |f you enter D, SCLM deletes all portions of the member such as text,
accounting, and build map records.

If you delete a member from a key group that also exists in a non-key group in
a higher layer of the hierarchy, you need to delete the member from the
non-key group.

e |f you enter U, SCLM displays an input panel and updates the authorization
code according to your input. (To delete or update any data, you must have
UPDATE authority to the specified data set.)

¢ To delete, browse, or update several members, use the member selection list.

Chapter 4. SCLM Dialog Interface 53

Utilities (Option 3)

Member Selection List
You can delete, browse, or update members by making selections from a member
selection list. To display a member selection list, do the following:

1. Leave the COMMAND field blank.
2. Enter the project, group, and type information in the appropriate fields.
3. Leave the MEMBER field blank.

Use the scroll commands or the LOCATE command to scroll the list.

Figure 12 shows the panel SCLM displays when you select the member selection
list.

Figure 12. Member Selection List

The fields for the panel shown in Figure 12 are:

MEMBER
The names of the members in the project, group, and type you specified on the
SCLM Library Utility panel.

STATUS
SCLM displays the status of the member according to the line command you
select. Enter a line command to do the following:

Display an accounting record
Browse a member

Delete a member (see Note)
Display a build map record
Update an authorization code.

czoo>»

To delete the accounting records for a member that you deleted outside the
SCLM dialog, enter the name of the member in the member selection list.
Then enter the D line command.

Note: SCLM can only delete accounting records and build maps from libraries
that you can allocate; that is, the libraries these records are from must
exist.

54 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

TEXT
An X in this field indicates that the member exists.

ACCOUNTING
An X in this field indicates that the accounting information for the associated
member exists.

BUILD MAP
An X in this field indicates that the build map record for the associated member
exists.

Accounting Record
If you enter the A line command to display an accounting record, SCLM displays a
panel showing the information recorded for the member as shown in Figure 13.

DATA SET -- PROJ1.USER1.SOURCE(MODULE5) - ACCOUNTING RECORD ~-==-cmmmcomncmanen

COMMAND ===>

GENERAL DATA: , ,
Accounting Status : EDITABLE Change Group ‘¢ USERL
Change User ID : VEND1O7 Authorization Code : REL
Member Version 13 “Auth. Code Change = :
Language ¢ PASCAL ~ Translator Version

Creation Date : 01/31/89 Change Date : 02/14/89
Creation Time - = .; 12:45:33 . Change Ti 1 17:03:00

Display Statistics
. ‘Number of-Change Codés
Number of Includes

Figure 13. Accounting Record

The fields on the Accounting Record panel are:

ACCOUNTING STATUS
The status of the member.

EDITABLE Members that you can edit.
NON-EDIT Members that SCLM creates as a result of build processing.
LOCKOUT Members that you could edit if they were not iocked out.

INITIAL Members that you could edit if SCLM were not verifying
whether they are locked out.

CHANGE USER ID
The user ID of the person who made the last update to the member.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

LANGUAGE
The language of the member.

Chapter 4. SCLM Dialog Interface 55

Utilities (Option 3)

CREATION DATE
The date the member was first registered with SCLM.

CREATION TIME
The time the member was first registered with SCLM.

PROMOTE USER ID
The user ID of the person who last promoted the member.

PROMOTE DATE
The date the member was last promoted.

PROMOTE TIME
The time the member was last promoted.

PREDECESSOR DATE
The change date of the member that this member overlays when it is promoted
up the hierarchy.

PREDECESSOR TIME
The change time of the member that this member overlays when it is promoted
up the hierarchy.

CHANGE GROUP
The name of the group in which the member was last updated.

AUTHORIZATION CODE
The current authorization code for the member.

AUTH. CODE CHANGE
A temporary authorization code used during verification. When set, it
represents the “change to” authorization code.

TRANSLATOR VERSION
The version of the translator used during build processing.

CHANGE DATE
The last date a developer modified the member.

CHANGE TIME
The last time a developer modified the member.

ACCESS KEY
An identifier that indicates who has exclusive access to the member.

BUILD MAP NAME
The name of the map that created the member.

BUILD MAP TYPE
The name of the type containing the map.

BUILD MAP DATE
The date the map created the member.

BUILD MAP TIME
The time the map created the member.

DISPLAY STATISTICS
SCLM displays the Accouting Record Statistics panel, shown in Figure 14 on
page 57, if you enter S in this field.

NUMBER OF CHANGE CODES
The number of change codes entered against the member.

56 ISPF/PDF Software Configuration and Library Manager

Statistics

Utilities (Option 3)

NUMBER OF INCLUDES
The number of include references in the source member.

NUMBER OF COMPOOLS
The number of JOVIAL compool references in the member.

NUMBER OF COMPILATION UNITS
The number of compilation units in the member.

NUMBER OF USER ENTRIES
The number of user data entry records associated with the member.

Type S in the appropriate input fields and press the Enter key to display additional
panels. You can browse the statistics or lists of change codes, includes, JOVIAL
compools, compilation units, or user entries referenced by a member. You can
also scroll the lists.

Figure 14 through Figure 18 show the panels SCLM displays when you select each

of the items in the Accounting Record panel.

SCLM displays statistical information, as shown in Figure 14, when you enter S in
the DISPLAY STATISTICS field on the Accounting Record panel.

DATA SET -- PROJL.USERI, SOURCE(MODULES) = ACCOUNT TING RECORD --f-'-e;~=-';;,,-';--f;-';-"'
COMMAND e , o

ST’ATISTICS: R S
13 S Total Statements

Total Lines 1
‘Comment Lines: * :2. - Comment Statements
“Noncomment Lines ~: 5 Contro] Statements
6 e o °

- Blank Lines

Figure 14. Accounting Record Statistics

The fields on the Accounting Record Statistics panel are:

TOTAL LINES
The total number of lines in the member, which is equal to the sum of comment
lines, noncomment lines, and biank lines.

COMMENT LINES
The number of comment lines. A comment line is any line that has comment
information only.

Chapter 4. SCLM Dialog Interface 57

Utilities (Option 3)

NONCOMMENT LINES
The number of source lines. A noncomment line is a source line that contains
at least part of a noncomment statement. If a line has both a statement and a
comment, SCLM considers it a noncomment line.

BLANK LINES
The number of blank lines in the member. A blank line is
language-independent; no nonblank characters can be on it.

PROLOG LINES
The number of prolog lines in the member.

TOTAL STATEMENTS
The sum of the comment statements and the noncomment statements in the
member.

COMMENT STATEMENTS
The number of comment statements. A comment statement is denoted by a set
of beginning and ending comment delimiters for the particular language being
parsed. If an ending delimiter is not defined for a language, the end of the line
is used. A comment statement can span several lines, or several comment
statements can exist on a single line.

CONTROL STATEMENTS
The number of logical control statements.

ASSIGNMENT STATEMENTS
The number of assignment statements.

NONCOMMENT STATEMENTS
The number of complete statements that SCLM can process. Noncomment
statements are language-dependent, follow language syntax rules, and are
separated by the language delimiter. A noncomment statement can span
several lines, or several noncomment statements can exist on a single line.

58 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Change Code List: Figure 15 is an example of the information SCLM displays
when you enter S in the NUMBER OF CHANGE CODES field on the Accounting
Record panel.

DATA SET -- PROJ1.USER1.SOURCE(MODULE5) - CHANGE CODE LIST ------- ROW 1 OF 5
COMMAND ===> SCROLL ===> CSR
Line Command: D - Delete change code

Delete Status Change Number Change Date Change Time

*SELECT 31 02/14/89 17:03:060
2 02/14/89 17:00:00
PR3573 02/01/89 14:21:00
CR3582 02/01/89 11:34:00
PR3456 02/01/89 11:31:00

FhkkhREEFRIRK IR KT ER TR TR TR K Tdhddk BOTTOM OF DATA R R e R R Rt e D e s

Figure 15. Change Code List

The fields on the Change Code List panel are:

DELETE
You specify that you want to delete the change code when you enter D in this
field. SCLM selects the change code for deletion.

STATUS
SCLM dispiays *SELECT to indicate the change code you selected. Enter the
END command to confirm the delete request.

CHANGE NUMBER
A change code assigned to indicate why a member was updated.

CHANGE DATE
The last date a developer modified the member for the associated change
number. The CHANGE DATE on the top of the list is the most recent.

CHANGE TIME
The last time a developer modified the member; it is associated with the
CHANGE DATE.

Chapter 4. SCLM Dialog Interface 59

Utilities (Option 3)

Include List: Figure 16 is an example of the information SCLM displays when you
enter S in the NUMBER OF INCLUDES field on the Accounting Record panel.

Figure 16. Include List

The field on the Include List panel is:

INCLUDE
The name of an include reference in the source member. An include reference
is a generic term for code that you insert when SCLM compiles the source
member. The syntax of an include statement in a program is
language-dependent and is defined by language syntax rules.

60 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Compool List: Figure 17 is an example of the information SCLM displays when
you enter S in the NUMBER OF COMPOOLS field on the Accounting Record panel.

DATA SET -- PROJ1.USER1.SOURCE(MODULE4) - COMPOOL LIST ~-=--vememmmmeccmccneee
COMMAND ===> SCROLL ===> CSR

coMpoOL

B R s e e s L L s s BOTTOM OF DATA kkkhkkkdkhhhhkkhrkrhrkkrrkdhdhhirkkhid

Figure 17. Compool List

The field on the Compool List panel is:

COMPOOL
The name of a compool reference in the source member. A compool reference
is a reference to a JOVIAL data mapping structure that SCLM must compile
before it compiles the current member. Compool references are specific to the
JOVIAL languages.

Chapter 4. SCLM Dialog interface 61

Utilities (Option 3)

Compilation Units: Figure 18 is an example of the information SCLM displays
when you enter S in the NUMBER OF COMPILATION UNITS field on the Accounting
Record panel.

Figure 18. Compilation Units

The fields on the Compilation Units panel are:

SELECT

SCLM displays the contents of the cross-reference record for the selected
compilation unit when you enter S in this field.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

COMPILATION UNIT NAME
The name of the compilation unit. A compilation unit is an Ada language entity
that compiles separately.

SCLM considers each compilation unit contained in an Ada source member to
be an entity. The PARSE service obtains dependency information for each
compilation unit. The compilation unit names are not necessarily member
names.

62 ISPF/PDF Software Configuration and Library Manager

Utitities (Option 3)

Cross-Reference Record: Figure 19 is an example of the information SCLM
displays when you enter S in the SEL field on the Compilation Units panel.

DATA SET ~- () - CROSS-REFERENCE RECORD ==-=-mmmmmmmmmmmcmmmmmm e
COMMAND ===> SCROLL ===>

Compilation Unit : XPKG2

Compilation Type = : BODY Authorization Code : TEST

CU Qualifier : ADACODE Generic Flag : GENERIC

Accounting Member : MODULE1 Change Date : 11/22/88
Accounting Type : SOURCE Change Time : 11:44:32

Dependency Information
Depend-
ency Compilation
Type Type Dependency Name

UP BODY - XYZPKG
DOWN SPEC ABCPKG

Figure 19. Cross-Reference Record

The fields on the Cross-Reference Record panel are:

COMPILATION UNIT
The name of the compilation unit.

COMPILATION TYPE
The type of the compilation unit.

CU QUALIFIER
The name of the compilation unit (CU) qualifier specified in the language
definition.

ACCOUNTING MEMBER
The member that generated this cross-reference record.

ACCOUNTING TYPE
The type containing the source that generated this cross-reference record.

AUTHORIZATION CODE
The current authorization code for the cross-reference record.

GENERIC FLAG
A flag indicating whether this compilation unit contains an Ada generic or an
inline construct.

CHANGE DATE
The last date a developer modified the cross-reference record.

CHANGE TIME
The last time a developer modified the cross-reference record.

DEPENDENCY TYPE
The type of dependency the current compilation unit has: UP for upward
dependency and DOWN for downward dependency.

Chapter 4. SCLM Dialog Interface 63

Utilities (Option 3)

* Upward dependency

A compilation unit has an upward dependency on the units it references
using the WITH and IS SEPARATE language structures. It is a package or
procedure body that has an upward dependency on its specification. An
upward dependency member is processed before a given member.

¢ Downward dependency

A compilation unit has a downward dependency on the units it references
with the IS SEPARATE language structure. It is a package or procedure
specification that has a downward dependency on its body. A downward
dependency member is processed after a given member.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

DEPENDENCY NAME
The name of a compilation unit on which this compilation unit has a
dependency.

User Data Entries: Figure 20 is an example of the information SCLM displays
when you enter S in the NUMBER OF USER ENTRIES field on the Accounting
Record panel.

Figure 20. User Data Entries

The fields on the User Data Entries panel are:

DEL
You specify that you want to delete the user data entry record when you enter D
in this field.

64 ISPF/PDF Software Configuration and Library Manager

Build Map Record

Utilities (Option 3)

STAT
SCLM displays *SEL to indicate the user data entry record you selected. Enter
the END command to confirm the delete request.

REC#
SCLM displays a record number with the first line of each user data entry
record.

USER DATA ENTRY
Project-specific information entered into the accounting record. The user data
entry record can span two lines for a maximum of 128 characters.

Enter the M line command on the SCLM Library Utility panel or on the member
selection list to display a build map record. The Build Map Record panel, shown in
Figure 21, displays the fixed build map information SCLM records for a member.

DATA SET -- PROJ1.USER1.SOURCE(MODULES5) - BUILD MAP.RECORD -=--=-=v-mmocmmmaann
COMMAND ===>

GENERAL .DATA: - : : } R L
.Change User 1D : VEND107 . Change Group + USERL
- .Change Date : 02/14/89
<~ Change Time .. 1+ 17:10:57
Promot . £0/00/00

Figure 21. Build Map Record

The fields on the Build Map Record panel are:

CHANGE USER ID
The user ID of the person who made the last update to the member.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

LANGUAGE
The language of the member.

CREATION DATE
The date the build map was first created.

CREATION TIME
The time the build map was first created.

CHANGE GROUP
The name of the group in which the member was last updated.

Chapter 4. SCLM Dialog Interface 65

Utilities (Option 3)

CHANGE DATE
The last date a developer modified the member.

CHANGE TIME
The last time a developer modified the member.

PROMOTE DATE
The date the member was last promoted.

PROMOTE TIME
The time the member was last promoted.

PROMOTE USER ID
The user ID of the person who last promoted the member.

TRANSLATOR VERSION
The version of the translator used during build processing.

LANGUAGE VERSION
The version of the language that SCLM uses in language-based builds.

BUILD MAP NAME
The name of the map that created the member.

BUILD MAP TYPE
The name of the type containing the map.

BUILD MAP DATE
The date the map created the member.

BUILD MAP TIME
The time the map created the member.

REVIEW BUILD MAP CONTENTS
SCLM displays the Build Map Contents panel, shown in Figure 22 on page 67,
when you enter S in this field.

66 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Build Map Contents
SCLM displays the build map contents in a browse data set. Figure 22 shows the
contents of a build map record for an architecture defined in a CC architecture

member.
BROWSE -- PROJ1.USERL.MODULE5 ~-=--=-mccmmemamcnnn LINE 0060000 COL 601 080

COMMAND ===> : ~ SCROLL ===> CSR

L S e e S S e e I e e TOP OF DATA e dededed ke de dede e de ek ok de ek ke ek ke deok ek kb ok ke ok

BUILD MAP CONTENTS

Keyword Member Type Last Time Modified Version
0BJ MODULES 0BJ k 02/14/89- 17:10:57 5
LIST MODULES LIST 02/14/89 17:10:57 5
I1* INCLUDE3 SOURCEZ 02/14/89 . 16:50:00 2
SINC MODULE5S 'SOURCE 02/14/89 '17:03:00 3

* INTERNAL KEYWORDS e '
I# - INCLUDED MEMBER REFERENCED BY SINC MEMBER, # = IMBEDDED GROUP

Figure 22. Build Map Contents

The fields on the Build Map Contents panel are:

KEYWORD
You can use certain keywords to identify architecture information. See
“Architecture Statements” on page 27 for more details.

The architecture member example contains three keywords: OBJ, LIST, and
SINC. The actual parameters from the architecture member (prior to
substitution) are kept for PARM and PARMx keywords. Keywords denoted with
an asterisk (*) are include references found in source member MODULES5.

MEMBER
The name of the source member referenced in the architecture member.

TYPE
The name of the type containing the source member.

LAST TIME MODIFIED
The last time SCLM parsed and stored the specified member. For
SCLM-generated code, that is, OBJ and LIST, it is the last time SCLM
generated the member.

VERSION
The number of times SCLM parsed and stored the member. SCLM has parsed
and stored source member MODULES only once but has generated its
corresponding object module and listing two times.

INTERNAL KEYWORDS
Keywords that SCLM uses to track references. The internal keyword I#
indicates the group in which the members were first referenced.

Chapter 4. SCLM Dialog Interface 67

Utilities (Option 3)

Authorization Code Update

Enter U on the Library Utility panel or the member selection list to display the
Authorization Code Update panel. Figure 23 shows the panel SCLM displays for
you to update the authorization code for a member.

Figure 23. Authorization Code Update

The fields on the Authorization Code Update panel are:

MEMBER TO BE UPDATED
The member name you entered in the MEMBER field on the SCLM Library
Utility panel.

OLD AUTHORIZATION CODE
The current authorization code for the member.

NEW AUTHORIZATION CODE
The new authorization code for the member.

Enter the new authorization code in this field. Then press Enter to confirm the
update request and update the authorization code, or enter the END command
to cancel the update request.

Ada Sublibrary Management Utility

Use the Ada sublibrary management utility to delete or browse Ada intermediate
records and intermediate forms for compilation units. Ada intermediate records
are accounting records that SCLM tracks for the Ada intermediate form of
compilation units. The build function creates these records after a successful
compile.

To delete intermediate records and forms for compilation units, you must have
UPDATE authority to the specified source member data set. SCLM deletes the
intermediate form by starting Ada compiler utility programs. The utility is
completely interactive.

Figure 24 on page 69 shows the panel SCLM displays when you select Option 2
SUBLIB MGMT from the SCLM Utilities panel.

68 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

ADA DATABASE:
CU (compilation unit) QUALIFIER ===>

ISPF LIBRARY:

PROJECT ===> PROJ1
GROUP ===> |SER1
TYPE ===> ("*" for all types)

- Press ENTER key to browse or delete Ada intermediate records and forms.

Figure 24. Sublibrary Management Utility

The fields on the Sublibrary Management Utility panei are:

CU QUALIFIER
The name of the compilation unit qualifier specified in the language definition.
SCLM uses it to distinguish between different Ada languages when searching
for compilation unit dependencies.

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP

The private library that you specified on the SCLM Primary Option Menu. The
default is your user ID.

TYPE
The name of the type you want processed.

Member Selection List

You can delete or browse intermediate records and forms for compilation units by
making selections from a member selection list. To display a list of the Ada
intermediate records, enter the following:

1. The Ada database in the CU QUALIFIER field.
2. The appropriate group in the GROUP field.
3. The appropriate type in the TYPE field or an asterisk (*) for all types in a given

group.

SCLM displays the name of the compilation unit and its type on each line of the
member selection list, as shown in Figure 25 on page 70.

Chapter 4. SCLM Dialog interface 69

Utilities (Option 3)

Figure 25. Member Selection List

The fields on the Member Selection List panel are:

SELECT
SCLM selects one or more Ada intermediate records and forms for processing
when you enter line commands D (for delete) or B (for browse) in this field for
the compilation units you want.

Figure 26 on page 71 shows the panel SCLM displays when you enter the B
line command.

STATUS
SCLM displays the delete selection status in this field if you entered D in the
SELECT field:

*DELETED Indicates the compilation unit you want to delete.
Enter the END command to confirm the delete request.

*ERROR ~ SCLM cannot delete the selected compilation unit intermediate
record or form because an error occurred.

SCLM records detailed error information in a temporary data set.
Enter the HELP command (the default is the PF1 key) to obtain the
name of this data set.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

COMPILATION UNIT NAME
The name of the compilation unit.

70 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Intermediate Record
SCLM displays the contents of the intermediate record for the selected compilation
unit, shown in Figure 26, when you enter B in the SELECT field on the Intermediate
Record Member Selection List panel. SCLM stores the accounting information for
the compilation unit in an Ada sublibrary.

DATA SET -~ PROJ1.USER1.SOURCE / ADACODE -~ INTERMEDIATE RECORDS ----vvwueu-
COMMAND ===>

Compitlation Unit : ADA@2

Compilation Type : BODY

HISTORY

Change User ID : USER1

Creation Date : 01/12/77 Change Date : 12722787
Creation Time : 12:44:50 Change Time 0 11:22:30
GENERAL INFORMATION

Member Version 01

Language . : ADA

Translator Version : 3)

Change Group : USER1 :

Map Name : ADAMAP Accounting Member : ADAL

Map Type : 1 SOURCE Accounting. T: ¢ SOURCE

Figure 26. Intermediate Records

The fields on the Intermediate Records panel are:

COMPILATION UNIT
The name of the compilation unit.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record created for dependency tracking of main procedures.

CHANGE USER ID
The user ID of the person who made the last update to the member.

CREATION DATE
The date a developer first registered the intermediate form with SCLM.

CREATION TIME
The time a developer first registered the intermediate form with SCLM.

CHANGE DATE
The last date a developer modified the intermediate form.

CHANGE TIME
The iast time a developer modified the intermediate form.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

Chapter 4. SCLM Dialog Interface 71

Utilities (Option 3)

Migration Utility

LANGUAGE
The language of the member.

TRANSLATOR VERSION
The version of the translator.

CHANGE GROUP
The name of the group in which the member was last updated.

MAP NAME
The name of the map that created the member.

MAP TYPE
The name of the type containing the map.

ACCOUNTING MEMBER
The member that generated this compilation unit.

ACCOUNTING TYPE
The type that generated this compilation unit.

In addition to the SCLM editor, the migration utility allows you to indicate the
members you want tracked. Use this utility to enter a large number of members
into a project’'s database, such as during a conversion to SCLM. You can also use
it to lock, parse, and create accounting records for members that were edited
without using the SCLM edit function.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits
simultaneous updates of members, and collects statistical, dependency, and
historical information for every member processed. SCLM stores this information
in the project’s database. For a complete description of the lock, parse, and store
process, see “Edit Function” on page 10.

Figure 27 shows the panel SCLM displays when you select Option 3 MIGRATION
from the Utilities panel.

Figure 27. SCLM Migration Utility

72 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

To migrate a set of SCLM members, you must enter information for each field. The
fields for the Migration Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The private library that you specified on the SCLM Primary Option Menu. The
default is your user ID.

TYPE
The name of the type you want processed.

MEMBER
The name of the member you want processed. You can use patterns for the
member name. See “Specifying Selection Criteria” on page 75 for details.

AUTHORIZATION CODE
The authorization code for a member. SCLM cannot process a member if the
authorization code assigned to a member is not in the group being accessed.

CHANGE CODE
The current change code entered against the member. To enter a different
change code for the member, type over the displayed change code. SCLM
verifies the code you entered before it processes the member. See “STORE”
on page 12 for more information.

LANGUAGE
The language of the member. See “PARSE” on page 11 for a list of languages
that SCLM supplies parsers for.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for the
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
You can call the processing part of the migration utility from the interactive or
batch environment. Enter the EXECUTE command if you want interactive
processing, or enter the SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Chapter 4. SCLM Dialog Interface 73

Utilities (Option 3)

Database Contents Utility

You can use the SCLM database contents utility to generate reports on the contents
of a project hierarchy. You can define the format of the report, or you can use the
default format. Database contents utility reports can contain build map or
accounting information, or both, from a project database.

Figure 28 shows the panel SCLM displays when you select Option 4 DATABASE
CONTENTS from the Utilities panel.

Figure 28. SCLM Database Contents Utility

You can use patterns for each of the SELECTION CRITERIA fields. The fields on
the Database Contents Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The groups that are to be reported.

TYPE
The name of the type you want processed.

MEMBER
The name of the member you want processed.

CHANGE ADDITIONAL SELECTION CRITERIA
Enter YES if you want to change the additional selection criteria; otherwise,
enter NO. The panel shown in Figure 29 on page 76 appears if you enter YES.

OUTPUT CONTROL
Specify destinations for the outputs. If you enter TERMINAL, PRINTER, or DATASET
in the TAILORED OUTPUT field, the panel shown in Figure 31 on page 79
appears.

Also specify which printer output class you want to use and the volume SCLM
should save data sets on.

74 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Specifying Selection Criteria
You can use patterns to specify a variety of acceptable values for the accounting
information fields. A pattern consists of alphanumeric characters and three special
characters: an asterisk (*), a logical NOT symbol (—), and an equal sign (=).

Use an asterisk to match any string of characters including the nul! string. You can
use it more than once.

Use the logical NOT symbol (—) to negate the result of a match with the pattern.
You can specify it only once. The logical NOT symbol is removed from the pattern
before a match is attempted. Therefore, the position of the logical NOT symbol
within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the

hierarchy as the group you specify.

Note: Do not use an equal sign (=) as the first character in a pattern because it is
a special character in ISPF/PDF.

Use the patterns shown in Table 6 to select accounting information.

Table 6. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ

—1AB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ

USERt1= USER1,USER2,USER3

STAGE3= STAGE1,STAGE2,STAGE3

Note: See Figure 1 on page 7 for an illustration of the hierarchy represented
in the last two rows.

The portion of the project database that SCLM displays is determined by the
parameters you specify.

The panel in Figure 29 on page 76 appears if you enter YES in the CHANGE
ADDITIONAL SELECTION CRITERIA field on the Database Contents Utility panel.

If you enter NO, SCLM does not display the panel and the reports are generated
with the values that already exist on the Additional Selection Criteria panel.

Chapter 4. SCLM Dialog Interface 75

Utilities (Option 3)

Figure 29. SCLM Database Contents - Additional Selection Criteria

The fields on the Additional Selection Criteria panel allow you to specify
accounting and architecture information that the utility uses to identify the
members to be processed.

Accounting Information Fields

When you specify values or patterns for the accounting information fields, the utility
selects any member that has accounting information matching all of the patterns or
values for all fields you specify.

Use the following accounting information fields to select members:

AUTHORIZATION CODE

Members that are assigned an authorization code matching the authorization
code.

Use a blank value for the authorization code to select build outputs. Use a
logical NOT symbol () to select all members that can be edited. Build map
information always contains a blank authorization code.

CHANGE CODE

Members that can be edited that were assigned a change code matching the
change code pattern.

Only one of the change codes assigned to the member must match the pattern.
The logical NOT symbol () in the pattern specifies only the members that are
not assigned a change code matching the pattern. If a member has more than
one change code, only one of the change codes must match the pattern for the
member to be selected.

CHANGE GROUP

Members that were last changed in a group matching the change group
pattern.

CHANGE USER ID

Members that were last changed by the user ID matching the change user ID
pattern.

76 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

LANGUAGE
Members whose language matches the language pattern.

FIRST OCCURRENCE ONLY
If you specify YES, and use more than one group pattern, a precedence system
determines which members are selected.

The group1 pattern takes precedence over the group2 pattern, which takes
precedence over the group3 pattern, and so on. If SCLM finds versions of a
member in groups matching more than one pattern, it selects only the version
at the group with the most precedence. If more than one version of the
member matches the pattern with the most precedence, it selects all of those
versions.

This capability is particularly useful if you specify the groups in a hierarchy for
the group patterns. The result is a member list for the hierarchy.

If you specify NO, SCLM selects all versions of all members.

DATA TYPE
Specify the following:

ACCT To report exclusively on accounting information.
BMAP To report exclusively on build map information.
* To report on build map and accounting information.

DATA TYPE is always required, but if it is left blank it defaults to ACCT.

Architecture Definition Fields
You can also use architecture definition criteria to select members. The
architecture definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the
architecture definition field. If you specify an architecture that has never been
built, none of the members are selected. If you specify an architecture that has
been built but is out of date, the resulting data is inaccurate. Promote the
architecture in report only mode to see which components are out of date.
Patterns are not valid for architecture definition fields.

ARCHITECTURE
Specify the following:

IN To select members controlled by the architecture definition.
OUT To select members not controlled by the architecture definition.

* To indicate that an architecture definition is not used to identify selected
members.

The following fields are required if you enter IN or OUT in the ARCHITECTURE
field:

GROUP
The group identifying the lowest level in the hierarchy where SCLM shouid
find the architecture definition.

TYPE
The type containing the architecture definition that controls the selected
members.

MEMBER
The member containing the architecture definition that controls the
selected members.

Chapter 4. SCLM Dialog Interface 77

Utilities (Option 3)

SCOPE

Specify the following architecture scope:

NORMAL

To select members that do or do not have compilation unit

dependencies.

SUBUNIT|EXTENDED

To select members that do have compilation unit dependencies.

See “Architecture Definition Fields” on page 77 for information on how
scopes affect the architecture definition.

Note: You cannot use patterns in the GROUP, TYPE, and MEMBER fields on the

Additional Selection Criteria panel.

The database contents report contains a list of all members that you select from
the selection criteria. If you request a tailored data set, SCLM generates the data
set from this list of accounting and build map information.

Figure 30 shows an example of a database contents utility report that SCLM
generates when you enter NONE in the TAILORED OUTPUT field on the SCLM

Database Contents Utility panel.

O O
DATABASE CONTENTS UTILITY REPORT
O O
SELECTION CRITERIA
O PROJECT : PROJ1 O
ALTERNATE: PROJ1 AUTHORIZATION CODE : REL
e TYPES : SOURC* CHANGE CODE ; * O
MEMBERS : * CHANGE GROUP : USER1
O GROUP 1 : USERL CHANGE USER 1D : * O
GROUP 2 : INT LANGUAGE ;*
O GROUP 3 FIRST OCCURRENCE ONLY : YES O
GROUP 4 DATA TYPE : ACCT
O GROUP 5 O
GROUP 6
O O
ARCHITECTURE SELECTION CRITERIA : IN
O GROUP & USERL O
TYPE : ARCHDEF
O MEMBER : LMOD4 O
SCOPE : NORMAL
O O
DATE: 02/23/89 TIME: 11:26:18
O O
Figure 30 (Part 1 of 2). Database Contents Utility Report
O | DATABASE CONTENTS REPORT PAGE 2 O
----------------------------- TYPE: SOURCE ---mmmmmmmmmmmmmcmcmcmmmmcmm e mm
O | MeEMBER GROUPL GROUP2 GROUP3 GROUP4 GROUPS GROUPG O
O | MODULES USERI O
MODULES INT
O | wopuLes INT O
----------------------------- TYPE: SOURCE2 ---mmmmmmmmmmmmmm o e e
O | 1ncLubes INT O

Figure 30 (Part 2 of 2). Database Contents Utility Report

78 ISPF/PDF Software Configuration and Library Manager

Tailored Output

Utilities (Option 3)

Note: An asterisk (*) next to the group name on the report indicates that the
member represents build map information.

If you want to tailor the database contents output, enter TERMINAL, PRINTER, or
DATASET in the TAILORED OUTPUT field on the Database Contents Utility panel.
SCLM displays the Customization Parameters panel, shown in Figure 31, which
you use to generate the tailored report.

------------- SCLM DATABASE CONTENTS - CUSTOMIZATION PARAMETERS -w-cm-ceo--one-

COMMAND ===> (Enter END command to cancel)
PAGE HEADERS ===> YES (YES or NO)
SHOW TOTALS ===>.YES (YES or NO)

REPORT NAME > SAMPLE REPORT

REPORT LINE FORMAT:
===> @EFLMALT @@FLMGRP @@FLMTYP @@FLMMBR

Figure 31. SCLM Database Contents - Customization Parameters

The fields on the Customization Parameters panel are:

PAGE HEADERS
Enter YES to include page and column header information in the tailored output.

If you want to output a page header, input parameter information appears in
the tailored output. You can also specify a title.

SHOW TOTALS
Enter YES to total the numeric data fields and show the totals in the tailored
output. SCLM outputs a summary line at the end of the output that totals the
values of the numeric fields in the output. The output also includes a count of
the number of members reported.

REPORT NAME
The title of the report in the tailored output. The maximum length is 35
characters.

REPORT LINE FORMAT
The format of a line of data in the tailored output. The line format can be up to
160 characters long.

If you use the SCLM @@FLM$XN or @@FLM$UD variables, keep in mind that
their values can exceed eight characters. Place these variables at the end of
the report line to ensure that the columns in the report line up evenly.

Press Enter to confirm these requests or enter the END command to cancel them.

Chapter 4. SCLM Dialog Interface 79

Utilities (Option 3)

Figure 32 shows an example of a tailored outputit. The titie of the report is TESTREP.
The report line format, specified as G@FLMMBR @@FLM$IN, causes the utility to
generate output consisting of the members reported in the database contents
report and their associated included members.

Figure 32. Database Contents Tailored Data Set, Page 1

Tailored Output Examples
The report that appears in Figure 33 on page 81 is a formatted representation of
the accounting and build map information you specified for the database contents
report. The tailored output format specification consists of report variables and
constant values. The report displays the report variables as headers over the lines
of variable values. If multiple lines are output, it does not repeat constant values
such as the member name.

Chapter 3, “SCLM Variabies,” provides a list of report variables.

80 ISPF/PDF Software Configuration and Library Manager

Utilities (Option

3)

@) O
DATABASE CONTENTS UTILITY REPORT
O O
SELECTION CRITERIA
O PROJECT : PROJI O
ALTERNATE: PROJ1 AUTHORIZATION CODE @ REL
@) TYPES : SOURC* CHANGE CODE s * O
MEMBERS : * CHANGE GROUP : USER1
O GROUP 1 : USER1 CHANGE USER ID L ¥ 0O
GROUP 2 : INT LANGUAGE s ¥
0 GROUP 3 : FIRST OCCURRENCE ONLY : YES O
GROUP 4 DATA TYPE : ACCT
GROUP 5
O GROUP 6 O
O ARCHITECTURE SELECTION CRITERIA : IN O
GROUP : USER1
@) TYPE : ARCHDEF O
MEMBER : LMOD4
0 SCOPE : NORMAL O
CUSTOMIZATION PARAMETERS
O PAGE HEADERS : YES O
SHOW TOTALS : YES
O REPORT NAME : SAMPLE REPORT O
O DATE: 02/15/89 TIME: 09:52:17 O
O O
O O
Figure 33 (Part 1 of 2). Database Contents Utility Tailored Report
O PAGE 2 O
SAMPLE REPORT
O O
@OFLMALT @@FLMGRP G@FLMTYP G@FLMMBR
0 U ®
PROJI USER1 SOURCE MODULEA4
O | PROJT INT SOURCE MODULES O
PROJ1 INT SOURCE MODULEG
O | ProJ1 INT SOURCE2 INCLUDE3 O
O | proJL 4 O

Figure 33 (Part 2 of 2). Database Contents Utility Tailored Report

The reports in Figure 34 on page 82 through Figure 37 on page 83 show
examples of a change code, accounting statistics, source listing, and cleanup
report.

Change Code Report: The report line format input for this example is: @@FLMGRP
@EFLMTYP @@FLMMBR @@FLM$CD QEFLM$CC. The page headers appear on all pages of
the report; totais do not appear; and the report name is CHANGE CODE REPORT.
Figure 34 on page 82 shows the tailored output.

Chapter 4. SCLM Dialog Interface 81

Utilities (Option 3)

O PAGE 2 O
CHANGE CODE REPORT
O O
@BFLMGRP @GFLMTYP @GFLMMBR @OFLM$CD BOFLM$CC
G O
USER] SOURCE MODULE4
Ol wr SOURCE MODULES 02/14/89 2 O
02/01/89 PR3573
O O
02/01/89 CR3582
O O
02/01/89 PR3456
O O
INT SOURCE MODULE6 02/14/89 2
O 02/01/89 PR3573 O
O | wr SOURCEZ INCLUDE3 02/14/89 2 O
O O

Figure 34. Change Code Report, Page 2

Accounting Statistics Report: The report line format input for this example is:
@GFLMMBR @OFLMLAN QQ@FLMTLL @GFLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS.

The page headers appear on all pages of the report; totals appear for all numeric
data; and the report name is ACCOUNTING STATISTICS REPORT. Figure 35
shows the tailored output.

O PAGE 2 O
ACCOUNTING STATISTICS REPORT

O O

(5 | GOFLIBR GGFLHLAN GGFLHTLL GGFLNCHL GEFLHNCL CGFLHBLL GBFLHTLS GeFLNCHS o
MODULE4 PASCAL 8 0 4 4 2 0

O | MobuLes PASCAL 13 2 5 6 4 2 O
MODULE6 PASCAL 8 0 4 4 2 0

O | INCLUDE3 PASCAL 5 5 0 0 5 5 O

O 4 34 7 13 14 13 7 O

Figure 35. Accounting Statistics Report, Page 2

Source Listing Report: This example shows a generated script data set that the
SCRIPT/VS processor can process. However, the data resulting from this
formatted input begins in column 2. The SCRIPT/VS processor cannot process the
generated data set correctly until you edit the data set so that all command lines
begin in the first column. The tailored report uses column 1 for carriage returns.

The report line format input for this example is: .IM @@FLMMBR.

The report does not have page headers, totals, or a name. Figure 36 shows the
tailored output.

O . IM MODULE4 O

O | -IM MODULES O
. IM MODULEG

(O | .M INCLUDE3 O

Figure 36. Source Listing Report, Page 2

82 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Cleanup Report: The cleanup data set is a command data set that can be passed
as input to the SCLM command processor. See “Using the FLMCMD File Format”
on page 104 for more information on the SCLM command processor.

The report line format input for this example is:
DELETE,@@FLMPRJ,@@FLMALT ,@OFLMGRP,@@FLMTYP,@@FLMMBR.

The report does not have page headers, totals, or a name. Figure 37 shows the
sample tailored report.

O DELETE,PROJI ,PROJ1 ,USERL ,SOURCE ,MODULE4 O

) DELETE,PROJ1 ,PROJI ,INT ,SOURCE ,MODULES O
DELETE,PROJ1 ~ ,PROJ1 ,INT ,SOURCE ,MODULE6

O DELETE,PRCJ1 ,PROJ1 ,INT ,SOURCEZ , INCLUDE3 @)

Figure 37. Cleanup Report, Page 2

Architecture Report
The architecture report provides listings of all the components in a given
application. The report generator examines the requested architecture and all of
its references, and then constructs an indented report of the architecture. The
report lists software components in each type referenced by the architecture to
help you eliminate unnecessary code. The title page of the report identifies the
date and time SCLM generated the report, names the architecture member you
requested, and is based on the report cutoff you select. It also identifies any
alternate project definition used.

The report is divided into two sections: architecture and cross-reference
information.

¢ Architecture

Lists all architecture and source members subordinate to a given architecture
to the report cutoff you specify. The architecture information is particulariy
useful during the development stages of a project to identify the current status
of the application architecture. It is also useful at any time to determine a list
of the software components of an application.

The report uses an indentation format to present a visual concept of the
structure of the application. It also lists the number of various architecture
types processed.

¢ Cross-reference

Lists all the members, by type, that were listed in the first part of the
architecture report. Use this information to determine the origin of a particular
member.

An example of the architecture report appears in Figure 39 on page 85.

SCLM displays the panel in Figure 38 on page 84 when you select Option 5§
ARCHITECTURE REPORT on the Utilities panel.

Chapter 4. SCLM Dialog Interface 83

Utilities (Option 3)

Figure 38. SCLM Architecture Report

The fields on the SCLM Architecture Report panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The group used to identify the lowest level in the hierarchy where the
architecture begins.

TYPE
The type containing the architecture definition that controls the selected
member.

MEMBER
The member containing the architecture definition.

REPORT CUTOFF
You must specify one of the following report cutoff values (which determine the
depth of the report):

HL (High-level)
To print only the HL architecture members in the application represented
by the architecture member you specified in the MEMBER field.

LEC (Linkedit control)
To print all of the HL and LEC architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

CC (Compilation control)
To print all of the HL, LEC, and CC architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

GEN (Generic)
To print all of the HL and generic architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

84 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

TOP SOURCE
To print all of the HL, LEC, CC, and generic architecture members and the
top source members in the application represented by the architecture
member you specified in the MEMBER field.

NONE
To print all HL, LEC, CC, and generic architecture members in each of the
types and all source member names down to the lowest include group in
the application represented by the architecture member you specified in
the MEMBER field.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET for the
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Figure 39 and Figure 40 on page 87 show an example of the architecture report
with a report cutoff of NONE. Figure 41 on page 89 shows an example of the
architecture report with a report cutoff of LEC.

Architecture Report Example
This report provides listings of all the components in a given application. The title
page identifies the date and time the report was generated, the architecture
member requested, and the report cutoff. It also identifies the alternate project
definition, if specified.

MEMBER: SUBAPPL2
CUTOFF: NONE

O O
o SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) O
ARCHITECTURE REPORT
O O
02/15/89 09:22:48
©) O
O O
PROJECT: PROJL
O GROUP: USERL O
TYPE: ARCHDEF
O O
O O

Figure 39 (Part 1 of 2). Architecture Report, Part | — Architecture Information

Chapter 4. SCLM Dialog Interface 85

Utilities (Option 3)

86

O PAGE 2
O * *
O * ARCHITECTURE REPORT *
* *
O * H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *
O * *
O CODE: H MEMBER: SUBAPPLZ
O T Ty e S e T T LT Tt TRl | PYSBRRE STy PSRN S
O H SUBAPPL2
L LMOD3
O D MODULES
T MODULES
O I INCLUDE3
D MODULE®
O T MODULE6
D MODULE3
O T MODULE3
1 INCLUDE2
O L LMOD4
O D MODULES
T MODULES
1 INCLUDE3
O D MODULE®
O T MODULE6
D MODULE4
O T MODULE4
O
NUMBER OF HIGH GROUP MEMBERS PROCESSED = 1
O NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED . 2
NUMBER OF COMPILATION CONTROL MEMBERS PROCESSED = 0
O NUMBER OF GENERIC MEMBERS PROCESSED = 0
NUMBER OF DEFAULT MEMBERS PROCESSED = 4
O NUMBER OF TOP MEMBERS PROCESSED = 4
NUMBER OF INCLUDED MEMBERS PROCESSED = 2
O NUMBER OF ERROR MEMBERS FOUND = 0

OO0 0O0O0OO0O0O0OO0OO0O0O0O0OO0OOOO0OO0OOOoOOoOOoOOo

Figure 39 (Part 2 of 2). Architecture Report, Part | — Architecture information

ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

O g3 | O
Of = « | O
* CROSS REFERENCE FOR TYPE: ARCHDEF *

Of = * | O

O
MEMBER REF. ARCH. MEM. TYPE O
(@ N O
O | Loos SUBAPPL? ARCHDEF O
LMOD4 SUBAPPLZ ARCHDEF
SUBAPPL2 *** UNAVAILABLE ***
O O
o TOTAL MEMBERS PROCESSED FOR TYPE = 3 o
ol * *1O
* CROSS REFERENCE FOR TYPE: LIST *
*
O 1O
O | vewBer REF. ARCH. MEM. TYPE O
N O
MODULE3 MODULE3 SOURCE
O | MODULE4 MODULE4 SOURCE O
MODULES MODULES SOURCE
O | MoDULEG MODULEG SOURCE O
O | TOTAL MEMBERS PROCESSED FOR TYPE = 4 O
O 77) o . | O
* CROSS REFERENCE FOR TYPE: LMAP *
O * * O
o o O
MEMBER REF. ARCH. MEM. TYPE
O -mmmmmmm e e @
LMOD3 LMOD3 ARCHDEF
O LMOD4 LMOD4 ARCHDEF O
O | 1o7AL MEMBERS PROCESSED FOR TYPE = 2 O
(O I— ama O
* *
O = CROSS REFERENCE FOR TYPE: LOAD * 1 O
* *
Q| ======= s===== se==sss==s=== === O
O e wer oo vor e 0
O Lwons LMOD3 ARCHDEF O
O | Loos LMOD4 ARCHDEF O
TOTAL MEMBERS PROCESSED FOR TYPE = 2
O O
O O
O O

Figure 40 (Part 1 of 2). Architecture Report, Part Il — Cross-Reference Information

Chapter 4. SCLM Dialog Interface 87

Utilities (Option 3)

PAGE 4
. *
* CROSS REFERENCE FOR TYPE: 0BJ *
* *
MEMBER REF. ARCH. MEM. TYPE
MODULE3 MODULE3 SOURCE
MODULE4 MODULE4 SOURCE
MODULES MODULES SOURCE
MODULE6 MODULEG SOURCE
TOTAL MEMBERS PROCESSED FOR TYPE = 4
* *
* CROSS REFERENCE FOR TYPE: SOURCE *
* *

MEMBER ~ REF. ARCH. MEM. TYPE

INCLUDEZ MODULE3 SOURCE
INCLUDE3 MODULES SOURCE
MODULE3 MODULE3 SOURCE
LMOD3 ARCHDEF
MODULE4 MODULE4 SOURCE
LMOD4 ARCHDEF
MODULES LMOD4 ARCHDEF
MODULES SOURCE
LMOD3 ARCHDEF
MODULE6 LMOD4 ARCHDEF
MODULE® SOURCE
LMOD3 ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 12

OO O0O0OO000O0OO0O0O0O0O0O0O0O0O0O0OO0OoOo

OO0 O0OO0OO0OO0O0O0O0O0OO0OO0OO0OOLOOOO0OOoOOoOOo

Figure 40 (Part 2 of 2). Architecture Report, Part Il — Cross-Reference Information

88 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Figure 41 shows an example of the architecture report with an LEC report cutofi.

O O
SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
O O
ARCHITECTURE REPORT
O O
02/15/89 09:25:04
O O
O O
PROJECT: PROJ1
O GROUP: USERL O
TYPE: ARCHDEF
O MEMBER: SUBAPPL2 O
CUTOFF: LINK EDIT CONTROL
O O
Figure 41 (Part 1 of 3). Architecture Report, LEC Report Cutoff
O mee 2 | O
Ol » « | O
* ARCHITECTURE REPORT *
O * * O
* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *
C) * L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT * C>
* *
O CODE: H MEMBER: SUBAPPL2 O
<> T Tt T el Cor T n T <>
O H SUBAPPL2 O
L LMOD3
Ol LMOD4 O
O O
NUMBER OF HIGH GROUP MEMBERS PROCESSED = 1 O
C) NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2
NUMBER OF ERROR MEMBERS FOUND = 0
O O

Figure 41 (Part 2 of 3). Architecture Report, LEC Report Cutoff

Chapter 4. SCLM Dialog Interface 89

Utilities (Option 3)

OO0 O0OO0O0O0OO0O0O0O0OO0OOO0O0OO0O0OOLO0OLOLOOLOOOOOOOOO

O

PAGE 3
* o o) *
* CROSS REFERENCE FOR TYPE: ARCHDEF *
* *
MEMBER REF. ARCH. MEM. TYPE
LMOD3 SUBAPPL2 ARCHDEF
LMOD4 SUBAPPL2 ARCHDEF
SUBAPPL2 **% UNAVAILABLE ***
TOTAL MEMBERS PROCESSED FOR TYPE = 3
::- s=z=== ==== ——;
* CROSS REFERENCE FOR TYPE: LMAP *
* *
MEMBER REF. ARCH. MEM. TYPE
LMOD3 LMOD3 ARCHDEF
LMOD4 LMOD4 ARCHDEF
TOTAL MEMBERS PROCESSED FOR TYPE = 2
: ===s=====a=s=== -
* CROSS REFERENCE FOR TYPE: LOAD *
* *
MEMBER REF. ARCH. MEM. TYPE
LMOD3 LMOD3 ARCHDEF
LMOD4 LMOD4 ARCHDEF
TOTAL MEMBERS PROCESSED FOR TYPE = 2
: s====ss===== s====s=== ——-—==:
* CROSS REFERENCE FOR TYPE: SOURCE *

MEMBER REF. ARCH. MEM. TYPE
MODULE3 LMOD3 ARCHDEF
MODULE4 LMOD4 ARCHDEF
MODULES LMOD4 ARCHDEF
LMOD3 ARCHDEF
MODULE® LMOD4 ARCHDEF
LMOD3 ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 6

PAGE 4

OO0O0O0OO000OO0O0O0OLO0OO0OO0OO0OOOLOL0OOOLOOLOOLOLOOOLOOOLOOO

90 ISPF/PDF Software Configuration and Library Manager

Figure 41 (Part 3 of 3). Architecture Report, LEC Report Cutoff

Build (Option 4)

Build (Option 4)

The build processor automatically compiles and links modules requiring
processing. The panel shown in Figure 42 appears when you select Option 4
BUILD from the SCLM Primary Option Menu.

------------------------------- SCLM =« BUILD wmmemmm e e e
COMMAND ===> EX (EXECUTE or SUBMIT)
BUILD INPUT:

PROJECT ===> PROJ1
GROUP ===> |JSER1
TYPE ===> ARCHDEF
MEMBER ===> |MOD3
BUILD SCOPE ===> NORMAL (LIMITED, NORMAL, SUBUNIT, or EXTENDED)
BUILD MODE ===> FORCED (CONDITIONAL, UNCONDITIONAL, FORCED
or REPORT)
OUTPUT CONTROL: " (TERMINAL, PRINTER, DATASET, or NONE)
MESSAGES ===> TERMINAL
REPORT ===> DATASET
LISTINGS ===> DATASET ERROR LISTINGS ONLY ===> YES
PRINTER ===> H (Printer output class)
VOLUME ===> (If blank, the default volume is used)

JOB STATEMENT INFORMATION:

>/ /[JOBNAMES. JOB (ACCOUNT,DEPT,BIN}, ' TSOUSERNAME ',
> // MSGCLASS=A,CLASS=A,NOTIFY=JOBNAME,

>// USER=,GROUP=22772272 ,PASSWORD=27772272

[
Boond

=

n

Figure 42. SCLM Buiid

The fields for the SCLM Build panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The group in which the build is to occur.

TYPE
The type of the member.

MEMBER
The name of the member to be built.

BUILD SCOPE
Select one of the following:

Limited
To process those components that the architecture members directly
reference. lf you use a source member, the build function processes only
that member.

Normal
To process the components and members referenced by the specified
architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly by the
architecture member and all source members referenced as upward
dependencies.

Chapter 4. SCLM Dialog Interface 91

Build (Option 4)

Subunit
To process the components and members processed in normal scope as
well as downward dependencies for all Ada-type source members
referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope as
well as downward dependencies for all source members within the normal
scope.

Note: Do not specify a scope other than NORMAL uniess each source member
you want translated has compilation unit dependencies. Otherwise,
specify a scope equal to or greater than the scope specified with the
SCOPE keyword in the FLMLANGL macro.

BUILD MODE
Select one of the following:

Conditional
To check for unacceptable compile or link return codes. Processing stops
immediately if build detects any unacceptable codes.

SCLM saves build maps and translator output only for compiles and links
that complete successfully. SCLM generates transiator listings for all
components processed, and the build report reflects the final results of the
build.

Unconditional
To continue processing despite translation errors.

Use this mode when you need to update complete applications or large
subapplications. You can also use this mode initially to detect compile and
link errors in several components.

Forced
To force all requested components to be compiled and linked again
regardless of the previous status of the modules.

Use this mode to create a listing for a current component whose listing is
not tracked by SCLM.

Report only
To generate a complete build report without performing an actual build.
The report reflects the potential results of an unconditional build.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for these
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

92 ISPF/PDF Software Configuration and Library Manager

Build (Option 4)

Build Report Example
This report provides a synopsis of the build. The title page identifies the date and
time of the build, as well as the scope and mode used. It also lists the member you
specified on the Build panel and the project definition specified on the SCLM
Primary Option Menu.

The report lists the components that were rebuilt and saved in the database, that
is, those components that passed the compilation or linkage edit phase. It also
shows the build maps that required regeneration, along with a list of software
components that caused the regeneration.

If you enter REPORT ONLY in the BUILD MODE field, the report indicates what would
be rebuilt if you requested an unconditional build.

Figure 43 shows an example of a build report.

O O
SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
O O
BUILD REPORT
O O
02/15/89 09:28:35
O O
PROJECT: PROJ1
O - GROUP: USER1 ®)
TYPE: ARCHDEF
®) MEMBER : LMOD3 O
ALTERNATE: PROJ1
O SCOPE: NORMAL @)
MODE : FORCED
O ®)
O e ke e e K K e ke e e e e e e B U I L D 0 U T F, U T S Khkkhkkkhkkhkhkkkkk Page 1 O
O O
MEMBER TYPE VERSION KEYWORD
O Tt T O
0 MODULE3 0BJ 6 08J O
MODULES ~ 0BJ 6
O MODULE6 0BJ 6 O
O MODULE3 LIST 6 LIST e
MODULES LIST 6
0 MODULE6 LIST 6 @)
@) LMOD3 LOAD 6 LOAD O
O LMOD3 LMAP 6 LMAP O

Figure 43 (Part 1 of 2). Build Report

Chapter 4. SCLM Dialog Interface 93

Promote (Option 5)

O *kkdxd* BUI LD MAPS GENERATED ¥*x*¥* page 2 o

O (REASON FOR REBUILD) O

O MEMBER TYPE VERSION MEMBER TYPE O

O LM0D3 ARCHDEF 6 **% FORCE MODE *** O

O MODULE3 SOURCE 6 *%% FORCE MODE *** O
MODULES SOURCE 6 *** FORCE MODE ***

O MODULE® SOURCE 6 *¥*% FORCE MODE *** O

Figure 43 (Part 2 of 2). Build Report

Promote (Option 5)

The promote function moves members from any group to the next higher group.
The panel shown in Figure 44 appears when you select Option 5 PROMOTE from
the SCLM Primary Option Menu.

Figure 44. SCLM Promote

The fields on the SCLM Promote panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

FROM GROUP
The group from which to promote the material that the architecture member
refers to.

TYPE
The type of the architecture member.

-MEMBER
The name of the architecture member to be promoted.

For information on architecture members, see Chapter 2, “Architecture
Definition.”

94 ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

PROMOTE SCOPE
Select one of the following:

Normal
To process the components and members directly referenced by the
specified architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly by the
architecture member and all source members referenced as upward
dependencies.

Subunit
To process the components and members processed in normal scope as
well as downward dependencies for all Ada-type source members
referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope as
well as downward dependencies for all source members within the normal
scope.

Note: Do not specify a scope other than NORMAL unless each source member
you want translated has compilation unit dependencies. Otherwise,
specify a scope equal to or greater than the scope specified with the
SCOPE keyword in the FLMLANGL macro.

PROMOTE MODE
Select one of the following:

Conditional
To bypass the copy and purge steps if promote discovers a verification
error.

Promote compares dates in the build maps against dates in the database
for all software components taking part in the promote. Software
components are not promoted if they are deemed-out of date. Use this
mode to guarantee complete project integrity.

Unconditional
To perform copy and purge processing despite verification errors and to
promote only those members with correct accounting information.

Use this mode to promote software components for incomplete or partial
applications. For example, if some software components referenced by an
architecture member are not complete but are required in the next group of
the hierarchy anyway, you can use this mode to promote those software
components.

The use of the unconditional mode does not guarantee application
integrity, and you should use it with extreme caution. It is, however, an
effective method of promoting dependent software components that you
plan to integrate at a later date.

Report only
To perform verification and report generation processing. The report
contains a list of members eligible for promotion.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for the
outputs. Also specity which printer output class you want to use and the
volume on which SCLM should save data sets.

Chapter 4. SCLM Dialog Interface 95

Promote (Option 5)

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Promote Report
Figure 45 on page 97 shows an example of the promote report.

The promote report provides an accurate account of the promote. It lists all
members promoted to the next group and all members purged from lower groups.
It also marks “out-of-scope” software components with an asterisk (*) (see Note).

Note: An out-of-scope software component is an architecture that is referenced
with a LINK or CREF statement but not with an INCL statement. It is not
within the domain of the architecture specified.

The report displays specific information according to the promote modes and
scopes you select.

* For a promote of a member from a non-key group to a key group, the report
indicates that the member was:

— Copied to the next group
— Purged from the “from” group
— Purged from the last key group.

e For a promote of a member in a key group to a non-key group, it indicates that
a copy was made.

¢ For a second promote that follows a failed promote, it indicates the work
completed by that promote only.

For more information on key and non-key groups, see “Key/Non-Key Groups” on
page 8.

If a verification error occurs for a member, the report displays the message
number that identifies the error in the MESSAGE field.

96 ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

** NOTE:

SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
PROMOTE REPORT

02/15/89 09:35:41

PROJECT: PROJ1

TO GROUP: INT

FROM GROUP: STAGEL
TYPE: ARCHDEF
ARCH. MEM.: LMOD3
ALTERNATE: PROJ1
SCOPE: NORMAL

MODE : CONDITIONAL

"*" INDICATES "OUT OF SCOPE" ITEMS.

TYPE: ARCHDEF

PAGE 2

COPIED TO PURGED FROM PURGED FROM

OO OO0 O0|OO000000|0O000OO0O0O|Iob0O0O0OO0O0O0OO0OO0OO0

MEMBER DATE TIME MESSAGE INT STAGEL USER1
ARCHCOPY 02/14/89 16:52:00 X X X
LMOD3 02/14/89 16:54:00 X X X
PAGE 3
TYPE: LIST
COPIED TO PURGED FROM PURGED FROM
MEMBER DATE TIME MESSAGE INT STAGE1 USER1
MODULE3 02/15/89 09:30:00 X X X
MODULES ©02/15/89 ©09:29:00 X X X
MODULE6 02/15/89 09:29:00 X X X
PAGE 4
TYPE: LMAP
COPIED TO PURGED FROM PURGED FROM
MEMBER DATE TIME MESSAGE INT STAGE1 USERL
LMOD3 02/15/89 ©9:31:00 X X X

OO OO0 O0I|OO0OO0OO0OO0OO0OOO|0O000O00OlI0O0O0O0O0OO0OOO

Figure 45 (Part 1 of 3). Promote Report

Chapter 4. SCLM Dialog Interface

97

Promote (Option 5)

98

O PAGE 5 O

O TYPE: LOAD O

O COPIED TO PURGED FROM PURGED FROM O
MEMBER DATE TIME MESSAGE INT STAGE1 USER1

O | o o i e e i e O

O LMOD3 02/15/89 ©09:31:00 X X X O

O PAGE 6 O

O TYPE: 0BJ O

O COPIED TO PURGED FROM PURGED FROM O
MEMBER DATE TIME MESSAGE INT STAGEL USER1

G o O

O | MODULE3 ©2/15/89 ©9:36:00 X X X O
MODULES ©2/15/89 09:29:00 X X X

O | MODULEE ©2/15/89 ©9:29:00 X X X O

O PAGE 7 O

O TYPE: SOURCE O

@) COPIED TO PURGED FROM PURGED FROM e)
MEMBER DATE TIME MESSAGE INT STAGEL USER1

Q| "ttt mTrmmTTt mmtTmom mmommtoo mmmssomss momessoosos sommseesoes O

O | MoouLEs 0z/14/89 16:33:00 X X X O
MODULES ©2/14/89 17:03:00 X X X
MODULEE ©2/14/89 16:48:00 X X X

O O

PAGE 8
O O
TYPE: SOURCE2
O O
COPIED TO PURGED FROM PURGED FROM

O | MEMBER DATE TIME MESSAGE INT STAGE1 USER1 O

O | Incwuvez 02/14/80 19:49:00 X X X O
INCLUDE3 ~ ©2/14/89 16:50:00 X X X

O O

Figure 45 (Part 2 of 3). Promote Report

ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

@) PAGE 9 O
B R R e R L T L L L L T S s T s T T T
O | = s | O
= BUILD MAPS o
O *% Hx O
B L R L R T T e L L g L L S T T L R L T L T T 2 T T
O O
PAGE 10
O O
TYPE: ARCHDEF
O @)
COPIED TO PURGED FROM PURGED FROM
O | wemeer DATE TIME MESSAGE INT STAGE1 USER1 O
o T Tt T O
LMOD3 ©62/15/89 09:28:35 X X X
O O
PAGE 11
O O
TYPE: SOURCE
O O
COPIED TO PURGED FROM PURGED FROM
O | vemeer DATE TIME MESSAGE INT STAGE1 USERL O
(@ 3 O
MODULE3 02/15/89 09:28:35 X X X o
O | woutes 02/15/89 ©9:28:35 X X X
MODULE6 02/15/89 09:28:35 X X X
O O

Figure 45 (Part 3 of 3). Promote Report

Processing Errors

Data Set Overflow

Data Contention

The promote function can recover from most database errors. However, data set
overflow and data contention, as described below, may occur during a promote.

Partitioned data sets tend to become full and require compression. When a target
data set runs out of space during a promote, promote attempts to recover and
continue the promote. Although you get system ABEND messages, the promote
ignores the ABEND and continues. However, processing bypasses making a copy
to this data set and it also bypasses the subsequent purge step for members that
were not copied.

If data set overflow occurs, follow these steps:

1. Compress or reallocate the data set.
2. Increase the directory block allocation, if necessary.
3. Promote again.

The second promote copies only the members that did not copy in the original
promote. If successful, the purge step is normal. The resulting promote report
identifies only the copied and purged members in the second promote.

Be careful when you process certain combinations of SCLM builds and promotes
simultaneously. You should not promote or build members while they are
processing during another promote. Compiler errors or promote verification errors
in one or more of the concurrent jobs can occur. You can recover from all errors
by running the failed function again.

Chapter 4. SCLM Dialog Interface 99

Batch Processing

Batch Processing

The Verify Batch Job Information panel shown in Figure 46 is the standard panel
for the SCLM functions that allow you to select batch processing. When you enter
the SUBMIT command and when the JOB statement is not on the submittal panel,
this panel appears. SCLM requires JCL job statements when you process in batch

mode.

Figure 46. Verify Batch Job Information

100 ISPF/PDF Software Configuration and Library Manager

Output Disposition

Output Disposition

The Output Disposition panel shown in Figure 47 is the standard end panel for
many SCLM functions when you have sent output to a data set. It allows you to
determine the disposition of the report or messages data set previously displayed.
You can choose between keeping the data set, deleting the data set, printing and
keeping the data set, or printing and deleting the data set.

COMMAND ===>" PD

PK - Print and keep data set K - Keep data set (without printing)
PD. - Print and delete data set D - Delete data set (without printing)

If END command is entered, data set is kept without printing.
DATASET NAME: ‘userid.filename’
General purpose print/punch SYSOUT class information:

PRINT ===> A
PUNCH ===>

JOB STATEMENT INFORMATION - . y o
===> //Jobname JOB (wrkpkg dept‘bxn) 'NAME CLASS C, MSGCLASS H,

Figure 47. Output Disposition

When you send output to a data set, the database contents, architecture, build, and
promote functions display a report data set if they complete with an acceptable
return code. The migration utility displays a message data set because its report
is a set of messages.

If you allocate the output to a data set and 99 data sets have already been
allocated, SCLM either overlays a new data set over an old one or concatenates a
new data set with an old one. To avoid this problem, delete old data sets to allow
allocation of new data sets.

If error conditions occur in any of these functions and SCLM routes messages to a
data set, SCLM displays the message data set, not the report data set. In either
case, the Output Disposition panel appears after you finish browsing the displayed
data set.

The browse, edit, library, and sublibrary management utility functions do not

create report or message data sets and, consequently, do not display the Output
Disposition panel.

Chapter 4. SCLM Dialog Interface 101

102 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

Chapter 5. SCLM Services

—— General-Use Programming Interface

The SCLM services are general-use programming interfaces, which you can
use for programming purposes.

This chapter describes each of the SCLM services and the syntax conventions and
return codes for the services. It discusses how to call the services from your
terminal with interactive command processing, procedures, or programs. This
chapter also provides several brief examples of sample command data sets,
procedures, and programs.

Included in each service description is an example of its use in the command
procedure format and the Pascal call format. See Chapter 6, “A Sample Program
Using SCLM Services,” for an example of service invocations and declarations
coded in Pascal.

For information on how to use the SCLM services without ISPF/PDF, see
“Development and Performance” on page 274. For instructions on encrypting and
decrypting partitioned data sets, see “Data Set Protection” on page 276.

Invoking the SCLM Services

Invoke the SCLM services by a program function dialog through a call to FLMCMD
or FLMLNK, or by a command function dialog (CLIST or REXX) through the
ISPF/PDF interface.

Notation Conventions Used in this Chapter
This chapter uses the following notation conventions to describe the format of the
SCLM services:

Uppercase Uppercase commands or parameters must be spelled out as shown
(in either uppercase or lowercase).

Lowercase Lowercase parameters are variables; substitute your own values.
Underscore Underscored parameters are the system default.
Brackets ([1) Parameters in brackets are optional.

Braces ({ }) Braces show two or more parameters from which you must select
one.

OR () The OR (|) symbol shows two or more parameters from which you
must select one.

Single Quotes (' ')
Single quotes show service names and keywords in call invocation
examples.

Stacked Parameters
Stacked parameters show two or more parameters from which you
can select. If you do not choose any, ISPF/PDF uses the default
parameter.

© Copyright IBM Corp. 1989, 1990 Chapter 5. SCLM Services 103

invoking the SCLM Services

Command Invocation of the SCLM Services

Call the SCLM services by using the FLMCMD command in a CLIST or REXX
command procedure or by issuing the FLMCMD command as a TSO command.

You cannot invoke the following services using the FLMCMD command:

DBACCT PARSE
END START
FREE STORE
INIT

The FLMCMD Interface

The general format for a command invocation is:
FLMCMD service_name,project_name,prj_def_name,parameterl,parameter?,...

The maximum length of the command invocation statement is 512 characters.

FLMCMD Parameter Conventions

service_name
Alphanumeric; up to eight characters long.

project_name
Aiphanumeric; up to eight characters long.

pri_def_name
Alphanumeric; up to eight characters long.

The remaining parameters are positional. They must appear in the order
described for each service.

Although lowercase parameters are optional, SCLM uses default values for those
parameters you do not choose.

If you omit a parameter, account for it by inserting a comma in its place. The
following example shows how you would omit parm2:

FLMCMD service_name,project_name,&prj_def_name,parml,,parm3

Using Command Invocation Variables

You can use a CLIST variable anywhere within a statement as the service name or
as a parameter. A CLIST variable consists of a name preceded by an ampersand
(&). The CLIST processor replaces each variable with its current value before
processing the FLMCMD command.

Note: SCLM follows all rules pertaining to TSO CLISTs. For more information,
refer to TSO Extensions Version 2 Command Language Reference
(SC28-1881) and TSO Extensions Version 2 CLISTs (SC28-1876).

Using the FLMCMD File Format

104

Use the FILE format of FLMCMD to process multiple commands as a single
command invocation. You can enter the multiple commands either in a data set or
from your screen. The FILE format of the command invocation is:

FLMCMD FILE,ddname

ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

The ddname is the data definition name allocated to the FLMCMD command
dataset. If you do not specify the ddname, SCLM prompts you for command lines.
The record length of the command data set cannot exceed 256 bytes. For more
information, see “Interactive Command Processing” on page 106.

All messages from FLMCMD appear on your screen. To reroute the messages to
another destination, allocate the FLMMSGS ddname to the desired destination.

Note: “Performance Considerations” on page 276 discusses the use of the FILE
format for efficient processing.

The following example shows a command data set. The first command calls the
SCLM LOCK service; the second command calls the SCLM UNLOCK service.

*

* This is an exampie of a command data set.

* Note that comments do not have to start in column 1.
*

* The following command calls the SCLM LOCK service.
LOCK,PROJ1, ,USER1,SOURCE ,MODULEZ , TESTAC, XXX#04 ,USERID
*

* The following command consists of four lines,
* and calls the SCLM UNLOCK service.
UNLOCK,PROJ1, ,+

USERL,+

SOURCE , +

MODULEZ2 ,XXX#04

Command Data Set Conventions
Command data sets use the following conventions:

e SCLM processes all commands in the command data set regardless of the
success or failure of previous commands.

¢ |f a command line exceeds the maximum record length of the command data
set, continue the command by adding a plus sign (the continuation character)
in column one of the succeeding lines. You can add any number of
continuation lines for any command.

¢ The maximum command length is 512 bytes. Note that if a command consists
of several command lines, SCLM deletes trailing blanks.

¢ An asterisk (*) indicates comment lines. Place it in the first nonblank character
of a command line. You can enter any humber of comments within the
command data set, but you cannot add a comment line within a series of
command continuation lines.

Chapter 5. SCLM Services 105

Invoking the SCLM Services

The following example shows a CLIST command procedure that calls the FILE
format of FLMCMD.

PROC 0
ALLOC DDNAME(SCLMIN) DA('USERID.FLMCMD.INPUT') SHR
FLMCMD FILE,SCLMIN
SET &FLMCMDCC = &LASTCC
FREE DDNAME (SCLMIN)
EXIT CODE(&FLMCMDCC)
END

Interactive Command Processing
: To use interactive command processing, omit the ddname input parameter when
using the FILE format of FLMCMD. You then get a prompt for the command lines.
SCLM processes your input exactly as if the commands were in a command data
set. During interactive command processing, you can enter comment lines but you
cannot enter continuation lines.

To end interactive command processing, enter the QUIT command.

If you allocate the ddname to your screen and also specify it on the FILE format of
FLMCMD, you can get unpredictable results.

The following example shows a sample interactive command session.

106 ISPF/PDF Software Configuration and Library Manager -

Invoking the SCLM Services

The FLMLNK Subroutine Interface

Call Invocation

Programs in the FLMLNK subroutine interface call the SCLM services. This
chapter shows call statements in Pascal syntax and service names and keywords
as literals enclosed in single quotes (' ').

Note: None of the languages require you to use literals. You can specify
parameters as variables, as in the examples on the following pages.

You cannot call the following services using the FLMLNK subroutine interface:

DBUTIL
RPTARCH

SCLM services can be issued from function moduies that reside either below or
above the 16-megabyte line. The interface module FLMLNK has the attributes
RMODE(24) and AMODE(ANY). These attributes allow both 24-bit and 31-bit
addressing mode callers. Data areas above the 16-megabyte line are also
supported.

Note: The FLMLNK module is shipped with the RMODE(24) attribute to provide
compatibility with function modules that have the AMODE(24) attribute and
that will use a load and call interface to FLMLNK. Modules that reside
above the 16-megabyte line (RMODE(ANY)) and include FLMLNK in their
load module can override the RMODE(24) attribute during link edit.
FLMLNK can reside above the 16-megabyte line.

Standard register conventions are used. Registers 2-14 are preserved across the
call.

Other than for Pascal and FORTRAN, the general call format for invoking SCLM
services from functions by using FLMLNK is:

CALL FLMLNK(service_name,parameterl,parameter2,...);

FLMLNK Parameter Conventions

service_name
Alphanumeric; up to eight characters long.

Programs in the FLMLNK subroutine interface use the following conventions:

* The service_name parameter is positional and required. All other parameters
must appear in the order described for each service. You cannot omit required
parameters from the call statement. SCLM uses the maximum parameter
length when referencing and updating parameter values. Parameter values
with fewer characters than the maximum must be padded with bilanks for the
remainder of the field. Parameters that are not padded with blanks cause
unpredictable resulis.

* Some of the service input parameters are optional, but SCLM uses a default
value if you do not choose a parameter.

¢ To omit a parameter, insert a blank enciosed in single quotes (' ') in its place.

¢ You must indicate the last parameter in the calling sequence witha '1' as the
high order bit in the last entry of the address list. PL/I, COBOL, Pascal, and
FORTRAN call statements automatically generate this high-order bit. In
assembler call statements, you must use the VL keyword.

Chapter 5. SCLM Services 107

Invoking the SCLM Services

FORTRAN, Pascal, and C

108

For FORTRAN, Pascal, and C, the general call format for invoking SCLM services
from functions by using FLMLNK is:

lastrc := FLMLNK(service_name,parameterl,parameter2,...);

The parameters for the FORTRAN, Pascal, or C invocation are the same as those
shown for the call invocation.

SCLM returns the return code from the specified SCLM service in the FORTRAN,
Pascal, or C integer variable specified on the invocation. In the following

~ examples, the variable LASTRC is used.

FORTRAN Example: For functions written in FORTRAN, pass arguments as
FORTRAN variables or literals.

INTEGER LASTRC*4

CHARACTER SERVIS*8,SCLMID*8,GROUP*8
DATA SERVIS/'DELETE '/

DATA SCLM_ID/' SCLM0O@O1' /
DATA GROUP/'USERL '/

LASTRC=FLMLNK(SERVICE,SCLM_ID,GROUP,...)

For FORTRAN service requests, initialize parameter variables by using literals in
assignment statements. You must use previously-defined constants in assignment
statements.

CHARACTER DELET*8,SERVIS*8
DATA DELET/'DELETE '/

SERVIS=DELETE

Pascal Example

CONST
SERVICE = 'DELETE ';
SCLM_ID = 'SCLMooo0L';
GROUP = 'USERL ';

LASTRC := FLMLNK(SERVICE,SCLM_ID,GROUP,...);

For service calls in Pascal, initialize parameter variables by using literals in
assignment statements:

SERVICE:='DELETE"';

C Example: In C programs, include the following declare statements and compiler
directives:

#pragma linkage(flmlink,0S);
extern int flmink();

ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

Example

int retcode;

chars SERVICE, SCLMID, GROUP, ...
SERVICE = "DELETE "

SCLMID = "SCLMOOOO1"

GROUP = "USER1 "

Tastrc = fimInk(SERVICE,SCLMID,GROUP,...);

PL/N
In PL/I programs, include the following declare statements:
DECLARE FLMLNK /* NAME OF ENTRY POQINT */
ENTRY
EXTERNAL /* EXTERNAL ROUTINE */
OPTIONS(/* NEEDED OPTIONS */
ASM, /* DO NOT USE PL/I DOPE VECTORS */
INTER, /* INTERRUPTS */
RETCODE); /* EXPECT A RETURN CODE */
PL/I Example
DECLARE SERVICE CHAR(8) INIT('DELETE ‘'),
SCLM_ID CHAR(8) INIT('SCLMeGOO1'),
GROUP CHAR(8) INIT('USERL '),
CALL FLMLNK(SERVICE,SCLM_ID,GROUP,...);
For service calls in PL/I, initialize parameter variables by using literals in
assignment statements:
SERVICE="DELETE";
COBOL

COBOL does not aliow literals within a call statement. Therefore, SCLM does not
require the use of literals. You can specify all parameters as variables, as in the
following example:

COBOL Example

WORKING-STORAGE TYPE.
77 SERVIS PICTURE A(8) VALUE 'DELETE ‘.
77 SCLM_ID PICTURE A(8) VALUE 'SCLMO0GO1'.

77 GROUP PICTURE A(8) VALUE 'USER1 ‘.

PROCEDURE DIVISION.
CALL 'FLMLNK' USING SERVICE SCLM_ID GROUP

For service calls in COBOL, initialize parameter variables by using literals in
assignment statements:

MOVE 'DELETE' TO SERVIS.

Chapter 5. SCLM Services 109

Invoking the SCLM Services

DDNAME Parameters
SCLM services send output to data sets associated with the ddnames you provide
in the parameters passed to the service. You should allocate ddnames with the
attributes specified in the parameter descriptions. However, if you use different
attributes to allocate the ddnames, SCLM creates the data set using the attributes
specified, but the format of the resulting file may not be usable.

Character Parameters
Left-justify all character input parameters (character strings) to the SCLM services.
Left-justify all character output parameters (character strings) from the SCLM
services. Make the calling program buffer the length specified in the service
descriptions. Failure to provide a buffer of the proper size causes unpredictable
resulits.

Pointer Parameters
All pointer parameters to the SCLM services provide a fullword address to a

predefined array or record structure.

The SCLM services use four pointer parameters:

$msg_array (message array)
$acct_info (accounting information)
$stats_info (statistical information)
$list_info (list information array)

For Pascal declarations of the services program invocations, see Chapter 6, “A
Sample Program Using SCLM Services.”

Note: SCLM frees all memory associated with an output pointer parameter at the
start of the next service call. Copy any data associated with an output
pointer parameter that is to be referenced after the start of the next service
call to the function module’s local storage.

For example, if you want to pass the $list_info array from the PARSE service
to the STORE service, you must first copy the $list_info array to a local
buffer. Then you must pass the local buffer pointer to the STORE service.

For examples of copying the $list_info array and the $stats_info record, see
Chapter 6, “A Sample Program Using SCLM Services.”

Pointer Parameter Descriptions
The following describes each of the four pointer parameters:

$msg_array: A pointer to an array of messages SCLM services produce. Each
record in the message array is 80 bytes in length. An END record denotes the end
of the message array. Figure 48 shows the contents of a message array with one
message consisting of two message lines.

Record 1: FLM80500 - ACCESS KEY INCORRECT, ACCESS KEY: WRONG_KEY
Record 2: GROUP: USER1, TYPE: SOURCE, MEMBER: MODULE1
Record 3: END

Figure 48. $msg_array Contents

110 ISPF/PDF Software Configuration and Library Manager

$acct_info:

Invoking the SCLM Services

A pointer to a record containing the static portion of an accounting

record. The following describes the format of the record fields. For a description
of the record field contents, see “Accounting Record” on page 55.

The foliowing fields contain data common to all members:

acct_group
acct_type
acct_member
SCLM_version
accounting_status

change_date
change_time
change_group
change_userid
member_version
language
authorization_code
authorization_code_change
access_key
creation_date
creation_time
map_date
map_time
predecessor_date
predecessor_time
promote_date
promote_time
promote_userid
db_qual

8 characters
8 characters
8 characters
2 characters ('60')
1 character:

E Editable

N Non-editable
L Lockout

{ Initial

6 characters (YYMMDD format)
6 characters (HHMMSS format)
8 characters

8 characters

Fullword integer

8 characters

8 characters

8 characters

16 characters

6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
8 characters

8 characters

All of the following eight-character fields are blank unless the accounting_status is

N.

translator_version
map_name

language_version
map_type

The foliowing fields contain statistical data for a member. The fields preceded with
an asterisk refer to statistics that the parsers, supplied by SCLM, do not collect.

total_lines
comment_lines
non_comment_lines
blank_lines

* prolog_lines
total_stmts
comment_stmts

* control_stmts

* assignment_stmts
non_comment_stmts
number_of_user_entries
number_of_includes
number_of_compools
number_of_changecodes
number_of_cus

Each field is a fullword integer.

Chapter 5. SCLM Services 111

invoking the SCLM Services

112

$stats_info: A pointer to a record containing a member’s statistical information.
The following describes the format of the record fields. The fields preceded with
an asterisk refer to statistics that the parsers, supplied by SCLM, do not collect.

total_lines total_stmts
comment_lines comment_stmts
non_comment_lines * control_stmts
blank_lines * assignment_stmts

* prolog_lines non_comment_stmts

Each of the fields is a fullword integer. For a description of the record field
contents, see “Statistics” on page 57.

$list_info: A pointer to an array of records containing the dynamic portion of an
SCLM accounting record. The array contains records detailing a member’s
include, compool, compilation unit, change code, and user entry information. Each
record in the array is 228 bytes in length.

Some of the SCLM services place restrictions on the data that you can specify with
this parameter. See the description for the service you want to use to verify
whether it restricts the $list_info parameter data.

The records in the array contain two fields. The first field, which is four characters,
indicates the record type. Valid record type values are:

END Indicates the end of the array

INCL Indicates an include

COMP Indicates a compool; only used for compool languages, such as JOVIAL
CODE Indicates a change code

USER Indicates user data

Ccu Indicates a compilation unit; only used for the Ada language.

The second field varies depending on the record type. For the following
discussion, “member” refers to the member whose