
INTERCOMM

CONCEPTS AND FACILITIES

<~ISOGON ~ CORPORATION
330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Second Edition

Third Edition

Fourth Edition

Fifth Edition

Concepts and Facilities

Publishing History

Date

September 1973

July 1975

October 1977

July 1980

January 1987

Remarks

This manual corresponds to Intercomm
Release 6.0.

Revisions, corresponding to
Intercomm Release 6.2.

Revisions and updates, corresponding
to Intercomm Release 7.0.

Revisions corresponding to Intercomm
Release 8.0.

Revisions corresponding to Intercomm
Release 9.0.

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

J

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor, operating
under the control of IBM System/370 operating systems (MFT, MVT, VS,
MVS, or XA). Intercomm monitors the transmission of messages from and
to terminals, concurrent message processing, centralized access to I/O
files, and the routine utility operations of editing input messages and
formatting output messages, as required.

Intercomm meets the need for a well-designed and functional
real-time monitor system, minimizing cost and time required in
implementation. Intercomm imposes no restrictions on access methods,
number of terminals or source languages for the user's programs, and is
capable of fast and complete recovery of message and file status of a
failed system. The result of such centralized control of multiple,
varied on-line customer applications in a system with broad
capabilities is maximum utilization of computer resources.

This document presents the concepts of operation and describes
the facilities provided in the Intercomm on-line teleprocessing monitor
system. Familiarity with operational concepts of an on-line
environment is assumed on the part of the reader. For further details,
please consult the various Intercomm technical publications listed on
the Intercomm Publications page of this manual.

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/l Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Support Users Guide

Utilities Users Guide

User Contributed Program Descriptions

iv

J

J

TABLE OF CONTENTS

Chapter THE NEED FOR INTERCOMM 1
1.1 The Development of Intercomm 1
1.2 The Intercomm Environment and Facilities 4
1.3 Intercomm Message Flow. 8
1. 3.1 Message Flow Using Message Mapping

Ut i I it i e s (MMU) 8
1. 3 . 2 Intercomm Message Flow Using the

Edit/Output Utilities 10
1.4 Single Thread Vs. Multithread Processing..... 12
1. 4.1 Single Threading 12
1. 4.2 Multithreading........................... 14
1.5 Special Features............................. 16
1.6 Summary 18

Chapter 2 INTERCOMM SYSTEM COMPONENTS 19
2.1 General Description.......................... 19
2.2 Front End.................................... 21
2.3 Queue Management 24
2.4 Subsystem Controller 26
2.4.1 Logic Overview........................... 28
2.4.2 Dynamically Loaded Subsystems and

Overlay Management 30

~
2.4.3
2.5
2. 5. 1

Resource Enqueuing. 31
Dispatcher--Thread Management 32

Dispatcher and File Handler.............. 36
2.5.2 Dispatcher and Subsystem Controller...... 36
2.5.3 Dispatcher and Time Control.............. 36
2.6 File Handler--Data Management................ 37
2.7 Data Base Management System Support 42
2.8 Intercomm System Tables 43

Chapter 3 APPLICATION PROGRAMS AND SERVICE ROUTINES........ 45
3. 1 Application Programs.. 45
3.2 Message Processing Logic 46
3 . 3 Nonreentrant and Reentrant Subsystems 47
3.4 Subsystem Entry Parameters 50
3.5 Input Message Formats........ 51
3.6 Output Message Formats 51
3. 7 Intersubsystem Message Switching............. 52
3.8 Screen Generation................. 52
3.9 Message Switching Between Terminals 52
3. 10 Service Routines For Application Programs 53
3 . 11 Conversational Subsystems.................... 54

~
v

Page

Chapter 4
4.1

ON-LINE UTILITIES
Programmer Productivity

57 J 57
4.2 Message Mapping Utilities 57
4.2.1 Terminal Input Format Options 59
4.2.2 Mapping an Output Display 62
4.2.3 Mapping a Template Screen 63
4.2.4 Message Processing Logic Using MMU 63
4.3 Edit Utility 65
4.4 Output Utility 67
4.5 Change/Display Utility 69

Chapter 5 MAIN STORAGE ORGANIZATION AND RESOURCE MANAGEMENT 71
5.1 Region Organization 71
5.2 Overlay Areas 74
5.3 Dynamic Subsystem Load Facility 74
5.3. 1 Dynamically Loaded Subroutines 75
5.4 Generalized Subtasking 76
5.5 Resource Management 76
5. 5. 1 Storage Cushion Feature 77
5.5.2 Auditing and Purging 77
5.5.3 Creation of Dynamic Storage Pools 78
5.5.4 Core Use Statistics 78
5.6 Link Pack Area Considerations 78

Chapter 6 SYSTEM CONTROL FUNCTIONS 79
6. 1 Overview 79
6.2 Security Controls 79
6.2. 1 Station Sign-on/Sign-off 81
6.2.2 Transaction Security 81
6.2.3 Station/Transaction Sign-on/Sign-off

Securi ty 81
6.2.':" User-Written Security 81
6.2.5 Extended Security System 81
6.3 Message Logging 82
6. 3. 1 System Log Entries 82
6.3.2 User Log Entries 82
6.3.3 Logging Control 83
6.4 Checkpoint/Restart Capabilities 83
6.5 System Statist ics 84
6.6 Control Terminal 91
6.7 Testing Facilities 91

vi

L
Chapter 7
7 . 1
7.2

FRONT END FACILITIES...... 93
Overview 93
Master Control Terminal 94

7 . 3 Start Poll/Stop Poll 94
7.4 Idle Insertion............................... 94
7.5 Short Verbs 94
7.6 Buf fer Mode 95
7 . 7 Backspace Correction......................... 95
7.8 Terminal Conversational Facility............. 95
7.9 Lock Initial ization 96
7.10 Autolock Verb 96
7 . 11 Special Aid Processing (For IBM 3270

Terminals) 96
7. 12 3270 General Poll............................ 96
7 . 13 Global WTO Routing........................... 96
7.14 Front End Table Verification................. 97
7 . 15 Network Control Commands..................... 97
7.16 Alternate Routing 97
7.17 Autotpup 97
7.18 Queue Flush 97
7.19 Front End Control Messages 97
7.20 Generalized Front End Interface 98
7.21 TCAM Interface 98

Chapter 8 FILE HANDLER FACILITIES 99
8. 1 Access Methods 99
8.2 BISAM/QISAM Replacement...................... 99
8.3 VSAM Support 100
8.4 Exclusive Record Control..................... 100
8.5 Resource Management.......................... 101
8.6 File Handler Statistics...................... 101
8.7 Undefined Record Support..................... 101
8.8 Duplexed Output.............................. 101
8.9 Dynamic File Allocation...................... 102
8.9.1 Dynamic Deallocation and Reallocation

Via Command............................ 102
8.10 Sequential File Abend Protection............. 102
8. 11 Batch Support 102

Chapter 9 INTERCOMM AND MVS 103

9. 1 Introduction................................. 103
9.2 The Problems of Virtual Storage

Environments 103
9.3 The Intercomm Peformance Solution 104
9.3. 1 Virtual Storage Scheduling/Fast Path..... 104
9.3.2 Anticipatory Page Loading 104
9.3.3 Specialized Main Storage/Table

Management 104

L
vi i

Chapter 10
10. 1
10.2
10.2. 1
10.2.2
10.3
10.4
10.4. 1
10.4.2
10.4.3
10.4.4
10.4.5
10.5

Chapter 11
11. 1
11. 2
11. 3
11.4
11.4.1
11.4.2
11.4.3
11. 5
11.5.1
11.5.2
11.5.3

Chapter 12
12. 1
12.2
12. 3
12.4
12.5
12. 6
12. 7

Chapter 13
13 . 1
13.2
13. 3

Chapter 14
14. 1
14. 2

Chapter 15
15 . 1
15.2

FILE RECOVERY
Introductory Concepts
Message Restart

Message Logs

107
107
110
III

Message Accounting....................... 112
Message Restart Logic............ 112
File Recovery Concepts....................... 116

Checkpoints.............................. 116
File Activity Logging.................... 117
Destruction of Files............. 118
Normal Recovery •......................... 118
Coordinated Message Recovery........ 118

Backout-On-The-Fly 120

DBMS SUPPORT 121
Introduction................................. 121
DBMS Interface Environment....... 124
Generalized DBMS Interface Facility..... 126
Customized DBMS Interfaces................... 127

DL/l (IMS DB) Support 127
TOTAL Support 128
System 2000 128

DBMS Interfaces Via GDB 129
ADABAS Support 129
IDMS Support 129
Model 204 Support........................ 130

STORE/FETCH FACILITY•.......................
General
Modular Programming
Conversational Subsystem Applications
Other On-Line Applications
The Multiregion Environment
Batch Mode Operations
Store/Fetch Data Sets

DYNAMIC DATA QUEUING FACILITy
Data Queues
DDQ Utilization
DDQ Features

PAGE BROWSING FACILITy
Page Browsing Use
Page Browsing Operation

MULTIREGION SUPPORT FACILITY (MRS)
Multiregion Concepts
Multiregion Features

viii

131
131
131
132
132
133
133
133

135
135
135
136

139
139
140

143
143
143

Chapter 16 MODEL SYSTEM GENERATOR 147
16. 1 System Performance Questions.......... 147
16.2 System Performance Modeling 148

Chapter 17 DATA ENTRY FACILITY 149
17. 1 Data Entry Operation 149
17.2 Data Entry Implementation 149

Chapter 18 AUTOGEN .. 151
18. 1 Introduction 151
18.2 Map Definitions With Autogen 151
18.3 Autogen Capabilities 151

Chapter 19 DYNAMIC FILE ALLOCATION.......................... 153
19. 1 Introduction................................. 153
19.2 Allocate Service Routine 153
19.3 Access Service Routine 153

Chapter 20 SNA TERMINAL SUPPORT............................. 155
20.1 Elements of a System Using SNA Terminals

Wi th Intercomm 155
20.2 Intercomm Subsystems and Logical Units 155
20.3 SNA Terminals Supported by Intercomm 157
20.4 Intercomm Front End Facilities Supported

by the VTAM Front End 158

ix

J

J

J

L

L

Chapter 1

THE NEED FOR INTERCOMM

1.1 THE DEVELOPMENT OF INTERCOMM

Since its introduction in the spring of 1969, Intercomm has
matured through nine major releases. The capabilities and facilities
of Release 9.0, the current release, are described in this manual.
Intercomm has demonstrated adaptability and viability throughout this
period of volatile technology. From the IBM 360 to the System/370
range of computers, from OS MFT to MVT to VSl to MVS, and now to XA, it
has continued to provide the advantages and to accomodate the
disadvantages of the newer technologies.

The I n t e r c 0 mm tel e pro c e s sin g m 0 nit 0 r i s a s tat e - 0 f - the - art
software system which supplies those services required in a
comprehensive transaction processing environment. These services are
efficiently provided to maximize throughput and minimize response
time. Hundreds of users have utilized Intercomm, each over many years
of production. Such extensive use guarantees the highest level of code
itegrity within the Intercomm-provided software and ensures that these
services have been rigorously field tested.

Intercomm's features include:

• Co~~unications Functions for Devices and Line Control

Provided through the user's selection of
VTAM for physical device management,
Intercomm Front End components, for
management.

• full Resource Management

Main storage, files, CPU cycles

• Job Management

Scheduling, loading

• Task (Program) Management

BTAM, TCAM, and/or
and through other

logical network

Queueing, concurrent processing, swapping, multithreading

• System Control

Security, message and file restart/recovery, logging

1

Chapter 1

•

The Need for Intercomm

Application Program Services

Message formatting/editing, scratch pad management, data
storage and retrieval, conversational control

• Pre programmed Applications

Message switching/broadcasting, data entry, record retrieval

The Intercomm design philosophy has resulted in a system which
meets the following needs:

• High Programmer Productivity

Intercomm includes a wealth of preprogrammed functions which
are table-driven, not requiring coding, testing and debugging
by the application programmer. An Intercomm program is
written as much like a batch program in the programmer's
native language (Assembler, COBOL, PL/l or FORTRAN) as
possible in an on-line environment. The programmer is
shielded from the communications devices by either the
Edit/Output Utilities or Message Mapping Utilities. The
created program is device-independent. It deals with fixed­
format, fixed-field messages (both input and output). It
calls the monitor for preprogrammed services. The programmer
can concentrate on the logic of the application rather than
the bits and bytes of the teleprocessing environment.

• Low System Overhead

Intercomm makes low system overhead possible in both CPU
cycle and main storage utilization. This is particularly
significant in the area of data management. File I/O is
centralized in Intercomm's generalized File Handler, which
allows for true dynamic buffer ing, a single DCB or ACB for
each file, exclusive control at a physical record level, and
dynamic file allocation. A file can thus be opened and
closed once per day wi thout high overhead. Another area
' here low system overhead is highly significant is that of
obtaining and freeing areas of main storage on an as-required
basis. Intercomm's Resource Management facilities contain an
option for linkediting predefined core pools (areas of
user-specified size and number) with the system. Intercornm
services storage requests from these pools, utilizing a best
fit technique. This prevents storage fragmentation and
reduces CPU utilization by bypasssing GETMAIN/FREEMAI~

overhead. Via tuning, the user can reduce the pool sizes to
the lO'Nest possible storage requirements consistent with t~e

desired level of performance.

2

J

L

Chapter 1 The Need for Intercomrn

• High System Throughput

Intercomrn is a system without any built-in roadblocks. Given
a high enough priority message volume on a standalone
computer, Intercomrn will use 100 percent of the available CPU
cyc les on a machine whi le cont inuing to process messages.
High system throughput is obtained by efficient message
processing management within the Intercomrn job. This job
management capability, unique to Intercomrn, is primarily
imp lemented through the Subsystem Controller, which controls
the scheduling of applications within an Intercomrn region or
partition. Scheduling is based on resource availability and
demands, and an algorithmic combination of the priority of
the input terminal, the message and the application program.
The Subsystem Controller, in conjunct ion with the Dispatcher
(Task Manager) and other components, totally controls the
sequence of execution of all messages, such that maximum
processing overlap occurs (through concurrent processing and
multitasking) whenever possible.

• High System Integrity

Intercomrn will detect application program loops (CPU and
non-CPU bound), intercept application program checks and
ABENDs (SPIE and STAE protection), and handle terminal and
file I/O error situations. In the event of system failure,
it provides for message and file restart/recovery. In
addition, the multiregion version of Intercomrn (MRS) allows
for protect-key separation of application systems (groups of
application programs) into their own independent regions,
partitions or address spaces, thus providing the highest
possible level of system integrity.

• Future Growth

The Intercomrn system contains no restrictions on the number
of terminals or application programs which it can support and
manage eff ic iently. The add it ional storage requirement for
adding new terminals and/or applications is minimal.
Intercomm is essentially operating system-independent,
permitting an easy migration from one operating system to
another without application program impact. Data Base
Management System (DBMS) support has grown from TOTAL and
DL/l (IMS) to include ADABAS, IDMS, Model 204, and System
2000, and can be expected to increase as new packages are
introduced. Intercomrn's MRS includes the unique provision
for concurrent support of multiple DBMS. Intercomm's
terminal support has continued to expand over the years to
include the newest devices in a timely manner. It went from
the 2260 under GAM to the 3270 under BTAM or TCAM, and the
3600 and 3790 (Inquiry Mode) to the 3270 (BSC and SDLC) under
VTAM, and can be expected to support additional future device

3

Chapter 1 The Need for Intercomm

protocols as SNA becomes more widely accepted. Intercomm' s
modularity facilitates the inclusion of existing (and future)
new features without changes to the current production
application programs. This generally involves a relinkedit
of the load module for the Intercomm system with additional
INCLUDE cards for the new features and requires table changes
at the system level. Intercomm is indeed a software system
with the flexibility to meet current needs as well as future
requirements.

• Vendor Support

We offer on-site and telephone support by thoroughly trained
and experienced Systems Engineers (SEs). Product maintenance
and improvements are provided via updates and/or new releases
on tape. Automated facilities for their application are
described in the ASMF Users Guide and Installation Guide.
Intercomm Education is available in both public and on-site
courses. The courses are described in the Intercomm Customer
Course Catalog. Additionally, Technical Information
Bulletins are issued periodically to describe vendor or
Intercomm fixes for hardware problems, suggested operating
system or environment dependent user mods, etc.

• User Contributed Library

The Intercomm User Group Contributed Library (IUGCL) is a
repository of vendor-field-developed and user-developed
Interco~m software. It is distributed in source form on the
Intercomm release tape. The programs are provided without a
warranty, however, support may be provided on a Time and
Materials basis dependent on the availability of an Intercomm
System Engineer (SE) who has familiarity with the particular
programs. Documentation for the programs is contained in the
Intercomm User Contributed Program Descriptions manual.

1.2 THE INTERCOMM ENVIRONMENT AND FACILTIES

Intercomm executes under IBM System/370 operating systems on any
System/370 machine (43xx,30xx) including the new 3090, and compatible
machines. It is IBM operating system-independent and functions under
OS/t1:'-:.', OS/MVT, VSl, MVS and XA. It executes as a single job (or
multiple independent jobs with the Multiregion Support Facility),
:1ormally concurrent with the user's regular workload in other
partitions or regions.

4

J

J

Chapter 1 The Need for Intercomm

Within its region, Intercomm may be thought of as an operating
system wi thin the operating system. The computer I s operating system
was designed to efficiently handle a batch workload consisting of
multiple programs performing iterative functions over a relatively long
time per iod. Intercomm was designed to supervise an on-line workload
consisting of multiple programs performing processing functions once
per input message. The batch program reads and processes a series
(batch) of sequenced transactions from a single input source. The
on-line program receives a message (transaction) from a communications
device, processes the message, transmits one or more responses
(output), and then is idle until another transaction is entered. If a
user had only one program, which processed messages from one terminal,
this situation might be acceptable. However, the usual situation is
that the user has more than one terminal and more than one application
program. With multiple terminals submitting multiple messages to
multiple application programs, a control program is necessary; hence
Intercomm.

The five main Intercomm components that perform this control over
the on-line environment are as follows:

• Teleprocessing Interface (Network Management)

Controls communication between the CPU and all teleprocessing
terminals connected with Intercomm.

• Message Collection/Retriever (Queue Management)

Controls queuing and dequeuing of queues of messages awaiting
input processing or output transmission.

• Subsystem Controller (Job Management)

Schedules and manages the sequence of initiating application
subsystems (message processing programs) within Intercomm.

• File Handler (Data Management)

Manages all file I/O activities in a centralized manner.

• Dispatcher (Execution Management)

Manages the allocation and overlap of CPU time among multiple
tasks operating concurrently, and establishes multiple real
time clocks.

Intercomm's efficiency is achieved by processing parallel
messages under the control of the Subsystem Controller (message
processing scheduler), the Dispatcher (CPU scheduler), the
teleprocessing interface (Front End message handler) and the File
Handler (data management interface).

5

Chapter 1 The Need for Intercomm

All incoming and outgoing messages are concurrently routed to the
various processing programs via message queues managed by Message
Collection and Retrieval. Intercomm's capabilities extend not only to
scheduling and dispatching tasks for high volume throughput, but also
to providing the necessary linkage for any operating system file access
method. All I/O processing is centralized via a special Intercomm
facility called the File Handler. Because of the multitasking
Dispatcher, the CPU is active during file access procedures, and can be
scheduled for other processing functions.

Intercomm is designed for processing both small and large volume
multiapplication teleprocessing systems with many types of input
messages. There is no restriction, aside from the amount of main
storage available for the partition or region, as to the size or
maximum number of nonreentrant or reentrant modules/programs that can
be controlled by the monitor. Nonreentrant programs may either process
one message at a time in parallel with other programs, or multiple
copies of the program may be used. Within each reentrant Assembler,
PL/l or COBOL application program under control of the monitor, many
messages can be operated upon concurrently by multithread processing.

A special load facility allows
user-specified subsystems or subroutines.
a system interface resolves the external
all 0 '''; s rev i s ion and / arc 0 r r e c t ion 0 f use r
while Intercomm is executing.

for dynamic loading of
A linkedit is not required;
references. This facility

subsystems or subroutines

In the event of a program check within an application subsystem,
the Intercomm job does not abend. The program responsible for the
error is terminated for the message being processed, but the rest of
the system continues execution. Intercomm will snap the program's
registers, debugging information, and the related areas of main
storage, then will free files, and cancel the message in progress. The
operator at the originating terminal is notified of the message
cancelled condition, and the master control terminal receives a
detailed message describing the 'program check condition. Whether or
not the program with the error continues to process additional messag~s
is the user's option. A feature is available to spin off snap output
to a separate data set which may be printed concurrently with on-line
execution, rather than after job termination. Under MVS or XA, snaps
~ay be routed to a SYSOUT data set which is deallocated and queued for
printi:'.g immediately on completion of the snap.

With its unique fast message and file restart/recovery
capabilities, Intercomm ensures safe recovery of all messages and files
and coordinated restart in the event of computer failure or system
abend. The Restart/Recovery facility encompasses queued messages,
;r,essages in process, and completed messages. Queues and files are
automatically reconstructed from data contained on the system log
(journal). Completed messages are discarded; duplicated messages are
eliminated; processing is resumed from the point of failure, in most
cases within minutes of the start of execution.

6

J

Chapter 1 The Need for Intercomm

The system log used in conjunction with Restart/Recovery may be
either disk or tape-resident. The log is also used off-line for
generating the performance and accounting statistics discussed in
detail in subsequent sections. (Additional statistics are maintained
on-line. These are available via input of preprogrammed inquiry
commands) .

Wi th Release 9.0, a disk logging protection feature is available
to ensure that system operation continues after an out of space
condition (B37, D37 abend) for the log data set. A facility is also
provided to ensure the log can be recovered in the event of an
operating system crash.

Intercomm also provides extensive Resource Management
facilities. The Storage Management option offers an optimal
environment within which the user may effectively obtain and
aUdit/purge resources associated with an application program, including
files, enqueued system facilities or subroutines, and main storage. In
the event of system/application failure, full diagnostic capabilities
are provided. This is realized with minimum as SVC usage.
Furthermore, user-specified storage pools which section the available
space into predetermined blocksizes result in efficient storage
allocation. This helps eliminate fragmentation of main storage and
increases the speed with which storage may be obtained anG freed.
Core-use particulars, in the form of global and/or detail statistics,
are collected at a user-specified interval and printed off-line. These
statistics can be used for tuning the system.

Another Resource Management option is a storage cushion feature.
Of user-selected size, this block of main storage protects against the
degrading effects of temporary core shortage.

7

Chapter 1 The Need for Intercomm

1.3 INTERCOMM MESSAGE FLOW

The various capabilites and functions of the Intercomm on-line
system monitor are described in the following sections. The Intercomm
components and their interaction are described with respect to the
processing of a single message. Two schemes are presented, showing use
of Message Mapping Utilities (MMU) and the Edit/Output Utilities. (The
utilities are described in detail in Chapter 4, "On-Line Utilities.")

1. 3. 1 Message Flow Using Message Mapping Utilities (MMU)

In Figure 1, the numbered arrows in the diagram correspond to the
numbered paragraphs below:

2

The Front End (teleprocessing interface) reads an input
message and prefixes it with a 42-byte control header, which
is based upon user-supplied data in the Front End Verb
(transaction control) Table. The header contains routing
information, time, date, originating terminal and message
length. The message is then queued for subsystem processing
by Message Collection.

The Subsystem Controller schedules the
and retrieves the message based upon
Control Table (SCT) scheduling criteria.

application program
Subsystem (program)

3 The message is passed to the application.

4 Input in terminal-dependent format is transformed to a
terminal-independent form by a call to MMU.

5 The application program performs
requesting I/O service functions
DBMS interface via CALL statements.

message
from the

processing logic,
File Handler or

6 The application program creates a terminal-independent output
message and transforms it into terminal-dependent form by
ca 11 ing MMU.

7 The application subsystem passes the output message to the
Front End by a call to FESEND.

8 The application program returns control to the Subsystem
Controller, passing a return code which indicates normal
completion or an error condition.

8

Chapter 1

VERB
TABLE

FRONT END

FESEND

figure 1.

SCT

MESSAGE
COLLECTION

SYSTEM
MONITOR

The Need for Intercomm

MAPS

MESSAGE
MAPPING
UTILITIES

APPLICATION
SUBSYSTEM

ACCESS FILE HANDLER
METHOD OR OR DATA BASE
DATA BASE ~--------~~ MANAGER

MANAGER INTERFACE

Intercomm Message Flow Using Message Mapping Utilities

9

Chapter 1 The Need for Intercomm

1. 3.2 Intercomm Message Flow Using the Edit/Output Utilities

In Figure 2, the numbered arrows in the diagram correspond to the
numbered paragraphs below:

1 The Front End reads an input message and pref ixes a 42-byte
control header to it. The header contains routing
information, time, date, originating terminal, and message
length. The message is then queued for application program
processing by Message Collection.

2

3

The Subsystem Controller
and retrieves the message
Table scheduling criteria.

schedules the appl icat ion program
based upon the Subsystem Control

The Edit Utility
the input message
Table (ECT).

is called by the Subsystem Controller and
is edited according to the Edit Control

4 If editing is not successful, that is, invalid input data,
the Edit Utility creates an error message for the originating
terminal and queues it for the Output Utility by calling
Message Collection. The input message is cancelled.

5 If editing is successful, the edited message is passed to the
application program.

6 The application
requesting I/O
DBMS interface.

program
service

performs
functions

message
from the

processing logic,
File Handler or

7 The application program creates an output message and queues
it for the Output Utility by calling Message Collection.

8 The application program returns control to the Subsystem
Controller, passing a return code which indicates normal
completion or an error condition.

9

10

The Subsystem Controller schedules
passes the output message to it
processing.

the Output Utility and
for terminal-dependent

The Output Utility performs formatting, if specified in the
header, according to entries in the Output Format Table
(0 FT) , then passes the message to the teleprocessing
interface program (FESEND) . FESEND passes the output message
to the Front End (places the message on the terminal output
queue) .

11 FESEND returns to the Output Utility.

12 The Output Utility returns to the Subsystem Controller.

10

J

Chapter 1

VERB
TABLE

FRONT END

FESEND

OUTPUT
'UTILITY

OFT

Figure 2.

ECT

MESSAGE
COLLECTION

EDIT
UTILITY

SYSTEM
MONITOR

The Need for Intercomm

APPLICATION
SUBSYSTEM

ACCESS FILE HANDLER
METHOD OR te-----.. OR DATA BASE
DATABASE MANAGER

MANAGER INTERFACE

Intercomm Message Flow Using the Edit/Output Utilities

11

Chapter 1 The Need for Intercomm

1.4 SINGLE THREAD VS. MULTITHREAD PROCESSING

In a multithread environment, the previously described message
flow is carried out concurrently for many messages. For all practical
purposes, the maximum number of messages in process concurrent ly is
limited only by the region or partition size. During I/O, a reentrant
application program can begin processing another message, or another
program may process still another message. A message is processed as
completely as possible until the application subsystem voluntarily
gives up control via a file I/O or data base access request, for
example. Therefore, at anyone time, many messages may reside within
Intercomm at various stages of execution.

1. 4.1 Single Threading

Basically, a single thread system processes only one message at a
time, that is, each function is performed sequentially on a message,
from the first function to the last function, before another message
begins processing. Under single thread processing, one task must be
completed before another is started.

Figure 3 shows the execution of tasks in a typical teleprocessing
application in a single thread environment. Each part of the
processing of every message is dependent upon the completion of the
prior step for that one message. Therefore, each time I/O operations
are performed, the entire on-line application is essentially
nonproduct ive. The user can be processing a card-to-tape routine, an
assembly, a batch processing job in the background, or listing on the
printer, but in the critical area of on-line response, the computer is
contributing nothing. If the computer facilities could be directed to
the processing of other on-line messages during the I/O operation, a
higher level of efficiency would be attained. Multithread processing
allows the computer facilities to accomplish this.

12

J

J

Chapter 1

PREPROCESS
MESSAGE

1

LOGIC
FOR MESSAGE

1

POST
PROCESS

RESPONSE
1

RESPONSE
1

PREPROCESS
MESSAGE

2

LOGIC
FOR MESSAGE

2

POST
PROCESS

RESPONSE
2

The Need for Intercomm

PREPROCESS
MESSAGE

3

ACCESS
RECORD

3

LOGIC
FOR MESSAGE

3

POST
PROCESS

RESPONSE
3

RESPONSE
3

NON
PRODUCTIVE
ON-LINE
PROCESSING

NON
PRODUCTIVE
ON-LINE
PROCESSING

L-________ ~ NEXT MESSAGE

Figure 3. Processing On-Line Messages in a Single Thread Environment

13

Chapter 1 The Need for Intercomm

1. 4.2 Multithreading

Multithreading means that more than one message thread or path of
program logic is concurrently active. Thus, in multithread processing,
different messages can be processed in parallel, and many tasks can be
performed concurrently. Each task involves a series of functions to be
performed. Multithread processing takes place by starting one task,
and performing the functions in that task. This continues until a
function is reached that ordinarily would put the program (or partition
or region) into a wait state, that is, a function such as file I/O.
During the time that the I/O function responsible for the program wait
state is being performed, another task can be started and executed by
the same application program (if coded reentrantly) or by another
application program, until that second task requests I/O or other
wait-type functions. At this point, yet another task can be started.
As Intercomm is scheduling the processing of all these tasks, it is
able to pick up processing on the first task when its I/O or wait-type
function is completed, finish processing that task, and then return to
the second task, and so on.

Intercomm treats those portions of a program between I/O
operations as separate program segments. This division of the
application module into segments allows Intercomm to begin and end
processing of anyone segment without completing the processing of the
entire message response.

The time required to communicate with on-line terminals, and the
time required for the execution of application logic for each message
processed, is relatively small in relation to the time required for I/O
operations. Without multithread processing, a large amount of
processing time would be wasted. This is due to the fact that while
the on-line program is awaiting completion of I/O associated with each
message, teleprocessing throughput is essentially zero.

Figure 4 depicts message processing in a multithread
environment. Multithread processing is characterized by concurrent
execution of application programs, and by overlapping the execution of
segments or logical steps of different programs. For example, whereas
the application partition was idle during the retrieval of record 1 in
Figure 3, here it is possible to continue and overlap processing by
getting message 2, preprocessing it, and initializing a read for
on-lir.e record 2. The user can have many messages executing within
Interco~m, each at various stages of processing. Each message is
capable of having an additional processing step performed on it as the
CPU time or on-line data becomes available. But the next segemnt in a
cycle of processing for one particular thread is not performed until
all necessary prerequisites for its execution have been met.

14

J

J

Chapter 1

GET
MESSAGE

1

PREPROCESS
MESSAGE

1

PREPROCESS
MESSAGE

2

ACCESS
RECORD

2

GET
~lESSAGE

3

PREPROCESS
MESSAGE

3

Figure 4.

RECORD
3

PREPROCESS
MESSAGE

4

REFILE
RECORD

1

PREPROCESS
MESSAGE

5

The Need for Intercomm

ACCESS
. RECORD

5

POST
PROCESS
MESSAGE

1

GET
MESSAGE

6

PREPROCESS
t-lESSAGE

6

POST
PROCESS
MESSAGE

2

REFILE
RECORD

4

POST
PROCESS
MESSAGE

3

Processing On-Line Messages in a Multithread Environment

15

Chapter 1 The Need for Intercomm

In Figure 4, messages are handled on the multithread segment
basis. Each message is processed for as long as the computer can
dedicate itself to that message without waiting for the completion of
I/O operations. When processing for any message must be suspended for
I/O, Intercomm initiates processing for any other message that is not
in the similar situation' of requiring I/O operation completion before
continuing. In this manner, many messages are processed concurrently.
Many logical threads of various message processing subsystems are
operative at anyone time.

Figure 4 represents the same period of processing time as in
Figure 3. In the single thread environment of Figure 3, three messages
are fully processed in a certain time interval. In the same time
interval under a multithread environment, those same messages have been
completed; but there are three additional messages within the computer,
each at some point in the required processing cycle. These additional
messages are started during the time that operations in the
teleprocessing region are suspended for the I/O operations on the first
three messages.

It is this ability to handle messages by multithread processing,
utilizing the CPU during I/O operations, which provides the Intercomm
user with fast response time and high volume throughput.

1.5 SPECIAL FEATURES

The basic Intercomm system consists of all the components
necessary to implement an efficient on-line teleprocessing
environment. These include the utilities (Message Mapping,
Edit/Output, Change/Display), the BTAM Front End (line and device
control), the Subsystem Controller, Dispatcher, Fi le Handler, Resource
Management, Message Collection and Retrieval, and the Store/Fetch
facility which allows storage of data in core or on disk (a scratch pad
facility).

In addition, a great many other features which are extensions to
the basic system are available to the user. These are termed Special
Features and are available as extra cost options. They are listed in
Figure 5 and described in later chapters of this document. Each
Special Feature is documented in a separate publication. Intercomm may
be pur chaced as a bundled system which includes the basic system and
the Special Features.

16

J

J

Chapter 1

======================

Feature

Autogen Facility

Data Entry System

DBMS: ADABAS
DL/I
IDMS
Model 204
System 2000
TOTAL

Dynamic Data
Queuing Facility
(DDQ)

Dynamic File
Allocation (DFA)

Extended Security
System (ESS)

File Recovery

Generalized Front End
Facility (GFE)

Model System
Generator (MSG)

Multiregion Support
Facility (MRS)

Page Facility

The Need for Intercomm

===

Description
===

Generates MMU macros on-line from sample
screens input from a 3270 CRT.

Provides a preprogrammed general purpose data
entry/verification capability.

Permits use of the relevant DBMS by Intercomm
application programs and/or the DBMS query
language. In most cases, coordinated restart/
recovery is provided by the DBMS vendor and/or
Intercomm vendor.

Allows applications to dynamically create,
retrieve, and delete logical data sets and/or
queues of messages on a single BDAM data set.

Permits an application to dynamically create
and retrieve sequential data sets.

Comprehensive on-lin8 implemented security
based on sign-on user-id and password.

Provides for recovery of on-line data sets in
the event of system failure.

Provides the basic structure for interfacing
to nonstandard communications devices, for
example, minicomputers.

Provides a working system based on user specs
to model the eventual system.

Allows groups of application subsystems to
execute in separate regions while the Intercomm
Front End resides in a Control Region.

Allows terminal operators to browse through
a multiscreen output message.

SNA/VTAM Provides Front End SNA support via the VTAM
access method.

Extended TCAM Provides Front End terminal interface via the
Support TCAM access method.

Figure 5. Intercomm Special Features

17

Chapter 1 The Need for Intercomm

1.6 SUMMARY

In summary, the advantages of Intercomm are:

• High Programmer Productivity

Due to the many preprogrammed functions and the ease of
application programming

• Low System Overhead

Achieved in both storage and CPU cycle utilization through
tuning the system to meet the user's needs

• High System Throughput

Accomplished by this extremely efficient system

• High System Integrity

Due to the maturity of the product and the many functions
provided in this area

• Future Growth

Easily accommodated because the system is modular; the
product's past record is indicative of future expectations

• Vendor Support

Assured by the vendor.

18

J

Chapter 2

INTERCOMM SYSTEM COMPONENTS

2.1 GENERAL DESCRIPTION

Intercomm appears to the operating system as a single batch job.
It is executed through standard Job Control Language (JCL) conventions
in a step which specifies " ... EXEC PGM=INTERCOMM ... " and contains the
requisite DD statements for the BTAM devices and data files which are
to be used by the Intercomm region or partition. Intercomm is not,
however, a single program. It is actually a group of programs which
include Intercomm system level programs, vendor-written application
programs, and user-written application programs.

Intercomm components are logically divided into Front End and
Back End categories. The Front End components are concerned with the
communications functions of the system, while the Back End components
are concerned with message processing. The Intercomm system and
application-level software provided by the vendor is configured and
used based on a individual installation's requirements which are
specified in a series of tables. (See Section 2.8, "Intercomm System
Tables.")

The user writes application programs (called subsystems) executed
within the Intercomm region (or partition) to process individual
messages. These subsystems are described to Intercomm by an individual
Subsystem Control Table (SCT) entry for each program. The subsystems
may be made resident (included in the Intercomm linkedit) or they can
be dynamically loadable (loaded into the Intercomm region when there is
a message for them to process). The user decides whether to make a
subsystem resident or dynamically loadable based on considerations of
response time and available main storage. (See Chapter 5, "Main
Storage Organization.") The Intercomm Front End and system-level Back
End components must be resident.

The major Intercomm components and their corresponding functions
are listed in Figure 6. Detailed dexcriptions of component function
and features are provided in the Operating Reference Manual.

19

Chapter 2 Intercomm System Components

Front End Line and terminal control and interface
to Back End

Subsystem Controller Job management--schedules the start of
a message processing subsystem

Dispatcher Task management--CPU cycle allocation

File Handler File I/O handling

Message Mapping Utilities Input message editing and output
message formatting

Edit Utility Input message editing

Output Utility Output message formatting

Log Writes system and application log
entries

Message Collection/Retriever Queuing and dequeuing messages

Store/Fetch Temporary (scratch pad) storage support

FECM Front End Control Message processing

Language Interface Support for high-level program
languages

System Tuner Provides statistics for tuning the
system

Resource Management Manages main storage, audits resource
usage

Page CRT page browsing capabilities

GPSS General purpose subsystem which
processes system control commands

Security Table driven (Basic Security) or
dynamically defined (Extended Security
System)

Figure 6. Intercomm System Components

20

Chapter 2 Intercomm System Components

2.2 FRONT END

The Front End is responsible for the logical and/or physical
management of the user's network. This includes monitoring and
communicating with the terminals, receiving and sending messages,
accomplishing code translations, providing queuing functions, checking
message validity, and performing security checking. The physical line
control is provided by the teleprocessing interface which uses BTAM or
VTAM directly (in the Intercomm region), TCAM indirectly (in a separate
region) via the user's TCAM Message Control Program (MCP), or directly
by a hardware line control computer interface (GFE).

Regardless of the access method used, Intercomm is always
logically responsible for the transmission, receipt, and control of
data from on-line local or remote teleprocessing terminals. The
Intercomm teleprocessing interface, therefore, consists of the line and
terminal definitions related to the user's specific network
configuration. It also contains all other program logic required for
internal processing, error handling, control and rout ing of messages.
The following teleprocessing areas are supported by the teleprocessing
interface:

• Polling and receiving messages from terminals

• Addressing and sending messages to terminals

• Message translation--input and output

• Process and destination queuing

• Initiating corrective action in teleprocessing error
situations

• Rerouting of messages for non-operational terminals

When using Intercomm's teleprocessing interface, all
teleprocessing services such as polling, reading and writing are not
logically connected to the application program. This transparency of
the interface to the user's application program facilitates changes or
additions of new terminals. Any required changes are made to the
teleprocessing interface of the monitor with no impact on the user's
p rog ram. Likewise, it is much eas ier to add new programs and
applications. An on-line application program can be developed in any
language, with the type of input or output device being transparent to
the programmer. Figure 7 depicts the Intercomm Front End and its
functions.

If B TAM 0 r VTAM is use d as the tel e pro c e s sin gin t e r f ace. all
Intercomm functions and message processing programs under monitor
control are located in a single region/partition. This facilitates
minimal storage and operating system overhead to achieve a given
throughput capacity. Intercomm totally controls the flow of work
within that partition or region. The Intercomm teleprocessing
interface is generated by conditional assembly for each user based upon
the specific terminal network configuration defined via table entries.

21

Chapter 2 Intercomm System Components

VTAM/
BTAM/TCAM
and Hardware
Front Ends

tion
Queues
(TCAM

only)

Front End
Interface

• Communications Support:

Software: BTAM, VTAM, TCAM
Hardware: Generalized Front End (GFE) Special Feature has

been used to support CDC/MIOOO, PDP/Il,
Per iphonics, SUPER NOVA, Var ian, and other Front
End communications processors.

• Terminal Support:

Nearly all IBM asynchronous, synchronous and SDLC devices,
such as 2260, 2741, 2780, 3270, 3600, 3790, CPU-CPU, and all
p1ug-to-plug compatible devices.

Also many non-IBM terminals, such as Teletype and Dataspeed
40

• Transaction validation--verb verification

• Security Support:

Operator/Terminal/Transaction, or Extended Security System
(ESS) which controls access to system resources: regions,
subsystems, verbs, files and terminals as defined per user

• Terminal Simulation

Figure 7. Front End

22

J

Chapter 2 Intercomm System Components

When Intercomm is implemented in conjunction with a user-supplied
and generated TCAM Message Control Program, all of Intercomm operates
in the standard manner. The support for TCAM depends on Intercomm' s
ability to accept input from and route ouput to TCAM process and
destination queues via its standard Front End. This feature is
especially important to Intercomm users who also use IBM's Time Sharing
Option (TSO) with TCAM as its Front End. The use of TCAM allows the
sharing of terminals between the time-sharing function and on-line
applications controlled by Intercomm. VTAM also provides terminal
sharing among many TP systems.

Intercomm's TCAM support is also designed to provide the
Intercomm user with access to terminals controlled by TCAM concurrently
wi th terminals controlled by Intercomm' s BTAM or VTAM Front End. All
features available in the standard Intercomm Front End are available
for terminals accessed by TCAM. Such features as 3270 AID processing,
t ermi na 1 up/ down commands, t ermina I lock and un lock commands,
start/stop line commands, etc., normally unavailable to TCAM users, are
supported. Additional user code in the TCAM MCP is minimal. The user
does not have to edit the messages to the process queues or from the
destination queues handled by Intercomm. This substantially reduces
the code required in. the Message Control Program, which otherwise would
be required to add and delete Intercomm headers.

In addition to BTAM, VTAM and TCAM, an Intercomm user may also
opt for a hardware Front End system to handle the teleprocessing. In
this case, anyone of the following can occur:

• The BTAM portions of the Intercomm interface can be directed
to interface with a high-speed line that would connect the
two systems (the Front End system and the actual message
processing system).

• The BTAM logic can be
logic related to a
between the two systems.

replaced by unique channel program
direct channel-to-channel interface

• An interface program can be developed to read from and write
to the Front End as if it were a tape drive (several
hardware Front Ends are currently designed to look like a
tape control unit in their System/370 interface logic).

The interface with a hardware Front End can also be accommodated
via the Generalized Front End (GFE) Special Feature of Intercomm.

More extensive descriptions of the BTAM and VTAM Front End
facilities are included later in this document. For a detailed
description of Intercomm's TCAM support, refer to the TCAM SUEEort
Users Guide.

23

Chapter 2 Intercomm System Components

2.3 QUEUE MANAGEMENT

The Intercomm Message Collection/Retriever routines are
responsible for queuing and dequeuing of input messages, internal
messages, and output messages. (See Figure 8.) The queues constitute
waiting lists of messages in the Intercomm system. The queues allow
for the separation of teleprocessing functions and message processing
functions, that is, asynchronous processing, absolutely requisite to
the efficiency demanded by the Intercomm system.

Message Collection collects, logs, validates and queues all
messages for the user. When an input message is passed from the Front
End, or an internal message is sent from one application program to
another, Message Collection is invoked to queue the message onto the
appropriate subsystem queue via a core and disk queuing capability. A
system table (Subsystem Control Table; see Section 2.8, "Intercomm
System Tables") is accessed to determine whether a message can
optionally be core queued or must be written out to disk.

The size of both the core and disk queues are variable by
program, depending on transaction volume. Once the maximum number of
messages are core queued for a given application program (waiting their
turn to be processed), the overflow is automatically written out to the
disk queue. The disk queue is a logical entity by subsystem. However,
it can exist on one or more BDAM data sets, with wraparound reusable
blocks, and provides as well for variable blocked records.

Message Retriever is invoked by the Subsystem Controller to
retrieve or select a message for processing by the appropriate
subsystem. All input sources, that is core and disk queues, are
checked by the Retriever for messages. When the Retriever accesses
(dequeues) a message, it passes the address to the Subsystem Controller
for processing by the application program.

Message Collection is also called by the Back End to Front End
Interface Program (FESEND) to place an output message on a terminal
queue (core and/or disk). The Retriever is called by the Front End
message transmission routines to dequeue a message for output.

24

J

Chapter 2 Intercomm System Components

Message
Collect ion

BDAM
Disk

Core
Queues

• Core and/or Disk Queuing

CORE LIST:
A-----
u-------------
B---­
C---

Retriever

• Automatic Core Queue Overflow to Disk

• Blocked, Spanned Wraparound Reusable Queues

Output
Interface

Application
Programs

• Logical Queue per Application Program and per Terminal

Figure 8. Queue Management

25

Chapter 2 Intercomm System Components

2.4 SUBSYSTEM CONTROLLER

The Subsystem Controller provides the job management capabilities
of Intercomm. Figure 9 shows the component functions and their
relationship to the applications.

In general, the Subsystem Controller performs the following:

• Interacts with the teleprocessing interface to control
internal message traffic and to schedule, load, and activate
application programs (subsystems) based on resource
availability/demands, priorities and optional queue aging.

• Provides maximum efficiency by bypassing the OS/VS Control
Program in regard to message/task management. The Subsystem
Controller, in conjunction with the Dispatcher, supervises
scheduling and loading of all application subsystems. These
may be resident, dynamically loaded into a reserved area of
the dynamic subpool managed by the Subsystem Controller, or
loaded according to a planned overlay structure. Repetitive
loading of subsystems is minimized by queue analysis and is
overlapped with concurrent message processing.

• Selects incoming messages from queues (based on the priority
assigned to the corresponding program) and directs them to
the proper application program for processing. It also
provides for the switching of original messages received by
the system, and internally developed messages from within the
system. This program-to-program passing of messages is
accomplished through both core and reusable disk queuing
techniques automatically provided by the Message
Collection/Retriever facility.

• Maintains a system log for statistics and restart/recovery.

• Dynamically loads and deletes nonresident subsystems as
required during execution of Intercomm. This function is
performed by Asynchronous Loader routines. Once loaded,
reusable subsystems will remain resident until the concurrent
user-specified message processing limits are reached or
message traffic for the subsystem ceases.

The Subsystem Controller references the user-generated Subsystem
Control Table (SCT) entry for each program/subsystem under its
control. (The SCT entry for each subsystem details its
characteristics, queue specifications, and scheduling considerations to
the Subsystem Controller.) Since the Subsystem Controller uses these
SCT entries for its job management functions, it is considered a
table-driven Intercomm component.

26

Chapter 2 Intercomrn System Components

Log EDIT

: :
Subsystem ~ Application
Controller ~ Interfaces ~

Application
Programs

~~~------~ ~'--------4 
~-----S~--~ L ____________ ~~ ~----~------~ 

\ 
~L 

Asynchronous 
Loader 

SUBSYSTEM CONTROLLER 

• Optimization/Throughput 
• Table-Driven 
• All Logging and Message Restart 
• Asynchronous Program Loading 
• High-Level Language Interface 
• Resource Enqueuing 

APPLICATION INTERFACES 

• Optional Call to EDIT for Message Formatting 
• Formats Entry Parameters 
• Obtains Dynamic Storage 

APPLICATION PROGRAMS 

• Multithread Operation 
• Standard OS/VS Compilers 
• Conversational Mode 
• Transparent Operations 
• Use Standard Call Interface 

CALL 
~, 

Service 
Routines 

Figure 9. Subsystem Controller, Application Interface, Application 
Program Functional Relationships 

27 



Chapter 2 Intercomm System Components 

2.4.1 Logic Overview 

Essentially, the Subsystem Controller acts as the traffic 
coordinator for all work executing under the monitor in the multithread 
environment. (See the description of Intercomm message flow in 
Chapter 1.) All program execution is provided under control of the 
Subsystem Controller. 

The Subsystem Controller utilizes the Intercomm Message Queuing 
facility during message processing. Message Retriever is invoked by 
the Subsystem Controller to determine if a message is available for 
processing (on the queue) by the appropriate subsystem. If a message 
is present, the corresponding program status indicator is checked to 
determine whether that program is resident. If not resident, it is 
loaded into main storage by the Subsystem Controller's Asynchronous 
Loader routines. Loading of nonresident subsystems may be dynamic, 
that is, into an area of dynamic core, or according to a preplanned 
overlay structure, into an area linkedited as an overlay segment. The 
SCT is checked for the maximum number of messages that may be processed 
concurrently by the program and, the number of messages already being 
so processed. If the current message causes the maximum to be reached, 
the Subsystem Controller prevents the initiation of any further 
messages for concurrent processing by the program until the number of 
concurrent messages in progress is decreased. 

Prior to passing a message to an application program, the 
Subsystem Controller creates a system log entry indicating that the 
message has started processing through that subsystem. Then the 
Subsystem Controller issues a call to the program for which the message 
is intended and passes the address of the message to the program. This 
transfer of control initiates message processing. The application 
program will then have control of the CPU until an I/O operation, a 
time interval delay, or any other call causing a processing delay is 
executed. 

A RETURN to the Subsystem Controller is issued when message 
processing is complete. The SCT entries are then updated and, to 
indicate completion of the message that was in process, the Subsystem 
Controller writes a completion entry on the system log. 

Whether the message processing program is resident or dynamically 
loaded (it can be reusable or non-reusable), as spec if ied in the SCT, 
the Subsystem Controller allows for the startup of a new thread or for 
an already existing one to regain control. Both events occur when 
control is passed to the CPU scheduler, the Dispatcher. If the program 
type was an overlay, the Subsystem Controller calls in the next overlay 
according to conditions concerning the current overlay. (See Figure 10 
for Subsystem Controller logic.) 

(For coordination 
functions, see Section 2.5, 

of Subsystem Controller and Dispatcher 
"Dispatcher--Thread Management.") 

28 

J 

J 

J 



Chapter 2 Intercomm System Components 

From 
Dispatcher 

Load Program 
If Required 

NO 

Dispatch Subsystem 
Controller for 

Concurrent Message 
Processing as Required 

"CALL" Subsystem 
to Process Message 

NO 

YES 

Dispatch to 
WAIT for 

Arrival of Message 

Return to 
Dispatcher 

Dispatch Next 
>-----~ Overlay 

Subsystem 

YES 

Return to 
Dispatcher 

Return to 
Dispatcher 

Figure 10. Subsystem Controller Logic 

29 

Return to 
Dispatcher 

Return to 
Dispatcher 



Chapter 2 Intercomm System Components 

2.4.2 Dynamically Loaded Subsystems and Overlay Management 

With Intercomm's dynamic load facility, nonresident subsystems 
can be loaded on demand into the dynamic subpool. Once loaded, a 
subsystem remains resident until a maximum number of messages have been 
processed, or until message traffic has ended. The message limit is 
specified in the SCT. Alternately, loading of subsystems may be 
controlled by the Intercomm Overlay Management scheduling facility. In 
this case, subsystems are linkedited as overlay region segments and 
loaded according to a preplanned structure and sequence. 

In both cases, the sequence of subsystem loading is optimized by 
the Subsystem Controller. Once loaded, priority for CPU use during 
message processing by an application subsystem is determined by the 
Dispatcher based on SCT entries. 

The dynamic load fac il i ty allows the user to correct subsystems 
and utilize a new copy of the program without terminating the Intercomm 
job. If load list specifications by BLDL are included, the system must 
be notified of the existence of this new load module by a LOAD 
command. Replacing an overlay region subsystem load module entails a 
linkedit of the entire system. 

Ins u mm a r y , the Sub s Y s t em Co n t roll ere x e r cis esc 0 n t r 0 1 i n 
conjunction with: 

• Subsystem Control Table entries for each application program 
or Intercomm message processing program 

• Message Collection routine which collects, logs, validates, 
and queues all messages 

• Retriever routine 
Collection's core 
appropriate module 

wh i c hac qui res 
or disk queues 

• Restart/recovery routines 

30 

messages from 
for processing 

Message 
by the 

J 



Chapter 2 Intercomm System Components 

2.4.3 Resource Enqueuing 

Resource enqueuing is a technique that provides an additional 
scheduling dimension to the Subsystem Controller. Selected subsystems 
can be specified as users of certain selected resources. A separate 
specification denotes the maximum number of concurrent users of that 
resource. The Subsystem Controller uses that resource limit as a 
system-wide thread limi t against that resource. For example, assume 
that tuning information indicated that it was counterproductive to 
start more than three messages that use a certain file. Ten programs 
are users of the file and each has an individual thread limit of 
three. However, to insure a system-wide thread I imi t of three, each 
subsystem is denoted as a user of that file (resource) and the resource 
limit is specified as three. Thus, individual subsystem thread 
limitation may be overridden. Another significant use of resource 
enqueuing is to separately specify subsystem residency from 
multithreading. For example, each Subsystem Control Table is specified 
as a user of a unique resource (a different resource per SeT). If the 
resource limit is one but the subsystem thread limit is five, then the 
subsystem becomes single threaded, yet it will stay loaded (dynamically 
or in an overlay) to process up to five queued messages. Thus, use of 
this feature may substantially reduce overlay or dynamic program 
loading and significantly improve system performance. 

31 



Chapter 2 Intercomm System Components 

2.5 DISPATCHER--THREAD MANAGEMENT 

The Dispatcher is the system component that provides thread 
management. This is accomplished by supervising the asynchronous 
parallel execution of any number of related or unrelated programs 
within the Intercomm region or partition. That is, the Dispatcher 
allocates available CPU time efficiently among all active threads under 
Intercomm control. 

Multithreading occurs when more than one thread is processed in 
parallel. The Dispatcher coordinates multithreading or the processing 
of several messages concurrently. This is done in conjunction with 
other Intercomrn components, such as the Subsystem Controller, Message 
Collection/Retriever, File Handler, DBMS Interface, and the Front End. 

The Dispatcher schedules CPU time based upon the entries on its 
queues (lists) of segments awaiting execution. A thread is a set of 
functions which completely process a message, and a segment is a 
logical group of those functions. As previously discussed in Chapter 
1, multithread processing means that more than one thread of program 
logic is active. The queues of thread segments are the means of 
scheduling multithreaded use of the CPU and represent the separation of 
functions performed on a message. This separation allows a segment of 
another thread to gain use of the CPU whi Ie the first segment of the 
current thread is awaiting completion of an operation that otherwise 
would suspend further processing. That is, the Dispatcher schedules 
the CPU for another segment when a program is in the wait state. Many 
messages, therefore, may reside in the system at various stages of 
execution. Each message awaits completion of the next segment in its 
cycle of processing. With the Intercomm multithreading facility, 
processing time is efficiently utilized during waits and throughput is 
thereby greatly enhanced. 

Thread segments are placed on the Dispatcher queues according to 
whether they are presently executable, event-dependent, or 
time-dependent. (See Figure 11.) There is one event queue, one timer 
queue, and four execution queues. All units of work placed on an event 
or timer queue remain queued until the event transpires or the duration 
expires. They are then, depending upon assigned priority, transferred 
to the execut ion queues. Threads are dispatched from an execut ion 
queue according to first-in/first-out sequence within each priority 
level. The four execution queues correspond to the highest-lowest 
subsystem priority codes of 0, 1, 2, 3. 

32 

J 



Chapter 2 

RESOURCE MANAGEMENT: 

• Timer Queue: 

Execution 
Queues 

Event 
ECB 

Queue 

Timer 
Queue 

Delayed Processing 
Time-Dependent Facilities 

• Event Queue: 
Wait for I/O Completion 
Intertask Switching 

THREAD MANAGEMENT: 

• Execution Queues: 
Maintained by Priority 

Intercomm System Components 

Contain Completed Entries from Other Queues 

Figure 11. Dispatcher--Thread Management 

33 



Chapter 2 Intercomm System Components 

The following requests for use of the CPU are serviced by the 
Multithreading Priority Dispatcher queuing facilities: 

• A request for a unit of work to be placed on a specific 
pr ior i ty execut ion queue and executed as soon as priority 
permi ts, for example, the Subsystem Controller may request 
such queuing to start up another message for a program; Front 
End modules may request line servicing operations 

• A request for a unit of work to be placed on a timer queue 
and executed upon a specified duration of elapsed time 

• A request for a unit of work to be placed on an event queue 
and executed upon the completion of a specified event, that 
is, I/O operations initiated by the File Handler waiting for 
completion 

• A request to delete a previously queued request 

• A request to terminate control and initiate execution of the 
highest priority unit of work awaiting execution 

A thread is placed onto one of the Dispatcher queues to await 
execut ion. Execut ion is dependent upon a DISPATCH macro instruct ion 
specifying the priority of the thread, and the address of the routine 
to be dispatched. Following the execution of the DISPATCH macro, that 
is, a thread segment is dispatched, the Dispatcher returns to the 
program tha t issued the request, or exits from the program and 
dispatches from its work queues the next thread to be executed. 
Determining which route to take is based upon a parameter coded on the 
macro. (See Figure 12). 

A special queue is provided for events completed within 
Intercomm; that is, events completed by an Intercomm routine, rather 
than by an operating system routine, such as I/O completion. Upon 
completion of these internal events, a work unit can be transferred 
immediately from the internal queue to the execute queue. The result 
of the use of this special queue is that a significant amount of CPU 
time is saved by the Dispatcher, because it no longer has to scan a 
long list of waiting events to see which ones can be scheduled. They 
are transferred directly to the execute queue when the event 
completes. This is accomplished by having the waiting task specify in 
its Dispatcher call that the event will be completed internally and 
should be placed on the special internal wait queue. The task that 
detects the event completion must call a special Dispatcher entry point 
which will accomplish the transfer of the waiting task to the 
appropriate execute queue immediately. 

34 

J 

J 



Chapter 2 

Branch YES 

Place Entry 

Select next 
highest priority 

task on 
execute list 

Intercomm System Components 

NO Return to 
Active Program 

to Task~-------------< 

YES 

Transfer tasks 
for posted events~~----------~ 
to execute list 

YES Transfer tasks 
~--------__ ~from timer list 

to execute list 

NO Set next 
r--------.... ~ in te rv a 1 

Issue multiple wait 
for EeB posting or 
interval completion 

timer 

Figure 12. Dispatcher Logic 

35 



Chapter 2 Intercomrn System Components 

2.5.1 Dispatcher and File Handler 

The Dispatcher is utilized by the Subsystem Controller and the 
File Handler to automatically achieve, as an example, dynamic program 
management. For instance, when the File Handler initiates an I/O 
opera t ion, it places an entry on the event queue via a DISPATCH macro 
and relinquishes control to the Dispatcher. The Dispatcher is 
consequently free to schedule any other thread in the system, depending 
upon the status of its execution queues. Eventually, when the File 
Handler I/O completes, the Dispatcher recognizes completion; the File 
Handler entry becomes an executable thread segment when it reaches the 
top of its queue for the particular priority involved. When the entry 
is removed from the execution queue, the Dispatcher returns control to 
the File Handler which then returns control to the program requesting 
the I/O operation. 

Therefore, during I/O operations, CPU time may be utilized to 
continue program execution within the Intercomrn system. 

2.5.2 Dispatcher and Subsystem Controller 

Scheduling of message processing by the Subsystem Controller is 
based upon arrival of messages, an event within the Intercomrn system. 
Thus, the Subsystem Controller dispatches itself to wait for the 
arrival of messages and is given control by the Dispatcher when 
executable. Similarly, the Subsystem Controller waits for the 
overlapped loading of nonresident subsystems via the Dispatcher. 

2.5.3 Dispatcher and Time Control 

The Dispatcher also provides for any number of timer requests to 
be 0 u t s tan d 1 n gat any time. A s are suI t 0 f t his cap a b i li t Y , use r 
programs can be started based on time of day; routines can be awakened 
after the expiration of a requested time interval; or loops can be 
detected in a bad thread of an application program. If a loop is 
detected, the message in progress is cancelled and both the original 
terminal operator and the system or master control terminal operator 
are advised of the condition; Intercomrn also snaps the program's 
registers and related areas of storage, and frees any physical record 
being held with exclusive control by the program. 

36 

J 

J 



Chapter 2 Intercomm System Components 

2.6 FILE HANDLER--DATA MANAGEMENT 

The Intercomm File Handler provides the data management 
facilities of the IBM 370 Operating System to all user application 
programs. All IBM access methods are supported with the exception of 
BPAM. Non-IBM access methods such as lAM are also supported. 
Furthermore, the File Handler provides those available facilities for 
high-level languages, and requires much less programming effort than 
direct coding in Assembler Language. File Handler services are 
requested by a standard subroutine CALL statement. 

The following special facilities are supported with Release 9.0: 

• VSAM Local Shared Resources Support--enables the user to 
specify a common shared buffer pool for selected VSAM files. 
This faci li ty can cut down paging requests and wastage of 
virtual storage in systems where the use of VSAM files is 
extensive. 

• B37 Abend Protection--Critical sequential output files on 
disk (including the Intercomm log) can be protected against 
an out-of-space condition by having an alternate data set 
specified for them. The File Handler will intercept the 
error and switch to the alternate data set. This both 
prevents the loss of critical data and guarantees continuous 
system execut ion because a B37 or D37 abend need no longer 
bring Intercomm down. 

• Dynamic Deallocation/Reallocation Facility-- Under MVS and 
XA, Intercomm supplies on-line commands to deallocate a data 
set from Intercomm and to reallocate it at a later time. 
This enables the user to make an on-line data set available 
for off-line use without interrupting monitor execution. Any 
data set accessed via the File Handler is eligible for this 
facility. 

All data access is centralized through the File Handler. 
Intercomm removes all I/O programming responsiblities from the 
programmer and places them under the control of the File Handler. The 
user is only required to perform external data management (data set 
organization and processing techniques); internals are handled entirely 
by Intercomm. (See Figure 13.) 

37 



Chapter 2 Intercomm System Components 

Application Programs 

• 

File 
Handler 

I/O Pool; 
Tapes/Disk 
Card Reader 
Printer 

IIIIII~"' ___ Dispatcher 
...... 

Supports: BSAM, QSAM, BDAM, BlSAM, QISAM, VSAM. 
supports lAM, supplied by an independent vendor. 

Also 

• Utilizes any I/O device supported by the OS/VS operating 
system 

• Allows application programs running under Intercomm to output 
to JES SYSOUT data sets 

• Generates ISAM control blocks based upon the specific use for 
the data set; that is, read-only, read with update only, or 
read, update, and add 

• Provides for opening of data sets either at startup time or 
when actually required 

Figure 13. File Handler--Data Management 

38 

J 

J 

J 



Chapter 2 Intercomm System Components 

As a result of centralizing all processing of on-line files in a 
single program, the File Handler effects the following: 

• Eliminates duplication of 
buffers in application 
reducing main storage 
buffers and I/O areas. 

I/O routines, control blocks, and 
programs, thereby considerably 

requirements for control blocks, 

• Substantially reduces program execution time by eliminating 
wasteful opening and closing (approxmimately 1 1/2 seconds) 
of data sets that would normally be required for each message 
processed. Data sets are normally opened only once per day. 

• Reduces the amount of detailed understanding required of each 
programmer in utilizing the various access methods. 

The same file records can be accessed concurrently by many 
different programs. Obviously, with centralized data access, 
simultaneous file updating could destroy file integrity. Therefore, 
the File Handler provides for exclusive control with direct and random 
access files. 

With both centralized control and a dynamic file structure, files 
can be added or deleted from the on-line system on a day-to-day basis. 
This can be accompl ished because the files are def ined to the system 
entirely through the standard data definition (DD) card conventions. 
The File Handler constructs one central set of control blocks for each 
file, thus reducing 
processing subsystems. 
defined data sets are 
Intercomm startup. 

storage requirements in individual message 
The control blocks related to the DD statement 
created dynamically by the File Handler at 

File Handler startup also checks to ensure that all disk files 
defined in the JCL actually exist on disk. An abend does not occur at 
the first access if a disk file does not exist; rather, this error 
situation is treated in the same manner as missing JeL; an error code 
is passed to the user who attempted to utilize that data set. 

Comprehensive diagnostics for on-line security are provided as 
well as write-protection of master files. Security can be derived from 
operator sign-on under ESS or application program restriction of 
certain transactions to a terminal location. To obtain 
write-protection of master files, the DDname of the data set, as coded 
in the JCL, is specified on a control statement processed at startup. 
The File Handler does not permit updates to that file unless a system 
control command is entered to allow updates. 

As an option, the File Handler will perform automatic error 
checking if special error recovery processing is not required by the 
application logic. In this case, the File Handler returns to the 
subsystem only if the requested operation completes successfully. If 
not, the File Handler cancels the related message and returns to the 
monitor. The originating terminal operator is then notified with a 
corresponding error message. 

39 



Chapter 2 Intercomm System Components 

J 
User Program ~ User Program B 

• 'I • 
• I I • 
• +1 • 

1 Process 
1 

3 Process 

1 

• .. • 
I 

• 1 1 • 
I I 

• FILE HANDLER • y- - - --- J 4 2 Call 'READ' r+ ------- Call 'READ' 

• ~ • 1'1 
• / I • 

I J • • 
/ ------ 16 5 Process Process 

1 I 
• I + • 

..- / • DISPATCHER I • 
I / 

1 • I I • 
GO BACK V ~ GO BACK 

OTHER TASKS 

Figure 14. I/O Operations Using the Intercomm File Handler 

40 



Chapter 2 Intercomm System Components 

The ultimate purpose of Intercomm is to control the concurrent 
execution of multiple on-line applications, based on user-defined 
priorities. Thus, Intercomm must have final control of which 
application or task is currently being executed, including I/O 
functions. 

For an illustration of multithreading during an I/O operation, 
refer to Figure 14 where two programs, A and B, are both in operation 
under Intercomm in the same region. Program A has control and is 
processed at point 1. At point 2, Program A requests that an I/O 
operation be performed. Under normal circumstances, this operation 
would be ini tiated directly by the application program. Until 
completed, Intercomm would be placed in the wait state, and a lower 
priority region would gain control. 

Under Intercomm, as depicted in Figure 14, the request for I/O is 
given by Program A, not to the operating system, but rather to the 
Intercomm File Handler. The File Handler makes certain determinations 
to insure that the I/O request on the file for Program A can be 
accommodated. It then initiates the I/O operation on the file. 
Instead of waiting for completion of the operation before continuing 
with Program A, however, Intercomm directs control to Program B, where 
processing begins at point 3. At point 4, Program B requests an I/O 
operation on its file. This operation is also received by the File 
Handler, as was the previous request for I/O from Program A. The File 
Handler initiates the desired operation on the file. If the I/O 
request for Program A has not yet been completed, and there were only 
two programs operating under control of Intercomm, processing would 
resume in a lower priority region. If three or more applications were 
executing under Intercomm, control would be passed to the processing 
phases of the additional modules. 

Assuming I/O has been completed on the file for program A, 
Intercomm will determine that control can now be returned to Program A 
at point 5 to resume processing. When Program A completes processing, 
Intercomm directs control to Program B to resume processing. If either 
program wants to initiate additional I/O, the File Handler is given 
control once more. Intercomm determines when the requested I/O on the 
file for program B has been completed, and returns to Program B, where 
processing resumes. 

The File Handler is a unique ser ies of service routines. The 
control and scheduling of the various threads as they switch back and 
forth between I/O and processing are handled by the Dispatcher. 

41 



Chapter 2 Intercomm System Components 

2.7 DATA BASE MANAGEMENT SYSTEM SUPPORT 

Intercomm provides Special Features which allow users to access 
information maintained by the following data base management systems: 

• ADABAS--a product of Software A.G. of North America, Inc. 

• DL/l--a product of IBM Corporation 

• IDMS--a product of Cullinet Corporation 

• Model 204--a product of Computer Corporation of America 

• System 2000--a product of S.A.S. 

• TOTAL--a product of Cincom Systems 

When recovery is coordinated with Intercomm, the data base is 
fully recoverable from any failure situation. (Refer to Chapter 11.) 

Also available as a Special Feature is a Generalized Data Base 
Management System Interface whereby a series of programs supplies all 
but the specific data base logic necessary to provide data base access 
from Intercomm as well as data integrity against program and system 
failure. Although most application programs will be run under control 
of the Intercomm monitor, programs not under Intercomm's control, that 
is, batch programs, may require concurrent and/or overlapping use of 
the DBMS. Intercomm's interfaces are generalized to provide for 
utilization of the user's DBMS by batch off-line (non-Intercomm) 
programs as well. 

42 

J 

J 



Chapter 2 Intercornm System Components 

2.8 INTERCOMM SYSTEM TABLES 

Intercomm is a generalized on-line system and as such requires 
operating specifications tailored for each installation. This 
information is provided to the system in the form of tables which are 
def ined using Intercornm macros which are described in Basic System 
Macros and/or facility descriptive manuals. An application programmer 
is usually not involved in defining the Intercornm tables except for 
application-oriented specifications for the utilities. Tables (by 
which the user specifies his unique requirements) exist for each of the 
following Intercornm functions: 

• Front End Control 

Network configuration 
Valid transaction identifications 

• Message Processing Control 

Subsystem specifications 

• System Control 

Security functions 
Checkpoint/restart specifications 
Logging requirements 

• Utility Control 

Message Mapping requirements 
Edit Utility requirements 
Output Utility formatting specifications 
Change/Display Utility file descriptions 

Thus, Intercomm is a table-driven system. Line control 
information, such as the number of terminals, their names, and their 
exact hardware characteristics, is provided to the system, facilitating 
such operations as polling, addressing, process and destination 
queuing, and rerouting of messages. 

As noted above, specifications of message processing control 
funct ions are tabled, for example, the type of applications the user 
has, their scheduling, whether an application program is capable of 
processing several messages concurrently and, if so, the maximum number 
of messages to be handled. 

System control funct ions are table-driven: tables produce 
specifications indicating which logging entries are required, the 
frequency of checkpoint and information to be checkpointed, the 
particular files to be updated, and specifications relating to restart 
requirements and file integrity. In addition, some application program 
services operate according to user-specified table entries. 

43 



Chapter 2 Intercomm System Components 

Major functions in Intercomm are controlled by the following 
tables: 

• Verb Table 

A table listing all 
and relating them 
processing. There 
type. 

valid 
to the 
is one 

• Network Configuration Table 

transaction identifiers or verbs 
subsystem required for message 

entry per transaction or message 

A table describing the terminal network access method(s) and 
hardware operating characteristics and relating individual 
terminals to five-character station identifications. 

• Station Table and Device Table 

Tables describing terminal device-dependent characteristics 
to the Output Utility and the Message Mapping Utilities. 

• System Parameter Area (SPA) 

A table describing system-wide operating characteristics. 
This table may be extended to include installation-defined 
table parameters, accessible to all subsystems. 

• Data Set Control Table (DSCT) 

A table automatically generated by the File Handler 
describing on-line data sets. Information in the table is 
derived from JCL at Intercomm startup. 

• Subsystem Control Table (SCT) 

A table listing the 
entry point, etc.), 
queues), schedul ing 
concurrent message 
subsystem. 

characteristics (reentrancy, language, 
queue specifications (core and/or disk 
specifications (resident or loadable, 
processing limits, etc.) for each 

The Intercomm system components are individual routines coded in 
a generalized form where applicable. Each system component receives 
specifications for how it should function via table entries coded using 
Intercomm macros. Table entries may describe a hardware configuration, 
that is, the communications network, or software specification, such as 
MMU control functions. 

By adjusting variable table entries, the user effectively tailors 
Intercomm routines to his installation without modifying any program 
logic. It can be seen that Intercomm is a flexible system via the 
implementation of user-selected options specified by tables or JCL. 

44 

J 



Chapter 3 

APPLICATION PROGRAMS AND SERVICE ROUTINES 

3.1 APPLICATION PROGRAMS 

In the Intercomm environment, an application program is a subsystem 
which executes under the control of the Subsystem Controller. A subsystem 
is executed after the arrival of a message, and therefore is 
message-driven. All scheduling, activating, and loading of the 
application programs is done by the Subsystem Controller by referencing 
the appropriate scheduling criteria in the SCT. The subsystem, in the 
capaci ty of a subroutine, is called by the Subsystem Controller which 
passes the address of the particular input message which the subsystem is 
to process. 

Selection of an incoming message for processing is based on the 
priority assigned to the corresponding program and the ordinal position of 
the program in the Subsystem Controller message processing algorithm. 
Queued messages are processed on a first-in/first-out (FIFO) basis. A 
retrieved message is directed by the Subsystem Controller to the 
appropriate subsystem. 

The subsystem performs the following functions (* indicates use of 
Intercomm-supplied service routines): 

• Edit the Input Message 

Format conversion* 
Content checking 

• Perform Logic of the Application 

• 

Message text analysis 
Data base access* 
File access* 

Optionally switch the message, or a modified form of 
another application program for further processing 
transmission to a terminal.* 

• Format the output message(s)* 

• Queue the output message(s)* 

it, to 
or for 

Application programs invoke Intercomm service routines via CALL 
statements. A preprocessor is not required to produce compiled 
programs executable in the Intercomm environment. No macros are used 
in high-level language programs. 

45 



Chapter 3 Application Programs and Service Routines 

Application programs can be written in any of the following 
languages: 

• Assembler Language 

• ANS COBOL, OS/VS COBOL 

• PL/I-Optimized 

• FORTRAN 

COBOL programs compiled by the CAPEX Optimizer are also 
accepted. Detai Is on application programming interfaces are provided 
in the Programmer's Guide for each language. 

3.2 MESSAGE PROCESSING LOGIC 

The character string keyed in at the terminal may be converted to 
an appropriate format for the application program by the Utilities. 
Thus, the program logic can always operate on an edited input message 
of exact format, irrespective of the originating terminal type. 
Content checking (such as value range editing) is performed by the 
application logic. The logic of the application program proceeds by 
analyzing the message text, determining file records to access from a 
part icular data base, performing updates, or perhaps verifying 
information sent in and requesting correction of information. The 
actual file access is performed by call ing a File Handler or DBMS 
interface service routine. The application program may create one or 
more response messages to be sent to the originating terminal and/or 
other terminals. 

Intercomm provides several service routines which process 
terminal-dependent input messages to convert them to 
terminal-independent form for application processing. This processing 
includes removal of terminal-dependent control characters and 
conversion of data fields to the desired form. Similarly, for output 
messages, service routines provide transformation from 
terminal-independent results of application subsystem processing to 
terminal-dependent messages for transmission. This includes insertion 
of terminal-dependent control characters, conversion of data fields to 
character format, if required, and inclusion of header and title 
information, if specified. Each of these routines function via 
user-specified descriptions (tables) of input and output message 
formats. These service routines are: 

• Message Mapping Utilities 

This is a set of service 
device-dependent transformations. 
output messages. 

46 

routines which perform 
It handles both input and 

J 

J 



Chapter 3 Application Programs and Service Routines 

• Edit Utility 

This is a service routine to process input messages, 
performing device-dependent transformations (and editing). 

• Output Utility 

This is a service routine to process output messages and pass 
them to the Front End, performing device-dependent 
transformations. 

Subsystem logic for input message text analysis and output 
message text creation varies depending upon whether or not Message 
Mapping or the Edit and Output Utilities are used. Figures 15 and 16 
illustrate subsystem processing logic for both cases. 

The application program is not responsible for actual 
transmission of a message to a terminal; messages are queued (put in a 
waiting list) by the Intercomm-supplied terminal queuing routines for 
subsequent processing. Intercomm line control functions perform the 
appropriate program logic to accomplish transmission for the particular 
type of terminal. (See Chapter 4, "On-Line Utilities.") 

3.3 NONREENTRANT AND REENTRANT SUBSYSTEMS 

A nonreentrant subsystem is a single threaded subsystem which can 
process only one message at a time. A reentrant subsystem is capable 
of processing several messages concurrently (multithreading) in order 
to provide a high volume capability. Additional messages can be passed 
to a reentrant subsystem without waiting for the processing of 
predecessor messages to complete. The subsystem can be operative, for 
example, during the time a previous message is being serviced by a File 
Handler routine. The user prescribes in the Subsystem Control Table 
the maximum number of messages to be concurrently processed. The 
actual program logic remains the same regardless of the number of 
messages processed concurrently. 

However, certain coding conventions are requisite for reentrancy: 

• Only application programs coded in Assembler Language, PL/l 
or COBOL are eligible for reentrant scheduling. 

• An application program must contain serially reusable logic 
between I/O operations, that is, the program must not modify 
itself. 

47 



Chapter 3 Application Programs and Service Routines 

ENTRY 

I 
Initial-
ization 
Lo~ic 

MAPIN 
according to 
user specifi-
cations 

Processing 
Logic 

Prepare 
Output 

Data 

MAPOUT 
according to 
user speci-
fications 

MAP END 
place message 
header and 
text in DWS 

FESEND 
place message 

in terminal 
queue for 

transmission 

Final 
Processing • RETURN 

Figure 15. 

The subsystem determines (perhaps based 
on the particular verb entered) if the 
input message requires mapping. 

MAPIN is called to convert the input 
message to text consisting of fixed 
length fields with a three-byte prefix of 
length (two bytes) and flag (one byte), 
indicating the result of field conversion. 
All terminal-dependent characters are 
removed. 

Processing logic is application-dependent. 

Output text data has a format similar to 
mapped input text: fixed length data 
fields with a three-byte prefix of length 
(two bytes) and attribute (one byte), 
indicating terminal-dependent field 
characteristics, if applicable. 

MAPOUT is called to build an output 
message text stream, padding, justifying 
and/or converting data fields from 
computational form, as necessary, and 
adding constant heading information as 
required. 

MAPEND is called to return the output 
message (header and text) in terminal­
dependent format ready for transmission, 
or to dispose of the output message. 

FESEND is called to pass the output 
message to the Front End (if MAP END has 
not disposed of the output message). 

Subsystem completes its processing and 
returns to Intercomm. 

Subsystem Logic Using Message Mapping Utilities 

48 



Chapter 3 

Subsystem Logic 

Initial­
ization 
Logic 

Processing 
Lo ic 

Prepare 
Output 
Message 

COB PUT 
queue message 

for Output 

Final 
Processing 

OUTPUT 
Subsystem 

Output Utility 
message for­

mattin logic 

FESEND 
put message 
in terminal 

queue 

Figure 16. 

Application Programs and Service Routines 

Comments 

If the Front End Verb Table indicates EDITzYES, 
the subsystem receives an edited input message 
automatically. The message text consists of fixed 
length data fields or variable length data fields 
prefixed with a I-byte length and a I-byte 
identification code (binary values). 

Processing logic is application-dependent. 

The subsystem prepares an output message by 
creating a message header and the appropriate 
text. Output message text fields are either 
fixed length data fields or variable length 
fields with a prefix as described for Edit, above. 
Message header fields RSCH, RSC, and VMI identify 
the specific message text format. 

COBPUT is called to queue the output message for 
processing by the Output Utility subsystem. 

Subsystem completes its processing and returns to 
Intercomm. 

The Output Utility performs message formatting 
according to user specifications, adding constant 
heading information as required. 

FESEND is called to pass the output message to the 
Front End. Output completes its processing and 
returns to Intercomm. 

Subsystem Logic Using Edit and Output Utilities 

49 



Chapter 3 

• 

Application Programs and Service Routines 

Working storage modif ied during subsystem execution must be 
unique to each message. Work space is required for 
appl ication program I/O areas, switches and output message 
areas. This work space is main storage allocated dynamically 
by Intercomm from its pool area on an as-required basis, that 
is, dynamic working storage. (The pool is dynamic in that 
the composition varies; that is, areas are assigned, 
re leased, or made" avai labfe for reuse as soon as a program 
indicates the Area is no lo~ger needed.) 

• A reentrant Assembler Language subsystem utilizes Intercomm 
macros to get and free dynamic working storage; PL/l utilizes 
its own automatic storage facility; and for a reentrant COBOL 
subsystem, Intercomm obtains dynamic working storage and 
passes the address to the subsystem via the LINKAGE SECTION. 
The reentrant application program performs its functions on a 
separate area of dynamic working storage, as opposed to the 
normal working storage areas coded within an application 
program. 

3.4 SUBSYSTEM ENTRY PARAMETERS 

The following entry parameters are passed to a subsystem: 

• Input Message--COBOL, PL/l, FORTRAN, Assembler Language 

The logic of a subsystem is usually designed to process one 
input message. When called by the Subsystem Controller, the 
address of the input message to process is passed in this 
parameter. The address of the edited input message (an 
option) is passed to the high-level language subsystem, and 
the unedited message address is passed to the Assembler 
Language subsystems. 

• System Parameter Area--COBOL, PL/l, FORTRAN, Assembler 
Language 

The System Parameter Area is a system-wide table containing 
control values for Intercomm, that is, those which may not be 
modified in the course of program execution. The System 
Parameters Area can be extended to include user fields or an 
area of main storage common to all application programs. 

• Subsystem Con tro I Ta bl e--COBOL, PL/l, FORTRAN, Assembler 
Language 

The Subsystem Control Table has some adjustable values, but, 
more significantly, it describes the application programs 
with one entry per subsystem according to: 

Characteristics (reentrancy, language, entry point) 

50 

J 

J 



Chapter 3 Application Programs and Service Routines 

Queue specifications (core and/or disk queues) 

Scheduling (resident or loadable; concurrent message 
processing limits) 

• Return Code--COBOL, PLi1, FORTRAN 

The fourth parameter, the return code, is defined in control 
blocks of the Subsystem Controller and indicates if message 
processing successfully completes. For Assembler Language 
programs, it is returned in register 15. 

• Dynamic Working Storage--Reentrant COBOL Subsystem 

The remaining entry parameter, that of dynamic working 
storage, is required only in reentrant COBOL subsystems. 
Dynamic working storage comes from the Intercomm main storage 
pool and is acquired or assigned dynamically for use by a 
particular program on an as-required basis. 

3.5 INPUT MESSAGE FORMATS 

The message received by the application program can be of a 
nonedited format, comprised of a 42-byte message header and the message 
text character string as entered by the operator at the terminal. 
Alternatively, Message Mapping Utilities or the Edit Utility may be 
used to provide an input message format of either fixed-length fields 
in a predefined format or variable-length fields in a variable 
sequence, both prefixed by a message header. High-level language 
application programs utilize the fixed-field format. The variable 
format of an edited message is most useful in Assembler Language 
programming, storage being a consideration. In this format, the final 
message length is dependent upon the amount of information entered by 
the operator. 

3.6 OUTPUT MESSAGE FORMATS 

A message for transmission to a terminal may be constructed in 
two formats by the application program. A preformatted message may be 
constructed consisting of the message header, and the message character 
string ready for transmission to the terminal, including all 
pos i tioning characters (blanks. tabs, etc.), headings, and control 
characters. Alternatively, formatting for display may be performed by 
either Message Mapping Utilities or the Output Utility. Every message 
is prefixed with the message header. Fields in the message header 
(created by copying the input message header and adjusting certain 
fields) designate the output terminal and other specifications. 

5 1 



Chapter 3 Application Programs and Service Routines 

Messages created by an application subsystem are passed directly 
to the Front End for transmission in the case where preformatted 
messages (or fully formatted results of Message Mapping Utilities 
processing) are utilized. This is accomplished by a service routine 
CA:'L. When the Output Utility is utilized, messages from the user 
subsystem are routed to the Output Utility by a service routine CALL 
for intersubsystem message switching. 

3.7 INTERSUBSYSTEM MESSAGE SWITCHING 

A flexible environment is provided for the passing of messages or 
data between user application programs. This facility is available to 
all subsystems, and is accomplished via a direct interface to the 
Intercomm queuing routine through a simple two-parameter CALL. 

Message switching may be required as in the instance of an 
analyzing subsystem which, upon receiving a transaction from a 
terminal, analyzes and queues a message for another program. A 
different subsystem performs the actual processing of that message. 
Ctilization of message switching can take advantage of the Intercomm 
priority structure, that is, once the original input message is 
analyzed, it can be sent to another lower priority subsystem for the 
processing of that particular message. 

3.8 SCREEN GENERATION 

Screen generation subsystems are provided to enable users to 
display predefined screen formats at a CRT terminal. This facility 
requires no user programming although the screen obviously must be 
defined to the system via OFT (Output Utility) or Map (MMU) . This 
feature is useful where input is entered at the terminal by filling in 
the blanks in a screen template. The terminal operator merely 
indicates which format is desired and the system automatically sends 
that particular screen to the terminal for data entry. 

3.9 MESSAGE SWITCHING BETWEEN TERMINALS 

Message switching and broadcasting bet· ... een terminals is provided 
by an Intercomm-supplied subsystem. If the receiving terminal is 
unable to receive the output message, Intercomm reroutes the message to 
an alternate device, if specified, or queues the message until the 
receiving terminal is available, at which time Intercomm then transmits 
the queued message(s) to the terminal. The messages that are on queues 
wai ting for transmission are preserved across system fai lures by the 
Message Restart facility. 

52 

J 



Chapter 3 Application Programs and Service Routines 

3.10 SERVICE ROUTINES FOR APPLICATION PROGRAMS 

In the Intercomm system, many program functions which are 
normally application-oriented are accomplished by utilizing service 
rout ines. Therefore, the application program logic need not be 
responsible for the following: 

• Data file access 

• Message queuing 

• Message logging 

• Generation of Front End control messages 

In addition, Special Features applicable to application program 
use are generally invoked by calls to service routines. This includes 
features for CRT page browsing, DBMS interface, and temporary storage 
of data (Store/Fetch, Dynamic Data Queuing). 

Any Intercomm service routine can be called by any application 
program. (Some of the corresponding functions are alluded to in 
Chapter 2, "Intercomm System Components.") Intercomm service routines 
include the following for: 

• Data File Access 

A File Handler service routine is called to read and write 
records accessed directly or sequentially. All OS/VS data 
set organizations and processing~techniques, except BPAM, are 
ava i lable to programs in the Intercomm system. The 
application program does not contain any data management 
instructions itself; the required input/output processing for 
all Intercomm subsystems is performed by the File Handler. 

• Message Queuing 

Queuing routines are called to accomplish queuing of messages 
in the Intercomm system. The efficient core and disk queuing 
capability facilitates message processing and contributes to 
high volume throughput. 

The intersubsystem Message Queuing facility is a general 
purpose system component used for message segment queuing, 
report and output segment queuing, external storage 
buffering, and general application program use. It is used 
by Intercomm to perform queuing of internal messages and 
output messages generated by applications. 

When In t e r c omm ' s BTAM or VTAM Front Ends are used, the 
Message Queuing facility is the means by which message 
traffic to and from the communications network and the 
message processing subsystems is monitored. 

53 



Chapter 3 Application Programs and Service Routines 

• Message Logging 

A call to the message logging service routine creates a 
special entry on the system log (INTERLOG) for the 
application program, or for a particular terminal, or both. 
Message status information or exceptional conditions may also 
be logged. All incoming and outgoing messages and message 
processing phases (when message processing starts and 
completes) are recorded automatically by Intercomm. Not only 
highly useful for accounting purposes, the log also renders 
statistics for system preformance analysis. (See Section 6.5 
Intercomm Statistics.) The Intercomm system recovery 
function is implemented through use of the log to rebuild 
message queues, recover messages not completely processed at 
the point of system failure, and reset files. Logging and/or 
message restart can optionally be eliminated on a subsystem 
or terminal basis. 

• Generation of Front End Control Messages 

A service routine is invoked 
which is subsequent ly routed to 
one of the following functions: 

to create a special message 
the Front End to accomplish 

Request feedback or notification that a message has 
completed transmission. 

Override normal Front End logic and cause immediate 
output to a CRT rather than wait for operator input. 

Notify the Front End of the existence of a Dynamic Data 
Queue (DDQ) of messages waiting for transmission. 

3.11 CONVERSATIONAL SUBSYSTEMS 

Conversational subsystems are defined as one or more subsystems 
designed to process more than one input message to complete a 
transaction. They effectively carryon a dialogue with the terminal 
operator, receiving an input message, retaining it and/or associated 
results of processing, issuing a response (perhaps a prompt for 
additional information), receiving another input message, retaining it, 
etc., until the transaction is complete. At the end of the 
conversation, appropriate files may be updated. 

Conversational transactions involve the sending and receiving of 
more than one message in a terminal session. Each input message may be 
processed by related subsystems or by the same subsystem. A two-part 
conversational transaction is illustrated in Figure 17. 

54 

J 



Chapter 3 Application Programs and Service Routines 

customer name MESSAGE 
status request 

account number RESPONSE 
current status 

sales order data MESSAGE 

verification of order RESPONSE 

Figure 17. Typical Conversational Transactions 

Assume a conversation in which three input messages and three 
responses are necessary to complete the transaction. A terminal, a 
subsystem and a storage medium on which to save the intermediate input 
message data is required. When the final input message is received and 
processed, appropriate files are updated and a final response is 
issued. Figure 18 illustrates the steps in this conversational process 
example. 

Terminal XYZ Subsystem ABC Storage 
=======================================s============================== 

Input Message l--~Receive, process and store----.. Input Message 1 
+ results 

Output Message l~--Prompt for additional information 

Input Message 2--~Receive, access Input Message 1~-Input Message 1 
Process + results 
Also store Input Message 2----~ Input Message 2 

+ results 

Output Message 2~-Prompt for additional information 

Input Message 3--~ Receive, analyze with prior ~--- Input Message 
messages and results 1 & 2 + results 
Update files, delete prior data 

Output Message 3 +-Final response 

Figure 18. Retention of Input Messages During a Conversation 

55 



Chapter 3 Application Programs and Service Routines 

Conversational subsystems require a storage medium for saving 
input data and intermediate results until all processing of the 
transaction has been completed. Intercomm provides various techniques 
for saving this data. These include the following: 

• User SPA (User Extension to the System Parameter Area) 

This is useful for storing system-wide information, that is, 
data that is accessed and used by most programs which run 
under Intercomm. An example of this is operator error 
statistics. 

• Store/Fetch Facility 

This can be used to store data with a unique key (up to 48 
characters) for short time periods when response time is 
critical. The data is retained in main storage (if 
available) with ro ll-out to disk automatically invoked for 
the least recently used data if main storage is exhausted. 

• Dynamic Data Queuing Facility 

The Dynamic Data Queuing Facility provides a pool of disk 
space for saving large amounts of data which would otherwise 
consume too much main storage. It provides an excellent 
means of batching transactions for later update and spooling 
of messages for a printer, as well as for saving intermediate 
results in a conversation. 

• CONVERSE Service Routine 

This provides the easiest (but most costly) method of 
handling conversational processing. It is the easiest method 
since all processing is done in the normal manner, except 
that following the queuing of the message for transmission, 
the program calls CONVERSE. This results in the program 
remaining in main storage (unless it is part of an overlay 
group) until a response is received from the terminal. When 
this occurs, the program is reactivated at the next 
instruction following CALL CONVERSE. It is the most costly 
retention method because storage is unavailable for use by 
other subsystems which would have been able to process while 
the conversational subsystem was waiting for the next 
message. A CONVERSE time-out may be requested to prevent an 
endless wait. 

The choice of technique used for storage retention by 
conversational subsystems is a design decision which the user makes 
based on response time requirements, storage limitations, amount of 
data, and so forth. The important factor to consider is that Intercomm 
provides the necessary alternatives from which the user can choose the 
best solution to the unique requirements of each application. 

56 

J 



Chapter 4 

ON-LINE UTILITIES 

4.1 PROGRAMMER PRODUCTIVITY 

The Intercomm On-Line Utilities include Message Mapping, Edit, 
Output and Change/Display. Flexibility is provided by these utilities 
since they are controlled by tables. The tables, which are created by 
the application programmer but which are independent of the application 
program, define the utility program logic for each type of 
transaction. Since the tables are independent of the application 
program, they can be changed to alter the message format as it appears 
on the terminal (or the terminal type may even be changed) without 
alteration of the application program. An Intercomm subsystem need not 
be concerned with terminal specifics such as control characters, 
attribute bytes and addressing. It is relieved by the Utilities from 
the responsiblity of analyzing formats of incoming messages and for 
formatting output messages. 

The Change/Display Utility is a table-driven application program 
provided with Intercomm. It can be used to satisfy simple file (single 
record) update and/or inquiry requirements without the need to write a 
specific application program. 

The net effect of the Utilities is to enhance programmer 
productivity both in initial system implementation and in subsequent 
maintenance and modification phases. 

4.2 MESSAGE MAPPING UTILITIES 

The Message Mapping Utilities (MMU) provide an interface between 
the application subsystem and terminal-dependent message processing 
logic for both input and output messages. MMU is invoked by calls to 
service routines which perform mapping functions based upon 
user-specified tables. Mapping includes conversion of character data 
to computational or binary format and vice versa, and 
stripping/insertion of dollar signs ($) and decimal points. MMU input 
mapping produces fixed-length data fields prefixed by a two-byte length 
and a one-byte flag (indicating errors or omissions) field, unless the 
data fields are defined in a named segment (group of fields). In this 
case, the three-byte prefix occurs for the entire segment, rather than 
the individual fields. Fields are padded or truncated and justified, 
as necessary, according to user definitions. 

57 



Chapter 4 On-Line Utilities 

MMU output mapping operates upon data in the same format, but the 
flag byte becomes the field (or segment) attribute character. The 
mapped input text area and the unmapped output text area are defined in 
the application program's dynamic work space. The application program 
references data fields and associated prefix fields by symbolic name. 
For example, a customer name of 25 characters would appear as an MMU 
symbolic COBOL definition as follows: 

04 CUSTOMERL PIC XX. 
04 CUSTOMERT PIC X. 
04 CUSTOMER PIC X(25). 

(length) 
(flag/attribute) 
(data) 

Message Mapping 
Output Utilities. 
manipulation of CRT 
for a design where: 

is offered as an alternative to the Edit and 
MMU is particularly effective for dynamic 

screen data. For example, MMU is highly effective 

• A screen format with a fill-in-the-blanks template is 
displayed. 

• The operator enters data into the unprotected fields and 
submits the message. 

• The application subsystem highlights erroneous fields on the 
screen and adds error messages to the existing display on the 
screen. 

MMU is one set of service routines for both input and output 
message formatting. Where both input and output formats are similar, 
then a single format descriptor (called a "map") can be used. With 
MMU, subsystems receive messages unchanged in format from original 
receipt from the terminal. Mapping is accomplished by calling service 
routines. A subsystem passes an input message to MAPIN for 
reformatting into device-independent form. Output messages are passed 
to MAPOUT for conversion from device-independent form to 
device-specific form, including all necessary control characters and 
sequences. When the subsystem is ready to transmit the mapped output 
~essage(s), a MAPEND routine is called which can be requested to 
automatically queue the output via the TP interface routine (FESEND). 
Control of MAPIN and MAPOUT for specific devices is provided by 
Device-Dependent Modules and the Device Descriptor Table. 

58 



Chapter 4 On-Line Utilities 

4.2.1 Terminal Input Format Options 

Message Mapping Utilities accept four different types of input 
message formats: 

• Keyword Format 

• Positional Format 

• Formatted Screen Format 

• Fixed Format 

Each input option provides different advantages to consider in 
determining which input format to use for each message type entering 
Intercornrn. The design approach should consider operator convenience, 
terminal characteristics and transmission requirements. 

In this section, the conventions used for input message format 
notation are: 

# The field separator character--a delimiter for individual 
data fields entered in positional format 

The keyword field start character--a delimiter signalling the 
end of a field-identifying keyword 

% The keyword field end character--a delimiter signalling the 
end of a keyword-identified data field (usually the same as 
the field separator) 

& The end 
carriage 
terminal 

of line--new 
return/line 

line 
feed 

(NL), carriage return 
(CR/LF) character(s) 

(CR) or 
of the 

@ The end of message character sequence of the terminal--EOT, 
EOB, ETX, etc. 

The delimiters are defined as system-wide values in the MMU 
Vector Table. They may also be defined in the Device Description 
Modules to specify override values for a particular device. Any map 
definition may also specify override values for a particular input 
message or portion of an input message. 

The end of line characters are interpreted as field delimiters by 
MMU. End of message naturally signals end of input, and MMU processing 
of the message completes. The end of line and end of message 
character(s) for each device are an internal definition in the MMU 
Device-Dependent Modules. 

59 



Chapter 4. On-Line Utilities 

When data is to be supplied in 
entered in the following manner: 

the Keyword Format, the message is 

TRNS& 
CUST=JOHN R. WILLIAMS JR.& 
ADDR=727 E. 43RD ST.& 
C/S=WEST HEMPSTEAD L.I.& 
ACCT=7432710& 
DEBIT=$27.42& 
CREDIT=$1.27& 
END@ 

(verb or transaction identifier) 
(customer name) 
(customer address) 
(customer address) 
(customer account number) 
(debit amount) 
(credit amount) 

The four-character verb is the first field of each message. Each 
data element in the message is identified by a unique one-to-eight 
character field identification. The field identification is 
irrunediately followed by the data for that field. (Any number of 
separating blanks can be inserted between the keyword end character and 
the data; the blanks become part of the data field.) The keyword must 
be unique within anyone transaction type; it may be reused in other 
transaction types. For example, the keyword CUST may be entered in all 
transaction types that require a customer name to be entered. 

For data elements that can be entered more than once in a 
particular input message, the terminal operator simply enters the given 
keyword more than once in the message; each use of the keyword is 
followed by the appropriate data. Thus, in the example above, if it 
were possible to have three debit amounts, the data entered would be as 
follows: 

DEBIT=$27.42& 
DEBIT=$ 7.93& 
DEBIT=$ 8.47& 

(debit amount 1) 
(debit amount 2) 
(debit amount 3) 

The terminal operator must be taught the proper keywords to use 
on input. Any field not applicable on the current entry can be omitted 
by not entering that keyword (and data) in the message. In addition, 
fields may be entered in any order. 

60 

J 

J 

J 



Chapter 4 On-Line Utilities 

When entering data in the Positional Format, only data fields are 
entered; no field identifications are used by he teminal operator. The 
data fields are separated by the field separator character un. The 
example given in the section describing the Keyword Format would be 
entered in the following manner using positional format: 

TRANS#JOHN R. WILLIAMS JR.f!727 E. 43RD ST.fIWEST HEMPSTEAD L.I.Ex 
7432710#$27.42#$1.27 

As the example illustrates, the transaction identification (verb) 
is also required in this format. Every possible field for the 
particular message type must either be supplied by the terminal 
opera tor or noted as omitted by the insert ion of an extra separator 
character to indicate the absence of the field. 

Some CRTs have the facility to display template screens for the 
operator's convenience. For example: 

· ... TRANS 
CUSTOMER NAME 

· .............................. ADDRESS 
· .............................. CITY/STATE 
· ........................... ACCOUNT NUMBER 

DEBITS 
............ CREDITS 

The periods indicate those screen positions where an operator may 
enter data. In the case of the IBM 3270, only the data entered is 
transmitted as an input message, along with control characters 
indicating the screen position of the data fields and other 
terminal-dependent control characters. 

Formatted Screen is the term used to identify this input option; 
the data fields are specified to MMU using row and column notation 
indicating position relative to the start of a particular screen area. 

Some applications may require processing of messages in a format 
similar to batch mode fixed-length records. In this case, every input 
message contains fixed-length data fields in a fixed position within 
each message type. This situation might occur with CPU-to-CPU 
transmission of data fields. 

61 



Chapter 4 On-Line Utilities 

For some applications, format options may be combined in one 
input message. A typical use of this facility might be to allow the 
operator to enter a mix of keyword and positional fields: 

TRNSffoJOHN R. WILLIAMS JR.Ex 
727 E 43RD STffoWEST HEMPSTEAD L.I.Ex 
ACCT=7432710Ex 
CREDIT=$1.27%$48.26ffo$9.95 

This approach combines efficiency of Positional Format and 
convenience of Keyword Format. 

4.2.2 Mapping an Output Display 

Figure 19 illustrates a typical screen image which can be 
produced using MMU. The MMU screen definition (map) defines field 
position and constant (title) data. One screen may be defined by one 
or more maps. For example, the BILL TO and SHIP TO sections might each 
consist of separately defined maps. The ITEM section (list of items) 
might be defined as one map with one segment (group of related fields) 
occurring three times (repeating down the screen). 

ON-LINE SHIPPING 

B XYZ CO., INC. 
I 1 ANYWHERE ST. 
L SOMEWHERE U.S.A. 11111 
L 212-121-1111 

BILL DATE: 04/04/85 

ITEM DESCRIPTION 

XI02Y WIDGET-l/2 INCH 
Z423A SPROCKET-.Os INCH 
A1s8X GADGET-1 INCH 

0:'/07/85 

S XYZ CO., INC. 
H 1 ANYWHERE ST. 
I SOMEWHERE U. S . A. 11111 
P 212-121-1111 

SHIP DATE: 04/04/85 

QTY AMT 

10 20.00 
15 3.00 
8 12.00 

TOTAL 35.00 

Figure 19. Sample Output for Mapping 

The output mapping process, invoked by subsystem calls to MAPOUT, 
'",ould take constant information such as the titles ON-LINE SHIPPING, 
BILL DATE, SHIP DATE, etc., from the map definition and combine it with 
specific data for the response supplied by the application subsystem. 

62 

J 



Chapter 4 On-Line Utilities 

4.2.3 Mapping A Template Screen 

As illustrated by Figure 20, one display screen and its 
corresponding set of maps can be used for both input and output mapping 
functions. The output mapping function displays the template for the 
operator's convenience in entering data. The input mapping function 
transforms and edi ts the data entered by the operator. This assumes 
use of a terminal with formatting capabilities, such as the IBM 3270. 
Output mapping could also be used to produce messages to the terminal 
operator for error correction procedures or to signal that a new input 
message may be entered. 

The entire screen in this example is a map group (group of 
related maps). Each individual line may be defined as a map containing 
one or more fields, or, the entire screen may be defined as one map 
specifying all fields on the screen. The decision should be based on 
application programming convenience when invoking MMU service 
routines. In this instance, defining the map group with one map 
simplifies the application program logic. 

ENTER CUSTOMER DATA: 

CUSTOMER NAME: ----------------------------------------------------
ADDRESS: ________________________________________________ __ 

TELEPHONE: ______________________________________________ __ 

CONTACTS: ________________________________________________ _ 

Figure 20. Sample Template Screen for Mapping 

4.2.4 Message Processing Logic Using MMU 

A summary of message processing logic using 
Figure 21. For a complete description of MMU 
application subsystems, refer to the Intercomm 
Utilities. 

MMU is shown in 
and its use by 
Message Mapping 

63 



Chapter 4 On-Line Utilities 

APPLICATION SERVICE MAP J 
LOGIC ROUTINES FILES 

r -..... 
MAP 

Input l ..... Initiali- Load 
I Message , ,...., zation Modules 

+ "-

Prepare LOAD MAP 
MAPIN Offline 

Call ing Utility 
Sequence X 

".... -~ 
, 

Process MAPIN MMU 
Mapped ~ Convert/Edit ~ Store/ 
Input ....... Input ........ Fetch 
Message Message Data Set 

+ ,../ 

Prepare 

~ 
Output 
Message 
Data 

+ J 
Prepare MAP OUT 
MAPOUT .... Map output ~ 

Calling Jill'" Messa e Data ........ 

Sequence 

NO Message 
~ 

Finished ....... 

I 
YES 

Prepare 
MAP END 
Calling 
Sequence 

~ 
~, 

I 
MAP END 

RETURN Convert/Edit I 

I Output Output 
Message I Messai/:e 

L.. ) 
....... 

Figure 21. Message Processing Using MMU J 
64 



Chapter 4 On-Line Utilities 

4.3 EDIT UTILITY 

The Edit Utility is a generalized utility program used to prepare 
input messages for processing by application programs. The utility is 
controlled by an Edit Control Table (ECT), which defines the 
characteristics of each input message, and the type of editing to be 
performed. One table entry exists for each message type to be edited. 

The Edit Utility is called if indicated by control table 
specifications to edit the message according to edit specifications 
defined in the ECT. It is possible to have the input message edited by 
Message Collection prior to being queued, edited immediately prior to 
activating the message processing program (high-level language), or 
edited via a call from an Assembler Language program. (See Figure 
22.) The Edit Utility performs the following: 

• Eliminates all teleprocessing control characters. 

• Pads/truncates/converts/packs/strips each field as needed; 
fields can be padded or truncated, converted to binary or 
packed decimal or stripped of dollar signs or decimal points 

• Identifies required and omitted fields; if the operator omits 
fields specified as required, the message is rejected. 

• Provides error messages; notifies operator of exact type of 
error. 

The terminal operator has three format options available; input 
can be in a keyword, positional, or positional within keyword format, 
as described previously. 

Specifications to the Edit Utility indicate how each field is to 
be formatted. The Edit Utility will place fields in the message into a 
predefined fixed format or a variable format. A fixed format consists 
of the standard message header, followed by fixed-length fields in 
predefined positions, a format most commonly used for high-level 
language application programs, as follows: 

NUMBER QUANTITY UNITS OMITTED 
42 BYTE HEADER XXXXX XXXXX XXXXX PAD 

Alternately, the Edit Utility can produce a variable-field 
format. The standard message header is followed by data fields 
prefixed by item code (IC) and length (LN) fields, or the data may be 
prefixed by IC, LN, and an occurrence number (OC) field. The OC field 
is used only for fields defined as repetitive in the ECT. The field 
STATUS area indicates whether each parameter was provided and if any 
were provided in error: 

42 BYTE HEADER IC LN DATA IC LN OC DATA STATUS 

Variable format is useful in Assembler Language programming where 
ma in storage is a concern because the final message length depends 
entirely on how much information is keyed in by the operator. 

65 



Chapter 4 On-Line Utilities 

J 
Front ... Message 

......t .... Edit 
End .".. Collection ..... .".. Utility 

OR 

Subsystem ... Language 
...tIlL .... Edit 

Controller ,.. Interface I ..... .... Utility 

~, 

COBOL, PL/l 
or FORTRAN 
Subsystem 

OR 

Subsystem .... Assembler ~ .... Edit 
Controller ,.. Subsystem ... .".. Ut il ity 

Figure 22. Edit Utility 

J 
66 



Chapter 4 On-Line Utilities 

4.4 OUTPUT UTILITY 

The Output Utility operates on messages ready to be formatted and 
then transmitted to a terminal(s), providing simplified generation and 
revision of output formats for the telecommunications network. 

An application program passes to OUTPUT the data fields necessary 
for a report. OUTPUT inserts the data fields into a predefined 
format. The reports (display formats) can subsequently be altered 
without any program modification. Messages may be displayed on 
different types of terminals without concern to the subsystem creating 
the message. This utility is table driven, report and display formats 
being specified in the Output Format Table. (See Figure 23.) 

FRONT END ~I Output 
INTERFACE4~'-------~"~ ~tility 

• Terminal Transparency 

• Message Segmenting 

• Output Page Control 

• Alternate Device Selection 

• Table-Driven 

• Terminal Authorization 

• Fixed Format Output 

L JSubsystem} 
~~----------------~'1c~_ontrolleg 

Figure 23. Output Utility 

After a subsystem has created an output message it calls MSGCOL 
to queue the message for the Output Utility. (The fact that the 
message is to be routed through OUTPUT is noted in a message header 
field.) The Subsystem Controller then schedules the Output Utility, 
retrieving the message from the queue and passing it to OUTPUT for 
processing. The Output Utility then performs the following: 

• Selects 
internal 

the terminal. The 
tables with respect 

Output 
to the 

Utility analyzes 
particular terminal 

its 
to 

receive its messages. If that terminal is not available, the 
utility refers to a specified alternate terminal. 

67 



Chapter 4 

• 

On-Line Utilities 

Formats output messages as specified in the header, copying 
data fields from the input to the output message. The Output 
Utility expands, columnizes, and inserts (sub)headings. 

• Inserts teleprocessing control characters 

• Passes message to Front End via the TP interface program 

The message supplied by the application program for formatting 
consists of the message header and the fields to be displayed which are 
constructed within the application program: 

NAME 
A CYRUS 

HRS 
40 

HRS 
00 

42-BYTE HEADER 
NO 
174312 

HRS 
40 

PAY NAME 

HRS 
03 

PAY NAME 
17520C T FIELDS 

NO. 
197902 

HRS. HRS. PAY 
19000C C MICHAELS 

NO. 
199031 40 00 27400C 

The Output Utility, operating against a table, will position the 
variable data within the defined format: 

EMPLOYEE 
NAME 

A CYRUS 

T FIELDS 

C MICHAELS 

EMPLOYEE NORMAL OVERTIME TOTAL 
NUMBER HOURS HOURS PAY 

174312 40 3 $175.20 

197902 40 $190.00 

199031 40 $274.00 

The Output Utility can also facilitate the preparation of reports 
containing several different message formats, for example, a title 
page, detail pages, and a summary page. The Output Utility can receive 
the message in segments for formatting purposes, one by one, and 
transmi t them in the proper sequence to the terminal unt i 1 the f ina 1 
segment is transmitted. Segmenting will also be utilized if an output 
message is too long for terminal transmission. 

The Output Format Table (OFT) describes the output message 
formatting specifications for the Output Utility with one entry, 
optionally disk-resident, per output format. The Output Format Table 
is quite simple to generate. The format specifications are supplied by 
the user via Intercomm macros. Information to be displayed at a 
terminal can vary by changing the table entries, without change to the 
application program; hence, the application is independent of the 
format. 

68 

J 



Chapter 4 On-Line Utilities 

4.5 CHANGE/DISPLAY UTILITY 

The Change/Display Utility is a subsystem that provides a simple 
file inquiry and maintenenace capability without user programming. A 
remote terminal operator can display an individual record from any 
B DAM , K S D S V SAM ,or I S A H f i 1 e sup p 0 r ted by I n t e r c 0 mm ina 
fixed-character format at a terminal. Selected fields can then be 
modified within the record. 

Like the Edit and Output Utilities, this module is totally 
table-driven. There is no program development required to display any 
fixed-format records. The only requirement for the display of record 
data (binary, hexadecimal or character) is the creation of a 
disk-resident Format Description Record (FDR) which describes the 
record format to the Change/Display Utility. 

An entire on-line application can be installed using the 
Change/Display Utility; thereby coding no application programs, only 
table entries describing the file characteristics and associated output 
format specifications. 

When an operator enters a Change or Display transaction, the 
utility is scheduled and the message is retrieved through the Subsystem 
Controller. The Change/Display Utility retrieves the format 
description record and the record from the file. For DISPLAY, the 
message is sent to the Output Utility and processed against a format 
table entry previously specified. To accomplish a CHANGE transaction, 
a file update is performed and a message is sent back to the operator, 
indicating the update was completed successfully. 

To display a record from a file, the operator keys in the display 
verb (DSPL), the keywords for the file name, and the key of the record 
to be retrieved as shown below: 

DSPL 
FLN DDNAHEOI 
KEY 7432-14 
END 

Or, the operator can enter the DISPLAY transaction spe~ifying not 
only file name and key but overriding report number as shown below: 

DSPL 
FLN DDNAMEOI 
KEY 7432-14 
RPT 300 
END 

69 



Chapter 4 On-Line Utilities 

To modify fields in a file record, the transaction CHNG, file 
name, record key, and the user-def ined fie ld name to be changed is 
entered (see below). Current field content and the new value is 
verified and rejected if not valid. The application designer 
determines if verification of field content is required. Because a 
CHANGE transaction utilizes a keyword input, the operator is able to 
enter as many field names and changes as required. Only one record 
from one file can be accessed with each transaction. 

CHNG 
FLN DDNAME01 
KEY 7432-14 
FDN PRDNO 
VRY 701324 
DTA 791324 
END 

The Change/Display Utility incorporates the following facilities: 

• Ability to preprocess the key supplied. Characters entered 
can be converted to binary values to access a specific block 
on a BDAM data set. 

• 
• 

• 

• 

Field editing for display 

Conversion to character, packed 
Characters entered for CHNG are 
appropriate to the field type. 

decimal, and binary. 
converted to the format 

Padding and truncation of input fields 

Negative character fields retrieved by DISPLAY for 
transmission to a terminal may be formatted with their minus 
sign, as required. 

DISPLAY can be utilized in lieu of writing an application program 
when application logic requires retrieval of one record from one BDAM, 
KSDS, or ISAM fixed-length file. CHANGE can be used when application 
logic requires update of fields in one record of one file. 

The Edit, Output and Change/Display Utilities are described in 
the Utilities Users Guide. 

70 

J 



Chapter 5 

MAIN STORAGE ORGANIZATION AND RESOURCE MANAGEMENT 

5.1 REGION ORGANIZATION 

The Intercomm system executes as a job under the IBM System/370 
operating system, in either a single OS/MFT partition, an OS/MVT 
region, an OS/VSl partition or OS/VS2 address space, in a 
multiprogramming, multithreading, on-line environment. 

NOTE: MFT systems require the ATTACH and IDENTIFY features to 
utilize the Intercomm Asynchronous Program Loader. 

With any of these operating systems, the user is able to enter 
and execute any number of concurrent independent jobs in other 
partitions or regions while Intercomm is executing (provided CPU 
storage is available and excessive interference with on-line I/O 
devices is not introduced by "background" jobs). 

The operating system treats Intercomm as one execution module, 
however, it is a module containing many system programs, user-written 
application subsystems, and utility processing programs. 

In providing on-line 
multiple applications, the 
of the following: 

system functions and centralized control of 
Intercomm region (or partition) is composed 

• Resident Intercomm routines and tables 

• Resident subsystems 

• Nonresident subsystems, dynamically loadable 

• Nonresident subsystems, 
structure 

loaded based on planned overlay 

• Nonresident service routines and table entries 

• Dynamic subpool area 

Figure 24 shows the components of a single Interco~m region. 

The following description refers to the components shown, and 
descr ibes overlay processing and dynamic program loading; Intercomm IS 

Resource Management facilities are also described, such as the storage 
cushion feature, optional core use statistics and special storage 
management facilities: 

71 



Chapter 5 Main Storage Organization and Resource Management 

Required 
Resident 
Area: 

Resident 
Subsystem 
Area: 

Optional 
OVERLAY 

rea A: 

I 

pptional 

VS SYSTEM/370 NUCLEUS 

VTAM or TCAM 
MESSAGE CONTROL PROGRAM 

INTERCOMM NUCLEUS: 
SUBSYSTEM CONTROLLER, DISPATCHER, TABLES, ETC. 
DYNAMIC STORAGE POOLS 

-----------------------------------------------

Subsystem A -

Subsystem B - - - - -

r:~~~~~~~~-:-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--- I C I l 
- - - - - G - - - -

D F J 

H 
E K 

Fransient NONRESIDENT SERVICE ROUTINES 
OVERLAY: -----------------------------------------------

SUB POOL AREA FOR: 
DYNAMIC SUBSYSTEM LOADING 
DYNAMIC SUBROUTINE LOADING 

COBOL COMPILER 

BATCH PRODUCTION 

VS LINK PACK AREA 

I 

N 

T 

E 

R 

C 

0 

M 

M 

VS 
REGION 

1 

VS 
REGION 

2 

VS 
REGION 

3 

VS 
REGION 

4 

Figure 24. System/370 Main Storage Layout with a Single Intercomm Region 

72 

J 

J 



Chapter 5 Main Storage Organization and Resource Management 

• Resident Intercomm Routines 

These routines are required for Intercomm functions and must 
be resident in main storage. Residing in this required area 
is the Intercomm Front End and such routines as the Subsystem 
Controller, Dispatcher, File Handler, and associated service 
routines. 

• Resident Tables 

Such tables are necessarily resident in that they specify 
actual control functions of Intercomm. For example, the 
System Parameter Area (SPA) describes system-wide 
characteristics. Resident tables share the area with the 
resident Intercomm routines, and include the user-defined 
Dynamic Storage Pools area. 

• Dynamic Storage Pools 

This is an area of main storage in the Intercomm nucleus 
where, as storage is required for Intercomm routines or 
application program workspace, it is obtained dynamically; 
that is, as and when required. The pool area is dynamic in 
that the composition varies and areas are assigned, released, 
or made available for use as soon as a program indicates the 
area is no longer needed. 

Multiple applications may be executing concurrently, so the 
area of storage that is modified during a subsystem execution 
must be unique to each message; the actual location of 
working storage for a subsystem execution is variable. The 
dynamic pool area in the Intercomm region provides work space 
known as dynamic working storage. 

• Resident Subsystems 

System performance is improved if the most 
subsystems are resident. Proper planning 
which subsystems should be resident to 
throughput and low response time. 

• Nonresident Subsystems, Dynamically Loadable 

frequent ly used 
wi 11 determine 

provide maximum 

Nonresident subsystems can be defined as dynamically loadable 
into the dynamic subpool area. These subsystems are loaded 
as required. Reusable subsystems remain resident until 
prescribed message processing limits are reached or message 
traEf ic ceases; non-reusable subsystems are loaded Eor every 
message. 

73 



Chapter 5 Main Storage Organization and Resource Management 

• Nonresident Subsystems, Planned Overlay 

These subsystems are organized and loaded in a planned 
overlay structure. The Intercomm region contains one overlay 
region. (OVERLAY A as in Figure 24.) The OVERLAY A overlay 
region has special characteristics in that groups of 
subsystems are loaded to process messages concurrently. 
Subsystem loading is based on message traffic and scheduling 
criteria. Subsystems are loaded only when required. 

• Nonresident Service Routines 

These are infrequently used routines which are called when 
they are required. They may reside in the transient overlay 
area. 

• Nonresident Table Entries 

Infrequently used table specifications, for example, those 
for the MMU and Edit and Output Utilites, can be contained on 
disk and loaded when in demand. 

5.2 OVERLAY AREAS 

Intercomm provides an overlay area for message processing 
subsystems. This area in the Intercomm region aids in providing 
optimal use of main storage by subsystems organized in a planned 
over lay structure. The Dispatcher and Subsystem Controller provide 
overlay management. Once the overlay region is active, criteria for 
changing overlays (program swapping) are: 

• No messages are in process in the current overlay. 

• Input sources for all subsystems of the current overlay have 
ei ther: been checked for messages and none found; or, the 
maximum number of messages to be processed at one time while 
the overlay is in main storage has been reached. 

• No tasks for the current overlay are on either the Dispatcher 
execute queues or the timer or event queues. 

5.3 DYNAMIC SUBSYSTEM LOAD FACILITY 

The dynamic load facility allows Intercomm users the option of 
dynamically loading and deleting a subsystem or subsystems during 
execution of Intercomm. 

This added function provides both greater flexibility in system 
design and the capability to correct application programs and make the 
corrected copy immediately available on-line. The subsystem (or 

74 



L 

Chapter 5 Main Storage Organization and Resource Management 

subsystems) need not be linkedited into the monitor module; a system 
interface resolves the external references made within each subsystem 
as it is loaded for processing. An optional dynamic linkedit may be 
performed at system initilization to modify the subsystem load module 
and resolve references to resident programs. In addition, further 
flexibility is provided by the ability to vary the maximum amount of 
storage defined as usable for concurrently loadable subsystems while 
Intercomm is executing. 

In general, any subsystem defined as reusable is left resident in 
the dynamic area and rescheduled as required, for as long as the 
storage it occupies is not required for a subsequent subsystem load. A 
non-reusable subsystem will be reloaded for every message. Within this 
framework any reusable subsystem will process a number of messages, if 
they are available while it is loaded. 

There are two methods of dynamically loading a program--by load 
list specifications, or by a straight load. Intercomm's Asynchronous 
Loader is used for both methods of loading. 

The load list, a faster 
used subsystems. However, an 
subsystem is required. On 
subst i tut ion is more immediate 
subsystem is loaded directly. 

method, is recommended for frequently 
additional 50 bytes of storage per 

the other hand, application program 
if the load list is not used and a 

The substitution feature, the capacity to change or correct a 
subsystem, relink it and substitute the new version for the old during 
1 ive execution, is one of the most useful enhancements presented wi th 
Intercomm. Substitution may be requested via the LOAD system command 
and will force reinitialization of the load list. 

5. 3 . 1 Dynamically Loaded Subroutines 

This facility allows an on-line application to readily use a 
subroutine that is--transparent to the caller--dynamically loaded. 
This is of great use to OS users, as it eliminates the need for 
subroutines to be resident, and to VS users, as it allows subroutines 
to be dynamically modified while the system is active and may reduce 
the working set requirements. 

Subroutines eligible for this facility are defined by a system 
macro that specifies whether they are resident or dynamically loaded, 
and whether they are reentrant, reusable or non-reusable. If 
dynamically loaded, the macro specifies whether a BLDL list is to be 
maintained. 

By default, the subroutines are deleted when unused (use 
count=O). Alternatively, subroutines can be deleted only when they 
have been inactive for a user-specified time interval. On low storage 
conditions, these parameters are overridden to free storage. 

75 



Chapter 5 Main Storage Organization and Resource Management 

Dynamic linkedit facilities are used to permit dynamic 
modification of these subroutines in a manner similar to modifying 
dynamically loaded subsystems. Loading of subroutines is overlapped 
through subtasking, and may be requested via the LOAD command. 

5.4 GENERALIZED SUBTASKING 

Nearly all of Intercomm functions as a single task, executing 
under one Task Control Block (TCB). However, certain Intercomm 
functions which use as facilities containing embedded wait conditions 
are executed as subtasks. The Generalized Subtasking facility manages 
the subtasked activities. Many Intercomrn facilities that require 
subtasked execution use Generalized Subtasking and, in addition, this 
facility is available for user programming. A pool containing a 
user-specified number of subtasks is created (attached) at the 
beginning of execution, then remains dormant until needed. Any 
activity requiring subtasked execution is executed using one of these 
subtasks. Intercomrn uses this faci li ty for Dynamic File Allocation, 
SETL, ESETL and GET processing. Candidate user code for this facility 
would be those programs having actual or implied waits or a program not 
suited to normal on-line execution. 

Generalized Subtasking allows the subtasked program to appear 
identical to a normal subroutine. The subroutine is accessed through a 
macro which simulates a standard CALL type linkage. Intercomrn 
intercepts the CALL and implements the coding under the subtask 
facility. 

Generalized Subtasking can be used to interface software packages 
with Intercomrn that do not conform to Intercomrn coding standards and 
which would otherwise seriously impair Intercomrn's performance. 

5.5 RESOURCE MANAGEMENT 

Intercomm Resource Management techniques provide the optimal 
environment within which the user may obtain and audit subsystem 
resource efficiently and with full diagnostic capability in the event 
of system/subsystem failure. Storage requirements for Intercomm 
Resource Management are minimal, varying from lK-5K (dependent upon 
system load factors and extent of Resource Management involved) and at 
user convenience, Resource Management facilities can be optioned 
independently. The extent to which each option contributes to the 
effective performance of the others should be considered in 
environmental design. 

The foremost resource in anyon-line system is dynamic storage. 
System integrity, as well as system efficiency and throughput, are 
affected by the integrity of and control exercised upon this resource. 
Intercomrn's main storage management services are intended to ensure 
integrity and provide efficient use of dynamic storage. 

76 



Chapter 5 Main Storage Organization and Resource Management 

As each message is processed by an Intercomm application program, 
all system use of main storage for this application may optionally be 
monitored. If an application program, directly or indirectly, neglects 
to free the storage obtained during the processing of the message, the 
system frees it automatically at message termination. Provision is 
made for CONVERSE time-out which wi 11 result in the re lease of main 
storage obtained by the application program if the operator fails to 
respond within a specified time interval. In addition, if an 
application program tries to free storage it has not obtained for the 
message currently being processed (or transferred to this message), the 
system prevents the operation from being executed. In this way, the 
use of main storage is monitored to prevent bugs in the application 
program from causing a total on-line system failure. 

5.5.1 Storage Cushion Feature 

Resource Management includes a storage cushion feature (unless 
specifically bypassed by the user). The storage cushion, of 
user-selected size, is defined as a block of main storage, dynamically 
acquired at startup and held by the system as a protection against 
temporary shortages of main storage. If a request for main storage 
cannot be met, the storage cushion is used on the condi t ion that no 
further threads are activated until the cushion is freed. The 
degrading effects of a shortage of dynamic main storage are minimized 
by using this feature. 

5.5.2 Auditing and Purging 

The optional resource auditing and purging capability provides 
for a chain of control blocks built for every active thread. These 
blocks correspond on a one-to-one basis with resources acquired by the 
thread. If resources are not released by an application program, a 
thread resource dump is provided to print out the control block chains, 
showing which thread was in control of what resources such as storage 
or files, through which module the resources were obtained, and in what 
order acquisition occurred. Purging is accomplished by releasing the 
resources represented in the control block chain for an application 
thread when the thread normally or abnormally completes. After a 
t h rea d time - 0 u t ,on g 0 in g I/O i s pro t e c ted v i a pur g e pre v e n t ion un til 
data transfer has terminated. 

Intercomm, therefore, is able to provide adequate control over 
resource ownership with resource audit/purge. Debugging is materially 
simplified and additional ABENDs are reduced through the cleanup 
facility, which is activated if a subsystem fails to release resources 
for any reason, including abnormal end. The thread resource dump is 
automatically invoked at any program check. 

77 



Chapter 5 Main Storage Organization and Resource Management 

5.5.3 Creation of Dynamic Storage Pools 

As a companion to audit/purge or as an independent option, 
management of core allocation, via user-defined preassembled pools of 
main storage, is offered with Intercomm. Available space is sectioned 
by the creation of storage pools in specifiable blocksizes; any number 
of pools and blocks within pools may be generated to fit user 
requirements. A status dump is automatically provided when a program 
check occurs. It consists of a block-by-block listing of the status of 
the assembled-in pools and storage cushion. 

The pool option manages main storage allocation to eliminate 
fragmentation problems and also, through indexed access to the storage 
pools, provides a significant efficiency in the speed with which main 
storage can be obtained and freed. This speed increment is more than 
sufficient to offset any overhead associated with the implementation of 
the full scheme of Resource Management, and to permit use of all 
debugging, analytic and housekeeping aids at no loss in system 
throughput. 

5.5.4 Core Use Statistics 

Extensive information on the use of storage pools is provided as 
an Intercomm Resource Management option. Global and user-selected 
detail statistics, obtainable as mutually independent facilities, are 
printed out off-line in a combined format at a user-specified time 
interval. Inclusion of one set of statistics may be made without 
reference to the other. 

With Release 9.0, the core pools may be assembled and linkedited 
into a load module separated from the rest of Intercomm. At system 
startup, Intercomm will prompt the operator for the name of a core pool 
module to be used during execution, then load that module. This 
Dynamic Core Pool feature enables the operation staff to employ a 
different set of core pools at every startup without a complete 
relink. In addition, it enables users whose load module size is 
restricted to use the Intercomm core pools without forsaking other 
features. 

5.6 LINK PACK AREA CONSIDERATIONS 

Many Intercomm components, such as the File Handler, Dynamic Data 
Queuing routines, Message Mapping Utilities, etc., are coded in a 
reentrant manner so as to be eligible for inclusion in the Operating 
S y s t e m I s Lin k Pac k Are a . Wh e nus i n g the M u 1 t ire g ion ve r s ion 0 f 
Intercomm or File Handler services from batch programs, these 
components can be put in the Link Pack Area where they can be shared by 
multiple regions to save on the storage which would be required if they 
had to be included in each region. 

78 

J 



L 

Chapter 6 

SYSTEM CONTROL FUNCTIONS 

6.1 OVERVIEW 

Intercomrn provides the user with a number of preprogrammed, fully 
tested, easily implemented facilities for controlling and monitoring 
the on-line environment. These facilities (system control functions) 
are generally table-driven. The user can activate/deactivate system 
control functions without impact on user applications. The system 
control functions discussed in this section are: 

• Security Controls 

• Message Logging 

• Checkpoint/Restart Capabilities 

• System Statistics 

• Control Terminal Facilities 

• Testing Facilities 

6.2 SECVRITY CONTROLS 

Intercomrn provides the user with complete system security via the 
following security options: 

• Station Sign-on/Sign-off Security 

• Transaction Sign-on/Sign-off Security 

• Station/Transaction Sign-on/Sign-off Security 

Any type of security check, or any combination of the available 
types, can be employed by the user to control which operator is allowed 
to enter which transaction from which terminal. Figure 25 shows the 
general flow of security processing. 

79 



Chapter 6 System Control Functions 

Operator 
attempts to 
sign on at a 
terminal 

+ 
Error System checks 
Message to see if 

terminal is 
~ ~ listed under 

security . 

YES NO 

System checks 
to see if 
operator code 

NO is allowed for 
this terminal. J 

YES ~r 

°Eerator Can Enter 
.... Transaction 
~ 

I 
System checks to see if the 
transaction is on a list of 

I 
Error YES transactions under security 
Message check. 

I 
I ~ ~ 

I 
~, 

NO 
f 

System checks ~, 

to see whether 
NO transaction is YES Transaction 

allowed ... is processed .". 

through this 
terminal 

Figure 25. General Flow for Security Processing J 
80 



Chapter 6 System Control Functions 

6.2.1 Station Sign-on/Sign-off 

Intercomrn allows the user to assign security keys 
operators. For any terminals in the network marked 
sign-on/sign-off terminal, the operator enters a security 
first input of a terminal session. This code authorizes 
at the terminal to enter any transaction for which the 
cleared. 

to terminal 
as being a 
code as the 

the operator 
terminal is 

An input transaction for which the operator is not cleared causes 
automatic rejection of the input message. At the completion of a 
terminal session, the operator signs off to disassociate the 
authorization from the terminal. In addition, the user may optionally 
include automatic sign-off based on a time interval stated for the 
terminal, or a default value taken from the System Parameter Area 
(SPA). 

6.2.2 Transaction Security 

The user is allowed to specify the valid transactions acceptable 
from any terminal in the teleprocessing network. Entry of a 
nonspecified transaction from a given terminal causes automatic 
rejection of that particular input transaction. 

In addition, certain verbs can be marked as being acceptable only 
from the system control terminal. Entry of such a transaction from any 
other terminal will not be valid. The specification as to which 
transactions are covered by this latter facility is dynamically 
modifiable via system control commands. 

6.2.3 Station/Transaction Sign-on/Sign-off Security 

This combination controls which operators may enter which 
transactions at which terminals. 

6.2.4 User-Written Security 

Intercomrn users can also inc lude the i r own secur i ty checks, in 
addition to or instead of the security checks provided. This is easily 
facilitated through the use of strategically placed EXITs in the 
Intercomm code. 

6.2.5 Extended Security System 

Intercomm's Extended Security System (ESS) is designed to provide 
comprehensive control of access to system resources in a multiregion or 

81 



Chapter 6 System Con~rol Functions 

single region Intercomm system. The security environment is defined 
dynamically using the ESS command language, thus eliminating the need 
to maintain security information in static tables and to interrupt 
service whenever the security environment changes. Furthur details are 
provided in Extended Security System. 

6.3 MESSAGE LOGGING 

The system log (INTERLOG) contains a historical record of all 
traffic within Intercomm. It provides for system control and complete 
documentation of per~ormance. It is a variable-length sequential data 
set which may reside on disk or tape at the user's option. The 
Intercomm log records the phases in message processing, and 
additionally and optionally, the file updates performed. (See Chapter 
10, File Recovery.) 

6.3.1 System Log Entries 

System log entries are automatically posted at key processing 
points. Each message is logged at the time of entry on a subsystem 
queue via the message queuing facility. The Subsystem Controller posts 
a system log entry indicating that a message has started processing 
through an application program. When a subsystem returns control to 
the Subsystem Controller, a system log entry is posted to indicate 
completion (normal or abnormal) of the message that was in process. 
The Front End logs the output message when queued for transmission to 
the terminal, and when it is transmitted. Based on the time/date stamp 
of these entries, a timing analysis utility supplied with Intercomm may 
be used off-line to produce a report of message queuing and processing 
time. These statistics are generated for messages by terminal and/or 
by subsystem, and provide system totals. (See Sect ion 6.5, System 
Statistics. ) 

An important function of the log is that it can be used as a 
debugging aid. For example, in testing out a program there may be 
difficulty in analyzing why it is not functioning properly. Subsystem 
created entries on the system log can be used to conveniently trace the 
message path. The log table within the logging routine can be adjusted 
so that entries which would have been made during testing will be 
suppressed during live execution (production). 

6.3.2 "Cser Log Entries 

Aside from Intercomm system log entries on INTERLOG, the user can 
gather invaluable information about the system from various user log 
entries. These additional entries can yield statistics about a 
particular operator or record exceptional conditions in the system. 
Also, the log can record that file update controls have taken place. 

82 

J 

J 



Chapter 6 System Control Functions 

Intercomm allows user programs to place application log entries 
on the system log data set; these entries can help clarify the status 
of message processing in the case of system failure. Because 
application-dependent loggings can be performed at any point during 
actual processing of a transaction, indication of the point in 
application processing where failure occurred is possible. 

6.3.3 Logging Control 

Users can selectively start/stop Front End, subsystem and/or file 
logging by entry of a system control command. Note that suppression of 
logging negates restart capabilities and suppression of Back End 
logging negates charge-back accounting called System Accounting and 
Measurement (SAM). This facility is primarily intended for use in test 
systems not normally using recovery or SAM. For these systems, logging 
could be turned on to gather statistical information for a short 
duration and then be turned off. 

6.4 CHECKPOINT/RESTART CAPABILITIES 

The Intercomm standard checkpoint facility enables system 
integrity to be maintained 'across a system failure. All internal 
information necessary is checkpointed and restored by the system. In 
addition to the information Intercomm checkpoints from its own tables, 
this feature allows the user to request his own data to be 
checkpointed; the user can specify a given area of main storage or the 
size of the user SPA area to be checkpointed by the system. The 
checkpoint data is written to the log at checkpoint time and, at 
restart time, the data is restored exactly as it was when the last 
checkpoint was taken. 

The message restart capability of Intercomm provides the most 
complete message recovery possible with the least overhead. Utilizing 
the Intercomm log, message restart restarts messages from the point of 
system failure, restoring the status of all messages that had completed 
input transmission. Provisions are included so that any message 
already completed is not reprocessed. The user need only maintain a 
single BSAM log file for logging (if optioned, file image logging 
resides on this single log as well), and any size record up to the 
hardware limitation of the storage device may be written to the log. 

Recovery consists of reading the log in reverse sequence and 
placing uncompleted messages back on the application program or 
terminal queues. In performing the recovery analysis of message log 
entries, a message accounting routine contributes to the fast speed of 
the restart by abbreviating and minimizing the scan of message log 
entries. 

83 



Chapter 6 System Control Functions 

Messages can be classified differently within the terminal or 
subsystem message set; therefore, selectivity is possible. Messages 
can be classified as: critical and always to be restarted; desirable 
and to be restarted if possible; noncritical and not to be restarted. 
The message restart capability also permits the user to specify the 
relative importance of message logging on either a terminal or a 
subsystem basis, or both. 

Both the restart and normal modes of Intercomm operate 
concurrently within a single execution. New messages are accepted from 
a live terminal network as soon as repositioning of the log to the 
failure point indicates reprocessing of messages is to begin. 
Utilization of FIFO queues ensures that processing of live messages 
does not occur before processing of restarted messages is completed. 

The Restart facility is entirely transparent to the application 
programmer, the only user responsibility being that of table entries 
made at the system level. Intercomm's message restart is derived from 
definition of the critical nature of the restart action for each 
pertinent message thread. Additional status checkpoints taken on the 
Intercomm log tape decrease the time needed for the recovery program to 
retrieve messages subject to critical recovery. Thus, the user can 
obtain urgent restart of critical messages and achieve speedy recovery 
of the system from failure. With Intercomm Restart/Recovery, the 
previous processing level can be regained and new message processing 
can continue without excessive loss of time. The entire message 
restart system is coordinated with the recovery of files and/or data 
base management system file data, as appropriate; the File Recovery 
Special Feature is also implemented through utilization of the 
Intercomm log. 

6.5 SYSTEM STATISTICS 

The statistics for performance analysis and system control that 
are available from Intercomm include the following: 

• Terminal Status may be 
(supervisory) terminal at 
terminal, a line, or the 
sample report.) Messages 

requested from the master control 
any time. This status may be for a 
entire network. (See Figure 26 for 
queued status may also be displayed 

and used to determine transmission backups, low storage 
conditions, etc. 

• File Statistics may be requested from the master control 
(supervisory) terminal at any time to assess file 
organization. Each time the File Handler performs 
input/output operations, it optionally maintains the 
statistics of the files. (Figure 27 illustrates the 
report.) Off-line printing of statistics printed at a 
user-specified interval is also available. 

84 

J 



Chapter 6 

• 

• 

• 

System Control Functions 

Subsystem Statistics are generated on the master control 
(supervisory) terminal on request. The statistics are by 
subsystem, showing the number of messages processed by each 
subsystem and are maintained during the on-line operation by 
the Subsystem Controller. (See Figure 28.) 

Off-line Statistics may be 
file created by the system. 
by terminal, by transaction, 
produce: 

generated using the message log 
The statistics generated may be 
or by appl icat ion program, and 

Traffic histograms by terminal or subsystem giving number 
of inputs for each half-hour interval, and a title line 
showing total input count, maximum terminal or subsystem 
use and time of maximum use. (See Figures 29 and 30 for 
sample printout by terminal.) 

Response time reports by subsystem including response 
time summary and response time analysis. (Response time 
is broken down to one-second intervals and statistics for 
the subsystems and Output Utility are shown for each 
hourly interval.) 

In addition to providing an off-line program to analyze the 
system log, the Intercomm-supplied analysis routine may also 
print an hourly report of volume in the system. 

Storage Utilization Statistics may be optioned and printed 
out off-line in a combined format at the time interval 
specified by the user. These statistics constitute extensive 
global and/or detail core use information. (See Figure 31.) 

• System Tuning Statistics is an optional facility that allows 
Intercomm to gather information relating to its own 
performance characteristics, particularly those 
characteristics that are amenable to tuning via parameter 
manipulation. This information is maintained in an area 
wi thin the System Parameter Area. Per iodically, accumulated 
data is printed out to give definitive information that can 
be input to adjust system parameters. This facility is 
invoked by inclusion of a printout DD card. The time 
interval for report printing is user-specified. Minimal 
overhead effect is experienced with this statistic gathering 
feature. 

• A System Accounting and Measurement Facility (SAM) is 
provided to detail resources and facilities (including 
storage) used per subsystem thread or per terminal input. 
Generated totals may be used for charge-back accounting. 
Statistics are gathered on-line, stored on the Intercomm log, 
and reported via an off-line utility. 

85 



Chapter 6 

TERMINAL 

CNTOI 

NYCOI 

GRNOI 

DDNAME 

INTERLOG 
SYSPRINT 
LOGOOO 
STATFILE 
DPDSKQRB 
RCTOOO 
DESOOO 
TOTALFIL 
QUEUEN 
QUEUEU 
VRBOOO 
QUEUEB 
ACCTFIRB 

SUMMARY 

SUBSYSTEM 
CODE 

AA 
QR 

TOTAL 

System Control Functions 

LINE POLL STATUS REASON 

030 OA09 UP 

030 OAOA DOWN 

021 0909 DOWN I/O ERRORS 

Figure 26. BTAM Front End Status Display 

SELECT ACCESS TOTAL AVERAGE 

527 669 669 1. 27 
0 526 526 

54 54 54 1. 00 
87 749 749 8.61 
40 22 22 0.55 

6 6 6 1. 00 
4 4 4 1. 00 
4 4 4 1.00 

21 13 13 0.62 
29 8 8 0.28 

1 1 1. 00 
6 2 2 0.33 

1 1. 00 

780 1059 1059 2.64 

Figure 27. File Handler Statistics Report 

TOTAL NUMBER OF 
MESSAGES PROCESSED 

1046 
1512 

15482 

COUNT 
MAXIMUM USAGE 

3 
4 

36 

Figure 28. Subsystem Statistics Display 

86 

J 



Chapter 6 System Control Functions 

... .., 
c ... 

• • 

00 .. 
< 

"" ... 
C! .. 
;.: 
IoU 

~ 

"" '" :w 
IoU ..., 
'" ..... 
::I 

~ 

'" ... ... 
• • 

"" "" 
::c ... 
z ... 
~ 
'" .. 
~ 

-I 
C ... 
a ... 
• • 

~ 
-I 
C 
.: 
1: 
co: ... ... 
ex 
a ... 
'" oj 

.... .. 
c .. ... 

0 
0 
0 ... ... 
0 
? 
0 
0 
N 

~ 
0 
0 
Q .. 
0 
0 
0 
4 

~ 
0 
a ., -
0 
0 
0 
N 

0 
0 
0 
0 

0 
0 
a 
CD 

0 
0 
0 • 
0 
0 
0 ., 

0 
0 
0 ... 
0 
0 
0 
a 

a 
~ 

• • • • • • . . . . . . ~ . . . . . . . . . . . . 
• • • • • • • • 

o 
o 
... 
"' 
o 
o ... 
"' 
o 
o .. . . . . . . .. ~ 

o 
o • • • • • • • ,.. . . . . . . . . . . . . . . . . . . . . ~ .. ~ 

• • • • • • • • • •• 0 
o 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ... . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ~ 

•••••••••• •• e .••••••••••• 

• • • • • • • • • • • • • • • • • ~ • •• 0 
o 

•• 
• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • 
••• e •••• -.. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • 

Figure 29. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

o 

'" 

Sample Histogram for a Terminal 

87 

o 

... ... 
o 
o ... ... 
o 
o 
III 

o 
o 
,.. 

o 
o 
... 

o 
o 

o 
o ... 



StAJISJICS fDa tll"lhAL 10GOl •• TOUL "AS lc.1 EIITklES •• PEAl( USAC;f ',jAS 40 f~lRIFS AT I~OuO 

S.,~ ON T'Ki • OiOl SIGH U~F TI"E • ZOO) P(AK SUDSrST(K WAS ••••• lPDI ••••• 
CD 'SI,;U,srUtS· 
CD 

SONO SONl 1Iil0 'GIl D.SO DIU UPIJ UPl E 11Z EPDO EPOI (POl rsSl telO CClI 

·'UU~T' 1 1 U 11 U U. S • 4 l~ 4,1 2ea 1) 1] 

'SU'S'SlEM~.EWRO hill hAl CASO CAU 
. 

CASZ lH"O INKI INK2 E .C2 cceo CCCI esC) CSC2 CPuO CI'OI 

-'0010'- ). ) l • • 7 5 5 1 • Z Z 2 2 1 :l 

Figure 30. Sample Statistic. for a Terminal 

L L 

•• 

CCll E C( ol 

II, 19 

CpOl CP<ll 

1 Ii 

PM~f 08 

Hel 

21 

~ 

n 
:s 
til 

"0 
n 
CD ., 

'" 

Ul 
"<; 
Ul 
rT 
CD 
3 
() 
o 
::J 
rT .., 
o 
I-" 

tr] 
~ 
::J 
n 
rT ..... 
o 
::J 
Ul 



r 

hi ..... 
011 
~ ., 
It 

\,.oJ ..... 

0 
0 ., 
It 

c: 
III 
It 

VI 
~ 
I» 

CD ~ 
..0 ..... 

1/1 
~ ..... 
n 
1/1 

ttl 

'" 011 
It 

..... 
0 .... 
IV ....., 

SHRAGrS IS~Uf( 

DOlf'l[ OIcpn~ Pflr~Trr 

OOlJflf .. O~D~ on He 
TOTAL PIlOl ~TfH(( 
R[Cl[STS FILLEr r~ 1C:(~P0(1l 

DOUfP' IjDS '~P'f( r~ Ico"prOl 
OCUHf IIr~ "A~1f[ U Ir.CMPnOl 
I COHOOL f AlllF' ! 

SHAfRf r <; I~SlH 

PIlOL f\LOCKS fP!f( 

OOuPL£ 0I0RO~ r'rr( 
A['L£S'S NOT flllrO 
AV£RHf Sf'flO I !"GTH 
II C B ,A [lL r R llf ( , 1 I 0." 

( 

(01)[ USf <;UTTSTICS TI"[ 1~ •• <.V3 

'J31f.':> 
~?~";>21 

;> ;'~" 221 
1 ~ I r f\ 0 

_f,A"'J 
l<jo~q]q 

11"1(1 
6~71 

':>3"f,2 
_f,~'1q 

:'2.A'IO] 
o 
I­
o 

AVfPAr,r R[nUr~T lr~r,T~ 

III G It T HIS P [ II I 0 0 
POOL STORAGE avAILARl£ 
P [ R (( '" TAG f "M I C ( MP 00 L 
f'[Rrl""'Gr "PI IC(MPOn 
AVrRAGf rrllAl.f IJ(~ WASlE( 
P[RC[NT fAIlUR[,> 

QUIrk FR([<; 
nOUAL[ weROS OU'~TANDING 

PfRCfNT "or FILLID 

nlSTRIBUTION OF rORf BleCK SIZEs 

~~ 

lI'H2 
IO~~AO 

I'f 
f~ 

2 
13 

'I6f:H 
OJ ~ 18 

o 

r 
"f,. 1 III 

~IGH THIS RU~ 12382 
ffRCENT AVAILABLE 10 

,nRAGE LENG'~ FM ICOMPOOl '11 
f£RC[NT WASTAB£ 'I 

F£RCUHAGE QUICK "9 

Rl ~G f I'HI~R£R or ArGUrS1" CON(UIlfl(NCY-- Nil II IiIG~ lOll .VEnU[ 
I- f 4 1"'12 7? 81 10 67 

f<'- 1 ; 11 I.~O< 51 116 'I 56 
J?'l- 1 <? "H2 1 0 <'I ? 7 
1<J3- ;> ! f, ?6'1. 2f- 30 0 23 
?" 1- ~;O ;>:51)31i • 27 J 7 
~ ;> 1 - "P_ I l?q II " :5 
]fl'l- ".~ 1-0'1 6 0 ? 
."'1- iii? 80; ;> (, 0 <! 
~ 13- o;U, ~'I'i 3 7 1 ) 

571- 6"0 ~ 1 " ? 1 1 , 
f"l- H'I f,1i r ? 0 I 
H'l- lEA :>1' I 8 0 1 
1"'1- fl~" 2 0 1 0 f) 

II ~3- pc" fl f, 0 :5 0 0 
P 91- 'If(l 5' n 3 0 0 
'If 1- I,);. l"i'l ,. ;> 0 1 

10;>">- I~PA 1f,1j ? 7 0 1 
101'''- I I!? ~ r J 0 0 
II!>]- 1?l6 1P 0 3 (I 0 
J (11- I2fP 7" '1 ., 0 0 
12111- 1'''- ?12'1 10 1'1 0 J~ 

1~_5- H(" " P 1 0 0 
I" 0'1- I'll? ,,>eI (\ 5 0 1 
1" 73- 1':i~6 'I' (I 3 ~ 0 
1'\31- 1f,(0 f: n 'I 0 0 
If 0 1- If,f" II 0 'I 0 /) 

IH">- 11;:8 /I " OJ 0 0 
11;>9- I 1 <? 10~ 0 'I 0 1 
11'13- Ill! f " " • 0 0 
J P. ! 1- Iq;;(l I? <! I I 
1'1<'1- Iqf. 3j~ fl 1 0 I 
1""">- 20·" 3" "i 1 ? "i 
20-q- 21 J;> ?' (I 1 0 0 
n_U~ ; 1 l/, .--.. --~-------

___ ' .. _r ___ '_'_I ____ ~ _____ 2. ____ , 

n 
::r­
I» 
'0 
~ 
C1) ., 
a-

VI 
'< 
1/1 
~ 
/1) 

EJ 
n 
0 
::J 
~ ., 
0 
I-' 

tTl 
~ 
::J 
n 
~ ..... 
0 
::J 
1/1 



CJ 
21 11- ;>240 , 0 ~ 0 ;5 

22 41- ;: .H4 0 " 0 0 C '" '0 
no')- ;: 'f II " 0 0 ') <' 

2.3f'l- ;>q~2 ? ... 0 " 
CD ., 

2~33- ;>. < f, 2')'1 , ;> n ? 
;>4'11- ? ~f 0 , 1 1 0 I 0-

;>~H 1- ? b ,4 ... 0 n 0 
2f ?'i- t f,fR ~ ~ 0 0 'I 
HI''l- .. 1 ~;> 7" Il I 0 0 

'TJ 2153- 2AI6 ~ 1 0 n ~ 

(JQ ;> Pll- ?PICl r n 0 n Il 

.: 2(1111- I Q,,'I ., n 0 (1 n ., 
2«;"')- HeR 0 0 a n {l 

CD 
3DO~- ~ 0 12 0 0 0 0 " UJ )oll- 31~6 (I n 0 (I 0 
3)31- ~2((I ) n ) 0 0 

320) - '?f" ;> ~ I (I I 
() 3;>1-<;- .3 3;R 3 ? ;> I ;> 
0 ~~~CJ- 3 ~<; 2 0 r 0 0 (1 ., 
CD 3~'n- ~q~f, r 0 0 0 0 

34" 1- J.,;n n n 0 (I 0 e 
III ~"21- ''">f'' n /) 0 0 0 
CD 3'i1l5- 3b"A " 

., (1 (I (I 

Vl Jb"'l- HI2 'I n 0 0 0 
..0 
0 

,... 
! 113- ! 1 H. ~ 0 0 0 0 

11> ,... 31 J 1- :P4n r 0 0 !J 0 .... H41- ~ c. (~ [I 0 0 I) 
III ,... 3'l1l">- JQfll n 'l 0 0 (I .... 3%'1- 4r~2 ., r 0 (I I 
0 
III 40 ~J- ~ (Ub G ,. 0 I 

40ql-2b?1~f, 0 I 

r-o Vl 

'" porl lJsr OE T • Il STAT 1ST Ir.S '<: (JQ 
III 

CD ,... 
BlOCII SI l[ fll(O~ RIQL;rS1S F Il L [0 fAIl[O PlR([NT rAll[C Ave fREE ELCCIIS e A l lie S All OC AT ( 0 AVG OBlWOS WASTAGE CD 

to.> 3;> r r 147 f,'i 1>2 5b ~ ?42 0 a 
0 b" Il )n"" 11<" t; 0 0 11 10513 ? () 
N) 

9f. • ! 51,<1 5~"7 3H f 17 !:48f>O 0 

to.> 1211 H <11">1 IIf. ,C; 1 J? ;> Cj 121H'H 
;:s ,... 

If, 0 I 12fb 1:> 13 13 2 5 23& 'l2 ., 
1'l2 , l1">b 1 7 1 1 3et 3 ~ , 71113 1 

0 - .-
224 1 I ;>0'1 2C"f, "i 1 5 ~b709 0 
25f. I); 5'13 t;'l3 0 0 102 IR23" 1 'TJ 

.: 
268 1101' 0') 3 ')5 6 2 ~ 32""1 1 ;:s 

311" 2<'Ole 1&;>63 57'11 27 &0183'1 0 0 
n 

32 n 1 I 11 I 1 II r I !: 6&11 0 ,..... 

~ 3f> 1 I '11\~ 'HI' 0 C 1 !: '11211 0 0 
;:s 

35., f, f- a 0 " ?t.l 0 III 

l, L l, 



Chapter 6 System Control Functions 

6.6 CONTROL TERMINAL 

Intercomm includes provision for a terminal to be designated as 
the control terminal. This terminal can control the operational status 
of the on-line system. It can be either a specially designated 
terminal, a normal operator terminal, or the system console. It is 
notified of all exceptional conditions occurring in the on-line system, 
for example, program checks, abnormal terminations, and loops, and it 
has the capability to respond to these situations as required. The 
command functions available to the control terminal include the 
following: 

• Start/stop of communications lines, terminals, or the network 

• Start/stop of logging 

• Start/stop of Resource Management statistics 

• Open/close of on-line data sets 

• Change of security requirements 

• Display of various statistics 

• Closedown of Intercomm (both normal and immediate) 

Network, security, and system control, status and statistics 
commands are described in System Control Commands. 

6.7 TESTING FACILITIES 

Intercomm can operate in a test mode via any of the following 
methods: 

• Message processing in batch mode 

• Time-oriented simulation of terminals where disk data sets 
exist for each terminal simulated 

• A combination of live and simulated terminals 

These test facilities are utilized without any changes to the 
user application program(s) being tested. 

Batch test mode allows for input of transaction data at system 
startup time through SYSIN. Transactions are queued and passed into 
the system at an extremely high rate, causing multithreading to take 
place in the application program almost immediately. While this 
facility allows for pseudo high volume testing, it does not represent a 
projected processing capability based on random message arrival rates 
from a simulated network. This capability is provided by the terminal 
simulator. 

91 



Chapter 6 System Control Functions 

With the terminal simulator, separate message queues are 
established on direct access data sets for each simulated terminal. 
Intercornm retrieves messages from terminal queues based on a unique 
time value for each pseudo terminal. The terminal simulator allows the 
user to simulate a live Intercornm environment by defining a network of 
these pseudo terminals. This network could represent the eventual 
network and message traffic a user expects. 

to operate The third type of testing facility allows the user 
·..;ith all the terminals of the present on-line system 
those terminals which are not presently operating or 

and to simulate 
which represent 
the testing of the eventual projected network. This facility allows 

application programs with a combination of both live 
pseudo terminals. This combined network can then be 
control of Intercornm. 

terminals and 
opera ted under 

As an additional testing facility, the system log from a previous 
execution may be used to saturate the volume of messages to be 
processed. Log Input passes messages to the subsystem according to the 
implied intervals of the log date/time stamps, or by a factor of that 
time. The Log Input messages are introduced in the same time sequence 
as the original. Also, the Log Input facility can discard terminal 
output messages generated as a result of Log Input. As a result, the 
Log Input feature can also be used in conjunction with a live system. 
(Naturally, care must be exercised to insure appropriate file integrity 
when mixing live messages with Log Input messages.) Restrictions on 
the use of Log Input exist where subsystems make use of specific 
terminal-ID values since the Log Input output discard facility inserts 
a special terminal-ID value for all its messages that is then used by 
the Front End to distinguish output messages generated as a result of 
Log Input. 

In addition, the Hodel System Generator 
allows the testing of system performance 

(HSG) Special Feature 
prior to coding user 

in Chapter 16 of this application programs. (HSG is discussed 
document.) 

92 



Chapter 7 

FRONT END FACILITIES 

7. 1 OVERVIEW 

The Intercomm Front End has been implemented in a highly modular 
fashion. The Front End separates the physical management of a device 
from the logical management of a device. The physical aspects of 
device management (1 ine control) can therefore be handled by BTAM, 
TCAM, VTAM, or a hardware Front End interface while the logical device 
control is still provided by Intercomm. This facilitates an 
environment where multiple line control disciplines, e. g., BTAM and 
VTAM or BTAM and a hardware Front End, can be used wi th a sing le 
Intercomm system. Since application programs are coded in a device­
independent manner (via use of Message Mapping Utilities or Edit/Output 
Ut i lit ies), the terminal network can be changed without impact on the 
applicat ions. 

This section discusses the standard Intercomm Front End which is 
also referred to as the BTAM Front End, as described in BTAM Terminal 
Support Guide. The facilities described, however, are also pertinent 
to TCAM/Intercomm users since even though the TCAM MCP executes in a 
separate region, Intercomm still maintains logical control over the 
devices supported under TCAM. VTAM is discussed in Chapter 20 since it 
is supported by Intercomm's SNA Terminal Support Special Feature. 

Near ly all IBM asynchronous, synchronous and SDLC devices are 
supported by the Intercomm Front End, such as: 

• 2260 series local and remote, clustered and unclustered, CRTs 
and printers 

• 2741 leased and switched 

• 2780 leased and switched 

• 3270 series 
unclustered, 
Light Pen 

• 3600 

• 3790 

local and remote, 
CRTs, printers, 

leased line, 
badge readers, 

• System/370 CPU-to-CPU, leased and switched 

• All plug-to-plug compatible devices 

clustered and 
and Selector 

Many non-IBM terminals are supported, such as Teletype (TWX) and 
Dataspeed 40. 

TCAM users may operate with most of the terminals supported by 
that access method. 

93 



Chapter 7 Front End Facilities 

Additionally, the Intercomrn Generalized Front End Interface 
(GFE), a Special Feature, allows access to nonstandard hardware via 
user exits in the BTAM Front End. GFE has been used to support 
CDC/MIOOO, PDP/II, Periphonics, SUPER NOVA, Varian, and other Front End 
co~munications processors. 

7.2 MASTER CONTROL TERMINAL 

The Intercomm master control terminal is a system supervisory 
terminal which controls the operational status of the on-line system. 
It can be either a specially designated terminal, a normal operator 
terminal which is also used as the master control terminal, or the 
console. This device is notified of all exceptional conditions 
occurring in the on-line system, such as program checks and program 
loops in application programs, and is given the capability to respond 
to those situations as required. 

7.3 START POLL/STOP POLL 

This facility allows the master control operator to dynamically 
stop all BTAM polling of terminals throughout the teleprocessing 
network. Polling is an invitation from the CPU to a terminal or line 
group that allows terminal transmission of the message. This applies 
to all leased lines and their associated terminals. 

As a user-specified option, Intercomm may be directed to 
automat ically stop poll ing under low storage condit ions. Users must 
evaluate the applicability of this feature to determine whether 
suppression of input would resolve the storage contention problem. 

Intercomm also has the facility to dynamically start and stop 
either a complete line or an individual terminal from being polled. 
These features give the operator a larger degree of control. When 
necessary, the operator can start all input again by issuing a Start 
Poll command. 

7.4 IDLE INSERTION 

I n t e r c omrn 's B TAM Fro n tEn d has age n era li zed a b i li t y t 0 ins e r t 
idle characters 
user to indicate 
idle characters 
(NL) character. 

7.5 SHORT VERBS 

into 
in 

are 

an outgoing message. This facility allows the 
the device table, for any buffered device, that 

to be placed in the message after each new line 

Intercomm usually requires a transaction identifier of four 
characters. This requirement is eased to allow the transaction 
identifier to be either two, three or four characters in length. 

94 

J 

J 

J 



L 

Chapter 7 Front End Facilities 

7.6 BUFFER MODE 

Users of Teletype terminals frequently deal with long streams of 
input punched onto paper tape. The user, usually, cannot allocate main 
storage or processing time to treat the whole stream as one message 
although it is frequently punched onto paper tape as a single message. 
As a more efficient method for handling large input messages, Intercomm 
provides a buffer mode of operation for Teletype users. In this mode 
of operation, the user defines buffers in a buffer pool not necessarily 
of message length. As each buffer is filled, Intercomm takes the data 
out of the buffer's portion of the message and starts filling the next 
buffer with a subsequent part of the data. Data transmission is not 
stopped or delayed during this process. This mode of operation allows 
the segments of the message to be queued and even processed while more 
data is being received for the same message. 

7.7 BACKSPACE CORRECTION 

The Intercomm Front End allows the terminal opera tor us ing an 
unbuffered terminal, the same degree of error correction flexibility as 
the operator using a buffered terminal. Using a buffered terminal, the 
operator keys information at the terminal, visually verifies the input, 
enters corrections for errors into the terminal buffer, and then 
transmits the data to the central computer for processing. Using an 
unbuffered terminal, the operator cannot visually verify the input 
since it is transmitted character by character as it is typed. 
Intercomm's backspace correction feature allows the user, by software, 
to backspace in the computer buffer and correct errors that are 
detected in the typed and transmitted data. The application program 
receiving the message data gets only the correct data. All error data 
as well as any backspace characters used are eliminated by the 
Intercomm Front End. 

7.8 TERMINAL CONVERSATIONAL FACILITY 

This is the ability of the Intercomm Front End to communicate 
with any terminal in a conversational mode. It is even applicable to 
those terminals used on an autopoll basis. Conversational mode reduces 
polling overhead by discarding new input from a terminal until a 
response has been transmitted to a previous input message. This 
differs from the conversational facility for subsystems (which is 
discussed in Chapter 3) in that it applies to all terminals which might 
attempt to communicate with Intercomm and requires no application 
program intervention. 

95 



Chapter 7 Front End Facilities 

7.9 LOCK INITIALIZATION 

Users are able to lock a terminal to an application program via a 
table specification, or an input message generated from the terminal, 
or a startup program. This capability is useful in situations where 
terminals are permanently assigned to specific application programs. 
In a situation where the operator might determine which application to 
use, or where the terminal might use different applications at 
different times, LOCK can be used, in coordination with UNLK, from the 
terminal. Macros that define the Front End to Intercomm may be used to 
specify the locking relationship between the terminal and the 
application program. 

7.10 AUTOLOCK VERB 

The terminal user can direct Intercomm to automatically lock the 
issuing terminal to a verb on its first entry from a terminal. The 
auto lock facility is useful for transactions which result in a 
long-term, repetitive execution of one application, such as a data 
collection operation. The terminal can be unlocked by either the 
terminal operator or a subsystem issuing the UNLK command. 

7.11 SPECIAL AID PROCESSING (For IBM 3270 Terminals) 

When certain verbs are entered, Intercomm does not process AID 
key requests; instead, they are passed directly to the subsystem. This 
feature is verb-oriented as a user specification. If not specified, 
Front End Table coding may equate selected verbs with certain keys to 
substitute for terminal input or to override the input verb. 

7.12 3270 GENERAL POLL 

IBM 3270 terminals may be utilized in a general poll (rather than 
a specific poll) environment. With this technique, Intercomm issues a 
poll for each control unit on aline and allows the control unit to 
poll its individual units. Under BTAM, General Poll can substantially 
reduce line use for control sequences and usually improves response 
time and throughput capacities. Under General Poll, specific devices 
can be marked logically down with a TDWN command. In this case, output 
for these down devices is treated in the normal manner for any down 
device (queued or routed to an alternate device). Input messages from 
down terminals are discarded. 

7.13 GLOBAL WTO ROUTING 

Users may exert system-wide 
messages, inc luding control terminal, 
Support (MeS) destinations. 

96 

control 
SYSPRINT, 

over console operator 
and Multiple Console 



Chapter 7 Front End Facilities 

7.14 FRONT END TABLE VERIFICATION 

An optional feature is available for BTAM and TCAM to error check 
the Front End tables supplied to the system. Most errors that users 
make in building these tables are trapped by the Intercomm macros used 
to generate these tables. There are some errors involving complex 
relationships which cannot be checked at assembly time via the macro 
definitions. These errors are checked automatically by the system at 
startup time if this feature is invoked by the user. Errors are 
reported for resolution by the system programmer and the system is 
aborted only after all checks are performed. 

7.15 NETWORK CONTROL COMMANDS 

The master control terminal has the ability to dynamically alter 
network activity via transactions to start or stop transmission on a 
line or terminal basis. An alternate terminal can be specified when a 
terminal is shut down. See System Control Commands. 

7.16 ALTERNATE ROUTING 

Messages destined for nonoperational devices can optionally be 
routed automatically to a table-specified alternate device. If no 
alternate is specified, the messages remain queued until the 
destination terminal is operational. A network control command can be 
used to dynamically specify an alternate if required. 

7.17 AUTOTPUP 

If a terminal is taken out of 
errors or other hardware malfunction, 

operation due to transmission 
the Front End logic allows auto-

matic activation of the device after a user-specified time interval. 

7.18 QUEUE FLUSH 

A system control command is available to flush message(s) queued 
for a particular terminal if the user wants to eliminate messages which 
are no longer of interest to the operator, for example, a mUltipage 
report. 

7.19 FRONT END CONTROL MESSAGES 

An application subsystem can create special control messages 
requesting verification of successful transmission of a set of 
messages, or requesting an override to normal CRT alternate 
input/output processing, or passing a group of related messages for 
transmission in an efficient queuing scheme (DDQ). 

97 



Chapter 7 Front End Facilities 

7.20 GENERALIZED FRONT END INTERFACE 

The Generalized Front End Interface (GFE) Special Feature allows 
an Intercomm user to extend the capabilities of the Intercomm Front End 
to include support for nonstandard devices. The standard Intercomm 
Network Configuration Table structure is used to define each device. 
GFE provides interface to user-written routines which perform the 
actual I/O and related functions required to access the appropriate 
device(s). The user's access method replaces the access method in the 
Front End for the nonstandard equipment. 

Provision is made in GFE to access user code for the following 
functions: 

• Validate table entries at startup 

• Line initialization at startup 

• Read/write 

• Terminal up/down transactions 

• Start/stop line transactions 

• Line termination at closedown 

Since messages produced by the user READ routines are in turn 
processed by the Intercomm Front End, all control characters embedded 
in the message text must conform to a specific device type. Similarly, 
output messages passed to the user WRITE routine will contain control 
characters added as required by Intercomm. The user's table 
definitions for each GFE line must indicate which of the following 
device types appears to be in use: IBM 2260 remote, IBM 2740 (Model 1 
or 2), IBM 3270 (local or remote), IBM 1050. Naturally, any device 
which simulates or is plug-to-plug compatible with these devices can be 
used with GFE. See the Generalized Front End Facility. 

Input/output messages are formatted as standard variable-length 
records. Line control characters delineating beginning and end of 
message are supplied by user code on input and by GFE for output via 
device-oriented table entries. 

7.21 ~CAM INTERFACE 

An interface to the TCAM MCP region is provided via the GFE 
Special Feature. TCAM process and destination queues are used for 
message terminals. Most facilities available for BTAM terminals and 
commands for network control in Intercomm are available. Detailed 
information can be found in the TCAM Support Users Guide. 

98 

J 

J 



Chapter 8 

FILE HANDLER FACILITIES 

8.1 ACCESS METHODS 

The File Handler makes all standard data set organizations 
(sequential, direct, indexed) and processing techniques (by logical 
record, by physical block, and indexed, sequential, or random accesss) 
available to Intercorrun subsystems written in any language. Users may 
also interface wi th their own EXCP-level access methods or BPAM via 
standard IBM macros, replacing WAIT macros with Intercorrun DISPATCH 
macros. File Handler facilities are described in detail in the 
Operating Reference Manual, access parameters in the Prograrruners 
Guides. 

The following access methods are supported by the Fi Ie Handler 
and are available to all application programs: 

• BDAM--fixed-length and variable-length, keyed and direct 
access 

• BSAM--normal support 

• QSAM--normal support 

• BISAM--iixed-Iength and variable-length 

• QISAM--fixed-length and variable-length (optionally treated 
by File Handler as BISAM) 

• VSAM--keyed, sequential and direct 

8.2 BISAM/QISAM REPLACEMENT 

One of the more powerful File Handler facilities for ISAM files 
is the optional replacement of QISAM with BISAM. This transparent 
capability functions in the following manner. Application program 
QISAM-type requests are treated by the File Handler as if the request 
were made for BISAM, thus eliminating multiple DCBs, and allowing 
record-level range of exclusive control. A large reduction in the use 
of main storage is realized upon elimination of operating system QISAM 
routines, and the associated channel programs, I/O areas and control 
blocks. 

99 



Chapter 8 File Handler Facilities 

If this QISAH via BISAH option is not utilized, the File Handler 
can support both QSAH and QISAH in an overlapped manner. If specified 
as a user option, all GETs to QSAH and QISAH files are overlapped with 
other processing in the Intercomm environment. Without modifying the 
operating system, Intercomm overlaps GETs to QSAH and QISAH files with 
other Intercomm productive work, without placing the entire task 
issuing the GET into a wait state. In addition, the File Handler 
leaves one QISAH DCB open throughout the day for users of each QISAH 
file. If concurrent use of the QISAH file by two or more applications 
is required, a second (or third, etc.) DCB is opened as required. 
Thus, for the majority of messages, the QISAH DCBs will not have to be 
opened. This applies only to QISAH since all other access methods with 
Intercomm require only one DCB for the file. 

8.3 VSAH SUPPORT 

VSAH support is provided by the File Handler. Subsystems coded 
to access ISAH files can operate against files converted to VSAH and 
function with little or no change. However, File Handler service 
routines developed for VSAH allow application subsystems to take 
advantage of specific VSAH facilities and VSAH feedback information 
provided at the completion of file access. KSDS, ESDS and RRDS files 
may be accessed directly (Key, RBA, RRN) or sequentialy. Generic 
(partial) keys may be used and alternate index and path processing is 
supported. 

Wi th Release 9.0 of Intercomm, the VSAH Local Shared Resources 
facility may be employed. This allows the user to specify that a 
common VSAH buffer pool be built and select the VSAH data sets to share 
it. Use of this facility can improve virtual storage utilization, and 
cut down on the number of VS paging operations and file I/Os. 

8.4 EXCLUSIVE RECORD CONTROL 

At the time of a READ or a GET function, exclusive control of a 
record is obtainable at the data set level (QISAH), physical record 
level (BISAM), and by block (BDAM). This prevents loss of updates by 
simultaneous file updating. (Optional QISAH using BISAM provides 
exclusive control at the physical record level.) VSAH support provides 
exclusive control at the control interval level. 

An exclusive control time-out feature causes automatic release of 
records held by a program for longer than a user-specified time 
interval. This extends to programs that are cancelled, abnormally 
ended, or program checked. This feature negates the possiblity of a 
mutual or deadly embrace occurring within the Intercomm environment. 

100 

J 

J 



Chapter 8 File Handler Facilities 

8.5 RESOURCE MANAGEMENT 

File resource management is optionally provided by Intercomm 
resource auditing and purging facilities. A chain of control blocks is 
built for every active thread, with blocks corresponding on a 
one-to-one basis with file resources acquired by the thread. Auditing 
provides a thread resource dump showing which thread was in control of 
what files, through which module file resources were obtained, and the 
order in which acquisition occurred. Files are automatically released 
via the purging facility by releasing the corresponding control block 
chain for a thread when the thread normally or abnormally completes. 

8.6 FILE HANDLER STATISTICS 

Each time the File Handler performs input/output operations, it 
will optionally maintain valuable statistical data reflecting file 
use. The user can automatically obtain such information as the number 
of times each file was accessed (separating access into inputs and 
outputs if desired and/or a separate listing of GETs, PUTs, READs, and 
WRITEs). Additionally, statistics for a particular file can be 
obtained by a terminal-entered transaction. With extensive statistics, 
the report provides a summary line showing activity for all files. 
Figures provided by the File Handler statistics are cumulative and can 
be obtained on an interval suitable for the particular Intercomm 
installation. 

If VSAM LSR is used, VSAM buffer 
reported to aid in the tuning of the 
on-line. 

8.7 UNDEFINED RECORD SUPPORT 

pool statistics will also be 
pool, and may be displayed 

Undefined record format is supported. The application programmer 
specifies a parameter in the call to the File Handler indicating 
RECFM"'U file processing. The user is responsible for any 
blocking/deblocking of undefined records. 

8.8 DUPLEXED OUTPUT 

Any sequential output data set can be automatically duplexed by 
appropriate specification to the File Handler. This facility can be 
used to create duplicate log data sets for safety in failure/recovery 
situations or to duplicate a critical user file as might be used in a 
data collection application. This facility is totally transparent to 
the user program. 

101 



Chapter 8 File Handler Facilities 

8.9 DYNAMIC FILE ALLOCATION 

This Intercomm Special Feature implemented through the File 
Handler is discussed in Chapter 19 of this document. 

8.9.1 Dynamic Deallocation and Reallocation via Command 

Under MVS and XA, an on-line command exists to dynamically 
deallocate and later reallocate a file defined in the Intercomm 
execution JCL. This makes it possible to avail a file for batch and 
on-line use alternately without stopping Intercomm execution. 

8.10 SEQUENTIAL FILE ABEND PROTECTION 

Under Release 9.0 of Intercomm, the user may select sequential 
disk output files to be protected against out-of-space (B3? ,D3? ABEND) 
conditions. Out-of-space conditions for these files will be trapped by 
Intercomm at which point the file-handler will switch to output to a 
user-specified alternate data set. As a result, no data is lost and 
monitor execution continues without interuption. 

8.11 BATCH SUPPORT 

A batch program can use the File Handler for f de access by 
coding CALL sequences as in an on-line program and providing the same 
control blocks and parameter lists. The batch program must be linked 
with the File Handler and other requisite system routines as described 
in the Operating Reference Manual. 

102 

J 

J 



Chapter 9 

INTERCOMM AND MVS 

9. 1 INTRODUCTION 

Intercomm has been extensively enhanced to achieve the highest 
possible performance in a virtual storage environment when executing 
under MVS or XA. Intercomm is designed to enable the user to take 
advantage of special features available only in MVS operating systems. 
Addi t ionally, all the Intercornm versions are fully ope rat ional under 
VM. 

9.2 THE PROBLEMS OF VIRTUAL STORAGE ENVIRONMENTS 

The IBM virtual storage operating systems provide many powerful 
capabilities to users, and in many cases can increase overall computing 
performance. A serious problem is that the techniques to implement the 
virtual systems' capabilities can seriously hinder teleprocessing 
performance. 

By having units of the workload swapped or paged in and out of 
real memory, a computer can execute a larger workload in virtual 
storage systems than in non-virtual storage systems. The paging 
technique can increase the total throughput production of the 
computer. However, while paging attempts to optimize throughput of the 
entire workload, the performance of individual jobs can be affected 
negatively, particularly the teleprocessing operations where individual 
terminal response time is critical. In a virtual storage system, when 
non-real storage is referenced, the teleprocessing monitor loses 
control to the operating system until the needed storage can be paged 
in. Since teleprocessing systems with many applications can become 
quite large, it is important to minimize the performance-degrading 
effect of page faults. 

The hardware/software techniques used by IBM's VS operating 
systems have increased the CPU time required for processing most 
computing jobs. This increased CPU time has resulted from more costly 
operating system services, some of which represent moderate increases, 
others drastic increases. Unfortunately, teleprocessing monitors 
usually use more of those costly services and thus tend to incur high 
CPU costs. Special techniques in the monitor can lessen this effect. 

An additional requirement of a VS teleprocessing monitor is 
support for special VS features, such as the VSAM access method and the 
comprehensive Systems Network Architecture (SNA) environment with its 
VTAM access method. VSAM is supported by the File Handler in the VS 
versions of Intercomm. Intercomm's support for the SNA environment, 
including VTAM, is a Special Feature which is described in Chapter 20. 

103 



Chapter 9 Intercomm VS and MVS 

9.3 THE INTERCOMM PERFORMANCE SOLUTION 

Intercomm provides a set of powerful facilities to provide 
optimum response time and throughput capabilities in a virtual storage 
environment. These features have been custom-implemented to provide 
the greatest on-line performance improvement with the least impact on 
other workloads within the computer. 

9.3.1 Virtual Storage Scheduling/Fast Path 

The opt imum program schedul ing/loading technique recognizes that 
the hardware assist facilities of VS are most appropriate for managing 
the many and varied on-line application programs. Therefore, 
Intercomm's Virtual Execution Group storage scheduling utilizes 
operating system paging to manage program residency. Virtual storage 
scheduling optimizes page loading to ensure the highest level of page 
utilization with the least number of page faults. For designated 
high-priority programs, Intercomm's Fast Path virtual storage 
schedul ing technique provides absolute minimum response times. This 
technique is designed to replace the cumbersome OS Overlay loading 
while providing the same control of clustered subsystems for message 
processing. 

9.3.2 Anticipatory Page Loading 

To supplement the Virtual 
Intercomm's Look-Ahead-Page-Load 

Execution 
facility 

Group 
checks 

storage scheduling, 
each critical page 

boundary movement to insure needed pages are resident in real memory. 
Thus, when a potential page fault is detected, Intercomm can pre-load 
the necessary page(s) overlapped with processing for other message 
traffic. Significantly, this facility loads pages only as required, 
thereby avoiding massive and unnecessary page loads when a message is 
originally received by the system. This facility may not be used in an 
XA system. 

9.3.3 Specialized Main Storage/Table Management 

A well-designed teleprocessing system must use the 
of main storage pages necessary for message processing. 
models have been designed to accomplish this through 
techniques: 

104 

minimum number 
Intercomm's VS 
the following 

J 

J 



Chapter 9 Intercomm VS and MVS 

• Virtual Storage Scheduling 

The Fast Path/Virtual Execution Group storage scheduling 
facilities (see Section 9.3.1) minimizes main storage 
utilization for program residency requirements. 

• Resource Management 

Intercomm I S powerful Resource Manager provides special main 
storage allocation for buffers, work areas and dynamic areas 
that minimizes paging by grouping often-used areas 
cont iguously. Intercomm avoids GETMAIN/FREEMAIN processing 
that is not only costly but can fragment virtual storage. 

• Table Management 

Special table management coding groups related table entries 
in the same areas of virtual storage and avoids wasteful 
paging to scan tables. 

• Modular Construction 

The highly modular Intercomm system (over 
modules) is well-suited for efficient execution 
storage system, and for linkedit ORDERing 
frequently used modules (Control Sections). 

105 

500 separate 
in a virtual 
of the most 



J 

J 

J 



Chapter 10 

FILE RECOVERY 

10.1 INTRODUCTORY CONCEPTS 

Intercomm has been designed to anticipate, detect and recover 
from most error situations without bringing down the entire 
teleprocessing system. Teleprocessing devices and teleprocessing 
application programs can and will fail. In most instances following 
failures, Intercomm continues to operate in a degraded mode, minus the 
failed components. Alternatively, Intercomm can come down gracefully 
after a failure by completing all work in progress at the time of 
failure. 

Certain conditions, however, can and will occur that effect 
immediate termination of all processing in Intercomm. These include 
power failure, machine failure, data base destruction, and operating 
system failure. In these and other total failure situations, Intercomm 
automatically provides for the complete recovery of teleprocessing 
applications. This recovery includes the restarting of all messages in 
progress at the time of failure, the recovery of message queues, the 
recovery of checkpointed data, and the coordinated recovery of files 
and data bases. 

Key points to the Intercomm Restart/Recovery facility are 
summarized below: 

• No User Support Required 

All mechanics of implementing message restart and file 
recovery are supported by Intercomm-suppl ied software. User 
appl ication programs that are to be restarted are no 
different in format or content than nonrestarted programs. 
The restart f ac i 1 i ty is gene ra 11 y transparent to the 
application programmer. User responsibility in restart is 
1 imi ted to table entries that delineate those programs and 
terminals for which restart is to be performed. Other table 
entries specify those programs that may update data base 
files. These table entries are generally the extent of user 
responsibility in providing restart capability. 

• Fast Restart 

The method of recovery in Intercomm is a rapid "warm" 
restart. It does not require an off-line program following a 
fa i lure; 1 i ve In tercomm is merely restarted. Restarted 
Intercomm first reads the system logging (journal) file 
backwards from the point of the failure as far back as 
necessary for recovery. With the necessary items recovered, 
live Intercomm starts up, typically only a few minutes later. 

107 



Chapter 10 File Recovery 

• Data Integrity 

The user is afforded complete data integrity following a 
failure. If a file or its indexes were physically or 
logically destroyed as part of the fai lure, the file can be 
reconstructed from its last backup by Intercomm-supplied 
software. If the file is intact following a failure, the 
file is recovered in such a manner that updates in progress 
at failure time can be reinstated without duplication. The 
recovery is coordinated for data files, DBMS files, 
checkpointed system table entries, and message traffic. 

• Message Integrity 

All messages and queues are recovered and restarted as 
appropriate. In certain cases, to ensure data integrity, 
subsystem messages previously completed must also be 
restarted to effect necessary interaction with files or data 
bases. 

• Selective Restart 

Users can specify the extent of the restart on a terminal-by­
terminal and program-by-program basis. The overhead of 
restart can be limited to necessary system components, via 
the restart "always" or "never" specifications. 
Add it ionally, a third spec if icat ion is provided; the restart 
desirable condition. If restart is desirable, but not 
mandatory for a program or terminal, then in the course of 
restart for those mandatory programs and terminals, restart 
wi 11 also be performed for des irable components. However, 
once restart has completed for all mandatory items, the 
restart is deemed complete regardless of whether or not 
desirable components have been fully restarted. Restart will 
proceed as far backwards through the Intercomm system log as 
necessary to retrieve all messages for mandatory restarted 
components. During this read-back process, messages 
encountered for desirable restart components will be 
retrieved as appropriate. However, the read-back point of 
the file is defined as the point necessary to retrieve all 
mandatory items and is not inf luenced by desirable items. 
Those terminals or subsystems for which the restart 
specification is neither desirable nor mandatory utilize 
logging as a user option, again on an individual program and 
terminal basis. Selective logging can reduce system overhead 
in logging that would otherwise be wasted on noncritical 
components. 

108 

J 



L 

Chapter 10 

• 

• 

• 

File Recovery 

Coordinated Checkpointing 

As described in the Operating Reference Manual, checkpoints 
are taken, at a user specified interval, of critical system 
table entries and counters. A pointer to the checkpoint file 
data is logged on the system log at checkpoint time. 
Checkpointed system data, and optional user data, is also 
restored during message restart. 

Single Log File 

Only a single log is required for Front End, Back End and 
file image logging. This log can be either tape or disk. 
Further, a technique for writing on this log has been 
implemented such that any size record can be written to this 
log (up to the block size specified for the log file 
INTERLOG) without devoting buffer space for maximum record 
sizes. Additionally, log records are blocked for noncritical 
entries and unblocked for critical entries. 

Log File Recovery 

For tape and/or disk logging, an off-line utility, ICOMFEOF, 
is provided to determine the end of file after a system 
failure where the operating system does not properly close 
the file. For on-line disk logging, a sequential file 
Flip/Flop facility (x37 abend recovery) is provided to handle 
logging in smaller file increments than an entire day (or 
days). Both of these features are described in the Operating 
Reference Manual. 

In the following sections, message and file recovery concepts of 
the Intercomm system are described. All aspects of File Recovery under 
Intercomm, including specifications for coding control information, are 
detailed in the File Recovery Users Guide. The last section describes 
the on-line Backout-on-the-Fly facility for immediate file recovery 
after application program failure. Data Base file recovery is 
described separately in the DBMS Users Guide. 

109 



Chapter 10 File Recovery 

10.2 MESSAGE RESTART 

Intercomm is an event-driven system whereby work activities are 
initiated in response to a message. Therefore, the core of Intercomm 
recovery involves the recovery and/or restarting of appropriate 
messages. The basis for determining what is required for a particular 
restart/recovery operation is the Intercomm log. INTERLOG contains 
entries for all messages that are subject to recovery. It includes 
entries that make possible a determination of message status at the 
time of failure. Message status is an important factor in determining 
the read-back point and is defined by one of the following categories: 

• Received and completely processed prior to the last 
checkpoint; 

• Received and completely processed subsequent to the last 
checkpoint; 

• Received and in process at failure; 

• Received but processing not started. 

the message data in the log is performed during 
log file backwards from the point of failure. A 
accounting permits backward reading to proceed 

necessary to retrieve those messages needed for 

The analysis of 
restart by reading the 
technique of message 
only as far as is 
restart. 

When messages are recovered from the log they are placed on the 
queues for their destined subsystems or terminals as the restart phase 
concludes. Thus, queues are rebuilt, not recovered, following 
failures. 

The restart process is initiated when the RESTART parameter is 
found in the PARM field of the Intercomm execution (EXEC statement) 
JCL. This RESTART parameter is the only change required to distinguish 
a restarted Intercomm run from a normal Intercomm run. When a RESTART 
is recognized, the restart phase of Intercomm analyzes the restart log 
and rebuilds the queues. Then the normal mode of Intercomm starts 
reprocessing messages placed in the queues by restart, while 
simultaneously receiving and processing messages from the live terminal 
network (FIFO queuing insures that restarted messages are processed 
prior to live messages). Optionally, a serial restart facility 
(described in the Operating Reference Manual) may be used to force 
processing of all restarted messages prior to accepting new input from 
the network. 

110 

J 

J 



Chapter 10 File Recovery 

The entire Intercomm message recovery system is coordinated with 
the recovery of data files and/or DBMS files, as appropriate. In some 
circumstances, an original message from a terminal will proliferate 
messages to many subsystems as a result of a design approach utilizing 
subsystem-to-subsystem message swi tching. Thus, one or more chains of 
processing will occur in response to the original message. If two or 
more subsystems in these chains may make potentially interdependent 
changes to the same data files, then the corresponding Subsystem 
Control Table (SCT) entries must all specify LOG=YES and RESTART=YES. 
This will ensure that the originating (mother) subsystem is restarted 
if any subsequent program did not complete, while the daughter 
subsystems are not. Therefore, the entire processing chain is 
restarted from the beginning. 

10.2.1 Message Logs 

The log facility for Intercomm utilizes a data set whose ddname 
is INTERLOG. This log contains entries reflecting the status of 
messages for subsystems and terminals, and entries of before and after 
images of data files being updated. Also included on INTER LOG are user 
log entries, checkpoint records, message accounting records, etc. (See 
Figure 31). 

INTERLOG may be specified on its DD statement as being tape or 
disk. If the DD statement for INTERLOG is omitted then no logging will 
be performed and of course no restart is possible. The computer 
operator is notified at startup time if INTERLOG is not specified, or 
if the file cannot be opened. If you intend to use the restart 
facility, the computer operator's response to this message should be to 
cancel Intercomm and request programming assistance before proceeding. 

INTERLOG records appear as standard undefined records (that is, 
RECFM=U) but can be read using QSAM (RECFM=VB). Special techniques are 
utilized in creating the log, as follows: 

• Access Method 

BSAM rather than QSAM is employed. 

• Variable Buffer Size 

"Average" length buffers (specified via the system SPA table) 
are normally used. Where possible, log records are treated 
in blocked mode. However, if a record to be logged exceeds 
the average buffer size, it will be logged in its own buffer 
of the appropriate length. Any size record (up to the DD 
statement BLKSIZE specified for INTERLOG) can be logged. 

111 



Chapter 10 File Recovery 

• Synchronous Logging 

Recognizing the need for priority in logging items pertaining 
to critical user components (critical relative to restart), 
certain records are written immediately. For example, log 
entries for an important subsystem are made immediately by 
adding the entry to the current buffer, then immediately 
writing out the buffer. INTERLOG is blocked for noncritical 
items, and effectively unblocked for critical items. 
Critical subsystems and critical terminals are designated via 
macro parameters in the associated tables. File recovery 
records are automatically logged synchronously. 

Logging and 
(in a Multiregion 
associated tables. 
the Restart Use 
Restart/Recovery. 
are ignored. 

restartability for terminals, subsystems, and regions 
environment) is controlled by macro parameters in the 

Figure 31 describes the Intercomm log records. See 
column for those log entries that are utilized in 

All other log entries, including user log entries, 

10.2.2 Message Accounting 

To make the warm restart concept function as rapidly as possible, 
restart involves reading the log backwards only as far as is required 
to recover all necessary messages. This "how far back" information is 
developed by the Message Accounting routine, MSGAC, a subprogram of 
LOGPUT, the message logging rout ine. MSGAC operates as part of the 
live Intercomm environment. LOGPUT examines every log entry to 
determine if this new entry reflects a change in the "read-back point" 
of the log tape. For every 255 completed messages, MSGAC will insert 
message accounting records onto INTERLOG. 

These records reflect the read-back point. When restart begins 
reading INTERLOG backwards, the first message accounting record 
encountered will identify the location of the actual read-back point. 

10.3 MESSAGE RESTART LOGIC 

When data base or file recovery is not utilized, the restart 
logic is quite simple. When reading the log backwards, information 
from certain message headers is temporarily stored. This stored 
information is the basis for determining what to do with the 
header/text log entries as they are encountered. The information from 
the header is such that it can uniquely identify a message within a 
subsystem (including recursive entries to a subsystem). As the log is 
read backwards, message log entries will be encountered in this order: 

• Subsystem Completed (normally or abnormally) 

• Subsystem Started 

• Message Queued for a subsystem (header/text entry) 

112 

J 



Chapter 10 File Recovery 

If the message completed successfully, was flushed, or failed 
security, the message is not restarted. If the message failed in 
processing by a subsystem (time-out, program check, etc.) then this 
message may be restarted. If the message began processing but had not 
completed at the time of failure, then the message may be restarted and 
its log code on the queue is set to "R" indicating that it was an 
in-process message being restarted. 

The above rules are the criteria applied to a single message out 
of context; they may be overridden by the considerations listed below: 

• Ancestral Messages - if any "ancestor" of a message has been 
restarted for any reason, the message is discarded. This 
rule requires some clarification: if during the processing 
of message A, the subsystem generates message B and queues it 
for processing via MSGCOL or FESEND, message A is the mother 
of message B. Start ing at any message, restart logic can 
work back to the original terminal input, going from the 
message to its mother, the mother's mother, and so on. These 
are collectively the message's ancestors. A message is only 
restarted if all its children are discarded. This applies to 
Front End as well as Back End messages. However, if the 
ancestor is not logged, or not marked for restart, only the 
child (subsystem or terminal output) is restarted. 

• Conversational Messages if the message is part of a 
conversation, that is, part of a subsystem calling CONVERSE, 
and so specified on the subsystem's table macro, the message 
is restarted if it is the first message in the conversation 
(even if it completed), and discarded if it is not the first 
(even if it did not complete). 

• Lost Messages messages that are lost because queues are 
full will not be restarted. 

In a Multiregion Intercomm system, message restart and file/data 
base recovery is possible only in those regions which create their own 
Intercomm log. In Satellite Regions, only 01-30-FA logging of 
subsystem processing is done, along with log records necessary to 
message restart, checkpointing and file recovery. In the Control 
Region, terminal transmission logging (F2-F3) and Mul tiregion message 
queues (for Satellite Region transmission) are rebuilt at restart 
time. Further details are described in Multiregion Support Facility. 

In cases where data base or file recovery is not included, the 
only integrity problem concerning a restart involves those messages 
that were in process at failure time. Thus, if a message was being 
transmitted when a power failure occurred, the restarted Intercomm 
would retransmit that entire message or DDQ (FECMDDQ request). An 
input message that was being received, and not yet logged, must be 
resubmitted by the terminal operator. 

113 



Chapter 10 File Recovery 

F======== 
Internal 

Code 
========= 

X'OO' 

C'2' 

f---------
C'R' 

f---------
C'P' 

C'T' 

C'Z' 

=======F===========================================F========= 
Restart External 

Code Format Description Origin Use 
=======================================F===========C========= 

00 HT Checkpoint Record Checkpoint Yes 
-------- -------~-------------------------------

01 HT Message queued for subsystem 
by Front End or a subsystem 

-------- -------r-------------------------------
02 HT Message restarted through 

the system 
-------- ---------------------------------------
03 HT Message restarted--related 

to Data Base Recovery 
-------- ---------------------------------------
30 HO Message passed to subsystem 

for processing 
-------- ---------------------------------------
40 HT Message passed to Front End 

(test mode only) 

Message 
Collection 

LOGPROC 

LOGPROC 

Subsystem 
Controller 

FESEND 

User 

User 

User 

---------
User 

---------
No 

X'41'- 41- HT User called LOG PUT Any No 
X'6F' 6F Subsystem 

X'80'- 80- HT File Recovery before-images IXFLOG User 
X'8E' 8E 

--------
X'8F 

--------

X'90'-
X'9E' 

X '9F' 

X'AO' 

X' AI' 

--------

X'AA' 
--------

X'CO , 

f---------
C 'A' 

-------- -------
8F HO Checkpoint Records indicator IXFCHKPT Yes 
-------- -------

90- HT File Recovery after-images IXFLOG User 
9E 
-------- ---------------------------------------
9F HT Intercomm Startup LOGPUT Yes 
-------- ---------------------------------------
AO 

Al 

--------

AA 
--------
CO 

--------
Cl 

HO Message restart begun LOGPROC Yes 
--------------------------------------- ---------
HO 

------

HT 
------
HT 

------

HT 

Message restart finished: 
all subsequent log entries 
produced by live Intercomm 

LOGPROC Yes 

-------------------------------- ----------- ---------
Intercomm Closedown LOGPUT No 

--------------------------------f------------ ---------
Region started (Multiregion MRINTER No 
only) (Text=Region-id(s» 

Message successfully queued 
for Satellite Region 

MRQMNGR User 
CR only 

Internal Code: Log code in core during processing (snaps and dumps) 
External Code: Log code after translation by LOG PUT (INTERLOG printout) 
Format: HT for header and text, HO for header only 
Restart Use: Yes, No, User (specified via user-coded system macros) 

Figure 31. INTERLOG Entries (Page 1 of 2) 

114 

J 

I 



Chapter 10 

F======== 
Internal 

Code 
F======== 

C'B' 

C'C' 

External 
Code 

C2 

C3 

File Recovery 

=======F===========================================F========= 
Restart 

Format Description Origin Use 
===================================================p========= 
HO Message successfully passed MRQMNGR User 

HO 

to Satellite Region CR only 

Message lost (Region/Hold Q 
full) or flushed (SR/SS down) 

-----------~---------

MRQMNGR 
CR only 

User 

-----------~---------

C'I' C9 HT Sign on/off processing, 
security violation messages 

ESS No 

----------- ---------
C'3' FA HO Normal message complete Subsystem User 

Controller 
-------- -------- --------------------------------------- ----------- ---------
C'5' FB 

C'6' FC 

C'8' FD 

C'9' FE 

C'I' Fl 

C' 2' F2 

-------- --------

C'3' F3 

-------- --------

C'4' F4 

-------- --------

X'FF' FF 

Internal Code: 
External Code: 
Format: 
Restart Use: 

HO Unprocessed message--invalid 
subsystem/QPR code 

-------r-------------------------------
HO Unprocessed message--core and 

disk queue full 
-------~-------------------------------

HO Message cancelled--program 
error or time-out, I/O error 

-------r-------------------------------
HO Message flushed by Retriever; 

or message failed security 
check 

-------~-------------------------------

HT Message after verb 
verification 

-------~-------------------------------

HT Message queued for 
transmission 

------ --------------------------------
HO Message transmitted 

------ --------------------------------
HO 3270 output message content 

invalid--message dropped. 
------ --------------------------------
HT Intercomm Restart Accounting 

Message User 
Collection 

Message 
Collection 

Subsystem 
Controller 

Retriever 

SYCT400 

USRBTLOG 
(optional) 

---------
User 

---------
User 

No 

No 

FESEND User 

----------- ---------
Front User 
End 
----------- ---------
BLHOT No 

----------- ---------
MSGAC Yes 

Log code in core during processing (snaps and dumps) 
Log code after translation by LOG PUT (INTERLOG printout) 
HT for header and text, HO for header only 
Yes, No, User (specified via user-coded system macros) 

Figure 31. INTERLOG Entries (Page 2 of 2) 

115 



Chapter 10 File Recovery 

10.4 FILE RECOVERY CONCEPTS 

The previous section described the concepts utilized in 
Intercomm's restarting of messages where data base or file recovery was 
not involved. This section concerns the recovery of files and the 
coordinated recovery of related and unrelated Intercomm messages. The 
restart concepts previously presented for messages are also the basis 
for file restart/recovery. Restart facilities have been extended to 
provide for the special requirements of data file integrity following 
system failures. 

The chart below lists file access method support by the File 
Recovery facility. 

Access Method Supported 

BDAM Yes 
BISAM, QISAM Yes 
VSAM Yes 
lAM Yes (ISAM) 
BSAM, QSAM No 

The basic concepts of File Recovery also apply to specific data base 
managers supported under Intercomm. For additional details on Data 
Base Management System recovery, refer to the Intercomm DBMS Users 
Guide. 

The focal points for file and data base recovery capabilities are 
the Intercomm checkpoint and log files, and the data base activity log. 

10.4.1 Checkpoints 

The Intercomm checkpoint is not a "checkpoint" in the normal data 
processing usage where a picture image of core is written as a 
checkpoint to some data set. Rather, the Intercomm checkpoint function 
saves only a few critical table entries on disk, involving only minimum 
I/O activity for the checkpoint (data saved in one checkpoint record). 
To Intercomm, the checkpoint has special significance relative to file 
recovery in that it indicates all Intercomm subsystems performing file 
updates have been quiesced (no new messages started) until checkpoint 
processing has completed. 

116 

J 

J 



Chapter 10 File Recovery 

The Intercomm checkpoint functions as follows: 

• Users specify a checkpoint time interval such that when this 
interval expires the checkpoint process begins; 

• All subsystems that may at any time perform an update 
activity to a file that is to be recovered are identified by 
the subsystem SCT entries. During checkpoint, these update 
subsystems are marked as nonschedulable so that no new 
messages will be started through these subsystems. (Messages 
can be received for these subsystems but will remain in the 
queues.) 

• Intercomm examines each of these update subsystems for 
current message processing acti vi ty. When all activity for 
these subsystems has concluded, the checkpoint can begin. 
Meanwhile, all other activity such as nonupdate subsystems, 
terminal I/O, the Output Utility, etc., continues without 
interruption. 

• A checkpoint record containing pertinent table data is 
written to the checkpoint data set. 

• A checkpoint record is written to the Intercomm log noting 
the date/time of the checkpoint. 

• Subsystems that had been marked nonschedulable are started up 
again. Normal file update activity resumes. 

• The interval timer for the next checkpoint is set. 

From the above it can be seen that a checkpoint merely represents 
a "clean point in time" to which a restore can be made. At this point 
in time the file was intact on disk and no modification or update 
activity was in progress. The basis for file recovery is to proceed 
backward to recover files from the point of failure to this checkpoint, 
then restore the checkpointed table information, and finally to proceed 
with the live system. 

10.4.2 File Activity Logging 

The Intercomm File Handler provides for update (delete, add, 
insert) activity logging for BDAM, ISAM, and VSAM files. These log 
entries include before- and after-images that are used to recover a 
file. The file activity log is the same data set (INTERLOG) for 
Intercomm File Handler entries as for message status entries. 

117 



Chapter 10 File Recovery 

10.4.3 Destruction of Files 

As part of the system failure, it is possible that all or a 
portion of a data file (and its indices) are physically or logically 
destroyed. In fhis case it is the user's responsibility to restore the 
file back to its condition at failure time. This is accomplished in 
two distinct operations: 

• first, the last backup (complete 
reloaded, that is, an off-line file 
tape to disk) is performed; 

copy) of the 
restore (tape 

file is 
restore, 

• second, all after-images from the Intercomm log are applied 
to the file in their original order by an off-line utility 
included with the Intercomm File Recovery facility. 

When the above procedures have been performed, the file is 
returned to the status at failure time and normal recovery processing 
can proceed. 

10.4.4 Normal Recovery 

If a system failure has occurred without destroying the file, 
normal (on-l ine) recovery can be immediately started. (If data 
destruction occurred, then the above stated complete recovery must 
first be performed before proceeding with normal recovery.) Normal 
recovery involves backing out file changes to the last checkpoint. 
(Since Intercomm checkpoints are typically rapid with little 
performance interference, checkpoints can be frequent.) With frequent 
checkpoints, normal recovery need not involve much data restoration. 

The backing out to checkpoint process involves applying before 
file images to files in the opposite order (backwards order) to their 
original update. Therefore, updates are reversed back to the 
checkpoint time. Addi tions are reversed by deletion; deletions are 
reversed by addition. 

10.4.5 Coordinated Message Recovery 

While the normal file recovery is being performed, Intercomm 
message recovery proceeds concurrently. The coordination between 
Intercomm message and file recovery is software controlled, transparent 
to the computer operator. File recovery is performed by the Intercomm 
restart itself, and thus proceeds simultaneously with message restart. 

118 

J 



Chapter 10 File Recovery 

As part of data file recovery, the files subsequently need to be 
brought from the time of the checkpoint forward to the time of the 
system failure and into live mode. This is implemented by expanded 
Intercomm message recovery. Message recovery was previously described 
in detail. Essentially this message recovery involves returning to the 
queues those messages that were in the queues at failure time, and 
entering into the queues those messages that were in process at failure 
time. Those messages that were partially processed are requeued with a 
special log code of "R". Thus, only partially processed or totally 
unprocessed messages are normally put into the message queues following 
restart. However, if file recovery is involved, Intercomm will also 
restart those messages causing file updates which had completed but had 
done so after the last checkpoint was taken. 

Thus, message restart involving file recovery proceeds as 
follows: 

1. If necessary, complete recovery is performed off line 
including file reload and application of after-images for any 
destroyed file. 

2. Data files are returned to checkpoint time status by backing 
out updates (before-image operation). 

3. Concurrently with point 2, Intercomm recovers messages that 
were 

4. 

queued but not started • 
• 
• 

started but not completed (may have updated a file) 
completed but had updated files since the last checkpoint 

After points 2 and 3 are completed, restarting of message 
processing begins, and updates that had been reversed by 
returning to checkpoint will be reapplied as the messages 
that caused those updates are reprocessed. 

5. Concurrently with point 4, Intercomm resumes live mode. 

6. If the Serial Restart Facility is implemented (see the 
Operating Reference Manual), then live mode Intercomm may be 
selectively controlled or postponed until point 4 is 
completed. 

Output messages generated while processing restarted messages 
will be transmitted. Subsystem logic can identify restarted messages 
via the log code (C'R') in the message header and prepare special 
message text as required, to notify the terminal operator of the 
possibility of duplicate output. 

119 



Chapter 10 File Recovery 

10.5 BACKOUT-ON-THE-FLY 

Backout-on-the-Fly provides on-line dynamic reversal of file 
updates following a subsystem failure, and is executed following the 
occurrence of these situations: 

• Subsystem thread program check 

• Subsystem thread timeout 

• Specific requests by a subsystem 

Backout-on-the-Fly follows the same methodology as file 
recovery: before-images are applied to updated files in the 
appropriate reverse sequence. The facility differs from restart file 
recovery in that Backout-on-the-Fly compares the failing subsystem's 
"after-images" with the file's current images to ensure that no 
intervening subsystem subsequently updated the same record. In the 
event of a mismatch of after-to-current image, an operator reply to a 
console message can choose to either abend Intercomm or ignore the 
situation. If the abend is chosen, the normal file recovery scheme can 
be used to successfully apply the before-images back to the last 
checkpoint. 

Backout-on-the-Fly requires the Dynamic Data Queuing Facility. 
Backout-on-the-Fly places the thread's before- and after-images on a 
DDQ. If the thread completes successfully, then the DDQ is deleted. 
If the thread fails, then reversal is performed. 

Backout-on-the-Fly logs and reverses all files marked as 
reversible to standard file recovery through the normal file recovery 
control options. Additionally, Backout-on-the-Fly is selected by 
subsystem. The overhead (creating and writing to DDQs) is incurred for 
only those subsystems deemed likely to fail. However, Backout-on-the­
Fly will log only File Recovery's recoverable files regardless of 
selected subsystems. 

If all file logging is shut off through the system "stop log" 
command, Backout-on-the-F ly rema ins functional. If a subsystem 
performs both file and DBMS updates, then Backout-on-the-Fly may be 
incompatible. Exceptions are ADABAS and IDMS, which also provide a 
comparable facility. SYSTEM 2000 may be compatible if all subsystems 
use deferred updates as a programming standard, with the last subsystem 
action prior to GOBACK being to apply updates. DBMS situations should 
be examined carefully when using Backout-on-the-Fly. 

See File Recovery Users Guide for implementation procedures. 

120 

J 

J 

J 



L 

Chapter 11 

DBMS SUPPORT 

11.1 INTRODUCTION 

The Intercomm/Data Base Management System (DBMS) interfaces are 
Special Features which allow the u~er to implement an efficient data 
base/data communications (DB/DC) environment. With Intercomm, the user 
is able to independently select the optimal DBMS (one or more) for the 
application environment with the knowledge that provision has been made 
for fully integrated support which includes DBMS restart/recovery (up 
to the maximum inherent capabilities of the DBMS). The Data Base 
Management Systems for which Intercomm interfaces currently exist 
include: 

• ADABAS--a product of Software A.G. of North America, Inc. 

• DL/l (IMS DB)--a product of IBM Corporation 

• IDMS--a product of Cullinet Corporation 

• Model 204--a product of Computer Corporation of America 

• System 2000--a product of S.A.S. 

• TOTAL--a product of Cincom Systems, Inc. 

For details on the specific Data Base Management Systems, please 
consult the appropriate vendor. 

In addition, a Generalized DBMS Interface (GDB) is available with 
Intercomm. GDB provides a framework from which a user-developed or 
other commercial DBMS might be supported with Intercomm. 

Three different approaches have been used in providing 
Intercomm/DBMS support, as described in the DBMS Users Guide. These 
are illustrated in Figure 32 and are as follows: 

• Customized Interface 

Specially developed support for a specific DBMS. This 
category applies to DL/l support (no vendor routines 
required) and TOTAL support (vendor routines required). 

• GDB Interface 

Vendor-developed support which requires Intercomm GDB 
support. This applies to Model 204. The DBMS vendor 
supplies the interface routines. 

121 



Chapter 11 DBMS Support 

• Vendor-Written Interface 

The support is provided totally by the DBMS vendor, in 
consultation with the Intercomm staff and uses Intercomm 
facilities such as the Dispatcher to await completion of the 
Data Base activity requests. Such Data Bases are IDMS, 
ADABAS and System/2000. Therefore, a fee is still charged to 
users of the interfaces, even though Intercomm includes no 
specifically provided interface routines, but does provide 
calls to vendor-written entry points for startup, closedown, 
purging, etc. 

The techniques used to accomplish each DB/DC integration also 
vary according to the specific DBMS. Generally, the interfaces include 
six major functional areas: 

• On-line Initiation 

A communication path between Intercomm and the DBMS is 
established and data base sign-on procedures are performed. 

• On-line Termination 

An orderly disassociation is made between the DBMS and 
Intercomm. 

• Command Processing 

Requests for DBMS services are made by user application 
programs and are executed by the DBMS. 

• Contingency Processing 

A program is executed after failure of Intercomm, an on-line 
Intercomm application, and/or the DBMS in order to resolve 
the problems of continued operation. 

• Checkpointing 

A quiesce is issued by Intercomm and/or the DBMS in order to 
establish a common point from which to do a restart. 

• Recovery 

A reconstruction of the data base and Intercomm environment 
is made prior to a restart from a failure condition. 

122 

J 

J 



Chapter 11 DBMS Support 

r - - - --l 

Intercomm Customized U Vendor I DBMS DL/l 
f-- Interface Routines I TOTAL ! 

L - -- - ..J 

Intercomm GDB Vendor DBMS Model 204 
r-- I- Routines I--

Intercomm Vendor DBMS IDMS 
Routines t-- System/2K 

ADABAS 

Figure 32. Design Approach to DBMS Interface Support 

123 



Chapter 11 DBMS Support 

11.2 DBMS INTERFACE ENVIRONMENT 

The on-line DB/DC environment with Intercomm and a Data Base 
Management System consists of: 

• The Intercomm region and associated user application programs 
requesting access to the data base 

• The DBMS region control I ing all data base access (in some 
cases the DBMS may be ATTACHed as a subtask in the Intercomm 
region) 

• Batch regions requesting access to the data base 

All Data Base Management System functions are centralized within 
a region separate from the Intercomm or batch jobs. The DBMS region 
usually supports concurrent use of its facilities by all jobs, whether 
these separate jobs access the same or different data base files. 

Intercomm is one of multiple possible users of the DBMS, each of 
which resides in a separate region. The Intercomm region consists of 
the Intercomm monitor along with all on-line application programs, 
including those which are using the DBMS for file access. Other DBMS 
users might be batch appplication programs, each residing in a separate 
region. All logic required for data base access and control (exclusive 
control logic, data base logging logic, etc.) is contained in the DBMS 
region; thus, there is no duplication of code in other regions. The 
only logic required in each user region is the interface logic for 
communication of data base requests to the DBMS region. 

As depicted in Figure 33, if the Intercomm Mul tiregion Support 
facility (a Special Feature) is used, multiple Intercomm regions may be 
accessing the DBMS region. Certain restrictions exist in this 
environment, particularly when data base updates are performed; please 
refer to the Intercomm publication, Multiregion Support Facility. The 
multiregion version is required to support use of multiple DBMS. 

Whenever a data base function is required by either a batch 
program or on-line application subsystem, the program involved need 
only call the interface module in its own region; the request is passed 
on to the DBMS via an interregion SVC (Supervisor Call). For an 
inquiry-only application, the required interface components are simple 
since the data base is not being altered. The only necessary recovery 
procedure is a dump/restore capability to be used in the event the data 
base is totally destroyed. 

For the on-line DBMS update environments, a method of maintaining 
data base integrity is necessary. This is provided through a 
combination of Intercomm and DBMS checkpoint, logging, and restart 
facilities. Whatever the failure condition, e.g., destruction of data 
base, failure of a batch program, etc., the DBMS user is guaranteed the 
ability to fully reconstruct the data base. 

124 

J 

J 

J 



Chapter 11 

I 

OPERATING SYSTEM 

INTERCOMM CONTROL REGION 
Communications Interface 
(Optional User Programs) 

MESSAGES 

I 
I 

INTERCOMM SATELLITE REGION 
Transaction Control 

DBMS Interface (Alias name 
of real DBMS entry point) 

CALL 'DBMS' ... 

Multiuser 
Interface 

I 
I 

USER PROGRAMS 

DBMS 

BATCH PROGRAMS 
CALL 'DBMS' ... 

DBMS Interface J 

DBMS Support 

I 
I--

-

Figure 33. Intercomm and DBMS Environment (Multiregion Version of 
Intercomm) 

125 



Chapter 11 DBMS Support 

In summary, two types of programs exist in the DBMS region when 
utilizing an Intercomm/DBMS facility: 

• The data base access logic modules for performing the I/O 
acitivity to the data base(s) defined to the system 

• The interface logic to user regions which: 

Coordinates interregion communication 

Provides special logic to ensure that concurrent DBMS 
request processing does not affect data integrity 

Provides for checkpointing 

Stacks requests when DBMS processing is single threaded 

Similarly, two types of programs exist in the user regions: 

• The user program logic requesting access of the data base 
(Intercomm application subsystems or standard batch jobs) 

• The interface logic to the DBMS region, including interregion 
communication, and opt ionally, mul ti threading provisions and 
recovery provisions. 

11.3 GENERALIZED DBMS INTERFACE FACILITY 

The Intercomm Generalized Data Base Management System Interface 
(GDB) consists of a series of programs which allow data base access 
from multiple application subsystems, while providing data integrity 
across program and system failure. GDB includes all but specific data 
base access logic which must be provided by the user. Since programs 
not under Intercomm's control, i.e., batch programs, may require 
concurrent and/or overlapping use of the Data Base Management System, 
GDB also includes a provision for utilization of the DBMS by batch 
programs as well as on-line Intercomm programs. 

In the situation where the specific data base logic is not 
supplied, all the control programs for DBMS interface and effectual use 
of the DBMS by on-l ine or batch programs are supplied by Intercomm. 
This includes startup, closedown, and restart/recovery procedures. In 
a sense, the Intercomm Generalized DBMS Interface can be said to be the 
data base management facility through which users are able to adapt 
Intercomm to the DBMS requirements of their own applications. GDB 
supplies a simple method of interfacing a DBMS with Intercomm while 
maintaining data base integrity with a minimum of programming effort. 
This is achieved by supplying the mechanisms to pass control to user­
supplied routines at the following critical points in processing: 

126 

J 

J 



Chapter 11 DBMS Support 

• At startup, restart, and closedown of the Intercomm region 

• At initiation of a data base request 

• At termination of a data base subsystem thread (normal and 
abnormal) 

Message Restart, a standard Intercomm feature, is available for 
coordination of message restart with data base recovery. 

11.4 CUSTOMIZED DBMS INTERFACES 

Three of the Intercomm DBMS interface facilities developed for 
vendor-supplied DBMS are not based around the GDB framework. These 
are: 

• DL/1 (IMS DB) 

• TOTAL 

• System 2000 

11.4.1 DL/1 (IMS DB) Support 

Intercomm and Data Language/1, the IBM-supplied DBMS, execute in 
separate and distinct partitions or regions. Users of the DL/1 
facility may be on-line Intercomm subsystems residing in the Intercomm 
region or batch IMS application programs residing in separate regions. 
The single DL/1 region supports use of DL/1 from each user region, 
whether accessing the same or different data bases. Required DL/1 
logic is all contained in the DL/l region (exclusive control logic, 
data base logging logic, etc.). The only logic required in the on-line 
region is the Intercomm-supplied interface logic for communication of 
user DL/l data base requests to the DL/l region. 

Intercomm is defined as an IMS batch program and uses the 
standard, supported IMS batch interfaces. Intercomm and its subsystems 
remain fully multithreaded with this interface. DL/l CALLs, however, 
are serviced in a single threaded fashion. That is, only one DL/l CALL 
is processed by IMS at a time. Multithreaded updates of different data 
bases can be accomplished by segregating subsystems that perform those 
updates into di fferent Satell ite Regions of the Mul tiregion Support 
(MRS) version of Intercomm. Multithreading inquiries against the same 
data bases can similarly be achieved. Restart/recovery is accomplished 
through standard IMS recovery procedures. 

127 



Chapter 11 DBMS Support 

11.4.2 TOTAL Support 

Support for Cincom Systems' TOTAL is provided to Intercomm users 
through the Intercomm/TOTAL Interface facility. Two modes of Intercomm 
and TOTAL operation exist. Intercomm and TOTAL may operate in the same 
region (or partition) as a main task and attached subtask, 
respectively. In the alternative mode of operation, Intercomm and 
TOTAL reside in two separate regions (partitions). In this case, TOTAL 
must be executing when Intercomm is brought up; all communication 
between the two tasks is initiated through the use of an interregion 
SVC, supplied by TOTAL. Coordinated Intercomm/TOTAL support provides 
data base integrity and affords restart/recovery procedures, including 
coordinated checkpointing. 

Whether TOTAL is operational in the same region as Intercomm or 
in a separate region, the facilities of the TOTAL DBMS may be utilized 
by one or more batch regions. Off-line programs may access and update 
the on-line data base while Intercomm is uPi data integrity will still 
be maintained through the use of the procedures provided. Intercomm' s 
TOTAL support allows on-line and batch programs to run concurrently 
while accessing and updating the same data base. 

11.4.3 System 2000 

Support for System 2000 is provided for both the Natural Language 
Interface (NLI) and Procedural Language Interface (PLI). A 
vendor-supplied subsystem processes NLI terminal input and routes data 
base access requests to System 2000. User-coded application subsystems 
using PLI require a precompile function to incorporate the System 2000 
interface requests. 

System 2000 operates in a separate region 
Restart/recovery provisions are included which 
coordinated DBMS and Intercomm checkpointing. 
restart/recovery processing spans the beginning of 
until system failure. 

128 

from Intercomm. 
allow all but 
Therefore all 

on-line execution 

J 



Chapter 11 DBMS Support 

11.5 DBMS INTERFACES VIA GDB 

Some Intercomm DBMS interfaces have been developed by 
vendors in conjunction with the Intercomm development staff. 
interfaces take advantage of the existing Generalized Data 

DBMS 
Such 
Base 
this Management System Interface logical structure. DBMS supported in 

fashion are: 

• ADABAS 

• IDMS 

• Model 204 

DBMS implemented via GDB 
the GDB facilities previously 
features of the individual DBMS 

11.5.1 ADABAS Support 

or GDB entry points offer the user all 
described in addition to the salient 

mentioned in the following discussion. 

ADABAS, a product of Software A.G., is a DBMS utilizing inverted 
file structure. The interface is comprised of a Software A.G.-supplied 
interface program. ADABAS operates in a separate partition or region 
and can be utilized by one or more batch regions while Intercomm is 
operational. All the functions of ADABAS are available to the 
Intercomm user. ADABAS in no way changes the standard Intercomm 
environment; the Intercomm implementation of ADABAS requires no 
modifications to the standard ADABAS CALL sequences. Standard CALL 
statements, as specified in the ADABAS Reference Manual published by 
Software A.G., are used for all data base activity against ADABAS 
files. 

11.5.2 IDMS Support 

The Integrated Database Management System (IDMS) is a software 
product marketed by the Cullinet Corporation. A comprehensive DB/DC 
environment is provided for IDMS via Cullinet-provided interface 
routines. 

The Intercomm support elements allow IDMS to execute either in a 
region separate from Intercomm, or as a subtask of Intercomm. Full 
availability of IDMS facilities is provided. IDMS can be called from 
one or more batch regions while Intercomm is operational. Intercomm 
support does not modify IDMS requirements as specif ied in the IDMS 
Schema/Subschema Data Description Language Reference Guide. Support 
includes coordinated message restart and automatic data base recovery 
provisions. 

129 



Chapter 11 DBMS Support 

11.5.3 Model 204 Support 

Model 204 is a software product marketed by Computer Corporation 
of America (CCA). The DB/DC environment is provided via Intercornrn- and 
CCA-provided interface routines. Model 204 is executed in a separate 
region from Intercornrn and can be utilized by one or more batch regions 
concurrently with Intercornrn. Model 204' s standard calling sequences 
are not altered by Intercornrn support. Interfacing between Intercornrn 
and Model 204 consists of Intercomm' s GDB supplemented by an 
Intercornrn/Model 204 Interface. 

Model 204 can access, retrieve and update records in inverted 
files stored in a data base. The user is assured the highest possible 
level of integrity and security. When Model 204 data base integrity is 
coordinated with Intercornrn, the data base is fully recoverable from 
failure situations in which it was either physically or logically 
destroyed. 

130 

J 



Chapter 12 

STORE/FETCH FACILITY 

12.1 GENERAL 

Intercomm I s Store/Fetch Faci 1 i ty provides an appl ication program 
(subsystem) with the facilities to: 

• STORE 

Save data either in main storage or 
identified by a user-defined key which 
bytes. 

• FETCH 

on disk. Data is 
may be from 1 to 48 

Retrieve stored data from main storage or disk. 

• UNSTORE 

Free stored data from main storage or disk when the 
information is no longer needed by an application subsystem. 

Stored data may consist of tables, counters, switches, messages, 
subsystem parameters, print lines or any information which a subsystem 
may wish to save and/or retrieve. Depending on the nature of the 
application, data may be defined as permanent (available until 
explicitly unstored), semipermanent (available at restart time, but 
scratched at normal startup), or transient (always scratched at normal 
startup or restart). Further detail may be found in Store/Fetch 
Facility. 

12.2 MODULAR PROGRAMMING 

S tor e / F etc h f a c i lit ate s the use 0 f mod u 1 a r pro g r a mm i n g 
techniques. In a modular environment, each subsystem typically 
performs one specific function. A group of related subsystems may work 
together to perform a major task, with each subsystem working on a 
specific portion of the task. Results can be communicated via the 
Store/Fetch facility. For example, an application subsystem is 
activated by an input message from a terminal, performs initial 
processing, and saves the input message and resultant data for the next 
related subsystem. The first subsystem makes some entries in a table, 
accesses files, sets swi tches, updates counters, etc., depending upon 
the content of the input message. A second subsystem then analyzes the 
output of the first subsystem and continues the processing to produce a 
second intermediate result. A third subsystem analyzes the output of 
the second subsystem and produces a final output message for the 
terminal. 

131 



Chapter 12 Store/Fetch Facility 

Wi thout Store/Fetch, this process would probably be implemented 
through the use of the File Handler to save intermediate results. The 
overhead for calls to File Handler service routines would then be 
included in the processing time of the application subsystems. 
Developing logic to interface with the File Handler to perform all of 
these functions would add to the implementation time and the storage 
requirements for each application subsystem. The Store/Fetch facility 
simplifies the development of modular applications. 

Figure 34 illustrates the logic flow of a message which is 
processed in turn by Subsystems A, Band C through the use of the 
Store/Fetch facility. The subsystems are related and share switches, 
counters and tables saved and retrieved via Store/Fetch. 

12.3 CONVERSATIONAL SUBSYSTEM APPLICATIONS 

Subsystems involved in conversational processing may use 
Store/Fetch to preserve their conversational environment. Input 
messages and/or related data may be saved through the use of STORE and 
retrieved through the use of FETCH until the conversation is complete. 
Conversational processing using Store/Fetch is discussed in the 
Intercomm programmers guides (COBOL, PL/1, and Assembler Language). 

12.4 OTHER ON-LINE APPLICATIONS 

Subsystems which develop any type of data to be used by other 
subsystems can save and retrieve the data through Store/Fetch. The 
data may be transient, for example, cumulative totals for one Intercomm 
execution, and it might be necessary to preserve it only from Intercomm 
startup to closedown. The overhead of preserving the data on a data 
set can be eliminated by using Store/Fetch. 

A subsystem may create an output message which it wishes to save 
for later transmission. There may be a certain set of conditions which 
must be met before the message should be transmitted. For example, a 
subsystem might expect to receive a feedback message from the Front End 
(via the Front End Control Message facility) to indicate one type of 
terminal output is complete before it would wish to transmit this 
message. Store/Fetch may be used to save a terminal-oriented message 
for later transmission. 

132 

J 

J 

J 



Chapter 12 Store/Fetch Facility 

12.5 THE MULTIREGION ENVIRONMENT 

Store/Fetch routines are eligible for Link Pack Area residence. 
Thus, no additional storage overhead per region is encountered in a 
mu 1 t iregion env ironment. All I/O associated with Store/Fetch is 
overlapped with all processing regions as well as within the particular 
Intercomm region. 

Store/Fetch data 
multiregion concept of 
regions is maintained. 

sets must 
independent 

12.6 BATCH MODE OPERATIONS 

be unique to 
decentralized 

each region. The 
application-oriented 

The Store/Fetch facility may also be used by batch programs to 
save and later retrieve data within the same or a different program. 
Off-line "utility" programs might create/update Store/Fetch data for 
on-line program access. Store/Fetch data can not be shared by 
Intercomm and batch application programs operating concurrently. 

12.7 STORE/FETCH DATA SETS 

Store/Fetch direct access storage requirement consists of up to 
ten formatted Keyed BDAM data sets. Store/Fetch employs internal data 
spanning if data strings exceed blocksize. Multiple data sets can be 
employed to keep blocksizes and string sizes consistent for efficiency. 

133 



Chapter 12 Store/Fetch Facility 

Enter A Enter B Enter C 

Analyze Analyze Analyze 
Input Message Input Input 
:From Terminal Message Message 

FETCH FETCH 
Set Counters, ~etrieve Data Retrieve Data 
Switches, etc. Stored by A Stored by B 

STORE Examine Examine 
Save Data Counters, Table Entries 

for B Switches From B 
Set by A 

...- -....... 

Produce 
Intermediate 
Message for B 

jupdate Values 
Fill in Table 
Entries for C 

File Handler Appli-
Update Files ~ cation 

Files 

.......... ......-

MSGCOL/COBPUT STORE Produce 
pueue Message Save Data put put Message 

for B for C for Terminal 

" RETURN Produce FESEND** 
Intermediate Pass Output 

Message for C Message to 
Front End 

MSGCOL/COBPU'I UNSTORE* 
Queue Message Release Space 

for C Obtained by 
STORE in A .. ... 

RETURN RETURN 

* Or FETCH with DELETE and no UNSTORE is required. 
** Or queue message for Output Utility via MSGCOL/COBPUT. 

Figure 34. Using the Store/Fetch Facility 
134 

J 

J 

J 



Chapter 13 

DYNAMIC DATA QUEUING FACILITY 

13. 1 DATA QUEUES 

The Dynamic Data Queuing (DDQ) facility (a Special Feature) 
provides application programs with the ability to dynamically create, 
retrieve, and delete logical data sets and/or queues of messages on a 
single BDAM data set. This eliminates the need to define separate data 
sets for small, transient groups of data records and/or messages. The 
term "queue" or "dynamic data queue" refers to any logical sequence of 
records, regardless of record size or content. 

13.2 DDQ UTILIZATION 

The DDQ facility provides on-line system designers with a 
powerful tool. Some typical uses of DDQ are: 

• Segmented Messages 

Full multithreading of Intercomm segmented input and output 
messages to/from application subsystems can be achieved. 
Since each dynamic queue is unique to a message thread, no 
interleaving of unrelated message segments can occur j this 
eliminates the need to "lock out" a terminal until a 
subsystem has read/written the final segment of a 
multisegment message. 

• Data Collection 

Application subsystems may desire to accumulate data for a 
period of time before processing that data, either on-line or 
in batch mode. They can do this by building a dynamic data 
queue and adding to the queue when necessary. 

• Message Collection 

Application subsystems may wish to delay processing or 
outputting of messages until a time period has elapsed or a 
certain event has occurred. 

• Data Switching 

If large amounts of data are to be passed from one subsystem 
to another, the normal Intercomm message switching scheme may 
be unwieldy. DDQ enables the user to pass the data by 
building a queue of records and then forwarding the queue 
name in a message to the destination subsystem. 

135 



Chapter 13 Dynamic Data Queuing Facility 

• Batch/On-line Communications 

Queues created by an on-line program can be accessed via a 
batch program and vice versa. 

13.3 DDQ FEATURES 

The DDQ facility provides the following features: 

• Dynamic queues may be created for use on-line with Intercomm 
or in batch mode. Records written on dynamic queues may be 
of any size up to the 32K hardware limitation of System/370. 

• Either message or non-message data may be contained in queue 
records. 

• Queues may be created, updated, added to, read, and deleted 
via DDQ service routines requested via application program 
logic. 

• Queues may optionally be "saved" for any period of time. 
Queues that are saved can be retrieved at any time via 
user-specified queue identifiers. 

• Queues may be created on one or more BDAM data sets. If 
m u 1 tip 1 e B D AM d a t a set s are a v ail a b 1 e, the use rca n 
optionally force the creation of a queue on a particular data 
set, or use a default data set. 

• Records on queues may be blocked or unblocked. Automatic 
blocking/deblocking of blocked records is provided. 

• Automatic handling of variable-length records is provided, 
including handl ing of records larger than the physical 
blocksize of the data set. This is true for both blocked and 
unblocked queues. 

• Queues may be shared between on-line and batch programs. 

• When used with Intercomm, the space allocated to a queue for 
a subsystem message processing thread is optionally recovered 
after subsystem failure, via the Intercomm Resource 
Management audit and purge facility. 

136 

J 

J 



Chapter 13 

• 

• 

Dynamic Data Queuing Facility 

All queues are optionally preserved if Intercomm is restarted 
using the standard Intercomm Restart facility. 

Queues may be specified as single-retrieval or 
retrieval. Multiple-retrieval queues can 
nondestructively as many times as desired. 

multiple­
be read 

• If a subsystem uses MMU to format output messages (such as a 
printer report) to be put on a DDQ, the call to MAPEND (after 
all output is created) may request that the output messages 
be placed on a DDQ rather than being queued as multiple 
messages for the terminal, thus relieving main storage space. 

• A DDQ containing output messages may be passed 
via a Front End Control Message (FECM) which 
the queue identifier. MAPEND automatically 
FECM for a DDQ output request. 

to a terminal 
contains only 
generates the 

DDQ is further described in Dynamic Data Queuing Facility. 

137 



J 



Chapter 14 

PAGE BROWSING FACILTIY 

14.1 PAGE BROWSING USE 

The Intercomm Page Browsing Special Feature (PAGE) is a service 
program which allows a terminal operator at a display (CRT) terminal to 
browse multipage reports. This is accomplished via entry of any of the 
preprogrammed PAGE commands which cause the display of the first page, 
last page, next page, a specific numbered page, etc. The pages are 
displayed from a BDAM data set called the Page Data Set. The report 
through which the operator may browse consists of application-generated 
messages which fill more than one CRT screen. The application program 
which generates the messages does not participate in what appears to 
the terminal operator to be a conversation. The application program 
generates the output messages (report) in response to an input message 
received from the CRT, writes them to the Page Data Set, and then 
returns control to Intercomm. The Page Facility returns the first 
message to the terminal operator as response to the i~put message, no 
message is directly returned by the subsystem. If MMU is used to 
format the output messages, the program may request MAPEND to store the 
messages on the Page Data Set, rather than calling Page. If the Output 
Utility is used, the PAGE command processing subsystem will pass the 
output message to the Output Utility for formatting before transmission 
to the terminal, however the subsystem must directly pass the prepared 
messages to Page. 

In addition to its browse capability, PAGE includes a command for 
saving a report for later reference. This capability enables the 
operator to request additional detail regarding a particular part of a 
report without losing the entire report. For example, the operator 
might have entered an input message requesting the name and employee-ID 
of all employees with more than 20 years of service with the company. 
The output report might contain hundreds of names and span numerous CRT 
pages. The operator might note a particular name and ID from page 2 of 
the report, input the command to save the report, input another message 
requesting a display of the employee's entire record, verify additional 
details from the employee's record, input another PAGE command to view 
page 2 of the report again, and continue until all relevant information 
is gathered. 

PAGE increases programmer productivity since each programmer does 
not have to develop the logic for multipage report processing. PAGE 
also contributes to Intercomm efficiency since as a multithreaded 
subsys tem, it wi 11 concur ren t ly proces s multiple unrelated page 
requests from multiple operators. Without PAGE, this might require 
multiple conversational application programs, each of which would 
occupy storage in order to respond to operator requests for 
information. Furthur details are provided in Page Facility. 

139 



Chapter 14 Page Browsing Facility 

14.2 PAGE BROWSING OPERATION 

Figure 35 illustrates 
facility in the Intercomm 
numbers in the illustration: 

the message flow using the Page Browsing 
system. The numbers correspond to the 

1. The operator enters an inquiry (internally identified, for 
example, by message No. 501). 

2. The appropriate user subsystem is initiated; it processes the 
message and 

3. passes the output message response(s) for No. 501 to the Page 
Control routine. 

4. The Page Browsing facility saves the responses on the Page 
Data Set, 

5. enters the necessary control information in 
that is, message number, address of first 
queue, and number of pages, then 

6. passes the first page of output response No. 
End for eventual transmission to the terminal 

the Page Table, 
message on page 

501 to the Front 
operator. 

The terminal operator examines the first page of response 501, 
then, by entering different PAGE commands, can effectively browse 
through the report on the Page Data Set. 

Input 
Message 501 

1 

First Page of 
Response 501 

2 

Subsystem SS~------, 

PAGE 

6 

3 

Page 
Data 
Set 

5 

501, Loca­
tion, Number 

of Pages 

Figure 35. Message Flow Using Intercomm Page Browsing Facility 

140 

J 

J 



Chapter 14 Page Browsing Facility 

Figure 36 illustrates the message flow when the terminal operator 
issues a PAGE command. The numbers below refer to the numbers in the 
illustration: 

1. The terminal operator enters a PAGE command, 
next page of the report, which is passed 
Intercomm Page subsystem (PAGEMSG). 

e.g., to get the 
directly to the 

2. PAGEMSG retrieves the requested page from the Page Data Set 
and 

3. passes the message to the Front End for eventual transmission 
to the terminal. 

If the operator completes viewing response 501, but requires it 
for future reference, the SAVE command can be entered to save the 
report on the data set. Otherwise, when the Page subsystem recognizes 
a new message number, it assumes the previous report is no longer 
required and deletes it from the Page Table. 

PAGE Command 
~----------------------------~"Page Subsystem 

1 

3 2 

PAGE TABLE 
501 

Figure 36. Terminal Operator/PAGE Communication 

141 



J 

J 



Chapter 15 

MULTIREGION SUPPORT FACILITY (MRS) 

15.1 MULTIREGION CONCEPTS 

The Intercomm Multiregion Support facility (MRS), a Special 
Feature, allows groups of application subsystems to execute in separate 
OS/VS regions or partitions. One region is designated as the Control 
Region; the others as Satellite Regions. (See Figure 37). 

The Control Region consists of a complete Intercomm system and, 
optionally, application subsystems. The primary function of the 
Control Region is to handle all terminal and interregion message 
traffic, that is, it controls the routing of messages to and from the 
terminals and the Satellite Regions. Additionally, the Control Region 
can accept messages from batch application programs. 

Satellite Regions consist of application subsystems and an 
Intercomm Back End; they communicate only with the Control Region, 
never with each other. Subsystems which conform to standard Intercomm 
coding conventions can execute unmodified in either the Satellite or 
Control Regions. 

An optional feature of the Multiregion Support facility is the 
ability to service a Satellite Region's logging requests in the Control 
Region and to have its log records written to the Control Region's log 
data set. This is called the Single Log feature. Intercomm Message 
Restart does not support the Mul tiregion Single Log feature; thus, if 
the Restart/Recovery facility is required in a particular Satellite 
Region, that region must have its own log data set. 

15.2 MULTIREGION FEATURES 

The salient features of Intercomm Multiregion Support include: 

• Terminal I/O centralized in one region 

• High subsystem reliability, due to separation of applications 

• Lower storage requirement than running multiple copies of 
Intercomm 

• Ability to start/stop any region when desired 

• Separate logging in each region. Optionally, all logging may 
be to a single INTERLOG data set through the Control Region. 
(Restart capabilities are lost with this option.) 

143 



Chapter 15 

OPERATING 
SYSTEM 

INTERCOMM 
CONTROL 
REGION 

INTERCOMM 
SATELLITE 
REGIONS 

BATCH 
PROCESSING 
REGIONS 

LINK 
PACK 

Multiregion Support Facility 

INTERCOMM MULTIREGION ENVIRONMENT J 

OS/VS 
XA 

MVS 

~ 

Irt 
COMMUNICATIONS CODE ~ 

SYSTEM UTILITIES 
---------------------------

TERMINALS 

User Applications 
(Optional) 

MESSAGES 

.", 
~ ~ 

INTERCOMM TRANSACTION CONTROL 
-------------------------------- -

J Multithreaded User Programs f--

, 
I 

USER BATCH PROGRAMS 
---------------------------------
Optional Interface to Intercomm 
thru Shared Data (DDQ) !-or 
On-Line Message Interface t--
(MRBATCH) 

IRe entrant Shared IRe entrant Shared 
Intercomm Operating 
Routines System 

Routines 

Figure 37. Intercomm Multiregion Environment 

144 



Chapter 15 Multiregion Support Facility 

• No currently executing subsystem need be modified to run in a 
multiregion environment. 

• Automatic handling of region ABENDs 

• Messages to a subsystem in a particular region may, if the 
region is inactive, be flushed, queued, or sent to an 
alternate region. 

• Batch programs may communicate with the on-line environment 
by sending messages to an Intercomm subsystem. 

• Security can be implemented via table-oriented Region 
Associated Processing (RAP) which restricts terminals to the 
use of transactions associated with specific regions. 

Additional performance efficiency is realized in a VS environment 
because page faults in an Intercomm region are overlapped with page 
faults in other Intercomm regions. 

Implementation, features, and control processing are described in 
Multiregion Support Facility. 

145 



J 

J 



Chapter 16 

MODEL SYSTEM GENERATOR 

16.1 SYSTEM PERFORMANCE QUESTIONS 

Users are constantly asked the following types of questions about 
the Intercornm system: 

• "What kind of response time will I get?" 

• "What are the throughput capabilities of the system?" 

• "How much storage must be allocated?" 

• "Should I increase my channel capacity?" 

• "How much overhead does Intercornm take?" 

• "How much disk space is required?" 

• "How much real storage will be required under VS?" 

The answer to the above and many similar questions is always 
"installation-dependent." 

After numerous studies of different Intercornm users' systems, the 
following variances among the systems have been found: 

• Region size ranges from 600K to over 6 meg. 

• Response time averages range from less than one second to 
greater than 5 seconds. 

• CPU utilization ranges from less than 5% to greater than 50%. 

• Throughput capacities vary from several thousand an hour to 
over 200,000 an hour. 

These variations occur as a result of many installation-dependent 
factors including concurrent batch requirements, CPU size, channel 
capaci ty and separation, network configuration, etc. However, system 
performance is dependent mostly on the resource demands of the 
application programs. This factor is totally installation-dependent 
and subject to wide variations. 

147 



Chapter 16 Model System Generator 

16.2 SYSTEM PERFORMANCE MODELING 

The Model System Generator (MSG), a Special Feature, is designed 
to answer questions on resource requirements, throughput capa bi I i ties 
and response time estimates. MSG creates an individualized model for 
one or more Intercomm application subsystems. MSG models the key 
elements in the user's Intercomm system, i.e., application software and 
message flow. Thus, it is possible, when using MSG, to accurately 
answer all of the above questions about a future system long before any 
application programs have been written. 

MSG is beneficial to the user who contemplates new Intercomm 
applications. MSG can operate in conjunction with an existing "live" 
system and thus, not only model requirements and capabilities of the 
new system, but also accurately measure the impact of the existing 
system. 

MSG is described in Model System Generator. 

Statistics on resource utiltizations and service requests for 
existing applications may also be gathered via SAM (System Accounting 
and Measurement) as described in the Operating Reference Manual. 

148 

J 

J 



Chapter 17 

DATA ENTRY FACILITY 

17.1 DATA ENTRY OPERATION 

The Intercomm Data Entry System Special Feature provides general 
purpose data entry and verification capabilities to facilitate 
keypunch-like operations from IBM 3270 local and remote terminals. 
Data Entry is designed to provide equivalent capabilities to the IBM 
Program Product Video/370. 

Data Entry is a reentrant Assembler Language subsystem that 
executes under Intercomm. It requires approximately 24K plus 776 bytes 
of storage per active Entry mode operator. An off-line extract program 
is provided to remove data after entry. 

Data Entry uses the screen formatting capabilities of 
3270 to provide fill-in-the-blank prompting templates 

the 
for 

IBM 
data 

submission. Data is maintained in one or more centralized files, 
type and batch number attributes which are 

Operators can ENTER, VERIFY, CORRECT and SCAN 
according to document 
specified at entry time. 
data. 

17.2 DATA ENTRY IMPLEMENTATION 

Data Entry applications can be quickly implemented, since only 
table entries are required from the user. User exits are provided and 
user exit code may take advantage of all Intercomm capabilities. 

Data Entry is described in the Data Entry Installation Guide and 
the Data Entry Terminal Operators Guide. 

149 



J 



Chapter 18 

AUTOGEN 

18.1 INTRODUCTION 

The Autogen facility (a Special Feature) is an extension to the 
Message Mapping Utili ties (MMU). Autogen facilitates screen format 
specification from an IBM 3270 CRT. The user enters field-oriented 
data according to prompting screens supplied by Autogen. MMU map 
definitions are generated as a result of the terminal session. 

18.2 MAP DEFINITIONS WITH AUTOGEN 

The Autogen Special Feature provides a direct method of creating 
Map Definitions, speeding implementation of on-line applications by 
specification of terminal screen layout through the terminal itself. 
Autogen operates as an Intercomm application program (subsystem). 

Using Autogen, the application programmer enters a model of the 
screen layout desired, then submits this model to the Autogen 
fac i 1 i ty. Autogen, through a series of prompting screens, requests 
additional information to complete the screen specifications and 
produces the Assembler Language macros required for an MMU map 
definition. 

After the general screen layout is defined, that layout is 
displayed to the user for detailed specification of names of variable 
fields and field attributes. This process completes the definition of 
one screen. The user may then continue to define additional screens, 
or terminate the session. 

A correction facility exists within Autogen which enables the 
user to return to a previous point within the prompting sequence for a 
map definition in order to change previously specified items. This 
correction facility is referred to as Revise Mode. 

18.3 AUTOGEN CAPABILITIES 

Autogen has been designed to provide automatic specification for 
a subset of MMU capabilities; that subset has been chosen to represent 
the majority of anticipated MMU uses. Autogen is designed for 
simplicity and ease of use. 

151 



Chapter 18 Autogen 

MMU provides an extensive array of features that offer a 
diversity of complex formatting options, many of which produce an 
output format whose characteristics vary dynamically according to data 
content. In such complex formatting situations, direct assembler macro 
specification may still be required. 

Some of the advantages of the Autogen Special Feature are: 

• Proposed screen layouts can be analyzed and critiqued at the 
terminal to quickly correct design flaws such as clutter or 
awkward field positioning. 

• Proposed screen layouts can be created by analysts or 
programmers in conjunction with prospective system users to 
obtain immediate user reaction and feedback. 

• Programmer requirement to understand MMU macro coding and 
other training requirements are decreased. 

• Programmer productivity is increased; programmer error rates 
can be decreased. 

Autogen uses existing system facilities and requires negligible 
system overhead. Depending on installation requirements, it can be 
defined as a high-priority resident subsystem or a lower priority 
dynamically loaded (or overlay region) subsystem. 

Autogen supports the IBM 3270 Model 2 CRTs (lnO-character 
screen) or hardware compatible devices, and Dataspeed 40 terminals. 

Autogen implementation and use are furthur described in Autogen 
Facility. 

152 

J 



Chapter 19 

DYNAMIC FILE ALLOCATION 

19.1 INTRODUCTION 

The Dynamic File Allocation (DFA) Special Feature provides a 
means by which program threads utilizing the File Handler (either 
Intercomm subsystems or batch programs) may access already existing 
data sets or create new data sets without each data set being 
explicitly defined via JCL. It is only required that a DD card be 
present in the Intercomm execution JCL which defines the disk pack 
containing (or, to contain) the data set. Only sequential data sets 
residing on disk are supported as described in Dynamic File 
Allocation. DFA functions are provided by two File Handler service 
routines: ALLOCATE and ACCESS. 

19.2 ALLOCATE SERVICE ROUTINE 

The ALLOCATE service routine allows application programs to 
create sequential data sets in any format (fixed, variable or 
undefined) on any disk pack for which a DD card is present. 
Dynamically allocated data sets always have an implied disposition of 
NEW, in which case calls may subsequently be made only to WRITE or PUT; 
calls to GET or READ are invalid. As an option, dynamically allocated 
data sets may be cataloged at the time they are created. 

Dynamically allocated data sets are spun-off for immediate use by 
other programs, such as batch print programs, or they could be used as 
input to assemblers or compilers; that is, as data sets are created 
us ing ALLOCATE, they are normal data sets, no longer hooked to 
Intercomm, and can be used as any data set can be used. This fact 
requires some caution in analyzing the programs that use dynamically 
allocated or accessed data sets because they are not subject to the 
normal exclusive control provided by the operating system. 

19.3 ACCESS SERVICE ROUTINE 

ACCESS provides the ability to access existing data sets without 
preplanning. It allows, for instance, a subsystem to retrieve data 
from any number of sequential data sets upon request by a terminal 
operator. Only the data set name (DSN) must be known. These data sets 
need not have been created prior to the execution of Intercomm; they 
must be created at any time prior to being accessed. In addition to 
being accessed, these data sets may be extended or updated; that is, 
dynamically accessed data sets may have a disposition of OLD, which 
allows retrieval or updating, or a disposition of MOD, which allows 
extension of the data set. 

153 



J 

J 



Chapter 20 

SNA TERMINAL SUPPORT 

20.1 ELEMENTS OF A SYSTEM USING SNA TERMINALS WITH INTERCOMM 

The newest IBM telecommunication system organization 
Syst ems Network Architecture (SNA) . Intercomm I s support 
comprehensive environment is a Special Feature. 

is called 
for this 

SNA systems have a nodal structure with processing capabilities 
distributed among the nodes. Connections between the nodes may be 
changed without individual node involvement; network resources may be 
shared by many nodes. SNA defines the protocols used to communicate 
between nodes and the structure of the processing system of the nodes: 
transmission layer, function management layer, and application layer. 

The implementation of SNA uses the Virtual Storage 
Telecommunications Access Method (VTAM) in the host computer node 
(System/370 with VS). Remote telecommunication lines are serviced by 
the Network Control Program (NCP) executing in a 37xx Communications 
Controller. Some terminal nodes may have processing capabilities in a 
SNA Cluster Controller, which executes SNA Controller application 
programs. One or more VTAM application programs are in the host 
computer. Intercomm is one VTAM application program. It controls the 
execution of application subsystems which process transactions 
originating from SNA terminals. 

Figure 38 summarizes these system elements. 

20.2 INTERCOMM SUBSYSTEMS AND LOGICAL UNITS 

The only nodes of a SNA network of interest when designing 
applications are: 

• Intercomm (a VTAM application program) and user-written 
application subsystems executing under Intercomm control. 

• Logical Units (LU)--addressable units of logic in a remote 
SDLC SNA Controller, or remote bisync and local 3270 
terminals. An SDLC LU is an executing controller application 
program communicating with VTAM application programs (i. e. , 
Intercomm) using resources of the SNA Cluster 
Controller--storage, processor cycles and external terminals 
connected to the controller. 

155 



>-rj ..... 
OQ 
C ..., 
11> 

w 
CD 

Ht"Ij 
::J ..... 
n- CD 
CD 3 ..., (J) 

n ::s 
0 rt 

~ Ul 

0 ..., 
III 

() 
0 

§ 
..... C 
U1 ::J 
0- t-'. 

n 
III 
n-.... 
0 
::J 
Ul 

til 
'< 
Ul 
n-
CD 
6 
c: 
Ul .... 
::J 

OQ 

<: 
r'i 

~ 
t: 
t-'. 
n-
::r 

371iOSNA CI.USTER 
CONTROLLER 

S/370 

I TE~~:AL ~~-. tlI!D- COIMJNICATIONS 
YTAH 

RF.GJON 
INTJl:RCotI1 

REGION 

110413705 

GJ~~AL r- LeAP ~~ER --11*" SOLC 
LJHF. 

TERMINALS : 

SNA CLUSTER 
CONTROLLER: 

3104/3105 : 

S1310 : 

3n6 SIIA CLUSTER -----..-__ -'C~·ONTROLLf:R:.;.. ----I SDLe 
L1HF. 

esc 
LINE 

3271 ll'JC CLUSTER 
WNTROLLER 

Device to 
Examples: 

commmicate 
3604, 3618 
3271, 3161 
321x, 328x 

with outside world, for example, CRT and Keyboard, Printer. 
(3600 System) 
<3190 System) 
(BSC/SNA 3210 System) 

Special purpose small computer that executes user-written application programs that 
communicate with terminals, perform local processing of data, and cOlIII\unicate with 
application programs in S/310. May also be microcoded, having no user code (for 
example, 3276) 
Examples: 3601, 3191, 3210 system. 

Telecommunications computer that executes the Network Control Program (NCP) to 
manage lines between SNA controllers and VTAM. 

Host computer executing VS1/HVS with regions: 

VTAM Reg ion: 

Intercomm 
Region: 

Virtual Telecommunications Access Method (VTAM) allocates network 
resources and routes data through network and to application systems. 

Intercomm application system utilizes system routines to schedule 
Intercomm subsystems when input is received from SNA controller 
programs and sends output from these subsystems back to the SNA 
controller programs. U ser-wri t ten I ntercolllTl subsy stems process the 
input, access the data base, and create the output. 

() 

::r 
III 
'0 
rt 
CD ., 
N 
o 

til 
Z 
~ 

I-] 
(J) ., 
;3 ..... 
::s 
III ..... 
til 
(:: 
'0 
'0 
o ., 
n-



Chapter 20 SNA Terminal Support 

To an Intercomm subsystem, a logical unit appears as one or more 
logical unit components. Each component is assigned a unique Intercomm 
terminal identifier. The subsystem will receive messages from 
components, will process them, and will create reply output messages, 
usually directed back to the originating component. In general, the 
coding requirements for an Intercomm subsystem communicating with 
logical units are independent of VTAM or SNA considerations. 

Subsystems do not need to be changed when converting from BTAM or 
TCAM to a VTAM Intercomm Front End. Logical units send messages to 
Intercomm subsystems based on transaction codes in the input 
transactions. 

20.3 SNA TERMINALS SUPPORTED BY INTERCOMM 

SNA terminal support is described as a list of VTAM/SNA 
facilities supported by Intercomm. This method of description is 
possible because of the uniformity of SNA communication protocol. Any 
programmable SNA terminal that uses only this subset of VTAM/SNA 
facilities is supportable by Intercomm. The IBM 3270 Display System 
(SDLC, remote bisync and local) and the 3600 and 3790 systems are 
currently supported. Packet networks which conform to SNA protocol may 
be treated in Intercomm as 3270 LUs. The IBM Network Terminal Option 
(NTO) special feature is not supported. Users may employ protocol 
converters (to 3270 protocol) to support remote switched (dial) 
devices. 

The VTAM/SNA facilities in Intercomm are: 

• Connection may be initiated by the logical unit or by 
Intercomm. Session parameters are not checked by Intercommi 
Intercomm is controlled by its own tables describing the 
logical unit. Bindareas and Logmode tables may be defined 
via the network table. Automatic reconnect after a 
user-specified interval is supported. 

• Orderly shutdown or immediate disconnection of a logical unit 
can be initiated by the logical unit or by Intercomm. 

• Data messages from the logical unit 
single segment or chained and may 
exception, or no response protocol. 

to Intercomm may be 
request definite, 

• Data messages from Intercomm to the logical unit may be 
single segment or chained, and responses may be requested 
(forced for 3270-system printers), according to table 
definitions. 

• Message sequence numbers may optionally be reset to zero on 
connection, state error, or request for recovery (RQR) 
command from the logical unit. The Set and Test Sequence 
Number (STSN) command is not sent by Intercomm. BTAM input 
messages sequencing may be requested for VTAM LUs (required 
for message restart). 

157 



Chapter 20 

• 

SNA Terminal Support 

Quiesce by Intercomm of the logical unit may be requested in 
order to deactivate the LU in Intercomm and refuse new 
logons. 

• Logical units may send the Signal command. Intercomm invokes 
a user exit routine to act upon the Signal command. 

Any VTAM/SNA features not listed above are not supported. 

20.4 INTERCOMM FRONT END FACILITIES SUPPORTED BY THE VTAM FRONT END 

Where appropriate, facilities of the BTAM Front End 
implemented in the VTAM Front End. A BTAM Front End may coexist 
VTAM to support non-VTAM devices. New faci lites unique to VTAM 
also been implemented. The existing and new facilities include: 

are 
with 
have 

• Verbs in the input data message text are delimited by the 
system separator character or end of the message; short verbs 
are allowed. (The system separator character is defined via 
the Intercomm SPALIST macro in the SPA table.) 

• 

• 

A logical unit (component) may be locked to a verb via 
coding or the LOCK system control command, and 
Mul tiregion satellite region via table coding or the 
command. 

table 
to a 
LOKR 

All transaction code definition options are supported with 
the same meaning as for BTAM input. 

• System control commands may be entered from a logical unit 
for BTAM or VTAM terminals, including current status display 
or a disconnect (Logoff) request for the subject terminal. 

• Fast message switch messages may be sent from a logical unit 
to any VTAM component or BTAM terminal. 

• Input chains from a logical unit may be either queued for a 
subsystem as individual segments or accumulated into a single 
message to be sent to a subsystem. 

• Each logical unit component has its own dedicated output 
queue, which may have main storage, disk and priority queue 
specifications. 

• Only full messages may be sent to components by a subsystem. 

• 

Segmentation into output message chains is done within the 
Front End based on maximum segment size or by a user exit 
routine. Front End Control Messages may be used. 

A component may be defined as a CRT to obtain one output 
message per input message processing logic. Conversational 
terminal processing for CRTs is also supported. 

158 

J 

J 



Chapter 20 

• Standard Intercomm message recovery is 
message is scheduled for output by VTAM, 
message is on the LV output queue. 

SNA Terminal Support 

provided 
that is, 

when the 
when the 

• With Release 9.0, the Intercomm control terminal may be any 
LV. It may also be the system console. In the event of VTAM 
problems, the operator may continue to communicate with 
Intercomm via the console. Global WTO routing is also 
available. 

• 3270 CRT copy processing is supported from the requesting 
terminal only and may be to a BTAM or VTAM 3270 device. 

• 3270 CRT AID Key processing may be requested. 

• The Intercomm VTAM interface may be shutdown and restarted by 
command or restarted automatically after an elapsed time 
interval. 

• Support is provided to automatically share printers between 
Intercomms or with other TP applications. 

• Basic Security processing (see Chapter 6) and ESS are 
supported for VTAM LVs. 

Facilities of the BTAM Front End not listed above are not 
supported. Refer to the BTAM Terminal Support Guide and System Control 
Commands for add i tiona 1 descr iption of the above faci li ties and 
commands. Details on VTAM support, implementation and control are 
provided in the SNA Terminal Support Guide, along with descriptions of 
optional user exits for further control of the network and message 
processing. 

159 




