—
”

~ Program Product

SH20-9027-4

IMS/VS Version 1
System Programming
Reference Manual

Program Number 5740-XX2

Release 1.2

Fifth Edition (May 1976)

This edition replaces the previous edition (numbered SH20-9027-2), its technical newsletter
(numbered SN20-9117), and the reprint (numbered SH20-9027-3), and makes them
obsolete.

This edition applies to Version 1 Release 1.2 of IMS/VS, program number 5740-XX2, and
to all subsequent releases unless otherwise indicated in new editions or technical
newsletters. IMS/VS Version 1 Release 1.2 runs under VS1 Release 5. References to VS2
are for planning purposes only until Version 1 Release 1.3 of IMS/VS is available in
August 1976.

Technical changes are summarized under *“Summary of Amendments” following the list of
figures. Each technical change is marked by a vertical line to the left of the change. In
addition, miscellaneous editorial changes have been made throughout the publication.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation, P. O. Box 50020, Programming

Publishing, San Jose, California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1974, 1975, 1976

-

()

PREFACE

This is a reference manual for the person responsible for maintaining
the IBM Information Management System/Virtual Storage (IMS/VS). Along
with the IMS/VS Installation Guide, it provides the information
necessary to install, tune, and maintain the IMS/VS systen.

This manual assumes that the reader understands the basic concepts
of IMs/vs, 0S/Vs, and the access methods that are part of the system
under which IMS/VS will execute.

PREREQUISITE PUBLICATIONS

IMS/VS General Information Manual, GH20-1260
Provides a general description of IMS/VS. Describes INS/VS
system concepts and sample applications in the manufacturing,
financial, medical, and process industries.

IMS/VS System/Application Design Guide, SH20-9025
Provides data base administrators, system designers, system
programmers, and application programmers with information
to design an IMS/VS system and the applications that operate
under IMS/VS.

COREQUISITE PUBLICATIONS

This manual presents step-by-step details for the IMS/VS
installation process.

HOW THIS MANUAL IS ORGANIZED

There are seven chapters and one appendix in this manual.

Chapter 1 -- contains information about jobs and procedures in
the IMS/VS procedure library.

Chapter 2 -- describes the DL/I data base buffering facilities
in IMS/VS.

Chapter 3 ~- describes the DL/I user exit routines provided by
IMS/VS.

Chapter 4 ~- describes data communication functions that can be
modified and how you can modify then.

Chapter 5 -- describes how to estimate storage requirements for
DB and DB/DC systenms.

Chapter 6 ~-- describes IMS/VS intelligent remote station support
(System/3 and Systenm/7).

Chapter 7 -- describes the Interactive Query Facility as it
relates to IMS and provides data for estimating additional IMS/VS
storage requirements when IQF is used.

Appendix B -- describes the organization of the IMS/VS Control
Program.

Preface iii

ASSOCIATED PUBLICATIONS

iv

IMS/VS Application Proqramming Reference Manual, SH20-9026
This document is a reference manual for the application
programmer. It provides him with information about the
coding techniques necessary to implement a designed
application under the IMS/VS systen.

IMS/VS Utilities Reference Manual, SH20-9029
This manual provides a description of the IMNS/VS systenm
utility programs. It describes how to execute these
utilities under the operating systen.

IMNS/VS Operator's Reference Manual, SH20-9028 _
This manual provides the master terminal, remote terminal,
and system console operators with the information associated
with operating IMS/VS once the system has been established
in a user environment.

IMS/VS Messades and Codes Reference Manual, SH20-9030
This manual lists, explains, and suggests appropriate
responses to the completion codes and messages produced by
all the IBM-supplied components of the IMS/VS systen.

IMS/VS Program logic Manual, Volume 1 of 3, LY20-8004
IMS/VS Program logic Manual, Volume 2 of 3, LY20-8005
IMS/VS Program Logic Manual, Volume 3 of 3, LY20-8041
The internal program logic of IMS/VS is explained in the

three volumes of this manual.

IMS/VS Message Format Service User's Guide, SH20-9053
This manual describes the use, definition, and implementation
of the Message Format Service (MFS).

INS/VS Advanced Function for Communications, SH20-9054

This manual explains the IMS/VS support for advanced function’

communications systems. It addresses the areas that
programmers or analysts involved in communicating with IMS/VS
must be familiar with.

IMS/VS Low Level Code/Continuity Check in Data Lanquage/I:
Program Reference and Operation Manual, SH20-9047
This manual is intended primarily for manufacturing industry
DB/DC users whose programs maintain bills of material. It
describes the purpose and use of the IMS/VS callable
subroutine, Low-Level CodesContinuity check in Data
Language/I.

0S/VS1 Storage Estimates -- System library, GC24-5094
Provides instructions, formulas, and charts that can be used
to estimate the real, virtual, and auxiliary storage
requirements for VS1.,

0S/VS2 System Programming Library: Storade Estimates, GC28-0604
Describes the real, virtual, and auxiliary storage areas of
VS2 Release 2 and provides formulas for estimating the
storage requirements of the systen.

0S/Vs Linkage Editor and Loader, GC26-3813
Provides the information necessary to use the linkage editor
or loader program to prepare the output of a language
translator for execution.

IMS/VS System Programming Reference Manual

7N

&

0S/VS Virtual Storage Access Method (VSAM) System Information,

GC26~-3835
Provides information on the release of 0S/VS Virtual Storage
Access Method as an independent component of 0S/VS1, Release
2, and 0S/Vs2, Release 1.6. Describes the 0S/VS VSAM
distribution tape, provides detailed information on the
installation of 0S/VS VSAM, and provides information that
temporarily supplements other 0S/VS publications.

GUIDE TO USING IMS/VS SYSTEM PUBLICATIONS

Figure P~1 is a guide to using the IMS/VS system publications. This
guide is divided into three parts, each dealing with a specific IMS/VS
component -- Data Base System, Data Communication feature, and
Interactive Query Facility (IQF) feature. For each component, one or
more tasks are specified, and the IMS/VS manual or manuals that contain
major information regarding this task are noted. The titles of the
IMS/VS manuals are abbreviated as follows:

Abbreviation Full Manual Title

GIM IMS/VS General Information Manual

SADG IMS/VS System/Application Design Guide

IG IMS/VS Installation Guide

SPRY IMS/VS System Programming Reference Manual

APRM IMS/VS Application Proqramming Reference Manual
UTRM IMS/VS Utilities Reference Manual

OPRH IMS/VS Operator!'s Reference Manual

Four IMS/VS manuals are not referred to in Figqure P-1:

e IMS/VS Messages and Codes Reference Manual: This manual supports
essentially all tasks noted in Figure P-1.

e IMS/VS Low Level Code/Continuity Check in DL/I: Program Reference
and Operation Manual: This manual supports the Data Base System
when the LLC/CC function is used.

e IMS/VS Messagde Format Service User's Guide: This manual supports
the Data Communication feature when MFS is used.

e IMS/VS Advanced Function for Communications: This manual supports
the Data Communications feature when an AFC system is used.

The IQF section of Figure P-1 refers only to IMS/VS system library
manuals that contain information on IQF. Additional IQF information
can be found in:

e IQF General Information Manual, GH20-1074

e IQOF Lanquage Guide, GH20-1222

e IOF Terminal User's Reference Guide, GH20-1223

Preface v

gata Design Generate Load Reorganize Recover Tune
ase
— I UTRM, | — —
SADG UTRM SADG UTRM UTRM UTRM, IG
Design Define Instal! Modify Tune
Data System
SADG, [— - —
Base SPRM’ IG 1G SPRM UTRM
System
Design Generate Code Test
Applications 2?23' | uTRMm APRM [| APRM
) Configure Ntwk Dsgn Define Operate
Terminals
GIM SADG 1G OPRM
gata - System :e;igz; Define Install Execute l\;:dify U‘l-'ru[::;I
ommunication A — — — — ARM.
P . IG ¢ .
Feature SPRM 16 OPRM OPRM 1G,OPRM
Design Generate Code Test
SADG, 1 1
icati g UTRM APRM APRM
Tntroduce Applications | Aprm
GIM
Design Define Generate
1aF I
Feature * gﬁ‘gﬁ' IG SPRM

* References for the DC feature are in addition to
those for the DB System.

**References for this feature are in addition to
those for the DC feature.

Fiqure P-1.

Guide to Using IMS/VS System Publications

vi IMS/VS System Programming Reference Manual

N

C

PREFACE. .

FIGURES. .

SUMMARY OF AMENDMENTS. .

CHAPTER 1.

THE

IMS/VS

Procedure Library. . . .

Executing Jobs Using

IMS/VS-Supplied Members.

Member
Member
Member
Member
Member
Member
Member
Member
Member
Membexr
Member
Member
Member
Member
Member
Member
Member
Member
Member
Member

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

ACBGEN .
DBBBATCH
DBDGEN .
DLIBATCH
IMS. . .
IMSBATCH
IMSCOBGO
IMSCOBOL
IMSHMSG .
IMSPLI .
IMSPLIGO
IMSRDR .
IMSWHTnnn
IQ FFC . .
IQFI0O. .
IQFUT. .
MFDBDUMP
MFDBLOAD
PSBGEN .
SECURITY

DL/I Interfaces. . . .«
Member Name CBLTDLI.
Member Name PLITDLI.

CHAPTER 2.

VSAM Shared Resource Pool.

8 e ¢ a e & 8 & ¢ 84 6 & * s & o & a4 ° o s

« . e o
e o . o o
o - o o
o e . e e
e o - o e
o o . . .
o« o . . o
e« o . o o
o o . * o
e o . e e
e o . e e
¢ o . e o
o o . e e
o o . -
o« o . e e
e o » e o
o e 3 e o
« e e e e
e . e o
e o . e o
e e e ¢ e
o o . . e
o« o . o e
e e o e o

Procedures fronm

@ 6 & & & & 0 s 6 & & 2 8 & ¢ & & s & a2 s s &

PROCEDURE LIBRARY

IMSV

e & & & © & & & 6 8 & & & & s & s 8 & s & s o

® 6 & & e 8 o ¢ ¢ e & & & & » 6 s s o

S

8 6 o 4 ¢ s o & s & o s e o s s 6 s s s s s s s s

e & o 8 8 4 & o 8 & 4 6 s e * s o s 0 s g % s DO

SYSTEM MAINTENANCE/TUNING FACILITIES
DL/I Data Base Buffering Facilities.
ISAM/0SAM Buffer Pool.
Fixed Length Buffers .

VSAM Background Write.

DL/I Buffer Handler Pool .

Log Tape Write-Ahead .

Command Keyword Table.
Changing the Table . .

KEYWD Macro.

SYN Macro.

Error Messages . .

CHAPTER 3.

DL/I USER EXIT
Writing DL/I Exit Routines

s o

IMS/VS Command Language Modific

Accessing Main Storage .
ISWITCH Macro. . . «
IMODULE MaCIO. « « «

To Get Storage from CSA. .

To Load a Module into CSA. .
To Delete a Module from CSA.

ation
ROUTINES.

Faci

¢ s o o & f=ts o o & o o

e

e o o o o t+e s 2 e+ s .

~

s 8 e & & & 8 o & o o

. o

g}

S & o 85 e 8 6 4 5 & e o & & a2 s % 4 o 4 Mte .

H

e o o 6 6 3 8 4 e & 4 & 2 e b o & s s s 4 s s 3 M

® o o o 4 & o

o ® o & 8 ¢ & & 4 8 4 o s ,

s 8 ¢ 8 8 5 & o e & 3 o s 0 * o e+ ¢ s ° 4 6 0 a2 * o+ o

e o © & o o o

4 8 4 8 & ¢ & 5 & & 4 & s 8 6 4 © 4 s s g s & 2 s 2 9
e 8 e & s o & 4 & ¢ 4 5 o 6 s a & o s * g b & o o 3 9
e @& & 8 & & 6 ¢ & 8 5 s s e 6 e % & s o a2 o o o4 s e
4 & 4 6 & 4 8 e 8 & 4 6 a4 & ° & e & & 8 4 * o o s e »

¢ e o« o
e e . o
e o o o
° e e o
e o e o
e e o o
o o e e
e o ¢ o
« e e o
. . e o
.« o *« e
- . e o
o« o o e
e e o o
* o e o
. . . e
. . o o
. . e e
e e - e
e e e e
*« e e o
o o *« e

Contents

iii

xiii

"
<

-

s o o s & o & o & @

=S|aa0ooo0NERaaA

S i i S S O T T Yy
.

-

~N o

1.19
1.20
1.22
1.23
1.24
1.24
1.25
1.25
1.27
1.27
1.28
1.28
1.29
1.29
1.29
1.29

VN EEESTWWONN@Gaa

Wwwwwwww [SESE SR SE SR SENE SN SRR SESNSY N

a & o & & o @«
WINONN =D @2

vii

Segment Edit/Compression Exit. . .
General Description and Overview
User Capabilities. . « . « « &

User Constraints

User Procedures. . . .
Types of Segments.
Types of Edit/Compression.
DBD Control Statement SEGM

Segment Edit/Compression
DL/I Module Interfaces . .

Initialization

Processing
Parameters Passed by DL/I. « .
Edit/Compression Routine Entry
Converting Existing Data Bases
Performance Considerations -
Segment Compression/Expansion Module

The Compression Routine.

Method of Compression.

The Compression Control Block (CCB)

Pointer to the First Control Block (PFCB)

The Last Compression Control Block (LCCB)

Length of New Compressed Segment

The Expansion Routine. . . « o « « o« &

The Initialization Processing Routine.

Program Messages and Codes . . « « . .

Program Assumptions.

HDAM Randomizing Modules
Randomizing Module Interfaces. . .
HDAM Randomizing Module Examples .

Modulo or Division Method Example (DFSHDC10)

Binary Halving Method Example (DFSHDC20) . .

Hashing Method Example (DFSHDC30). . « « « « =«

e & o &

o o o o 4 o

e o ® @ & o o o o

e & & & ¢ o 8 & o
® & o & o o & o & & & s s
e & & & o o &

Ne o o ¢ s o o

o

03

d

C

.
¢ e & & a2 6 s e & s & o ¢ & 4

fie o o ®& o o o o & o & o o o 4 o
=

¢ o o (e = s o o o 6 © 4 8 4 s 8 4 & s o * D s & 6 s 8 o @ s g & 6 4 s o &

[l

e o fl e @ & 6 o s &6 & & s 3 & s o s &

E

npl

e & o 6 o o 6 & 6 s ¢ & (Do & & o o 0+ s s o o @

.
)
.
. e o
« e o
. . .

a 8 & o4 & 4 & o 4 s 2 s

e & o
4 & 4 0 s 4 6 s 6 & o & s s s Re o

Generalized Randomizing Routine Example (DFSHDCHO
Routine Listing. . « o ¢ o ¢ v ¢ ¢ ¢ ¢ o o o
Secondary Index Data Base Maintenance Exit Routine In

Interface to the Index Maintenance Exit Routine.
Index Maintenance Exit Routine Parameter CSECT .
Data Base Log Tape Record Format . « « o « ¢ o o o

o o & (={e ISa ¢ ¢ o o s 4 s 4 8 s o s & s o

CHAPTER 4. DC USER EXIT AND EDIT ROUTINES . « « « &
Basic IMS/VS Edit Functions. . . « « . ¢« « ¢« o .« . .
User Edit Routine Inclusion During System Definition

e o & &8 o o

Common DC Routines . . . ¢ o o o o s e o e o o o o
Physical Terminal (Input) Edit Routine
Interface. . « « « . « o o o e o o o o @

Example of a Physical Termlnal Input Edit Routine.
Physical Terminal (Output) Edit Routine. . . « « « &
Interface. e o o o o o o
Example of a Phy51ca1 Termlnal Output Edit Routine
Transaction Code (Input) Edit Routine.
Int erface. - . - L] L] . . . L] * L] . Ll L] . L]
Example of a Transaction Code Edit Routine
Message Switching (Input) Edit Routine . . .
Int erface. L] . L] L] . . L] . o - L] - L] . - L]
Example of a Message Switching Edit Routine.
Conversation Abnormal Termination Exit Routine
Inclusion During System Definition
Interface. v« o« ¢ ¢ o« o ¢ o o o
Program Listing. &
User Message Table . . « . . &
Definition Requirements. . .

* o o o

o e . o

s & o o & 8 o ® g & o

User Message Table Format.
Example. « « « & & ¢« o o o

e 8 ¢ 8 8 8 & e &8 s 4 &

e o o & & s &
¢ o o & o o
@ e & o & o
¢ & & & s
¢ o s o s »

s s s 8 e
e o & & o
s o o o o

viii IMS/VS System Programming Reference Manual

o

® o o M e o o o o ¢ o & o 8 4 & 5 ¢ & s 8 & s 0 ¢4 & & a4 & s s b 2 s s o o g o

¢ o & & & & 4 o o o

® o s & 4 8 8 o 6 s 4 s o o

Hh

® & & Q) s & & e & 4 & & 4 5 @ % 0 4 & o e B o 6 4 4 s s 0 o s b o s b 4 0 4

& & o 8 ¢ o 8 a4 & 6 o & ¢ & & e © 4 @& & ¢ o g o

Q
o

e & 8 6 o © & & 6 s 6 6 o & e & & 4 & 4 e & & 6 o 8 % s * e s ° 4 0 s ¢ s g o

® & o ® &4 o 8 8 © o o ® g © s o & o & & o o o o

@ 8 & & & o & o o6 ® ¢ o o o o g o

@ 6 o & & o & & 5 & 4 & o ¢ & s o =

e & & o o 8 & s ¢ s o & o

@ o ® &8 @ & & 8 ® 6 © & o 6 ¢ 6 & g 6 a4 & 8 4 & o e 8 & 0 o s 6 o o

e @ @ & & e 5 o 8 a s & o & s s e s o o s o s @

LWwWwWwwwwuwwwww
e s & s o

_m=_podooonnEW

3.24

3.43
3.44
3.44
3.48

www
.

U‘IUlU\

sWwWo

3. 56

www
° o

O\U\U\
[Ve l0.)

e NN ETEWNNNN .2

e & 6 o 6 o % o 0 6 o 8 o o o s o
-k -2
WO Uhww

P EFEeErEEEEEEEFEERFEESFE

L]
SRR
- O

4.23

E~3
.

N
w

4.23
4,24
4.24

Hardware Required Routines . . .
7770~3 Sign~On Exit Routine -- DFSS7770.
Interface. « « o« o ¢ o o o o o « o «
Error Conditions . « « « « ¢ o o
Inclusion During System Definition
Program Listing. . .« « « « ¢ . .
7770~-3 Input Edit Routine -- DFSI7770

Interface. ¢« « ¢ .« o o o o o o« o
Error Conditions . « o« « « o o o «
Special Conditions « « « ¢« « « o« &

Data Special Characters. . . « .« .
Inclusion During System Definition
Program Listing. . . « ¢« « ¢« o « &
7770-3 Output Edit Routine -- DFS0777
Interface. « o« « o ¢ o« o o o o o o
Error Conditions . « « « o « o « o
Special Conditions « « « « « « o &
Inclusion During System Definition
Program Listing. . .« « .« ¢« . . o« .
7770-3 User Output Translate Table
297272980 Input Edit Routine
Required Function. <« . . .
IQF Considerations . . ¢« « « o« « &
Interface‘ - . - L] L] - .
Inclusion During System Definition
Program Listing. . « « « « . . .
3741 Sign-On Exit Routine -- DFSS37H1
Interface. . . . e o o o o o o o
3741 Name Table Format e o a4 e o
Inclusion During System Definition
Program Listing. . « . ¢ « « o« o« .

e 6 6 2 8 6 & 4 & & s s s B a8 a2 O s e a2 o s s s s oo

e o 6 5 8 & 8 & s & 2 s 6 4 s 6 2 4 0 8 s 3 6 s 0 o 8 o B s
4 8 & & & 6 e & e & 8 e & & & 6 & b & s 0 2 s s 2 s o e s e o
e 8 & ¢ s o o e e & g & 86 ¢ &6 4 6 8 4 & g & s & 6 4 & s g oo
® & & 8 8 & & 8 & 8 6 o O & 4 8 4 8 s 4 o 3 & s 8 6 4 s 0 4
® 8 & o o & a2 b o a 4 s % o 4 & 4 3 & 4 ¢ 4 s 3 s 8 g4 &8 2 . o
® 8 8 & 8 0 ¢ o 4 8 ® g 8 & 4 0 4 o s o * 4 * 4 s o g s s 4
® o & o o & 4 6 8 4 6 & 8 & 4 0 4 O 8 s 0 ¢ 8 g 8 s s & s 4 o

@ & & 8 & & o & & 2 & & & & & & & 2 o 0 & s 8 0 * 2 s e

CHAPTER 5. IMS/VS STORAGE ESTIMATES +« « « « &
Data Base System Storage Requirements. « o e e
IMS/VS Modules -- Basic. . . « o e
IMS/VS PSB (Progranm Specxflcatlon Block) .« e
IMsS/Vs DMB (Data Management Block)
IMS/VS Data Base Buffer PoOlS. « ¢« o ¢ o« o«
IMS/VS Data Base Work Pool« o
ani

IMS/VS and 0S/VS Modules -- Data Base Org niz
Dependent ¢« .« ¢« o 4 o o ¢ o o o o o o 4 o .
0S/VSs Control Blocks, Buffers, and Work Space. .
OS/VS BUfferS. o o o« o o o « o a o o o o o« o .
0S/VS Control Blocks and Work Space.
Data Base System Storage Requirements Example. . .
Data Base System Minimum Storage Requirements Exampl

=}

¢ fl @ o o & o o o

L]
L]
.

L]
tio
L]

-

.

.

He o o ¢ o o

e
e

Data Base/Data Communication System Storage Requirements
Control REgiON 4 o « « o « o o o o 2 o o o s o o o o o
Worksheet for Control Region Estimates « « « « « « &
Control Program NUCleUS. « ¢« « o « o o o o o o« o o o o
Control Program Code « « ¢ o ¢ o o o o« o o s o o o &
Control Program Nucleus -- Generated Control Blocks.
IMS/VS and 0S/VS Loaded Modules -- Control Region. . .
Global ATEAS « « o o o o o o o o o o o o o o o o o o a
Global Control BlOCKS: « o« « o o o o o o.0 o o o o o o
Global Buffer ATeaS. « « « o« « o o o o o o o o« o o« o o
System Log Buffers « . « ¢ ¢ ¢ ¢ ¢ o o ¢ o o e o o @
IMS/VS Buffers« . . « o o e o e o o
Maximum Dynamic Storage to be Used by IMS/VS ENQ/DEQ
Program and Data Base Description Buffers.
PSB Pool Considerations in an 0S/VS System . . « . . .
Data Base Buffer PoOl. « « « « « o o o ¢ o o o o o o
IMS/VS Data Base WOTK POOLl . .« ¢ o ¢ o o o o o o o @
General Buffer POOl. « &« o o ¢ « « o o « o o o o o @
DBLLOG BUfferS « ¢ ¢« ¢ 2 o o o o o o a o o o o o o =

® & & 8 e ©® 4 " & e * 4 o 6 4 s 4 & s 4 ¢ 4 s o s & a2 b 2 s
® 6 6 2 » & & 0 & e O a8 8 g & 4 o s s 8 g & 2 0 s e o s .
. 8 & 6 & & & 6 8 8 S g & 6 4 s 5 & o 8 6 s 8 o 0 & s s o o

s & & © o o
. . . e o e o
s & & s o &
e 6 & ¢ a & o

. [. e« o . e & [e & o o o e & o e o . s @ . .
s @ & @8 & g g & o & s & & o 8 & g & s o s 2 ¢ s
@ & 8 8 & 5 42 8 ¢ 6 & o & a2 6 s s s s s o o o s

Contents

® e & 8 6 8 4 8 o &4 & o 8 8 o & s 5 g o s ¢ & 2 & o+ s & o o

a & © o & o 8 8 4 ° g & ° o O s 4 e a2 s s & s e o

4.25
4.25
4,25
4.26
4.26
4.26
4.29
4.29
4.30
4.31
4.31
4.31
4.31
4.34
4.34
4.35
4.35
4.35
4.36
4.37
4.39
4.39
4.39
4.39
4.40
4.41
4.47
4.47
4.48
4.48
4.48

s s o o & @ ¢ o & o o o o
- O WO NONON =

oo ununnu,m (SN NG, T, R R

.
-
(5]

ix

Queue Buffer Pool. ¢« ¢ ¢ o ¢ o o o o
Message Format Buffer Pool . . « « « &
Format Block POOl. ¢« + ¢ o o o o o o
Line Buffer Pool N .« .

e e o &

Communication Work Area Pool (CWAP) . . .« e
Dynamic Storage Requirements -- Control Reglon .
IMS/VS Dynamic Storage Requirements. . . « « « «
Total IMS/VS Dynamic Requirements. . . « . « .« o

Message and Batch-Message Processing Regions . . .
Data Base/Data Communication Storage Requirements E
Environment. « « o ¢ ¢« ¢ o o o o o o o o & o o

OS/VS: o o 4 o o o s o o a o o o o o o

IMS/VS & o« o ¢ o o o o s o o o o o o o
Control Region Calculation . . « « o« o« &
Message Processing Region Calculation. .

Data Base/Data Communication System Minimum
Requirements EXAMPle. « o « o o o o « o o @
Data Base Utilities Storage Requirements . .
Data Base Image Copy Utility -- DFSUDMPO . . .
Data Base Change Accumulation Utility -- DFSUCUMO
Data Base Recovery Utility -- DFSURDBO
Data Base Batch Backout Utility -- DFSBB000. . .

e & o o o P o o 6 s s o o o o

Storage
M

HISAM Reorganization Unload Utility -- DFSURULO.
HISAM Reorganization Reload Utility -- DFSURRLO.
HD Reorganization Unload Utility -- DFSURGUO . .

HD Reorganization Reload Utility -- DFSURGLO . .
Data Base Pre-reorganization Utility -- DFSURPRO
Data Base Scan Utility -- DFSURGSO

Data Base Prefix Resolution Utility -- DFSURG10.
Data Base Prefix Update Utility -- DFSURGPO. . .
Storage Estimates Source Data. « « « « ¢ « o« o«

CHAPTER 6. COMMUNICATIONS WITH INTELLIGENT REMOTE STATIONS

INtroduction « « o« o« ¢ o o o o o o ¢ o o o o o o o @
Terminal Identifiers .
Message Formats. . . .

e o o o . e

Data Blocks. . « « .« .
Block Format

Interface between IMS/VS and the System/3 or System/7 BSC.

Data Segment Format. « « o « « ¢ o o
Examples of Data Block Formats . . .

System/3 or System/7 Transmission to IMS/VS.
IMS/VS Transmission to System/3 or System/7.

Synchronization Blocks . .

¢ o

Block Format .« « « « o o o
Data Segment Format.
Examples of Data Block Formats .
System/7 Transmission to IMS/VS.
IMS/VS Transmission to System/7.

General Block FormatS. « « o« « o « o o « . e e
Shutdown/Restart BlockS. « « o o « « e o o @
Status Change Blocks « « ¢« « « ¢« « & e o e e

I/0 Synchronization Blocks . . « . + . s o »
Error Blocks . . . L] - L] . . . - . . - . - . .
System/7 Load Request Block. . . . e o o o
Interface between INMS/VS and a System/? sta t/Stop .
Data BlOCKS: « ¢ « o o o o ¢ o o o o o o e o o o

s 8 ® & » o s o e s s e

e o o o o
* o & o o
o & o & o
¢ o & o o
e & o o o
s o o o o

X IMS/VS System Programming Reference Manual

& o 8 8 o 8 o4 6 & & & o o b & »

s o o & o EH e s s 4.0

& g & & 4 & 8 6 * ¢ & 9 8 & o o

e & ® 8 8 4 # 0 o & 4 s & 4 2 s 4 s o

e ¢ o & g |=is s o 4 o o o o

e o & & o & 3 ¢ * s * s o s g o

.

e & & o & 4 s o o & s 4, o

o

e o @ o & & o 0 o

e ® o o o

@ 6 © o ® o © 8 o 6 4 o & o o o 5 * o o

e o ® 8 4 o o s 6 o o o o s & o

@ & o o ¢ ® 6 ¢ & o s & o 2

& & 3 6 5 6 o o 8 4 & 5 o s & o

e & o & o & o o &8 4 & e o &

8 & & s 4 & o 8 & o 8 e o &8 & o

8 8 & 8 & s 8% & g & s & & ¢ & 2 s 8 o s s 2 s e

e o o & o

¢ & & & o o 5 & 0 ¢ s o o ° o

e ® o o & o & 6 & & &6 o © o & o & s s o

5.34
5.35

S D ONOAONUNUNTWWWN a2
o

N

[o 3= W e W o N e 0 e)N N - A0 e)N«) o)W o W e B o) N e)N« =)Mo R« N o)}
.

- =

sEEWLW

[}
.

-
£

6.16
6.16
6.17

7

Synchronization Blocks . . .
General Block Formats. . .
Shutdown/Restart Blocks. .
Status Change Blocks . . .
I/0 Synchronization Blocks
Error Blocks . ¢« « « « o &
Load Request Block . . « « « «

IMS/VS Responses to Received Blocks.

Sample IRSS Transmission Sequences . .

s o

s & o o
¢ o & s s &
e » 8 & o & o &
S s & & & & o s
® & o & o 8 & s o
e s 6 & o & o s

Processor Data Bases. « « « ¢« ¢ o
Storage Requirements . . .
IMS/VS Control Region. .
Control Program Code .

Control Blocks . . .

Loaded Modules

IMS/VS Buffers . « « & ¢ « o

Dynamic Storage Requirements .
IMS/VS Message Processing Region
IMS/VS Batch Processing Region
Secondary Storage. . « « « « o o
IQF Module Storage (Bytes) . . .

e & o ¢ & o o o
a4 & o o & o s 8 o o o s e e & o s o

CHAPTER 7. INTERACTIVE QUERY FACILITY (IQF) WITH
Introduction . + o « 2 & o o 2 o o s o e o & o o
Creation of IQF Processor Data BasSesS . « « « « «
The IQF Utility- L] . 3
IQF Utility Control Statements . . « « ¢« o o« o« &
The QSYSFILE Statement .« o ¢« o o ¢ ¢ o o o o @
The OPTION Statement « « o« ¢ « « o o ¢ o o o o
The ** JOB Statement « « « ¢« o o o « ¢ o o o
The QINDXGEN Statement . .« . « « ¢ ¢ o o o « o
The ENDUP Statement. « « ¢« ¢« « o s o o o o « o
IMS DBD StatementsS ¢ o« « ¢ ¢ ¢ ¢ o o« o o o o o o
Interactive Query Facility (IQF) DBD Extension
The *FIELD Statement . « ¢« ¢« « o« « o« « o o &
The *QFIELD Statement. « ¢ ¢ ¢« « o ¢ o o o o
IMS PSB Statements . « « o o ¢ o o o o s o o o o
Interactive Query Facility (IQF) PSB Extension
The *QPCB Statemente « « ¢ o« « o« « o o o o o«
The *QPSBGEN Statement . . . ¢« ¢ ¢ ¢ o « o« =«
Full File Search EXampleS. « « « o« « o o o o«
Sunmary of Control Statements Required for Proces
Data BASES:e o « o 2 o ¢ o o o s o o« o o o = .
IQF Utility Control Statements . . « . « « .
IMS DBD Statements .« « « ¢« ¢ ¢ ¢ ¢ o o o o .
IQF DBD Extension Statements . « . «
IMNS PSB StatementsS « ¢« « ¢ o o o o o o o @ .
IQF PSB Extension Statements . . « « « « o« .
Example of Control Statements for Processor Data
CreatioN. ¢ ¢ o o o 2 o o o o o o o o o o
IQF System Data Base Maintenance
IQF Index Creation and Maintenance . . .
Examnple of Stage 2 0S/VS Job Stream for Creatio

a

e & & 8 ® & & & o & & & D e s e

.
-
-
.
-
.
.
.
.
.
-
.

APPENDIX A. ORGANIZATION OF CONTROL PROGRAM . .

INDEXe ¢ o ¢ ¢ o o o o o o o a a o s o o o o o o

® s o .0 4 s 4 o
e 8 & 8 4 & o o @
a8 e o © ¢ o

¢ o 8 & o & 4 o

e o o o 4 o
&« & o o & o

IMS/VS

s & & & * o s o
¢ & & & a & o 4 o 2 s

t t
e s o e o o)
[nd ot
* ¢ o MDe o ¢ (Do o ¢ & & s s o
“lmlI'(ED..l....l..
=]
® ¢ o rhPes o & rte s 0t e s a2 s .
(1]
.

[

La}
e o & o o o
¢ & & o o
PR
s s o 4 s

o
.o.mo.oo.l
o

Hh
[

CYC L Y S R S S P B I T © I T Y

5]

e 6 & 4 o 4 2 ¢ 4o 6 8 e D e o He e s o s s Ne s 2 Ule s % UYL s e & s s o & s

e & & & &6 s o o s o s o
e 8 o 4 e 4 3 & o o & o
s & & 4 & o s * o s s o
e & & a4 & 4 s & e ¢ o o

Contents

e & o & a o & g b o o &

e & & o s 8

e o & 4 & & & & s ¢ o o

e » . . o . . s o o &

® 6 o & a4 6 & 4 4 s s & s o o s * a2

6.17
6.18
6.18
6.21
6.22
6.23

(&)X W)

P
[SH SN N]
[RS

NN UONNNNNNNNNNNNNNaS

o o & & & o

S e D D DD PVOODNAWWN A=

NELWWNLO

xi

o

FIGURES

1
PR Ve o o IS o N T, I

e O & o s s e

L?J:FJI:F::#

Guide to Using IMS/VS System Publications . .
Segment Edit/COmMPresSsSioN. « « o« « o o o o o &
Segment Edit/Compression Control Section (SEGPAC)
Sample Physical Terminal Input Edit Routine .
Sample Physical Terminal Output Edit Routine.

Sample Transaction Code

Edit Routine.

Sample Message Switching Edit Routine
IBM-Supplied Conversation Abend Exit Routine.
IBM-Supplied 7770-3 Sign-On Exit Routine. . .
IBM-Supplied 7770-3 Input Edit Routine. . . .
IBM-Supplied 7770-3 Output Edit Routine . . .
IBM-Supplied 2972/2980 Input Edit Routine . .
IBM-Supplied 3741 Sign-On Exit Routine. . . .
IMS/VS and 0S/VS Modules Supporting Data Base

Functions « « « « « . .

Example Worksheet for Data Base System. . . .
Example Worksheet for Minimum Data Base Systen
Control Region Organization . . « . « ¢ o« « .

Control Program Nucleus
Control Program Nucleus
Control Program Nucleus
Device Code « « o« « « &
Control Program Nucleus

Control Region -- Loaded Modules.
Modules Always Loaded by the CTL Region .

Global Control Blocks .

Buffer Specifications in IMS Procedure. .

(V=R) - o . .
-- Basic and Optional
-- Required Resident

-- Control Blocks

Communications Input/Output Line Buffers. . .
0S/VS Storage Requirements in Control Region.
Message or Batch-Message Region Organization.

Message or Batch-Message Region Size and Worksheet.

Hierarchic Structure for Two PSBS . « « « + o
Two Data Bases Logically Related.
Worksheet for DB/DC Example . « « « o o o o+ «
Worksheet for Minimum DB/DC Example

IMS/VS Control Blocks in the Control Progran Nucleus
Loaded Modules in CTL RegionR. « « « « o« « &
INS/VS Global Areas (CSA in MVS).
Message/Batch —-- Message Region Contents.
Sample IRSS Transmission Sequences. . . .

IMS/VS System Structure
IMS/VS System Structure
Control Program Nucleus
Control Program Nucleus
Control Program Nucleus
(VST V=R) . « « « « «
Control Program Nucleus

in O0S/VS1
in 0S/VS2 + .« « « . &
Generation (VS1 V=R).
-- Root Generation (VS

.

3

1

oée

v

=R).

e ¢ 8 & ¢ 8 ¢ & o 4 o s
[] . . L] L] . Ld Ll .
8 o o & s s 4 & » 4, o o o
¢ & o o o o 4 & & o s o @

¢ s o o ¢
e & & o 2 o
s o & s o @
s s o s o o

S e & o e 6 o ® & g & s e o s ° o o

& o 4 ¢ @& o o 2 o 0 2 o & & & e e & &
.

® o o 6 & o & o & s+ & & o & o e o

-- Control Blocks Generation

- e« o e - e o ¢« e . .

-- Contents of Overlay

Region 1 Generationm (VS1 V=R)

Control Program Nucleus

-~ Contents of Overlay

Region 2 Generation (VS1 V=R) <« ¢ « ¢ o « o
Control Program Region -- Buffer Areas. . . .

« o e o
o e e o

e e o o

e e e o

Figures

xiii

a

)

a

SUMMARY OF AMENDMENTS

VERSION 1, RELEASE 1.2

This publication has been revised to reflect technical and editorial
changes made for Release 1.2.
IMS/VS SYSTEM LIBRARY REORGANIZATION

e INS/VS system definition information moved to the IMS/VS
Installation Guide, SH20-9081

e IMS/VS storage estimating information moved to this manual from
the IMS/VS System/Application Design Guide, SH20-9025

e IMS/VS IQF information moved to this manual from the IMS/VS
System/Application Design Guide, SH20-9025, and the IMS/VS Utilities
Reference Manual, SH20-9029

e "IMS/VS Sample Problem" moved to the IMS/VS Installation Guide,
SH20-9081, and renamed "IMS/VS Sample Application"

e Organization of the IMS/VS Control Program moved to this manual
from the IMS/VS System/Application Design Guide, SH20-9025

ADDITIONAL DEVICE SUPPORT

e 3600 Acknowledge with Response Message facility incorporated into
storage estimates and buffer sizes

e 3767, 3770 VTAM SDLC support incorporated into storage estimates
and buffer sizes
OTHER TECHNICAL CHANGES
e Conversational Abnormal Termination Exit Routine modified

e Storage estimates updated

VERSION 1 MODIFICATION LEVEL 1 SERVICE UPDATE RELEASE 1

ADDITIONAL DEVICE SUPPORT

e Additional devices that may be defined for use with this release
of IMS/VS are:

- IBM 3740 Data Entry System

- IBM System/7 attached on a nonswitched, binary synchronous
contention or polled communication line

Summary of Amendments Xv

OTHER TECHNICAL CHANGES

IMS/VS Data Base (DB) Monitor

Utility Control Facility

VERSION 1 MODIFICATION LEVEL 1

ADDITIONAL DEVICE SUPPORT

Additional devices that may be defined for use with this release
of IMS/VS are:

- IBM 3600 Finance Communication System
- IBM 3790 Communication Systenm

- IBM 3275 Display Station attached through a switched
communication line

The 3600/3790 systems are supported through the Virtual
Telecommunications Access Method (VTAM). VTAM is optional for the
IBM 3270 Information Display Systen.

Additional devices supported by the IMS/VS Message Format Service
(MFS) with this release are:

- IBM 2740/2741 Data Communications Terminals

- IBM 3600 Finance Communication System

OTHER TECHNICAL CHANGES

Xxvi

IMS/VS System definition has been modified to allow specification
of the following new IMS/VS functions:

~ Additional device support (see above)

- Parallel scheduling of application programs

- Application program/transaction load balancing
- Wait-for-input transactions

- Unrecoverable inquiry transactions

- Enforceable limits on the size and number of segments output by
an application program

- Optional MFS formatting support for the 3270 master terminal
(requires a 3277-2)

- MFS field and segment edit routines

IMS/VS System Programming Reference Manual

Fixed length scratchpad areas for conversation transaction
processing

Main storage resident PSBs and DMBs

Response mode forced or negated by physical terminal definition
User message tables

Physical terminal input edit routine

Message delete option

Limits on system definition macro specifications have been extended.

Summary of Amendments xvii

CHAPTER 1. THE IMS/VS PROCEDURE- LIBRARY

Various jobs and tasks associated with IMS/VS are supplied by IBM
as procedures. The functions of these procedures are described in this
chapter.

If PROCLIB=YES is specified when preparing the IMSGEN system
jefinition macro statement, certain procedures and the jobs IMSMSG and
IMSWHTnnn are dynamically created and placed in IMSVS.PROCLIB. (Refer

for instructions and recommendations for preparing the IMSGEN macro.)
The created jobs and procedures should be examined carefully to
determine if the JCL was generated as you require. These procedures
may not apply to all applications, but can be used as quidelines for
user-generated account oriented procedures.

If an online IMS/VS system has been defined, particular attention
should be devoted to the terminal devicz allocation generated within
the IMS procedure. A list of terminal addresses and logical and
physical terminals is printed by Stage 1 of IMS/VS system definition.
Examples of the procedure jobs in this chapter show the contents of
the members as they are supplied by IBM. No card column imaqge is
intended. When coding your own procedures, follow JCL and VS Assembler
language coding practices. Depending on the type of system being
defined, your procedure library members may be a subset of the complete
INS/VS procedure library that is presented here.

PROCEDURE LIBRARY

Member Name Description

ACBGEN A one-step execution procedure for ACBLIB
maintenance. Detailed information on ACBGEN

Manual.

DBBBATCH A one-step execution procedure for an offline
Data language/I batch processing reqgion using
IMSVS.ACBLIB.

DBDGEN A two-step assemble and link edit procedure to

produce data base definition blocks (DBDs).
Detailed information on DBDGEN can be found in
the IMS/VS Dtilities Reference Manual.

DLIBATCH A one-step execution procedure for an offline
Data Language/I batch processing region using
PSB and DBD libraries.

IMs A procedure to execute an IMS/VS online control
region.
IMSBATCH A procedure to execute an IMS/VS online batch

message processing region.

I MSCOBGO A three-step compile, link edit, and go procedure
combining the procedure IMSCOBOL with an
exception step for a stand-alone Data Lanquage/I
batch processing region.

The IMS/VS Procedure Library 1.1

1.2

Merber Name

IMSCOBOL

IMSHMSG

IMSPLI

IMSPLIGO

IMSRDR

IMSWTnnn

IQFUT

JQFFC

IQFIU

MFDBDUMP

A two-step compile and link edit procedure for
IMS/VS applications written in COBOL.

A job to execute an IMS/VS message processing
region.

A two-step compile and link edit procedure for
IMS/VS applications written in PL/T.

A three-step compile, link edit, and go procedure
combining the procedure IMSPLI with an execution
step for a stand-alone Data Language/I batch
processing region.

DASD read procedure to read IMSMSG job into the
operating system job stream from direct access
devices.

These are jobs used to print data sets created
by the SPOOL SYSODUT optionms.

This is a procedure for executing the Interactive
Query Facility (IQF) Utility system. An EXEC
statement to invoke the procedure is included

in the Stage 2 0S/VS job stream by the IQF module
DMGSI1 (Part 1 of IQF Stage 1). After systenm
definition, this procedure is contained in
IMSVS.PROCLIB. Refer to the "IQF with IMS/VS"
chapter in this manual for information on IQF.

This procedure causes execution of the IQF System
Data Base (Field File) C Utility program during
the Stage 2 0S/VS job stream created by IQF
Stage 1. An EXEC statement to invoke the
procedure is included in the job stream by the
DMGSIT1 module. After system d=2finition, this
procedure is contained in the IMSVS.PROCLIB.
Refer to the "IQF with IMS/VS" chapter in this
manual for information on IQF.

This procedure causes execution of the IQF Index
Creation/Update Utility program during the Stage
2 0S/VS job stream created by Stage 1. An EXEC
statement to invoke the procedure is included

in the job stream by the IQF DMGSI2 module (Part
2 of IQF Stage 1). After system definition,
this procedure is contained in IMSVS,PROCLIB,
Refer to the "IQF with IMS/VS" chapter in this
manual for information on IQF.

This is a procedure to dump the sample
application data base onto a SYSOUT data set.
Refer to "The IMS/VS Sample Application" in the
IMS/VS Installation Guide for details about the
sample application.

IMS/VS System Programming Reference Manual

\

—

)

Member Name

MFDBLOAD

MFSBACK

MFSBTCH1

MFSBTCH2

MFSREST

MFSSRVC

MFSTEST

MFSUTL

P SBGEN

SECURITY

(D

Description

—

A Data lLanguage/I batch execution procedure used
to load the sample application data base. Input
data for the data base procedure is contained

in the MPDFSYSN member of IMSVS.GENLIB. Refer
to "The IMS/VS Sample Application" in the IMS/VS.
Installation Guide for details about the sample
application.

A two-step execution procedure to back up the
MFS libraries. If the optional MFSTEST facility
is used, MFSBACK contains an additional step.
See the IMS/VS Message Format Service User!'s:

A one-step batch execution procedure for
accunulating MFS online blocks. See the IMS/VS

of this procedure.

A one-step execution procedure for placing the
MF¥S online blocks into IMSVS.FORMAT. Se=s the
IMS/VS Message Format Service User's Guide for
a listing of this procedure.

A two-s&ep execution procedure to restore the
MFS libraries. If the optional MFSTEST facility
is used, MFSREST contains an additional step.

———a

A one-step execution procedure for maintaining
the MFS libraries. See the IMS/VS Message Format
Service User's Guide for a listing of this
procedure,

A two-step execution procedure for support of
test mode operation of the message/format
lanquage utility. See the IMS/VS Message Format
Service-User's Guide for a listing of this
procedure.

A two-step execution procedure for defining
message and format descriptions to the
message/format lanquage utility program. See
the IMS/VS Message Format Service User's Guide
for a listing of this procedure.

A two-step assemble and link edit procedure to
produce program specification blocks (PSBs).
Detailed information on PSBGEN can be found in

A three-step execution, assembly, and link edit
procedure for terminal and password security
which invokes the security maintenance program.

The IMS/VS Procedure Library 1.3

In addition to the jobs and procedures placed in IMSVS.PROCLIB, two
Data Language/I interfaces are also generated:

Member Name Description-
CBLTDLY Control statements necessary to establish a
COBOL to DL/I interface.

PLITDLY Control statements necessary to establish a PL/I
to DL/TI inter face.

The generated procedures accommodate either 0S/VS1 or 0S/VS2. The
IMS/360 Version 1 lanquage interface is not supported in IMS/VS.

Bl procedures should be placed into IMSVS.PROCLIB except the IMS
and IMSRDR procedures. These two procedures should be placed into
SYS1.PROCLIB.

EXECUTING JOBS USING PROCEDURES FROM IMSVS.PROCLIB

The 0S/VS reader/interpreter requires that the reader procedure used
to enter jobs into the 0S/VS job stream specify the name of the
procedure library containing the procedures used by those jobs. This
nam2 is specified on the reader procedure's IFFPDSI DD statement.
IMS/VS system definition provides a reader procedure called IMSRDR
which satisfies these requirements., This procedure is used, as
generated, to start message regions for the online system. If entered
from the operating system operator's console using the 0S/VS START
command (that is, S IMSRDR), it causes a message processing region to
be started. If S IMSRDR,DDD, DCB=BLKSIZE=80D (where DDD is the device
address of the card reader) is entered, it reads jobs into tbhe operating
system job stream from that card reader, allowing those jobs to use
procedures from the IMSVS.PROCLIB data set. DCB BLKSIZE must be
included with the 0S/VS start command if DDD is included.

IMS/VS-SUPPLIED MEMBERS

The following procedure library members are supplied with IMS/VS by
IBM.

1.4 IMS/VS System Proqramminq Refarence Manual

)

/‘\

Detailed information on ACBGEN, and =2xamples of the use of ACBGEN
are in the IMS/VS Dtilities Reference Manual.

// PROC SOOUT=a,COMP=, RGN=100K

//G EXEC PGM=DFSRRCOO,PARM='UPB,&ECOMP', REGION=ERGN
//SYSPRINT DD SYSOUT=§S0UT

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=S5HR

//1M5 DD DSN=IMSVS.PSBLIB,DISP=SHR

/7 DD DSN=IMSVS.DBDLIB,DISP=SHR

//IMSACB- DD DSN=INSVS.ACBLIB,DISP=0LD

//SYSUT3 DD UNIT=SYSDA,SPACE= (80, (100,100))

//SYSUTL DD UNIT=SYSDA,SPACE= (255, (100,100)) ,DCB=KEYLEN=8
//COMPCTL DD DSN=IMSVS.PROCLIB(DFSACBCP) ,DISP=SHR

e FXFC Statement Parameters for ACBGEN

SOUT=
specifies the SYSOUT class. The default is A.

COMP=
PRECOMP,POSTCOMP, in any combination, to cause the required
in-place compression. The default is nomne.

RGN=

specifies the region size for this execution. The default is
100K.

The IMS/VS Procedure Library 1.5

/’/
/7
7/
//G
7/
| 77
//S
4
/771

Assumes:

User adds DD statements for data sets representing IMS/VS data
bases.,

If VSAM data bases are used, sez "Defining the IMS/VS VSAM Buffer
Pool'" in the IMS/VS Installation Guide. :

PROC MBR=TEMPNAME,SOUT=A,PSB=,BUF=8,
SPIE=0,TEST=0, EXCPVR=0,RST=0,
PRLD=,SRCH=0,CKPTID=, MON=N
EXEC PGM=DFSRRCO0, REGION=192K,
PARM=(DBB,&MBR,&PSB, EBUF,
ESPIEETESTE EXCPVRERST,6PRLD,6 SRCH, ECKPTID,EMON) 1
TEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
DD DSN=IMSVS.PGMLIB, DISP=SHR
MSACB DD DSN=IMSVS.ACBLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//T
4
//T
7/
4
//8
4
/71

| 1

2

EFRDER DD DSN=IMSLOG,DISP=(,KEEP),VOL=(,,,99),0NIT=(2400,,DEFER),
DCB= (RECFM=VBS, BLKS IZ %= 1920, LRECL =1916 , BUFND=2)

EFRDER2 DD DSN=IMSLOG2,DISP=(,KEEP),VOL=(,,,99),2
UNIT=(2400,,DEFER, SEP=IEFRDER),

DCB= (RECFM=VBS, BLKS IZ F= 1920, LRECL=1916, BUFNO=2)

YSUDUMP DD SYSOUT=§SOUT,DCB= (RECFM=FBA,LRECL=121, BLKS TZE=605),
SPACE= (695, (500,500), RLSE, , ROUND)

MSMON DD DUMMY3

Parameters in parentheses are positional.

This statement is included only when dual system log data sets are
used.

This statement describes the recording device t5 be used by the DB
monitor. It is reaquired only if MON=Y is specified in the PROC
statement, and then only if a desvice other than the IMS/VS system
log is to be used for monitor data. When a separate log device ‘is
used for DB monitor data, a //IMSMON DD statement must be included
that specifies a sufficient BLKSIZE and LRECL (2048 and 2044 are
suggested) . .

EXEC Statement Parameters for DBBBATCH

MBR=

SouU

PSB

1.6

specifies an application program name.
T=

specifies the class assigned to SYSOUT DD statements.

is an optional parameter specifying a PSB name when the PSB name
and application program name are different.

speci fies the data base buffer size. If not present, the default
size specified at system definition will be used. Buffer size

is specified in 1K nmultiples. Values may range from 1 through
999,
IMS/VS System Programming Reference Manual

p

SPIE=
specifies the SPIE option:

0 - allow user SPIE, if any, to remain in effect while processing
the application program call.

1 - negate the user's SPIE while processing the application
program call. Negated SPIEs are reinstated before returning
to the application progranm.

A value of 0 or 1 must appear in the generated JCL !

TEST=
specifies whether (1) or not (0) the addresses in the user's
call 1list should be checked for validity. 1A value of 0 or 1
must appear in the generated JCL statement for this parameter.

EXCPVR=
specifies whether EXCP (0) or EXCPVR (1) is to be used for data
sets processed by OSAM. A value of 0 or 1 must appear in the
generated JCL statement for this parameter.

RST=
specifies UCF restart: (0) no, (1) ves. Refer to the IMS/VS-
Utilities Reference Manual - for d=tails. 1A value of 0 or 1 must

appear in the generated JCL statement for this parameter.

PRLD=
specifies a 2-character suffix for DFSMPLXxX, the IMSVS.PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the IMS/VS Installation Guide for details.

SRCH=
is the module search indicator for directed load.

" 0 - standard search,
| 1 - search JPA and LPA before PDS (VS2 only).

CKPTID= :

specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to 8-character extended checkpoint ID
or a 12-character 'time-stamp' checkpoint ID.

MON=

specifies whether (Y) or not (N) the DB monitor is to be active
for this execution.

The IMS/VS Procedure Library 1.7

Member Name DBDGEN-

Detailed information on DBDGEWN, and examples of the use of DBDGEN
are in the INS/VS Utilities Reference Manual.

s

// PROC MBR=TEMPNANE, SOUT=A ~

//C EXEC PGM=TFOX00,REGION=128K,PARM='0BJ, NODECK'

//SYSLIB DD DSN=IMSVS.MACLIB,DISP=SHR

//SYSGD DD UNIT=SYSDA,DISP=(,PASS) ,SPACE= (80, (170, 100) ,RLSE),

// DCB=(BLKSIZE=400, RECFM=FB, LRECL=80)

//SYSPRINT DD SYSOUT=§SOUT, DCB=BLKSIZE=1089,

// SPACE=(121, (300,300),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE) , SPACE=(1700, (100,50))

//SYSUT2 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE= (1700, (100, 50))

//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2)),

// SPACE= (1700, (100,50))

//L EXEC PGM=DFSILNKO,PARM=!'XREF,LIST',COND= (4,LT,C),REGION=120K

//STEPLIB - DD DSN=IMSVS.RESLIB,DISP=SHR

//SYSLIN DD DSN=%,C,SYSGO,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=§S50UT, DCB=BLKSIZE=1089,

// SPACE= (121, (90,90),RLSE)

//SYSLMOD DD DSN=IMSVS.DBDLIB (SMBR),DISP=SHR

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)) ,DISP=(,DELETE),

// SPACE=(1024, (100,10) , RLSE)
-
N\
f/>
.

1.8 IMS/VS System Programming Reference Manual

Member Name DLIBATCH
Assumes:

e User adds DD statements for data sets representing IMS/VS data
bases.

e If VSAM data bases are used, see "Defining the IMS/VS VSAM Buffer
Pool" in the IMS/VS Installation-Guigde.

// PROC MBR=TEMPNAME, SOUT=A,PSB=,BUF=,

/7 SPIE=0, TEST=0,EXCPVR=0,RST=0,

/7 PRLD=,SRCH=0, CKPTID=, MON=N

//6 EXEC PGM=DFSRRCO0,REGION=192K,

// PARM= (DLY,&MBR,&PSB,EBUF,

// 6SPIEETESTEEXCPVRERST ,&PRLD ,6SRCH,ECKPTID,EMON)
//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

7/ DD DSN=IMSVS.PGMLIB,DISP=SHR

//INS DD DSN=IMSVS.PSBLIB, DISP=SHR

// DD DSN=IMSVS.DBDLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//IEFRDER DD D SN=IMSL0G,DISP=(,KEEP),VOL=(,,,99),

// UNIT=(2400,,DEFER),

// DCB=(RECFM=VBS,BLKSIZE=1920, LRECL=1916,BUFND=2) 2

//IEFRDER2 DD DSN=IMSL0G2,DISP= (, KEEP),VOL= (,,,99),3

// UNIT= (2400, ,DEFER,SEP=IEFRDER),

// DCB=(RECFM=VBS,BLKSIZE=1920,LRECL=1916 ,BUFNO=2)

//SYSUDUMP DD SYSOUT=§SOUT, DCB= (RECFM=FBA,LRECL=121,BLKSIZE=605),
// SPACE= (605, (500,500) ,RLSE,, ROUND)

//IMSMON DD DUMMY*

1 Parameters in parentheses are positional.

2 The BLKSIZE and LRBECL values shown are the default values. If the
DCB parameters are changed, log initialization calculates the
smallest value necessary for logical record length (the larger of
1008 or the longest message queue size plus 16). If the JCL logical
record length value is larger than the calculated value, the JCL
value is used; otherwise, log initialization uses the calculated
value for logical record length and adds 4 for the block size.

Log initialization checks BUFNO. If BUFNO is less than 2, 2 is
used. If the JCL BUFNO is greater than 2, the JCL value is usej.

3 This statement is included only when dual system log data sets are
used.

4 This statement describes the recording device to be used by the DB
monitor. It is required only if MON=Y is specified in the PROC
statement, and then only if a device other than the IMS/VS system
log is to be used for monitor data. When a separate log device is
used for DB monitor data, a //IMSMON DD statement must be included
that specifies a sufficient BLKSIZE and LRECL (2048 and 2044 are
suggested).

e EXEC Statement Parameters for DLIBATCH

MBR=
specifies an application program nanme.

SoUT=
specifies the class assigned to SYSOUT DD statements.

The IMS/VS Procedure Library 1.9

PSB=
is an optional parameter specifying a PSB name when the PSB nane
and application program name are different.

BUF=
specifies the data base buffer size. If not present, the default
size specified at system definition will be used. Buffer size
is specified in 1K multiples. Values may range from 1 through
999, ' ‘

SPIE=
specifies the SPIF option:

0 - allow user SPIE, if any, to remain in effect while processing
the application program call.

1 - negate the user's SPIE while processing the application
program call. Negated SPIEs are reinstated before returning
to the application progranm.

A value of 0 or 1 must appear in the generated JCL statement
for this parameter.

TEST=
specifies whether (1) or not (0) the addresses in the user's
call list should be checked for validity. A value of 0 or 1
must appear in the generated JCL statement for this parameter.

EXCPVR=
specifies whether EXCP (0) or EXCPVR (1) is to be used for data
sets processed by OSAM. EXCPVR is not valid in MVS systems. A
value of 0 or 1 must appear in the generated JCL statement for
this parameter.

RST=

Manual for details. A value of 0 or 1 must appear in the

generated JCL statement for this paranmeter.

PRLD= .
specifies a 2-character suffix for DFSMPLxx, the IMSVS,PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the IMS/VS Installation Guide for details.

SRCH=
is the module search indicator for directed load.

0 - standard search.
1 - search JPA and LPA before PDS (for VS2 only).

CKPTID= .
specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to 8-character extend2d checkpoint ID
or a 12-character 'time-stamp' checkpoint ID.

MON=

specifies whether (Y) or not (N) the DB monitor is to be active
for this execution.

1.10 IMS/VS System Programming Reference Manual

4

Member Name IMS

_—maSs Sn=s =X

Operator's Reference Manual.

Assumes:

e User adds DD statements for data sets representing INS/VS data
bases.

e Tf VSAM data bases are used, see "Defining the IMS/VS VSAM Buffer
Pool" in the IMS/VS Installation Guide.

7/ PROC RGN=600K, SOUT=A,DPTY=' (14,15)°*,

// CTL=CTL!, RES=,FRE=, QBUF=, DYBN=,PST=,

// SAV=,EXVR=,PRF=,SRCH=,FBP=,PSB=,DMB=, DBB=,
// TPDP=,WKAP=,PSBW=, CHAP=, DBWP=,MFS=,

7/ SUF=,FIX=,PRLD=,VSPEC=

//IEFPROC EXEC PGM=DFSRRCO02,REGION=ERGN,DPRTY=§DPTY
// PARM=(&CTL,

// ERES,&FRE,&QBUF,&DYBN,EPST,ESAV,

// &EXVR,&PRF,&SRCH,EFBP,EPSB, 6DMB,EDBB,

// &TPDP,EWKAP,&PS BW,ECH AP, EDBWP, & NFS,

// 6SUF,5FIX,&PRLD,EVSPEC) 3

//*

//*

//% THE MEANING AND MAXIMUM SIZE OF EACH PARAMETER
//* IS AS FOLLOWS:

//*
//¥*%kkk%kk CONTROL REGION SPECIFICATIONS ki kkksk*
//% RES X BLOCK RESIDENT (N = NO, Y = YES)

//* FRE XXX NUMBER OF FORMAT REQUEST ELEMENTS
//* QBUF XXX NUMBER OF MESSAGE QUEUE BUFFERS
//* DYBN XXX NUMBER OF DYNAMIC LOG BFFRS FOR PI

//* PST XX NUMBER OF PST'S

//* SAV XXX NUMBER OF DYNAMIC SAVE AREA SETS

//* EXVR X EXCPYR INDICATOR (C = NO OR EXCPVR=EXCP, 1 = EXCPVR)
//* PRF X PREFETCH OPTION (Y = YES, N = NO)

//* SRCH X MODULE SEARCH INDICATOR FOR DIRECTEDLOAD
//* 0 = STANDARD SEARCH

/% 1 = SEARCH JPA AND LPA BEFORE PDS

//*

//*

[/ ¥F%xkkkkk STORAGE PCOOL SIZES IN 1K BLOCKS *¥%k¥%

//*

//* FBP XXX MESSAGE BUFFER POOL

//* PSB XXX PSB POOL

//* DMB XXX DMB POOL

//* DBB XXX DATA BASE BUFFER POOL

/= TPDP XXX TP DEVICE I/0 POOL

//* WKAP XXX WORKING STORAGE BUFFER POOL
//* PSBW XXX PSB WORK POOL

//* CWAP XXX COMMUNICATIONS WORK AREA POOL
//* DBWP XXX DATABASE WORK POOL

//* MFS XXX MAXIMUM MFSTEST SPACE

/7r*

J/%kkkkkkkk MEMBER SUPFIXES ik sk s oo ok ok o

//*

//* SUF X LAST CHARACTER OF CTL PROGRAM LOAD MODULE MEMBER NAME
/7% FIX XX 2 CHARACTER FIX PROCEDURE MODULE SUFFIX

//* PRLD XX 2 CHARACTER PROCLIB MEMBER SUFFIX FOR PRELOAD

//* VSPEC XX 2 CHARACTER VSAM BUFFER POOL SPEC MODULE SUFFIX

//*

The IMS/VS Procedure Library 1.11

//!k* s vk sk K vk 3k Sk vk e 3k Sk s e ok sk sk sl vk s ok ksl ke ol ok e sk v 3k e 3 e ke vle e dle ok e e sk e vl ok e ke
/7%

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
//IEFRDER DD DSN=IMSLOG,DISP=(,KEEP),VOL=(,,,99),
// UNIT=(2400,,DEFER),

// DCB= (RECFM=VBS,BLKSIZE=3968,LRECL=3964, BUFNO=2)4
//IEFRDER2 DD DSN=IMSLOG2,DISP=(,KEEP),VOL=(,,,99),5
// UNIT=(2400,,DEFER, SEP=IEFRDER),

// DCB= (RECFM=VBS,BLKS IZF=3968, LRECL=3964, BUFNO=2)
//IMSLOGR DD DSN=IMSLOG,DISP=(OLD,KEEP),

// VOL=SER=000000,UNIT=AFF=IEFRDER®

//IMSMON DD DSN=IMSMON,DISP=(,KEEP) ,7

// Vor=(,,,99) ,UNIT= (2400, ,DEFER, SEP=IEFRDER)
//QBLKS DD DSN=IMSVS.QBLKS,DISP=OLD

//SHESG DD DSN=IMSVS.SHMSG,DISP=0LD

//LGMSG DD DSN=IMSVS.LGMSG,DISP=OLD

//IMSACB DD DSN=IMSVS.ACBLIB,DISP=SHR
//IMSDILIB DD DSN=IMSVS.FORMAT,DISP=0LDS
//IMSTFMT DD DSN=IMSVS,TFORMAT,DISP=SHR?

7/ DD DSN=IMSVS,FORMAT, DISP=0OLD®
//IMSSPA DD DSN=IMSVS.SPA,DISP=0LD

//SYSUDUMP DD SYSOUT=§S0UT,

// DCB=(LRECL=125,RECFM=FBA,BLKSIZE=3129),

// SPACE= (6050,300,,,ROUND)

//PRINTDD DD SYSOUT=§SOUT

//INSDBL DD DSN=IMSVS.DBLLOG, DISP=SHR

//*

//*% DD STATEMENTS FOR COMMUNICATIONS LINES

//* ARE INSERTED HERE BY IMS/VS SYSTEM

//%* DEFINITION. :

//*

//% USER MUS™ SUPPLY THE DD STATEMENTS

//* FOR THE ON-LINE DATA BASES TO BE

//* INSERTED HERE PRIOR TO ATTEMPTING

//% AN ON-LINE SYSTEM EXECUTION USING

//% THIS PROCEDU RE.

1 To execute the IMS/VS online system as a problem program instead
of as a subtask of the master scheduler, the first parameter field
of the execute card in the IMS procedure must be overridden. The
JCL below accomplishes this, however, it is not recommended that
IMS be run as a problem program in a production environment.

//IMSJOB JOB ACCT,MSGLEVEL=(1,1),PRTY=13
//IMs EXEC IMS,PARM.IEFPROC=CTX, (include the remaining
parameters generated for your systen)

2. The program name specified is DFSRRCO0 for 0S/VS1 and DFSMVRCO for
0S/VS2.

3 Parameters in parentheses are positional.

b The BLKSTZE and LRECL values shown are the default values. If the
DCB parameters are changed, log initialization calculates the
smallest value necessary for LRECL (the larger of 1008 and the long
message queue size plus 16). If the JCL LRECL value is larger,
the JCL value is used; otherwise log initialization uses the
calculated value for LRECL and adds 4 for the BLKSIZE.

1.12 IMS/VS System Programming Reference Manual

(Y

The user must be concerned with the LRECL value required to perform
an IMS/VS command that refers to all-data communication lines and/or
physical terminals (for example, /START LINE ALL). The following
formula should be used as a gquide when calculating the LRECL
required to successfully execute such commands:

LRECL= (300+11%N) + (300+6%*L)
where:
N is the number of defined VTAM nods names.
L is the number of non-VTAM lines in the defined systen.

The DCB BLKSIZE parameter need not be coded on the IEFRDER DD
statement. If it is coded, it must not be made smaller nor omitted
for subsequent executions of IMS unless a cold start is to be
performed.

Log initialization checks BUFNO. 1If BUFNO is less than 2, 2 is
used. If the JCL BUFNO is greater than 2, the JCL value is used.

s This statement is included only when dual system log data sets are
used.

6 The BLKSIZE parameter is ignored if coded on the IMSLOGR DD
statement. IMSLOGR always uses the current blocksize from IEFRDER.

7 This DD statement is included only when the INS/VS DC monitor is
used. .

8 This DD statement must specify DISP=OLD; it is included only when
MPS is used. A DD DUMMY specification is not supported.

9 These statements are included only when MFSTEST is specified.

e EXEC Statement Parameters for IMS

RGN =
specifies the size of the 0S/VS region to be allocated to the
IMS/VS control program. RGN= has no effect in an 0S/VS1 systen.

S00T=
specifies the class to be assigned to SYSOOT DD statements,

DPTY=
specifies the 0S/VS dispatching priority at which the IMS/VS
control region should operate. See the 0S/VS1 and 0S/VS2 JCL
documentation for details of DPRTY.

The IMS/VS control region must not be executed at priority zero
or scheduled into a region whose priority falls within a JES2
APG, or a partition whose priority falls within JES1 DDG. The
control region's priority must be higher than an 0S/VS APG or
DDG if IMS/VS message processing or batch message processing
regions reside in the APG or DDG. A general rale to follow is:
IMS CTL dispatching priority must always be higher than the
dispatching priority of any IMS/VS dapendent region.

CTL=CTL
specifies that IMS/VS should execute as an 0S/VS system task.

The IMS/VS Procedure Library 1.13

RES=

FRE=

QBUF

DYBN

PST=

SAV=

EXVR

PRF=

SRCH

FBP=

PSB=

DMB=

DBB=

1.14

n

specifies whether (¥) or not (N) the PSBs and or DMBs defined
as RESIDENT should be made residsnt at system initialization
time.

Y

specifies the number of fetch request elements that are to be
used for loading MFS blocks into the message format block pool.

specifies the number of message gqueue buffers in subpool 0 to
be allocated to the queue pool.

specifies the number of dynamic log buffers.

specifies the number of PSTs (partition specification tables)

to be allocated at system initialization time. The number
specified indicates the maximum number of dependent regions that
can be active concurrently.

specifies the number of dynamic save area sets to be used for
communication terminal I/0 requests.

specifies whether (1) or not (0) EXCPVR is to be used in the
online system for data sets processed by OSAM.

specifies whether (Y) or not (N) the WFS prefetch option is to
be used. Default valuwe is ¥.

specifies the module search indicator for directed load: 0= (
standard search and 1= search JPA and LPA before PDS. -

specifies the number of 1K blocks in subpool 7 to be allocated
to the message format block pool. (Identified in a main storage
dump as MFBP.) Parameters for specifying pool sizes are rounded
up to page size (0S/VS1=2K; 0S/VS2=4K) if they are specified as
less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the PSB pool. (Identified in a main storage dump as DLMP.)
Parameters for specifying pool sizes are round24 up to page size
(0S/VS1=2K; 0S/VS2=UK) if they are specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
t> the DMB pool. (Identified in a main storage dump as DLDP.)
Parameters for specifying pool sizes are roundzd up to page size
{0S/VS1=2K3; 0S/VS2=U4K) if they are specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the data base buffer pool. (Identified in a main storage
dump as DBAS.) Parameters for specifying pool sizes are rounded
up to page size (0S/VS1=2K; 0S/VS2=4K) if they are specified as
less.

\\1

IMS/VS System Programming Reference Manual

TPDP=

WKAP=

PSBW=

CHAP=

DBWP=

MFS=

SUF=

FIX=

PRLD=

VSPEC=

specifies the number of 1K blocks in subpool 0 t5 be allocated
to the communication line buffer pool. (Tdentified in a main
storage dump as I/0P.) Param=ters for specifying pool sizes are
roundad up to page size (0S/VS1=2K; 0S/VS2=4K) if they are
specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the control program working area. Parameters for specifying
pool sizes are rounded up to page size (0S/VS1=2K; 0S/VS2=4K)

if they are specified as less.

specifies the number of 1K blocks in subpool 0 to be allocated
to the PSB work area pool. Parameters for specifying pool sizes
are rounded up to page size (0S/VS1=2K; 0S/VS2=4K) if they are
specified as less.

specifies the number of 1K blocks of subpool 0 to be allocated
to the communications work area pool. Parameters for specifying
pool sizes are rounded up to page size (0S/VS1=2K; 0S/VS2=U4K)

if they are specified as less.

specifies the number of 1K blocks of subpool 0 to be allocated
to the data base work area pool. Parameters for specifying pool
sizes are rounded up to page size (0S/VS1=2K; 0S/VS2=4K) if they
are specified as less.

specifies the maximum number of 1K blocks of the communization
line buffer pool (TPDP) to be available for use by MFSTEST. The
nunber specified must not exceed the TPDP size minus 5.
Parameters for specifying pool sizes are round=d up to page size
(DS/VS1=2K; 0S/VS2=U4K) if they are specified as less.

specifies the suffix for the control program name. This allows
multiple copies of the IMS/VS nucleus to resids on IMSVS. RESLIB.

specifies the suffix for DFSFX. This indicates the IMSVS.PROCLIB
member to be used to control page fixing of portions of the
control program.

specifies a 2-character suffix for DFSMPLxx, the IMSVS.PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the IMS/VS Installation Guide for details.

—_—

specifies the suffix of the VSAM buffer pool specification
module.

The IMS/VS Procedure Library 1.15

PROC MBR=TEHPNAME,SOUT=3,0PT=N,SPIE=0,TESP=0,

//

/7 PSB=, PRLD=, CKPTID=, IN=,00T=,DIRCA=000

/776G EXEC PGM=DFSRRCOO, REGI ON=52K,

/7 PARM= (BYP,SMBR,EPSB,6IN,500T,

// EOPT&ESPTIESTESTEDIRCA, §PRLD, §STINER, ECKPTID) 1
//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

/7/ DD DSN=IMSVS.PGMLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=£SOUT,DCB=(LRECL=121,RECFM=VBA, BLKS IZE=3129),
// SPACE= (125, (2500, 100) ,RLSE, ,ROUND)

1 Parameters in parentheses are positional.

o EXFC Statement Parameters for IMSBATCH

MBR=

SOoUT=

OPT=

SPIE=

TEST=

PSB=

specifies an application program name.
specifies the class assigned to SYSOUT DD statements.

specifies the action to be taken if the batch message region
starts and no control program is active.

N - ask operator for decision. This is the default.
W - wait for a control program.
C - cancel the batch message region automatically.

A value of N or W or C must appear in the generated JCL statement
for this parameter. :

specifies the SPIE option:

0 - allow user SPIE, if any, to remain in effect while processing
the application program call.

1 - negate the user's SPIE while processing the application
' program call. VNegated SPIEs are reinstated before returning
to the application progranm.

SPIE macros issued by the application program are only effective
for program checks which occur within the batch message region.
A value of 0 or 1 must appear in the generated JCL statement

for this parameter.

specifies whether (1) or not (0) the addresses in the user's
call list should be checked for validity. A value of O or 1
must appear in the generated JCL statement for this parameter.

is an optional parameter specifying a PSB name when the PSB name
and application program name are different.

IMS/VS System Programming Reference Manual

2

PRLD=
specifies a 2~-character suffix for DFSMPLxx, the IMSVS.PROCLIB
member that lists the modules to be preloaded in the
region/partition. See the IMS/VS Installation Guide for details.

STIMER=
STIMER option:
O=none
1=no DL/I
2=with DL/I (default)

CKPTID=
specifies the checkpoint at which the program is to be restarted;
specified as either a 1- to B-character extended checkpoint ID
or a 12-character 'time-stamp!' checkpoint ID.

IN=
specifies an input transaction code. This parameter is necessary
only when the application program intends to access the message
queues. If this parameter is specified, the 00UT= parameter is
ignored.

0UT=
specifies the transaction code or logical terminal name to which
an output message is to be sent. It is necessary when the
application program desires to send output without accessing
the input gqueues. This parameter is ignored if IN= is also
specified.

DIRCA=

specifies the size of the dependent region interregion
communication area; the size specified must be a three-digit
numnber (for example, 001) representing the number of 1K blocks
of subpool 253 to be reserved to hold a copy of the user's PCBs.

The size for DIRCA when DIRCA=000 equals the control words at
the beginning of the DIRCA plus the sum of the PCBs in the
largest PSB found by the block loader.

If dynamic PSBs are used, and the largest PSB is larger than
the default size as calculated above, DIRCA must be specified

on the EXEC statement in the PARM field. A three~digit number
must appear in the generated JCL statement for this parameter.

Member Name IMSCOBGO-
Assumes:
e User supplies source data from SYSIN.
e Output Class 1.
e MBR=NAME, when NAME is load module name for proqran.

e SYSDA is a generic device name.

e User adds DD statements for data sets representing IMS/VS data
bases.

The IMS/VS Procedure Library 1.17

e Tf VSAM data bases are used, see "Defining the IMS/VS VSAM Buffer
Pool" in the IMS/VS Installation-Guide.

e Execution time limit of 2 minutes specified.

// PROC MBR=,PAGES=60,

7/ SOUT=A,PSB=,SPIF=0,TEST=0,EXCPVR=0,

// RST=0,PRLD=,SRCH=0,CKPTID=, BUF=20

//C EXEC PGM=IKFCBLOO, REGION=150K,

// PARM='SIZE=130K,BUF=10K,LINECNT=50"

//SYSLIN DD DSN=§&LIN, DISP= (MOD,PASS), UNIT=SYSDA,

// DCB= (LRECL=8C ,RECFM=FB,BLKSIZE=400) ,

/7 SPACE=(3520, (40,10) ,RLSE, ,ROUND)

//SYSPRINT DD SYSOUT=6SOUT, DCB= (LRECL=121,BLKSIZE=605,RECFM=FBA),
7/ SPACE=(605, (6PAGES. 0, EPAGES) , RLSE,, ROUND)

//SYSUT1 DD UNIT=SYSDA, DISP=(,DELETE),

// SPACE= (3520, (100,10) ,RLSE,, ROUND)

//SYSUT2 DD ONIT=SYSDA,DISP=(,DELETE),

// SPACE= (3520, {100, 10) , RLSE,, ROUND)

//SYSUT3 DD UNI T=SYSDA,DISP=(,DELETE),

// SPACE= (3520, (100, 10) , RLSE, , ROUND)

//SYSUT4 DD UNIT=SYSDA,DISP=(,DELETE),

// SPACE= (3520, (100, 10) , RLSE, , ROUND)

//L EXEC PGM=DFSILNKO,REGI ON=120K, PARM="'*XREF,LET,LIST',

// COND= (4,LT, C)

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//SYSLIB DD DSN=SYS1.COBLIB,DISP=SHR

//RESLIB DD DSN=IMSVS,RESLIB,DISP=SHR

//SYSLIN DD DSN=E£§LIN, DISP=(0LD,DELETE), VOL=RE®?=% .C.SYSLIN
// DD DSN=IMSYS.PROCLIB (CBLTDLI) ,DISP=SHR

// DD DDNAME=SYSIN

//SYSLMOD DD DSN=IMSVS.PGMLIB(&MBR) , DISP=SHR

//SYSPRINT DD SYSOUT=§SOUT,DCB= (RECFM=FBA,LRECL=121, BLKS IZE=605),
// SPACE= (605, (6 PAGES.0,&8PAGES), RLSE, ,ROUND)

//SYSUT1 DD UNIT= (SYSDA,SEP=(SYSLMOD, SYSLIN)) ,DISP=(,DELETE),
// SPACE=(3520, (100,10) ,RLSE,, ROUND)

//6 EXEC PGM=DFSRRCO0, REGION=150K, TIME=2,COND= (4,LT),

// PARM='DLI,&MBR,&PSB,6BUF,S5SPIESTESTEEXC PV RERST , §PRLD, 6SRCH, §CKPTID!
//STEPLIB DD DSN=INSVS.RESLIB, DISP=SHR

// DD DSN=IMSVS.PGMLIB,DISP=SHR

//IHuS DD DSN=IMSVS.PSBLIB, DISP=SHR

// DD DSN=IMSVS.DBDLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//IEFRDER DD DSN=IMSLOG,DISP=(,KEEP),VOL=(,,.99),

// UNIT=(2800,,DEFER),

// DCB= (RECFM=VBS,BLKSIZE=1408, LRECL=1400, BUFNO=1)
//IEFRDER2 DD DSN=IMSLOG2,DISP= (, KEEP) ,VOL=(,,,99),1
// UNIT=(2400,,DEFER,SEP=IEFRDER),

// DCB=(RECFM=VBS,BLKSIZE=1408,LRECL=1400, BUFNO=1)

//SYSOUT DD SYSoUT=&s0UT, SPACE= (CYL, (1,1)),DCB= (LRECL=133 ,RECFH=FA)
//SYSUDUMP DD SYSOUT=£S00T, DCB=(LRECL=121,RECFM=FBA ,BLKSIZE=3025),
/7 SPACE=(3025,(200,100) ,RLSE, ,ROUND)

1 This statement is included only when dual system log data sets are
used.

1.18 IMS/VS System Proqgramming Reference Manual

Assumes:

INSCOBOL

e User supplies source data from SYSIN.

e Output Class A.

e MBR=NAME, when NAME is load module name for program.

e SYSDA is a generic device name.

e RESLIB cataloged.

4

4

//¢

//
//SYSLIN
4

//
//SYSPRINT

//SYSUT1
4
//SYSUT2
4
//SYSUT3
/7
//SYSUTH
//

//L

//
//STEPLIB
//SYSLIB
//RESLIB
//SYSLIN
14

74
//SYSLMOD
//SYSPRINT
74
//SYSUT
4

PROC

S0UT=23

EXEC

MBR=,PAGES=60,

PGM=IKFCBLOO,REGION=150K,

PARM='YSIZE=130K,BOF=10K,LINECNT=50"

DD

DSN=§&LIN,DISP=(MOD,PASS) ,UNIT=SYSDA,

DCB= (LRECL=80 ,RECFM=FB, BLKSIZE=400),
SPACE= (3520, (40, 10) , RLSE, , ROUND)

DD

SYSOUT=8SOUT,DCB=(LRECL=121,BLKSIZE=605,RECFH=FBA),

SPACE= (605, (§PAGES.0, EPAGES) , RLSE, ,ROUND)

DD

UNIT=SYSDA,DISP=(,DELETE),

SPACE=(3520,(100,10) ,RLSE,, ROUND)

DD

UNIT=SYSDA, DISP=(,DELETF),

SPACE=(3520,(100,10) ,RLSE,, ROUND)

DD

UNIT=5YSDA, DISP=(,DELETE),

SPACE=(3520,(100,10) ,RLSE,, ROUND)

DD

UNIT=SYSDA,DISP=(,DELETE),

SPACE=(3520,(100,10) ,RLSE,, ROUND)

EXEC

PGM=DFS ILNKO, REGION=120K,PARM=' XRE?,LET,LIST',

COND=(4,LT,C)

DD
DD
DD
DD
DD
DD
DD
DD

DSN=IMSVS.RESLIB, DISP=SHR

DSN=5YS1.COBLIB,DISP=SHR

DSN=IMSVS.RESLIB, DISP=SHR
DSN=6ELIN,DISP=(OLD,DELETE) ,VOL=REF=*,C.SYSLIN
DSN=IMSVS.PROCLIB (CBLTDLI),DISP=SHR

DDNAME=SYSIN

DSN=IMSVS.PGMLIB(EMBR) ,DISP=SHR

SYSOUT=§SOUT, DCB= (RECFM=FBA,LRECL=121,BLKSIZE=605) ,

SPACE=(605, (EPAGES.0,&PAGES) ,RLSE, ,ROUND)

DD

UNIT= (SYSDA,SEP=(SYSLMOD,SYSLIN)),DISP=(,DELETE),

SPACE= (3520, (100, 10) , RLSE,, ROUND)

The IMS/VS Procedure Library 1.19

Member Name IMSMSG

//MESSAGE J0B 1,IMS, MSGLEVEL=1,PRTY=11,CLASS=A,MSGCLASS=A ,REGION=52K
//REGION EXEC PGM=DFSRRCOO0,REGION=52K,TIME=1440,
// PARM='MNS5G,001000000000°

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

/7 DD DSN=IMSVS.PGMLIB, DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//SYSUDUMP DD SYsSoUT=2a,DCB= (LRECL=125,BLKSIZE=3219,RECFM=VBA) ,

// SPACE=(125, (2500,100) ,RLSE, ,ROUND)

e EXEC Statement Parameters for IMSMSG

PARM=
YMSG,AAARAAARAARAA,BCDEFFGGG,HH, I'

MSG=
is a required positional parameter indicating a message region
is to be started.

AAAAAAAARAAAA=

is a required positional parameter specifying 4 three-digit
decimal numbers indicating which classes of messages will be
handled by this message region. That is, if classes 1, 2, and
3 are to be processed by this region, the PARM field would be
specified as PARM='NSG,001002003000°".

The sequence of specifying the classes determines relative class
priority within the message region. 1In the above example, all
Class 1 messages are selected for scheduling before any Class

2 messages would be considered. Class numbers cannot be greater
than the maximum number of classes specified during systenm
definition.

BCDEFFGGG is required if HH or I is specified.

B=
specifies the action to be taken if the message region starts
and no control region is active.
W - wait for control program to start.
N - ask operator for decision -- this is the default.
C - cancel message region automatically.
C=

specifies the overlay supervisor option:

0 - allow 0S/VS to load and delete the overlay supervisor for
every overlay application program -- that is the defaunlt.

1 - load and retain a copy of the overlay supervisor when the
mnessage region is initialized.

1.20 INS/VS System Programming Reference Manual

/

7

GGG=

specifies the SPIE option:

0 - allow user SPIE, if any, to remain in effect while processing
the application program call.

1 - negate the usert's SPIE while processing the application
.program call. Negated SPIEs are reinstated before returning
to the application program.

SPIE macros issued by the application program are only effective
for program checks which occur within the message regionm.

specifies the validity check option:

0 - no address validity checking will be made.
1 - validity check the addresses in the user's call list.

specifies the termination 1limit option. A decimal number between
1 and 99. The default is 1. When the number of application
program abends reaches this limit, the message region is
automatically terminated. This allows 0S/VS to print the
accumulated SYSOUT data sets.

specifies the number of 1K blocks of subpool 253 to be reserved
to hold a copy of the user's PCBs. This parametar must be a
three~-digit number (for example, 001). If this value is not
specified, the system reserves an area which can hold the PCBs
for any application program whose PSB is in IMSVS.ACBLIB. 2
0242 abend occurs if the application program PSB is not in
IMSVS.ACBLIB (DOPT specified in APPLCTN macro) and is larger
than any PSB in IMSVS.ACBLIB.

The output from the ACB generation utility program DFSUAZBO
specifies application program PCB sizes.

specifies the 2-character suffix of the IMSVS.PROCLIB member
that specifies preloaded program modules. If omitted, no modules
are preloaded. See the IMS/VS Installation Guide for details.

STIMER option:
0O=none

1=no DL/I
2=with DL/I (default)

The IMS/VS Procedure Library 1.21

Member Name IMSPLI

ARmde s, emmea manaas

Same assuﬁptions as IMSCOBOL.

4 © PROC
//C EXEC

MBR=, PAGES=50, SOUT=A
PGM=IEMAA,REGION=114K,

/7 PARMi'XREF,ATR,LOAD,NODECK,NOMACRO,,OPT=1'

//SYSUTI DD

UNIT=SYSDA,SPACE=(1024,(60,60) ,RLSE,, ROUND),

// ‘DCB=BLKSIZE=1024, DISP=(,DELETE)

//SYsSUT3 DD

ONIT=SYSDA,SPACE=(1024, (60,67) ,RLSE,,POUND),

// DCB=BLKSIZE=1024,DISP=(,DELETE)

//SYSPRINT DD

SYSOUT=§S00T, DCB= (LRECL=125,BLKSIZE=629 ,RECFM=VBA) ,

// SPACE=(605, (§PAGES.0, EPAGES) , RLSE)

//SYSLIN DD
// DISP=(,PASS)
/7L EXEC
// REGION=120K
//STEPLIB DD
//SYSLIB DD
//RESLIB DD
//SYSLIN DD
4 DD
/7’ DD
//SYSLMOD DD
//SYSPRINT DD

ONIT=SYSDA,SPACE= (87, (257,80) ,RLSE) ,DCB=BLKSIZE=80,
PGM=DFSILNKC, PARM=' XREF,LIST,LET',COND=(4,LT,C),

DSN=IMSVS.RESLIB,DISP=SHR

DSN=SYS1.PL1LIB,DISP=SHR

DSN=IMSVS.RESLIB,DISP=SHR

DSN=*,C,SYSLIN, DISP=(OLD, DELETE)
DSN=IMSVS.PROCLIB (PLITDLI) ,DISP=SHR

DDNAME=SYSIN ‘

DSN=IMSVS.PGMLIB(&EMBR) ,DISP=SHR

SYSOUT=§S00T, DCB=(LRECL=121,RECFM=FBA ,BLKSIZE=605) ,

// SPACE=(605, (§PAGES.0,&PAGES) ,RLSE)

//SYSUT1 DD

UNIT=SYSDA, DISP=(,DELETE),SPACF=(CYL, (5, 1) , RLSE)

1.22 IMS/VS System Programming Reference Manual

(/*\

f/ h \\

e

Member Name IMSPLIGO-

P e Ty

Same assumptions as IMSCOBGO, except an execution time of 5 minutes
is specified.

7/ PROC MBR=,PAGES=50,

Vo4 SOUT=A, PSB=,5PIE=0 TEST=0,EXCPVR=0,

Va4 RST=0,PRLD=,SRCH=0,CKPTID=,BUF=1000

//C EXEC PGM=TEMAA,REGION=118K,

// PARM='XREF,ATR,LOAD ,NODECK, NOMACRO, ,0PT=1"

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024, (60,60) ,RLSE,,ROUND) ,

// DCB=BLKSIZE=1024,DISP=(,DELETE)

//SYSUT3 DD UNIT=SYSDA,SPACE= (1024, (60,60) ,RLSE,, ROUND),

// DCB=BLKSIZE=1024,DISP=(, DELETE)

//SYSPRINT DD SYSOUT=§SOUT,DCB= (LRECL=125, BLKSIZE=6 29, RECFM=VBAa),
// SPACE= (605, (§PAGES.0, 6PAGES) , RLSE)

//SYSLIN DD UNIT=SYSDA,SPACE= (80, (250,80),RLSE), DCB=BLKSIZE=80,
// DISP=(,PASS)

//L EXEC PGM=DFSILNKO, PARM='XREF,LIST,LET',ZOND=(4,LT,C),
// REGION=120K

//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

//SYSLIB DD DSN=SYS1.PL1LIB,DISP=SHR

//RESLIB DD DSN=IMSVS.RESLIB, DISP=SHR

//SYSLIN DD DSN=*.,C.SYSLIN,DISP= (OLD, DELET E)

7/ DD DSN=IMSVS.PROCLIB (PLITDLI),DISP=SHR

7/ DD DDNAME=SYSIN

//SYSLMOD DD DSN=IMSVS.PGMLIB(EMBR) ,DISP=SHR

//SYSPRINT DD SYSOUT=§SOUT, DCB= (LRECL=121, RECFM=FBA, BLKS IZE=605),
// SPACE= (675, (§PAGES.0, §PAGES), RLSE)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL, (5,1) ,RLSE)
//6G "EXEC PGM=DFSRRCO0, REGION=150K, TIME=5,COND= (4,LT),

// PARM='DLI,&MBR,&PSB,EBUF,6SPIESTESTEEXCPVR,8RST,6PRLD ,&6SRCH ,6CKPTID
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR .

/7 DD DSN=IMSVS.PGMLIB, DISP=SHR

//INS DD DSN=IMSVS,PSBLIB,DISP=SHR

// DD DSN=IMSVS.DBDLIB, DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//IEFRDER DD DSN=IMSLOG, DISP=(,KEEP) ,VOL=(,,,99),

// UNIT= (2409, ,DEFER),

// DCB= (RECFM=VBS,BLKSTIZF=1408,LRECL=1400,BUFNO=1)
//IEFRDER2 DD DSN=IMSLOG2, DISP=(,KEEP) ,VOL=(,,,99),1
// UNIT=2400,,DEFER,SEP=IEFRDER),

// DCB= (RECFM=VBS, BLKS IZ E= 1408, LRECL=1400,BUFND =1)

//SYSPRINT DD SYSOUT=§&S0UT,DCB= (LRECL=121,BLKSIZE=605, RECFN=FBA) ,
// SPACE=(605, (500,500) ,RLSE, ,ROUND)
//SYSUDUMP DD SYSOUT=6S0UT, DCB=(LRECL=121,BLKSIZE=605,RECFM=FBA),

// SPACE=(605, (500,500) ,RLSE,,ROUND)

1 This statement is included only when dual system log data sets are
used.

The IMS/VS Procedure Library 1.23

The IMSRDR procedure varies, based on the version of 0S/VS that is

// PROC MBR=I MSMSG

//IEFPROC EXEC PGM=IFFVMA, READ®R FIRST LOAD

// PARM='00100300005210E000112A00* DEFAULT OPTIONS

//* BPPTTTTSSCCCRLAAAAEFHYX PARM FIELD

/7% B PROGRAMMER NAME AND ACCOUNT NUMBER NOT NEEDED
//* PP PRIORITY=01

/7% TTTTSS JOB STEP INTERVAL=30 MINUTES

//* ccce JOB STEP DEFAULT REGION=52K

//* R DISPLAY AND EXECUTE COMMANDS=1

//* L BYPASS LABEL=0

//* ARRARA COMMAND AUTHORITY FOR MCS=E000

//* - ALL COMMANDS MUST BE AUTHORIZED

//* F JCL MESSAGE LEVEL DEFAULT=1 -ALL MESSAGES

//* F ALLOC/TERM MESSAGE LEVEL DEFAULT=1 -ALL MESSAGES
//* H DEFAULT MSGCLASS=RA

//IEFRDER DD DSN=IMSVS.PROCLIB (§MBR) ,DISP=SHR, DCB= BUFNO=1

//IEFPDSTI DD DSN=IMSVS.PROCLIB,DISP=SHR

// DD DSN=SYS1.PROCLIB,DISP=SHR

For 0S/VsS2:

rr PROC MBR=IMSMSG,CLASS=2

//IEFPROC EXEC PGM=TIEBEDIT

//SYSPRINT DD SYSOUT=ECLASS

//SYSUTA DD DDNAME=TEFRDER

//SYSUT2 DD SYSOUT= (§CLASS,INTRDR) ,DCB=BLKSIZE=8)
//SYSIN DD DUMMNY

//IEFRDER DD DSN=IMSVS.PROCLIB (§MBR) ,DISP=SHR

Member Name IMSHTnnn

P

IMNSVTnnn member(s) job class and message class are determined by
tha MAYREGN keyword specified on the INSCTRL macro statement during
system definition.

//SPRTn JoB 1,IM5,CLASS=3,MSGCLASS=3, MSGLEVEL=1
//PRINT EXEC PGHN=DFSUPRTC ,REGION=30K

//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR
//SYSPRINT DD SYS0UT=3 ,DCB=BLKSIZE=1410
//SYSUDUMP DD SYsSouT=3

//SPJO0Ln DD DSN=IMSVS.SYSOn,DISP=SHR

1.24 IMS/VS System Programming Reference Manual

./;)

Member Name IQFFC

e The DMGSI1 program (Stage 1, Part 1) provides JCL to allocate data
set aroups at initial creation time.

//IQFFC PROC

//FC1 EXEC PGM=DFSRRCO0, PARM=" DLI,DMGFC1,DMGFC1' ,REGION=300K
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//IMS DD DSNAME=IMSVS.PSBLIB,DISP=SHR

7/ DD DSNAME=IMSVS.DBDLIB,DISP=SHR

//SYSPRINT DD SYSOUT=1A

//SYSOUT DD SYSOUT=A

//UTPRINT DD SYSOUT=2

//UTDBD DD UNIT=SYSDA,DSN=UTDBD,DISP=(NEW,DELETE),SPACE= (CYL, (1, 1))
//UTSPL DD UNIT=SYSDA,DSN=UTSPL, DISP= (NEW,DELETE),SPACE= (CYL, (1, 1))
//SORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR

//SSYNIN DD DISP= (NEW,DELETE) ,SPACE= (CYL, (1,1)) ,0NIT=SYSDA,
// DCB= (BLKSTIZE=1040,LRFCL=52, DSORG=PS,RECFM=FB),

// DSN=SSYNIN

//SSYNOUT DD DISP= (NEW,DELETE) ,SPACE=(CYL, (1,1)),UNIT=SYSDA,
// DCB=(BLKSIZE=1040,LRECL=52,DSORG=PS,RECFM=FB) ,

// DSN=SSYNOUT

//SPCBIN DD DISP= (NEW,DELETE) ,SPACE= (CYL, (1,1)) ,UNIT=SYSDA,
// DCB=(BLKSIZE=880,LRECL=4l, DSORG=PS, RECFM=FB),

// DSN=SPCBIN

//SPCBOUT DD DISP= (NEW,DELETE) ,SPACE=(CYL, (1,1)) ,UNIT=SYSDA,
// DCB=(BLKSIZE=880,LRECL=44,DSORG=PS, RECFM=FB),

// DSN=SPCBOUT

//SWRKIN DD DISP= (NEW,DELETE) ,SPACE= (CYL, (1,1)) ,0NIT=SYSDA,
// DCB=(BLKSIZE=1920,LRECL=96, DSORG=PS,RECFN=FB),

// DSN=SWRKIN

//SWRKOUT DD DISP= (NEW,DELETE) ,SPACE=(CYL, (1,1)) ,UNIT=SYSDA,
// DCB= (BLKSIZE=1920,LRECL=96,DSORG=PS,RECFM=FB) ,

// DSN=SWRKOUT

* //SPCBWKO1 DD UNIT=SYSDA,SPACE= (TRK, (5),,CONTIG)
//SPCBWK02 DD UNIT=SYSDA,SPACE= (TRK, (5),,CONTIG)
//SPCBWKO3 DD UNIT=SYSDA,SPACE= (TRK, (5) , , CONTIG)
//SPCBWKO4 DD UNIT=SYSDA,SPACE= (TRK, (5),,CONTIG)
//SPCBWKO5 DD UNIT=SYSDA, SPACE=(TRK, (5) , ,CONTIG)
//SPCBWK06 DD UNIT=SYSDA,SPACE= (TRK, (5) , , CONTIG)
//SSYNWKO1 DD UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG)
//SSYNWKO2 DD UNT T=SYSDA,SPACE= (TRK, (5) , ,CONTIG)
//SSYNWKO3 DD UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG)
//SSYNWKO4 DD UNIT=SYSDA,SPACE=(TRK, (5) , ,CONTIG)
//SSYNWKN5 DD UNIT=SYSDA,SPACE= (TRK, (5) , , CONTIG)
//SSYNWK06 DD UNIT=SYSDA,SPACE=(TRK, (5) , ,CONTIG)
//SWRKWKO1 DD UNIT=SYSDA,SPACE= (TRK, (5),,CONTIG)
//SWRKWKO2 DD UNIT=SYSDA,SPACE=(TRK, (5) , ,CONTIG)
//SWRKWKO3 DD UNIT=SYSDA,SPACE= (TRK, (5), ,CONTIG)
//SWRKWKO4 DD UNIT=SYSDA,SPACE=(TRK, (5) , [CONTIG)
//SWRKWKO5 DD UNIT=SYSDA,SPACE= (TRK, (5),,CONTIG)
//SWRKWKO6 DD UNIT=SYSDA,SPACE=(TRK, (5) , ,CONTIG)

ASsumes:
Prior to executing the IQF UOtility during IQF and IMS/VS

installation, the user modifies this procedure to tailor it to his IQF
indexing requirements.

The IMS/VS Procedure Library 1.25

The modification required is:

e Add DD statements to the IU1 step for the user's INS/VS data bases
to be indexed.

//ICFIU PROC SOUT=A ,TMSREG=DLI ,DISPS=0LD

//101 EXEC PGM=DFSRRC0O0,PARM='&IMSREG,DMGIU1,DMGIU1',REGION=300K
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//THS DD DSN=%,QUS2X1.L.SYSLMOD,DISP= (OLD,PASS)1
// DD DSN=IMSVS.PSBLIB,DISP=SHR

// DD DSN=IMSVS.DBDLIB, DISP=SHR

//QFF DD DSN=IQFIFFDB,DISP=SHR

//QFFOVF DD DSN=IQFOFFDB, DISP=SHR

//0%S1 DD DSN=IQFXS1DB,DISP=6DISPS

//0XS10V DD DSN=IQFXOVS 1, DISP=6DISPS

//0¥L1 . DD DSN=IQFXL1DB,DISP=6DISPS

//0XL10V DD DSN=TQFXOVL1, DISP=5DISPS

//HOLDS DD UNIT=SYSDA,SPACE= (CYL, (4,1)), DISP= (,PASS)
//HOLDL DD UNIT=SYSDA,SPACE= (CYL, (4,1)),DISP=(,PASS)
//IEFRDER DD DUMMY

//SYSPRINT DD SYSOUT=E£SOUT

//SYSOUT DD SYSOUT=6SOUT

//I02 EXEC PGM=DFSRRCO0,PARM='&§IMSREG,DMGIU3,DMGIU1',REGION=300K,
// COND=(4,LT,IU1)

//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

//INS DD DSN=*,QUS2X1.L.SYSLMOD,DISP= (OLD, PASS) !

// DD DSN=IMSVS.PSBLIB, DISP=SHR

// DD DSN=IMSVS.DBDLIB,DISP=SHR

//QFF DD DSN=TIQFIFFDB, DISP=SHR

//QFFOVF DD DSN=IQFOFFDB,DISP=SHR

//IEFRDER DD DUMMY

//SYSPRINT DD SYSOUT=§SOUT

//SYSOUT DD SYSOUT=§SOUT

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SHRTIN DD DSN=*, IU1.HOLDS, DISP=(OLD, DELETE)

//SHRTOUT DD UNIT=SYSDA,SPACE= (CYL, (4, 1)) , DISP=(, PASS)
. //SHRTWKO1 DD UNIT=SYSDA,SPACE= (TRK, (10),,CONTIG)

//SHRTWKO2 DD UNIT=SYSDA,SPACE= (TRK, (10) , ,CONTIG)

//SHRTWKO03 DD UNIT=SYSDA,SPACE= (TRK, (10),,CONTIG)

//LONGIN DD DSN=%*,TU1.HOLDL, DISP= (OLD, DELETE)

//LONGOUT DD UNIT=SYSDA,SPACE= (CYL, (4, 1)) ,DISP=(,PASS)

//LONGWKO1 DD UNIT=SYSDA,SPACE= (TRK, (10),,CONTIG)

//LONGWKO2 DD UNIT=SYSDA,SPACE=(TRK, (10) , ,CONTIG)

//LONGWKO3 DD UNIT=SYSDA,SPACE= (TRK, (10),,CONTIG)

//IU3 EXEC PGMN=DFSRRCOO,PARM='6&IMSREG,DMGIU2,DMGIU1',REGION=300K,
// COND=((4,LT,IU1), (4,LT,I02))

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//THS DD DSN=*,QU0S2X1.L.SYSLMOD,DISP=(OLD,DELETE) !

7/ DD DSN=IMSVS.PSBLIB,DISP=SHR

/7 DD DSN=IMSVS.DBDLIB, DISP=SHR

//QFF DD DSN=IQFIFFDB,DISP=SHR

//QFFOVF DD DSN=IQFOFFDB, DISP=SHR

//0Xs1 DD DSN=IQFXS1DB,DISP=§DISPS

//7QXs10V DD DSN=IQFXOVS1, DISP=5DISPS

//0XL1 DD DSN=IQFXL1DB,DISP=EDISPS

//0XL10V DD DSN=IQFXOVL1, DISP=5DISPS

//BOLDS DD DSN=*_,T102.SHRTOUT ,UNIT=SYSDA,DISP= (OLD, DELETE)
//HOLDL DD DSN=*_,I02.LONGOUT,UNIT=SYSDA,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=&SOUT

//SYS0UT DD SYSOUT=&SOUT

1 The *,00US2X1.L.SYSLMOD data set for the IMS DD statement refers
back to the SYSLMOD card in the DMGIB1 PSBGEN step generated by
DMGSI2.

1.26 INS/VS System Programming Reference Manual

N

s User supplies source data for SYSIN.

e SYSUT1 is a BSAM work data set.

e Output Class

e Dutput Class
job steps in

e User defines

of EXEC statement for executing the procedure.

A is used for listing.

B is used by DMGSI1 and DMGSI2 (Stage 1) to produce

the Stage 2 0S/VS job streanm.

IMS region type (batch or bhatch-message) in PARM field

initial creation time.)

/7 PROC
//SIA EXEC
//STEPLIB DD
//SYSUT1 DD
//SYSPRINT DD
//SYSPUNCH DD

//SIB EXEC PGM=DFSRRCOO,PARM='EIMSREG,DMGSI2,DMGSIB',REGION=200K,1?

// COND= (0,LT)9
//STEPLIB DD
//INs DD
/7/ DD
//SYSPRINT DD
//SYSPUNCH DD
//QFF DD
//QFFOVF DD
//SYSUT1 DD

SOUT=2a,SPCH=B, IMSREG=DL I
PGH=DMGSTI 1, REGION=300K
DSN=IMSVS.RESLIB,DISP=SHR

ONIT=SYSDA, DISP=(,PASS) ,SPACE=(TRK, (24,11))
SYSOUT=ESOUT

SYSOUT=&SPCH

DSN=IMSVS.RESLIB,DISP=SHR
DSN=IMSVS.PSBLIB, DISP=SHR
DSN=IMSVS.DBDLIB,DISP=SHR
SYSOUT=§SO0U0T

SYSOUT=&SPCH

DSN=IQFIFFDB, DISP=SHR
DSN=IQFOFFDB,DISP=SHR
DSN=%,SIA.SYSUT1, DISP=(0OLD,DELETE)

(Not required at

- 1 The SIB step is bypassed when the IQFUT procedure is executed to
create the System Data Base.

Va4 PROC
//DUMP EXEC
//STEPLIB DD
Va4 DD
//IMS DD
/7 DD

//SYSUDUMP DD
//DI21PART DD
//DI21PARO DD
//00TPUT DD

SoUT=n
PGM=DFSRRCOO, PARM='DLI ,DFSSAMO8"',REGION=130K
DSN=IMSVS.RESLIB, DISP=SHR
DSN=IMSVS.PGMLIB,DISP=SHR

DSN=IMSVS.PSBLIB, DISP=SHR
DSN=IMSVS.DBDLIB,DISP=SHR

SYSOUT=ES00T

DSN=IMSYS.DI21PART,DISP=SHR
DSN=IMSVS.DI21PARO, DISP=SHR

SYSOUT=&S0UT

The IMS/VS Procedure Library

1.27

// PROC S500T=2

//LOAD EXEC PGM=DFSRRCO0, PARM='DLI,DFSSAMO1',REGION=130K
//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

// DD DSN=IMSVS.PGMLIB,DISP=SHR

//INS DD DSN=IMSVS.PSBLIB, DISP=SHR

// DD DSN=IMSVS.DBDLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=§SOUT

//DI21PART DD DSN=IMSVS.DI21PART(PRIME) ,DISP=(,KEEP) ,DCB=DSORG=1IS,

// SPACE=(CYL,3,,CONTIG) ,VOL=SER=6PSER,UNIT=EPUNIT

//DI21PARO DD DSN=IMSVS.DI21PARO,DISP=(,KEEP),SPACE=(CYL,3,,CONTIG),
// VOL=SFR=E0SER,UNIT=§0UNIT

//SYSOouT DD SYSOUT=ESOUT

//INPUT DD DSN=IMSVS.GENLIB (MFDFSYSN),DISP=SHR

Member Name PSBGEN

Detailed information on PSBGEN, and examples of the use of PSBGEN
are in the IMS/VS Utilities Reference Manual.

/7 PROC MBR=TEMPNAME, SOUT=A

//C EXEC PGM=IFOX00,REGION=128K,PARM=* OBJ, NODECK!
//SYSLIB DD DSN=IMSVS.MACLIB, DISP=SHR

//SYSGO DD UNIT=SYSDA,DISP=(,PASS),

// SPACE= (80, (100,100) ,RLSE),
// DCB=(BLKSIZE=400,RECFM=FB,LRECL=80)

//SYSPRINT DD SYSOUT=§SOUT, DCB=BLKSIZE=1089,

// SPACE=(121, (300,300),RLSE,,ROUND)

//SYSUT1T DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700, (100,50))
//SYSUT2 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE= (1700, (100, 50))
//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2)),

// SPACE= (1700, (100,50))
//L EXEC PGM=DFSILNKO,PARM='XREF,LIST',COND=(0,LT,C),REGION=120K

//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

//SYSLIN DD DSN=*.C.SYSGO,DISP= (OLD,DELETE)

//SYSPRINT DD SYSOUT=§SOUT, DCB= (LRECL=121,RECFM=FBA ,BLKSIZE=605),
// SPACE= (121, (100,100), RLSE)

//SYSLMOD DD DSN=IMSVS.PSBLIB (EMBR) ,DISP=SHR

//SYSUT1 DD UNIT= (SYSDA,SEP=(SYSLMOD,SYSLIN)) ,DISP=(,DELETE),

// SPACE=(1024, (100,10),RLSE)

1.28 IMS/VS System Programming Reference Manual

r

&

(D

Member Name SECURITY

// PROC OPT N=UPDATE,IMS=',0"', SOUT=A

//8 EXEC PGM=DFSISMPO, PARM=' EOPTN.&EIMS. "

//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

//SYSPRINT DD SYSOoUT=6S0UT,DCB= (RECFM=VBA,BLKSIZE=400, BUFL=404)
//SYSPUNCH DD ONIT=SYSDA,SPACE= (80, (800,400),,,ROUND),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400) ,DISP=(,PASS)
//SYSLIN DD UNIT=SYSDRA,SPACE=(TRK,(1,1)),DCB= (RECFM=F,BLKSIZE=80),
// DISP=(,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE= (100, (400,400),,,ROUND),

// DCB=(BLKSIZE=500, RECFM= FB)

//SYSUT2 DD UNIT= (SYSDA,SEP=SYSUT1),SPACE=(100, (400,400),,,ROUND),
// DCB=%,S.SYSUT1

//SYSIN DD DSN=NO.SYSIN.DD.ASTERISK

//C EXEC PGM=IFOX00,PARM='0BJ, NODECK',COND=(12,LT,S) ,REGION=128K
//SYSPRINT DD SYSOUT=6SOUT, DCB=BLKSIZE=1089

//SYSGD DD UNIT= (SYSDA,SEP=SYSPRINT) ,DISP=(,PASS),

// DCB=*_,S,SYSPUNCH,SPACE= (80, (400,400),,,ROUND)

//SYSUT1T DD UNIT=SYSDA,SPACE=(CYL, (5, 1))

//SYSUT2 DD UNIT=SYSDA,SPACE= (CYL, (5,1))

//SYSUT3 DD UNIT= (SYSDA,SEP=(SYSUT1,SYSUT2)),SPATE=(CYL,(5,1))
//SYSIN DD DSN=*.S.SYSPUNCH,DISP=(OLD,DELETE)

//L EXEC PGM=DFSILNKO, PARM='LIST,NE,OL',RFGION=110K,COND=(4,LT,S)
//STEPLIB DD DSN=IMSVS.RESLIB, DI SP=SHR

//SYSPRINT DD SYSOUT=§SOUT,DCB= (RECFM=FBA,LRECL=121, BLKS IZE=605)
//SYSLMOD DD DSN=IMSVS.RESLIB, DISP=SHR

//INPUT DD DSN=*.C.SYSGO,DISP= (OLD,DELETE)

//SYSUT1 DD UNIT= (SYSDA,SEP=INPUT),SPACE= (CYL, (5, 1))

//SYSLIN DD DSN=*.S.SYSLIN,DISP=(OLD, DELETE)

DL/I INTERFACES

LTBRARY RESLIB (CBLTDLI) DL/I INTERFACE
ENTRY DLITCBL

Member Name PLITDLI

LIBRARY RESLIB (PLITDLI) DL/I LANGUAGE INTERFACE
ENTRY IHESAPD

The IMS/VS Procedure Library 1.29

s

CHAPTER 2. SYSTEM MAINTENANCE/TUNING FACILITIES

DL/I DATA BASE BUFFERING FACILITIES

The INS/VS DL/I buffering services are controlled by three pools of
control blocks and buffers; the ISAM/JSAM buffer pool, the VSAM shared
resource pool, and the DL/TI buffer handler pool. This section describes
tha2 structure, contert, and use of these pools by DL/I.

The DL/I buffering services are the interface between the DL/I action
modules (for example, Retrieve, Delete, Insert) and the data management
access methods (VSAM, ISAM, and OSAM). Whenever an action module needs
to inspect or change data in a data base, buffering services is called
to perform whatever physical reading or writing is required. 1A separate
pool of buffers is allocated for each type of data base; VSAM and
ISAM/0SAM. Data bases that use the VSAM access method share the ase
of buffers in the VYSAM shared resource pool. Data bases that use the
ISAM or DJSAM access methods share the use of buffers in the ISAM/0SAM
buffer pool.

Implementing the concept of a buffer pool allows blocks of data to
remain in main storage as long as possible to avoid secondary storage
reads and writes. Data in a buffer pool can be accessed and updated
without causing I/0 as long as therz is no need to reuse the buffer
space the data occupies. A use chain determines the order in which
the buffers are used. Empty buffers are placed at the bottom of the
us2 chain and are always available for reuse. As buffers are accessed
they are placed at the top of the use chain. When a retrieve request
occurs, the buffer pool is searched using the use chain, to detszrmine
if the requested data is already in main storage. If the data is not
found, the least recently used buffer (bottom of the use chain) is
selected, the o0ld data is written out if it has been changed, and the
requested data is read into the selected buffer.

If an I/0 error occurs while attempting to write a buffer of data,
the buffer is marked as a permanent write error buffer and retained in
ths pool. WNo error indication is returned on the request that
encountered the error, but an I/0 error messagqe is written to the
operator, an error log record is recorded on the IMS/VS log data set,
and the data base is stopped to prevent scheduling of additional
transactions that use the data base. When all applications that use
the data base have completed processing, the data buffer is marked as
a2mpty and made available for reuse. This error philosophy allows the
application program to complete even though an I/O errcor has occurred.
Whenaver an 1/0 error occurs, the IMS/VS Data Base Recovery Utility
program should be used to re-create the data base that was damaged.

IMS/VS maintains statistics on buffer pool utilization and access
method requests. These statistics are of value for determining the
optimum buffer pool definition for a given application. The DL/I
statistics call (STAT) can be used to obtain these statistics in an

for a description of the STAT call).

ISAM/0SAM BUFFER POOL

The ISAM/OSAM buffer pool is used to buffer data for data bases that
use the ISAM or OSAM access methods. It is made up of a pool prefix
(BFPL), which contains pool statistics and the use chain top and bottom
pointers, and one or more variable length buffers. Each buffer is

System Maintenance/Tuning Facilities 2.1

precsd=2d by a buffer prefix (BFPR) which describes the size of the
buffer, its status, and position on the use chain.

Buffer management and selection is controlled primarily by the use
chain which logically orders the buffers. When space is needed in the
pool to read in additional data or create a new block, the buffer at
the bottom of the use chain is the prime candidate. If this buffer is
not large enough to satisfy the request, then several bauaffers are
selected and the remaining buffers are compressed to free enough
contigquous space to accommodate the new buffer. The least recently
used buffers, which when combined will satisfy the space requirsment,
are selected to be eliminated from the pool. If data has been changed
in any of the selected buffers, they must be written back to external
storage before they can be eliminated.

A buffer cannot be moved while it is busy with I/0. Therefore, the
compression process may have to wait for I/O to complete before moving
a buffer. The free space created by compressing the buffers is used
to create a new buffer. If the fres space is larger than the baffer
space reguested, the difference is compared to minimum buffer size,
and an additional new buffer is created if the difference is greater
than the minimum for one. Otherwise, the entire free space is used to
create a single buffer to satisfy the request.

Fixed Length Buffers

In an environment where the block sizes of all DL/I data sets are
approximately equal, it may be desirable to minimize the compression
activity of the buffer handler. This can be accomplished by using the
BFPLBFSZ parameter of the OPTIONS statement to specify the minimunm
buffer size to be allowed in the pool. See %“Defining the IMS/VS VSAM
Buffer Pool" in the IMS/VS Installation Guide for an explanation of
the OPTIONS statement and the buffer pool initialjization data s=t.
Specifying a minimum buffer size of x causes all buffers in the pool
to be either x or a multiple of x bytes long.

Note: The user is cautioned that the specification o0f a minimum buffer
size other than the default can degrade performance if the value is
inappropriate or if the environment does not lend itself to fixed size
buffers.

VSAM SHARED RESOURCE POOL

The VSAM shared resource pool is used to buffer data for data bases
that use the VSAM access method. It is constructed by VSAM based on
parameters provided by the VSAM BLDVRP macro instruction issued by
IMS/VS initialization. It contains buffers to be used for VSAM data
sets (both index and data components) and the input/output-related
control blocks necessary to perform VSAM requests. The buffers are
combined in subpools. All buffers within a subpool are of egqual length.

Buffer management and selection are controlled primarily by the use
chain which logically orders the VSAM BUFC blocks. Since buffers within
a subpool are fixed in length, no compression or movement of buffers
is necessary.

2§A§-Ba¢kground<Write

Fhen the VSAM Buffer Manager needs space in a subpool to read a
record or create a new block, it selects the buffer at the bottom of
the use chain to satisfy the requirement. If the buffer selected
contains data that has been modified, it must be written before the

2.2 INS/VS System Programming Reference Manual

(

7

space can be used for the requested function. The purpose of Backgrouni
Write (BGWRT) is to reduce the number of times the buffer manager
selects a modified buffer.

Each time the buffer manager obtains space in a subpool it examines
the next higher buffer on the use chain. If the contents of that buffer
are modified, a return code is passed in the RPL to INS/VS. This return
code tells IMS/VS buffering services to activate (POST) the Background
Write PST, and through normal IMS/VS scheduling BGWRT is dispatched.
Background Write issues the VSAM WRTBFR TYPE=LRU macro which causes a
percentage 2f the buffers at the bottom of the use chain in each subpool
to be written out (if modified). In this manner, the data in the
subpools which has not been used recently is written out before the
buffer manager reguires the space it occupies. This does not prevent
reuse of data in the buffers. If a subseqguent request requires the
data before the buffer manager needs that space in the subpool, the
data is used to satisfy the request, and the buffer is put on the top
of the use chain.

The use of Background Write is determined by the OPTIONS statement
in the IMNS/VS VSAM buffer pool parameter data set (DFSVSAMP). See
"Defining the IMS/VS VSAM Buffer Pool" in the IMS/VS Installation Guide
for an explanation of the OPTIONS statement.

DL/I BUFFER HANDLER POOL

The buffer handler pool is the focal point for recording buffering
services activity. The pool prefix (BFSP) contains pointers to the
other elements of the pool, indicator flags, and some statistics. If
VSAM data bases are used, a subpool statistics block (BFUS) exists for
each VSAM buffer subpool defined. The subpool statistics block contains
statistics on buffering services and VSAM request activity relevant to
the associated subpool.

A chain of RPL blocks (RPLI) is present if VSAM data bases are used.
An RPL block is associated with each request made to VSAM. There is
one RPL block for each PST and one for each sequential mode data base.
An RPL block contains an error message area, an area to record RBA
shift information, and a VSAM Request Parameter List (RPL) control
block.

The last element of the buffer handler pool is the DL/I trace table.
The trace table is a revolving trace of DL/I activity. It records
calls to buffering services, open and close of data bases, and Program
Isolation enqueues and dequeues.

The exact format of the control blocks and pools discussed in this

3.

LOG TAPE WRITE-AHEAD

On systems in which power failure may cause main storage contents
to be lost, the IMS/VS System Log Terminator utility cannot recover
the data in the log buffers that were in main storage but had not been
written at the time of failure. The log tape write-ahead option is
provided to ensure that a data base log record for a data change is
written to the log device before the changed data is written to the
data base. This ensures that any change made to a data base is
physically recorded on the log tape before the data base is changed.

Data bases in a batch (DLI or DBB) ragion which use one PCB only
are accessed using QISAM instead of the normal BISAM. Since INS/VS

System Maintenance/Tuning Facilities 2.3

cannot predict when QISAM buffers are written, the log tape write-ahead
option does not apply to these data bases. If log write-ahead is
desired on a QISAM mode data base, an additional PCB for the data base
may be added to the PSB to force BISAM mode.

Use of this option degrades system performance. The impact is system
and application dependent. Some variables affecting the impact are
log buffer size, number of log buffers, data base buffer pool size,
and frequency of sync points.

The log tape write-ahead option is activated with the OPTIONS
statement in the buffer pool initialization data set; see "Defining
the IMS/VS VSAM Buffer Pool"™ in the IMS/VS Installation Guide for a
description of the OPTIONS statement.

INS/VS COMMAND LANGUAGE MODIFICATION FACILITY.

This section explains the modification of the command keyword table.
Refer to the "IMS/VS Commands" chapter in the IMS/VS Operator's:
Reference Manual for a complete explanation of the INS/VS conmand
language.

COMMAND KEYWORD TABLE

DFSCKWDO, a member of IMSVS.DCSOURCE, should be printed to obtain
a listing of the command keyword table. It contains the IMS/VS keywords
and synonyms described in the IMS/VS Operator's Reference Manual.

There can be several reasons for altering the keyword table. For
example, an installation may want to tailor. the keywords and synonyms
to satisfy unique requirements. Or, a new keyword in a new IMS/VS
release could conflict with a name already assigned by the installation
to an LTERM or TRANSACTION.

CHANGING THE TABLE

Two of the macro statements that appear in the table, KEYWD and SYN,
can be replaced to modify the keywords and synonyms. One way of
modifying the table is:

1. Punch DFSCKWDO into cards

2. Prepare new KEYWD and SYN macro statements

3. Replace the KEYWD and SYN statements to be changed
4. Reassemble the module

5. PRelink the reassembled module into RESLIB

6. Relink the IMS/VS nucleus

KEYVD macro statements must be substituted one-for-one in the table.
No new KEYWD macro statements can be added.

KEYHD Macro

KEYWD keyword,LAST=NO|YES
¥here 'keyword' is the new keyword desired. LAST=N) is the default
and need not be supplied. LAST=YES must be specified if it is the last

macro call in the module. A keyword cannot exceed 12 characters in
length.

2.4 IMS/VS System Programming Reference Manual

TN

SYN synonym,LAST=YES| NO

Where 'synonyn' is the desired synonym. LAST=NO is the default and
—— need not be specified. LAST=YES must be coded if this is the last
macro call in the assembly. Synonyms cannot exceed 12 characters in
length; they must be defined under the keyword to which they apply.

ERROR MESSAGES

Any error in a macro statement will terminate keyword table assembly
and cause an error message. The remaining macro statments will be
error checked but nothing will be generated. All macro assembly errors
are severity code 16 errors.

KRYBILON1 - SEQUENCE ERROR. XXX CANNOT FOLLOW IKEY
A macro was called which cannot immediately follow an IKEY macro
call. XXX is either IKEY or SYN. TIKEY calls cannot be modified.

KYTBLOC2 - XXX CALLED WITHOUT ANY PARAMETER
A macro was called without any parameter. XXX is either IKEY,
KEY¥D or SYN.

KYTBLOC3 - XXX IS NOT A VALID INTERNAL KEYWORD
The parameter specified on an IKEY call (XXX) is not known to
the system. IKEY calls cannot be modified.

KYTBLOOG4 - KEYWORD TABLE ASSEMBLY TERMINATED
This message appears as a comment after the first error message
in a keyword table assembly. All following macro calls will
only perform error checking. No code will be generated.

KYTBLOO0S - SEQUENCE ERROR. KEYWD MUST FOLLOW AN IKEY CALL
NG A KEYWD macro was called which does not immediately follow an
IKEY call.

KYTBL006 - LENGTH ERROR. XXX TOO LONG
The parameter specified on a KEYWD or SYN macro is .more than 12
characters in length.

KYTBLO0O7 - INTERNAL KEYWORD 'XXX' HAS NOT BEEN USED
LAST=YES was specified on either a KEYWD or SYN macro call but
not all internal keywords known to the system have been
generated. IKEY calls cannot be modified. LAST=YES must appear
only on the last macro call in the assembly.

KYTBLOO8 - XXX CANNOT BE SPECIFIED AGAIN
Internal keyword 'XXX' has already been used. IKEY macro calls
cannot be modified.

Note: Message DFS058 COMMAND COMPLETED EXCEPT XXX Y Z... uses the
keyword table to replace 'xxx' with the keyword associated with the
command that caused the message. Therefore, keywords defined by KEYWD
macro calls will appear in this message. Other messages, however, are
pre-built, and keywords which may have changed will still appear in
these. ‘

System Maintenance/Tuning Facilities 2.5

r'/—. =

7N

This chapter describes the exits that IMS/VS provides to allow the
use of internally generated data, or to allow users to incorporate
processing extensions of their own. It provides some rules for writing
exit routines and explains user generation of randomizing modules for
use with HDAM file organizations. It also discusses user generation
of segment edit/compression routines, user secondary index maintenance
routines, and the IMS/VS log tape record format.

The INSVS.DBSOURCE library contains the source for all sample and

supplied exit routines described in this chapter, and should be referrei
to for the latest versions.

WRITING DL/I EXIT ROUTINES.

Routines described in this chapter or written by users must be
reenterable for the following reasons:

e TMS/VS loads the routine each time a request for it is encounteread.

e The same edit/compression routine is used concurrently for different
segment types (even if they are in the same data base).

e The same index maintenance routine is used concurrently for
different segment types.

¢ The same randomizing routine is used concurrently for different
data bases.

ACCESSING MAIN STORAGE

In the MVS online environment with parallel DL/I, all DL/I progranms,
control blocks, and work areas must be globally addressable. This
includes user exits. To ensure this, IMS/VS manages the common service
area (CSA) with the IMS/VS IMODULE function. All user written exit
routines that load modules and/or access main storage in the MVS online
environment must do so by using the IMS/VS IMODULE function,

ISWITCH Macro.

A1l calls for CSA to IMDOULE must be issued from the IMS/VS control
region. The ISWITCH macro switches IMS/VS execution from a dependent
region to the control region. The exit routine that issues ISWITCH
must be running under the IMS/VS dispatcher and must provide ‘
addressability to SCD and PST. The address of the SCD can be obtained
from the PST field PSTSCDAD. An example of the use of the ISWITCH
macro is:

MVI PSTDECB, X' 00" Clear ECB.

ISWITCH TO=CTL, ECB=PSTDECB

LTR 15,15 Successful?

BNZ NOSWT No, CTL region might be abending.

DL/I User Exit Routines 3.1

IMODULE Macro

The IMODULE macro provides functions equivalent to the 0S LOAD,
GETMAIN, FREEMAIN, and DELETE macros. For CSA, subpool 231 should be
used. If the IMODULE macro is issued while IMS/VS is executing in a
dependent region, subpool 251 (local space) is used in place of 231.
IMODULE is a Type 4 SVC and so should be used only when necessary.

To Load a Module -into CSA

To use IMODULE to load a module into CSA, the user exit routine must
have issued ISWITCH and must provide addressability to SCD. The address
of the SCD can be obtained from the PST field PSTSCDAD. An example of
this use of IMODULE is:

IMODULE LOAD, FPLOC=NAME, SP=231
LTR 15,15 Dkay?
BNZ LOADFATIL No.

* Reg. 1 contains EP
Load 1list.
NAME DC ClL8'module name!

)z

ote: If a previously LOADed or GETMAINed module is not to be used,
dd ‘

the parameter USE=NO to the IMODULE macro.

13
o

Get Storage-from CSA

To use IMODULE to get storage from CSA, the user exit routine must
have issued ISWITCH and must provide addressability to SCD. The address
of the SCD can be obtained from the PST field PSTSCDAD. An example of
this use of IMODULE is:

- IMODULE GETMAIN,EPLOC=NAME,LV=(1) ,SP=231
LTR 15,15 Okay?
BNZ GETFAILD No.
* Reg. 1 contains GETMAINed block address. }
Load list.
NAME DC ClL8'module name!

Note: 1LV= specifies the register containing the length for the GETMAIN.

3.2 IMS/VS System Programming Reference Manual

7

To Delete a Module from CSA

To use IMODULE to delete a module from CSA, the user exit roatine
must have issued ISWITCH and must provide addressability to SCD. The
address of the SCD can be obtained from the PST field PSTSCDAD. 1A
module can be deleted either by name or by entry point. An example of
each of these uses of IMODULE follows:

e By name
IMODULE DELETE ,EPLOC=NAME,SP=231
LTR 15,15 Okay?
BNZ DELFAILD No.

e By entry point
IMODULE DELETE, EPAD=(1),SP=231
LTR 15,15 Okay?
BNZ DELFAILD No.

Note: ©EPAD= specifies the register containing the register 1 value
returned by a previous IMODULE LOAD or IMODULE GETHMAIN.

e mme-

The IMS/VS Edit/Compression Exit provides a facility for invoking
user-written routines to edit a segment during its movement between
the data base buffer pool and the input/output area of the application
program. Design and implementation of this facility are also discussed
in the IMS/VS System/Application-Design Guide and the IMS/VS- Utilities
Reference Manual.

The exit provides the facility to encode and decodz data for security
purposes, invoking routines privately generated and controlled by the
user.

Other ways to use the exit are for data validation purposes and for
data formatting. One example of data formatting is compressing segments
to save direct access space, and then to expand them to their original
size when they are brought back to main storage for processing.

User installations that invoke the Edit/Compression Exit are given
access to the IMS/VS buffer pool. The Edit/Compression routines should
be implemented by those having overall systems and/or data base
responsibility for an installation. They should be transparent to the
application programs that access those data bases.

The following text provides a general description and overview, and
then a specific discussion of the following:

e Types of segments that can be edited or compréssed

e Types of compression that can be applied

e SEGM control statement requirements for DBD-generation, including
a description of the Segment Edit/Compression Table appended to
the DBD control block

e Interfaces presented by affected DL/I modules to the user
edit/compression routine

DL/I User Exit Routines 3.3

These discussions are followed by detailed specifications of the
following:

e Parameters passed by DL/I to the user routine

e Entry codes presented to the user routine

{

e Conversion of existing data bases

The section concludes with a discussion of performance
considerations.

GENERAL DESCRIPTION AND OVERVIEW

The user edit/compression routine moves the segment, in either fixed-
or variable-length format, from the source address to the destination
address, performing the edit or the compression/expansion during the
move operation. On a retrieve operation, the IMS/VS buffer pool is
the source; on load, insert, or replace operations the application
program I/0 area is the source. For all operations, the destination
address is an SWA (segment work area). This SWA is dsscribed in greater
detail later in this section, and also in the discussions on the

As a segment is requested by the user, its location in the baffer
pool is obtained. If an edit/compression routine has been specified,
the address of the data portion of the segment and the start of the
SWA are supplied, and the routine is given control.

The edit/compression routine is responsible for moving the data from
the buffer pool to the SWA, with the proper editing or expansion, and
appropriate update to the segment length field. If no edit/compression
routine is specified, this intermediate operation is not regquired. '

For insert or replace operations, data is moved from the user work
area to the SWA by the user edit/compression routine, then to the buffer
pool by IMS/VS. These actions are summarized in Fiqure 3-1. 1A more
detailed description is provided later in this section.

N

3.4 IMS/VS System Programming Reference Manual

Retrieve Load/lInsert/Replace
£
o
j=d
Input &.q Output
- area \' c area (source)
- S r-
-~ ™ v 1
a
[=%
<
ImMS ~ ::cj)sjtrine
Edit

Segment work
area

VS,
-
\s}_LL User data
=T
User

routine

Buffer pool

routine

Contro! Program

Segment work

area y
\\\\\\‘ Edited

LL user data

IMS/VS

Buffer pool

N\

.

Edited

Edited

LL user data

/ LL user data

Source

Figure 3-1. Segment Edit/Compression

N Although the segments
the application program,
edit/compression routine
data length is contained
segment. If the segment

can be defined as fixed or variable length to
the segments to be processed by the

must be variable length in the data base. The
in a field in the first two bytes of the

is defined as fixed-length to the application

program, the length bytes must be stripped off by the edit/compression
routine before the segment is presented to the application program.

In addition, if the segment was compressed, it must be expanded by the
23it routine to the fixed length expected by the application program.

In reverse, if the application program presents a fixed length segment,
the edit/compression roatine must append the length bytes prior to the
segment being written to the data base. If the edit/compression routine
compresses the segment, the length field must be updated to reflect

the correct length.

Oser Capabilities

The facility provided
do the following:

by DL/I permits the user-provided routine to

e Fdit or compress both fixed- anil variable-length segments.

e Accomplish either data edit/compression or key edit/compression.

e Apply the same routine to multiple segment types within the same
or different data bases.

} The logic for data encoding/decoding, or for other desired editing
<;/‘ or formatting can be based on information contained within the

DL/I User Exit Routines 3.5

user-written routine itself. It also can be based on information from
an external source, such as data provid=sd in the DBD block, or tables
axamined at execution time.

—
Us=sr Constraints N
General constraints that apply to using the IMS/VS edit/compression
facility are:
e Any seqment specified as subject to editing or compression must
reside in a VSAM data set.
e 311 editing or compression of sagments takes place as the segments
are described in a physical data base only. See "Types of
Compression" later in this chapter for further specific
restrictions.
e The user routine must reside in IMSVS.RESLIB, SYS1.LINKLIB, or any
properly defined private library. When the routine is link-edited
to one 5f these libraries, the user must specify one routins sntry
point.
e If the user routine is designed to 2dit or compress more than one
segment type, in one or more physical data bases, the routine nust
be coded and link-edited as reenterable. .
. Adequatevstorage for the edit/compression routine must be provided
- for both batch and on-line systems.
e Since this routine becomes a part of the IMS/VS control or batch
region, any abnormal termlnatlon on its part terminates the entire
INS/VS region.
e The user routine cannot use the operating system macros LOAD, 2
GETMAIN, SPIE, or STAE. N

User- Procedures
To take advantage of the IMS/VS edit/compression exit, the user must
o0 two things:

e Expand the DBD control statement SEGHM.
e Provide an edit/compression routine.

Details on the necessary procedures in each of these areas, and on
the manner in which DL/I interfaces to the user routine follow.

TYPES OF SEGMENTS

Two types of segments can be presented to the edit/compression
routine: fixed length segments, whose data length is static ani is
reflected in control blocks; and variable length segments, whose data
length is contained within a field in the first two bytes of the segment
itself. While a routine dealing with a single-segment type normally
need not concern itself with the differences, a more general purpose
module involved with multiple segment types can obtain sufficient
information to differentiate between them. This is done by examining
data provided in the segment compression control section.

3.6 IMNS/VS System Programming Reference Manual

TYPES OF EDIT/COMPRESSION

Two types of segment manipulation are possible through the DL/I
2dit/compression facility.

e Data compression -- movement or compression of data within a3
segment, in a manner that does not alter the content or position
of the key field. Typically, this involves compression of data
from the end of the key field to the end of the segment. Note that
when a fixed length format segment is compressed, a two-byte size
field must be added to the beginning of the data portion of the
segment. This is done by the user data compression routine used
by IMS/VS to determine secondary storage requirements. This is
the only time that the location of the fields can be altered. The
segment size field of a variable length segment cannot be
compressed.

segment, in a manner that can change the relative position, wvalue,
or length of the sequence field as well as any other fields.

Segments in a physical data base, except those types listed below,
can be specified during DBDGEN as being compressible, with either the
KEY or DATA option.

e Any segment which is defined as a logical child cannot be specified.
o Segments residing in an INDEX data base cannot be specified.

o Segyments defined as root segments of a HISAM data base can be
specified for DATA compression only.

Although the contents of the sequence field, or the data, can be
modified by the edit/compression routine, the segment's position in
the data base is determined by the original sequence field value. An
example may help to explain this. If the defined sequence of a
particular segment type is based on last names; and the data base
contains segments for people named SMITH, JONES, and BROWN; the segments
ar2 maintained in alphabetical sequence -- BROWN, JONES, SMITH. Assume
that an edit routine encodes these names as follows:

BROWN-==-===== >29665
JONES ======—= >16552
SHMITH-=====~- >24938

The encoded value is placed in the saquence field. The segments
are maintained in the original sequence (BROWN, JONES, SMITH), rather
than in the numerical sequence implied by the encoded values (16552,
24938, 29665). The records are maintained in the originally defined
sequence so that a GET NEXT request issued by the application program
retrieves the correct segment.

DL/I User Exit Routines 3.7

DBD CONTROL STATEMENT SEGM

To use the edit/compression facility, the user must extend the SEGHNM
control statement in the following manrner:

SEGM NAME=seg~name.

'~ [DATA :
. COMPRTN=\routine-nane ¢ | KEY DINIﬂ

COMPRTN=
specifies that you want the segment edit/compression option.
This operand must not be specified if the SOURCE operand is
used. The COMPRTN operand is invalid in the DBDSEN operation
for INDEX, and for simple HISAM DBDs. Tt must not change the
sequence field offset for HISAM root segments. Segments
specifying the COMPRTN parameter must reside in a VSAM data set.

routine-name
specifies the name of the user-supplied routine used to edit or
compress this segment. This name must be a one- to
eight-character alphameric value. It cannot be the same as any
other name in IMSVS.RESLIB.

DATA
specifies that the indicated routine will edit or compress data
fields only. Sequence fields are not modified; nor will data
fields that change the position of the sequence field, in respect
to the start of the segment, be modified. DATA is the default
when an edit/compression routine is named but no option is
selected.

KEY [
specifies that the indicated edit/compression routine can
condense or modify any or all fields within the named segment.
This parameter ‘is invalid for the root segment of a HYSAM data
base.

-

INIT
specifies that initialization and termination processing control
is required by the segment edit/compression routine. If this
parameter is present, the edit/compression routine is given
control at open and close time for that data base.

To assist the user in providing parameters to his edit/compression
routine, the DBD control block has a table, in the form of assembly
language control sections, appended to it. One control section is
developed for each segment type to be edited or compressed. Each
control section has a CSECT name equal to that of the segment name.

These control sections are placed at the end of the DBD module.
They contain information such as the segment edit/compression routine
name, the name of segment, and the total length of that control section.
Each control section can be extended to contain any desired data or
algorithm information. An example of a sample segment control section
is shown in Fiqure 3-2.

3.8 IMS/VS System Programming Reference Manual

Segment

Name

Edit/Compression Routine

Name

Entry Point Address

Flag Sequence Sequence Field
Byte Field Executable Offset

Length
Segment Length/maxlength CSECT Length

User-defined Parameters

Figure 3~2. Segment Edit/Compression Control Section (S EGPAC)

Information in the various fields shown in Figure 3-2 is as follows:

DMBCPAC DSECT

DMBCPCNM DS Ccl8 Segment name

DMBCPCSG DS C18 Edit/Compression routine name

DMBCPEP DS A Entry point address

DMBCPFLG DS X11 Flaag byte

DMBCPKFY EQU X102y Seqment has key compression option

DMBCPNIT EQU Xt01? Initialization processing is
required

DMBCPVLR EQU Xronre Segment is variable length

DMBCPSEQ EQU xvo8e Segment has key sequence field
defined

DMBCPSQF DS XL1 Executable length of sequence field,
if defined

DMBCPSQF DS H Sequence field offset

DMBCPSGL DS H For fixed length segments - segment

length; for variable length
segments - maximum length
DMBCPLNG DS H Total length of CSECT; fixed
length plus length of user-defined
parameters (always a multiple of 8)
DMBCPUSR DS oD Any quantity of user-dz2fined data

DL/I User Exit Routines 3.9

The first 28 bytes are constants defined by DBDGEN. When the new
table is defined to include additional parameters, these fields must
be duplicated. The only exception to this rule is that the CSECT length
field must be updated to reflect the new length. After an assembly of
the new table, a link-edit is done to exchange the new table for the
old one. User-added code should not contain address constants, because
this CSECT is moved after it is loaded. Care must be taken to use an
ENTRY statement specifying the name of the DBD when this operation

takes place. See "Automatic CSECT Replacement" in 0S/370 Linkage-Editor-

and Loader for additional details.
DL/I MODULE INTERFACES

Initialization
When the IMS/VS system is initialized prior to running an
application, DL/I takes the following action.

e The INS Block Builder module (DFSDLBLO) checks whether a user
segment edit/compression routine has been specified for a data
base. If it has, an SWA large enough to contain the largest
expanded segment is constructed, and the address is placed in the
PSB prefix.

*» Each time the IMS/VS Open/Close module (DFSDLOCO) opens a physical
data base, it examines each segment description to see if
edit/compression has been specified for that segment type. If it
has OPEN/CLOSE, it loads the user routine in the same manner that
a HDAM randomizing module is loaded. The address of the user
routine is placed in the appropriate seqment edit/compression
control section of the Data Management Rlock. TIf a user
edit/compression routine is designed to handle more than one segment
type, the routine must be link-edited as reenterable,

When the application program is activated and begins accessing
segments, the DL/I action modules interface with the user
edit/compression routine as described below. In all cases, the DL/I
modules pass an entry code (described in "Parameters Passed by DL/I"
and "Edit/Compression Routine Entry Codes" later in this chapter) to
the edit/compression routine. The user‘'s edit/compression routine must
examine this entry code to determine the function to be performed.

Load/Insert (DFSDDLEQ): As each segment is being processed for a load
operation, the associated descriptive blocks (PSDBs) are checked to
see if it is a candidate for edit/compression. If so, control is
transferred to the associated user edit/compression routine. The
following parameters are passed to this routine.

¢ Source address of the start of the segment in the user input/output
area

e Destination address of the start of the segment work area (SWA)

e Information address of control blocks containing sufficient data
for the edit/compression routine to properly perform its function

e Return address after edit or compression has been accomplished

3.10 IMS/VS System Programming Reference Manual

)

The length of the segment to be moved is provided in one of tvo
places. If the segment length was specified as fixed (relative to the
user input/output area), but to be modified by an edit/compression
routine, the source length is reflected in the segment descriptive
block. TIf the segment is deofined as variable in length and is to be
modified by an edit/compression routine, the source length is provided
as a binary value in the first two bytes at the source address. In
either case, the move operation provided by the edit/compression routine
must result in a two-byte length field, followed by the corresponding
quantity of data in the segment work area. Load/Insert compares this
two-byte length field with the min-value, if specified. The larger of
these two values determines the direct access space requirements for
this segment. Load/Insert also compares the two-byte length field with
the max-value to verify that the segment does not exceed the maximum
length. The length field for a fixed length compressed segment cannot
exceed the defined segment length plus 10 bytes.

For a seqment insert operation, the action is similar to that of
segment load. Edit/Compression, if required, is performed with the
segment work area (SWA) as the destination address. The length of the
segment in this staging area, or the min-byte value, is used to
d=2termine the necessary secondary storage requirements.

Delete/Replace (DFSDLDO00): If the segment length changes in an HS
environment, the necessary shifting of segments to compensate for the
new length occurs. If segment length changes in an HD environment, an
effort is made to position the seqment data as close as possible to

the segment prefix. In both cases, the min-byte value must be properly
observed.

Retrieve (DFSDLROO): Several alternatives exist for segment movement:
e ITf a segment is defined by the user as variable in length, and no
edit/compression routine is specified, IMS/VS moves the segment
directly from the buffer pool to the application program I/O area,

by-passing the segment work area (SWA).

e ITf a segment is defined as variable in length, and an
edit/compression routine is specified, the segment is moved from
the buffer pool to the segment work area by the specified routine.
The segment length is updated to reflect the expansion. The segment
can now be moved on to the user.

e If a segment is defined as fixed in length, and an edit/compression
routine is specified, the segment is moved from the buffer pool to
the segment work area by the appropriate routine. However, since
the two-byte segment length field is used only for the disk format,
the user edit/compression routine must strip the two-byte length
field while moving the segment to the SWA.

e All segment edit and compression takes place on a segment as it
relates to its physical description. Therefore, any segment or
seqments involved in logical relationships must be properly expanded
before Retrieve builds the logical image that is to be placed into
the application program input/output area.

Segment movement out of the application program input/output area
(Iod) follows one of two patterns. If the segment is eligible for
edit/compression, it proceeds through an intermediate staqging operation
into the segment work area (SWA). If it is ineligible for
edit/compression, staging to determine the edited or compressed length
is not necessary. In this case, the length specified in the IOA is
used to determine buffer space requiremsnts. Segment movement during
the retrieval operation is usually from the buffer, through the
edit/compression routine to the SWAR, and then on to the input/output

DL/I User Exit Routines 3.11

area. However, if the user has requested a retrieval based upon the
contents of a field in the compressed area of a segment, any segment
that might qualify must first be expand=2d in the SWA for examination.
Only the gualified segment is then moved into the I/0 area.

The edit/compression routine obtains control from the appropriate
action module. It is presented with both a source and destination
address, as well as the address of the segment descriptive blocks. 1Its
responsibility is to move the segment from the source area into the
Jestination area, performing the desired operation, and updating the
segment length field to reflect this operation.

The following summary represents the operation by module and
function.

Module: Load/Insert

Edit/Compression

Function: Load {
r= ===y ==]
| (| |

Segment movement: I0A SWA Buffer Pool
| |
| 3

No Edit/Compression

Load/Insert uses the min-byte value (if provided), or specified
length, whichever is greater, for segment length.

Edit/Compression
Function: Insert |
‘ e l-—-— v o= 1
| [] {
Segment movement: I0A SW2 Buffer Pool
L |
Lo cm e e — - 4

No Edit/Compression

Load/Insert uses the min-byte value (if provided) or specified
length, whichever is greater. In HS, load/Insert moves all the
following segments to the right, creating a new block if necessary.

3.12 IMS/VS System Programming Reference Manual

(’\\

HModule: Delete/Replace
Function: Delete
Segment movement: None.
In HD, Delete/Replace frees the space the segment previously
occupied.

Punction: Replace

Edit/Compression

r""""‘ =TT T TETEET 1

| (I |
Segment movement: Ioa SWA Buf

| |

e cmcccccc e ce- K]

No Edit/Compression

In HS:

e Tf the new segment is shorter than the o0ld segment, Delete/Replace
overlays the o0ld data with new data, and moves the following
segments, if any, to the left, observing the min-bytes parameter
if specified.

e If the new data is of equal length to the old data, replace old
data with new.

e If the new data is longer than the old data, Delete/Replace moves
the following segments, if any, and inserts the new data. This
operation requires a call to the Load/Insert module since the data
shift may require the allocation of new OSAM blocks.

In HD,

e If the new data is shorter than the old data, and if the pr=fix
and data are together, the new sequent is moved in and the excess
space is freed, after checking the min-byte value. If the prefix
and data are separate, space is obtained as close to the prefix as
possible, the new data is moved in, and the previously occupied
space is freed.

e If the new data is eqgual in length to the old data, the old data
is replaced by the new data in a one-for-one manner. ‘

e If the new data is longer than the old data, space is obtained as

close to the prefix as possible. New data is inserted in the new
space. The old data space is freed.

DL/TI User Exit Routines 3.13

Expand

Nodyle: Retrieve oo m-—- I f===f====
| 1o !
Segment movement: IoA SWA Buf
l {
Ll cvancccma om e - J4
No Expand

For retrieval of segments, expansion occurs in the segment work
area. If examination of compressed fields for segment qualification
is required, a staging operation in the segment work area is
necessary to analyze each candidate.

PARAMETERS PASSED BY DL/I

DL/I provides the following information to the user's
edit/compression routine when a seqment is to be processed:

e Register 1 contains the address of the Partition Specification
Table (PST).

® Register 2 contains the address of the first byte of the segment
to be processed (source address).

e Register 3 contains the address of the first byte of the work area
into which the segment is to be moved (destination address).

e Register U contains the address of the Physical Segment Description
Block (PSDB). From this block, the Field Description Blocks (FDB)
can be located, as required.

e Register 5 contains the address of the segment edit/compression
control section.

e Register 6 contains the entry code (described below).

e Register 13 contains the address of a save area into which the
system's registers must be stored by the user.

e Register 14 contains the address used to return to DL/I when segment
processing has been accomplished.

e Register 15 contains the user-specified entry point into the segment
edit/compression routine.

All I¥S/VS control blocks provided to the segment edi t/compression
routine are for reference only; no data can be changed, including the
segment at the source area address. The only modification allowed is
the alteration of the segment during the move operation from the source
to the destination address. DSECT addressability to the above mentioned
control blocks is provided by the IMS/VS IDLI macro, as shown in the
examples provided earlier in this chapter.

EDIT/COMPRESSION ROUTINE ENTRY CODES

When the user segment edit/compression routine is placed into the
IMSVS.RESLIB, or another valid library, by a linkage editor process,
one entry point to it must be specified by the user. WRhen the routine
is entered, the entry code placed in register 6 can be used to determins
the reason for invocation.

3.14 IMS/VS System Programming Reference Manual

/

(

Entry code =

0 - segment edit/compression takes place. The source address points
to a segment image as it appears in the application progranm
input/output area.

4 - entire segment expansion takes place. The source address points
to a segment that must be expandad into an image capable of
being presented to the application program. Application program
requests qualified on a data field require the use of entry code
4 for normal retrieval expansions.

The above two entries are the minimum required by the user for
segment compression and expansion, and they are the two codes used when
the DATA compression option is specified. To reduce the amount of
processing overhead required with the movement of data, a third table
entry is reguired when the KEY compression option is used.

8 -~ ©partial segqment expansion for the key compression option.
Expansion takes place from the start of the segment through the
sequence field. This facility is required if the user elects
to use key compression, or if he compresses any field that alters
the starting position of the key field. 21l DL/I calls using
sequence field qualification on key compressed segments require
the use of this entry code.

To provide a data edit/compression routine with greater flexibility
in the use of algorithms than is contained in the code itself, two
additional options are provided to allow for tabled data information.
The first is contained within the DBD module itself. ¥For each segment
defined during DBDGEN as being eligible for edit/compression, an entry
is developed in an assembly lanquage control section, described in a
previous paragraph. This control section can be extended. This is
done by an assembly and link-edit to contain any desired data or
algorithm information. The second option allows the module to issue
the INS/VS IMODULE macro to provide functions equivalent to the OSLOAD

" or GETMAIN macro instructions. They bring additional information into
storage in the form of modules from the IMSVS.RESLIB. An example is
a table of substitution characters to be maintained separately from
the executable code. This table could reflect different combinations
for different segments, resulting in a general purpose, table-driven
routine, capable of processing several segment types.

Since it is also possible that pre- and post-processing are required
by the edit/compression routine (for example, to load and delete the
compression algorithm table in the above case), two more entry codes
are provided when the INIT parameter is specified in the SEGM control
statement. With these codes, the OPEN/CLOSE module relinguishes control
to the initialization/termination subroutines immediately after the
data base is opened, and immediately prior to the data base being
closed. Any processing required for the data base segments that cannot
be directly related to any one segment can be done at this time.

Entry code =

12 ~ control is obtained for algorithm processing immediately after
the data base is opened. Registers 2, 3, and 4 are
unpredictable.

16 - control is obtained for algorithm post-processing immediately
prior to the data base being closed. PRegisters 2, 3, and 4 are
unpredictable.

For compression, regardless of the format at the source address,
(i:‘ the segment at the destination address must be in variable length

DL/Y User Exit Roautines 3.15

format. The first data field of the segment is a two-byte segment size
field. DL/I processes the condensed segment through the buffer pool
to secondary storage.

If a fixed length segment is to be compressed, and the data format
is such that compression cannot take place, it is possible that the
addition of control information by the user routine, indicating the
segment could not be compressed, will lengthen the segment beyond its
fixed length definition. To allow for this expansion, and to allow
DL/TI to validity check the results of the compression, an arbitrary.
value of 10 bytes is added to the defined length. This value is
maintained in the Physical Segment Description Block and is used by
DL/I as the maximum allowable segment length. No additional secondary
storage is required due to this arbitrary value.

For segment expansion occurring during the segment retrieval process,
the-Retrieve module examines the application program reguest. If the
request is to be satisfied by a compressed segment, a test is made to
see which type of compression was usei, either key or data. Then,
depending upon the type of retrieval request, either entry code 4 or
8 is passed to the compression routine. The following criteria are
used as a basis for the decision:

e If the segment can be accepted without analysis of either a key or
data field, control is transferred using entry code 4. The segment
is expanded to the form presented to the user.

e If the value of the segment sequence field requires examination
prior to segment selection, an additional check is performed to
determine data or key compression. Data compression requires no
additional processing, while key compression requires activation
of entry code 8. If, after key field validation, the segment is
qualified for presentation, it is passed on to the user, after
being properly formatted by entry code &.

e ITf data field analysis is necessary to properly satisfy the DL/I
call, proper expansion of the segment, via entry code 4, takes
place. When the correct segment is found, it is passed on to the
user.

The format of the segment presented through entry codes 4 and 8 of
the compression routine is identical to that of a variable length
segment; that is, a two-byte segment size field followed by the
appropriate quantity of data. It is the responsibility of the called
routine to properly expand the segment at the destination address in
correct format, either fixed or variable length. 1In the case of key
compression, expansion must take place from the start of the segment
through the sequence field. For variable length seqgments, the segment
data length field, after processing by the key expansion, must reflect
the length of the expanded portion of the segment at the destination
address.

CONVERTING EXISTING DATA BASES

To convert existing data bases to use this facility, do the
following:

1. TUnload the current data base using the reorganization/unload
utility, and using the current DBD.

2. Define a new DBD which specifies VSAM as the access method, and

specifies a COMPRTN for those segments that are to be converted.
Reload the data with the reorganization/reload utility.

3.16 IMS/VS System Programming Reference Manual

\

C

3. The named COMPRTN provided during reload should encode, compress,
or edit the segment (as determined by the installation's
requirements), and add the two-byte length field.

PERFORMANCE CONSIDERAT IONS

The primary purpose of segment comprzssion is to d2crease the
quantity of space required for segment storaqge. To accomplish this
the user has two types of compression, DATA and KEY. However, the use
of these options can have varying effects on performance that should
be examined. For example, compressing or expanding each segment, on
its way to or from the application program, involves additional
processing. In addition, the search time required to locate the
requested seqment may be increased, dspending on the options selected.
In the case of full segment compression, using the KEY compression
option, every seqment type that is a candidate to satisfy either a
fully qualified key or data field request must be expanded to allow
examination of the appropriate field by the IMS/VS Retrieve module
(DFSDLRO0). For key field qualification, only those fields from the
start of the segment through the sequence field are expanded. For data
field qualification, the total segment is expanded. In the case of
data compression and a key field requast, little more processing is
required to locate the segment than that of non-compressed segments,
since the segment sequence field is used to determine if this segment
occurrence satisifies the qualification.

Other considerations can impact total system performance, especially
in an online teleprocessing environment. For example, being able to
load an algorithm table into memory gives the compression routine a
large amount of flexibility. However, this action can place the entire
IMS/VS control region into a wait state until the requested member is
present in main storage.

SEGMENT COMPRESSION/EXPANSION MODULE EXAMPLE: KMPEX

A compression/expansion example is provided as guidance to the INS/VS
system user. The example is not intended to be operational (for example
it contains many unspecified series of routines), and no support by
IBM for this routine is implied. The KMPEX program is a segment
compression/expansion program coded according to the IMS/VS Progran
Functional Specifications. This program processes a particular segment
for compression or expansion on the basis of the parameters and data
passed by the INMS/VS Control Program.

When control is given to the KMPEX program, the program checks an
entry code passed in register 6, finds out whether the code indicates
a request for compression of a segment, or partial or entire expansion
of a compressed segment. It then branches to an appropriate roantine
to perform the required task.

Upon normal completion of the task, it returns control to IMS/VS
Control Program with a return code of 0.

Specific rules and restriction followed in compression and expansion
of a segment are detailed in the following sections.

DL/I User EXxit Routines 3.17

The Compression Routine

Compression of a segment requires different data handling according
to the data organization of the segment. There are two data formats:

1. Pixed data forﬁat
2. Variable-length data format

A user may specify one of two options to either of the above segment
formats. The options are KEY and DATA.

- ———— - — - - - - - — - - - — - - - - = - - - - - - - - — - - - - -

, |

| Data before compression | Data after compression |
1 | |
| == e e e e e e r— s e e - |
T ; 1) |
| Fixed length: KEY option (LL'j P | D'y RK!1 D | |
| I_B_1_K_ 1 D | |
] DATA option (LL'l D | K | -P-1 _D'{ |
| ' | {
| S e e e e e e e e e e — s - —— - - |
| | |
| Variable-length: | KEY option (LL'JEL| P ID'IK'(D'! |
| | . [
| JLL_1.D_ 1 K- 1.D |} } DATA option |LL']-D{ K JLL| Pi{D'}| 1
| ! 1
Le e et e s et e e e e e e ——— —————————————— y]

D = data, K = key, P = pointer to the 1st CCB
LL' = new segment length, LL = original segment length

D' and K' = compressed data and key

Thus, compression of a segment results in one of the four formats
listed above, depending upon the original record format, and the option
specified.

Method of Compression

Compression of data is specified wherever any consecutively redundant
characters of four bytes or more occur in a particular segment.

The Compression Control Block (CCB)

Compression is performed by replacing the repeated identical
characters with a Compression Control Block (CCB). A CCB consists of
3 bytes containing the following information:

CCB{PNCB| LRC|RC

PNCB = a pointer to the next control block (CCB).
LRC = the length of the redundant character in bytes.
RC = the redundant character in hex.

3.18 IMS/VS System Programming Reference Manual

a

e The PNCB is a 1-byte area whose value cannot exceed 255 (decimal).

A block of four or more repeated characters is likely to occur
within any span of 255 consecutive bytes in a normal data base.
If two groups of repeated characters, however, are separated by

more than 255 bytes, a dummy CCB must be constructed between them.

r 1 | ma— |
{ PNCBILRC{RC| ~===-~ |CCB=2|==~--
[|

—_—

| € CCB-1 é————N>255——— 3|

r)
==~=|PNCBILRC|RCH|
L []

CCB-3

A dummy CCB is no different from a regular CCB except that its LRC
field contains zero, meaning a redundancy of zero bytes in length.

LRC represents the length of redundant characters in bytes. Like

PNCB, the LRC's maximum value is 255.

If the same character is

repeated 256 times or more, therefore, there must be 1 CCB for

every 255 bytes, plus 1 CCB for any residual characters.

* 255 characters of "aw

* 258 characters of "B"

* 259 characters of "C"

T oy D oy gy, T oy, D iy, - iy T o, T o, T oy o

The value in the LRC ranges from 0 through 255.
means that there is no character to be compressed.

- - ——— - — - — - - - — - - — - — - —— - - —— -

- — - - - - —— - -~ - - - - - — - ——— — — - - - - -

nn FF C1

[T |

r 2]
| |

nn FF C2
lecce e w- 4

3 residual chars-not
compressed.
1 CCB for the 1st

255 chars

c2_C2.Cc2

r)
| 1€2_C2.C2

"
03 FF C3inn 08 03]
J

L o o o cow e = o v e e e e
2nd CCB for the last
4 Ct's
1st CCB for the 1st

255 chars

.
|

The zero in LRC
The CCB in this

case plays a role of step-stone between two CCBs that are apart by

more than 255 bytes.

e RC represents redundant character.
contain any value ranging from X'00' to X'FFP?',

is of no special significance.

DL/I User Exit Routines

It is a 1-byte area and can
A zero value here

3.19

Pointer to the First Control-Block (BECB)

—_—

Regardless of the format of a segment, or the option for compression,
the first byte of compressed data is allocated to the PFCB. It contains
the offset to the first CCB, inclusive of the PFCB byte.

The location of the PFCB varies according to the data format.

[ettt h |
|Data |
|format: Option: PFCB relative to other data |
!
-- '

[ettt h |

Fixed key {LL PFCB (D) (K) (D) |

Lreemccmem - - —————— 3

Nt

L——s»compressed segment

——— - - - - - -

data

Lecacmamcamw oo me oo - g J
\emt———
[—>compressed~data

{
f
{
|
|
|
|
{
|
. |

data & key field--not compressed|

]
]
]
1]
]
[}
|
]
]
]
]
[}
]
]
]
]
]
]
[}
]
]
[}
]
[}
[}
]
]
]
3
]
[}
]
[}
'
'
]
]
]
]
|
]
]
'
1
]
]
'
]
]
]
1
[}
[}
[}
]
1
]
'
t
]
]
]

——— - —— - - — - — - - - - - -

LL LL PFCB_(D) (K) (Db)

[I R U B S -4
] [—ﬂvcompressed segment

~original segment length
new segment length

C a
Variable key | |

- @ - = - - - - - - -

.
LL D K L1LL PFCB (D) |

loaeercrecrcq cacnamrcc e =~ J
I___>compressed data

original segment length
——+data & key field--not compressed
new segment length

-
data |

B s T ey T oy D o T gy D e, s o T

- - - — - - — —— > - W S - —— - " AP Ym W TR > - A e T G e A e > W = - e - e - -

e o et o, s e T it T s e s S s e | e

3.20 IMS/VS System Programming Reference Manual

-

The Last Compression Control Block (LCCB)

After all data in a segment has been compressed, a one-byte area,
which always contains zero, is assigned to the LCCB. When the PNCB of
a CCB points to an area containing zero, it means that the CCB is the
last CCB in the segment. The value in a PNCB of the last CCB varies,
depending on how the segment ends.

the last CCB |

] : i
|

{ | After Compressible| {
1 End of Segment} Characters X's | Last CCB to LCCB |
| | | |
1 |] _///”—“‘\ i
| | | l’-@ Y |
| XXXXXRAAARA ! 4 or more RCs | 103 05 E7103 05 C1(100 [}
| | | Le==qg=~——=r E: """ 11CCB {
| | | | the last CCB |
1 { { CcCB |
1 { 1 !
! 1 | -] |
| XXXXXBCDE | no 4 or more RCs | {07 05 E7¢C2 C3 C4 C5 00 |
1 | | tmoqe--- 4 ‘ LCCB|
| | { no compressiblel
1 | | data |
| | |

! { |

L

DL/I User Exit Routines 3.21

Length of New Compressed Segment-

A segment size is not always reduced by the compression routine.
It is increased when redundancy of a character occurs rarely, or a
segment size is large, and the compression routine uses numerous dummy
CCBs. :

If the length of a compressed segment exceeds the size of the output
buffer area passed by the IMS/VS Control Program (two bytes longer than
the maximum segment length), the KMPEX program handles the situation
as follows.

The compression routine maintains a counter containing the updated
length of the processed compressed segment. If the segment length of
a compressed data is equal to or greater than the original size of the
segment, compression is reqgard=d as unsuccessful, and the output area
is replaced with a new length of segment (two-byte area), and the
original segment.

The following new segment output by the compression routine indicates
that the segment involved has not been compressed:

[bttt ittt ettt h |
| } |
{ S2gment Format| New Segment Length {
| | |
| === i bbbttt bt ittt |
1 { |
| Fixed | the 1st 2 bytes = a fixed segment length + 2§
| ! {
| Variable i the 1st 2 bytes = an original segment length|
1 | (saved in the second two bytes) + 2 |
| 1 |
Lo ot o o o e et e e o e o e T > " - ——— - " - - - . = . e = e = - - - 4

The above segment is reqgarded as compressed data by the control
program and treated as such. Differentiation is made only by the
compression/expansion routine.

The Expansion-Routine:

The expansion routine receives control when a segment that has bsen
compressed is retrieved from secondary storage. The method of expansion
is the reverse of the compression process described above.

Special handling occurs when the following two conditions are found(¢

e The value in the length field in the first two bytes is 2. 1In this

case:
seament_format actual seqment data
fixed length (none)
variable length X002

3.22 IMS/VS System Programming Reference Manual

‘

e If any of the following conditions apply, the segment is interpreteil
as not compressed, and is not expanded:

input + 2

[Sateindateieindeinieiefehtiff ittt ettt 1
| | i
| Record Format| Length equal to | Current input data |
| 1 | |
| R itttk b bt ittt ebiebebeidbehebebedu e |
| | | 1
Fixed	a fixed segment	not compressed -- ignore
! length + 2	expansion	
=== iiatadeiedadded e e e e e e e e e m s os—eooososssso-		
Vvariable- a value in the not compressed -- ignore		

|

|

1 |
| |
length ! 2nd 2 bytes of | expansion]
| |
| {

In all other cases, the routine expands the seament by decoding the
associated CCBs.

The Initialization Processing- Routine

%hen so specified, IMS/VS gives control to the compression/expansion
routine:

e Immediately after the data bases, have been opened
e Just before the data bases are closed
When a command code is given to branch to the post-OPEN routine or
the pre-CLOSE routine in the KMPEX program, a WHTO message, is issued

stating that an entry to an appropriate routine has been made. No
processing of particular data is attempted at this stage.

DL/I User Exit Routines 3.23

3.24

OPEN OF SEGMENT XXXXXXXX

Control has been received by the compression/expansion routine 4
after an OPEN of the data bases has been completed. Any .
preprocessing tasks of the named segment should be completed
here,
CLOSE OF SEGMFNT XXXXXXXX
Control has been received by the compression/expansion routine
before the system closes data bases. Any post-processing tasks
of the named segment should be completed here before close of
the data base.
Abend codes (*All the abend instructions can be changed to a
RETURN instruction to the system, with an abnormal return code).
a. USER 2989 -- ABEND
1. A segment data organization is variable length, but its
length field is one of the following:
2>N>32767 (decimal)
2. A fixed length record, but the seqment length in
Compaction Control Table indicates:
0>N>32767
b. USER 2990 -- ABEND
A command code passed by the control program is out of a -
valid range: (’
\\\‘
O>N>16
c. USER 2991 -- ABEND
A command code is passed to compress after, or expand up
to, a sequence field of a segment. No sequence field has
been defined in the segment.
d. USER 2992 -- ABEND

Any of the following conditions results in an abend with
the above code.

Applicable to both fixed- and variable-length segments:

1. A D/K length is greater than a SGL length of a segment.
Applicable only to a variable-length segment:

2. A D/K length is greater than an LL length.

3. An LL length is greater than an SGL length,

4. An LL length is less than 2.

5. An SGL length is less than 2.

IMS/VS System Programming Reference Manual

Applicable to a fixed segment:

6. An SGL length is a negative value.

D/K length = A sum of length from the beginning of
a segment to the end of a key field
(SEQUENCE FIELD).

SGL length = A length of a segment indicated in the
segment length field of a Compression
Control Table.

LL length = A length of a variable length record
indicated in the first two bytes of a
precompressed segment,

Program Assumptions

All parameters and data passed by the IMS/VS control program are
assumed to be valid data; such as the address of the input segment
data, the output data area address, and the length of an input segment.

The IMS/VS control program passes an address of an input segment
data area in register 2, and an address of an output data area in
register 3.

The size of output data area is:

e A segment length plus two bytes for a fixed length segment.
e The maximum segment length for a variable length segment.
e No segment length is greater than 32,767 bytes.

A1l segments processed by the compression routine are treated as

variable length by the IMS system control program, regardless of their

pre-compression format.

A listing of the KMPEX routine follows.

DL/I User Exit Routines 3.25

KMP X TITLE *'KMPEX ROUTINE--USER DATA COMPRESSION PRUOGRAM!

* %
% 3¢ 3 % 3 3 A 3k Ak AR % R Ak e Kk A A Ak 3k e X 3 3 ke e ik 3 3 3k 3k ek % 3K ik Xk e 3k ke Xk e e 3 3k o ok ik Sk e i ok 3k Ak e e 33 ek ok ek

P33 A
%% % %
ok kR ek s oo e e ko TKMPEX' DATA COMPRESSION/EXPANSION PROGRAM *%¥k%x
"X K x
ok 'KMPEX*' PROGRAM IS A DATA COMPRESSION/EXPANSION ROUTI- *%
*% NE. COMPRESSION OF DATA IS DONE TO ANY CONSECUTIVELY RE- %%
H% DUNDANT CHARACTERS OF 4 BYTES OR MORE IN THE DATA. COMP- ok
% RESSION USES A CONTROL BLOCK CONSISTING UF 3 BYTESy IeE. ok
% 1. PTR TO NEXT CONTRL BLK, 2. # OF REDUNDANCY, 3. THE CH- Aok
%k ARACTER REDUNDANT. H¥
R * ¥k
ok COMPRESSION IS TERMINATED WHENEVER THE LENGTH OF PROC- %
ek ~ ESSED DATA BECOMES EQUAL TO DR LONGER THAN THE INITIAL ok
Hok DATA LENGTH, AND THE PRE-PROCESSED DATA IS RETURNED TO %%
o3k DL/1 AS WAS. ; oK
ok DETAILED FORMATS AND CONTROL BLOCKS OF COMPRESSION/ #*%
3k EXPANSION ARE DESCRIBED IN SPRM. ¥
% *%%%% REGISTER USAGE IN THE 'KMPEX' PROGRAM % #%
£33 33
% R1---WORK REGISTER %
3k R2---PTR TO INPUT DATA Ak
ok R3--=PTR TO OUTPUT DATA *x
ek R4---PTR TO PSDB Aok
Aok R5=-—-=PTR TD 'SEGPAC' SEG COMP CSECT %%
#*% R6===CTR FOR CURRENT INPUT PROCESSING %
ok R7---CTR FDR OUTPUT DATA %k
%ok R8--=CTR FOR INPUT PRUOCESSED R
ok R9==—PTR TO THE CURRENT INPUT sk
w% R10---WORK REGISTER Aok
ek R11=---WORK REGISTER %
EE R12~--KMPEX BASE REGISTER #%
s R13---REGISTER SAVE AREA %k
%% R14=--=RETURN ADDR TO OL/I Aok
o R15---KMPEX ENTRY PUINT *%
% £33
xR X
s 3ie o o ok S Ko 3 3 sk 5K ik 3 3 o s ok 33k 3k sk ok o ol ik ok sk sk S e ok ok vk sk ok ke stk ok o ol ok kol s v ol s ale sl sk e sk e sl sde e ok s ok ok e sl ol e e ok Rk ok

3%k %k % %k

CNOP 0,8

KMPEX CSECT
SAVE (14,12)

BALR 12,0 ESTABLISH THE ADDRESSABILITY
USING %412
LA R104KSAV1
ST R13,4(R10)} SAVE PASSED SAVE AREA
ST R10+8(R10)
LR R13,R10
USING KCCByR5
INIT MvC KNITA(KNITL) +KFO+3 INITIALIZE FLAGS
STC R64KCMCD SAVE COMMAND CODE
CLI KCMCD,KQINIT
BNL KA350 BRANCH IF INIT . PROCESSING RTN
BAL R11,4KA3600 ## BR TO SYSTEM DATA CHK RTN
ST R2+KASN1 SAVE IN-BUFFER ADDR
ST R3yKASN2
™ KFLGyKVLN CHK IF V-LENG SEGMT

3.26 IMS/VS System Programming Reference Manual

;

,
I
/!

N\

BZ
™
B8O

KA200 EQu
LH
STH
LH
SH

8L
oI

KA300 LH
STH

KA310 EQU
STH

KA350 EQU
SR
LR
LR
LR
LR
Ic

[ve]

KAB2990 EQU

KA400 EQU

R

KA300
KFLGyKKEY
KA200
KFLGXsKVLDT
*

R1,0(R2)
R1,KTLL1
ROy KSGL
R9yKH3
R14R9
KA310
KFLGX ¢ KNPRSW
R14R9
KA310
R1yKSGL
R1,KTLL1
*

R1,KMAXL
R1,KEXBF
*

R64R6
R74+R6
R84yR6
R94R6
R104R6
R104KCMCD
*+4 (R10)
KA400
KA2200
KA2200
KA1600
KA1700

*
R1+KABCX90
KA4500

*
KFLGyKVLN
KA420

BR If FIXED SEGMT

SET V-LENG, DATA OPTION FLG

GET ORG SEGMT LENG
SAVE IPT LINE LENGTH
GET SEGMT MAX LENGTH

CHK V-LEN SEGMT LENGTH
BR IF NOT LST 4 BYTES
SET NON PROCESS SW ON
GET SEGMT MAX LENGTH

CLEAR OUTPUT BUFFER
SAVE IPT LINE LENGTH

SAVE MAXIMUM BUFF LENGTH

CbEAR REGS
CLEAR REGS

GET CMD CODE

BR TO COMPACT RTN

BR TO TOTAL EXPANSION RTN
BR TO PARTL EXPANSION RTN
BR TO POST-OPEN RTN

BR TO PRE-CLOSE RTN

GET ABEND CODE

CHK IF VL REC
BR IF FIX REC

xR

e oo o o0 ook e e oo e o ok e e e ok ok o ok oK ol e e ook o g e o o e o e oo o ke o i ke ook ek o oo ke ook

o
* T
#%

VARTIABLE-LENGTH SEG COMPRESSION CHECK RTN

X X Xk

*%
%
ok

3 3% 3 36 36 3% 4 A A0 3% % e 3ok kK R k3 3k e s 3k sk Sk ke ok ok X 3 3k 3k e 3k % 3 e e 3 3 3k 3 e 3k 3ok X i e ik 3k ok 3k 33k 4 ek 3k 3k ok ko

LH

CH

BL

BH

B
KA420 EQU
xR

R1,0(R2)
R1yKH2
KAB2989
KA450
KA430

*

GET VLEN LENGTH
CHK IF MIN LENGTH
BR IF LESS THAN MIN
BR IF MORE THAN MAX

FIX LENGTH RECORD

k2

3 3 e 3 3 5 30 e e o o e e o e oK e e e 30 5 e e e e e 3o o e ot e e 3k o a3 3 ke 2 3 e e e 3 3k o4 e e e ok e 3 XK obe e o e e o o K

ek
L3 X903k K
R

FIXED-LENGTH SEG COMPRESSION CHECK RTN WA NK

¥
%
L2

% 3 3 30 0 30 3 e e e Ak A0 3 e e A A 3 oK e A e e e o A 3 e A e ke e ek e ok ok K ok A e e e ke i e X e e e g ok 3 Rk e ok

CH
BE
BH

R1+KHO
KA430
KA450

CHK IF O LENGTH
BR IF SO
BR IF MORE THAN O BYTE

DL/I User Exit Routines

3.27

KAB2989 EQU
LH

KA430 MvC

KA450 EQU

KA500 ™

KA600 EQU

KA700 MvC

KAT50 LR
CH
BNL
BCTR
ST

*

R1,KABCX89
KA4500
0(2,R3)KH2
KA1800

%
KFLG,KKEY
KA1300
KFLGyKVLN
KA700

%

R3y3(R3)
R7+3(R7)
KA750
2({2yR3),4,0(R2)
R242(R2)
R642(R6)
R345(R3)
R7+5(R7)
R14R3
R7yKMAXL
KA3500

‘R140

R14KFCCB

GET ABEND CODE
MOVE REC LENG
CHK 1F KEY OPTION
BR IF DATA OPTION
CHK IF VLN REC=FORM

BR IF VLN REC
FIX-KEY OPTION

VLEN-KEY OPTION

CHK IF MS LENGTH EXCEEDED
BR TO MOVE ORIGINAL SEG

SAVE PTR TO COB IN AREA

30 3¢ 38 23 ok 4 e ok 3 3 e 3 X 3 30 R e A X 8 e 3 3k e sk o i s o 3ok X 3l % 3l AR R R0 3K Ak o e R o 3R ok % ol e ik R e 3R ok e 3k 3k R O o e e e o R

den

e

2046 3% 3 3 % %0 e s 3 o ok 30 K 423 e 4ok s ok 3l 3 X 3l o sk o e 3 o ok e 3 3 o o o e 3k 3 e ok 3k 3k e ok e ok 3K 3k 3 ook e ek o o ok ok ok ok ke

o

KA800 BAL
H%

R11,KMPSR

ok

BRANCH TO COMPRESSION RTN
R

2 A 3 3 Rk 3 3k Ak Xe ok Ak 3 e A e Heak % a0 Rk K8 e 33Kk 3%k o 3R % 3 3k k% 35 3k 3 ok 3 3 Xk 3 3k 3 3k 3k e e 3k e ok e 3k Xk ok X ok kg ok e R Xk Xk de

3

Sk

e 3% 3 e 7 o e ok o o e e e i o e sk ok 3 o ok i o ok o ok i e e o 38 e ok ok e K e e 3 e 3o sk e 3 ok 3R e o e s ke i ol ok ok ok R

B
KA1300 EQU
™
BO
LA
LA
KA1320 EQU
SR
1C
AH
AR
CH
BNL
BAL
AR
™
BZ
MyVC
LA
LA
KA1350 AR
AR
KA1360 EQU
ST
LA
LA

KA1800

%*
KFLGKVLN
KA1320
R3y2(R3)
R74+2(R7)
*

R14R1
R1,KSQL
R1+KSQA
R74R1
R7+KMAXL
KA3500
R11,KEXR1
R34R1
KFLGyKVLN
KA1350
0(24R3),40(R2)
R3¢2(R3)
R742(R7)
R2¢R1
R6+R1

*

‘R3,4KFCCB

R3y1(R3)
R74y1(RT7)

BR TO END RTN
FIXED/VLN DATA OPTION
CHK IF V-LENG SEGMT
BR IF SO

CHK IF MS LENGTH EXCEEDED
BR TO MOVE ORIGINAL SEG
BR TO MOVE DATA
UPDATE KSN2 TO LL+D1+K
CHK IF V-LEN SEGMT
BR IF FIXED SEGMT
MOVE SEGMT LENGTH

UPDATE KSN1 TO D1+K

GIVE 1ST CCB PRT ADDR
UPDATE KSN2 PTR
UPDATE KN2 CTR

3.28 INS/VS System Programming Reference Manual

7

2

&

KA1600

CH R7 ¢ KMAXL
BNL KA3500

B KA800
EQU *
™ KFLG9KNIT

BZ KAB2990

CHK IF MS LENGTH EXCEEDED
BR TO MOVE ORIGINAL SEG

POST-0OPEN PROC RTN
CHK IF INIT PROC SPECIFIED
BR IF NOT SO

3035 3¢ e 340 3¢ 2 30 e 303 o o ke ol ok e e ok ok e ke ok o ok 3 e o ol i ol o 3 9ok 3K 3k i o e ol KRR o 3k i 3 3 ok ke ke o 3 o e 3 o o ok K Rl K

o
%k
%%
0%k
P
sk
%

xR

XA K POST-OPEN ROUTINE W AR *3%
THIS ROUTINE IS BRANCHED WHEN A COMMAND CODE OF X'oC! X

IS PASSED IN R6 BY DL/I. PRE-PROCESSING TASKS ARE TO BE *®
DONE HERE. A MESSAGE OF ENTRY AFTER 'OPEN' IS ISSUED BY b
KMPEX. xn#
R’

33030 30 3 e 30 o 4t 0 e 403 i s e e e ek o ot e o e ek ot e ok e o i o ok o ke i e s ks ok ok o e o 2 i o e 3 e ek e e e 3k

MVC KA1650(8),KSGN
CNOP 0,4

BAL 1,KA1760

DC AL2(28)

DC 2X100!

DC CLL6'OPEN OF SEGMENT

MOVE SEG NAME

TEST LENGTH
MCS FLAGS

KA1650 DC CLB!TXXXXXXXX!
* B KA1800

DS OH
KAL700 TM KFLGyKNIT CHK IF INIT PROC SPECIFIED

BZ KAB2990 BR IF INVALID
%% X
e 30 3 3 3¢ % 3 3 i 3k 30 3 ko o oK e 3k i 3% e ke ok ki e 3 3 o o o ok ok e 3k 3 e 3 e i e e o o o o 3 e e 3k 3k e ke i e e 3 o 36 o o o o o
% K
ok ¥#%%% PRE-CLOSE ROUTINE skwakx fox
s THIS ROUTINE IS BRANCHED WHEN A COMMAND CODE X'10°! %%
*x IS PASSED IN R6 BY DL/I. POST-PROCESSING TASKS ARE TO ok
o BE DONE HERE. A MESSAGE OF ENTRY BEFORE 'CLOSE® IS ISSU- =x
o ED BY KMPEX. ok
*% &%
T ek

s 3o e e ke e e o s 3 o ok 4 ok o 3 e i e e ok e o o ok e e s ok ik 3k oKk o 3 s e o i e e o o ke e s o ok 3 5 i o 3K ke ke o ok 3k e e e o ok e

KA1750
KA1760

%*

MvC KA1750(8) 9 KSGN

CNOP 044

BAL 19KA1760
bC AL2(29)
DC 2X1'00!

MOVE SEG NAME

TEXT LENGTH
MCS FLAGS

DC CL17'CLOSE OF SEGMENT !

pC CLB'YYYYYYYY!

DS OH
SvcC 35
B KA1800

BR TO END OF ROUTINE

st b e e e o ok o 3 4 3 ok e 3 o 3 A 3k oK 3 i 3 ik 3K e e ok 3 i sl ok K ke e o kA o o ok 3K

SPACE 3

e 3 3¢ 40 3 3¢ e e i 3 3 e 3K 303 e 3k e ok e 3 ok 90 o ok i ok 2k 0ok e 3 e s e i o e o e e o e ke o e oK e e o ek ok ek e 3k ok ok ok K

X
R
RR

3 % e RETURN TO DL/I

Ao

kR o

X

st s o e o i ot i ofe ke 3 3 o st o s e 8 e 3 o s s o e ol e 3 e s e o e o e o e e o e ke 5 e 3 ofe 3 o e ok ok 4 S o ok ok oK e o e R oK Ok

KA1800

KA1900

EQU *

L 13,4(13)
RETURN (14412),RC=0
EQU ®

™ KFLGyKVLN

#
#
RETURN TO CNTRL PGM

CHK IF VARIABLE LEN-REC

DL/I User Exit Routines 3.29

KA1910

KA1930

KA1950

KA2000
KA2010

KA2050

'KA2070

KA2200

KA2250

KA2300

3.30

BO
LH

EQU

CLI

BAL
EQU

SPACE
EQU
cLC
BNE
™

BZ
MVvC

EQU
™
BZ
™

LA

KA1910
R1,KSGL
KA2010"
*
R1,0(R2)
R1s1{(R1)
R14KSGL
KA1950
R24KASN1
R34KASN2
R140(R2)
KCMCD,KTLSO
KA1930
R1sR1
R1,KSQL
R1yKSOA
x*

R114KEXR1
KA1800

*
KFLGyKKEY
KA2000
R13R1
R1,KSQL
R14KSQA
R1y4R2
R1,0(R1)
KA2010
R142(R2)
R1s2(R1)
R1+0(R2)
KA2250
KFLGyKVLN
KA2050
KFLGyKKEY
KA2050
KCMCD,yKALL
KA2050

R11,KMVORGXV

KA2070
R640(R2)
Ré6yKH2

R11+KMVORGX -

3

KA1800

5

*
0(24R2)4KH2
KA1900
KFLGyKVLN
KA1800
0(24+R3) ¢KH2
KA1800

*

KFLGyKKEY
KA3000
KFLGyKVLN
KA2500
R242(R2)

BR IF V-LENG REC SEGMT
FIX REC LENGTH

GET SEGMT LENGTH

CHK IF FINAL 2 BYTES
BR IF NOT SO

GET LENGTH OF SEGMT
CHK IF KEY EXPANSION
BR IF ALL EXPANSION
GET LENGTH THRU KEY

MOVE TO OUT AREA

CHK IF KEY OPTN

BR IF KEY OPTION
VLEN + DATA OPTIUN, EXPANSION

GET URIGINAL SEGMT LENGTH

ADD NEW LENGTH FIELD

CHK IF NO COMPACTN/EXPNSN

BR IF NOT -SO

CHK IF V-LENG SEGMT

BR IF FIXED SEGMT

CHK 1F KEY OPTION /
BR IF SO E AN
CHK IF ALL EXPANSION :

BR IF NOT SO

BR TU MOVE ORG SEGMT

GET LENGTH OF IN-DATA

BR TO MUVE ORG SEG RTN

CHK IF REC LENG = ZERO

CHK IF VL REC
BR IF FIX REC

CHK IF KEY OPTION
BR IF DATA UPTION

EXPANSION OF FIX REC KEY OPTN

IMS/VS System Programming Reference Manual

EXPANSION OF VAR LENG KEY OPTN

CHK IF THRU SEQ FIELD
BR IF NOT SO
CHK SEQ FLD DEFINED

GET ABEND CODE

GET LENG OF D1 + KEY
CHK IF VLN REC
BR IF NOT SO

SAVE EXPANSION LENGTH
DEFURE BR TO EXPNSN RTN

INIT EXPNSN LEN TO KEY ID OF REC

s e s s e o e o i 3 o e e o e e ok ok o 9t o 3 e o 8t 3 ot 9 s 3 3 i s o ke o ok i o 36 i 3 e e o ik e e e ok i ok o ke o e e e 3 e e e o e 3

BRANCH TO EXPANSION RTN

%

3ok

3¢ 3 2 e 3 3 A 3 o e e 3 e e e o 3 e 3k e ok o ok e Ak ok e X6 3 e e i o4 s ok ke e e 3 3k %0 %R 3K s ek o 3k 3k 3k 3 3 3k i e ok 2 e 3k e 3 e e e 3 de ok e ok

LA R642(R6)

B KA2600
KA2500 MVC 0(24yR3)42(R2)

LA R244(R2)

LA R6y4(R6)

LA R342(R3)

LA R7,2(RT)
KA2550 CLI KCMCD,KTLSO

BNE KA2600

™ KFLGyKSEQ

BO KA2560
KAB2991 EOQU %*

LH R1,KABCX91

B KA4500
KA2560 SR R1,R1

icC R1,+KSOQL

AH R1+KS0A

™ KFLGsKVLN

BZ - KA2580

SH R14KH2
KA2580 STH R1,KEXPLH

B KA2650
KA2600 MVC KEXPLH{2) yKHM1
E
KA2650 BAL R11,KEXSR
X

B KA1800
x
KA3000 EQU *

™ KFLGyKVLN

BO KA3050

LA R2492(R2)

LA R6,2(R6)
KA3050 EQU %*

SR R14R1

ic R1+KSQL

AH R1sKSQA

LTR R14R1

BZ KAB2991

BAL R11,KEXR1

AR R24R1.

AR R64R1

™ KFLGyKVLN

BZ KA3100

MvC KTLL2(2)40(R3)

MVC 0(24R3)40(R2)

LA R2y2(R2)

LA R6492(R6)
KA3100 EQU *

AR R34R1

AR R74R1
KA3250 CLI KCMCD,KTLSQ

BNE KA2600

B KA1800
KA3500 EQU *

™ KFLGsKVLN

BZ KA3550

BR IF NORMAL END

VLEN/FIXED RECy» DATA OPTION
CHK IF V-LENG SEGMT
BR IF V-LENG SEGMT

PRE-EXPNSN REC LL1 SAVED

BR TU ABEND
BR TO MOVE DATA
UPDATE PTRS TO

CHK IF V~LENG SEGMT
BR IF FIXED SEGMT

LENG OF COMPCTED SEGMT
MOVE ORG SEGMT LENG

INPUT/0OUTPUT AREAS

CHK IF EXPANSION IS TO D1l + KEY
BR IF NOT SO

CHK IF V~LENG SEGMT
BR IF FIXED SEGMT

DL/I User Exit Routines

3.31

KA3530

KA3550

KA3600

KA3800

KA3900

KA4400
KA4500

KMVORG

KA4650

KA4700

3.32

™ KFLGXyKNPRSW CHK IF NON-PROC SW ON

BZ KA3530 BR IF NOT SO
BA R11yKNPSMV BR TO MOVE NON-PRUC SEGMT
8 KA1800 _
SPACE 3 . -
EQU * N
™ KFLGyKKEY CHK IF KEY OPTION
80 KA3550 BR IF KEY OPTION
BAL R11yKMVORGXV MOVE DATA OF V-LENG, DATA OPTION
B KA1800
EQU * ALL BUT V-LENGy DATA OPTN CMPCTN
BAL R11 yKMVORG BR TO MOVE ORG SEG ROUTINE
B KA1800
EQU *® ## CCT SYSTEM DATA CHK RTN
SR R1,R1
icC R1,KSOL
AH R1,KSQA SQA + SOQL
CH R14KSGL IF SQA+SQL MORE THAN SGL, ERROR
BNH KA3900
EQU *
LH R1,KABCX92 GET ABEND CUDE
B KA4500
™ KFLGyKVLN CHK IF VLEN REC
BO KA4400
LH R14KSGL GET SEGMT LENG
LTR R1yR1
BM KA3800 ERR IF FIX SGL IS NEGATIVE
BR R11 RET TU CALLER
EQU *
STH R14KABX
L R1+KABCD GET ABEND CODE
SvC 13
XV EOQU *
ST R114KVRB SAVE REGS
L R2yKASN1 GET IN WORK AREA ADDR (/ﬁ
L R34KASN2 GET OUT WORK AREA ADDR _
SR R14R1 "
1% R1,KSOL
AH R14KSQA
BAL R11,KEXR1 MOVE LLy Dy K DATA
CLI KCMCD KALL CHK IF ALL EXPANSION
BE KA4700 BR IF SO
LH R9,0(R2) GET URIGNL SEG LENG
LA R9,2(R9Y) GET NEW SEG LENG AFT COMPRESS
STH R9,0(R3) SAVE NEW LENG
AR R3,R1 COMPRESSION RTN
AR R74R1
MVC 0(24R3)40(R2) MOVE ORG SEGMT LENGTH
AR R2sR1
AR R6+R1
LA R342(R3) UPDATE OUT PTR + CTR
LA R792(R7)
B KA4800
AR R24sR1
AR R6yR1
MVC 0(2yR3)40(R2) MOVE ORG SEGMT LENG
AR R34yR1 UPDATE OUT PTR + CTR
AR R74R1
LA R242(R2)
C
IMS/VS System Programming Reference Manual

KA4800

KA4850

KEXR1

KA5000

KA5100

R69y2(R6)
R14KTLLX
R1,KASN1
R140(R1)
KCMCDyKALL
KA4850.
R1yKH2

%

R1yKTLLX
R11,KEXR1
R2yR1
R69R1
R3,R1
R74R1
R11,KVRB
R11

*
R14yR94y12(13)
R6yR1
R94KH256
R1,KH255
*

R6+R9
KAS5100

"R64R9

R1yKEXMVC
R24R9

R34yR9

KA5000

R14R6

R1+0
R1sKEXMVC
R1,R9412(13)
R11

SAVE LLyDsK LENGTH

GET IN AREA

GET V-LENG SEGMT LENGTH
CHK IF ALL EXPANSION

BR IF COMPRESS

"GET D2 LENGTH

MOVE D2 DATA
UPDATE IN PTR + CTR

UPDATE OUT PTR + CTR

RTN TO MOVE REG 1 DATA TO OUT AREA

SAVE REGS
SAVE DATA LENGTH

BR DATA MOVABLE IN 1 EXECUTE

MUVE PARTIAL DATA

BR BACK TO LOOP

MUVE ALL THE DATA
RESTORE REGS

36 4 3 3 e e 3¢ 4 34 e 3 o e 3k 3k o 3K 3960 30 30 3 3 ke 36 ok 3 e e o 4 356 o ok 3 3 ik sk o e 3 36 3 3 e 2k e e e e 346 e 3 3k 4 o 30 6 X6 ok Aok o 8 3 o A

*

%

3¢ 3k 3% 3 2 3 3 e 3k 3 e 3 3k i o0 o e e e e e e e 3k 3k e e 30 3k 34 3e 353k 3e 30N 3k 30 3R He e 35 33 3 3K 33 33k k3 3 e 5 A K 3 A 30 e

%
P
ek
%
0k
sk
Bk
sk

ook K

IN COMPRESSION RUUTINE,
MORE ARE COMPRESSED IN 3 BYTE CUNTROL BLOCK ACCORDING TU

DATA COMPRESSION ROUTINE WHEFRR

DATA REDUNDANT IN 4 BYTES OR

THE SPECIFICATIONS DESCRIBED IN SPRMs R2 POINTS TO THE
BEGINNING OF DATA TO BE COMPRESSED UPUN ENTRY.
REGISTER USAGES ARE LISTED IN THE HEADING SECTION.

#%
P
#%
* 3%
Aok
W
%
e

33 3 ¢ 3 e 5t 2 30 30 3 3 oK e 3¢ 3039 3 e e o 0 o ok e oK e 0o 3k e 40 e AR ok e Xk o ol o e e ok o o 30 o 3K o oK oK e 4o 3K 3 X e

KMPSR

DS
SAVE
ST
LA
LR
LA.
CH
BL
L
MVC
LA
LA

OH

(14,412)
R13yKSAV2+4
R13,KSAV2
R94R2

R8,y1
R6+KTLLL
KB300
R1,KFCCB
0(2sR1)9KX0100
R3,1(R3)
R741(R7)

COMPACTION RTN
SAVE REGS

SET INPUT DATA PTR1

INCLUDE PTR TO FCCB BYTE
CHK ALREADY EOD REACHED
BR IF NOT SO

SET FCCB + LCCB

UPDATE PTR
UPDATE CTR

DL/I User Exit Routines

KB300

KB500

KB700

K8800

KBS00

KB1500

KB1600

KB1700

KB1800

KB2000

3.34

BCTR

MvC

R7 s KMAXL
KB4300
KB1700
1(3,R9)40(R9)
KB2000
R6y1(R6)
R8y1(R8)
R9y1(R9)
R6,KTLL1
KB4100
R8yKHCMX
KB300
R14KFCCB
R840(R1)
R14R8
KFSWyXt01?
KB800
R14KH3
KB900O

R1+0
KFSW,X'01"?
R7¢R1
R7.KMAXL

"KB4300

R1,0
R1,KEXMVC
R1,1(R1)
R24R1
R9sR2
R3,4R1
R3,KFCCB
KEOD, X'01 "
KB400O
R7+3(R7)
R7yKMAXL
KB4300
0(3yR3),4KFO
R3,43(R3)
R8,3

KEOD, X'01¢
KB1700
KB300
R1yKASN2
R74KTLL2
R7 9 KMAXL
KB4300
0(24R1)4KTLL2
*
R1344(R13)
R144R12912(R13)
R1,yR1

R11
R1yKFCCB
R84y0(R1)
R1¢R8
KFSW, X101
KB2020
R1yKH3

CHK IF MS LENGTH EXCEEDED
BR TO MUOVE ORIGINAL SEG

CHK IF QUALIFIES TO COMPACT
BR IF SO
UPDATE PTRS, KSN1 PTR
KN1 CTR
SPTR
CHK ALREADY EOD REACHED
BR IF SO
CHK CTR IF REACHED MAX NO.
BR IF NOT MAX
GE CCB ADDR
FILL NEXT CCB ADDR

CHK IF 1ST DONE INDICATED
BR IF UNDUNE
SUBTRACT CCB LENG

SET 1ST DONE SW ON
KN2 CTR
CHK IF MAX BUF LENGTH USED
BR IF ALREADY SO

GET MOVE DATA LENG
MOVE NON-~COMPRESS CHARS

UPDATE DATA PTRS/CTRS, KSN1 DATA
UPDATE IN DATA PTR1

KSN2 DATA PTR

REPLACE NEW CCB ADDR

CHK If EOD SW IS ON

CHK IF MAX BUF LENGTH USED
BR IF ALREADY SO
ZERD OUT CCB

CHK IF EOD REACHED
BR IF SO

GET KSN2 ORIGINAL ADDR

SAV KN2 CTR
CHK IF MS LENGTH EXCEEDED
BR TO MOVE ORIGINAL SEG

RESTORE REGS

BR BACK TO CALLER
GET PTR TU NEXT CCB ADDR
FILL PTR TO NEXT CCB

CHK IF 1ST SW TO BE SET
BR IF SO

IMS/VS System Programming Reference Manual

14

[N

KB2020

KB2050

KB2300

KB2700

KB2900

KB3000

KB3100

KB3400

KB83520

KB3600

BCTR
0l
LTR
BNH
AR
CH
BNL
BCTR

MvC

BNL

EQU

KB2050
R1,0
KFSW,X'01?
R14R1
KB2300
R7sR1
R7¢KMAXL
KB4300
R1,0
R1sKEXMVC
R1,1(R1)
R2yR1
R3,R1
R84yR8
0(34R3),KFO
R14s0(R3)
R14,KFCCB
R343(R3)
R7+3(RT)
R7 ¢ KMAXL
KB4300
R8+3
R8+4(R8)
R1043(R9)
R9y4(R9)
R6y4(R6)
R14R6
R14KTLL1
KB3000

*

R6 s KH4
R8yKH4

R9y KH4
0(14R9),0(R10)
KB3400
R1yKFCCB
2(14R1)40(R2)
R8yKH3
R8y1(R1)
R2sR9
R843
R64KTLL1
KB300
KB4000
R851(R8)
R9,1(R9)
R641(R6)
R6+KTLLL
KB3600
R84KH258
KB3000
R1yKFCCB
2(14R1)40(R2)
R8yKH3
R8y1(R1)}
R843
R2+R9
KB300
KEOD,X'01"?

SET FIRST-DONE Sw
CHK FOR NON-COMPACT CHARS
BR IF O OR NEGATIVE

CHK IF MAX BUF LENGTH USED
BR IF ALREADY SO

MOVE NON-COMPACT CHARS

UPDATE PTRS & CTRS
MOVE CCB PRE-CMPACTION

UPDATE KSN2 PTR

UPDATE KN2 CTR

CHK IF MAX BUF LENGTH USED
BR IF ALREADY SO

RESET NEXT CCB CTR

INCREMENT OF CTR FOR 4 CHARS

AND PTR
CHK IF EXCEED SEGMENT LENGTH

RESET KSN1 PTR

RESET CTR TO NEXT CCB

RESET CURRENT DATA PTR
COMPARE CHARS BEYOND 4 CHARS

SAVE REDUNDANT CHARS

CHK ALREADY EOD REACHED

UPDATE CCB PTR
UPDATE CUR DATA PTR
UPDATE KN1 CTR
CHK ALREADY EOD REACHED
BR IF SO
CHK IF CTR MAX VAL REACHED

GET CCB PTR
MOVE REDUNDANT CHAR

FILL LENGTH OF REDUNDANT CHARS

SET EOD SW ON

DL/I User Exit Routines

‘KB400O

KB4100

KB4300

KB4330
KB4350

KMVORG

KB4400

KB4600

KB4900

KNPSMV

3.36

MV I
MvC
SH

STC
MV I

LA
01

EQU
™
BZ
™
BZ
BAL

EQU
™
BO
BAL

EQU
BAL

SPACE
EQU

LH
LA
EQU
STH
LA

LH
LH
CrR
BNH
SR

AR
AR

LR
BCTR
EX

BR
SPACE
EQU
ST

- LH
LH
SH

BH

R1,KFCCB
O(R1),X'03?
2(1+R1),0(R2)
R8yKH3
RBy1(R1)
O0(R3)yX'00"
R741(RT7)
R3,1(R3)
KB1600
KEOD,X'01"
KB700

*
KFLGyKVLN
KB4350
KFLGXyKNPRSW
KB4330
R114KNPSMV
KB1800

*
KFLG+KKEY
KB4350
R11,KMVORGXV
KB1800

%
R11yKMVORG
KB1800

3

*

R2,KASN1
R3,KASN2
R1yKMAXL
R142(R1)

*

R1,0(R3)
R342(R3)
R69KMAXL
R9,KH256
R14KH255
R64R9
KB4900
R64R9
R1,KEXMVC
R24R9
R3,4R9
KB4600
R14R6

R1,0
R14KEXMV
R11 :

3

*
R11,KVRBY
R2yKASNI1
R1,0(R2)
R3,KSGL
R34KH2
R14R3
KB5500

GET ADDR OF CCB PTR

SAVE CTR TO CCB
SAVE REPEAT CHAR

INSERT EOD CCB 0
UPDATE PTR/CTR OF OUTPUT

SET EOD SW ON

CHK IF V-LENG SEGMT

BR IF FIXED LENG SEGMT
CHK IF NON-PROCESS SEGMT
BR IF NOT SO

BR TO NON-PROC SEGMT

CHK IF KEY OPTN
BR IF SO

MOVE DATA OF V-LENG DATA OPTN

BR TO MUVE ORG SGMENT RTN
BR TO END OF RTN

MOVE ORG SEGMENT RTN
GET START ADDR OF IN~DATA

GET START ADDR OF OQUT-DATA

GET MAX LENGTH

GET MAX LENG OF RECORD

CHK IF REC IS MURE THAN 1 MOVE

BR IF NOT SO

MUVE 1 GROUP DATA
UPDATE IN-BUFF PTR
UPDATE OUT-BUFF PTR
BR BACK TO EQD

GET LAST DATA

MOVE LAST DATA
RETURN TO CALLER

SAVE RET ADDR
GET IN AREA ADDR
GET LENGTH

GET SEGMT LENGTH

CHK IF LENGTH FALLS IN LAST 2 BYTES

BR IF SO

IMS/VS System Programming Reference Manual

&

KB5500

LR R3,4R1

AR R34R2

MVC 0(24R3)4KHO
LH R1,KSGL
BCTR R1,0

STH R14KTLLX

L R3,KASN2

BAL R114KEXR1
MvC 0(24R3)yKTLLX

L R11,KVRBY
BR R11
EJECT

GET SEG LENGTH
PTR TO EUS
MOVE PAUDING CHARS

SAVE NEW SEGMT LENGTH
GET UUT AREA ADDLR

BR TO MOVE DATA

MOVE NEW LENGTH

BR BACK TO CALLER

st o 3 4 3 3 o 3 e s sk ke e e o ik e afe s ke e ol o ik st ol e e i kst e oK o e i ke S 335 3 oK 30 e 3 o s 3k ol e e 3 ol 3 e ok sl ok ke 3 2ok kK
303 o e 0 e 3o e e ok 3k e e ok 3R ok 3 3 e e ok e 3 ok 3ok 3 e o e e e ke o ok e s e 3 ok e 3 e e s e e 3 i e 3 3 3 o e ok e K

ek
K
K
e 3%
e
ye sk
B
ek
ye 3
Mk

she st
5

R DATA EXPANSION ROUTINE okt
EXPANSION ROUTINE REVERSES THE COMPRESSION PROCESS.

ALL COMPRESSION CUNTROL BLOCKS ARE DE-CODED AND RESTORED

TO A NORMAL DATA STREAM,.

REGISTER USAGES ARE AS LISTED

IN THE HEADING SECTION OF THIS PROGRAM.

3
*

e 3 dF 3 3 3
3¢ 3 3t H 3¢

3%
#* ¥

*

et e 3 30 o e e i o a3 o ok e ok ok o i o s i o o i ok e e e e sk 3k ke 3 3 i e i o o 3 i e o e 3 3 ke i i e i o 3 e o e ok ok

st
R

KEXSR

KC200

KC300

KC&600

KC700

KC900

KC1000

DS OH

SAVE (14,12)
ST R134KSAV2+4
LA R13,KSAV2
SR R14R1

1C R1,0(R2)
CH R1yKH1

BE KC600

BL KC300

LA R241(R2)
LA R69y1(R6)
SH R1yKH2

EX R14KEXMVC
LA R1y1(R1)
AR R3,R1

AR R74R1

AR R2¢9R1

AR R64yR1

B KC700

EQU *

SR R74RT

B KC1000

LA R2,41(R2)
LA R6+1(R6)
EQU %*

LH R1,KEXPLH
LTR R1,R1

BM KC900

LA R7y0(R7)

CH R7sKEXPLH
BNL KC1000

CLI 0(R2) +KOXOF
BNE KC1200

EQU %*

™ KFLGsKVLN

EXPANSION SUB ROUTINE
SAVE REGS

CHK NXT CCB OFFSET

UPDATE INPUT PTR

MOVE CHARS TILL NXT CCB
UPDATE OUT PTR
UPDATE OUT CTR

UPDATE IN PTR
UPDATE IN CTR

UPDATE INPUT PTR
UPDATE INPUT CTR

CHK IF ALL SEG OR KEY ONLY

CHK IF ALL SEG OR KEY ONLY

CHK IF EOD CCB REACHED

DL/I User Exit Routines

kS

3 .37

KC1100

KC1200

KC1500

KC1700

KC1800

KC2000

KC2100

KMVORGX

KC2400

KC2600

KC2700

3.38

EQU

B
EQU
™

LH

EQU
LH

KC1100
R14KASN2
RByKASN1
KFLGyKKEY
KC1100

0(2yR1)+2(R8)

*
R13+4(R13)

R144R12,12(R13)

R14R1
R11

1(R2)4KQXOF

KC1700
R1,4R1
R1,y1(R2)
R1yKH2

0(1sR3)s2{R2)

R1,KEXEXP
R1,2(R1)
R3,sR1
R74R1
R14R1
R140(R2)
R1,KH3
KC2000
R2+3(R2)
R64y3(R6)
KC700
R1yKH4
R2+3(R2)
R643(R6)
R14KEXMVC
R1s1(R1)
R34R1
R74R1
R24R1
R64R1
KC700

3
R11,KVRB
R2+KASN1
R3,KASN2

KFLGXsKVLDT

KC2400
R2y2(R2)

%
KCMCDyKALL
KC2600
R64R6
R6,KSQL
R6,KSQA
KC2900

3
KFLGyKVLN
KC2700
R6,KSGL

KC2900
%*

R640(R2)

INS/VS System Programming

GET INPUT ADDR
CHK IF KEY OPTION
BR IF DATA OPTION
INSERT SEGMENT LENGTH

RESTORE REGS

BR BACK TO CALLER
CHK IF SKIP CCB.
BR IF SO

GET LRC LENGTH

GET EX MOVE LENGTH

MOVE 1 CHAR TO OUT AREA
EXPAND CHARS

UPDATE, CTR/PTR

OQUTPUT PTR

QUTPUT CTR

GET NXT CCB PTR OFFSET
CHK IF ITS BACK TO BACK

UPDATE IN PTR
UPDATE IN CTR

MOVE CHARS TO OUTAREA
UPDATE PTR/CTR

UPDATE OUTPUT DATA PTR/CTR

UPDATE INPUT DATA PTR/CTR

SAVE RET ADDR

GET INPUT ADDR

GET OUTPUT ADDR

IF V-LENy DATA OPTION
BR IF SO

CHK IF ALL EXPAND
BR IF ALL
GET KEY LEN
AND OFF~SET

CHK IF V-LEN
BR IF SO
GET SEG LENG

GET V-LEN

Reference Manual

N\

/

KC2900

KC3000

s 3 e e e o ok e e o e ok oo e o sk R o e e Rk ROk Bk X

o
b-3

RO

R1

R2

R3

R4

R5

R&

R7

R8

R9
R10
R11
R12
R13
R14
R15
KQCMP
KQEXP
KX0100
KHO
KH2
KH3
KHM1
KHCMX
KH1
KH4
KQXON
KQXOF
KSAvV1
KSAV2
KAB2992

KABCX89
KABCX90
KABCX91
KABCX92
KABCD
KABX
KVRB
KVRB1

LR

LH
BAL
™

BZ
CLI
BNE

L

L

LH

SH
STH
EQU

L

BR
SPACE
EJECT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DC
DC
DC
DC
DC
nc
DC
DC

DC
DC
DS
DS

R9,KH256
R1yKH255
R11+KB4600
KFLGXyKVLDT
KC3000
KCMCD,KTLSO
KC3000
R14KASN1
R9,KASN2
R140(R1)
R1yKH2
R1,0(R9)

%

R114KVRB
R11

3

VO ~NITIAPHPWN—O

15
X100!
X104?
X10100"
H'O!

HY 2!
Hl3|
Hl_ll
HY255"
HE1
H|4l
X101
X100"
18F

18F
KA3800
oF
H12989"
H'2990"
H'2991!
H12992!
X*8000"
H1O"

F

F

BR TO MOVE DATA

CHK IF V-LEN, DATA OPTION
BR IF NUT SO

CHK IF PARTIAL EXPANSION
BR IF NOUT SO

GET IN DATA LENGTH
GET ORIGINAL . LENGTH
SAVE IN OUT AREA

RET TO CALLER

CONSTANT

ABEND CODE 2989
ABEND CUDE 2990
ABEND CUDE 2991
ABEND CODE 2992
ABEND CODE 1

ABEND CODE 2

RET. ADDR SAVE AREA
REG SAVE AREA

DL/I User Exit Routines

3 3% 3 % 30X AR R e 3R RN A AR AN A AN R K N A e AR A RH N AR R

*A

KVRBY DS F REG SAVE AREA

KFO oc F'o¢
*********************************#*************************************

* * -
x * 4
KNITA DS OF INIT AREA ~
KMAXL DS H MAX LENGTH OF OUTPUT BUFFER

KTLLX DS H WORK AREA

KTLLL DS H LENGTH OF THE INPUT SEG

KTLL2 DS H NEW SEGL AFTER CMPCT/EXPNSION

KEOD DS X

KESW DS X

KEXPLH DS H

KFCCB DS A PTR TO 1ST CCB

KASNL DS A INPUT BUFFER ADDR

KASN2 DS A ADDR OF QUTPUT AREA

KCMCD DS X PASSED CMND CODE

KFLGX DS X FLAG AREA

KVLDT EOU X'80° V-LEN SEGy DATA OPTION

KNPRSW EQU X'40° NO COMPRESSION SEGMT

KWNEG EQU X'20° FORCED ERR = V-LENG=NEGATIVE NU. #

KNITZ ~ EQU *

* x

* *®

e 3 3o 3 e ok 3ok ik 3o o e o i o ok e o o 3 ok ok 3k e ks e i o e 3 o e 3 e i 5 i 3 ok ok o e ok ok o e sl ok e o e e ok 3 ok e o o
KNITL EQU KNITZ-KNITA

KALL EQU X'o4! CMD CODE=EXPND ALL

KTLSQ EQU xs08! CMD CODE=EXPND TILL KEY

KQINIT EQU xtoc! COMMAND CODE FOR AFTER UPEN

KH255] H'255? CONSTANT '

KH256 DC HY'256! CONSTANT

KH258] H'258! CONSTANT

KNEGNO EQU xr80! NEGATIVE SIGN #

KEXMVC MvC 0(0sR3)40(R2)

KEXEXP MVC 1(04R3),0(R3) <z
KEXBF XC 0(0yR3),0(R3) CLEAR KSN2 BUFF “_
Kz EQU *
LTORG

s s e e e i i ke e e e e b e o i i e o i s o e o e o ok e o e e e ik o e e s e o e e e e i e s s s e e i e e i ook oK o

Rk ok

x% mkksk DSECT OF SEGMENT COMPRESSION CONTROL SECTION(SEGPAC) ssssks sk

£33 3

e e S e e e 3 3 e 0 3 o e 3 e e e ek e 36 e i e e oK e 3 e 3 36 30 e e 033 e e s e i o e ke e e s ke o S ok e ke s ok sk o sk e ok sk ek ok
* CMPACT TAB

KCCB DSECT

KSGN DS cLs SEGMENT NAME

KRTN DS cLs CMPRS RTN NAME

KEP 0S A ENTRY POINT

KFLG DS X FLAG

KSOL DS X KEY LENGTH

KSQA DS H OFFSET TO KEY

KSGL DS H SEGMENT LENGTH

KTBL DS H TAB LENGTH

KSEQ EOU X'08' . SEQ FLD DEFINED

KVLN EQU X'04! RECFM= VAR LENGTH

KKEY EQU X'02! KEY OPTION SPECIFIED

KNIT EQU X'01°' INIT OPTION SPECIFIED
END

/%

3.40 IMS/VS System Programming Reference Manual

HDAM RANDOMIZING MODULES

The DL/I access method called HDAM raquires the IMS/VS user to supply
a module for placing root segments in, or retrieving them from, an HDAM
data base. One or more such modules, called randomizing modules, can
be used within the IMS/VS system. Any one data base has only one
randomizing module associated with it.

A randomizing module is a module that uses a mathematical technique
to convert a key into an address. The same key will always convert to
the same address. The randomizing module required by IMS/VS must
convert an SSA (segment search arqument) key field value into a relative
block number and anchor point number. The SSA key field value is
supplied by an application program for root segment placement in, or
retrieval from, an HDAM data base.

A generalized module, which uses DBD generation-supplied parameters
to perform randomizing for a particular data base, can be written to
service several data bases. i

After a randomizing module has bzen compiled and tested, and before
its use by the IMS/VS system, it must be placed into the IMSVS.RESLIB
data set. Each randomizing module must have a unique name. The name
must not coaflict with the existing members of the IMSVS.RESLIB data
set. Alternative locations for randomizing module storage are
SYS1.LINKLIB, or any operating system partitioned data set to which
access is provided with a JOBLIB or STEPLIB JCL statement.

The name given to the load module used for randomizing functions
with a specific data base should also appear in theé DBD generation
associated with the data base. The load module name must be ths value
of the "mod" parameter of the RMNAME= operand on the DBD statement in
the HDAM DBD generation.

The necessary randomizing module associated with a specific data
base is brought into main storage in either the IMS/VS online control
program region, or batch processing region, at the time the associated
data base is opened. If a single randomizing module is used for more
than one HDAM data base, it must be written, compiled, and link edited
as reenterable (RENT). It can also be placed in the LPA (linkpack
arsa). This allows one copy of the module to service several data
bases that are concurrently open.

When an HDAM data base is to be used in either the INS/VS online
control region, or a DL/I batch processing region, and the randomizing
“module does not exist in 0S/VS LPA, space must be provided for it.
Space must be provided in the INS/VS control region to accommodate all
randomizing modules that can be used for online HDAM data bases.

All randomizing modules are load=zd from their resident library by
the INMS/VS OPEN module, DFSDLOCO. The IMS/VS OPEN module obtains the
name of the randomizing module from the RDMVTAB control block. This
block is constructed by the utility block builder program and placeil
in IMSVS.ACBLIB from parameters specified in the associated DBD. If
th2 IMSVS.ACBLIB data set is not being used, the block is constructed
in main storage and passed to the IMS/VS OPEN module. The IMS IMODULE
macro instruction is used.

DL/I User Exit Routines 3.41

When an application program issues a Get Unique, Get Next with
Qualification, or Insert call which operates on a root segment of an
HDAM data base, the user-supplied randomizing module is invoked. The
SSA and the segment I/0 work area, in the data base call relating to
the sequence field of a root segment, provide the primary input
parameter to the randomizing module. The following illustrates the
format of an SSA:

RODT SEGMENT NAME (SEQUENCE FIELD NAME-OPERATOR-value)

The root segment and sequence field names are eight-character
alphameric values. The operator is a two-character arithmetic value.
A description is provided in the IMS/VS Application Programming:
Reference Manual. Other operators at the root level give unpredictable
results. The value parameter is a term whose length equals the length
of a root segment sequence field in the data bases and whose content
defines an already existent root segment to be retrieved. If the data
base call consists of a root segment insert, the SSA consists only of
the segment name. In this case, the field value is obtained from the
segment I/0 area provided in the insert call.

This field value parameter is supplied to the randomizing mojule
for conversion to a relative block number and anchor point number within
the data base. In addition to the field value parameter supplied by
an application program, parameters from the DBD generation associated
with the data base being used are available to the randomizing module.

When a randamizing module is invoked for the purposes of conversion,
control is passed from the IMS/VS data base logical retrieve function
module, DFSDLROO.

The parameters from DBD generation are available to a randomizing
module in a CSECT named RDMVTAB. The address of this CSECT is passed
to the module"each time a conversion is requested.

This control section is placed at the end of the DBD module and
contains information such as the randomizing routine name, anchor point
information, and the total length of that control section. Each control
section can be extended by the user to contain any desired data or
algorithm information by an assembly and link edit process.

The first 32 bytes are constants defined by DBDGEN. When the new
table is defined by the user to include additional parameters, these
fields must be duplicated. The only exception to this rule is that
the CSECT length field must be propsrly updated to reflect the new
length. After an assembly of the new table, a link edit can be done
to exchange the new table for the old one. Care must be taken to use
an ENTRY statement specifying the name of the DBD when this operation
takes place. See "Automatic CSECT Replacement" in 0S/370 Linkage-Editor
and loader for additional details.

The following DSECT defines the format of this CSECT:

DMBDACS DSECT

DMBDANME DS CL8 NAME OF ADDR ALGORITHM LOAD MODULE

DMBDAKL DS OCL1 EXECUTABLE KEY LENGTH OF ROOT

DMBDAEP DS EP OF ADDR LOAD MODULE

DMBDASZE DS SIZE OF THIS CSECT

DMBDARAP DS NUMBER OF ROOT ANCHOR POINTS/BLOCK
DMBDABLK DS NUMBER OF HIGHEST BLOCK DIRECTLY ADDRSD
DMBDABYM DS MAX NUMBER OF BYTES BEFORE OFLOW TO 2NDARY
DMBDABYC DS CUR NUM OF BYTES INSERTED UNDER ROOT
DMBDACP DS RESULT OF LAST ADDRESS CONVERSION

o 8oy TR T e

3.42 IMS/VS System Programming Reference Manual

A

&

RANDOMIZING MODULE INT ERFACES

Upon entry to any randomizing module, registers must be saved. Upon
return to IMS/VS, registers must be restored. A save area address is
provided in register 13 upon entry for the purpose of saving the
registers.

The following registers, on entry to a randomizing module, have the
indicated meanings:

Register Meaning or-Content
n Data Management Block address (DMB).
1 DMBDACS CSECT address.
7 Partition Specification Table address (PST).
9 Address of first byte of key field value supplied

by an application progranm.

13 Save area address. The first three words in the
save area must not be changed.

14 Return to IMS/VS address.
15 Entry point address of randomizing module.
Notes:

1. If an HDAM data base does not have a sequence field defined, the
values supplied to the randomizing module are as follows:

a. The executable key length field in the CSFECT named RDMNVTAB is
not initialized and should not be used.

b. The value in register 9 at entry to the randomizing module
contains the address of the first byte of the user I/0O area.

2. If an HDAM data base does not have a sequence field defined at the
root level, the randomizing module is given control only on an
insert call. 1All retrieval type calls result in a scan moda
operation to satisfy the root level gqualification. On GU type
calls, the scan starts at the beginning of the data base. On GN
type calls, the scan starts at the current root level position
within the data base.

Internal IMS/VS control blocks that are of value to a randomizing
routine are: the Partition Specification Table (PST), the Data
Management Block (DMB), the Physical Segment Description Block (PSDB)
for the root segment, and the first Field Description Block (FDB). The
FDB is the root segment key field format description. DSECTs of these
blocks are provided in the examples shown later in this chapter.

DL/I User Exit Routines 3.43

The result of a randomizing module conversion must be in the form:
BBBR
where:

BBB
is a three-byte binary number of the block into which a root
segment is to be inserted, or from which it is to be retrieved.

is a one-byte binary number of the appropriate anchor point,
within a relative block, within an OSAM data set of the data
base.

This result must be placed in the CSECT addressed by register 1 in
the four-byte fixed name DMBDACP., If the result exceeds the content
of the field DMBDABLK, the result is changed to the highest block and
last anchor point of that block.

HDAM RANDOMIZING MODULE EXAMPLES

Four randomizing module examples are provided as guidance to the
IMNS/VS system user. The four modules (DFSHDC10, DFSHDC20, DFPSHDC30,
and DFPSHDCH40) are linked into the IMSVS.RESLIB data set during system
definition. The examples use the following techniques:

e Modulo or division method
e Binary halving method
e Hashing method

The intent of a randomizing module is to convert a root segment key
field value to a relative block number and anchor point number in an
HDAM data base. The relative block number may range from 1 to 224-1,
The anchor point number may range from 1 to 255.

Modulo or Division Method Example (DESHDCI0)

This randomizing module uses the principle that the remainder of a
division can only range from zero to the divisor minus one. Thus, any
number divided by four can only yield a remainder of 2, 1, 2, or 3.

To determine the base location for a root segment, multiply the number
of blocks in the root segment addressable area by the number of anchor
points per block. This is effectively the number of base locations
for root segments in the root segment addressable area. Then, divide
the root segment key field value by the result of the multiplication.
The remainder indicates the appropriate base location.

To convert