
"-.. _- .

Program Product

"
.... -.

SH20-9027-4

IMS/VS Version 1
System Programming
Reference Manual

Program Number 5740-XX2

Release 1.2

Fifth Edition (May 1976)

This edition replaces the previous edition (numbered SH20-9027-2), its technical newsletter
(numbered SN20-9117), and the reprint (numbered SH20-9027-3), and makes them
obsolete.

This edition applies to Version 1 Release 1.2 of IMS/VS, program number 5740-XX2, and
to all subsequent releases unless otherwise indicated in new editions or technical
newsletters. IMS/VS Version 1 Release 1.2 runs under VSl Release 5. References to VS2
are for planning purposes only until Version 1 Release 1.3 of IMS/VS is available in
August 1976.

Technical changes are summarized under "Summary of Amendments" following the list of
figures. Each technical change is marked by a vertical line to the left of the change. In
addition, miscellaneous editorial changes have been made throughout the publication.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation,P. O. Box 50020, Programming
Publishing, San Jose, California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1974, 1975, 1976

PREFACE

This is a reference manual for the person responsible for maintaining
the IBM Information Management System/Virtual Storage (IMS/VS). Along
with the IMS/VS Installation Guide, it provides the information
necessary to install, tune, and maintain the IHS/VS system.

This manual assumes that the reader understands the basic concepts
of IMS/VS, as/vs, and the access methods that are part of the system
under which IMS/VS will execute.

PREREQUISITE PU~LICATION~

IMS/VS General Information Manual, GH20-1260
Provides a ,general description of IMS/VS. Describes IMS/VS
system concepts and sample applications in the manufacturing,
financial, medical, and process industries.

IMS/V§ ~stem/Application Desig~ Guid~, SH20-9025
Provides data base administrators, system designers, system
programmers, and application programmers with information
to design an IMS/VS system and the applications that operate
under IMS/VS.

COREQUISITE PUBLICATIONS

Ins/vs InstallatiQll Guide, SH20-9081
This manual presents step-by-step details for the IMS/VS
installation process.

There are seven chapters and one appendix in this manual.

Chapter 1 -- contains information about jobs and procedures in
the IMS/VS procedure library.

Chapter 2 -- describes the DL/I data base buffering facilities
in Ins/vs.

Chapter 3 -- describes the DL/I user exit routines provided by
IMS/VS.

Chapter 4 -- describes data communication functions that can be
modified and how you can modify them.

Chapter 5 -- describes how to estimate storage requirements for
DB and DB/DC systems.

Chapter 6 describes IMS/VS intelligent remote station support
(System/3 and System/7).

Chapter 7 -- describes the Interactive Query .Facility as it
relates to IHS and provides data for estimating additional IMS/VS
storage requirements when IQF is used.

Appendix A -- describes the organization of the InS/VS Control
Program.

Preface iii

ASSOCIATED PUBLICATIONS

IMS/VS A~plicatioB Prog~mmin~ Reference Manual, SH20-9026
This document is a reference manual for the application
programmer. It provides him with information about the
coding techniques necessary to implement a designed
application under the IMS/VS system.

IMSL!§ Utilities Reference Manual, SH20-9029
This manual provides a description of the IMS/VS system
utility programs. It describes how to execute these
utilities under the operating system.

IMS/VS ~erator's Reference Manual, SH20-9028
This manual provides the master terminal, remote terminal,
and system console operators with the information associated
with operating IMS/VS once the system has been established
in a user environment.

IMS/VS Messag~ ~nd Cod~ Refer~ Mapual, SH20- 9030
This manual lists, explains, and suggests appropriate
responses to the completion codes and messages produced by
all the IBM-supplied components of the IMS/VS system.

IMSL!§ Program Logic Manual, Volume 1 of ~, LY20-8004
IMSL.!§ Program Logic Manual, VolUll ~ of d, LY20-8005
IMSL!§ Program 1Qgic Manual, Volume J of J, LY20-8041

The internal program logic of IMS/VS is explained in the
three volumes of this manual.

IMSL!§ Message Format Service User's Guig~, SH20-9053
This manual describes the use, definition, and implementation
of the Message Format Service (MFS).

IMSL!§ Advanced l~ction for Communications, SH20-9054
This manual explains the IMS/VS support for advanced function
communications systems. It address.es the areas that
programmers or analysts involved in communicating with IMS/VS
must be familiar with.

IMS/VS Lo,! Level Coge/Continuity Check in Data Langua~:
~~ogr~ Reference ~nd Q~ratiQll Manu£l, SH20-9047

This manual is intended primarily for manufacturing industry
DB/DC users whose programs maintain bills of material. It
describes the purpose and use of the IMS/VS callable
subroutine, Low-Level Code/Continuity check in Data
Language/I.

Q~LVSl Storage Estimates -- ~Y§te~ Library, GC24-5094
Provides instructions, formulas, and charts that can be used
to estimate the real, virtual, and auxiliary storage
requirements for VS1.

Q§LVSl Syst~ Programming Libra£y: Storage Estimates, GC28-0604
Describes the real, virtual, and auxiliary storage areas of
VS2 Release 2 and provides formulas for estimating the
storage requirements of the system.

as/vs Linkagg l!ditor and Loadg, GC26-3813
Provides the information necessary to use the linkage editor
or loader program to prepare the output of a language
translator for execution.

iv IMS/VS System Programming Reference Manual

c

c

C~

OS/VS Virtual ~torage Access Method (VSAM) System Information,
GC26-3835

Provides information on the release of OS/VS Virtual Storage
Access Method as an independent component of OS/VS1, Release
2, and OS/VS2, Release 1.6. Describes the OS/VS VSAM
distribution tape, provides detailed information on the
installation of OS/VS VSAM, and provides information that
temporarily supplements other OS/VS publications.

GUIDE 1Q YSING lMS/VS SYSTEM PUBLICATIONS

Figure P-1 is a guide to using the IMS/VS system publications. This
guide is divided into three parts, each dealing with a specific IMS/VS
component -- Data Base System, Data Communication feature, and
Interactive Query Facility (IQF) feature. For each component, one or
more tasks are specified, and the IMS/VS manual or manuals that contain
major information regarding this task are noted. The titles of the
IMS/VS manuals are abbreviated as follows:

Full Manual Title

GIM IMS/VS General Information Manual

SADG

IG IMS/V~ Installation Quide

SPRM

APRM IMS/VS !lU2.!ication Programming Refere~ Manual

UTRM

OPRM IMS/V~ Operator's Reference Manual

Four IMS/VS manuals are not referred to in Figure P-1:

• lMS/VS Messages and Codes Reference Manual: This manual supports
essentially all tasks noted in Figure P-1.

• IMSLvS 1m! Level Code/Continuity Check in DL/I: Progg]l Referenc.s!
and QE~atiQn Manual: This manual supports the Data Base System
when the LLC/CC function is used.

• IMS/VS l1essa,gg Forma! Service User's Guide: This manual supports
the Data Communication feature when MFS is used.

• IMSLX~ Advanced EY]&tion !Q£ Communications: This manual supports
the Data Communications feature when an AFC system is used.

The IQF section of Figure P-1 refers only to IMS/VS system library
manuals that contain information on IQF. Additional IQF information
can be found in:

• lQr General Information Manual, GH20-1074

• lQr Language Guide, GH20-1222

• lQl Terminal User's Reference Guidg, GH20-1223

Preface v

Data
Base

Design Generate

SADG I- UTRM

System
Design Define

Data
Base SADG, I- IG
System SPRM

Design Generate

SADG, -
Applications APRM

UTRM

Terminals
Configure Ntwk Dsgn

GIM I-

Data Design

Communication
System

SADG, I-
Feature* SPRM

Design

SADG, -
Introduce

Applications APRM

GIM

Design
IOF SADG, I-
Feature**

SPRM

* References for the DC feature are in addition to
those for the DB System.

* *References for this feature are in addition to
those for the DC feature.

SADG

Define

IG

Generate

UTRM

Define

IG

Load Reorganize Recover

I- UTRM, I- UTRM - UTRM SADG

Install Modify Tune

I-
IG - SPRM - UTRM

Code Test

I- -APRM APRM

Define Operate

- IG
I-

OPRM

Install Execute Modify

I- IG I-
OPRM - SPRM,

OPRM

Code Test

I- -APRM APRM

Generate

- SPRM

Figure P-1. Guide to Using IMS/VS System Publications

vi IMS/VS System Programming Reference Manual

Tune

- UTRM,IG

Tune

I- UTRM,
IG,OPRM

~-

PREFACE.

FIGURES.

SUMMARY OF AMENDMENTS.

CHAPTER 1. THE IMS/VS PROCEDURE LIBRARY
Procedure Library.

Executing Jobs Using Procedures from IMSVS.PROCLIB •
IMS/VS-Supplied Members.

Member Name ACBGEN
Member Name DBBBATCH
Member Name DBDGEN •
Member Name DLIBATCH
Member Name IMS.
Member Name IMSBATCH
Member Name IMSCOBGO
Member Name IMSCOBOL
Member Name IMSMSG
Member Name IMSPLI •
Member Name IKSPLIGO
Member Name IMSRDR •
Member Name IMSWTnnn
Member Name IQFFC.
Member Name IQFIU.
Member Name IQFUT.
Member Name MFDBDUMP
Member Name MFDBLOAD
Member Name PSBGEN •
Member Name SECURITY

DL/I Interfaces.
Member Name CBLTDLI.
Member Name PLITDLI.

CHAPTER 2. SYSTEM MAINTENANCE/TUNING FACILITIES
DL/I Data Base Buffering Facilities.

ISAM/OSAM Buffer Pool.
Fixed Length Buffers

VSAM Shared Resource Pool.
VSAM Background Write.

DL/I Buffer Handler Pool •
Log Tape Write-Ahead.

IMS/VS Command Language Modification Facility.
Command Keyword Table.
changing the Table

KEYWD Macro.
SYN Macro.

Error Messages •

CHAPTER 3. DL/I USER EXIT ROUTINES.
Writing DL/I Exit Routines

Accessing Main Storage
ISWITCH Macro.
IMODULE Macro.
To Load a Module into CSA.
To Get Storage from CSA.
To Delete a Module from CSA.

Contents

iii

xiii

xv

1 • 1
1 .1
1.4
1 .4
1 .5
1.6
1 .8
1.9
1 • 11
1 .16
1.17
1 .19
1.20
1.22
1.23
1.24
1 .24
1.25
1.25
1.27
1.27
1.28
1.28
1.29
1.29
1.29
1.29

2.1
2.1
2.1
2.2
2.2
2.2
2.3
2.3
2.4
2.4
2.4
2.4
2.5
2.5

3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.3

vii

Segment Edit/Compression Exit •••••
General Description and overview

User Capabilities. •
User Constraints
User Procedures. • • • • • •

Types of Segments. • • • • • •
Types of Edit/Compression. • • • • •
DBD Control Statement SEGM •

Segment Edit/Compression.
DL/I Module Interfaces •

Initialization • • • • • • •
Processing • • • • • • • • • • • •

Parameters Passed by DL/I. • • • •
Edit/Compression Routine Entry Codes •
Converting Existing Data Bases • • • •
Performance Considerations • • • • • •
Segment Compression/Expansion Module Example: KMPEX.

The Compression Routine. • • • • • •
Method of Compression. • • • • • • • • • • •
The compression Control Block (CCB). • • • •
Pointer to the First Control Block (PFCB) ••
The Last Compression Control Block (LCCB).
Length of New Compressed Segment • • • •
The Expansion Routine. • • • • • • • • •
The Initialization processing Routine. •
Program Messages and Codes • • • • •
Program Assumptions. • • • • • •

HDAM Randomizing Modules • • • • •
Randomizing Module Interfaces. •
HDAM Randomizing Module Examples

Modulo or Division Method Example (DFSHDC10)
Binary Halving Method Example (DFSHDC20)
Hashing Method Example (DFSHDC30). • • • • • • • • •
Generalized Randomizing Routine Example (DFSHDC40) •
Routine Listing. • • • • • • • • • • • • • • •

Secondary Index Data Base Maintenance Exit Routine Interface ••
Interface to the Index Maintenance Exit Routine ••
Index Maintenance Exit Routine Parameter CSECT • •

Data Base Log Tape Record Format • • • • • •

CHAPTER 4. DC USER EXIT AND EDIT"ROUTINES •
Basic IMS/VS Edit Functions. • • • • • • • • • • • •
User Edit Routine Inclus~on During System Definition
Common DC Routines • • • • • • • • • • •

Physical Terminal (Input) Edit Routine •
Interface. • • • • • • • • • • • • • • • • • • •
Example of a Physical Terminal Input Edit Routine ••

Physical Terminal (Output) Edit Routine ••••••••
Interface. •
Example of a Physical Terminal Output Edit Routine •

Transaction.code (Input) Edit Routine •••••••••
Interface. • • • • • • • • • • • • • • • •
Example of a Transaction Code Edit Routine •

Message switching (Input) Edit Routine ••••
Interface. • • • • • • • • • • • • • • • • •
Example of a Message switching Edit Routine.

Conversation Abnormal Termination Exit Routine
Inclusion During System Definition •
Interface. • • •
Program Listing. • • • •

User Message Table • • • • • • • • •
Defini tion Requirements.
User Message Table Format. •
Example ••••••••••.•

viii IMS/VS System Programming Reference Manual

3.3
3.4
3.5
3.6
3.6
3.6
3.7
3.8
3.8
3.10
3.10
3.10
3.14
3.14
3.16
3.17
3.17
3.18
3.18
3.18
3.20
3.21
3.22
3.22
3.23
3.24
3.25
3.41
3.43
3.44
3.44
3.48
3.50
3.53
3.54
3.56
3.58
3.59
3.60

4.1
4.1
4.2
4.2
4.2
4.3
4.4
4.7
4.7
4.8
4.13
4.13
4.15
4.18
4 .18
4.18
4.20
4.21
4.21
4.23
4.23
4.23
4.24
4.24

"--_ ..

(~

,--

c:-

Hardware Required Routines •••••••••
7770-3 Sign-On Exit Routine -- DFSS7770 ••

Interface. • • • • • • • • • • • • •
Error Conditions • • • • • • •
Inclusion During System Definition •
Program Listing. • • • • • • • • • •

7770-3 Input Edit Routine -- DFSI7770.
Int er face. • • • .• • • • • •
Error Conditions • • • •
Special Conditions • • • • •
Data Special Characters.
Inclusion During System Definition •
Program Listing. • • • • • • • • • •

7770-3 Output Edit Routine -- DFS07770 •
Interface. • • • •• • •
Error Conditions • • • • • • • • • •
Special Conditions • • • • • • • • • • • • •
Inclusion During System Definition •
Program Listing. • • • • • • • • • •
7770-3 User Output Translate Table •

2972/2980 Input Edit Routine •
Required Function.
IQF Considerations • • • • •
Interface. • • • • • • • • • • • •
Inclusion During System Definition •
Program Listing. • • • • • • • • •

3741 Sign-On Exit Routine -- DFSS3741.
Interface. • • • • • • • • • • • •
3741 Name Table Format • • • • • • •
Inclusion During System Definition •
Program Listing. • • • • • • • • •

CHAPTER 5. IMS/VS STORAGE ESTIMATES • •
Data Base System Storage Requirements.

IMS/VS Modules -- Basic. • • • • • • • ••
IMS/VS PSB (program Specification Block) •
IMS/VS DMB (Data Management Bloc~ • • • •
IMS/VS Data Base Buffer Pools. • • • • • •
IMS/VS Data Base Work Pool • • • • • • • • • • • •
IMS/VS and OS/VS Modules -- Data Base organization

Dependent • • • • • • • • •• ••• • • •
OS/VS Control Blocks, Buffers, and Work Space.

OS/VS Buffers. • • • • • • • • • • • • • • • • •
OS/VS Control Blocks and Work Space. • • • • • • • •

Data Base System Storage Requirements Example. • • •
Data Base System Minimum Storage Requirements Example. •
Data Base/Data Communication System Storage Requirements ••

Control Region •
Worksheet for Control Region Estimates • • • • • • •

Control Program Nucleus. • • • • • • • • • • •
Control Program Code • • • • • • • • • • • •
Control Program Nucleus -- Generated Control Blocks.

IMS/VS and OS/VS Loaded Modules -- Control Region.
Global Areas • • • • • • • • • • • • • •
Global Control Blocks. • • • •
Global Buffer Areas. •

System Log Buffers •• •• • • • • • • •
IMS/VS Buffers • • • • • • • • • • • •

Maximum Dynamic Storage to be Used by IMS/VS ENQ/DEQ
Program and Data Base Description Buffers. • • • • •

PSB Pool Considerations in an OS/VS System • •
Data Base Buffer Pool. • • • • • • •
IMS/VS Data Base Work Pool •
General Buffer Pool. •
DBLLOG Buffers • • • • • • • . .-

4.25
4.25
4.25
4.26
4.26
4.26
4.29
4.29
4.30
4.31
4.31
4.31
4.31
4.34
4.34
4.35
4.35
4.35
4.36
4.37
4.39
4.39
4.39
4.39
4.40
4.41
4.47
4.47
4.48
4.48
4.48

5.1
5.1
5.2
5.2
5.5
5.6
5.7

5.7
5.9
5.9
5.9
5.10
5.13
5.15
5.16
5.18
5.19
5.19
5.22
5.24
5.25
5.26
5.26
5.26
5.27
5.29
5.30
5.31
5.32
5.33
5.33
5.34

Contents ix

Queue Buffer pool. • • • • •
Message Format Buffer Pool •
Format Block Pool. • • • • •
Line Buffer Pool • • • • • • • • • •
Communication Work Area Pool (CWAP) •••••

Dynamic storage Requirements -- Control Region
IMS/VS Dynamic Storage Requirements. • • •
Total IMS/VS Dynamic Requirements. • • • • • •

Message and Batch-Message Processing Regions • • • • • •
Data Base/Data Communication Storage Requirements Example ••

Environment. • • • • •
OS/VS ••••••••••
IMS/VS • • • • • • • • • • •

Control Region Calculation • • • • •
Message Processing Region Calculation.

Data Base/Data communication System Minimum Storage
Requirements Example. • • • • • • • • • • •

Data Base Utilities storage Requirements • • • • • •
Data Base Image Copy Utility -- DFSUDMPO • • • • • • •
Data Base Change Accumulation Utility -- DFSUCUHO.
Data Base Recovery Utility -- DFSURDBO ••••••
Data Base Batch Backout Utility -- DFSBBOOO ••••
HISAH Reorganization Unload Utility -- DFSURULO ••
HISAM Reorganization Reload Utility -- DFSURRLO. •
HD Reorganization Unload Utility -- DFSURGUO ••
HD Reorganization Reload Utility -- DFSURGLO •••
Data Base Pre-reorganization Utility -- DFSURPRO •
Data Base Scan Utility -- DFSURGSO • • • • • • •
Data Base Prefix Resolution Utility -- DFSURG10.
Data Base Prefix Update Utility -- DFSURGPO. • • • • •
Spool SYSOUT print Utility -- DFSUPRTO •
storage Estimates Source Data •••••••••

CHAPTER 6. COMMUNICATIONS WITH INTELLIGENT REMOTE STATIONS.
Introduction • • • • • •

Terminal Identifiers • • • • • • • • • • • • •
Message Formats. • • • • • • • • • • • • • •

Interface between IMS/VS and the System/3 or System/7 BSC ••
Data Blocks. • • • • • • • • • • • • • •

Block Format • • • • • • • •
Data Segment Format. • • • •

Examples of Data Block Formats • • • •
System/3 or System/7 Transmission to IMS/VS.
IMS/VS Transmission to System/3 or System/7.

Synchronization Blocks • •
General Block Formats. •
Shutdown/Restart Blocks.
Status Change Blocks • • •
I/O Synchronization Blocks •
Error Blocks • • • • • • • •
System/7 Load Request Block.

Interface between IMS/VS and a System/7 Start/Stop •
Data Blocks. • • • • • •

Block Format • • • •
Data Segment Format.

Examples of Data Block Formats •
System/1 Transmission to IMS/VS.
IMS/VS Transmission to System/7.

x IMS/VS System Programming Reference Manual

5.34
5.35
5.36
5.42
5.44
5.45
5.46
5.47
5.47
5.48
5.48
5.48
5.49
5.50
5.57

5.57
5.63
9.64
5.64
5.65
5.66
5.66
5.67
5.68
5.68
5.69
5.70
5.71
5.71
5.72
5.73

6.1
6.1
6.1
6.1
6.2
6.3
6.3
6.3
6.5
6.5
6.5
6.6
6.6
6.7
6.9
6.10
6.12
6.13
6.13
6.14
6.14
6.14
6.16
6.16
6.17

/

\

,..-"

Synchronization Blocks • •
General Block Formats. • •
Shutdown/Restart Blocks~
Status Change Blocks • •
I/O Synchronization Blocks •
Error Blocks • • • • • • • •
Load Request Block • • • • •

IMS/VS Responses to Received Blocks. •
Sample IRSS Transmission Sequences • • •

. ".

CHAPTER 7. INTERACTIVE QUERY FACILITY (IQF) WITH IMS/VS •
Introduction • • • • • • • • • • • • • •
Creation of IQF Processor Data Bases
The IQF Utility. • • • • • ••
IQF Utility Control Statements •

The QSYSFILE Statement •
The OPTION Statement ••
The ** JOB Statement • •
The QINDXGEN Statement •
The ENDUP Statement. •

IMS DBD Statements •••••
Interactive Query Facility (IQF) DBD Extension Statements.

The *FIELD Statement •
The *QFIELD Statement. • • • • • • • • • • • •

IMS PSB Statements • • • • • • • • • • • • • • • •
Interactive Query Facility (IQF) PSB Extension Statements.

The *QPCB Statement. • • • • • • •
The *QPSBGEN Statement • • • • •

Full File Search Examples.
Summary of Control Statements Required for Processor

Data Bases •••••••••••
IQF Utility Control Statements • •
IMS DBD Statements • • • • • •
IQF DBD Extension Statements •
IMS PSB Statements • • • • • •
IQF PSB Extension Statements •

Example of Control Statements for Processor Data Base
Creation. •••

IQF system Data Base Maintenance • • • • • • • • • • • • • • •
IQF Index Creation and Maintenance • • • • • • • • • • • • • •

Example of Stage 2 OS/VS Job Stream for Creation of IQF
Processor Data Bases. • • • • •

Storage Requirements • • • • • •
IMS/VS Control Region. •

Control Program Code •
Control Blocks • • • •
Loaded Modules • • • •
IMS/VS Buffers • • • • • • • • • •
Dynamic Storage Requirements • •

IMS/VS Message Processing Region •
IMS/VS Batch processing Region •
Secondary Storage. • • • •
IQF Module Storage (Bytes)

APPENDIX A. ORGANIZATION OF CONTROL PROGRAM ••

INDEX ••

6.17
6.18
6.18
6.21
6.22
6.23
6.24
6.25
6.25

7.1
7.1
7.1
7.2
7.3
7.3
7.6
7.7
7.8
7.9
7.9
7.9
7.10
7.11
7.12
7.13
7.13
7.14
7.15

7.16
7.16
7.16
7.16
7.16
7.16

7.17
7.18
7.18

7.19
7.22
7.22
7.22
7.22
7.23
7.23
7.25
7.25
7.25
7.25
7.26

A.1

I. 1

contents xi

c

(-
'-....

-_._ .. __ ... __ _------

FIGURES

P-1.
3-1.
3-2.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
5-1.

5-2.
5-3.
5-4.
5-5.
5-6.
5-7.

5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.
6-1.
A-1.
A-2.
A-3.
A-4.
A-5.

A-6.

A-7.

A-8.

Guide to Using IMS/VS System Publications • • • •
Segment Edit/Compression. • •••••••••••
Segment Edit/Compression Control Section (SEGPAC)
Sample Physical Terminal Input Edit Routine •
Sample Physical Terminal Output Edit Routine.
Sample Transaction Code Edit Routine. • • • •
Sample Message switching Edit Routine • • • •
IBM-Supplied Conversation Abend Exit Routine •••
IBM-Supplied 7770-3 Sign-On Exit Routine.
IBM-Supplied 7770-3 Input Edit Routine. • • •••
IBM-Supplied 7770-3 Output Edit Routine •
IBM-Supplied 2972/2980 Input Edit Routine
IBM-Supplied 3741 Sign-On Exit Routine ••
IMS/VS and OS/VS Modules Supporting Data Base
Functions • • • • • • • • • • • • •
Example Worksheet for Data Base System.
Example Worksheet for Minimum Data Base System ••
Control Region Organization • • • • • •
Control Program Nucleus (V=R) • • • • •
Control program Nucleus -- Basic and optional Code. •
Control Program Nucleus -- Required Resident
Device Code • • • • • • • • • • • • • • • • • • •
Control Program Nucleus -- Control Blocks •
Control Region -- Loaded Modules. • • • • • • • •
Modules Always Loaded by the CTL Region •
Global Control Blocks • • • • • • • • • •
Buffer Specifications in IMS Procedure. •
Communications Input/Output Line Buffers.
OS/VS Storage Requirements in Control Region.
Message or Batch-Message Region organization.
Message or Batch-Message Region Size and Worksheet. •
Hierarchic Structure for Two PSBs
Two Data Bases Logically Related. • • • • • • • • • •
Worksheet for DB/DC Example • • • • • • • • • • • • •
Worksheet for Minimum DB/DC Example • • • • • • • • •
IMS/VS Control Blocks in the Control Program Nucleus.
Loaded Modules in CTL Region. • • • • • •
IMS/VS Global Areas (CSA in MVS) •••••••••
Message/Batch -- Message Region contents.
Sample IRSS Transmission Sequences. • •
IMS/VS System Structure in as/vs1 • • • • • • • •
IMS/VS System Structure in OS/VS2 ••••
Control program Nucleus Generation (VS1 V=R) •••
Control Program Nucleus -- Root Generation (VS1 V=R).
Control Program Nucleus -- Control Blocks Generation
(VS 1 V=R) •
Control Program Nucleus -- Contents of Overlay
Region 1 Generation (VS 1 V=R) • • • • • • • • • •
Control Program Nucleus -- contents of Overlay
Region 2 Generation (VS 1 V=R) • • • • • •
Control Program Region -- Buffer Areas. • • • • • • • • •

Figures

vi
3.5
3.9
4.5
4.9
4. 16
4.19
4.23
4.27
4.32
4.36
4.41
4.49

5.8
5.12
5.15
5.17
5.19
5.20

5.21
5.23
5.24
5.25
5.26
5.28
5.45
5.46
5.47
5.48
5.52
5.53
5.56
5.62
5.73
5.74
5.74
5.75
6.26
A.l
A.2
A.3
A.3

A.4

A.4

A.5
A.6

xiii

c

c.

,- VERSION 1, RELEASE 1~

This publication has been revised to reflect technical and editorial
changes made for Release 1.2.

IMS/VS SYSTEM LIBRARY REORGANIZATION

• IMS/VS system definition information moved to the IMS/VS
Installation Guide, SH20-9081

• IMS/VS storage estimating information moved to this manual from
the IMS/VS System/Application ~siqn Guide, SH20-9025

• IMS/VS IQF information moved to this manual from the IMS/VS
SystgmLAlU2llcation Design Guide, SH20-9025, and the lMS/VS Qtiliti~
Reference ~anual, SH20-9029

• "lMS/VS Sample Problem" moved to the IMS/VS Installa tion Guide,
SH20-9081, and renamed "IMS/VS Sample Application"

• organization of the lMS/VS Control Program moved to this manual
from the IMS/VS ~st~L!RElication Design Guide, SH20-9025

ADDITIONAL DEVICE SUPPORT

• 3600 Acknowledge with Response Message facility incorporated into
storage estimates and buffer sizes

• 3767, 3770 VTAM SDLC support incorporated into storage estimates
and buffer sizes

OTHER TECHNICAL CHANGES

• Conversational Abnormal Termination Exit Routine modified

• Storage estimates updated

VERSION 1 MODIFICATION LEVEL 1 ~ERVICE UPDATE RELEASE 1

ADDITIONAL DEVICE SUPPORT

• Additional devices that may be defined for use with this release
of IM5/VS are:

IBM 3740 Data Entry System

IBM system/7 attached on a nonswitched, binary synchronous
contention or polled communication line

Summary of Amendments xv

•

OTHER TECHNICAL CHANG£S

• IMS/VS Data Base (DB) Monitor

• Utility Control Facility

VERSION 1 MODIFICATION 1EVEL 1

ADDITIONAL DEVICE SUPPORT

• Additional devices that may be defined for use with this release
of IMS/VS are:

IBM 3600 Finance Communication System

IBM 3790 Communication System

IBM 3275 Display Station attached through a switched
communication line

• The 3600/3790 systems are supported through the Virtual
Telecommunications Access Method (VTAM). VTAM is optional for the
IBM 3270 Information Display System.

• Additional devices supported by the IMS/VS Message Format Service
(MFS) with this release are:

IBM 2740/2741 Data Communications Terminals

IBM 3600 Finance communication system

OTHER TECHNICAL CHANGES

• IMS/VS System definition has been modified to allow specification
of the following new IMS/VS functions:

Additional device support (see above)

Parallel scheduling of application programs

Application program/transaction load balancing

Wait-for-input transactions

Unrecoverable inquiry transactions

Enforceable limits on the size and number of segments output by
an application program

optional MFS formatting support for the 3270 master terminal
(requires a 3277-2)

MFS field and segment edit routines

xvi IMS/VS System Programming Reference Manual

c~

Fixed length scratchpad areas for conversation transaction
processing

Main storage resident PSBs and DMBs

Response mode forced or negated by physical r terminal definition

User message tables

Physical terminal input edit routine

Message delete option

• Limits on system definition macro specifications have been extended.

Summary of Amendments xvii

,"

C'

Various jobs and tasks associated with IMS/VS are supplied by IBM
as procedures. The functions of these procedures are described in this
chapter.

If PROCLIB=YES is specified when preparinq the IMSGEN system
~eEinition macro statement, certain procedures and the ;obs IMSMSG and
IMSWTnnn are dynamically created and placed in IMSVS. PROCLIB. (Refer
to "Perform IMS/VS System Definition" in the IM'§LVS 1!l~tal!.~~iQ!! 2.Yi:g~
for instructions and recommendations for preparing the IMSGEN macro.)
The created jobs and procedures should be examined carefully to
determine if the JCL was generated as you require. These procedures
may not apply to all applications, but can be used as guidelines for
user-generated account oriented procedures.

If an online IMS/VS system has been defined, particular attention
should be devoted to the terminal device allocation generated within
the IMS procedure. A list of terminal addresses and logical and
physical terminals is printed by Stage 1 of IMS/VS system definition.
Examples of the procedure jobs in this chapter show the contents of
the members as they are supplied by IBM. No card column image is
intended. When coding your own procedures, follow JeL and VS Assembler
language coding practices. Depending on the type of system beinq
deEined, your procedure library members may be a subset of the complete
IMS/VS procedure l~brary that is presented here.

ACBGEN

DBBBATCH

DBDGEN

DLIBATCH

IMS

IMSBATCH

I MSCOBGO

A one-step execution procedure for ACBLIB
maintenance. Detailed information on ACBGEN
can be found in the I~~LY~ nii!iiig~"B~!~£gnf~
~E!U!~!·

A one-step execution procedure for an offline
Data Lanquage/I batch processing reqion using
IMSVS.ACBLIB.

A two-step assemble and link edit procedure to
produce data base definition blocks (DBDs).
Detailed information on DBDGEN can be found in
the l~§L!§ utili~i~~ R~fg~n~g ~~U~~!·

A one-step execution procedure for an offline
Data Language/I batch processing region using
PSB and DBD libraries.

A procedure to execute an IMS/VS online control
region.

A procedure to execute an IMS/VS online batch
message processing region.

A three-step compile, link edit, and go procedure
combining the procedu~e IMSCOBOL with an
exception step for a stand-alone Data Language/I
batch processing region.

The IMS/VS Procedure Library 1.1

lMSCOBOL

I I MSMSG

IMSPLI

IMSPLIGO

I MSRDR

I MSWTnnn

lQFUT

IQFFC

IQFIU

MFDBDUMP

A two-step compile and link edit procedure for
IMS/VS applications written in COBOL.

A job to execute an IMS/VS message processing
region.

A two-step compile and link edit procedure for
IMS/VS applications written in PL/I.

A three-step compile, link edit, and go procedure
combining the procedure IMSPLI with an execution
step for a st and- alone Data Language/! b3. tch
processing region.

DASD read procedure to read lMSMSG job into the
operating system job stream from direct access
devices.

These are jobs used to print data sets created
by the SPOOL SYSaUT options.

This is a procedure for executing the Interactive
Query Facility (IQF) Utility system. An EXEC
statement to invoke the procedure is includea
in the stage 2 OS/VS job stream by the lQF module
DMGSl1 (Part 1 of lQF stage 1). After system
definition, this proceaure is contained in
lMSVS.PROCLlB. Refer to the "lQP with IMS/VS"
chapter in this manual for information on lQF.

This procedure causes execution of the IQF System
Data Base (Field File) C Utility program during
the stage 2 OS/VS job stream created by IQF
stage 1. An EXEC statement to invoke the
procedure is included in the job stream by the
DMGSl1 module. After system definition, this
procedure is contained in the lMSVS.PROCLlB.
Refer to the "lQF with lMS/VS" chapter in this
manual for information on IQP.

This procedure causes execution of the IQF Index
Creation/Update Utility program during the Stage
2 OS/VS job stream created by Stage 1. An EXEC
statement to invoke the procedure is includea
in the job stream by the lOP DMGSI2 module (Part
2 of lQF Stage 1). After system definition,
this procedure is contained in IMSVS.PROCLIB.
Refer to the "lQP with IMS/VS" chapter in this
manual for information on lQF.

rhis is a procedure to dump the sample
application aata base onto a SYSOUT data set.
Refer to "The lMS/VS Sample Application" in the
IMSL!2 ln2t~1!gtiQn 2yi~~ for details about the
sample application.

1.2 lMS/VS System Proqramming Reference Manual

-------- ----------------------------

c

MFDBLOAD

MFSBACK

MFSBTCH1

MFSBTCH2

MFSREST

MFSSRVC

MFSTEST

MFSUTL

PSBGEN

SECURITY

A Data Languaqe/I batch execution procedure used
to load the sample application data base. Input
data for the data base procedure is contained
in the MFDFSYSN member of IMSVS.GENLIB. Refer
to "The I MS{VS Sample Application" in the !!1~t:!~
In§talla1ion g~!ggfor details about the sample
application.

A two-step execution procedure to back up the
MFS libraries. If the optional MFSTEST facility
is used, MFSBACK contains an additional step.
See the l~~ ~g§§~g~ Fo~~! ~g!vi£g ~§~~~§.
gy!~g·for a listinq of thi$ procedure.

A one-step batch execution procedure for
accumulating MFS online blocks. See the r~~L!~
Message ~Q!ID~! ~~£Yi~g g§~!~§ g~igg for a listing
of this procedure.

A one-step execution procedure for placinq the
MPS online blocks into IMSVS.FORMAT. See the
IMSLVS ~~§§Eg~ Fo~~i ~~!~i£g·~§g~!§ ~yidg for
a listing of this procedure.

\ .
A two-step execut10n procedure to restore the
MFS libraries. If the optional MFSTEST facility
is used, MFSREST contains an additional step.
See the l~~ ~g§§~gg I~~g! ~g!~!£g ~§g£~§.
QYi~g for a listing of this procedure.

A one-step execution procedure for maintaining
the MFS libraries. See the I~~L!§ ~g§§~gg-Fo~mat
~grvice ~§~~~§ Guide for a listing of this
procedure.

A two-step execution procedure for support of
test mode operation of the message/format
lanquage utility. See the 1~~~Y~·Me§~gg-~Q£mEi
~~!!i~g-~ser'§ gyigg for a listing of this
procedure.

A two-step execution procedure for defining
message and format descriptions to the
message/format language utility program. See
the ~L!~ ~g§§~gg.!~£~! Sery!£g ~§g!!§ Gui~~
for a listing of this procedure.

A two-step assemble and link edit procedure to
produce program specification blocks (PSBs).
Detailed information on PSBGEN can be found in
t he l!1~LY'§' Utili!i~§ Rgig~1!£g !1~!!l!~!-.

A three-step execution, assembly, and link edit
procedure for terminal and password security
which invokes the security maintenance proqram.

The IMS/VS Procedure Library 1.3

In addition to the jobs and procedures placed in IMSVS.PROCLIB, two
Data Language/I interfaces are also generated:

CBLTDLI

PLITDLI

control statements necessary to establish a
COBOL to DL/I interface.

control statements necessary to establish a PL/I
to DL/I int er face.

The generated procedures accommodate either as/VS1 o~ OS/VS2. The
I~S/360 Version 1 language interface is not supported in IMS/VS.

All procedures should be placed into IMSVS.PROCLIB except the IMS
and IMSRDR procedures. These two procedures should be placed into
SYS1.PROCLIB.

EXECUTING JOBS USING PROCEDURES FROM IMSVS.PROCLIB

The OS/VS reader/interpreter requires that the reader procedure used
to enter jobs into the OS/VS job stream specify the name of the
procedure library containing the procedures used by those iobs. This
name is specified on the reader procedure's IFFPDSI DO statement.
IMS/VS svstem definition provides a reader procedure called IMSRDR
which satisfies these requirements. This procedure is used, as
generated, to start message regions for the online system. If entered
from the operating system operator's console using the OS/VS START
command (that is, S IMSRDR), it causes a message processing region to
be started. If S IMSRDR,DDD, DCB=BLKSIZE=80D (where ODD is the device
address of the card reader) is entered, it reads jobs into the operating
system job stream from that card reader, allowing those jobs to use
procedures from the IMSVS.PROCLIB data set. DCB BLKSIZE must be
included with the OS/VS start command if DDD is included.

IMS/VS-SUPPLIED MEMBEFS

The foll~wing p~ocedure library members are supplied with IMS/VS by
IBM.

1.4 IMS/VS System proqramminq Reference Manual

--------- -------------

(
"--

c ..

Detailed information on ACBGEN, ani examples of the use of ACBGEN
are in the I~~l!~ Yiilities E~!§!~nf~ Ma~~£l.

II
IIG
I ISYS PRINT
/ISTEPLIB
IllMS
II
IIIMSACB­
IISYSUT3
IISYSUT4
IIC:lt'!PCTL

PROC
EXEC
DD
DD
DD
DO
DD
DO
nn
DO

SOUT=A,COMP=,RGN=100K
PGM=DFSRRCOO,PARM='UPB,&COMP',REGION=&RGN
SYSOUT=&SOUT
DSN=IMSVS.RESLIB,DISP=SHR
DSN=IMSVS.PSBLlB,DlSP=SHR
DSN=IMSVS.DBDLlB,DISP=SHR
DSN=IMSVS. ACBLlB, DISP=:)LD
UNIT=SYSDA,SPACE=(80,(100,100»
UNlT=SYSDA,SPACE= (255, (100,100» ,DCB=KEYLEN=8
DSN=IMSVS. PROCLIB (DFSACBCP, ,DISP=SHR

• FXFC statement Parameters for ACBGEN

SOUT=

COMP=

RGN=

specifies the SYSOUT class. The default is A.

PRECOMP;POSTCOMP, in any combination, to cause the required
in-place compression. The default is none.

specifies the region size for this execution. The default is
1 O~ K.

The IMS/vS Procedure Library 1.5

Assumes:

• User adds DD statements for data sets representing IMS/VS d~t~
bases.

• If VSAM data bases are used, see "Defininq the IMS/VS VSAM Buffer
Pool" in the !!1~t:!~ Insta!.!.a1iQA ~y!£~.

II PROC MBR=TEMPNAME r SOUT=A,PSB=,.BUF=8 r
II SPIE=O,TESr=O,EXCPVR=O,RST=O,
II PRLD=,SRCH=O,CKPTID=,MON=N
IIG EXEC PGM=DFSRRCOO,REGION=192K,
II PARM={DBB,&MBF,&PSB,&BUF,
II &SPIE&TEST&EXCPVR&RST,&PRLD,&SRCH,&CKPTID,&MON)1
//STEPLIB OD DSN=IMSVS.RESLIB,DISP=SHR
II DD DSN=IMSVS.PGMLIB,DISP=SHR
/IIMSACB DD DSN=IMSVS.ACBtIB,DISP=SHR
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
IIIEFRDER DD DSN=IMSLOG,DISP=(,KEEPl ,VOL=(",991 ,UNIT={2400,rDEFER),
I I DCB= (RECFM=VBS, BLKS IZ ~ 1920, LRECL =1916, BUFNO=21
/IIEFRDER2 DD DSN=IMSLOG2,DISP=(,KEEP) ,VOL=(",99),2
II UNIT=(240Q"DEFER,SEP=IEFRDER),
II DCB= (FECFM=VBS, BLKS IZ E= 1920, LRECL =1916, BUFNO=21
I /SYSUDU~ P DD SYSOUT=&SOUT ,DCB= (RECFM=FBA, L RECL= 121, BLKS IZ E=605)..,
II SPACE= (6:)5, {500,500),RLSE"ROUNDl
//IMSMON DO DUMMY3

I 1 Parameters in parentheses are positional.

2 This statement is included only when dual system log data sets are
used.

3 This statement describes the recording device t~ be used by the DB
monitor. It is required only if MON=Y is specified in .the PROC
statement, and then only if a device other than the IMS/VS system
log is to be used for monitor data. When a separate log device is
used fOL DB monitor data, a /IIMSMON DD statement must be included
that specifies a sufficient BLKSIZE and LRECL (2048 and 2044 are
suggested' •

• EXEC statement Parameters for DBBBATCH

MBR=

SOUT=

PSB=

BUF=

specifies an application program name.

specifies the .class assigned to SYSOUT DD statements.

is an optional p~rameter specifying a PSB name when the PSB name
and application program name are different.

specifies the data base buffer size. If not present, the default
size specified at system definition will be used. Buffer size
is specified in 1K multiples. Values may ranqe from 1 through
999.

1~6 IMS/VS System programming Reference Manual

SPIE=

TEST=

EXCPVR=

RST=

PRLD=

SRCH=

CKPTID=

MON=

c

specifies the SPIE option:

o - allow user SPIEr if any, to remain in effect while processinq
the application proqram call.

1 - neqate the user's SPIE while processing the application
program call. Negated SPIEs are reinstated before returning
to the application program.

A value· of 0 or 1 must appear in the qenerated J:L

specifies whether (1) or not (0) the addresses in the user's
call list should be checked for validity. A value of 0 or 1
must appear in the generated JCL statement for this parameter.

specifies whether EXCP (0) or EXCPVR (1) is to be used for data
sets processed bV OSAM. A value of 0 or 1 must appear in the
generated JCL statement for this parameter.

specifies UCF restart: (0) no, (1) yes. Refer to the I~§LY~­
~!iliiig~ K~f~~£§ ~~ny~!-for details. A value of 0 or 1 must
appear in the generated JCL statement for this parameter.

specifies a 2-character suffix for DFSMPLxx r the IMSVS.PROCLIB
member that lists the modules to be pre loaded in the
reqion/partition. See the IM~!~ In§~~!l~~iQn g~!g~ for details.

is the module search indicator for directed load.

o - standard search.
1 - search JPA and LPA before PDS (VS2 only).

specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to 8-character extended checkpoint ID
or a 12-character 'time-stamp' checkpoint ID.

specifies whether (Y) or not (N) the DB monitor is to be active
for this execution.

The IMS/VS Procedure Library 1.7

Detailed information on DBDGEN, and examples of the use of DBDGEN
are in the I~~l!~ Y!l!ities B~!~!~n~~·Manuat.

II PROC MBR=TEMPNAME,SOUT=A
IIC EXEC PGM=IFOXOO,REGION=12BK,PARM='OBJ,NODECK'
IISYSLIB DD DSN=IMSVS.MACLIB,DISP=SHR
IISYSGO DD UNIT=SYSDA,DISP=(,PASS) ,SPACE=(80,(1~O,100),RLSE),
II OCB=(BLKSIZE=400,RECFM=FB,LRECL=80)
IISYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
II SPACE=(121, (300,300),RLSE"ROUND)
IISYSUT1 00 UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700, (100,50))
IISYSUT2 DO UNIT=SYSDA,DISP=(,DELETE) ,SPACE= (1700, (100,50»
IISYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT21',
II SPA C E= (17 0 0, (100, 50))
IlL EXEC PGM=DF SILNKO, PA RM=' XREF , LIS T' ,COND= (4, LT, C) , REG ION=120K
IISTEPLIB . DD DSN=IMSVS.RESLIB,DISP=SHR
IISYSLIN DO DSN=*.C.SYSGO,DISP=(OLD,DELETEl
IISYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
II SPACE= (121, (90,90) , RLSE)
IISYSLMOD DD DSN=IMSVS.DBDLIB(&MBR),DISP=SHR
IISYSUT1 DD UNIT= (SYSDA,SEP=(SYSLMOD,SYSLIN» ,OISP= (,DELETE) ,
II SPACE=(1024, (100,10) ,RLSEl

1.8 IMS/VS Svstem Proqramming Reference Manual

(
I

\

Assumes:

• User adds DD statements for data sets representinq IMS/VS data
bases.

• If VSAM data bases are used, see "Defining the IMS/VS VSAM Buffer
Pool" in the 1!i2L!~ l.n'§~E!l.9~!Qn·[ui~~.

II PROC MBR=rEMPNAME,SOUT=A,PSB=,BUF=,
II SPIE=O,TEST=O,EXCPVR=O,RST=O,
II PRLD=,SRCH=O,CKPTID=,MON=N
IIG EXEC PGM=DFSRRCOO,FEGION=192K,
II PARM=(DLI,&MBR,&PSB,&BUF,
II &SPIE&TEST&EXCPVR&RST,&PFLD,&SRCH,&CKPTID,&MON) 1

IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
II OD DSN=IMSVS.PGMLIB,DISP=SHR
IIIMS DO DSN=IMSVS.PSBLIB,DISP=SHR
II OD DSN=IMSVS.DBDLIB,DISP=SHR
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
IIIEFRDER DD DSN=IMSLOG,DISP=(,KEEP) ,VOL=(",99),
II UNIT=(2400"DEFER),
II DCB=(RECFM=VBS,BLKSIZE=1920,LRECL=1916,BUFNJ=2) 2

IIIEFRDER20D DSN=IMSLOG2,DISP=(,KEEP) ,VOL=(",99),3
II UNIT=(2400"DEFER,SEP=IEFRDER),
II DCB=(RECFM=VBS,BLKSIZE=1920,LRECL=1916,BUFNO=2)
IISYSUDUMP DD SYSOUT=&SOUT,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=605),
II SPACE= (605, (500,500) ,RLSE"ROUND)
//IMSM~N DD DUMMY~

I 1 Parameters in parentheses are positional.

2 The BLKSIZE and LRECL values shown are the default values. If the
DCB parameters are changed, log initialization calculates the
smallest value necessary for logical record length (the larger of
1008 or the longest message queue size plus 16). If the JCL logical
record length value is larger than the calculated value, the JCL
value is used; otherwise, log initialization uses the calculated
value for logical record length and adds 4 for the block size.

Log initialization checks BUFNO. If BUFNO is less than 2, 2 is
used. If the JCL BOFNO is greater than 2, the JCL value is use:}.

3 This statement is included only when dual system log data sets are
used.

4 This statement describes the recording device to be used by the DB
monitor. It is reguired only if MON=Y is specified in the PROC
statement, and then only if a device other than the IMS/VS system
log is to be used for monitor data. When a separate log device is
used for DB monitor data, a IIIMSMON DD statement must be included
that specifies a sufficient BLKSIZE and LRECL (2048 and 2044 are
suggested).

• EXEC Statement Parameters for DLIBATCH

MBR=
specifies an application program name.

SOUT=
specifies the class assigned to SYSOUT DD statements.

The IMS/VS Procedure Library 1.9

PSB=

BUF=

SPIE=

TEST=

EXCPVR=

RST=

PRLD=

SRCH=

]

CKPTID=

MON=

1.10

is an optional parameter specifying a PSB name when the PSB name
and application program name are different.

specifies the data base buffer size. If not present, the default
size specified at system definition will be used. Buffer size
is specified in 1K multiples. Values may range from 1 through
999. .

specifies the SPIE option:

o - allow user SPIE, if any, to remain in effect while processinq
the application program call.

1 - negate the user's SPIE while processing the application
proqram call. Negated SPIEs are reinstated before returning
to the application program.

A value of Q or 1 must appear in the generated J:L statement
for this parameter.

specifies whether (1) or not (0) the addresses in the user's
call list should be checked for validity. A value of 0 or 1
must appear in the generated JCL statement for this parameter.

specifies whether EXCP (0) or EXCPVR (1) is to be used for data
sets processed by OSAM. EXCPVR is not valid in MVS systems. A
value of 0 or 1 must appear in the qenerated J:L statement for
this parameter.

specifies UCF restart. Refer to the I~~L!~ Uti!i!ig§ Reference·
ManY~l for details. A value of Q or 1 must appear in the-----­
generated JCL statement for this parameter.

specifies a 2-character suffix for DFSMPLxx, the IMSVS.PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the IM~!~ In§1£!1£!iQn g~igg for det~ils.

is the module search indicator for directed load.

o - standard search.

1 - search JPA and LPA before PDS (for VS2 only).

specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to 8-character extend9d checkpoint ID
or a 12-character 'time-stamp' checkpoint ID.

specifies whether (Y) or not (N) the DB monitor is to be active
for this execution.

IMS/VS System Programming Reference Manual

~-- --.- .. -~--....

r--
I

'-..

c

This procedure cannot be entered in the normal OS/VS iob stream
(through a card reader) unless modified as described in the Itl~l!~
Q~~£~to~~§ Rg~g~gn~ n~Ys!.

Assumes:

• User adas DD statements for data sets representing IMS/VS data
bases •

• If VSAM data bases are used, see "Defining the IMS/VS VSAM Buffer
Pool" in the 111~LY§' I!l§ta!latio!l !2!!i.Q~.

1/
1/
/1
II
/1

PROC

/ lIEF PROC EXEC
II PARM=(&CTL,

RGN=600K,SOUT=A,DPTY=' (14,15)',
CTL=CTL1,RES=,FRE=,QBUF=,DYBN=,PST=,
SAV=,EXVR=,PRF=,SRCH=,FBP=,PSB=,DMB=,DBB=,
TPDP=,WKAP=,PSBW=,CWAP=,DBWP=,MFS=,
SUF=,FIX=,PRLD=,VSPEC=
PGM=DFSRRC002,REGION=&RGN,DPRTY=&DPTY

II &RES,&FRE,&QBUF,&DYBN,&PST,&SAV,
II &EXVR,&PRF,&SRCH,&FBP,&PSB,&DMB,&DBB,
I I & T PD P , & W K A P , & PS BW , & CV1 A P , & DBW P , & M F S ,
II &SUF,&FIX,&PR1D,&VSPEC) 3

11*
1/*
11* THE MEANING AND MAXIMUM SIZE OF EACH PARAMETER
11* IS AS FOLLO WS:
11*
11********
11* RES
11* FRE
11* QBUF
//* DY13N
11* PST
11* SAV
11* FoXVR
11* PRF
/1* SRCH
11*
11*
11*
11*

CONTROL
X
XXX
XXX
XXX
XX
XXX
X
X
X

REGION SPECIFICATIONS ********
BLOCK RESIDENT (N = NO, Y = YE~
NUMBER OF FORMAT REQUEST ELEMENTS
NUMBER OF MESSAGE QUEUE BUFFERS
NUMBER OF DYNAMIC LOG BFFRS FOR PI
NU MBER OF PST' S
NUMBER OF DYNAMIC SAVE AREA
EXCPVR INDICATOR (0 = NO OR
PREFETCH OPTION (Y = YES, N
MODULE SEARCH INDICATOR FOR
o = STANDARD SEARCH

SETS,
EXCPVR=EXCP, 1 =
= NO)
DIRECT EDLOAD

1 = SEARCH JPA AND LPA BEFORE PDS

11******** STORAGE POOL SIZES IN 1K BLOCKS ******
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

FBP
PSB
DMB
DBB
TPDP
WKAP
PSBW
CWAP
DBWP
MFS

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

MESSAGE BUFFER POOL
PSB POOL
DMB POOL
DATA BASE BUFFER POOL
TP DEV ICE I/O POOL
WORKING STORAGE BUFFER POOL
PS B WORK POOL
COMMUNICATIONS WORK AREA POOL
DAT ABAS E WORK POOL
MAXIMUM MFSTEST SPACE

/1******** MEMBER SUFFIXES **********************

EXCPVR)

11*
11*
11*
/1*
11*
11*

SUP
FIX
PRLD
VSPEC

X
XX
XX
XX

LAST CHARACTER OF CTL PROGRAM LOAD MODULE MEMBER NAME
2 CHARACTER FIX PROCEDURE MODULE SUFFIX
2 CHARACTER PROCLIB MEMBER SUFFIX FOR PRELOAD
2 CHARACTER VSAM BUFFER POOL SPEC MOD ULE SUFFIX

The IMS/VS Procedure Library 1.11

11***
11*
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
IIIEFRDER DD DSN=IMSLOG,DISP=(,KEE~ ,VOL=(",99),
II UNIT=(2400, ,DEFER) ,
II DCB=(PECFM=VBS,BLKSIZE=3968,LRECL=3964,BUFNO=2}4
IIIEFRDER2 DD DSN=IMSLOG2,DISP=(,KEEPl ,VOL=(",99),5
II UNIT=(2400"DEFER,SEP=IEFRDER),
II DCB= (RECFM=VBS ,BLKS IZE=3968,LRECL=3964, BUFNO=2)
IIIMSLOGR DD DSN=IMSLOG,DISP=(OLD,KEEP),
II VOL=SER=OOOOOO,UNIT=AFF=IEFRDER6
IIIMSKON DD DSN=IMSMON,DISP=(,KEEP),7
II VOL=(" ,99) ,UNIT= (2400, ,DEFER,SEP=IEFRDER)
IIQBLKS DD DSN=IMSVS.QBLKS,DISP=OLD
IISHMSG DD DSN=IMSVS.SHMSG,DISP=OLD
IILGMSG DD DSN=IMSVS.LGMSG,DISP=OLD
IIIMSACB DD DSN=IMSVS.ACBLIB,DISP=SHR
IIIMSDILIB DD DSN=IMSVS.FORMAT,DISP=OLDa
IIIMSTFMT DD DSN=IMSVS.TFORMAT,DISP=SHR9
1/ DD DSN=IMSVS.FORMAT,DISP=OLD·
IIIMSSPA DD DSN=IMSVS.SPA,DISP=OLD
IISYSUDUMP DD SYSOUT=&SOUT,
II DCB=(LRECL=125,RECFM=FBA,BLKSIZE=3129),
II SPACE= (6050,300",ROUND)
IIPRINTDD DD SYSOUT=&SOUT
IIIMSDBL DD DSN=IMSVS.DBLLOG,DISP=SHR
11*
11* DD STATEMENTS FOR COMMUNICATIONS LINES
11* ARE INSERTED HERE BY IMS/VS SYSTEM
11* DEFINITION.
1/*
11* USER MUS~ SUPPLY THE DD STATEMENTS
11* FOR THE ON-LINE DATA BASES TO BE
11* INSERTED HERE PRIOR TO ATTEMPTING
11* AN ON-LINE SYSTEM EXECUTION USING
11* THIS PROCEDURE.

1 To execute the IMS/VS online system as a problem program instead
of as a subtask of the master scheduler, the first parameter field
of the execute card in the IMS procedure must be overridden. The
JCt below accomplishes this, however, it is not recommended that
IMS be run as a problem program in a production environment.

IIIMSJOB JOB ACCT,MSGLEVEL=(1,1) ,PRTY=13
IIIMS EXEC IMS,PARM.IEPPROC=CTX, (include the remaining

parameters generat ed for your system)

2. The program name specified is DFSRRCOO for OS/VS1 and DFSMVRCO for
o S/vS2.

I 3 Parameters in parentheses are positional.

4 The BLKSIZE and LRECL values shown are the default values. If the
DCB parameters are changed, log initialization calculates the
smallest value necessary for LREeL (the larger of 1008 and the long
message queue size plus 16). If the JCL LRECL value is larger,
the Jet value is used; otherwise log initialization uses the
calculated value for LRECL and adds 4 for the BLKSIZE.

1.12 I~S/VS System Programming Reference Manual

---_._---------
~--~~---~.-.-.- ---

c,

The user must be concerned with the LRECL value required to perform
an IMS/VS command that refers to s!l-data communication lines and/or
physical terminals (for example, /START LINE ALL). The following
formula should be used as a guide when calculating the LRECL
requirea to successfully execute such commands:

LRECL= (300+11*N)+(300+6*L)

where:

N is the number of defined VTAM node names.

L is the number of non-VTAM lines in the defined system.

The DCB BLKSIZE parameter need not be coded on the IEFROER 00
statement. If it is coded, it must not be made smaller nor omitted
for subsequent executions of IMS unless a cold start is to be
performed.

Log initialization checks BUFNO. If BUFNO is less than 2, 2 is
used. If the JCL BOFNO is greater than 2, the JCL value is used.

5 This statement is included only when dual system log data sets ~re
used.

6 The BLKSIZE parameter is ignored if coded on the IMSLOGR DD
statement. IMSLOGR always uses the current blocksize from IEFROER.

7 This DD statement is included only when the IMS/VS DC monitor is
used.

• This DD statement must specify OISP=OLO; it is included only when
MFS is used. A DD DUMMY specification is not supported.

9 These statements are included only when MFSTEST is specified •

• EXEC Statement Parameters for IMS

RGN=

SOUT=

DPTY=

CTL=CTL

specifies the size of the OS/VS region to be allocated to the
I~S/VS control program. RGN= has no effect in an OS/vS1 svstem.

specifies the class to be assigned to SYSOUT DO statements.

specifies the OS/VS dispatchinq priority at which the IMS/VS
control region should operate. See the OS/VS1 and OS/VS2 JeL
documentation for details of DPRTY.

The I~S/VS control region must not be executed at priority zero
or scheduled into a region whose priority falls within a JES2
A~G, or a partition whose priority falls within JES1 DOG. The
control region's priority must be higher than an as/vs APG or
DDG if IMS/VS message processing or batch message processing
regions reside in the APG or DDG. A general r~le to follow is:
IMS CTL dispatching priority must always be higher than the
dispatching priority of any IMS/VS dependent region.

specifies that IMS/VS should execute as an OS/VS system task.

Tne IMS/VS Procedure Library 1.13

RES=

FRE=

QBUF=

DYBN=

PST=

SAV=

EXVR=

PRF=

SRCR=

FBP=

PSB=

1)MB=

DBB=

1. 1 ~

specifies whether (Y) or not (N) the PSBs and or DMBs definea
as RESIDENT should be made resiaent at system initialization
time.

specifies the number of fetch request elements that are to be
used for loading MFS blocks into the message format block pool.

specifies the number of messaqe queue buffers in subpool 0 to
be allJcated to the queue pool.

specifies the number of dynamic log buffers.

specifies the number of PSTs (partition specification tables)
to be allocated at system initialization time. rhe number
specified indicates the maximum number of dependent regions that
can be active concurrently.

specifies the number of dynamic save area sets to be used for
communication terminal I/O requests.

specifies whether (1l or not (0) EXCPVR is to be used in the
online system for da ta sets processed by OS AM.

specifies whether (Y) or not (N) the MFS prefetch option is to
be used. Default value is Y.

specifies the module search indicator for directed load: 0=
standard search and 1= search JPA and LPA before PDS.

specifies the number of 1K blocks in subpool 0 to be allocated
to the messaqe forma t block pool. (Identified in a main storage
dump as MFBP.) Parameters for specifying pool sizes are rounaed
up to page size (OS/VS1=2K; OS/VS2=4K) if they ace specified as
less.

specifies the number of 1K blocks in subpool 0 to be all~cated
to the PS B pool. (Identified in a main storage dump as DLMP.)
Parameters for specifying pool sizes are rounded up to page size
(OS/VS1=2K; OS/VS2=~K' if they are specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the DMB pool. (Identified in a main storage dump as DLDP.,
Parameters for specifying pool sizes are rounded up to page size
(OS/VS1=2K; OS/VS2=~K) if they are specified as less.

specifies the number of 1K blo8ks in subpool 0 to be allocated
to the data base buffer pool. (Identified in a main storage
dump as DBAS.) Parameters for specifying pool sizes are rounded
up to page size (OSjVS1=2K; OS/VS2=4K) if they are specified as
less.

IMSjVS System programming Reference Manual

TPDP=

iKAP=

PSBi=

CWAP=

DBWP=

MFS=

SUF=

'FIX=

PRLD=

VSPEC=

specifies the numb~r of 1K blocks in subpool Q t~ be allocated
t~ the communication line buffer pool. (Identified in a main
storage dump as l/OP.) Parameters for specifying pool sizes are
rounded up to page size (OS/VS1=2K; OS/vS2=4K) if they are
speci fied a s Ie SSe

specifies the number of 1K blocks in subpool 0 to be allocated
to the control proqram working area. Parameters for specifying
pool sizes are rounded up to page size (OS/VS1=2K; OS/VS2=4K~
if they are specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the PSB work area pool. Parameters f~r specifyinq pool sizes
are rounded up to page size (OS{VS1=2K; OS/VS2=4K) if they are
specified as less.

specifies the number of 1K blocks of subpool 0 to be allocated
to the communications work area pool. Parameters for specifying
pool sizes are rounded up to page size ~S/VS1=2K; OS/VS2=4~
if they are specified as less.

specifies the number of 1K blocks of subpool 0 to be allocated
to the data base work area pool. Parameters for specifying pool
sizes are rounded up to page size (OS{VS1=2K; 3S/VS2=4K) if they
are specified as less.

specifies the maximum number of 1K blocks of the communication
line buffer pool (TPDP) to be available for use by MFSTEST. The
number specified must not exceed the TPDP size minus 5.
Parameters for specifying pool sizes are rounded up to page size
(OS/VS1=2K; OS/VS2=4K) if they are specified as less.

specifies the suffix for the control program name. This allows
mUltiple copies of the IMS/VS nucleus to reside ~n IMSVS.~ESLIB.

specifies the suffix for DFSFX. This indicates the IMSVS.PROCLIB
member to be used to control page fixing of portions of the
control program.

specifies a 2-character suffix for DFSMPLxx, the IMSVS.PROCLIB
member that l{sts the modules to be preloaded in the
region/partition. See the IM~VS !n§1~11~liQn ggig~ for details.

specifies the suffix of the VSAM buffer pool specification
module.

The IMS/VS Procedure Library 1.15

II PROC MBR=TEMPNAME,SOUT=3,OPT=N,SPIE=0,TESr=O,
II PSB=,PRLD=,CKPTID=,IN=,OUT=,DIRCA=OOO
IIG EXEC PGM=DFSRRCOO,REGION=52K,
II PARM= (BMP,SMBR,&PSB,&IN,&OUT,
II &OPT&SPIE&TEST&DIRCA,&PRLD,&STIMER,&CKPTID) 1

IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
II DO DSN=IMSVS.PGMLIB,DISP=SHR
IIPROCLIB DD DSN=IMSVS.PROCLIB*DISP=SHR
IISYSUDUMP DD SYSOUT=&SOUT,DCB= (LRECI.=121 ,RECFM=VBA, BLKS IZE=3129),
I I S PACE= (125, (2500,100) , RLSE, , ROUND)

I 1 Parameters in parentheses are positional •

• EXFC statement Parameters for IMSBATCH

MBR=

SOUT=

OPT=

SP!E=

TEST=

PS13=

specifies an application proqram name.

specifies the class assigned to SYSOUT DD statements.

specifies the action to be taken if the batch message region
starts and no control program is active.

N - ask operator for decision. This is the default.
W - wait for a control program.
C - cancel the batch message region automatically.

A value of N or W or C must appear in the generated Jet statement
for this parameter.

specifies the SPIE option:

o - allow user SPIE, if any, to remain in effect while processing
the application program call.

1 - negate the user's SPIE while processing the application
program call. Negated SPIEs are reinstated before returning
to the application program.

SPIE macros issued by the application program are only effective
for program checks which occur within the batch message region.
A value of 0 or 1 must appear in the generated J:L statement
for this parameter.

specifies whether (1) or not (0) the addresses in the user's
call list should be checked for validity. A value of 0 or 1
must appear in the generated Jct statement for this parameter.

is an optional parameter specifying a PSB name when the PSB name
and application program name are different.

1.16 IMS/VS System programming Reference Manual

(
\..

PRLD=

STIMER=

CKPTID=

IN=

OUT=

DIRCA=

specifies a 2-character suffix for DFSMPLxx, the IMSVS.PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the Itl~L!~-In~ta~~£tiQ~ ~yiQg for details.

STIMER option:

O=none
1=no DL/I
2=w it h DL/I (defa ul t)

specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to 8-character extended checkpoint ID
or a 12-character 'time-stamp' checkpoint ID.

specifies an input transaction code. This parameter is necessary
only when the application program intends to access the message
queues. If this parameter is specified, the OUT= parameter is
iqnored.

specifies the transaction code or logical terminal name to which
an output message is to be sent. It is necessary when the
application program desires to send output without accessing
the input queues. This parameter is ignored if IN= is also
specified.

specifies the size of the dependent region interregion
communication area; the size specified must be a three-digit
number (for example, 001) representing the number of 1K blocks
of subpool 253 to be reserved to hold a copy of the user's PCBs.

The size for DIRCA when DIRCA=OOO equals the control words at
the beginning of the DIReA plus the sum of the P:Bs in the
largest PSB found by the block loader.

If dynamic PSBs are used, and the largest PSB is larger than
the default size as calculated above, DIRCA must be specified
on the EXEC statement in the PARM field. A three-digit number
must appear in the generated JCL statement for this parameter.

Assumes:

• User supplies source data from SYSIN.

• output Class A.

• MBR=NAME, when NAME is load module name for proqram.

• SYSDA is a generic device name.

• User adds DD statements for data sets representing IMS/VS data
bases.

The IMS/VS Procedure Library 1.11

• If VSAM data bases are used, see "Defining the 1MS/VS VSAM Buffer
Pool" in the I!i~L!~ l!l~~~l!s.:tiQ!!-@.yi.~§t •

• Execution time limit of 2 minutes specified.

II PROC MBR=,PAGES=60,
II SOUT=A,PSB=,SPIE=O,TEST=O,EXCPVR=O,
II RST=0,PRLD=,SRCH=O,CKPTID=,BUF=24
IIC EXEC PGM=IKFCBLOO,REGION=150K,
II PARM='SIZE=130K,BUF=1OK,LINECNT=50'
IISYSLIN DD DSN=&&LIN,DISP=(MOD,PASS),UNIT=SYSDA,
II DCB= (LRECL=8C ,RECFM=FB ,BLKS1ZE=400) ,
II SPACE=(3520, (40,10) ,RLSE, ,ROUND)
IISYSPR1NT DD SYSOUT=~SOUT,DCB=(LRECL=121,BLKSIZE=605,RECFM=FBA),
II SPACE=(605, (&PAGES.O,&PAGES),RLSE"ROUND)
IISYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
II SPACE=(3520,(100,10) ,RLSE"ROUND)
IISYSUT2 DD UNIT=SYSDA,DISP=(,DELETE),
II SPACE= (3520, (100,10), RLSE"ROUND)
IISYSUT3 DD UNIT=SYSDA,D1SP=(,DELETE) ,
II SPACE=(3520,(100,10),RLSE"ROUND)
IISYSUT4 DD UNIT=SYSDA,D1SP=(,DELETE),
II SPACE=(3520, (100,10) ,RLSE"ROUND)
IlL EXEC PGM=DFSILNKO, REG1 ON=120K, PARM=' XREF, LET , LIST' ,
II COND= ~,LT,q
IISTEPLIB DD DSN=1MSVS.RESLIB,D1SP=SHR
IISYSLIB DD DSN=SYS1.COBLIB,DISP=SHR
IIRESLIB DD DSN=IMSVS.RESLIB,DISP=SHR
IISYSLIN DD DSN=&&LIN,DISP=(OLD,DELETE),VOL=RE~=*.C.SYSLIN
II DD OSN=IMSVS.PROCLIB(CBLTDL1) ,DISP=SHR
II Dn DDNAME=SYSIN
IISYSLMOD DD DSN=IMSVS.PGML1B(&MBRl,DISP=SHR
IISYSPFINT DD SYSOUT=&SOUT,DCB={RECFM=FBA,LRECL=121,BLKSIZE=605),
II SPACE= (605, (&PAGES. O,&PAGES), RLSE, ,ROUND)
IISYSUT1 nn UNIT= (SYSDA ,SEP=(SYSLMOD, SYSLIN» , D1SP= (, DELETE) ,
II SPACE=(3520,(100,10) ,RLSE"ROUND)
IIG EXEC PGM=DFSRRCOO,REGION=150K,TIME=2,COND=(4,LT),
II PARM='DL1,&MBR,&PSB,&BUF,&SP1E&TEST&EXCPVR&RST,&PRLD,&SRCH,&CKPTID'
IISTEPL1B DD DSN=IMSVS.RESLIB,DISP=SHR
II DO OSN=1MSVS.PGMLIB,DISP=SHR
IIIMS DD DSN=1MSVS.PSBLIB~DISP=SHR
II DD DSN=1MSVS.OBDLIB,DISP=SHR
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
IIIEFRDER DD DSN=IMSLOG,DISP=(,KEEP) ,VOL=(",99),
II UNIT=(2400"DEFER),
II DCB=(RECFM=VBS,BLKSIZE=1408,LRECL=1400,BUFNO=1)
IIIEFRDER2 DD DSN=IMSLOG2,DISP= (,KEEP) ,VOL= (",99),t
II UN1T=(24QO"DEFER,SEP=IEFRDER),
II DCB=(RECFM=VBS,BLKSIZE=1408,LRECL=14QO,BUFNO=1)
/ISYS OUT DD S YS OUT=&SOUT, SP ACE= (CYL, (1,1)) , DCB= (L RECL= 133 , RECFH=FA)
/ISYSUDUMP DD SYSOUT=&SOUT, DCB=(LRECL=121,RECFM=FBA ,BLKSIZE=3025),
II SPACE=(3025, (200,100) ,RLSE, ,ROUND)

t This statement is included only when dual system log data sets 3.re
used.

1.18 IMS/VS system Proqramming Reference Manual

Assumes:

• User supplies source 4ata from SYSIN.

• output Class A.

• MBR=NAME, when NAME is load module name for program.

• SYSDA is a generic device name.

• RESLlB cataloged.

II
II
IIC
II
IISYSLIN
II
II
IISYSPRIN'T
II
IISYSUT1
II
IISYSUT2
II
IISYSUT3
II
IISYSUT~

II
IlL
II
IISTEPLIB
IISYSLIB
IIRESLlB
IISYSLlN
II
II
IISYSLMOD
IISYSPRINT
II
IISYSUT1
II

PROC MBR=,PAGES=60,
SOUT= A
EXEC PGM=IKFCBLOO,REGION=150K,
PARM='SlZE=130K,BUF=10K,LlNECNT=50'
DD DSN=&&LIN,DISP=(MOD ,PASS) ,UNlT=SYSDA,
DCB=(LRECL=80,RECFM=FB,BLKSIZE=400),
SPACE= (3520, (40, 10) , RLSE, , ROUND)
DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=605,RECFM=FBA),
SPACE= (605, (&PAGES. 0, &PAGES) , RLSE" ROUND)
DD UNIT=SYSDA,DISP=(,DELETE),
SPACE= (3520, (100,10) , RLSE" ROUND)
DD UNIT=SYSDA,DlSP=(,DELETm,
SP!CE= (3520, (100,10) , RLSE" ROUND)
DD UNlT=SYSDA,DISP=(,DELETE),
SPACE= (3520, (100,10) , RLSE" ROUND)
DD UNIT=SYSDA,DISP=(,DELETm,
SPACE=(3520, (100,10) ,RLSE"ROUND)
EXEC PGM=DFSlLNKO,REGION=120K,PARM='XRE~,LET,LIST',
COND= (4,LT,C)
DD DSN=IMSVS.RESLlB,DISP=SHR
DD OSN=SYS1.COBLIB,DISP=SHR
DD DSN=IMSVS.RESLlB,DISP=SHR
OD DSN=&&LIN,DISP=(OLO,DELETE) ,VOL=REF=*.C.SYSLIN
DD DSN=IMSVS.PROCLlB(CBLTDLl),DISP=SHR
DD DDNAME=SYSIN
DD DSN=IMSVS.PGMLIB(&MBR) ,DISP=SHR
DD SYSOUT=&SOUT, DCB= (RECFM=FBA,LFECL=121 ,BLKSIZE=605) ,
SPACE=(605, (&PAGES.O,&PAGES) ,RLSE"ROUND)
OD UNIT= (SYSDA,SEP=(SYSLMOD,SYSLlN» ,DISP= (,DELETE),
SPACE= (3520, (100,10) , RLSE" ROUND)

The IMS/VS Procedure Library 1.19

IIMESSAGE JDB 1,IMS,MSGLEVEL=1,PRTY=11,CLASS=A,MSGCLASS=A,REGION=52K
IIREGION EXEC PGM=DFSRRCOO,REGION=52K,TIME=1440,
II PARM='MSG,001000000000'
IISTEPLIB DO DSN=IMSVS.RESLIB,DISP=SHR
II DD DSN=IMSVS.PGMLIB,DISP=SHR
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
//SYSUOUMP DO SYSQUT=A,DCB= (LRECL=125,BLKSIZE=3219,RECFM=VBA) ,
II SPACE=(125, (2500,100) ,RLSE"PQUND)

• EXEC statement Parameters for IMSMSG

PARM=

MSG=

'MSG,AAAAAAAAAAAA,BCOEFFGGG,HH,I'

is a required positional parameter indicating a message region
is to be started.

AAAAAAAAAAAA=
is a required positional parameter specifying 4 three-digit
decimal numbers indicating which classes of messages will be,
handled by this message region. That is, if classes 1, 2, and
3 are to be processed by this region, the PARM field would be
specified as PARM='MSG,001002003000'.

The sequence of specifying the classes determines relative class
priority within the message region. In the above example, all
Class 1 messages are selected for scheduling before any Class
2 messages would be considered. Class numbers cannot be greater
than the maximum number of classes specified during system
defini tion.

BCDEFFGGG is required if HR or I is specified.

B=

C=

specifies the action to be taken if the message regioti starts
and no control region is active.

W - wait for control program to start.
N - ask operator for decision -- this is the default.
C - cancel m~ssaqe reqion automatically.

specifies the overlay supervisor option:

o - allow OS/VS to load and delete the overlay supervisor for
every overlay application program -- that is the default.

1 - load and retain a copy of the overlay supervisor when the
message region is initialized.

1.20 IMS/VS System Programming Reference Manual

/'
(

\
',,--

D=

E=

FF=

GGG=

HH=

1=

specifies the SPIE option:

o - allow user SPIE, if any, to remain in effect while processing
the application proqram call.

1 - negate the user's SPIE while processing the application
·program call. Negated SPIEs are reinstated before returning
to the application program.

SPIE macros issued by the application program are only effective
for program checks which occur within the message region.

specifies the validity check option:

o - no address validity checking will be made.
1 - validity check the addresses in the user's call list.

specifies the termination limit option. A decimal number between
1 and 99. The default is 1. When the number of application
program abends reaches this limit, the message region is
automatically terminated. This allows OS/VS to print the
accumulated SYSOUT data sets.

specifies the number of 1K blocks of subpool 253 to be reserved
to hold a copy of the user's PCBs. This parameter must be a
three-digit number (for example, 001). If this value is not
specified, the system reserves an area which can hold the PCBs
for any application program whose PSB is in IMSVS.ACBLIB. A
U242 abend occurs if the application proqram PSB is not in
IMSVS.ACBLIB (DOPT specified in APPLCTN macro) ~ng is larger
than any PSB in IMSVS.ACBLIB.

The output from the ACB generation utility program DFSUA:BO
specifies application program PCB sizes.

specifies the 2-character suffix of the IMSVS.PROCLIB member
that specifies preloaded program modules. If omitted, no modules
are preloaded. See the l~§LY§ Ingi~ilati~~ ~yigg for details.

STIMER option:

O=none
1=no DL/I
2=with DL/I (default)

The IMS/VS procedure Library 1.21


~~~h~I R~ID~ I~~g11 

Same assumptions as IMSCOBOL. 

II PROC MBR=,PAGES=50,SOUT=A 
IIC EXEC PGM=IEMAA,REGION=114K, 
II PARM='XREF,ATR,LOAD,NODECK,NOMACRO"OPT=1' 
IISYSUT1 DD UNIT=SYSDA,SPACE=(1024,(60,60) ,RLSE"ROUND), 
II DCB=BLKSIZE=1 024, DISP= (,DEl. ETE) 
IISYSUT3 DD (JNIT=SYSDA,SPACE=(1024, (60,60l ,RLSE"POUND), 
II DCB=BLK SIZE=1 024 ,DI SP= ( ,DELETE) 
IISYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=125,BLKSIZE=629,RECFM=VBA), 
II SPACE={605, (&PAGES.O,&PAGES) ,RLSE) 
IISYSLTN DD (JNIT=SYSDA,SPACE= (80, (250 ,srn ,RLSE) ,DCB=BLKSIZE=SO, 
II DISP=(,PASS) 
IlL EXEC PGM=DFSILNKO,PARM='XREF,LIST,LET',COND=(4,LT,C), 
II REGION=120K 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
IISYSLIB DD DSN=SYS1.PL1LIB,DISP=SHR 
IIRESLIB DO DSN=IMSVS.RESLIB,DISP=SHR 
I/SYSLTN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE) 
II DD DSN=IMSVS.PROCLIB(PLITDLI) ,DISP=SHR 
II DD DDNAME=SYSIN 
IISYSLMOD DO OSN=IMSVS.PGMLIB(&MBR),DISP=SHR 
IISYSPRINT DD SYSO(JT=&SOUT, DCB= (LRECL=121 ,RECFM=FB~ ,BLKSIZE=605) , 
II SPACE=(605, (&PAGES.O,&PAGES) ,RLSE) 
IISYSUT1 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACF=(CYL, (5,1) ,RLSE) 

1.22 I~S/VS System programming Reference Manual 



Same assumptions as IMSCOBGO, except an execution time of 5 minutes 
is specified. 

II PROC MBR=,PAGES=50, 
I I ,S OUT= A, PS B=,5 PIE=~, TEST=O, EXCPVR=O, 
II RST=0,PRLD=,SRCH=O,CKPTID=,BUF=1000 
IIC EXEC PGM=IEMAA,REGION=114K, 
II PARM='XREF,ATR,LOAD,NODECK,NOMACRO"OPT=1' 
IISYSUT1 DD (JNIT=SYSDA,SPACE=(1024, (60,60) ,RLSE"ROUND), 
II DCB=BL K SIZE =1 024, DI SP= ( ,DELETE) 
IISYSUT3 DD (JNIT=SYSDA,SPACE= (1024, (60,6[1) ,RLSE"ROUND), 
II DCB=BLKSIZE=1024,DISP=(,DELETEl 
IISYSPRINT DD SYSOUT=&SOUT,DCB= (LRECL=125,BLKSIZE=629,RECFM=VBA), 
II SPACE= (60S, (&PAGES. 0, &PAGES) ,RLSE) 
IISYSL IN DD UNI T= SYSDA, SPACE= (80, (2S0, 8 0) , RLS E) , DCB=BLKSIZ E=8 0, 
II DISP=(,PASS) 
IlL EXEC PGM=DFSILNKO, PARM='XREF,LIST,LET' ,:OND= (4 ,LT,C) , 
II RFGIO~=120K 
/ISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
liSYSLIB DD DSN=SYS1.PL1LIB,DISP=SHR 
IIRESLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
IISYSLIN DD DSN=*.C.SYSLIN,DISP= (OLD, DELETE) 
II DD DSN=IMSVS.PROCLIB (PLITDLI),DISP=SHR 
II DD DDNAME=SYSIN 
IISYSLMOD DD DSN=IMSVS.PGMLIB(&MBR) ,DISP=SHR 
IISYSPRINT DO SYSOUT=&SOUT,DCB= (LRECL=121,RECFM=FBA,BLKSIZE=605), 
II SPACE= (6')5, (&PAGES. 0, &PAGES), RLSE) 
IISYSUT1 00 UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL, (S,1) ,RLSE) 
IIG ,EXEC PGM=DFSRRCOO,REGION=1SDK,TIME=S,COND=(4,LT), 
II PARM='DLI,&MBR,&PSB,&BUF,&SPIE&TEST&EXCPVR,&RST,&PRLO,&SRCH,&CKPTID' 
IISTEPLIB DD OSN=IMSVS.RESLIB,DISP=SHR 
II DD DSN=IMSVS.PGMLIB,DISP=SHR 
III~S DD DSN=IMSVS.PSBLIB,DISP=SHR 
II DD DSN=IMSVS.DBDLIB,DISP=SHR 
IIPROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR 
III'EfRDER DD DSN=IMSLOG, DISP=( ,KEEP) , VOL= (" ,99) , 
II UNIT= (2400, ,DEFER) , 
II DCB=(FECPM=VBS,BLKSIZE=1408,LRECL=1400,BUPNO=1) 
IIIEPRDER2 DD DS N=IMSLOG2, DISP= (, KEEP) , VOL= (, , ,99) , 1 

II U~IT=2400"DEFER,SEP=IEFRDER) , , 
I I DCB= (RECFM=V BS, BLKS IZ E= 1408, L RECL =1400, B UFN~ -= 1) 
IISYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=605,RECFM=FBA), 
II SPACE=(60S, (SOO,500) ,RLSE"ROUND) 
IISYSUDUMP DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=605,RECFM=PBA), 
II SPACE=(605, (500,500) ,RLSE"ROUND) 

1 This statement is included only when dual system log data sets are 
used. 

The IMS/VS Procedure Library 1.23 



The IMSRDR p['ocedure varies, based on the version of OS/VS that is 
used. 

II PROC MBR=IMSMSG 
IIIEFPROC EXEC PGM=IFFVMA, READ~R FIRST LoAD 
II PARM='00100300005210E00011AOO' DEFAULT OPTIONS 
11* BPPTTTTSSCCCRLAAAAEFHXX PARM FIELD 
11* B PROGRAMMER NAME AND ACCOUNT NUMBER NOT NEEDED 
11* PP PRIORITY=01 
11* rTTTSS JOB STEP INTERVAL=30 MINUTES 
11* CCC JOB STEP DEFAULT REGION=52K 
11* R DISPLAY AND EXECUTE COMMANDS=1 
11* L BYPASS LABEL=O 
11* AAAA COMMAND AUTHORITY FOR MCS=EOOO 
11* ALL COMMANDS MUST BE AUTHORIZED 
11* F JCL MESSAGE LEVEL DEFAULT=1 -ALL MESSAGES 
11* F ALLOC/TERM MESSAGE LEVEL DEFAULT=1 -ALL ~ESSAGES 
11* H DEFAULT MSGCLASS=A 
IIIEFRDER DD DSN=IMSVS.PROCLIB (&MBR) ,DISP=SHR,DCB=BUFNO=1 
IIIEFPDSI DD DSN=IMSVS.PROCLIB,DISP=SHR 
II DD DSN=SYS1.PROCLIB,DISP=SHR 

II 
IIIEFPROC 
I/SYSPRINT 
I/SYSUT1 
IISYSUT2 
//SYSIN 
I/IEFRDER 

PROC 
EXEC 
DO 
DD 
DD 
DD 
DD 

MBR=IMSMSG,CLASS=A 
PGM=IEBEDIT 
SYSOUT=&CLASS 
DDNAME=IEFRDER 
SYSOUT= (&CLAS S ,INTRDR) , DCB= BLKSIZ E=8:) 
DUMMY 
DSN=IMSVS.PROCLIB (&MBR) ,DISP=SHR 

IMSWTnnn member{s) job class and message class are determinea by 
the MAXREGN keyword specified on the IMSCTRL macro statement during 
system definition. 

JOB 
EXEC 
DD 
DD 

/ISPRTn 
/IPRINT 
I/STEPLIB 
/ISYSPRINT 
//SYSUDUMP DD 
IISP~OLn DD 

1,IMS,CLASS=A,MSGCLASS=3,MSGLEVEL=1 
PGM=DFSUPRTO,REGION=30K 
DSN=IMSVS.RESLIB,DISP=SHR 
SYSOUT=3,DCB=BLKSIZE=1410 
SYSOUT=3 
DSN=IMSVS.SYSOn,DISP=SHR 

1.24 IMS/VS System Programming Reference Manual 



Assumes: 

• The DMGSI1 program (Stage 1, Part 1, provides J:L to allocate d~ta 
set oroups at initial creation time. 

IIIQFFC PROC 
IIFC1 EXEC PGM=DFSRRCOO,PARM='DLI,DMGFC1,DMGF:1' ,RFGION=300K 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
III MS DD OS N AM E= IMSVS. PSBL IB, DISP=SHR 
II DD DSNAME=IMSVS.DBDLIB,DISP=SHR 
IISYSPRINT DD SYSOUT=A 
IISYSOUT DD SYSOUT=A 
IIUTPRINT DD SYSOUT=A 
IIUTDBD DD UNIT=SYSDA,DSN=UTDBD,DISP=(NEW,DELETE) ,SPACE= (CYL, (1,1» 
IIUTSPL DD UNIT=SYSDA, DSN=UTSPL, DISP= (NFW,DELETE) ,SPACE= (CYL, (1,1» 
IIS~RTLIB DD DSN=SYS1.S0RTLIB,DISP=SHR 
IISSYNIN DD DISP= (NEW,DELETE) ,SPACE= (CYL, (1,1» ,(JNIT=SYSDA, 
II DCB=(BLKSIZE=1040,LRFCL=52,DSORG=PS,RECFM=FB), 
II DSN=SSYNIN 
IISSYNOUr 00 OISP= (NEW,DELETE) ,SPACE=(CYL, (1,1» ,UNIT=SYSOA, 
II DCB=(BLKSIZE=1040,LRECL=52,DSORG=PS,RECFM=Fm , 
II OSN=SSYNOUT 
IISPCBIN DD DISP=(NEW,DELETE) ,SPACE= (CYL, (1,1» ,(JNIT=SYSDA, 
IIOCB=(BLKSIZE=880,LRECL=44,DSORG=PS,RECFM=FB), 
II OSN=SPCBIN 
IISPCBOUT DO DISP= (NEW,DELETE) ,SPACE=(CYL, (1,1» ,UNIT=SYSOA, 
II DCB=(BLKSIZE=880,LRECL=44,DSORG=PS,RECFM=FB), 
II DSN=SPCBOUT 
IISWRKIN DD DISP=(NEW,DELETE) ,SPACE=(CYL, (1,1» ,(JNIT=SYSDA, 
II DCB=(BLKSIZE=1920,LRECL=96,DSORG=PS,RECFM=FB), 
II DSN=SWRKIN 
IISWRKOUT DD DISP= (NEW,DELETE) ,SPACE=(CYL, (1,1» ,UNI'1'=SYSDA, 
II DCB=~LKSIZE=1920,LRECL=96,DSORG=PS,RECFM=Fm , 
II DSN=SWRKOUT 
IISPCBWK01 DD 
IISPCBWK02 DD 
IISPCBWK03 DD 
IISPCBWK04 DD 
IISPCBWK05 DD 
IISPCBWK06 DD 
I/SSYNWK01 DD 
//SSYNWK02 DD 
/ISSYNWK03 DD 
I/SSYNWK04 DD 
I/SSYNWK05 DD 
IISSYNWK06 DD 
IISWRKWK01 DD 
I/SWRKWK02 DD 
IISWRKWK03 DD 
IISWRKWK04 DD 
I/SWRKWK05 DD 
IISWRKWK06 DD 

Assumes: 

UNI T= SYSDA , SPACE= (T RK, (5) , , CO NT IG) 
UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
U NIT=SYSDA, SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNTT=SYSDA,SPACE= (TRK, (5) "CONTIG) 
(J NIT= SYS DA, SP ACE= (TRK, (5) , , CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) "CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG) 
UNIT=SYSDA,SPACE=(TRK, (5), ,CONTIG) 
UNIT=SYSDA,SPACE= (TRK, (5) "CONTIG) 
(JNIT=SYSDA,SPACE= (TRK, (5) , ,CONTIG) 

Prior to executing the IQF utility durinq TQF and IMS/VS 
installation, the user modifies this procedure to tailoL it to his TQF 
indexing requirements. 

The IMS/VS Procedure Library 1.25 



The modification required is: 

• Add DD statements to the IU1 step for the user's IMS/VS dat~ bases 
to be indexed. 

IllQFlU PROC SOUT=A,lMSREG=DLl,DlSPS=OLD 
IIIU1 EXEC PGM=DFSRRCOO,PARM='&IMSREG,DMGIU1,DMGIU1',REGION=300K 
IISTEPLIB DD OSN=IMSVS.RESLIB,DISP=SHF 
IIIMS 00 DSN=*.QUS2X1.L.SYSLMOD,DISP=(OLO,PASS)1 
II DO OSN=IMSVS.PSBLIB,DISP=SHR 
II OD DSN=lMSVS.DBDLIB,DISP=SHR 
IIOFF DO OSN=IQFlFFOB,DISP=SHR 
IIQFFOVF DD DSN=IQFOFFDB,DlSP=SHR 
IIOXS1 DD DSN=IQFXS1DB,DlSP=&DISPS 
IIQXS10V OD DSN=IQFXOVS1,DlSP=&DlSPS 
IIOXL1 DD OSN=IQFXL1DB,DISP=&DISPS 
IIQXL10V DD DSN=lQFXOVL1,DlSP=&DlSPS 
IIHlLDS OD UNIT=SYSDA,SPACE=(CYL, ~,1»,DlSP=(,PASS) 
IIHOLDL DO UNlT=SYSDA,SPACE= (CYL, (4,1» ,DlSP=(,PASS) 
IllEFRDER DO DUMMY 
IISYSPRINT DD SYSOUT=&SOUT 
IISYSOUT DD SYSOUT=&SOUT 
IIIU2 EXEC PGM=DFSRRCOO,PARM='&lMSREG,OMGIU3,DMGIU1',REGION=300K, 
II COND=(4,LT,IU1) 
IISTEPL1B DD DSN=lMSYS.RESLlB,DlSP=SHR 
IllMS DD DSN=*.QUS2X1.L.SYSLMOO,DISP=(OLD,PASS) 1 
II 00 DSN=IMSVS.PSBLlB,DlSP=SHR 
II DD OSN=IMSVS.DBDLlB~D1SP=SHR 
IIQFF 00 DSN=IQFIFFDB,D1SP=SHR 
IIOFFOVF DO DSN=IQFOFFDB,DlSP=SHR 
II1EFRDEF DD DUMMY 
IISYSPRINT DD SYSOUT=&SOUT 
IISYSOUT DO SYSOUT=&SOUT 
IISlRTLIB DD OSN=SYS1.S0RTLIB,01SP=SHR 
IISHRTIN DD DSN=*.lU1.HOLDS,DISP=(OLO,OELETE) 
IISHRTOUT DO UNIT=SYSDA,SPACE=(CYL,(4,1» ,DISP=(,PASS) 
IISHRTWK01 OD UNlT=SYSDA,SPACE=(TRK, (10) "CONT1G1 
IISHRTWK02 00 UNlT=SYSDA,SPACE=(TRK, (101 "CONTIG) 
IISHRTWK03 DD UNIT=SYSDA,SPACE=(TRK, (10)"CONTlG) 
IILONGIN 00 DSN=*.IU1.HOLDL,blSP=(OLO,DELETE1' 
IILONGOUT DO UNIT=SYSDA,SPACE=(CYL,(4,11) ,DISP=(,PASS) 
IILONGWK01 DO UNIT=SYSDA,SPACE=(TFK, (10)"CONTIG) 
IILONGWK02 DD UNlT=SYSDA,SPACE=(TRK, (10) "CONT1G) 
IILONGWK03 DD UNIT=SYSDA,SPACE=(TRK,(10) "CONTIG) 
II1U3 EXEC PGM=DFSRRCOO,PARM='&IMSREG,DMGIU2,DMGlU1',REGION=300K, 
II COND=«4,LT,lU1), (4,1.T,IU21) 
IISTEPL1B DO DSN=IMSVS.RESLlB,01SP=SHR 
IIIMS DO DSN=*.QUS2X1.L.SYSLMOD,DlSP=(OLO,O~LETE)1 
II DD OSN=IMSVS.PSBLlB,DISP=SHR 
II OD DSN=IMSVS.OBDLIB,DlSP=SHR 
I/QFF OD DSN=IQFlFFOB,D1SP=SHR 
IIQFFOVF DD DSN=lQFOFFDB,DlSP=SHR 
I/QXS1 DO OSN=IQFXS1DB,D1SP=&OISPS 
IIQXS10V DO DSN=lQFXOVS1,DlSP=&DlSPS 
IIQXL1 DO DSN=IQFXL1DB,DlSP=&D1SPS 
IIQXL10V DD DSN=IQFXOVL1,DISP=&DlSPS 
I/HlLDS DD OSN=*.IU2.SHRTOUT,UN1T=SYSDA,OISP=(OLD,DELETE1 
IIHOLDL DD DSN=*.IU2.LONGOUT,UN1T=SYSDA,DISP=(OLD,DELETE) 
IISYSPRINT OD SYSOUT=&SOUT 
IISYSOUT DO SYSOUT=&SOUT 

1 The *.QUS2X1.L.SYSLMOD. data set for the 1MS DD statement refers 
back to the SYSLMOD card in the DMG1tl1 PSBGEN step generated bV 
DMGS12. 

1.26 IMS/YS System Programming Reference Manual 

~ 
I 
\ 

'--



Assumes: 

• User supplies source data for SYSIN. 

• SYSUT1 is a BSAM work data set. 

• Output Class A is used for listing. 

• Output Class B is used by DMGSI1 and DMGSI2 (Stage 1) to pr::>duce 
;ob steps in the Stage 2 OS/VS job stream. 

• User defines IMS region type (batch or batch-message) in PARM field 
of EXEC statement for executing the proced ure. (Not required at 
initial creation time.) 

II PROC SOUT=A,SPCH=B,IMSREG=DLI 
IISIA EXEC PGM=DMGSI1,REGION=300K 
IISTEPLIB DD DSN=lMSVS.RESLIB,DlSP=SHR 
IISYSUT1 DD UNIT=SYSDA,DISP=(,PASS) ,SPACE=(TRK, (24,11» 
IISYSPRINT DD SYSOUT=&SOUT 
IISYSPUNCH DD SYSOUT=&SPCH 
IISlB EXEC PGM=DFSRRCOO,PARM='&lMSREG,DMGSl2,DMGSlB',REGION=200K,1 
II COND= (0 ,LT)9 
IISTEPLIB DD 
IllMS DD 
II DD 
IISYSPRlNT DD 
IISYSPUNCH DD 
IIQFF DD 
IIQFFOVF DD 
IISYSUT1 DD 

DSN=IMSVS.RESLIB,DlSP=SHR 
DSN=lMSVS.PSBLIB,DISP=SHR 
DSN=lMSVS.DBDLIB,DlSP=SHR 
SYSOUT=&SOUT 
SYSOUT=&SPCH 
DSN=IQFIFFDB,DISP=SHR 
DSN=lQFOFFDB,DISP=SHR 
DSN=*.SIA.SYSUT1,DISP={OLD,DELETE) 

1 The SIB step is bypassed when the IQFUT procedure is executed to 
creat e t he System Da ta Ba se. 

II 
IIDUMP 
IISTEPLIB 
II 

PROC 
EXEC 
DD 
DD 

IllMS DD 
II DD 
IISYSUDUMP DD 
IIDI21PART DD 
IIDl21PARO DD 
IloUTPUT DD 

SOUT=A 
PGM=DFSRRCOO,PARM='DLl,DFSSAM08',REGlON=130K 
DSN=I~SVS.RESLIB,DISP=SHR 

DSN=IMSVS.PGMLlB,DISP=SHR 
DSN=IMSVS.PSBLIB,DISP=SHR 
DSN=IMSVS.DBDLIB,DlSP=SHR 
S YS OUT=&SOUT 
DSN=IMSVS.DI2~PART,nISP=SHR 
DSN=IMSVS.DI21PARO,DlSP=SHR 
SYSOUT=&SOUT 

The IMS/VS Procedure Librarv 1.27 



II PROC SOUT=! 
IILOAD EXEC PGM=DFSRRCOO,PARM='DLI,DFSSAM01',REGION=130K 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
II DD DSN=IMSVS.PGMLIB,DISP=SHR 
//IMS DD DSN=IMSVS.PSBLIB,DISP=SHR 
II DD DSN=IMSVS.DBDLIB,DISP=SHR 
IISYSUDUMP DD SYSOUT=&SOUT 
IIDI21PART DD DSN=IMSVS.DI21PART(PRIME) ,DISP=(,KEEP) , DCB=DSORG=IS, 
II SPACE=(CYL,3"CONTIG) ,VOL=SER=&PSER,UNIT=&PUNIT 
IIDI21PARO DD DSN=IMSVS.DI21PARO,DISP=(,KEEP) ,SPACE=(CYL,3, ,CONTIG), 
II VOL=SFR=&OSER,UNIT=&OUNIT 
IISYSOUT DD SYSOUT=&SOUT 
I/INPUT DD DSN=IMSVS.GENLIB (MFDFSYSN) ,DISP=SHR 

Detailed information on PSBGEN, and examples of the use of PSBGEN 
are in the I~~lY~ Y!ilitig~ ~~f~Ignf~ ~angal. 

II PROC MBR=rEMPNAME,SOUT=A 
IIC EXEC PGM=IFOXOO,REGION=128K,PARM='OBJ,NODECK' 
IISYSLIB DD DSN=IMSVS.MACLIB,DISP=SHR 
IISYSGO DD UNIT=SYSDA,DISP=(,PASS), 
II SPACE= (80, (100,100) ,RLSE), 
II DCB=(BLKSIZE=400,RECFM=FB,LRECL=80) 
/ISYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089, 
II SPA C E = ( 1 2 1, (3 00 , 3 0 C) , R L SE , , R 0 U ND) 
IISYSUT1 DO UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700,(100,50)l 
IISYSUT2 DD UNIT=SYSDA,DISP=(,DELETEl ,SPACE=(1700, (100,50» 
/ISYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2», 
II SPACE= (1700, (100,50)) 
IlL EXEC PGM=DFSILNKO,PARM='XREF,LIST',COND=(O,LT,C),REGION=120K 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
IISYSLIN DD DSN=*.C.SYSGO,DISP= (OLD,DELETE) 
IISYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=121,RECFM=FBA,BLKSIZE=605), 
II SPA C E= (1 2 1, (1 00 , 1 0 0 ) , R L S E) 
IISYSLMOD DD DSN=IMSVS.PSBLIB(&MBR) ;DISP=SHR 
IISYSUT1 DD UNIT= (SYSDA,SEP=( SYSLMOD, SYSLIN)} ,DISP= (,DELETE) , 
II SPACE={1024, (100,10) ,RLSE) 

1.28 IMS/VS System Programming Reference Manual 

~~- ... __ ._ .. _ ... _ .. _._-_._-

I 
,r 

r 
\---. 



II PROC OPTN=UPDATE,IMS=',O',SOUT=A 
lIs EXEC PGM=DFSISMPO,PARM='&OPTN.&IMS.' 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,BLKSIZE=400,BUFL=40U} 
IISYSPUNCH DD UNIT=SYSDA,SPACE= (80, (800,400) ",ROUND), 
II DCB= (RECFM=PB,LRECL=80,BLKSIZE=400) ,DISP=( ,PASS} 
IISYSLIN DD UNIT=SYSDA,SPACE= (TRK, (1,1» ,DCB= (RECFM=P, BLKSIZE=80) , 
II DIS P= ( , PAS S ) 
IISYSUT1 DD UNIT=SYSDA,SPACE= (100, (400,400) ",ROUND), 
II DCB= (BLKSIZE=500, RECFM= FB) 
IISYSUT2 DO UNIT= (SYSOA,SEP=SYSUT1) , SPACE= (100, (400,400) ",ROUND) , 
II DCB=*.S.SYSUT1 
IISYSIN DD DSN=NO.SYSIN.DD.ASTERISK 
IIC EXEC PGM=IFOXOO,PARM='OBJ,NODECK',COND=(12,LT,S) ,REGION=128K 
IISYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089 
/ISYSGD DD UNIT=(SYSDA,SEP=SYSPRINT) ,DISP=(,PASS), 
II DCB=*.S.SYSPUNCH,SPACE=(80, (400,400)",ROUND) 
I/SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (5,1» 
IISYSUT2 DO UNIT=SYSDA,SPACE= (CYL, (5,1» 
I/SYSUT3 DD UNIT= (SYSDA,SEP=(SYSUT1, SYSUT2» ,SPA:E= (~YL, (5,1» 
IISYSIN DO DSN=*.S.SYSPUNCH,DISP=(OLD,DELETE) 
IlL EXEC PGM=DFSILNKO,PARM='LIST,NE,OL',REGION=110K,COND=(4,Lr,S) 
IISTEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR 
IISYSPRI~T DO SYSOUT=&SOUT,DCB=(REC~M=PBA,LFECL=121,BLKSIZE=605) 
IISYSLMOD DD DSN=IMSVS.RESLIB,DISP=SHR 
IIINPUT DO DSN=*.C.SYSGO,DISP= (OLD,DELETE) 
IISYSUT1 DD UNIT= (SYSDA,SEP=INPUT), SPACE= (CYL, (5,1» 
/ISYSLIN DO DSN=*.S.SYSLIN,DISP=(OLD,DELETE) 

DL/I INTERFACES 

LIBRARY RESLIB (CBLTDL~ D1/I INTERFACE 
ENTRY DLITCBL 

LIBRARY RESLIB (PLITDLI) DL/I LANGUAGE INTERFACE 
ENTRY IRES APD 

The IMS/VS Procedure Library 1 .29 





/ 

_.-•. _--_._ .. _---_.- ..... _---

The I~SfVS Ol/! buffering services are controlled by three pools of 
=ontrol blocks and buffers~ the ISA~/)SAM buffer pool, the VSAM shared 
resource pool, and the OL/I buffer handler pool. This section describes 
the structure, content, and use of these pools by DLII. 

The DL/I bufferinq services are the interface between the OL/I action 
modules (for example, Retrieve, Delete, Insert) and the data management 
access methods (VSAM, ISAM, and OSAM). Whenever an action module needs 
to inspect or chanqe data in a data base, buffering services is called 
to perform whatever physical reading or writing is required. A separate 
pool of buffers is allocated for each type of data base; VSAM and 
ISA~/OSAM. Data bases that use the VSAM access method share the use 
of buffers in the VSAM shared resource pool. Data bases that use the 
ISAM or )SAM access methods share the use of buffers in the ISAM/OSAM 
buffer pool. 

Implementina the concept of a buffer pool allows blocks of d~t~ to 
remain in main storaqe as long as possible to avoid secondary storage 
reads and writes. Data in a buffer pool can be accessed and upaate~ 
without causing I/O as lonq as there is no need to reuse the buffer 
spa=e the data occupies. A use chain determines the order in which 
the buffers are used. Empty buffers are placed at the bottom of the 
use chain and are always available for reuse. As buffers are a::cessetl 
they are placed at the top of the use chain. When a retrieve request 
o==urs, the buffer pool is searched using the use chain, to determine 
if the requested data is already in main storaqe. If the data is not 
found, the least recently used buffer (bottom of the use chain) is 
selected, the old data is written out if it has been changed, and the 
requestetl data is read into the selected buffer. 

If an I/O error occurs while attempting to write a buffer of data, 
the buffer is marked as a permanent write error buffer and retained in 
the pool. No error indication is returned on the request that 
encountered the error, but an I/O error message is written to the 
operator, an error log record is recorded on the IMS/VS log dat~ set, 
and the data base is stopped to prevent schedulinq of additional 
transactions that use the data base. When all applications that use 
the data base have completed processing, the data buffer is marked as 
empty and made available for reuse. This error philosophy allows the 
application program to complete even thouqh an IIO error has occurred. 
Whenever an IIO error occurs, the IMS/VS Data Base Recovery utility 
program should be used to re-create the data base that was damaqed. 

IMS/VS maintains statistics on buffer pool utilization and access 
method reguests. These statistics are of value for determining the 
optimum buffer pool definition for a given application. The DL/I 
statistics call (STAT) can be used to obtain these statistics in an 
application proqram (see l~§LY§ !~Elic~ii~u ~~2g~£~~ing B~fgtgn~~' ManY~l 
for a description of the STAT call) • 

ISA~/OSA~ BUFFER POOL 

The ISAM/OSAM buffer pool is used to buffer data for data bases that 
use t be IS AM or as AM access methods. It is made up of a pool prefix 
(BFPL), which contains pool statistics and the use chain top and bottom 
pointers, and one or more variable length buffers. Each buffer is 

System Maintenance/Tuning Facilities 2.1 



preceded by a buffer prefix (BFFR) which describes the size of the 
buffer, its status, and position on the use chain. 

Buffer management and selection is controlled primarily by the use 
chain which l~gically orders the buffers. When space is needed in the 
pool to read in additional data or create a new block, the buffer at 
the bottom of the use chain is the prime candidate. If this buffer is 
not large enough to satisfy the request, then several buffers at:e 
selected and the remaining buffers are compressed to free enough 
contiguous space to accommodate the new buffer. The least recently 
used buffers, which when combined will satisfy the space requi~ment, 
are selected to be eliminated from the pool. If data has been changed 
in any of the selected buffers, they must be written back to external 
storage before they can be eliminated. 

A buffer cannot be moved while it is busy with I/O. Therefore, the 
compression process may have to wait for 1/0 to complete before moving 
a buffer. rhe free space created by compressing the buffers is use~ 
to create a new buffer. If the free spa ce is larqer than the b.l ffer 
space requested, the difference is compared to minimum buffer size, 
and an additional new buffer is created if the difference is ·greater 
than the minimum for one. otherwise, the entire free space is used to 
create a single buffer to satisfy the request. 

In an environment where the block sizes of all DL/I data sets are 
approximately egual, it may be desirable to minimize the compression 
activity of the buffer handler. This can be accomplished by using the 
BFPLBFSZ parameter of the OPTIONS statement to specify the minimum 
buffer size to be allowed in the pool. See "Defining the IMS/VS VSAM 
Buffer Pool" in the !l1~l!~ In§tallation. ~!!ig,g for an explanation of 
the OPTIONS statement and the buffer pool initialization data set. 
Specifying a minimum buffer size of x causes all buffers in the pool 
to be either x or a multiple of x bytes long. 

!Qi~: The user is cautioned that the specification of a minimum buffer 
size other than the default can degrade performance if the value is 
inappropriate or if the environment does not lend itself to fixed size 
buffers. 

VSAM SHARED RESOURCE POOL 

The VSAM shared resource pool is used to buffer data for data bases 
that use the VSAM access method. It is constructed by VSAM based on 
parameters pr~vided by the VSAM BLDVRP macro instruction issued by 
IMS/vS initialization. It contains buffers to be used for VSAM data 
sets {both index and data components} and the input/output-related 
control blocks necessary to perform VSAM requests. The buffers are 
combined in subpools. All buffers within a subpool are of equal length. 

Buffer management and selection are controlled primarily by the use 
chain which logically orders the VSAM BUFC blocks. Since buffers within 
a subpool are fixed in length, no compression or movement of buffers 
is n ecessa ry • 

When the VSAM Buffer Manager needs space in a subpool to read a 
record or create a new block, it selects the buffer at the bottom of 
the use chain to satisfy the requirement. If the buffet: selected 
contains data that has been modified, it must be written before the 

2.2 IMS/VS System Programming Reference Manual 



C~ 

space can be used for the requested function. The purpose of Backgrounj 
Write (BGWRT) is to reduce the number of times the buffer manager 
selects a m~dified buffer. 

Each time the buffer manager obtains space in a subpool it examines 
the next higher buffer on the use chain. If the contents of that buffer 
are modified, a return code is passed in the RPL to IMS/VS. This return 
code tells IMS/VS buffering services to activate (POSr) the Background 
Write PST, and through normal IMS/VS scheduling BGWRT is dispatGhed. 
Backqround Write issues the VSAM WRTBFR TYPE=LRU macro which causes a 
percentage ~f the buffers at the bottom of the use chain in each subpool 
to be wri tten out (if modi fied) •. In this ma nner, the da ta in the 
subpools which has not been used recently is written out before the 
buffer manager requires the space it occupies. This does not prevent 
reuse of data in the buffers. If a subsequent request requires the 
data bef~re the buffer manager needs that space in the subpool, the 
data is used to satisfy the request, and the buffer is put on the top 
of the use chain. 

The use of Background Write is determined by the OPTIONS statement 
in the IMS/VS VSAM buffer pool parameter data set (DFSVSAMP). See 
"Defining the IMS/VS VSAM Buffer Pool" in the 1~~L!~ !n.~tEll~tiQ!!Guide 
for an explanation of the OPTIONS statement. 

DL/I BUFFER HANDLER POOL 

The buffer handler pool is the focal point for recording buffering 
services activity. The pool prefix (BFSP) contains pointers to the 
other elements of the pool, indicator flags, and some statistics. If 
VSAM data bases are used, a subpool statistics block (BFUS) exists for 
each VSAM buffer subpool defined. The subpool statistics block contains 
statistics on buffering services and VSAM request activity relevant to 
the associated subpool. 

A chain of RPL blocks (RPLI) is present if VSAM data bases are used. 
An RPL bloc~ is associated with each request made to VS~M. There is 
one RPt block for each PST and one for each seguential mode data base. 
An RPL block contains an error message area, an area to record RBA 
shift information, and a VSAM Request Parameter List (RPL) control 
block. 

The last element of the buffer handler pool is the DL/I trace table. 
The trace table is a revolving trace of DL/I activity. It records 
calls to buffering services, open and close of data bases, and Program 
Isolation enqueues and dequeues. 

The exact format of the control blocks and pools discussed in this 
section is described in the IM~LvS ~!Qg~~~ 1~~i£ [~Y~l, YQ!~m~ 1 Qf 
1· 

LOG TAPE WRITE-AHEAD 

On systems in which power failure may cause main storage contents 
to be lost, the IMS/VS System Loq Terminator utility cannot recover 
the data in the log buffers that were in main storaqe but had not been 
written at the time of failure. The log tape write-ahead option is 
provided to ensure that a data base log record for a data change is 
written to the log device before the changed data is written to the 
data base. This ensures that any change made to a data base is 
physically recorded on the log tape before the data base is changed. 

Data bases in a batch (DLI or DBB) region which use one PCB only 
are accessed using QISAM instead of the normal BlSAM. Since IMS/VS 

System Maintenance/Tuning Facilities 2.3 



cannot predict when QISAM buffers are written, the log tape write-ahead 
option does not apply to these data bases. If log write-ahead is 
desired on a QlSAM mode data base, an additional PCB for the data b~se 
may be added to the PSB to force BlSAM mode. 

Use of this option degrades system performance. The impact is system 
and application dependent. Some variables affecting the impact are 
log buffer size, number of log buffers, data base buffer pool size, 
and frequency of sync points. 

The log tape write-ahead option is activated with the OPTIONS 
statement in the buffer pool initialization data set; see "Defining 
the IMS/VS VSAM Buffer Pool" in the lti2L!2- !,nstg,llatiQ!!' GuigJ~ for a 
description of the OPTIONS statement. 

This section explains the modification of the command keyword table. 
Refer to the "IMS/VS Commands" chapter in the Il1UVS Q~gn.tQ.!'!.§­
R~~~£~!!.~~ ~sngg,l for a complete explanation of the IMS/VS command 
language. 

COt1MAND- KEYWORD TABLE 

DFSCKWDO, a member of lMSVS.DCSOURCE, should be printed to obtain 
a listing of the command keyword table. It contains the IMS/VS keywords 
and synonyms described in the IMSLV~ Q~g~~tQI~§ Refg£~!!.~g ~~nyal. 

There can be several reasons for altering the keyword table. For 
example, an installation may want to tailor-the keywords and synonyms 
to satisfy unique requirements. Or, a new keyword in a new IMS/VS 
release could conflict with a name already assigned by the installation 
to an LTERM or TRANSACTION. 

CHANGING THE TABLE 

Two of the macro statements that appear in the table, KEYWD and SYN, 
can be replaced to modify the keywords and synonyms. One way of 
modifying the table is: 

1. Punch DFSCKWDO into cards 
2. Prepare new KEYWD and SYN macro statements 
3. Replace the KEYWD and SYN statements to be changed 
4. Reassemble the module 
5. Relink the reassembled module into RESLIB 
6. Relink the IMS/VS nucleus 

KEY¥D macro statements must be substituted one-for-one in the table. 
No new KEYWD macro statements can be added. 

KEYWD keywordiLAST=NOIYES 

Where 'keyword' is the new keyword desired. LAST=NJ is the def~ult 
and need not be supplied. LAST=YES must be specified if it is the last 
macro call in the module. A keyword cannot exceed 12 characters in 
lengt h. 

2.4 IMS/VS System programming Reference Manual 



SYN synonym,LAST=YES,NO 

Where 'synonym' is the desired synonym. LAST=NO is the default and 
need not be specified. LAST=YES must be coded if this is the last 
macro call in the assembly. Synonyms cannot exceed 12 characteLs in 
length; they must be defined under the keyword to which they apply. 

ERROR MESSAGES 

Any error in a macro statement will terminate keyw~Ld table assembly 
and cause an error message. The remaining macro statments will be 
error checked but nothing will be generated. All macro assembly errors 
are severity code 16 errors. 

KRYBL001 - SEQUENCE ERROR. XXX CANNOT FOLLO~ IKEY 
A macro was called which cannot immediately follow an IKEY macro 
call. XXX is either IKEY or SYN. IKEY calls cannot be modified. 

KYTBLOC2 - XXX CALLED WITHOUT ANY PARAMETER 
A macro was called without any parameter. XXX is either IKEY, 
KEYiD or SYN. 

KYTBL003 - XXX IS NOT A VALID INTERNAL KEYWORD 
The parameter specified on an IKEY call (XXX) is not known to 
the system. IKEY calls cannot be modified. 

KYTBL004 - KEYWORD TABLE ASSEMBLY TERMINATED 
This message appears as a comment after the first error message 
in a keyword table assembly. All followinq macr~ calls will 
only perform error checking. No code will be generated. 

KYTBL005 - SEQUENCE ERROR. KEYWD MUST FOLLOW AN IKEY CALL 
A KEYWD macro was called which does not immediately follow an 
IKEY call. 

KYTBL006 - LENGTH ERROR. XXX TOO LONG 
The parameter specified on a KEYWD or SYN macr~ is more than 12 
characters in length. 

KYTBL007 - INTERNAL KEYWORD 'XXX' HAS N~T BEEN USED 
LAST=YES was specified on either a KEYWD or SYN macro call but 
not all internal keywords known to the system have been 
generated. IKEY calls cannot be modified. LAsr=YES must appear 
only on the last macro call in the assembly •. 

KYTBL008 - XXX CANNOT BE SPECIFIED AGAIN 
Int ernal keyword 'XXX' ha s al read y been used. IK EY macro calls 
cannot be modified. 

HQi~: Message DFS058 COMMAND COMPLETED EXCEPT xxx Y z ••• uses the 
keyword table to replace 'xxx' with the keyword associated with the 
command that caused the message. Therefore, keywords defined by KEYiD 
macro calls will appear in this message. Other messages, however, are 
pre-built, and keywords which may have changed will still appear in 
these. 

System Maintenance/Tuning Facilities 2.5 



/ 

,--

( 
"'. -



This chapter describes the exits that IMS/VS provides to allow the 
use of internally generated data, or to allow users to incorporate 
processing extensions of their own. It provides some rules for writing 
exit routines and explains user generation of randomizing modules for 
use with HDAM file organizations. It also di~cusses user generation 
of segment edit/compression routines, user secondary index maintenance 
routines, and the IMS/VS log tape record format. 

The I~SVS.DBSOURCE library contains the source for all sample and 
supplied exit routines described in this chapter, and should be referrei 
to for the latest versions. 

Routines described in this chapter or written by users must be 
reenterable for the following reasons: 

• IMS/VS loads the routine each time a request for it is encountered. 

• The same edit/compression routine is used concurrently for different 
segment types (even if they are in the same data base). 

• The same index maintenance routine is used concurrently for 
different segment types. 

• The .same randomizing routine is used concurrently for different 
data bases. 

ACCESSING MAIN STORAGE 

In the MVS online environment with parallel DL/I, all DL/I programs, 
control blocks, and work areas must be globally addressable. This 
includes user exits. To ensure this, IMS/VS manages the common service 
area (CSA) with the IMS/VS IMODULE function. All user written exit 
routines that load modules and/or access main storage in the MVS online 
environment must do so by using the IMS/VS IMODULE function. 

laHl!~B !i~£~Q. 

All calls for CSA to IMDOULE must be issued from the IMS/VS control 
region. The ISWITCH macro switches IMS/VS execution from a dependent 
region to the control region. The exit routine that issues ISWITCH 
must be running under the IMS/VS dispatcher and must provide 
addressabilitv to SCD and PST. The address of the SCD can be obtained 
from the PST field PSTSCDAD. An example of the use of the ISWITCR 
macro is: 

MVI 
ISWITCH 
LTR 
BNZ 

P STDECB ,X' 00' 
TO=CTL, ECB= PSTDECB 
15,15 
NOSiT 

Clear ECB. 

Successful? 
No, CTL region might be abending. 

DL/I User Exit Routines 3.1 



The IMODULE macro provides functions equivalent to the OS LOAD, 
GETMAIN, FREEMAIN, and DELETE macros. For CSA, subpool 231 should be 
used. If the IMODULE macro is issued while IMS/VS is executing in a 
dependent reqion, subpool 251 (local space) is used in place of 231. 
IMODULE is a Type 4 SVC and so should be used only when necessary. 

IQ tQ~g ~ ~QgYl~~n~Q'CS! 

To use IMODULE to load a module into CSA, the user exit routine must 
have issued ISWITCH and must provide address ability to SCD. The address 
of the SCD can be obtained from the PST field PSTSCDAD. An example of 
this use of IMODULE is: 

I MODULE 
LTR 
BNZ 

LOAD,FPLOC=NAME,SP=231 
15,15 
LOADFAIL 

* Reg. 1 contains EP 

NAME DC CLa'module name' 

Okay? 
No. 

} Load list. 

~Q1g: If a previously LOADed or GETMAINed module is not to be used, 
add the parameter USE=NO to the IMODULE macro. 

To use IMODULE to get storage from CSA, the user exit routine must 
have issued ISWITCH and must provide addressability to SCD. The address 
of the SCD can be obtained from the PST field PSTSCDAD. An example of 
this use of IMODULE is: 

IMODULE 
LTR 
BNZ 

GETMAIN,EPLOC=NAME, LV=( 1) , SP=231 
15,15 
GETFAILD 

* Req. 1 contains GETMAINed block address. 

NAME DC CLa'module name' } 

Okay? 
No. 

Load list. 

NQ~~: LV= specifies the register containing the length for the GETMAIN. 

3.2 IMS/VS'System programming Reference Manual 



To use IKODULE to delete a module from CSA, the user exit ro~tine 
must have issued ISWITCH and must provide addressability to SCD. The 
address of the seD can be obtained from the PST field PSTSCDAD. A 
module can be deleted either by name or by entry point. An example of 
each of these uses of IMODULE follows: 

• By name 

IMODULE 
LTB 
BNZ 

DELETE,EPLOC=NAME,SP=231 
15,15 
DELFAILD 

• By entry point 

IMODULE 
LTB 
BNZ 

DELETE,EPAD=(1),SP=231 
15,15 
DELFAILD 

Okay? 
No. 

Okay? 
No. 

not~: EPAD= specifies the register containing the reqister 1 value 
returned by a previous IMODULE LOAD or IMODULE GETHAIN. 

The IMS/VS Edit/Compression Exit provides a facility for invoking 
user-written routines to edit a segment during its movement between 
the data base buffer pool and the input/output area of the application 
proqram. Design and implementation of this facility are also discussed 
in the I~~L!~ ~I2t~mlA2E!!gE~!Qn·Des~u §yig~ and the I~~l!~·Qtilitig§ 
R~f~~~n£~ Ha[~al· 

The exit provides the facility to encode and decode data for security 
purposes, invoking routines privately generated and controlled by the 
user. 

Other ways to use the exit are for data validation purposes and for 
data formatting. One example of data formattinq is c~mpressing segments 
to save direct access space, and then to expand them to their original 
size when they are brought back to main storage for processing. 

User installations that invoke the Edit/Compression Exit are given 
access to the IMS/VS buffer pool. The Edit/Compression routines should 
be implemented by those having overall systems and/or data base 
responsibility for an installation. They should be transparent to the 
application programs that access those data bases. 

The following text provides a general description and overview, and 
then a specific discussion of the following: 

• Types of segments that can be edited or compressed 

• Types of compression that can be "applied 

• SEGM control statement requirements for DBD-qeneration, including 
a description of the Segment Edit/Compression Table appended to 
the DBD control block 

• Interfaces presented by affected DL/I modules to the user 
edit/compression routine 

DL/I User Exit Routines 3.~ 



These discussions are followed by detailed specifications of the 
following: 

• Parameters passed by DL/I to the user routine 

• Entrv codes presented to the user routine 

• Conversion of existing data bases 

The section concludes with a discussion of performance 
considerations. 

GENERAL DESCRIPTION AND OVERVIEW 

The user edit/compression routine moves the segment, in either fixed­
or variable-length format, from the source address to the destination 
address, performing the edit or the compression/expansion during the 
move operation. On a retrieve operation, the IMS/VS buffer pool is 
the source; on load, insert, or replace operations the application 
program I/O area is the source. For all operations, the destin~tion 
address is an SWA (segment wqrk area). This SWA is d~scribed in qreater 
detail later in this section; and also in the discussions on the 
Variable Lenqth Segment feature in the ~MSL!~ ~Y§1~LlEElica!iQn°D~~ig~ 
~yi~~ and the I~~L!~ !~Q!i~g~iQn° Pr~~a~miU~ R~i~~n£~o~gnyg!. 

As a seqment is requested by the user, its location in the mffer 
pool is obtained. If an edit/compression routine has been specified, 
the address of the data portion of the seqment and the start of the 
SWA are supplied, and the routine is given control. 

The edit/compression routine is responsible for moving the data from 
the buffer pool to the SWA, with the proper editing or expansion, and 
appropriate update to the segment length field. If no edit/compression 
routine is specified, this intermediate operation is not required. 

For insert or replace operations, data is moved fr~m °the user work 
area to the SWA bV the user edit/compression routine, then to the buffer 
pool bV IMS/VS. These actions are summarized in Figure 3-1. A more 
detailed description is provided later in this section. 

3.4 IMS/VS System Programminq Reference Manual 

........... -



c. 

Retrieve 

~ 
Cl 

Input £. 
" .. ~-~ ~ 

____ L~L_I-=d=- ___ j 
Segment work 

Buffer pool 

Source 

. E 
IMS/VS. ~ 

Edited 
user data 

o 
.t 
~ 
C 
o 
() 

Load/I nsert/Replace 

Output 
area (source) 

User 

Buffer pool 

'----- - 1"'­
~ LL User data 

"'-~..,....-----

IMS/VS 

Edited 
user data 

Figure 3-1. Segment Edit/compression 

Although the segments can be defined as fixed or variable length to 
the application program, the segments to be processed by the 
edit/compression routine must be variable length in the data base. The 
data length is contained in a field in the first two bytes of the 
segment. If the segment is defined as fixed-length t~ the application 
proqram, the length bytes must be stripped off by the edit/compression 
routine before the segment is presented to the application proqram. 
In addition, if the segment was compressed, it must be expanded by the 
eiit routine to the fixed length expected by the application program. 
In reverse, if the application proqram presents a fixed length segment, 
the edit/compression rontine must append the length bytes prior to the 
segment being written to the data base. If the edit/compression routine 
compresses the segment, the length field must be updated to reflect 
the correct length. 

The facility provided by Dt/I permits the user-provided routine to 
do the following: 

• Edit or compress both fixed- ana variable-lenqth segments. 

• Accomplish either data edit/compression or key edit/compression. 

• 'ApplV the same routine to multiple segment types within the same 
or different data bases. 

~he l~gic for data encoding/decoaing, or for other desired editing 
or formatting can be based on information contained within the 

DL/I User Exit Routines 3.5 



user-written routine itself. It also can be based on information from 
an external source, such as data provided in the DBD bl~ck, or tables 
examined at execution time. 

General constraints that apply to using the IMS/VS edit/compression 
fa ci lit y a,r e : 

• Any segment specified as subject to editing or compression must 
reside in a VSAM data set. 

• All editing or compression of segments takes place as the segments 
are described in a physical data base only. See "Types of 
Compression" later in this chapter for further specific 
restrictions. 

• The user routine must reside in IMSVS.RESLIB, SYS1.LINKLIB, or any 
properly defined private library. When the routine is link-edited 
to one ~f these libraries, the user must specify one routine entry 
point. 

• If the user r~utine is designed to edit or compress more than one 
segment type, in one or more physical data bases, the routine must 
be coded and link-edited as reenterable. 

• Adequate storage for the edit/compression routine must be provided 
for both batch and on-line systems. 

• Since this routine becomes a part of the IMS/VS c~ntrol or batch 
region, any abnormal termination on its part terminates the entire 
I MS/VS region. 

• The user routine cannot use the operating system macros LOAD, 
GETMAIN, SPIE, or STAE. 

To take advantage of the IMS/VS edit/compression exit, the user must 
10 two things: 

• Expand the DBD control statement SEGM. 

• Provide an edit/compression routine. 

Details on the necessary procedures in each of these areas, and on 
the manner in which DL/I interfaces to the user routine follow. 

TYP~S OF SEGMENTS 

Two types of segments can be presented to the edit/c~mpression 
routine: fixed length segments, whose data length is static an1 is 
reflected in control blocks; and variable length segments, whose data 
length is contained within a field in the first two bytes of the segment 
itself. While a routine dealing with a single-segment type normally 
need not concern itself with the differences, a more general purpose 
module involved with multiple segment types can obtain sufficient 
information to differentiate between them. This is done by examining 
data provided in the segment compression control section. 

3.6 IMS/VS System Programming Reference Manual 



( 
"----_/ 

TYPES ~F EDIT/COMPRESSION 

Two types of segment manipul~tion are possible thr~ugh the DL/I 
edit/compression facility. 

• n~i~ £QIDE~g§§iQn -- movement or compression of data within ~ 
segment, in a manner that does not alter the content or position 
of the key field. rypically, this involves compression of jata 
from the end of the key field to the end of the segment. Note that 
when a fixed length format segment is compressed, a two-byte size 
field must be added to the beginning of the data poction of the 
segment. This is done by the user jata compression routine used 
by IMS/VS to determine secondary storage requirements. This is 
the only time that the loc~tion of the fields can be altered. The 
segment size field of a variable length segment cannot be 
compressed. 

• ~gy ~QIDE~g§§lQn -- movement or compression of any data within a 
segment, in a manner that can change the relative position, value, 
or length of the sequence field as well as any other fields. 

Segments in a physic3l data base, except those types listed below, 
can be specified during DBDGEN as being compressible, with either the 
KEY or DAT~ option. 

• Any segment which is defined as a logical child cannot be specified. 

• Segments cesiding in an INDEX data base cannot be specified. 

• Seqments defined as root segments of a HISAM data base can be 
specified for DATA compression only. 

Although the contents of the sequence field, or the data, can be 
modified by the edit/compression routine, the segment's position in 
the data base is determined by the original sequence field value. An 
example may help to explain this. If the defined sequence of a 
particular segment type is based on last names; and the data base 
contains segments for people n~med SMITH, JONES, and BROWN; the segments 
are maintained in alphabetical sequence -- BROWN, JONES, SMITH. Assume 
that an edit routine encodes these names as follows: 

BROWN--------)29665 

JONES--------)16552 

SMITH--------)24938 

The encoded value is placed in the sequence field. The segments 
are maintained in the original sequence (BROWN, JONES, SMITH), rather 
than in the numerical sequence implied by the encoded values (16552, 
24938, 29665). The records are maintained in the originally defined 
sequence so that a GET NEXT request issued by the application program 
retrieves the correct segment. 

DL/I User Exit Routines 3.7 



DBD CONTROL STATEMENT SEGM 

To use the edit/compression facility, the user must extend the SEGM 
control statement in the following manner: 

SEGM NAME=seq-name. 

L COI1PRTN=(rOUtine-name L {~;~!} [,INIT]]) ] 

COMPRTN= 
specifies that you want the segment edit/compression option~ 
This operand must not be specified if the SOURCE operand is 
used. The COMPRTN operand is invalid in the DBDGEN oper~tion 
for INDEX, and for simple HISAM DBDs. It must n~t change the 
sequence field offset for HISAM root segments. Segments 
specifying the COMPRTN parameter must reside in a VSAM data set. 

routine-name 

DATA 

KEY 

INIT 

specifies the name of the user-supplied routine used to edit or 
compress this segment. This name must be a one- to 
eight-character alphameric value. It cannot be the same as ~ny 
other name in IMSVS.RESLIB. 

specifies that the indicated routine will edit or compress d~ta 
fields only. Sequence fields are not modified; nor will data 
fields that change the position of the sequence field, in respect 
to the start of the segment, be modified. DATA is the default 
when an edit/compression routine is named but no option is 
selected. 

specifies that the indicated edit/compression routine can 
condense or modify any or all fields within the named segment. 
This parameter is invalid for the root segment of a BISAM data 
base. 

specifies that initialization and termination processing control 
is required by the segment edit/compression routine. If this 
parameter is present, the edit/compression routine is given 
control at open and close time for that data base. 

To assist the user in providing parameters to his edit/compression 
routine, the DBD control block has a table, in the form of assembly 
language control sections, appended to it~ One control section is 
developed for each segment type to be edited or compressed. Each 
control section has a CSECT name equal to that of the segment n~me. 

These control sections are placed at the end of the DBD module. 
Thev contain information such as the segment edit/compression routine 
name, the name of segment, and the total length of that control section. 
Each control section can be extended to contain any desired data or 
algorithm information. An example of a sample segment control section 
is shown in Figure 3-2. 

3.8 IMS/VS System Programming Reference Manual 



Segment 

Name 

Edit/Compression Routine 
- - - - - - - - - - - - -

Name 

Entry Point Address 

Flag Sequence Sequence Field 
Byte Field Executabl e Offset 

Length 

Segment Length/maxlength CSECT Length 

User- defined Parameters 

Figure 3-2. Segment Edit/Compression Control Section (SEGPAC) 

Information in the various fields shown in Figure 3-2 is as follows: 

DMBCPAC 
DMBCPCNM 
DMBCPCSG 
DMBCPEP 
DMBCPFLG 
DMBCPKFY 
DMBCPNIT 

DMBCPVLR 
DMBCPSEQ 

DMBCPSQF 

DMBCPSQF 
DMBCPSGL 

DMBCPLNG 

DMBCPUSR 

DSECT 
DS 
DS 
DS 
DS 
EQU 
EQU 

EQU 
EQU 

DS 

DS 
DS 

DS 

DS 

CL8 
CL8 
A 
XL1 
X' 0 2' 
X'01' 

X'04' 
X'OS' 

XL1 

H 
H 

H 

OD 

Segment name 
Edit/Compression routine name 
Entry point address 
Flaq byte 
Segment has key compression option 
Initialization processing is 
required 
Segment is variable length 
Segment has key sequence field 
defined 
Executable length of sequence field, 
if defined 
Sequence field offset 
For fixed length segments - segment 
length; for variable length 
segments - maximum length 
Total length of CSECT; fixed 
length plus length of user-defined 
p aram et ers (always a multiple of S) 
Any quantity of user-d~fined data 

DL/I User Exit Routines 3.9 



The first 28 bytes are constants defined by DBDGEN. When the new 
table is defined to include additional parameters, these fields must 
be duplicated. The only exception to this rule is that the CSECT length 
field must be updated to reflect the new length. After an assembly of 
the new table, a link-edit is done to exchange the new table for the 
old one. User-added code should not contain address constants, because 
this CSECT is moved after it is loaded. Care must be taken to use an 
ENTRY statement specifying the name of the DBD when this operation 
takes place. See If A utomatic CSECT Replacement" in Q§'l~lQ. 1inksg~- EditQ[­
~ng 1~[~~ for additional details. 

DL/I MODULE INTERFACES 

When the IMS/VS system is initialized prior to running an 
application, DL/! takes the following action. 

• The IMS Block Builder module (DFSDLBLO) checks whether a user 
segment edit/compression routine has been specified for a data 
base. If it has, an SWA large enough to contain the largest 
expanded segment is constructed, and the address is placed in the 
PSB prefix. 

• Each time the IMS/VS Open/Close module (DFSDLOCO) opens a physical 
data base, it examines each segment description to see if 
edit/compression has been specified for that segment type. If it 
has OPEN/CLOSE, it loads the user routine in the same manner that 
a HDAM randomizing module is loaded. The address of the user 
routine is placed in the appropriate seqment edit/compression 
control section of the Data Management Block. If a user 
edit/compression routine is designed to handle more than one segment 
type, the routine must be link-edited as reenterable. 

When the application program is activated and begins accessing 
segments, the DL/I action modules interface with the user 
edit/compression routine as described below. In all cases, the DL/I 
modules pass an entry code (described in "Parameters Passed b1 OL/I" 
and "Edit/Compression Routine Entry Codes" later in this chapter) to 
the edit/compression routine. The user's edit/compression routine must 
examine this entry code to determine the function to be performed. 

~Q~gLln§gI~ (Q~SDD1~~): As each segment is beinq processed for a load 
operation, the associated descriptive blocks (PSDBS) are checked to 
see if it is a candidate for edit/compression. If so, control is 
transferred to the associated user edit/compression routine. The 
followinq parameters are passed to this routine. 

• Source address of the start of the segment in the user input/output 
area 

• Destination address of the start of the segment work area (SWA) 

• Information address of control blocks containing sufficient data 
for the edit/compression routine to properly perform its function 

• Return address after edit or compression has been accomplished 

3.10 IMS/VS System Programming Reference Manual 

~"" . 



--_ ....• _._----_. __ ._---_... --.-

The length of the segment to be moved is provided in one of two 
placei. If the segment length was specified as fixed (relative to the 
user input/output area), but to be modified by an edit/compression 
routine, the source length is reflected in the segment descriptive 
block. If the segment is d9fined as variable in length and is to be 
modified by an edit/compression routine, the source length is provided 
as a binary value in the first two bytes at the source address. In 
either case, the move operation provided by the edit/compression routine 
must result in a two-byte length field, followed by the corresponding 
quantity of data in the segment work area. Load/Insert compares this 
two-byte length field with the min-value, if specified. The larger of 
these two values determines the direct access space requirements for 
this segment. Load/Insert also compares the two-byte length field with 
the max-value to verify that the segment does not exceed the maximum 
length. The length field for a fixed length compressed segment cannot 
exceed the defined segment length plus 10 bytes. 

For a segment insert operation, the action is similar to that of 
segment load. Edit/Compression, if required, is performed with the 
segment work area (SiAl as the destination address. The length of the 
segment in this staging area, or the min-byte value, is used to 
d~termine the necessary secondary storage requirements. 

~gl~teLB~~la~~ (DFSD1~00): If the segment length changes in an HS 
environment, the necessary shifting of segments to compensate for the 
new length occurs. If segment length changes in an HD environment, an 
effort is made to position the segment data as close as possible to 
the segment prefix. In both cases, the min-byte value must be properly 
observed. 

B~~I!~~g (~l~~1BOO): Several alternatives exi~t for seqment movement: 

• If a segment is defined by the user as variable in length, and no 
edit/compression routine is specified, IMS/VS moves the segment 
directly from the buffer pool to the application program I/O area, 
by-passing the segment work area (SWA). 

• If a segment is defined as variable in length, and an 
edit/compression routine is specified, the segment is moved from 
the buffer pool to the segment work area by the specified routine. 
The segment length is updated to reflect the expansion. The segment 
can now be moved on to the user. 

• If a se~ment is defined as fixed in length, and an edit/compression 
routine is specified, the segment is moved from the buffer pool to 
the segment work area by the appropriate routine. However, sin=e 
the two-byte segment length field is used only for the disk format, 
the user edit/compression routine must strip the two-byte length 
field while moving the segment to the SWA. 

• All segment edit and compression takes place on a segment as it 
relates to its physical description. Therefore, any segment or 
segments involved in logical relationships must be properly expanded 
before Retrieve builds the logical image that is to be placed into 
the application program input/output area. 

Segment movement out of the application program input/output area 
~OA) follows one of two patterns. If the segment is eligible for 
edit/compression, it proceeds through an intermediate staging operation 
into the segment work area (SWA). If it is ineligible for 
edit/compression, staging to determine the edited or compressed length 
is not necessary. In this case, the length specified in the IOl is 
used to determine buffer space requirements. Segment m)vement during 
the retrieval operation is usually from the buffer, through the 
edit/compression routine to the SWA, and then on to the input/output 

DL/I User Exit Routines 3.11 



area. However, if the user has requested a retrieval based upon the 
contents of a field in the compressed area of a segment, any segment 
that miqht qualify must first be expanded in the SWA for examination. 
Only the qualified segment is then moved into the I/O area. 

The edit/compression routine obtains control from the appropriate 
action module. It is presented with both a source and destination 
address, as well as the address of the segment descriptive.blocks. Its 
responsibility is to move the seqment from the source area into the 
~estination area, performing the desired operation, and updating the 
seqment length field to reflect this operation. 

The foll~ving sum.ary represents the operation by module and 
function. 

Function: Load 

Segment movement: 

Edit/Compression , 
r--l-----, r-------~ 
I I , I 

IO A SilA Bu ffer Pool 
, I L---_--_____________ J 

No Edit/C~mpression 

Load/Insert uses the ain-byte value (if provided), or specified 
length, whichever is greater, for segment length. 

Function: Insert 

Segment movement: 

Edit/Compression 
I 

r-- f -----, ,.--------, 
I , I I 

lOA SWA Buffer Pool 
, I 
L---- ---------------.J 

No Edit/Compression 

Load/Insert'uses the min-byte value (if provided) or specified 
length, whichever is greater. In as, Load/Insert lIoves all the 
following segments to the right, creating a new block if necessary. 

3.12 IMS/VS System Programming Reference ~anual 

(:~ 



(' . 

( 
'-/ 

HQg~l~: Q~1~t~LR2El~£2 

Function: Delete 

Seqment m~vement: None. 

In HD, Delete/Replace frees the space the segment previously 
occupied. 

Function: Replace 
Edit/Compression 

r----I---, r--------, 
I , , , 

seqment m~vement: lOA SWA Buf , , 
L-------------------~ 

No Edit/Compression 

In HS, 

• If the new segment is shorter than the old segment, Delete/Repl3.ce 
overlays the old data with new data r and moves the following 
seqments, if any, to the left, observing the min-bytes parameter 
if specified. 

• If the new data is of equal length to the old data, replace old 
data with new. 

• If the new data is longer than the old data, Delete/Replace moves 
the following segments, if any, and inserts the new data. rhis 
operation requires a call to the Load/Insert module since the data 
shift may require the allocation of new OSAM blocks. 

In HDr 

• If the new data is shorter than the old data, and if the prefix 
and data are together r the new sequent is moved in and the excess 
space is freed r after checking the min-byte value. If the prefix 
and data are separate r spa=e is obtained as close to the prefix as 
possible, the new data is moved in, and the previously occupied 
space is freed. 

• If the new data is equal in lenqth to the old data, the old data 
is replaced by the new data in a one-for-one manner. 

• If the new data is longer than the old data, space is obtained 3.S 
close to the prefix as possible. New data is inserted in the new 
space. The old data space is freed. 

DL/I User Exit Routines 3.13 



Expand 
r- - - - - - - -, , - - - I - - - -, 
, , I 1 

Segment m~ve.ent: lOA SW A Buf 
, I 
L---- ---------------.J 

No Expand 

For retrieval ~f segments, expansion occurs in the segment work 
area. If exaaination of compressed fields for seqlent qualification 
is required, a staging operation in the segment work area is 
necessary to analyze each candidate. 

PARAMETERS PASSED BY DL/I 

DL/I provides the following information to the user's 
edit/compression routine when a segment is to be processed: 

• Register 1 contains the address of the Partition Specification 
Table (PST). 

• Register 2 contains the address of the first byte of the segment 
to be processed (source address). 

• Register 3 co.ntains the address of the first byte of the work area 
into which the segment is to be moved (destination address). 

• Register 4 contains the address of the Physical Seg~ent Des=ription 
Bloclc (P SOB). From this block, the Field Descripti~n Blocks (FDB) 
can be l~cated, as required. 

• Register 5 contains the address of the segment edit/compression 
control sect ion. 

• Register 6 contains the entry code (described below). 

• Register 13 contains the address of a save area into which the 
system's registers must be stored by the user. 

• Register 14 contains the address used to return t~ DL/I when segment 
processing has been accomplished. . 

• Register 15 contains the user-specified entry point into the segment 
edit/co.pression routine. 

All IMS/VS control blocks provided to the segment edit/compression 
routine are f~r reference only; no data can be changed, including the 
seq.ent at the source area address. The only modification allowed is 
the alteration of the segment durinq the move operation from the source 
to the destination address. DSECT adaressability t~ the above mentioned 
control blocks is provided by the IMS/VS IDLI macro, as shown in the 
exaMPles provided earlier in this chapter. 

EDIT/COMPRESSION ROUTINE ENTRY CODES 

When the user segment edit/compression routine is placed into the 
IMSVS.RESLIB, or another valid library, by a linkage editor pro=ess, 
one entry point to it must be specified by the user. When the routine 
is entered, the entry code placed in reqister 6 can be used to aetermine 
the reason for invocation. 

3.14 IMS/VS System Programming Reference Manual 
c 



Entrv code = 
o - segment edit/compression takes place. The source address points 

to a segment image as it appears in the application program 
input/output area. 

4 - entire segment expansion takes place. The source address points 
to a segment that must be expanded into an image capable of 
being presented to the application program. Application program 
requests qualified on a data field require the use of entry code 
4 for n~rmal retrieval expansions. 

The above two entries are the minimum required by the user for 
segment compression and expansion, and they are the two codes used when 
the DATA conpression option is specified. To reduce the amount of 
processing overhead required with the movement of data, a third table 
entrv is required when the KEY compression option is used. 

8 - partial segment expansion for the key compression option. 
Expansion takes place from the start of the segment through the 
sequence field. This facility is required if the user elect~ 
to use kev compression, or if he compresses any field that alters 
the starting position of the key field. All DL/I calls using 
sequence field qualification on key compressed segments require 
the use of this entry code. 

To provide a data edit/compression routine with greater flexibility 
in the use of algorithms than is contained in the code itself, two 
additional options are provided to allow for tabled data inform~tion. 
The first is contained within the DBD module itself. F~r each segment 
defined during DBDGEN as being eligible for edit/compression, an entry 
is developed in an assembly language control section, described in ~ 
previous paragraph. This control section can be extended. This is 
done by an assembly and link-edit to contain any desired data or 
algorithm information. The second option allows the nodule to issue 
the IMS/VS IMODULE macro to provide functions equivalent to the OSLOAD 
or GETMAIN macro instructions. They brinq additional information into 
storage in the form of modules from the IMSVS.RESLIB. An example is 
a table of substitution characters to be maintained separately from 
the executable code. This table could reflect different combinations 
for different segments, resulting in a general purpose, table-driven 
routine, capable of processing several segment types. 

since it is also possible that pre- and post-processing are required 
by the edit/compression routine (for example, to load and delete the 
compression algorithm table in the above case), two m~re entry codes 
are provided when the INIT parameter is specified in the SEGM control 
statement. With these codes, the OPEN/CLOSE module relinquishes control 
to the initialization/termination subroutines immediately after the 
data base is opened, and immediately prior to the data base being 
closed. Any processing required for the data base segments that cannot 
be directly related to anyone segment can be done at this time. 

Entry code = 
12 - control is obtained for algorithm processing immediately after 

the data base is opened. Registers 2, 3, and 4 are 
Unpredictable. 

16 - control is obtained for algorithm post-processing immedi~tely 
prior to the data base being closed. Registers 2, 3, and 4 are 
un predict able. 

For compression, regardless of the format at the source address, 
the segment at the destination address must be in variable length 

DL/I User Exit Routines 3.15 



format. The first data field of the seqment is a two-byte segment size 
field. DL/I processes the condensed segment through the buffer pool 
to secondary storage. 

If a fixed length segment is to be compressed, and the data format 
is such that compression cannot take place, it is possible that the 
addition of control information by the user routine, indicating the 
se~ment could not be compressed, will lengthen the segment beyond its 
fixed length definition. To allow for this expansion, and to allow 
DL/I to validity check the results of the compression, an arbitrary. 
value of 10 bytes is added to the defined length. rhis value is 
maintained in the Physical Segment Description Block and is used by 
DL/I as the maximum allowable seqment length. No additional secondary 
storage is required due to this arbitrary value. 

For segment expansion occurring during the segment retrieval process, 
the-~etrieve module examines the application proqram re~uest. If the 
request is to be satisfied by a compressed segment, a test is m~de to 
see which type of compression was use~, either key or data. Then, 
depending upon the type of retrieval request, either entry code 4 or 
8 is passed to the compression routine. The following criteria are 
used as a basis for the decision: 

• If the segment can be accepted without analysis of either a key or 
data field, control is transferred using entry code 4. The segment 
is expanded to the form presented to the user. 

• If the value of the segment sequence field ~equires examination 
prior to segment selection, an addit ional check is performed to 
determine data or key compression. Data compression requires no 
additional processing, while key compression requires acti~tion 
of entry code 8. If, after key field validation, the segment is 
qualified for presentation, it is passed on to the user, after 
being properly formatted by entry code 4. 

• If data field analysis is necessary to properly satisfy the DL/I 
call, proper expansion of the segment, via entry code 4, takes 
place. When the correct segment is found, it is passed on to the 
user. 

The format of the segment presented through entry codes 4 and 8 of 
the compression routine is identical to that of a variable length 
segment; that is, a two-byte segment size field followed by the 
appropriate quantity of data. It is the responsibility of the called 
routine to properly expand the segment at the destination address in 
correct format, either fixed or variable lenqth. In the case of key 
compression, expansion must take place from the start of the segment 
through the sequence field. For variable length seqments, the segment 
data length field, after processing by the key expansion, must reflect 
the length of the expanded portion of the segment at the destination 
address. 

CONVERTING EXISTING DATA BASES 

To convert existing data bases to use this facility, do the 
following: 

1. Unload the current data base using the reorganization/unlo~d 
utility, and using the current DBD. 

2. Define a new DBD which specifies VSAM as the access method, and 
specifies a COMPRTN for those segments that are to be converted. 
Reload the data with the reorqanization/reload utility. 

3.16 IMS/VS System programming Reference Manual 



... _._ ....... _-------

3. The named COMPRTN provided durinq reload should encode, compress, 
or edit the segment (as determined by the installation's 
requirements), and add the two-byte length field. 

PERFORMANCE CONSIDERATIONS 

The primary purpose of segment compression is to d~crease the 
quantity of space required for segment storage. To acc~mplish this 
the user has two types of compression, DATA and KEY. However, the use 
of these options can have varying effects on performance that should 
be examined. For example, compressing or expanding each segment, on 
its way to or from the application proqram, involves additional 
processinq. In addition, the search time required to locate the 
reguested segment may be increased, depending on the ~~tions selected. 
In the case of full segment compression, using the KEY compression 
option, ever, segment type that is a candidate to satisfy either a 
fully qualified key or data field request must be expanded to allow 
examination of the appropriate field by the I~S/VS Retrieve module 
(DFSDLROO). For key field qu~lific~tion, only those fields from the 
start of the segment through the sequence field are expanded. For data 
field qualification, the total segment is expanded. In the case of 
data compression and a key field request, little more processing is 
reguired to locate the segment than that of non-compressed segments, 
since the seqment sequence field is used to determine if this segment 
occurrence satisifies the qualification. 

Other considerations can impact total system performance, especi~lly 
in an online teleprocessing environment. For example, beinq able to 
load an algorithm table into memory gives the compression routine a 
large amount of flexibility. However, this action can place the entire 
IMS/VS control reqion into a wait state until the requested member is 
present in main storage. 

SEGMENT COMPRESSION/EXPANSION MODULE EXAMPLE: KMPEX 

A compression/expansion example is provided as guidance to the I~S/VS 
system user. The example is not intended to be operational (for example 
it contains many unspecified series of routines), and no support by 
IBM for this routine is implied. The KMPEX program is a segment 
compression/expansion proqram coded according to the IMS/VS Program 
Functional Specifications. This program processes a particular segment 
for compression or expansion on the basis of the parameters and data 
passed by the IMS/VS Control Program. 

When control is given to the KMPEX program, the program checks an 
entry code passed in register 6, finds out whether the code indicates 
a request for compression of a segment, or partial or entire expansion 
of a compressed segment. It then branches to an appropriate routine 
to perform the required task. 

Upon normal completion of the task, it returns control to IMS/VS 
Control Program with a return code of O. 

Specific rules and restriction followed in compressi~n and expansion 
of a segment are detailed in the following sections. 

DL/I User Exit Routines 3.17 



Compression of a segment requires different data handling according 
to the data organization of the segment. There are two data formats: 

1. Fixed data format 
2. Variable-lenqth data format 

A user may specify one of two options to either of the above segment 
formats. The options are KEY and DATA. 

r--------------------------------------------------------------, , , , 
1 Data before compression , Data after compression 1 
I 1 , 
1--------------------------------------------------------------1 
1 1 1 
, Fixed length: ~KEY option ILL~R_~~l_~~l_D_' , 
1 I _!!_l_!s_l~.:... I 1 
1 DATA option '11~_~_1~_1~R.:...l_D~1 1 
I I 1 
I~-------------------------------------------------------------1 , , I 
, Variable-length: 1 KEY option 1~~~1&~1_~~~1~~~1 I 
1 I 1 
, lt1_1_~_1-I_l_~_1 1 DATA option 'tt~1.:...~1_~1~11-fl~~' , 
1 1 I 
L--------------------------------------------------------------J 
D = data, K = key, P = pointer to the 1st CCB 

LL' = new segment length, LL = original segment length 

D' and K' compressed data and key 

Thus, compression of a segment results in one of the four formats 
listed above, depending upon the original record format, and the option 
specified. 

Compression of data is specified wherever any consecutively redundant 
characters of four bytes or more occur in a particular segment. 

Ihg £omE~~§.§i.Q!l C o!!:t~Ql 12!Q~~ (£CB) 

Compression is performed by replacing the repeated identical 
characters with a Compression Control Block (CCB). A C:B consists of 
3 bvtes containing the following information: 

ICCBIPNCBILRCIRCI 

PNCB 
LRC 
RC 

= a pointer to the next control block (CCB). 
= the length of the redundant character in bytes. 
= the redundant character in hex. 

3.18 IMS/VS System programming Reference Manual 

c. 



C
.-

./ 

• The PNCB is a 1-byte area whose value cannot exceed 255 (decimal). 
A block of four or more repeated characters is likely to occur 
within any span of 255 consecutive bytes in a normal data base. 
If two qroups of repeated characters, however, are separated by 
more than 255 bytes, a dummy CCB must be constructed between them. 

i ' i' t I 
(PNCBILRCIRCI------ICCB-21---------IPNCBILRCIRCI 

I~ CCB-1 ~(-------N>255--------~)1 CCB-3 

A dummy CCB is no different from a reqular CCB except that its LRC 
field contains zero, meaning a redundancy of zero bytes in lenqth. 

• 1E£ represents the length of redundant characters in bytes. Like 
PNCB, the LRC's maximum value is 255. If the same character is 
repeated 256 times or more, therefore, there must be 1 CCB for 
every 255 bytes, plus 1 CCB for any residual characters. 

r--------------------------------------------------------------, 
I I 
t characters CCB , 

, 
I , 
1 
I 

* 255 characters of "A" 

* 258 characters of "B" 

r--------, 
Inn FF C11 
L--------J 
r--------, 
Inn FF C21~~_~~~~~ 

L----r--~'31 residual cha:s-not 
compressed. 
CCB for the 1st 
255 chars 

r-----------------, 

I 

1* 259 characters of "C" 
( 

103 FF C31 nn 04 031---'1 

L----r--~-;~~-~~;-~or ' I , , 
( 
t 

4 C's 
1st CCB for 

255 chars 

the last 

the 1st 

L-~~-----------------------------------------------------------J 

The value in the LRC ranges from 0 through 255. The zero in LRe 
means that there is no character to be compressed. The CCB in this 
case plays a role of step-stone between two CCBs that are apart by 
more than 255 bytes. 

• B~ represents redundant character. It is a 1-byte area and can 
contain any value ranging from X'OO' to X'FF'. A zero value here 
is of n~ special significance. 

DL/I User Exit Routines 3.19 



Regardless of the format of a segment, or "the option for compression, 
the first byte of compressed data is allocated to the PFCB. It contains 
the offset to the first CCB, inclusive of the PFCB byte. 

The location of the PFCB varies according to the data format. 

r--------------------------------------------------------------, 
,Data , 
,format: option: PFCB relative to other data , , , 
1--------------------------------------------------------------, , , 
, r-------------------, , 
, Fix ed key ,LL PFCB (D) (K) (Dl' , 
, L--------,---------.J , 
, I . -compressed segment I 
1 , 
I 'r-------------------, , 
, data ILL D K PFCB (D), , 

~ L--~--------C~ompresseddata " 
I -Ldata & key field--not compt::esseal , , 
1--------------------------------------------------------------
1 
1 
,Variable key , 
1 , , 
1 , , 
I 
1 
I , 
1 
I 

data 

r----------------------, 
,LL LL PFCB CD) CK) (D) I 

L--------------------C.compressed segment I I :: original segment length 
~·------------------~new segment length 

r----------------------, 
, L L D K L L PFC B (D) I 

Ll-~--i-7-?~--------~compressed data 
original segment length ~data & key field--not compressed1 
new segment lengt h , 

I 
L--------------------------------------------------------------J 

3.20 IMS/VS System programming Reference Manual 

c 



After all data in a segment has been compressed, a one-byte area, 
which always contains zero, is assigned to the LCCB. When the PNCB of 
a CCB points to an area containing zero, it means tha~ the CCB is the 
last CCB in the segment. The value in a PNCB of the last CCB varies, 
depending on how the segment ends. 

r--------------------------------------------------------------, , 1 , 1 
, , After compressiblel , 
tEnd of Segment, Characters X's I Last CCB to LCCB 1 
, 1 I I 
1--------------------------------------------------------------1 
~ ; \ r-~~ : 
I XXXXXAAAAA ,4 or more RCs I 103 05 E7103 05 C1100 , 

I I I L---r-:--,-------· LCCB I , 1 I t-the last CCB I 
, , f CCB I 
I , I I 
, 1 I r--------, I 
1 XXXXXBCDE 1 no 4 or more RCs I 107 05 E71C2 C3 C4 C5 00 I 

I I I L---r---t.Jheno +. LCCBI , 1 I comp.ressiblel 
, 1 1 data I 
, , ,las t CC B I 
I , I I 
L--------------------------------------------------------------J 

DL/I User Exit Routines 3.21 



A segment size is not always reduced by the compression routine. 
It is increased when redundancy of a character occurs rarely, or a 
se~ment size is large, and the compression routine uses numerous dummy 
CCBs. 

If the length of a compressed segment exceeds the size of the output 
buffer area passed by the IMS/VS control Program (two bytes longer than 
the maximum seqment lenqth), the KMPEX program handles the situation 
as follows. 

The compression routine maintains a counter containing the updated 
length of the processed compressed segment. If the segment length of 
a compressed data is equal to or greater than the original size of the 
segment, compression is reqarded as unsuccessful, and the output area 
is replaced with a new length of segment (two-byte area) , and the 
oriqinal seqment. 

The foll~wing new segment output by the compression routine indicates 
that the se~ment involved has not been compressed: 

r--------------------------------------------------------------, 
I 1 I 
t Segment Format I New segment Length , 

" I 1-----------_·_------------------------------------------------1 
" I I Fi xed ,t he 1 st 2 byt es = a fix ed segment length + 2, 

" , I Variable ,the 1st 2 bytes = an oriqinal seqment lengthl 
I , (saved in the second two bytes) + 2 , 
I I I 
L--------------------------------------------------------------~ 

The above segment is regarded as compressed data by the control 
proqram and treated as such. Differentiation is made only by the 
compression/expansion routine. 

Tne expansion routine receives control when a segment that h~s been 
compressed is retrieved from secondary storage. The method of expansion 
is the reverse of the compression process described above. 

Special handling occurs when the following two conditions are found~ 

• The value in the length field in the first two bytes is 2. In this 
case: 

seament forma t 
'fiied-length-
variable length 

s£iYsl_§~m~~ga1a 
(none) 
X'002' 

3.22 IMS/VS System Programming Reference Manual 

c., 



• If any of the following conditions apply, the segment is interprete~ 
as not compressed, and is not expanded: 

r--------------------------------------------------------------1 , , , , 
, Record Format, Length equal to ,current input data , , , , 1 
1--------------------------------------------------------------1 , , , , 
, Fixed ,a fixed segment , not compressed -- ignore, 
, , length + 2 ,expansion , , , , , 
1--------------------------------------------------------------, , , , I 
,Variable- ,a value in the , not compressed -- ignore, 
,length '2nd 2 bytes of 1 expansion , 
, , input + 2, , 
, , f , 

L--------------------------------------------------------------~ 

In all other cases, the routine expands the seament by decoding the 
associated CCBs. 

~hen so specified, I~S/VS qives control to the compression/e[pansion 
routine: 

• Immediately after the data bases, have been opened 

• Just before the data bases are closed 

When a command code is given to branch to the post-OPEN routine or 
the pre-CLOSE routine in the K~PEX program, a WTO message, is issued 
stating that an entry to an appropriate routine has been made. No 
processing of particular data is attempted at this stage. 

DL/I User Exit Routines 3.23 



1. OPEN OF SEGMENT xxxxxxxx 

Control has been received by the compression/expansion routine 
after an OPEN of the data bases has been completed. Any 
preprocessing tasks of the named segment should be completed 
here. 

2. CLOSE OF SEGMFNT xxxxxxxx 

Control has been received by the compression/expansion routine 
before the system closes data bases. Any post-processing tasks 
of the named segment should be completed here before close of 
the data base. 

3. Abend codes (*All the abend instructions can be changed to a 
RETURN instruction to the system, with an abnormal return code). 

a. USER 2989 -- ABEND 

1. A segment data organization is variable length, but its 
length field is one of the following: 

2>N>32767 (decimal) 

2. A fixed length record, but the seqment length in 
Compaction Control Table indicates: 

o >N>32767 

b. USER 2990 -- ABEND 

A command code passed bV the control program is out of a 
va lid range: 

O>N>16 

c. USER 2991 -- ABEND 

A command code is passed to compress after, or expand up 
to, a sequence field of a segment. No sequence field has 
been defined in the segment. 

d. USER 2992 -- ABEND 

Any of the following conditions results in an abend with 
the above code. 

Applicable to both fixed- and variable-length segments: 

1. A D/K length is greater than a SGL lencrth of a segment. 

Applicable only to a variable-length seqment: 

2. A D/K length is great er t han an LL length. 

3. An LL length is greater than an SGL length. 

~. An LL length is less than 2. 

5. An SGL length is less than 2. 

3.24 IMS/VS System Programming Reference Manual 



/' 

!pplicable to a fixed seqment: 

6. An SGL length is a negatiYe value. 

D/K length = A sum of length from the beginning of 
a seqment to the end of a key field 
(SEQUENCE FIELD). 

SGL length = A length of a segment indicated in the 
seqment lenqth field of a Compression 
Control Table. 

LL length :::: A length of a variable length record 
indicated in the first two bytes of a 
precompressed segment. 

f~2[~am !~§gm~~ign§ 

All parameters and data passed by the IMS/VS control program are 
assumed to be valid data; such as the address of the input segment 
data r the output data area address, and the lenqth of an input segment. 

The I~S/VS control program passes an address of an input segment 
data area in register 2r and an address of an output data area in 
register 3. 

The size of output data area is: 

• A segment length plus two bytes for a fixed length segment. 

• The maximum segment length for a variable length segment. 

• No segment length is greater than 32,767 bytes. 

All segments processed by the compression routine are treated as 
variable length by the IMS system control program, regardless of their 
pre-compression format. 

A listing of the K"PEX routine follows. 

DL/I User Exit Routines 3.25 



KMPX TITLE 'KMPEX ROUTINE--USER DATA COMPRESSION PROGRAM' 
* * 
********************************************************************** 
** ** 

** ** 
****** 
** 

********** 'KMPEX' DATA COMPRESSION/EXPANSION PROGRAM ****** 
** 

** 'KMPEX' PROGRAM IS A DATA COMPRESSION/EXPANSION ROUTI- ** 
** NE. COMPRESSION OF DATA IS DONE TO ANY CONSECUTIVELY RE- ** 
** DUNDANT CHARACiERS OF 4 BYTES OR MORE IN THE DATA. COMP- ** 
** RESSION USES A CONTROL BLOCK CONSISTING UF 3 BYTES, I.E. ** 
** 1. PTR TO NEXT CONTRL BLK, 2. # OF REDUNDANCY, 3. THE CH- ** 
** ARACTER REDUNDANT. ** 
** ** 
** COMPRESSION IS TERMINATED WHENEVER THE LENGTH OF PROC- ** 
** ESSED DATA BECOMES EQUAL TO OR LONGER THAN THE INITIAL ** ** DATA LENGTH, AND THE PRE-PROCESSED DATA IS RETURNED TO ** 
** DL/I AS WAS. ** 
** DETAILED FORMATS AND CONTROL BLOCKS OF COMPRESSIONI ** ** EXPANSION ARE DESCRIBED IN SPRM. **. 
** ***** REGISTER USAGE IN THE 'KMPEX' PROGRAM *** ** 
** ** 
** RI---WORK REGISTER ** 
** R2---PTR TO INPUT DATA ** 
** R3---PTR TO OUTPUT DATA ** 
** R4---PTR TO PSDB ** 
** R5---PTR TO 'SEGPAC' SEG COMP CSECT ** 
** R6---CTR FOR CURRENT INPUT PROCESSING ** 
** R7---CTR FOR OUTPUT DATA ** 
** R8---CTR FOR INPUT PROCESSED ** 
** R9---PTR TO THE CURRENT INPUT ** 
** RI0---WORK REGISTER ** 
** RII---WORK REGISTER ** 
** RI2---KMPEX BASE REGISTER ** 
** R13---REGISTER SAVE AREA ** 
** R14---RETURN ADDR TO DL/I ** 
** R15---KMPEX ENTRY POINT ** 
** ** 
** ** 
********************************************************************** 
** ** 
KMPEX 

INIT 

3.26 

CNOP 
CSECT 
SAVE 
BALR 
USING 
LA 
ST 
ST 
LR 
USING 
MVC 
STC 
CLI 
BNL 
BAL 
ST 
ST 
TM 

0,8 

(14,12) 
12,0 
*,12 
RIO,KSAVI 
R13,4(RI0) 
RIO,8(R10) 
R13,R10 
KCCB,R5 
KNITA(KNITL),KFO+3 
R6, Kcr-1CD 
KCMCD,KQINIT 
KA350 
Rll,KA3600 
R2,KASNI 
R3,KASN2 
KFLG,KVLN 

ESTABLISH THE ADDRESSABILITY 

SAVE PASSED SAVE AREA 

INITIALIZE FLAGS 
SAVE COMMAND CUDE 

BRANCH .IF INIT ,PROCESSING RTN 
## BR TO SYSTEM DATA CHK RTN 

SAVE IN-BUFFtR ADDR 

CHK IF V-LENG SEGMT 

IMS/VS System Proqramming Reference Manual 

/'-~ 

\-----., 



,--,_ .. '" 

,r 

,---,/ 

8Z KA300 BR IF FIXED SEGMT 
TM KFLG,KKEY 
BO KA200 
01 KFLGX,KVLDT SET V-LENG, DATA OPTION. FLG 

KA200 EQU * 
LH Rl,OCR2) GET ORG SEGMT LENG 
STH Rl,KTLLl SAVE IPT LINE LENGTH 
LH R9,KSGL GET SEGMT MAX LENGTH 
SH R9,KH3 
CR Rl,R9 CHK V-LEN SEGMT LENGTH 
BL KA310 BR IF NOT LST 4 BYTES 
01 KFLGX,KNPRSW SET NON PROCESS SW ON 
LR Rl,R9 GET SEGMT MAX LENGTH 
B KA310 

KA300 LH Rl,KSGL CLEAR OUTPUT BUFFER 
STH Rl,KTLLl SAVE IPT LINE LENGTH 

KA310 EOU * 
STH Rl,KMAXL SAVE MAXIMUM BUFF LENGTH 
EX Rl,KEXBF 

KA350 EOU * 
SR R6,R6 
LR R7,R6 
LR R8,RA CLEAR REGS 
LR R9,R6 CLEAR REGS 
LR RIO,R6 
IC RIO,KCMCD GET CMD CODE 
B *+4(RIO) 
B KA400 BR TO COMPACT RTN 
B KA2200 BR TO TOTAL EXPANSION RTN 
B KA2200 BR TO PARTL EXPANSION RTN 
B KA1600 BR TO POST-OPEN RTN 
B KA1700 BR TO PRE-CLOSE RTN 

KAB2990 EOU * 
LH Rl,KABCX90 GET ABEND CODE 
B KA4500 

KA400 EOU * 
TM KFLG,KVLN CHK IF VL REC 
BZ KA420 BR IF FIX RE~ 

** ** 
********************************************************************** 
** ** 
* ***** VARIABLE-LENGTH SEG COMPRESSION CHECK RTN ***** ** 
** ** 
********************************************************************** 

LH Rl,O(R2) GET VLEN LENGTH 
CH Rl,KH2 CHK IF MIN LENGTH 
BL KAB2989 BR IF LESS THAN MIN 
BH KA450 BR IF MORE THAN MAX 
B KA430 

KA420 EOU * FIX LENGTH RECORD 
** ** 
********************************************************************** 
** ** 
** 
** 

***** FIXED-LENGTH SEG COMPRESSION CHECK RTN ***** ** 
** 

********************************************************************** 
CH 
BE 
BH 

Rl,KHO 
KA430 
KA450 

CHK IF 0 LENGTH 
BR IF SO 
BR IF MORE THAN 0 BYTE 

DL/! User Exit Routines 3.27 



KAB2989 EOU * 
LH Rl,KABCX89 
B KA4'500 

KA430 MVC Ot2,R3),KH2 
B KA1800 

KA450 EQU * 
TM KFLG,KKEY 
BZ KA1300 

KA500 TM KFLG,KVLN 
BO KA700 

KA600 EOU ~ 

LA R3,3(R3) 
LA R7,3tR7) 
B KA750 

KA700 MVC 2(2,R3),0(R2) 
LA R2,2(R2) 
LA R6,2(R6) 
LA R3,5(R3) 
LA R7,5(R7) 

KA750 LR Rl,R3 
CH R7,KMAXL 
BNL KA3500 
BCTR 'Rl,O 

GET ABEND CODE 

MOVE REC LENG 

CHK IF KEY OPTION 
BR IF DATA OPTION 
CHK IF VLN REC-FURM 
BR IF VLN REC 

FIX-KEY OPTIUN 

VLEN-KEY OPTION 

CHK IF MS LENGTH EXCEEDED 
BR TO MOVE ORIGINAL SEG 

5T Rl,KFCCB SAVE PTR TO COB IN AREA 
********************************************************************** 
** ** 
********************************************************************** 
** ** 
KA800 BAL Rll,KMPSR BRANCH TO COMPRESSION RTN 
** ** 
********************************************************************** 
** ** 
********************************************************************** 

B KA1800 BR TO END RTN 
KA1300 EOU * FIXED/VLN DATA OPTION 

TM KFLG,KVLN CHK IF V-LENG SEGMT 
BO KA1320 BR IF SO 
LA R3,2(R3) 
LA R7,Z(R7) 

KA1320 EQU * SR Rl,Rl 
Ie Rl,KSQL 
AH Rl,KSQA 
AR R7,Rl 
CH R7,KMAXL CHK IF MS LENGTH EXCEEDED 
BNL KA3500 BR TO MOVE ORIGINAL SEG 
BAL Rll,KEXRl BR TO MOVE DATA 
AR R3,Rl UPDATE KSN2 TO LL+Ol+K 
TM KFLG,KVLN CHK IF V-LEN SEGMT 
BZ KA1350 BR IF FIXED SEGMT 
MVC O(Z,R3),O(RZ) MOVE SEGMT LENGTH 
LA R3,2(R3) 
LA R7,Z(R7) 

KA1350 AR RZ,Rl UPDAtE KSNI TO Dl+K 
AR R6,Rl 

KA1360 EOU * 
ST 'R3,KFCCB GIVE 1ST CCB PRT ADDR 
LA R3,1(R3) UPDATE KSN2 PTR 
LA R7, 1 (R7) UPDATE KN2 CTR 

3.28 II! S/VS System Programming Reference Manual 

---------- -

r 
( 
\.~-

(' 
'--.'/ 

(' 
',--... ' 



~~ 

r 

'--/ 

CH R7,KMAXL CHK IF MS LENGTH EXCEEDED 
BNL KA3500 BR TO MOVE ORIGINAL SEG 
B KA800 

KA1600 EQU * POST-OPEN PROC RTN 
TM KFLG,KNIT CHK IF INIT PROC SPECIFIED 
BZ KAB2990 BR IF NOT SO 

********************************************************************** 
** 
** 
** 
** 
** 
** 
** 

***** POST-OPEN ROUTINE ***** 
THIS ROUTINE IS BRANCHED WHEN A COMMAND CODE OF X'OC' 

IS PASSED IN R6 BY DL/I. PRE-PROCESSING TASKS ARE TO BE 
DONE HERE. A MESSAGE OF ENTRY AFTER 'OPEN' IS ISSUED BY 
KMPEX. 

** 
** 
** 
** 
** 
** 
** 

************************************~********************************* 
MVC KA1650(S),KSGN MOVE SEG NAME 
CNOP 0,4 
BAL 1,KAl760 
DC AL2(28) TEST LENGTH 
DC 2X'OO~ MCS FLAGS 
DC CL16'OPEN OF SEGMENT' 

KA1650 DC CL8'XXXXXXXX' 
* B KA1800 

OS OH 
KA1700 TM KFLG,KNIT CHK IF INIT PROC SPECIFIED 

BZ KAB2990 BR IF INVALID 
** ** 
********************************************************************** 
** ** 
** ***** PRE-CLOSE ROUTINE ***** ** 
** THIS ROUTINE IS BRANCHED WHEN A COMMAND CODE X'lO' ** 
** IS PASSED IN R6 BY DL/I. POST-PROCESSING TASKS ARE TO ** 
""* BE DONE HERE. A MESSAGE OF ENTRY BEFORE 'CLOSE' IS ISSU- ** 
** ED BY KMPEX. ** 
** ** 
** ** 
********************************************************************** 

MVC KA1750(8),KSGN MOVE SEG NAME 
CNOP 0,4 
BAL 1,KA17f>0 
DC AL2(29) TEXT LENGTH 
DC 2X'OO' MCS FLAGS 
DC CLl7'CLOSE OF SEGMENT' 

KAl750 DC CL8'YYYYYYYY' 
KAl760 OS OH 

SVC 35 
* B KAl800 BR TO END UF ROUTINE 
******************************************** 

SPACE 3 
********************************************************************** 
** ** 
** ***** 
** 

RETURN TO DL/I ***** ** 
** 

********************************************************************** 
KAl800 EQU * # 

L 13,4(13) # 
RETURN (l4,12),RC=O RETURN TO CNTRL PGM 

KA1900 EQU * 
TM KFLG,KVLN CHK IF VARIABLE LEN-REC 

DL/I User Exit Routines 3.29 



1_. _____ .. __ 

KAl9l0 

KAl930 

KAl950 

KA2000 
KA20l0 

KA2050 

KA2070 

KA2200 

KA2250 

KA2300 

80 
LH 
B 
EQU 
LH 
LA 
CH 
BL 
L 
L 
LH 
CLI 
BNE 
SR 
IC 

.AH 
EQU 
BAL 
B 
EQU 
TM 
BO 
SR 
IC 
AH 
AR 
LH 
B 
LH 
LA 
CH 
BNE 
TM 
BZ 
TM 
BO 
c'LI 
BNE 
BAL 
B 
LH 
SH 
BAL 
EQU 
B 
SPACE 
EQU 
CLC 
BNE 
TM 
BZ 
MVC 
B 
EQU 
TM 
BZ 
TM 
80 
LA 

KAl9l0 
Rl,KSGL 
KA20l0 

* Rl,O(R2) 
Rl,l(Rl) 
Rl,KSGL 
KA1950 
R2,KASNl 
R3,KASN2 
Rl,O(R2) 
KCMCD,KTLSQ 
KAl930 
Rl,Rl 
Rl,KSQL 
Rl,KSQA 
* 
Rll,KEXRl 
KAl800 
* 
KFLG,KKEY 
KA2000 
RltRl 
Rl,KSOL 
Rl,KSQA 
Rl,R2 
Rl,O(Rl) 
KA20l0 
Rl,2(R2) 
Rl,2(Rl) 
Rl,O(R2) 
KA2250 
KFLG,KVLN 
KA2050 
KFLG,KKEY 
KA2050 
KCMCD,KALL 
KA2050 
Rll,KMVORGXV 
KA2070 
R6,O(R2) 
R6,KH2 
Rll,KMVORGX 

* KAl800 
5 

* O(2,R2),KH2 
KA1900 
KFLG,KVLN 
KAl800 
O(2,R3),KH2 
KAl800 

* KFLG,KKEY 
KA3000 
KFLG,KVLN 
KA2500 
R2,2(R2) 

BR IF V-LENG REC SEGMT 
FIX REC LENGTH 

GET SEGMT LENGTH 

CHK IF FINAL 2 BYTES 
BR IF NOT SO 

GET LENGTH OF SEGMT 
CHK IF KEY EXPANSION 
BR IF ALL EXPANSION 

GET LENGTH THRU KEY 

MOVE TO OUT AREA 

CHK IF KEY OPTN 
BR IF KEY OPTION 
VLEN + DATA OPTION, EXPANSION 

GET URIGINAL SEGMT LENGTH 

ADD NEW LENGTH FIELD 
CHK LF NO COMPAC TN" EX PNSN 
BR IF NOT -SO 
CHK IF V-LENG SEGMT 
BR IF FIXEU SEGMT 
CHK IF KEY OPTION 
BR IF SO 
CHK IF ALL EXPANSION 
BR IF NOT SO 
BR TU MOVE ORG SEGMT 

GET LENGTH OF IN-DATA 

BR TO MOVE ORG SEG RTN 

CHK IF REC LENG = ZERO 

CHK IF VL REC 
BR·IF FIX REC 

CHK IF KEY OPTION 
BR IF DATA UPTION 

EXPANSION OF FIX REC KEY OPTN 

3.30 IMS/VS System Programming Reference ~anual 

I, 

\_-



'-----', 

(-' / 
~-, 

LA 
B 

KA2500 MVC 
LA 
LA 
LA 
LA 

KA2550 CLI 
BNE 
TM 
BO 

KAB2991 EQlJ 
LH 
B 

KA2560 SR 
IC 
AH 
TM 
Bl 
SH 

KA2580 STH 
B 

KA2600 MVC 

R6,2(R6) 
KA2600 
O(2,R3),2(R2) 
R2,4(R2) 
R6,4(R6) 
R3,2(R3) 
R7,2(R7) 
KCMCD,KTLSQ 
KA2600 
KFLG,KSEO 
K~2560 

* Rl,KABCX91 
KA4500 
Rl,R1 
R1,KSQL 
Rl,KSQA 
KFLG,KVLN 
KA2580 
Rl,KH2 
Rl,KEXPLH 
KA2650 
KEXPLH(2),KHMl 

EXPANSION UF VAR LENG KEY OPTN 

CHK IF THRU SEQ FIELD 
BR IF NOT SO 
CHK SE~ FLO DEFINED 

GET ABEND CUDE 

GET LENG OF 01 + KEY 
CHK IF VLN REC 
BR IF NOT SO 

SAVE EXPANSION LENGTH 
DEFURE BR TO EXPNS~ RTN 
INIT EXPNSN LEN TO KEY 10 OF REC 

********************************************************************** 
** KA2650 BAL Rll,KEXSR 

** 
BRANCH TO EXPANSION RTN 

** ** 
********************************************************************** 

* KA3000 

KA3050 

KA3100 

KA3250 

KA3500 

B KA1800 BR IF NORMAL END 

EQU 
TM 
BO 
LA 
LA 
EQU 
SR 
IC 
AH 
LTR 
Bl 
BAL 
AR 
AR 
TM 
Bl 
MVC 
MVC 
LA 
LA 
EQU 
AR 
AR 
CLI 
BNE 
B 
EQU 
TM 
Bl 

* KFLG,KVlN 
KA3050 
R2,2(R2) 
R6,2(R6) 

* Rl,R1 
Rl,KSQL 
Rl,KSQA 
R1,Rl 
KAB2991 
Rll,KEXRl 
R2 ,R 1· 
RIi,Rl 
KFLG,KVlN 
KA3100 
KTLL2(2),O(R3) 
O(2,R3),O(R2) 
R2,2(R2) 
RIi,2(R6) 

* R3,Rl 
R7,Rl 
KCMCO,KTLSQ 
KA2600 
KA1800 

* KFLG,KVlN 
KA3550 

VlEN/FIXED REC, DATA OPTION 
CHK IF V-lENG SEGMT 
BR IF V-lENG SEGMT 

PRE-~XPNSN REC LLl SAVED 

BR TU ABEND 
BR TO MOVE DATA 
UPDATE PTRS TO 

CHK IF V-LENG SEGMT 
BR IF FIXED ScGMT 
LENG OF COMPCTED SEGMT 
MOVE ORG SEGMT LENG 

INPUT/OUTPUT AREAS 

CHK IF EXPANSION IS TO 01 + KEY 
BR IF NOT SO 

CHK IF V-L~NG SEGMT 
BR IF FIXED SEGMT 

DL/I User Exit Routines 3.31 



TM KFLGX,KNPRSW CHK IF NON-PROC SW ON 
Bl KA3530 BR IF NOT SO 
BAL R11,KNPSMV BR TO MOVE NON-PROC SEGMT 
B KA1800 
SPACE 3 ( 

KA3530 EQU * \' .... 
TM KFLG,KKEY CHK IF KEY OPTION 
BO KA3550 BR IF KEY OPTION 
BAL R11,KMVORGXV MOVE DATA OF V-LENG, DATA OPTION 
B KA1800 

KA3550 Eeu * ALL BUT V-LENG, DATA OPTN CMPCTN 
BAL R11,KMVORG BR TO MOVE ORG SEG ROUTINE 
B KA1800 

KA3600 EeU * ## CCT SYSTEM DATA CHK RTN 
SR R1,R1 
IC R1,KSQL 
AH R1,KSQA SOA + SQL 
CH R1,KSGL IF SQA+SQL MORE THAN SGL, ERROR 
BNH KA3900 

KA3800 EQlJ * LH R1,KABCX92 GET ABEND CUDE 
B KA4500 

KA3900 TM KFLG,KVLN CHK IF VLt:N REC 
BO KA4400 
LH R1,KSGL GET SEGMT LENG 
LTR R1,R1 
BM KA3800 ERR IF FIX SGL IS Nt:GATIVE 

KA4400 BR R11 RET TU CALLER 
KA4500 EQlJ * STH R1,KABX 

L R1,KABCD GET ABEND CODE 
SVC 13 

KMVORGXV EeU * ST R11,KVRB SAVE REGS 
L R2,KASN1 GET IN WORK AREA ADOR (-~ 

L R3,KASN2 GET OUT WORK AREA ADDR 
SR R1,Rl ~-

IC R1,KSQL 
AH R1,KSQA 
SAL Rll,KEXRl MOVE LL, 0, K DATA 

KA4650 CLI KCMCD~KALL CHK IF ALL EXPANSION 
BE KA4700 BR IF SO 
LH R9,O(R2) GET ORIGNL SEG LENG 
LA R9,2(R9) GET NEW SEG LENG AFT COMPRESS 
STH R9,O(R3) SAVE Nt:W Lt:NG 
AR R3,R1 COMPRESSION RTN 
AR R7,R1 
MVC O(2,R3),O(R2) MOVE ORG SEGMT LENGTH 
AR R2,Rl 
AR R6,R1 
LA R3,2(R3) UPDATE UUT PTR + CTR 
LA R7,2(R7) 
B KA4800 

KA4700 AR R2,R1 
AR R6,Rl 
MVC O(2,R3),O(R2) MOVE ORG SEGMT LENG 
AR R3,Rl UPDATE OUT PTR + CTR 
AR R7,Rl 
LA R2,2(R2) 

3.32 IKS/VS System Programminq Reference Manual 



...... _ .... _ .. -... _------_.-... _---

LA R6,2(R6) 
KA4800 STH Rl,KTLl.X 

L Rl,KASNl 
LH Rl,O(Rl) 
eLI KCMCD,KALL 
BNE KA4850 
SH Rl,KH2 

KA4850 EQU * SH R1,KTLLX 
BAL Rl1,KEXRl 
AR R2,R1 
AR R6,Rl 
AR R3,R1 
AR R7,Rl 
L Rll,KVRB 
BR R11 

KEXR1 EQU * STM R1,R9,12(13) 
LR R6,R1 
LH R9,KH256 
LH R1,KH255 

KA5000 EQU * CR R6,R9 
BNH KA5100 
SR R6,R9 
EX R1,KEXMVC 
AR R2,R9 
AR R3,R9 
B KA5000 

KA5100 LR R1,R6 
BCTR R1,O 
EX R1,KEXMVC 
LM Rl,R9,12(13) 
BR R11 
EJECT 

SAVE LL,D,K LENGTH 
GET IN AREA 
GET V-LENG SEGMT LENGTH 
CHK IF ALL EXPANSION 
BR IF COMPRESS 

,GET D2 LENGTH 
MOVE 02 DATA 
UPDATE IN PTR + CTR 

UPDATE OUT PTR + eTR 

RTN TO MOVE REG 1 DATA TO OUT AREA 
SAVE REGS 
SAVE ,DATA LENGTH 

BR DATA MOVABLE IN 1 EXECUTE 

MUVE PARTIAL DATA 

BR BACK TO LOOP 

MUVE ALL THE DATA 
RESTORE REGS 

********************************************************************** 
* * ********************************************************************** 
** ** 
** 
** ** 
** 
** 

***** DATA COMPRESSION ROUTINE ***** 
IN COMPRESSION RUUTINE, DATA REDUNDANT IN 4 BYTES OR 

MORE ARE COM~RESSEO IN 3 BYTE CONTROL BLOCK ACCORDING TO 
THE SPECIFICATIONS DESCRIBED IN SPRM. R2 POINTS TO THE 
BEGINNING OF DATA TOBE CUMPRESSED UPUN ENTRY. 

REGISTER USAGES ARE LISTED IN THE HEADING SECTION. 

** 
** ** 
** 
** 
** 
** ** ** 

********************************************************************** 
KMPSR D~ OH COMPACTION RTN 

SAVE (14,12) SAVE REGS 
ST R13,KSAV2+4 
LA R13,KSAV2 
LR R9,R2 
LA· R8,1 
CH R6,KTLLl 
BL KB300 
L Rl,KFCCB 
MVC O(2,R1),KXOIOO 
LA R3,1(R3) 
LA R7,1(R7) 

SET INPUT DATA PTRl 
INCLUDE PTR TO FCCB BYTE 

CHK ALREADY EOD REACHED 
BR IF NOT SO 

SET FCCB + LCCB 
UPDATE PTR 
UPDATE CTR 

DL/I User Exit Routines 3.33 



KB300 

KB500 

KB700 

* KB800 

KB900 

KB1500 

KB1600 

KB1700 

KB1800 

KB2000 

CH 
BH 
B 
CLC 
BE 
LA 
LA 
LA 
CH 
BNL 
CH 
BL 
L 
STC 
LR 
TM 
BZ 
SH 
B 

BCTR 
01 
AR 
CH 
BNL 

.BCTR 
EX 
LA 
AR 
lR 
AR 
ST 
TM 
BO 
LA 
CH 
BNL 
MVC 
lA 
LA 
TM 
BO 
B 
L 
STH 
CH 
BH 
MVC 
EQU 
l 
LM 
SR 
BR 
l 
STC 
lR 
TM 
BZ 
SH 

R7,KMAXl 
KB4300 
KB1700 
1(3,R9),O(R9) 
KB2000 
R6,1(R6) 
R8,1(R8) 
R9,1(R9) 
R6,KTLLl 
KB4100 
R8,KHCMX 
KB300 
R1,KFCCB 
R8,O(Rl) 
RI,R8 
K F S W , X" 0 1 ' 
KB800 
RI,KH3 
KB900 

RI,O 
KFSW,X'OI' 
R7,RI 
R7,KMAXl 

'KB4300 
RI,O 
RI,KEXMVC 
RI,l(Rl) 
R2,RI 
f{9,R2 
R3,Rl 
R3,KFCCB 
KEOO,X'Ol' 
KB4000 
R7,3(R7) 
R7,KMAXl 
KB4300 
O(3,R3),KFO 
R3,3(R3) 
R8,3 
KEOO,X'Ol' 
KB1700 
KB300 
Rl,KASN2 
R7,KTll2 
R7,KMAXl 
KB4300 
O(2,R1),KTll2 
* 
R13,4(R13) 
RI4,R12,12(K13) 
Rl,Rl 
R11 
R1,KFCCB 
R8,O(R1) 
R1,R8 
KFSW,X'OI' 
KB2020 
R.l,KH3 

CHK IF MS lENGTH EXCEEDED 
BR TO MOVE ORIGINAL SEG 

CHK IF QUALIFIES TO COMPACT 
BR IF SO 
UPDATE PTRS, KSN1 PTR 
KNI C TR 
SPTR 

CHK ALREADY EOO REACHED 
BR IF SO 
CHK CTR IF REACHED MAX NO. 
BR IF NOT t1AX 
GE CCB ADDR 
FILL NEXT CCB AODR 

CHK IF 1ST DONE INDICATED 
BR IF UNDONE 

SUBTRACT CCB lENG 

SET 1ST DONE SW ON 
KN2 CTR 
CHK IF MAX BUf lENGTH USED 
SR IF ALREADY SO 

GET MOVE DATA lENG 
MOVE NON-COMPRESS CHARS 

UPDATE DATA PTRS/CTRS, KSNI DATA 
UPDATE IN DATA PTRI 
KSN2 DATA PTR 
REPLACE NEW CCB ADDR 
CHK IF EOD SW IS ON 

CHK IF MAX BUF lENGTH USED 
BR IF ALREADY SU 
ZERO OUT CCB 

CHK IF EOD REACHED 
BR IF SO 

GET KSN2 ORIGINAL ADDR 
SAV KN2 CTR 

CHK IF MS LENGTH EXCEEDED 
BR TO MOVE ORIGINAL SEG 

RESTORE REGS 

BR BACK TO CAllER 
GET PTR TO NEXT CCB ADDR 
FIll PTR TO NEXT CCB 

CHK IF 1ST SW TO 8E SET 
Bf{ IF SO 

3.3lJ IMS/VS System programming Reference Kanual 

c· 



(,/ 

-------------------

1<132020 

KB2050 

KB2300 

KB2700 

KB2900 

KB3000 

KB3IOO 

KB3400 

Kt33520 

KB3600 

B KB2050 
BCTR 
01 
L TR 
t3NH 
AR 
CH 
BNL 
BCTR 
EX 
LA 
AR 
AR 
SR 
MVC 
LA 
ST 
LA 
LA 
CH 
BNL 
LA 
LA 
LA 
LA 
LA 
LR 
CH 
BL 
EOU 
SH 
SH 
SH 
CLC 
BE 
L 
MVC 
SH 
STC­
LR 
LA 
CH 
BL 
B 
LA 
LA 
LA 
CH 
BNL 
CH 
BL 
L 
MVC 
SH 
STC 
LA 
LR 
B 
01 

RI,O 
KFSW,X'OI' 
RI,RI 
KB2300 
R7,RI 
R7,KMAXL 
KB4300 
RI,O 
RI,KEXMVC 
Rl,l(RI) 
R2,Rl 
R3-, R I 
R8,R8 
O(3,R3),KFO 
Rl,O(R3) 
R 1, KFCCB 
R3,3(R3) 
R7,3(R7) 
R7,KMAXL 
KB4300 
R8,3 
R8,4(R8) 
RIO,3(R9) 
R9,4(R9) 
R6,4(R6) 
Rl,R6 
Rl,KTLLl 
KB3000 

* R6,KH4 
R8,KH4 
R9,KH4 
O( 1,R9) ,O(RIO) 
KB3400 
Rl,KFCCB 
2(1,Rl),O(R2) 
RS,KH3 
R8,1(RI) 
R2,R9 
R8,3 
R6,KTLLI 
KB300 
KB4000 
R8,1(RS) 
R9,I(R9) 
R6,I(R6) 
R6,KTLLl 
KB3600 
R8,KH258 
KB3000 
RI,KFCCB 
2(I,Rl),0(R2) 
RS,KH3 
R8,1(Rl) 
R8,3 
R2,R9 
KB300 
KEOD,X'Ol' 

SET FIRST-DONE SW 
CHK FOR NON-COMPACT CHA~S 

BR IF ° OR NEGATIVE 

CHK IF MAX BUF LENGTH USED 
BR IF ALREADY SO 

MOVE NON-COMPACT CHARS 

UPDATE PTRS & CTRS 

MOVE cca PRE-CMPACTION 

UPDATE KSN2 PTR 
UPDATE KN2 CTR 
CHK IF MAX BUF LENGTH USED 
BR IF ALREADY SO 
RES~T NEXT CCB CTR 
INCREMENT OF CTR FOR 4 CHARS 

AND PTR 

CHK IF EXCEED SEGMENT LENGTH 

RESET KSNI PTR 
RESET CTR TO NEXT CCB 
RESET CURRENT DATA PTR 
COMPARE CHARS BEYOND 4 CHARS 

SAVE REDUNDANT CHARS 

CHK ALREADY EOO REAtHED 

UPDATE CCB PTR 
UPDATE CUR DATA PTR 
UPDATE KNI CTR 

CHK ALREADY EOo REACHED 
BR I F SO 
CHK IF CTR MAX VAL REACHED 

GET CCB PTR 
MOVE REDUNDANT CHAR 

FILL LENGTH OF REDUNDANT CHARS 

SET EOD SW ON 

DL/I User Exit Routines 3.35 



·KB4000 

KB4100 

K134300 

KB4330 

KB4350 

* 

KMVORG 

KB4400 

KB4600 

KB4900 

KNPSMV 

L 
MVI 
MVC 
SH 
STC 
MVI 
LA 
LA 
B 
01 
B 
EOU 
TM 
BZ 
TM 
BZ 
BAL 
B 
EQU 
TM 
80 
BAL 
B 
EOU 
BAL 
B 

Rl,KFCCB 
O(Rl),X'03' 
2(1,Rl),O(R2) 
Rfl, KH3 
R8,1(Rl) 
O(R3),X'OO' 
R7,1(R7) 
R3,1(R3) 
KB1600 
KEOD,X'Ol' 
KB700 
* 
KFLG,KVLN 
KB4350 
KFLGX,KNPRSW 
KB4330 
Rll,KNP5MV 
KB1800 

* KFLG,KKEY 
KB4350 
Rll,KMVORGXV 
KB1800 

* Rll,KMVORG 
KB1800 

SPACE 3 
EQU 
L 
L 
LH 
LA 
EQU 
STH 
LA 
LH 
LH 
LH 
CR 
BNH 
SR 
EX 
AR 
AR 
B 
LR 
BCTR 
EX 
BR 
SPACE 
EQU 
ST 
L 
LH 
LH 
SH 
CR 
BH 

* R2,KASNl 
R3,KASN2 
Rl,KMAXL 
Rl,2(Rl) 

* Rl,O(R3) 
R3,2(R3) 
R6,KMAXL 
R9,KH256 
Rl,KH255 
R6,R9 
KB4900 
Ro,R9 
Rl,KEXMVC 
R2,R9 
R3,R9 
KB4600 
Rl,R6 
Rl,O 
Rl,KEXMVC 
Rll 
3 
* 
Rll,KVRBY 
R2,KASNl 
Rl,O(R2) 
R3,KSGL 
R3,KH2 
Rl,R3 
KR5500 

GET ADDR OF CCB PTR 
SAVE CTR TO ceB 
SAVE REPEAT CHAR 

INSERT EUD CGB 0 
UPDATE PTR/CTR OF OUTPUT 

SET EOD SW ON 

CHK IF V-LENG SEGMT 
BR IF FIXED LENG 5EGMT 
CHK IF NUN-PROCESS SEGMT 
BR IF NOT 50 
BR TO NON-PROC 5EGMT 

CHK IF KEY OPTN 
BR IF SO 
MOVE DATA OF V-LENG DATA OPTN 

BR TO MUVE ORG SGM~NT RTN 
BR TO END OF RTN 

MOVE ORG SEGMENT RTN 
GET START ADDR UF IN-DATA 
GET START ADDR OF OUT-DATA 
GET t"IAX LENGTH 

GET MAX LENG OF RECORD 

CHK IF REC IS MURE THAN 1 MOVE 
BR IF NUT SO 

MUVE 1 GROUP DATA 
UPDATE IN-BUFF PTR 
UPDATE OUT-BUFF PTR 
BR BACK TO EOO 
GET LAST DATA 

MOVE LAST DATA 
RETURN TO·CALLER 

SAVE RET ADDR 
GET IN AREA ADOR 
GET LENGTH 
GET SEGMT LENGTH 

CHK IF LENGTH FALLS IN LAST 2 MYlES 
BR IF SO 

3.36 IMS/VS System proqramming Reference Manual 

'''--. 

Co_' 



/ 

LR R3,Rl GET 5,1: G L C l\j G T H 
AR R3,R2 PTR TO'EOS 
MVC O(2,R3),KHO MOVE PAUDING CHARS 
LH Rl,KSGL 
BCTR Rl,O 

K~5500 STH Rl,KTLLX SAVE NEW SEGMT LENGTH 
L R3,KASN2 GET OUT AREA ADOR 
BAL R11,KEXRl BR TO MOVE DATA 
MVC O(2,R3),KTLLX MOVE NEW LENGTH 
L Rll,KVRBY 
BR Rll BR BACK TO CALLER 
EJECT 

********************************************************************** 
********************************************************************** 
:;:* 

... 1 ...... ' ... .. , ...... .. 

***** DATA EXPANSION ROUTINE ***** 
EXPANSION ROUTINE REVERSES THE COMPRESSION PROCESS. 

ALL COMPRESSION CUNTROL BLOCKS ~RE DE-CODED AND R~STORED 
TO A NORMAL DATA STREAM. REGISTER USAGES ARE AS LISTED 
IN THE HEADING SECTION OF THIS PROGRAM. 

** 
** 

....... ....... 
** 
~~* 

** 
********************************************************************** .... 
'0' 

KEXSR 

KC200 

KC300 

KC600 

KC700 

KC900 

KCIOOO 

OS 
SAVE 
ST 
LA 
SR 
IC 
CH 
RE 
BL 
LA 
LA 
SH 
EX 
lA 
AR 
AR 
AR 
AR 
B 
EQU 
SR 
B 
lA 
LA 
EQU 
lH 
lTR 
BM 
lA 
CH 
BNL 
ClI 
BNE 
EQU 
TM 

OH 
(14,12) 
R13,KSAV2+4 
R13,KSAV2 
Rl,Rl 
Rl,O(R2) 
Rl,KHl 
KC600 
KC300 
R2,1(R2) 
R6,1(R61 
Rl,KH2 
Rl,KEXMVC 
Rl,l(Rl) 
R3,Rl 
R7,Rl 
K2,Rl 
R6,Rl 
KC700 

* R7,R7 
KCIOOO 
R2,1IR2) 
R6,1(R6) 

* Rl,KEXPLH 
Rl,Rl 
KC900 
R7,OIR7) 
R7,KEXPLH 
KC1000 
OIR2),KQXOF 
KC1200 
to' 

KFLG,KVLN 

EXPANSION SUB RUUTINe 
SAVE REGS 

CHK NXT CCB OFFSET 

UPDATE INPUT PTR 

MOVE CHARS TILL NXT CCB 

UPDATE OUT PTR 
UPDATE OUT CTR 
UPDATE IN PTR 
UPDATE IN CTR 

UPDATE INPUT PTR 
UPDATE INPUT CTR 

CHK IF ALL SEG OR KEY ONLY 

CHK IF ALL SEGUR KtY UNLY 

CHK IF EOD CCB REACHED 

DL/I User Exit Routines 3.37 



BZ KCllOO 
L Rl,KASN2 
L RS,KASNI GET INPUT ADDR 
TM KFLG,KKEY CHK IF KEY OPTION ~-

BZ KCllOO SR IF DATA OPTION 
''--MVC O(2,Rl),2(RS) INSERT SEGMENT LENGTH 

KCllOO .ECU * L Rl3,4(Rl3) RESTORE REGS 
LM R14,Rl2,l2(Rl3) 
SR Rl,Rl 
SR Rll SR SACK TO CALLER 

KC1200 CLI l(R2),KCXOF CHK IF SKIP CCS 
SE KCl700 BR IF SO 
SR Rl,Rl 
IC Rl,l(R2) GET·LRC LENGTH 
SH Rl,KH2 GET EX MOVE LENGTH 
MVC O(l,R3),2(R2) MOVE 1 CHAR TO OUT AREA 
EX Rl,KEXEXP EXPAND CHARS 

KCl500 LA Rl,2(Rl) UPDATE CTR/PTR 
AR R3,Rl OUTPUt' PTR 
AR R7,Rl OUTPUT CTR 

KCl700 SR Rl,Rl 
IC Rl,O(R2) GET NXT CCB PTR OFFSET 

KClSOO CH Rl,KH3 CHK IF ITS SACK TO BACK 
BH KC2000 
LA R2,3(R2) UPDATE IN PTR 
LA R6,3(R6) lJ'PDATE IN CTR 
B KC700 

KC200Q SH Rl,KH4 
LA R2,3(R2) 
LA R6,3(R6) 
EX Rl,KEXMVC MOVE CHARS TO OUT AREA 

KC2l00 LA Rl,l(Rl) UPDATE PTR/CTR 
AR R3', R 1 UPDATE OUTPUT DATA PTR/CTR ('---~ 

AR R7,Rl I 

AR R2,Rl UPDATE INPUT DATA PTR/CTR \_---
AR R6,Rl 
B KC700 
SPACE 3 

KMVORGX ST Rll,KVRS SAVE RET ADDR 
L R2,KASNl GET INPUT ADDR 
L R3,KASN2 GET OUTPUT ADDR 
TM KFLGX,KVLDT CHK IF V-LEN, DATA OPTION 
SO KC2400 BR IF SO 
LA R2,2(R2) 

KC2400 ECU * TM KCMCD,KALL CHK IF ALL EXPAND 
BO KC2600 BR IF ALL 
SR R6,R6 
IC R6,KSQL GET KEY LEN 
AH R6,KSQA AND OFF-SET 
B KC2900 

KC2600 EQU * TM KFLG,KVLN CHK IF V-LEN 
SO KC2700 BR IF SO 
LH R6,KSGL GET SEG LENG 
B KC2900 

KC2700 EQU * LH R6,O(R2) Gt:T V-LEN 

3.38 IMS/VS System Programming Reference Manual 



--_._------ .. _--_._-----_._ .. __ ._. __ . __ .. _--_._-

KC2900 LH R9,KH256 
LH Rl,KH255 
BAL Rll.KB4600 BR TO MOVE DATA 
TM KFLGX,KVLDT CHK IF V-LEN, DATA OPTION' 
BZ KC3000 BR IF NUT SU 

....... - ClI KCMCD, K TlSQ CHK IF PARTIAL EXPANSION 
BNE KC3000 BR IF NOT SO 
L Rl,KASN1 
l R9,KASN2 
lH R1,0(R1) GET IN DATA LENGTH 
SH Rl,KH2 GET ORIGINAL. LENGTH 
STH R1,0(R9) SAVE IN OUT AREA 

KC3000 EQU * l Rll,KVRB 
BR Rll RET TO CALLER 
SPACE 3 
EJEC T 

********************************************************************** 
* * 
RO EOU 0 
Rl EQU 1 
R2 EQU 2 
R3 EOU 3 
R4 EQU 4 
R5 EOU 5 
R~ EQU (, 

R7 EQU 7 
RR EOU R 
R9 EOU 9 
RlO EOU 10 
Rll EQU 11 
R12 EQU 12 
Rl3 EOU 13 
Rl4 EQU 14 
R15 EOU 15 

'-----/ KQCMP EOU X'OO' "# 
KOEXP EOU X'04' # 
KXOI00 DC X'0100' CONSTANT 
KHO DC H'O' 
KH2 DC H'2' 
KH3 DC H '3' 
KHMI DC H'-I' 
KHCMX nc H'255' 
KH1 DC H'I' 
KH4 DC H'4' 
KQXON EOU X' 01' 
KQXOF EQU X'OO' 
KSAVI OS 18F 
KSAV2 OS 18F 
KAB2992 EQl) KA3800 

OS OF 
KABCX89 DC H'29A9' ABENU CODE 2989 
KABCX90 DC H'2990' ABEND CUDE 2990 
KABCX9l DC H'299l' ABEND CODE 2991 
KABCX92 DC H'2992' ABEND CODE 2992 
KABCD DC X'ROOO' ABEND CODE 1 
KABX DC H'O' ABEND CODE 2 
KVRB OS F REl;. ADDR SAVE AREA 
KVRBl OS F REG SAVE AREA 

c. 
DL/I User Exit Routines 3.39 



KVRBY OS F REG SAVE AREA 
KFO OC F '0' 
*********************************************************************** 
* * 
* * 
KNITA OS OF INIT AREA 
KMAXL OS H MAX LENGTH OF OUTPUT BUFFER 
KTLLX OS H WORK AREA 
KTLL1 OS H LENGTH OF THE INPUT SEG 
KTLL2 OS H NEW SEGL AFTER CMPCT/EXPNSION 
KEOO OS X 
KFSW OS X 
KEXPLH OS H 
KFCCB OS A PTR TO 1ST CCB 
KASNl OS A INPUT BUFFER AOOR 
KASN2 OS A ADOR OF OUTPUT AREA 
KCMCO OS X PASSED CMND CODE 
KFLGX OS X FLAG AREA 
KVLOT EOU X'80' V-LEN SEG, DATA OPTION 
KNPRSW EOlJ X'40' NO COMPRESSION SEGMT 
KWNEG EQU X'20' FORCED ERR - V-LENG=NEGATIVE NU. #. 
KNITl EQU * 
* * 
* * 
*********************************************************************** 
KNITL EQU KNITl-KNITA 
KALL EOU X'04' CMD CUDE=EXPND ALL 
KTLSQ EOU X'OS' CMD COOE=EXPND TILL KeY 
KQINIT EQU X'OC' COMMAND CODE FOR AFTER UPEN 
KH255 DC H'255' CONSTANT 
KH256 DC H'256' CONSTANT 
KH258 DC H'25S' CUNSTANT 
KNEGNO EQU X'80' NEGATIVE SIGN # 
KEXMVC MV,C O(0,R3),O(R2) 
KEXEXP MVC 1CO,R3),OCR3) 
KEXBF XC 0(O,R3),OCR3) CLEAR KSN2 BUFF 
Kll EQU * 

LTORG 
********************************************************************** 
** ** 
** ***** OSECT OF SEGMENT COMPRESSION CONTROL SECTIONCSEGPAC) ***** ** 
** ** 
***************~c****************************************************** 
* CMPACT TAB 
KCCB OSECT 
KSGN OS CL8 SEGMENT NAME 
KRTN OS CL8 CMPRS R TN NAt'IE 
KEP OS A ENTRY POINT 
KFLG OS X FLAG 
~SOL OS X KEY LENGTH 
KSQA OS H OFFSET TO KEY 
KSGL OS H SEGMENT LENGTH 
KTBL OS H TAB LENGTH 
KSEQ EQU X'OS' SEQ FLO OEFINE.D 
KVLN EQU X'04' RECFM= VAR LENGTH 
KKEY EQU X'02' KEY OPTION SP~CIFIED 
KNIT EQU X'Ol' INIT OPTION SPECIFIED 

END 
I ~~ 

3.40 IMS/VS System proqramminq Reference ~anual 

~-

I 

"-... 

r--
( 

",,--



The DL/I access method called HDAM requires the IMS/VS user to supply 
a module for placing root segments in, or retrieving them from, an RDAM 
data base. One or more such modules, called randomizing modules, can 
be used within the 1MS/VS system. Anyone data base has only one 
rando.izing module associated with it. 

A randomizing module is a module that uses a mathematical technique 
to convert a key into an address. The same key will always convert to 
the same address. The randomizing module required by IMS/VS must 
convert an SSA (segment search argumentt key field value into a relative 
block number and anchor point number. The SSA key field value is 
supplied by an application program for root seqment placement in, or 
retrieval from, an HDAM data base. 

A generalized module, which uses DBD generation-supplied parameters 
to perform randomizing for a particular data base, can be written to 
service several data bases. 

After a randomizing module has been compiled and tested, and before 
its use by the IMS/VS system, it must be placed into the 1MSV5.RESLIB 
data set. Each randomizing module must have a unique name. The name 
must not conflict with the existing members of the IMSVS.RESLIB data 
iet. Alternative locations for randomizing module storage are 
SYS'~LIN~L1B, or any operating system partitioned data set to which 
access is provided with a JOBLIB or STEPLIB JCL statement. 

The name given to the load module used for randomizing functions 
with a specific data base should also appear in the DBD generation 
associated with the data base. The load module name must be the value 
of the "mod" parameter of the RMNAME= operand on the DBD statement in 
the HDAM DBD generation. 

The necessary randomizing module associated with a specific data 
base is brought into main storage in either the IM5/VS ~nline control 
proqram region, or batch processing region, at the time the associated 
data base is opened. If a single ranaomizinq module is used for more 
than one RDAM data base, it must be written, compiled, and link edited 
as reenterable (RENT). It can also be placed in the LPA (linkpack 
area). This allows one copy of the module to service several d~ta 
bases that are concurrently open. 

When an HOlM data base is to be used in either the I~S/VS online 
control region, or a DL/I batch processing region, and the randomizing 
module does not exist in OS/VS LPA, space mnst be provided for it. 
Spa::e must be provided in the IMS/VS control region to accommodate all 
randomizinq modules that can be usea for online RDAM data bases. 

All randomizing modules are loaded from their resident library by 
the IMS/VS OPEN module, DFSDLOCO. The IMS/VS OPEN module obtains the 
name of the randomizing module from the RDMVTAB contr~l block. This 
blo::k is constructed by the utility block builder program and place:! 
in 1~SVS.A:BL1B from parameters specified in the associated DBD. If 
tha 1MSVS. ACBL1B data set is not being used, the block is constructed 
in main storage and passed to the 1M5/VS OPEN module. rhe IMS IMODULE 
macro instruction is used. 

DL/I User Exit Routines 3.U' 



When an application program issues a Get Unique, Get Next with 
Qualification, or Insert call which operates on a r~ot segment of an 
RDAM data base, the user-supplied randomizing module is invoked. The 
SSA and the segment IIO work area, in the data base call relating to 
the sequence field of a root segment, provide the primary input 
parameter t~ the randomizing module. The following illustrates the 
format of an SSA: 

ROJT SEGMENT NAME (SEQUENCE FIELD NAME-OPERATOR-value) 

The root segment and sequence field names are eiqht-character 
alphameric values. The operator is a two-character arithmetic value. 
A description is provided in the I~~L!~ !~~lic~~iQn ~rQ~r~m!ing· 
Ref~r~~£~ ~~ng~l. other operators at the root level give unpredictable 
results. The value parameter is a term whose length equals the length 
of a root segment sequence field in the data bases and whose content 
defines an already existent root segment to be retrieved. If the data 
base call consists of a root segment insert, the SSA consists only of 
the segment name. In this case, the field value is obtained from the 
segment 1/0 area provided in the insert call. 

This field value parameter is supplied to the randomizing moaule 
for conversion to a relative block number and anchor point number within 
the data base. In addition to the field value parameter supplied by 
an application program, parameters from the DED generation associated 
with the data base being used are available to the randomizing module. 

When a rand~mizing module is invoked for the purposes of conversion, 
control is passed from the IMS/VS data base loqical retrieve function 
module, DFSDLROO. 

The parameters from DED generation are available to a randomizing 
module in a CSECT named RDMVTAB. The address of this CSRCT is passed 
to the module'each time a conversion is requested. 

This control section is placed at the end of the DBD module and 
contains information su~h as the randomizinq routine name, anchor point 
information, and the total length of that control section. Each control 
section can be extended by the user to ~ontain any desired data or 
algorithm inf~rmation by an assembly and link edit process. 

The first 32 bytes are constants defined by DBDGEN. When the new 
table is defined by the user to include additional parameters, these 
fields must be· duplicated. The only exception to this rule is that 
the CSECT length field must be properly updated to reflect the new 
length. After an assembly of the new table, a link edit can be done 
to exchange the new table for the old one. Care must be taken to use 
an ENTRY statement specifying the name of the DBD when this operation 
takes place. See "A utoma tic CSECT Replacement" in Q~lJ.IQ. 1inJs~gg- E:1i.tor 
~ng 1~~~~r for additional details. 

The foll~wing DSECT defines the format of this CSEcr: 

DMBDAC S 
1) MBDANME 
DMBDAKL 
DMBDAEP 
DMBDASZE 
DMBDA RAP 
DMBDABLK 
DMBDABYM 
DMBDABY: 
DMBDACP 

DSECT 
DS 
DS 
DS 
DS 
DS 
OS 
DS 
DS 
DS 

CL8 
OCL1 
A 
H 
H 
F 
F 
F 
F 

NAME OF ADDF !LGORITHM LOAD MODULE 
EXECUTABLE KEY LENGTH OF ROOr 
EP OF ADDR LOAD MODULE 
SIZE OF THIS CSECT 
NUMBER OF FO)T ANCHOR POINTS/BLO:K 
NUMBER OF HIGHESr BLOCK DIRECTLY ADDRSD 
MAX NUMBER OF BYTES BEFORE OFLOW TO 2NDARY 
CUR NUM OF BYTES INSERTED ONDER ROOT 
RESULT OF LAST ADDRESS CONVERSION 

3.42 IMS/VS System Programming Reference Manual 

---------------_.- ---_. __ ... _-.. _-- - .... 

c: 



RANDOMIZING MODULE INTERFACES 

Upon entry to any randomizing moaule, reqisters must be savea. Upon 
return to I~S/VS, registers must be restorea. A save acea address is 
provided in register 13 upon entry for the purpose of saving the 
registers. 

The following registers, on entry to a randomizing module, have the 
indicated meanings: 

1 

7 

9 

13 

1~ 

15 

Data Management Block address (OM B). 

DMBDACS CSECT address. 

Partition Specification Table address (PST). 

Address of first byte of key field value supplied 
bV an application program. 

Save area address. The first three words in the 
save area must not be changed. 

Return to IMS/VS address. 

Entry point address of randomizing module. 

1. If an HDAM data base does not have a sequence field defined, the 
values supplied to the randomizing module are as follows: 

a. The executable key length field in the CSECT named RDMVTAB is 
not initialized and should not be used. 

b. The value in register 9 at entry to the randomizing module 
contains the addcess of the first byte of the user I/O area. 

2. If an HDAM data base does not have a sequence field defined at the 
root level, the randomizing module is given control only on an 
insert call. All retrieval type calls result in a scan mode 
operation to satisfy the root level qualification. On GU type 
calls, the scan starts at the beginning of the data base. On GN 
type calls, the scan starts at the current root level position 
within the data base. 

Internal IMS/VS control blocks that are of value to a randomizing 
routine are: the Partition Specification Table (PSr), the Data 
Management Block (DMB), the Physical Segment Description Block (PSDB) 
for the root segment, and the first Field Description Block (FDB). The 
FDB is the root segment key field format description. DSECTs of these 
blocks are provided in the examples shown later in this chapter. 

DL/I User Exit Routines 3.43 



The result of a randomizing module conversion must be in the form: 

BBBR 

where: 

BBB 

R 

is a three-byte binary number of the block into which a root 
segment is to be inserted, or from which it is to be retrieved. 

is a one-byte binary number of the appropriate anchor point, 
within a relative block, within an OSAM data set of the data 
base. 

This result must be placed in the CSECT addressed by register 1 in 
the ~our-byte fixed name DMBDACP. If the result exceeds the content 
of the field DMBDABLK, the result is changed to the highest blo~k and 
last anchor point of that block. 

HDAM RANDOMIZING MODULE EXAMPLES 

Pour rand~mizing module examples are provided as guidance to the 
IMS/VS system user. The four modules (DFSHDC10,DFSHDC20, DFSHOC30, 
and DFSHDC40) are linked into the IMSVS.RESLIB data set during system 
definition. The examples use the following techniques: 

• Modulo or division method 
• Binary halving method 
• Hashing method 

The intent of a randomizinq module is to convert a root segment key 
field value to a relative block number and anchor p~int number in an 
HDAM data base. The relative block number may range from 1 to 224-1. 
The anchor point number may range from 1 to 255. 

This randomizing module uses the principle that the remainder of a 
division can only range from zero to the divisor minus ~ne. Thus, any 
number divided by four can only yield a remainder of ~, 1, 2, or 3. 
To determine the base location for a root seqment, multiply the number 
of blocks in the root segment addressable area by the number of anchor 
points per bl~ck. This is effectively the number of base locations 
for root seqments in the root segment addressable area. Then, divide 
the root segment key field value by the result of the multiplic~tion. 
The remainder indicates the appropriate base location. 

To convert the base location to relative block and anchor point 
numbers, divide the base location by the number of anchor points per 
block. This last division leaves the relative block number as the 
quotient and the anchor point number as the remainder. Since both 
numbers are relative to zero, both must be incremented by one t~ yield 
the correct block and anchor point. 

3.44 IMS/VS System Programming Reference Manual. 



Example: 

Assume al Root segment addressable area is 50 blocks. 

b) 2 anchor points per block. 

c) Root seqment key value is 23. 

Result a) Number of base locations = 50 x 2 = 100. 

b) Appropriate base location = 23/100 = 23 remainder. 

c) APpropriate block = 23/2 = 11 (the quotientl , 
appropriate anchor point = 1 (the remainder). 

d) Adjust both numbers by one; thus, relative 
block = 12 and anchor point = 2. 

Notice that external keys 123, 223, 323, etc. will be synonyms. As 
the number of base locations is increased, the distance between root 
se~ments increases. This may waste direct access space. However, the 
number of synonyms decreases as the number of base locations approaches 
or exceeds the largest key value. When the root segment key field 
value is numeric, and the number of base locations equals or exceeds 
the largest key value, no synonyms are produced. 

DL/! User Exit Routines 3.45 



STMT SOURCE STATEMENT 

2 HDCNVRTI CSECT 
3 * * * * * * ~ * * * • * * * * * • * * * * * * * • • * • * * • * * * * * / 
4 * * 
5 lOt S A H P L F CON V E R S ION PRO G PAM * " 
0 * 7 * 8 * 9 * 10 * 

11 * 
12 * 
13 * 
14 * 15 * 10 * 17 * 
18 * 
19 * 20 * 
21 * 
22 * 
23 * 
24 * 25 * * • * 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 COMPARE 
37 
38 
39 
40 
41 DeCR 
42 
43 
44 
45 
46 CARRVl 
47 
48 
49 ALMOS-T 
50 
51 
52 
53 * 
54 * 55 DONE 
!>o 

* THIS CSECT CONVERTS AN EbCDIC NUMERIC KEY TO A RELATIVE. 
BLOCK AND ROOT ANCHOR POINT. THIS' RESULT "IS' 'OBTAINED AS * 
FOLLOWS RECNO= MOO(KEY,OMBOABLK*DMdDAPAP) * 

SLOCK: RECNO/OMBOARAP+l * 
RAP : MODCRECNO,DMBOARAP)+l * 

THE CSECT ASSUMES THAT THE EXTERNAL Kf~ IS 15 BYTES OR * 
LESS. - NUN-hlUME:RIC CHARACTFRS ARE VALID, HOWEVFR ONLY THE * 
FOUR LOH ORDER BITS WILL BE USED. * 
CALLING SEQUENCE 

RO - OMS 
R 1 - DMBDACS 
R7 - PST 
R9 - KEY ADDRESS 

ON PETURN 
OMBOACP - BBBR 

* 
* 
* 
* 
* 
* 
* 
* • 

* * * STM * * * * * * * * * * * * * * * * * * * * * * * * * * * • * 
USING 
USING 
USING 
XL 
IC 
fX 
SR 
01 
SR 
EQU 
CP 
~H 

eVB 
B 
EQU 
SP 
AL 
Be 
(3 

EQU 
LA 
B 
EQU 
ALR 
BC 
LA 

EQU 
l 

14,12,12(13) SAVE 
PST,R7 
DM~DACS,Rl 
HOCNVRTl,R15 
PSTDECU(8),PSTOECB INIT FOR CV8 
R5,CM13DAKL GET £XECUTAdL.E KFY FLO LENGTH 
R!>,PACK 
~4,R4 

PSTDECB+7,X'OF' FORCE SIGN 
~ 8 ,R8 

* PSTDFCB(8) ,MAXP(6) 
DECR 
R5,PSTDECB 
ALMOST· 

* PSTOECB(8),MAXP(6) 
R8,MAX6 
CARRY,CARRYl 
COMPARE 

* R4,1 (,R4) 
COMPARE 

* R5,R8 
NOCARRY,OONE 
R4,1(,R4) 

* R6,OMBOABLK 

IS NUMBF.R Ton LARGE FOR CVB 
YES, DRANCH 

FINISH UP 

DECR NUMBER BY 2141483647 
INCR REG 8 BY SAME AMOUNT 
BR I~ CARRY OUT OF REG 
OTHERWISE COMPARE AGAIN 

TAKE CARE OF CARRY 
GO COMPARE 

PUT IF ALL TOGETHEP 
IF NO CARRY, WE APE DONE 
ELSE, TAKE CARE OF CAPPY 
EVEN-ODD PAIR 4,5 HAVE 
C ONVE R TED NUMBEP 

HI·GEST BLOCK NUME'EP. DIRECTLY ADDR 

3.46 IMS/VS System programming Reference Manual 

\ .... " 



----------------------- ---------

'--, 

STMT SOURCE STATEMENT 

57 t4H R6, DMBOARAP 
~8 OR R4,Rb 
59 LR R5,R4 
60 SR R4,R4 
61 LH R6,U~BOARAP 
62 OR R4,R6 
63 LA R4,1(,R4) 
64 LA R5,1(,R5' 
65 SLL R5,8 
ob UR R4,R5 
67 5T R4,nM~OACP 

68 LM 14,12,L2(13) 
69 BR R14 
70 PACK PACK PSTUECd(8),O(O,R9) 
71 REOUATE 

HIGHEST RECORD NU~BER 

RECNUH 

ROOT ANCHOR POINT 
BLOCK 

SBBR 
Rf SUL T 
ReSTORE 
RE TURN 

72+**********~**~:*****************·*************************************** 
73+* * 
74+* REGISTER EQUATES * 
75+* * 
76+*********************************************************************** 

78+RO EQU 0 
79+Rl EQU 1 
~U+R2 EQU 2 
81+~3 EQU 3 
B2+R4 EQU 4 
83+kS EQU 5 
84+R6 EQU 6 
85+1{ 7 E [JlJ 7 
86+RS EQU 8 
87+R9 EQU q 

88+R10 [OU 10 
89+H11 cQU 11 
90+R12 EQu 12 
91+R13 EQIJ 13 
92+R14 EQU 14 
93+Rl5 EOU 15 
95 CARRY EQU 3 
96 NOCARRY E QLJ 12 
97 * Q8 MAXP DC P • 2 lit 7 4 83 6't 7 • 
99 "'AX~ DC r'214"14d3647 1 MAX SIGNED 32-AIT NUMBER 

100 I DL I P.STBASF=O,DMBBASE=O 
END 

DL/I User Exit Routines 3.47 



This module attempts to distribute root segments across the root 
segment addressable area, according to the bit pattern of a root segment 
key field value after it has been converted to a binary value. This 
distribution is performed as follows: 

A result register is set to zero. After a key field value has been 
converted t~ binary, the number of base locations (number of blocks in 
the root segment addressable area times number of anchor points per 
blo~k) is c~mputed and divided by two. The lov-order bit of the 
converted key field value is tested for one. If equal to one, the 
current number of base locations is added t~ the result register. If 
the low-order bit is zero, no addition to the result register is 
performed. 

The number of remaining base locations is again divided by two and 
the quotient tested for zero. If other than zero, the next higher bit 
position in the converted key field is tested for a one or zero and 
the appropriate action taken. This process continues until the number 
of remaining base locations divided by two yields a quotient of zero. 
At this point, the appropriate base location is in the result register. 
In order to produce the proper relative block number and anchor point 
number, divide by the number of anchor points per block. The division 
yields a quotient of relative block number, and remainder of anchor 
point number. As in the module method, the results are relative to 
zero and must be incremented by one to yield the appropriate values. 

Example: 

Assume a) 10 blocks in root segment addressable 
area. 

b) 2 anchor points per block. 

c) Root seqment key field value of 29. 

After initialization: 

converted 
!SgY_fi~lg . 

1 1 101 

A fter bit tested 

• x 
• x • 

• • x • • 
•. x • 

No. of Remaining 
BasLLocatiQJlL_ 

(10x2) /2 = 10 

10 
5 
2 
1 

Result 
R.ggis!g~ 

o 

10 
10 
12 
13 

At this point, the number of rema~n~ng base locations is reduced to 
zero. Hence, the appropriate base location is 13. To get the actual 
relative block number and root anchor point, divide 13 by 2 and add 1 
to both the quotient and the remainaer. This results in a relative 
block number of 7 and an anchor point number of 2. 

Notice that the number of base locations determines vhen testing 
ceases. Hence, in this example, all key field values ending in the 
same four bits vill be synonyms. Additional bits of the key are tested 
when the number of base locations exceeds another pover of two. If 
the number ~f base locations is not a power of two, some of the base 
locations are never used. 

3.48 IMS/VS System Programming Reference Manual 



c' 

The major advantage of this method is that the relative order of 
root segment placement is disturbed very little when the number of base 
locations is changed. 

STMT SOURCE STATEMENT f 150C T70 

3 * 
4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
? * * 
6 * ~ J ~ A R Y HAL V N G CON V E R T * 
7 * * 
B * 
lJ * 

10 * 
11 * 
12 * 
13 * 
14 * 
15 * 
16 * 
17 * * * * 
18 
19 
20 
21 
22 
23 

.24 
25 
26 
27· 
28 
29 
30 CVTLP 
31 
32 
33 
34 
35 
36 
37 
38 X I T 
3(:; 
40 
41 
42 
43 
44 
45 
46 
47 
48 PACK 
49 
50 9, 
20 

THIS CSECT DETERMINES THE RELATIVE BLOCK AND RUOT * 
ANCHOR POI NT 8\' A BINAt{Y HALVING TECHNlQUE. THIS APPROACH * 
IS SLUAER THAN THE MODULO SCHEMES, dUT IT DOES TEND TO KEEP * 
THE SAME PHYSICAL SECUENCE WHEN THE NUMBER OF ADDRESSABLE * 
dLOCKS IS CHANGEO. SINCE THE ROUTINE USES SHIFTS ON INTEGeR * 
NUMBERS, SOME ~ECORO NUMBERS WILL BE INACCESSABLE IF THE * 
TOTAL NUMHcR Uf DIRECTLY AOD~ESSABLE RECORDS (BLCCKS*ROOT * 
AN C H OR P, a [ NT S ) I S NOT A PO WE R 0 F 2 * 

* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * STM 14,12,12(13) 

lJSING PST,R7 
US I NG OM Ba AC S, ~ 1 
USING DFSHDC20,Rl!> 
XC PSTOeCB(e),PSTDECB INIT FOR CVB 
Ie R5,OMBDA~L GET EX KEY LENGTH 
EX R5,PACK 
GI PSTJeCB+7,X'OF' 
CVB R2,PSTDECB 
l R4,JMBDAELK 
MH R4,JMBOARAP 
SR R5,R5 
SRL R4, 1 
lTt{ R4,R4 
Bl XIT 
S~ R3,R3 
SRDL R2,1 
LTR R3 ,R 3 
Bl CVTLP 
8XH R5,R4,CVTLP 
OS OH 
LH R6,UMBOARAP 
DR R4,R6 
LA R4, 1 ( , R4 J 
LA R5,1(,R5J 
SLL R5,8 
OR R4,R5 
ST R4,QM6DACP 
LM 14,12, 12 (13) 
BR R14 
PACK PSTOE::CI:H E) ,O( O,R9) 
PRINT NUGEN 
lOLl PSTdASE=C,OMBBASE=O 
REQUATE 
END 

FORCE VALlO SIGN 

HIuHEST RECORD IN 
CLE AR RESULT REG 
CUT RANGE IN HALF 
RANGE E::XHAUSTED 
YES 
NO 
TES T MASK FOR 1 

NO CNE 
ONe - ADD IN RANGE 

ROOT ANCHOR POINT 
BLOCK 

RES UL T 

RANGE 

DL/I User Exit Routines 3.49 



This method uses a shift and add technique to develop a 31-bit binary 
number which has a fairly even distribution from 0 to 231. The number 
is developed as follows: 

The result register is initialized to zero. The first chara=ter of 
a key field value is added to the result register and the register is 
shifted left three hexadecimal digits. The bits of the register shifte~ 
left and off the register are then added back to the register containing 
the previous shift result. This partial result is tested for odd or 
even. If odd, the contents of the register are complemented. The 
original ch~racter is then added to the register. This process is 
repeated for each character in the key field value. Instead of starting 
off with a zero content in the result register, the result of the 
previous content is used. When the key field value characters are 
exhausted, the result is adjusted to guarantee a 31-bit positive result. 

Example: 

Assume a) Key field value = ABCD 

Key Resul t 
~hg!:g£!er E,ggi§:t~!:-

A OC100000 After test for complement 
OC1 OC1 00 After completion of A 

B 1C20C10C After test for complement 
1CE 1C20C After completion of B 

C 2CF1CE1C After test for complement ~} 

EDF2CF1C After complet ion of C 

D FEO EDF2C After test for complement 
FFOFEOED After completion of D 

7FOFEOED positive number 

The result can then be used as input to the modulo or binary halving 
technique. The latter technique is used in this example. 

3.50 I~S/VS System programming Reference ~anual 

;----
I 



/-

--- ._-._--------

S TMl SOURCE STATEMENT F150CT10 

2 * * * * * * * * * * • * • * * * * * * * * * * * * * * * • * * * * * * * 
3 * S ~ M P L E HAS H I N GTE C H N 1 Q U E* 
4 * * 
5 * THIS CSECT IS A ONE METHOD OF HASHING AN.EXTERNAL KEY * 
6 * INTO A 31 BIT elNARY NUMBER WHICH CAN THEN BE US EO AS INPUT * 
7 * TO THE BINARY ~ALVING ADDRESSES RESOLUTION OR A MODULO SCHEME* 
8 * TO DETERMINE THE BLOCK AND ROOT ANCHOR POINT.' * 
9 * THIS ROUTINE PLACES FEW RESTRICTIONS ON THE EXTERNAL * 

10 * KEYE.G~ IT CAh BE 156 BYTES LONG, IT CAN CONTAIN ANY BIT * 
11 * PATTERN. THE KEY SHOULD BE LeNGER THAN 3 CHARAcTERS TO INSURE* 
12 * SOME SPREADING, HOWEVER II WILL WORK ON SHORTER KEYS. * 
13 * * 
14 * CALLING SEQUENCE * 
15 * RO - OMS * 
16 * 1 - 0 M S [A C S * 
17 * 7 - PST * 
18 * 9 - KEY ADDRESS * 
19 * ON RETURN * 
20 * DMBDACP - BBBR * 
21 * * 
22 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 23 CFSHDC3C CSECT 
24 STH 
25 USING 
26 USING 
27 SR 
28 BCTR 
29 SR 
30 LA 
31 SR 
32 IC 
33 AR 
34 LA 
35 SR 
36 lOOP OS 
37 Ie 
38 ALR 
39 SR 
40 SRDL 
41 OR 
42 STC 
43 TM 
44 BI 
45 XR 
46 PASS SR 
41 ALR 
48 SRDl 
49 OR 
50 BXLE 

R14,R12,lZ(R13) 
OFSHDC 30 ,R15 
OMBDAes, Rl 
R12,Rl2 
R12,O 
Rl1, Ril 
R9,0(,R9) 
R1,R7 
R7,DMBOAI<L 
R7,R9 
R6,1 
R2,R2 
OH 
RIl,O( ,R9) 
R2 ,R 11 
R3,R3 
RZ,12 
R2,R3 
R2,DMBDACP 
DMBDACP,)CI01' 
PASS 
RZ,R12 
R3,R3 
R2 ,R 11 
R2,12 
R2,R3 

SET TO ALL FF S 

CLEAR ANY HIGH ORDER BrTS 
INIT 

FOR 
LATER 

BXLE 

GET GROUP OF 8 BITS 
ADD TO HASH 

BREAK UP CHAR PATTERNS 
ADO INTO HIGH PORTION 
COMPLEMENT 

00 SECOND 
WIT HOUT 
COMPLIMENT 

ON 
MODERATELY 
CHANGING 

BIT 
PASS 

EXHAUST KEY 
51 N 
52 * USE 

R9 ,R6, LOCP 
R2',NOS IGN 

RZ AS INPUT TO 
R4,OMBDASLK 
R4,DMBDARAP 
R5,R5 

FORCE POSITIVE 31 BIT RESULT 
HALVING OR MODULO SCHEME - HA~VING 

53 L 
54 MH 
55 SR 
5& CVTLP SRL R4,1 

HIGHEST RECORD IN RA~GE 
RES Ul T REG 
CUT RANGE I N HALF 

SHOWN 

DL/I User Exit Routines 3.51 



STMT SOURCE STATEMENT F 150CT10 

57 LTR R4,R4 RANGE £:XHAUSTEO 
58 Bl XIT YES ~ 
59 SR R3,R3 NU I 

60 SROL R2,1 TEST MASK FOR ONE \... 
61 LTR R3,R3 
62 Bl CVTLP NO ONE 
63 BXH R5 , R 4, C \I TL P ONE - ADO I N RANGE 
64 XIT LH R6 ,DMBDA~AP 
65 DR R4,R6 
66 LA R4,1 (, R4 ) ROO T ANCHOR POINT 
67 LA R5 ,1 , , R5 ) BLOCK 
68 SLL R5,8 
69 OR R4,R5 
70 ST R4,DMBOACP RES UL T 
71 LM R14,R12,12(R13) 
72 BR R14 RET URN 
13 OS OF 
74 ~OSIGN DC X' 7F FF FF FF • 
75 PRINT NOGEN 
76 lOLl DMSaASE=C 

313 REQUATE 
338 END 

3.52' IMS/VS System programming Reference Manua 1 



--_._. __ .. _----_._ .•....... 

If root keys are unique and totally random storage is desired, this 
routine can be used for £D~ HDAM data base without performing an 
analysis of key distributions. 

This randomizing routine works with a maximum of 16 bytes of a key 
~t a time. It contains fewer than 70 instructions and requires less 
than 600 bytes of storage. Its characteristics are: 

• It is reentrant. 

• Keys can contain any of the 256 System/370 characters and key length 
can be from 1 to 256 bytes. 

• It converts ~y key distribution (with unique key values) to a 
totally random address distribution. 

• It never returns an address in block 1, which is always a bit map 
block in HDAM. The user can· specify any number of blocks and RAPs. 

• It allows the insertion of a dummy root at the highest block-RAP 
to ensure the formattinq of the entire root addressable area at 
load time. 

The basic logic of the routine is: 

1. Perform the first conversion. For example: 

2. 

3. 

tJ • 

5 • 

6. 

7. 

123456-------->436152 
123457-------->437152 

Translate against a table whose zero point is selected by an 
encipherment using every bit of the 16 bytes. For example: 

436152-------->X'AC7E2D241F39' 
437152-------->X'221949EA3F76, 

Repeat 2 (on the result of 2) using xc instead of TR, and with 
a different bit encipherment. 

Repeat 1 through 3 for the next 16 bytes (or less). XC results 
onto the result of the previous 16 bytes. continue until key 
is accumulated. 

Fold 15 bytes to 8 bytes and treat as a binary number. 

Subtract 1 from the number of blocks, divide the binary number 
by the new block count, and add 2 to the remainder. This qives 
the block number. 

Encipher the binary number, divide by the number of RAPs, and 
add 1 to the rem~inder. This qives RAP. 

DL/I User Exit Routines 3.53 



EQYtin.§ 1isti!HI' 

63 
64 &N 
65 
66 &A 
67 SC 
68 &N 
69 .L 
70 &C 
71 
72 &A 
73 • S 
74 &A 
75 
76 • OK 
77 
78 .END 
79 

96 DFSHDC40 
97 
98+ 
99+ 

100+ 
101+ 
103 
104 

MACRO 
Rl'1NDT 
LCLA 
SETA 
SETA 
DS 
ANOP 
SETA 
AlP 
SETA 
AIF 
SETA 
AGO 
DC 
l'1GO 
MEXIT 
MEND 

CSECT 
SAVE 
B 
DC 
DC 
STM 
USING 
USING 

SP ,SS 
SA,SC 
SP 
SS 
OF 

SC-1 
(SC EO 0) • END 

SA * 29+ SC * 4 7 
(SA LT 1(01111) .OK 
SA-1001111 
.S 
AL2(&A,SA*23,SA*297,&A*191) 
.L 

(14,12) "DFSHDC40 
14(0,15) 
ALI (8) 
CL8'DFSHDC40' 
14,12,12(13) 
DFSHDC40,R15 
DMBDACS ,R1 

SAVE REGISTERS 
BRANCH AROUND ID 
LENGTH OF IDENTIFIER 
IDENT IFIER 
SA VE REGI STERS 

ESTABLISH BASE REGISTER FOR PGM 
ESTABLISH BASE REG FOR ,PARMLIST 

* IF KEY STARTS X'FF' RETURN HIGHEST BLOCK-RAP * 107 
1 08 
109 
110 
111 
112 
113 

*********************************************************************** 
:LI 0(R9) ,X'FF' IS FIRST BYTE OF KEY X'FF'? 
BNE NORMKEY NO ••• GO PROCESS NORMAL KEY 
MVC DMBDACP(3),DMBDABLK+1 STORE HIGHEST BLOCK NO 
MVC DMBDACP+3(1) ,DMBDARAP+1 STORE HIGHEST ANCHOR PT NO. 
B GOBACK RETURN TO CALLING MODULE 

115 *********************************************************************** 
116 * I NIT FOR W H :) L EKE Y * 
117 *********************************************************************** 
118 NORMKEY DS OH 
119 SR R5,R5 CLEAR WORK REGISTER 
120 SP R3,R3 CLEAR WORK REGISrER 
121 IC R3,DMBDAKL LOAD EXECUTABLE KEY LFNGTH 

123 *********************************************************************** 
124 * WORK WITH NEXT 16 BYTES OF KEY 

126 XC 
127 
128 
129 
130 
131 
132 
133 
134 EX 
135 
136 

DS 
CH 
8L 
CH 
BL 
MVC 
LA 
B 
DS 
XC 
EX 

OR 
R3,ZERO 
END 
R3,=H'15' 
EX 
o (16, R7) ,0 (R9) 
R 9 , ,1 6 (, R 9) 
SCRAMBLE 
OH 
o (16, R7) ,0 (R7) 
R3,MVE 

ANY MOPE KEY LEFT? 
NO ••• GO CALCULATE BLOCK AND RAP 
YES ••• ARE 16 OR MORE CHARS LEFT? 
NO ••• GO DO FINAL MOVE 
YES ••• MOVE NE XT 1 6 BYTE S. 
UPDATE KEY ADDRESS TO NEXT 16 BYTES 
GO TRANSPOSE THIS PART OF KEY 

MOVE REMAINING AMOUNT OF BYTES 

3.54 IM,S;VS System Programming Reference Manual 

----- -------, ,---

/~ 

" 

,r'" 
( 
\,,-,, 



138 *********************************************************************** 
139 lie THIS SECTION TRANSLATES THE CURRENT SECTION OF KEY * 
140 * IN PREPARATION FOR CALCULATING BLOCK AND RAP. * 
1ij1 *********************************************************************** 
142 SCRAMBLE DS OR 
1~3 SR R3,=R'16' CALC AHT OF KEY REMAININ3. 
14~ lie NEGATIVE VALOE SHOWS END OF KEY. * 

149 
150 
151 
152 
153 
154 
155 
156 
151 

159 
160 

-161 
162 
163 

165 
166 
161 
168 
169 
179 
171 
172 
113 
17~ 

175 
116 
111 
118 
119 

folVC 
TR 

XC 
NI 
SR 
IC 
LA 
TR 
NC 
AH 
XC 

XC 
NI 
A 
N 
B 

16(16,R7) ,TRAN 
1 6 (16, R 71 , 0 (R 7) 

, (15,R7) ,0(R7) 
15 (R7) ,X' 1F' 
R6, R6 
R6,15 (,R7) 
R6,TRANTAB(R6) 
16 (16 ,R 7) ,0 eR 6 ) 
12 (2, R71 , =X '007F' 
R6,12 (,R7) 
16 ( 16 , R 7) , 0 (R 6) 

20 (12 , R 7) , 1 6 ( R 7) 
28 (R7) , X' 3F' 
R5,28 (, R7) 
R5,LOWBITS 
SC 

FIRST TRANSPOSE rHE KEY. THIS IS 
STAGE1 OF CLUSTER BREAKING. 

STAGE2 OF CLUSTER BREAKING IS TO 
TRANSLATE KEY AGAINSr A rABLE THAT 
USES POLY-ALPHA ~ODE KEYED ON THE 
TOTAL KEY VALU E. 
UPDATE BY TABLE LENGTH 
TRANSLATE KEY 
ENCIPHER ENCODED KEY TO PREVENT 
REPETITION OR HI-ORDER BIT EFFECTS 

ROLL 16 BYTES INTO 4 
ACCUMULATE IN REG. MAKING SURE 
THAT OVERFLOW :ANNOT OCCUR 

GO CHECK FOR MJRE KEY 

*********************************************************************** 
* DEVELOP BLOCK AND RAP USING RANGE RATIO HErHOD * 
*********************************************************************** 
END DS 

L 
BCTR 
MH 
MR 
SRDL 
LH 
DR 
SLL 
LA 
ALR 
ST 

OH 
R2, DM BDABLK 
R2,O 
R2, DM BDARAP 
R4,R2 
R4,30 
R3, DM BDARAP 
R4,R3 
R5,8 
R4,513(,R4) 
R5, R4 
R5,DMBDACP 

STORE NJ. 'OF BLO:KS 
SUBTRACT 1 FROM COUNT 
NUMBER RAPS X (BLOCKS-1) 
R5 DEFINED AS 0 -1 RAN GE WIT H PO IN T 
BEFORE BIT2. AFTER MOLT EXTRACT 
THE NUMERIC PAR~, 
THEN DIVIDE BY RAPS 
GIVING RAP IN R4 AND BLO:K IN R5. 
ADD 2 TO BLOCK AND 1 TO RAP 
STORE RAP AND BLOCK IN R5. 
STORE BLOCK-RAP NO 

181 GOBACK 
182 

DS OH 
RETURN (14.12) RETURN TO CALLING MODULE 

183+ L M 1 4, 12, 1 2 ( 13) 
184+ BR 14 

186 MVC o (1 ,R7) ,0 (R9) 

RESTORE THE RE3ISTERS 
RErURN 

EXECUTE INSTRUCTION 

DL/I User Exit Routines 3.55 



188 *********************************************************************** 
189 * * 
190 * TAB L E SAN D CON S TAN r s * 
191 * * 
192 *********************************************************************** 
193 TRANTAB RANDT 77777,36 
194+TRANTAB DS OF 
195+ DC AL2(254956,254956*23,254956*297,254956*191) 
196+ DC AL2(387545,387545*23,387545*297,387545*191) 
197+ DC ~L2(228135,228135*23,228135*297,228135*191) 
198+ DC AL2(610753,610753*23,610753*297,610753*191) 
199+ DC AL2(694407,694407*23,694407*297,694407*191) 
200+ DC AL2(116993,116993*23,116993*297,116993*191) 
201+ DC AL2(390827,390827*23,390827*297,39'827*191) 
202+ DC AL2(323078,323078*23,323078*297,323078*191) 
203+ DC AL2(360532, 360532*23, 360532*297,360532*191) 
204+ DC AL2(445540,445540*23,445540*297,445540*191) 
205+ DC AL2(908503,908503*23,908503*297,908503*191) 
206+ DC AL2(318829,318829*23,318829*297,318829*191) 
207+ DC AL2 (237123,237123*23,237123*297,237123*191) 
208+ DC AL2 (870935, 870935*23, 870935*297,870935*191) 
209+ DC AL2(230327,230327*23,230327*297,230327*191) 
210+ DC AL2(673757,673757*23,673757*297,673757*191) 
211+ DC AL2(518737,518737*23,518737*297,518737*191) 
212+ DC AL2(27554,27554*23,27554*297,27554*191) 
213+ DC AL2(799865,799865*23,799865*297,799865*191) 
214+ DC AL2(171284,171284*23,171284*297,171284*191) 
215+ DC AL2(963497,963497*23,963497*297,963497*191) 
216+ DC AL2(912074,912074*23,912074*297,912074*191) 
217+ DC AL2 (421871,421871*23,421871*297,421871*191) 
218+ DC AL2(221491,221491*23,221491*297,221491*191) 
219+ DC AL2(417090,417090*23,417090*297,417090*191) 
220+ DC AL2(82748,82748*23,82748*297,82748*191) 
221+ DC AL2(397893,397893*23,397893*297,397893*191) 
222+ DC AL2(527052,527052*23,527~52*297,527052*191) 
223+ DC AL2(268172,268172*23,268172*297,268172*191) 
224+ DC AL2(769493,769493*23,769493*297,769493*191) 
225+ DC AL2(291090,291090*23,291090*297,291090*191) 
226+ DC AL2(432910,432910*23,432910*297,432910*191) 
227+ DC AL2(541199,541199*23,541199*297,541199*191) 
228+ DC AL2(678200,678200*23,618200*297,618200*191) 
229+ DC AL2(646738,646738*23,646738*297,645738*191) 

231 TRAN 
232 ZERO 
233 LOWBITS 
23~ 

235 
236 
231 

DC XI ODOAOEOC090POB060502070103080004' 
DC FlO I 

DC X'3FPFFPFpI 
LTORG 

=H' 15 ' 
=H'16' 
=X' 00 7F ' 

PRINT NOGEN 
IDLI DMBBAS E=O 
REQUATE 
END 

CREATE DSECTS 
CREATE REGISTER EQUATES 

239 
240 
685 
709 
106 *********************************************************************** 

Two options are available to the data base manager to control the 
volume of entries in secondary index data bases -- the NULLVAL operand 
and the index maintenance exit routine. The process of withholding a 
prospective index pointer seqment from the index is called suppression 

3.56 IMS/VS System Proqramming Reference Manual 

\ '-. 



" " 

... ----. -_ ... _ ..... _ ... _-----

of indexing. This is the process by which a sparse index is built ~nd 
maintained. 

The NULLVAL ~perand can be used to suppress indexing when the entire 
indexed field contains one specified character or value. For example, 
NULLVAL might be used to suppress indexing when the indexed field 
contains only blanks. A different NULLVAL can be specified for each 
indexed segment. 

Alternatively, secondary indexing allows specification of a 
user-supplied exit routine that can selectively cause suppression of 
secondary indexing. The user can thereby control the density of ~ 
secondary index. One exit routine is allowed for eveLY secondary index; 
however, one generalized routine can be written to serve several in1ex 
relat ionships. 

After an exit routine has been compiled and tested, it can be placed 
into the IMSYS.RESLIB data set, from which it is loaded by IMS/VS. It 
can also be placed in SYS1.LINKLIB, or any operating system partitioned 
1ata set to wnich access is provided with a JOBLIB or STEPLIB J:L 
~tatement. Each exit routine must have a name .unique with respect to 
~ll IMS/VS m~dule names and to any other user routines in the IMS/VS 
libraries. The name corresponds to the name specified in the EXTRTN 
subparameter, in the XDFLD statement, for the DBD generation. Before 
any segment which is an index source segment in a data base can be 
loaded or updated, its EXTRTN routine, if one was specified, must be 
in the system library. This prevents abnormal termination. 

The exit routine associated with the specific data base is 10ade1 
into storage in either the IMS/VS online control program region or 
bat~h pr~cessing region when the associated data base is opened. If 
a single exit routine is used for several data bases, the m~dule must 
be written, compiled, and link edited as reenterable (RENT). This 
allows one ~opy of the module to service several data bases that are 
open concurrently. 

When an index maintenance exit routine is used in either the 1MS/VS 
online control region or a DL/1 batch processing region, and the exit 
routine does not exist in LINKPACK, spa~e must be provided in the I~S/VS 
control region to accommodate the exit routines that can be use3 for 
online data bases. 

All exit r~utines are loaded from their resident library by the 
IMS/YS Open/CI~se module (DFSDLOCO). Open obtains the name of the exit 
routine to be loaded from the name specified in the associated DBD. 
The IMS/VS IMODULE macro instruction is used. 

The user should be aware of the way in which the index exit routine 
is applied to the index maintenance process. When an application 
pro~ram issues a REPL, ISRT, or DLET call of a segment serving ~s an 
index source segment for one or more indexing relationships, the DL/I 
index maintenance routine is invoked. 

In the case of DLET, an indexing segment is built corresponding to 
the existing index source segment. If it passes the null value test, 
the index exit routine is invoked. This routine indicates whether this 
indexing segment should appear in the index or not. If it should 
~ppear, the actual indexing segment is retrieved and deleted; otherwise, 
no delete is attempted. 

In the case of 1SFT, the indexing segment is built to correspond to 
the segment t~ be inserted, and the null value test and the user exit 
routine tests are performea. If no suppression of inaexing is indicated 
by either, it is inserted into the index. 

DL/1 User Exit Routines 3.57 



A REPL call can be a combination of the above, a simple replace, or 
a NOP, depending on the fields changed in the replace. If a field in 
the Index Source Segment (ISS) is changed by a REPL call that changes 
the indexed data or sub-sequence data, the existing indexing segment 
is deleted and a new one inserted. The ind~x edit routine is invoked 
for each operation. If the change in the ISS affects a source data 
field, a replace operation on the indexing segment is executed, unless 
the index exit routine indicated that indexing was suppressed. If the 
ISS replace made no changes in the indexing segment, no action is taken. 

The supression of indexing by the exit routine must be consistent. 
The same indexing segment cannot be examined at two different times 
and have suppression indicated only onc~. User data cannot be used to 
evaluate suppression, since the actual indexing segment is seen by the 
exit routine just before the insertion of a new one. In the cases of 
replace and delete, only a prototype is passed. The prototype contains 
the constant, indexed data, sub-sequence data, source data, and any 
symbolic pointer that may have been added. Therefore, index suppression 
must not be based on any user data. 

Parameters to be passed to the index routine are indicated later in 
this discussion. The exit routine indicates, with a return code, 
whether the present index pointer segment belongs in the index or should 
be suppressed. The exit routine should not change any IMS/VS control 
blocks, or any fields in the indexing segment. 

The user can include additional information abbut the segment in 
the exit routine CSECT. This CSECT is part of the DBD, and as such 
can be replaced by a link edit. It is of variable length and contains 
a fixed format header. A separate CSECT is provided for each XDFLD in 
the DBD for which an exit routine is specified. The availability of 
this CSECT is described in the exit routine· interface specifications. 
This control section can be replaced by the user in the same manner as 
the segment compression control section. See the "Segment 
Edit/Compression" discussion earlier in this chapter, for additional 
information. 

INTERFACE TO rHE INDEX MAINTENANCE EXIT ROUTINE 

At entry to the index maintenance exit routine, registers must be 
saved. A save area address is provided in register 13 for this purpose. 
The first three words of this save area must remain unchanged. 

These are the register contents upon entry to the exit routine: 

1 

2 

3 

13 

1U 

15 

Partition Specification Table (PST) address. 

Address of (proposed or existing) index seqment. 

Address of Index Maintenance Routine Parms CSECT. 

Address of Index Source Segment. 

Save area address. 

Return to IMS address. 

Entrv point address of the exit routine. 

3.58 IMS/VS System Programming Reference Manual 



Upon return to IMS/VS, registers 1 throuqh 14 must be restorad. 
Register 15 must contain a return coda of either 0 or 4. A return ~ode 
of 4 indicates that indexing should be suppressed in this case; a return 
:::o:1a of 0 indicates that the indexing segment should appear in the 
index for this data base segment. 

INDEX MAINTEN~NCE EXIT ROUTINE PARAMETER CSECT 

r-----------------------------------------------, 
o 

INDEXED SEGMENT NAME 

8 
INDEXED FIELD (XDFLD) NAME 

16 
INDEX MAINTENANCE 

EXIT ROUTINE , 
, NAME , 
f-----------------------------------------------
, 24 
, ENTRY POINT ADDRESS 
, f 

f-----------------------------------------------
f 28 r 
1 C SECT I RSVD 
f LENGTH f 
f I 
f-----------------------------------------------
I 32 
f USER 
f 
f DATA 
1 , 
I 
L-----------------------------------------------J 

DMBXMPRM 
DMBXMSGN 
D MBXMXDN 
DMBXMXNM 
DMBXMYEP 
DMBXMPLN 

DSEcr 
DS 
DS 
DS 
DS 
DS 
DS 

CL8 
CL8 
CL8 
A 
H 
H 

Name of indexed segment 
N arne of indexed field 
Name of user exit routine 
Entrv point addr 
Total length of CSECr 
Not Used 

DL/I User Exit Routines 3.59 



The foll~wing DSECT provides an image of the log tape record format 
for all data base modifications. This loq tape record format is 
provided to facilitate the writing of any user-written statistics, 
recovery analysis, or batch checkpoint/restart programs. 

DBL~G 

DLENGTH 
DSPACE 
OLOGCODE 
DLOGFLG1 
* 
* 
DLOGFLG2 
DNDXC 
DCMC 
DPHYI 
DPHYD 
DNCTR 

DPHYR 
DLASTREC 
OOSAM 
DISAM 
OHS 
DHD 
DNEWBLK 

DLOGFLG3 
DRCALL 
DDCALL 
DICALL 
DLGDLET 
DREGO 
DREG3 
DREG12 
DINITGU 
DFIRSTSG 
DLASTSEG 

DIDLN 
DOFFSET 
DDATALN 
DCCODE 
DPGl'INAMF 
DDBDNAME 
DDSID 
DDATE 
DTIME 
DSEQ 
DDATAID 
DDATA 
DFSEOFF 
DFS'E 

DSECT 
DS 
DS 
DS 
DS 

DS 
EQU, 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EOU 
EQU 

DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
OS 

H 
H 
CL1 
CL1 

LENGTH OF LOG RECORD 
ZEROS 
LOG RECORD I. D. 

BITS 0-3 = REGION PROTECT KEY 
BITS 4-7 = COUNT OF FSE'S IN LOG RECORD 

CL1 
X'80' 
X'OO' 
X'40' 
X' 20' 
X'70' 

X'10' 
X' 08' 
X'OO' 
X' 04' 
X'OO' 
X'02' 
X '0 l' 

CL1 
X' 80' 
X' 40' 
X' 20' 
X'60' 
X'OO' 
X' 10' 
X' 08' 
X' 04' 
X'02' 
X' 01' 

CL2 
:L2 
CL2 
CL2 
CL8 
CL8 
CL1 
CL3 
CL4 
CL2 
OCL1 
OCL1 
OCL2 
OCL4 

INDEX MAINTENANCE RECORD 
BITS 1-3 = 000 CHAIN MAINrENANCE RECORD 
PHYSICAL INSERT 
PHYSICAL DELETE 
COUNTER MAINTENANCE CALL 

PHYSICAL REPLACE 
LAST RECORD FOR THIS USER CALL 
BIT 5=0 OSAM DATA SET 
BIT 5=1 ISAM DATA SET 
BIT 6=0 HS ORGANIZATION 
BIT 6=1 HD ORGANIZATION 

NEW BLOCK CALL 

REPL CALL 
DLET CALL 
ISRT CALL 
LOGICAL DEL ETE 
BITS 3-4 = 00 l'IOD BY TYPE ~ REGION 
MOD BY TYPE 3 REGION 
MOD BY TYPE 1/2 REGION 
BUFFERS WASHED WITH EACH ~SG GU CALL 
FIRST LOG RECORD OF A SEGMENr 
LAST LOG RECORD OF A SEGMENT 

LENGTH OF DDATAID FIELD 
DATA OFFSET FROl'I BEGINNING OF A BLOCK 
LENGTH OF DDATA FIELD 
DL/I COl'IPLETION CODE 
PROGRAM N AM E 
DATA BASE NAME 
DATA SET I. D. 
DATE 
TIME 
SEQUE NCE NUl'IBER 
ISAM PRIME KEY OR OSAM RBN 
SEGMENT DATA 
FREE SPACE ELEMENT OFFSET 
FREE SPACE ELEl'IENT 

3.60 IMS/VS System Programming Reference Manual 

--.----.-------------~ 

,r-



c. 

This chapter describes the data communication functions that can be 
modified by the IMS/VS user and the procedure required to make these 
mmlifications. Alterations to IMS/VS data base functions are described 
in t he preceding cha pters. 

Modifications to the data communication facility relate primarily 
to the addition of user-written message edit routines. Several basic 
edit functions are provided to all users. 274X, 3210, 3600, 3767, and 
3770 users'can select to use the IMS/VS message format service (MFS) 
instead of the basic edit. MFS provides edit functions similar to the 
basic edit but, in addition, allows you to select and describe 
alternative message formats. 

All users have the option of writing and includinq additional 
routines to edit transaction code input, message switching input, and/or 
physical terminal input and output. Transaction code, message swit=h, 
and physical terminal input edit routines may return messages to 
inputting terminals through use of a user mess~ge table. Users of 
conversational processinq who want to provide a clean-up program for 
prematurely-terminated conversations must include an exit routine to 
the clean-up program. IMS/VS provides an exit routine, or you =an 
write your own. 

Further, user-routine exits are provided for tht users of 7770, 
2980, 31~1, and 3614 devices. Default routines are provided for these 
exits. Any default routine that does not meet your needs can be 
replaced bV a user-written routine. These routines are described in 
this chapter, with the exception of the 3614 edit routine (described 
in I~~L!~ AgY~n£gg Ign£1iQn tQ~ ~QIDmYni~~~iQ~2) and the MFS edit 
routines (described in the J~~l!~ Mess~~~ ~Q~ID~~ ~g~yi£g-Q~~~~ g~ig~). 

All user-written routines are incorporated into the IMS/VS control 
pro~ram nucleus during stage 2 of IMS/VS system definition. 

The IMSVS.DCSOURCE library contains the source for all sample an~ 
supplied exit routines described in this chapter, and should be referred 
to for the latest versions. 

The IMS/VS-supplied basic edit routine performs the followinq 
functions for input messages: 

• Removes leading control characters from the first segment of ea=h 
message, whether the message type is a transaction, a command, or 
a message switch. Leading blanks are also removed from the first 
seqment if the message is not the continuation of a conversation 
or a message from a terminal in Preset Mode. 

• Removes leading control characters from all subsequent message 
segments, whether the message type is a transaction or a command 
(except IBROADCAST). 

• Removes line control characters from all segments. 

• Removes trailing carriage return =haracters from all segments of 
a transac,t ion. 

DC User Exit and Edit Routines 4.1 



• Eliminates backspaces, on a one-for-one basis, from all segments, 
when the entering or transmission of backspaces is a normal 
correction procedure on the entering terminal. 

• Removes the password and replaces it with a blank when necessary 
to provide separation between the transaction code; logical 
terminal, or command verb, and following data. 

• Inserts, in front of data entered in the first segment of a message, 
the transaction code or logical terminal name defined by the prior 
/SET command. A blank is inserted following the transaction co~e, 
if necessary to obtain separation between the inserted transaction 
code and the entered data. 

The IMS/VS-supp1ied edit for output messages inserts any necessary 
idle characters after new line, line feed, and tab characters. Line 
control charac~ers are added for operation of the communication line. 

Tf the input is processed by MFS, the editing performed is depenaent 
on the descriptions provided throuqh the message format language 
utility. Since input segments from the device may have no relationship 
to input message segments after MFS editing, the input segment from 
the device is n~t available to user-written edit routines. 

All user-supplied edit routines should be placed-in the opeI3ting 
system partitioned data set defined by the USERLIB= operand- of the 
IMSGEN macro instruction of IMS/VS system definition. This must be 
performed prior to execution of IMS/VS system definition Stage 2. If 
you do not specify a value for the USERLIB= operand, IMS/VS system 
jefinition assumes the IMSVS.RESLIB data set contains any user-defined 
edit routines. System definition attempts to obtain any user-specified 
eait routines from the specified library during Stage 2 of execution, 
and link edits them as part of the IMS/VS control proqram nucleus. The 
names of the edit routines specified to IMS/VS system definition should 
be the same as the CSECT and load module names for t'he edit routine 
modules in the library specified by USERLIB=. The message switch edit 
routine must have a CSECT and load module name of DFS~NTEO. 

PHYSICAL TERMINAL (INPUT) EDIT ROUTINE 

A sample input edit routine is shown in Figure 4-1. This 
user-written edit routine gains control before 'the IMS/VSbasic edit 
routine. If the input message is processed by MFS, the physical 
termi nal (in put ) edit rout ine is not called. 

Messaqe segments are passed one at a time to the physical terminal 
input edit routine, and the edit routine can handle them in one of the 
followinq ways: 

• Accept the segment and release it for further editing by the IMS/VS 
basic edit routine. 

• Modify the segment and release it for further editing by the IMS/VS 
basic edit routine. Examples of segment modifications that could 
be made are changing the transaction code, adding a password, and 
reformatting the message text. 

4.2 IMS/VS System programming Reference Manual 

/' 
( 
I 
\ ... 



--------_ ... -- _ .... _ ..... __ ..• _--_._ ... _-_ ........... _------

'-. .. -". 

Any required modifications can be made, since IMS/VS has not yet 
oerf~rmed destination or security .checking. 

• Cancel the segment. 

• Cancel the message and request that the terminal ~perator be 
notified accordingly. 

• Cancel the message and request that a specific message from the 
User Message Table be sent to the terminal operator. 

The physical terminal input edit routine requests the above actions 
by specifyinq different return codes that are interpreted and acted 
upon by IM S/VS. 

The CSECT name for this edit routine is the name specified in the 
TYPE or LINEGRP macro for which this edit routine applies. Registers 
on entry and exit are discussed below. 

• Registers on Entry 

Upon entry to this edit routine, all registers to be used must be 
saved. The followinq interface applies: 

R1 

R7 

R9 

R13 

R14 

R15 

Address of the input message segment buffer. IMS/VS 
editing has not been performed. The first two bytes of 
the buffer contain the segment length (binary length 
includes the four-byte overhead). The third and fourth 
bytes of the buffer are binary zeros. The messaqe text 
begins in the fifth byte of the buffer. 

If the device was defined with MFS support, but this 
message is not being processed by MFS, the first segment 
of the message has backspace error correction performed 
before entry to this edit routine. If escape (II) was 
entered, the first two data bytes have been changed to 
binary zeros. 

CTB address for the physical terminal from which the 
messaqe was entered. 

CLB address for the physical terminal from which the 
message was entered. 

Save area address for use by an edit routine. The first 
three words in the save area must not be modified. 

Return address to IMS/VS. 

Entry point address to the invoked edit routine. 

The user-supplied edit routine must edit the message segment in the 
buffer addressed by register 1. 

The user can reduce the length of the messaqe segment to any desired 
size bV replacing the length in the buffer with the appropriate value. 
The length field must appear in the same place at exit as at entry, 
and bytes 3 and 4 must not be changed. 

DC User Exit and Edit Routines 4.3 



• Registers on Exit 

Upon return to IMS/VS, all registers must be restored except register 
15. 

R1 

R15 

Message number if register 15 contains a value of 12; 
otherwise ignored. 

Return code s: 

00 Segment is processed normally. 

04 Segment is cancel ed. 

08 Message is canceled and the terminal operator 
is notified. 

12 Message is canceled, and the message identified 
by register 1 is sent to the terminal. 

Any other return code causes the messaqe to be c~nceled 
and the terminal operator to be notified. 

The sample routine in Figure 4-1 does the following: 

• Scans the input message segment for an expected format -- TESTEXIT 

• Generates return codes (XX) based on the input request (TESTEXIT,XX) 

• verifies the user message number (IYY) if specified 
(TESTEXIT,XX,YYY) 

• Replaces TESTEXIT with ERROR if return code or message number is 
invalid and passes the segment to TMS/VS (return code O) 

4.4 IMS/VS System Programming Reference Manual 



.... _----' , 

PIXT TITLE ' PHYSICAL TBR"INAL INPU~ EDIT ROUTINE SAftFLE. 1590 • 
DFSPIXTO CSECT 
•••••••• • • 
* • 
* 
* • 
* 
* • 
* • 
* • 
* • • 
* 
* 
* • • 
• 
* 
* 
* 
* 
* 
* • 
* 
* 
* • 
* 
* 
* 
* * 
* • • 
* 
* 
• 
* ***** •• 

PHYSICAL TBR8INAL INPUT EDIT ROUTINE 

FOB TEST PURPOSES 

REQOIRE"ENTS: DEFINITICNS FOR THIS EII1 ROUTINE IN AT 
LEAST ONE SET OP TYPE/TER~INAL 08 
LIHEGRP/TERMINAL ftACROS 
DURING IftS SYSTE! DEfINITION. 

AT ENTRY: REGISTER 1 POINTS TC LENGTH FIELD OF UNEDITED 
"ESSAGE 

AT RETURN: REGISTER 15: RETURN CODE 
o GO eN EDITING THE ftESSAGE 
4 CANCEL SEG!ENT 
8 CANCEL !ESSAGE 
12 CANCBL KSG AND SEND USER ERROR 

MESSAGE 
REGISTER 1: IF RETURN CODE = 12, USER ERBOR !ESSAGE 

NUKBER 
REQUIREMENT: 

USER EUILT USER MESSAGE TABLE, 
CONTAINING THE REQUESTED ftESSAGE 
LINKEtITED INTO THE IftS NUCLEUS. 
REQOIREC NAKE: DPSCKTUO. 

INTERNAL REGISTER USAGE: 
R1: UNCHA~GED SEGMENT POINTER 
R2: WORK REGISTER 
R3: SEG~ENT SCAN POINTER 
R12: BASE REGISTER 
R15: BETOIUi CODE 

IF AN ERROR IN THE TESTEXIT-MESSAGE IS FOUND, THEN 
THE CONSTANT 'TESTEIIT' IN THE SEGftEMT IS REPLACED BY 
'ERROR ' AND THE SEGKENT RETURNED WITH A RETURN 
CODE OF O. 

EXPECTED MESSAGE FORMAT: (FIXED FORMA1) 
TESTE1IT,II,YYY 

SAVE 
LR 
USING 
LR 
LA 

(14,12) .,PIX8084 
R12,R15 
DFSPIXTO,R12 
R3,R1 
R3,4(R3) 

.ltY ONlY FCB XI=12 
USER MESSAGE NOMBER 

XX BET URN CODE TO SE GEN'D 

SAVE REGS 
SETUP PGK BASE REGISTER 

SEGMENT POINTER 
SKIP LENGTH FIELD 

Fiqure 4-1 (Part 1 of 3). Sample Physical Terminal Input Edit Routine 

DC User Exit and Edit Routines 4.5 



* LOOP 

* 

LH 
AR 
S 
CR 
BNH 

EQU 
CLC 
BE 
CtC 
BE 
LA 
CR 
RNH 
SR 
B 

GENUPIISG EQU 

* 

CLC 
BE 
CLC 
BE 
CLC 
BE 
CLC 
BE 
B 

RETO EQU 

* RET4 

* RET8 

* 
RET12 

SR 
B 

EQU 
LA 
B 

EQU 
LA 
B 

EQU 
CLI 
BL 
CLI 
BH 
CLI 
BL 
CLI 
BH 
CLI 
BL 
CLI 
BH 
XC 
PACK 

R2,0(Rl) 
R2,R1 
R2,=P'10' 
R2,R3 
BETO 

* o (8,R 3) , KEXITU 
GENUlIfSG 
o (8,R3) ,KEXITL 
GENUMSG 
R3,1(R3) 
R3,F2 
LOOP 
R15,R15 
RET 

* 9 (2, R 3) , =C I a O' 
RETO 

9 (2,R3) ,=C' 04' 
RET4 

9 (2, R3) ,=C'OS' 
RET8 

9(2,R3) ,=C'12' 
RET12 
RETERR 

* R15,R15 
RET 

* R1S,4 
RET 

* R1S,8 
RET 

GET SEGMENT LENGTH 
CALCULATE END OF SEGMENT 

MINUS KONSTANT TESTEJIT AND MIN PARM 

IS IT UPPERCASE TESTEXIT MSG? 
YES 
IS IT LCWERCASE TESTEIIT MSG? 
YES 
INCR SCANPOINTER 
END OF SEGltENT 
NO 
1ES- SET RC = 0 
AND .EXIT 

DETERMINE REQUESTED BETURNCOIE 

SET RC=O 

SET RC=4 

SET RC=8 

* RC=12 REQUESTED 
12(R3),C'O' IS USER ~ESSAGE NUMBER 
BETERR 
12(R3),C'9' * 
RET ERR 
13(R3),C'O' * 
RETERR 
13(H3) ,C'g' * 
RETERR 
14(R3),C ' O' * 
RETERR 
14(R3),C'9' VALID? 
RETERR - NO: SET RC=O ANt ' ERROR 
WORK1,WORK1 - YES 
WORK1+6(2),12(3,R3) CONVFRT IT 

Figure 4-1 (Part 2 of 3). Sample Physical Terminal IBput Edit Routine 

4.6 IMS/VS System Programming Reference Manual 



---_. ----.-.-.-.--~-

* RETEBR 

• 
RET 

* KEXITU 
KEXITL 
WORK1 
SAVERC 

CVB 
LA 
B 

lQU 
SR 
"VC 
B 

EQU 
ST 
L" 
L 
L 
BR 

R1,WORK1 
R15,12 
RET 

* R15,R15 
4 (8,R1) ,=C' ERRCI1 
RET 

• 
R15,SAVERC 
R2,R12,28(R13) 
RO,20 (R13) 
R14,12(R13) 
R14 

TO SINARY, PASS IT IN REG 1 
SET RC=12 

SET R(=O 
, REPIAC! 'TESTEXIT' 

SAVE RETURN CODE 
RESTOEE REGISTERS 

RETURN 

DC CL8'TESTEXIT' UPPERCASE 
DC XLB'A38512A385A7E9A3' LOiERCASE 'TESTEXIT' 
DC D'O' 
DC F'O' 
REQUATE 
END 

Fiqure 4-1 (Part 3 of 3) • Sample Physical Terminal Input Edit Routine 

PHYSICAL TERMINAL (OUTPUT) EDIT ROUTINE 

You can specify, durinq system definition, a physical termin~l output 
edit routine to edit output messaqes just before they aLe sent to a 
terminal. One physical terminal output routine can be specified for 
each BTA~ telecommunication line group. During system definition, you 
specify which physical terminals or set of VTAM nodes use the defined 
edit routine for output editinq. These edit routines can be used to 
provide special user editing needs by communciation terminal types. 
An output message can be processed by a physical terminal output edit 
routine and the basic IMS/VS edit routine or MFS (message format 
service). Output editing is performed in this sequence. Therefore, 
if MFS is used, the output provided by the edit routine must be the 
format defined to MFS instead of the format created by the application 
program. 

• Registers on Entry 

Upon entry to an edit routine, all registers to be used must be 
saved. The following interface applies: 

R1 

R7 

R9 

The address of a buffer containing the output message 
segment to be edited. The first two bytes are a binary 
count of the message segment length. rhe second two 
bytes are control information provided by the application 
program which constructed the message. rhe text of the 
output message starts in byte five. The count includes 
the first four bytes in length. 

CTB address for the destination terminal. 

CLB address. This block starts with a DECB. The content 
of DECAREA field in the DECB is equivalent to register 
1 content. 

DC User Exit and Edit Routines 4.7 



R11 

R13 

R14 

R15 

S CD address. 

The address of a save area for use by the edit r~utine. 
The first three words in the save area must not be 
changed. 

Return address to IMS/VS. 

The entry point address to the invoked edit routine. 

The resultant output message segment returned to IMS/VS from the 
user's edit r~utine must be pointed to by the content of the DE:B, 
DECAREA field. The first four bytes must be in a format as received 
at input vith the binary count updated to the edited message segment 
length inclusive of the four bytes of prefix • 

• Registers on Exit 

Upon return to IMS/VS, all registers must be restored. If the 
message is to be edited in place, the length must not be increased by 
more than ten bytes. 

When the last segment of a message has been edited, IMS/VS returns 
control to the user's edit routine once more. The edit routine can do 
some housekeeping activities at this time. Upon entry to the user's 
ed.it routine, registers 7, 9, 11, 12, 13, 1Q, and 15 are as des::ribed 
above. 

Whenever a physical terminal output edit is invoked, the CTB is 
ad.d.ressed by register 7. A one byte field in the block, CTBACTL vill 
contain a one in the second bit position if this entry to the user's 
ed.i t routine is for end of message. The It!2L!2 PrQ,gts!!!. 1Q9:i£ Hsn!!sl-, 
YQ1~!!!.g 1 Qf J defines the IMS/VS control blocks. 

The example in Figure 4-2 shows how an output message can be extend.e~ 
in length and a prefix attached. Two capabilities within IMS/VS are 
used.. One all~ws the edit routine to obtain a buffer area. This is 
called ICREATE. When ICREATE is used, an identifier ~f four bytes is 
provided in register 2. The length of the requested area is placed. in 
register 3. The address of the buffer area is returned to the edit 
routine in register 3. This area is used to build the output message, 
prefixed with the PTERM output message count, the LTERM name, and the 
LTERM output message count. The edited output message is addressed by 
DECAREA. When the second segment or the end of message entry to the 
ed.it routine is made (CrBAEOM=11, the buffer area obtained by the ed.it 
routine is returned to IMS/VS. This is performed by the second IMS/VS 
fa::ility called IDESTROY. Register 2 is used to symb~lically identify 
the area to IMS/VS. This example applies to single segment or 
multisegment messages, and to as many devices as. the edit routine's 
table was assembled to handle. The default table size allows for five 
devices, but can be changed by modifying the label NUMENTS. If the 
table capacity is exceeded, a user 555 ABEND results. If the prefix 
had not increased the message length by more than ten bytes, it could 
have been performed in place without the creatio~ of an additional 
buffer area. 

Figure 4-2 is an example of a physical terminal output edit routine. 

Q.8 IMS/VS System Programming Reference Manual 

-----------.. -

.....-. 

r' 
''--' 



--_ .... _ ..... - - -_._ .. _._---- --. -

CTTO TITLE 'DPSCTTOO SAMPLE PTERM (OUtput) EDIT ROUTINE' 
* •• * •• * ••• ** ••• ** •• *.* •• *._ •••••••••••••••••••••••••••••••• ** ••••• _* ••• 

· -- THIS MODULE WILL PREFIX EACE ~ESSAGE WITE THE PTERft • 
• OUTPUT MESSAGE COUNT, THE LTERr. NAftE AND OUTPUT KESSAGE • 
• COUNT IN THE POR~: PTFRftODT-JJXX LTER~NAM-XXXX •• MSG TXT.. • 
• • • • 
* 
• • 
* 
* • • • • • • • • 
* 

A TEN CHAFACTER PAD IS PROVIDED BY IMS I~ EACH 
BUFFER. THE PREFIX HEFE WAS SELECTEt TO EXCEE[ TEE PAC 
THUS PROVIDING A REQUIREMENT FOR AN ICREATE ANt IDESTROY. 

THE CODE IS RE-ENTRANT. 'TABLE' MUST CCNTAIN AS 
MANY ENTRIES AS THERE ARE FTERPS USING THIS ROUTINE. THE 
TABLE SIZE CAN BE CHANGED BY MeDIFYING THE VALUE 'NUKENTS' 
IF THE TABLE CAPACITY IS EXCEEDED 1 0555 ABEND WILL EESULT 

REGISTERS ON ENTRY ON EXIT 
R7 CTB 
R9 CLB 
R 11 SCD ALL REGISTERS RESTORED 
R13 SAVE AREA 
R14 RETURN ADDRESS 
R15 ENTRY POINT ADDRESS 

• • • • • • • • • • 
* 
* lie 

lie 
lie 

lie 

lie 

lie 

** •••• *.**.** •• *** ••• **** •• **** ••• *** •• ** •• * •••••••••••••••••••••• _ •••• 

DFSCTTOO 

• 

* 

* • 

• 

EJECT 
CSECT 
PRINT 
SAVE 
L 
LR 
USING 
USING 
USING 
USING 
USING 
L 

S 
BAL 
A 

NOGEN 
(14,12) , ,. 
R13,8(,R13) 
R12,R15 
DFSCTTOO,R12 
ENTRY, R5 
CTE, R7 
IECTDECB,R9 
SCD,R11 
R15,DECAREA 

R7,seDCTB 
R14,GETNTRY 
R7, seDCT B 

TM CTBACTL,CTBAEOM 
EO EOI1SG 
CLI ENTSTAT,O 
BE FIRSTSEG 

CLI ENTSTAT,X'FF' 
BE RETURN 

EAL R14,DESTROY 
HVI ENTSTAT,X'FF' 
B RETURN 
SPACE 1 

SAVE REGISTERS 
R13= NEXT SAVE AREA 
R12 WILL BE MY EASE REG 

R5= 'TABLE' POINTER 
R7= CTB ADDR 
119= CLE (IECB) AtDR 
Rll= SCD AtCB 
R15 = ADDRESS OF SEG~ENT 

CREAtE CTE OFFSET 

DL FIELD 

FINtjCETAIN AN ENTPY IN DEV TABLE 
RETURN ONLY IF I DO & ADJ E7 

END-CF-f1SG CALL? 
YES, EEANCH TC EOM HANDLER 
RO, FIEST SEGMENT? 

YES, EEANCH TO 1ST SEG HANDLER 
NO. NCT FIRSt SEG & NOT ECM -­

DELETE BUFFER FOOL IF NECESSARY 
DOES THE BUFFER STILI EXIST? 
Ne, FETORN (NO MORE TO DO NOW) 
YES, GIVE UP THE SPACE 
DO AN 'IDESTR01' 
INDICATE 'EUFFER-FREED' 

Figure q-2 (Part 1 of 4). Sample Physical Terminal Output Edit Routine 

DC User Exit and Edit Routines 4.9 



*******************************.**************.******* •••• * ••••• *.****. 
FIRSTSEG OS OH * 
* FIRST SEGMENT - • 
* SINCE THE PREFIX EXCEEDS TEE DEFAULT 10 • 
* CHARACTER PAD SPACE WE ~Ust • 
• GET SOME BUFFER POOL SPACE (ICREATE) • 
** •••• ****.*** ••••• *.* ••• * ••••••••• * ••••• *.** ••• * ••••••••• * ••••••• * •••• 
* • 

* 

MVI 
L 
LR 
LR 
SR 
LR 
IC 
SLL 
IC 
LR 
LR 
LA 

LR 
L 
BALR 
EJECT 

EN'ISTAT,C'X' 
R2.ENTRY 
RO, R 11 
F1,R9 
R4,R4 
R3,R4 
R3,0.(,R15) 
R3,8 
R3,1 (, R15) 
F6,R3 
F10,R15 
R3, PREFIX (, R3) 

RB, R3 
R15,SCDSMMCP 
R14,R1S 

CCMELETE THE 10 FOR ICREAT! 
LOAC THE ID 
SCD "DOR 
ClE AtCR 
'BUFFERS-IN-POOL-ARE-VARIABLE-LEN' 
ZERO FEG 3 TOO 

R3= LEN OF SEG PASSEI TO ME 
SAVE ORIGINAL LENGTH, 

ANt AtDR FOE LATER USE 
INCR BY LENGTH OF PREFIX 
~3= FOCL stZE FOR ICREATE 
SAVE NEW LENG'IH FOR LATER USE 

DO AN ICREATE 

*.* ••• ********* •• ************* •• **.****** ••• *.*.* •••••••••• * ••••• ****.* 
* EDIT MSG INTO NEW AREA • 
*** •••• **.**.*****.*.****.*****.***** •• *** •• *.*****.***.**.** •••• *****. 
* * 

SKIPLT 

STH 
MVC 
L 
L 
USING 
~VI 

MVC 
SR 
LH 
BAL 
MVC 
XC 
TM 
BO 
MVI 
MVC 
MVI 
LH 
BAL 
nvc 
CLI 
BE 
"VI 
EQU 
DROP 
SH 
EX 
ST 
B 
EJECT 

lie 

RB,O (,R3) 
2(2,R3),2(Rl0) 
RB.4(,R13) 
HB,60 (,RB) 
CNT,RB 
4(R3),CR 
5(9,R3),PTERM 
R4,R4 
R4, CT EOUT CT 
R14,CONVRT 
14 (6, R3) ,0 (RS) 
20 (17 ,R3) ,20 (R3) 
CTRACTL, CTBAINC 
SKIPLT 
20(R3),ELANK 
21 (8,R3) ,CNTNAME 
29 (R3) , DAS H 
R4,CNTDOCT 
R14,CONVRT 
30 (6 ,R3) ,0 (R';) 
4(R10),CR 
SKIPL'I 
36(R3),CR 

R8 
R6,=H'5' 
R6,MOVEMSG 
R3,DECAREA 
RETURN 

NEW DL FIELD 
ZZ FIELDS "OST REMAIN THE SAME 
GET (Nt POINTER fROM 

SAVE AREA 

CARRIAGE RETURN 
'PTERMOUT-' 

PICK UP COUNT 

MOVE PTERK OUTPUT COUNT INTC MSG 
CLEAF ABEA 
IS THIS INCORE MSG 
IF SC •• MSG IS NOT ~UEUED 

L'IERM NAME 
SEPEEATE 
PICK UF CCUNT 
CONVERT TO EECDIC 
MOVE LTEEM DEQ COUNT INTO MSG 
CK FCR AT LEAST ONE CR 

IF NOT RUT ONE IN 

DECR ORIG LEN BY (LLZZ+l) 
APPEND MSG TEXT TO PREFIX 
PASS NEW ADDR BACK TO IMS 

Figure 4-2 (Part 2 of 4). Sample Physical Terminal Output Edit Routine 

4.10 I~SjVS System Programming Reference Manual 



c. 

•••• ** ••••• ************** •••• * •• ****** ••••• * •• *** ••••••• * •• * ••• **.*** •• 
EOMSG OS OH COME HEaE WHEN CTBAEC~ IS ON * 
* 
* 
* 
* 

WHEN I GET HERE ALL SEGS OF A MSG HAVE BEEN PROCESSED 
IF KSG IS SINGLE-SEG, THE BUFFER POOL STILL EXISTS. 

* 
* 
* 
* ***.****** ••••• ** ••••••• ** •••••••••••• **.* ••••••••••••••••••••••••• * ••• 

• • 
CLI ENTSTAT,X'E7' POOL BEEN FR~ED YET? 
BNE ZAPTBL YES, BEANCH 
LA R14,ZAPTBL NO, RELEASE IT-- SET RTRN AItF HERE 

DESTROY L R2,ENTRY BUFFER POOL 10 
LR Re, R 11 SCD AtrR 
LR R1,R9 CLB ADDR 
1 R15,SCDSKMDP 
BR R15 TO DES'IROY ROUTINE IN I.,S 

• 
ZAPTBL EQU • 

MVI ENTSTAT,O OPEN UP THE SLeT 
SPACE 2 

RETURN EQU * 
L R13,4(,R13) RESTORE R13 
RETURN (14,12) 
SPACE 1 

MOVEftSG MVC 4+PREFIX(R6-R6,R]) ,4(R10) 
EJECT 

••••••••••• **.*** •• ***.** ••• * ••• ** ••••••••••••••••••• **.*.** •••••••• * •• 
GETNTRY DS OH FIND THE CALLING DEVICE'S ENTRY * 
• IN' 'I A E L E ' • IF NOT F RES E N'I 'I R Y * 
• TO FIN[ AN E~PTY SLOT. * 
.**** ••• *****.* •• ****** •• ****.*.**.* •••• * •••••••••• * •••••••••••••••••• * 
* * DROP R5 

USING ENTRY,R2 New ~EG 2 POINTS 'IO 'TAELE' 

* LM RO,R2,=A(L'TABLE,LASTENT,TAELE) 
LOOPl CH R7,ENTCTB IS THIS FIGHT PLACE? 

BE GOTCEV YES, BEANCH (ALL SEEMS WELL) 
BXLE R2,RO,LCOPl NO, ~EEF TRYING 

• OOPS, NOT HERE-- FIND AN EMFTY ONE 
LA R2,TABLE R2 AGAIN= START OF TABLE 

LCOP2 CLI ENTSTAT,O ZERO IF AVAILABLE 
BZ FILLIN YES, ERANCE (I'LL USE IT) 
BXlE R2,RO,LOOP2 NO, TRY AGAIN 

.**.* ••••• ****.* ••• ** ••••• * ••••• *.* •••••••••••••••• * •••• **.*** ••••• **** 
• ifiiE---CALLING DEVICE IS NOT-IN THE TABLE, AND THE TABLE * 
* IS FULL. THE NUMBER OF DEVS IS MORE THAN I CAN HANDLE •• 
* RE-ASSEMBLY IS IN ORDER TO EXPAND THE TABLE. * 
* • 
•• ****** •• ***.* •••• *******.*** •• **** ••••••••••• * •• ** ••••••• * ••••• ** •••• 

ABEND 555,DUMP 
PILLIN EQU * 

STH R7,ENTCTB SAVE eTB OFFSET AS PLLO 10 
GOTDEV EQU * 

LR R5,R2 SET 55 TO TAELE ENTRY 
BR R14 RETURN 
EJECT 

Figure 4-2 (Part 3 of 4). Sample Physi=al Terminal Output Edit Routine 

DC User Exit and Edit Routines 4.11 



***.******************************************************************* * SUEROUTINf TO CONVERT CCUN1 TO EECDIC 
* PRIOR TO MOVING INTO NEW PFEFIX 

* ************************************* •••••• * •• ****** •• **.************** 
SPACE 1 

eONVRT LA R4,1 (R4) 
CVD R4,CNVFIELD 
UNPK SAVEFLD(8) ,CNVFIELD(8) BOILD EBCDIC NU~BER 
01 SAVEFLD+7,X'FO' STRlf SIGN 
LA R1,7 SET COUNT 
LA RS,SAVEFLD+2 SET START 

STRIP CLI 0 (RS) ,X' FO' STRIF HI CEDER ZEROS 
BNE P10VEIT 
~VI O(RS),BLANK ELANK IT 
LA RS, 1 (RS) 
BCT R1,STRIP 

MOVEIT LA RS,SAVEFLD+2 CALC iHERE TO MOVE FRCM 
BR R14 
EJECT 
LTORG 
SPACE 2 

*********************.***********.*** •• ****.*************************** 
* * * EACH TABLE ENTRY CONSISTS OF XXOOCCDI * 
* * * CO MEANS ENTRY INACTIVE (INCICA1ES 1-ST SEG) * 
* XX= E7 (C'X') MEANS EUFFER POOl EXISTS (THIS IS ITS ID) * 
* FF MEANS POOL DELETED (FOR MOLTI-SEG MSGS) * 
* * * SECOND BYTE IS X'OO' (NCT ASSIGNED FCR NOW) * 
* 
* 
* 
* 

DDDD= DEV'S CTB OFFSET (FOR A .UNIQUE POOL 10) * 
* 
* 
* 

MUMENTS EQU S NUMEER IEVICES USING THIS RCOTINE * 
* TABLE DC 
LASTEMT EQU 

* 

(NOMENTS) F'O' 
*-4 

lIST OF EUFR POOL I['S 
ADDR OF LAST ENTRY IN LIST 

* 
* 
* 
* •••• **********.***********.**.******* ••• * •• * ••••• ********************** 

CR 
BLANK 
DASH 
PREFIX 
PTERM 
CNVFIELD 
SAVEFLD 

ENTRY 
ENTSTAT 
ENTSPARE 
ENTCTB 

SPACE 3 
EQU X' 15" 
EQU C" 
EQU C'-' 
EQU 33 
DC C'PTERMOUT-' 
DC D' 0' 
DC CL8' 0' 
SPACE 4 
DSECT , 
DS X· 
DS X'OO' 
DS IL2 
REQUATE 

LINE FEED 
BLANI< 
DASH 
00020303 

LAYOUT OF 'TABLE ENTRYS 
EN'IRY'S STATUS 

CTB OFFSET 

lCLl CLB8ASE=0,CTEBASE=0.CN~B~SE=0 

IseD SCDBASE=O 
END 

Figure 4-2 (Part 4 of 4). Sample Physical Terminal Ontput Edit Routine 

4.12 IMS{VS System Programming Reference Manual 



---------------_ .. _--.----- -_.- .. - _. ---~ 

TRANSACTION CODE (INPUT) EDIT ROUTINE 

I~S/VS qives you the ability to specify, during system definition, 
the inclusion in the IMS/VS control program nucleus of one or more 
user-supplied input edit routines. This allows the user to edit input 
messages before they are enqueued for scheduling. When IMS/VS is 
executed, this user edit function is performed in addition to the basic 
IKS/VS edit function or MFS (messaqe format service) editinq and 
subsequent to this function. The user can specify, to system 
definition, up to 255 editing routines, and also which edit routine is 
to be used, by transaction type. 

The user should know the contents and meaning of the various fields 
in the IMS/VS control blocks (defined in ~he I~~L!~ R£~~~~ 12gi£ 
~anY~l, !Ql~m~l Qf~. He can test them 1n an edit routine. Under no 
circumstances should an edit routine modify any of these blocKs. 

If specified, a user-supplied input edit routine gains control after 
each messaqe data segment is processed by the IMS/VS basic input edit 
or "FS. Transaction code validity and security will have already been 
checked. A user edit routine is not entered if the transaction code 
is the only data in the message segment, and the transaction is a 
conversational transaction • 

• Registers on Entry 

Upon entry to a user-supplied transaction code edit routine, all 
reqisters to be used must be saved. The folloving interface applies: 

R1 

R7 

The buffer location of the input message segment after 
translation to EBCDIC but prior to the IMS/VS basic 
editing. The first two bytes of the buffer contain a 
binary count of the messaqe length. The third and fourth 
bytes of the buffer are binary zeros. The fifth byte 
contains the first byte of message text. The binary 
count includes the four-byte prefix. Because the input 
buffer has no relationship to the segment after it has 
been processed by MFS, this register viII point to the 
resultant segment (same as DECAREA) if the message was 
processed by this service instead of the basic input 
edit service. The fourth byte of the messaqe seqment 
(Z2) is X'OO' if the basic edit service vas used. It 
contains a X'01', X'02', or X'03' if MPS was used, 
signifying that option 1, 2, or 3 respectively was 
selected for the messaqe by the format designer. 

CTB address for the physical terminal from which the 
message segment was entered. 

DC User Exit and Edit Routines 4.13 



R9 

R13 

R14 

R15 

CLB address for the communication line from which the 
message was entered. This control block starts with a 
BTA~ DECB. The DECAREA field in the DECB contains the 
address of a buffer. This buffer contains the input 
message segment after IMS/VS editing. The first four 
bytes-are two bytes of binary count (length of this 
message segment) and two bytes of binary zeros as above. 
The length of this buffer is equivalent to the binary 
count pointed to by register 1 plus 10 if basic editing 
was performed. 

If the input was processed by MFS, the length of this 
buffer is given by the first two bytes of the buffer 
(length of this message segment). No extra space is 
provided in this buffer for user-written edit routines. 

Save area address for use by an edit routine. The first 
three words in the save area must not be modified. 

Return address to IMS/VS. 

Entry point address to the invoked edit routine. The 
entry point name and load module name for an edit routine 
must be the same and equivalent to the name used for 
the edit routine. in system definition. 

If the input was processed by the IMS/VS basic edit, you can use 
either the message segment in the buffer addressed by register 1, or 
that addressed by the DECAREA field as input to edit. If the input 
was processed by MFS, you can use only the message segment addressed 
by the DECAREA field as input to edit. 

The user-supplied edit routine must place the text of the user-eaitej 
message segment to be returned to IMS/VS in the buffer addressed by 
the DECAREA field. If the input was processed by the IMS/VS basic 
edit, this buffer is always 10 bytes greater than the two-byte binary 
count at the beginning of the message segment, and you can expand the 
length of the message segment. Alternatively, you can reduce the length 
of the message segment to any desired size. The format of the 
user-edited message segment in the buffer upon return t~ IMS/VS must 
be two bytes of binary count, two bytes of binary zeros (e~cept when 
input was processed by MFS -- the second two bytes should not be 
changed), and edited text • 

• Registers on Exit 

Upon return to I~S/VS, all registers must be restored except register 
15. 

R1 

R1S 

4.14 

Message number if register 15 contains a value of 12; 
otherwise ignored. 

Return codes: 

00 Segment is processed normally. 
04 Segment is canceled. 
08 Message is canceled, and the term inal operator 

is notified. 
12 Messaqe is ca nceled , and the user message 

identified by register 1 is sent to the terminal. 

Any other value causes the message to be canceled and 
the terminal operator to be notified. 

IMS/VS System Programming Reference Manual 



_._--------_._------

Assume a multiseqment transaction named ICS. Normally, the first 
segment of this message contains ICS GN, meaning to get the next segment 
of a given messaqe, or rcs CAN, meaning to cancel this messaqe. A 
user-supplied edit routine allows further input flexibility, as shown 
in the following decision table. 

r--------------

First 
Segments 

3ther 
Segment 

-----------------------------------------------, 
MSG AS REC'D AND 
EDITED BY IMS/VS 

1 1 
1 MSG AS REEDITED BY 1 
1 USER EDIT ROUTINE , 
I 1 

-----------------------,-------------~---------, 

ICS GN 
ICS 
res CAN 
Any other 

, I 
I As received I 
1 Ies GN , 
I msq canceled 1 
I msg canceled I 
I I 

-----------------------1-----------------------1 
GN 
CAN 
A ny other 

1 , 
1 As received , 
, msg canceled 1 
, segment canceled , 
I , 

L--------------------------------------------------------------J 

The transaction code edit routine allows the input of a shortened 
format for the ICS GN message segment. 

Figure 4-3 is an example of a transaction code edit routine. 

DC User Exit and Edit Routines 4.15 



CS!B TITLE 'DFSCSMBO, SAMPLE 5MB DEStINAtION EDIT ROUTINE.' 
••••••••• *****.**.********.*** •• ***** •••••••••••••• *.** ••• ***.****. 
** •• ****.***.*.* ••• ***.**.*.*.*.**.***.** •••••••••••• * •••••• ** ••• ** 
* SAMPLE TRANSACTION CCDE EDIT RCUTINE * 
•••• **.*.**** •• ****************.* •• ****.***.*****.****.*** ••••• * •• * 
* * MESSAGE RECEIVED * REtUFN CODE RETURNED MSG • 
* ••• *.*******.**.*.****.***************.* •• **.***.*.*******.* •• ***. 
* * 'ICS GN' * RC = 0 'ICS GN' * 
• FIRST * 'ICS * RC = 0 'ICS GN'. 
• SEGMENT. 'ICS CAN' * RC = S 'ICS CAN' • 
* • 'ICS MSGXXX' • RC =12 'ICS MSGXIX' • 
• * XXX=MSG NUMBER 000-999 * * 
* * ANY OTHER * FC: 4 AS RECEIVED * 
•••• *.*****.*************.****** •• *** ••••••••••••• **** ••• * •• ** ••••• 
* * * * * OT HER *' G N' * RC = 0 'GN' • 
* SEGS * 'CAN' * RC = S 'CAN' * 
* • ANY OTHER * RC = 4 AS RECEIVED * 
* ••• *******.*.* ••• ***** •• **.* •• ***.*** ••••• *** •• * •• * •••••••• ******* 
• RETURN CODE MEANING * 
*.*******.******* •• *** •• **.*.** •• *.**** •••• * ••••••• *** •• ***.*.*** •• 
• 0 PROCESS MESSAGE SEGMENT • 
* 4 CANCFL MESSAGE SEGMENT • 
* 8 CANCEL MESSAGE * 
* 12 CANCEL MESSAGE AND USE R1 FOR * 
* PTR IN USER MESSAGE TABLE • 
**.********.*****.**.** ••• **.*.******* •• *** •• **** •• *.* •••••••• *** •• 
•••• **.* ••• **.*.*.**.* •• **.****.**** ••••••••••••••••• *.**.***.***** 

SPACE 
DFSCSMBO CSECT 

PRINT 
SAVE 
LR 
USING 
USING 
USING 
L 

* 
* 
* 

CKOPER 

CLC 
BH 
IC 
SH 
EX 
TM 
BZ 

CLI 
BL 
CLC 
BHE 
CLC 
BNE 
MVC 
B 
EOU 
CLC 
BE 
CLI 
BL 

NOGEN 
(14,12) , I • 

R12,R15 
DFSCSMBO,R12 
CTE,R7 
IECTtECB,R9 
RS,DECAREA 
o (2,RS) ,MAXLTH 
CANSEG 
R2,1(RQ) 
R2,H5 
R2,MAKUPER 
CTEFLAG3,CTB3SEGl 
MULtSEG 

1(R8),10 
CANSEG 
4 (3 I R 8) , =CL 3 ' IC S ' 
CAN SEG 
7(3,RS) ,BLANKS 
CKOPER 
S(2,R8) ,=CL2'GN' 
RE'IURNO 
* 
7(3,R8) ,=CL3' GN' 
RE'IURNO 
1 (RB) ,11 
CANSEG 

COpy FCR BASE 

A(MESSAGE SEGMENT) 
CHECK FOR MAXIMUM SEG LENGTH 
IF TOO EIG - CANCEL SEGMENT 
GET CNE BYTE CF LENGTH 
GET EXECUTE LTH OF DATA 
GET UPPER CASE 
IS THIS THE FIRST SEGMENT? 
'NO - EBANCE 
.*****.***.**.***.** •••• ** •• **** 
* FIFSt SEG~ENT PROCESSING • 
********** •••• ***.* ••••••• *.**** 
MUSt BE AT LEAST 10 
IF HC - CANCEL SEGMENT 
MUST HAVE Ies 
IF NeT - CANCEL SEGMENT 
3 BLANKS AFTER ICS1 
NO 
YES - SFT GN DEFAULT 
AND EXIT 
CHECK OPERATOR 
GN FEQUES'I1 
YES 
MUS'! BE AT LEAST 11 
NC - CANCEL SEGMENT 

Figure 4-3 (Part 1 of 2). Sample Transaction Code Edit Routine 

4.16 I~S/VS System Programming Reference Manual 

~--

(' 
,---



· ........ __ .•. _ .... _.-.. _. -- ---

* MULTSEG 
* 

*** 

CANSEG 

CANMSG 

USERPISG 

RETORNO 

RETURN 
* 

RETURNM 

HS 
MAXLTH 
f!AKUPER 
BLANKS 
WORKl 

CLC 
BE 
CLC 
BE 
B 

EQU 

CLI 
8L 
CLC 
BE 
CLI 
BL 
CLC 
BE 
B 
SPACE 
EQU 
LA 
B 
EQU 
LA 
B 
CLI 
8L 
CLI 
BH 
CLI 
8L 
CLI 
8H 
CLI 
BL 
CLI 
8R 
PACK 
CVB 
LA 
B 
EQO 
SR 
EQU 

L 
tM 
t 
L 
ER 
SPACE 

7 (4, R 8) , = CL 4 ' CAN' 
CARPISG 
7(4,R8),=CL4' f!SG' 
USERMSG 
CANSEG 

* 
1(R8),6 
CANSEG 
4 (2,RB) ,=CL2 'GN' 
RETURNO 
1(R8),7 
CANSEG 
4 (3, R A) , = CL 3' CAN' 
CANPISG 
CANSEG 
2 
* 
R1S,4 
RETURN 
* 
R1S,B 
RETORN 
11(R8) ,X'FO' 
CANSEG 
11 (RB) ,X' F9' 
CANSEG 
12 (RS) ,X' FO' 
CANSEG 
12 (R8) ,X'F9' 
CANSEG 
13 (RB) ,X' FO' 
CANSEG 
13(R8),X'F9' 
CANSEG 
WO R K 1 , 1 1 (3, R 8) 
Rl,iORKl 
R15,12 
RETURNM 
* 
R15,R15 

* 
Rl,24(R13) 
R2,R12,28(R13) 
RO,20(R13) 
R14,12(R13) 
R14 
2 

DC H'S' 
DC H'84' 
OC 4(1,R8),BLANKS 
DC CL80" 
DC D'O' 
SPACE 1 
REQUATE 
IeLI CTEEASE:O,CLBBASE=O 
END 

CANCEL BECUEST? 
YES 
CANCEL VITH USER PlSG 
YES 
OTHEE - CAtiCEL SEGMENT 
****************************.*** 
• OTBER THAN FIRST SEGPlENT * 
******************** ••• ********* 
MUS! EE AT LEAST 6 
IF NeT - CANCEL SEGPlENT 
GN? 
YES - CK 
MOST BE AT LEAST 7 
NO - CANCEL SEGMENT 
CANCEL REQDEST? 
YES 
OTHER - CANCEL SEGMENT 

* CANCEL SEGMENT 
HC 

* CA NC EL MESSAG E 
HC 

IS ~SG NUMEEE VALIC? 
NO - TREAT AS OTHER 
IS MSG NUMEER VALID? 
NO 
VALID 
RANGE 
IS 
FRCPI 
000 
TO 
999 
NUMERIC ONLY 
CONVERT IT 
TO BINARY. PASS IT IN REG 1 
SET I1C=12 
LEAVE Rl AS MSG NUPIBER 

* 

* 

* BElUBN COCE 0 * 
RC 
RETURN TO Il1S 
R13 FCINTS TO CALLERS SAVEAREA 
RESTORE Rl IF NOT MSG ~UMBER 

HESTCRE REGISTERS 

MAX SEG LENGTH - 80 DAlA EYTES 
EXECUTED 
ELANKS 
USED FeR ~ESSAGE NUMEER 

Figure 4- 3 (Part 2 of 2). Sample Transaction Code Edit Routine 

DC User Exit and Edit Routines 4.17 



~ESSAGE SWITCHING (INPUT) EDIT ROUTINE 

A facility similar to the transaction code (input) edit is provided 
for message switching. The optionally supplied, user-written routine, 
whose CSECT and load module name must be DFSCNTEO, is included in the 
user's system at IMS/VS system definition time. Only one messaqe 
switching edit routine can be specified for an IMS/VS online control 
program. This routine is specified (in the NAME macro) for inclusion 
with the online control program during system definition. 

The internace between the IMS/VS control program and the 
user-supplied message switchinq edit routine is the same as previously 
defined for the transaction code edit routine. 

The user-supplied edit routine might be used to identify, in the 
text of the output message to the output terminal, the loqical terminal 
name and messaqe number from which the message was entered. 

Figure 4-4 is an example of a Message Switching Edit Routine. 

Assume the followinq message is being entered from a logical terminal 
named 'XSYSI' and is input message number one. 

ABC SEND ALL XYZ MSGS TO THIS TERMINAL 

The message as received at the output terminal associated with 
loqical terminal name ABC has the input logical terminal name and input 
message number appended to it by the user's edit routine. 

ABC SEND ALL XYZ MSGS TO THIS TERMINAL XSYSI 1 

In this example, the loqical terminal input name is used. This name 
exists within the IMS/VS control block for the input logical terminal, 
the Communication Name Table (eNT). The CNT is addressed by a fiela 
in the Communication Line Block called CLBCNTPT. The field in the CNT 
~ontaining the logical terminal name is called CNTNA~E. Control blocks 
are defined in the I~~L!~ ~£Qg~~mLo~~ ~~nY~1, !~~g!g-l Qi·~. 

4.18 I~SjVS System Proqramming Reference Manual 

\,~ 

( 

,--­
! 

'\ '-_ ... 



CNTE TITLE 'DFSCNTEO, SAMPLE CNT DESTINATION EDIT ROUTINE.' 
*********************************************************************** * SAMPLE MESSAGE SWITCHING EDIT * 
*---------------------------------------------------------------------* 
* FUNCTION: * 
* THE LOGICAL TERMINAL NAME OF THE INPUTTING TERMINAL AND * 
* THE MESSAGE.NUMBER ARE ADDED TO THE END OF THE MESSAGE * 
* * * REGISTERS ON ENTRY ON EXIT * 
* R6 CNT R6 CNT * 
* R7 CTB R7 CTB * 
* R9 CLB R9 CLB * 
* R14 RETURN ADDRESS R15 RETURN CODE * 
*********************************************************************** 

SPACE 2 
DFSCNTEO CSECT 

PRINT 
SAVE 
USING 
USING 
USING 
USING 
SPACE 

NOGEN 
(14 ,12) , , * 
tFSCN'IEO,R1S 
CNT,R6 
CTE,R? 
IECTDECB,R9 CLE PCINTER 

************* FINt THE END OF 'IHE PRE-EelTED MESSAGE **************** 
* * 

L 
LH 
AR 
SPACE 

RS, tBeAREA 
R4,O(,R5) 
R5,R4 

POINT 'IO MESSAGE 
LeAD OF 'DL' 
RS= ENt OF MESSAGE 

************* GET LOGICAL TERMINAL NAME, ANt AtD IT TO MSG ********** 
* * 

LH 
MVC 
SPACE 

R6,CTBCNTPT 
1 (5,RS) ,CNTNAME 

\ 

AtrRESS OF CNT 
INSER'I 5 CHARS OF NAME 

************* NOW FIND AND INSERT MESSAGE NUMBER ****.*************** 
* * 

LH 
CVD 
UNPK 
01 
Hve 
MVI 
SPACE 

R3,CTEINCT 
R3,MSGNUMP 
MSGNUM(4) ,MSGNUMF+4(4) 
MSGNUM+3,240 
7(3,R5),MSGNUM+1 
6 (BS) ,C' , 

LeAD MSG NUMBER 

* CCNVERT TO 
* CHARACTERS 
SLIDE NUMBER NEXT TO NAME 
BLANK SEPARATOR 

************* CHANGE 'DL' TO FEFLEtT NEW MSG LENGTH ***************** 
* * 

SR R5,R4 
LA R4,9(,R4) 
STH R4,O (,RS) 

P.5= START OF MSG (DL) 
NEW LENGTH IS 9 MORE 
REPLACE 'DL' 

RETURN (14,12) ,RC=O 
************* CONSTANTS **************************** •• ********.****** 
* * 
PlSGNUM DS F 
KSGNUMP DS D 

REQUATE 
lCLl CNTBASE=O,CTEBASE=O,CLEBASE=O 
END 

Figure 4- 4. Sample Message switching Eait Routine 

DC User Exit and Edit Routines 4.19 



CONVERSATION ABNORMAL TERMINATION EXIT ROUTINE 

A conversational process terminates abnormally when: 

• A conversation is ended by an /EXIT or /START command. 

• A conversational application program terminates abn~rmally during 
a conversation. 

• A conversational program does not insert to a response PCB or to 
an alternate PCB that represents another conversati~nal program. 

• An uncorrectable IMS/VS conversational error occurs, such as an 
I/O error while reading or writing the scratchpad area. 

The IMS/VS user can provide an application program t::> "clean-up," 
if required, when a conversa tion is prematurel y termin at ed. Upon entry, 
this program's I/O PCB contains the name of the terminal that had its 
conversation abended. An exit routine to schedule the application 
proqram is required. IMS/VS provides an exit routine named DFS:ONEO, 
or you can write your own. To use the IMS/VS-provided routine, you 
must: 

• Define a transaction code named DFSCONE. 

• ~rite a non-conversational application program to be invoked by 
DFSCONE. 

When the exit routine (DFSCONEO) is finished, the IMS/VS 
conversational processor determines whether the transaction DFS:ONE 
has been defined. If DFSCONE is not defined, conversation termination 
completes and the SPA is discarded. If DFSCONE is included, the 
conversational processor schedules the transaction DFSCONE with the 
SPA of the terminated conversation as a non-conversational single 
segment message. 

As an alternative to the above, you can provide a more tailored exit 
routine. For example, you might want to interrogate the CCB to 
determine which transaction was in process when the conversation 
terminated, or to inspect the SPA to find out what had occurred before 
the conversation terminated. No DL/I calls can be issued. A message 
processing program should be scheduled to handle data base inquiries 
and updates, or extensive analysis of the conversation. The application 
proqram can output messages to the terminal associated with the 
terminated conversation. 

To cause an application proqram to be scheduled, the exit rOGtine 
should: 

• Place the 8-byte name of the non-conversational transaction in the 
SPA (offset 6 bytes into the SPA). 

• Set the desired length of the SPA. 

• Insert information to be communicated to the scheduled proqram into 
the SPA. 

• Set a return code of 04 in register 15. 

The transaction code inserted into the SPA must be a valid, 
non-conversational transaction. If it is not, no action will take 
place. 

4.20 IMS/VS System Programming Reference Manual 

r 
I 
\ ,---



---------------------------

To include a user-written exit routine, you must replace the default 
DFSCONEO in IMSVS.RESLIB with your own DFSCaNEO before link-editing 
the IMS/VS nucleus. To use the default DFSCONEO, you need only define 
the transaction DFSCONE. 

• Registers on Entry 

BO Cause of conversation tetmination. 

00 A conversational application program has abended 
or IMS/VS has abended the conversati~n. 

01 The /EXIT command was issued by the terminal in 
conversation causing the conversation to be 
terminated. There is no pointer to the CCB or 
CTB. 

02 The /EXIT or /START command was issued by a 
terminal other than the one in conversation 
causing the conversation to be terminated. 

04 The input CNT could not be found. The m~ster 
terminal is set as the input terminal. 

]!ig 1: Reserved 

~Y1~ ~: Reserved 

]ytg 1: Vector describing the calling reason. 

00 Conversational application program abended. 

04 While processing the conversation, an error 
occurred when reading or writing a disk SPA. 

08 lEX IT com mann for input or other (remote) 
terminal processed. 

OC 1ST ART LINE command processed for terminal in 
c on versa tion. 

10 SPA received for an inactive conversation. 

DC User Exit and Edit Routines ~.21 



R1 

R6 

P7 

R11 

R13 

R14 

R15 

Address of the SPA; if the SPA lenqth field (first 
halfword) is binary zero, the SPA is unavailable (rIO 
error retrieving from disk) • 

If RO=X'08'r X'OC': the SPA was obtained from SPA data 
set. If RO=X'OO', X'04', X'10', X'14': the SPA was 
optained from the message. 

CCB address of the terminal in conversation if the 
conversation is still active. Zero if the convers~tion 
is already terminated. 

CTB address of the terminal in conversation if the 
conversation is still active. Zero if the convers~tion 
is already terminated. 

SCD address. 

Save area address. The first three words in the sa ve 
area must not be chanqed. 

Return address to IMS/VS. 

Entry point to the user routine. 

I NQ:t~: The SPA length equals zero if a read SPA from a disk SPA-data 
. set is unsuccessful due to an 1/0 error . 

• Registers on Exit 

Upon retnrn to IMS/VS, all registers must be restored except R15. 

R15 

4.22 

Return co des: 

00 Exit routine has completed all clean-up required; 
no further a::tion is necessary. Terminate the 
conversation. 

04 Cause the transaction indicated in the n~me 
field of the SPA to be scheduled with the SPA 
(length indicated) to be used as the messaqe 
and terminate the conversation. 

I~S/VS System programming Reference Manual 



_w_" 

"...- ..... 
i 

The source listing of the default DFSCONEO is shown in Figure 4-5. 
It is for reference only. 

STMT SOURCE STATEMENT 

1 *********************************************************************** 
2 * DFS:ONEO WHICH MAY BE REPLACED BY A CUSTOMER WRITTEN ROUTINE. * 
3 * * 
~ * IF A TRANSACTION IS DEFINED BY THE CUSTOMER (DFSCONE) TO BE SCHED * 
5 * UPON NON-PROGRAM CONTROLLED CONVERSATION TERMINATION, THIS ROUTINE * 
6 * CAUSBS THE LAST SPA TO BE ENQUEUED ON DFSCONE FOR CLEANUP PROCESS. * 
7 *********************************************************************** 
8 DFSCONEO CS EeT 
9 USING D F SC 0 NE 0 , R 1 5 

10 MVC 
11 LA 

6 (8, R1) , PROGNAME 
R15,~ 

MOVE IN 5MB NAME FOR S:HEDULING 
SET SCHD RErcrRN CODE 

12 BR R14 
13 * 
1~ PROGNAME DC C'DFSCONE ' 

Figure 4-5. IBM-Supplied Conversation Abend Exit Routine 

USER MESSAGE TABLE 

IMS/VS users can create a messaqe table for use by the follo~ing 
types of user edit routines: 

• Physical terminal input edit routine 

• Transaction code input edit routine 

• Message switching input edit routine 

• Message Format Service (MFS) seqment edit routine (described in 
the ~g2~~~~ Form~! ~~r!1~§·rr§gr~2 QYig~) 

All user messages invoked by these routines should be generated in 
the user message table. 

The foll~wing steps are required to use a user message table, and 
must occur prior to staqe 2 of IMS/VS system definition: 

• OPTIONS=( ••• USERMSGS, ••• ) must be specified in the COMM macro during 
IMS/VS system definition. 

• The user message table module must be named DFS:MTUO. 

• Once assembled, DFSCMTUO should be placed in the operating system 
partitioned data set defined by the USERLIB= operand of the IMSGEN 
macro during IMS/VS system definition. 

DC User Exit and Edit Routines 4.23 



The format of the user message table (DFSCMTUO) must be similar to 
IMS/VS system message tahles such as DFSCMTOO: 

• The table must start with the instruction BALR 15,14. 

• Message numbers range from 1 to (ana including) 999, in ascending 
sequence. 

• The maximum size for the text of each message is 100 characters; 
the length must be an even value. If the message text exceeds 78 
characters, it may be truncated if sent to a 3270 terminal. 

• It is recommended that device control characters not be included 
in message text. IMS/VS always adds NEW LINE control chara=ters 
to the beginning and end of the message. 

• Each message entry must start on a halfword boundary. The entry 
format is: 

label DC H' message number' 
DC AL2 (entry length including number and length 

fields) 
DC C'messaqe text of even length' 

• An entry with message number X'7FFF' signals the end of the message 
table. 

Ex!!!!!~lg 

DFSCMTUO CSEcr 
BALR 15,14 

M1 DC H'001' 
DC A L2 (M5-M1) 
DC C'text' 

M5 DC H'OO5' 
DC AL2 (M6-M5) 
DC C'text' 

M6 DS OH 
MEND DC X'7FFF' 

END 

4.24 IMS/VS System Programming Reference Manual 

\"' ....... 

c:~ 



------- ---- .--~.----... - .. -----

7770-3 SIGN-ON EXIT ROUTINE -- DFSS7770 

Since the 7770-3 is a switched device and the calling terminal may 
not be able to generate the alphameric characters required to f~rm an 
/lAM command to sign on for an LTERM, IMS/VS requires that a sign-on 
routine be defined at system definition time for the 1710-3 lines in 
the system. This routine is invoked by the 1770-3 device-dependent 
module any time an input message or message segment is received from 
the line and a logical connection does not exist. only one routine 
~an be d~fined, and it applies to all 7770-3 lines in the system. ~ 
minimum user routine should validity ~heck the input data received from 
the line, and use the data to develop an /lAM command to be passed on 
to IMS/VS. The user routine gains ~ontrol before any IMSjVS security 
checking, validity checking, or editing functions are performed. The 
message text is in EBCDIC. 

The siqn-on routine can build an /lAM command in the input buffer, 
or can place a response message in the input buffer. Any response to 
be sent back to the caller must be in 7770-3 output vocabulary drum 
address form. 

Through return codes to IMS/VS, the siqn-on routine can cause the 
contents of the input buffer to be passed on into the system (/IAM 
command in buffer), or cause the contents of the buffer to be sent to 
the caller followed by a READ to allow retry. This routine can also 
cause the contents of the input buffer to be sent to the caller with 
a reset to the line to disconnect the caller after the response is 
sent. 

• Registers on Entry 

R1 

R2 

R7 

R8 

R9 

R11 

R13 

R14 

R15 

Address of input data/buffer area received from the 
line. 

Length of the input data/buffer area. 

CTB address. 

CTT address. 

CLB address. 

SCD addre ss. 

Save area address. The first three words in the save 
area must not be changed. 

Return address to IMS/VS. 

Entry point to the user routine. 

• Data Format on Entry 

The data format at entry and the relationship of registers 1 and 2 
to the data are shown in Figure 4-6. 

DC User Exit and Edit Routines 4.25 



• Reqisters on Exit 

All registers must be restored except reqisters 0, 1, 2, and 15. 
The contents of registers a and 1 are ignored by IMS/VS. 

R2 

R15 

The length of the data now in the input buffer area that 
was pointed to by R1 on entry. 

Return codes: 

00 continue input processinq with the contents of 
the input buffer. 

04 Send the cont ents of the input buffer to the 
caller, followed by a read. Allows retry of 
sign on operation. 

08 Send the contents of the input buffer to the 
caller, followed by a disable to disconnect the 
caller. 

For return codes 04 and 08, the contents of the input buffer to be 
sent to the caller must be in drum address form, because no translation 
is performed before the data is sent to the caller. It is also your 
responsibility to determine when a sequence of sign-on attempts should 
be terminated with a reset operation. 

IMS/VS stops the line and generates a message to the master terminal 
for either of the followinq sign-on routine error conditions: 

• The return code from the sign-on routine exceeds 8. 

• The count value returned in R2 is greater than the available space 
in the buffer. 

After the line has been stopped, system messaqes can still be 
transmitted to the 7770-3. The sign-on exit routine is not invoked. 

A usable sign-on routine is supplied with the system in IMSVS.LOAD. 
This routine automatically signs the caller on for the INQUIRY LTERM 
whenever the 7770-3 answers a call and receives data. As supplied, 
this routine is transparent to the caller. If the supplied module is 
to be used, it is your responsibility to move the module from IMSVS.LOAD 
to the user library specified in the IMSGEN statement before Stage 2 
of system definition is executed. 

For further information on the I~S/VS-supplied sign-on routine, see 
the i~~lY~ ~rQg~~m 1Qgi~-~~~i, YQ!gm~-l Qf~. The source listing of 
the sign-on routine, DFSS7770, is shown in Figure 4-6. It is for 
refer ence only. 

4.26 IMS/VS System programming Reference Manual 



,-

'----

.. ,---_. . . .. , .. , .. ,._ .. , .. _ ... _-_._--._-_ ....... , ... ,_ .. _------

5777 TITLE 'CO"M, SIGN ON MODULE FCB 7770 MODEL 3' * ••• ** ••••••••• * ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* • * ••••••••••• ***.******. 7770 AUtCMATIC INCUIRY .****** ••• ****.**.*.** •• 
•••• *.* ••••••••• **..... SIGN-ON MODULE ••••••• * ••••••• * ••• ** ••• 

• * • • 
• • • 
• • 
• • • • • • • 
• • • • • • • • • 
* • 
* 
* • • 
* 
* 
* 
* 
* 
* 
* 
* • 
* 
* 
* • 
* • 
* • 
* 
* • • • • • • 

THIS MODULE RECEIVES CCNTRCL PRCM THE 7770 DEVICE DEPENtENT MODULE * 
WHEN A READ HAS COMPLETED EUT A LOGICAL CCNNECTION HAS NOT EEEN * 
ESTABLISHED. • 

* 
THIS MODULE SETS THE PROPER FLAGS ANt FIELDS TO INDICATE THAT THE • 
TERMINAL IS SIGNED ON FOR THE INQUIRY LOGICAL TERMINAL. • 

• 
BLOCKS AN'D TABLES: • • 

SIZE OF MODULE: 

INTERFACE 
REGISTERS 

ON ENTRY: 

ON EXIT: 

RETU RN CODES: 

THIS MODULE USES THE CIB, CtB, AND tHE CNT • 
THIS MODULE RECEIVES ACCESS TO THE INPUT tATA, • 
CTB, CTT, ClB, CNT, AND THE SCD. • 

THIS MODULE CONTAINS APPROXIMATELY 54 BYTES CF 
CODE. 

* 
* * • • 

R1 
R2 
R7 
R8 
R9 
R 11 
R13-R15 

ADtRESS Of INPUT DATA 
LENGTH OF INPUT tATA 
HAS DIAL C~B ADDRESS 
HAS CTT ADtRESS 
HAS CLB ADtRESS 
HAS SCD AttPESS 
STANDARD O.S. LINKAGE REGISTERS 

* 
* • 
* 
* • 
* 
* • 

THE INPUT DATA AREA HAS THE FOLLCWI~G FCRMAt: * 
* *--------------* • 1 REG 2 COUNT 1----.---------------------------*. 

*--------------* I 1 * 
V 9 NV • 
.------+----------+---------* • 
1 CT Ell D A TAl • 

.->1 LINE I 9 BLANKS 1 IN 1 * 
1 I NO. I I E EC DIC I * 
I *------+----------+---------.. *--------------* I • I REG I ADDR. 1-* • 

*--------------* * 

R2 LENGtH OF tATA IN BUFFER 
R15 RETURN CODE 
ALL OTHER REGISTERS ARE REStORED. 

* 
* 
* 
* 
* 
* 
* 
* 
* o - CONTINUE INPUT PROCESSING WITH CONTENTS CF THE EUFFER * 

4 - SEND CONTENTS OF EUFFER TC CALLES FOLLOWE[ EY READ TO * 
ALLOW RETRY. OOTPUT MUST BE IN DRUM ADDRESS FO~~. * 

8 - SEND CONTENTS OF EUFFER TC CALLER FOLLOWED EY A tISABLE * 
TO DISCONNECT THE CALLER. * 

Figure 4~6 (Part 1 of 2,. IBM-Supplied 7770-3 Sign-On Exit Routine 

DC User Exit and Edit Routines 4.27 



• 
* ABENDS: 

* * HOT APPLICABLE 
• 

* 
* 
* 
* 
* 

********.**.*.********.************************************************ 

DPSS7770 
* 

* 

* 

* 

EJECT 
CSECT 

USING *,R12 EASE REGISTER 
USING SCD,Rl1 --) SCD 
USING CNT,Rl0 --) CNT (INQUIRY) 
USING IECTDECB, R9 --) CLB 
USING CTT,R8 --) CTT 
USING CTe, R7 --) CTE 

SAVE (14,12) "S777023 V1.1 

LR R12,R15 
L R10,CTBCNT GET INCUIBY CNT OFFSE~ V1.1 
ST R10,60(,R13) SET CNT ADDRESS TO BE PASSED BAC 
HI CTBPLAG1,NIMASK-CTE1PRES RESET PRESEt FLAGS V1.1 
NI CTBFLAG2,NI"ASK-CTB2LOCK-CTB2TEST-CTB2EXCL + OTHERS 
01 CTBPLAG1,CTB1SIGN tIAI CtB IS LCGIC~LlY CCNNECTED 
01 CNTFLAG1,CNT1SIG~ SIGN ON LTERM ONLY SPECIFICATION 
"VC CLBPSCTB(4) ,CNTC'IBPT PClt;T CIE TO CTB V1.1 

RETURN (14,12),RC:O 
EJECT 

RESTCRE AND RE'IUEN TO DEVICE MCD 

* 
*** 

* EQUATES *** 
* 

NIMASK 
RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
R10 
Rl1 
R12 
R13 
R14 
R15 

* SPACE 3 
EOU 255 
EQU 00 
EQU 01 
EQU 02 
EQU 03 
EQU 04 
EQU 05 
EQU 06 
EQU 07 
EQU 08 
EQU 09 
EOU 10 
EOU 11 
EQU 12 \ 
EQU 13 
EOU 14 
EQU 15 
EJECT 

* * 
*** DUMMY SECTIONS *** 
* * SPACE 3 

ISCD SCDBASE=O 
EJECT 

~Ll EI'IS 
B 

,E 
G 
I 
S 
T 
E 
B 
S 

E 
C 
U 
A 
'T 
E 

ICLI CLBBASE=O,CNTFASE=O,CTEEASE=C,CT'IBASE=O 
END 

Figure 4-6 (Part 2 of 2). IBM-Supplied 7770-3 Sign-On Exit Routine 

4.28 IMS{VS System Programming Reference Manual 

', ........ 



-------- ---- ---- --------- --- --------

7770-3 INPUT EDIT ROUTINE -- DFSI7770 

For the 7770-3, a user input edit exit has been implemented ~t the 
line level (from device module DFSDS030). This exit is primarily 
provided for a user edit routine to operate conversationally with the 
line (caller). It does basic (no data base reference) validi ty che= kinq 
of input fields. (The 7770-3 has limited error detection.) It must 
also build a transaction, field by field, until enough data has been 
received and validity checked that the message (transaction) can be 
scheduled bV IMS/VS. Message text has been translated to EBCDIC before 
the user routine is invoked. 

!2ig: IMS/VS checkpoint/restart and re=overy capabilities are not 
effective until the message has been scheduled into the system (see 
return cod~s 0 and 4 below) • 

In coniunction with the above concept of input editing, several 
aaditional entries and actions have been provided for the user input 
edit routine to allow the user edit to be continually aware of the line 
status from operation to operation. 

• Registers on Entry 

RO 

R1 

R2 

R7 

R8 

R9 

R10 

R11 

R13 

R14 

R15 

Entry vector val ue: 

00 Entry is for normal seqrnent read completion from 
the line (caller). 

04 Fe-entry for next segment of message after input 
edit has indicated that it has more segments to 
send to IMS/VS. 

08 rhe calling party on the line has hung up. 

12 The line is being stopped or the system is 
shutting down. 

Address of the input data/buffer area. If the entry 
vector is 12, R1 is not used. 

Length of the input data/buffer area. If the entry 
vector is 12, R2 is not used. 

CTB addre SSe 

CTT address. 

CLB address. 

CNT address. 

S CD address. 

Save area address. The first three words in the save 
area must not be changed. 

Return address to IMS/VS. 

Entry point to the user routine. 

DC User Exit and Edit Routines 4.29 



• Data Format on Entry 

The data format on entry is the same as for the 7770 sign-on exit 
routine. It is shown in Part 1 of Figure 4-6 • 

• R egisters on Exit 

All registers must be restored except reqisters 0, 1, 2, and 15. 
The contents of registers 0 and 1 are ignored by IMS/VS. 

R2 

R15 

The length of the data now in the input buffer area that 
was pointed to by R1 on entry. 

Return codes: 

00 The message segment in the input buffer is to 
be sent to IMS/VS and is the last segment of 
t he message. 

04 rhe message segment in the input buffer is to 
be sent to IMS/VS and is not the last segment 
of the message. The next time the device mo~ule 
is entered for a READ, it enters the edit module 
with R1 pointing to a buffer area ~ and R2 
containing the amount of available area contained 
in the buffer. BO contains the value of O[J. 

08 rhe message in the input buffer is to be sent 

12 

16 

to the caller followed by a READ. R2 must 
contain the count for the message to be sent to 
the caller. The message must be in drum address 
form. 

Repeat the last output message for the c~ller. 

The contents of the input buffer should be sent 
to the caller with a reset to hang up the caller. 

I~S/VS stops the line and generates a message to the master terminal 
for anyone of the following input edit module error conditions: 

• The return code from the input edit module exceeds 16. 

• The count value returned in register 2 is greater than the available 
space in the buffer (buffer overrun}. 

• The input-edit module sent a single segment message to IMS/VS after 
the caller has hung up and indicated that it had more segments to 
send to IMS/VS. 

• The return code from the routine exceeds 8 after entered for 
disconnect indication. 

After the line has been stopped, system messages can still be 
transmitted to the 7770-3. The input edit routine is nJt invoked. 

4.30 IMS/VS System programming Reference Manual 

\ .... 



---------------------

'--/ 

After the edit module has been entered with the 08 entry vector 
value indicating that the caller has hung up, the edit routine can use 
return codes 00 and 04 to continue sending data to IMS/VS before IMS/VS 
is notified of the line drot> condition. Durinq this mode of processinq, 
return code O~ indicates the end of input edit control, and that the 
message should be enqueued for processing. Alternatively, a return 
code of 08 ~uring this mode causes the message to be canceled, and 
terminates input edit control for this sequence. 

NQ~~: IMS/VS does not accept input for conversational transactions if 
the disconnect occurred- durinq a WRITE operation. rhe response message 
from the conversational program is still in the queue, and therefore 
negates input operations. 

No IMS/VS action,can be specifiei if the edit module was entered 
with input vector 12. Returned parameters, if any, are not used, as 
the entrv with entry vector 12 is an information-only entry. The return 
code value of 12 or 16 can only be returned after the user routine was 
entered for a normal READ completion. 

The input data may contain one or more of the following special 
characters: 

X' 00' For Invalid Input Line Codes 
X'16' For 2721 Ca ncel Key 
X'26' For EOB (on 2721 also ' 000' key and ' #' Key as EOls) 
X' Be' For 2721 Verify Key 
X' B1 ' For 2721 Repeat Key 
X' B2' For 2721 Function 1 {F 1, Key 
X'B3' For 2721 Function 2 (F2) Kev 
X'B4' For 2721 Function 3 ( 1"3) Key 
X'B5' For 2721 Function 4 (F4) Key 
X' B6 ' 'For 2721 Function 5 (F5) Key 
X' B7' For 2721 ID X'19' Code 
X'B8' For 2721 ID X'59' Code 
X'B9' For 2721 ID X '21 ' Code 
X'BA' For 2721 10 X'61' Code 
X'FA' For 2721 00 Key and for TOUCH-TONE (or equi va lent) Phone 

Key when workinq on the ABB' Code Line Interface 
'* , 

IMS/VS supplies a basic input edit routine for the 7770-3 as module 
DFSI7770 in IMSVS.LOAO. If you want to use the supplied module, it is 
your responsibility to move the supplied module from IMSVS.LOAD to the 
user library specified in the IMSGEN statement. If you have written 
your own input edit routine, that module must be placed into the user 
library specified in the IMSGEN statement prior to system definition. 
The module must be named and have an entry point with the name OFSI7770. 

For more information on the IMS/VS-supplied input edit routine, see 
the description of module OFSI7770 in the I~~tY~ ~~2g!~ID- Log!£ ~~nY~l, 
Volume 1 of 3. The source listinq of tne IMS/VS-supplied module is 
shown-in Figure 4-7. It is for referen=e only. 

OC User Exit and Edit Routines 4.31 



1111 TITLE 'COM", INPUT EDIT FOR 7770 MODEL 3' 
DFSI1110 CSECT 
•••••••••••• * ••••• ****.********* •• **.**.*.*.* ••• * ••••• *.* •• * ••• * •• ****. · '" • 1110 USER INPUT EDIT MODOLF SUPPLIED BY IMS • 
* * 
* 
• 
'" * 
* 
• • 
* • 
* • 
* 
* 

• THIS MODULE ASSU~ES NO RESPONSIBILITY FCR TRANS~ISSION ERROR 
DETECTION OR CORRECTION. 

• A MESSAGE IS ASSUMED COMPlETE AND NO A71E~PT WILL BE MAtE TC 
SEGMENTIZE INPUT DATA 

• • • • • 
* • THE FIRST TWO CHARACTERS CF THE DATA IS ASSUMED TC CONTAIN A * 

DEFINED TRANSACTION CODE CR LOGICAL TER~INAL NAME • 
• 

• INPUT PASSED BY THIS MODULE WILL EE 1 BYTE LCNGER THAN THE DATA. 
INPUT FROM THE TERMINAL WITH A ELANR INSEETEO AFTER THE SECOND • 
CHARACTER • 

• 
• • EOl ONLY INPUT WILL BE SENT TO THE SYSTEM AS A NO TEXT MESSAGE • 
• • 
• • ANY CHARACTER FOLLOWED BY EOI WILL BE SENT AS A REPEAT REQUEST • 
• • 
• • AN INPUT OF 99+EOI WILL EF USED AS NORMAL SIGN/OFF; THE EDIT • 
* ROUTIN E WILL RETORN TO THE DOM WITH A tISCCNNF.CT BEeUEST. * 
• * *.* ••• * •••••• * •• ** •••• *.*.*.*.*** •• *****.******.** •••• ** •• *******.* •• *. 

ENTRY 

E NT BY 1 

E.1ECT 
SAVE 
USING 
LJ? 
CH 
BH 
LR 
B 
EOU 
B 
B 
B 
B 
EJECT 
EQU 
CH 
BNH 
cn 
BNE 
eLC 
liE 

(14,12)"I11Q090 
DFSI7170,R12 
F12,R15 SET BASE BEGISTER 
RO,TWLVE VALIDITY CHECR ENTRY VECTCR 
BADVECT BEANCH IF TOO HIGB 
R15,RO COpy THE EN1Y VECTOR 
ENTRY(R15) GC TO PROfER BeUTINE 

* ENTRY1 
EADVECT 
ENTRY2 
R ETUHN 

• 
n2,TWLVE 
SPECIAL 
n2,THIRTEEN 
MOVER 
10(2,R1) ,:C'99' 
SIGNOFF 

OC J?EAO CCM~LETION FROM LINE 
04 GET NEX! SHOULD NOT CCCUF FOF THIS 
OR LINE DISCCNNECT ENTFY 
12 NO ACTION ON LINE STOP CF SHUTOCWN 

CHECK NC. DATA CHIRS REC'C 
LESS 1HAN 3 CHAR IS FUNCTION ~EOUEST 

TWO tATA CHAR + ~CI ? 
AF IF NOT 
IS I'I qq + EOI ? 
BR IF Y!S 

Figure 4-7 (Part 1 of 2). IBM-Supplied. 7770-3 Input Edit Routine 

4.32 IMS/VS System proqramming Reference Manual 

I 

',,-. 

".,,-

( 
'-



MOVER 

MOVTXT 
SIGNOFF 

ENTRY2 

RETURN 

* SPECIAL 

BADV PCT 

* 
THIRTEEN 
TWLVE 
THREE 
EOT 

EQU 
MVC 
SH 
FX 
MVI 
AH 
SR 
E 
MVC 
EQU 
SR 
LA 
B 
EJECT 
EQU 
LA 
EQU 
L 
LM 
BR 

EQU 
LA 
BE 
MVl 
LA 
LA 
B 
EJECT 
EQU 
SR 
B 

* o (2 , R 1) , 1 C (R 1 ) 
R2,TWLVE 
R2,MOVTXT 
2 (R 1) , X ' 4 G ' 
R2,THRFE 
R15,R15 
RET{JPN 
3(1,Rl),12(Rl) 

* R2,P2 
R15,16 
RETURN 

* 

SET TRANSACTION COCE 
FEMOVE OVERHEAt CCUNT 

MOVE REMAINDER OF DATA TEXT 
TRANSACTICN SEPEFATOR 
SET DA'IA LENGTH 

SCHEDULE SEGMENT ~ITH EaT B.C. 
RETUFN MESSAGE TO ANALYZER 

NO MESSAGE FOR CALLER 
SET tISCCNNECT BEQUEST BC 
AND GO HANG UP THE LINE 

R15,8 CANCEL ANY MESSAGE l~ fROCESS 

* R14,12(,R13) GET RETURN ADDRESS 
R3,R12,32(R13) RO,Rl NOT EESTOFFD. R15,B2 PRESET 
R14 BETURN TO DEVICE MODULE 

* THIS 
R15,12 
RETURN 
O(Rl),EOT 
R2,1 
R1S,O 
RETURN 

* 

SECTION DEPENDENT ON (CMPARE IN ENTRYl CCDE •• 
SET REFEAT VECTOF 
AND DO REPEAT IF 2 CHARS REC'O 
SET EOT ONLY FCR NO TEXT MESG 
AND SE~ DATA COUNT 
AN~ SET FOF EOT RETURN 

R15,R15 IF BAD INFUT VECTCR SET feT R.C. 
RETURN AND TRY TO CONTI~UE 
CONSTANTS AND eSEeTS FCF INPUT EtIT 

SPACE 3 
DC H'13' 
DC H'12' 
DC H'3' 
EOU 055 
REQUATE 
END 

Figure 4-7 (Part 2 of 2). IBM-Supplied 7770-3 Input Edit Routine 

DC User Exit and Edit Routines 4.33 



7770-3 OUTPUT EDIT ROUTINE -- DFS07770 

The IMS/VS user has the ability to install a 7770-3 with an 
installation-tailored vocabulary. IMS/VS cannot, of course, predict 
this vocabulary. For this reason, an output edit exit is implemented 
to allow a user-written module to inspect system messages and 
terminal-to-terminal message switch messages and convert them, at the 
user's discretion, to a message that is compatible with his vocabulary. 

The output edit module receives control on system messages and 
message switches. It does not receive control for a message fr~m an 
application program that is a response to an input transaction. 

• Registers on Entry 

R1 

R2 

R7 

R8 

R9 

R10 

R11 

R13 

R14 

R15 

Address of the output message segment. 

Length of the output message segment. 

CTB addre ss. 

CTT address. 

CLB address. 

CNT address. 

SCD address. 

Save area address. The first three words in the save 
area must not be changed. 

Return address to IMS/VS. 

Entry point to the user routine. 

• Data Format on Entry 

Before control is given to the output edit module, IMS/VS edits the 
output message into the output buffer until the end of message is 
reached or the buffer is full. The buffer contains only output message 
dat a in EBCDIC. 

• Registers on Exit 

All registers must be restored except registers 0, 1, 2, and 15. 
The contents of registers 0 and 1 are iqnored by IMS/VS. 

R2 

R15 

4.34 

The length of the data now in the output buffer area 
that was pointed to by R1 on entry. 

Return codes: 

00 No action taken by the output edit. IMS/VS is 
to continue sending the message and any further 
segments without routing control to the output 
edit module. 

IMS/VS System Programming Reference Manual 

( 
'\...._. 



04 

08 

IMS/VS is to send the current contents of the 
buffer to the line, and the output edit module 
desires to gain control for anv further segments 
of this message. 

rhe.contents of' the buffer have been changed. 
IMS/VS is to sena what is now in the buffer and 
ignore (dequeue and not send) any further 
segments of the message. 

IMS/VS stops the line and generates a message to the master terminal 
for anv one of the following output edit module error conditions: 

• The return code from the output eait module exceeds 8. 

• The count returned in register 2 is negative or zero. 

• The count returned in register 2 is greater than the available 
buffer space (buffer overrun) • 

After the line has been stopped, system messages can still be 
transmitted to the 7770-3. The output edit routine is not invoked. 

The supplied output edit module makes the following assumptions: 

• The vocabulary of the 7770-3 contains the phonetic equivalents for 
the numbers 0 through 9 and that the translate table supplied by 
the user converts the EBCDIC numbers to their vocabulary 
equivalents. 

• The prefix phrase (in drum address form) to be sent for system 
messages follows the user translate table, and the ~rientation 
phrase and has the form nppp, where n is a single byte cont~ining 
the count of the number of drum address bytes (p) following. The 
orientation phrase has the format nppp. 

• Because of the variable nature of the 7770-3 vocabulary, the system 
definition utility requires that you supply the output translate 
table for the 7770-3. It is also your responsibility to provide 
the required orientation phrase also to be used for system message 
con version. 

If the IMS/VS-provided output edit routine is to be used, it is your 
responsibility to move the module, DFS07770, from IMSVS.LOAD to the 
user library specified in the IMSGEN statement prior to system 
definition. 

If vou are providing your own output edit routine, the module must 
be placed into the user library prior to system definition. 

DC User Exit and Edit Routines 4.35 



For more information on the IMS/VS-supplied output edit module, see 
the description of module DFSo7770 in the l~~LY~ R£~g£s~ 199i£ ~~~~~l, 
!Q!!!!!!~ 1 ~f 1· 

The eait rontine program listing is shown in Figure 4-8. It is for 
reference only. 

0777 TITLE 'CO~M, OUTPUT EDIT FOP 7770 ~ODEL 3' 
DFS01710 CSECT 
•••••• * •• ******** ••• **.*** •• * •••• *.** •••••••••••••• * •••••• ** •• * •••••••• 

• * * 1770 SYSTEM MESSAGE EI:IT neUTINE SOFPLIED EY I~S • 

* • 
• • ANY MESSAGE SWITCHED TO THIS TEEP.INAL IS SENT AS IS WITH NO • 
• KODIFICATION BY THIS PROGHAM • 

• * • • SYSTE~ 'CO~~AND COMPLETEt' MESSAGES ARE CONVEBTEI: TO THE USER * 
* SUPPLIED ORIENTATION PHHASE • 
• • 
• • SYSTEM ERFOE MESSAGES ARE FEPLACED BY THE USER SUPPLIED ERROR • 
* PHRASE PLUS THE IMS ERFOR MESSAGE NUMBER • 
• • 
***************.****.*****.****.******* •••• *****.**.** •••••••••••••• *** 

EJECT 
SAVE (14,12) ,,0779090 
USING DFS01770,R12 
LH H12,R1S 
CH H2, SEVEN TOO SHOHT FOR SYSTEM USE 
BL [l!SGSW YES 
CLC 1(3,R1),DFS IS IT A SYSTEM MSG? 
BNE MSGSW 
T~ 4(H1),X'FO' 
BNO ~SGSW He 
TM 5(R1),X'FO' 
BNO MSGSW NO 
TM 6 (H1) ,X' Fa' 
BNO MSGSW AND NO 
USING CTT,H8 
L Rl,CTTSEND 
LA R 3,256 (H3) GET ACK PHRASE 
SH R4,H4 
IC H4,0 (H3) LENGTH OF PHRASE 
eLC 4(3,R1> ,059 COMMAND CCMPLETE PHRASE 
BH ERHMSG NO - ERHOF MSG 
EX R4,MOVFRAZE 
LR R2, R4 SET hEW TEXT LENGTH 
LA R15,8 SET SKIP FEST RETURN cOtE 

HETURN L R 14, 12 ( 1 3) 
LM 3,12,32(13) 
BR R14 
EJECT 

Figure 4-8 (Part 1 of 2). IBM-Supplied 7770-3 Output Edit Routine 

4.36 IMS/VS System Programming Reference Manual 

C.-



ERRMSG 

* 
MSGSW 

* 
SEVEN 
DFS 
059 
MOVFRAZE 

EQU 
LA 
IC 
LA 
MV C 
EX 
LA 
KVC 
LA 
LA 
B 

EJECT 
EQU 
SR 
B 
EJECT 

* n3,1 (n~,F4) 
R4,O (R.J) 
R5,7(R1,R4) 
O(3,RS) ,4(R1) 
R4,MOVFRAZE 
R3,O(R4,R1) 
o (3" R 3) , 0 (R 5 ) 
R2,3(R4) 
H15,8 
RETURN 

* 
R15,R1~ 

R ETUR N 

PCINT TO ERROR FHSASF. 
GET LENGT H 
STEP PAST [lOSSIELE SEL~ tESTRtJCTION 
SAVE F.RROR NUMBER OF MESSAGE 
MCVE USEF EaRC~ PHRASE 

SET EPROF NUMBER 
SEt NEW LENGtH 
SET SKIP fEST RETURN CODE 

CONSTANTS AND DSECTS USED SY tFS07770 
SPACE 3 
DC H'7' 
DC C' DFS ' 
DC C' 059 ' 
MV C 0 (1, R 1) , 1 (R 3) 
REQUATE 
leLl CTTBASE=O 
END 

Figure 4-8 (Part 2 of 2). IBM-Supplied 7770-3 output Edit Routine 

Refer to the paragr ap h "Speci al Con di t ions" in the section of -f:hi s 
chapter under "7770-3 Output Edit Routine -- DFS07770" for a description 
of the requirements for the user output translate table. Refer also 
to the user output translate table listing that follows in this chapter. 

The orientation phrase is used by the device-dependent module. 
Before and after each READ, the phrase is sent to the terminal operator 
to indicate that a READ is pendinq on the line, and that he can now 
enter his data. 

The prefix phrase is optional. It is used only by the supplied 
output edit routine DFS07770. See the description of module DFS07770 
functions in this chapter. 

In~ly~iQQ QY~iDg ~Y§1~ID Defini1~Qll: Before executing Stage 2 of IMS/VS 
system definition, the user-supplied translate table must be placed in 
the user library specified in the IMSGEN statement. rhe table must be 
a load module with the name specified in the LINFGRP statement. 

DC User Exit and Edit Routines q.37 



~am21~ Qg1~~1 !~~n21~1~ Tabl~ 1i§1ing: The following is an example of 
a listing which might be produced for a user-supplied output translate 
table. See also "7770 User Input Eait Routine" ana "1110 User Output 
Edi t Routine" in this ch apter. 

1 OUT7770 CSECT 
2 ******************************************************************** 
3 * * 
4 * 7770 OUTPUT TRANSLATE TABLE * 
5 * * 
6 * THIS TABLE IS DEPENDENT-UPON THE VOCABULARY PRESENr * 
7 * ON THE 7770 DRUM-TRACKS. * 
8 * * 
9 ******************************************************************** 

11 * 0 123 4 5 6 1 8 9 ABC D E F 
12 DC X'OOO102030405060108090AOBOCODOEOF' 
13 DC X'101112131415161718191A1B1C1D1E1F' 
14 DC X'202122232425262128292A2B2C2D2E2F' 
15 DC X' 303132333435363738393 A3 B3 C3 D3 E3 P' 
16 DC X'OODOOOOOODOOOOOOOOOOOOOOOOOOOOOO' 
17 DC X'OODOODDDDDOOOOOOOOOOOOOOOOOOOOOO' 
18 DC X'OOOOOOOOOOOOOOOOOOOOODOODOOOOOOD' 
19 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
20 DC X'OQ01020304050607080900DOOOOOOOOO' 
21 DC X'OO111213141516171819000000000000' 
22 DC X'OOO222324252627282900CCOOOOOOOOO' 
23 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
24 DC X'OOO10203040506070809000000000000' 
25 DC X'OO111213141516171819000000000000' 
26 DC X'OOOO22232425262728290COOOOOOOODO' 
27 DC X'16313233343536373839000000000000' 
28 * o 1 234 5 6 7 8 9 ABC D E P 

30 **************************************** 
31 * * 
32 * 7770-3 IMS/VS ORIENTATION PHRASE. * 
33 * * 
34 **************************************** 

36 DC PHRASE LENGTH 

0 PRE 
1 FORMATrED 
2 MESS1\ GE S 
3 
4 
5 
6 
7 
8 LOWER 
9 CA SE 
A ALPHA 
B 
C UPPER 
0 C1\ SE 
E ALPHA 
F NUMERIC 

37 DC 
AL 1 (ORIEND-*-1) 
X' 2BD E' PHRASE IS 'DIAL RELE1\SED' 

38 ORIEND EQU * 

40 **************************************** 
41 * * 
42 * 7770-3 IMS/VS OUTPUT PREFIX PHRASE * 
43 * * 
~U **************************************** 

46 DC 
47 DC 
48 OPREND EQU 
49 END 

AL 1 (OPREND-*-1) 
X ' 0 61 91 91 61 900 ' 
* 

P HRA SE LENGTH 
PHRASE IS 'E R R 0 R' 

4.38 IMS/VS System Programming Reference r1anual 

_ ........ - ..• -_ ....• _._--- ..• ---- .......... _----_. 

(' 
\ '-- .. , 

C.:. 



2972/2980 INPUT EDIT ROUTINE 

An input edit routine is required to perform terminal-related 
functions inherent in the design of the 2972/2980 General Banking 
Terminal system. Usage and value of these functional characteristics 
are installation-oriented, and are therefore not performed by normal 
IMS/VS procedures. Control is passed to the 2972/298~ input edit 
routine to process each entered message segment after that messaqe 
segment has been translated by IMS/VS. 

The 2972/2980 input edit routine must perform the following 
funct ions: 

1. Determine the IMS/VS destination (SMB or CNT) of messages entered 
from a 2980 teller or administrative station. 

2. Determine end-of-message of multisegment messaqes (by setting 
DECCSWST bit 7 to indicate EOM). 

3. Reposition the entered data to the beginning of the input buffer 
for IMS/VS processing (the entered segment must be in standard 
IMS/VS input message format after edit processing). 

In addition to performing the above required functions, the 2972/2980 
input edit routine may add input terminal status information to the 
entered segment, such as the presence or absence of a passbook or 
auditor key on the input terminal. The input edit routine can initiate 
re-transmission of the last successfully transmitted message to a 2980 
logical terminal by a return code to the calling routine. 

If IQP is incorporated into the IMS/VS system and is to receive 
input from the 2980, the following additional steps must be taken by 
the input edit routine: 

1. The input terminal status information must be separated from 
IQP elements by at least one blank. 

2. If the input terminal status information is appended to the end 
of a segment, any preceding carriaqe return must be remo~ed 
(repl aced wit h a bl ank) • 

3. The input terminal status information must be defined to TOF as 
a null word. 

4. In the edited segment, the input terminal status information 
must n:>t be the initial characters of the segment. 

Familiarity with IMS/VS terminal handling procedures and control 
blocks is required for a user to write an input edit routine to 
interface with TMS/VS routines in the IMS/VS control region. 
Examination of these control blocks may be required, but modification 
of IMS/VS control bl~ks by a user-written routine seriously endangers 
the integrity of the entire system. 

DC User Exit and Edit Routines 4.39 



• Registers on Entry 

RO 

R1 

R2 

R7 

R9 

R11 

R13 

R14 

R15 

Input buffer length. 

Address of the input area. 

Input data length. (Tne length of the area pointed to 
in register 1.) 

CTB address. 

CLB address. 

SCD base. 

Save area address. The first three words in the save 
area must not be modified. 

Return address to IMS/VS. 

Entrv point to the user routine. 

• Data Format on Entry 

The format of the data contained in the buffer pointed to by register 
1 at entry to the 2972/2980 input edit routine is shown below. 

r--------------------------------------------------------------, 
" , I I 9 BLANKS I TERMINAL ADDRESS I ENTERED rEXT* , 
I I , , 
L--------------------------------------------------------------~ 

* If entry is from a 2980-4, the first byte of the entered text 
is the teller identification number. 

• Registers on Exit 

R2 

R10 

R15 

Data length after edit (a zero length signifies a no 
data segment). 

The inputting CNT address if a retransmission of the 
last successfull y outputted message is requir ed. 

Return codes: 

o Process the entered segment. 

4 Resend the last message to the CNT in register 
1 ('. 

The entry name (~SECT) of the 2972/2980 input edit routine must be 
DFS29800. Because it will be called directly by the IMS/VS 2972/2980 
device dependent module (DFSDN110), the input edit routine must be 
link-edited with the IMS/VS control region nucleus. 

IMS/VS provides a default input edit routine for the 2972/2980. The 
listing of the default routine is shown in Figure 4-9. 

4.40 IMS/VS System Programming Reference Manual 

- -------------



---~ -

~~_o 

'--0./' 

c 

2980 TITLE 'COMM, SAMPLE 2980 INPUT EDIT EXIT ROUTINE' 
DFS29800 CSRCT 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * **0* * * * * * * * * * * ** * * * * * * 
* * * THIS IS A SA~PLE OF THE 2980 INPUT EDIT ROUTI~E REQUIRED BY * 
* IftSjVS 2972/2980 DEVICE SUPPORT. THE INPUT EDIT ROUTINE MUST PER- * 
* FORM THE FOLLOWING FUNCTIONS: * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

,. DETERMINE THE IMS/VS DESTINATION (5MB OR CRT) OF "ESSAGES 
ENTERED FROM A 2980 TELLER OR ADMINISTRATIVE STATION. 

2. DETRRftTNE END-OF-MESSAGE OF MULTI-SEGMENT MESSAGES AND SET 
DECCSWST BIT 7 AT END-OF-"ESSAGE. 

3. REPOSITION THE ENTERED DATA TO THE BEGINING OF THE INPUT 
BUFFER FOR IMS/VS PROCESSING. THE ADDRESS OF THE INPUT 
BUFFER IS PASSED TO THE EDIT ROUTINE IN REGISTER 1. 

* 
'* 
* 
* 
* 
* 
* 
* 
* 

* * * IN ADDITION TO PERFORMING THE ABOVE PUNCTIONS THIS SAMPLE * 
* ROUTINE ALSO DOES THE FOLLOWING: * 
* * * 1. DETERMINES THE INPUTING LOGICAL TERMINAL (CNT) FOR MESSAGES * 
* ENTERED FROM A 2980-4 TO BE USED FOR SECURITY VALIDATION AND * 
* AS THE I/O PCB FOR THE APPLICATION PROGRAM. * 
* 
* 
* 

2. INITIATES RE-TRANSMISSION OF THE LAST SUCCESSFULLY OUTPUTED 
MESSAGE TO ANY PHYSICAL TERMINAL. 

* 
* 
* 

* * * DETERMINATION OF INPUT DESTINATION IS NOT PERFORnED ON DATA * 
* ENTERED FRoe A 2980-2 ADMINISTRATIVE STATION AS THIS TERMINAL CAN * 
* READILY USE THE STANDARD IMS/VS "ESSAGE PORftAT. DATA ENTRY FROM A * 
* 2980-1 OR 2980-4 TELLER STATION REQUIRE THE ENTRY OF A TRANSACTION * 
* CODE SEQUENCE IN THE FIRST SEGMENT OF ALL ENTERED MESSAGES (IMS/VS * 
~ COMMANDS ~UST BE ENTERED IN STANDARD I~S/VS FORMAT). THE TRAHSACT- * 
* ION SEQUENCE MAY OCCUR ANYWHERE IN THE FIRST SEGMENT AND CONSIST OF * 
* A DESIGNATED BEGIN CHARACTER, FOLLOWED BY A VALID IMS/VS TRANSACT- * 
* ION CODE TERMINATED BY ANY CHARACTER WHICH WHEN TRANSLATED BY IMS * 
* HAS A HEXADECIMAL VALUE LESS THAN X'C1', OR END OF ~ESSAGE SEGMENT. * 
* IF A SCAN OF THE FIRST ~ESSAGE SEGMENT DOES NOT ENCOUNTER A VALID * 
* TRANSACTION SEQUENCE (IE: A BEGIN CHARACTER FOLLOWED BY NO MORE * 
* THAN EIGHT (8) CRAFACTERS BEFORE THE TERMINATION CHARACTER), THIS * 
* ROUTINE ASSUMES THE MESSAGE WAS ENTERED IN STANDARD IMS/VS INPUT * 
* MESSAGE FORKAT AND BYPASSES THE DESTINATION EDIT FUNCTION. THE * 
* DESIGNATED BEGIN CHARACTERS SCANNED FOR ARE: * 
* 
* 
* 

X'41' NUMERIC ENTRY OF KEY 0 (MSGACK) FROM A 2980-1. 
X'59' NUMERIC ENTRY OF KEY 15 (CODE) FROM A 2980-4. 

* 
* 
* 

* * * END-Of-MESSAGE IS DETERMINED BY THE ENTRY OF A PERIOD(.) AS * 
* THE LAST CHARACTER OF THE LAST SEG~ENT OF A MULTI-SEGMENT ~ESSAGE, * 
* OR AS THE LAST CHARACTER OF A SINGLE SEGftENT MESSAGE. * 
* * * INPUTING TERMINAL STATUS INFORMATION IS APPENDED TO EACH ~SG * 
* SEGMENT IN THE FOLLOWING FORMAT: * 
* * 

Figure q-g (Part 1 of 6). IBM-Supplied 2972/2980 Input Edit RO\ltine 

DC User Exit and Edit Routines 4.41 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* • 
* 
* 
* 
* 

AABC 

WHERE: AA- IS A TWO (2) BYTE HEXADECIftAL FIELD CONTAINING 
TWO NINES (X'P9F9') 

B-IS ~ 'P' (X'D1') TO INDICATE A PASSBOOK WAS 
PRESENT AT SEGftENT ENTRY (OR THE AUDITOR'S 
KEY WAS INSERTED ON A 2980-2); OTHERWISE 
THIS CHARACTER IS AN 'N' (X'DS'). 

C- IS THE TELLER ID~NTIPICATION CHARACTER POR A 
2980-1l. 

A - TELLER A WITHOUT SUPERVISOR KEY 
B - TELLER B WITHOUT SUPERVISOR, KEY 
J - TELLER A WITH SUPERVISOR KEY 
K - TELLER B WITH SUPERVISOR KEY 

IF ENTRY WAS NOT FRO" A 2980-4 THIS CHARACTER 
IS BLANK (X'40'). THE TELLER IDENTIFICATION 
CHARACTER IS REftOVED PROft THE INPUT TEXT. 

* * 
* 
* * 
* 
* 
* * 
* 
* 
* 
* 
* 
* * 
* 
* 

* * * DETERKINATION OF THE INPUTING LOGICAL TERftINAL (CNT) IS "ADE * 
* BY EXA"INATION OF THE NAKES OF THE CNTS ASSIGNED TO THE IMPUTING * 
* PHYSICAL TERftINAL. EACH CNT IS EXAftINED TO FIND ONE WITH A NAME * 
* WHOSE FIRST CHARACTER ftATCHES THE TELLER IDENTIPICATION CHARACTER; * 
* IP ONE IS ~OUND THE CNT CHAIN IS ALTERED TO "AKE THAT CNT THE PIRST * 
* CNT IN THE CHAIN OF CNTS. THE CNT CHAIN REftAINS UNALTERED IF NO CNT* 
* IS POUND. * 
* * ENTRY OF THE CHARACTERS '&RESEND' AS THE ONLY CHARACTERS OF 
* A ~ESSAGE WILL CAUSE THE LAST SUCCESSFULLY OUTPUTED MESSAGE TO BE 
* RE-TRANSMITTED TO THE INPUTING TERMINAL. 

* * REGISTERS AT ENTRY: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

RO 
R1 

R2 
R7 
R9 
R11 
R13 
R14 
R15 

INPUT BUFFER LENGTH 
POINTS TO THE INPUT ftESSAGE SEGMENT;, PREFIXED BY 
NINE BLANKS, THE TERMINAL ADDRESS CHARACTER, THE 
TELLER IDENTIFICATION CHARACTER(IF ENTERED YROM 
A 2980-4). AND THE ENTERED TEXT. 
DATA LENGTH 
CTB BASE 
CtB BASE 
seD BASE 
CALLER'S SAVE AREA (MY SAVE AREA IS PRE-CHAINED) 
RETURN ADDRESS 
ENTRY POINT ADDRESS 

* RETURN REGISTERS: 

* 
* 
* 
* 
* 

R2 
R10 
R15 

DATA LENGTH AFTER EDIT 
CNT flASE 
RETURN CODE 

* 
* 
* 
* 
* 
* 
* * 
* 
* * 
* 
* 
* 
* 
* 
* 
* * 
* 
* * 
* 
* 
* 
* 

*********************************************************************** 

Fiqure 4-9 (Part 2 of 6). IBM-Supplied 2972/2980 Input Edit Routine 

ij.,42 IMS/VS System Proqramming Reference Manual 

/~ 

" 

(~ 

~ 
"-- ' 



---- --------------

'----' 

c/ 

REQUATE 
USING CTB,R7 
USING IECTDECB,R9 
USING CNT,R10 
USING SCn,R11 
USING DFS29800,R12 
SAVE (14,12)"EDIT2980.5295 SAVE REGISTERS 
B 18(0,1S) BRANCH AROUND ID 
DC AL1 (13) LENGTH OF IDENTIFIER 
DC CL8'EDIT2980' IDENTIFIER 
DC CLS'.S29S' IDENTIFIER 
STM 14,12,12(13) SAVE REGISTERS 
LR R12,R1S SET PROGRAM BASE 
L R13,8(,R13) STEP TO NEXT SAVE AREA 
SR R15,R15 CLEAR RETURN CODE 
LR R5,R1 SAVE MESSAGE POINTER 
SH R2,=H'10' REMOVE BLANKS FROM LENGTH 
LTR R6,R2 SET LENGTH REG 
BNP ZEROLNG BRANCH IF NO DATA 
MVl DESTLNG,O SET DESTINATION LENGTH TO ZERO 
MVl TELLERID,C" CLEAR TELLER ID 
LA R14,10(,RS) SET REGIN OF TEXT 
TM CTBFEAT,CTBFMOD4 2980-41 
BZ CKRESEND NO 
MVC TELLERID (1) ,0 (R 14) SA VE TE LLER ID 
LA R14,1 (,R14) STEP TO TEXT 
BCTR R6,0 DECREMENT DATA LENGTH 
LTR R6,R6 NO DATA? 
BN~ ZEROLNG YES 

CKRESEND EQU * 
eLI 0 (R14) ,C'&&' POSSIBLE RESEND REQUEST? 
BE RESEND YES 

SETSCAN1 EQU * 
TM CTBFEAT,CTBF"OD2 2980-2? 
BO SETSTAT YES 
BCTR R6,O REDUCE LENGTH POR SCAN 
EX R6,SCAN1 FIND BEGIN CHARACTER 
LA R6,1 (,R6) RE-ADJUST LENGTH 
BC 10,SETSTAT BRANCH IF NOT POUND 
LA R4,1(,R1) 1ST CHAR OF DESTINATION 
LA R3,O(R6,B14) POINT TO END OF SEG~~RT 
LR R1,R3 SET END OF SECOND SCAN 
SR R3,R4 SCAN LENGTH 
BCTR R3,O 
EX RJ,SCAN2 SCAN FOR SECOND DELI~ITER 
BC 6,FOUNDIT BRANCH IF FOUND 
BCTR R1,O LAST CHARACTER WAS DELI~ITER 

FOUNDIT EQU * 
SR R1,R4 DESTINATION LENGTH 
CH R1,=H'8' VALID LENGTH? 
BH SETSTAT NO 
STC R1,DESTLNG STORE LENGTH 
MVC, DEST, 0 (R4) AND DESTIN ATTOR 

SETSTAT RQU * 
MVI PASSBOOK,C'N' INDICATE NO PASSBOOK 
CLC 9(1,R5) ,CTBTERM+1 NOR~AL ADDRESS? 

Fiqure 4-9 (Part 3 of ~. IBM-Supplied 2972/2980 Input Edit Routine 

DC User Exit and Edit Routines 4.43 



BE CKEOM YES 
MVI PASSBOOK,C'P' INDICATE PASSBOOK PRESENT 

CKEO!,) EQU * 
LA R4,O(R6,R14) R4 = END OF SEGMENT 
LR R8,R4 
BCTR R8,O BACK UP TO LAST eSG CHARACTER 
CLI 0(R8) ,X'lS' ENDS WITH CARRIAGE RETURN? 
BRE *+6 NO 
BCTR R8,O 
BCTR RB,O 
CLC 0(2,R8),=C'**' SEGMENT TO BE CANCELLED? 
BE TEST!'10D4 YES, DON'T ADD STATUS INFO 
CLI 1(R8) ,COMMA MORE SEGMENTS COMING? 
BE NOTEOM YES 
CLI 1 (R8),PERIOD END-Of-MESSAGE? 
SNE ADDSTAT NO 
or DEccsws'r,X'Ol' INDICATE END-Of-MESSAGE 

NOTEOM EQU * 
LA RB,l(,RA) 
LR R4,R8 R4 = END-OF-SEG"ENT POINTER 
sa R8,R14 RE-CALCULATE SEGMENT LENGTH 
LTR R6,R8 AND TEST FOR NO-DATA SEGMENT 
SP ADDSTAT BRANCH IF DAT~ SEG"ENT 

ZEROLNG EQU * 
SR R6,R6 SET ZERO LENGTH 

RETURN EQU * 
L R13,4(,R13) GET CALLER'S SAVE AREA 
ST R6,28(,R13) STORE LENGTH IN R2 OF CALLER 
L R14,12(,R13) GET RETURN ADDRESS 
RETURN (0,12) AND RETURN, RC IN R15 
LM 0,12,20(13) RESTORE THE REGISTERS 
BR 14 RETURN 

ADDSTAT EQU * 
LA R6,L'STATUS(,R6) ADD STATUS LENGTH TO SEG LENGTH 
MVC O(L'STATUS,R4) ,STATUS ADD STATUS INFO TO SEGMENT 
CLI DESTLNG,O DESTINATION LENGTH ZERO? 
BE MOVESEG YES 
~VC O(8,R5),DEST PUT DESTINATION IN SEGMENT 
AH RS,DESTL ~PDATE TEXT POINTER 
LA RS,1{,R5) INSURE 1 BLANK AFTER DESTINATION 

80VESEG EQU * 
BCTR R6,0 REDUCE LENGTH FOR MOVE 
EX R6,~OVE NOVE SEG~~NT TO PRONT OF BUFFER 
LA R6,1(,R6) RE-ADJUST LENGTH 
CLI DESTLNG,O DESTINATION LENGTH ZERO? 
BE TEST~OD4 YES 
LA R6,1(,R6) ADD 1 FOR BLANK AFTER TRAM CODE 
AH R6,DESTL ADD DEST LENGTH TO DATA LENGTH 

TESTt'lOD4 EQU * 
TM CTBPEAT,CTBFMOD4 2980-4? 
BZ RETURN NO 
BAL R4,FIKDCNT PIND INPUTING CNT 
B RETURN AND RETURN 

Figure 4-9 (Part 4 of 6). IBM-Supplied 2972/2980 Input Edit Routine 

4.44 IMS/VS System Programming Reference ~anual 

" '-. 

,,----
( 
'\... 



-_ ... _--_. 

'-.. / 

RESEND 

PINDCNT 

NEXTCNT 

CNTRET 

EQU 
CH 
BRE 
Ctc 
BHE 
BAL 
L 
ST 
LA 
B 

EQO 
L 
LR 
EQU 
CLC 
BE 
LR 
L 
LTR 
BHZ 
EQO 
LR 
BR 

CNTFOtJND EQU 
CR 
BE 
KVC 
ST 
ST 
BR 

*** 
* 
*** 
DESTL DC 
DEST OS 
STATUS DC 
TABLEl DC 

ORG 
DC 
ORG 
DC 
ORG 

TABLE2 DC 
RRSENDSQ DC 

ORG 
DC 
ORG 

* R6,=H'8' 
SETSCANl 
RESENDSQ,O (R 14) 
SETSCAN1 
R4,FINDCNT 

VALID nESSAGE LENGTH? 
NO 
RES END REQUEST? 
NO 
GET CNT ADDRESS 

R4,4(,R13) 
R10,60(,R4) 
R15,4 

GET CALLER'S SAVE AREA ADDRESS 
STORE CNT ADDRESS IN CALLERS R10 
SET RETURN CODE 

ZEROLNG ZERO DATA LENGTH AND RETURN 

* Rl0,CTBCNT 
RJ,Rl0 
* 
TELLERID(l),CNTNAKE 
CNTFOUND 
R5,R10 
R 10 ,CNTCNTPT 
R10,~10 

NEXTCNT 

* 
R10,R3 
R4 

* 

FIRST CNT ON CTB 

NAME KATCH TELLER ID? 
YES 
POINTER TO PREVIOUS CRT 
FIRST CRT IN CHAIN 
LAST CNT? 
NO. BRANCH 

USE 1ST CNT IN CHAIN 
RETURN 

Rl0,R3 1ST CNT? 
CNTRET YES 
CNTCNTPT-CNT(,R5) ,CNTCNTPT SET PREVIOUS=NEXT 
RJ,CNTCNTPT ~AKE IT NEXT AFTER THIS CRT 
R10,CTBCNT ~AKE THIS CNT FIRST IN CHAIN 
R4 AND RETURN 

CONSTANTS, OSBCTS, AND EQUATES 

H'O' 
CL8 
X'F9F90000' 
256XL1'OO' 
TABLE1+65 
X' 41' 
TABLE1+B9 
X'S9' 

192XL1'FF~,64XL1'OO' 
C'&&RESEND • 
*-1 
X'15' 

*** 
* 

*** 

Fiqure 4-9 (Part 5 of 6). IBM-Supplied 2972/2980 Input Edit Routine 

DC User Exit and Edit Routines ~.~5 



SCAN 1 
SCAN2 
MOVE 

TRT 
TRT 
MVC 

DESTLNG EQU 
PASSBOOK EQU 
TELLERID EQU 
PERIOD EQU 
COMMA EQU 
CTBFMOD4 EQU 
CTBFMOD2 EQU 

LTORG 

EJECT 

o (0 , R 1 4) , TABLE 1 
0(0,R4) ,TABLE2 
0(0,R5),0(R14) 

DESTL+1 
STATUS+2 
STATUS+3 
X'4B' 
X'6B' 
X'02' 
X'01' 

=H'10' 
=H' 8' 
=C'**' 

CTBFEAT 'SETTING IDENTIFYING A 2980-4 
CTBFEAT SETT.ING IDENTIFYING A 2980-2 

ICLI CLBBASE=O,CTBBASE=O,CNTBASE=O 
PRINT NOGEN 
ISCD SCDBASE=O 
END 

Figure 4-9 (Part 6 of 6). IBM-Supplied 2972/2980 Input Edit Routine 

4.46 IMS/VS System programming Reference Manual 

---_ .. _-_ ... _--_. __ ._ ... 

c 



".-. 

' ............ -

3741 SIGN-ON EXIT ROUTINE -- DFSS3741 

IMS/VS requires a siqn-on exit routine to provide the /IAM command 
and /SET command values required to complete the logical connection 
between IMS/VS and the 3741. This routine is invoked by the 3741· 
nevice-depend9nt module after the physical connection occurs, and before 
any IMS/VS security checking, validity checking, or editing functions 
are performed. If the 3741 terminal id9ntification feature is 
installed, IMS/VS passes the ID to the sign-on routine. 

The 3741 sign-on exit routine must provide the names of the input 
logical terminal and the destination transaction code or logical 
terminal. If /IAM or /SET command passwords are required, they must 
also be provided by the siqn-on routine. The sign-on r~utine may 
request disconnection from IMS/VS. 

IMS/VS provides a default 3741 sign-on exit routine that may be 
modified by the user. The default routine provides names based on line 
identity, but does not provide passwords. It is capable of receiving 
3741 terminal IDs but does nothinq if one is received. A listing of 
the IMS/VS-provided routine is shown in Figure 4-10. 

• Registers on Entry 

R1 

R2 

R6 

R7 

R8 

R9 

R11 

R13 

R14 

R15 

Address of the 4-byte terminal identification; if none 
is received, R1 contains zeros. 

Address of the 3741 Name Table into which the re~uired 
names should be entered. 

Line buffer address. 

CTB address. 

CTT address. 

CLB address. 

SCD address. 

Save area address. The first three words in the save 
area must not be chan ged. 

Return address to IMS/VS. 

Entry point to the user routine. 

• Registers on Exit 

All registers must be restored except reqister 15. 

R15 Ret urn co des: 

CO Generate an /lAM PTERM LTERM c~mmand. 

04 Generate an /IAM LTERM command. 

08 Request disconnection from IMS/VS. 

DC User Exit and Edit Routines 4.47 



This table contains six 8-byte entries: 

1. Password for /lAM PTERM command 

2. Logical terminal name for /lAM LTERM command 

3. Password for /TAM LTERM command 

4. Transaction code name for /SET TRAN command 

5. Loqical terminal name for /SET LTERM command 

6. Password for /S Er command 

Entries for which no data is provided are left blank. 

The entry name (CSECTl of the 37~1 sign-on exit routine must be 
DFSS3741. 

The lMS/VS-provided routine is supplied as DFSS3741 in IMSVS.LOAD. 
If you want t~ use the supplied module, you must move it from IMSVS.LOAD 
to the user library specified in the lMSGEN macro during IMS/VS system 
definit ion. 

If you have written your own sign-on routine, you must place it into 
the user library specified in the IMSGEN macro prior to system 
definition. The module must be named and have an entry point DF.SS3741. 

f~Qgr~m 1i§.:t.i!Hl 

?or further information on the IMS/VS-supplied sign-on routine, see 
the In§L!§ g£~g£~m'1Qgic ~~nY~l, VolYm~ j Q!~. The source listing of 
the sign-on routine is shown in Figure 4-10. 

4.48 IMS/VS System Programming Reference Manual 



TITLE 'S374 
~BI65A' 

-_._------.. _-------

DFSS3741 SWITCHED BATCH BSC USER SIGNON EXIT 

************************************************************ 
* 
* 
* 
* 
* 
* 

MODULE NAME DFSS 3741 

* 
* 

TITLE SWITCHED BATCH BSC USER SIGNON EXIT 

* 
* 
* 
* 

ENTRY POINT (Sl 

* FUNCTION 

* 

DFSS3741 

* + THE MODULE RECEIVES CONTROL FROM THE BATCH BSC SWITCHED 
* DDM AFTER PHYSICAL CONNECTION HAS BEEN MADE. 
* + THE FUNCTION OF THE MODULE IS TO CREATE THE NAMES REQUIRED 
* BY THE USER FOR THE DDM TO CONSTRUCT INTERNAL IIAM AND /SET 
* COMMANDS TO ACHIEVE LOGICAL CONNECTION AND SET THE INPUT 
* MESSAGE DESTINATION RESPECTIVELY. 
* + IF THE DEVICE TRANSMITS A 4 BYTE HARDWARE ID, THIS IS PASSED 
* TO THE EXIT. 
* + THE USER MAY OPTIONALLY DECIDE TO DISCONNECT THE TERMINAL 
* BY SETTING A RETURN CODE. 

* 
* * ENTRY INTERFACES : 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* EJECT 

REGISTERS AT ENTRY : 

R1 
R2 
R6 
R7 
Ra 
R9 
R11 
R13-P15 

DATA/OTHER: 

ADDRESS OF 4 BYTE H/W ID, 0 IF ABSENT 
ADDRESS OF AREA TO RECEIVE CREATED NAMES 
LINE BUFFER ADDRESS 
CTB ADDRESS 
CTT ADDRESS 
CLB ADDRE SS 
SCD ADDRESS 
STANDARD OS/VS LINKAGE REGISrERS 

R2 POINTS TO A 6 BY a BYTE BLANK TABLE WHICH WILL 
RECEIVE THE USER REQUIRED NAMES. rHE FORMAT IS 
DESCRIBED UNDER EXIT INTERFACES. 

* EXIT INTERFACES 

* * REGISTERS AT EXIT (IF DIFFERENT FROM ENTRY) 

* 
* 
* 

R15 RETURN CODE 

Figure 4-10 (Part 1 of 31. IBM-Supplied 3741 Sign-On Exit Routine 

DC User Exit and Edit Routines 4.49 



* 
* 
* GENPTERM EQU 
GENLTERM EQU 
DISCL INE EQU 

* 
* 
lie 

* 
lie 

* lie 

* 
* 
* 
lie 

* 
* 
* lie 

* 

RETURN CODES 

o 
4 
8 

CREATE /IAM PTERM LTERM COMMAND FORMAT 
CREATE /IAM LTERM COMMAND FORMAT 
DISCONNECT THE TERMINAL 

DATA/OTHER : 

R2 POINTS TO THE COMPLETED 6 BY 8 BYTE TABLE 
CONTAINING THE USER REQUIRED NAMES. A BLANK NAME 
INDICAT:ES WHERE AN ENTRY IS NOT'RE~UIREO. 
1 /IAM PTERM PASSWORD 
2 /IAM LTERM NAME 
3 /IAM LTERM PASSWORD 
4 ISET TRAN DESTINATION NAME 

OR 
5 /SET LTERM DESTINATION NAME 
6 /SET DESTINATION PASSWORD 

* EXTERNAL ROUTINES CALLED : NONE 
* 
* * MESSAGE NUMBERS : NONE 
* 
* 
lie ABEND C~DES : NONE 

* 
* 
* 
* 
* 
************************************************************ 

DFSS3741 
EJECT 
CSECT 
ISAVE 
USING 
USING 
USING 
USING 
USING 
USING 
SPACE 
LH 
CVD 
OT 
UNPK 
MVC 
SPACE 
MVC 
MVC 
r1 VC 
SPACE 
r1 VC 
MVC 
MVC 
SPACE 
LA 
SPACE 

(14,12)"S373015,TYPE=CHAIN INITIALIZATION 
SCD,R11 ADDRESS SCD 
IECTDECB,F9 ADDRESS CLB 
CTT,R8 ADDRESS CTT 
CTB,R7 ADDRESS CTB 
B UFBTAM ,R 6 ADDRESS LINE BU FFER 
NAMELIST,R2 ADDRESS PARAMETER AREA 
2 
R4, CT BLINNO L IN'E NUMBER 
R4,CVDDWORD CONVERT TO DECIMAL 
CVDDWORD+7,X'OF' ENSURE UNPACKABLE TO EBCIDIC 
IAMLTERM+5(3) ,CVDDWORD+6(2) STORE IN IAM LTERM NAME 
SETTRAN+4(3),IAMLTERM+5 AND IN SET TRAN NAME 

IAMPTPWD ,BLANK8 
IAMLTNME,IAMLTERM 
IAr1LTPWD,BLANK8 

SETTXNME,SETTRAN 
S ETLTNME, BLANK8 
SETPWD,BLANK8 

R15,GENPTERM 

NULLIFY IAM PTERM PASSWORD 
INSERT TAM LTERM NAME 
NULLIFY lAM LTERM PASSWORD 

INSERT SET TRANSAcrION NAME 
NULLIFY SET LTERM NAME 
NULLIFY SET PASSWORD 

RC=O TO REQUEST /IAM PTERM LrERM 

Fig-ure 4-10 (Part 2 of 3). IBM-Supplied 3141 Sign-On Exit Routine 

4.50 IMS/VS System Programming Reference Manual 



RETURN EQU * 
L R13,SAVEL~.ST POINT TO ENTRY SAVE AREA 
RETURN (14,12),T,RC=(15) RESTORE REGISTERS 
SPACE 3 

CVDDWORD DS D 
IAMLTERM DC CL8'LTERMXXX' 
SETTRAN DC CL8'TRANXXX' 
BLANK* DC CL8' 

EJECT 
* 
* BUFBTAM 

BUFFER 
DSECT 

DSECT USED FOR 3741 INPUT AND OUTPUr 

BUFLNGTH 
BUFCURR 
BUFR ESID 
BUFDECTY 
BUFSAVRC 
BUFDL 
BUFZZ 
BUFDATA 

NAM'ELIST 
IAtiPTPWD 
IAMLTNME 
IAMLTPWD 
SETTXNME 
SETLTNME 
SFTPWD 
TERMLIST 
LE NNMLST 

DS 
DS 
DS 
DS 
DS 
DS 
DS 

H 
H 
H 
H 
X 
2X 
X 

EQU 
SPACE 2 
DSECT 
DS 

* 

CLa 
CL8 
CLa 
CL8 
CLa 
CLa 
CL16 

DS 
DS 
DS 
DS 
DS 
DS 
EQU 
EJECT * 
REQUATE SAVE=YES 

BUFFER LENGTH PASSED BY ANALYZER 
OFFSET TO CURRENT POSITION IN BUFFER 
OFFSET TO LAST BYTE IN BUFFER 
DECB DECTYPE FOR LAST I/O 
FIELD TO SAVE I/O CHECKER RC 
FIELD TO HOLD DL OF FIRST SEGMENT 
FIELD TO HOLD ZZ OF FIRsr SEGMENT 
DATA READ/WRITTEN FROM/TO TERMINAL 

PARAMETER AREA 
/lAM PTERM PASSWORD 
/IAM LTERM NAME 
/TAM LTERM PASSWORD 
/SET TRAN DESTINATION N!ME 
ISET LTERM DESTINATION NAME 
/SET PASSWORD 
DEFINE TERMINAL LIST 

ICLI CLBBASE=O,CTBBASE=O,CTTBASE=O 
I SCD S CDBAS E=O 
END 

Fiqure 4-10 (Part 3 of 3). IBM-Supplied 3741 Siqn-On Exit Routi~e 

DC User Exit and Edit Routines 4.51 





,----/" 

.. --.--------~ -----

This chapter provides guidelines for determining the general storage 
requirements for both the DB system and the DB/DC system. Worksheets 
ana examples are provided within their respective section. When using 
the worksheets and examples to determine buffer pool requirements for 
high volume systems, the user should note that more storage may be 
required to attain desired performance than is indicated. 

Several major items comprise the main storage requirements for the 
operatinq system region in which the IMS/VS DB system operates. 

1 • IMS/VS Data Base syst em mo dul es 

2. IMS/VS Program Specification Block (PSB) an d asso ciat ed block s 

3. Ir!S/VS Data Base De scri ption (DBD) and associated blocks 

4. IM S/VS data base buffer pool 

5. IMS/VS data base work pool 

6. as/vs modules 

7. OS/VS control blocks, buffer pool s, and work space 

8. User's application program 

Each of these items is discussed in detail so that the user can 
accurately estimate the OS/VS region main storage requirements for the 
DB system. A worksheet is provided on the followinq pages which can 
be used for accumulating the estimate. For a further discussion of 
all parameters, review the "Data Base Design Considerations" chapter 
in the In~t:y.~ .§ystg.!!!L!lll!li~tiQ!l Q§§.ign·Gui[~, and the "Data Base 
Description Generation" and "program Specification Block Generation" 
chapters in the IH~l!~' Utilities B~!~I~n£~H~~~l. 

All· main storage requirements define1 in this chapter represent the 
virtual storage requirements. If you are running V=R, the real storage 
requirements equal the virtual storage requirements. If you are running 
V=V, the real storage requirements are a subset of the virtual storaqe 
requirements. The amount of real storage required is a function of 
the performance level you want. In general, an acceptable level of 
performance can be achieved when the real storage available is between 
50~ and 80~ of the virtual storage required. 

IMS/VS Storage Estimates 5.1 



WORKSHEET 

B,gf,gr~n£~ 
!Y!!~~I 

1 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

n~§£!"iE.!!2n 

IMS Basic Modules. 

PSB Size. 

DMB Size. 

Data Base Buffer Pool Size. 

Data Base Work Pool. 

IMS/VS Data Base Organization Dependent 
Modules. 

OS/VS Data Base organization Dependent 
Modules. 

OS/VS Control Blocks, Buffers, & Work Space. 

OS/VS Buffers 

OS/VS Control Blocks & 
Work Space 

Data Base System = Subtotal 

Application Program(s). + 

Data Base System and Application Program(~. 
(Round to nearest multiple of 2K) • 

I~S/VS MODULES -- BASIC 

The· initial set of IMS/VS modules is required, independent of the 
data base organizations used by the application program, and the manner 
in which the data bases are usel. These modules represent the region 
controller and basic DL/I modules. 

The storage requirement for these basic modules is about 25,000 
bytes. For initialization, about 8,000 additional bytes of work space 
are required prior to loading your application program. These 8,000 
bytes are subsequently available for other use. 

I~S/VS PSB (PROGR~M SPECIFICATION BLOCK, 

Associated with each application proqram is a PSB. One PSB is 
required for each data base system execution. The PSB, as it exists 
in IMSVS.PSBLIB, is converted to an internal format for use by OLII. 
If the data base control blocks are obtained from IMSVS.ACBLIB, the 
necessary conversion has already been done. If the PSB is obtained 
from IMSVS.PSBLIB,the PSB is converted to an internal format prior to 
use. In any case, the size ~equirements are the same. The size of 
the PSB is calculated with the following formula: 

PSB = PSB Prefix Size + Work Area Size + 
Sum of Data Base PCB Sizes + Index PCB Size. 

5.2 IMS/VS System proqramming Reference Manual 

/"-



-------- ------------- ------

c~ 

where: 

PSB Prefix Size = 60 bytes. 

The foll~wing formula is used for calculating the size of the work 
area: 

Work Area si ze = (A + B + C + D + E) or (F) or (G). 

~Qt~: Round each computed value up to a multiple of 8. 

where: 

A = The largest of the following values: 

1.256 if any segment has PROCOPT = D. 

2. 112 + (2* longest index segment) if any data bases referenced 
in this PSB in tnrn reference only prime index data bases. 

3. 22ij + (2* longest index segment) if any data bases referenced 
in this PSB in turn reference any secondary index data bases. 

ij. The largest logical child segment in any referenced data base 
which contains the physical key option. 

5. The largest loqical child/logical parent concatenated segment 
data length as it would appear in the the application I/O area 
for any referenced data base. 

B = The larqest of the following values: 

1. The largest index segment referenced by any data base referenced 
in this PSB (data length + prefix size). 

2. The longest HISA8 VSAM root segment (data length + prefix size 
+ 6) • 

3. 8 if none of the above. 

The maximum length (prefix plus data) of the largest variable length 
or compressible seqment in any data base referenced in this PSB. 

D = The maximum length data base I/O area required to process a call. 
~his value would be the largest of the following: 

1. The largest segment which could be retrieved. 

2. The largest concatenated segment which could be retrieved. 

3. The largest path of segments that could be retrieved. 

~Qt~: This value ,is specifiable at PSBGEN time. 
~alculated if n~ specification is made. 

A maximum value is 

E = 0 if the region type is DLI or DBB and no data bases are being 
loaded. 

= 96 if the region type is DLI or DBB and data bases are beinq loaded. 

= 280 * (the maximum number of levels in any DBPCB) if the region 
type is MSG or BMP. 

I85/V5 storage Estimates 5.3 



Note: This value is specifiable at PSBGEN time. If a value is not 
specified, a default value is calculatea. 

F = The long message queue buffer size if the PSB is used online; 
otherwise, o. 

G = The scratch pad area (SPA) size if the application program 
associated with this PSB is a conversational program; otherwise, 
f) • 

HQt~: If the region type is DLI or DBB the value used is the sum of 
the values A + B + C + D + E. If the region type is MSG or BMP the 
value is the largest of the sum of values A + B + C + D + E or F or G. 

The ACB utility generates an output message DFS5931 describing the 
calculated work area sizes. The letters shown in the work area formula 
correspond to that message as follows: 

A = NDX work area. 

B = XIO work area. 

C = SEG work area. 

D = lOA wor~ area. 

E = SSA work area. 

The following formula is used for calculating the size of a DB PCB: 

Single Data Base PCB Size = 208 + (A*68) + (B*72) + (C*72) + (D*40) + 
(E*40l + (F*80) + (G*16) + H + (1*72). 

where: 

A = 1 if application program is PL/1. 

= Q if application program is another language. 

B = Number of SENSEG statements in a data base PCB. This value must 
be 0 for GSAM data bases. 

C = 1 plus the sum of the logical child segment and all of its superior 
segments in the second data base (that is, the logical parent plus 
all of its parents) for each logical child segment referenced by 
this PCB. For GSAM data bases, this value must be D. 

D = Number of hierarchical segment levels defined in this PCB. This 
value must be 0 for GSAM data bases. 

E = Number of data set'~roups referencecr either explicitly throcrgh a 
SENSEG statement or implicitly through a logical relationship. 
This value must be 0 for GSAM data bases. 

F = 1 if an alternate processing seguen~e was specified for this PCB. 

= 0 if an alternate processing sequence was not specified for this 
PCB, or if usinq GSAM data bases. 

G = Total number of index data base references via INDICES operands on 
all SENSEGs for this PCB. This value must be 0 for GSAM data bases. 

H = Length of key feedback as defined in the PCB macro. This value 
must be 8 for GSAM data bases. 

5.4 IMS/VS System Programming Reference Manual 

r 
\, 
\,., 

"r-

( 
,--



,- . 

1 if HIDAM data base. 

o if other than HIDA M data bas e. 

The f~ll~wing formula is used for calculating the size of the index 
PCB: 

In~ex PCP Size = A(580 + B + C). 

where: 

A = 1 if there are any index data bases referenced explicitly or 
implicitly in this PSB. 

= 0 if there are no index data bases referenced explicitly or 
implicitly in this PSB. 

B = Length of longest index key. 

C = Twice the longest index seqmen t. 

The total space requirement for this PSB incl udes: 

1. Prefix size 

2. Work area size 

3. Sum of all data base PCB sizes 

4. Index P:B size 

RQ~£: If the PSB is to be used online, the size requirements are 
satisfied in two requests. The sum of values 1, 3, and 4 above are 
obtained when the PSB in obtained from the IMS/VS A:BLIB data set. As 
long as the PSB remains in the PSB pool, this storaqe is required. 
Value 2 above is obtained whenever the application program is scheduled 
into a dependent region and the area is released upon application 
program termination. This area is satisfied from the PSBW pool. 

I~S/VS DMB (D~TA MANAGEMENT BLOC~ 

One DMB is qenerated for each data base description (DBD) associated 
with the PSB beinq serviced. The space requirement is: 

SPACE = the sum of all DMB sizes. 

The following formula is used for calculating the size of a OMB: 

DMB Size = 24 + (A*8) + (B*88) + (C*36) + (D*16) + (E*16) + (F*12) + 
(G*240) + (H*168) + (I*96) + (J*76) + K + L + M. 

where: 

A = Total number of DDNAMEs specified on DATASET statements in DBDGEN. 

B Total number of DA~ASET statements in DBDGEN. 

C = Total number of SEGM statements in DBDGEN. 

D = Total number of LCHILD statements plus total number of loqical 
child segment definitions in DBDGEN. 

IMS/VS storage Estimates 5.5 



E = Total number of operands specified on XDFLD statements for keywords 
SEGHENT=r SRCH=, SUBSEQ=r SOURCE=, ~nd EXTRTN in DBDGEN. If the 
data base is HIDAM, add 2 to the value obtained. 

F = ~otal number of FIELD and XDFLD statements in DBDGEN. 

G = Total number of DDNAMEs specified on DATASET statements that 
reference ISAM data sets. 

H = Total number of DDNAMEs specified on DATASET statements that 
reference OSAM data sets. 

I = Total number of DDNAMEs specified on DATASET statements that 
reference SAM data sets. 

J = Total number of DDNAMEs specified on DATASET statements that 
reference VSAM data sets. 

K = Total size of all index CSECTs contained in the DBDGEN output. 
Default size is 24 bytes each. 

L = Total size of all compression routine CSECTs contained in the DBDGEN 
output. Default size is 32 bytes each. 

M = Size of RMVTAB CSECT generated by DBDGEN. Default size is 32 bytes 
if access is HDAM, 0 if access is other than HDAM. 

HQt~: The ACB utility DFSUACBO generates an output message DFS940I 
which indicates the storaqe requirements for the named DMB. The DMB 
does not exist for GSAM data bases. 

I~S/VS DATA BASE BUFFER POOLS 

There are three pools associated with the DL/I data base buffering 
facilities; the 1SAM/OSAM buffer poolr the DL/I buffer handler pool, 
and the VSAM buffer pools. For batch execution (DLI ~r DBB region 
types), the ISAM/OSAM buffer pool size defaults to 7000 bytes, but is 
controlled by a parameter of the EXEC statement for the step. 

The DL/I buffer handler pool default size is 4K bytes. Its minimum 
size is the larger of 1) the size of the largest VSAM buffer defined, 
or 2) the sum of 44 bytes plus 68 bytes per VSAM subp~ol defined plus, 
if VSAM subpo~ls are defined, 268 bytes for each psr and each sequential 
no~e VSAM data base PCB, plus 32 bytes per DL/I trace table entry. For 
an explanation of how IMS/VS builds VSAM buffer pools, see the section 
"Defining the 1MS/VS VSAM Buffer Pool" in the I!1.§L!§ !!l~ts!!stiQn' @J!!!!~. 

IMS/VS uses the shared resources option of VSAM for all VSAM data 
bases. The main storage required for VSAM control blocks and buffers 
can be obtained from Q~l!~-!ir1Y~1 2!Qrgg~ A~~~~ Me!h2~ (!2AH) ~!~t~ 
InfQr!1!2,:!;i2n· 

5.6 IMS/VS System Programming Reference Manual 



-----------------

'----- -

IMS/VS DATA BASE WORK POOL 

The DL/I action modules dynamically obtain working storage to ~llow 
processing of some DL/I calls. The size of the storage obtained varies 
with the type of call being processed, for example, REPLACE, INSERT; 
and the size of the larqest data base control interval Jr blocksize. 
Typical storage sizes are between 2K and 4K. 

IMS/VS and OS/VS MODULES -- DATA BASE ORGANIZATION DEPENDENT 

The following IMS/VS storage requirements depend on the data base 
access methods and processing options used by the application program. 
Figure 5-1 is provided to d9termine the IMS/VS and OS/VS access method 
storage reguirem'ents.rhe sum of all randomizing routine, index exit 
routine, and compression routine sizes must be added to the size 
calculated from Figure 5-1. 

The processing option val ues, abbreviated in the following figure s, 
are: 

G = Retrieval I = Insert 

GS = Retrieval Sequential R = Replace 

LS = Load Sequential D = Delete 

L = Load A = All = G, I, R, D 

IMS/VS Storage Estimates 5.7 



For each item below (if duplication from item to item, use b~th 
figures), a set of conditions is listed. If all conditions are met, 
the value should be included in the estimate. The sum of all values 
thus selected provides the total loaded module requirements. D~ not 
select a given entry more than once. 

1. BASIC code (Required). 

2. Any data base PCB except HISAM PROCOPT = L. 

3. Any PROCOPT = I or L or A. 

4. Any PROCOPT = D or R or A. 

5. Any primary or secondary indexes. 

6. Any VSAM data bases. The VSAM module 
requirements must be added to this 
value. This information can be 
obtained from the Q~L!§yirt~al §lQ~~g~ 
!££~§§ ~gthQg (VSAM) ~Y§~~m·InfQ£~iiQ~. 

7. Any P~OCOPT = L and logical relationships 
in the data base being loaded. 

8. Any data bases using IS AM. 

9. Any HS type data base using V SAM. 

10. Any HD type data base. 

11 • If any OSAM data set is present. 

23,000 

30,000 

17,000 

23,000 

5,000 

18,000 

4,000 

3 , 00 I) 

1 0,000 

7,000 

13,000 

If simple HISAM data base and PRO COPT = D or R. 12. 1,000 

13. If any HSAM and PROCOPT = L. This value 
can be obtained from Q~LY~ ~iQ~~g~ 
Estimates*. The access method is QSAM* 
wIth-PUT-LOCATE MODE processing. 

14. If any HSAM and PROCOPT = GS. This value can 
be obtained from Q~L!§'~ior~~ ]§1iID~1~§*. 
The access method is QSAM* with GET 
LOCATE MODE processing. 

15. If any HSAM and PROCOPT = G. This value can 
be obtained from .Q§L!§·~iQ£9:.9.~ f;§~iID~i~§*. 
The access method is BSAM* with 
READ MODE processinq. 

16. If any ISAM data set with PROCOPT = L. This 
value can be obtained from Q2L!~'~iQ£~~g 
Estimates*. The access method is 
QISAM*-;Ith LOAD MODE processing. 

Figure 5-1 (Part 1 of 2). IMS/VS and OS/VS Modules Supporting 
Data Base Functions 

5.8 IMS/VS System Programming Reference Manual 

." .. ---



---- ~ -~------.--~'---~---------

17. If any ISAM data set using BISAM**. This 
value can be obtained from Q§i!E' 
~iQ!~g~ ~stim~ig§*. The access method 
is BISAfIJ* with READ K and WRITE KN processinq. 

18. If any ISAM data set using QISAM**. This 
value can be obtained from Q§LYE StQ!~~~ 
Estimates*. The access method is 
QISAS;-with SCAN MODE processing. 

* QSAM, BSAM, QISAM, and BISAM storage estimates can be obtained 
from either of these publications, dependinq upon the system 
(VS1 or VS2) under which you are running: ~2LY~1 ~t~£aqe­
E§1im~!~§, Q~lY~2,~toragg E§~img~~§· 

** See the "Data Base Design Considerations" chapter in the !~~L!E' 
~Y2i~mlAeEl!~~iiQn ~esi~~ gyig~-for a description of when BISAM 
or QISAM is used to access data bases. 

Figure 5-1 (Part 2 of 2). IMS/VS and as/vs Modules Supporting Data 
Base Functions 

OS/VS CONTRJL BLOCKS, BUFFERS, AND WORK SPACE 

This section describes the space requirements for as/vs control 
blocks, buffers, and work space. 

JS/VS buffers are required when QISAM load m~der QISAM scan mode, 
QSAM get moie, or QSAM put mode is used. The requirements are usually 
two physical block buffers for each OS/VS data set used in the IMS/VS 
Data Base system environment. The default of 2 is overridden by 
providing a DCB=BUFNO=X parameter in the appropriate data set DO 
statement. 

The as/vs control blocks and work space requirements, within the 
OS/VS region used for the DB system execution, depend c~nsiderablv on 
whether OS/VS1 or OS/VS2 is used. 

Q2L!21 R~gyi£~!gnt§: All space requirements are fulfilled within the 
OS/VS1 partition. The following formula provides approximate needs: 

(2;500 + TIOT + DEBs + lOBs) = bytes. 

where: 

TIOT 
n 
d 

DEB 

lOB 

= 
= 
= 

= 

= 

(28 + 16n + 4d) bytes. 
number of DD statements. 
number of I/O devices. 

160 bytes each -- one required for each SAM, ISAM, and 
OSAM data set. 

136 bytes each -- two required for each ISAM, OSAM, and 
S AM data set. 

I MS/VS Storage Est im at es 5.9 



I 

I 

Q~l!~~-R~gyi~~~~nt§: Space requirements are partially fulfilled within 
the OS/VS2 region, and partially fulfilled from system queue sp~ce 
(SQS) • 

Space in Region = (5,200 + lOBs) = bytes. 

Space in SQS = (2,000 + TIOT + DEB) = bytes. 

where: 

lOB, DEB, and TIOT space requirements are the same as specified 
for OS/VS1. 

l!Qt~: IMS/VS requirements in OS/VS2-1 (SVS) are essentially the 
same as for IMS/VS in OS/VS1. 

The following environment is assumed for the calculation of main 
storage in this example. A worksheet is provided as Figure 5-2, ~n~ 
follows the discussion of this example. 

1. Application proqram is 20,000 bytes. 

Enter on· line 120f the worksheet. 

2. Basia I~S/VS system modules require 25,000 bytes. 

Enter on line 1 of the worksheet. 

3. The PSB control block contains three data base PCBs. One PCB 
is for HSAM, one is for HISAM, and the third is, for HIDAM. The 
HSAM PCB has PROCOPT GS, the HISAM has G~D, and the HIDAM has 
A. The length of the index seqment is 20 bytes. The largest 
segment accessed is 100 bytes. 

PSB = PSB Prefix Size + Work Area Size + 
Sum of Data Base PCB Sizes + Tnd~x PCB Size. 

PSB Prefix Size = 60 bytes. 

Work Area Size = A + B + C + D + E. 

where: 

A = 256 bytes. 
B = 32 bytes. 
C = 8. 
D = 104 bytes. 
E = O. 

Work Area Size = 256 + 32 + 104 + 8 = 400 bytes. 

Index PCB Size = 580 + 40 + 20 = 640 bytes. 

PSB Size = 60 + 400 + 640 + sum of data base PCB sizes. 

It is assumed that the language used is not PL/T. rhe number of 
SENSEG statements in the first, second, and third PCBs is 5, 7, and 15 
respectively. The number of hierarchical segment levels in the three 
PCBs is 2, 4, and 6 respectively. No logical parents are referenced. 
The number of data set qroups in each PCB is one. The length of the 
lonqest concatenated key in each PCB is 20, 45, and 70 bytes, 
respect.ively. 

5.10 IMSjVS System programming Reference Manual 



-------

----

PCB 208 + (5*72) + (2*401 + ( 1 *4 0) + 20 = 708 byt es. 

PCB = 208 + (7 l11c 72 ) + (4 *40) + (1 l11c 4 r) ) + 45 = 957 bytes. 

PCB = 208 + (15 *12) + (6*40 ) + (1 * 4 0) + 70 + 72 = 1710 bytes. 

PSB = 60 + 400 + 640 + 108 + 957 + 1710 = 4475 bytes. 

Enter this figure on line 2 of the worksheet. 

~. Three DMBs are required for the three data bases referenced. 
The number of SEGM and FIELD statements for each of the three 
DBDs is 5 SEGM and 10 FIELD. 1 SEGM and 12 FIELD, and 17 SEGM 
and 35 FIELD statements, respectively. 

DMB = 24 + (2*8) + (1*88) + (5 *3 6) + (0*16) + (0*16) + (10*12) + 
(0*240) + (0*168) + (1*96 ) + (0 *7 6) + 0 + o + 0 = 524 bytes. 

DMB = 24 + (2*8) + (1*88) + (7* 36) + (0* 16) + (0* 16) + (12* 12) + 
(1*240) + (1* 16 8) + ( Olllc 96, + (0 *7 6) + 0 + 0 + 0 = 932 bytes. 

DMB = 24 + (1 *8) + (1 *88) + (17*36) + (0*16, + (0*16) + (35*12 ) + 
(0*240) + (1 l11c 168) + (0*96 ) + (0*76) + a + 0 + 0 = 1320 bytes. 

Adding DMBs together (524 + 932 + 1320) results in 2116 bytes. 

Enter this figure on line 3 of the worksheet. 

5. Data base buffer pool of 10,000 bytes is chosen. 

Enter on line 4 of the worksheet. 

6. Data base work pool of 4000 bytes is chosen. Enter on line 5 
of the worksheet. 

7. IMS/VS organization module requirement is ch~sen from Figure 
5-1 • 

Three data bases -- one HSAM with PROCOPT = GS, one FtIDAM VSAM 
with PROCOPT = A, and one HISAM with PROCOPT = GRD. 

Usinq Figure 5-1, the values selected are: 

,. 23000 
2. 30000 
3. 11000 
~. 23000 
5. 5000 
6. 18000 
1. 3000 
8. 10000 
9. 1000 

10. _l~QQQ 

'~9000 TOTAL (Enter this figure on line 6 of the worksheet) 

Note: Items 5 and 9 are selected because the HIDAM data base 
requires a VSAM primary index. An INDEX data base is an HS type 
data base. It is assumed for the example all as/vs data 
manaqement modules reside in the Link Pack Area (LPA) and do 
not require storaqe from the user region~ 

IMS/VS Storage Estimates 5.11 



8. OS/VS control block and buffer requirements assuming OS/VS2, 
QSAM buffering for HSAM, and QISAM buffer for HISAM are: 

QISAM buffers = 1 data base x 2 buffers x 1500 bytes = 3000 bytes. 

QSAM buffers = 2 buffers x 1500 bytes = 3000 bytes. 

Control blocks= (~200 +(14*136) J bytes = 7104 bytes. 

Enter the buffer total on line 9, and control block and work 
space total on line 10 of the worksheet. Total of 13104 appears 
to the right of line 10. 

In summary, total lines 1 through 10 of the worksheet. The total 

'

size of the sample Data Base system is 208335 bytes (line 11). This 
. assumes that the dynamic block loading option (PARM='DLI ••• ) was 

selected. Add to this the size of the application program(s), 20000 

I 

bytes (line 12); giving a total Data Base option, including the 
application program, of 228335 bytes. This value must be rounded to 
nearest multiple of 2K bytes. 

The total requirement is 208K bytes. 

Reference 
Number DescriEtion Size 

1 IMS Basic Modules. 25000 

2 PSB Size. 4475 

3 DMB Size. 2776 

4 Data Base Buffer Pool Size. 10000 

5 Data Base Work Pool. 4000 

6 IMS/VS Data Base Organization Dependent 
Modules. 149000 

7 OS/VS Data Base Organization Dependent 
Modules. (LPA) 

8 OS/VS Control Blocks, Buffers, & Work Space. 

9 OS/VS Buffers 6000 

10 OS/VS Control Blocks 7104 
and Work Space 13104 

11 Data Base System = Subtotal 208335 

12 Application Program(s). + 20000 

13 Data Base System and Application Program(s) • 228335 
(Round to Nearest Multiple of 2K.) 228K 

Figure 5-2. Example Worksheet for Data Base. System 

5.12 IMS/VS System Programming Reference Manual 

r--., 
/ -

~---



c 

The following environment is assumed for a minimum storage 
requirement example: 

• One data base -- HISAM organization, single data group 

• The data base has five segment-types, two fields each, 
eight-character key field, and five hierarchical levels 

• No logical relationships 

• No index data base 

• COBOL application program for retrieving and inserting data 

A worksheet, Figure 5-3, follows the discussion of this example. 

1. Basic IMS/VS system modules require 25000 bytes. 

Enter on line 1 of worksheet. 

2. The PSB control block contains one data base P:B. This PCB is 
for HISAM. The processing option for HISAH data base PCB is 
GI. The largest segment is 56 bytes. 

PSB = PSB Prefix Size + Work Area Size + P:B Size. 

where: 

PSB Prefix Size = 60 bytes. 

Work Area Size =A+B+C+D+E = 56 bytes. 

A=O, B=O, c=O, D=56, E=O. 

PCB Size = 208+A+B+C+D+E+F+G+H = 848 bytes. 

A=O, B=360, C=O, D=200, E=~O, F=O, G=O, H=40. 

PSB Size = 60+56+848 = 964 bytes. 

Enter this figure on line 2 of the worksheet. 

3. One DMB is required for the data base referenced. Assuming: 

Dr1B = 24+ (AlIc8) + (B*88) + (C*36) + (F*12) + (G*240) + (H*1681 
= 24+16+88+180+120+240+168 = 836 bytes. 

Enter this figure on line 3 of the worksheet. 

4. Data base buffer pool of 2000 bytes is chosen. 

Enter this figure on line 4 of the worksheet. 

5. Data base work pool of 2000 bytes is chosen. 

Enter this figure on line 5 of the worksheet. 

6. ·IMS/VS organization module requirement is chosen from Figure 
5 -1 • 

Enter 86000 on line 6 of the worksheet. 

IMS/VS storage Estimates 5.13 



7. as/vs modules required are in the as/vs LPA. 

8. Assume an OS/VS buffer of 1500 bytes. 

Enter this fiqure on line 9 of the worksheet. 

9. as/vs control blocks are: 

Q~L!21 

as/VS1 blocks = (2500+ (28+ (16*41 + (4*8) + (160*2) + (136*4) • 
as/vS1 blocks = 3500 bytes. 

Q~t!~f. 

as/VS2 blocks = (5200+(136*4). 
as/vS2 blocks = 5800 bytes. 

Enter each of the above figures on line 10 of the worksheet. 

In summary, add lines 1 through 10 of the worksheet for each (OS/VS1 
ana as/vs21 with a total of the DB system storage requirements entered 
on line 11 to be: 

121800 bytes for as/VS1 

124100 bytes for as/VS2 

Note that minimum size for the application program must be at least 
9K. 

Tnerefore. using a minimum operating system as/vS1 or OS/VS2, a 
batch-only IMS/VS DB system execution can operate on a 256K machine 
for as/VS1 or a 348K machine for OS/VS2. 

5.14 IMS/VS System Programming Reference Manual 

( 
\... 



'-- ---

--------------

R,gf,g~g!l£g 
~gmE~I ~~~~£i£iiQn 

1 IMS Basic Modules 

2 PSB Size 

3 DMB Size 

4 Data Base Buffer Pool Size 

5 Data Base Work Pool 

6 I~S/VS Data Base Organization Dependent 
Modules 

7 OS/VS Data Base Organization Dependent 
~odules (LPA) 

8 OS/VS control Blocks, Buffers, and 
~ork: Space 

9 as/vs Buffers 

10 OS/VS Control Blocks 
and Work Space (OS/VS1) 12QQ, (VS2) 280~ 

25000 

964 

836 

2000 

2000 

86000 

OS/VS1 
5000 

VS2 
7300 

11 Data Base System = Subtotal 121800 124100 

12 A pplica tion Program (s) + 

13 Data Base System and Application Program(s) • 
(Round to nearest multiple of 2K.) 

Figure 5-3. Example Worksheet for Minimum Data Base System 

Tne main storage requirements for the DB/DC system depend on the 
specifications set forth and the options selected in Stage I of IMS/VS 
system definition. In addition, the main storage requirements ~re 
affected by the values that appear in the parameter field of the Jet 
EXEC statements f~r the control, message processinq, and batch-mess~ge 
processing job steps. The operating system proqramming system options 
and the contents of the resident areas also influence the main storage 
requirements. 

It is assumed that the reader knows the operating system environment 
in which IMS/VS will be executed. The knowledge of this operating 
system environment must be applied by the reader to adjust estimates 
for loaded m~dule occupancy, control blocks, and other factors. Where 
calculations of storage requirements involve operatinq system m~dules. 
work areas, or control blocks, no specific size values are provided. 
To obtain specific values, refer to Q~LY~1 ~to~~~g ~stim~te§~ Q~{Y~~­
~iQ~~~g ~2~im~!g~, or the appropriate as/vs control block documentation. 

IMS/VS Storage Estimates 5.15 



A sample storage estimate is provicred at the end of this section 
for an IMS/VS configuration intended to operate under VS2. Associated 
with the example are assumptions tha t d~fine the operating system 
environment and the IMS/VS specifications on which the sample 
calculations are based. A similar set of assumptions should be prepared 
before attempting to calculate storage requirements for any IMS/VS 
DB/DC configuration. 

The instructions for estimating main storage requirements are 
presented in ~wo parts. The first part concerns the IMS/VS control 
region (CTL). The second part covers the two dependent region types: 
MSG (message processing) and BMP (batch-message processing). 

The "Organization of Control program" appendix of this publication 
illustrates the organiza tion of the various elements of the control 
program. 

When the IMS/VS resident monitor is included in a DB/DC system r an 
additional 5K of storage must be included in the control region for 
the monitor modules. In addition r space for work areas and output 
buffers must be included. In a vS/2 environment 2K of space must be 
included in the control region and 3K of space must be included in CSA 
for the monitor modules. 

The space requirements for work areas and output buffers may be 
calculated as follows: 

Monitor work areas: Control region 

1. 256*(A+10) 

A= maximum number of concurrent I/O 

2. ~i1g_~f~2I£tem TIOT Table 
2 

Monitor log work area: (CSA for VS/21 

488 + (216 + buffer size) * A 

A= number of output buffers 
(minimum of 2) 

The inclusion of the Interactive Query Facility (IOF) into the IMS/VS 
system affects the main storage requirements of the IMS/VS control 
region. Refer to the "Interactive Query Facility UQF) With IM5/VS" 
chapter of this publication for IQP storage estimates. 

CONTROL REGION 

An understanding of the physical layout of the control region r its 
use of the supervisor services, and the structure of the control program 
nucleus will assist you in preparing the estimate of main storage 
requirements. Figure 5-U shows a representation of the physical 
organization of the control region. (See Figure A-1 of the 
"Organization of Control Program" appendix of this publication for 
additional definition.) . 

5.16 IMS/VS System Programming Reference Manual 



------------------------ ---------------------------------------------

control Region organization in VS/1 

Partition 

System IMS/VS IMS/VS IMS/VS IMS/VS IMS/VS 

Queue Control Modules Pools Blocks Working 

Space Program Storage 

Nucleus 

Control Region Organization in VS/2 

Reqion 

Local IMS/VS IMS/VS IMS/VS 

System Control Modules Pools 

Queue Program 

Space Nucleus 

CSA 

I MS/VS IMS/VS IMS/VS IMS/VS 

Blocks Modules Pools Working 

Storage 

Figure 5-q. Control Region organization 

The actual division of the area is not precisely disciplined. For 
example, OS/VS working storage can exist in several n~n-contigu~us 
areas. This representation establishes a framework within which 
calculations are performed. The following page is a wo~ksheet which 
can be used for accumulating the control program region storage 
estimate. 

HQ!~: IMS/VS requirements in OS/VS2-1 (SVS) are essentially the same 
as for IMS/VS in OS/VS1. 

IMS/VS Storage Estimates 5.17 



1. Control Program Nucleus 

a. Resident Code 

b. Generated Control Blocks 

2. IMS/VS Locally Loaded Modules 

3. Global Areas (CSA for VS/2) 

a. Control Blocks 

b. Program S pecifica tion Blocks 

c. Data Base Description Blocks 

d. Data Base Buffers 

e. Data Base Work Pool 

f • General Buffers 

q. DBLLOG Buffers 

h. System Loq Buffers 

i. IMS/VS Globally Loaded Modules 

;. PSB Work Pool 

4. Buffer Areas 

a. Queue Buffers 

b. Format Block Pool 

c. Line Control Buffers 

d. communication Work Area Pool 

5. Dynamic Storage Requirements OS/VS 

6. Dynamic Storage Requirements I MS/VS 

Region/Partition Size 

Total Items 1,2,4-6 (VS/2) 

Total Items 1-6 (VS/1, 

5.18 IMS/VS System programming Reference Manual 

--- _._-------_.-._--- .•. -_._ ... __ ._-



C
' 
/ 

CONTROL PROGRAM NUCLEUS 

The first area to be calculated is the control program nucleus. The 
nucleus contains the control proqram executable code ahd generated 
control blocks. Figure 5-5 represents the physical organization of 
the control program nucleus. (See Figure A-2 of the "Organization of 
Control Program" appendix of this publication for additional 
definition.) 

CONTROL IMS/VS AND OS/VS CONTROL CONTROL 

PROGRAM GENERATED CONTROL PROGRAM PROGRAM 

ROOT BLOCKS OVERLAY OVERLAY 

REGION 1 REGION 2 

Fiqure 5-5. Control Program Nucleus (V=R) 

The control program nucleus is organized to m1n1m1ze the working 
set if virtual execution is desired r or as a planned overlay structure 
if real execution is desired. Control blocks qenerated during stage 
2 of IMS/VS system definition and supplied load modules are united to 
form the nucleus. The selection of supplied load modules and the 
generation of control blocks performed by system definition are pirectly 
related to the input statements. certain modules and control blocks 
are always made a part of the control program nucleus. These are called 
"required" or "basic". Others are either optionally selected or, if 
control blocks, may be generated in multiples that exceed the basic 
requ~rements. The number of control blocks generated is related to 
the number of times a particular macro statement appears in IMS/VS 
system definition Staqe 1 input. 

Figure 5-6 below shows the size of the basic and optional control 
program code~ Total the values which apply to your configuration r and 
enter the sum on the supplied worksheet. 

IMS/VS storage Estimates 5.19 



REF DESCRIPTION 

1 • Basic code. 

2. conversational option selected by use 
of SPAREA macro statement. 

3. paginq option selected by OPTIJNS 
operand on COMM macro. 

4. Message format services support: 

a. Basic MFS. 

!Q!~: Basic MFS is included if any 
274X, 3270, 3767, or 3600 terminal 
is defined in the system. 

b. 274X or 3600 MFS. 

c. MFS test facility specified by 
OPTIONS operand on COMM macro. 

5. Messaqe format services master terminal 
support selected by OPTIONS operand on 
COMM macro. 

6.· Resident portion of terminal device 
support selected through use of LINEGRP, 
LINE, and TERMINAL macro statements or 
throuqh use of TYPE and TERMINAL macro 
statements (see Figure 5-7) • 

7. Select option A if V=R or B if V=V 
execution is desired. 

a. Area for overlay regions 1 and 2. 
(VS/1 only) 

b. Area reserved for same code as a. 
but without planned overlay. 

TOTAL BASIC AND OPTIONAL CODE 

SIZE 

66000 

V=V = 10500 
V=R = 5100 

800 

24600 

1000 

1000 

2300 

V=R = 9')00 

V=V = l!!QQQ 

Figure 5-6. Control Program Nucleus -- Basic and optional Coae 

5.20 IMS/VS System Proqramming Reference Manual 



-,_.-

'-_0_0 

BTAM SUPPORTED DEVICES 

• Required basic code 

• 1050 Non-switched 
• 1050 Switched 
• 2260/2265 Non-switched, remote 
• 27QO Model 1, Non-switched 
• 2740 Model 1, Switched 
• 2740 Model 1, Non-station control 
• 2740 Model 2, Non-switched 
• 2180 Non-switched 
• 2741 Non-switched 
• 27Q1 Switched 
• 33/35 Teletypewriter (ASR) 
• 2770 Common code* 
• 2770 with MDI (050) attachment* 
• 2770, SYS/?, SYS/7 BSC, 3270 Remote 

common routine 
• 2980 Non-switched 
• SYS/3 - SYS/7 - SYS/7 BSC 

Common Code 

• SYS/3 - SYS/7 BSC common code 
• SYS/3 
• SYS/7** 

• SYS/1 BSC*** 
• 3270 Local 
• 3270 Remote 
• 3275 S wi tched 

V=v 
V=R 

V=V 
V=R 

V=V 
V=R 

= 2700 
= 1300 

1400 
1200 
1600 

= 
= 

= 
= 

600 
7Cr) 
500 

1600 
2200 

600 
1800 
1100 
6600 
2200 

600 
5000 

6300 
4800 
1600 

700 
3500 
2500 
1700 
2300 
7800 
3800 

• 3275 Switched - 3741 Switched common code 600 
4000 

= 2200 
550 

• 37Q1 Switched **** 
• Common switched terminal routine 

VTAM REQUIREMENTS 

• Required basic code 

• Common VTAM code 
• 3270 
• 3600 
• 3614***** 
• 3167 
• 3770 
• 3790 

V=V 
V=R = 

V=V = 7300 
V=R = 5900 

4400 
6250 
8220 
3475 
6100 
8200 
8220 

Fiqure 5-7 (Part 1 of 2). Control Program Nucleus -- Required Resiaent 
Device Code o

-- Select one entry value for 
each terminal type used and add the selected 
val ue s. 

IMS/VS Storage Estimates 5.21 



GAM REQUIREMENTS 

• 2260 Local 1300 

BSAM REQUIREMENTS 

• Local Card Reader/SYSOUT 3600 

IMS/VS REQUIREMENTS 

• 7770 Switched ****** 1600 

* Add to common code requirements the specific environment main 
storage requirements. Examples: 

2270 with MDI = 2770 common plus 2770 wit h MD I • 
SYS/3 = SYS/3 r SYS/7 r SYS/7 BSC comm::>n plus 

SYS/3 - SYS/7 BSC common plus SYS/3. 

** Plus size of user-supplied CAAUZERO and CAAUTIPL. 

*** Plus size of user-supplied SUBIPL. 

**** Plus size of user-supplied DFSS3741. 

***** Plus size of VTAM module BQKCIPH and user-written DFS36140. 

****** Plus size of user-supplied DFSS7770, DFSI7770, and DFS07770. 

Figure 5-7 (Part 2 of 2). Control program Nucleus -- Required Resident 
Device Code -- Select one entry value for 
each terminal type used and add the selected 
values. 

The specifications defined in Stage 1 of IMS/VS system definition 
directly influence the generation of control blocks. Figure 5-8 
contains the'storage requirement estimates based upon those 
specifications. The values obtained from this figure should be within 
2 percent of the actual storage requirement. For an exact description 
of the control blocks represented by each item in Figure 5-8, refer to 
Figure 5-21. (See Figure A-4 of the' "organi zation ::>f Control program" 
appendix of this publication for additional information.) 

5.22 IMS/VS System Programming Reference Manual 

~" 

( 
''--- " 



c 

REF DESCRIPTION 

1. Basic fixed control blocks 

SYSTEM OPTIONS DESCRIPTION 

2. Each potential concurrent input/output request 
as specified in the MAXIO keyword of the IMS:TRL 
macro sta tement. (Sa ve sets) 

3. Each potential concurrent conversation-sum of 
main storage and direct access as specified in 
the SPAREA macro statement. (CCB) 

4. Each transaction class. (TCT) 

DATA COMMUNICATIONS DESCRIPTION 

5. Each line group as specified by a LINEGRP macro 

SIZE 

500 

1008 

48 

80 

statement (DCB): 40 

• For 7770 LINEGRP, add 36 
• For local reader line group, add 52 
• For each direct SYSOUT line qroup, add 52 
• For each spool SYSOUT line group, 55 +92* (n-1) 

where: n = number of data sets assigned 
• For VTAM node 

6. Each communication line or pool (excluding the 
system console) as specified by a LINF or a PO~L 

0 

macro sta tement. (ClB) 124 

7. Each terminal, or each 1050 terminal complex, or 
each dial line subpool as specified by a TERMINAL 
or SUBPOOt macro sta temen t. (CTB) 

8. Each terminal type, or each model, or each line, 
or within anyone type, model, or line where there 
are different (CTT): 

• 
• 
• 
• 
• 

Translation requirements 
Input/output bu ffer siz es 
Screen sizes 
Segment lengths 
User output edit routines 

9. Each terminal type for which the terminal 
transmission code is unique within the system, 
or the translation requirements are unique. For 
example, 1050 and 2740 each have a unique 
transmission code; or 274a translated to uppercase 

96 

36 

and lowercase are unique translation requirements. 512 
(Translation tables) 

10. Each logical terminal name as specified by a NAME 
macro statement. (CNT) 52 

Figure 5-8 (Part 1 of 2). Control Program Nucleus -- Control Blocks 

IMS/VS storage Estimates 5.23 



REF DESCRIPTION 

11. Each 2770 terminal. (CXB) 

12. Each physical terminal supported by the Message 
Format Service. (CIB) 

13. Each SYS/3 or SYS/7 station and each 3601, 3614, 

SIZE 

20 

68 

3767, 3770, or 3790 operator station (CRB). 32 

Fiqure 5-8 (Part 2 of 2). Control Program Nucleus -- Control Blocks 

IMS/VS AND OS/VS LOADED MODULES -- CONTROL REGION 

Dependinq on the terminal device support requirements and the aata 
base organizations chosen, different OS/VS access method modules are 
selected for loading into the control region. All IMS/VS and OS/VS 
loaded modules that contain executable code can be placed in the system 
link pack area. This may reduce the main storage requirements of an 
IMS/VS DB/DC system. The detailed tables in the "Storage Estimates 
Source Data" section of this chapter contain the IMS/VS names of the 
modules represented by the selection tables. In VS/2, modules in qlobal 
storage are loaded in CSA. 

REf DESCRIPTION SIZE 

3L3BAL LOCAL 

1. Modules always loaded by the CTL region 155200 7000 

2. Terminal support * 
3. Add if DL/I VSAM Support 18000 

4. Add if CONVERSATION option (unpack rtn) 256 

5. Add if DC MONITOR option 3000 2000 

TOTAL Enter in table of working papers ------ ------
* See the appropriate OS/VS storage estimates publication, Q~I~l 

~iQ~~g~ ~~ti~tg~, or Q~L!~~- Stora~~ ~§11ID~t~B for calculating 
item 2. 

Fiqure 5-9. Control Region -- Loaded Modules 

5.2~ IMS/VS System Programming Reference Manual 

- - ---------_ ...... _----

/,,-, 

( 
'---- ' 



C
--

/ 

REF DESCRIPTION 

1. DL/I data base change logging 

2. Modules used in common by message 
queue manager and DL/I 

3. DL/I basic modules 

4. Miscellaneous modules 

TOTAL 

........ _. __ ... __ .... _-_._----_._--

SIZE 

GLOBAL LOCAL 

2000 

6200 

129000 

~OOO _-100Q 

155200 7000 

Figure 5-10. Modules Always Loaded by the CTL Region 

Refer to Figure 5-22 to determine the module names that comprise 
the list of always-loaded functions shown in Figure 5-10. 

GLOBAL AREAS 

Specific control blocks, pools, and IMS/VS modules require space in 
global storage. In a VS/1 environment the space is in the 1MS/VS 
partition. In a VS/2 environment the space is in CSA (Common Service 
Area). See OS/V52 ~~ Estimates for information on specifying CSA 
storage. 

IMS/VS Storage Estimates 5.25 



GLOBAL CONTROL BLOCKS 

For a description of the control blocks represented by the items in 
Figure 5-11, refer to Figure 5-23. 

REF 

1. 

2. 

3. 

4. 

5. 

DESCRIPTION 

Basic fixed control blocks. 

Each potentially active message or batch-message 
processing region as specified in the MAXREGN 
keyword of the IMSCTRL macro statement. (PSTs) 

APPLICATION PROGRAM DESCRIPTION 

Each application program as specified by an 
APPLCTN macro statement. (PDIR) 

Each transaction code as specified by a TRANSACT 
macro statement. (5MB) 

Each data base as specified by a DATABASE macro 
sta tement. (DDIR) 

Figure 5-11. Global Control Blocks 

GLOBAL BUFFER AREAS 

System Log Buffers 

SIZE 

18600 

4096 

44 

68 

40 

The following formula is used to calculate storage requirements for 
the system log work area: 

488 + A *(216 + B) 

where: 

A = number of output buffers (minimum of 2). 

B = buffer size. Default is larger of: 1024 checkpoint log work 
area or size of long message queue LRECL (min 576) plus 24 bytes 
overhead. 

5.26 IMS/VS System programming Reference Manual 



c 

------------- ._ ......•...•... _ ... _- ---

Ir!S/VS BUFFERS 

During the execution of the control program, buffer space is required 
for communication terminal input/output operations, data base m~nagement 
control blocks, conversation work areas, program descLiption blocks, 
message queue management, system recovery (checkpoint/ restart), an~ 
data base input/output operations, and for miscellane~us use in command 
processing, message generation, and application scheduling. The sizes 
of these areas are specified in the EXEC statement fOL the control 
program nucleus. 

At the time execution begins, the main storage requirements ~re 
summarized and a single area of dynamic storage is acquired 
unconditionally. The area thus acquired is partitioned into storage 
pools from which almost all IMS/VS dynamic requests aLe satisfied by 
an IMS/VS stoLage management routine. Figure 5-12 relates the 
specification of buffer sizes in the EXEC statement to theiL use bV 
the control program nucleus. The letters which appear in the left-hand 
column correspond to those that appear in the supplied procedure named 
"I~S". (Refer to "The IMS/VS Procedure library" chapteL in this manual 
for details about the IMS/VS procedures.) Refer to Figure A-8 in the 
"organization of Control program" appendix of this publication fOL the 
layout of IMS/VS buffers. 

I MS/VS S toraqe Est im at es 5.27 



PAll!! POSITION 
IN PROCEDURE 

QBUF 

FBP 

PSB 

PSBi 

Dl'!B 

DBB 

DBiP 

TPDP 

DIBN 

iKAP 

MFS 

CillP 

N1KE 

Queue Buffer 

For.a t Buffer 

PSB Pool* 

PSB Work Pool* 

DMB Pool* 

Data Base Buffer* 

Data Base Rork Pool. 

Line· Buffer 

DBLLOG Buffers* 

General Buffer* 

l'!FSTEST 

co.munication Work 
Pool 

DESCRIPTION OF US E 

Buffers used by message 
queue management. 

Buffers used for Message 
Format Service contrQl 
blocks. 

Proqram description blocks 
stored here. 

Buffers used for Inter-Region 
Communications. 

Data base description and 
data base management control 
blocks. 

Data base input/output 
operation buffer. 

Temporary storage re~uired 
to process DL/I calls. 

Communications line 
input/output operations 
buffer. 

DB LOG buffers for dynamic 
backout. 

Miscellaneous requirements 
f or command process in q, 
application scheduling, 
workinq storage, 
conversation, system 
recovery. 

Maximum space available from 
the line buffer pool for 
use by the MFsrEST facility. 

Temporary storage Area 
for disk SP~s. storage for 
incore SPAs while a 
conversation is active. 
Miscellaneous convers ation 
work areas (pack, unpack 
commands: /EXIT, IREL, 
/ST!, /HOLD). 

• In VS/2 these buffers are in eSA storage (global). 

Figure 5-12. Buffer Specifications in IMS Procedure 

Si zes of the buffer pool areas ar e direct ly related to performance. 
There i~ a .ini.u. size for each area. Below this minimum, full 
function is no lonq.~ available. The discussion that follows describes 
th~ calculation of the mini.um pool size for function. It considers 
the perfor.ance enhancement effects of increasing PQol sizes beyond 
the minimu. Talu.s. 

5.28 IMSjVS System Programming Reference Manual 

r 
( 
\, 



--_ .. _ .. _----- --------_ .... _--_._----------

_.-.' 

,-- --

The IMS/VS enqueue/dequeue routines are used to synchronize the 
operation of the data base buffer pool. The IMS/VS enqueue/dequeue 
routines are also used to control potential update requests ("HOLD" in 
data base retrieval calls). Another use of these routines is to isolate 
~hanqed data base segments from possible retrieval by other programs 
durinq the period in which the program making the change could be backed 
out due to deadlock or application program failure. 

Data base buffer pool management requires a 'maximum of three enqueues 
(held only during a single request) per message or batch-message 

-processing region. 

The DL/I action modules use the IMS/VS enqueue/dequeue routine to 
control data base changes. All segments retrieved in HOLD status are 
enqueued until the segments have been updated, or until another dat~ 
base request releases them. In addition, any segment that has been 
updated is enqueued until the program that requested the update 
terminates, or, if the program is processing a transaction that has 
single processing mode, requests the next transaction. 

The IMS/VS enqueue/dequeue routines obtain and release storage 
dynamically, as enqueue and dequeue requests are pr.ocessed. If the 
amount of storage actually obtained reaches the specified maximum, no 
further enqueue requests are honorea until sufficient storage is 
released by dequeue requests. Since the storage is obtained via GErMAIN 
requests, sufficient space within the control region must be reserved 
for this function. The following formula is used for calculating the 
amount of storage required for IMS/VS enqueue/dequeue routines: 

Size of storage for ENQ/DEQ Routines = I * N 

where: 

I = The value of the third subparameter (increment) of the CORE 
parameter of the IMSCTF system definition macro. 

N = (3 2 A * (B + C + D + E + 3 F + G + 3 Hl) / I 

where: 

A = The number of concurrently scheduled regions. 

B = The number of data base root segments that can be accessed to 
satisfy a given retrieval call. (Note: Count on ly the roots 
that could be accessed if the call were satisfied without having 
to search multiple data base records1. 

C = The maximum number of data base segments that can be retrieved 
in HOLD status in a sinqle call. 

o = The maximum number of segments that an application program c~n 
request to be reserved by the enqueue command code before it 
issues a corresponding dequeue DL/I call, or reaches a 
synchronization point. 

E = The maximum number of data base segments that an application 
program can alter before it reaches a synchronization point. 

F = The maximum number of data base segments that an application 
program can insert before it reaches a synchronization point. 

IMS/VS storage Estimates 5.29 



G = The maximum number of data base segments that can be marked 
deleted by only their logical path, or only their physical path, 
due to an application program's delete call prior to the 
application program reaching a synchronization point. 

H = The number of delete requests that can be made by an application 
program prior to the application program reaching a 
synchronization point. 

The values for B, C, D, E, F, G, and H, above, can be estimated by 
use of a matrix that shows intent by data bases, similar to that shown 
in Figure 3-1 in the IMS/VS ~y§t~mLA~~1i£gtiQn-Qesi[~ ~yiQ~, in 
conjunction with the data base descriptions that define the specified 
data bases. 

Also, any data base segment types that are processed with an intent 
of Exclusive can be deducted from the above values. 

Before an application program is scheduled into a MSG or a BMP 
region, the ACBs (application control blocks) required for this program 
must be loaded. The ACBs are further broken down into two groups: the 
PSB (program specification block) and the DMB (data management block) • 
The PSB is subdivided into sections called PCBs (program communication 
blocks). There are two kinds of PCB s, a TP PCB (telepro cessin g PCB) 
and a DB PCB (data base PCB). The TP PCB contains the identity for 
output message destinations. The DB PCB describes the application 
proqram's view of the data bases described by the DMB. 

The PSBs and DMBs are loaded and managed in separate pools called 
PSB buffer pools and DMB buffer pools. The PSB buffer pool calculation 
is discussed first, followed by the DMB buffer pool space calculation. 

g§~ gyff§~ f~~l: One PSB is required for each concurrently active 
application processing program. The functional minimum size of the 
PSB buffer pool is the size of largest PSB which must occupy that pool. 

Calculating the minimum size of the PSB pool is tedious, but not 
complex. Determining an optimum size for the PSB buffer pool involves 
consideration not only of the sizes of all PSBs used by the system, 
but also the conflicts of intent toward particular segments in the 1ata 
bases referenced by those PSBs. For example, although PSBI may be the 
largest PSB and PSB2 the second largest, it may be unnecessary to 
reserve PSB pool space equal to the sum of PSBI and PSB2 for concurrent 
execution because conflict of intent prohibits concurrent execution. 
If both were quite large, say 8K each, and PSB3 (the next largest) were 
only 2K, then perhaps 10K is a reasonable value. However, if in 
addition PSBI and PSB2 were low usage, and only the function were 
required, then 8K might be adequate. Since PSB3 is third largest, at 
least a total of four PSBs could be resident for performance most of 
the time. If only PSB3 were 2K and all others 1K or less, then at 
least seven PSBs could be resident most of the time. 

The basic requirement is function. Having met the mLnLmum functional 
main storaqe requirement, performance tradeoffs can be made at will. 
In qeneral, the larger the PSB buffer pool, the better performance ~ill 
be. Of course, a buffer pool size larger than the storage reguired 
for all PSBs to be concurrently resident provides no additional 
performance advantage. 

5.30 IMS/VS System Programming Reference ~anual 

" '--- ' 



' ....... 

-- .- .. ------------~---------------

PSB POOL CONSIDERATIONS IN AN OS/VS SYSTEM 

When executing in an OS/VS system, the PSBs should be looked on ~s 
two separate control blocks. The first block is the PSB prefix and 
PCBs. The second block is a work area, made up of the current index 
maintenance area and segment work area, plus the additions which are 
the control region copy of the application program's call list, SSAs, 
and 110 area. The two areas are obtained separately at application 
program schedule time. The first part, the prefix and PCBs,. is retained 
in the PSB pool. The work area is obtained from the PSBW pool when 
the application program is scheduled and is released when the 
application program terminates. 

To determine the size of the PSB area in a VS system, use the 
following formula: 

PSB Area = A+B+C+O 

where: 

A = PSB prefix. 

B = Size of the TP PCBs. 

C = Size of the DB PCBs. 

o = Index PCB Size. 

Items A, C, and 0 are calculated using the formula s~pplied in the 
preceding section under IMS/VS PSB (Program Specification Block) • 

The following formula is used to estimate the size of item B 
(Teleprocessing PCBs): 

C = N ( 48J + 64) 

where: 

N = The number of TP PCBs in the PCB. 

J = 0 if the application is not PL/I. 
= 1 if the application is PL/I. 

To determine the size of the PSB work area, use the formula supplied 
in the-preceding section under IMS/VS PSB (Program Specification Block). 

DMB-Buffer·Pool: Each DB PCB in the PSB names a OBD. When resident 
in-the-controi-program region, the OBD is called a DMB (Data Management 
Block). When an application is active, all DMBs referenced explicitly 
by PCB statements in the PSB must be resident. In addition, all DMBs 
referenced implicitly must also be resident. This includes logically 
related DMBs and INDEX DMBs. 

The functional minimum size for the DMB buffer pool is that required 
to store the largest complex of DMBsexplicitly or implicitly used by 
a sinqle application proaram. The size of any given DMB can be 
estimated using the formula supplied in the preceding section under 
IMS/VS DBD (Data Base Description) • 

As the demand for buffer space in the DMB pool exceeds available 
unallocated space, the data sets which comprise the least-used DMBs 
are closed, and the space occupied by the DMB is freed. DMBs ar e fr eed 
one at a time, until there is sufficient space available to satisfy 
the demand for a new DMB. 

IMS/VS Storage Estimates 5.31 



Each time a DMB is added to the buffer pool, the operating system 
data sets must be opened. Only those data sets that represent a data 
set group to which the application has data sensitivity are opened. 
Before releasinq the space occupied by the DMB, those data sets are 
closed. The time involved to perform OPEN and CLOSE is substantial. 
Fr~quent exchange of DMBs causes a dramatic decrease in response time 
and overall performance. Message traffic must be carefllily analyzed 
by DMB usage to determine optimum buffer size. It is recommended that 
the application design personnel at your installation consider the 
potential performance impact and storage requirements generated by the 
proliferation of data bases and the· logical relationships among data 
bases. The system degradation caused by continual rotation of the DMB 
pool is significantly greater than that caused by rotating the PSB 
pool. 

2ll:t.~ Hs§g ~!!ffgt· R.QQl 

The input/output areas required for use of all data bases in the 
DB/DC system are acquired from the data base buffer pool. No p~rt of 
the buffer pool is owned exclusively by a data base or an application 
pro~ram. As buffers are used for data base input/output operations, 
they are retained as long as possible. When the demand for new bllffer 
space exceeds available unallocated space, the oldest active areas ~re 
freed to meet that demand. When sufficient space is freed, it may be 
ne~essary to consolidate it into a contiguous area. If this happens, 
only those buffers surrounded by the fraqmented free space are relocated 
to permit consolidation. Use of a buffer, whether for real or logical 
input/output, causes it to become the most recently active. A single 
~ata base, used by several applications at the same time, can h~ve 
several active buffers. Conversely, a single application can have 
several active buffers from several d.ata bases. Note that "active", 
as used in this discussion, does not mean allocated or reserved; it 
means only that the data in the buffer area is current. All buffers 
could become inactive if the demand for a new buffer were suffi~iently 
large. The demand for allocation of buffer space is directly related 
to how recently the data occupying the buffers was used. It is 
constrained by the total size of the buffer pool to be managed, as well 
as by the distribution of buffer sizes demanded. 

The minimum functional size of the data base buffer pool is 
represented by the following formula: 

~inimum Size of Data Base Buffer Pool = A+B+C 

where: 

A = 2 times the largest block size, excluding HSAM, plus 300. 

B = Sum of each HSAM data set block size, plus 18 for each HSAM aata 
set. The sum represents the maximum number of HSAM data sets 
that will be concurrently open. 

5.32 IMS/VS System Programming Reference Manual 

/~ 

I 



--- .... - .... _--------_._--_._ ... _ .. _ ... - ------------

c = 0 if HISAM with no logical relationships and no alternate inaex. 

= T foe all organizations with logical relationships or 
alternate indexing, the largest sum of the values calculated 
for eveey possible deletion path in all data bases. Each time 
a d~lete path enters a data base (including the first time, and 
every recurrence, into the data base in which delete pro=essinq 
began) develop a value using the following formula. 

Delete Data Base Transit Formula: 

T = 54+D+E 

where: 

D = 16 times the number of hierarchic levels in the data 
base ente red. 

E = Length of the maximum concatenated key of the data base 
entered. 

For storage requirements for the DL/I VSAM buffer pool, see "lMS/VS 
Data Base Buffer Pools" in the "Data Base System Storage Requirements" 
section of this chapter. 

statistics on the operation of the data base buffer pool are 
available. They may be obtained through use of the /DISPLAY POOL 
command. A description of the /DISPLAY command appears in the I~§L!~ 
QE~~~t~~~~ R~~~~~nce ~~nY~!. The information you receive from /OlSPLAY 
provides a way to optimize the use of the data base buffer pool. 

Tne DL/l action ~odules dynamically obtain working storage from the 
pool to allow processinq of some OL/I catls. The size of the storage 
obtained varies with the type of call being processed, for example, 
REPLACE, INSERT; and the size of the largest data base control interval 
or blocksize. Typical storage sizes are between 2K and 4K. The total 
pool space should provide a minimum of 2K per potentially active messaqe 
processing region or batch message processing region. 

g§n~~~! ~~ff~t ~QQl 

The general buffer pool is used by checkpoint/restart and application 
scheduling. The minimum functional requirements for this general buffer 
pool are represented by the followinq formula: 

Size of General Buffer Pool = A+B+C+O* (MAX (E,F,80) +28) 

where: 

The size must be greater than or equal to 5120 bytes. 

A = 1D24 bytes or the size of a long message buffee, whichever is 
larger, used by checkpoint/restart. 

B = 124 bytes used by application scheduling. 

c = 2048 bytes for miscellaneous system use. 

D = 1 if system contains 2110 terminal with any of the following 
components: 2265, paper tape reader, or an 05~ MOI; otherwise, 
D=O. 

IMS/VS Storage Estimates 5.33 



E = Largest value specified in the PTSEG= operand ~f a 2770 terminal 
statement. 

F = Largest value specified in the MDISEG= operand of a 2770 terminal 
statement. 

The size of this pool is particularly critical when a varying number 
of main storage conversations can be in process. Because transient 
requirements for application schedulinq are met from the general pool, 
a marginal amount of storage could reduce throughput, or interlock the 
system for varying periods of time. 

~~ttQg 1!!!ff~r.~' 

The Data Base log buffers are used in writing and reading the disk 
data base log data set, IMSVS.DBLLOG. The minimum buffer size is 1K, 
and is increased in increments of 1K to a maximum of 32K. This data 
set is used for dynamic backout. The space all~cated t~ the buffers 
affects system performance. Since it is a sequential data set, the 
more buffer space, the better the performance. 

Queue buffers are owned by the message queue manager. They are used 
for writing and readinq all messages by communications terminal 
management, and by data base management when retrieving or inserting 
messages in behalf of an application program. In addition, they are 
use~ as an expansion to the QCB ENQ and QCB DEQ pointers in logical 
terminal blocks (eNTs) to provide additional queues f~r message output. 

The storaqe requirement, then, is a functi~n of the number of buffers 
plus a fixed amount of overhead. The default size for a queue buffer 
is 576 bytes. The following formula is used for calculating the size 
of the queue buffer pool: 

Queue Buffer Pool Size = A* (B+40) +160. 

where: 

A = number of queue buffers. 

B = size ~f gueue buffers. 

The 576-byte default queue buffer size value allows ten records per 
track on a 2314. Fixed overhead per buffer consists of 40 bytes for 
buffer management. 

The number of queue buffers assigned by system definition is 4 plus 
1 for every ten transaction codes or logical terminals. Both the size 
and the number of queue buffers can be varied at system definition. 
The minimum number of buffers that must be assigned is three. The 
minimum size that must be specified is limited by terminal line length 
plus overhead (192 bytes). A 576-byte buffer can hold twelve queue 
block records, three short message records, or one long message record. 

A queue block record number is permanently assigned to a logical 
terminal when the first message is received that indicates that 
~estination. From then on, ail references to the destination may refer 
to that queue block record. Depending on the size of a message segment, 
or the average size of complete messages to a given d~stination, 
whichever is larger, either a short or a long message record is assignej 
to a given write request. 

5.34 IMSjVS System Programminq Reference Manual 



All buffers in the queue buffer pool are managed with a single 
"latest referenced" chain. Since the buffers are all the same size, 
no buffer need be moved. However, if a given buffer is at the bottom 
of the chain, and a block is requested that is not currently in the 
pool, the low block is written to disk, if necessary, and the requested 
block is read into its buffer space. 

The only problem involved in having the m~n~mum size queue buffer 
pool is one of disk contention. In small systems with low traffic 
volumes, the minimum size queue pool can be used; however, the ~ver~ge 
user should allocate at least eight buffers. If the number of buffers 
available exceeds the amount of message traffic, no access to the queue 
data sets is required. Thus, if there are more available queue buffers, 
there is potential for greater throughput. 

For additi~nal information on message queue management, see 
"Operation of Queues," in the "Design and Control of the Data Base/Data 
Communications System" chapter of the IMU!~ ~y§.temL~2.1icati.Q.!l Q~§j.gn· 
~Yi~§t· 

The following factors should be considered when defining the form~t 
buffer pool size and the number of fetch reguest elements: 

• Average size of format blocks. 

• Total number of unique format blocks. 

• Direct access device type. 

• Number of 3270 terminals which viII be using MFS concurrently. 

• Response time required at terminals. 

• Largest format block combination which must be in main storage at 
one time. 

• One fetch request element is required for each active request and 
for each block tha t is in main storaqe. If all form at blocks ar e 
1000 bytes long and you have specified 10 fetch request elements, 
the maximum pool sp~ce used for the format blocks is 10,000 bytes. 
All requests for block space can require up to 8 additional bytes 
of space over the size of the block itself. 

IMS/VS storage Estimates 5.35 



IQ!m~1 ~l~£~ ~QQl ~tQ!~g~ Estimate2: The storage estimate for the 
format block pool is the sum of the fixed area, variable area, and 
format block space, calculated as follows: 

FIXFD AREA 

OS/VS DCBs 
statistic Counters 
Pool Control Blocks 
Directory I/O Area 

Total Fixed Area = 

VARIABLE AREA 

Fetch Request Elements (FRE) 
= 40 bytes per FRE 

Directory Ind ex 

352 bytes 
80 bytes 

128 bytes 
_2.1~_12I!g§.:. 

1012 bytes 

Resident Directory (optional) (see "Message/Form at Serv ice 
utili ty" in the l!:l§lY~ Me§.§~~ EQ!1!!.2! §.~£y!£g !!se.!.!..§ gYig~) 

= number of selected block names x 14 

FORMAT BLOCK SPACE 

Select largest of: 

a. 14336. 

b. (number of 3270 lines) x largest of: (2030 or 
average block size obtained by using the Format 
Block Pool formula calculations shown later in 
this chaptert • 

Therefore, the total Format Block Pool storage Estimate = 

Fixed Area + FBE + Directory Index + Resident Directory ± Format 
Block Space. 

The foll~winq four formulas make reference to a FMT Set. The FMT 
Set is defined as the FMT descriptor and all MSG descriptors whose 
source (SOR=) format is the FMT descriptor. 

These formulas do not consider literals that can be mapped to another 
literal, thus potentially reducing the actual size of the block as 
stored in the online format library. For example, the three literals: 
"ABC", "AB", and "BC" can be mapped (compacted) to a single string of 
"ABC", making the block literal section have three bytes rather than 
the seven bytes predicted in the following. 

5.36 I~S/VS System Programming Reference Manual 

( ,-

c. 



'--_/ . 

The foll~wing formula is used to calculate the 3270 DIF block size. 
This computation is to be performed by DEV statement level within the 
FK T descr i pt or: 

Si ze = 20+ A+ B+C+ 2C 1+DE+6F+6G+6H+ M+ N+6 P+2 Q+T+V 

where: 

A= 10 if DEV statement specified PFK, PEN or :ARD; 
otherwise, A=O 

B= 8 if DEV statement has PEN=fieldname; otherwise, 
B=O 

c= 12 if DEV statement has PFK= operand else C=O 

Cl= number of PFK entries specified 

D= lenqth of longest PPK= literal 

E= number of PFK= literals specified 

F= number of DPAGE statements for DEV; minimum=1 

G= total number of physical pages defined for device 

H= total number of fieldnames specified in all DPAGE 
CURSOR= operands for the device 

I= index to current physical page for following values 

J = number of names DFLD statements for physical page 
I 

K= total number of unique named fields for FM! Set 

L = 6 if PASSWORD DFLD present; otherwise, L =2 
I I 

i=G 
1'1= L: (6J +2 (K-J +1) +L ) 

i=1 I I I 

N= combined length of all PEN= literal le~gths +2 for DFLDS 

p= number of DFLD statements with hi-intensity literal 

Q= number of OPCTL= operands; otherwise, Q=O 

R= total number of IF statements per TABLE; otherwise, R=O 

S= number of IF statements with branch labels per TABLE; 
otherwise, s=o 

u= index to current table 

u=Q 
T= L: (7 R+ 2S ) 

u=O 

v= combined lengths of all literals for all TABLE(S); 
otherwise, v=o 

IKS/VS Storage Estimates 5.37 



The following formula is used to calculate the 274X, SC1, SC2, and 
3600 DIF block size. This computation is to be performed by DIV 
statement level for 274X, SC1, SC2, and DEV statement level for 3600 
within the F~T descriptor: 

Size = 24+4A+8B+6C+E+F+6G+6H+2Q+T+V 

where: 

A= total number of DPAGE statements defined; otherwise, A=1 

B= number of conditional DPAGE statements; otherwise, B=O 

C= number of named DFLD statements for DIV if 274X, for 
DEV if 3600 

D= total number of unique named fields for FMT set 

E= 2 (D-C+1) 

F= number of defined FTAB characters +1; otherwise, F=4 
for 274X or F=1 for 3600 

G= total number of skipped lines between field definition 
if DEV statement has MODE=RECORD defined and FORCE 
option is not defined; otherwise, G=O 

H= number of undefined column areas (in RECORD mode) or 
position areas (in STREAM mode) of 1 byte or more 
b9tween fields and FORCE option is not defined; 
otherwise, H=O' . 

Q= number of OPCTL= operands per device; otherwise, Q=O 

R= total number of IF statements per TABLE; otherwise, R=O 

S= number of IF statements with branch labels per TABLE; 
otherwise, S=O 

u=Q 
T= L: (7R+~S) 

u=O 

u= index to current TABLE 

V= combined ~ength of all literals for all TABLES; 
otherwise, V=O 

5.38 IMS/VS System Proqramming Reference ~anual 

r" "-_. 



'-_.-

_._.- - _ .... _-_._---_._-_._ .. _--_._--

The following formula is used to calculate the 3210 OOF block size. 
This computation is to be performed by DEV statement level within the 
F MT descriptor: 

Size = 16+16A+2AB+9C+24C 1 +15(D-1)+17E+F+5G+6Gl+6H 

where: 

A= number of DPAGE Statements or minimum value of 1 

B= number of unique fieldnames defined in FMT SET 

c= number of physical pages if SYSMSG= defined 

Cl= number of DFLD fieldname statements for which no 
output message uses dynamic attribute modification 
for !irst physical page 

D= number of DFLD statements with fieldnames fOL which an 
output message uses dynamic attribute modification -Cl 

E= number of DFLD statements for literals 

F= combined total of all literal lengths from E 

G= number of separate undefined areas of 1 byte or more 
for all physical pages 

Gl= quotient of division: Q 
51 

Add 1 if remainder * 0 

H= number of occurrences of unique fieldnames which are 
defined on more than one physical page within a DPAG~ 

I MS/VS Storage Est im at es 5.39 



The following formula is used to calculate the POF block size for 
all other device types: 

Size = 16+16A+2AB+12C+6D+8E+F+(8G+H)+14I+6J+K+8L+4M+N+8P+T 

where: 

A and B same as for 3270 

C= number of fieldnames with ATTR=YES 

D= number of fieldnames with nQ,ATTR=YES 

E and F same as for 3270 

G= tota 1 number of sepa ra te un us ed areas 0 f 2 Ii nes or more. 
G=O if FLOAT option specifiea. G=1 if vertical tab stop 
replaces NL characters for SC1. Unused area at end of 
physical page should only be added if SPACE option specified. 

H= (3270P and 274X) number of lines of the !.gtg:~2i unused area 

H= (3600 devices) the value here is 4 

1= (3270P only) number of internal pages required. To 
approximate: for an external page of 55 lines with 80 
columns of data, 3 internal pages are required' for Model 2 
and 11 for Model 1. 

1= (all other devices) number of DPAGE statements specified 

J= number of DFLD fieldnames which span device physical lines 

K= (36JP, 36PB, 36FP) if FORMS ~ literal specified, K=28 + 
length of literal 

L= (36JP, 36PB, 36FB) number of EJECTs to perform; if no EJECT 
L=1 

M= (36FB only) number of entries in SELECT= 

N= (36DS only) number of entries in ORIGIN 

p= (36DS only) number of cursor entries 

T= (SCS1 only if HTAB OFFLINE or ONLINE) 

50+61+1 (2QRS) 

where: 1= number of DPAGE statements 
Q= number of horizontal tab stops 
R= number of defined DFLD lines 
S= number of physical pages per DPAGE 

5.40 IMS/VS System Programming Reference Manual 

'---.----~------------------



,.--/ 

c 

The following formula is used to calculate the ~ID block size: 

Size = 18+2A+10B+6C+6D+E+2F+2G+16H+2I+2J 

where: 

A= number of unique fieldnames in FfliT Set 

B= number of SEG statements or miniaum value of 1 

C= number of MFlD statements for fieldnames 

D= number of MFLD statements for literals 

E= cOMbined total length of all literal~ fro. ~'LD statements 

F= number of unique fieldname occurrences in aore than 1 ~PLD 
statement 

G= number of MFLD statements using the LTH=(pp,nn) option 

H= number of LPAGE stateaents defined; otherwise, H=1 

I= nUMber of default literal ~FLD; otherwise, IzO 

J= number of HFLD statements with EXIT= paraMeter defined; 
otherwise, J=O 

The following formula is used to calculate the ~OD block size: 

Size = 16+28A+6B+2C+D+F+2H 

where: 

A= number of LPAGE statements or minimum value of 1 

B= number of MFLO statements 

c= number of HFLO statements with literals 

D= combined total length of all literals fro. the ~FLD 
statements with literals 

E= number of unique fieldnames for the FMT Set 

F= combined total length of all literals from the COWO= operand 
of all LPAGE statements 

G= number of unique fieldnames in LPAGE 
(i) (i) 

i=A 
H= L: (E-G ) 

i=1 (i) 

IMS/VS Storage ~sti.ate5 5.41 



1i.!l~ ~!!.ff~!: RQQ! 

Terminal input/output operations are performed from the storage 
assigned to the line buffer pool. The amount of storage required varies 
by terminal device type, terminal device model, and kind of output 
operation being performed. Minimum function for communications message 
handling can be supported by assignment of a value that is the largest 
of the three kinds of requirements. For performance; the line buffer 
pool should be large enough for one input or output buffer for each 
unbuffered line, and each buffered terminal, under all traffic 
con~itions. A value that represents the peak concurrent demand for 
buffers mav be excessive. A smaller value, although it results in less 
frequent line service, may be more appropriate. It is recommended that 
the value assigned is not less than the average or modal demand for 
buffers. 

IMS/VS systems that include 3270 and message format service support 
have a more dynamic and application-dependent requirement for 
communications buffer pool space. The best method for determining a 
reasonable value for the pool size is by use of the /DISPLAY POOL 
command during actual execution. If the space currently in use is 
consist~ntly only slightly less than the pool sizer performance can 
normally be improved by increasing the pool size. The following fa=tors 
influence communications buffer pool space requirements when 3270 and 
message format service are included in the system: 

• For output 

Select the largest of: 

a. 4096 

b. Sum of: 

• For input 

1) 3270 Local lines (largest of) : 

a) maximum number of input characters x number 
of lines. 

b) 1250 x number of lines. 

2) 3270 Remote lines 

1250 x number of lines. 

a. The size of the largest field in the device input format. 

b. For option 3* input messages, input requires: 

18 x NS + 4x NF + SF + 4 bytes. 

where: 

NS = number of segments in the message. 

NF = number of fields in the message. 

SF = the sum of the defined lenqths of all fields in 
the message. 

IMS/VS System programming Reference Kanual 

--------- ----------------------

c 



c. For options 1* and 2* input messages that do not have device 
input data mapped to message segments p such that segments 
are completed before data for succeeding segments is loc~teap 
the maximum requirement is: 

-~ 16 x N S + SF + q byte s. 

C~' 

d. F~r 3270 local line buffers p each started 3270 local line 
requires the amount of space specified in the BUFSlZE 
parameter during IMS/VS system definition. However p if this 
space is insufficient for an input message p this value is 
increased by 300 bytes. Tne value can be incremented more 
than once. Rhen this happens p it is indicated by the 
printing of message DFS254 at the ~aster terminal. 

If the system includes the MFSTEST facilityp line buffer pool space 
is used for format control blocks when terminals are in MFSTEST mode. 
A limit to the amount of space that will be used for this purpose is 
specified at system definition. It can be changed by the control region 
EXEC statement. The maximum value that can be used is the line buffer 
pool size -- 5000 •. Assuming that the MFSTEST mode is normally used 
for one or more terminals on a single line at one time, the value should 
be greater than the size of the largest MOD-DOP block combination that 
is to be used. Format control block sizes can be estimated by using 
the formulas shown later in this chapter. The Message Format Service 
utility lists the sizes of control blocks that have been created and 
placed in the format·library. A recommended value for maximum space 
is 50~ of the line buffer pool size. Tne higher the percentage 
specified p the greater the chance of performance degradation when 
terminals are operating in MFSTEST mode. 

The MFS position of the parameter in the EXEC statement specifies 
the maximum space limit for MFSTEST usage in 1K increments. 

• ~or a discussion of input message format options p see the I~~L!~' 
~~§§a~~'EQ~m~~ ~~£!i£~-User'§ §yig~. 

IMS/VS Storage Estimates 5.43 



The c~mmunication work area pool is used by command and conversation 
processinq. Use the following formula to estimate its size: 

CWAP Size = A+B+C+D 

where: 

A = A maximum of 2048 bytes used by command processing. 

B = The largest of the following three values used for conversation 
pr~cessing. Zero, if conversational processinq is not part of 
,,~ur system. 

• Work area of 80 bytes 

• Maximum direct access SPA + 56 bytes 

• Maximum core SPA + 56 bytes 

C = The number of in-core CCBs*the maximum c~re SPA size. 

D = Temporary workspace = 
2*(the number of in-core CCBs*the maximum core SPA size)+ 
3* (the number of disk CCBs*the maximum disk SPA size) 

The number of concurrently processing conversations may be limited 
if this pool is too small. 

Figure 5-13 shows the input buffer size requirements by devi=e type 
and model, and the output buffer size requirements by type of operation. 
Short messages include both single segment output from application 
programs and responses to commands. For short -messages, only the actual 
output buffer size needed is acquired. For long output messages, the 
values in the tables apply. 

5.44 IMS/VS System Programming Reference Manual 

( 
',,--

c.-' 



'-- -' 

TERMINAL TYPE 

• 1050 
• 27~0 Model 1 
• 2740 Model 2 Buffer 120 See TERMINAL 
• 27~O M~del 2 Buffer 248 macro statement 
• 2740 Model 2 Buffer ~40 
• 2260/2265 M~del 1 (2848 Model 3) 
• 2260 Model 2 (2848 Model 1) 
• 2260 Model 2 (28~8 Model 2) 
• 2770 line with basic 2772s 
• 2110 line with buffer expansion 2772 

BUFFER S IZ E 
IN' BYTE S 

INPUT OUTPUT 

148 
148 
136 
264 
456 
976 
254 
494 
148 
276 

• 2770 line with additional buffer expansion 2772 532 

204 
204 
136 
264 
456 
976 
25~ 
~9~ 
148 
276 
532 
416 
100 
200 

• 2780 
• 2980 
• 2980 
• 3270 
• 3270 
• 3270 
• 3270 
• 3270 
• 3600 
• 3614 
• 37~0 
• 3767 
• 3770 
• 3790 

Non-switched Multipoint 
Non-switched Multipoint 
Local Display 
Local Printer-
Remote 
Switched 
VTAM 

• VTAM Receive any buffers 

with RPQ~835503 

• 7170 (User Specified) Max = (256~ 256) 
• System Console 
• 2141 
• 33/35 Teletypewriter (ASR) 
• SYS/3 
• SYS/1 
• Local Card Reader 

I, • Direct SYSOUT 
• Spool SYS:lUT 

416 
100 
200 

See Note 1 
6 

392 
382 

514 

144+Note 4 
50 

148 
148 
200 

2 (10 +dat a) +30 
38+data 

90 
10 
31 

7+da ta 
7+data 

92+da ta 
382+data 
138+data 
158+Note 2 
156+Notes 2,3 

51~ 
392 
392 

158+Note 2 

50 
136 
204 
200 

14+data 
11*+2 (data) 

10 
See Note 1 
See Note 1 

* If FEAT=PTTC/EBCD is specified in the STATION macro, then 11+data. 

1. User-defined at system definition. 306 minimum f~r 3270 local. 

2. User-defined output buffer size. Refer to the ourBOF parameter of 
the TERMINAL macro statement in the IH~~!~-!~i~i!gtiQg-Guiag. 

3. User-defined retention area size. Refer to the RE TSI ZE pa ra mete r 
of the TERMINAL macro statement in the iMSL!~ Ill§!~11atiQn ggi9~~ 

4. User-defined at system definition. Refer to the RECANY parameter 
of the COMM macro statement in the I~~L!~ IQstgiisti2n [Yide. 

Figure 5-13. Communications Input/Output Line Buffers 

DYNAMIC STORAGE REQUIREMENTS -- CONTROL REGION 

The dynamic storage requirements within the control region include 
work areas and control blocks.· The majority of requirements are 
qenerated indirectly by the use of the :lS/VS supervisor services. Some 

IMS/VS storage Estimates 5.45 



~irect requirements for work areas and control blocks are gener~tea by 
IMS/VS.Figure 5-14 summarizes the OS/VS requirements. 

DESCRIPTION 

1. Work areas, save areas. 

2. OPEN/CLOSE work area. 

3. BISAM I~B, one per concurrent operation usinq ISAM 
data sets. 

4. BISAM channel programs, one per open ISAM data set. 

5. BSAM lOB and channel proqrams, one per data set. 

6. BTAM lOB and channel programs, one per open 
communication line. 

7. If OS/VS1, add for control blocks. 

B. If OS/VS1, add for data extent blocks (DEBs) for each 
open data set. 

OSAM 92 bytes 
7770 BO+4*Line s bytes 
ISAM 
BSAM 
BTAM 
GAM 
VTAM (only 1 per IMS) 

9. If OS/VS 1 , add for rIOT space. 

10. 7770 lOB and channel program, one per open 
communication line. 

SIZE 

5000 

* 

* 
* 
* 

* 
256B 

* 

* 

104 

* See the appropriate OS/VS storage estimates publication, ~L!~1 
~iQr~g~ ~2ti~~t~2l or OS/VS~ 2iQr~g~-Estimat~~, for calculating 
items 2 through 6, 8, and 9. 

Fiqure 5-14. OS/VS Storage Requirements in Control Region 

IMS/VS DYNAMIC STORAGE REQUIREMENTS 

The IMS/VS requirements for work areas and control blocks from the 
dynamic-area are summarized here: 

DESCRIPTION 

1. Work areas. 

2. If security specifications other than default, 
see the formula below to calculate storage for 
security tables. 

3. Use the f~rmula for calculatinq storage for ENQ/DEQ 
routines to calculate dynamic storage requirements. 

5.46 IMS/VS System Programming Reference Manual 

SIZE 

28B 

bytes 

,r 

(--
\ 
'---



----- _ .. ------ --_. -..... __ ._- ... - -,._ .. _.,-----

,--

TOTAL IMS/VS DYNAMIC REQUIREMENTS 

The following formula is used for calculating the size of the 
security table area: 

Security Table Area Size = AB + C(D/8) + A(E/8). 

where: 

A = Number of passwords. 

B = Maximum length of password. 

C = Number of unique sets of terminal security specifications. For 
example, assume logical terminals X and Y can enter /START 
command and transaction code PAY. Even though three logical 
terminals are involved in the security specification, there is 
only one unique set of requirements common to all. 

D = Number of logical terminals in system. 

E = Number of unique sets of password security specifications. For 
example; if passwords AA, BB, and CC are valid for use wi th 
transaction CALC, command /SET, and command ILOCK, there is only 
one unique password security specification. 

For the purposes of storage estimates, the.message and batch-message 
processing regions are identical. Figure 5-15 represents, conceptually, 
the physical organization of these dependent regions during execution. 

SYSTEM 
I MS/vS I MS!VS 

REGION OS!VS 
OS!VS QUEUE 

AND WORKING 
LOADED SPACE 

PROGRAM STORAGE 
PROGRAMS 

CONTROL 

Figure 5-15. M,essage or Batch-Message Region Organization 

The actual division of the areas shown in Fiqure 5-15 is not 
precisely disciplined. The shaded area represents the dynamic portion 
of the region that is available for use interchangeably by IMS/VS and 
user programs. It is one contiguous area in the center of the 
addressable space. 

Figure 5-16 contains all the values necessary for calculation of 
the region size. Figure 5-16 then, is your worksheet for the storage 
estimates for message and batch-message processing required. 

IMS/VS Storage Estimates 5.47 



DESCR IPTION 

1. IMS/VS region and program control. 

2. User application program area in 
Fiqure 5-15. Fill in program size. 

TOTAL 

OS/VS 1 
PART 

20,000 

OS/VS2 
REGION 

20,000 

Fiqure 5-16. Message or Batch-Message Region Size and Worksheet 

See Fiqure 5-24 for an explanation of the values in Figure 5-16. 

E NVI RONMFNT 

storaqe requirements are based upon the environment ~utlined below: 

• OS/VS2 V=V configuration. 

• Step termination is resident in link Pack Area (lPA) (IEFSD061). 

• DljI basic modules are in lPA because of anticipated frequency 
of cpncurrent batch and online processing (see Figure 5-10). 

• HS and HD indexed, update function, and no write check are 
resident in'lPA, because of frequency of use by concurrent batch 
and online processing. 

5.48 IMS/VS System Programming Reference ~anual 

I' 
I 
\ ,-



--- _._.------

c.· 

• Applications 

18 programs. 

23 transaction codes, one is conversational. 

6 data bases, HS and HD excluding HSAM, all stored on 2314 
in 7000-byte blocks. 

1 transaction class. 

• Terminals 

2740 Line Group, Non-switchea 

Line 1: 
Line 2: 

1-2740 
2-2740 

Model 1 
Model 2 

2740 Line Group, Switched 

Line 1: 1 - 2 740 Mod el 1 

1050 Line Group, Non-switched 

Line 1: 1-1050 

1050 Line Group, switched 

Line 1: 
Pool: 

1-1050 
2-subpools 

2780 Line Group, Non-switched 

Line 1: 1-2780 

There is one logical name for each terminal or subpool, plus 
one for the master terminal. 

• System Options 

6 concurrent IMS/VS subtasks can operate. 

3 concurrent message or batch-message regions can operate. 

11 concurrent exclusive control requests can be outstanding. 

3 main storage scratch pad areas of 100 bytes are to be 
available. 

6 d'irect access 'scratch pad areas of 150 bytes are to be 
available. 

A control region worksheet is provided in Figure 5-19. In the 
"Control Re~ion Calculation" d~scussion that follows, the term 
"worksheet" refers to Figure 5-19. 

IMS/VS storage Estimates 5.49 



I 

CONTROL REGION CALCULATION 

The size of the CTL (control region) will be calculated first. 
Referring to Figure 5-6, the resident portion of terminal support is 
necessary to determine the size of the control proqram nucleus resident 
coie. The total resident code for terminal device support from Figure 
5-7 is 12600 bytes (Item 6 of Figure 5-5). Since the conversational 
option' was elected, the total basic and optional code from Figure 5-6 
is 167100 bytes. This value is entered on the worksheet at line 1a. 

Referring to Figure 5-8 and the assumed environment, calculate the 
generated control blocks, line 1b of the worksheet: 

Befg,~g,!l~~- ~~£!:il!tiQ1! ~i~g, 

1 Basic fixed control blocks 500 

2 six concurrent subtasks 6*1008 6048 

3 Concurrent conversations 9 *48 432 

4 Transaction classes 1 *80 8e 

5 Line groups 5*40 200 

6 Lines and pools 5*124 620 

7 Terminals 9*96 864 

8 Different sets terminal 
attributes 6*36 216 

9 Translation 6*512 3072 

10 Logical terminal names 10*52 __ 52Q 

Size of generated control blocks 12552 

Enter on the worksheet this total size of generated blocks on line 
1b, and place the total of 1a plus 1b in the box to the right of 1b. 
The total size of the control program nucleus is 179652. 

Line 2 of the worksheet is for locally loaded modules in the control 
region. Refer first to Figure 5-9. Terminal support of 7152 bytes is 
derived from OS/VS storage estimates. The total locally loaded module 
support to be entered in the box at line 2 of the worksheet is: 

Alway s loaded 
Terminal support 

12000 
__ 7.12~ 

19152 (19200 rounded) 

Line 3h of the worksheet is for globally loaded modules. Note that 
the environment described contains certain modules in the resident LPA. 
The size of these modules can be found in Figure 5-10. The values 
shown in Figure 5-10 are included in the modules shown at line 1 in 
Fiqure 5-9. Therefore, a deduction must-be made because some of them 
have been selected to go in ~he resident LPA. Line 1 of Figure 5-9 
has been adjusted for DL/I Basic modules in the LPA. 

5.50 IMS/VS System programming Reference Manual 

( 
I ........ , .. 



c·· .. ·· 
;' 

of 

3a 

The total globally loaded module support to be entered at lin e 3i 
the worksheet is: 

Always loaded (ad justed) 20700 

The total DL/I code resident in the L PA is: 

Always loaded 1 3tJ 000 

Referring to Figure 5-11 and the assumed environment, 
of the worksheet, global control blocks: 

1 Basic fixed control blocks 

2 

3 

4 

5 

Three processing regions 

Application programs 

Transaction cod~s 

Data bases 

3*4096 

18 *4 4 

23 *68 

6*40 

Size of global control blocks 

Enter on line 3a of the the worksheet. 

calculate line 

18600 

12288 

792 

1564 

Calculate the storage requirement for the system log work area using 
the formula shown in this chapter for system log buffers: 

488 + A *(216 + B) 

A= 2 The number of log buffers 
B=1048 1024 + 24, checkpoint log work area 

+ overhead 

488 + 2 *(216 + 1048) 

= 3016 

Enter the result on line 3h of the worksheet. 

The buffer areas, lines 3b through 3g and lines 4a and 4c on the 
worksheet, are calculated next. The environment description contains 
23 transaction codes and 10 logical terminal names. Using the default 
queue buffer size and calculation for the number of buffers, the buffer 
length is 516 and the number is 4 + [(23 + 10) /10] = 4 + 3.3, or 8 
buffers. The size, calculated with the queue buffer pool size formula 
(shown under "Queue Buffer Pool" in this chapter), is 8(576 + 40) • 
160, or 5,188 bytes. Enter 5188 on line 4a of the worksheet. 

It is decided that both the program and data base description block 
buffer areas must be large enough to contain the two largest sets of 
those control blocks. For purposes of the example, assume PSBs are 
identical and refer to "identically organized data bases. There are 
two data bases tha tare logicall y related. They are viewed by the 
application program as two structures in Figure 5-17. 

IM S/VS Storage E stima tes 5.51 



NAME 

I 1 
ADDRESS PAYROLL SKILL 

1 1 10 

I 
I I 

EXPERIENCE EDUCATION 
4 4 

SKILL 

I 
NANE 

I 
I I 

EXPERIENCE EDUCATION 

Fiqure 5-17. Hierarchic structure for Two PSBs 

The physical data bases through which these structures are viewea 
are shown in Figure 5-18. 

Both are HD organization and are accessed usinq HDAM and HIDAM. 
Ea~h consists of only one data set group. The length of each segment 
type is shown in Figure 5-18 in the lower right of each box. The length 
of the segment key is in the lower left of each box. The application 
programs have a processing option of ALL for all segment types. They 
are written in PL/I. Each application uses six alternate logical 
terminals. 

5.52 IMS/VS System Programming Reference Manual 

, 
'-. 



---------- ----_ .. _--------------_ .. _. 

NAME SKILL 

16 

ADDRESS 

o 80 

EXPERIENCE EDUCATION 

5 100 20 100 

F i qu r e 5 - 1 8 • Two Data Bases Logically Related 

Estimate the amount of storage required for the program isol~tion 
enqueue/dequeue routines using the formula shown in this chapter for 
storage estimates for IMS/VS ENQ/DEQ routines (size = I*N). The values 
for the calculation are as follows: 

I = 1024 (The default increment). 

N = (32A * (B + C + D + E + 3F + G + 3H) I I 

A = 3 (The number of scheduled regions) 

B = 2 (The number of root segments that can be accessed in a 
retrieval call. Refer to the two data bases interrelated 
bV logical relationships, Figure 5-19). 

c = 2 (No path calls used. The concatenated segments making the 
logical relationship require two entires.) 

D = 0 (None of the programs use the enqueue command code.) 

E = 10 (Assumed from application programmer's estimate of 2.) 

F 6 (Assumed from application programmer's estimate of 3., 

G = 0 (NAME LIC seqment has a Virtual Delete Rule.) 

H = 6 (Assumed from application programmer's estimate of 3.) 

N = (32*3 * (2 + 2 + 0 + 10 + 3*6 + 0 + 3*6l) / (102LJ); 

= (96 * 50) / 1024; 

= 4.7 Rounded up to the next whole number = 5 

S = 102LJ* 5 = 5120 

This value is used in determining IMS/VS dynamic storage 
requirements. 

IMS/VS Storage Estim ates 5.53 



Calculate the PSB size as described in the formula for determining 
PSB pool requirements shown in a preceding section of this chapter (PSB 
Area = A+B+C+D). The values for the calculation are as follows: 

A = 58 

B = 660 

C = 2106 

D = 428 

PSB size A + B + C + D = 3252 

The proqram description block buffer pool is then 8000 bytes (twice 
3252, to the next 1000 bytes). Enter on line 3b of worksheet. The 
PSB work pool is 2000 bytes (1216 to the next 1000 bytes). Enter on 
line 3j of the worksheet. 

calculate'the DMB size uSing the formula supplied in a preceding 
section of this chapter. Assume input to data base description by the 
Payroll data base with logical relationships using HIDAM, and the Skills 
Inventory data base with logical relationships using HDAM as defined 
in the IMS/VS Utilities· Reference Manual. 

DMB Size: 

For physical payroli data base -- HIDAM 

For index of Payroll data base 

= 456 

= 572 

For physical Skills Inventory data base -- HDAM =~ 

DMB Size = 1492 

The data base description block buffer pool is then 2,000 bytes. 
Enter value on line 3c of th~ worksheet. 

For the data base buffer pool, calculate the size using the formula, 
shown in a preceding section of this chapter, for determining minimum 
size of a data base buffer pool (size=A+B+C). The values to be used 
in this calculation are as follows (assume minimum guideline is no 
contention between the two largest programs) : 

A = (2*7000) + 300 

B = 0 

C = for the first application program 
data structure. 

T = 54+(16*2)+26 = 112 (Payroll) 
T = 54+(16*3)+52 = 154 (Skills Inv.) 

266 

Assume no name will appear in 
more than 10 skills data base 
records. 

Data base buffer pool = 

5.54 IMS/VS System programming Reference Manual 

---- .. _ ..... _--_ .... _._._-

= 

= 

14300 

o 

( 

( ... 

\ 

"--



",.," 

/ 

The size of the data base buffer area is then 34000 bytes (twice 
16960, to the next 1000 bytes). Enter value on line 3d of the 
worksheet. 

calculate the data base work pool size as described earlier in this 
chapt er. 

2000 bytes (minimum recommenaea size) x 3 message regions=6000 

Enter value in line 3e of the worksheet. 

Line control baffers are calculated using Figure 5-12. Terminal 
activity is forecast not to exceed .75 times. the total buffer 
requirement for no contention on concurrent output of all lines. 

2740 line with Model 2 Buffer 440 
2740 line v/o Model 2 (2*204l 
1050 line and pool (3*204) 
2780 
System console 

456 
408 
612 
416 

__ lJ§· 

2028 

Line buffer pool size is· 2000 bytes. Enter the value on line 4c of 
the worksheet. 

Rased upon the formula for calculatinq size of the general baffer 
pool, shown in a preceding section of this chapter, it is decided that 
6000 bytes is adequate for the general buffer area. Enter on line 3f 
of the worksheet. 

Based on the data base log buffer discussion in this chapter, 7000 
bytes is allocated to this buffer. Enter the value on line 3g of the 
work sheet. 

Dynamic storage requirements are calculated, using Figure 5-14 and 
the 288 bytes shown under "IMS/VS Dynamic Storage Requirements," as 
the sum of the two values. Starting in Figure 5-14: 

Bg,fgt~!l£~ Q.~giI!:ti.Q!l 

1 Rork Area 5000 

2 Open/Close iork Area 2784 

3 BISAM lOB 112 

4 BISAM Channel Program 500 

5 None o 

6 BTAM lOBs -- 5 760 

7,8,9 Not OS/VS 1 

TOTAL 9156 

Enter the total on line 5 of the worksheet. 

IMS/VS Storage Estimates 5.55 



I 

From the IMS/VS dynamic storage requirements using defaults with no 
sec uri ty: 

Reference Description 

1 Work Area 

2 No Security 

3 ENQ/DEQ Routines 

TOTAL 

Enter the total on line 6 of the worksheet. 

1. Control Program Nucleus 
a. Resident Code 
b. Generated Control Blocks 

2. IMS/VS Locally Loaded Modules 

3. Global Areas 
a. Control Blocks 
b. Program Specification Blocks 

167100 
12552 

c. Data Base Description Blocks 

33484 
8000 
2000 

d. Data Base Buffers 
e. Data Base Work Pool 
f. General Buffers 
g. DBLLOG Buffers 
h. System Log Buffers 

34000 
6000 
6000 
7000 
3016 

i. IMS/VS Globally Loaded Modules 20700 
2000 j. PSB Work Pool 

4. Buffer Areas (local CTL-region storage) 
a. Queue Buffers 
b. Line Control Buffers 
c. CWAP 

5. Dynamic Storage Requirements OS/VS 

6. Dynamic Storage Requirements IMS 

Region size Total Items 1, 2, 4-6 

CSA storage Total Item 3 

Figure 5-19. Worksheet for DB/DC Example 

The total storage required is: 

Control region (rounded) 221000 

Add Link Pack Area 134000 

288 

o 

.2120 

5408 

179652 

19200 

122200 

5188 
2000 
1000 

9156 

5408 

220604 

123200 

TOTAL STORAGE 355000 bytes 05/VS2 
478200 bytes OS/VS1 

Control region including LPA 

5.56 IM5/VS System Programming Reference Manual 

( 



--_ ..... _ ... _---_._--_ .. ---

MESSAGE PROCESSING REGION CALCULATION 

The size of the message processing region is determined using Figure 
5-16. 

DATA BASE/DATA COMMUNICATION SYSTEM MINIMUM STORAGE REQUIREMENTS EX!MPLE 

The following environment is assumed for a minimum Data Base/Data 
Communications storage requirements example: 

• One data base -- HlSAM organization, single data set group. 

• The data base has five segment-types, two fields each, 
eight-character key field, and five hierarchical levels. 

• No logical relationships. 

• PROCOPT = A. 

• Three COBOL application programs with a total of six transaction 
codes. 

• One non-switched communication line and one 2740 Model 1 
communication terminal attached. 

• No conversational application programs. 

• Two concurrent subtasks. 

• One message region. 

• Three queue buffers. 

• Segment length is 256. 

• One logical terminal PCB. 

• Four logical terminals. 

• One transaction class. 

A control region worksheet is provided as Figure 5-20. In the 
discussion that follows, the term "worksheet" refers to Figure 5-20. 

IMS/VS Storage Estimates 5.57 



The size of the CTL is calculated first. Referring to Figure 5-6, 
Item 2, the conversational option is not selected for this minimum 
environment. Item 6 is the resident portion of the terminal device 
support whose value is selected from Figure 5-7, 600 bytes for the 2740 
Model 1 non-switched terminal plus 2700 bytes required basic code. The 
total basic and optional code value from Figure 5-6 is 78300 bytes for 
VS/1, and 147300 for VS/2 V=V, and is entered on line 1a of the 
worksheet. 

Referring to Figure 5-8 and the assumed environment, calculate line 
1b of the worksheet-generated control blocks: -

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Description· 

Basic fixed control blocks 

Two concurrent subtasks 

Con versational 

Transaction class 

Line groups 

Lines and pools 

Terminals (subpools) 

Different sets terminal 
attributes 

Translation 

Logical terminal names 

2*1008 

1 *80 

1*40 

1 *124 

1*96 

1 *36 

1*512 

4*52 

Size of generated control blocks 

500 

2016 

80 

40 

124 

96 

36 

512 

~ 

3612 

Enter this total size of generated control blocks on line 1b of the 
worksheet, sum 1a plus 1b, and place the result in the box to the right 
of 1b. The total size of the control program nucleus, rounded to the 
nearest 1K bytes, is 160000 for VS/1 and 229000 for VS/2. 

Line 2 of the worksheet is for loaded modules in the control area. 
Refer to Fiqure 5-9. Total locally loaded modules, from line 2 of 
worksheet, is 12000 bytes. Total globally loaded modules from Figure 
5-9 is 155200. Enter on line 3i of worksheet. These modules can be 
placed in the virtual link pack. 

5.58 IMS/VS System Proqramming Reference Manual 

.. - -- --- .. _- _ .•...... - --- -~-.-.. ~-----.----.--

c: 

~-~. 

l._ 



"-..- . 

-----_ .. _--------

Referring to Figure 5-11 and the assumed environment, calculate line 
3a of the worksheet, global control blocks: 

Reference Description 

1 Basic fixed control blocks 

2 One processing region 1 *4096 

3 Application programs 3*44 

4 Transaction· codes 6*68 

5 Data bases 1*40 

Size of global control blocks. 

Enter on line 3a of the worksheet. 

18600 

4096 

132 

408 

-~ 

23276 

Calculate the storage requirement for the system log work area using 
the formula shown in this chapter for system log buffers: 

488 + A *(216 + B) 

A=2 the minimum number of log buffers 
B=1048 1024 + 24, checkpoint log workarea + overhead 

488 + 2 * (216 + 1048) 

=3016 

Enter the result on line 3h of the worksheet. 

The buffer areas, lines 3b through 3g and lines 4a and 4c on the 
worksheet, are calculated next. Item 3b is for queue buffer pools. 
The minimum is used: 3(384 + 40) + 160 = 1432 bytes, and is entered 
on line 3b. Item 3b is for program description blocks and 'calculates 
as 890 bytes. Rounding up to the nearest 1000 bytes, enter 1000 for 
Item 3b on the worksheet. calculating Item 3c, the result is 808 bytes 
for the DMB buffer pool. Rounding to the nearest 1000 bytes, place 
1000 bytes in Item 3c of the worksheet. Data base buffer pool is Item 
3d, where the default value of 7000 was used. Data base work pool is 
item 3e, with one message region the minimum recommended size of 2000 
bytes was entered. Item 4c reflects the calculation for line buffer 
pool size. 

2740 Model 1 output 
system console input 
System console output 

204 
148 
136 

488 bytes 

For the estimate of the general buffer pool, enter the minimum size 
of 6400 on line 3f of the worksheet. 

IMS/VS Storage Estimates 5.59 



Estimate the amount of storage required for the program isolation 
enqueue/dequeue routines using the formula shown in this chapter for 
storage estimates for IMS/VS ENQ/DEQ routines (SIZE='I*N). The values 
for the calculation are as follows: 

5.60 

1= 1024 (The default increment) 

N= (32A*(B+C+D+E+3F+G+3H»/I 

A=1 The number of scheduled regions. 
B=1 The number of root segments that can be accessed in a 

retrieval call. 
C=1 The number of data base segments that can be retrieved in 

HOLD status. 
D=O None of the programs use the enqueue command code. 
E=1 
F::1 
G=O 
H=1 

N= (32*(1+1+0+1+3+0+3+/1024 
= (32*9)/1024 
= .28 rounded up to a whole number=1 

5= 1024*1=1024 

IMS/VS System programming Reference Manual 



Dynamic storage requirements are calculated, using Figure 5-14 and 
the 288 bytes shown under "lMS/VS Dynamic storage Requirements," as a 
sum of the two values. Starting in Figure 5-14: 

Reference 

1 

2 

3 

4 

Description 

Work areas 

OPEN/CLOSE line groups 

BlSAH lOB 

BISAH channel program 

5 None 

6 

7 

8 

9 

BTAM lOBs 

control blocks (OS/VS1) 

DEBs (OS/VS1) 

1 IS1M 
3 OSAM 
1 BT1M 

TIOT space (OS/VS1) 

1 device in each DD stateaent 

9 DD statements 

Total OS/VS dynamic storage requirements: 

Enter the result on line 5 of the worksheet. 

.§.~ 

5000 

1672 

56 

600 

152 

2568 

388 

336 

10772 bytQS OS/VS1 
7480 bytes OS/VS2 

From the IMS/VS dynamic storage requirements with no security: 

Reference 

1 
3 

Description 

Work Area 
ENQ/DEQ Routines 

.§.in 

288 
1Q£q 

TOTAL 1312 

Enter the result on line 6 of the worksheet. 

IMS/VS Storage Estimates 5.61 



REF DESCRIPTION 

1. Control Program Nucleus 

a. Resident Code 
h. Generated Control Blocks 

2. 1MS/VS Locally Loaded Modules 

3. Global Areas 

a. control Blocks 
h. Program Specification 

Blocks 
c. Data Base Description 

Blocks 
d. Data Base Buffers 
e. Data Base Work Pool 
f. General Buffers 
g. DBLLOG Buffers 
h. System Log Buffers 
i. IMS/VS Globally Loaded 

Modules 
j. PSB Work Pool 

4. Buffer Areas 

a. Queue Buffers 
b. Line Control Buffers 

5. Dynamic Storage 
Requirements -- OS/VS 

6. Dvnamic Storage 
Requirements -- IMS 

Region size OS/VSl 

78300 
3612 

81912 

12000 

23276 

1000 

1000 
7000 
2000 
6400 
1024 
3016 

155200 
1000 

200916 

1432 
488 

10772 

1312 

308308 

Region size OS/VS2 (Total of items 1, 2, 4-6) 
CSA storage OS/VS2 

Figure 5-20. Worksheet for Minimum DB/DC Example 

147300 
_3612 
150912 

12000 

1432 
488 

7480 

1312 

173624 
200916 

In summary, the total control region storage requirement is: 

309000 bytes for OS/VS1. 

174000 bytes for OS/VS2. 

5.62 IMS/VS System programming Reference Manual 

~, ... 



c. 

A minimum message or batch-message region must be one of the largest 
from the following: 

1. The OS/VS partition/region defined by the user's OS/VS system 
plus 20K. 

2. The largest message processing program in the user's IMS/VS 
system plus 20K. 

Using a minimum OS/VS1 or OS/VS2 system, in connection with the 
minimum IMS/VS DB/DC system, this teleprocessing execution can operate 
on a 348K machine for OS/VS1, or a 1024K machine for OS/VS2. 

DATA BASE UTILITIES STORAGE REQUIREMENTS 

This section provides the necessary data with which to estimate 
storage requirements for the I8S/VS Data Base utility programs that 
are involved with Data Base Recovery and Data Base Reorganization/Load 
processing 'functions of IMS/VS. The first four utilities' storage 
requirements refer to "Data Base Recovery" in the IMS/VS· Utilities 
Reference Manual. 

• Data Base Image Copy -- DFSUDMPO 

• Data Base Change Accumulation -- DFSUCUMO 

• Data Base Recovery -- DFSURDBO 

• Data Base Backout -- DFSBBOOO 

The next set of eight utilities' storage requirements refer to "Data 
Base Reorganization/Load Processing" in the IMS/VS.Utilities Reference 
Manual. 

• Data ~ase Physical Reorganization 

HISAM Reorganization Unload DFSURULO 

HISAM Reorganization Reload DFSURRLO 

HD Reorganization Unload DFSURGUO 

HD Reorganization Reload DFSURGLO 

• Data Base Logical Relationship Resolution 

Data Base Pre-reorganization -- DFSURPRO 

Data Base Scan -- DFSURGSO 

Data Base Prefix Resolution -- DFSURG10 

Data Base Prefix Update -- DFSURGPO 

Note: Unless otherwise indicated, the following storage requirements 
pertain to OS/VS1 and OS/VS2 system options. 

I8S/VS storage Estimates 5.63 



DATA BASE IMAGE COPY UTILITY -- DFSUDMPO 

The formula supplied below must be used once for each data base 
image copy statement to be processed. The largest value thus 'obtained, 
rounded up to the nearest 2K multiple, can be used to estimate the 
region or partition size for a given execution of the Data Base Image 
Dump utility program. 

Required Main Storage/Control Statement = 30,500+(A*(B+84»+(C*(D+84»+E 
+F+G+H+I+J+K. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. Default is 80. 

C = Number of SYSPRINT buffers. Default is 2. 

D = SYSPRINT data set block size. Default is 121. 

E = 7498 if data base data set is ISAM. 0 if OSAM. 

I: F = Buffer Space Required = (H*(I+136»+ (J*(K+84». 

G = OS/VS control blocks and work space. See the formulas referred to 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data' Base System Storage Requirements." 

H = Number of data base data set buffers. Default is 2. 

I = Data base data set block size. 

J = Number of output data set buffers. Default is 2. 

K = Output device data capacity, but limited to a maximum of 8191 bytes. 

DATA BASE CHANGE ACCUMULATION UTILITY -- DFSUCUMO 

The following formula can' be used to estimate the region or partition 
size required for a given execution of the Data Base Change Accumulation 
p.rogram: 

Required Main Storage = 21000+(A*(B+84»+(C*(D+84»+(E*(F+84»+(G*(H+84» 
+(I*(J+84»+(K*(L+84»+N+120+(32*P)+O+Q+R. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. Default is 80. 

C = Number of SYSPRINT buffers specified. Default is 2. 

D = SYSPRINT data set block size. Default is 121. 

E = Number of DFSUCUMN buffers specified. Default is 2. 

F = DFSUCUMN data set block size (normally device capacl.ty, but limited 
to a maximum of 8191 bytes). 

G = Number of DFSUCUMO buffers specified. Default is 2. 

5.64 IMS/VS System Programming Reference Manual 

/ 

\ "_. 



H = DFSUCUMO data set block size. 

I = Number of DFSUDD1 buffers specified. Default is 2. 

J = DFSUDD1 data set block size (normally device capacity, but limited 
to a maximum of 8191 bytes) • 

K = Number of DFSULOG buffers specified. Default is 2. 

L = DFSULOG data set block size. 

N = 28800 if a DFSUCUMN DD statement was supplied; otherwise o. 
o = Number of db names specified on an ID control statement. Default 

is 16. 

P = Number of DD names specified on an ID controi statement. Default 
is 80. 

Q = Amount of main storage for OS/VS sort, as specified in the EXEC 
statement parameters. Default is 100,000. 

R = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Base System Storage Requirements." 

DATA BASE RECOVERY UTILITY -- DFSURDBO 

The following formula can be used to estimate the region or partition 
size required for a given execution of the Data Base Recovery program: 

Required Main Storage = 42500+(A*(B+84»+(C*(D+84»+(E*(F+84»+(G*(H+84» 
+ (I* (J+84) )+K+L+M+ (N* (0+136» +P+Q+S+T+U. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. Default is 80. 

C = Number of SYSPRIN~ buffers specified. Default is 2. 

D = SYSPRINT data set block size. Default is 121. 

E = Number of DFSUDUMP buffers specified. Default is 2. 

F = DFSUDUMP data set block size. 

G = Number of DFSUCUM buffers specified. Default is 2. 

H = DFSUCUM data set block size. 

I = Number of DFSULOG buffers specified if no DFSUDUMP or DFSUCUM 
supplied; otherwise O. 

J = DFSULOG data set block size if one is supplied; otherwise o. 
K = Data base buffer pool size specified. Def~ult is 7000. 

L = 7200 if DFSUCUM data set is supplied; otherwise o. 

M = 2000 if DFSULOG suppli~d and no DFSUDUMP supplied; otherwise 

IMS/VS storage Estimates 

o. 

5.65 



N = Number of data base data set buffers specified. Default is 2. 

o = Data base data set block size. 

P = 7498 if data set to be recovered is ISAM; otherwise O. 

Q = PSB size calculation as described under "IMS/VS Program 
Specification Block" in the section "Data Base System Storage 
Requirements." The definition is as if a single PCB where PROCOPT 
= G had been defined. The PSB is sensitive to all segments in the 
data base. 

S = DMB size as described under "IMS/VS Data Base Descri ption" in the 
section "Data Base System Storage Requirements." 

T = Size of the randomizing module if HDAM; otherwise O. 

U = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buf fers, and Work Space" in the section 
"Data Base System Storage Requirements." 

DATA BASE BATCH BACKOUT UTILITY -- DFSBBOOO 

The following formula can be used to estimate the region or partition 
size required for a given execution of the Data Base Batch Backout 
program: 

Required Main Storage = 4280+A+B. 

where: 

4280 = Size of program DFSBBOOO. 

A = Block size of input log tape. 

B = Total of references 1 through 9 of the Data Base System worksheet 
in this chapter for the user's IMS/VS Data Base system. 

HISAM REORGANIZATION UNLOAD UTILITY -- DFSURULO 

The following formula is to be used once for each control statement 
to be processed. The largest value thus obtained, rounded up to the 
nearest 2K multiple, can be used to estimate the region or partition 
size for a given execution of the HISAM Reorganization Unload program. 

Required Main Storage = 61500+(A*(B+84»+(C*(D+84»+E+F+G. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. Default is 80. 

C = Number of SYSPRINT buffers. Default is"2. 

D = SYSPRINT data set block size. Default is 133. 

E = Block size of the OSAM data set. 

F = Buffer Space Required = 
= 

(H*(I+136»+(J*(K+84»+L for ISAM/OSAM. 
(H*(I+136»+(J*(K+84»+L+M for VSAM. 

5.66 IMS/VS System programming "Reference Manual 



~-.. " 

c 

G = OS/VS contro 1 blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space II in the section 
"Data Base System Storage Reguirements. II 

H = The number of ISAM data set buffers specified. Default is 2. 

I = ISAM data set block size. 

J = Number of output data set buffers. Default is 2. 

K = Output device data capacity, but limited to a maximum of 16384 
bytes. 

L = Size of buffers required for DL/I as specified on EXEC statement. 
Default is 7K. 

M = Buffers required by VSAM as specified by the DEFINE statement. 

HISAM REORGANIZATION RELOAD UTILITY -- DFSURRLO 

The following formula is to be used once for every ISAM/OSAM data 
set qroup to be reloaded. The largest value, rounded up to the nearest 
2K multiple, can be used to estimate the region or partition required 
for a given execution of the HISAM Reorganization Reload utility 
program: 

Reguired Main Storage = 11500+ (A*(B+84»+(C*(D+84»+(E*(F+84» 
+ (G* (H+136)) +1. 

where: 

A = Number of SYSPRINT buffers specified. Default is 2. 

B = SYSPRINT data set block size. Default is 133. 

C = Number of buffers specified on the associated DFSUINxx DD statement. 
Default is 2. 

D = Associated DFSUINxx data set block size. Normally input device 
capacity, but limited to a maximum of 16384 bytes. 

E = Number of buffers specified for the OSAM data set. Default is 2. 

F = OSAM data set block size. 

G = Number of buffers specified for the ISAM data set. Default is 2. 

H = 1SAM data set block size. 

I = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS control Blocks, Buffers, and Work Space" in the section 
"Data Base System Storage Requirements." 

IMS/VS Storage Estimates 5.67 



Ii 

HD REORGANIZATION UNLOAD UTILITY -- DFSURGUO 

The following formula can be used to estimate the region or partition 
size required for a given execution of the HD Reorganization Unload 
utility program: 

Required Main storage = 66500+(A*(B+84»+(2*C) +D+(40*E)+F+H+I+J+K+L+M. 

where: 

A = Number of SYSPRINT buffers specified. Default is 2. 

B = SYSPRINT data set block size. Default is 121. 

C = The smaller of Ca) the output block size of the DFSURGU1 data set, 
or Cb) the output block size of the DFSURGU2 data set. This is 
normal IV the smaller output device capacity, but limited to a 
maximum of 8191 bytes. 

D = Specified buffer pool size. Default is 7000. 

E = Number of SEGM s~atements in the DBD for this data base. 

F = PSB size calculation as described under "IMS/VS Program 
Specification Block" in the section "Data Base System Storage 
Requirements. If The definition is as if a single PCB with PROCOPT 
= G had been defined. The PSB is sensitive to all segments in the 
data base. 

H = DMB size as described under "IMS/VS Data Base Description" in the 
section "Data Base System Storage Requirements." 

I = 7498 if HISAM or HIDAM data base is being unloaded; otherwise O. 

J = Total buffer reguirements for all ISAM data sets in the data base 
being unloaded. 

K = Size of randomizing module if HDAM data base; otherwise O. 

L = 1000 if checkpoints are being t~ken or a restart is being done; 
otherwise O. 

M = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Base System storage Requirements." 

HD REORGANIZATION RELOAD UTILITY -- DFSURGLO 

The following formula can be used to estimate the region or partition 
size required for a given execution of, the HD Reorganization Reload 
u~ility program: ' 

Ii Required Main Storage = 60000+ (A* (B+84» + (c* (D+84»+ (E* (F+84» +(G* (H+84» 
: \ +I+J+L+M+N+O.' 

where: 

A = Number of SYSPRINT buffers specified. Default is 2. 

B = SYSPRINT data set block size. Default is 121. 

C = Number of DFSUINPT buffers specified. Default is 2. 

5.68 IMS/VS System Programming Reference Manual 

C~ 



.-- .... _ .. _-------_ .. _--- --- ---

D = DFSUINPT data set block size. Normally device capacity, but li.ited 
to a maximum of 8191 bytes. 

E.= Number of buffers specified for the DFSURWF1 data set. Default is 
2. 

F = DFSURWF1 data set block size. 

G = Number of buffers specified for the DFSURCDS data set. Default is 
2. 

H = DFSURCDS data set block size. 

I = Data base buffer pool size. Default is 7000. 

J = PSB size calculation as described under "IMS/VS program 
Specification Block" in the section "Data Base System Storage 
Requirements." The definition is as if a single PCB with PROCOPT 
= G and sensitive to all segments in the data base has been defined. 

L = DMB size as described under "IMS/VS Data Base Description" in the 
section "Data Base System Storage Requirements." 

M = 8632 if data base is HISAM or HIDAM; 1688 if the data base is HSA!; 
or, if HDAM, the size of the randomizing module. 

N = Total buffer requirements for all IS1M data sets in the data base 
being reloaded. The default number of buffers for each data set 
is 2. 

o = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Ba~e System storage Requirements." 

DATA BASE PRE-REORGANIZATION UTILITY -- DFSURPRO 

The following formula is to be used to estimate the region or 
partition size required for a given execution of the Data Base 
Pre-reorganization utility program: 

Required Main Storage = 30000+(A*(B+84»+(C*(D+84»+(E*(F+84»+G+I+J+K. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. 

C = Number of SYSPRINT buffers specified. Default is 2. 

D = SYSPRINT data set block size. 

E = Number of DFSURCDS buffers specified. Default is 2. 

F = DFSURCDS data set block size. 

G = PSB size as described under "IMS/VS Program Specification Block" 
in the section "Data Base System Storage Requirements." The 
definition is as if a single PCB with PROCOPT = G and sensitive to 
all segments in the data base has been defined. This calculation 
must be made once for every DBD name that appears in a control 
statement. The largest value obtained is the value to be used. 

IMS/VS storage Estimates 5.69 



I = D!B size as described under "lMS/VS Data Base Description" in the 
section "Data Base System storage Requirements." This calcula tion 
must be made once for every DBD name that appears in a control 
statement. The largest value obtained is the value to be used. 

J = Data base buffer pool size specified. Default is 7000. 

K = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Bu~fers, and Work Space" in the section 
"Data Base System Storage Requirements." 

DATA BASE SCAN UTILITY -- DFSURGSO 

The following formula is to be used to estimate the region or 
partition size required for a given execution of the Data Base Scan 
program: 

Required Main storage = 68500+(A*(B+84» +(C*(D+84»+(E*(F+84» 
+(G*(H+84»+ (I*(J+84»+K+L+M+N+P+Q+R+S. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. 

C = Number of SYSPRINT buffers specified. Default is 

D = SYSPRINT data set block size. 

E = Number of buffers specified for DRFURWF1. Default 

F = DFSURWF1 data set block size. 

G = Number of DFSURCDS buffers specified. Default is 

H = DFSURCDS data set block size. 

I = Number of DFSURSRT buffers specified; otherwise o. 
J = DFSURWF1 data set block size. 

2. 

is 2. 

2. 

K = Data base buffer pool s~ze specified. Default is 7000. 

L = 7498 if HISAM or HIDAM data bases are to be scanned; otherwise 

M = Size of the largest randomizing module to he used. 

o. 

N = PSB size calculation as described under "lMS/VS Program 
Specification Block" in the section "Data Base System Storage 
Requirements." This calculation must be made once for each data 
base that is to be scanned. The definition is as if a single PCB 
with PROCOPT = G and sensitive to all segments in the data base 
has been defined. The largest value obtained must be the value 
used. 

P = DM·B size as described under "IMS/V S Data Base Descri ption" in the 
section "Data Base System storaqe Requirements. " This calculation 
must be made once for each data base that is to be scanned. The 
larqest value obtained must be the value used. 

Q = Total buffer requirements for all 1SAM data sets that can be open 
simultaneously. If multiple calculations are necessary, the largest 
value obtained must be. the value used. 

5.70 IMS/VS System Programming Reference Manual 

(' 
\ ........... 



R = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Base System Storage Requirements." 

S = Size of the largest segment to be scanned. 

DATA BASE PREFIX RESOLUTION UTILITY -- DFSURG10 

The following formula is to be used to estimate the region or 
partition size required for a given execution of the Data Base Prefix 
Resolution utility program: 

Required Main Storage = 20000+(A*(B+84»+(C*(D+84»+(E*(F+8~») 
+ (G* (H+84» +I+J. 

where: 

A = Number of SYSPRINT buffers specified. Default is 2. 

B = SYSPRINT data set block size. 

C = Number of buffers for the DFSURCDS data set specified. Default is 
2. 

D = DFSURCDS data set block size. 

E = Number of DFSURWF2 buffers specified. Default is 2. 

F = DFSURWF2 data set block size. 

G = Number of DFSURWF3 buffers specified. Default is 2. 

H = DFSURWF3 data set block size. 

I = Amount of main storage for OS/VS SORT, if specified in the EXEC 
statement; otherwise 61440 bytes. 

J = OS/VS control blocks and wo~k space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Base system Storage Requirements." 

DATA BASE PREFIX UPDATE UTILITY -- DFSURGPO 

The following formula is to be used to estimate the region or 
partition size required for a given execution of the Data Base Prefix 
Update utility program: 

-r Required Main Storage = 72000+(A*(B+*84»)+C*(D+*84»+(E*+*84)+G+H+I 
+J+K+M+N. 

where: 

A = Number of SYSIN buffers specified. Default is 2. 

B = SYSIN data set block size. 

C = Number of SYSPRINT buffers specified. Default is 2 •. 

D = SYSPRINT data set block size. 

E = Number of DFSURWF3 buffers specified. Default is 2. 

IMS/VS Storage Estimates 5.71 



F % D1SURWF3 data set block size. 

G : Data base buffer pool size specified. Default is 7000. 

H : 7498 if any IS!M/OSA~ data set groups are defined on DD statements. 

I z Size of the largest randomizing module that will be used. 

J = Total buffer requirements for all ISAM data sets that can be open 
simultaneously. If multiple calculations are necessary, the largest 
value obtained must be the value used. The default number of 
buffers for all data sets is 2. 

K :: PS13 size calculation as described under "lMS/VS Program 
Specification Block" in the section "Data Base System Storage 
Requirements." The definition is as if a single PCB with PROCOPT 
= G and sensitive to all segments in the data base has been defined. 
This calculation must be made once for each data base that is to 
be updated. The largest value obtained must be the value used. 

M = D~B size calculation as described under "IMS/VS Data Base 
Description" in the section "Data Base System storage Requirements." 
calculation must be made once for each data base that is to be 
updated. The largest value obtained must be the value used. 

N = OS/VS control blocks and work space. See the appropriate formula 
under "OS/VS Control Blocks, Buffers, and Work Space" in the section 
"Data Base System Storage Requirements." 

SPOOL SYSOUT PRINT UTILITY -- DFSUPRTO 

The following formula is to be used to estimate the region or 
partition for a given execution of the Spool SYSOUT Print utility 
program: 

Required Main Storage = 3500+204*A+(8+ (4xB)+ (B*C»+(8+(4*D)+(D*E» 
+(112+88*B)+(112+128*D) • 

where: 

A :: Number of spool data sets processed by the utility. 

B :: Number of buffers for SYSPRINT data set specified. 

C = SISPRINT data set block size. 

D :: Number of buffers for spool data set specified. 

E :: Spool data set block size. 

Assumes basic QSAM modules resident. 

5.72 IMS/VS System programming Reference Manual 



'- ./ 

---------- . ---

STORAGE ESTIMATES SOURCE DATA 

REF DESCRIPTIONS 

1 • Basic Fixed Control Blocks 
a. PSB Most Used QCB 
b. DMB Most Used QCB 
c. System Console CLB 
d. System Console CNT 
e. System Console Translate Table 
f. CVBs 

2. Maximum Concurrent Input/Output 
a. Save Area Set 

3. Concurrent Conversations 
a. CCB 

4. Transaction Class 
a. TCT 

5. Line Groups 
a. Access method DCB (BTAM, BSAM, 7770, GAM) 
b. Open list entry for each DCB 

6. Lines 
a. CLB 
b. SAP Wait Stack 
c. LERB 

7. Terminals 
a. CTB 
b. Average of 7 bytes per polling list entry 

8 • 

9. 

10. 

11. 

12. 

13. 

c. CRB 

Unique Terminal Attribute Set 
a. CTT 

Unique Terminal Translation 
a. Pair of translate tables 

Each Logical Terminal 
a. CNT 

2770 Terminal 
a. CXB 

Message Format Service 
a. CIB 

3270 switched Terminal 
a. CONFIG Table 
b. IDLIST List 

Figure 5-21. IMS/VS Control Blocks in the Control Program Nucleus 

IMS/VS Storage Estimates 5.73 



Figure 5-22 lists the modules used to calculate the values in Figures 
5-9 and 5-10. 

1 • DL/I Logging DFSRDBLO** 

2. DL/I and MSG DFSAOS 10** DFSAOS30** DFSAOCEO** 
Q'inq DFSAOS20** DFSAOS50** 

3. DL/I DFSDISMO** DFSDHDSO** DFSDLAOO** 
DFSDLOCO** DFSDBHOO** DFSDLDOO** 
DFSDXMTO** DFSDDLEO** DFSDLROO** 
DFSDBCKO** DFSDSEHO** DFSDLDVO** 
DFSDVBHO** DFSFXC10** 

4. Misc DFSPRPXO* DFSFTIMO** DFSFLLGO** 
DFSPRRGO* DFSFUNLO** DFSFPLGO 
DFSIDSPO** DFSFLRCO** DFSRDLGO** 
DFSASKOO** DFSFMODO* DFSFLSTO* 
DFSREPOO** DFSFCTTO* DFSFCSTO* 
DFSCPYOO** DFSRBCPO* 

5. DL/I VSAM DFSDVSMO** DFSDVBHO 

6. Can versational 
option DFSCONVO** 

7. DC Monitor Option DFSIMNTO DFSMNTRO** 

* These modules are not re-entrant and may not be placed in the system 
link pack area. 

I ** In VS/2 MVS these modules will be loaded into CSA. 

Figure 5-22. Loaded Modules in CTL Region 

1. Basic Fixed Control Blocks 

a. SCD 
b. OSAM lOB QCB in DFSIDS40 
c. OSAM DeBs for Queue Data Sets and Dynamic Log 
d. Background write PST 

2. Maximum Active Regions 

a. PST 

3. Application Proqrams 

a. PSB Directory 

4. Transaction Codes 

a. 5MB 

5. Data Bases 

a. DMB Directory 

F i gu r e 5- 2 3 • IMS/VS' Global Areas (CSA in MVS) 

5.74 IMS/VS System Programming Reference Manual 

-----------------

~-

"-.. 

(-
"-_.-



--- .. -.... ------

DESCRIPTION 

1. IMS/VS Region and Program control 

a. RRC10 
b. PR020 
c. PCC20 *2 
d. CPYOO 
e. REPOO 
f. ASKOO 
g. DIRCA 
h. ATTACH 
i. SSCD 
j. PXPARMS 

VS1 
PARTITION 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

VS2 
REGION 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

Fiqure 5-24. Message/Batch -- Messaqe Reqion Contents 

IMS/VS Storage Estimates 5.75 





------... -------------.-~.---

CHAPTER~. COMMUNICATIONS WITli INTELLIGEN1 REMOTE STATIONS 

INTRODUCTION 

The IMS~ ~stemL!BElication Design Guide contains introductory 
and desiqn information about IMS/VS Intelliqent Remote station Support 
(IRSS). This chapter describes the details of the communications 
interface between IMS/VS and IRSS terminals. IRSS support is available 
for the IBM System/3 Model 10 and the IBM System/? 

IMS/VS supports a System/3 attached on a binary synchronous (BSC) 
nonswitched polled line. 

IMS/VS supports a System/? attached on a start/stop (S/S), 
nonswitched, contention or polled line. Polling can be done using 
either programmed polling or autopoll. 

IMS/VS also supports a System/? attached on a ESC, nonswitched, 
contention or polled line. 

IRSS stations mayor may not have a restart facility for messages 
to IMS/VS. They are not expected to have a restart facility for 
messages from IMS/VS. 

TERMINAL IDENTIFIERS 

All terminal identifiers used in communication between IMS/VS and 
IRSS stations must be defined to IMS/VS in the TERMINAL macro durinq 
system definition. After the IRSS station has completely processed a 
message received from IMS/VS for a given terminal identifier, it must 
so inform IMS/VS. This action allows IMS/VS to transmit the next 
message, if any. An output messaqe, partly or completely sent but not 
dequeued, is returned to the queue and retransmitted if an input message 
for the same identifier is received. 

MESSAGE FORMATS 

A message is divided into segments. Some messages are defined as 
single-segment messages and can never contain more than one segment; 
others are defined as multiple-segment messages and can contain one or 
more segments. 

IMS/VS works with three types of messages: 

• Transactions 

A transaction is a message to be processed by an application 
program. A transaction is defined at IMS/VS system definition as 
either a single- or a multiple-segment messaqe • 

• Message Switches 

A message switch is a message routed to a logical terminal for 
output by IMS/VS. It cannot be processed by an application program. 
A message switch is always defined as a multiple-segment message. 

communications with Intelligent Remote Stations 6.1 



• Commands 

Commands control functions within IMS/VS. A command has a slash 
as the first significant character of its first segment. No other 
segment can have a slash as its first significant character. All 
commands normally allowed from a System/3 or System/7, except the 
/BROADCAST command, are defined as single-segment messages. 
/BROADCAST is defined as a multiple-segment message, but is 
different from other multiple-segment messages in t~o respects: 

1. /BROADCAST.should contain at least two segments. 

2. The total length of all segments making up the /BROADCAST message 
must not exceed the size of the large message buffer as defined 
in the IMS/VS system definition. 

The various commands available are described in the IMS/VS ~erator's 
Reference Manual. 

The remainder of this chapter is divided into three major sections. 
The first describes the interface between IMS/VS and a System/3 or 
System/7 attached on a BSC line. The second describes the interface 
between IMS/VS and a System/7 attached on a start/stop line. The third 
section contains examples of transmission sequences between IMS/VS and 
an IRSS station; no distinction between station type is made. 

INTERFACE BETWEEN IMS/VS AND THE SYSTEM/3 OR SYSTEM/7 BS~ 

The interface between IMS/VS and a System/3 or System/7 consists of 
blocks of information transmitted across the communication line. Data 
blocks are used to transfer data. synchronization blocks are used 
between IMS/VS and the System/3 or System/7 stations to inform each 
other about the status of terminals, completion of output, restart, 
and shutdown. 

If IMS/VS detects interface·errors, it transmits an EOT to stop the 
System/3 or System/7, and sends a message to the master terminal. If 
the System/3 or System/7 is restarted before IMS/VS is shutdown, it is 
restarted in emergency restart status (refer to "Shutdown/Restart 
Blocks" under "Synchronization Blocks"). 

The System/3 or System/7 is logically deactivated if any of the 
following categories of errors occur: 

• Transmission errors 
• Invalid data or synchronization block formats 
• Invalid station or terminal identifier 
• Invalid data block flag settings 

The System/7 will also be logically deactivated if a load sequence 
error occurs. 

6.2 IMS/VS System Programming Reference Manual 

'-. 



'-_ .. J 

DATA BLOCKS 

A data block contains one or more segments belonging to one or more 
messages. A segment is fully transmitted by IMS/VS in one transmission, 
unless its size exceeds the user-specified transmission buffer size, 
in which case it is changed into multiple segments of the following 
format. 

Bloc! Format 

r--------------------------------------------------------------, 
I D I A I Block identifier lOne or more data segments I 
L-------------------------------------------------------------~ 
o 1 2 6 

The D and A identify the block as a data block. The field contains 
the two characters D and A in uppercase EBCDIC. 

Block identifier specifies the block for restart purposes. When an 
input message is enqueued, IMS/VS logs the block identifier with the 
message. IMS/VS transmits the last logged block identifier back to 
the System/3 or System/7 after a restart of IMS/VS. The System/3 or 
System/7 can also request this information to be transmitted, thus 
allowing resynchronization after a previous restart. 

It is recommended that the block identifier be changed between 
blocks. If the first block received after a restart has the same block 
identifier as was used to restart, the block is considered 
retransmitted. This is described in more detail under "Data Segment 
Format." 

Note: In a future release, the block identifier may be required to 
change between blocks. 

Data Segment Format 

r--------------------------------------------------------------, 
I Terminal I Msg I Flags I Length I Data I 
I Identifierl Ident. I I I I 
L--------------------------------------------------------------J o 2 3 4 6 

• Terminal Identifier 

Received by IMS/VS: This value must correspond to the address 
given in a TERMINAL macro specified in IMS/VS system definition 
for the transmitting System/3 or System/7; otherwise, the 
System/3 or System/7 is logically deactivated. 

Transmitted from IMS/VS: The address given in the TERMINAL 
macro for the outputting terminal is used as terminal identifier. 

• Message Identifier 

This identifies a message within a block for error message and 
restart purposes. Error messages are described under 
"Synchronization Blocks." 

communications with Intelligent Remote stations 6.3 



The message identifier is logged with the block identifier by 
IMS/VS. In case of a restart of IMS/VS or an emergency restart of 
System/3 or System/7, the message identifier (together with the 
block identifier describing the last message enqueued) is 
transmitted to th€ System/3 or System/7. The System/3 or System/7 
can then retransmit the identified block. Retransmission is not 
required if the identified message was net followed by any segments, 
or if these segments can be built into the next block. 

The first input data block after a restart is considered 
retransmitted if its block identifier is the same as the one used 
to restart. The received block is scanned to find the first segment 
following the identified message, if any, thereby bypassing all 
segments already enqueued, in case of a retransmission. 

• Flags 

0-4 

5 

6 

7 

Meaning 

Reserved. 

Segment spanning flag: 
O=Segment ends in this buffer. 
1=Segment does not end in this buffer. 

O=First part of a message. 
1=Not the first part of a message. 

O=Last part of a message. 
1=Not the last part of a message. 

All combinations of flag bits 5, 6 and 7 are valid except X'04' 
and X'06'. 

"Part" in the above flag meanings, emphasizes that a segment can 
be changed to multiple segments as previously defined, and as 
indicated by the spanning flag. 

The setting of the flag. bits must correspond to the definition of 
the transaction in IMS/VS system definition. A transaction defined 
as a single-segment transaction to IMS/VS must have all flag bits 
off. A transaction defined as a multiple-segment transaction, as 
well as all message switches, can, but are not required to, consist 
of multiple segments. A command must follow the rules for that 
command defined by the IMS/VS system. 

The setting of flag bits must also be consistent during the flow 
of data; that is, one message must be terminated before the next 
can start, or the station is logically deactivated. The segment 
spanning flag is set by IMS/VS whenever a segment spanned an IMS/VS 
queue buffer, or could not be contained in one transmission buffer. 
The segment spanning flag is ignored when received by IMS/VS. 

• Length 

specifies the combined length of the length and data fields. All 
the data defined by this length must be within the block. This 
field is 2-byte binary. 

• Data 

The format of the data must correspond to the standard IMS/VS data 
formats. 

6.4 IMS/VS System programming Reference Manual 



c~ 

_ .. _----- -.~ .. ---.--------~-~-........ -----

EXAMPLES OF DATA BLOCK FORMATS 

.[ystem/3 or .§.ystemil Transmission to IMS~ 

Four data blocks are shown in this example. Data came from three 
terminals: 

• Terminal T1: One message consisting of segments 1, 2, and 3. 

• Terminal T2: Two messages, one consisting of segments 6 and 7, 
the other of segment 8. 

• Terminal T3: One message consisting of segments 4 and 5. 

r-------------------------------------------------------------~ 
ID AIBLK 11T11 1 I 11LengthiSegment 11T11 11 31LengthiSegment 2 I 
L--------------~-----------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 21Tl1 1 I 21LengthiSegment 31T31 21 11LengthiSegment 4 I 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 31T31 11 21LengthiSegment 51T21 21 llLengthlSegment 6 I 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 41T21 11 21LengthiSegment 71T21 21 OILengthlSegment 8 t 
L--------------------------------------------------------------~ 

IMS/VS Transmission to System/3 or System/7 

Eight blocks are shown in this example. Data is destined for four 
terminals: 

• Terminal T.1: One message consisting of segments 1, 2 and 3. 

• Terminal T2: One message consisting of segment 4. 

• Terminal T3: One message consisting of segments 5, 6 and 7, each 
of which requires spanning. 

• Terminal T4: One message consisting of segment 8. 

r--------------------------------------------------------------, 
10 AIBLK llTll 1 I 11LengthiSegment 11T11 11 31LengthiSegment 2 1 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 21T11 11 21LengthiSegment 31T21 21 OILengthlSegment 4 1 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 31T31 1 I 51LengthiSegment 5 (spanned) I 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 41T31 11 31LengthiSegment 5 I 
L--------------------------------------------------------------~ 

Communications with Intelligent Remote stations 6.5 



r--------------------------------------------------------------, 
ID AIBLK SlT31 1 I 71LengthiSegment 6 (spanned) I 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 61T31 11 31LengthiSegment 6 I 
L--------------------------------------------------------------~ 

r--------------------------------------------------------------, 
ID AIBLK 71T31 11 71LengthiSegment 7 (spanned) I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 81T31 11 21LengthiSegment 71T41 21 OILengthlSegment 8 I 
L--------------------------------------------------------------~ 

SYNCHRONIZATION BLOCKS 

Synchronization blocks are used to transmit non-data control 
information between IMS/VS and System/3 or System/7. Only the formats 
described are transmitted by IMS/VS. Any input format different from 
those described below is ignored if received by IMS/VS. 

General Bloc~ Formats 

• Format A Unblocked 

r-------------------------------, 
I S IY IType IFlagsl Data I 
L-------------------------------~ 
o 2 3 4 

• Format B Blocked 

r---------------------------------~-----------------, 
I SlY IType ·IFlagsl Data IType IFlagsl Data I 
L---------------------------------------------------~ 
o 2 3 4 

Sand Y identify the block as a synchronization block. The field 
contains the characters Sand Y in uppercase EBCDIC. 

Type identifies the type of information contained in the block. 

Value 
(he~) 

80 
40 
·20 
10 
01 

Block 
Format 

A 
B 
B 
A 
A 

Description 

Shutd own/re start block. 
Status change block. 
I/O synchronization block. 
Error message block. 
Load request (System/7 only). 

All other type values are reserved. 

Flags and data are described in the detailed description of the 
above blocks. 

6.6 IMS/VS System Programming Reference Manual 



C~ 

Format 1 Format 2 
r------------------, r-------------------------------------------, 
IS I Y 180 IFlags ~ IS IY 180 I Flagsl Block identifierlMsg ident I 
L------------------J L-------------------------------------------J o 1 2 

• Flags 

X'80' 
X'40' 
X' 20' 
X'10' 
X'08' 
X'02' 
X'01' 

3 012 3 4 8 

C old start (forma t 1) • 
Emergency restart (format discussed below). 
Emergency restart response (format 2). 
Normal restart (format 2). 
Shutdown request (format 1). 
System shutdown (format 1). 
Immediat~ shutdown request (format 1). 

All other flag values are reserved. 

Block identifier identifies the last received block causing a 
message to be queued. 

Message identifier identifies the last message within the block to 
be queued. 

Restart Messages: The restart message is sent by IMS/VS to a System/3 
or System/7 when: 

• Communication is started due to IMS/VS receiving a /START command 
with the line or pterm keywords, where the station pterm (the 
System/3 or System/7) was not explicitly stopped by a previous 
command. A station stopped condition is reset by including the 
station pterm in the /START command. 

• Requested by the System/3 or System/7. 

The restart message indicates either how IMS/VS was started or how 
previous communication was terminated. 

• IMS/VS Cold Started 

When IMS/VS transmits the cold start message to the System/3 or 
System/1, the message indicates that IMS/VS was started with empty 
queues. The System/3 or System/7 must start its transmission with 
the first segment of a message; otherwise, the System/3 or System/7 
is logically deactivated and the master terminal operator notified. 
If the System/3 or System/7 is reactivated before IMS/VS has been 
terminated, it is activated in an emergency restart status. 

• IMS/VS Receives a Cold Start Message 

When IMS/VS receives a cold start message, any input message in 
progress is canceled. All output messages in progress are restarted 
from the first segment. The rules for System/3 or System/7 for 
starting data transmission apply as above. 

communications with Intelligent Remote Stations 6.7 



• IMS/VS Emergency Restarted 

IMS/VS transmits an emergency restart message in format 2. The 
System/3 or System/7 has two options: 

1. It may retransmit the block identified in the restart message. 
IMS/VS starts processing with the first segment following the 
last segment of the ide~tified message. 

2. If the System/3 or System/7 does not wish to retransmit the 
identified block, it can build the remaining segments in the 
block, if any, into some other block, and use a block identifier 
other than the one used to restart, in the first block 
transmitted. 

• IMS/VS-Received Emergency Restart Message in Format 1 

An input message, if one is in progress, is canceled. All output 
messages in progress are retransmitted beginning with the first 
segment. IMS/VS responds by transmitting an emergency restart 
response message. The same emergency restart rules as above apply 
for starting communication. 

• Normal Restart Message 

IMS/VS transmits the normal restart message to start communication 
if no other restart message is required. IMS/VS ignores a received 
normal restart message. 

Shutdown Messages: Shutdown messages inform the rece~v~ng station that 
the transmitting station has started a procedure designed to terminate 
communication between the two stations in an orderly fashion. This is 
sent under the following conditions: 

• communication was terminated because IMS/VS received a/STOP, 
/PSTOP, or /PURGE command with the line or pterm keywords. 

• Communication was terminated because IMS/VS received a/CHECKPOINT 
command for the system. 

• Communication was terminated because of an error condition. 

• communication was terminated by request of the System/3 or System/7. 

The types of shutdown messages are: 

• Immediate Shutdown Bequest (from IMS/VS only) 

The IMS/VS master terminal operator has requested IMS/VS to 
terminate communication either by stopping the System/3 or System/7 
or by requesting an IMS/VS shutdown procedure. This block requests 
System/3 or System/7 to stop transmitting data to IMS/VS when all 
messages in progress are completed. 

The System/3 or System/7 must inform IMS/VS of completion of 
messages received from IMS/VS, even though a shutdown is in 
progress. The master terminal operator may have requested IMS/VS 
to purge its queues before shutting down; hence, IMS/VS can continue 
transmitting data even though a shutdown is in progress. IMS/VS 
sends a system-shutdown message to inform the remote station when 
the shutdown procedure has been completed. 

6.8 IMS/VS System Programming Reference Manual 



.----- ._---- ----_. -_._----_ .•.... __ ... _---_. __ .. _.-

,-- .... 

• Shutdown Request (to IMS/VS only) 

IMS/VS does not initiate transmission of a new output message after 
receipt of a shutdown request. IMS/VS transmits the system-shutdown 
message when all outstanding messages have been acknowledged by 
the System/3 or System/? as being completed after all appropriate 
output has been sent. 

• System Shutdown (from IMS/VS onl~ 

IMS/VS transmits this message to inform the System/3 or System/? 
that communication is terminated normally. 

Status Chang~ Blocks 

Status change blocks are used to specify a change in transmission 
mode between IMS/VS and a System/3 or System/7. Status change blocks 
may be sent as a result of using the line or pterm keywords with the 
following commands: /START, /STOP, /RSTART, /PSTOP, /PURGE, and 
/MONITOR. 

r---------------------------------------------------------------, 
ISIYI40lFlagsiTerminal 140lFlagsiTerminal 140lFlagsiTerminal I 
I I I I I Identifier I I I Identifier I I I Identifier I 
L---------------------------------------------------------------J 

0 

• 

1 2 3 

Flags 

Value 

X'SO' 
X'40' 
X'20' 
X '1 0' 
X'OS' 

4 6 7 S 10 11 12 

Meaning 

Unable to operate with terminal (to IMS/VS only). 
stop input from and output to terminal. 
stop input from and start output to terminal. 
Start input from and output to terminal. 
Start input from and stop output to terminal. 

All other flag values are reserved. 

Terminal identifier specifies the status changing terminal. 

The flag descriptions are as follows: 

X'SO' 

X'40' 

X'20' 

The identified terminal is marked inoperable by IMS/VS 
and the master terminal operator is notified. Any input 
in progress on the specified terminal is cancelled. Any 
output in progress is postponed and will be retransmitted 
from the first segmen t when the terminal is resta rted. 

Input and output are logically stopped, except system 
messages, which continue to be transmitted. A message 
in progress, in or out, is allowed to complete. Any 
input message received later is rejected, and an error 
message returned to the remote station. No output is 
initiated except system messages. 

Input is logically stopped while output is allowed to 
continue normally, or is started if required. An input 
message in progress is allowed to complete, but any 
later message is rejected, and an error message returned 
to the remote station. 

communications with Intelligent Remote stations 6.9 



X'10' 

X'08' 

Input and output are logically restarted. Normal input 
and output are resumed. 

Input is allowed to continue normally or, if required, 
is started. Output is logically stopped. An output 
message in progress is allowed to complete. 

IIO ~ynchronization Blocks 

I/O synchronization blocks are used to allow the System/3 or System/1 
and IMS/VS to synchronize I/O operations and maintain system integrity. 
I/O synchronization blocks also allow the System/3 and System/? to 
optimize their resources by controlling when and what output is sent 
by IMS/VS. 

r---------------------------------------------------------------, 
ISIYI20lFlaqslTerminal 120 I FlagslTerminal 120lFlagsiTerminal t 
I I I I I Identifierl I I Identifier I I I Identifier I 
L---------------------------------------------------------------J 
012 3 4 6 ? 8 10 11 12 

• Flaqs 

Value 

X'SO' 
X'40' 
X'20' 
X'1 0' 

X'08' 
X'04' 
X'02' 

Meaning· 

Output completed (sent by System/3 or System/?). 
Input in progress (sent by System/3 or System/?). 
Input terminated (sent by System/3 or System/?) • 
Send output (sent by System/3 or System/?; ASK 
message). 
No output available (sent by IMS/VS; NO-OUT message). 
Postpone output (sent by System/3 or System/?). 
Resume output (sent by System/3 or System/?). 

All other flag values are reserved. 

Terminal Identifier specifies the affected terminal, or is binary 
zeros (see flag values X'04' and X'02' below); the terminal 
identifier field must always be present, but is not verified for 
flaq values X'10' and X'OS'. 

IMS/VS does not transmit I/O synchronization segments except for 
the NO-OUT message; it ignores a received NO-OUT message. 

The flag descriptions are as follows: 

6.10 

Value 

X' 80' 

Action 

I8S/VS verifies that the identified terminal has an 
output message in progress. If so, the message is 
removed from the I8S/VS gueue; otherwise, the segment 
is ignored. 

IMS/VS System programming Reference Manual 

~-. 

',,- ... 



( 
~/ 

X'40' 

X'20' 

X '1 0' 

X'OS' 

X'04' 

X'02' 

This flag informs IMS/VS that the System/3 or System/7 
is reading from the specified terminals but the first 
segment has not yet been sent to IMS/VS. IMS/VS stops 
sending output to the specified terminal until a full 
input message has been received from the System/3 or 
System/7 for the specified terminal. If an output 
messaqe to the terminal was in progress when this block 
was received, it will be retransmitted later, beginning 
with the first segment. The segment is ignored if an 
input message from the terminal is in progress when the 
block is received. 

This flag can he used to allow output to resume if it 
was stopped using the input-in-progress flag (X'40' 
above), and the System/3 or System/7 does not wish to 
send any data to IMS/VS. 

This message is referred to as the "ASK" message. It 
is used by a System/3 or System/7 to reset the 
transmission limit counter if transmission limit was 
defined in IMS/VS system definition for the station. 
It is also used to ask for output to a station defined 
as "ASK" type in IMS/VS system definition. (See X'OS' 
below. ) 

This message is sent by IMS/VS to respond to a request 
for output (value X'10') when no more output is 
available, if the System/3 or System/7 is defined in 
IMS/VS system definition as "ASK" type, unless 
transmission was terminated by a reached transmission 
limit. 

Terminal identifier equals binary zeros: Postpone 
initiation"of data messages to the System/3 or System/7 
transmitting the reguest. Messages in progress are 
completed. 

Terminal identifier does not equal binary zeros: 
Postpone in~tiation of data messages to the identified 
terminal. Any message in progress is completed. 

output initiation is resumed when IMS/VS receives an 
I/O synchronization message with the flag value X'02'. 

Resume output initiation postponed by use of the above 
flag value (X'04'). 

A terminal identifier of binary zeros causes IMS/VS to 
resume output initiation to all terminals attached to 
the System/3 or System/7 transmitting the request. 

A terminal identifier other than binary zeros causes 
IMS/VS to resume output initiation only to the identified 
terminal. 

Communications with Intelligent Remote stations 6.11 



Erro~ Blocks 

Error blocks allow IMS/VS and the System/3 or System/? to inform 
each other of errors pertaining to received data. 

The error block format is as follows: 

r--------------------------------------------------------------, 
IS IY I 10 I Flags I Terminal I Msg IError Code I 
I I I I I Identifier I Ident I I 
L-------------------------------------------------------------.~ 
o 1 2 3 4 6 ? 

• Flags 

X'OO' 
X'01' 
X'80' 
X'81' 

Error occurred on last block transmitted. 
Error occurred on previous block transmitted. 
Error message on last block is from user message table. 
Error message on previous block is from user message table. 

All other bit settings are reserved. 

The terminal identifier and message identifier are from the segment 
in error. 

The error code is any four-character number in numeric-character 
notation when sent to or received from IMS/VS. 

Error ~essaq~ Sent £y IMS/VS: An error block is sent whenever an error 
results while IMS/VS is processing an input segment. The message 
identifier from the segment causing the error message to be generated 
is added to the error message before transmitting it to the remote 
station. IMS/VS also reverts all involved resources to a first-segment 
status, causing all remaining segments of the message in error to be 
flushed. 

IMS/VS causes a reverse interrupt (RVI) sequence to be transmitted if 
an error message was generated. IMS/VS then accepts one additional 
input block after transmittinq RVl. An attempt to transmit more than 
one block results in a transmission error and the station is logically 
deactivated. The flags allow the remote station to determine in which 
block a given error was found. 

]rrQ~ Message Rgceived ~~ IMS/VS: An error message is accepted by 
IMS/VS if lMS/VS has transmitted a message to the System/3 or System/? 
that has not yet been dequeued by a corresponding 1/0 synchronization 
block (output complete) received from the System/3 or System/?, or 
postponed because of an error or received input. 

• Error message acceptable 

The logical terminal (CNT) from which the message causing the error 
was read is stopped. A message destined for the IMS/VS master 
terminal is generated. This message includes the name of the 
stopped CNT and the error code recei ved from the remote station. 

• Error message not acceptable 

6.12 

The transmitting remote station is logically deactivated. The 
master terminal operator is notified. If the System/3 or System/? 
is reactivated before IMS/VS has been shutdown, it is activated in 
an emergency restart status. 

IMS/VS System Programming Reference Manual 



System/7 Loag Request Block 

A System/7 on a polled line can send IMS/VS a load request block to 
request that a load or IPL sequence be performed. 

r--------------------------------------------------------------, 
I SlY I 01 I Flaqs I Load Module Name I 
L--------------------------------------------------------------~ 
o 1 

• Flaqs 

o 

2 3 4 

Meaninq 

O=IMS/VS transmits only the load module. 
1=IMS/VS transmits $UBIPL, followed by the load module, 

followed by an emergency restart block. 

All other flag values are reserved. 

Load module name is the name of a member in a PDS specified by the 
S7BSCLIB DD statement in the IMS procedure. The member must have 
been placed in the PDS using Format/7 (specifying 'CARD' output 
format), or other equivalent product producing the same format. 
IMS/VS reads the load module from the PDS and transmits the load 
module to the System/7. 

INTERFACE BETWEEN IMS/VS AND! SYSTEM/7 START/STOP 

The interface between IMS/VS and a System/7 consists of blocks of 
information transmitted across the communication line. Data blocks 
are used to transfer data. Synchronization blocks are used between 
IMS/VS and the System/7 stations to inform each other about the status 
of terminals, completion of output, restart, and shutdown. These blocks 
must be translated from transmission code to EBCDIC when received, and 
from EBCDIC to transmission code before beinq transmitted. 

If IMS/VS detects interface errors, it transmits an EOT to stop the 
System/7, and sends a message to the master terminal. If the System/7 
is restarted before IMS/VS is shut down, it is restarted in emergency 
restart status (refer to "Shutdown/Restart Blocks" under 
"Synchronization Blocks"). 

The System/7 is logically deactivated if any of the following 
cateqories of errors occur: 

• Transmission errors 
• Invalid data or synchronization block formats 
• Transmission code/EBCDIC translation errors 
• Invalid station or terminal identifier 
• Invalid data block flag settings 
• Load sequence errors 

The System/7 may be logically deactivated due to its relatively 
short timeout cycle of 16.5 seconds. A timeout may first occur at the 
remote station and then IMS/VS if the system is so loaded that IMS/VS 
cannot process an input line buffer and respond to the station in a 
timely manner. 

communications with Intelligent Remote stations 6.13 



DATA BLOCKS 

A data block contains one or more segments belonging to one or more 
messages. A segment is fully transmitted by IMS/VS in one transmission, 
unless its size exceeds the user-specified transmission buffer size, 
in which case it is changed into multiple segments of the following 
forma t. 

r--------------------------------------------------------------, 
I D I A I Block identifier lOne or more data segments I 
L--------------------------------------------------------------~ o 1 2 6 

The D and A identify the block as a data block. The field contains 
the two characters D and A in uppercase EBCDIC. 

Block identifier specifies the block for restart purposes. When an 
input message is enqueued, IMS/VS logs the block identifier with the 
message. IMS/VS transmits the last logged block identifier back to 
the System/7 after a restart of IMS/VS. The System/7 can also request 
this information to be transmitted, thus allowing resynchronizatioB 
after a previous restart. 

Data blocks may be transmitted in PTTC/EBCD code or pseudobinary 
PTTC/EBCD code. Care must be taken to ensure that a transmitted 
character does not conflict with a line control character. All 
identifiers used must give the same result in EBCDIC regardless of 
transmission code. 

It is recommended that the block identifier be changed between 
blocks. If the first block received after a restart has the same block 
identifier as was used to restart, the block is considered 
retransmitted. This is described in more detail under "Data Segment 
Format." 

Note: In a future release, the block identifier may be required to 
change between blocks. 

Data Segment Format 

r--------------------------------------------------------------, 
I Terminal I Msg I Flags I Length I Data I 
I Identifierl Ident.1 I I I 
L--------------------------------------------------------------~ 
o 2 3 4 8 

• Terminal Identifier 

6.14 

Received by. IMS/VS: This val ue must correspond to the address 
given in a TERMINAL macro specified in IMS/VS system definition 
for the transmitting System/1; otherwise, the System/7 is 
logically deactivated. 

Transmitted from IMS/VS: The address given in the TERMINAL 
macro for the outputting terminal is used as terminal identifier. 

IMS/VS System programming Reference Manual 

c 



- --- ------------

• Message Identifier 

This identifies a message within a block for error message and 
restart purposes. Error messages are described under 
"Synchronization Blocks." 

The message identifier is logged with the block identifier by 
IMS/VS. In case of a restart of IMS/VS or an emergency restart of 
the System/7, the message identifier (together with the block 
identifier describing the last message enqueued) is transmitted to 
the System/7. The System/7 can then retransmit the identified 
block. Retransmission is not required if the identified message 
was not followed by any segments, or if these segments can be built 
into the next block. 

The first input data block after a restart is considered 
retransmitted if. its block identifier is the same as the one used 
to restart. The received block is scanned to find the first segment 
following the identified message, if any, thereby bypassing all 
segments already enqueued, in case of a retransmission. 

• Flags 

0-3 

4 

5 

6 

7 

Meaning 

Must be all ones. 

Reserved (should be zero) • 

Segment spanning flag: 
O=Segment ends in this buffer. 
1=Segment does not end in this buffer. 

O=First part of a message. 
1=Nonfirst part of a message. 

O=Last part of a message. 
1=Nonlast part of a message. 

All combinations of flag bits 5, 6, and 7 are valid except X'04' 
and X'06'. 

"Part" in the above flag meanings, emphasizes that a segment can 
be changed to multiple segments as pre~iously defined, and as 
indicated by the spanning flag. 

The setting of the flag bits must correspond to the definition of 
the transaction in IMS/VS system definition. A transaction defined 
as a single-segment transaction to IMS/VS must have flag bits 4-7 
off. A transaction defined as a multiple-segment transaction, as 
well as all message switches, can, but are not required to, consist 
of mUltiple segments. A command must follow the rules for that 
command defined by the IMS/VS system. 

The setting of flag bits must also be consistent during the flow 
of data; that is, one message must be terminated before the next 
can start, or the station is logically deactivated. The segment 
spanning flag is set by IMS/VS whenever a segment spanned an IMS/VS 
gueue buffer, or could not be contained in one transmission buffer. 
The segment spanning flag is ignored when received by IMS/VS. 

communications with Intelligent Remote St~tions 6.15 



• Lenqth 

Specifies the combined length of the lenqth and data fields. All 
the data defined by this length must be within the block. This 
field is 4-byte EBCDIC hexadecimal notation. This format is chosen 
to avoid conflicts with line control characters. For example, if 
a seqment is 108 bytes this length would, in EBCDIC hexadecimal, 
be '006C'. 

• Data 

The format of the data must correspond to the standard IMS/VS data 
formats. 

EXAMPLES OF DATA BLOCK FORMATS 

System/? Transmission to·IMS/V~ 

Four data blocks are shown in this example. Data came from three 
terminals: 

• Terminal T1: One message consisting of segments 1, 2, and 3. 

• Terminal T2: Two messages, one consisting of segments 6 and 7, 
the other of segment 8. 

• Terminal T3: One message consisting of segments 4 and 5. 

r--------------------------------------------------------------, 
ID AIBLK 11T11 1. 1lLengthlSeqment 11T11 11 31LengthiSegment 2 , 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 21T11 11 21LengthiSegment 31T31 21 11LengthlSeqment 4 I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 31T31 1 I 21LengthlSeqment 51T21 21 11LengthiSegment 6 , 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 41T21 1 I 21LengthlSeqment 71T21 21 OILengthlSeqment 8 1 L-----------------------------________________________ ---------J 

6.16 IMS/VS System Programming Reference Manual 



Eight blocks are shown in this example. Data is destined for four 
terminals: 

• Terminal T1: One message consisting of segments 1 , 2 and 3. 

• Terminal T2: One message consisting of segment 4. 

• Terminal T3: One message consistinq of segments 5, 6 and 7, each 
of which requires spanning. 

• Terminal T4: One messaqe consisting of seqment B. 

r--------------------------------------------------------------, 
ID AIBLK 11T11 11 11LengthlSeqment 11T11 11 3/LengthlSegment 2 f 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 21T11 11 21LengthlSeqment 31T21 21 OILengthlSeqment 4 I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AfBLK 31T31 11 51LengthlSegment 5 (spanned) I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 41T31 11 31LengthlSeqment 5 I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 51T31 11 71LenqthiSegment 6 (spanned) 1 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AIBLK 61T31 11 31LengthtSegment 6 I 
L--------------------------------------------------------------J 
r--------------------------------------------------------------, 
ID AtBLK 71T31 11 71 Lengthl Segment 7 (spanned) I 
L--------------------------------------------------------------J 
r-------------------------------------------------~------------, 
ID AIBLK BIT31 11 21LengthiSegment 71T41 21 OILengthlSegment B I 
L--------------------------------------------------------------J 

SYNCHRONIZATION BLOCKS 

Synchronization blocks are used to transmit non-data control 
information between IMS/VS and System/7. Only the formats described 
are transmitted by IMS/VS. Any input format different from those 
described below is igncred if received by IMS/VS. System/7 
synchronization blocks must be transmitted in pseudobinary PTTC/EBCD 
code. 

communications with Intelligent Remote stations 6.17 



General Bloc~ Formats 

• Format A Unblocked 

r-------------------------------, 
1 SlY IType IFlaqsl Data I 
L-------------------------------J o 2 3 4 

• Format B Blocked 

r---------------------------------------------------, 
I SlY IType IFlagsl Data IType IFlaqsl Data I 
L---------------------------------------------------J 
o 2 3 4 

Sand Y identify the block as a synchronization block. The field 
contains the characters Sand Y in uppercase EBCDIC. 

Type identifies the type of information contained in the block. 

Value 
(hex) 

80 
40 
20 
10 
01 

Block 
Format 

A 
B 
B 
A 
A 

Description 

Shutdown/restart block. 
Status change block. 
1/0 synchronization block. 
Error message block. 
Load request. 

All other type values are reserved. 

Flags and data are described in the detailed description of the 
above blocks. 

Shutdown/Restart Block§ 

Format 1 Format 2 
r------------------, r-------------------------------------------, 
IS I Y ISO IFlags I IS IY ISO IFlagslBlock identifier1Msg ident I 
L----------------~-J L-------------------------------------------J o 1 2 

• Flags 

X'SO' 
X'40' 
X'20' 
X '10' 
X'OS' 
X'02' 
X'01' 

3 o 1 2 3 4 S 

Cold start (format 1) • 
Emergency restart (format discussed below). 
Emergency restart response (format 2). 
Normal restart (format 2) • 
Shutdown request (format 1). 
System shutdown (format 1). 
Immediate shutdown request (format 1). 

All other flag values are reserved. 

Block identifier identifies the last received block causing a 
message to be queued. 

Message identifier identifies the last message within the block to 
be queued. 

6.1S IMS/VS System Programming Reference Manual 

~-.--.--- .. ---------.---.~.-.. -----_._-------_. ------

'" 

',,- . 



--- - ---------- -----

Restart Messages: The restart message is sent by IMS/VS to a System/7 
when: 

• Communication is started due to IMS/VS receiving a /START command 
with the line or pterm keywords, where the station pterm (the 
System/7) was not explicitly stopped by a previous command. A 
station stopped condition is reset by including the station pterm 
in the /START command. 

• Requested by the System/7. 

The restart message indicates either how IMS/VS was started or how 
previous communication was terminated. 

• IMS/VS Cold Started 

When IMS/VS transmits the cold start message to the System/7, the 
message indicates that IMS/VS was started with empty queues. The 
System/1 must start its transmission with the first segment of a 
message; otherwise, the Syste~/1 is logically deactivated and the 
master terminal operator notified. If the System/7 is reactivated 
before IMS/VS has been terminated, it is activated in an emergency 
restart status. 

• IMS/VS Receives a Cold start Message 

When IMS/VS receives a cold start message, any input message in 
progress is canceled. All output messages in proqress are restarted 
from the first segment. The rules for System/7 for starting data 
transmission apply as above. 

• IMS/VS Emergency Restarted 

IMS/VS transmits an emergency restart message in format 2. The 
System/1 has two options: 

1. It may retransmit the block identified in the restart message. 
IMS/VS starts processing with the first segment following the 
last segment of the identified message. 

2. If the System/7 does not wish to retransmit the identified block, 
it can build the remaining segments in the block, if any, into 
some other block, and use a block identifier other than the one 
used to restart, in the first block transmitted. 

• IMS/VS-Received Emergency Restart Message in Fermat 1 

An input message, if one is in proqress, is canceled. All output 
messages in progress are retransmitted beginning with the first 
segment. IMS/VS responds by transmitting an emergency restart 
response message. The same emergency restart rules as above apply 
for starting communication. 

• Normal Restart Message 

IMS/VS transmits the normal restart message to start communication 
if no other restart message is required. IMS/VS ignores a received 
normal restart message. 

communications with Intelligent Remote Stations 6.19 



Shutdown Messages: Shutdown messages inform the rece~v~ng station that 
the transmitting station has started a procedure desiqned to terminate 
communication between the two stations in an orderly fashion. This is 
sent under the followinq conditions: 

• communication was terminated due to IMS/VS rece~v~ng a/STOP, /PSTOP 
or /PURGE command with the line or pterm keywords. 

• Communication was terminated due to IMS/VS receiving a ICHECKPOINT 
command for the system. 

• communication was terminated due to an error condition. 

• communication was terminated by request of the System/7. 

The types of shutdown messages are: 

• Immediate Shutdown Request (from IMS/VS only) 

The IMS/VS master terminal operator has requested IMS/VS to 
terminate communication either by stopping the System/7 or by 
requesting an IMS/VS shutdown procedure. This block requests 
System/7 to stop transmitting data to lMS/VS when all messages in 
progress are completed. 

The System/7 must inform IMS/VS of.completion of messages received 
from IMS/VS, even though a shutdown is in progress. The master 
terminal operator may have requested IMS/VS to purge its queues 
before shutting down; hence, IMS/VS can continue transmitting data 
even though a shutdown is in progress. IMS/VS sends a 
system-shutdown message to inform the remote station when the 
shutdown procedure has been completed. 

• Shutdown Request (to IMS/VS only) 

IMS/VS does not initiate transmission of a new output message after 
receipt of a shutdown request. IMS/VS transmits the system-shutdown 
messaqe when all outstanding messages have been acknowledged by 
the System/7 as being completed after all appropriate output has 
been sent. . 

• System Shutdown (from IMS/VS only) 

6.20 

IMS/VS transmits this message to inform the System/7 that 
communication is terminated normally. 

IMS/VS System Programminq Reference Manual 



status chanqe blocks are used to specify a chanqe in transmission 
mode between IMS/VS and a System/7. status change blocks may be sent 
as a result of using the line or pterm keywords with the following 
commands: /START, /STOP, /RSTART, /PSTOP, /PURGE, and /MONITOR. 

r---------------------------------------------------------------, 
fSIYI40lFlaqslTerminal 140lFlagsiTerminal 140lFlagsiTerminal I 
I I I I I Identifier I I I Identifierl I I Identifier I 
L---------------------------------------------------------------J 
012 3 

• Flaqs 

x'ao' 
X'40' 
X'20' 
X'10' 
x'oa' 

4 6 7 a 10 11 12 

Meaning 

Unable to operate with terminal (to IMS/VS only). 
stop ipput from and output to terminal. 
stop input from and start output to terminal. 
start input from and output to terminal. 
start input from and stop output to terminal. 

All other flag values are reserved. 

Terminal identifier specifies the status changing terminal. 

The flag descriptions are as follows: 

X'SO' 

X'40' 

X'20' 

X'10' 

X'OS' 

Action 

The identified terminal is marked inoperable by IMS/VS 
and the master terminal operator is notified. Any input 
in progress on the specified terminal is canceled. Any 
output in progress is postponed and will be retransmitted 
from the first segment when the terminal is restarted. 

Input and output are logically stopped, except system 
messages, which continue to be transmitted. A message 
in progress, in or out, is aliowed to complete. Any 
input message received later is rejected, and an error 
message returned to the remote station. No output is 
initiated except system messages. 

Input is logically stopped while output is allowed to 
continue normally, or is started if required. An input 
message in progress is allowed to complete, but any 
later message is rejected, and an error message returned 
to the remote station. 

Input and output are logically restarted. Normal input 
and output are resumed. 

Input is allowed to continue normally or, if required, 
is started. Output is logically stopped. An output 
message in proqress is allowed to complete. 

communications with Intelligent Remote Stations 6.21 



1/0 synchronization Blocks 

I/O synchronization blocks are used to allow the system/7 and IMS/VS 
to synchronize I/O operations and maintain system integrity. I/O 
synchronization blocks also allow the System/7 to optimize their 
resources by controlling when and what output is sent by IMS/VS. 

r---------------------------------------------------------------, 
ISIYl20lFIagstTerminal 120lFIagsiTerminai 1201 FlagslTerminal t 
I I I f I Identifier I I I Identifier I I IIdentifierl 
L---------------------------------------------------------------~ 
012 3 4 6 7 8 10 11 12 

• Flags 

Value 

X' 80' 
X '40' 
X'20' 
X' 10' 
X'08' 
X'04' 
X'02' 

Meaning 

output completed (sent by System/7). 
Input in progress (sent by System/7). 
Input terminated (sent by System/7). 
Send output (sent by System/7; ASK message). 
No output available (sent by IMS/VS; NO-OUT message). 
Postpone output (sent by System/7) • 
Resume output (sent by System/7). 

All other flag values are reserved. 

Terminal identifier specifies the affected terminal, or is binary 
zeros (see flag values X'04' and X'02' below); the terminal 
identifier field must always be present, but is not verified for 
flag values X'10' and X'08'. 

IMS/VS does not transmit I/O synchronization segments except for 
the NO-OUT message; it ignores a received NO-OUT message. 

The flag descriptions are as follows: 

6.22 

X'80' 

X'40' 

X' 20' 

IMS/VS verifies that the identified terminal has an 
output message in progress. If so, the message is 
removed from the IMS/VS queue; otherwise, the segment 
is ignored. 

This flag informs IMS/VS that the System/7 is reading 
from the specified terminals but the first segment has 
not yet been sent to IMS/VS. IMS/VS stops sending output 
to the specified terminal until a full input message 
has been received from the System/7 for the specified 
terminal. If an output message to the terminal was in 
progress when this block was received, it will be 
retransmitted later, beginning with the first segment. 
The segment is ignored if an input message from the 
terminal is in progress when the block is received. 

This flag can be used to allow output to resume ~f it 
was stopped using the input-in-progress flag ( X'40' 
above), and the System/7 does not wish to send any data 
to IMS/VS. 

IMS/VS System Programming Reference Manual 



X'10' 

X'OS' 

X'04' 

X'02' 

This messaqe is referred to as the "ASK" message. It 
is used by a System/7 to reset the transmission limit 
counter if transmission limit was defined in IMS/VS 
system definition for the station. It is also used to 
ask for output to a station defined as "ASK" type in 
IMS/VS system definition. (See X' OS' below.) 

This message is sent by IMS/VS to respond to a request 
for output (value X'10') when no more output is 
available, if the System/7 is defined in IMS/VS system 
definition as "ASK" type, unless transmission was 
terminated by a reached transmission limit. 

Terminal identifier equals binary zeros: Postpone 
initiation of data messages to the System/7 transmitting 
the request. Messages in progress are completed. 

Terminal identifier does not equal binary zeros: 
Postpone initiation of data messages to the identified 
terminal. Any message in progress is completed. 

Output initiation is resumed when IMS/VS receives an 
I/O synchronization message with the flag value X'02'. 

Resume output initiation postponed by use of the above 
flag value (X'04'). 

A terminal identifier of binary zeros causes IMS/VS to 
resume output initiation to all terminals attached to 
the System/7 transmitting the request. 

A terminal identifier other than binary zeros causes 
IMS/VS to resume output initiation only to the identified 
terminal. 

Error blocks allow IMS/VS and the System/7 to inform each other of 
errors pertaining to received data. 

The error block format is as follows: 

r--------------------------------------------------------------, 
IS IY I 10 I Flags I Terminal I Msq IError Code I 
I I I I I Identifier I Ident I I 
L--------------------------------------------------------------J o 1 2 

• Flags 

X' 00' 
X'SO' 

3 4 6 7 

Meaning 

IMS/VS error messaqe. 
Error message from user message table. 

All other bit settings are reserved. 

The terminal identifier and message identifier are from the segment 
in error. 

The error code is any four-character number in numeric-character 
notation when sent to or received from IMS/VS. 

communications with Intelligent Remote Stations 6.23 



Error Message Sent Qy IMS/VS: An error block is sent whenever an error 
results while IMS/VS is processing an input segment. The message 
identifier from the segment causing the error message to be generated 
is added to the error message before transmitting it to the remote 
station. IMS/VS also reverts all involved resources to a first-segment 
status, causing all remaining segments of the message in error to be 
flushed. 

Error Messgg~ Received~ IMS/VS: An error message is accepted by 
IMS/VS if IMS/VS has transmitted a message to the System/? that has 
not yet been degueued by a corresponding I/O synchronization block 
(output complete) received from the System/?, or postponed because of 
an error or received input. 

• Error message acceptable 

The logical terminal (CNT) from which the message causing the error 
was read is stopped. A message destined for the IMS/VS master 
terminal is generated. This message includes the name of the 
stopped CNT and the error code received from the remote station. 

• Error message not acceptable 

The transmitting remote station is logically deactivated. The 
master terminal operator is notified. If the System/? is 
reactivated before IMS/VS has been shut down, it is activated in 
an emergency restart status. 

Loag Reguest Block 

A System/? on a polled line can send IMS/VS a load request block to 
request that a load or IPL sequence be performed. 

r--------------------------------------------------------------, 
t SlY I 01 I Flags I Load Module Name I 
L--------------------------------------------------------------J 
o 1 2 3 4 

• Flags 

6.24 

o 

Meaning 

O=IMS/VS transmits only the load module. 
1=IMS/VS transmits UZERO and UTIPL, followed by the 

load module, followed by an emergency restart block. 

All other flag values are reserved. 

Load module name is the name of a member in a PDS specified by the 
S?LODLIB DD statement in the IMS procedure. The member must have 
been placed in the PDS using Format/?, or other equivalent product 
producing the same format. IMS/VS reads the lead module from the 
PDS, translates the load module to line code, and transmits the 
load module to the System/? 

IMS/VS System Programming Reference Manual 

~~~~~~-~---~~~-~~~--- - - --~-~~~~-------------~ -------~---- -~~.~ .. ~ .. ~~~.~~-~--~~-~~- ~-~~~~-~ ---

r
I

\.

c:

IMS/VS RESPONSES TO RECEIVED BLOCKS

IMS/VS normally responds to a received block with a circle Y,
inviting the System/7 to transmit another block.

IMS/VS responds with a circle D under the following conditions:

• A logical error is detected in a received data block.

• A command completed message must be sent.

• A test message must be returned.

• IMS/VS has to transmit a shutdown-request message.

IMS/VS responds with a circle C when an unrecoverable error is
detected. Some unrecoverable errors are permanent transmission error,
undefined terminal identifier in a segment, and invalid flag sequence
in data blocks. The IMS/VS master terminal operator is informed about
the problem cause. The IMS/VS master terminal operator must enter a
/START command to inform IMS/VS to resume communication with the
affected System/7.

SAMPLE JRSS TRANSMISSION SEQUENCES

Figure 6-1 on the following pages contains sample transmission
sequences between IMS/VS and an intelligent remote station (System/3
or Syste~/7). The figure assumes the remote station was defined to
IMS/VS as ASK-TYPE with a transmission limit either not specified or
equal to 2 (both cases shown).

Specific differen~es between System/3, System/7 BSC, and System/7
SIS are not shown but are defined in the appropriate preceding sections;
for example, an RVI precedes an error block sequence for System/3 and

: System/7 BSC versus a circle D for System/7 SIS.

Communications with Intelligent Remote stations 6.25

I MS/VS REMOTE STATION

COLD START

1_::lSO ISO II __ ==>
ASK

DATA (*= DFS059 TERMINAL STARTED MESSAGE)

DATA (*= DFS059 TERMINAL STARTED MESSAGE)

NO - OUTPUT (SENT ON LVI F NO TRANSM ISSION L 1M IT I Sy 120 I OBI TO l SPECiFIED AND NO OUTPUT AVAILABLE)
EOT

OUTPUT COMPLETE AND ASK

DATA

I DAI BLK31 T21 Mll 00 I LNG DATA

NO - OUTPUT

OUTPUT COMPLETE

I Sy 1 20 ISO I Tl 120 ISO I T2120 ISO I T3120 180 I T41
EOT

Figure 6-1 (Part 1 of 4). Sample IRSS Transmission Sequences

6.26 IMS/VS System Proqramminq Reference Manual

--------_._------------ -----~---

IMS!VS REMOTE STATION

DATA

DATA (COLD START WILL CANCEL THIS INPUT)

I DA I BlK 41 T1 I M1 I 01 I lNG I DATA I

EOT

COLD START

1 Sy I 80 1 80 I
EOT

DATA

IDA I BlK 51 T1 I M1 I 00 I lNG DATA

EOT

ASK

I DA I BlK 111 T1 I M1 I 00 I lNG I DATA

DATA

I DA I BlK 121 T2 I M1 I 00 I lNG DATA

NO· OUTPUT (SENT ONLY IF NO TRANSMISSION LIMIT I Sy 120 I 081 TO I SPECIFIED AND NO OUTPUT AVAilABLE)

EOT

OUTPUT COMPLETE

I Sy 1 20 1 80 I T1 1 20 1 80 I T21

EOT

DATA

I DA I BlK 13 1 T1 I M1 I 00 I lNG DATA

Figure 6-1 (Part 2 of 4). Sample IRSS Transmission Sequences

communications with Intelligent Remote stations 6.27

I MS/VS REMOTE STATION

DATA (INVALID FLAG CAUSES ABORT SEQUENCE)

I DA IBlK 141 T21 M1 I 03 1 lNG I DATA I
EOT

NOTE 1) STATION IS STOPPED DUE TO ABORT
2) /START LINE X PTERM Y ENTERED

TO RESTART STATION

EMERGENCY RESTART

DATA

I DA I BlK 141 T21 M1 I 00 1 lNG DATA

NO - OUTPUT

DATA

ASK

OUTPUT COMPLETE

I Sy 120 lao 1 T21
EOT

I DA I BlK 15 1 T1 I M1 I 00 I lNG DATA

EOT

Figure 6-1 (Part 3 of 4). Sample IRSS Transmission Sequences

6.28 IMS/VS System Programming Reference Manual

..•... _ ... _ .. _-_._-_ ...•... -----

I~
I

\".

REMOTE STATIQN

EMERGENCY RESTART

~ __ J ISY 1 80 1 40 I
~ EOT

EMERGENCY RESTART RESPONSE

I Sy ISO 120 IBlK151 Ml·l_r _~
EOT ----,/

ASK

~ ___ II Sy 120 110 I TO I
~ EOT

DATA

I DA I BlK 16 1 T21 Ml I 00 I lNG DATA

NO - OUTPUT

ERROR MESSAGE

OUTPUT COMPLETE

~120IS01T21
EOT

DATA (WITH INVALID TRANSACTION CODE) <= ~_II DA I BlK 171 T31 Ml I 00 I lNG' I DATA
EOT

I Sy 110 I 00 I T31 Ml 1 064 1 [__ ~
EOT ~

SHUTDOWN REQUEST

~_II SylSO 10SI
~ EOT

SYSTEM SHUTDOWI\

I SY 1 80 I 02 1
EOT

Figure 6-1 (Part 4 of 4). Sample IFSS Transmission Sequences

communications with Intelligent Remote stations 6.29

--------_._ _----

'-' (

C
'--'
.~.- "

C'-

The Interactive Query Pacility (lOP) is provided as an additional
feature for users of IMS/VS with the full Data Base/Data Communication
System. IQF offers the capability for spontaneous online query and
retrieval and display of data maintained within IMS/VS data bases. IOF
operates in a mode similar to a standard IMS/VS application program
and uses IMS/VS resources for describing data, accessing data, ~nd
communicating with the user's terminal.

The IQF feature includes its own utility which creates the data
bases used by IQF for resolving names, synonyms, and phrases appearing
in the user's query.

Another function performed by the IQF utility is invoking IMS/VS
PSB generation to generate a separate PSB for lQP use for each
user-supplied PSB generation deck. The generated PSB will include PCBs
for the IQP processor data bases. An TQF control card (described l~ter
in this chapter) is provided to allow the user to rename an existing
PSB for use with IQP.

The lOP utility also creates and maintains lQF ind~xes.

After performing IMS/VS system definition (described in the IMSL!~
J!H~1£.11£.1iQn 2!!i.~g), including the IQF-required macro statements, the
user must execute the IOP utility to create the following processor
data bases: IQF System Data Base (required), IQF Phrase Data Base
(require:1) , and QINDEX Data Base (s) (optional). These data bases are
descr ibed below.

• The System Data Base (sometimes referred to as the Field Pile} is
a HlSAM data base that contains system information from
user-supplied IQF control cards and IMS/VS PSB generation and DBD
generation decks. The purpose of this data base is rapid resolution
of data base field names specified in the user's queries. rhe
System Data Base is also used to provide column heading data and
edit specifications for query output.

• The Phrase Data Base is a HIDAM data base that contains all the
predefined phrases and null words provided by the user to t~ilor
the IQF language to his requirements.

• The QlNDEX Data Base (s) (optional) are HISAM data bases that provide
an index to user-specified fields in the user's IMS/VS data bases.
To conserve storage and time, two QlNDEX Data Bases can be generated
-- one with a large key field, and one with a small key field. The
small key can be used to index all fields of its size or smaller;
the large key can be used for other fields. The sizes of the two
keys are under installation control.

Interactive Query Facilitv (TQF) with IMS/VS 7.1

Creation ~f these data bases requires that the user prepare a control
card input deck for the TOF utility. The cards comprised in the deck
are:

• TOF utility control statements
• TMS DBD statements
• IOF DBD extension statements
• IMS PSB statements
• IQF PSB extension st~tements

The f~ll~wing programs comprise the IQF utility:

• Stage 1 System Creation (DMGSI1 and DMGSI2)
• System Data Base (Field File) creation
• Index Creation/Update

The Stage 1 program processes the user's input control card deck
and checks for validity and consistency. Depending upon the statements
contained in the control card decks, Stage 1 produces job steps in a
Stage 2 OS/VS ;ob stream to perform some or all of the followinq
functions:

• Allocate, catalog and create the TQF System Data Base describing
the data bases to be queried

• Allocate, catalog and initialize the IQF Phrase Data Base to contain
predefined phrases and null words

• Allocate, catalog and create the optional QINDEX Data Base(s) for
IQF use

• Create'~r update index (es) stored in the QINDEX Data Base(s)

The Stage 1 pr~gram produces a listing of the input control card
decKs. A statement number appears in the listing to the left of ea~h
control statement. Any errors or warning conditions detected hy Stage
1 appear in the listing following the printout of the control
statements. The error or warning messaqes reference the statement
number of the erroneous input statement. The user is cautioned to
examine the output listinq produced by Stage 1 before executing the
Staqe 2 OS/VS iob stream.

The catal~ged pracednre for executing the TQP utility is described
in an earlier chapter of this manual.

7.2 IMS/VS System Programming Reference Manual

.. ---------_.-.. _ .•. __ •..• -----

The lo.F utility control statements are described in the following
sections.

THE QSYSFILE SrATEMENT

The QSYSFlLE statement specifies the data base name, volume(sl and
space to be allocated for the ~rocessor data bases. rhe format of the
user-coded QSYSFILE statement is:

r-------- ---, ,
QSYSFlLEf

I , , , (

QFLDFlLE]
QPHFILE
QlNDEXS1
QINDEXL1

, , VOL=d.evice=list 1[, INDEX=list 1]
I r, VOL2=listl]
I ,SPACE=(CYL, (q1, (q2[,incl), (q3[,inc]})l
I
, r ,MAXRTKEY= {VaIUe1}]
1 ~~ ,
, (,IXKEYLEN= (value2 ,value3l]
I L-----------------------______________________________ -------~

where:

QFLDFILE

QPHFILE

QINDEXS1

QI ND'EXL 1

is the data base name of the IQF System Data Base.

is the data base name of the TQF Phrase Data Base. The d.ata
base name generated by the TQF utility for the index to the
Phrase Uata Base is QPHlNDEX.

is the data base name of the first QlNDEX Data Base.

is the data base name of the second QINDEX Data Base.

[gig: If the lQF indexing feature· is to be used, the
OSYSFILE statement(sl for the QINDEX Data Base(s) must be
included at creation time for the System Data Base. This
causes the IQF utility to allocate space for the data base(s,
and to initialize for subsequent index creation.

VOL=device=
specifies the physical storage device type on which all d.ata
sets for this data set qroup are to be stored. A list of
valid entries for this suboperand follows.

Disk Facili ty
Fixed Head File

2314, 2319, 3330, or 3340
2305

Interactive Query Facility (rQF) with IMS/VS 7.3

1istl specifies the volume serial number(s) ~f the vo1crme(s)
for a dat a set group as follows:

INDEX=

• Single-volume HISAM group

• Single-volume HIDAM group

• Multiple-volume HISAM group where the first
volume in the list is also used for OSAM when
the VOL2= is omitted

• Volumes of the ISAM portion of a HISAM group
(volumes for OSAM portion are specified through
VOL2= operand)

• Volumes of the OSAM portion of a HIDAM group
(volumes for primary INDEX portion are specified
throuqh INDEX= and the VOL2= o~erands

listl specifies the volume serial number of the vo1ume(s) used
for the primary INDEX portion of a HIDAM data base. If
VOL2= operand is also used, the suboperand specifies
only the ISAM portion of the INDEX. Otherwise, the last
volume in the VOL= suboperand list of the QPHFILE
statement is also used for the OSAM portion of the INDEX.

VOL2=

list 1 specifies the volume serial number of the volume(s) used
for the OSAM portion of a HISAM data set group or the
OSAM portion of the primary IND~X of a HIDAM data set
group_

SPACE=CYL

EQ!~: If the list suboperand consists of more than one
volume serial number, the list is enclosed in parentheses
and a comma is used to separate the serial numbers.

specifies space allocation in cylinders as follows:

q1 allocation for the ISAM portion of a HISAM a~ta set
group or the ISAM portion of the primary INDEX of
a HIDAM data set group.

q2 alloc'ation for the OSAM portion of a HISAM data set
group or the OSAM portion of the primary INDEX of
a HIDAM data set group.

q3 allocation for the OSAM portion of a HIDAM data set
group. This parameter is used only in the QPHFILE
statement.

inc specifies secondary. allocation for the OSAM or VSAM
ESDS data set.

!~t~: The space allocation algorithms for the IQF processor
data bases are discussed later in this chapter.

7.4 IMS/VS System programming Reference Manual

.... -._----_. ------

,/-­

(
\

(
'-'

MAXRTKEY=
specifies the maximum size of the root key p~inter field in
a QlNDEX Data Base. If the QINDEX Data Base capability is
selected, this operand is optionally specified only in the
QSYSFILE statement for the IQF System Data Base (QFLDFILE).
If the operand is omitted, the default length is 32 bytes.
A full file search will be required for any data base whose
root key is qreater than the value specified for this
~perand.

IXKEYLEN=

value2 specifies the maximum lenqth index field for the QINDEXS1
Data Base.

value3 specifies the maximum length index field for the QlNDEXL1
Data Base.

This operand is specifiea in the QSYSFILE statement for
the IQF System Data Base (QFLDFILE) if either or both
QINDEX Data Bases are used. If one QINDEX Data Base is
used, then only the value2 operand is specified.

When creating the processor data bases, a QSYSFlLE statement mast
be incluaed in the control card input deck for the lQF System D!ta Base
and the Phrase Data Base. If the IQF indexing feature is to be used,
the QSYSFILE statement (5) for the QINDEX Data Base(s) must also be
included. The applicable operands to be used in the QSYSFILE statement
for each ~f the data bases are as follows:

r--,
I Data Base Name I Operands I
1-------------------1--I ,
I QFLDFILE I VOL=device=list 1[,VOL2=listl]
, , ,SPACE=(CYL,(q1,(q2»)
, 1 [,MAXRTKEY=value1]
I t [,I XKEYLE N= (val ue2, val ue3)]
1-------------------1--1 ,
'QPHFILE ,VOL=device=list1 , INDEX= list1
1 , (, VOL 2=list 1]
, , ,SPACE= (CYL, (q1, (q2(,inc]), (:{3[,inc]»)
1-------------------1--1
I I I
1 QINDEXS1 1 VOL=device=list1r ,VOL2=list1] 1
1 I ,SPACE=(CYL,(q1,(q2») 1
1-------------------1--1
1 I I
I QINDEXL1 I VOL=device=list 1 (,VOL2=listl] I
I I ,SPACE=(CYL, (q1, (q2») I
L--~

Interactive Query Facility (IQF) with IMS/VS 7.5

THE OPTION STATE~ENT

The OPTION statement specifies certain system defaults as described
in the following discussion of the operands.

The format of the apr ION statement is:

r--,
, I I I
, ,OPTION, fLINLIKIT=line limit] ,
, I ,£00 I
1 1 1 I
I , , [,RECLIMIT=record limitl I
, I 1 Q I
, , , I

: ; ~ [,LIST= {~~§} 1 :
, I , I
L--J

where:

LINLIMIT=
is the maximum number of output lines produced by a query.

RECLIMIT=

LIST=

is the maximum number of loqical records (data base path
instances) retrieved from a data base by a query. If
omitted, or if zero is coded, no limit is imposed.

specifies ~hether or not words in a query which are not
recognized by the processor cause the query to terminate
with an error message. The default option is to terminate.

~Qi~: Both the LINLI~IT and RECLIMIT system defaults set through
the OPTION statement can be overridden for a given query through
the LIMIT command.

7.6 IMS/VS System programming Reference Manual

THE •• JOB STATEMENT

The ** JOB statement specifies the job execute statement to be
included in the Staqe 2 OS/VS ;ob stream qenerated by the IQF utility
(Staqe 1).

The format of the .* JOB statement is:

r---, , " , , *. [iobnamel , JOB I operands comments I
, I I I
I 'I I L---J

where:

** must be punched in columns 1 and 2.

JOB must be preceded and followed by at least one blank.

RQ!g: The operand field is the same as described in the OSL!~ JQ~
~Qnt~~l ~~ngY£gg Eg!g~gngg- Manual, GC28-0618.

If the ** JOB statement is not inclu1ed, the following default card
is generated in the Stage 2 job stream:

//IQFUTY JOB 1,IQF,CLASS=A,
MSGCLASS=A,
MSGLEVEL= 1

Interactive Query Facilitv (lOP) with IMS/VS 7.7

-- .. _---------- '" - --_. __ ._-----_._-----,-,._-".,---------

THE QlNDXGEN STATEMENT

The QINDXGEN statement specifies ind9x creation or update. Its
presence in the control deck input to the IQP utility causes the lQP
In~ex Creation/Update utility program to be invoked.

The format of the QlNDXGEN statement is:

r------------------ ---, , , ,
f
1
I , , ,
I
I
I , ,

QlNDXGEN ~E~!11!·
UPDATE

,PCBN=pcb name [(m I]
,SEGN=segment name

,FLDN=field name ~ I!} J
L--J

where:

CREATE

UPDATE

PCBN=

SEGN=

FLDN=

specifies create (load) mode processing. This is the
default.

specifies update mode processing.

specifies the lQP PCB name of the PCB describing the logical
data base containing the indexed field. The same name shouli
be used as that specified in the *QPCB statement.

specifies the segment within the logical data base (PCB)
containing the indexed field.

specifies the indexed field. (A field that is indexed by
IQP can be no greater than 250 bytes.)

FLDN always relates to the immediately preceding SEGN and SEGN to
the most recent PCBN. rhe sequence is as follows:

PCBN=xxx,SEGN=xxx,
PLDN=xxx,FLDN=xxx,
FLDN=xxx,PCBN=xxx,
SEGN=xxx,PLDN=xxx,
SPGN=xxx,PLDN=xxx,
FLDN=xxx,FLDN=xxx

A processing action code, A, D, and M, can be specified at the data
base (PCB) or field levels. The A, 0, and M following the data base
or field name indica te add, delete or modify processing. A code
specified at the data base level supersedes any codes specified at the
field level. If a code is not specified at either.level, and the mode
is CREATE, the default is "add". If the mode is UPDATE and the

1.8 IMS/VS System Programming Reference Manual

c

(
,~.

processing code is omitted, the default is "modify". If a code of D
or M is specified in a statement with the CFEATE mo~e c~de, the lQF
In:1ex Creation/Update Utility program assumes "add."

One or more QlNDXGEN statements can be included in the IQF utility
input deck. A separate statement can be used for each field to be
indexed (or deleted) where it is desirable to process several fields
in a sinqle invocation of the IQF Index Creation/Update Utility p~ogram.
It is also possible to repeat PCEN, SEGN and FLDN within a statement
invocation. Also, a statement of both CREATE and UPDATE mode c~n be
included in the input deck. For this case, however, the system will
utili ze a PROCOPT= A for processing t he Index Data Base (s) • (I t should
be noted that the creation of an in:1ex for a field not previously
in:1exed results in a less efficient data structure.) place a non-bl~nk
character in column 72 and begin continuation with a keyword starting
in column 16 of the following statement. (See the example in the
discussion of "lQF Index Creation and Maintenance" p~ovided later in
this chapter.)

THE E NDUP ST ATEMENT

This statement must be entered. It indicates the end of inp~t
control card statements to the lQF utility.

r--,
1 , 1 1
1 1 ENDUP , 1
1 , 1 1
L--~

The IMS DBD generation statements are described in the J~2LY~­
Utilities Reference Manual. The DED control statements used fo~ input
to-the-IQF-utiiity-can-be-the same as those previously used to generate
the DEDs described for an installation's data bases. certain IQF
statements are used, however, to expand the data base description to
include additional field definitions, synonyms, column headings, etc.
The DBD decks are used with the PSB decks by the IQP utility to cre~te
the System Data Base. rhe lQF DBD extension statements are described
in the following section.

INTERACTIVE QUERY FACILITY (IQF) DBD EXTENSION STATEMENrS

lQF provides extensions to the DBD to define to IQF additional fields
which are n~t defined to lMS/VS and to define synonyms. column he~dings
cand output masks for fields. The IQF DBD extension statements are
*FIELD and *QFIELD. (An asterisk must always appear in column 1.)
These statements are applicable only to the physical DBD deck.

Where FIELD statements are not present in the DBD deck, the *FIELD
statement can follow a SEGM statement or a LCHILD statement.

Interactive Query Facility (lQF) with IMS/VS 7.9

This statement defines a field to IQF for use in a query. The field
is not defined to IMS/VS. This capability can be used to subset an
existing field or segment. The *FIELD statement must not be used to
subset or bridqe fields where packed decimal data (TYPE=Pl is involved.

The format of the *FIELD statement is:

r--, , , , ,
, *' ,FIELD, , , , , ,
L--J
Note: The * in column 1 will cause IMS/VS DBDGEN to ignore this
statement. There is thus no impact on user application programs
sharing the data base (s) •

The operands for the *FIELD statement are identical to those for
the IMS/VS FIELD statement; the same rules and options apply~ (See
the I~~LY2 ~iiliiig§ Ref~~nce ~~nysl.) It should be n~ted, however,
th~t in IQF the following restrictions on data base field lengths apply
to the TYPE= operands:

For TYPE = X
For TYPE = P
For TYPE = C

(hexadecimal datal:
(packed decim al dat at :
(alphameric data) :

2 or 4 bytes
1 to 31 digits
1 to 31 characters

All fields of a virtual logical chil1 that are to be used in an IQF
query must be defined by FIELD or *FIELD macro statements that refer
to the data of t he virtual logical child. (IQF does not automat ically
refer to field definitions provided for a real logical child and
duplicate them under the virtual logical child at the appropriate
offsets as does IMS.)

When a virtual'logical child is defined, and when the user provides
the virtual logical child in the input data stream provided to the IQF
utility before the corresponding definition of the real logical child,
the user must provide a FIELD or *FIELD macro statement for the virtual
lo~ical child such that the last hyte of the virtual logical child data
is included within the range of data defined by the FIELD or *FIELD
macro statement.

7.10 IMS/VS System programming Reference Manual

r
(

\
'-"

,--/

This statement specifies an output eait mask, column header or
synonym for a field. The *QFIELD statement must immediately follow
the FIELD or the *FIELD statement in the DBD deck.

The format of the *QFIELD statement is:

r--,
I 1 , ,
1* 1 QFIELD I [MASK=hh][,HFADER='header'] ,
, , I ,
1 , ,(,SYNONYM=(synonym,pcbname:,ALL])]'
I , , , L-----------------------______________________________ -------J

~Q~g: The * in column 1 causes IMS DBDGEN to iqnore this st~tement.
There is thus no impact on user application programs sharing the
da ta base (s) •

where:

MASK=hh specifies a 1-byte output edit code.

HEADER=

The output mask byte is defined as follows:

00

01 -3F

lJO

41

lJ2

43-7F

SO

S1-BF

CO-FF

Print as is.

Reserved for future use.

Floating dollar sign, with no decimal places, left
zero suppress, and commas every 3 n~n-zero places.

Invalid. Not to be used.

Same as 40, but with 2 decimal places.

Invalid. Reserved for IBM World Trade corporation
use.

As is, with left-zero suppression.

1-63 decimal places, left-zero suppression.

Invalid. Reserved for future use.

NQtg: Those masks pertaininq to numeric editinq such as
d9cimal places, floating dollar signs, etc. are app1ic~b1e
only to packed decimal and hexadecimal fields.

specifies an output column header up to 20 bytes.

Interactive Query Facility (lQP) with IMS/VS 7.11

SYNONYM=
specifies a 1-word field synonym (maximum of 20 bytes) for
the associated field name. The synonym is applicable to
the associated field within the PCB named; pcbname is the
IOF PCB name given in the *OPCB macro statement in the PSBGE~
d.eck. Since the same field name can be used in FIELD macro
statements in more than one segment in a DBD:;EN. the "ALL"
o~tion can be used to indicate that the field synonym stands
for the field in all segments within the P:B named. Multiple
synonyms per field can be' specified. (More than one synonym
:>perand sublist can be specified per *QPIELD statement.,

!~i~: A synonym must: (1, be fewer than or equal to 20
alphameric characters. (2) start with an alpha chara:ter
that is. A-Z, $. al, #. _(underscore). (3) be one word..
without hyphenation, and (4) not be an IQF keyword.

The statements in the IMS PSB"de=k are described in the "PSB
Generation" chapter of the lH§L!~Yiilitie~ Rgf~~D£g H~~~~l~ The PSB
control statements used for input to the IQP utility can be the same
as those previously used to generate PSBs for application progr:ims.
An optional IQF control statement (that is, *QPSBGEN) can be used to
rename the PSB for use by IQF.

The user is cautioned that the IQP utility automatically includ.es
PCBs for the IOF processor data bases -- that is, the System Data Base,
Phrase Data Base, and (if defined) one or two Index Data Bases -- within
the user-provided PSB deck. If the existinq user PSB already contains
the maximum number of P:Bs that can be defined in a PSBGEN, the PSB
should be restructured to accommodate the addition of the IQF P:Bs.
This may involve breaking the existing PSB into two or more PSBs. The
manner in which the PSB is restructured is contingent upon what an
installation wants to query throuqh a qiven transaction code.

All I~S/VS PCB macro statements (PCB, SENSEG, PSBGEN) to be used by
IQF must be contained within one card (columns 2-70). The user should
examine his PSB generation deck(s) to ensure that the PCB statements
meet this requirement. The user should also examine all SENSEG
statements where the PROCOPT keyword has been coded. If PROCOPT is
coded, 'GP' must be part of that PROCOPT to insure that returns from
DL/l to lOF will be normal.

The PSB decks are combined with the DBD decks for creation of the
System Data Base. The TQF PSB extension statements are described below.

1.12 IMS/VS System programming Reference ~anual

',- .. "

INTERACTIVE QUERY FACILITY (IQF) PSB EXTENSION STATEMENTS

The IQF PSB extension statements are *QPCB and *OPSBGEN. (An
asterisk must always appear in column 1.)

~h~'~Qgf~ ~!~tg~~!

To associate the query with the appropriate logical data base (PCB),
it is necessary to provide a PCB name for use by IQF. (PCB names
referred to by IQF must be unique within a user's installation.) The
*QPCB statement provides this function.

The f~rmat of the *QPCB statement is:

r--, , , I ,
I * I QPCB I PCBN=pcb name ,
I , , I
L--J

Ng!g: The * in column 1 of the QPeB statement causes IMS PSBGEN to
ignore these statements. There is thus no impact ~n user application
programs sharing the data.

where:

PCBN=
specifies a 1- to 8-byte unique alphameric name to be
associated with the PCB. This is the data base name to be
used in QUERY commands for this data base.

The user is cautioned that he must insert the *QPes statement
immediately following each PCB statement in the PSB generation decks
that pertain to a data base to be queried. In addition to providing
a name for the PCB for use in IQF QUERY commands, this statement
identifies PCBs sensitive to IQF processing. If the *QPCB statement
is omitted, the IQF utility iqnores the PCB.

Interactive Query Facility (IQFl with IMS/VS 7.13

The optional *QPSBGEN statement follows the PSBGEN card. It provides
the capability to rename a PSB input to the IOF utility without actually
chanqing the name in the PSBGEN statement.

The f~rmat of the *QPSBGEN statement is:

r--, , , , ,
'* , QPSBGEN , (PSBNAME=psb name] [,FFS=code] , , , , ,
L--J

where:

PSBNA~E=

FPS=

7.14

specifies the PSB name to be used for IQF processing.

li2ig: If this operand is used, the PSB name specified must
also be coded in PSB=operand of the APPLCTN system definition
macro-instruction.

specifies the name of the transaction code to be used for
Full pile Search (if any) ~ssociated with this PSB. If the
code is an *, the Full File Search is performed by the same
transaction code. This may cause checkpoint problems. If
the code is not present, a Full File Search is not invocable
by the transaction.

The Full File Search transaction code must be specified to
IHS/VS through the TRANSACT macro-instruction at IMS/VS
system definition. If this transaction cod~ is not an
asterisk (*), it must be a non-conversational transa~tion
code which uses the PSB named in the previous operand. In
other words, the transaction code must have been specified
at IMS/VS system definition time through a TRANSACT macro
comprisinq the application description set which references
the PSB named in the *QPSBGEN statement. The Full File
Search is performed usinq the same PSB used during initial
processing of the query in conversational mode.

The capability to designate an alternate transaction code
for the Full File Search WFS) allows the installation to
control when gueries involving such an operation are to be
executed. The master terminal operator can issue a IPSTOP
for the FFS transaction code and any future Full File Search
processing is queued for execution at a later time (when a
ISrART command is issued) •

IQF informs the user that the query requires a Full File
Search and requests him to reply "YES" or "NO", indicating
whether or not he desires IQF to proceed. If a /PSTOP has
been previously issued, the user's reply t~ the FFS response
is accepted and queued for subsequent processing when a
ISTART for the transaction code is issued. Depending upon
the installation procedure, the terminal user may know when
the FFS alternate transaction code has been IPSTOPped, or
it may be necessary for him to communicate with the master
terminal operator for this information.

IMS/VS System Programming Reference Manual

\

A /STOP of the TQF conversational transaction code c~uses
IMS/VS to reject the user's guery~ This /srops queuinq of
input only if the messaqe to be queued originates at a
terminal.

Under no condition shoul~ a terminal user attempt to enter
a n~n-conversational transaction code for IQF.

?ULL FILE SEARCH EXAMPLES

'" QP SBGEN PSBNAME=PSB03 ,FFS=TRA NCDX4

After a YES reply from the user terminal, TQF pecf~cms a
program-to-pr~qram message switch using TRANCDX4. The user's system
has defined TRANCDX4 as a non-conversational transaction code uS1nq
the PSB name PSB03. TQF returns the message "QUERY HELD FOR LArER
PR~CESSING" and frees the input terminal by returning the SPA to IMS.

For this example, the system definition relating PSB and transaction
codes miqht be as follows:

APPLCTN
TRANSACT
TRANSACT

PSB=PSB03,IQF=YES
CODE=TQFTCDE,SPA=(1000,CORE),MODE=SNGt
CODE=TRANCDX4

where TQFTCDE is used for conversational terminal input and TRANCDX4
is used internally bV TQF for message switchinq to a non-conversational
transaction code.

QPSBGEN PSBNAME=PSB03,FFS=

After a YES reply from the user terminal, TQF immediately starts
full file searching. The user terminal remains in conversation for
the duration of query processing.

When a query is entered with an illegal (non-conversational)
transaction code, the following IMS message is returned:

DFS080 MESSAGE CANCELED BY INPUT EDIT ROUTTNE

Whenever this happens, the user should reenter the query with a
valid TQF transaction code.

Interactive Query Facility (TQF) with IMS/VS 7.15

lQF UTILITY CONTROL STATEMENTS

• QSYSFILE

• OPTION

• *'" J~B

• QINDXGEN

• ENDUP

IMS DBD STATEMENTS

Required 1 each for the System Data Base and the
Phrase data base. If the IQP indexing feature is
used, one QSYSFlLE statement is required for each
QlNDFX dat a bas e.

optional 1

Optional 1

Optional n

Required 1

See the "DBD Generation" chapter of the IMSLY[!!iilitig§. B~f~£~n£~­
l1~!lYf!l·

TQP DBD EXTENSION STATEMENTS

• *FIELD optional n

• *QFIELD optional n

TMS PSB S~ATEMENTS

See the "PSB Generation" chapter of the I!i~L!~ !!tiliti.§§ Rg~§'1:§'!!~§'
ris!B!sl·

lQP PSB EXTENSION STATEMENTS

• *QPCB

• *QPSBGEN

Required 1 for each PCB that the user wants to a~cess
lQP.

Optional n (1 for each PSB)

~Qi§.: Except for the ** JOB statement, lQP cards with an asterisk in
column 1 can be kept in the input deck when it is used for lMS/VS system
definition. The QSYSFILE, OPTION, ana QlNDXGEN cards, however, are
not to be retained in the deck.

7.16 TMS/VS System Programming Reference tianual

The following example shows the control statements required to create
the System Data Base and to allocate ana initialize the Phrase and
QINDEX data bases.

II ••.
II
IISYSIN

* lit

lit

*

lit

*

*

JOB
EXEC IQFUT
DD
QSYSFILE

QSYSFILE

QSYSFILE

QSYSFILE

aPTION
JOB
DBD

FIELD
QFIELD

FIELD
FIELD

DBDGEN
FINISH
END
DBD

DBDGEN
FINISH
END
PCB
QPCB

PCB
QPCB

PSBGEN
QPSBGEN
END
PCB
QPCB

P SBGEN
QPS BGEN
END
ENDUP

* QFLDFILE,VOL=231Q=999999,
SPA C E= (CY L, (2 0, (5))) ,
MAXRTKEY=25, r"XKEYLEN= (10,30)
QPHFILE,VOL=2314=888888,
INDEX=777777,
SPACE=(CYL, (1C, (5,1), (20,2»)
QINDEXS1,VOL=3330=666666,
VOL2=555555,
SPACE=(CYL, (30, (10, 1))
QINDEXL1,VOL=3330=555555,
SPA C E= (CY L, (1 0, (1 0, 2)))
LINLIMIT=2OO,RECLIMIT=50
(6696) , IQF, CL ASS=A, M SGCLA SS=A , M SG LE VEL=1
NAME=VENDOR,ACCESS=HIDAM

NAME=VE ND NAM, •••
MASK=OO,HEADER='VENDOR
SYNONYM=SUPPLIER
NAME=ADDRESS, •••
N AM E=CITY , •••

NAME=PAYROLDB, •••

TYPE=DB,DBDNAME=VENDOR
PCB N=ORDE RS

TYPE=DB, •••
PCBN= •••

NAME',

LANG=ASSEM,PSBNAME=VENDFILE
PSBNAME=ORDRFILE,FFS=SUPLFFS

TYPE=DB,DBDNAME=PAYROLDB
PCBN=PAYROLL

LANG=COBOL,PSBNAME=PAYONE
PSBNAME=QIQFPSB,FFS=*

Interactive Query Facility (IQP) with IMS/VS 7.17

"'.,-,_ ... "'.,.,.,-_ .. ".',_.". __ .,, ... _---_.,-."- --------

*
*
*
*

*
*

*

IQF SYSTEM DATA BASE MAINTENANCE

If the user intends to add or delete data bases for IQF processing,
or to define new fields in existing data bases, he must execute the
lQF utility to recreate the IQF data bases (after scratching the old
data set groups composing these data bases) •

lQP INDEX CREATION AND MAINTENANCE

A facility is provided to update and create indexes using the QINDEX
data bases. The QINDEX data base(s) must be allocated creation time
to qenerate the system as illustrated in the preceding example. The
indexes can be created or updated as required through the IQF utility.

The example below illustrates the control statements required to
create an index and to update indexes.

II
II
IISYSlN

**

JOB •••
EXEC IQFUT
DD
QlNDXGEN

QINDXGEN

JOB
ENDUP

* CREATE,PCBN=PAYROLL(A) ,
SEGN=NAMEMAST,
F LD N=E MPLOYEE
UPDATE,PCBN=INVOlCE,
SEG N=DUEI N,
FLDN=INV~N) (M)
(6696) ,IQF,CLASS=A,MSGCLASS=A,MSGLEVEL=1

NQi~: Index creation can be combined in the same job step.

7.18 IMS/VS System Proqramminq Reference Manual

*
*

*
*

EXAMPLE OF ~TAGE l·OS/VS JOB STREAM FOR CREATION OF .!Q1 PROCESSO] .Q!TA
BASES (Output of Stage 1)

IIIQFUTY JOB 1,IQF,CLASS=A,MSGCLASS=A,MSGLEVEL=1
II EXEC DBDGEN~MBR=QFLDFILE
IIC. SYSIN DD *

1*

IQFDBD FF=Y
END

II EXEC DBDGEN,MBR=QPHFILE
IIC.SYSIN DD *

1*

IQFDBD PH=Y
END

II EXEC DBDGEN,MBR=QPHINDEX
IIC.SYSIN DD *

1*

IQFDBD PI=Y
END

II EXEC DBDGEN,MBR=QINDEXS1
IIC.SYSIN DD *

1*

IQFDBD XS=(10,L),MRKL=25
END

II EXEC DBDGEN,MBR=QINDEXL1
IIC.SYSIN DD *

1*

IQFDBD XL=(30,L),MRKL=25
END

II EXEC PSBGEN,MBR=DMGFC1
IIC.SYSIN DD *

1*

IQFPCB FF=Y,PH=Y,PSBN=DMGFC1,XS=(10,L) ,XL=(30,L)
END

II EXEC PSBGEN,MBR=DMGSIB
IIC.SYSIN DD *

1*

IQFPCB FF=Y,PSBN=DMGSIB
END

II EXEC PSBGEN,MBR=QIQFPSB,
IIC.SYSIN DD *

IQFPCB FF=Y,PH=Y,XS=(10,A),XL=(30,A)
PCB TYPE=DB,DBDNAME=PAYROLDB,PROCOPT=GP,KEYLEN=22

* QPCB PCBN=PAYROLL
SENSEG NAME=NAMEMAST,PARENT=O,PROCOPT=G
PSBGEN LANG=ASSEM,PSBNAME=QIQFPSB,FFS=*

* QPSBGEN PSBNAME=QIQFPSB,FFS=*
END

1*

Interactive Query Facility (IQF) with IMS/VS 7.19

II
IIQFF

EXEC IQFFC
DD DSN=IQFIFFDB,UNIT=2314,

/1
/1
II
IIQFFOVF DD
II
II
/1
IIQPHX
II
II
/1

DD

IIQPHOVF DD
/1
II
II
IIQPH
/1
II
/1
IIQXS1
/1
/1
/1

DD

DD

IIQxS10V DD
II
II
//
IIQXL1
II
II
1/

DD

IIQXL10V DD
II
II
II
IIFC1.SISIN

VOL=S ER=999999,
SPACE=(CYL,20) ,
DISP= (NEW, CATLG) , DCB= (DSORG=IS)
DSN=IQFOFFDB,UNIT=2314,
VOL=S ER=9 99888,
SPACE= (CYL, (30,1»,
DIS P= (NEW, CATLG) , DCB= (DSORG=P S)
DSN=IQFIXPDB,UNIT=2314,
V OL=S ER=7 77777,
SPACE= (CYL, 10) ,
DIS P= (NEW, CATLG) , DCB= (DSORG=IS)
DSN=IQFOXPDB,UNIT=2314,
VOL=SER=888888,
SPACE= (CYL, (5,1)) ,
DISP= (NEil ,CATLG) , DCB= (DSORG=PS)
DSN=IQFPHFDB,UNIT=2314,
VOL=S ER=8 88888,
SPACE= (CIL, (20,2)) ,
DISP= (NEW, CATLG) , DCB= (DSORG=P S)
DSN=IQFXS1DB,UNIT=3330,
VOL=S ER=6 66666,
SPACE=(CYL,30),
DISP= (NEW ,CATLG) , DCB= (DSORG=IS)
DSN=IQFXOVS1,UNIT=3330,
V OL=S ER=5 55555,
SPACE=(CYL,(10,1»,
DISP= (NEW ,CATLG) , DCB= (DSORG=PS)
DSN=IQFXL1DB,UNIT=3330,
VOL=SER=555555,
SPACE= (CIL,10),
DISP= (NEW, CATLG) , DCB= (DSORG=IS)
DSN=IQFXOVL1,UNIT=3330,
VOL=SER=555555,
SPACE= (CIL, (10,2)) ,
DISP= (NEW ,CATLG) , DCB= (DSORG=PS)

DD *

7.20 IMS/VS System Programming Reference Manual

,'----­
/

(

~,-- ..

QSYSFILE QFLDFILE,MAXRTKEY=25,IXKEYLEN=(10,30)
OPTION LINELIMIT=200
DBD NAME=PAYROLDB,ACCESS=HISAM
DATASET DD1=PAYROLL,OVFLW=PAYROLOV,DEVICE=2314
SEGM NAME=NAMEMAST,BYTES=150,FREQ=1000,PARENT=O
LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL,PTR=NONE
FIELD NAME=(EHPLOYEE,SEQ,U) ,BYTES=60,START=1,TYPE=C
DBDGEN
FINISH
END
DBD NAME=LOGICDB,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=SKILL,SOURCE=«SKILL"SKILLINV»)
DBDGEN
FINISH
END

PCB TYPE=DB,DBDNAME=PAYROLD~~PROCOPT=GP,KEYLEN=22

* QPCB PCBN=PAYROLL
SENSEG NAME=NAMEMAST,PARENT=O,PROCOPT=G
PSBGEN LANG=ASSEM,PSBNAME=QIQFPSB

* QPSBGEN PSBNAME=QIQFPSB,FFS=*
END

1*
IIQUS2X1 EXEC PSBGEN,MBR=DMGIU1
IIC.SYSIN DD *

IQFPCB FF=Y,XS=(10,L) ,XL=(30,L)
PCB TYPE=DB,DBDNAME=PAYROLDB,PROCOPT=GP,KEYLEN=22

* QPCB PCBN=PAYROLL
SENSEG NAME=NAMEMAST,PARENT=O,PROCOPT=G

PSBGEN LANG=ASSEM,PSBNAME=DMGIU1
END

1*
IIL.SYSLMOD
II

DP DSN=&&PSBTEMP(DMGIU1) ,UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(1024,(10,4,1»

IIQUS2X2 EXEC
IIIU1.SYSIN DD

IQFIU

*

1*
II

PSBD
QINDXGEN CREATE,PCBN=PAYROLL(A),SEGN=NAMEMAST,FLDN=EMPLOYEE

No!g: sta,ge 1 Part 2 output is punched card only. This includes job
steps associated with indexinq.

Interactive Query Facility (IQF) with IMS/VS 7.21

*

STORAGE REQUIREMENTS

The main storage requirements for the DB/DC system depend on the
specifications set forth and the options selected in Stage 1 of IMS/VS
system definition. In addition, the main storage requirements are
affected by the values which appear in the parameter field of the job
control language EXEC statements for the control and batch processing
regions. The OS/VS options and the contents of the resident areas also
influence the main storage requirements.

Refer to the "IMS/VS Storage Estimates" chapter of this manual for
storage allocations required by IMS/VS. (The figures referenced in
the discussion that follows are included in that chapter.)

IMS/VS CONTROL REGION

The inclusion of lQF into the lMS/VS system affects the main storage
requirements of the IMS/VS control region. The areas to be considered
in calculating the storage requirements for this region are discussed
in the following sections.

Control Program Code

Refer to Fiqure 5-6 for the size of the basic and optional control
program code. To calculate the size of the control program code with
lQF included, add the following to the basic code:

• 180 bytes for the IQF Transaction Edit module

• The optional code for conversational processing

• The optional code for paging

• Resident terminal device support code

Control ~locks

The specifications presented in Stage 1 of the IMS/VS system
definition directly influence the generation of control blocks. Figure
5-8 contains the storage estimates based on those specifications. In
calculating the storage requirements for each data base defined to the
system, the user must consider the internal (processor) data bases used
by IQF. These are the System Data Base, Phrase Data Base, and one or
two optional QINDEX Data Bases. Although DATABASE macro statements
are required only for the QINDEX data bases, the System and Phrase data
bases must be considered in determining storage requirements.

\,

7.22 lMS/VS System Programming Reference Manual

--------------- --------

~-­

(
\,

/
,(
I

Given an existinq IMS/VS system to which lQF is to be added, the
additional nucleus control blocks space required is as follows:

For each APPLCTN macro statement
added because of IQP installation

Minimum Space
N eeded Cbytesl

(one or more required): 40

For each TRANSACT macro statement
added because of IQF installation
(one or more required): 56

For each DATABASE macro statement
added because of IQF installation
(two, three or four required for
IQF internal data bases; to this
must be added the number of additional
user data bases not already in IMS/VS): 36

The square of the total number of
data bases included in the IMS/VS system
definition minus the square of the
number of data bases that existed
before IQF was added to the system. n

For example, if three IQF internal data bases are added to a system
with five existing data bases, and no additional user data bases are
added, then the impact on the nucleus control blocks for one IQF
transaction is:

40 + 56 + (3 x 36) + 8 2 - 52 = 243

Loaded Modules

Depending on the terminal device support requirements and the data
base organizations chosen, different modules are selected for loading
into the control region. If new terminals are added to the user's
system configuration concurrent with the installation of IQF, refer to
Figure 5-7 to det~rmine storage requirements £or the terminal support
modules.

In the area of data base organization, IQF uses the HISAM and HIDAM
organizations for its internal (processor) data bases. If IQF is to
be added to an existing IMS/VS system where either (or both) of these
data organizations was not previously used, then the storage
requirements for these load modules must be considered. Refer to Figure
5-1.

Inclusion of IQF in the IMS/VS system may require additional buffer
pool space within the control program region. Refer to the discussion
of buffers in the "IMS/VS Storage Estimates" cha pter of this man ual.

If the addition of IQP impacts message traffic, concurrent
processinq, data base processing intent, or terminal configuration,
these factors must be considered in determining buffer storage space.
The formulas presented in the "I MS/V S Storage Estimates" chapter can
be used for calculating buffer storage requirements.

Interactive Query Facility (IQF) with IMS/VS 7.23

Refer to the formulas for calculating the sizes of PSBs and Data
Base PCBs in the "lMS/VS storage Estimates" chapter.

The formula described for calculating the size of Data Base PCBs
can be used for the IQF internal data bases. The following values
should be used:

System Phrase QlNDEX

A = 0 0 0

B = 5 10 2

C = 0 0 0

D = 3 6 2

E = 1 1 1

F = 0 0 0

G = 0 0 0

H = 37 100 **

** (6 + key length + MAXRTKE Y)

The formula described for calculating the size of DMBs can be used
for the IQF internal data bases. The following values should be used:

System ,F,hrase QlNDEX

A = 2 3 2

B = 1 2 1

C = 5 11 2

D = 0 2 0

E = 0 0 0

F = 17 6 10

H = 1 1 1

I = 0 0 0

J = 0 0 0

L = 0 0 0

M = 0 0 0

7.24 IMS/VS System Programming Reference Manual

,r-­
(,-

",---'
(

"'-- '

Dynamic storage Requirements

OS/VS requirements, for use in calculating additonal storage space
for device or data base organization support required by the inclusion
of IQP in the IMS/VS system, can be obtained from the appropriate OS/VS
documentation.

IMS/VS MESSAGE PROCESSING REGION

The minimum message region size for IQP is 54K. This should handle
98 percent of the queries. It is assumed that the typical query will
be less than 200 bytes long and mention fewer than 15 fields with an
average field length of 10 bytes, and that sorting will not be
performed. If sorting is performed, 2K bytes of the 50K will be
available to hold the records.

A larger region may be required for the following reasons:

1. Many data fields

2. Large data fields

3. Sorting of a large quantity of records (collections of fields)
or a quantity of large records

4. A complex query, generating a large amount of code

IMS/VS BATCH PROCESSING REGION

To run the lQP utility, a batch lMS/VS region of at least 250K is
required.

The minimum region size of 250K for the IQP utility is based on a
SORT work area size of 44K. If a larger work area size· was specified
at SYSGEN time, an appropriate increase must be made to the minimum
region size for the.IQF utility. Also, the lQF Index utility program
may require a further increase in the minimum region size. This
potential increase can be calculated as follows: If A is equal to the
number of times a value occurs in a field name being indexed and B is
equal to the MAXRTKEY value specified at IQP system generation,
calculate A(B+1.5)-8000. If the result is positive, the region size
should be increased by the result (round up to the next multiple of
2K) •

SECONDARY STORAGE

A maximum of 20 tracks of 2314 space is required for the IQF load
modules.

Interactive Query Facility (IQF) with IMS/VS 7.25

---------- ... __ ._•...... - -----_ _---

IQF MODULE STORAGE (BYTES)

The following shows the number of bytes used by the different IQF
modules at various stages of processing. (-

',-
Modules Time Periods

INPUT COMPILE RETENT GENER EXEC

Common Module Table (CMT) 700 700 700 700 700
SPA & Message 700 550 550 550 550
Control Proqram 1950 1950 1950 1950 1950
Message Interface 3100 3100 3100 3100 3100
Variable Message Builder 5000 5000 5000 5000 5000
Message Interface

Work Area (WA) 450 450 450 450 450

Language Analyzer I 3000
Language Analyzer I

Work Area (WA) 300
Edit Input Table WA 0
Phrase Parameter Table

(formerl y EITWA) 400 400
Edit Input Table 400
Internal (IQF Processor) Data

Base Interface-2 5328
Internal (IQF processor) Data

Base Interface-2 WA 328
Internal (IQP Processor) Data

Base Interface-2 DL/I Buffers 200
Field Information Table

(20x52 bytes each) 1040 1040 1040
Query Path Description Table ~ .. -'

(10x20 bytes each) 200 200 200 I

Query Path Validation Table 1"-.. _
(25x32 bytes each) 700

Retention 2100
Internal (IQF Processor)

Data Base Interface-1 2200
Internal (IQP processor)

Data Base Interface-1 WA
and Retention WA 600

Internal (IQF Processor) Data
Base Interface-1 DL/I Buffers 200

7.26 IMS/VS System Programming Reference Manual

Modules Time Periods

INPUT COMPILE RETENT GENER EXEC

Language Analyzer II
Lanquaqe Analyzer II WA
Func. Modules (List Total = 2800;

Selection criteria = 7500)
Generated Code Area
User Data Base Interface (UDI)
UDI WA & Tables
UDI DL/I Buffers
UDI Loqical Record (est.)
Sort & WA (if required)
Sort Buffers (2K blocks)

Storaqe Allocation Fragments

Subtotal

IMS/VS Reqion/Program
Control and OS/VS
Work Area (VS2)*

TOTAL

3000

14900

7200

22150

3000

26646

7200

33846

3000

19850

7200

27050

500
60

7500
4096

3000

27211

7200

34411

4096
4400
2322
1720

100
2400
2048

3000

33076

7200

40276

Interactive Query Facility (IQF) with IMS/VS 7.27

............... _---_ __ __ __ .. _._---------

---------------- ------

~/.

APPENDIX!. ORGANIZATION OF CONTROL PROGRAM

Figure A-1 below shows the general organization of the control
program region in OS/VS1.

RAM/RSVC/LPA

OS/VS IMS/VS
MODULES MODULES

PO CONTROL REGION

PHYSICAL
LOG
TASK

I I
MODIFY CONTROL
SUBTASK SUBTASK

IMS/VS IMS/VS
POOLS BLOCKS

IMS/VS IMS/VS
WORKING MODULES
STORAGE

P1 DEPENDENT REGION(S)

REGION
CONTROL

TASK

PROGRAM
CONTROL

TASK

APPLICATION
PROGRAM(S)

OS/VS1
NUCLEUS

Figure A-1. IMS/VS System Structure in OS/VS1

Appendix A. Organization of Control Program A.1

Fiqure A-2 shows the qeneral orqanization of the control proqram
reqion in OS/VS2.

Figure A-2.

OS/VS
MODULES

IMS/VS
BLOCKS

IMS/VS
POOLS

OS/VS2 LPA

OS/VS 2 CSA

M1 CONTROL REGION

J

PHYSICAL
LOG
TASK

I

M()DIFY
SUBTA SK

CONTROL
SUBTASK

IMS/VS
POOLS

IMS/VS
MODULES

OS/VS2
NUCI,EUS

IMS/VS
MODULES

IMS/VS
MODULES

1M S/VS
'"laRKING
STORAGE

H2 DEPENDENr REGION (5)

REGION
CONTROL

TA SK

PRQGRAM
CONTROL

TASK

APPLICATION
PROGRAM(S)

IrIS/VS System Structure in OS/VS2

A.2 IMS/VS System Programming Reference Manual

---.--~-- ---

Figure A-3.

Figure A-~.

CONTROL PROGRAM NUCLEUS

RES IDENT ROOT
(S ee Fig ure A-~)

OVERLAY REGION (1 OR 2)
(See Figures A-6 and A-7
for overlay region 1 and

overlay region 2 contents)

Control Proqram Nucleus Generation (VS1 V=R)

CONTROL PROGRAM ROOT

RES IDENT MAP

CONTROL BLO CK S
(See Figure A-5)

CONTROL MODULES

DATA COMMUNICATION
MODULES

DATA BASE MODULES

Control Program Nucleus -- Root Generation (VS1 V=R)

Appendix A. Orqanization of Control Program A.3

--_._-_ _---- _.-------_ _ _-_._._------

Figure A-5.

CONTROL BLOCKS

COMMUNICATION LINE BLOCKS
(CLB) (CLBDECB)

COMMUNICATION TERMINAL BLOCKS
(CTB)

COMMUNICATION INTERFACE BLOCKS
(CIB)

COMMUNICATION RESTAR~ BLOCKS
(CRB)

COMMUNICATION NAME TABLES
(CNT)

COMMUNICATION TERMINAL TABLES
(CTT)

COMMUNICATION VERB BLOCKS
(CVB)

COMMUNICATION EXTENSION BLOCK
(CXB)

MSG Q MGR CONTROL BLOCKS
(Q DCBs; Q lOBs)

TRANSACTION CLASS TABLE
(TCT)

Control Program Nucleus -- Control Blocks Generation
(VS1 V=R)

CONTROL PROGRAM OVERLAY REGION 1, SECTION 1

RSTO -- RESTART
PROCESSING

RCPO -- CHECKPOINT
PROCE SSING

Figure A-5. control Program Nucleus -- Contents of Overlay Region 1
Generation (VS1 V=R)

A.4 IMS/VS System Programming Reference Manual

/
(,- .

CONTROL PROGRAM OVERLAY REGION 2, SECTION 1

CLMO
CMT1 MESSAGE IDPO
CMT2 GENERATION IDP1
CMT3 IDP2 IPCP CHECKPOINT
CMT4 IDP3 DISPLAY TERM SHUTDOWN
ICA1 IDP4 COMMAND

IDPS PROCESSING CRSB1
ICLE IDP6 CRSB2 SYSTEM 3/
ICLG IDP7 CRSH SYSTEM 7
lCLH TERMINAL IDP8 CRSL1 PROCE SSORS
ICLJ COMMAND lDP9 CRSN1

IDPA CRSW
IDPB

ICL1 PROCESSING IRD1 CRSX
ICL2 EXCEPT CFEZ TRACE EFFECTOR CR2Z
IeL3 DISPLAY CFEZ1 CS7L
lCL4 RNRE CS7L2
ICLS RERE CRS8
ICL6
ICL7 RBOl
ICL8 RDBC
ICL9 lECTLOPN

lECTCHGN

CONTROL PROGRAM OVERLAY REGION 2, SECTION 2

ISMI -- SECURITY MAINTENANCE INITIALIZATION

Figure A-7. Control Proqram Nucleus -- Contents of Overlay Region 2
Generation (VS1 V=R)

Appendix A. Organization of control Program A.S

-_._--_ -._ ... _ .. _-----_. ._------... _ ""." "." ...

IMS/VS BUFFERS

QUEUE

PROGRAM SPECIFICATION BLOCKS*

DATA MANAGEMENT BLOCKS*

DATA BASE BUFFERS*

TERMINAL BUFFERS

DATA BASE LOG BUFFERS*

FORMAT BLOCK BUFFERS

WORKING STORAGE*

* In OS/VS2 these buffers are in CSA.

Fiqure A-8. Centrol Program Region -- Buffer Areas

A.6 IMS/VS System Programming Reference Manual

--_. -.---.. -

ACBGEN procedure
description 1. 1
details 1.5

accessing of main storage, user exit
routine 3.1

delete a module from CSA 3.3
get storage from CSA 3.2
IMODULE macro 3.2
ISWITCH macro 3.1
load into CSA 3.2

application program PCB sizes
specification of 1.21

batch-message processing region
organization of 5.47

buffer pools
advantages of 2.1
errors I/O 2.1
use of 2.1
utilization statistics, obtaining 2.1

buffers, global
storage requirements, formula for 5.26

buffers, IMS/VS

'-.--' .

description of 5.27
storage requirements of

communication work area pool
(CWAP) 5.44- 5.45

data base buffer (DBB)
pool 5.32-5.33

da ta base log buff ers (DYBN) 5.34
data base work pool (DBWP) 5.33
data management block (DMB) buffer

pool 5.31
enqueue/dequeue routines 5.29
general buffer pool ~KAP) 5.33
input/output, specific
terminal 5.45

line buffer pool (TDDP) 5.42- 5.43
message format service buffer

pools 5.35-5.41
program specification block (PSB)
buffer pool 5.30-5.31

queue buffer pool (QBUF) 5.34
uses of 5.28

CBLTDLI procedure
description 1.4
details 1.29

command keyword table
contents of 2.4
error messages 2.5
listing of 2.4
modification of 2.4

communication line buffer pool (TPDP)
size, specification of 1.15

for MFSTEST (MFS) 1.15

(-/

communication work area pool (CWAP)
size, specification of 1.15
storage requirements, calculation
of 5.44

control blocks, global
storage for, estimating 5.26

control program nucleus, storage
requirements

basic and optional code 5.20
description 5.19
generated control blocks 5.22-5.24
organization 5.19
required resident device
code 5.21-5.22

control program working area (WKAP)
size, specification of 1.15

control region, IMS/VS
priority requirements 1.13

control region -- loaded modules
storage requirements 5.24

control region organization
VS/1 5.17
VS/2 5.17

control region storage requirements
calculation, example of 5.50-5.57
minimum requirements, example
of 5.57-5.63

conversation abnormal termination exit
routine (DFSCONEO)

description of 4.20
IBM-supplied routine

listing of 4.23
interfaces 4.21-4.22
system definition of 4.21

CSECTs, segment edit/compression
description of 3.8
illustration 3.9

CWAP (communication work area pool)
storage requirements, calculation
of 5.44

data base batch backout utility program
(DFSBBOOO)

storage requirements 5.66
data base buffer pool (DBB)

size, specification of 1.14
storage requirements, calculation

of 5.32
data base buffer pools

storage requirements
DL/I buffer handler pool 5.6
ISAM/OSAM buffer pool 5.6
VSAM buffer pools 5.6

data base change accumulation utility
program (DFSUCUMO)

storage requirements 5.64

Index I.1

. __ _ _ ... _--_._-_._- ... , , _._--,-----

data base/data communication system,
IMS/VS

storage requirements
dynamic storage 5.45-5.47
example 5.48-5.57
example, minimum
requirements 5.57-5.63

global areas 5.25-5.26
IMS/VS buffers 5.27-5.45
introduction 5.15-5.16
messaqe and batch message
regions 5.47-5.48

worksheet 5.18
data base image copy utility program

(DFSUDMPO)
storage requirements 5.64

data base log buffers (DYBN)
storage requirements, calculation
of 5.34

data base maintenance, IQF 7.18
data base organization-dependent

modules
storage requirements 5.7-5.9

data base prefix resolution utility
program (DFSURG10)

storage requirements 5~71
data base prefix update utility program

(DFSURGPO)
storage requirements 5.71

data base pre-reorganization utility
program (DFSURPRO)

storage requirements 5.69
data base recovery utility program

(DFSURDBO)
storage requirements 5.65

data base scan utility program (DFSURGSO)
storage requirements 5.70'

data base segment
delete/replace of 3.11,3.13
load/insert of 3.10,3.12
retrieval of 3.11,3.14

data base system, IMS/VS
minimum storage requirements
example 5.13-5.15

DBB (data base buffer 'poo1)
storage requirements, calculation

of 5.32
DBBBATCH procedure

descri ption 1. 1
details 1.6

DBD extension statements, IQF
FIELD statement 7.10
QFIELD statement 7.11
summary 7.16

DBD SEGM statement (§gg SEGM)
DBDGEN procedure

description 1.1
details 1.8

DBWP (data base work pool)
storage requirements, calculation
of 5.33

dependent region interregion communication
area (DIRCA)

size, specification of 1.17
DFSBBOOO (data base batch backout utility

program)
storage requirements 5.66

DFSCMTUO (user message table) 4.23
DFSCNTEO (message switching input

edit) 4 • 18 - 4 • 1 9
DFSCONEO (conversation abnormal
termination exit) 4.20

DFSCSMBO (transaction code input
edit) 4~13

DFSCTTOO (physical terminal output
edit) 4.7

DFSDLOCO
randomizing module, loading of 3.41

DFSDLROO
randomizing module, use with 3.42

DFSHDC10 3.44-3.47
DFSHDC20 3.48-3.49
DFSHDC30 3.50-3.52
DFSHDC40 3.53-3.56
DFSI7770 (7770-3 input edit) 4.29
DFS07770 (7770-3 output edit) 4.34
DFSPIXTO (physical terminal input
edit) 4.2-4.7

storage requirements example
data base work area pool (DBWP)

size, specification of 1.15
data base work pool (DBWP)

5.10-5.12 DFSS3741 (3741 sign-on exit) 4.47
DFSS7770 (7770-3 sign-on exit) 4.25
DFSUCUMO (data base change accumulation
utility program)

storage requirements 5.7
calculation of 5.33

data compression
definition 3.7

data formatting
exit routine, user 3~3

data management block (DMB)
discussion of 5.5-5.6
storage requirements, calculation

of 5.31
data security

encoding/decoding data 3.3
segment edit/compression exit 3.3

data segments, System/3 or System/7
BSC 6.3

data validation
exit routine, user 3.3

storage requirements 5.64
DFSUDUMPO (data base image copy utility

program)
storage requirements 5.64

DFSUPRTO (spool SYSOUT print utility
program)

storage requirements 5.72
DFSURDBO (data base recovery utility

program)
storage requirements 5.65

DFSURGPO (data base prefix update utility
program)

storage requirements 5.71
DFSURGSO (data base scan utility program)

storage requirements 5.70

I.2 IMS/VS System programming Reference Manual

,
\

"-

c

DFSURGUO (HD reorganization unload utility
__ ' program)

storage requirements 5.68
DFSURG10 (data base prefix resolution
utility program)

storage requirements 5.71
DFSURPRO (data base pre-reorganization
utility program)

storage requirements 5.69
DFSURRLO (HISAM reorganization reload
utility proqram)

storage requirements 5.67
DFSURULO (HISAM reorganization unload
utili ty program)

storage requirements 5.66
DFS29800 (2972/2980 input edit) 4.39
DIF block size; 274x, SC7, SC2, 3600

formula for 5.38
DIF block size, 3270

storage requirements, formula for 5.37
DL/I buffer handler pool

contents of 2.3
use of 2.3
storage requirements 5.6

DL/I interfaces
entry parameters 3.14
segment edit/compression routines,
to 3.10

DL/I trace table
description of 2.3

DLIBATCH procedure
description 1.1
details 1.9

JOF block size, non-3270
'-j formula for calculating 5.40

DOF block size, 3270
formula for calculating 5.39

DMB (data management block)
storage requirements, calculation
of 5.31

D MB pool (DMB)
size, specification of 1.14

DYBN (data base log buffers)
storage requirements, calculation

of 5.34

~xit routines, user data communications
basic edit routine

functions of 4.1-4.2
conversation abnormal termination
exit (DFSCONEO) 4.20-4.23

message switching input edit
(DFSCNTEO) 4.18-4.19

physical terminal input edit
(DFSP IXTO) 4.2- 4. 7

physical terminal output edit
(DFSCTTOO) 4.7-4.12

system definition requirements 4.2
transaction code input edit

(DFSCSMBO) 4.13-4.17
user message table

(DFSCMTUO) 4.23-4.24
2972/2980 input edit

(DFS29800) 4.39-4.46
3741 sign-on exit (DFSS3741) 4.47-4.51
7770-3 input edit (DF SI7770) 4.29-4.33
7770-3 output edit

(DFS07770) 4.34- 4.37
7770-3 sign-on exit

(DFSS7770) 4.25-4.28

FBP (format block pool)
storage requirements, calculation
of 5.36

FIELD, IQP DBD extension statement 7.10
format block pool (FBP)

storage requirements, calculation
of 5.36

format buffer pool
storage requirements, calculation of

DIF block size; 274x, SC1, SC2,
3600 5.38

DIF block si ze,
DOF block size,
DOF block size,
MID block size
MOD block size

3270 5.37
non-3270 5.40
3270 5.39
5.41
5.41

general buffer pool (WKAP)
storage requirements, calculation

ENDUP (IQF utility control statement)
enqueue/dequeue routine buffers

storage requirements, formula for
error blocks, System/3 or System/7

BSC 6.12

7.9 of 5.33
global buffers

5.29 storage requirements 5.26
global control blocks

estimatinq storage (§~~ storage estimates)
exit routines, user data base

accessing main storage 3.1
data base log tape record format 3.60
randomizing modules 3.41
secondary index data base

maintenance 3.56
segment edit/compression 3.3
writing of 3.1

storage requirements 5.26

HD reorganization unload utility program
(DFSURGUO)

storage requirements 5.68

Index 1.3

. __ _-_." _ •.. _----

HDAM randomizing modules
binary halving method

(DFSHDC20) 3.48-3.49
CSECTs

description of 3.42
generalized randomizing routine

(DFSHDC40) 3.53-3.56
hashing method ~FSHDC30} 3.50-3.52
IMSVS.RESLIB, in 3.41,3.44
input to, primary 3.42
interfaces 3.43-3.44
invoked, when 3.42
modulo/division method

(DFSHDC10) 3.44-3.47
naming of 3.41
purpose of 3.41

HISAM reorganization reload utility
program (DFSURRLO)

storage requirements 5.67
HISAM reorganization unload utility

program (DFSURULO)
storage reguirements 5.66

ICREATE
purpose of 4.8

IDES TROY
purpose of 4.8

input/output line buffers, specific
terminal

storage requirements 5.45
intelligent remote stations

BSC line support, System/3 or
System/? 6.2-6.13

message types 6.1
start/stop line support,

System/? 6.13-6.25
stations supported 6.1
system definition requirements 6.1
transmission ~equences, examples

of 6.26-6.29
interactive query facility (IQF)

data base maintenance 7.18
DBD extension statements 7.9
examples, full file search 7.15
index creation and maintenance 7.18
IQF utility program

control statements 7.3-7.17
introduction to 7.2

PSB extension statements 7.13-7.14
purpose and functions 7.1
storage requirements· 7.22-7.27

interface errors, System/3 or System/7
BSC 6.2

IMODULE, IMS/VS function
purpose 3.1

IMODULE ~acro statement
examples of 3.2
f·unction of 3.2

IMS procedure
description 1.1
details 1.11

IMSBATCH procedure
description 1.1
details 1.16

IMSCOBGO procedure
description 1.1
details 1.17

IMSCOBOL procedure
description 1.2
d et ails 1 • 1 9

IMSMSG procedure
description 1.2
details 1.20

IMSptI procedure
description 1.2
details 1.22

IMSPLIGO procedure
description 1.2
details 1.23

IMSRDR procedure
description 1.2
details 1.24
use of 1.4

IMS/VS execution
as an OS/VS problem program 1.12

IMSWTnnn procedure
description 1.2
details 1.24

IQF phrase data base
allocation and initialization 7.17

job stream, sample 7.19-7.21
description 7.1

IQF QINDEX data base
allocation and initialization 7.17

job stream, sample 7.19-7.21
description 7.1

IQF system data base
creation of 7.17

job stream, sample 7.19-7.21
description 7.1

IQF utility
control statements

ENDUP 7.9
JOB 7.7
OPTION 7.6
QINDXGEN 7.8
QSYSFILE 7.3-7.5
summary of 7.16

functions of 7.1,7.2
IQFFC procedure

description 1.2
details 1.25

IQFIU procedure
description 1.2
details 1.25

IQFUT procedure
description 1.2
details 1.27

IRSS (intelligent remote station
su pport) 6.1

ISAM/OSAM buffer pool
fixed-length buffers

size, specification of 2.2
operation of 2.2
storage requirements 5.6
use of 2.1

ISWITCH macro statement
example of 3.1
function of 3.1

1.4 IMS/VS System Programming Reference Manual

.-.. --.~~- •... -.----.

IB (IQF utility control statement) 7.7

key compression
definition 3.7
entry code, segment edit/compression
exit routine 3.15

KEYWD macro statement
command keyword table, to modify 2.4

KMPEX module
description 3.17
listing 3.25-3.40
messages and codes 3.24-3.25
operation of

compression routine 3.18-3.22
expansion routine 3.22-3.23
initialization routine 3.23

line buffer pool (TDDP)
storage requirements, calculation

of 5.42-5.43
terminals, specific 5.45
3270s, with MFS 5.42

load request blocks, System/3 or System/7
BSC 6.13

log tape record format 3.60
log tape write-ahead

activated, how 2.4
purpose of 2.3
system performance, impact on 2.4

T,RECL size 1.12
formula for 1.13

message classes
message processing regions, in 1.20

message format block pool (FBP)
size, specification of 1.14

messaqe format service buffer pool
storage requirements, calculation
of 5.35-5.43

message processing regions
message classes, specification of 1.20
organization of 5.47
starting of 1.4
termination limit option 1.21

message switching input edit routine
(DFSCNTEO)

description 4.18
example

listing of 4.19
purpose of 4.18

interface 4.18
MFDBDUMP procedure

description 1.2
details 1.27

MFDBLOAD procedure
description 1.3
details 1.28

MFSBACK procedure
description 1.3

MFSBTCH1 procedure
description 1.3

MFSREST procedure
description 1.3

MFSSRVC procedure
description 1.3

MFSTEST procedure
description 1.3

MFSUTL procedure
description 1.3

MID block size
formula for calculating 5.41

MOD block si ze
formula for calculating 5.41

NULLVAL operand
use of 3.57

OPEN module, IMS/VS (§gg DFSDLOCO)
OPTION (IQF utility control
stat ement) 7.6

OS/VS buffers
storage requirements 5.9

OS/VS control blocks and work space
storage requirements 5.9-5.10

output translate table, 7770-3 4.37
overlay su?ervisor

specification of 1.20

phrase data base, IQF (§~ IQF phrase
data base)

physical data base segments
non-compressible types 3.7

physical terminal input edit routine
(DFSPIXTO)

example
listinq of 4.5-4.7
purpose of 4.4

interface 4.3-4.4
name, specification of 4.3
operation of 4.2-4.3

physical terminal output edit routine
(DFSCTTOO)

example
listing of 4.9-4.12
purpose of 4.8

interface 4.7-4.8
purpose of 4.7

PLITDLI procedure
description 1.4
details 1.29

procedure, IMS/VS supplied 1.1
how to use 1.4

procedure library, IMS/VS
cr eat. ion of 1 • 1

program specification block (PSB)
storaqe requirements, calculation
of 5.2-5.5

Index I.5

.- ----... -----------------~--------.---.-...... -....... -.-.... _ ..

PSB buffer pool
storage requirements, calculation

of 5.30
OS/VS considerations 5.31

PSB extension statements, IQF
QPCB statement 7.13
QPSBGEN statement 7.14
summary 7.16

PSB pool (PSBl
size, specification of 1.14

PSB work area pool (PSBW)
size, specification of 1.15

PSBGEN procedure
description 1.3
details 1.28

segment edit/compression exit routine
abnormal termination, effects of 3.6
capabilities of 3.5
compression, types of 3.7
data base conversion to allow 3.16
description 3.3
DL/I interfaces

delete/replace 3.11
load/insert 3.10
retrieve 3.11

entry codes
explanation of 3.14-3.16

entry parameters, DL/I 3.14
example of 3.17-3.40
implementation of 3.6
initialization, DL/l actions upon 3.10
overview 3.4

QBUF (queue buffer pool) purpose of 3.17
storage requirements, calculation restrictions 3.6
of 5.34 segment types, applicable 3.6

QFTELD, TQF DBD extension statement 7.11 system performance, effects on 3.17
QlNDEX data base, lQF (§~ lQF QINDEX data segment work area (SWA)
base) definition 3.4

QINDEXGEN (lQF utility control shutdown messages, System/3 or System/7
statement) 7.8 BSC 6.8

QPCB, IQF PSB extension statement 7.13 shutdown messages, System/7
QPSBGEN, IQF PSB extension statement 7.14 start/stop 6.20
QSYSFILE (IQF utility control shutdown/restart blocks, System/3 or
sta tement) 7.3 System/1 BSC 6.13

queue buffer pool (QBUF) sparse index
storage requirements, calculation building of 3.57
of 5.34 SPIE option.

randomizing modules, HDAM (§~~ HDAM
randomizing modules)

record format, log tape 3.60
resident monitor, IMS/VS

storage requirements 5.16
restart messages, System/3 or System/7

BSC 6.7
RPL blocks (VSAM)

definition of 2.3

SC1 DIF block size
formula for 5.38

SC2 DIF block size
formula for 5.38

secondary index data base maintenance
routine

CSECTs, description of 3.58-3.59
indexing, suppression of 3.58
interface to 3.58
invoked, when 3.57-3.58
resides, where 3.57
use of 3.57

security, data (§g~ data security)
SECURITY procedure

description 1.3
details 1.29

SEGM, DBD control statement
segment edit/compression, use with 3.8

specification of 1.7,1.10,1.16,1.21
spool SYSOUT print utility program

(DF SUPRTOl
storage requirements 5.72

status change blocks, System/3 or System/1
BSC 6.9

storage estimates, IMS/VS
data base/data communications system

buffers, IMS/VS 5.27-5.30
control region 5.16-5.25
dynamic storage 5.45-5.47
global storage 5.25-5.26
message and batch-message processing
regions 5.47-5.48

minimum requirements
example 5.57-5.63

nucleus 5.19
PSB pool 5.31-5.45
storage requirements

example 5.48-5.57

T.6 lMS/VS System programming Reference Manual

c.

da ta base syste m
application programs 5.2
data base buffer pool 5.6
data base work pool 5.7
data management blocks 5.5
minimum requirements

example 5.13-5.15
organization dependent

modules 5.7-5.8
oS/VS modules 5.9-5.10
program specification blocks 5.2
storage requirements

example 5.10-5.12
system modules 5.2

data base utilities 5.63-5.72
IQF 7.22-7.27
source data 5.73-5.75

storage estimates worksheet
DB system 5.2

example 5.12
example, minimum system 5.15

DB/DC system 5.18
example 5.56
example, minimum system 5.62

storage requirements, IMS/VS (~~ storage
estima tes)

suppression of indexing 3.56
SYN macro statement

command keyword table, to modify 2.5
system data base, lQF (§ee lQF system

data base)
System/3 or System/1 BSC

data block format, explanation of 6.3
data segment format, explanation
of 6.3-6.4

examples of 6.5
interface errors 6.2
synchronization block format,
explanation of 6.6

error blocks 6.12
input/output blocks 6.10-6.11
load request block 6.13
shutdown/restart blocks 6.7
status change blocks, explanation

of 6.9
transmission sequences, examples
of 6.26-6.29

System/7 start/stop
data block format, explanation of 6.14

data segment format, explanation
of 6.14-6.15

examples of 6.16-6.17
IMS/VS responses 6.25
interface, description of 6.13

errors 6. 13
synchronization block format,
explanation of 6.17

error blocks 6.23-6.24
input/o~tput blocks 6.22-6.23
load request block 6.24
shutdown/restart blocks 6.18-6.19
status change blocks, explanation

of 6.21
~ transmission sequences, examples

(': of 6.26-6.29

TDDP (line buffer pool)
storage requirements, calculation
of 5.42-5.43

terminals, specific 5.45
transaction code input edit routine

(DFSCSMBO)
description 4.13
example

description of 4.15
listing of 4.16-4.17

interfaces 4.13-4.14
translate table, 7770-3 output 4.37

user message table (DFSCMTUO)
defining, rules for 4.23
example of 4.24
format of 4.24
naming of 4.23
purpose and use of 4.23
rules for 4.24

utility programs, storage requirements
of IMS/VS

data base batch backout
(DFSBBOOO) 5.66

data base change accumulation
(DFSUCUMO) 5.64

da ta base image copy (DFSUDMPO) 5.64
data base prefix resolution

(DFSURG10) 5.71
data base prefix update

(DFSURGPO) 5.71
data base pre-reorganization

(DFSURPRO) 5.69
data base recovery ~FSURDBO) 5.65
data base scan (DFSURGSO) 5.70
HD reorganization reload

(DFSURGLO) 5.68
HD reorganization unload (DFSURGUO) 5.68
HISAM reorganization reload

(DFSURRLO) 5.67
HISAM reorganization unload

(DFSURULOl 5.66
spool SYSOUT print (DFSUPRTO) 5.72

variable-length segments
edit/compression of 3.5

VSAM backqround write
operation of 2.3
purpose of 2.3
specifying 2.3

VSAM buffer pools
storage reguirements 5.6

VS~M shared resource pool
contents of 2.2
use of 2.2

WKAP (general buffer pool)
storage requirements, calculation
of 5.33

Index I.7

274x DIF block size
formula for 5.38

2972/2980 input edit routine (DF529800)
description 4.39
functions, required 4.39
interfaces 4.39-4.40
IQF, with 4.39
listing 4.41-4.46
naming of 4.40
system definition requirements 4.40

3270 DIF block size
storage requirements, formula for 5.37

3270 DOF block size
formula for calculating 5.39

3600 DIF block size
formula for 5.38

3741 sign-on exit routine (DF553741)
description 4.47
interfaces 4.q7
listing 4.49-4.51
name table format 4.48
required functions 4.47
system definition requirements 4.48

7770-3 input edit routine (DF517770)
description 4.29
error conditions 4.30
interfaces 4.29-4.30
listing 4.32-4.33
return codes, special 4.31
special input characters 4.31
system definition requirements 4.31

7770-3 output edit routine (DFS07770)
assumptions 4.35
description 4.34
error conditions 4.35
interfaces 4~34-4.35
listing 4.36-4.37
output translate table 4.37

system definition requirements 4.37
~ystem definition requir~ments 4.35

7770-3 output translate table
listing, sample 4.38
system definition requirements 4.37
use of 4.37

7770-3 sign-on exit routine (DF557770)
description 4.25
error conditions 4.26
interfaces 4.25-4.26
listing of 4.27-4.28
system definition requirements 4.26

I.8 IM5/V5 System programming Reference Manual

SH20-9027-4

~rnlli1
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

:s::
en -< en
en
-<
VI
Cl)

3
-c
0 /-~

~
Q)

'--3
;!.
::::l
to

:lJ
Cl)
-+0

~
Cl)

::::l
(')
Cl)

:s::
Q)

::::l
C
~

-c
~.
::::l
Cl)

c.
::;'
c
en
~
en
I
I'J a
cO
a
I'J
-...J
J::.

IMS/VS Version 1
System Programming
Reference Manual
SH20-9027-4

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of pUblications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including,ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

SH20-9027-4

®

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P. O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

First Class Permit
Number 6090
San Jose, California

~
en -< en
en
-<
(I)
r-+
CD

3
iJ r--' ...,
0

(-~
OJ

3
~.
:::J
co
:0
CD
-h

~
CD
:::J
n
CD

~
OJ
:::J
C
~

iJ
~.
:::J
r-+
CD
0..

:::J

C
en
~
en
I
I'J
0
cO
0
I'J
........
;:,.

